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Abstract

A basic premise behind the study of large networks is that interaction leadsriplex
collective behavior. In our work we found very interesting and coumtgitive patternsfor
time evolving networksvhich change some of the basic assumptions that were made in the
past. We then develomodelsthat explain processes which govern the network evolution,
fit such models to real networks, and use them to generate realistic gragihge formal
explanations about their properties. In addition, our work has a widgerahapplications:
it can help us spot anomalous graphs and outliers, forecast futysl gtaucture and run
simulations of network evolution.

Another important aspect of our research is the study of “local” patndsstructures
of propagation in networks. We aim to identify building blocks of the netwankd find
the patterns of influence that these blocks have on information or virgagation over the
network. Our recent work included the study of the spread of influémeelarge person-
to-person product recommendation network and its effect on pureh&ge also model the
propagation of informatioron the blogosphere, and propaagorithmsto efficiently find
influential nodes in the network.

A central topic of our thesis is also the analysidarfe datasetss certain network prop-
erties only emerge and thus become visible when dealing with lots of data. \Iyzeaiize
world’s largest social and communication network of Microsoft Instaesd&nger with 240
million people and 255 billion conversations. We also made interesting and cotunite/e
observations about network community structure that suggest that onllyngtwveork clusters
exist, and that they merge and vanish as they grow.
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Chapter 1

Introduction

The main interest of our research has been in understanding the sitymtyerties and patterns in the
evolution of large graphs and networks. What does a “normal” netwoiklike? How will it evolve over
time? How can we spot “abnormal” interactioresd, spam) in a time-evolving e-mail graph? How do
information and viruses spread over the network? How can we identiffirshthfluential nodes or select
nodes to immunize in networks? Answers to such questions are vital to achagglication areas from
the identification of illegal money-laundering rings, misconfigured routetfie Internet, viral marketing
and protein-protein interactions to disease outbreak detection.

A basic premise behind the study of large networks is that interaction leadsg&x collective behavior.
We study three such cases where complex collective behavior emeavgebfral interaction:

¢ Network evolution: The study of statistical properties and models that govern the generation an
evolution of large real-world networks. Evolution of network structure fsren of collective be-
havior, where our studies are the first to examine network evolution ougrtlime periods both
at the macroscopic level of statistical network properties and at the mopiadevel by analyzing
individual arrivals and attachments of millions of edges. We view the netasr& big complex
system, and observe its static and temporal properties and patterns to mesiglis that capture
and help us understand the temporal and static patterns of real-worldrketwo

¢ Network cascades:The study of the network by starting from individual nodes and small com-

munities. Cascades are a form of collective behavior that has beerzeddlgth empirically and
theoretically, but for which the study of complete, large-scale datasetekadimited. We examine
two examples where it is possible to directly observe and measure largecasasaling behavior.
We show that cascades exist in large real-world networks, and inviestigee of their structural
features. We aim to find common and abnormal sub-network patterns aedstemd the propa-
gation of influence, information, diseases and computer viruses oveetivenk. Once we know
the propagation patterns and structure, we devise algorithms for efficigntiyg influential nodes
and detecting disease or virus outbreaks in networks.

e |arge data: The study of large real-world networks with hundreds of millions of nodeseaziges.
Working with such datasets is important in order to understand and take caarggerformance
and scalability issues and to discover patterns that may become appdyeint massive datasets.
For example, we demonstrate the value of large data in the case of quanti§fimgrk community
structure where most of the existing work focused on small networksvefalehundred nodes. On

1



the other hand we analyze large networks of millions of nodes and showsth&ture is funda-
mentally different from small networks. Basically, our observations oelgome possible when
working with enough data so that the behavior or the structural propewryges.

1.1 Motivation and applications

Traditionally small networks were analyzed from a “node centric” poinvi®iv where researchers wanted
to answer questions about behavior and properties of particular imodhesnetwork. Though such models
are very expressive, they often fail to scale to large networks with millibnea@es and edges. Moreover,
many times we need to work with a large network for a structural propertyeaid¢twork to emerge; thus,

the focus moves to the study of structural properties of the network aslawh

Today with the ubiquity of the web and with billions of its users there are skopprtunities to study
phenomena and computing systems at scales that were not possible Gé&fierean be summarized by
the following three points:

¢ On-line computing systeme.@, web, email) have detailed traces of human activity.

e Such applicationsg(g, Facebook, Second Life, blogs) have millions of users interacting with one
another and with the system.

e Such rich data can naturally be modeled and represented as a network.

For example, Web 2.00'Reilly, 2005 is a set of tools that enable the masses to easily create content
on the WWW, in the form of blogs, social networks, video and photo collestiand simple application
creation frameworks. In addition, Web 2.0 has amplified the importance dioredaips between users
that are represented in social networks. The emergence of this nevaded content has led to a flurry

of research activity that aims to mine the content and infer useful dataifr@@rg, sentiment analysis,
network analysis). Other such examples include: mobile caller networkshwitlude traces of calling

and mobility dynamics of millions of people; Instant messaging data that in a sipglieaion under a
single system captures communication patterns of basically the whole platiet@afor example, online
worlds and massively multiplayer online games which are capable of sugpbdimdreds or thousands

of players interacting simultaneously.

This presents many unigue opportunities and challenges. On one hanelsénts a shift in computer
science from engineering big systems to a more natural science apptidide other areas in the field,
we are not engineering a system over which we have complete controbaayWe are studying the real
world, adding local mechanisms to achieve certain global goals. On thetwhdy the emergence of
socially rich computing applications with millions of users allows us to ask quedt@isvere impos-
sible to answer before as large scale human social dynamics data whasafisaimpossible to collect.
Moreover, this also offers a unique opportunity for computer sciencestchrtowards other sciences like
social sciences, economics and mechanism design, and physics of xeygikEms.

To understand the complex behavior and dynamics of the web or the intexokibone one basically
follows the steps of the scientific method. Thus, throughout this thesis wavftitle following three
steps:



Thesis Steps of the thesis
part 1: Observations| 2: Models | 3: Algorithms
Part 1: Network evolution chapter 3 chapter 4 chapter 5
Part 2: Network cascades chapter 6 chapter 7 chapter 8
Part 3: Large data chapter 9 chapter 10 | chapter 11

Table 1.1: Structure of the thesis with references to the chapters.

e STEP 1 - Observations:Hypothesis and data analysié/e consider a problem of interest and form
a hypothesis. We collect real data, measure and observe the phenohetesiest, and perform
measurements and analyses that prove or disprove the hypothesis.

e STEP 2 — Models: Explanation/model desigrnGiven a novel observation we design models that
give intuitions, explanations and predictions about the system.

e STEP 3 — Algorithms: System and algorithm developmebtsing insights from the data analysis
and models that explain the observations, we develop new better ancalgstéthms and systems.

While the first two steps are part of usual scientific method, the last thirdsssepnewhat unique to com-
puter science as it introduces a feedback loop to the process. It ainmestdhe empirical observations
and intuitions coming from the models to develop better systems, applicationdgamithans. This is
also the primary reason why computer sciepee seis interested in asking and validating the empirical
guestions.

For example, recently the field of “internet measureme@¥olella and Bestavro4997, Zhang et al.
2002 emerged in the area of computer networks. It empirically explores, messurd models how
Internet as a whole looks, works, and behaves. This is shift fronitibadl engineering point of view.
If one engineers a system, there is usually no need to measure and madeldtdesigned it and thus
understand how it works. However, even though the physical Intevas designed and engineered, it
evolved into a large and complex system that one today needs to measumedeldo understand it and
make predictions about it. Thus also comparisons and parallels of the intetimeomplex physical and
biological systems.

This puts computer science a unique position as we not only study but aigm@ad build such complex
systems. We are not only silent observers that measure and model, loanvedso design, create and
impose rules and incentives on such systems. Via computing application wedatvol at micro level,
while the system is affected globally. So it is important to understand how systiems work, and
understand what consequences our micro decisions have globally) thieiec naturally closes the loop
between design and engineering on one hand, and empirical measumamemiodeling on the other
hand.

Thus, the thesis naturally breaks into nine pieces, as shown in Tabléhe rows correspond to the re-
search problems, and the columns correspond to the steps of the scieotiispas described above. Next
we give the motivation for each of the nine parts, following by the summaryotontributions.
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1.1.1 Network evolution

Ultimately we search for interesting measures that let us characterize therketwicture and the pro-
cesses spreading over the networks. Then we design models and atgdtitht take advantage of the
identified structural network properties.

The focus of analyzing and modeling the structure of large networks aimse thedfollowing three
things:

(1) Observations: What are interesting statistical properties of network structuféf® aim is to find
statistical properties, such as path lengths and degree distributionshénatterize the structure
and behavior of networks, and suggest appropriate ways to measaeegttoperties.

(2) Models: What is a good model that helps us understand these propektesdim to create models
of networks that can help us to understand the meaning of the statistica&rpespof networks.
How they come to be as they are, and how they interact with one another?

(3) Algorithms: Estimate the model and predict behavior of networks based on meastitetural
properties and local rules governing individual nodek®w, for example, will Internet structure
evolve and how does the network structure affect traffic on the Intemperformance of a web
crawler?

Applications:

¢ Models and parametersGenerative models and their parameters give us insight into the graph
formation process. Intuitions developed by the models are useful in stadeing the network
generation processes and reasoning about the structure of the ksetmvgeneral.

¢ Graph generationOur methods form means of assessing the quality of graph generatathety
graphs are important for “what if” scenarios where we need to exa#pa@and simulate graph
growth and evolution, since real graphs may be impossible to collect akdlika; e.g, a very large
friendship graph between people). Synthetic graphs can then bearga@dicting future network
evolution, hypothesis testing, and simulations and evaluation of algorithgissimulations of new
network routing protocols, virus propagation, etc.

e Extrapolations and predictionstor several real graphs, we have a lot of snapshots of their past.
What can we say about their future? Our results help form a basislfdatiag scenarios for graph
evolution.

1.1.2 Network cascades

The second part of the thesis deals with information propagation in largenetwThe social network
of interactions among a group of individuals plays a fundamental role imptie&ad of information, ideas,
and influence. Such effects have occurred in many cases, wherneaoridetion gains sudden widespread
popularity through word-of-mouth or “viral marketing” effects. To takeeaent example from the tech-
nology domain, free e-mail services such as Microsoft's Hotmail and ladeg@’s Gmail achieved wide
usage largely through referrals, rather than direct advertising. HHawdirectly measuring such behaviors
on a large scale proved difficult.



We would like to understand how the structure of the network affects teadmf information, influence
and viruses over the network. We monitor the spread of information on tigedpbere or recommenda-
tions in a product recommendation network. We aim to answer the followingtigus:

(1) Observations: What are the typical patterns of information propagatiofi?e aim is to find statis-
tical properties, such as how deep or wide are the propagation gr@pbxélledcascadesor how
fast is the information spreading? We want to characterize such bebavidrsuggest appropriate
ways to measure them.

(2) Models: What is a good model that helps us understand these properkesxample, we aim
to create models of information propagation on the web. Why information casksespread in a
particular way, and how does this interact with the network structure?

(3) Algorithms: How to identify influential nodes and detect disease outbred@?example, given
a fixed budget of attention, which blogs should we read to be most up to datemews? Or
similarly, in a big water distribution network, where shall we position the sertsodetect disease
outbreaks as quickly as possible?

Applications:

e Cascade formationlUnderstanding cascade formation helps to explain the propagation of infor
mation and viruses over the network. This allows for more accurate modeisisfpropagation,
which can be used in epidemiology for simulations.

e Qutbreak detectionOur work on cascades also gives us the means to study, for exampld, whic
nodes to inoculate to prevent a virus from spreading through the netaonkhere to place sensors
in a water distribution network to quickly detect disease outbreaks.

1.1.3 Large data

A basic premise behind the study of networks is that interaction leads to cadldmthavior. For such
collective behavior to become “visible” and detectable by statistical and mea&anning methods one
needs to analyze large datasets. As it turns out, many network propeltoesieavy-tailed distributions
that have infinite variances, which makes estimation hard and requires bdsaof

(1) Observations: What novel observations can we make from large dataddsi?y large datasets we
can more accurately measure and experiment at scales that were sibtegpbsfore. This can then
lead to observing novel patterns or answering questions that werieysgvpractically impossible
to answer due to lack of data and tools to analyze them.

(2) Models: What is a good model that explains the observatigvifen existing models fail to give an
explanation, novel observations give us opportunities to design new models

(3) Algorithms: How to handle and analyze large dataseW®arking with large datasets presents sev-
eral engineering, systems and implementation challenges. It forces ugelomlscalable parallel
and out-of-core algorithms and tools that scale to large datasets and atlome&surement and
analysis.



Applications:

e Data mining: Scaling data mining algorithms to large data is important by itself as it will allow us
to discover novel patterns not found in smaller datasets.

e Abnormality detection and computer network managemaninany network settings, “normal
behavior will produce subgraphs that obey properties of netwonkthroTo detect activity which
produces structures that deviate significantly from the normal pattemse®rds to efficiently pro-
cess lots of data. As the detections are made, we can flag them as abnorntiaiktieen potentially
help with the detection ok.g, fraud, spam, or distributed denial of service (DDoS) attacks.

1.2 Thesis overview and contributions

The thesis addresses a number of important questions regarding tieetigopnd patterns of large evolv-
ing networks by revealing how local behavior and structure lead to laae phenomena.

The dissertation focuses on dynamics of time evolving networks, and trendys of processes, like
virus propagation, that take place in networks. Our thesis has a “3-byr&ture: it focuses on three
problem domains where each of them is examined from three differeattsspe., there are three parts:
Network evolution, Network cascades and Large data, where eacarofithcomposed of three chapters:
Observations, Models and Algorithms. Tallel gives the overall structure of our research with the
mapping to the chapters of this thesis.

The the main questions this thesis asks and answers are the following. &{eslhich of them in the three
steps the thesis follows:

1.2.1 Part 1 — Network evolution: How do real-world networksevolve?

Accurate properties of network growth, information propagation, andaribeels supporting them, have
several possible consequences. Patterns give us ways for tamdiéng and building models, and models
help us to reason, monitor and predict features of the network in the future

Step 1 — Observations:How do network properties evolve over timghapter3)

Here we examine how the macroscopic network properties, like diameteremmdrk densification,
change over time as the network evolves. This work had influence on tgiakiout fundamental struc-
tural properties of networks varying over time. For example, to date, itawasmonly believed that
the average degree of graphs of natural phenomena remains cassthay grow over time. Moreover,
it was also assumed that the distances in networks slowly (logarithmically) seckeith the network
size. We showed that in fact networllensify over times the number of edgds(t) at timet is in-
creasing af/(t) o« N(t)* with the number of noded/(¢). The densification exponentis non-trivial,

a ~ 1.2-1.6 [Leskovec et a).20058. Even more surprisingly, the diameter of the netwskkinksas it
grows. These findings are fundamentally different from what wasvesli@and commonly assumed in
the past. A natural question to ask then is why do we observe these rggsfakWhat is the connection
between densification and shrinking diameters? As the existing intuitions arelswwnot explain these
types of behavior, we developed a “Forest Fire” generative modettkates graphs with these proper-
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ties [Leskovec et a).20078. We also showed that densification itself is not enough to observe gigink
diameters.

Step 2 — Models:How can we model the network growth and evoluti¢Ghapterd)

We examine network evolution by studying individual edge arrivals ancepients. It is the individual
edges that collectively give rise to observed macroscopic networkegiep. We use thenaximum-
likelihood principle to quantify the bias of new edges towards the degree and agele$,rand to objec-
tively compare various models such as preferential attachment. In factyasl is the first to directly
quantify the amount of preferential attachment in large social networks siWgw that most new edges
span very short distances, typicalijosing triangles Motivated by these observations, we develop a
completemodel of network evolutionincorporating node arrivals, edge initiation, and edge destination
selection processes. While node arrivals are mostly network-spec#iedte initiation process can be
captured by exponential node lifetimes and a “gap” model based on a pewevith exponential cutoff.
We arrive at an extremely simple yet surprisingly accurate descriptiore@dbe destination selection in
real networks.

Step 3 — Algorithms: How can we generate large synthetic realistic looking netwo(K&tapters)

Last, we examine a question of how one can generate realistic looking Sgmftaphs. This competency

is important as we often need good null-models for simulations, what-if Sosreard hypothesis testing.
We developed a Kronecker graph model that is based on the tensaicpoidjraph adjacency matrices.

In contrast to previous models, Kronecker graphs capture greatedtan of static and dynamic network
propertiesLeskovec et a] 20054, while being mathematically tractable. Moreover, we developed a max-
imum likelihood approach for parameter estimation of Kronecker grdmgskpvec and Faloutsp2007.
Naive approaches take super-exponential time, while we develofindaa time parameter estimation
algorithm. Using approximation and sampling we efficiently search the spau@ 819 states, and
estimate the model parameters for networks with millions of nodes in a matter &. hour

Contributions:

¢ We discovered the netwodensificatiorandshrinking diametethat influenced the thinking about
fundamental structural properties of networks varying over time.

¢ \We developed Kronecker graphs, which ammathematically tractablenodel of network genera-
tion and evolution. Moreover, Kronecker graphs are the first modeldhable to captureseveral
temporal and static network properties at the same time.

e We developed IRONFIT, an algorithm for estimating parameters of a Kronecker graphs model.
Naive parameter estimation tak@$/N! N?) time, while our approach scalésearly O(E), which
allows us to fit large graphs with millions on nodes and edges.

Impact:

e The work on densification and shrinking diameters received the bestrodspaper award at ACM
KDD 2005 [Leskovec et a).20054.

e Kronecker graphs have been harnessed by the high performanmgmitiog communitye.g, by
Jeremy KepnerKepner 200§ at MIT Lincoln Lab, and David Bader at Georgia Tech, and Mo-
hammad Mahdian from Yahoo! Researthghdian and Xu2007.
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1.2.2 Part 2 — Network cascades: How information spreads ingtworks?

To model the evolution of large networked systems one also needs to tamden®w influence and infor-
mation spread and propagate. Developing insights into such propagatiop®isant for selecting targets
for advertising and marketing, finding opinion makers with great influenshaping people’s opinions,
and to select nodes to monitor to best detect the potential epidemics.

The second part of the thesis presents our results on dynamics o$pesdbat cascade from node to node
like an epidemic. As the processes propagate they coaatadeshat are a form of collective behavior
that has been analyzed both empirically and theoretically, but for whichutg ef complete, large-scale
datasets has been limited. We investigated two examples of cascading béhaeiovorks where propa-
gations naturally form cascades and we were able to directly measuréseny® them on a large scale.
In our work on information propagation between blogegkovec et a].2007¢ and on product recom-
mendation networkd Jeskovec et a).2006a 20074, we developed macroscopic models of the spread of
influence in networkslleskovec et a).2007d, and found common and abnormal network substructures,
calledcascadesthat the propagation process creataesskovec et a).2007d 20064.

Step 1 — Observations\What are patterns of diffusion and cascades in netwo(dtapter6)

First we present a study of influence and recommendation propagatidargreaviral marketing network.
To the best of our knowledge, our research was the first to ansvirepiegjuestion: What is the probabil-
ity of a person adopting the behavierq, buying a product) as more friends have adoptekovec et a).
20064. Two competing theories are diminishing returns, which assumes that thakplity of adoption
increases slowly, and a critical threshold hypothesis, which assumehehaiobability of purchase sud-
denly jumps as a particular number of friends acquire the product. Theatiahdof these competing
models is only made possible with sufficient data. We observed 16 million progitammendations be-
tween 4 million people on half a million products from a large online retailer. Waddahat probability of
adoption follows aiminishing returngproperty, and that the probability of adoption saturates (and some-
times even starts to decrease) after around 20 network neighbors[adekbvec et a).20074. These
findings are important for advertising and viral marketing.

Step 2 — Models:How can we model information diffusion and cascad@sRapter7)

We also study the information propagation and the cascades this proseissireon the blogosphere. We
analyzed one of the largest available collections of blog information, tryifigdchow blogs behave and
how information propagates through the blogosphere. In contrast wahnagirketing, stars and chains
are basic components of blog cascades, with stars being more common.

Step 3 — Algorithms: How can we effectively detect epidemics and disease outbré@kspter8)

The diminishing returns property has also led us to efficient and theoretscaifyd algorithms for network
sensor placementgskovec et a).20074¢. Submodularitys the diminishing returns property that we ex-
ploited to develop new tighter bounds for greedy optimization of submodutatiitns and to devise new
efficient optimization algorithms. Our approagftovablyachievesiear optimalplacements, while being
700 timedaster on our dataset than a simple greedy algorithm. Our appriaahde et al.200§ ranked
firstin the “Battle of the Water Sensor Networks” competition where the taskovalace sensors in a city
water distribution network to effectively detect contaminants spreadingtbeenetwork PDstfeld et al,
2004. Beyond the task at hand, we showed that the same sensor placenceitihiadgan be used to decide
the best news sites on the internet to read to not miss important informagipto, detect “information epi-
demics” effectively. We tracked the information propagation on the bldwgrepfor 1 year, and used our
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algorithms to find the most informative blogs. Our project wehisityg//www.blogcascades.org
received more than 30,000 pageviews to date.

Contributions:

e Our work on the shape of the human adoption curve and cascades imanka@ting and blogosphere
was the first to measure and analyze cascading behavior in a largeadéisetting. We also found
that the human adoption curve followsninishing returns

¢ We developed the CELF algorithm for sensor placement to detect disetseaks in networks.
We proved that CELF placements are near optimal, and obtained data dapbodnds that show
our solutions are atz 90% of NP-hard to compute optimal, while beif®0 times fastethan a
simple non-optimal greedy algorithm.

Impact:

e Our work on the CELF algorithm received the best student reseapér pavard at ACM KDD
2007 conferencelfeskovec et a).20074.

e Our approach for contamination detection in water distribution netwétkaise et al.200g ranked
first in the “Battle of the Water Sensor Networks” competition where the taskta/glace sen-
sors in a city water distribution network to effectively detect contaminantsdprg over the net-
work [Ostfeld et al. 2004.

¢ Follow-up works by Duncan WattKpssinets and Watt2004, Jon Kleinberg, Daniel Hutten-
locher Backstrom et a).2009 and others later confirmed the diminishing returns behavior in a
number of other domains,g, the probability of joining a community, sending an email, or editing
an article on Wikipedia.

1.2.3 Part3 —Large data

The third part of the thesis presents our work on very large networksshaw how large amounts of data
give us opportunities to observe phenomena that were previously pictivisible.

Step 1 — Observations\What properties hold for a social network of the whole plan@&Rapter9)

We present the “planetary scale” Microsoft Instant Messenger mkfwlee largest social networlana-
lyzed to date Leskovec and Horvitz2008. We collected and analyzetl5 terabytesof network data.
The MSN network contain840 millionpeople, with more tha billion conversations per day. We inves-
tigate on a planetary scale the oft-cited report that people are sepaydtaxl hegrees of separation” and
find that the average path length among Messenger usei /e also examine homophily and patterns
of intra- and international conversation.

Step 2 — Models:What is community or cluster structure of real-world networkSBapterl0)

We present our work on community structure in networks. Researchtrs gocial sciences and physics
have long been excited about the existence of “network communities”aheintuition is that networks
contain sets of nodes that interact more strongly with each other than witartteender of the network.
We found behaviors that are fundamentally different from intuitionsdasesmall social networks, spa-
tial graphs or hierarchical community structure that has typically beemresgbtor social and biological
networks. Our observation is that, in large networks, tight communities axigtab smaller size scales.
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The limit on the community size is 100 nodes which agrees well with Dunbar’s observation that 150 is
the maximum human community siz@ynbar 1998. As community exceeds this critical size it vanishes
and blends with the rest of the netwolilkeskovec et a).20084. Our observations were only possible
since we examined large enough networks exceeding the size scale of nagresau-ormalization and
models of such behavior would have a wide range of implications for relsei@ in the social sciences
who want to discover communities from network data, and also for graptecing and partitioning
researchlleskovec et a).20081.

Step 3 — Algorithms: How can we predict web search result quality without looking at the wgbpa
content?(Chapterll)

Last, we present ways of how local web graph structure can be asprktlicting the quality of web search
results. We show how local structure of the web graph can be used togiwdiadly accurate predictions
about relevancy of web pages. We introduab projectionswhere we extract context sensitive subgraphs
of the web, and then usmachine learningon contextual subgraphs of the web that can be used for
search result qualityprediction,web spamdentification and predicting what search engine user will do
next.

Contributions:

e We analyzed the properties of the planetary MSN Messenger social nketihie largest social
networkexamined up to date, and found tf&6 degrees of messagingi.e., that people are on
average separated by only 6.6 hopsegkovec and Horvit2008§.

e Our analysis of community structure in large social and information netwiidwesd that there is
a maximum scale to a network community, which has many implications for clustertchgaam-
munity identification methods.

Impact:

e QOur analysis on of MSN Messenger network, the largest network agtlygz to date, and the “6.6
degrees of messaging” appeared in popular press like Nature negtZOnet (all in March '08),
Washington Post, MSNBC and BBC (all in August '08).

e Our work on the most influential bloggers generated lots of excitement agpegienced a “Slash-
dot effect” with more thai30,000 visitgo our project websitbttp://www.blogcascades.org .
Moreover, the work also appeared in ACM TechNews (November '68)an MSNBC (January
'08).

Next, we present basic concepts and preliminaries, introduce the notatidoriafly survey the related
work. We then proceed with each of the three main parts of the thesis: Neewvolution, Network
cascades, and Large data.
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Chapter 2

Overview and survey

In this chapter we review the basic concepts and terminology used in thisdahesigroduce the notation.
Next, we survey the works on properties of networks and models to expliinemergence, as well as
network diffusion, cascading behavior and information propagationtinor&s.

2.1 Basic concepts and definitions

Next, we briefly define concepts and terminology that we will be using throutghe thesis. We introduce
basic graph-theoretic concepts and review the power law distributions.

2.1.1 General graph-theoretic concepts

Network data is modeled or represented withraph A graphG = (V, €) is defined with a vertex set
V, whereN denotes the number of nodes, = |V|, and an edge sét, whereE denotes the number of
edgesFE = |£|. We interchangeably use terms vertex or node to refer to elements of thg set), and
similarly edge, link or connection to refer to elements of the edgé set

A convenient way to represent a gra@hs by using aradjacency matrixwhich is anN x N matrix A,
whereA; ; = 1if (i,j) € £ and0 otherwise.

Next we define the terminology and several basic graph-theoretic jgtsnce

Bipartite graph: graphdG is bipartite if its vertex set can be partitioned into two disjoint 34ts)s, so
that there are only edges connecting nodes across thg;satsl),. Or equivalently, there exist no edges
between the nodes of the same partition.

Directed and undirected graph: A graph isundirectedif (i,j) € £ < (j,i) € &, i.e, edges are
unordered pairs of nodes. If pairs of nodes are ordered,edges have direction, then the graph is
directed

Connectedness:We say that two nodes in a network arennectedf there exists an undirected path
between them.
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Weakly and strongly connected graph:A graph isconnectedf there is a path between all pairs of nodes
in a graph. If the graph is directed, then itneakly connecteifithere exists an undirected path connecting
any pair of nodes. Similarly graph $$rongly connectets there exists a directed path connecting any pair
of nodes in a graph.

Connected component:A connected component just a component is a maximal set of nodes where
for every pair of the nodes in the set there exist a path connecting theatogtusly, for directed graphs
we haveweaklyandstronglyconnected components.

Biconnected graph: A graph isbiconnectedf the removal of any single edge does not disconnect the
graph. This means that between any pair of nodes there exist at le&gbintdoaths. Edges whose
removal disconnects a connected graph are céllelfje edgesSimilarly, a node is aarticulation node

if its removal disconnects the graph.

Complete graph: A graph is complete if all pairs of nodes are connected.

Expander graph: An expander graph is a sparse graph which has high connectivitgpiepquantified
using vertex (or edge) expansion: A grafhon N nodes isa-vertex expander if for any C V where
|S| < N/2 we have|6(S)| > a|S|. Hered(S) denotes a set of all edges with one endiand the other
end inV\S.

Loosely speaking(= is an expander ity is “large”. Intuitively, an expander is a graph for which any
“small” subset of vertices has a relatively “large” neighborhood, or sityjlaemoving random edges
does not reduce the property of an expander by much.

Subgraph: A subgraphG, = (Vs, &) of a graphG = (V, £) is a subset of edges and all their endpoints:
EsCEandVs ={i,j: (i,)) € &}

Induced subgraph: An induced subgrapld:; = (Vs, &) of agraphG = (V, £) is a subset of nodes and
all their edgesys; C V and&; = {(4,j) : (4,)) € EANi,j € Vs}.

Node degree:We say that a node has degréd it has d incident nodes. For directed graphs we talk
about out-degred,,;, which is the number of edges pointing from the node. Similarly, in-dedsge
denotes the number of edges pointing towards the node. For undireafgtsdor every node d;,, (u) =
dout(u) = d(u). We also define the graph average degtee1/N >° .\, d(u) = 2E/N.

Triad: Atriad (or a triangle) is a triple of connected nodesv, w), i.e, (u, v), (v, w), (w,u) € &.

2.1.2 Diameter and effective diameter

For each natural numbeér let g(h) denote the fraction of connected node pairs whose shortest connecting
path has length at mogt, i.e, at mosth hops away. Théop-plotfor the network is the set of pairs
(h,g(h)); it thus gives the cumulative distribution of distances between connectedpairs. We extend

the hop-plot to a function defined over all positive real numbers by lineaterpolating between the
points(h, g(h)) and(h + 1, g(h + 1)) for eachh, and we define theffective diameteof the network to

be the value of. at which the functiory(h) achieves the value.9.

Definition 2.1.1. GraphG has thediameterD if the maximum length of undirected shortest path over all
connectedairs of nodes ig). The length of the path is the number of segments (edges, links, hops) it
contains.
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We also usdull diameterto refer to this quantity. Notice the difference between the usual and @ini-de
tion of the diameter. For a disconnected graph the diameter as usually deflsedhfinite, here we avoid
this problem by considering only pairs of nodes that are connected.natsone ignore the directionality
of an edge if the graph is directed.

Definition 2.1.2. For each natural numbet, let g(h) denote thdractionof connected node pairs whose
undirected shortest connecting path in a gra@ihas length at most. And letD’ be an integer for which
g(D'—1) < 0.9andg(D’) > 0.9. Then the grapltz has theinteger effective diameted’ [ Tauro et al,
2001.

In other words, thénteger effective diametés the smallest number of hod®' at which at least 90% of
all connected pairs of nodes can be reached.

Last we give the definition of theffective diameteas considered in this thesis. Originally we defined
g(h), a fraction of connected pairs of nodes at distance at moshly for natural numbers. Now we
extend the definition of to all positive reals: by linearly interpolating the function value betweg(h)
andg(h+1) (h <z <h+1): g(z) = g(h) + (9(h+ 1) — g(h))(x — h).

Definition 2.1.3. Let D* be a value wherg(D*) = 0.9, then graphG has theeffective diameteD*.

This definition varies slightly from an alternate definition of the effective diamesed in earlier work:
the minimum integer valugé such that at leas$t0% of the connected node pairs are at distance at most
Our variation smoothes this definition by allowing it to tak@n-integewalues.

The effective diameter is a more robust quantity than the diameter (defilee m&ximum distance over

all connected node pairs), since the diameter is prone to the effectsaiatade structures in the graph
(e.g, very long chains). However, our experiments show that the effedtarmeter and diameter tend
to exhibit qualitatively similar behavior. Note that under these definitions fleetafe diameter and the

diameter are well defined even if the graph is disconnected.

Calculating the exact diameter or effective diameter is infeasible for laryeories at it takesO(N?)
time. One way to overcome this would be to resort to samplirg sample a large number of node pairs
and calculate the length of the shortest paths between pairs. We cho$erentiipproach, and rather
used an approximation algorithm ANPdImer et al.2003 that is based on fast approximate counting
and hashing.

2.1.3 Power law distributions and heavy tails

Here we describe the power law and heavy-tailed distributions and then coakections to several
network properties that usually follow power law distributions. Furtherildet& mathematics of power
laws can be found inMlitzenmacher2004 Newman 2005 Clauset et a).2007.

A distribution is a Power law if it has a PDF (probability density function) of twerf
p(z) occz™?

wherep(x) is the probability to encounter valueand~ is the exponent of the power law.

If 2 is a continuous random variable thefw)dz = Pr(z < X < z +dz) = 22 7dz, whereZ is a
normalizing constant. The density divergesras: 0 so the equation cannot hold for all so there must
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be some lower bound,,,;,, to power law behavior. Provided that> 1 then calculating the normalizing
constant we find that:
y—17/ & \—7
p(z) = ( )

Tmin \NTmin

For the case whenis discrete and takes integer values we objéir) = Pr(X = z) = 22~ 7. Again the

distribution diverges at zero, so there must be a lower baund on the power law behavior. Calculating
the normalizing constant we find that
.’17_7
C(/}@ xmin)
where( (v, Tmin) = Y oop(i + Tmin) ~7 is the generalized zeta function.

p(x) =

In many cases it is useful to consider the Complementary Cumulative Distritfatioction (CCDF) of a
power law distributed random variable. In both discrete and continuaesites defined a®r (X > z).

For continuous casBr(X > z) = (——)~7*! and for discrete caser(X > z) = =22

Tmin CvsTmin)
Perhaps surprisingly, power law distributions can have infinite variaamugsven the mean can be infinite.
Basically, one can show that for a power law distribution with power law B&pty momentsn < v — 1
will exist and all higher moments will diverge. For example, for< 2 mean, variance and all other
moments are infinite; similarly, faz < v < 3 mean existsi(e,, is finite), while variance will be infinite,
and fory > 3 mean and variance will be finite, while third and all higher moments will diverge.

Heavy-tailed and scale-free distributions

A power law distribution is sometimes calledeale-freadistribution, which intuitively means that it looks
the same regardless of what scale we look at it on. More precisely,

Definition 2.1.4. Distribution p(z) for a quantityx is scale-free if there exists a functigi) such that
p(bx) = g(b)p(x) for all b andz.

The scale-free property means that when we increase the scale oryuwitéch we measure by factor

b the shape of the distribution(z) is unchanged except for the multiplicative constant. This means that
no matter what range af one looks at, the proportion of small to large events is the samethe slope

of the curve on any section of the log-log plot is the same.

Exponential family distributions (like Gaussian distribution) are not scale-fActually, power law is the
only scale-free distributiolNewman 2005.

Similarly, power law is also a heavy-tailed distribution. This means that its tails@rexponentially
bounded; that is, they have heavier tails than the exponential distributimre ptecisely, we define
heavy-tails in the following wayAsmussen2003:
Definition 2.1.5. The distribution of a random variabl& is heavy-tailed if

lim Pr(X > x)

T—00 e~ ¢r

forall e > 0.
In contrast, we say a distribution is light-tailed if the limit oo for somee.
Examples of heavy-tailed distributions include power law distributions, Parelathers which we ex-

amine next.
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Relation to Zipf and Pareto distributions

Zipf’'s law [Zipf, 1949 usually refers to the rank-frequency ploi€., “size” or magnitudey of an oc-
currence of an event relative to its rank Zipf’'s law is named after George Kingsley Zipf, a Harvard
linguistics professor, who tried to determine the “size” of tHemost common English word. Size here
denotes the frequency of use of the word in English text. Zipf's law staggdtib size of the” largest
occurrence of the event is inversely proportional to its rank: »—? with b ~ 1.

Pareto distribution is named after economist Vilfredo Pareto, who was itedresthe distribution of
income Lorenz 1903. Instead of asking what the” largest income is, Pareto asked how many people
have an income greater thanPareto’s law is given in terms of the complementary cumulative distribution
function (CCDF),i.e.,, the number of events larger tharis an inverse power of: Pr(X > z) oc 27",
Basically, it states that there are a few multi-billionaires, but most people mdieaanodest income.
When this distribution is used to model the distribution of wealth, then the paraiistealled the Pareto
index. In 1906 Pareto also made the observation that twenty percent pbgh#ation owned eighty
percent of the property in Italy,e., the80 — 20 rule (that occurs for power law exponent= 2).

Interestingly, power law, Pareto distributions and the Zipf's law are all intipattated. Relation be-
tween the power law scaling exponenand the Zipf's law exponeritis v = 1 4 (1/b). Similarly for the
relation of power law exponentand Pareto indek we obtainy = k + 1 [Adamic 200Q.

Estimating power law parameters from empirical data

Most commonly the parameters of the power law distribution are estimated frompéeshistogram.
Taking logs on both sides of the power law equation givegx) = ~Inx + const, which implies that

a histogram follows a straight line when plotted on log—log scales. We caldcb&mpirical probability
density function ofr (histogram of its frequency distribution) and plot the histogram on log-kig) &f a
distribution approximately follows a straight line, then one could assert ts@iodition follows a power

law with exponenty given by the slope of the line. Unfortunately this method shows some bias as the
independence and Gaussian noise assumption of least squares Igreasion are violated\lewman

2003.

A better but still not entirely correct way of parameter estimation is by fittingaagsit line on a log-log
plot of the CCDF. This gives less biased results as the visual form of @2Fds more robust against
fluctuations due to finite sample siz&Slquset et a.2007. To improve the accuracy one also bins the
data using the exponentially increasing bin widites, logarithmic binning.

The Maximum Likelihood Estimates (MLE) are unbiased. For the continuaes algpower law distribu-
tion for the power law exponentthe MLE is:

—1+n{21nx }

wherex;, i = 1,...,n, are the observed valuesuch thate > z,,;,.

For the discrete case there is no closed form solution for the MLE estimate pbthker law exponent.
The most convenient way to estimatés to directly optimize the log-likelihood function:

L(v) = —nInC(y, Zmin) ’YZNIH%Z
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Empirically MLE estimates work best and give unbiased results. Howevey titaas they give visually
unsatisfying estimates, especially as one has to estimate also the start of grdgyovail ,,,;, which in
practice is hard to estimat€fauset et a].2007.

2.2 Statistical properties of networks

Networks are composed of nodes and edges connecting them. Depending domain network data
comes from they can represented by directed or undirected netwarkmdtes of networks include the
Internet, World Wide Web, social networks of acquaintance, collaboratiather connections between
individuals, organizational networks, metabolic networks, languageankswfood webs, distribution

networks such as water distribution networks, blood vessels or po$targeoutes, networks of citations

between papers, software networks where edges representidepas or function calls.

Research over the past few years has identified classes of propleatiean be found in many real-world
networks from various domains. While many patterns have been discovereof the principal ones are
heavy-tailed degree distributions and small diameters.

Degree distributions: The degree-distribution of a graph is a power law if the number of ndgesf
degreed is given byN; o« d=7 (v > 1) wherev is called thepower law degree exponent

Such degree distributions have been identified in phone call gradiedld et al, 1999, the Internet
[Faloutsos et al.1999, the Web Kleinberg et al. 1999 Broder et al. 200Q Baratasi and Albert 1999
Huberman and Adamjcl999 Kumar et al, 19994, citation graphs Redney 1998, online social net-
works [Chakrabarti et al 2004, click-stream dataBi et al., 200]], and many others.

Typically for most datasets the degree exponernakes value < v < 3. For example, in-degree
distribution of web graph has;,, = 2.1 and out-degree,,; ~ 2.4 [Albert and Barabsi 2003, while
Autonomous systems havex 2.4 [Faloutsos et al1999. However, deviations from the power law pat-
tern have been notice®gnnock et a|2003, which can be explained by the “DGX” distributioBi et al.,,
2001.

Most of large real-world networks have heavy-tailed or power lawekedistributions, and are thus often
called scale-free networks. This discoveRaloutsos et al.1999 is important as it shows that real net-
works are not “random” (as we will more precisely define below). Meegoin scale-free networks there
are many vertices with a degree that greatly exceeds the average (aebrtdtof power law degree dis-
tributions). These highest-degree nodes are often called “hubsgraridought to serve specific purposes
in their networks, although this depends greatly on the domain.

The notion of self-similarity is implied in the name “scale-free”. Intuitively, a satfilar object con-
sists of miniature replicas of itselSghroeder199]. Several researchers have argued that especially
web graphsDill et al., 2002 Dorogovtsev et al2002 Crovella and Bestavro4997 and biological net-
works [Ravasz and Barasi 2003 tend to be self-similar and “fractal”.

Small diameter: Most real-world graphs exhibit relatively small diameter, which is also knaw the
“small-world” phenomenon: A graph has diametdf every pair of nodes can be connected by a path of
length at mostl. The diameter is susceptible to outliers. Thus, a more robust measure of the pair-
wise distances between nodes of a graph iseffiective diametefTauro et al. 2001 as we defined

it in definition 2.1.3 The effective diameter has been found to be small for large real-woalphg,
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like Internet, Web, and social networkalpert and Barahsi 2002 Milgram, 1967, Albert et al, 1999
Bollobas and Riordar2004 Broder et al.2000 Chung and Lu2002a Watts and Strogat4998).

Scree plot: This is a plot of the eigenvalues (or singular values) of the graph adjgoeatrix of the graph,
versus their rank, using a log-log scale. The scree plot for real mketvi® often found to approximately
obey a power lawporogovtsev et a].2002 Faloutsos et al.1999. The distribution of components of
the elements of the first eigenvector (indicators of “network value”) s lzeen found to be skewed
following a power law distributionChakrabarti et al2004.

Triads and clustering coefficient: Clustering coefficient is a measure of transitivity in networks and
especially in social network&Natts and Strogat4998, i.e., friend of a friend is more likely to be also
my friend. In many networks it is found that if nodeis connected t@ andw is further connected ta
then there is a higher probability that nodés connected tav. In terms of network topology, transitivity
means the presence of a heightened number of triangles in the neit@pdets of fully connected triples
of nodes.

Clustering coefficien,; of a vertex of degred is defined as follows. Let nodehaved neighbors; then

at mostd(d — 1)/2 edges can exist between them. K&t denote the fraction of these allowable edges
that actually exist. This basically means that clustering coefficigndf a vertexw is the proportion of
links between the vertices within its neighborhood divided by the number o lim&t could possibly
exist between them. Or equivalentty, is the fraction of triangles (triads) centered at nodamong the
d(d — 1)/2 triangles that could possibly exist. Thék is defined as the averagg over all nodes of
degreel, and the global clustering coefficie@tis the averag€’, over all nodes.

It has been found that clustering coefficient in real networks is sigmifig higher than for random net-
works (conditioned on same degree distribution). Moreover, it hasdlsemmbservedjorogovtsev et al.
2002 Ravasz and Baraisi 2003 that in real networks clustering coefficief; decreases as the node de-
greed increases. Moreove(,; scales as a power law; o« d—'. This observation has been somewhat
quickly used as an indication of hierarchical network organizafRavhsz et al2002 Ravasz and Barasi,
2003.

The idea is that the low-degree nodes belong to very dense sub-graghbhose sub-graphs are con-
nected to each other through hubs. Consider a social network in wha#sraye people and links are
acquaintance relationships between people. People tend to form commiueitissall groups in which
everyone knows almost everyone else; and such groups can th@ardaelhically nested or organized. In
addition, the members of a community also have a few acquaintance relatiottspgxsple outside that
community.

A variant of clustering coefficient for directed graphs has also beénetl and examined by Ahnert and
Fink [Ahnert and Fink200§. Authors found that different types of networks have various kindsgles
more expressed. For example, feed forward loops are very commomatctigation networks, while
cycles are most common in language networks.

Community structure: A large body of work has been devoted to defining and identifying communities
in social and information networks. Communities, modules or clusters are Ift@sttbought as sets of
nodes that has more and/or better-connected edges between its membdérstiveen members of that
set and the remainder of the netwoRRgdicchi et al. 2004 Girvan and Newman2003. Many times

it is also naturally assumed that the communities observe a recursive sttushere bigger commu-
nities can further be split into smaller and smaller communit@adset et a).2006 Sales-Pardo et al.
2007.
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The problem of community identification is often formulated as unsupervisedimgga some form of
clustering or graph partitioning where the idea is to partition the network intoilig)at sometime also
overlapping sets of nodes, where there few edges need to be cuaiatseipternally densely linked set
of nodes,.e., a community. For example, see the reviews on community identificalewinan 2004
Danon et al. 2005 Palla et al. 2005 Clauset et a).2008, data clusteringJain et al. 1999, and graph
and spectral clusteringzaertler 2005 Schaeffer2007, von Luxburg 2004.

It has been observed that community-like sets of nodes tend to corregpamdanizational units in
social networks lewman 20061, functional modules in biological networkRavasz et a].2003, and
scientific disciplines in collaboration networks between scient@isvan and Newmar2003.

A somewhat contrary concept to hierarchical community structure is the-fperiphery” structure of the
network Borgatti and Everett200Q Holme 2005, that in computer science also goes by the name of
thejellyfish[Siganos et al.2004, or the octopug Chung and Lu20064 structure of the network. All of
the above basically say that the network is composed of a large and damsdipked network core that
basically has no community structure. The remainder of the nodes is a fhd périphery, where the
periphery nodes have links towards the core, but are not conneut@uyahemselves.

Core-periphery structure suggests the opposite of the community structtine hierarchical network
structure. In core-periphery there is a densely linked and intermingleeriecore, and a number of
nodes on the periphery with their links pointing towards the core.

For example, Internet Autonomous Syster@ganos et al 200§ have been found to have this structure.
And as we will later see in Chapt&0 this network structure is present in almost all large networks with
more than several thousand nodes.

Network motifs: Network motifs Milo et al., 2002 Alon, 2007 are basic building blocks of complex
networks. They are of interest in gene regulatory and other biologeaVarks, like protein-protein
interaction networks, signal transduction networks and metabolic net®hs et al.2003.

The idea is to enumerate and count occurrences of all possible indulsgaphs of a given grapi up

to a small number of nodes. Usually, subgraphs of size up 0 5 nodes, as the combinatorial explosion
of the number of possible graphs and the graph isomorphism test thatischeben counting make the
computation unfeasible for largér.

The frequencies of motifs are then compared to those of a random graghicning on the same degree
distribution. (SeeWMilo et al., 2004 for how to generate such graphs.) This way a random graph with
same degree distribution is taken as a null-model and motifs that occur sigtijfinzore frequently in
real graph than in the null-model are then extracted. Different studiesdrgued that certain motifs are
found frequently in biological networks, and then tried to assign them adeabfunction.

For example, a node with a self-loop is the simplest possible motif in a regulastwprk. It is called the
autoregulation motif, and it has been argued that it controls for up-réguia down-regulation of its own
expression/activity. It has been shown that this motif appears at ledshd$ in the E. coli regulatory
network [Shai et al. 2003, which is much greater than what is expected by chance. Moreovest oth
motifs, like feed forward or feed backward loop, and have also besgrael biological functions.

Network motifs are interesting as they are exploring the basic building blooks Which networks are
composed. In chaptesand7 we will observe the cascading behavior in viral marketing and blogospher
and we will present similar analysis of cascade motiés, what do network cascades look like and what
are their building blocks.
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Additional network properties: Apart from these, several other patterns have been found in network
For example, the “resilience’Albert and Barahsi 2002 Palmer et al.2002 shows that real-networks
are resilient to random node attacks, one can remove many randomly selected nodes from the network
and the connectivity is notimpacted by much. However, if one performgatet attack by removing just

a few high degree hub nodes, the network connectivity gets severelypttid. Other properties are also
“stress” [Chakrabarti et al.2004, network navigation Kleinberg 1999h Watts et al. 2004, and many
more.

We point the reader tcAlbert and Barabsi 2002 Newman 2003 Li et al., 2005 Boccaletti et al.2006
Chakrabarti and Faloutsp200€ for overviews of the structural properties of networks. The book on
social network analysidfasserman and Fayd994 is also useful reading.

2.3 Models of network structure and evolution

In parallel with empirical studies of large networks, there has been @masilk work on models for
graph generation. Both deterministic and stochastic models have been dxpwst often the models
do not “force” the network to have a certain property but rather gemegal principles or mechanisms
of edge creation that consequently lead to the global statistical propedigtabution to arise in the
network.

Erd 6s—Renyi random graph model

The earliest probabilistic generative model for graphs was a randaph gnodel introduced by Eéd and
Rényi [Erdds and Rnyi, 196J. The model states that given a number of nodes each pair of nodes has
identical, independent probability of being joined by an edge. There aredawants of the model,, ,

is defined to have: nodes, and each edge appears independently with probabiBmilarly, theG,, ,,,

is defined to have nodes andn uniformly at random placed edges. There exists a close correspmden
between the models, as in practice most theorems hold for both variants.

The study of Er@s—Renyi random graph model has led to a rich mathematical theory. For exaongle,
can study the evolution a¥,, ,,,, where one starts with the empty graphronodes and then keeps adding
random edges one at a time. The graph will then b&, g, wherem is the number of edges added so far,
i.e,, if one draws(s,, ,,, at random and adds a random edge the new graph will,bg ;.

In evolution of G, ,,, there exists sharp thresholdspirase transitionsn emergence of certain network
properties. For example, there is a sharp threshold for the size of tlestagnnected component. Let
d = 2m/n denote the average degree, thes i 1 — ¢ then graph is disconnected and all components are
of sizeO(logn). Whend = 1 + ¢ there is exactly one component of si2én), i.e. the giant component,
and all other components are of si2€logn). This is exactly the point, the threshold, where the giant
connected component emerges. Moreover, one can also prove thiesltomponents are just trees plus
one edge so they have at most one cyBlelobas and Riordgr2003.

Similarly, one can show that degree distribution of &dRenyi random graph follows a binomial dis-
tribution with meand [Albert and Barabsi 2003. Moreover, the diameter (longest shortest path) of a
random graph increases with the number of nodes O(logn), and the average shortest path length
grows a0 (loglog n) [Chung and Lu2001.
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There is a rich mathematical theory about this model; however, the model isaitic as it produces
graphs that fail to match real-world networks in a number of respeasif does not produce power law
degree distributions).

Preferential attachment

The discovery of degree power laws led to the development of randaphgnodels that exhibited such
degree distributions, including the family of models basegreferential attachmerBaratasi and Albert
1999 Cooper and Frieze2003. The model operates in the following way. Nodes are arriving one at a
time. And when a new node arrives to the network it creates edges{n is a parameter and is constant
for all nodes). The edges are not placed uniformly at random bienergially,i.e., probability that a new
edge ofu is placed to a node of degreed(v) is proportional to its degree,,(v) o d(v).

This model was first described by Herb Sim@irfon 1959 and he uses the term Yule distribution to
refer to the power law distribution. Empirically power law degree distributioasewirst discovered in
citation networks by D.J. de Solla Pria#e Solla Price1969, where Price noticed that the number of new
citations a paper obtains is proportional to the current number of citatiomgalt this the “cumulative
advantage” or the “rich get richer” phenomenon.

This simple behavior leads to power law degree tails with expomesat 3. Moreover it also leads to
low diameters. The diameter in preferential attachment model grows slosvlypgarithmically with the
number of nodeslu, 2001. More precisely, diameter grows &s;(N) when a new node adds a single
edge (» = 1), and adog(NV)/ log log(N) for m > 2.

There are also many extensions to the Preferential attachment model. Wemtarg® of them: the
fitness model, Winners don't take all, and the geometric preferential attathme

In Preferential attachment model nodes that arrive early will end uvipgéighest degrees. However, one
could envision that each node has an inherent competitive factor thes noaly have, capable of affecting
the network’s evolution. This is called nodiéness[Bianconi and Baradisi 2001, Dorogovtsev et aJ.
200Q Ergun and Rodger2003. The idea is that intrinsic ability of a node to attract links in the network
varies from node to node. The most efficient (or “fit”) nodes are abggtber more edges at the expense
of others. In that sense, not all nodes are identical, and they claim gggieelincrease in the number of
edges accordingly to the fitness they possess every time. Fitness par@nustaally considered as not
varying over time and is multiplicative to the edge probability.

In spirit similar is theWinners don't take al[Pennock et al.2003 model where the intuition is taken
from the web. It has been observed that for web communities of interesdistribution of links no
longer follows a power law but rather resembles a normal distribuff@mmfiock et a].2003. Based on
this observation, the authors then propose a generative model that meteseptial attachment with a
baseline probability of gaining a link.

A last variant of Preferential Attachment that we also describe is@eemetric Preferential Attach-
ment[Flaxman et al.2004 2007, where the idea is to incorporate geography into the Preferential At-
tachment model. Intuition is that probability of linking to a node of degfsbould be higher if the node

is closer rather than farther. In this model nodes belong to some undeglyorgetry and then each node
connects preferentially to other nodes inside some local ball of radidr example, one can scatter
nodes uniformly on a sphere, and each node uses Preferential Attatchmaehanism to attach to other
nodes in some local neighborhood as defined by the sphere.
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Copying model

Similar in spirit to the above models is tleepying mode[Kleinberg et al. 1999 Kumar et al, 2004,
where a new node joins the network by uniformly at random choosing nadel then either linking to
u's neighbors or creating a random edges. More precisely, nodesraneg one at a time. A new node

v choosesk, the number of edges to add, and then with probability selectsk vertices uniformly at
random and links to them; and with probability- 5 nodev links to &k random neighbors of a uniformly at
random chosen node i.e., v copiesu’s links. Copying model generates power law degree distributions
with exponenty = 1/(1 — j3).

There are also many related models where a new node selects an existng awedl then starts a ran-
dom walk or breath first search type of procedure to create links tosniodgs vicinity. Such mod-
els include thegrowing network with copyingnodel Krapivsky and Redner2005, Recursive search
model[Vazquez 2007, and theRandom Surfer ModdBlum et al, 2004, that is based on starting a
random walk from node and after each step restarting or with some probability creating a link.

Other models of scale-free networks

There are many other ways to explain the emergence of scale-free ketirar exampleHeuristically
optimized tradeoff$Fabrikant et al. 2003 and Highly optimized toleranc¢Carlson and Doyle1999

Doyle and Carlson200Q 2002 are two models where power law degree distributions emerge as a result
of optimization. For example, on the internet one wishes to maximize the corityegting time), while
minimizing the cost of the physical connection. Power laws naturally emergelmcsisefabrikant et al.
2002.

Alternative models for generating scale-free networks with power lawegedistributions includeon-
figuration mode[Bollobas 198Q Aiello et al., 200Q Bollobas and Riordgr2003, where nodes have a
number of outward pointing spokes and then these spokes are conmeiftechly at random. This closely
resembles the E&d—Renyi random graph model so many tools developed for analysis of magdaphs
apply. The distribution of a number of spokes of a node defines degse#uation of a graph. Chung
and Lu [Lu, 2007 proposed a different model where node degree sequenisegeneratedg.g, sampled
from power law distribution) and the edge, v) appears with probabilitw,, - w,/ >, w;. In this model
the expected degree sequence will follow the sequence

Small-world model

Last family of network models we describe here strives for small diametetdazal structures, like
triangles, in networks that arise from geographical proximity or homoplt8lych models include the
small-worldmodel Watts and Strogat2998 and the Waxman generatdMaxman 1988. In a small-
world model one starts with a regular lattieed, a grid). The lattice models local short-range links. Then
for each edge with probability we move its endpoint to a uniformly at random chosen node. The model
offers a nice way of interpolating between regular 0) and random graph® (= 1). For lowp graphs

will have lots of local structure with many short range links, clustering wilhlzgh but the diameter will

be also large. As one increage®ng range edges will start to appear which will have the effect to destroy
the local structure (clustering will decrease) but at the same time the diaméeber metwork will also
decrease.
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Related to the small-world is the concept of “navigability” or “searchability” &tworks Kleinberg
1999 where the question is how to locally route a message to a target node sordaathies the target
as quickly as possible. In fact, it has been shown that the structuralaietvorks allows local routing
and navigationlliben-Nowell et al, 2003.

For a more extensive review of the topic of network models and generamint the reader to re-
cent works Albert and Barabsi 2002 Chakrabarti and Faloutsp2006 Bollobas and Riordgn2003
Newman 2003 that give a survey of the structural properties and statistics of reddvgraphs and
the underlying generative models for graphs.

2.4 Diffusion and cascading behavior in networks

Information cascades are phenomena in which an action or idea becoredg addpted due to influ-
ence by othersHikhchandani et al.1992. Cascades are also known as “fads” or “resonance.” Cascades
have been studied for many years by sociologists concerned wittlifftision of innovatiorfRogers
1999; more recently, researchers in several fields have investigatedd=sstor the purpose of selecting
trendsetters for viral marketingppmingos and RichardspB001], finding inoculation targets in epidemi-
ology [Newman et al.2003, and explaining trends in blogospheteumar et al, 2003. Despite much
empirical work in the social sciences on datasets of moderate size, theltiffit obtaining data has
limited the extent of analysis on very large-scale, complete datasets nejongsmscades. We look at the
patterns of influence in a large-scale, real recommendation networkkandre the topological structure

of cascades.

Most of the previous research on the flow of information or influenceutjinathe networks has been
done in the context of epidemiology and the spread of diseases or virvsethe networkBailey, 1975
Anderson and May2003. Classical disease propagation models are based on the stages chsedise
in a host: a person is firgusceptiblego a disease, then if she is exposed to an infectious contact she
can becoménfectedand thusinfectious After the disease ceases the person is then eidoerveredor
removed After that a person becom@amunefor some period. The immunity can also wear off and the
person becomes again susceptible. Thus SIR (susceptible — infectamlenerl) models diseases where a
recovered person never again becomes susceptible, while SIRS(Steptible — infected — (recovered)
— susceptible) models population in which recovered host can beconeptibkeagain. Given a network
and a set of infected nodes tapidemic thresholds studiedj.e., conditions under which the disease will
either dominate or die out.

Diffusion models that try to model the process of adoption of an idea ordupt@an generally be divided
into two groups:

e Threshold modelGranovetter1978 where each node in the network has a threshod [0, 1],
typically drawn from some probability distribution. We also assignnection weights,, ,, on the
edges of the network. A node adopts the behavior if a sum of the conm@gatights of its neighbors
that already adopted the behavior (purchased a product in ourisageater than the threshold:

t< Zadoptersu) Wy, -
¢ Independent cascade mod&oldenberg et al.200]] where whenever a neighbaer of node u

adopts, then node also adopts with probability,, ... In other words, every time a neighbor of
u purchases a product, there is a chancedhaill decide to purchase as well.
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While these models address the question of how influence spreads in algehey are based assumed
rather thammeasurednfluence effects. In contrast, our study tracks the actual diffusioera@mmenda-
tions through email, allowing us to quantify the importance of factors such agrésence of highly
connected individuals, or the effect of receiving recommendatioma fraltiple contacts. Compared
to previous empirical studies which tracked the adoption of a single innovatiproduct, our data en-
compasses over half a million different products, allowing us to model auptsdsuitability for viral
marketing in terms of both the properties of the network and the product itself.

2.4.1 Information cascades in blogosphere

Most work on extracting information cascades has been done in the binginl¢Adamic and Glance
2005 Adar and Adamic2005 Gruhl et al, 2004. The authors in this domain noted that, while informa-
tion propagates between blogs, examples of genuine cascading bedawéared relatively rarely. This
is possibly due to bias in the web-crawling and text analysis techniquesasetiect pages and infer
relationships. In our dataset, all the recommendations are stored assgati@vesactions, and we know
that no records are missing. Associated with each recommendation is thepimelved, and the time
the recommendation was made. Studies of blogosphere either spend affottafin@ning topics from
posts Adar and Adamic 2005 Gruhl et al, 2004 or consider only the properties of blogosphere as a
graph of unlabeled post or blog URLAdamic and Glance2003.

There are several potential models to capture the structure of the blegesWork on information dif-
fusion based on topic&gruhl et al, 2004 showed that for some topics, their popularity remains constant
in time (“chatter”) while for other topics the popularity is more volatile (“spikeg®umar et al, 2003
analyze community-level behavior as inferred from blog-rolls — permiivdes between “friend” blogs.

In their extensionkumar et al, 2004 performed analysis of several topological properties of link graphs
in communities, finding that much behavior was characterized by star liké gtaycturej.e., a single
charismatic individual linked to many users each with very few other cdiomsc

2.4.2 Cascades in viral marketing

Viral marketing can be thought of as a diffusion of information about tepect and its adoption over the
network. Primarily in social sciences there is a long history of researtiednfluence of social networks
on innovation and product diffusion. However, such studies have typécally limited to small networks
and typically a single product or service. For exampBrpjvn and Reingerl987 interviewed the fami-
lies of students being instructed by three piano teachers, in order to fitloeonetwork of referrals. They
found that strong ties, those between family or friends, were more likely sxtieated for information
flow and were also more influential than weak ti€dnovetter1973 between acquaintances.

In the context of the internet, word-of-mouth advertising is not restrictguhttwise or small-group in-
teractions between individuals. Rather, customers can share theiiemqesr and opinions regarding
a product with everyone. Quantitative marketing techniques have bepogad Montgomery 2007

to describe product information flow online, and the rating of productsnaethants has been shown
to effect the likelihood of an item being bouglRgsnick and Zeckhause&2002 Chevalier and Mayzlin
2004. More sophisticated online recommendation systems allow users to rate othéws, or directly
rate other reviewers to implicitly form a trusted reviewer network that may hemelittle overlap with a
person’s actual social circleRjchardson and Domingp2002H used Epinions’ trusted reviewer network
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SYMBOL || DESCRIPTION

G Graph or graph adjacency matrix

Gy Graph composed of nodes and edges that arrived before time
N Number of nodes in a graph

E Number of edges in a graph

N(t) Number of nodes in a graph at time

N{e) Number of nodes in a graph at time

Uy U, W Nodes in a graph

e = (u,v) || Edge in a graph

d(u) Degree of node: (number of edges incident to nodg
d Degree

d Average node degree in a graph

Aimaz Maximum node degree in a graph

v Power law degree exponept{d) o d~7

a Densification power law exponemft,(t) o< N (¢)®
h(u,v) Length of the shortest path between nodesdv

h Number of hops, path length, distance

D Diameter of a graph as defined2rl.1

D* Effective diameter of the graph as defineid.3

A Set of elementsd = {a1,...,a,}

Table 2.1: Table of common symbols.

to construct an algorithm to maximize viral marketing efficiency assuming thatidiigls’ probability

of purchasing a product depends on the opinions on the trusted petheirimetwork. Kempe et al.

2003 have followed up on the challenge of maximizing viral information spreadvajyuating several
algorithms given various models of adoption we discuss next.

2.5 Table of symbols

We list common symbols used in the thesis. Each chapter then also definesr-@paeific concepts and
symbols. For the comprehensive list of symbols refer to the appendixAahle

2.6 Table of datasets

In this thesis we use more than 100 different network datasets. TAt#e#.3, andA.4 give brief de-
scriptions and some of the basic statistics, like number of nodes and e@gestat, clustering coefficient
and so on.
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Part |

Network evolution

How do large networks evolve and
how to model this?
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Part 1 — Network evolution: Overview

Networks, especially social networks and the web, are not static blueegwer time by additions and
deletions of nodes and edges. Here we examine such evolutionarggeecd the two levels: (1) the evo-
lution of macroscopic network properties, like diameter and network degisifi; via a series of network
snapshots over time. (2) The network evolution at the level of individdgéerrivals and placements.
Studying individual edge arrivals is important as it gives us clues to niops mechanisms that give rise
to the observed macroscopic network properties. We study large onlired setworks with individual
node and edge arrivals from the first to the “million-th” edge.

Observations: In both cases we make novel empirical observatidag)., the counterintuitive Densifi-
cation power law and shrinking diameters at the macroscopic level, to link loealtytriangle closure
mechanisms taking place at the level of individual edges.

Models: We then use these observations to develop novel generation and evohatitals that specify
individual microscopic node behavior and give raise to the macroscd@ngmena observed in net-
works.

Algorithms: We also introduce a more mathematical model of Kronecker graphs, whiotaisadytically
tractable network generation and evolution model. Moreover, we alsemrefficient algorithms to
estimate Kronecker model parameters from data and then use them totgesyerthetic graphs with
similar properties as the original network.
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Chapter 3

Macroscopic network evolution

How do real graphs evolve over time? What are “normal” growth pattersedial, technological, and
information networks? Many studies have discovered pattersigiit graphsidentifying properties in a

single snapshot of a large network, or in a very small number of snegshese include heavy tails for
in- and out-degree distributions, communities, small-world phenomena, aesotHowever, given the
lack of information about network evolution over long periods, it has eed to convert these findings
into statements about trends over time.

Here we study a wide range of real graphs, and we observe sonmsswymphenomena. First, most
of these graphs densify over time, with the number of edges growing-foparly in the number of
nodes. Second, the average distance between nodesbifteksover time, in contrast to the conventional
wisdom that such distance parameters should increase slowly as a fuofctinnumber of nodes (like
O(log N) or O(log N/loglog N), see Sectio2.3).

Existing graph generation models do not exhibit these types of behavéor,at a qualitative level. We

provide a new graph generator, based on a “forest fire” spregdougss, that has a simple, intuitive justi-
fication, requires very few parameters (like the “flammability” of nodes), roduces graphs exhibiting
the full range of properties observed both in prior work and in the ptesady.

3.1 Introduction

In recent years, there has been considerable interest in graptustguarising in technological, socio-
logical, and scientific settings: computer networks (routers or autononystesnss connected together);
networks of users exchanging e-mail or instant messages; citation ketaad hyperlink networks; so-
cial networks (who-trusts-whom, who-talks-to-whom, and so forthd;@untless moreéNewman 2003.
The study of such networks has proceeded along two related tracksethgurement of large network
datasets, and the development of random graph models that approximalbséneed properties.

Many of the properties of interest in these studies are based on twonfiemiial parameters: the nodes’
degreeqi.e., the number of edges incident to each node), andlistianceshetween pairs of nodes (as
measured by shortest-path length). The node-to-node distancesearstoiied in terms of théiameter
— the maximum distance — and a set of closely related but more robust quaintitieding the average
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distance among pairs and th#fective diametefthe 90" percentile distance, a smoothed form of which
we use for our studies).

Almost all large real-world networks evolve over time by the addition and deleticnodes and edges.
Most of the recent models of network evolution capture the growth psdnesway that incorporates two
pieces of “conventional wisdom:”

(A) Constant average degree assumptiorThe average node degree in the network remains constant
over time Barakasi and Albert1999 Kumar et al, 200qJ. (Or equivalently, the number of edges
grows linearly in the number of nodes.)

(B) Slowly growing diameter assumption The diameter is a slowly growing function of the net-
work size, as in “small world” graphsAJbert et al, 1999 Broder et al. 200Q Milgram, 1967,
Watts and Strogat4998§.

For example, the intensively-studipceferential attachment mod@arakasi and Albert1999 Newman
20093 posits a network in which each new node, when it arrives, attaches &xigting network by a con-
stant number of out-links, according to a “rich-get-richer” rule. Réeark has given tight asymptotic
bounds on the diameter of preferential attachment netw@ldbas and Riordar2004 Chung and Lu
20023; depending on the precise model, these bounds grow logarithmidathpivsky and Redner
2009 or even slower than logarithmically in the number of nodes.

How are assumptions (A) and (B) reflected in data on network growth? EmlEtudies of large networks

to date have mainly focused atatic graphs, identifying properties of a single snapshot or a very small
number of snapshots of a large network. For example, despite the intéasesinn the Web's link
structure, the recent work of Ntoulas et dtdulas et al.2004 noted the lack of prior empirical research
on the evolution of the Web. Thus, while one can assert based on theésesghat, qualitatively, real
networks have relatively small average node degrees and diametexrs,nbhbeen clear how to convert
these into statements about trends over time.

The present work: Densification laws and shrinking diameters Here we study a range of different
networks, from several domains, and we focus specifically on the waghich fundamental network
properties vary with time. We find, based on the growth patterns of thesemkstwhat principles (A)
and (B) need to be reassessed. Specifically, we show the followingdiaaa range of networks across
diverse domains.

(A’) Empirical observation: Densification power laws The networks are becomirgnserover time,
with the average degree increasing (and hence with the number of edgdésgsuper-linearly in
the number of nodes). Moreover, the densification follows a power |&smpa

(B’) Empirical observation: Shrinking diameters: The effective diameter is, in many cases, actually
decreasings the network grows.

We view the second of these findings as particularly surprising: Ratherstiedding light on the long-
running debate over exactly how slowly the graph diamgtewsas a function of the number of nodes,

it suggests a need to revisit standard models so as to produce graphlintiéheffective diameter is
capable of actuallghrinkingover time. We also note that, while densification and decreasing diameters
are properties that are intuitively consistent with one another (and dheboone out in the datasets
we study), they are qualitatively distinct in the sense that it is possible tdarachexamples of graphs
evolving over time that exhibit one of these properties but not the other.
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We can further sharpen the quantitative aspects of these findingstticufs, the densification of these
graphs, as suggested hy’}, is not arbitrary; we find that as the graphs evolve over time, they follow a
version of the relation

E(t) o« N(t)® (3.1)

whereE(t) and N (t) denote the number of edges and nodes of the graph at tiamela is an exponent
that generally lies strictly betweehand2. We refer to such a relation asleensification Power Law
(DPL). (Exponentz = 1 corresponds to constant average degree over time, wkie corresponds to an
extremely dense graph where each node has, on average, edgessteatfraction of all nodes.)

What underlying process causes a graph to systematically densify, wikbdaeikponent as in Equation
(3.1), and to experience a decrease in effective diameter even as its se&s@s? This question motivates
the second main contribution of this work: we present two families of probabitignerative models
for graphs that capture aspects of these properties. The first modieh we refer to asCommunity
Guided AttachmentCGA) [Leskovec et a).2005H, argues that graph densification can have a simple
underlying basis; it is based on a decomposition of the nodes into a nestdfdceenmunities, such that
the difficulty of forming links between communities increases with the community Bizethis model,

we obtain rigorous results showing that a natural tunable parameter in thécaodead to a densification
power law with any desired exponemt The second model, which is more sophisticated, exhibits both
densification and a decreasing effective diameter as it grows. This nvdadeh we refer to as thBorest

Fire Model is based on having new nodes attach to the network by “burning” threxgting edges

in epidemic fashion. The mathematical analysis of this model appears to leadeioguestions about
random graphs that are quite complex, but through simulation we find thatrémge of parameter values
the model exhibits realistic behavior in densification, distances, and ddigtgbutions. It is thus the first
model, to our knowledge, that exhibits this full set of desired properties.

Accurate properties of network growth, together with models supporting,thave implications in sev-
eral contexts.

e Graph generationOur findings form means for assessing the quality of graph gener&ymghetic
graphs are important for ‘what if’ scenarios, for extrapolations, fmdsimulations, when real
graphs are impossible to collect (likeg, a very large friendship graph between people).

e Graph sampling: Datasets consisting of huge real-world graphs are increasingly availaitie
sizes ranging from the millions to billions of nodes. There are many knowmidlges to compute
interesting measures (shortest paths, centrality, betweenness, etaerjodivof these algorithms
become impractical for large graphs. Thus sampling is essential — but sgrfolin a graph is a
non-trivial problem since the goal is to maintain structural properties afi¢fork. Densification
laws can help discard bad sampling methods, by providing means to rejededasupgraphs.

Our recent worklLeskovec and Faloutsg®00q proposed two views on sampling from large graphs.
For Back-in-timesampling the goal is to find a sequence of sampled subgraphs that matches the
evolution of the original graph and thus obey the temporal growth pattédmsthe other hand,
Scale-dowrsampling aims for a sample that matches the properties of the original larde gvep
considered various sampling strategies, propose evaluation techraqdesse the temporal graph
patterns presented in this chapter to evaluate the quality of the sampledghshgra

e Extrapolations:For several real graphs, we have a lot of snapshots of their pasit &&h we say
about their future? Our results help form a basis for validating scerfarigsaph evolution.
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¢ Abnormality detection and computer network manageniemtany network settings, “normal” be-
havior will produce subgraphs that obey densification laws (with a prdalesexponent) and other
properties of network growth. If we detect activity producing struduhat deviate significantly
from this, we can flag it as an abnormality; this can potentially help with the detestmg.fraud,
spam, or distributed denial of service (DDoS) attacks.

The rest of the chapter is organized as follows: SecB@wsurveys the related work on networks over
time. SectiorB.3gives our empirical findings on real-world networks across diveoseains. Sectio.4
describes our proposed models and gives results obtained both theoabfsis and simulation. Sec-
tion 3.3.4gives the formal and experimental analysis of the relationship betweeregieeddistribution
and the graph densification over time. We conclude and discuss the implicatioosfindings in Sec-
tion 3.5

3.2 Related work on graphs over time

Many network models are evolutionary in nature. For exampleptékerential attachmerjAbello et al,
2002 Baralasi and Albert1999 Cooper and Friez&003 is evolutionary as nodes arrive one at the time
and each node creates it edges before next node arrives. Similarisrtcopying modelKleinberg et al.
1999 Kumar et al, 200qd, which both produce graphs with constant average degree andtlogiar
cally increasing diameter. A relategfowing network with redirectioomodel Krapivsky and Redner
2007 produces networks with constant diameter dogarithmically increasing average degree over
time [Krapivsky and Redne2005.

Similar to our Forest Fire Model is the work of Vazqué&agquez 2001, 2003 where ideas based on
random walks and recursive search for generating networks wieoeirted. In a random walk model the
walk starts at a random node, follows links, and for each visited node witie probability an edge is
created between the visited node and the new node. It can be showndhatsdel will generate graphs
with power law degree distribution with exponent- 2. On the other hand, in the recursive search model
first a new node is added to the network, and the edge to a random nodatedc If an edge is created to
a node in the network, then with some probabititgn edge is also created to each of its 1-hop neighbors.
This rule is recursively applied until no edges are created. The ieewssarch model is similar to our
Forest Fire Model in a sense that it exploits current network structurestie new edges. However, there
is an important difference that in recursive search model the aveegealscales at mdsigarithmically
(and not as a power law) with the number of nodes in the network. Our simulexijperiments also
indicated that the diameter of networks generated by the recursivdskses not decrease over time, but
it either slowly increases or remains constant.

It is important to note the fundamental contrast between one of our main fsderg — that the average
number of out-links per node is growing polynomially in the network size — ay lof work on degree

power laws. This earlier work developed models that almost exclusivelg tiee assumption of node
degrees that were bounded by constants (or at most logarithmic functiertbe network grew; our
findings and associated model challenge this assumption, by showing tivarkeacross a number of
domains are becomindenserover time.

Dorogovtsev and Mendes in a series of worRefogovtsev and Mende2001ab, 2003 analyzed possi-
ble scenarios of nonlinearly growing networks while maintaining scalestreeture. Among considered
hypothetical scenarios were also those where the number of links gawsomially with the number
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of edges,.e., Densification Power Law, while maintaining power law degree distributiore dithors

call this anaccelerated growtland propose preferential attachment type models where densification is
forced by introducing an additional “node attractiveness” factor thabisonly degree-dependent but
also time-dependent. The motivation for their work comes from the fact thibes Broder et al.200Q
Faloutsos et al1999 reported the increase of the average degree over time on the Web dntetinet.

Our work differs in that it presents measurements on many time evolving fetw@isupport our find-
ings, and proposes generative models where densification is an emergpegty of the model. Besides
densification we also address the shrinking diameters and consider mmdgdsérating them.

The bulk of prior work on the empirical study of network datasets hasskatwnstatic graphs, identify-
ing patterns in a single snapshot, or a small number of network snapseesl$se the discussion of this
point by Ntoulas et al.Nitoulas et al. 2004). Two exceptions are the very recent work of Kakafz,
2004, who independently discovered densification power laws for citation avésy and the work of
Redner Redner 2004, who studied the evolution of the citation graphRifysical Revievover the past
century. Katz’'s work builds on his earlier research on power law relships between the size and the
recognition of professional communitielddtz, 1999; his work on densification is focused specifically
on citations, and he does not propose a generative network modeldorador the densification phe-
nomenon, as we do here. Redner’'s work focuses on a range of cigatttarns over time which are
different from the network properties we study here.

Our Community Guided Attachment (CGA) model, which produces densifyiaghg, is an example of
a hierarchical graph generation model, in which the linkage probability leztwedes decreases as a
function of their relative distance in the hierarci@§hakrabarti et al.2004 Kleinberg 2002 Watts et al,
2002 Leskovec et a).2005ha, Abello, 2004. Again, there is a distinction between the aims of this
past work and our model here; where these earlier network modelss@ekieng to capture properties
of individual snapshots of a graph, we seek to explain a time evolutioregsoinn which one of the
fundamental parameters, the average node degree, is varying a®tesgpunfolds. Our Forest Fire
Model follows the overall framework of earlier graph models in which ogleive one at a time and link
into the existing structure; like the copying model discussed above, fan@raa new node creates links
by consulting the links of existing nodes. However, the recursive gsobg which nodes in the Forest
Fire Model creates these links is quite different, leading to the new propeliseussed in the previous
section.

3.3 Observations

We study the temporal evolution of several networks, by observingsbioép of these networks taken
at regularly spaced points in time. We use datasets from seven differertes; for each, we have
information about the time when each node was added to the network oveod pkseveral years —
this enables the construction of a snapshot at any desired point in timeaélorof datasets, we find a
version of the densification power law from Equati@\, £ (t) o« N(t)%; the exponent differs across
datasets, but remains remarkably stable over time. We also find that th@veftihameter decreases in all
the datasets considered.

The datasets consist of two citation graphs for different areas in th&qshiterature, a citation graph for
U.S. patents, a graph of the Internet, five bipartite affiliation graphs obeathith papers they authored,
a recommendation network, an email communication network, and four onloed setworks. Overall,
then, we consider 16 different datasets from 11 different sources.
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SYMBOL | DESCRIPTION

Gy Graph composed of nodes and edges that arrived before time

N Total number of nodes in a graph

E Total number of edges in a graph

N(t) Number of nodes in a graph at time

N(e) Number of nodes in a graph at time

a Power law densification exponer(t) oc N (t)®

c Difficulty Constant

f(h) Difficulty Function

b Community hierarchy branching factor

d Expected average node out-degree in a graph

Amaz Maximum node out-degree in a graph

y Power law degree distribution exponepfd) oc d~7

r Community hierarchy (tree)

Hrp Height of the tred”

hr(v,w) || Least common ancestor height of leaves in T’

h(v,w) Length of the shortest path between nodes

P Forest Fire forward burning probability

Dy Forest Fire backward burning probability

r Ratio of backward and forward probability= p/p;
Diameter factor (We fiD*(t) = alogt + [ over timet).
a > 0 = increasingpn < 0 = decreasing diameter

Table 3.1: Table of symbols.

3.3.1 Densification Laws

Here we describe the datasets we used, and our findings related tocdgiosifi For each graph dataset,
we have, or can generate, several time snapshots, for which we studyrfber of noded/(¢) and the
number of edge& (¢) at each timestamfp We denote byV and E the final number of nodes and edges.
We use the terrbensification Power Law pldor just DPL plot) to refer to the log-log plot of number of
edgesE(t) versus number of nodes(t).

ArXiv citation graph

We first investigate a citation graph provided as part of the 2003 KDD Gghike et al.2003. The
HEP-TH (high energy physics theory) citation graph from the e-priXivasovers all the citations within
a dataset ofV = 29, 555 papers withE = 352,807 edges. If a papercites papeyj, the graph contains
a directed edge fromto j. If a paper cites, or is cited by, a paper outside the dataset, the grapimaloe
contain any information about this. We refer to this datasetiasHEP-TH.

This data covers papers in the period from January 1993 to April 2088 fhonths). It begins within

a few months of the inception of the arXiv, and thus represents essentiallyothplete history of its
HEP-TH section. For each month (1 < m < 124) we create a citation graph using all papers published
up to monthm. For each of these graphs, we plot the number of nodes versus thenafrdziges on a
logarithmic scale and fit a line.
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Figure 3.1: The average node out-degree over time for (a) ArXiv high gn@hysics citation network
(CIT-HEP-TH), (b) US patent citation network (@-PATENTS), (c) Autonomous Systems
network (As-RoUTEVIEWS), (d) ArXiv Astro-Physics authors-to-papers bipartitavmerk
(ATP-ASTRO-PH). Notice that it increases, in all 4 datasets. That is, abps arelensifying

Figure 3.2a) shows the DPL plot of the IC-HEP-TH; the slope isa = 1.68 and corresponds to the
exponent in the densification law. Notice thais significantly higher than 1, indicating a large deviation
from linear growth. As noted earlier, when a graph has 1, its average degree increases over time.
Figure3.1(a) exactly plots the average degreever time, and it is clear thatincreases. This means that
the average length of the bibliographies of papers increases over timasd\feund that the median of the
degree distribution over time also behaves in a qualitatively similar eyt increases over time.

There is a subtle point here that we elaborate next: With almost any netataged, one does not have
data reaching all the way back to the network’s birth (to the extent that thigédlalefined notion). We
refer to this as the problem of thenissing past Due to this, there will be some effect of increasing out-
degree simply because edges will point to nodes prior to the beginning olbfeevation period,e., over
time less references are pointing to papers outside the dataset. We refeh ttosles aphantom nodes
with a similar definition fophantom edgedn all our datasets, we find that this effect is relatively minor
once we move away from the beginning of the observation period; on tlee loémd, the phenomenon
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of increasing degree continues through to the present. For exampl&Ximramdes over the most recent
years are primarily referencing non-phantom nodes; we observea iknFigure3.1(a) in 1997 that
appears to be attributable in large part to the effect of phantom nodater,(lvhen we consider a graph
of the Internet and the online social networks, we will see a case wharparable properties hold in the
absence of any “missing past” issues.) A similar observation of growirgar€e lists over time was also
independently made by Krapivsky and Redr@rgpivsky and Rednef005.

We also experimented with a second citation graphKeP-PH, taken from the HEP—PH section of the
arXiv, which is about the same size as our first arXiv dataset. It exhibdtsame behavior, with the
densification exponent = 1.56. The plot is omitted but we show the summary of results on all 16
datasets we considered in taBl&

Patents citation graph

Next, we consider a U.S. patent citation dataset maintained by the NationaBafd&conomic Re-
search Hall et al, 200]. The data set spans 37 years (January 1, 1963 to December 3), 49@
includes all the utility patents granted during that period, totaling= 3,923,922 patents. The citation
graph includes all citations made by patents granted between 1975 anddi@fifg £ = 16, 522, 438
citations. For the patents dataset there are 1,803,511 nodes for whicvevadninformation about their
citations (we only have the in-links). Because the dataset begins in 1936 hias a “missing past” issue,
but again the effect of this is minor as one moves away from the first fansyé&Ve refer to this patent
citation network as @-PATENTS.

The QT-PATENTS patents data also contains citations outside the dataset. For patents outsataské d
the time is unknown. These patents have zero out-degree and are at soroieiihi®y the patents from
within the dataset. We set the time (grant year) of these out-of-datasetoptat¢he year when they were
first cited by a patent from the dataset. This is natural and is equivaleatyiog that patents for which
grant year is unknown are in the dataset from the beginning, but wiamting, we count only non-zero
degree nodes. So the time when we first count an unknown patent isivgegs a first link.

We follow the same procedure as with arXiv citation networks. For eachlydeom 1975 to 1999, we
create a citation network on patents up to yEarand give the DPL plot, in Figurd.2(b). As with the
arXiv citation network, we observe a high densification exponent, in tisis«ca: 1.66.

Figure3.1(b) illustrates the increasing out-degree of patents over time. Note that thidoge not incur
any of the complications of a bounded observation period, since the patémtsdataset include complete
citation lists, and here we are simply plotting the average size of these adiariusiche year.

Autonomous systems graph

The graph of routers comprising the Internet can be organized intgrsyihts called Autonomous Systems
(AS). Each AS exchanges traffic flows with some neighbors (peers)cal construct a communication
network of who-talks-to-whom from the BGP (Border Gateway Protdogl$.

We use thédutonomous Systems (AfRfaset from RouteViews project at University of OregloditeViews
1997. The dataset contains 735 daily instances which span an interval afi&&5from November 8
1997 to January 2 2000. The graphs range in size fdorme= 3,011 nodes and® = 10,687 edges to
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Figure 3.2: Number of edge& (¢) versus number of node$(¢), in log-log scales, for (a) ArXiv high en-

ergy physics citation network (C-HEP-TH), (b) US patent citation network (C-PATENTS),
(c) Autonomous Systems network $AROUTEVIEWS), (d) ArXiv Astro-Physics authors-
to-papers bipartite network @ -ASTRO-PH), (€) Email network (EAIL -INOuUT), and (f)
Actors-to-movies bipartite network from IMDB (@-IMDB). All 6 graphs obey the Den-
sification Power Law, with a consistently good fit. Slopes= 1.68, 1.66, 1.18, 1.15, 1.12,
and 1.11 respectively.
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the largest AS graph that haé = 6,474 nodes andy = 26,467 edges. We refer to this dataset as
AS-ROUTEVIEWS.

In contrast to citation networks, where nodes and edges only get #ddedeleted) over time, the AS
dataset also exhibits both the addition and deletion of the nodes and edgdisnz/

Figure3.2(c) shows the DPL plot for the &&«ROUTEV IEWS dataset. We observe a clear trend: Even in
the presence of noise, changing external conditions, and disruptidhs toternet we observe a strong
super-linear growth in the number of edges over more than 700 AS gréyhshow the increase in the
average node degree over time in FigBr#c). The densification exponentds= 1.18, lower than the
one for the citation networks, but still clearly greater than

Affiliation graphs

Using the arXiv data, we also constructed biparditi#liation graphs There is a node for each paper, a
node for each person who authored at least one arXiv papernaedge connecting people to the papers
they authored. Note that the more traditionatauthorship networis implicit in the affiliation network:
two people are co-authors if there is at least one paper joined by arniedgeh of them.

We studied affiliation networks derived from the five largest categorigsararXiv. We refer to these
Authors-to-Papers graphs agR-ASTRO-PH, ATP-HEP-TH, ATP-HEP-PH, ATP-COND-MAT and ATP-
GR-QC. See also the tabl&.3 for additional information about the datasets.

We place a time-stamp on each node: the submission date of each papen eadhf person, the date

of their first submission to the arXiv. The data for affiliation graphs cevee period from April 1992

to March 2002. The smallest of the graphs (category GR—QC) had 18Rt (5,855 authors, 13,454
papers) and 26,169 edgestAASTRO-PH s the largest graph, with 57,381 nodes (19,393 authors, 37,988
papers) and 133,170 edges. It has 6.87 authors per paper; mostolién categories also have similarly
high numbers of authors per paper.

For all these affiliation graphs we observe similar phenomena, and in partiga have densification
exponents betweeh08 and1.15. We present the complete set of measurements only for ASTRO-PH,
the largest affiliation graph. Figur&sl(d) and3.2(d) show the increasing average degree over time, and
a densification exponent af= 1.15. Table3.2 shows the sizes and Densification Power Law exponents
for other four affiliation graphs.

Email network

We also considered an email network from a large European reseayahization. For a period from
October 2003 to May 2005 (18 months) we have anonymized information albowcoming and outgoing
email of the research organization. For each sent or received emaihgeewe know the time, the sender
and the recipient of the email. All personally identifiable data was hasheuates were assigned random
ids. Overall we have 3,038,531 emails between 287,755 different emadssds. Note that we have a
complete email graph for only 1,258 email addresses that come from insidests@&ch organization.
Furthermore, there are 35,756 email addresses that both sent aivedemmail within the span of our
dataset. All other email addresses are either non-existing, mistypedror spa
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Given a set of email messages we need to create a graph. Since thbesroatiple emails sent between
same two addresses (nodes) we follow the practice of Kossinets and Wadtsr{ets and Watt2004.
Given a set of email messages, each node corresponds to an emefsaddie create an edge between
nodesi andj, if they exchanged messages both ways, node; sent at least one message to ngdand

Jj sent at least one message to

Similarly to citation networks, we take all email messages up to particularitand create a graph using
the procedure described above. So, in the first month we observe8R=htails between 38,090 different
addresses. Using the proceduke$sinets and Watt200§ of generating a graph from a set of emails,
we getN = 6,537 nodes and® = 18,812 edges. After 18 months, at the end of the dataset, we have
N = 35,756 nodes andE = 123,254 edges. We refer to this network asiEiL -INOUT. See also
tableA.2 for additional information about the dataset.

Figure 3.2(e) presents the DPL plot for theMAIL -INOUT network. Observe a clear trend: the email
network is densifying, regardless of the fact that it is growing and teatparts of social network (email
address space) are being explored. The densification exponenti$.12, lower than the one for the
citation networks but more similar to those from affiliation networks. Still clearater thar.

Note that there is one issue with this dataset: we have complete informationadb®erit and received
emails only for the core of the network (1258 email addresses from tteniaagion). For the rest of
the addresses, the nodes on the periphery, we only have their communi{tiakie) with the core of the
network.

Regardless of how we look at the email network it always densifies: Itevesider only the core of

the network, the densification is very high. This is expected, since the mwhibedes (people at the

research organization) basically remains constant over time and thecadgesly be added, not deleted,
and densification naturally occurs.

The BvAIL -INOUT network also densifies if we consider the core plus the periphery but weger-
mining edges we take a 2 month sliding windddogsinets and Watt2004. This means that for every
monthm, we take all email messages between- 1 andm, and create a graph, where there is an edge,
if nodes exchanged emails both ways in the last 2 months. This graph alsifiefewith densification
exponent = 1.21.

Interestingly, the sliding window email network has higher densification mapiothan the full evolving
email network. A possible explanation is that email usage is increasing oveatidieot all nodes (email
addresses) are active at all times. Over the 18 month time period the sizeafit®-sliding window
graphs increases from 7,000 to 10,000 nodes. On the other hand tieenaillgraph (composed of all
nodes up to monthn) grows from 3,000 to 38,000 nodes over the same time period. This means that
there is a large number of e-mail addresses that are active only foioa pétime. In a moving window
graph we observe only active users and thus more edges since emgailhzsaalso increased and people
communicate more. As opposed to the evolution of the full email network, the gnaxitdow graphs do

not have to accumulate the history., sparse graphs from the past, so they densify faster.

IMDB actors to movies network

The Internet Movie Data Base (IMDBitp://www.imdb.com ) is a collection of facts about movies
and actors. For every movie we know the year of production, gendeaetor names that appeared in the
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movie. From IMDB we obtained data about 896,192 actors and 334,084 sqanaduced between 1890
and 2004 (114 years).

Given this data we created a bi-partite graph of actors to movies the samesivatha case of affiliation
networks. We refer to this network asi-IMDB. This means that whenever a new movie appears, it
links to all the actors participating in it. We create a new actor node when thefast@ppears in any
movie. This way, when a new movie appears, we first create a movie ndam We introduce actor
nodes, but only for actors for whom this was their first appearancariovae. Then we link actors and
the movie.

In our experiment we started observing the graph in 1910, when thea@panected component started
to form. Before 1910 the largest connected component consisted dhBasd5% of the nodes. At the
beginning of our observation period the¥M-IMDB network had N = 7,690 nodes (4,219 actors and
3,471 movies) and = 12,243 edges. At the end of the dataset in 2004, we h&ve 1,230, 276 nodes
andFE = 3,790,667 edges. See also tab¥e4 for additional information about the dataset.

We follow the usual procedure: for every yedrwe take all the movies up to yeaf and actors that
appeared in them. We create a graph and measure how the number ofjsmgesvith the number of
nodes. Figurd.2(f) presents the DPL plot for the™-IMDB actors to movies network. Again, notice
the nontrivial densification exponent @f= 1.11.

Product recommendation network

We also report the analysis of the product recommendation netwedkpvec et al.20063 that we will
describe in greater detail in chapt&rWe measure the densification of a large person-to-person recom-
mendation network from a large on-line retailer. Nodes represent pangdledges represent recommen-
dations. The network generation process was as follows. Each timeamenshasesa book, music

CD, or a movie he or she is given the option of sending emails recommendingrth&ifeiends. Any

of the recipients of the recommendation that makes a purchase can fetbermend the item, and by
this propagation of recommendations the network forms. We refer to this neB8oRECOMMENDA-
TIONS.

The RECOMMENDATIONS network consists oy = 15,646, 121 recommendations made among =
3,943, 084 distinct users. The data was collected from June 5 2001 to May 16 20@8al, 548,523 prod-
ucts were recommended. We report the Densification Power Law exjporef.26 in table3.2

Online social networks

We also consider large online social networks that are parts of the paqmdil networking and photo
sharing websites like: IRCKR (flickr.com , @ photo-sharing website),HdIcIoUs (del.icio.us :

a collaborative bookmark tagging websiteproo! ANSWERS(answers.yahoo.com , a knowledge
sharing website), andINKEDIN (linkedin.com , a professional contacts website) — where nodes
represent people and edges represent social relationships. Ketnawe up to 8 million nodes and 31
million edges. Notice here we have complete data on the evolution of these doworks from the
inception of the service to the end. All personally identifiable data was Hasiet nodes were assigned
random ids. Refer to tabl& 2 for information on network sizes and densification exponents.
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flickr.com
del.icio.us
answers.yahoo.com
linkedin.com

DATASET | NobEs EDGES | TIME || DPL EXPONENT

CIT-HEP-PH 30,501 347,268 10 years 1.56
CIT-HEP-TH 29,555 352,807| 10years 1.68
CIT-PATENTS 3,923,922| 16,522,438 37 years 1.66
AS-ROUTEVIEWS 6,474 26,467| 785 days 1.18
ATP-ASTRO-PH 57,381 133,179 10 years 1.15
ATP-COND-MAT 62,085 108,182 10 years 1.10
ATP-GR-QC 19,309 26,169| 10years 1.08
ATP-HEP-PH 51,037 89,163| 10years 1.08
ATP-HEP-TH 45,280 68,695| 10 years 1.08
EMAIL -INOUT 35,756 123,254| 18 months 1.12
ATM-IMDB 1,230,276| 3,790,667 114 years 1.11
RECOMMENDATIONS || 3,943,084| 15,656,121 710 days 1.26
FLICKR 584,207| 3,554,130| 20 months 1.32
DELICIOUS 203,234 430,707| 10 months 1.15
ANSWERS 598,314| 1,834,217 4 months 1.25
LINKEDIN 7,550,955| 30,682,028/ 3.5years 1.20

Table 3.2: Dataset names with sizes, time lengths and DensificatiorePbaw exponents. Notice very
high densification exponent for citation networks 1.6), around1.2 for Autonomous Systems
and lower (but still significant) densification exponesnt1.1) for affiliation and collaboration
type networks.

3.3.2 Shrinking Diameters

We now discuss the behavior of the effective diameter over time, for thisctioleof network datasets.
Following the conventional wisdom on this topic, we expected the underlyiegtipn to be whether we
could detect the differences among competing hypotheses concerniggothih rates of the diameter
— for example, the difference between logarithmic and sub-logarithmic grofiths, it was with some
surprise that we found the effective diameters to be acta@ltyeasingver time (Figure3.3).

As mentioned earlier in Chapt@r a graph has diameté? if every pair of nodes can be connected by a
path of length at mosb. The diametelD is susceptible to outliers. Thus, a more robust measure of the
pairwise distances between nodes of a graph iseffextive diameterThis is defined as the minimum
number of hops in which 90% of all connected pairs of nodes can rezaih @her. See sectidhl

for more precise definitions of these concepts. The effective diamesebd®en found to be small for
large real-world graphs, like Internet, Web, and social netwoMbkdrt and Barabsi 2002 Milgram,
1967.

We follow the same procedure as in case of Densification Power Law nesasots. For each tinte we
create a graph consisting of nodes up to that time, and compute the effiatiweter of the undirected
version of the graph.

Figure3.3shows the effective diameter over time; one observes a decreasinddretithe graphs. We
performed a comparable analysis to what we describe here for all fib dediasets in our study, with very
similar results. For the citation networks in our study, the decreasing e#atihmeter has the following
interpretation: Since all the links out of a node are “frozen” at the momgihi the graph, the decreasing
distance between pairs of nodes appears to be the result of subisegpers acting as “bridges” by citing
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Figure 3.3: The effective diameter over time for 6 different datasetstidé consistent decrease of the
diameter over time.
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earlier papers from disparate areas. Note that for other graphs istuy, such as the AS dataset, it
is possible for an edge between two nodes to appear at an arbitrary timéhalie two nodes join the
graph.

We note that the effective diameter of a graph over time is necessarily edumain below, and the
decreasing patterns of the effective diameter in the plots of Figare consistent with convergence
to some asymptotic value. However, understanding the full “limiting behavidttieeffective diameter
over time, to the extent that this is even a well-defined notion, remains an apstian.

Validating the shrinking diameter conclusion

Given the unexpected nature of this result, we wanted to verify that theksig diameters were not
attributable to artifacts of our datasets or analyses. We explored this isaueuimber of ways, which
we now summarize; the conclusion is that the shrinking diameter appears toobast, and intrinsic,
phenomenon. Specifically, we performed experiments to account fpoés)ble sampling problems, (b)
the effect of disconnected components, (c) the effect of the “missisigj(pa in the previous subsection),
and (d) the dynamics of the emergence of the giant component.

¢ Possible sampling problems€Computing shortest paths among all node pairs is computationally
prohibitive for graphs of our scale. We used several different@apmate methods, obtaining al-
most identical results from all of them. In particular, we applied the Approtérhbeighborhood
Function (ANF) approachHalmer et a].2007 (in two different implementations), which can esti-
mate effective diameters for very large graphs, as well as a basic samaplimgach in which we
ran exhaustive breadth-first search from a subset of the nodserchuniformly at random. The
results using all these methods were essentially identical.

Plots on figure3.3were created by averaging over 100 runs of the ANF, the approximatestia
algorithm. For all datasets the standard error is less than 10%. For clapitgsgntation we do not
show the error bars.

e Disconnected component@ne can also ask about the effect of small disconnected components.
All of our graphs have a singlgiant componert a connected component (or a weakly connected
component in the case of directed graphs, ignoring the direction of tresgtitat accounts for a
significant fraction of all nodes. For each graph, we computed efeediameters for both the entire
graph and for just the giant component; again, our results are essetit@bame using these two
methods.

e “Missing Past” effects: A third issue is the problem of the “missing past,” the same general issue
that surfaced in the previous subsection when we considered detimifichn particular, we must
decide how to handle citations to papers that predate our earliest rddimte (Note that the
missing past is not an issue for the AS network and the four online sodiebriedata, where the
effective diameter also decreases.)

To understand how the diameters of our networks are affected by thimidahle problem, we
perform the following test. We pick some positive tiie> 0, and determine what the diameter
would look like as a function of timef this were the beginning of our dat&Ve then put back in the
nodes and the edges from before titheand study how much the diameters change. If this change
is small — or at least if it does not affect the qualitative conclusions — thproitides evidence
that the missing past is not influencing the overall result.
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Specifically, we set this cut-off timg) to be the beginning 0f995 for the arXiv (since we have
data from1993), and to bel 985 for the patent citation graph (we have data fro975). For Email
network we set the cut-off time to January 2004 and for IMDB to 1940 (&® experimented with
1920 and 1960 and findings were consistent). We then compared tlts oéshree measurements:

— Diameter of full graphFor each time we compute the effective diameter of the graph’s giant
component.

— Postiy subgraph.We compute the effective diameter of the passubgraph using all nodes
and edges. This means that for each tinfe > ¢,) we create a graph using all nodes dated
beforet. We then compute the effective diameter of the subgraph of the nodeatnezbrt)
andt. To compute the effective diameter we can use all edges and nodes ifigdiuose dated
beforety). This means that we are measuring distaradg among nodes dated betwegn
andt while also using nodes and edges befgras “shortcuts” or “bypasses”. The experiment
measures the diameter of the graph if we knew the full (pygeast — the citations of the
papers which we have intentionally excluded for this test.

— Posti, subgraph, no pastWe sett, the same way as in previous experiment, but then for
all nodes dated beforg we delete all their out-links. This creates the graph we would have
gotten if we had started collecting data only at titpe

In Figure 3.3, we superimpose the effective diameters using the three different teesnidf the
missing past does not play a large role in the diameter, then all three cinvekl die close to
one another. We observe this is the case for the arXiv citation graplhshéarXiv paper-author
affiliation graph, and for the patent citation graph, the curves are quftdit right at the cut-off
time tg (where the effect of deleted edges is most pronounced), but thellyailign with one
another. As a result, it seems clear that the continued decreasing tremdeffieittive diameter as
time runs to the present is not the result of these boundary effects.

e Emergence of giant componenA final issue is the dynamics by which the giant component
emerges. For example, in the standarddsrdRenyi random graph model (which has a substantially
different flavor from the growth dynamics of the graphs here), the diemw# the giant compo-
nent is quite large when it first appears, and then it shrinks as edgésuwmto be added. Could
shrinking diameters in some way be a symptom of emergence of giant contponen

It appears fairly clear that this is not the case. Figdieshows the fraction of all nodes that are
part of the largest connected component (LCC) over time. We plot thetthe LCC for the full
graph and for a graph where we had no pastes-where we delete all out-links of the nodes dated
before the cut-off time¢,. Because we delete the out-links of the pserodes the size of LCC is
smaller, but as the graph grows the effect of these deleted links beceglasiie.

We see that within a few years the giant component accounts for almost athdes in the graph.
The effective diameter, however, continues to steadily decrease ddyisrpoint. This indicates
that the decrease is happening in a “mature” graph, and not becaugesmalhdisconnected com-
ponents are being rapidly glued together.

Based on all this, we believe that the decreasing diameters in our studyt eeflendamental property of
the underlying networks. Understanding the possible causes of thisrproas well as the causes of the
densification power laws discussed earlier, will be the subject of theseetibn.
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Figure 3.4: The fraction of nodes that are part of the giant connectedoom@nt over time. We see that
after 4 years the 90% of all nodes in the graph belong to giamiponent.

3.3.3 Does densification cause shrinking diameter?

A natural question to ask next is whether densification itself is enough éaditmeter to shrink. Or, is
there something more that causes shrinking diameters. For example, it eaihlgtbhe edge attachment
changes and the edges attach less and less “locally” over time, whichsstivenketwork diameter.

In principle there are three possible answers to this question. We list tloemtlie simplest to the most
complex: (1) densification causes shrinking diameter; (2) densificatioanbimation with particularly
evolving degree sequence causes shrinking diameter; (3) densifieatiospecial evolution of edge at-
tachment cause shrinking diameter. Next, we examine which of these paassilers is true.

First, we examine the connection between the densification and the shrinangtdr. We generate a
densifying random grap&,, ,, and measure the effective diameter as we grow and densify the graph. If
solely the densification causes shrinking diameter, then the diameter of ifyohens,, , should also
shrink. Figure3.5a) shows the plot for a densifying random graph with densification resuta, = 1.3.
Notice the diameter is still slowly increasing which shows that densification itsetftisnough to obtain
shrinking diameter. Similarly, Figurg.5b) shows the diameter of a densifying Preferential Attachment
(PA) model. Here the diameter quickly fluctuates and then remains constarheitietwork size.

Now, we evaluate the hypothesis whether the densification and the evoltitttnaegree sequence could
cause the diameter to shrink. We measure the diameter over time of a realknebddhen compare this
with a diameter of a random network conditioning on the same degree distribilBasically, we take
a real network and then generate a random network with same degresnsequsing the configuration
model Bollobas 198(0. Figures3.5c) and (d) show the true network shrinking diameter for thé*A
ASTRO-PH affiliation network the US patent citation networkIfGPATENTS). Dots present the diameter
of the real network, while line shows the evolution of the diameter of a “ralinetwork,i.e., a random
network with same degree distribution. Notice the effective diameter nicelywsiiue diameter even if
we randomly rewire the edges. This shows that there is nothing special latw the edges attach but it
is the way the degree sequence evolves over time that gives rise to thaérghdiameter.

Next, we analyze exactly the connections between the densification pawanththe evolution of the
degree sequence.
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Figure 3.5: (Top row: (a) The effective diameter of a densifying &sdRenyi random grapld,, ,, with
densification exponent = 1.3. (b) Densifying Preferential Attachment (PA) model with
densification exponent = 1.2. In G, , the diameter is still slowly increasing regardless
of the fact that the network is densifying. In case of Prafgat Attachment the diameter is
basically constant. This means that densification itsetbisenough for diameter to shrink.
Bottom row compares the true effective diameter (red dott) the effective diameter of a
rewired networkj.e., a random graph with same degree distribution (solid lihgtice they
both match well. The rewiring process does not alter netiwat&gree sequence and densi-
fication. This shows one needs the right combination of thesifieation and the evolving
degree sequence to obtain shrinking diameter.

3.3.4 Densification and the degree distribution over time

Many real world graphs exhibit power law degree distributi@derplasi and Albert1999 Faloutsos et a|.
1999. As we saw in sectioi3.3the average degree increases over time, and the graphs densify follow-
ing the power law relationship between the number of nodes and the numbéeges. Here we analyze

the relation between the densification and the power law degree distributotiroe, and find evidence
that some of the real world graphs obey the relations we find. A similar asalgs also performed by
Dorogovtsev and Mende®progovisev and Mende2002h although without specific measurements or
comparison to real data.
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We analyze the following two cases: If the degree distribution of a time evobyiah is power law, and
it maintainsconstantpower law exponeny over time, then we show that fdr < v < 2 we obtain the
Densification Power Law exponent

a=2/.

arises. In this case the Densification Power Law is the consequencdadttieat a power law distribution
with exponenty < 2 has no finite expectatiomNewman 2009, and thus the average degree grows with
the number of sampleg€., nodes) while power law degree exponent is constant over time.

Our second result is for the case when temporally evolving graph densifie densification exponent
and follows a power law degree distribution with expongnt 2 that we alow tachangeover time. We
show that in this case for a given densification exporenhe power law degree exponeptV) has to
evolve with the size of the grapN as

ANt —1
N)y=-— =
’Y( ) 2Na_l _ 1

This shows that Densification Power Law and the degree distribution latedeand that one implies the
other.

Constant degree exponent over time

First, we analyze the case where the graph over time maintains power lagedsigtribution with a
constant exponent. Power law distributiorp(z) = cz~7 with exponenty < 2 has infinite expecta-
tion [Newman 2003, i.e., as the number of samples increases, the average also increasesingshiat
the exponent (slope) of the degree distribution deeischange over timea natural question to ask is:
what is the relation between the Densification Power Law exponent an@gneeddistribution over time?
The following theorem answers the question:

Theorem 3.3.1.In a temporally evolving graph with a power law degree distribution havingstant
degree exponent over time, the DPL exponeatis:

a = 1 ify>2 (3.2)
= 2/y f1<~y<2 (3.3)
= 2 ify<l1 (3.4)

Proof. Assume that at any timethe degree distribution of an undirected gragliollows a power law.
This means the number of nodag with degreed is Ny = cd~7, wherec is a constant. Now assume
that at some point in time the maximum degree in the graph,is.. Later as the graph grows we will
let d,,.. — oo. Using the previous power law relation, we can calculate the number osiodead the
number of edge® in the graph:
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dmaz dmax
N o= S s /

g mak = 1

= d=1 1=~

1 dmaz dmazx d2—’7 -1
E = = Z cd ™~ / A e S—

2 i—1 d=1 2-9

Now, we let the graph grow, s6),,.. — oo. Then the DPL exponentis:

L loB(E) _ yloa(das) +lox(dka — 1)) ~ log(12 — 5))
dmaz—00 10g(N)  1og(dmaz) + 10g(|dmak — 1]) — log(|1 —~])

Note, that the degree distribution exponent jso we also have the relatidog(c) = ~ log(dimaz ). NOw,
we have 3 cases:

Case 1 v > 2. No densification:

o — VIOg(dmax) +o(1)

=1
vlog(dmaz) + o(1)

Case 21 < v < 2is the interesting case where densification arises:

- v1og(dmaz) + (2 — v) log(dmaz) + o(1) _ 2
Y10g(dmaz) + o(1) g

Case 3:v < 1. Maximum densification — the graph is basically a clique and the number o$ eulges
quadratically with the number of nodes:

o — v1og(dmaz) + (2 — ) log(dpmaz) + o(1)

7 108(dmaz) + (1= 7) 108 (dmaz) + 0(1)

O]

This shows that for cases when graph evolves by maintaining the copstaet law degree exponent
~ > 2 over time it does not densify. However, for cases when 2 we observe densification. This can
easily be explained. The densification means that the number of edges faster than the number of
nodes. So, for densification to appear the tail of the degree distributtoto lggiow,i.e. has to accumulate
more mass over time. Here, this is the case since power law distributions withespo< 2 have no
finite expectation. In the case of degree distribution this means that theedpecie degree grows as the
graph accumulates more nodés.( samples from degree distribution).
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Evolving degree distribution

There also exist graphs with degree distributiorr 2 which can also densify. Now, we allow the degree
distribution to change over time. In fact, the degree distribution has to flaterime to accumulate more
mass in the tail as more nodes are added to allow for densification. This isweteadplore next.

In the previous section we assumed that the expopeiithe power law degree distribution remains con-
stant over time, and then found the range for power law degree expppmérere it leads to densification.
Now, we assume Densification Power Law with exponeratlow degree distribution to change over time,
and askHow should the power law degree expone(lv) change over time (as the number of nodés
grows) to allow for densificationWe show the following result:

Theorem 3.3.2.Given a time evolving graph oN nodes that evolves according to Densification Power
Law with exponent > 1 and has a Power law degree distribution with exponefi) > 2, then the
degree exponent(N') evolves with the number of nodAsas

ANo—L 1

Y(N) = ONa-T _1 (3.5)

Proof. An undirected grapli: on N nodes hasv = %Na? edges, wherd is the average degree in graph
G. Then the DPL exponentis

. log(E) _ log(N) + log(d) — log(2)
log(N) log(N)

(3.6)
In a graph with power law degree distributigriz:) = 2=, with exponenty > 2, the average degrekis

o0

3 0 00 -1
d =~ / ap(x) dx = c/ ey = 2 =T (3.7)
1 1 2—7 1 v =2

Now, substituting in equatior3.6 with the result of equatioB.7, and solving fory, we obtain:

4N

1N) = oyeT 1 (3.8)

O]

Here we found the evolution pattern that degree distribution with expenen? has to follow in order to
allow for densification. As theore®.6 shows the degree distribution has to flatten over time, so that the
expected node degree increases, which is the result of densification.
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Figure 3.6: Degree distribution (a) and the degree exponemiter time (b) for the email networkneaiL -
INOuUT. The network maintains constant slopef degree distribution over time. Notice that
~v < 2. We observe a remarkably good agreement between the ré3Jiieorem3.3.1(DPL
exponent = 1.13), and our measurements (DPL exponent 1.11) in figure3.2(e).

Measurements on real networks

Next, given the analysis from the previous section, we went back to tiacati@ checked if graphs we
analyzed before behave according to the results of thed@e3rkand3.3.2

First, we show an example of a graph where the evolution of the degrebutistn and the DPL exponent
follow the results of theorer8.3.1 Using the email network described in sect@B.1we found that the
degree distribution follows a power law with exponerthat remains constant over time.

Figure3.6(a) shows the degree distribution of the email network for last snap§kize oetworkj.e., last

2 months of the data. We create the networks by using a 2 month sliding winde\it ihe power law
degree exponent using Maximum Likelihood Estimation (MLE), and plot its evolution over time in fig-
ure 3.6(b). Noticey remains practically constant over time, which is also in agreement with obsaiya
reported in Kossinets and Watt200§. Also notice that the power law degree exponent 1.76 < 2.
Given the degree exponentand using theorerd.3.1we obtain the theoretical value of the DPL exponent
a = 2/1.76 ~ 1.13. The value of DPL exponent we measured in sec8@figure3.2(e) isa = 1.11,
which is a remarkably good agreement. This shows that there exist grafitesreal world that densify
and have decreasing diameter while maintaining constant degree expuagtime.

Last, we show an example of a temporally evolving graph that densifiehathe power law degree
exponenty changing over time.

Figure 3.7(a) plots the degree distribution of the full HEP—PH citation network froniced.3.1 In
this case the degree distribution only follows a power law in the tail of the disitritpuiso we applied the
following procedure. For every year 1992 < y < 2002 we create a citation graph and measure the
exponent of the power law degree distribution. We apply logarithmic binmddiathe power law degree
distribution using MLE on the tail of the degree distribution starting at minimumege@®. \We plot the
resulting degree exponeftover time as a function of the size of the graph in figBréb).

Using dashed-lines we also plot the degree exponastobtained by theore13.2 Since the graph does
not exhibit power law degree distribution on the entire range, and due tinisast effects, we had to
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Figure 3.7: Degree distribution (a) and the degree exponent over timé(lihe HEP—PH citation net-
work (CIT-HEP-PH). The network follows power law degree distribution onlythre tail.
Degree distribution exponentis decreasing over time. Notice a good agreement of degree
distribution evolution (solid line) as predicted by thedhem3.3.2(dashed line).
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Figure 3.8: Rank Degree plot for the degree distribution of the emaily4E -INOUT) and the HEP—PH
(CiT-HEP-PH) networks. We use the same data as in fig@®.€&) and3.7(a) but plot node
degree vs. rank using the log-log scales. As a eye guideknglet the solid lines that present
the power law decay with exponent= 1.75 andy = 2.24, respectively.

appropriately scale time axis with a manually chosen value. Regardless of theinsaaling we think

this result indicates that for a class of temporally evolving graphs the eldigtibution flattens over time

as given by the theoref13.2 This seems to be the case for HEP—PH citation network where the evolution
of the degree exponent qualitatively follows the result of thedBe3r2

Figure 3.8 further investigates the degree distribution of the email and HEP-PH netwivk use the
same data as in figur&sg(a) and3.7(a), and plot the number of nodes of a certain degree against the rank.
The solid lines present the power law decay with exponents 1.75 and~y = 2.24, respectively. The
actual slope of the plotted line i5/(y — 1), which is the relation between the power law exponeand

the slope of the rank degree plot (sé&ldmic, 200q for more details on these relationships).
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In both plots of figure3.8 we observe linearity which suggests a power law relationship for a p#éneof
degree distribution. For the email network we observe linearity in the tail, anihé HEP—PH citation
network in the first part of the distribution. These two plots show that in oor datasets the power
law degree distribution does not hold for the entire range. Howevertilvelsserve a significant range
where power law relationship seems to hold. Regardless of these iriggalénere is still very good
agreement of the data with the results of theor8msland3.3.2 which suggests that there exists graphs
that densify by maintaining constant power law degree exponent (ine®®1), and also graphs that
densify by degree exponent flattening over time (theoBetD).

3.4 Proposed models

We have now seen that densification power laws and shrinking effetitiveeters are properties that hold
across arange of diverse networks. Moreover, existing modelstdapture these phenomena. We would
like to find some simple, local model of behavior, which could naturally lead toeroscopic phenom-
ena we have observed. We present increasingly sophisticated mddefsyhkich naturally achieve the
observed densification; the last one (the “Forest Fire” model) also iexBHrinking diameter and all the
other main patterns known (including heavy-tailed in- and out-degree distrnis).

3.4.1 Community Guided Attachment

What are the underlying principles that drive all our observed gr&pbbey a densification power law,
without central control or coordination? We seek a model in which theifilgat®on exponent arises from
intrinsic features of the process that generates nodes and edges.owiiteuld clearly define a graph
model in whichE(t) oc N(t)* by simply having each node, when it arrives at timgenerateV (¢)% 1
out-links — the equivalent of positing that each author of a paper in a citagomork has a rule like,
“Cite N*~! other documents,” hard-wired in his or her brain — such a model woulgrmtde any
insight into the origin of the exponent as the exponent is unrelated to the operational details by which
the network is being constructed. Instead, our goal is to see how uimdedyoperties of the network
evolution process itself can affect the observed densification behavior

We take the following approach. Power laws often appear in combinationseittsimilar structures.
Intuitively, a self-similar object consists of miniature replicas of its8iéfiroeder1991. Our approach
involves two steps, both of which are based on self-similarity.

We begin by searching for self-similar, recursive structures. In faetcan easily find several such
recursive sets: For example, computer networks form tight groeygs based on geography), which
consist of smaller groups, and so on, recursively. Similarly for patémes: also form conceptual groups
(“chemistry”, “communications”, etc.), which consist of sub-groupsl s on recursively. Several other
graphs feature such “communities within communities” patterns.

For example, it has been argued (seg [Watts et al. 2003 and the references therein) that social struc-
tures exhibit self-similarity, with individuals organizing their social contagesarchically. Moreover,
pairs of individuals belonging to the same small community form social ties maiky ¢laan pairs of
individuals who are only related by membership in a larger community. In areliffelomain, Menczer
studied the frequency of links among Web pages that are organized irgi &ierarchy such as the Open
Directory [Menczer 2004. He showed that link density among pages decreases with the heighirof the
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least common ancestor in the hierarchy. That is, two pages on closelydrialptes are more likely to be
hyperlinked than are two pages on more distantly related topics.

This is the first, qualitative step in our explanation for the Densification Pbaer The second step is
quantitative. We will need a numerical measure of the difficulty in crossimgnoonities. The extent
to which it is indeed difficult to form links across communities will be a propeftthe domain being

studied. We call this thBifficulty Constantand we define it more precisely below.

The basic version of the model

We represent the recursive structure of communities-within-communitiesrae 8, of height Hp. We
shall show that even a simple, perfectly balanced tree of constanttfaisoenough to lead to a densifica-
tion power law, and so we will focus the analysis on this basic model.

The node®’ in the graph we construct will be the leaves of the tree; thafis; |V|. (Note thatV = b1 )
Let hr(v, w) define the standard tree distance of two leaf nadasdw: that is,hr (v, w) is the height of
their least common ancestor (the height of the smallest sub-tree contairing dedw).

We will construct a random graph on a set of notieby specifying the probability that andw form

an edge as a functiofi of Ar(v,w). We refer to this functiory as theDifficulty Function What should

be the form off? Clearly, it should decrease with but there are many forms such a decrease could
take.

The form of f that works best for our purposes comes from the self-similarity argumenisade earlier:
We would like f to be scale-free; that ig(h)/f(h — 1) should be level-independent and thus constant.
The only way to achieve level-independence is to defifte = f(0)c~". Settingf(0) to 1 for simplicity,
we have:

f(h) =¢" (3.9)

wherec > 1. We refer to the constanrtas theDifficulty Constant Intuitively, cross-communities links
become harder to form asncreases.

This completes our development of the model, which we refer @amsmunity Guided Attachmerttthe
nodes of a graph belong to communities-within-communities, and if the costdss-community edges
is scale-free (Eq.3.9)), the Densification Power Law follows naturally. No central controbagenous
regulations are needed to force the resulting graph to obey this propersport, self-similarity itself
leads to the Densification Power Law.

Theorem 3.4.1.1n the Community Guided Attachment random graph model just definedx{rected
average out-degree of a node is proportional to:

Nlog(e) i 1 <e<b
log, (N) if c=0

= constant if ¢>b

S
|
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Proof. For a given node, the expected out-degree (number of links)f the node is proportional to

logy, (N) b_llogb(N) p\I1
. B L
d—;f(hp(x,v))— ; (b—1p~" e = — ; <C> . (3.10)

There are three different cases1iK ¢ < b then by summing the geometric series we obtain

T mo e

— @(Nl—logb(c)).

b log,(N)
d b_l‘ (7) -1 — (b_1> (Nl—logb(c)_l)

In the case when = b the series sums to

The last case is when Difficulty Constants greater than branching factér(c > b), then the sum in
Eqg. (3.10 converges to a constant even if carried out to infinity, and so we otbtaid(1). O

Note that where < b, we get a densification law with exponent greater thate expected out-degree is
N(t)'~leg(¢) and so the total number of edges grows\5s)* wherea = 2 — log, (c). Moreover, as:
varies over the intervdl, b), the exponent ranges over all values in the inten@l, 2].

Corollary 3.4.2. If the Difficulty Function is scale-fregf(h) = ¢ ", with 1 < ¢ < b), then the Community
Guided Attachment obeys the Densification Power Law with exponent

a=2—logy(c)

The Community Guided Attachment model above also leads to some intuitive extases c

* If the cross-community difficulty constant Difficulty Function is too low (), then every node can
easily connect to every other node, and the average degse®. That is, we have a near-clique.

e |f cross-community difficulty constant is too high then we obtain no densificgtio= 1), which
means that nodes only link inside their own subtree and do not create logg ealges to nodes
residing in other parts of the tree.

Dynamic Community Guided Attachment

So far we have discussed a model in which nodes are first organizealmetsted set of communities, and
then they start forming links. We now extend this to a setting in which nodesdaexlaover time, and
the nested structure deepens to accommodate them. We will assume that algpadteates out-links at
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the moment it is added (and hence, only to nodes already present); thigrial fiar domains like citation
networks in which a paper’s citations are written at the same time as the papier itse

Specifically, the model is as follows. Rather than having graph nodesresig at the leaves of the tree

I, there will now be a graph node corresponding to every internal nbfleas well. Initially, there is a
single nodev in the graph, and our treé consists just ob. In time stept, we go from a completé-ary

tree of deptht — 1 to one of deptlt, by addingb new leaves as children of each current leaf. Each of these
new leaves will contain a new node of the graph.

Now, each new node forms out-links according to a variant of the psdoeshich all graph nodes are
leaves. However, since a new node has the ability to link to internal nodhae ekisting tree, not just to
other leaves, we need to extend the model to incorporate this. Thus, we tiedtree-distancei(v, w)
between nodes andw to be the length of a path between theni'ir- this is the length of the path from

v up to the least common ancestoradndw, plus the length of the path from this least common ancestor
down tow. Note that ifv andw are both leaves, thei(v, w) = 2hr(v, w), following our definition of

hr (v, w) from before.

The process of forming out-links is now as follows: For a constambdev forms a link to each node
w, independently, with probability(:*)/2_ (Note that dividing by2 in the exponent means this model
gives the same probability as basic model in the case whenvtantdw are leaves.)

Like the first model, this process produces a densification law with expener2 — log, (¢) whenc < b.
However, forc < b?, it also yields a heavy-tailed distribution of in-degrees — something that tie ba
model did not produce. We describe this in the following theorem.

Theorem 3.4.3. The Dynamic Community Guided Attachment model just defined has theirigliorep-
erties.

e Whenc < b, the average node degree 1! °2:(¢) and the in-degrees follow a Zipf distribution
with exponent log, (c).

e Whenb < ¢ < b?, the average node degree is constant, and the in-degrees follow a Zijifution
with exponent — 3 log,(c).

e Whenc > b?, the average node degree is constant and the probability of an in-el@yeeeding
any constant bouné decreases exponentially in

Proof. In the proof, all logarithms will be expressed in baseless specified otherwise.

We begin with the following basic facts. If a node is at heighi the tree, then the number of nodes at
distanced < h from it is © (bd). Nodes at distanceé > h can be reached by going up fgisteps, and
then down ford — j steps (ifd — j < h+ 7). This is maximized foj = (d—h)/2, and so the total number
of nodes reachable at distan¢es © (b(4+7)/2).

Case 1l:c < b In this case, the expected out-degree for a leaf node is

2log N /2 log N
b _ b® o N _ 1—-logc
;) ®<cd/2> _@<ClogN> _G)(ClogN) _®<N )
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Since the expected out-degree values for other nodes are smallenead sonstant fraction of all nodes
are leaves, it follows that the expected value of the out-degree takealbredes i©® (N 1-log C) as well.

Now we compute the expected in-degree of a node at heighhis is

So () ;@(%>:Ze< )bdxz Z@<6d/2>bm.

d<h d<h d>h

The largest term in this sum is the last, tb= 2log N — h. Here it takes the value

plos posNN 1—logc h/2
@<clogN—(h/2)> _®<clogN>C/ :@<N ® C/)‘

The maximum expected in-degreés achieved foh = log N, when we get

Py (Nl—logcc.SlogN) —0 (Nl—.510g0> )

So for a node at depth= log N — h, we get an expected in-degree of

o) (lelogcc(longt)/2) -0 (Zcft/2> '

Hence, to compute a Zipf exponent, we see that a node of degree ramkhas depttt, so it has degree
z z
0 (27) =© (502

Case 2:b < ¢ < b? In this case, the expected out-degree for a leaf node is
2log N bd/2
Z O a5 | =0

Since the expected out-degree values for other nodes are smaller)itSttlat the expected value of the
out-degree taken over all nodesdg1) as well.

Now we compute the expected in-degree of a node at heighhis is
pld+h)/2 pa/2 /2 p/2 /o
o ()Xo (o) -xo (b ) o (b )
d<h d>h d<h d>h

Sinceb < ¢ < b?, these terms increase geometrically ugte h, then decrease. Thus, the largest term is
for d = h, where itis® (b"c="/2).

Thus the maximum degreeis= © (N'~1¢¢) and for deptht = log N — h, we get a degree of
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Now, b/c!/? = bl =5108¢ 50 a node of degree rank= b* (at deptht) has degre® (z/rl=51¢).

Case 3:c > b? The expected out-degrees here are only smaller than they are in theusreaige, and
hence the expected value of the out-degree taken over all no@gd js

The node whose in-degree is most likely to exceed a fixed béusadhe root, at height = log N. The
in-degree of the root is a suXi of independend-1 random variables(,, where X, takes the valué if
nodev links to the root, andy, takes the valué otherwise. We have

EX:ZJ:EX = > @(CZC/;):@(D,

d<log N

and hence by Chernoff bounds, the probability that it exceeds a galaek > E X decreases exponen-
tially in . n

Thus, the dynamic Community Guided Attachment model exhibits three qualitatifieyedt behaviors
as the parametervaries: densification with heavy-tailed in-degrees; then constantgevelegree with
heavy-tailed in-degrees; and then constant in- and out-degrees withpfogability. Note also the in-
teresting fact that the power law degree exponent is maximized for the ohlueight at the onset of
densification.

Finally, we have experimented with versions of the dynamic Community Guidedhitixat model in
which the tree is not balanced, but rather deepens more on the lefhlsati@an the right (in a recursive
fashion). We have also considered versions in which a single grapi ceod“reside” at two different
nodes of the tred, allowing for graph nodes to be members of different communities. Expetainen
results and overall conclusions were all the time the same and consistardlesg of the particular
version (modification) of the dynamic Community Guided Attachment model used.

3.4.2 The Forest Fire Model

Community Guided Attachment and its extensions show how densification camatigally, and even in

conjunction with heavy-tailed in-degree distributions. However, it is natlagnough class of models to
capture all the properties in our network datasets. In particular, we vikelth capture both the shrinking

effective diameters that we have observed, as well as the fact thattearks tend to have heavy-tailed
out-degree distributions (though generally not as skewed as their realdigtributions). The Community
Guided Attachment models do not exhibit either of these properties.

Specifically, our goal is as follows. Given a (possibly empty) initial gréhhand a sequence of new
nodesv; ... vy, wWe want to design a simple randomized process to successively;littknodes of
G (i = 1,...N) so that the resulting grapfi s;,,; Will obey all of the following patterns: heavy-tailed
distributions for in- and out-degrees, the Densification Power Law, lamdkséng effective diameter.
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We are guided by the intuition that such a graph generator may arise fromlargation of the following
components:

e some type of “rich get richer” attachment process, to lead to heavy-taléegrees;
¢ some flavor of the “copying” modeKumar et al, 200(, to lead to communities;

e some flavor of Community Guided Attachment, to produce a version of the Dexiwifi Power
Law;

e and a yet-unknown ingredient, to lead to shrinking diameters.

Note that we willnot be assuming a community hierarchy on nodesl so it is not enough to simply vary
the Community Guided Attachment model.

Based on this, we introduce tikerest Fire Model which is capable of producing all these properties. To
set up this model, we begin with some intuition that also underpinned Community dcAittechment:
nodes arrive in over time; each node has a “center of gravity” in sont@ftie network; and its probabil-
ity of linking to other nodes decreases rapidly with their distance from thigcehgravity. However, we
add to this picture the notion that, occasionally, a new node will produceydarge number of out-links.
Such nodes will help cause a more skewed out-degree distribution; theglsailserve as “bridges” that
connect formerly disparate parts of the network, bringing the diameten.dow

The Basic Forest Fire Model

Following this plan, we now define the most basic version of the model. Edbgni@des arrive one at
a time and form out-links to some subset of the earlier nodes; to form out-dntesyw node attaches to

a nodew in the existing graph, and then begins “burning” links outward frominking with a certain
probability to any new node it discovers. One can view such a procaegug@s/ely corresponding to a
model by which an author of a paper identifies references to include inlihegoaphy. He or she finds a
first paper to cite, chases a subset of the references in this papezléudetre as random), and continues
recursively with the papers discovered in this way. Depending on the diblbic aids being used in
this process, it may also be possible to chase back-links to papers thaeqgi@pdr under consideration.
Similar scenarios can be considered for social networks: a new conguitecce (CS) graduate student
arrives at a university, meets some older CS students, who introduce himtheir friends (CS or non-
CS), and the introductions may continue recursively.

We formalize this process as follows, obtaining the Forest Fire Model. gmhbeith, we will need
two parameters, forward burning probabilityp, and abackward burning ratio-, whose roles will be
described below. Consider a nod@ining the network at time > 1, and letG; be the graph constructed
thus far. (G1 will consist of just a single node.) Nodeforms out-links to nodes idr; according to the
following process.

(i) v first chooses aambassador node uniformly at random, and forms a link to.

(i) We generate two random numbersandy that are geometrically distributed with meang1 — p)
andrp/(1 — rp) respectively. Node selectsr out-links andy in-links of w incident to nodes that
were not yet visited. Letvy, wo, ..., w,, denote the other ends of these selected links. If not
enough in- or out-links are available selects as many as it can.
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(i) v forms out-links tow, wo, . .., wz4y, and then applies step (ii) recursively to each of the nodes
wi, wa, . .., Wety- AS the process continues, nodes cannot be visited a second timentprg\tke
construction from cycling.

Thus, the “burning” of links in Forest Fire model beginsuatspreads tavy, ..., w,4,, and proceeds
recursively until it dies out. In terms of the intuition from citations in papers,atthor of a new paper
v initially consultsw, follows a subset of its references (potentially both forward and baakwo the
paperswi, . . ., w4y, and then continues accumulating references recursively by constiiéisg papers.
The key property of this model is that certain nodes produce large ‘agrations,” burning many edges
and hence forming many out-links before the process ends.

Despite the fact that there is no explicit hierarchy in the Forest Fire Madahere was in Community
Guided Attachment, there are some subtle similarities between the models. Wiele ia €ommunity
Guided Attachment was the child of a parent in the hierarchy, a nadé¢he Forest Fire Model also has
an “entry point” via its chosen ambassador nadeMoreover, just as the probability of linking to a node
in Community Guided Attachment decreased exponentially in the tree distanpepbability that a new
nodewv burnsk successive links so as to reach a nadging & steps away is exponentially smallin (Of
course, in the Forest Fire Model, there may be many paths that could feddvomuy to «, adding some
complexity to this analogy.)

In fact, our Forest Fire Model combines the flavors of several oldetatspand produces graphs qualita-
tively matching their properties. We establish this by simulation, as we des@iibwe, lbut it is also useful
to provide some intuition for why these properties arise.

e Heavy-tailed in-degreesOur model has a “rich get richer” flavor: highly linked nodes can easily
be reached by a newcomer, no matter which ambassador it starts from.

e Communities.The model also has a “copying” flavor: a newcomer copies severakaigighbors
of his/lher ambassador (and then continues this recursively).

¢ Heavy-tailed out-degreed.he recursive nature of link formation provides a reasonable chance f
a new node to burn many edges, and thus produce a large out-degree.

¢ Densification Power LawA newcomer will have a lot of links near the community of his/her am-
bassador; a few links beyond this, and significantly fewer farther alwyitively, this is analogous
to the Community Guided Attachment, although without an explicit set of communities.

e Shrinking diameter.lt is not a priori clear why the Forest Fire Model should exhibit a shnigk
diameter as it grows. Graph densification is helpful in reducing the dianbeteit, is important to
note that densification is certainly not enough on its own to imply shrinking diante&ieexample,
the Community Guided Attachment model obeys the Densification Power Laatibakperiments
also show that the diameter slowly increases (not shown here).

Rigorous analysis of the Forest Fire Model appears to be quite difficaltieder, in simulations, we find
that by varying just the two parameteysandr, we can produce graphs that densify ¥ 1), exhibit
heavy-tailed distributions for both in- and out-degrees (Bi§0), and have diameters that decrease. This
is illustrated in Figure3.9, which shows plots for the effective diameter and the Densification Poaxgr L
exponent as a function of the number of nodes for some selectignarafr.

We see that depending on the forward and backward burning pararttetdforest Fire Model is capable
of generating sparse or dense graphs with effective diameters thatieittease or decrease, while also
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Figure 3.9: The DPL plot and the effective diameter for the Forest Firadeho Row 1: sparse graph
(a = 1.01 < 2), with increasing diameter (forward burning probability= 0.35, backward
probability p, = 0.20). Row 2: (most realistic case:) densifying graph= 1.21 < 2) with
slowly decreasing diametep & 0.37, p, = 0.32). Row 3: densifying grapha(= 1.32 < 2)
with decreasing diametep (= 0.37, p, = 0.33). Row 4: dense graph with densification
exponent close to 2i(= 1.57) and decreasing diameter £ 0.38, p, = 0.35).
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Figure 3.11: Evolution of effective diameter of Forest Fire model whilengrating a large graph. Both
plots show the same data; left one plots on linear scalestandight one plots on log-

linear scales (effective diameter vs. log number of nodEs)or bars show the confidence
interval of the estimated effective diameter. Notice tinat ¢ffective diameter shrinks and

then slowly converges.

producing power law in- and out-degree distributions (figdiig). Informally, a dense graph has close to
a linear number of edges incident to each node, while a sparse graplyhidisantly fewer than a linear
number of edges incident to each node.

Also notice the high sensitivity of the parameter space. We fix the forwamirauprobabilityp, and
by increasing the backward burning probability(p, = r - p) for only a few percent we move from an
increasing to a slowly and then to more rapidly decreasing effective diaffigieme 3.9).

Figure3.11plots the evolution of the effective diameter of Forest Fire. We generatgdke large graph



on 250, 000 nodes and measured the effective diameter over time. Error bars ptesteandard deviation
of the estimated effective diameter over 10 runs. Both plots show the samé datkeft figure plots the
number of nodes on linear while the right plots the log number of nodes. Nbceonvergence of the
effective diameter. At first it shrinks more rapidly and then slowly cogestrto a low value.

Extensions to the Forest Fire Model

Our basic version of the Forest Fire Model exhibits rich structure withtyustparameters. By extending
the model in natural ways, we can fit observed network data even mae\cldVe propose two natural
extensions: 6rphans and multiple ambassadors.

“Orphans: In both the patent and arXiv citation graphs, there are many isolategsntitht is, documents
with no citations into the corpus. For example, many papers in the arXiv onlynaitearXiv papers. We
refer to them asrphans Our basic model does not produce orphans, since each nodesdimkesyat least
to its chosen ambassador. However, it is easy to incorporate orphatiseémtmdel in two different ways.
We can start our graphs withy > 1 nodes at time = 1; or we can have some probabiligy> 0 that a
newcomer will form no links (not even to its ambassador) and so becomeharo

We find that such variants of the model have a more pronounced dednetie effective diameter over
time, with large distances caused by groups of nodes linking to differphiaos gradually diminishing
as further nodes arrive to connect them together.

Multiple ambassadorsiVe experimented with allowing newcomers to choose more than one ambassado
with some positive probability. That is, rather than burning links starting frash one node, there is
some probability that a newly arriving node burns links starting from two aremdhis extension also
accentuates the decrease in effective diameter over time, as nodes linkindfifde ambassadors serve

to bring together formerly far-apart parts of the graph.

Burning a fixed percentage of neighborg/e also considered a version of Forest Fire where the fire
burns a fixed percentage of node’s edges, the number of burned edges is proportional to the node’s
degree. When a fire comes into a node, for each unburned neighlodeyeendentlylip a biased coin to
determine where to spread the fire. This continues recursively untilwwanodes are burned. In case of
forward and backward burning probabilities we have two coins, oneudtrand one for in-edges.

The problem with this version of the model is that, once there is a single lagghdirburns a large fraction
of the graph, many subsequent fires will also burn much of the gragh.r@$ults in a bell-shaped, non-
heavy-tailed degree distribution and gives two regimes of densification weslbensification before the
first big fire, and quadratiai(= 2) densification afterwards.

We also experimented with the model where burning probability decayederpally as the fire moves
away from the ambassador node.

Phase plot

In order to understand the densification and the diameter propertiespbisgpeoduced by the Forest Fire
Model, we explored the full parameter space of the basic model in termswithenderlying parameters:
the forward burning probability and the backward burning ratio
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Figure 3.12: We vary the forward burning probability while fixing burnimatio (a) or backward burning
probability (b). The plot gives a very precise cut throughgsp Fire parameter space. Notice
that each plot haswo vertical axes: DPL exponent on the left, and the diameteifitog
factor on the right. Observe a very sharp transition in DPhogent and a narrow region,
indicated by vertical dashed lines, where Forest Fire presslowly densifying graphs with
decreasing effective diameter.

Note, there are two equivalent ways to parameterize the Forest Fire rildelelin use the forward burning
probability p and the backward burning ratig or the forward burning probability and the backward
burning probabilityp, (p, = rp). We examine both and show two cuts through the parameter space.

Figure3.12shows how the densification exponent and the effective diameter depédiodwvard burning
probability p. In the left plot of figure3.12we fix the backward burning ratio = 0.5, and in the right
plot we fix the backward burning probability, = 0.3. We vary forward burning probability, and plot
the Densification Power Law exponent. The densification expanetomputed as in Sectiah3, by
fitting a relation of the formE'(¢) o« N (). Notice the very sharp transition between the regimes with no
densification and those with very high densification.

On the same plot we also show tB#ective diameter log-fit factar. We fit a logarithmic function of the
form D*(t) = alog t+ [ (wheret is the current time, and hence the current number of vertices) to the last
half of the effective diameter plot; we then report the facioiT hus, Diameter Factar < 0 corresponds

to decreasing effective diameter over time, ang 0 corresponds to increasing effective diameter.

Going back to Figur&.12 notice that at low values of forward burning probabijitywe observe increas-
ing effective diameter and no densificatian=£ 1). As p increases, the effective diameter grows slower
and slower. For a narrow band pive observelecreasing effective diameteregativer (the small valley
aroundp = 0.45). With high values op the effective diameter is constamt & 0), which means that the
generated graph is effectively a clique with effective diameter close ta D& exponent: ~ 2. Also
notice that the sharp transition in the DPL exponent and the decreasiug\effdiameter are very well
aligned.

This simulations indicate that even the basic Forest Fire Model is able to ggagharse and slowly
densifying (with densification exponent ndargraphs in which the effective diameter decreases.
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Figure 3.13: Contour plots: The Densification Power Law exponerfteft) and the effective diameter
log-fit factor « (right) over the parameter space (forward-burning prdigfaind backward
burning ratio) of the Forest Fire model.

Figure3.13shows how the densification exponent and the effective diameter depehé values of the
Forest Fire parametegsandr.

Figure3.13a) gives the contour plot of the densification exponenThe lower left part corresponds to

a = 1 (the graph maintains constant average degree), and in the upperaight$ 2 — the graph is
“dense”, that is, the number of edges grows quadratically with the nunilverdes, ase.g, in the case

of a cliqgue. The contours in-between correspond.ioincrease in DPL exponent: the left-most contour
corresponds ta = 1.1 and the right-most contour correspondsate= 1.9 The desirable region is in-
between; we observe that it is very narrowincreases dramatically along a contour line, suggesting a
sharp transition.

Figure 3.13b) gives the contour plot for the Effective diameter log-fit factoas defined above. Each
contour correspond to diameter facter We vary« in range—0.3 < a < 0.1, with step-sized.05.
Notice, the boundary in parameter space between decreasing andimgretiective diameter is very
narrow.

Do contour plots of Densification Power Law and Shrinking Diameters fraguarE 3.13follow the same
shape? More exactly, does the boundary between decreasing agasingrdiameters follow the same
shape as the transition in the densification exponent?

We answer this question on figuBel4 where we superimpose phase contours of DPL and the effec-
tive diameter over the Forest Fire parameter space. The left plot supsesphase contours for the
Densification Power Law exponeat= 1.3 and the diameter log-fit factet = —0.05. The right plot
superimposes contours far= 1.6 anda = —0.30. In both cases we observe very good alignment of
the two phase lines which suggests the same shape of the transition bolandlaeyDensification Power
Law exponent and the Effective Diameter.

We also observe similar behavior with orphans and multiple ambassadorse @dditional features in
the model help further separate the diameter decrease/increase lyduowhathe densification transition,
and so widen the region of parameter space for which the model prockassmnably sparse graphs with
decreasing effective diameters.
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Figure 3.14: We superimpose the Densification Power Law exponertd diameter log-fitv factor over
the Forest Fire Model parameter space. Notice that the sbfapansition boundary of the
densification and the shrinking diameter very much folloessame shape.

3.5 Discussion

Despite the enormous recent interest in large-scale network data, anahtie of interesting patterns
identified for static snapshots of graptesq heavy-tailed distributions, small-world phenomena), there
has been relatively little work on the properties of the time evolution of reghgraThis is exactly the
focus of this work. The main findings and contributions follow:

e The Densification Power Law: In contrast to the standard modeling assumiptibthe average
out-degree remains constant over time, we discover that real grapbsobidegrees that grow
over time, following a natural pattern (EQ.Q)).

e Shrinking diameters: Our experiments also show that the standard assuoipsiowly growing
diameters does not hold in a range of real networks; rather, the diameyeacnally exhibit a

gradual decrease as the network grows.

¢ We show that our Community Guided Attachment model leads to the Densificaticar Raw, and
that it needs only one parameter to achieve it.

e We give the Forest Fire model, based on only two parameters, which is absptiore patterns
observed both in previous work and in the current study: heavy-tailedrid out-degrees, the

Densification Power Law, and a shrinking diameter.

¢ We notice that the Forest Fire Model exhibits a sharp transition betweesespaaphs and graphs
that are densifying. Graphs with decreasing effective diameter asgaged around this transition

point.

¢ Finally, we find a fundamental relation between the temporal evolution of dyehty power law
degree distribution and the Densification Power Law exponent. We alsovebthat real datasets
exhibit this type of relation.



Our work here began with an investigation of the time-evolution of a set of legl-world graphs across
diverse domains. It resulted in the finding that real-world graphs aterbieg denser as they grow,
and that in many cases their effective diameters are decreasing. THengka some of the dominant
assumptions in recent work on random graph models, which assumeardof@s at most logarithmic)

node degrees, and diameters that increase slowly in the number of nBdiéding on these findings,

we have proposed a set of simple graph generation processeslecapptbducing graphs that exhibit
densification and exhibit decreasing effective diameter.

Our results have potential relevance in multiple settings, including 'what éhados; in forecasting
of future parameters of computer and social networks; in anomaly detemtiononitored graphs; in
designing graph sampling algorithms; and in realistic graph generators.

We just examined the evolution of macroscopic statistical properties of netviayr studying a set of
snapshots. Next, we continue examining network evolution but at much fiarulgrity. We examine
evolution of the online social networks by studying individual edge alsifrom the first to the “million-
th” edge.
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Chapter 4

Microscopic network evolution

In this chapter we present a microscopic analysis of the edge-by-edlgeien of four large online social
networks. The use of the maximume-likelihood principle allows us to quantify the dianew edges
towards the degree and age of nodes, and to objectively compare svanmdels such as preferential
attachment. In fact, our work is the first to directly quantify the amount depeatial attachment in large
social networks.

Our study shows that most new edges span very short distances|lyypioaing triangles. Motivated

by these observations, we develop a complete model of network evolutmrporating node arrivals,
edge initiation, and edge destination selection processes. While noddsaare mostly network-specific,
the edge initiation process can be captured by exponential node lifetimes“gag” model based on a
power law with exponential cutoff. We arrive at an extremely simple yeir&singly accurate description
of the edge destination selection in real networks. Our model of netwalkitean can be used to gen-
erate arbitrary-sized synthetic networks that closely mimic the macroscaogiaatéristics of real social
networks.

4.1 Introduction

In recent years a wide variety of models have been proposed fordhdlgof complex networks. These
models are typically advanced in order to reproduce statistical netwoplegires observed in real-world
data. They are evaluated on the fidelity with which they reproduce thesal gletwork statistics and
patterns. In many cases, the goal is to define individual node behakairsesult in a global structure
such as power law node degree distributions; in other cases, the goahstéh some other network
property such as small diameter.

For example, the observation of heavy-tailed degree distributfealelitsos et al1999 led to hypothesis
about edge creation processegy( preferential attachmenBpratasi and Albert1999) that could lead
to this observation. In fact, there are several edge creation pracidsgell lead to heavy-tailed degree
distributions and it is not clear which among them captures reality best.

Here we take a different approach. Instead of only focusing on theaglwetwork structure and then
hypothesizing about what kind of microscopic node behavior wouldrkme the observed macroscopic
network structure, we focudirectly on the microscopic node behaviper se For the first time at such
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a large scale, we study a sequence of millions of individual edge arriwdish allows us to directly
evaluate and compare microscopic processes that give rise to globarkstwcture.

4.1.1 Evaluation based on likelihood

Given that the microscopic behavior of nodes solely determines the mapioswetwork properties, a
good network model should match real-world data on global statistics, whilemzxg the likelihood
of the low-level processes generating the data. Towards this goal opeg® the use of model likelihood
of individual edges as a way to evaluate and compare various netwaltikiem models.

Likelihood has not been considered to date in the analysis of the evolutiargefsocial networks mainly
due to lack of data and computational issues. Many early network datasetsned only a single or a
small number of snapshots of the data, making likelihood computations fortievaty models infea-

sible. In contrast, we study four large social networks veitacttemporal information about individual
arrivals of millions of nodes and edges. Here we are therefore ablengidaw edge-by-edge evolution
of networks from their inception onwards, and hence efficiently competédikilinood that a particular

model would have produced a particular edge, given the current $tete network. In contrast to pre-
vious work on evolution of large networks that used a series of sn&pshoonsider patterns at global
scale, we study the exact edge arrival sequence, which means ablartedirectly observe and model

the fine-grained network evolutionary processes that are directlpmeipe for global network patterns
and statistics.

A likelihood-based approach has several advantages over appeda&sed purely on global statistics:

(1) Models may be compared directly in a unified way, rather than arguiethehfaithful reproduction
of, e.g, diameter is more important than clustering coefficient and so forth.

(2) As our understanding of real-world networks improves, the evaluatitterion, i.e., likelihood,
remains unchanged while the generative models improve to incorporate whanuerstanding.
Success in modeling can therefore be effectively tracked.

(3) Models may be meaningfully distinguished based on as-yet-undiszbpeoperties of real-world
data.

4.1.2 Data and model structure

We consider four large online social network datasets e+€kRr (flickr.com , a photo-sharing web-
site), DeELIcious (del.icio.us , a collaborative bookmark tagging website)aARO0! ANSWERS
(answers.yahoo.com , a knowledge sharing website), andNKeDIN (linkedin.com | a profes-
sional contacts website) — where nodes represent people and eggesent social relationships. In all
networks all personally identifiable data was hashed and nodes wageeassandom ids.

These networks are large with up to millions of nodes and edges, and the timefkthe data ranges
from four months to almost four years. All the networks are in early stafj@iseir evolution with the
connected component being small and the clustering coefficient incgeagntime.

We consider models that can be decomposed into three core processesitpietely describe the evolu-
tion of the network:
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(1) thenode arrival procesghat governs the arrival of new nodes into the network,
(2) theedge initiation procesthat determines for each node when it will initiate a new edge, and
(3) theedge destination selection procdbat determines the destination of a newly initiated edge.

Our networks do not include removal of nodes or edges, so we do nd¢lrdeletion (although we do
model the “death” of a node in the sense that it ceases producing ne@s)edg

4.1.3 Ourresults

We begin with a series of analyses of our four networks, capturing thletean of key network parame-

ters, and evaluation of the extent to which the edge destination selectiaspraubscribes to preferential
attachment. We show that the inherently non-local nature of preferetidahanent is fundamentally un-
able to capture important characteristics in these networks. To the baat ki@wledge, this is the first

direct large-scale validation of the preferential attachment model in suefabrks.

Next, we provide a detailed analysis of the data in order to consider parsinsomodels for edge desti-
nation selection that incorporate locality. We evaluate a wide variety of sudelsiasing the maximum-
likelihood principle and choose a simple triangle-closing model that is freeanpeters. Based on
the findings, we then propose a complete network evolution model thataaelyucaptures a variety of
network properties. We summarize our model based on the three pretistse earlier.

(1) Node arrival processWe find large variation in node arrival rates over the four networksgireg
from exponential to sub-linear growth. Thus we treat node arrivalas input to our model.

(2) Edge initiation processtUpon arrival, a node draws its lifetime and then keeps adding edges until
reaching its lifetime, with edges inter-arrival rate following a power law withaential cut-off
distribution. We find that edge initiations aaeceleratingvith node degree (age), and prove that this
leads to power law out degree distributions. The model produces &eéitsaand high likelihood.

(3) Edge destination selection procesdle find that most edges (30%—60%) are local as they close
triangles,i.e., the destination is only two hops from the source. We consider a varietianfte-
closing mechanisms and show that a simple scheme, where a source noslescaio intermediate
node uniformly from among its neighbors, and then the intermediate noddétdosame, has high
likelihood.

This scheme is easily and naturally expanded to capture non-local edgesdiag to the distribution of
source-destination distance observed in all networks.

Our model is simple and easy to implement. It precisely defines the networkiemofwocess, and we
also give parameter settings that allow others to generate networks aamgrbitale or to take a current
existing network and further evolve it. We show that our model prodweadsstic social network evolution
following the true evolution of network properties such as clustering @iefii and diameter; our purely
local model gives rise to accurate global properties.

Moreover, our model is also complete. In contrast to Preferential Attachjtbert et al, 1999, Copy-
ing model Kumar et al, 2000 or Forest Fire modelljeskovec et a).20058 where nodes arrive one at a
time, immediately create all their edges and then essentially die, our model ésstebevolution much
more precisely as in our model nodes appear, create one edge at a timgo tioesleep, wake up, create
next edge and so on until they die.
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4.2 Relation to previous work on network evolution

Many studies on online social networks, world wide web, and biologidataris focused on macroscopic
properties of static or evolving networks such as degree distributionsietiéa, clustering coefficient,
communities, densification and shrinking diametdfalgutsos et al.1999 Albert and Barabsi 2002
Strogatz 2001 Newman 2003 Dorogovtsev and Mende2003 Broder et al. 200Q Fetterly et al.2004
Leskovec et a).2007h Ntoulas et al.2004 Kumar et al, 2004. In contrast the following chapter focuses
on local microscopic processes that give raise to observed macroseip/ork properties, like heavy
tailed degree distributions or densification.

Recently, researchers examined the finer aspects of edge creati@cusinfy on a small set of net-
work snapshots. The role of common friends in community formation was athlyy Backstrom et

al. [Backstrom et a).2006. A similar study on the collaboration between scientists was done by New-
man Newman 200]. Kleinberg and Liben-Nowelll[iben-Nowell and Kleinberg2003 studied the pre-
dictability of edges in social networks. Later on Capaatcal.[Capocci et al.2004 focused on preferen-

tial attachment mechanism in Wikipedia. However, they used a series ofynsedpshots of Wikipedia,
while our results are much more precise as we use the exact edge sequednce. They observed the
(sublinear) preferential attachment up to page degreel 00 and ford > 100 linking probability actually
decreased with.

The role of triangle closure in small social networks was long studied bglsgists, but never on such a
large scale. Simmel theorized that people with common friends are more likelgatedriendships and
Krackhardt and HandcoclKfackhardt and Handco¢cR007 applied this theory to explain the evolution
of triangle closures. A network model based on closed triangles wasgeddy Shi et al.§hi et al,
2007.

The maximum-likelihood principle that will be a common theme throughout the chiagdreen typically
used to estimate network model parameté/agserman and Pattisd996 Leskovec and Faloutsd2007,
Wiuf et al,, 200§ or for model selectionBezakoa et al, 2004, which often requires expensive compu-
tations of high dimensional integrals over all possible node arrival segge In contrast, we use the
likelihood in a much more direct way to evaluate and compare different moddiiges at the level of
individual edge placements.

4.3 Preliminaries

Next, we briefly introduce the datasets we use in this chapter, the notatidgheegperimental method-
ology we adopt.

4.3.1 Datasets

For each of our four large network datasets, we know the exact timetbkallode/edge arrivals. Taldel
gives the basic statistics of the four networks. All the networks slowlyiflewith a densification expo-
nent Leskovec et aJ.20074 a =~ 1.2. All the networks, except BLicious, have shrinking diameter. In
FLICKR, ANSWERS and LNKEDIN, the effective diameter reaches the maximum value of 10 when the
network has around 50,000 nodes, and then slowly decreases totinel &.6; in DELICIOUS, the diam-

eter is practically constant. Also, in all the networks, a majority of edgesidiettional (columnEy).
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Network H FLICKR DELICIOUS ANSWERS LINKEDIN

Time span| 03/2003—09/2005 05/2006-02/2007 03/2007—06/2007 05/2003-10/2006
T 621 292 121 1294
N 584,207 203,234 598,314 7,550,955
E 3,554,130 430,707 1,834,217 30,682,028
by 2,594,078 348,437 1,067,021 30,682,028
E, 2,257,211 348,437 1,300,698 30,682,028
En 1,475,345 96,387 303,858 15,201,596
% 65.63 27.66 23.36 49.55
a 1.32 1.15 1.25 1.14
K 1.45 0.80 0.95 1.04

Table 4.1: Network dataset statisticés, is the number of bidirectional edgeis,, is the number of edges
in undirected networkF s is the number of edges that close triangl&sis the fraction of
triangle-closing edges; is the densification exponenE(t) o« N(t)*), andk is the decay
exponent £, « exp(—xh)) of the number of edgeE), closingh hop paths (see Sectigh5
and Figured.4).

The reciprocity is 73% in HCKR, 81% in DeLICIOUS, and 58% in AISWERS LINKEDIN is undirected,
but we know the edge initiator. The fraction of nodes that belongs to thedtwgeakly connected compo-
nent is 69% in EICKR, 72% in DeELICIOUS, 81% in ANSWERS and 91% in LNKEDIN. See TableA.2
for additional information and statistics of these networks.

We consider all networks as undirected but as the edges appear wguitibetween the edge initiator
and the edge target. For example, even though edgesikeD IN are undirected, the edge initiator is the
person that sent the link invitation, and edge target is the node that ad¢leetavitation.

4.3.2 Notation

Let N, E, andT denote the total number of nodes, edges, and the span of the data irLdags.be a
network composed from the earliestdgese,, ..., e fort € {1,..., E}. Lett(e) be the time when the
edgee is created, let(u) be the time when the nodejoined the network, and lef(u) be the time when
the k' edge of the node is created. Then,(u) = t — t(u) denotes the age of the nodeat timet. Let
d:(u) denote the degree of the nodat timet andd(u) = dr(u). We use]-] to denote a predicate (takes
value of 1 if expression is true, else 0). TaBlé& gives the rest of the symbols.

4.3.3 Maximume-likelihood principle

The maximum-likelihood estimation (MLE) principle can be applied to compare a fafplgrameterized
models in terms of their likelihood of generating the observed data, and aslf peck the “best” model
(and parameters) to explain the data. To apply the likelihood principle, wadmrthe following setting:
we evolve the network edge by edge, and for every edge that amiteethe network, we measure the
likelihood that the particular edge endpoints would be chosen under soma.nTdte product of these
likelihoods over all edges will give the likelihood of the model. A higher likeliloneans a “better”
model in the sense that it offers a more likely explanation of the obsentad BEar numerical purposes,
we use log-likelihoods.
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SYMBOL | DESCRIPTION

Graph composed of nodes and edges that arrived before time
Time span of a graph

Number of nodes in a graph

Number of edges in a graph

Number of nodes in a graph at time

Number of nodes in a graph at time

tth edge in a graph

Time of creation of edge

Time when node: joined the network (created its first edge)
Time of creation of'” edge of node:

Age of a nodey at timet, a;(u) =t — t(u)

Final degree of node

Degree of node: at timet

Power law degree exponem{d) o d~7

Densification power law exponerf(t) oc N (t)®

Length of the shortest path between nodesdv

Number of hops, path length, distance

Number of edges that at the time of creation spdrop path
Decay exponent ik, < exp(—xh)

Probability of new edge linking to node of degrée

Node lifetime distributioni.e., prob. of node being alive at age
Node lifetime distribution parameter (exponential distribution)

Edge gap, time betweefi” andd + 1** edge ofu, 6, (d) = a1 (u) — tq(u)

Power law parameter of edge gap distribution
Exponential parameter of edge gap distribution

Table 4.2: Table of symbols.

4.4 Preferential attachment

In this section we study the bias in selection of an edge’s source and diestipased on the degree and
age of the node.

4.4.1 Edge attachment by degree

The preferential attachment (PA) mod@8adrakasi and Albert 1999 postulates that when a new node
joins the network, it creates a constant number of edges, where theadiestinode of each edge is
chosen proportional to the destination’s degree. Using our data, weutertiie probability. (d) that a

new edge chooses a destination node of dedgrpg(d) is normalized by the number of nodes of degiee
that exist just before this step. We compute:

_ Siler = (wo) Adia() = d]
S lwsdia(w) =dy
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Figure 4.1: Probabilityp. (d) of a new edge choosing a destination at a node of degiee

First, Figure4.1(a) showsp.(d) for the Erds—Renyi [Erdds and Rnyi, 1960 random network,G,,,

with p = 12/n. In G,,;, since the destination node is chosen independently of its degree, the line is
flat. Similarly, in the PA model, where nodes are chosen proportionally to tegied, we get a linear
relationshipp.(d) « d; see Figuret.1(b).

Next we turn to our four networks and fit the functipp(d) o d”. In FLICKR, Figure4.1(c), degree 1
nodes have lower probability of being linked as in the PA model; the rest @dbes could be explained
well by PA. In DeLIcious, Figure4.1(d), the fit nicely follows PA. In AISWERS Figure4.1(e), the
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Figure 4.2: Average number of edges created by a node ofiage

presence of PA is slightly weaker, with(d) o d*°. LINKEDIN has a very different pattern: edges to the
low degree nodes do not attach preferentially (the fit’i8), whereas edges to higher degree nodes are
more “sticky” (the fit isd'2). This suggests that high-degree nodes iRKEDIN get super-preferential
treatment.

To summarize, even though there are minor differences in the exponémtgach of the four networks,
we can treat ~ 1, meaning, the attachment is essentially linear. This observation is a bit diffeven
than what was observed by Capoetal.[Capocci et a].200§ who observed the (sublinearnu = 0.9)
preferential attachment up to page degfee 100 and ford > 100 linking probability actuallydecreased
with node degred.

4.4.2 Edges by the age of the node
Next, we examine the effect of a node’s age on the number of edgesiesreThe hypothesis is that
older, more experienced users are also more engaged and thus creatzlges.

Figure4.2 plots the fraction of edges initiated by nodes of a certain age. #henthe average number
of edges created by nodes of agds the number of edges created by nodes ofagermalized by the
number of nodes that achieved age
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Figure 4.3: Log-likelihood of an edge selecting its source and destnamode. Arrows denote at
highest likelihood.

e(a) = He = (u,v) : t(e) — t(u) = a}|
O ORI

wheret, is the time when the last node in the network joined.

Notice a spike at nodes of age 0. These correspond to the people edigeran invite to join the network,
create a first edge, and then never come back. Typically these areettsewt® are not yet part of the
social network service, they receive an invitation to join as one of the existiembers invited them.
By accepting the invitation and registering they also create a link but newas back to use the service
again. For all other ages, the level of activity seems to be uniform over &roept for LNKEDIN, in
which activity of older nodes slowly increases over time.

4.4.3 Bias towards node age and degree

Using the MLE principle, we study the combined effect of node age anceddyy considering the fol-
lowing four parameterized models for choosing the edge endpoints at.time
e D: The probability of selecting a nodeis proportional to its current degree raised to power
dt(U)T.

73



¢ DR: With probabilityr, the nodev is selected preferentially (proportionally to its degree), and with
probability (1 — 7), uniformly at randomz - d;(v) + (1 — 7) - 1/N ().

e A: The probability of selecting a node is proportional to its age raised to powefv)”

e DA: The probability of selecting a nodeis proportional the product of its current degree and its
age raised to the power d;(v)- a;(v)".

The experiment goes as follows. We unroll the evolution of the network éggedge. Then for each
edgee; we take current state of the graph_; at timet — 1 and we consider the probability of selecting
the source and destination nodeepiunder one of the above four models and fixedVe repeat this for
each value of- and plot the log-likelihood separately for selection of edge source agel @ekstination
node.

Figure 4.3 plots the log-likelihoods under different models, as a functiom.offhe red curve plots the
log-likelihood of selecting a source node and the green curve for sejettiendestination node of an
edge.

In FLICKR the selection of destination is purely preferential: maglachieves the maximum likelihood at
7 = 1, and modeDA is very biased to modd), i.e., 7 = 1. Model A has worse likelihood but modB8IA
improves the overall log-likelihood by around 10%. Edge attachmentin®@ous seems to be the most
“random”: modelD has worse likelihood than modBR. Moreover the likelihood of modd)R achieves
maximum atr = 0.5 suggesting that about 50% of theeDcious edges attach randomly. Mod&lhas
better likelihood than the degree-based models, showing edges are hagdyg howards young nodes.
For ANSWERS modelsD, A, andDR have roughly equal likelihoods (at the optimal choice-hfwhile
modelDA further improves the log-likelihood by 20%, showing some age biasINKEDIN, age-biased
models are worse than degree-biased models. We also note strong plegeeential bias of the edges.
As in FLICKR, modelDA improves the log-likelihood by 10%.

We notice that selecting an edge’s destination node is harder than selecsogrite (the green curve
is usually below the red). Also, selecting a destination appears more rahdonselecting a source —
the maximum likelihood- of the destination node (green curve) for modelandDR is shifted to the
left when compared to the source node (red), which means the degeeis biaaker. Similarly, there
is a stronger bias towards young nodes in selecting an edge’s sourcentbalecting its destination.
Based on the observations, we conclude that PA (mDjlglerforms reasonably well compared to more
sophisticated variants based on degree and age.

4.5 Locality of edge attachment

Even though our analysis suggests that PA is a reasonable model ®rdedtination selection, it is
inherently “non-local” in that edges are no more likely to form between s@dech already have friends
in common. In this section we perform a detailed study of the locality propertieslge destination
selection.

We first consider the following notion of edge locality: for each new gdge), we measure the number

of hops it spang,e., the length of the shortest path between nadesdw immediately before the edge
was created. In Figuré4.4 we study the distribution of these shortest path values induced by each new
edge forG,,, (with p = 12/n), PA, and the four social networks. (The isolated dot on the left cabets
number of edges that connected previously disconnected componémesnaftwork.)
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Figure 4.4: Number of edgeds;, created to nodek hops away.h = 0 counts the number of edges that
connected previously disconnected components.

For G, most new edges span nodes that were originally six hops away, and thewnirtiber decays
polynomially in the hops. In the PA model, we see a lot of long-range edgest;ofithem span four hops
but none spans more than seven. The hop distributions correspondimg fiour real-world networks
look similar to one another, and strikingly different from béth, and PA. The number of edges decays
exponentially with the distance between the nodes (see Fabier fitted decay exponents. This means
that most edges are created between nodes that are close. Therdigbdieeay suggests that the creation
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Figure 4.5: Probability of linking to a random node &thops from source node. Value/at= 0 hops is
for edges that connect previously disconnected components

of a large fraction of edges can be attributed to locality in the network stejatamely most of the times
people who are close in the netwokd, have a common friend) become friends themselves.

These results involve counting the number of edges that link nodes ced&inak away. In a sense, this
overcounts edge&:, w) for which v andw are far away, as there are many more distant candidates to
choose from — it appears that the number of long-range edges deqaysentially while the number of
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Figure 4.6: Triangle-closing model: node creates an edge by selecting intermediate nod¢hich then
selects target node to which the edgéu, w) is created.

long-range candidates grows exponentially. To explore this phenomemocount the number of hops
each new edge spans but then normalize the count by the total numbelesfaihb hops. More precisely,
we compute

(h) = > :le: connects nodes at distankén G;_]
Pel™ = 5= (# nodes at distandefrom the source node af)

First, Figures4.5a) and (b) show the results faf,,, and PA models. (Again, the isolated dotiat= 0
plots the probability of a new edge connecting disconnected componentss),,Inedges are created
uniformly at random, and so the probability of linking is independent of thaber of hopsh between

the edge endpoints and thpugh) is flat. In PA, due to degree correlations short (local) edges prevail.
However, a non-trivial amount of probability goes to edges that spae than two hops. (Notice the
logarithmicy-axis.)

Figures4.5(c)—(f) show the plots for the four networks. The probability of linking tm@de h hops
away decays very quickly, seemingly double-exponentiady,p.(h) x exp(exp(—h)) (fits not shown).
This behavior is drastically different from both the PA afg, models. Also note that almost all of the
probability mass is on edges that close length-two paths. This means thatagdgeost likely to close
triangles,.e., connect people with common friends.

ColumnFE in Table4.1further illustrates this point by presenting the number of triangle-closingsedge
FLICKR and LINKEDIN have the highest fraction of triangle-closing edges, whereesweRsand De-
LIclous have substantially less such edges. Note that here we are not measarfractton of nodes
participating in triangles. Rather, we unroll the evolution of the network fanevery new edge check to
see if it closes a new triangle or not.

4.5.1 Triangle-closing models

Given that such a high fraction of edges close triangles, we aim to modeahength-two path should
be selected. We consider a scenario in which a sourcembds decided to add an edge to some node
two hops away, and we are faced with various alternatives for the chbitedew. Figure4.6illustrates
the setting. Edges arrive one by one and the simplest model to close a t(edgég., w) in the figure)
is to haveu select a destinatiom randomly from all nodes at two hops from

To improve upon this baseline model we consider various models of choositgrw. We consider
processes in which first selects a neighbaeraccording to some mechanism, anithen selects a neighbor
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w according to some (possibly different) mechanism. The ddge) is then created and the triangle
(u,v,w) is closed. The selection of bothandw involves picking a neighbor of a node.

We consider five different models of choosing a neighbof «. Nodew is chosen:
e random: uniformly at random,
e deg”: proportional to degree raised to powerd(v)",
e com: prop. to the number of common friend&:, v) with w,
e last™: proportional to the time passed sincéast created an edge raised to power

e comlast™: proportional to the product of the number of common friends wignd the last activity
time, raised to power.

As stated before, we can compose any two of these basic models to chtvesédnap neighborj.e.,, a
way to close the triangle. For instance, thet’-!-com model will work as follows:u will employ the
last’-! model to select node, v will then employ thecom model to select node, and then, will add an
edge tow, closing the triangléu, v, w). We consider all 25 five possible composite models for selecting
a two-hop neighbor and evaluate them by the likelihood that the model gededathe edges that closed
length-two paths in the real network.

Table 4.3 shows the percent improvement of various triangle-closing models ovdodHeelihood of
choosing a two-hop neighbor uniformly at random as a destination of tpe @de baseline). The sim-
plest modelrandom-random, works remarkably well. Initially, we were somewhat surprised by this.
However, if one thinks about thrandom-random it has many desirable properties. For example, it gives
higher probability to nodes with more length-two paths, discounting each patughly1/d(v). More-
over, itis also biased towards high-degree nodes, as they have multiptdgeding towards them.

The deg!'’-random model weighs each node by roughly the number of length-two paths between
andw. However, we find that it performs worse theandom-random. For the more generaleg”-
random, the optimal value of varies from0.1 to 0.3 over all the four networks, and this model provides
meaningful improvements only for theNsSwERSnetwork.

The com model considers the strength of a tie betweesnd v, which we approximate by the number
of common friends:(u,v) of nodesu andv; the larger the value, the stronger the tie. By selecting
v with probability proportional ta:(u, v), we get a substantial gain in model likelihood. A factor that
further improves the model is the recency of activitydpgaptured byast™. By selecting nodes that have
recently participated in a new edge with higher probability, we get anothablsizmprovement in the
model likelihood. These two capture the finer details of network evolution.

In summary, while degree helps marginally, for all the networks,rémelom-random model gives a
sizable chunk of the performance gain over the baseline (10%). Due its stgpplie choose this as the
triangle-closing model for the rest of the chapter.

Note that the above methodology could be extended to edge creations athdriséimgle-closing. We
chose to focus on the triangle-closing edges for two reasons. Firsth&radion of all edges created fall
into this category, and hence an understanding of triangle-closing edgesmportant first step towards
understanding the overall network evolution. Second, with the excepfiguite simplistic models, it is
computationally infeasible to compute the likelihood at a distance greater tharopsak the number of
nodes and possible paths increases dramatically.
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FLIckR || random deg®? com last>* comlast—®

random 13.6 13.9 14.3 16.1 15.7
deg®! 13.5 142 137 16.0 15.6
last®-2 14.7 156 150 17.2 16.9

com 11.2 11.6 119 139 13.4
comlast®-! 11.0 11.4 117 136 13.2

DELicious | random deg’® com last™®? comlast~%-

random 11.7 12.4 13.8 13.2 15.1
deg®-2 12.2 12.8 14.3 13.7 15.6
last—03 13.8 146 16.0 15.3 17.2

com 13.6 14.4 15.8 15.2 17.1

comlast—0-2 14.7 156 16.9 16.3 18.2

ANSWERs || random deg’? com last™*? comlast~

random 6.80 10.1 11.8 9.70 13.3
deg®-2 7.18 105 122 101 13.7
last—03 9.95 134 15.0 12.8 16.4
com 6.82 10.3 11.8 9.80 13.4
comlast?-2 7.93 115 129 10.9 14.5

LINKEDIN | random deg®! com last™"! comlast=%!

random 16.0 16.5 18.2 17.2 18.5
deg®! 15.9 16.4 18.0 17.0 18.4
last—0-1 19.0 195 21.1 20.0 21.4

Table 4.3: Triangle-closing models. First pick intermediate naed@ix column), then target node (fix
row). The cell gives percent improvement over the log-ltkebd of picking a random node
two hops away (baseline).

4.6 Node and edge arrival process

In this section we turn our focus to the edge initiation process that determhiel mode is responsible
for creating a new edge (Sectidr6.1), and then to the process by which new nodes arrive into the network
(Section4.6.2.

4.6.1 Edge initiation

In the following we assume that the sequence and timing of node arrivalges, gand we model the
process by which nodes initiate edges. We begin by studying how longearaothins active in the social
network, and then during this active lifetime, we study the specific times at vitiechode initiates new
edges.
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Figure 4.7: Exponentially distributed node lifetimes.

Node lifetime

To avoid truncation effects, we only consider those nodes whose katiedredge is in the first half of
all edges in the data. Recall that the lifetime of a nads a(u) = t4¢,)(u) — t1(u). We evaluate the
likelihood of various distributions and observe that node lifetimes are begélex by an exponential
distribution,ps(a) = Aexp(—Aa). Figure4.7 gives the plot of the data and the exponential fits, where
time is measured in days. In Taldles, the row corresponding th gives the values of fitted exponents. We
note that the exponential distribution does not fit well the nodes with veat 8fetimes,i.e., nodes that

are invited into the network, create an edge and never return. But thibdlistin provides a very clean fit
for nodes whose lifetime is more than a week.

Time gap between the edges

Now that we have a model for the lifetime of a nageve must model that amount of elapsed time between
edge initiations fromu. Letd, (d) = t441(u) —t4(u) be the time it takes for the nodewith current degree

d to create its(d + 1)-st out-edge; we call, (d) the edge gap Again, we examine several candidate
distributions to model edge gaps. Tadld shows the percent improvement of the log-likelihood at the
MLE over the exponential distribution. The best likelihood is provided bypwgr law with exponential
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degreed power power law log stretched
law  exp. cutoff normal exp.

9.84 12.50 11.65 12.10
11.55 13.85 13.02 13.40
10.53 13.00 12.15 12.59
9.82 12.40 11.55 12.05

5 8.87 11.62 10.77 11.28
avg.,d <20 || 8.27 11.12 10.23 10.76

Table 4.4: Edge gap distribution: percent improvement of the logtiiieod at MLE over the exponential
distribution.

A OWDN P

cutoff: py((d); o, B) o< §(d)~*exp(—B4(d)), whered is the current degree of the node. (Note that
the distribution is neither exponential nor Poisson, as one might be temptesitoe@$ We confirm these
results in Figure.8, in which we plot the MLE estimates to gap distributi& ), i.e., distribution of times
that it took a node of degree 1 to add the second edge. In fact, we finallthaps distributions(d) are
best modeled by a power law with exponential cut-off (Tehkegives improvements in log-likelihoods
ford =1,...,5and the average fat= 1, ...,20.) The hump in LNKEDIN dataset can be explained by
external event and the way the LinkedIn service operates.

For eachy(d) we fit a separate distribution and Figut® shows the evolution of the parametersnd 3

of the gap distribution, as a function of the degrkef the node. Interestingly, the power law exponent
a(d) remainsconstantas a function ofl, at almost the same value for all four networks. On the other
hand, the exponential cutoff paramet&r!) increasesinearly with d, and varies by an order of magnitude
across networks; this variation models the extent to which the “rich getrfiphenomenon manifests in
each network. This means that the slopef power law part remains constant, only the exponential cutoff
part (parametes) starts to kick in sooner and sooner. So, nodes add (tieir1)** edge faster than their
d"" edge,.e., nodes start to create more and more edges (sleeping times get shdtiey) gt older (and
have higher degree). So, based on Figu& the overall gap distribution can be modeled by the power
law with exponential cutoff distribution where the exponential cutoff patanieincreases linearly with
current node degree p,(d|d; ar, B) ox 6~ exp(—/[dd).

This is interesting finding as it very accurately models node dynamics. Ntekgs, wake up, create edges
and go back to sleep. As nodes get older they keep adding edges lfastaver, the power-law slope of
gap time distribution remains constant with node degree. But it is the expdnauttéf parameter that
starts getting stronger and stronger and cuts the tail of the power law jpéch makes the sleeping times
shorter and shorter.

Given the above observation, a natural hypothesis would be that tiogewill attain high degree in
the network are in some way a priori speciat,, they correspond to “more social” people who would
inherently tend to have shorter gap times and enthusiastically invite friendsigler rate than others,
attaining high degree quickly due to their increased activity level. Howévisrphenomenon does not
occur in any of the networks. We computed the correlation coefficientdeeti(1) and the final degree
d(u) of a nodeu. The correlation values are(0.069 for DELICIOUS, —0.043 for FLICKR, —0.036 for
ANSWERS and—0.027 for LINKEDIN. Thus, there is almost no correlation, which shows that the gap
distribution is independent of a node’s final degree. It only dependsode lifetime,i.e., high degree
nodes are not a priori special, they just live longer, and accumulate ethygs.
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Figure 4.8: Edge gap distribution for a node to obtain the second eéide, and MLE power law with
exponential cutoff fits.
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Figure 4.10: Number of nodes over time.

Network || N(t)

FLICKR exp(0.25t)

DELICIOUS 16t2 + 3000t + 40000
ANSWERS || —284t2 + 40000t — 2500

L

INKEDIN || 3900¢2 + 76000t — 130000

45

Table 4.5: Node arrival functions for the four network datasets. FegudO plots the number of nodes
over time.

4.6.2 Node arrivals

Finally, we turn to the question of modeling node arrivals into the system. Fgli@shows the number
of users in each of our networks over time, and Tabfecaptures the best fits.LKEKR grows exponen-
tially over much of our network, while the growth of other networks is much sfoELICIOUS grows
slightly superlinearly, INKEDIN quadratically, and AsweRSsublinearly. Given these wild variations
we conclude the node arrival process needs to be specified in &daaiitcvaries greatly across networks
due to external factors.
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4.7 A network evolution model

Next we present our network evolution model. In contrast to Prefetekttechment, Copying or Forest
Fire model where nodes arrive one at a time, immediately create all their adddken essentially die,
our model describes the evolution much more precisely as in our model apdear, create one edge at a
time, then go to sleep, wake up, create next edge and so on until they die r8odel complete temporal
arrival and creation process of both nodes and edges.

First let’s take stock of what we measured and observed so far:

(a) In Sectiond.6.2 we analyzed the node arrival rates and showed that they are netependent
and can be succinctly represented by a node arrival funéfign that is either a polynomial or an
exponential.

(b) In Sectiord.6.1, we analyzed the node lifetimes and showed they are exponentially distrikitied
parameten.

(c) In Sectiord.4.1, we argued that the destination of the first edge of a node is choseorfiomal to
its degreei(e., preferentially attached).

(d) In Sectiord.6.], we analyzed the time gaps between edge creation at a node and shoyvearthe
be captured by a power law with exponential cutoff, with parametefs

(e) In Sectiom.5, we showed that most of the edges span two hops, and the siamglem-random
triangle-closing model works well.

Motivated by these observations, we now present a complete netwaktiemomodel. Our model is
parameterized by (-), A, a, 3, and operates as follows.

1. Nodes arrive using the node arrival functiyif-).
2. Nodeu arrives and samples its lifetimefrom the exponential distributiopy(a) = A exp(—Aa).
3. Nodeu adds the first edge to nodewith probability proportional to its degree.

4. A nodeu with degreed samples a time gap from the edge gap distributiop, (6|d; v, ) =
(1/Z2)5~*exp(—pdd) and goes to sleep fartime steps.

5. When a node wakes up, if its lifetime has not expired yet, it creates a dwatige using the
random-random triangle-closing model.

6. If a node’s lifetime has expired, then it stops adding edges; otherwisgdats from step 4.

The values ofN(-) for the four networks are given in Tab#e5 and the values of, 5, A are given in
Table4.6.

Note that one could also use more sophisticated edge destination selectiegiesréike the random
surfer model Blum et al, 2009 or other triangle-closing techniques as discussed in Sedtiord. For
example, in step 5, a nodecan pick a sequence of nodes= wy, w1, ..., w, = w), where eachw; is
picked uniformly from the neighbors af;_;, and the sequence lengthis chosen from the distribution
in Figure4.4. Nodew then links tow.
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4.7.1 Gaps and power law degree distribution

We now show that our model, node lifetime combined with gaps, produces paw®ut-degree distri-
bution. This is interesting as a model of temporal behavior (lifetime plus gages3 gse to a structural
network propertyi(e., power law out degree distribution).

Theorem 4.7.1.The out-degrees are distributed according to a power law with exponent

A2 — «)
=14+ —=—-—=. 4.1
y=1+ BT(1—a) (4.1)
Proof. We first compute the normalizing constanof the gap distributiom, (d|d; o, 5):
. 'l —a)
Z:/ 5 e Ply = 4.2
: (Bd) (2

Let a be the lifetime sampled from the exponential distributigfz) = Aexp(—Xa). Recall the edge
creation process: a node adds its first edge and samples the neXtlgagcording top,(-), sleeps for
d(1) time units, creates the second edge, samples a new(gapccording ta,(-), sleeps fol(2) units,
and so on until it uses up all of its lifetime This means that for a nodewith lifetime a = a(u) and
final degreeD = d(u), we have

D
> 6(k) < a. (4.3)

d=1
Analogous to4.2), we obtain the expected time g&{{é|d; «, 3) for a node of degreé:

I'2-—a)

E($|d; a, B) = m

(Bd)~L. (4.4)

Combining @.3) and @.4), we relate the lifetime and the expected final degréeof a node:

I'2-—a)

I'l—a)

D

L T@2—a) i
2 (Bd) 1—mﬂ 1;d '<a. (4.5)

Notice thatzfi):1 d~! = ©(In D). From @.5), the final degreé of a node with lifetimen is

D =~ exp (Eg:z;ﬁa).

Thus, D is an exponential function of the agei.e., D = r(a) = exp(pa), wherey = ?g:ggﬂ

Since node lifetimes are exponentially distributed with paramkgtare now compute the distribution of
D as a function of andy as follows:

W(D)‘ _ A —Omiegp _ ADIH

D~ (D)5~ | = ;

Thus, the degree distribution in our gap model follows a power law with exmtdr+- /i, completing
the proof. n
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| FLIcKR DELICIOUS

ANSWERS LINKEDIN

A 0.0092 0.0052 0.019 0.0018
! 0.84 0.85 0.78
16} 0.0020 0.00032 0.0038 0.00036
true~y 1.73 1.90 2.11
predictedy 1.74 1.75 2.08

Table 4.6: Predicted by Theorem.7.1vs. true degree exponents.
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Figure 4.11: Degree distribution and power law fits.

4.7.2 Validation of the model

We validate the accuracy of our modeling assumptions by empirically estimatingatiméf\, and gap
distribution «, 6 parameter values for each network. We then apply Theatéhi, which yields the
power law degree exponents produced by our model. Then we empiricadlgureethe true power law
degree exponents of the four networks and compare them to predictibhearend.7.1 Table4.6shows
the results. Note the predicted degree exponents remarkably agree withetleponents, validating our
model. This is interesting as we specified the model of temporal node befldetome+gaps) that results
in a accurate structural network property (power law degree distribution



Clustering coefficient, c(d)
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(a) Clustering coefficient (b) Degree distribution (c) Shortest paths

Figure 4.12: We take EICKR network at first half of its evolution. Then we simulate theletion using
our model and PA for the second half, and compare the obtaietglorks with the real
FLICKR network. Notice our model matches the macroscopic stadistiroperties of the
true ALICKR network very well, and in fact much better than PA.

Figure 4.11 plots degree distributions of four networks and gives the power law fighle®.6 shows

the values of parameters « and 8 measured from the evolution of the networks. We also show the
measured degree exponent (denoted as+4juend the degree exponent predicted from equadidn
Notice the remarkable agreement in degree exponent between the d#te amatel prediction.

For example, in EICKR we observe the following parameters (see Tdb& A = 0.0092, anda = 0.84,

6 = 0.0020. Using equatiod.1we obtain degree exponent= 1.74, which is very close to true exponent

of 1.73 (see figuret.11). See tablel.6for comparison of true degree exponents and the degree exponents
as predicted by out gap model.

We find this somewhat surprising as using only three parameters (1 pardonetede lifetime, and 2 for
the gap distribution) we can accurately model the temporal part of the reewvolution. Basically, with

just 3 parameters we can accurately describe the non-structuravphutien (.e., everything except the
selection of the edge destination).

4.7.3 Unfolding network evolution

To further our understanding of the network evolution, especially the edgation process, we perform
the following semi-simulation. We consider the real netwGfk/, and evolve it fromt = 7/2,...,T

using therandom-random model to obtain a networ&’.. At the end of the evolution, we compare the
macroscopic properties 6¥}, andG7. For completeness we also compare the results to the Preferential
Attachment (PA) model.

More precisely, we evolvé:r/, by considering all the edges that were created after fiif#ebetween
the nodes inG7/,. (We do not allow new nodes to joifi;/,.) We consider two different processes to
place these new edges. In the first process (PA), we select two posfesentially, with probabilities
proportional to their degrees, and add an edge. In the second pi@des we use theandom-random
triangle-closing model,e., we first select a node preferentially and then pick a node two hops asiry
therandom-random model.

Figure4.12 shows results for HCKR: clustering coefficient, degree distribution, and pairwise distance
histogram for the true data, and the two simulations. fEmeElom-random model matches the true net-
work well and outperforms the PA. Similar results also hold for other netsyavk omit these plots.
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4.8 Discussion

In this chapter we presented a microscopic analysis of the edge-byegdlygion of four large online
social networks. The use of the maximume-likelihood principle allowed us totidydhe bias of new
edges towards the degree and age of hodes, and to objectively corapates models such as preferential
attachment. In fact, our work is the first to directly quantify the amount diepeatial attachment that
occurs in the evolution of large networks.

Our study shows that most new edges span very short distances|lyypioaing triangles. Motivated
by these observations, we developed a complete model of network evolatorporating node arrivals,
edge initiation, and edge destination selection processes. While noddsaarie mostly network-specific,
the edge initiation process can be captured by exponential node lifetimes“ga@” model based on a
power law with exponential cutoff. We arrive at an extremely simple ygir&ingly accurate description
of the edge destination selection in real networks. Moreover, our mode¢ ifirst to accurately gives
the complete picture of network evolution from node and edge arrivalsge pthcement. Our model
of network evolution can be used to generate arbitrary-sized synthetiomks that closely mimic the
macroscopic characteristics of real social networks.
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Chapter 5

Kronecker graphs

How can we generate realistic network? In addition, how can we do so withtfeematically tractable
model that allows for rigorous analysis of network properties? Realarksaexhibit a long list of sur-
prising properties: Heavy tails for the in- and out-degree distributionyyhieals for the eigenvalues and
eigenvectors; small diameters; and over time the densification power lavwhenklisg diameters occur.
The present network models and generators either fail to match sef/énalabove properties, are com-
plicated to analyze mathematically, or both. In this chapter we propose aatjeeenodel for networks
that is both mathematically tractable and can generate networks that haveadbtreementioned struc-
tural properties. Our main idea here is to use a non-standard matrix opethg&ronecker produgtto
generate graphs that we refer to as “Kronecker graphs”.

First, we show that Kronecker graphs naturally obey common netwopepties; in fact, we rigorously
provethat they do so. We also provide empirical evidence showing that Krengc&phs can well mimic
the structure of real networks.

Then, given a large real network, we presemdfFIT, a fast and scalable algorithm for fitting the Kro-
necker graph generation model to real networks. A naive approdittirtg would take super-exponential

time. In contrast, RONFIT takeslinear time, by exploiting the structure of Kronecker matrix multiplica-
tion and by using statistical simulation technigues.

Experiments on large real and synthetic networks show tlrRONEIT finds accurate parameters that
indeed very well mimic the properties of target networks. Once fitted, the Inpad@meters can be used
to gain insights about the network structure, and the resulting synthetiecgycap be used for null-models,
anonymization, extrapolations, and graph summarization.

5.1 Introduction

What do real graphs look like? How do they evolve over time? How can wergée synthetic, but
realistic looking, time-evolving graphs? Recently network analysis has &ksecting much interest,
with an emphasis on finding patterns and abnormalities in social networks utemmetworks, e-mail
interactions, gene regulatory networks, and many more. Most of the feouses on static snapshots of
graphs, where fascinating “laws” have been discovered, includintj Simmeters and heavy-tailed degree
distributions.
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As such structural “laws” have been discovered a natural nextiquéas to find a model that produces
networks with such structure. Thus, a good realistic network generatidelisdmportant for at least two
reasons. The first is that it can generate graphs for extrapolatiwhgt-if” scenarios, and simulations,
when real graphs are difficult or impossible to collect. For example, hawvilea given protocol run
on the Internet five years from now? Accurate network models carupeochore realistic models for the
future Internet, on which simulations can be run. The second reason éssubtle: it forces us to think
about the network properties that a graph models should obey, to beicealis

In this chapter we introduce Kronecker graphs, a network genenaidgel which obeys all the main
static network patterns that have appeared in the literature. Our modeluags the temporal evolution
patterns that we described in chapBarAnd, contrary to other models that match this combination of
network properties, Kronecker graphs also lead to tractable analysiggamous proofs. Furthermore,
Kronecker graphs generative process also has a nice naturalétédign and justification.

Our model is based on a matrix operation, Krenecker product There are several known theorems on
Kronecker products, which correspond exactly to a significant podiavhat we want to prove: heavy-
tailed distributions for in-degree, out-degree, eigenvalues, and eigems. We also demonstrate how a
Kronecker Graph can match the behavior of several real netwark&(setworks, citations, web, inter-
net, and others). While Kronecker products have been studied by #ieraig combinatorics community
(see,e.g, [Chow, 1997), the present work is the first to employ this operation in the design of mktwo
models to match real data.

Then we also make a step further and tackle the following problem: Givegeareal network, we want to
generate a synthetic graph, so that our resulting synthetic graph matetpsplerties of the real network
as well as possible.

Ideally we would like: (a) A graph generation model that naturally produnetworks with many proper-
ties that are also found in real networks. (b) The model parameter estinshtioird be fast and scalable,
so that we can handle networks with millions of nodes. (c) The resulting patameters should generate
realistic-looking networks that match the statistical properties of the targéteevorks.

In general the problem of modeling network structure presents ses@reéptual and engineering chal-
lenges: Which generative model should we choose, among the many in tatulig® How do we measure
the goodness of the fit? (Least squares don’'t work well for powes,lfav subtle reasons!) If we use like-
lihood, (that we do), how to estimate it faster than in time quadratic on the nurhbedes? How do we
solve the node correspondence problem (which node of the real etawesponds to what node of the
synthetic one)?

To answer the above questions we preseROKFIT, a fast and scalable algorithm for fitting Kronecker
graphs by using the maximum likelihood principle. When calculating the likelihoeckthre two chal-
lenges: First, one needs to solve the node correspondence problaatdlying the nodes of the real and
the synthetic network. Essentially, one has to consider all mappings of mddiee network to the rows
and columns of the graph adjacency matrix. This becomes intractable fdirgnath more than a handful
of nodes. Even when given the “true” correspondences just duaiuhe likelihood is still prohibitively
expensive for the size of graphs we want to consider here. Wergrsslitions to both of these prob-
lems: We develop Metropolis sampling algorithm for sampling node correspoed, and approximate
the likelihood to obtain dinear time algorithm that scales to large networks with millions of nodes and
edges. IRONFIT gives orders of magnitude speed-ups against older methods (20 minge®mmodity
PC, versus 2 days on a 50-machine cluster).
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Our extensive experiments on synthetic and real networks show thaegker Graph can efficiently
model statistical properties of networks, like degree distribution and diamgtéde using only four pa-
rameters.

Once the model is fitted to the real network, there are several benefigpatications:
(a) The parameters give us insight into the structure of the network itself;

(b) Extrapolations: we can use the model to generate a larger graph, to help us understanideho
network will look like in the future;

(c) Sampling: conversely, we can also generate a smaller graph, which may be usefuinhing
simulation experimentse(g, simulating routing algorithms in computer networks, or virus/worm
propagation algorithms), when these algorithms may be too slow to run on lagiesy

(d) Null-model: when working with network data we would often like to assess the significamtte
extent to which a certain network property is expressed. We can usétéaeKronecker graph as
an accurate null-model.

(e) Simulations:given an algorithm working on a graph we would like to evaluate how its padace
depends on various properties of the network. Using our model ongerearate graphs that exhibit
various combinations of such properties, and then evaluate the algorithm.

() Graph compressionwe can compress the graph, by storing just the model parameters, and the
deviations between the real and the synthetic graph;

(g) Anonymization:suppose that the real graph cannot be publicized, &k, corporate e-mail net-
work; customer-product sales in arecommendation system. Yet, we woutd 8kare our network.
Our work gives ways to such a realistic, 'similar’ network.

The rest of the chapter is organized as follows: Sedi@riefly surveys the related literature. In section
5.3 we introduce the Kronecker graphs model, and give formal statemenis tigoproperties of net-
works it generates. We investigate the model using simulation in Seés#dand continue by introducing
KRONFIT, the Kronecker graphs parameter estimation algorithm, in Se&ibnWe present experimen-
tal results on real and synthetic networks in Secta® We close with discussion and conclusions in
sections.7and5.8

5.2 Relation to previous work on network modeling

Networks across a wide range of domains present surprising reguaikespower laws, small diameters,
communities, and so on. We use these patterns as sanity checks, thasygjthetic graphs should match
those properties of the real target graph.

Most of the related work in this field has concentrated on two aspectseiepand patterns found in
real-world networks, and then ways to find models to build understandimgt &ire emergence of these
properties. First, we will discuss the commonly found patterns in (static andteihypevolving) graphs,
and finally, the state of the art in graph generation methods. Refer to cRdptenore detailed discussion
of graph patterns and explanatory models.
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5.2.1 Graph Patterns

Here we briefly introduce the network patterns (also referred to asefiep or statistics) that we will
later use to compare the similarity between the real networks and their syntbetitegparts produced
by Kronecker graphs model. While many patterns have been discovereaf the principal ones are
heavy-tailed degree distributions and small diameters. Refer to ctiafaiemore details.

Degree distribution:The degree-distribution of a graph is a power law if the number of nddewith
degreed is given byN; o< d~7 (v > 0) where~y is called the power law exponent. Power laws have
been found in the InterneFaloutsos et al.1999, the Web Kleinberg et al. 1999 Broder et al. 2004,
citation graphsiRedner 1998, online social networksGhakrabarti et al2004 and many others.

Small diameterMost real-world graphs exhibit relatively small diameter (the “small- worltépomenon,

or “six degrees of separation”): A graph has diamédf every pair of nodes can be connected by a path
of length at mostD edges. The diametdp is susceptible to outliers. Thus, a more robust measure of
the pair wise distances between nodes in a graph igffeetive diametefTauro et al. 2001, which is

the minimum number of links (steps/hops) in which some fraction (or quaptitmy ¢ = 0.9) of all
connected pairs of nodes can reach each other. The effective didrasteeen found to be small for large
real-world graphs, like Internet, Web, and online social netwoftbdrt and Barahsi 2002 Milgram,
1967, Leskovec et a).20054.

Hop-plot: extends the notion of diameter by plotting the number of reachable g@iyswithin / hops,
as a function of the number of hops[Palmer et al.2003. It gives us a sense of how quickly nodes’
neighborhoods expand with the number of hops.

Scree plot: This is a plot of the eigenvalues (or singular values) of the graph adjpaeatrix, versus
their rank, using the logarithmic scale. The scree plot is also often foungbt@ximately obey a power
law [Chakrabarti et al.2004 Farkas et aJ.200]. Moreover, this pattern was also found analytically for
random power law graph€hung et al.20034.

Network valuesThe distribution of eigenvector components (indicators of “network valagSociated to
the largest eigenvalue of the graph adjacency matrix has also beentfob@dkewedChakrabarti et a|.
2004.

Node triangle participation:is a measure of transitivity in networks. It counts the number of triangles
a node participates in.e., the number of connections between the neighbors of a node. The pilee of
number of triangleg\ versus the number of nodes participating)rtriangles has also been found to be
skewed Tsourakakis200§.

Densification Power LawThe relation between the number of edd&g) and the number of node¥(¢)

in evolving network at time obeys thedensification power layDPL), which states thal () oc N (t)“.
Thedensification exponeiatis typically greater than, implying that the average degree of a node in the
network isincreasingover time. This means that real networks tend to sprout many more edgesties)
and thus densify as they grolgskovec et a].2005h 2007H. See chapteB for more details.

Shirking diameterThe effective diameter of graphs tends to shrink or stabilize as the nurhbedes in

a network grows over timd_gskovec et a).2005h 20074. This is somewhat counterintuitive since from
common experience as one would expect that as the volume of the objeap(g grows, the size.€.,
the diameter) would also grow. But for networks it seems this does not Bdlieadiameter shrinks and
then stabilizes as the network grows. See chapfer more details.
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5.2.2 Generative models of network structure

The earliest probabilistic generative model for graphs was thés=Rnyi [Erdds and Rnyi, 1960 ran-
dom graph model, where each pair of nodes has an identical, indepgmdbability of being joined by
an edge. The study of this model has led to a rich mathematical theory; hpweswle model was not
developed to model real-world networks it produces graphs that fail tolmmaal networks in a number
of respects (for example, it does not produce heavy-tailed degredbudli®ns).

The vast majority of recent network models involve some forpreferential attachmeriBaratasi and Albert
1999 Albert and Barahsi, 2002 Winick and Jamin2002 Kleinberg et al. 1999 Kumar et al, 19994
that employs a simple rule: new node joins the graph at each time step, anaddhtss@ connection to
an existing node: with the probability proportional to the degree of the nadeThis leads to the “rich
get richer” phenomena and to power law tails in degree distribution. Howtixeediameter in this model
grows slowly with the number of nod€g, which violates the “shrinking diameter” property mentioned
above.

There are also many variations of preferential attachment model all semehploying the “rich get
richer” type mechanism. For example, “copying modd&tmar et al, 2004, the “winner does not take
all” model [Pennock et al2003, the “forest fire” model Leskovec et a.20054, “random surfer model”
[Blum et al, 20049, etc.

A different family of network methods strives for small diameter and locadteling in networks. Ex-
amples of such models include temall-worldmodel Watts and StrogatZ.999 and the Waxman gen-
erator Waxman 1988. Another family of models shows that heavy tails emerge if nodes try to optimize
their connectivity under resource constrair@aflson and Doyle1999 Fabrikant et a].2007. Refer to
chapter2 for further details on network models.

In summary, most current models focus on modeling only one (static) nepvoperty, and neglect the
others. In addition, it is usually hard to analytically analyze properties ohéterork model. On the
other hand, Kronecker graphs model we describe in the next sectivesseés these issues as it matches
multiple properties of real networks at the same time, while being analytically btadending itself to
rigorous analysis.

5.2.3 Parameter estimation of network models

Until recently relatively little effort was made to fit the above network models &b data. One of the
difficulties is that most of the above models usually do not have a probabilistipietation, but rather
define a mechanism or a principle by which a network is constructed.

Most work in estimating network models comes from the area of social s&gmstatistics and so-
cial network analysis where thexponential random graphslso known ag+ model, were introduced
[Wasserman and Pattisdt®96. The model essentially defines a log linear model over all possible graphs
G, p(G|0) x exp(8T5(G)), whereG is a graph, and is a set of functions, that can be viewed as summary
statistics for the structural features of the network. phenodel usually focuses on “local” structural fea-
tures of networks (likeg.g, characteristics of nodes that determine a presence of an edge, lproody,

etc.). As exponential random graphs have been very useful forlmgdemall networks, and individual
nodes and edges our goal here is different in a sense that we ainutatetg model the structure of the
network as a whole. Moreover, we aim to model and estimate parametersaafrke with millions of
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nodes, while even for graphs of small size {00 nodes) the number of model parameters in exponen-
tial random graphs usually becomes too large, and estimation prohibitivegnsixve, both in terms of
computational time and memory.

Regardless of a particular choice of a network model, a common theme wiaatesy the likelihood
P(G) of a graphGG under some model is the challenge of finding the correspondence betveerodes

of the true network and its synthetic counterpart. The node correspoageoblem results in the facto-
rially many possible matchings of nodes. One can think of the correspomgeolclem as some kind of
graph isomorphism test. Two isomorphic graghandG’ with differently assigned node ids should have
same likelihoodP(G) = P(G’) so we aim to find an accurate mapping between the nodes of the two
graphs.

Ordering or a permutation defines the mapping of nodes in one network ¢s imothe other network. For
example, ButtsButts, 2005 used permutation sampling to determine similarity between two graph adja-
cency matrices, while Békoa et al. [Bezakowa et al, 200§ used permutations for graph model selec-
tion. Recently, an approach for estimating parameters of the “copying”Imasantroduced\Viuf et al.,,
2004, however authors also note that the class of “copying” models may mathbenough to accurately
model real networks. As we show later, Kronecker graphs model seehave the necessary expressive
power to mimic real networks well.

5.3 Kronecker graphs model

The Kronecker graphs model we propose here is based on a weccwsistruction. Defining the recursion
properly is somewhat subtle, as a number of standard, related gragtihumion methods fail to produce
graphs that densify according to the patterns observed in real netwamil they also produce graphs
whose diameters increase. To produce densifying graphs with conltanriitsg diameter, and thereby
match the qualitative behavior of a real network, we develop a procedatés best described in terms

of the Kronecker producbf matrices. To help in the description of the method, the accompanying table
provides a list of symbols and their definitions.

5.3.1 Mainidea

The main intuition behind the model is to create self-similar graphs, recursivégdybegin with arini-

tiator graph K1, with N7 nodes and®; edges, and by recursion we produce successively larger graphs
K, K3, ... such that thé'" graphK, is on N, = N nodes. If we want these graphs to exhibit a version
of the Densification Power Law_gskovec et al.2005H, then K, should have, = Ef edges. This is

a property that requires some care in order to get right, as standargivecconstructions (for example,

the traditional Cartesian product or the constructiorBarplasi et al, 2001]) do not satisfy it.

It turns out that theKronecker producbf two matrices is the right tool for this goal. The Kronecker
product is defined as follows:
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SYmMBOL | DESCRIPTION

G Real network

N Number of nodes iidr

E Number of edges idr

K Kronecker graph (synthetic estimate®yf

Ky Initiator of a Kronecker Graph

Ny Number of nodes in initiatoky

Ey Number of edges in initiatok';

G H Kronecker product of adjacency matrices of graphand H

K = K, = K | k" Kronecker power of<;

Kii, j] Entry at row: and columry of K3

0="P Stochastic Kronecker initiator

731[’“} =P, =P | k" Kronecker power o

0;; = P14, ] Entry at row: and columnj of P,

Pij = Prli, j] Probability of an edgé:, j) in Py, i.e., entry at row; and columry of Py,
K = R(P) Realization of a Stochastic Kronecker graph

1(©) Log-likelihood. Log-prob. tha® generated real gragh, log P(G|O)

) Parameters at maximum likelihoo8, = argmaxg P(G|©)

o Permutation that maps node ids@fto those ofP

a Densification power law exponertf,(¢) o« N (¢)*

D Diameter of a graph

N, Number of nodes in the largest weakly connected component of a graph
w Proportion of timesSwapNodes permutation proposal distribution is used

Table 5.1: Table of symbols.

Definition 5.3.1 (Kronecker product of matricesiGiven two matrices\ = [a; ;| and B of sizesn x m
andn’ x m’ respectively, the Kronecker product mat€ixof dimensiongn - n’) x (m - m’) is given by

CL1,1B al,gB e CLLmB
CL2,1B CLQQB e a27mB

C=A®B= _ , (5.1)
an1B a,2B ... ap,B

We then define the Kronecker product of two graphs simply as the Kkengcoduct of their correspond-
ing adjacency matrices.

Definition 5.3.2 (Kronecker product of graphs)f G and H are graphs with adjacency matrice§ G)
and A(H) respectively, then the Kronecker proddetw H is defined as the graph with adjacency matrix
AG)® A(H).

Observation 5.3.3(Edges in Kronecker-multiplied graphs)
Edge(X;, Xi) € G® H iff (X;, X)) € Gand(X;, X;) € H

where X;; and X}, are nodes inG ® H, and X;, X;, X;, and X; are the corresponding nodes @ and
H, asin Figure5.1
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sz
X3
Central no;ie is X 22
(a) GraphK; (b) Intermediate stage (c) Grapgty, = K1 ® K3
11 1] O K,|K,|O
111 1 K| Kyl Ky
01 1 0| K |K;
(d) Adjacency matrix (e) Adjacency matrix
OfK1 OfK2:K1®K1

Figure 5.1: Example of Kronecker multiplicationTop: a “3-chain” initiator graph and its Kronecker
product with itself; each of th&’; nodes gets expanded intaodes, which are then linked
using Observatios.3.3 Bottom row: the corresponding adjacency matrices. Seecflg@
for adjacency matrices df; and K .

(a) K3 adjacency matrix37 x 27) (b) K4 adjacency matrix§l x 81)

Figure 5.2: Adjacency matrices of{3 and K, the 3"¢ and4*" Kronecker power ofK; matrix as de-
fined in Figures.1 Dots represent non-zero matrix entries, and white spawresents zeros.
Notice the recursive self-similar structure of the adjayematrix.

The last observation is subtle, but crucial, and deserves elaboratsicaly, each node itvr @ H can
be represented as an ordered p&jf, with < a node ofG and;j a node off, and with an edge joining
X;; and Xy, precisely when(X;, X},) is an edge oft and (X, X;) is an edge offf. This is a direct
consequence of the hierarchical nature of the Kronecker prodigiireés.1(a—c) further illustrates this
by showing the recursive construction@f® H, whenG = H is a 3-node chain. Consider nodg » in
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1111111
1111010
1101110
110/01
1111111
111100
1101111
1101111
Initiator K K adjacency matrix ; K 3 :'Jtdjace'r;cy m.atl’IX

Figure 5.3: Two examples of Kronecker initiators on 4 nodes and thessiflar adjacency matrices they
produce.

Figure5.1(c): It belongs to thed graph that replaced nod€; (see Figuré.1(b)), and in fact is theXs
node {.e. the center) within this smalf-graph.

We propose to produce a growing sequence of matrices by iterating tineéker product:

Definition 5.3.4 (Kronecker power) The k" power of K is defined as the matriK{k] (abbreviated to
K}), such that:

KM=k, = KioKi®.. . Ki = K 10K
k times

Definition 5.3.5(Kronecker graph) Kronecker graph of ordek is defined by the adjacency matrzis?({k],
where K is the Kronecker initiator adjacency matrix.

The self-similar nature of the Kronecker graph product is clear: Tdymek, from Kj_1, we “expand”
(replace) each node df,_; by converting it into a copy of{;, and we join these copies together ac-
cording to the adjacencies i, _; (see Figureés.1). This process is very natural: one can imagine it as
positing that communities within the graph grow recursively, with nodes in themamity recursively
getting expanded into miniature copies of the community. Nodes in the sub-comrthentyink among
themselves and also to nodes from other communities.
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5.3.2 Analysis of Kronecker Graphs

We shall now discuss the properties of Kronecker graphs, specifitaiydegree distributions, diameters,
eigenvalues, eigenvectors, and time-evolution. Our ability to prove andlytisalts about all of these
properties is a major advantage of Kronecker graphs over other netmadels.

Degree distribution

The next few theorems prove that several distributions of intereshalt@momialfor our Kronecker graph
model. This is important, because a careful choice of the initial gfépimakes the resulting multinomial
distribution to behave like a power law or DGX distributidsi et al., 2001, Clauset et a).2007.

Theorem 5.3.6(Multinomial degree distribution)Kronecker graphs have multinomial degree distribu-
tions, for both in- and out-degrees.

Proof. Let the initiatork’; have the degree sequenteds, . . ., dy,. Kronecker multiplication of a node
with degreed expands it intaV; nodes, with the corresponding degrees being dy,d X ds,...,d x

dn,. After Kronecker powering, the degree of each node in g&phs of the formd;, x d;, x ...d;,,

with i1,142,...,i; € (1...Ny), and there is one node for each ordered combination. This gives us the
multinomial distribution on the degrees &f,. Note also that the degrees of nodedincan be expressed

as thek'™ Kronecker power of the vectdtl;, d, . .., dy, ). O

Spectral properties

Next we analyze the spectral properties of adjacency matrix of a Kkenggaph. We show that both
the distribution of eigenvalues and distribution of component values of esgtors of graph adjacency
matrix both follow multinomial distribution.

Theorem 5.3.7(Multinomial eigenvalue distribution)The Kronecker graplk’;, has a multinomial distri-
bution for its eigenvalues.

Proof. Let K; have the eigenvaluesg, A, ..., An,. By properties of the Kronecker multiplicatiobdan,
200Q Langville and Stewart2004, the eigenvalues ok, are thek!” Kronecker power of the vector of
eigenvalues of the initiator matrixjy, Ao, . . ., )\Nl)[’“]. As in Theorenb.3.6 the eigenvalue distribution
is a multinomial. O

A similar argument using properties of Kronecker matrix multiplication showsahening.

Theorem 5.3.8(Multinomial eigenvector distribution)The components of each eigenvector of the Kro-
necker graphi;, follow a multinomial distribution.

Proof. Let K; have the eigenvectofis, v, . . ., ¥y, . By properties of the Kronecker multiplicatiobdgan,

200Q Langville and Steway2004, the eigenvectors ok, are given by the!* Kronecker power of the
vector: (v, v, . . . , Un, ), Which gives a multinomial distribution for the components of each eigenvector
in K. O

We have just covered several of the static graph patterns. Notice thabibfs were a direct consequences
of the Kronecker multiplication properties.
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Connectivity of Kronecker graphs

We now present a series of results on the connectivity of Kroneclahgt We show, maybe a bit
surprisingly, that even if a Kronecker initiator graph is connected its &ker power can in fact be
disconnected.

Lemma 5.3.9.If at least one of7 and H is a disconnected graph, thén® H is also disconnected.

Proof. Without loss of generality we can assume tliahas two connected components, whikeis
connected. Figur&.4(a) illustrates the corresponding adjacency matrixGofUsing the notation from
observatiorb.3.3let graph letZ have nodes(y, ..., X,,, where node$ X, ... X, } and{ X, 1,..., X}

form the two connected components. N@wg H has at least two connected components as there are no
edges:(X;;, Xi) ¢ G@ Hfori e {1,...,r}, k€ {r+1,...,n}, and allj, I. This follows directly
from observatiorb.3.3as(X;, X) are not edges if. O

Actually it turns out that botlty and H can be connected bttt @ H is still disconnected. The following
theorem analyzes this case.

Theorem 5.3.10.1f both G and H are connected but bipartite, theék ® H is disconnected, and each of
the two connected components is again bipartite.

Proof. Again without loss of generality let’ be bipartite with two partitionsd = {X;,... X, } and

B = {X,41,...,X,}, where edges exists only between the partitions, and no edges exist timside
partition: (X;, Xy) ¢ G fori,k € Aori,k € B. Similarly, let H also be bipartite with two partitions
C = {X1,...X;} andD = {Xs41,...,X;n}. Figures5.4b) and (c) illustrate the structure of the
corresponding adjacency matrices.

Now, there will be two connected componentsGng H: 15° component will be composed of nodes
{X;;} € G® H, where(i € A,j € D)or(i € B,j € C). And similarly, 2*¢ component will be
composed of nodegX;; }, where(i € A,j € C) or (i € B,j € D). Basically, there exist edges between
node set$A, D) and(B, C), and similarly betweefA, C') and(B, D) but not across the sets. To see this
we have to analyze the cases using observaii8r8 For example, irG ® H there exist edges between
nodes(A, D) and(B, C) as there exist edgés, k) € G fori € A,k € B, and(j,1) € H for j € C and

[ € D. Similar is true for nodesA, C') and(B, D). However, there are no edges cross the two set,
nodes from(A, D) do not link to(A, C), as there are no edges between nodes {ginced is bipartite).
See Figure$.4(d) and5.4(e) for a visual proof. Ol

Note that bipartite graphs are triangle free and have no self-loops.xBorme, stars, chains, trees and
cycles of even length are all examples of bipartite graphs. This meansithaiay to generate a connected
Kronecker graphs is to require the initiath to be connected while not being bipartite. For example,
initiator K7 can have a self loops, or a triangles (a triple of connected nodes), wiaikbs it non-bipartite,
and ensures thdt;, will be connected.

For the remainder of the chapter we will focus on the initiator grafgihghat have self loops on all of
their nodes so that we ensuig, to be connected.
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X,
0 0o | A 0 C
0 B 0 D 0
(a) Adjacency matrix (b) Adjacency matrix (c) Adjacency matrix
whenG is disconnected whe@ is bipartite wherH is bipartite
0 (AC) O (a0
(A.D) (8,0) 0
B,C) (A,D)
(B,D) 0 0 50| O
(d) Kronecker product of (e) Rearranged adjacency
two bipartite graphgr and H matrix from panel (d)

Figure 5.4: Graph adjacency matrices. Dark parts present connectkstl (filith ones) and white parts
present empty (filled with zeros) parts of the adjacency imafa) Whend is disconnected,
Kronecker multiplication with any matri¥f will result in G ® H being disconnected. (b)
Adjacency matrix of a connected bipartite gra@hwith partitions A and B. (c) Adjacency
matrix of a connected bipartite graghwith partitionsC' and D. (e) Kronecker product of
two bipartite graph&s and H. (d) After rearranging the adjacency matéix® H we clearly
see the resulting graph is disconnected.

Temporal properties of Kronecker graphs

We continue with the analysis of temporal patterns of evolution of Kronegiaphs: the densification
power law, and shrinking/stabilizing diamet&egkovec et a].2005h 20074.

Theorem 5.3.11(Densification Power Law)Kronecker graphs follow the Densification Power Law
(DPL) with densification exponent= log(E1)/log(Ny).

Proof. Since thek'" Kronecker powek;, hasN, = N} nodes ands), = E{“ edges, it satisfieB), = IV,
wherea = log(F7)/log(NN1). The crucial point is that this exponents independent of, and hence the
sequence of Kronecker powers follows an exact version of theifieion Power Law. O

We now show how the Kronecker product also preserves the propegnstant diameter, a crucial
ingredient for matching the diameter properties of many real-world netwaidsdts. In order to establish
this, we will assume that the initiator grapgty has a self-loop on every node; otherwise, its Kronecker
powers may be disconnected.
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Lemma 5.3.12.If G and H each have diameter at moBY, and each has a self-loop on every node, then
the Kronecker grapli; @ H also has diameter at mos2.

Proof. Each node inG @ H can be represented as an ordered paitv), with v a node ofG andw a
node of H, and with an edge joinin@v, w) and(z, y) precisely wher(v, z) is an edge of> and (w, y)
is an edge off. (Note this exactly the Observati&n3.3) Now, for an arbitrary pair of node®, w) and
(v, w"), we must show that there is a path of length at m@stonnecting them. Sinc€ has diameter
at mostD, there is a path = vy, vs,...,v, = v/, wherer < D. If r < D, we can convert this into
a pathv = vy, v9,...,vp = v’ of length exactlyD, by simply repeating’ at the end forD — r times.
By an analogous argument, we have a path= w,ws,...,wp = w’. Now by the definition of the
Kronecker product, there is an edge joiniag, w;) and (v;y+1,w;4+1) forall1 < ¢ < D — 1, and so
(v,w) = (v1,w1), (v2,ws), ..., (vp,wp) = (v',w') is a path of lengthD connecting(v, w) to (v', w’),
as required. O

Theorem 5.3.13.1f K; has diameterD and a self-loop on every node, then for evérythe graphKj
also has diameteD.

Proof. This follows directly from the previous lemma, combined with inductiorkon O

As defined in sectio@.1.2we also consider theffective diameteD*; we defined thg-effective diameter

as the minimumD* such that, for at least @ fraction of the reachable node pairs, the path length is at
most D*. The g-effective diameter is a more robust quantity than the diameter, the latter bheing

the effects of degenerate structures in the grapd, (rery long chains); however, theeffective diameter
and diameter tend to exhibit qualitatively similar behavior. For reporting resutsbsequent sections,
we will generally consider the-effective diameter witly = 0.9, and refer to this simply as thedfective
diameter

Theorem 5.3.14(Effective Diameter) If K has diametelD and a self-loop on every node, then for every
q, theg-effective diameter ok, converges td (from above) a% increases.

Proof. To prove this, it is sufficient to show that for two randomly selected noélds,0 the probability
that their distance i®) converges td ask goes to infinity.

We establish this as follows. Each nodéeiip can be represented as an ordered sequencaades from
K1, and we can view the random selection of a nod&jnas a sequence &findependent random node
selections fronf(;. Suppose that = (vq,...,v;) andw = (w1, ..., wy) are two such randomly selected
nodes fromK,.. Now, if z andy are two nodes irk’; at distanceD (such a pai(z, y) exists sinces; has
diameterD), then with probabilityl — (1 — 2/N;)*, there is some index for which {v;, w;} = {z, y}.

If there is such an index, then the distance betweendw is D. As the expression — (1 — 2/Np)*
converges td ask increases, it follows that thgeffective diameter is converging 0. O

5.3.3 Stochastic Kronecker Graphs

While the Kronecker power construction discussed so far yields graipihs range of desired properties,
its discrete nature produces “staircase effects” in the degrees artdedp@antities, simply because indi-
vidual values have large multiplicities. For example, degree distribution atribditon of eigenvalues of
graph adjacency matrix and the distribution of the principal eigenvector aoemts i.e., the “network”
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Figure 5.5: The “staircase” effect. Kronecker initiator and the degiestribution and network value plot
for the 6! Kronecker power of the initiator. Notice the non-smoottsnefsthe curves.

value) are all impacted by this. These quantities are multinomially distributed wtads te individual
values with large multiplicities. Figure.5illustrates the staircase effect.

Here we propose a stochastic version of Kronecker graphs that elisitmaseeffect. There are many
possible ways how one could introduce stochasticity into Kronecker graggiuel. Before introducing
the proposed model, we introduce two simple ways of introducing randonm&ssnecker graphs and
describe why they do not work.

Probably the simplest (but wrong) idea is to generate a large deterministietlter graph;,, and then
uniformly at random flip some edges., uniformly at random select entries of the graph adjacency matrix
and flip them { — 0,0 — 1). However, this will not work, as it will essentially superimpose a@srd
Rényi random graph, which would, for example, corrupt the degreaahiion — real networks usually
have heavy tailed degree distributions, while random graphs have Bindegede distributions. Second
idea could be to allow weighted initiator matrixg., values of entries of(; are not restricted to values
{0,1} but rather can be any non-negative real number. Using &ijcbne would generat&’;, and then
threshold the<;, matrix to obtain a binary adjacency maté i.e., for a chosen value aefsetK[i, j] = 1

if Kx[i,j] > eelseK[i,j] = 0. This also would not work as the mechanism would selectively remove
edges and thus the low degree nodes which would have low weight edgés get isolated first.

Now we defineStochastic Kronecker Grapimsodel that overcomes the above issues. A more natural way
to introduce stochasticity to Kronecker graphs is to relax the assumptiomthiaseof the initiator matrix
take only binary values. Now, we will allow cells of the initiator to take values aerural [0, 1]. This
means now each entry of the initiator matrix encodes the probability of that yartiedge appearing.
We then Kronecker power such initiator matrix to obtain a large stochasticesmjacnatrix, where again
each entry of the large matrix gives the probability of that particular edgeaamg in a big graph. Such
stochastic adjacency matrix effectively defines a probability distributiom allegraphs. To obtain a
graph we simply sample an instance from this distribution by sampling individigglss where each edge
appears independently with probability given by the entry of the large astichadjacency matrix. More
formally, we define:

Definition 5.3.15 (Stochastic Kronecker Graph)et P; be a Ny x N; probability matrix the value
9;; € P1 denotes the probability that edgg ;) is presentf;; € [0, 1].
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Thenk! Kronecker powerPl[k] = P, where each entry,,, € P, encodes the probability of an edge
(u,v).

To obtain a graph, amnstance(or realizatior), K = R(P)) we include edgéu, v) in K with probability
Puvs Puv € Pr.

First, note that sum of the entries Bf, Zij 0;;, can be greater than 1. Second, notice that in principle it
takesO(NZF) time to generate an instanéeof a Stochastic Kronecker graph from the probability matrix
Pr.. This means the time to get a realizatihis quadratic in the size dP; as one has to flip a coin for
each possible edge in the graph. Later we show how to generate Sto&masticker graphs much faster,
in the timelinear in the number of edges iRy.

Probability of an edge

For the size of the graphs we aim to model and generate here takirfgr /&) and then explicitly
performing the Kronecker product of the initiator matrix is infeasible. Tlasoa for this is thaP; is
usually dense, s®; is also dense and one can not store it in memory. However, due to the strattu
Kronecker multiplication one can easily computer the probability of an ed@g.in

The probabilityp,,, of an edge(u, v) occurring ink-th Kronecker powefP = P, can be calculated in
O(k) time as follows:

Puv = lﬁP“u]\_f{IJ (modN,) + 1, V];;J (modN,) + 1} (5.2)
i=0

The equation imitates recursive descent into the mariwhere at every levelthe appropriate entry of
P, is chosen. Sinc® hasN{ rows and columns it take@(k log V1) to evaluate the equation. Refer to
figure5.6for the illustration of the recursive structure Bf

5.3.4 Additional properties of Kronecker graphs

Stochastic Kronecker Graphs with initiator matrix of sixg = 2 were studied by Mahdian and Xu
[Mahdian and Xu2007. Authors show a phase transition for the emergence of the giant comipamne
another phase transition for connectivity, and prove that such greplesconstant diameters beyond the
connectivity threshold, but are not searchable using a decentralgmittam [Kleinberg 19994.

Moreover, recently Tsourakakis200§ gave a closed form expression for the number of triangles in a
Kronecker graph that depends on the eigenvalues of the initiator gfaph

5.3.5 Two interpretations of Kronecker graphs

Next, we present two natural interpretations of the generative proedssd the Kronecker Graphs that
go beyond the purely mathematical construction of Kronecker Graphsraduiced so far.

We already mentioned the first interpretation when we first defined Kkenegraphs. One intuition
is that networks and communities in them grow recursively, creating miniatyniesof themselves.
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Figure 5.6: Stochastic Kronecker initiatdP, and the corresponding*® Kronecker powerP,. Notice
the recursive nature of the Kronecker product, with edgégidities inP, simply being
products of entries dP; .

Figure 5.1 depicts the process of the recursive community expansion. In factasegsearchers have
argued that real networks are hierarchically organifRRavhsz et al.2002 Ravasz and Barasi 2003
and algorithms to extract the network hierarchical structure have alsodeseloped$ales-Pardo et al.
2007, Clauset et a).2008. Moreover, especially web graphBi[l et al., 2002 Dorogovtsev et al.2002
Crovella and Bestavrod997 and biological networksRavasz and Barasi 2003 were found to be
self-similar and “fractal”.

Second intuition comes from viewing every nodeFafas being described with an ordered sequende of
nodes fronP;. (This is similar to the Observatidn3.3and the proof of Theorerd.3.14)

Let’s label nodes of the initiator matri®;, ui, ..., uy,, and nodes oP;, asv, . .. s Uk Then every node
v; of Py, is described with a sequengg(1), . . ., v;(k)) of node labels ofP;, wherev; (1) € {uy, ..., ux}.
Similarly, consider also a second nadewith the label sequende; (1), ...,v;(k)). Then the probability

pe Of an edg€v;, v;) in Py, is exactly:

k
Pe(vi, vj) = Prlvi, vj] = le [vi (1), v;(1)]
=1

(Note this is exactly the Equatidn2)

Now one can look at the description sequence of nagdas ak dimensional vector of attribute val-
ues(vi(1),...,vi(k)). Thenp.(v;,v;) is exactly the coordinate-wise product of appropriate entries of
P1, where the node description sequence selects which entries to multiply, thiet®, matrix can be
thought of as the attribute similarity matrixe., it encodes the probability of linking given that two nodes
agree/disagree on the attribute value. Then the probability of an edge is sirppbduct of individual
attribute similarities over the N;-ary attributes that describe each of the two nodes.

This gives us a very natural interpretation of Stochastic KroneckgrhgraEach node is described by
a sequence of categorical attribute values or features. And then thehiity of two nodes linking
depends on the product of individual attribute similarities. This way Krk@egraphs can effectively
model homophily (nodes with similar attribute values are more likely to link)Ppyhaving high value
entries on the diagonal; or heterophily (nodes that differ are more likely thbyn#; having high entries
off the diagonal.

104



Figure5.6shows an example. Let’s label nodesiyfuy, us as in Figures.6(a). Then every node @ is
described with an ordered sequence: difinary attributes. For example, Figuses(b) shows an instance
for k£ = 2 where nodes; of Ps is described byu, uz), and similarlyvs by (uz,u1). Then as shown in
Figure5.6(b), the probability of edge. (v2, v3) = b- ¢, which is exactlyP; [ug, u1] - Pyluy, us] =b-c—
the product of entries dP;, where the corresponding elements of the description of negasdvs act
as selectors of which entries Bf to multiply.

Figure5.6(c) further illustrates the recursive nature of Kronecker graph® €an see Kronecker product
as recursive descent into the big adjacency matrix where at each stage the entries or blocks is
chosen. For example, to get to entmy, v3) one first needs to dive into quadranfollowing by the
guadrant. This intuition will help us in sectio®.3.6to devise a fast algorithm for generating Kronecker
graphs.

However, there are also two notes to make here. First, using a single infilatee are implicitly as-
suming that there is one single and universal attribute similarity matrix that hotdssallk N;-ary
attributes. One can easily relax this assumption by taking a different initiatoixnfiaitreach attribute
(initiator matrices can even be of different sizes as attributes are ofdiffarity), and then Kronecker
multiplying them to obtain a large network. Here each initiator matrix plays the ra@ériute similarity
matrix for that particular attribute.

For simplicity and convenience we will work with a single initiator matrix but all outthnds can be
trivially extended to handle multiple initiator matrices. Moreover, as we will see ilatgection5.6 even
a single2 x 2 initiator matrix seems to be enough to capture large scale statistical properried-aforld
networks.

Second assumption is harder to relax. When describing everywmadth a sequence of attribute values
we are implicitly assuming the values of all attributes are uniformly distributece(bamne proportions),
and that every node has a unique combination of attribute values. So,salbjgocombinations of at-
tribute values are taken. For example, nogén a largeP;, has attribute sequenc¢e;, u1,...,u1), vy,

has (u1,u1,.. ., u1, un,), while the “last” nodev,. is has attribute valueguy,, un,, ..., uy,). One
can think of this as counting ifV;-ary number system, where node attribute descriptions rangefrom
(i.e., “leftmost” node with attribute descriptiofu;, u1, ..., u1)) to NF (i.e, “rightmost” node attribute
description(un, , uny, - - -, Uny ))-

A simple way to relax the above assumption is to take a larger initiator matrix with a smattgver of
parameters than the number of entries. This means that multiple entfigsvafl share the same value
(parameter). For example, if attributge takes one value 66% of the times, and the other value 33% of
the times, then one can model this by taking & 3 initiator matrix with only four parameters. Adopting
the naming convention of Figui6this means that parametenow occupies & x 2 block, which then
also make$ andc occupy2 x 1 and1 x 2 blocks, andf a single cell. This way one gets a four parameter
model with uneven feature value distribution.

We note that the view of Kronecker graphs where every node is dedcvilith a set of features and
the initiator matrix encodes the probability of linking given the attribute values ofrtades somewhat
resembles the Random dot product graphs modeliig and Scheinerma007, Nickel, 2008. The
important difference here is that we multiply individual linking probabilitiesilesin Random dot product
graphs one takes the sum of individual probabilities which seems somighkatatural.
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5.3.6 Fast generation of Stochastic Kronecker Graphs

The intuition for fast generation of Stochastic Kronecker Graphs conoes the recursive nature of
the Kronecker product and is closely related to the R-Mat graph gemdthakrabarti et al.2004.
Generating a Stochastic Kronecker graghon N nodes naively take®(N?) time. Here we present a
linear timeO(F) algorithm, where? is the (expected) number of edgesin

Figure5.6(c) shows the recursive nature of the Kronecker product. Tov&irto a particular edgév;, v;)
of P, one has to make a sequencekdiin our casek = 2) decisions among the entries Bf, multiply
the chosen entries @%;, and then placing the edde;, v;) with the obtained probability.

Instead of flippingO(N?) = O(N?#*) biased coins to determine the edges, we can plaeglges by
directly simulating the recursion of the Kronecker product. Basically warsiaeely choose sub-regions
of matrix K with probability proportional td@;;, 0;; € P: until in k£ steps we descend to a single cell of
the matrix and place an edge. For example(farvs) in Figure5.6(c) we first have to choogefollowing

by c.

As probability of each individual edge @, follows a Bernoulli distribution, as the edge occurrences
are independent, the number of edge®inis Binomially distributed with meany_ 6;;)* = E¥, where

0;; € P1. So, given a stochastic initiator matrfx; we first sample the expected number of edges

in P, from a Binomial distribution. Then we place edges in a grapli’, by applying the recursive
descent folk steps where at each step we choose efitry) with probabilityd;; / E1 whered;; € P, and

E, = Zij 0;;. Since we add? = EY edges, the probability that edge;, v;) appears inkK is exactly
Prvi, v;]. This basically means that in Stochastic Kronecker Graphs the initiator mataxies both the
total number of edges in a graph and their structdred;; encodes the number of edges in the graph,
while the proportions (ratios) of valués; define how many edges each part of graph adjacency matrix
will contain.

In practice it can happen that more than one edge lands in the @ame) cell of K. Even though
values ofP; are usually skewed, adjacency matrices of real network are sparsie mtigates the prob-
lem.

5.3.7 Observations and connections

Next, we describe several observations about the properties oégkengraphs and make connections to
other network models.

e Bipartite graphs:Kronecker Graphs can naturally model bipartite graphs. Instead ¢ihgtavith
a squareV; x Nj initiator matrix, one can choose arbitrai; x M initiator matrix, where rows
define “left”, and columns the “right” side of the bipartite graph. Kroneckeltiplication will then
generate bipartite graphs with partition siZé§ and MF.

e Graph distributions: P;, defines a distribution over all graphs, as it encodes the probability of all
possibleNZ* edges appearing in a graph by using exponentially smaller number of garargest
N2). As we will later see even a very small number of paramegegs,4 (2 x 2 initiator matrix) or
9 (3 x 3 initiator), is enough to accurately model the structure large networks.

¢ Natural extension of Eiis-Renyi random graph modelStochastic Kronecker Graphs represent a
natural extension of Efis-Renyi [Erdds and Rnyi, 1960 random graphs. If one take® = [0;;],
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where every;; = p then we obtain exactly the Ebd-Renyi model of random grapl,, ,,, where
every node appears independently with probabijlity

¢ Relation to R-mat modelhe recursive nature of Stochastic Kronecker Graphs makes thetedrela
to the R-mat generatoChakrabarti et al2004. The difference between the two models is that in
R-mat one needs to separately specify the number of edges, while in S&todt@necker Graphs
initiator matrix P; also encodes the number of edges in the graph. SeBt6 built on this
similarity to devise a fast algorithm for generating Stochastic Kroneck@hgra

¢ Densification:Similarly as with deterministic Kronecker graphs the number of nodes in a $tiicha
Kronecker Graph grows &g}, and the expected number of edges growsas; 0;;)F. This means
one would want to choose valuég of the initiator matrixP; so that_, . 6;; > Ny in order for the
resulting network to densify.

5.4 Simulations of Kronecker graphs

In previous section we proved and now we demonstrate using simulationititye @tKronecker graphs
to match the patterns of real-world networks. We will tackle the problem of estighthe Kronecker
Graphs model from real datieg., finding the most likely initiatofP;, in the next section. Instead here we
present simulation experiments using Kronecker graphs to explore tametar space, and to compare
properties of Kronecker Graphs to those found in large real networks

5.4.1 Comparison to real graphs

We observe two kinds of graph patterns — “static” and “temporal.” As meatia@arlier, common static
patterns include degree distribution, scree plot (eigenvalues of gdjpbeacy matrix vs. rank) and
distribution of components of the principal eigenvector of graph adjgceratrix. Temporal patterns
include the diameter over time, and the densification power law. For the diaroetputation, we use the
effective diameter as defined in Secti®i.2

For the purpose of this section consider the following setting. Given agreph G we want to find
Kronecker initiator that produces qualitatively similar graph. In principle oould try choosing each of
the N? parameters for the matriR; separately. However, we reduce the number of parametersifipm

to just two: « and 8. Let K7 be the initiator matrix (binary, deterministic); we create the corresponding
stochastic initiator matriP; by replacing each “1” and “0” of<; with « and 3 respectively § < «).

The resulting probability matrices maintain — with some random noise — the self-sstril@ture of the
Kronecker graphs in the previous section (which, for clarity, wedetérministic Kronecker graphswWe
defer the discussion of how to estimé&te from dataG to the next section.

The datasets we use here are:

e CIT-HEP-TH: This is a citation graph for High-Energy Physics Theory researclergapom pre-
print archive ArXiv, with a total ofN = 29, 555 papers and = 352, 807 citations [Gehrke et al.
2003. We follow its evolution from January 1993 to April 2003, with one dat&pper month.

e As-RoOUTEVIEWS. We also analyze a static dataset consisting of a single snapshot ottuitye
among Internet Autonomous SysteniRoteViews 1997 from January 2000, withV = 6,474
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Figure 5.7: Citation network CIT-HEP-TH): Patterns from the real graph (top row), the deterministic
Kronecker graph with; being a star graph on 4 nodes (center + 3 satellites) (midai, r
and the Stochastic Kronecker graph=€ 0.41, 5 = 0.11 — bottom row).Staticpatterns: (a)
is the PDF of degrees in the graph (log-log scale), and (bdigtabution of eigenvalues (log-
log scale).Temporalpatterns: (c) gives the effective diameter over time (lidagar scale),
and (d) is the number of edges versus number of nodes ovefltbguog scale). Notice that
the Stochastic Kronecker Graph qualitatively matchesallpatterns very well.

andE = 26, 467.

Results are shown in Figuge7 for the QT-HEP-TH graph which evolves over time. We show the plots of
two static and two temporal patterns. We see that the deterministic Kronecket ati@hdy captures the
gualitative structure of the degree and eigenvalue distributions, as viled smmporal patterns represented
by the Densification Power Law and the stabilizing diameter. However, thengatstic nature of this
model results in “staircase” behavior, as shown in scree plot for thendigistic Kronecker graph of
Figure 5.7 (column (b), second row). We see that the Stochastic Kronecker &mapboth out these
distributions, further matching the qualitative structure of the real data; alseymatch the shrinking-
before-stabilization trend of the diameters of real graphs.

Similarly, Figure5.8 shows plots for the static patterns in thatonomous systeni8 s-ROUTEV IEWS)
graph. Recall that we analyze a single, static network snapshot in tlds tasddition to the degree
distribution and scree plot, we also show two typical pl@dkrabarti et al.2004: the distribution of
network valuegprincipal eigenvector components, sorted, versus rank) andapglot(the number of
reachable pairg(h) within & hops or less, as a function of the number of hbpsNotice that, again, the
Stochastic Kronecker graph matches well the properties of the redl.grap
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Figure 5.9: Diameter over time for a 4-node chain initiator graph. Aféach consecutive Kronecker
power we measure the effective diameter. We use differdtinge of o parameter.a =
0.38,0.43,0.54 and3 = 0, respectively.

5.4.2 Parameter space of Kronecker Graphs

Last we present simulation experiments that investigate the parameter $pativastic Kronecker
Graphs.

First, in Figure5.9we show the ability of Kronecker Graphs to generate networks with incigasonstant
and decreasing/stabilizing effective diameter. We start with a 4-node chiator graph, setting each
“1” of K, to a and each “0” tog = 0 to obtain’P; that we then use to generate a growing sequence
of graphs. We plot the effective diameter of eadfP;.) as we generate a sequence of growing graphs
R(P2), R(P3),...,R(P1o). R(P1o) has exactlyl, 048, 576 nodes. Notice Stochastic Kronecker graphs
is a very flexible model. When the generated graph is very sparse (low @llu) we obtain graphs
with slowly increasing effective diameter (Figuse(a)). For intermediate values afwe get graphs with
constant diameter (Figui9(b)) and that in our case also slowly densify with densification exponent in
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Figure 5.10: Fraction of nodes in the largest weakly connected compo@®ntN) and the effective
diameter for 4-star initiator graph. (a) We fikx= 0.15 and varya. (b) We vary bothw
andg. (c) Effective diameter of the network, if network is disoacted or very dense path
lengths are short, the diameter is large when the networarislypconnected.

a = 1.05. Last, we see an example of a graph with shrinking/stabilizing effective démElere we

set thear = 0.54 which results in a densification exponent of 1.2. Note that these obsevaie not
contradicting Theorerb.3.12 Actually, these simulations here agree well with the analysis of Mahdian
and Xu Mahdian and Xu2007.

Last, we examine the parameter space of a Stochastic Kronecker grapihwédchoose a star on 4 nodes
as a initiator graph and use the familiar parameterization, usiagd 3. The initiator graph and the
structure of the corresponding (deterministic) Kronecker graph aujgiamatrix is shown in top row of
Figure5.3

Figure5.1Qa) shows the sharp transition in the fraction of the number of nodes tluigo® the largest
weakly connected component as we fix= 0.15 and slowly increasev. Such phase transitions on
the size of the largest connected component also occur isEHREnyi random graphs. Figue1Qb)
further explores this by plotting the fraction of nodes in the largest caad@omponent./N) over the
full parameter space. Notice a sharp transition between disconnectiéd énda) and connected graphs
(dark).

Last, Figure5.1Qc) shows the effective diameter over the parameter spacg) for the 4-node star
initiator graph. Notice that when parameter values are small, the effectineetéais small, since the
graph is disconnected and not many pairs of nodes can be reachedhdjme of the transition between
low-high diameter closely follows the shape of the emergence of the codnemteponent. Similarly,
when parameter values are large, graph is very dense, and the diansetadlisThere is a narrow band
in parameter space where we get graphs with interesting diameters.

5.5 Kronecker graphs model estimation

In previous sections we proved that shapes (parametric forms) ofigargtwork properties of Kronecker
graphs follow those found in real networks. Moreover, we also ghsed form expressions that allow
us to calculate a propertg.g, diameter, eigenvalue spectrum) of a network given just the initiator matrix.
So in principle, one could invert the equations and directly get from aeptpige.g, shape of degree
distribution) to the values of initiator matrix.
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However, in previous section we did not say anything about how vanietygork properties of a Kronecker
graph correlate and interdepend. For example, it could be the casedhatrthmutually exclusive. So
one could, for instance, only match the network diameter but not the ddggtedution or vice versa.

However, as we show later this is not the case.

Now we turn our attention to automatically estimating the Kronecker initiator grapk.s€tting is that
we are given a real netwoik and would like to find a Stochastic Kronecker initiaf@y that produces a
synthetic Kronecker grapH thatis “similar” toG. One way to measure similarity is to compare statistical
network properties, like diameter and degree distribution, of grépasd K.

Comparing statistical properties already suggests a very direct appim#ds problem: One could first
identify the set of statistics to match, then define an error metric and somehowizgpover it. For
example, one could use the KL divergenkellback and Leibler1951], or the sum of squared differences
between the degree distribution of the real netw@rknd its synthetic counterpaki. Moreover, as we
are interested in matching several such statistics between the network®oliehave to meaningfully
combine these individual error metrics into a global error metric. So, onddaltave to specify what
kind of properties he or she cares about and then combine them aagpgrdihis would be a hard task
as the patterns of interest have very different magnitudes and scate@soWér, as new network patterns
are discovered, the error functions would have to be changed andsweekstimated. And even then it
is not clear how to define the optimization procedure and how to perform optianizover the parameter
space.

Our approach here is different. Instead of committing to a set of netwopepties ahead of time, we will
try to directly match the adjacency matrices of real netw@nd its synthetic counterpaii. The idea is
that if the adjacency matrices are similar then the global statistical propettéist{ss computed ovek
and(@) will also match. Moreover, by directly working with the graph itself (and suwhmary statistics),
we do not commit to any particular set of network statistics (network progfstiderns) and as new
statistical properties of networks are discovered our models and estinzatedgiers still hold.

5.5.1 Preliminaries

Stochastic graph models introduce probability distributions over graphsen&rgtive model assigns a
probability P(G) to every graphG. P(G) is thelikelihood that a given model (with a given set of
parameters) generated gragh We concentrate on Stochastic Kronecker Graph model, and consider
fitting it to a real graphz, our data. We use maximum likelihood approadadh, we aim to find parameter
values, the initiato®;, that maximize the”(G) under the Stochastic Kronecker model.

This presents several challenges:

e Model selection: Graph is a single structure, and not a set of items drawn i.i.d. from some distrib
tion. So one can not split it into independent training and test sets. Thegddtadheters will thus
be best to generateparticular instance of a graph. Also, overfitting could be an issue since more
complex model generally fits better.

e Node correspondence:The second challenge is the node correspondence or node labeling prob
lem. GraphGG has a set ofV nodes, and each node has unique index (label, id). Labels do ngt carr
any particular meaning, they just uniquely denote or identify the nodesc&nthink of this as the
graph is first generated and then the labels (node ids) are randomlgexsithis means that two
isomorphic graphs that have different node ids should have the samedib@lilPermutatiom is
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sufficient to describe the node correspondences as it maps labets (idsles of the graph. To com-
pute the likelihoodP(G) one has to consider all node correspondetit@s) = > P(G|o)P(o),
where the sum is over alV! permutationsr of N nodes. Calculating thisuper-exponentisgum
explicitly is unfeasible for any graph with more than a handful of nodesiitively, one can think
of this summation as some kind of graph isomorphism test where we are isgdiahbest corre-
spondence (mapping) between node&andP.

* Likelihood estimation: CalculatingP(G|o) naively takesD(N?) as one has to evaluate the prob-
ability of each of theV2 possible edges in the graph adjacency matrix. Again, for graphs of size w
want to model here, approaches with quadratic complexity are infeasible.

To develop our solution we use sampling to avoid super-exponential sentf@/node correspondences.
By exploiting the structure of the Kronecker matrix multiplication we develop aardhgn to evaluate
P(Glo)inlineartime O(E). Since real graphs asparsei.e., the number of edges is roughly of the same
order as the number of nodes, this makes fitting of Kronecker Graphgtoratworks feasible.

5.5.2 Problem formulation

Suppose we are given a grapgton N = N} nodes (for some positive integle), and aN; x N; Stochastic
Kronecker Graph initiator matri®;. HereP; is a parameter matrix, a set of parameters that we aim to
estimate. For now also assumg, the size of the initiator matrix, is given. Later we will show how to
automatically select it. Next, using; we create a Stochastic Kronecker Graph probability ma®ix
where every entry,,,, of P, contains a probability that node links to nodev. We then evaluate the
probability thatG is a realization ofP,. The task is to find suc#; that has the highest probability of
realizing (generating)-.

Formally, we are solving:

arg max P(G|P1) (5.3)
1

To keep the notation simpler we use standard syndbtd denote the parameter matf that we are
trying to estimate. We denote entries@f= P, = [¢;;], and similarly we denot® = P, = [p;;]. Note
that here we slightly simplified the notation: we #3¢o refer toP,, andd;; are elements ad. Similarly,
pi; are elements oP (= Px). Moreover, we denot& = R(P), i.e, K is a realization of the Stochastic
Kronecker graph sampled from probabilistic adjacency mé&rix

As noted before, the node ids are assigned arbitrary and they casignificant information, which means
that we have to consider all the mappings of nodes fédmo rows and columns of stochastic adjacency
matrix P. A priori all labelings are equally likely. A permutation of the set{1,..., N} defines this
mapping of nodes frorr to stochastic adjacency matrx To evaluate the likelihood af one needs to
consider all possible mappings &f nodes ofGG to rows (columns) ofP. For convenience we work with
log-likelihood!(©), and solve® = arg maxg [(©), wherel(©) is defined as:

1(©) = log P(G|®) =log ) P(G|O,0)P(c]0O)
= log) P(G|6,5)P(0) (5.4)
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' Kronecker
arg max P ( — @)

Figure 5.11: Kronecker parameter estimation as an optimization probl&we search over the initia-
tor matrices® (= P;). Using Kronecker multiplication we create probabilistidjacency
matrix ©*] that is of same size as real netwark Now, we evaluate the likelihood by si-
multaneously traversing and multiplying entries@fand©*! (see Eq5.5). As shown by
the figure permutatios plays an important role, as permuting rows and columrs obuld
make it look more similar t®*] and thus increase the likelihood.

The likelihood that a given initiator matri® and permutation gave rise to the real gragh, P(G|©, o),

is calculated naturally as follows. First, by usi@gwe create the Stochastic Kronecker graph adjacency
matrix P = P, = Ol¥l. Permutatiory defines the mapping of nodes 6fto the rows and columns of
stochastic adjacency matriR. (See Figurés.11for illustration.) We then model edges as independent
Bernoulli random variables parameterized by the parameter m@triso, each entry,, of P gives
exactly the probability of edgeu, v) appearing.

We then define the likelihood:

P(G|P, o) H Plow, o] H (1 = Plow,0v]), (5.5)
(u0)eG (u,0)¢G

where we denote; as thei’” element of the permutatian andP[i, j] is the element at rody and column
j of matrix P = Ok,

The likelihood is defined very naturally. We traverse the entries of adjga@atrix G and then based on
whether a particular edge appearedsior not we take the probability of edge occurring (or not) as given
by P, and multiply these probabilities. As one has to touch all the entries of the stachdjacency
matrix P evaluating Equatios.5takesO(N?).

We further illustrate the process of estimating Stochastic Kronecker initiatoixnmatin Figure5.11

We search over initiator matricé3 to find the one that maximizes the likelihodt| G|©). To estimate
P(G|©) we are given a concret® and now we use Kronecker multiplication to create probabilistic
adjacency matri®¥! that is of same size as real netwa@rk Now, we evaluate the likelihood by traversing
the corresponding entries 6f and©!*!. Equation5.5 basically traverses the adjacency matrix®fand
maps every entryu, v) of G to a corresponding entrfy,,, o,,) of P. Then in case that edde, v) exists

in G (i.e, G[u,v] = 1) likelihood that particular edge existing [0, 0,,], and similarly, in case the
edge(u, v) does not exists the likelihood is simply— P|o,, 0,]. This also demonstrates the importance
of permutations, as permuting rows and columns Gfcould make the adjacency matrix looking more
“similar” to ©*], and would increase the likelihood.

So far we showed how to asses the quality (likelihood) of a parti¢dla®o, naively one could perform
some kind of exhaustive grid search to find b@stHowevgr, this is very inefficient. A better way of
doing it is to compute the gradient of the Iog-IikeIiho%l(@), and then use the gradient to update the
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Algorithm 5.1: KRONFIT algorithm.

input : size of parameter matri¥;, graphG on N = N nodes, and learning rate
output: MLE parameter® (N7 x N; probability matrix)

initialize ©,
while not convergedio
evaluate gradientéi@l(ét)
update parameter estimatéy;, ;| = O, + )‘a%tl(ét)
end
return © = 6,

current estimate a and move towards a solution of higher likelihood. Algoritbm gives an outline of
the optimization procedure.

However, there are several difficulties with this algorithm. First, we arenaisgy gradient descent type
optimization will work,i.e. the problem does not have (too many) local minima. Second, we are summing
over exponentially many permutations in equatmd. Third, the evaluation of equatioh.5 as it is
written takesO(IN?) and needs to be evaluatéd times. So, just naively calculating the likelihood takes
O(N!N?).

Observation 5.5.1. The complexity of calculating the likelihoall(G|©) of the graphG naively is
O(N'!N?), whereN is the number of nodes .

Next, we show that all this can be dondimear time

5.5.3 Summing over the node labelings

To maximize equatioB.3using algorithnb.1we need to obtain the gradient of the Iog-IikeIihoﬁgl(@).
We can write:

) 1oy _ Lo (G0 0)P(0)
> P(Glo’,©)P(d’)
0log P(G|o, ©)

x, 2P0 b, 0)p(o)
- P(G|O)
_ o Qlos f;g'“ ) piolc, 0) (5.6)

e}

Note we are still summing over aN'! permutationgr, so calculating edb.6is computationally intractable
for graphs with more than a handful of nodes. However, the equat®a hice form which allows for use
of simulation techniques to avoid the summation over super-exponentially maleycoorespondences.
Thus, we simulate draws from the permutation distributitfior|G, ©), and then evaluate the quantities
at the sampled permutations to obtain the expected values of log-likelihoodaaidrg. Algorithm5.2
gives the details.
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Algorithm 5.2: Calculating log-likelihood and gradient
input : Parameter matri®, and graph
output: Log-likelihood!(©), and gradieng%l(@)
fort:=1toTdo
o .= SamplePermutation (G, ©)
l; =log P(Glo®, ©)
grad, := % log P(Glo®), ©)
end
return 1(©) = £ 37,1, and;51(0) = £ 3", grad,

Sampling permutations

Next, we describe the Metropolis algorithm to simulate draws from the permuthsivibution P (o |G, ©),
which is given by

. P(.G,®) Y, P(0,G.0)
Pl6.0) = sp ae) ~ Z,

whereZ, is the normalizing constant that is hard to compute since it involves the sunidveements.
However, if we compute the likelihood ratio between permutatioasdo’ (Equations.7) the normalizing
constants nicely cancel out:

P(d'|G,0) H Plow, 0u] H (1= Ploy,0u])
St = Sw e o Tw O] (5.7)
o _ o
P(U‘G’ 9) (u,v)eG P[UU7UU] (U,’L))%G P[UU7UU])
Plow, o4 H (1 = Ploy, ou])
= I == e (5.8)
(u,v)eG 'P[U{“ 0’2] (u,0)¢G (1 B ,P[U{u ‘71,;])
(UMUU)#(ULUD (Uu’gv)?ﬁ(U;’U{;)

This immediately suggests to use of Metropolis sampling algoritBamjerman1997 to simulate draws
from the permutation distribution since Metropolis is solely based on such i@iosre normalizing
constants cancel out). In particular, suppose that in the MetropoligthlgofAlgorithm 5.3) we consider
a move from permutatios to a new permutation’. Probability of accepting the move & is given by

Equation5.7 (if A%&s) < 1) or 1 otherwise.

Now we have to devise a way to sample permutati@risom the proposal distribution. One way to do
this would be to simply generate a random permutatioand then check the acceptance condition. This
would be very inefficient as we expect the distributiB(v |G, ©) to be heavily skewed,e., there will

be a relatively small number of good node mappings. Even more so as tree dégtributions in real
networks are skewed there will be many bad permutations with low likelihoodesngood ones that do

a good job in matching nodes of high degree.

To make the sampling process “smoothe, sample permutations that are not that different (and thus
are not randomly jumping across the permutation space) we design a Mdwdiov The idea is to stay in
high likelihood part of permutation space longer. We do this by making samefendenti.e., giveno’

we want to generate next candidate permutatiomo then evaluate the likelihood ratio. When designing
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Algorithm 5.3: SamplePermutation( G, ©) : Metropolis sampling of the node permutation.
input : Kronecker initiator matri© and a graplz on N nodes
output: Permutations) ~ P(o|G, ©)

o :=(1,...,N)

1=1
repeat
Draw j andk uniformly from (1,..., N)

o) := SwapNodes(c(— Y, j, k)
Draw v from U (0, 1)

P(c"|G,0)
P ICO) then

o = g1
end
izi+1l
until o) ~ P(c|G,0©)
return o

if u>

WhereU (0, 1) is a uniform distribution orf0, 1], ando’ := SwapNodes( o, j, k) is the
permutations’ obtained fronmo by swapping elements at positionandk.

the Markov chain step one has to be careful so that the proposal distnilsatisfies the detailed balance
condition. This means that probability of a generating a candidafeom o’ has to be same as transition
in the opposite wayP (¢’ — ¢”) = P(¢” — o’).

In algorithm 5.3 we use a simple proposal where given permutatibnve generater” by swapping
elements at two uniformly at random chosen positions’of\We refer to this proposal &&wapNodes.
While this is simple and clearly satisfies the detailed balance condition it is alsaieeffin a way
that most of the times low degree nodes will get swapped (a direct comsegjof heavy tailed degree
distributions). This has two consequences, (a) we will slowly convergmaa permutations (accurate
mappings of high degree nodes), and (b) once we reach a good pgomwary few permutations will
get accepted as most proposed permutatidngill swap low degree nodes (as they form the majority of
nodes).

A possibly more efficient way would be to swap elements dfiased based on corresponding node de-
gree. However, doing this directly does not satisfy the detailed balamzitiom. A way of sampling
labels biased by node degrees that at the same time satisfies the detailed baladiton is the fol-
lowing: we pick an edge it uniformly at random and swap the labels of the endpoints. Notice this
is biased towards swapping labels of nodes with high degrees simply asaheyrtore edges. The de-
tailed balance condition holds as edges are sampled uniformly at randomef&¥ear this proposal as
SwapEdgeEndpoints

However, the issue with this proposal is that if the gr&pls disconnected, we will only be swapping
labels of nodes that belong to the same connected component. This measmntkagparts of the per-
mutation space will never get visited. To overcome this problem we ex&wépNodes with some
probabilityw andSwapEdgeEndpoints  with probability 1 — w.

To summarize we consider the following two permutation proposal distributions:

e ¢’ = SwapNodes(¢’): we obtains” by takings’, uniformly at random selecting a pair of elements

116



and swapping their positions.

e ¢’ = SwapEdgeEndpoints (¢’): we obtaine” from ¢’ by first sampling an edgg, k) from G
uniformly at random, then we také and swap the labels at positiopandk.

Speeding up the likelihood ratio calculation

We further speed up the algorithm by using the following observation. Atsanwrthe equatiors.7 takes
O(N?) to evaluate since we have to considéf possible edges. However, notice that permutations
ando’ differ only at two positionsi.e. elements at positios andk are swapped,e., ¢ ando’ map all
nodes except the two to the same locations. This means those elements ofregatamcel out. Thus

to update the likelihood we only need to traverse two rows and columns of niatimamely rows and
columnsj andk, since everywhere else the mapping of the nodes to the adjacency matris#srbdor
both permutations. This gives equatm8where the products now range only over the two rows/columns
of P whereo ando’ differ.

Graphs we are working with here are too large to allow us to explicitly createstme the stochastic
adjacency matri® by Kronecker powering the initiator matr2. Every time probabilityP[i, j] of edge
(i,7) is needed the equatidn2 is evaluated, which take@(k). So a single iteration of algorithrd.3
takesO(kN).

Observation 5.5.2. Sampling a permutatioa from P (|G, ©) takesO(kN).

This is gives us an improvement over th¢ N'!) complexity of summing over all the permutations. So
far we have shown how to obtain a permutation but we still need to evaluate éfiadidd and find the
gradients that will guide us in finding good initiator matrix. The problem hereasrihively evaluating
the network likelihood (gradient) as written in equat®s takes timeO(N?). This is exactly what we
investigate next and how to calculate the likelihoodimear time

5.5.4 Efficiently evaluating likelihood and gradient

We just showed how to efficiently sample node permutations. Now, givemaupation we show how to
efficiently evaluate the likelihood and it's gradient. Similarly as evaluating the likethratio, naively
calculating the log-likelihood(©) or its gradient%l(@) takes time quadratic in the number of nodes.
Next, we show how to compute this in linear tirog £).

We begin with the observation that real graphs are sparse, which mednsamumber of edges is not
quadratic but rather almost linear in the number of nodess N2. This means that majority of entries

of graph adjacency matrix are zer®,, most of the edges are not present. We exploit this fact. The idea is
to first calculate the likelihood (gradient) of an empty gragh, a graph with zero edges, and then correct
for the edges that actually appearin

To naively calculate the likelihood for an empty graph one needs to evakettgeell of graph adjacency
matrix. We consider Taylor approximation to the likelihood, and exploit the streof matrixP to devise
a constant time algorithm.

First, consider the second order Taylor approximation to log-likelihoodnofédge that succeeds with
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probability z but does not appear in the graph:

Calculatingl.(0©), the log-likelihood of an empty graph, becomes:

N N N1 N k 1 N1 Ny k
1e(©) = ZZlog(l — pij) = —<229@'j> - 2<ZZ%2> (5.9)

i=1 j=1 =1 j=1 =1 =1

Notice that while the first pair of sums ranges o¥eelements, the last pair only ranges oyarelements
(N1 = log;, N). Equation5.9holds due to the recursive structure of maffixyenerated by the Kronecker
product. We substitute theg(1 — p;;) with its Taylor approximation, which gives a sum over elements
of P and their squares. Next, we notice the sum of elemeni fuirms a multinomial series, and thus
>, i = (325, 05", whered;; denotes an element 6f, andp;; element of0*].

Calculating log-likelihood oiG now takesO(FE): First, we calculate the likelihood of an empty graph
in constant time, and then account for the edges that are actually piesenite., we subtract no-edge
likelihood and add the edge likelihoods:

() =1(0)+ > —log(l —Ploy,0u]) +log(Plow, 0u])
(u0)eG

5.5.5 Calculating the gradient

Calculation of the gradient of log-likelihood follows exactly the same pattedeasribed above. We first
calculate gradient as if grapghi would have no edges. Then we correct the gradient for the edgesréhat
present inG. As in previous section we speed up the calculations of the gradient lyitaxgp the fact
that two consecutive permutatioasando’ differ only at two positions, and thus given the gradient from
previous step one only needs to account for the swap of the two rowsodundns of the gradient matrix
JP /00 to update to the gradients of individual parameters.

5.5.6 Determining the size of initiator matrix

The question we answer next is how to determine the right number of parametewhat is the right
size of © matrix? This is a classical question of model selection where there is a tréddaten the
complexity of the model, and the quality of the fit. Bigger model with more paramesely fits better,
however it is also more likely to overfit the data.

For model selection to find the appropriate valuéVaf the size of matriX©, and choose the right tradeoff
between the complexity of the model and the quality of the fit, we propose to efayes Informa-
tion Criterion (BIC) [Schwarz 1978. Stochastic Kronecker Graphs model the presence of edges with
independent Bernoulli random variables, where the canonical nuailparameters isv2k which is a
function of a lower-dimensional parameter This is then aurved exponential familjefron, 1979, and

BIC naturally applies:

BIC = —(6) + %Nf log(N?)
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where® are maximum likelihood parameters under the model Witbf size Ny x Ny, and N is the
number of nodes id.

Similarly, to BIC one could also consider the Minimum Description Length (MDR)sfanen1978
principle where the model is scored by the quality of the fit plus the size ofakerightion that encodes
the model and the parameters.

5.6 Experiments on real and synthetic data

We divide the experiments into several subsections. First we examinerthergence and mixing of the
Markov chain of our permutation sampling scheme. Then we consider estintia¢imarameters of the
synthetic Kronecker graphs to see whetherd{FIT is able to recover the parameters used to generate
the network. Last, we consider fitting Stochastic Kronecker Graph to feajavorld networks.

5.6.1 Permutation sampling

In our experiments we considered both synthetic and real graphs.dun&gioned otherwise all synthetic
Kronecker graphs were generated usitfg= [0.8,0.6; 0.5, 0.3], andk = 14 which gives us a grapfy on

N = 16,384 nodes andr = 115, 741 edges. We chose this particufdf as it closely resembles a typical
initiator for real networks (that we show later).

Convergence of the log-likelihood and the gradient

First, we examine the convergence of Metropolis permutation sampling. Ag Begt permutation is
obtained from the previous one by locally modifying it this creates a Markamnc We want to assess
the convergence and mixing of the chaiie,, determine how many permutations one needs to draw to
reliably estimate the likelihood and the gradient, and also how long does it taketdhthples converge

to the stationary distribution. For the experiment we generated a synthetitaStiocKronecker Graph
using’P; as defined above. Then, starting with a random permutation we run alg&igend measure
how the likelihood and the gradients converge to their true values.

In this particular case we first generated Stochastic Kronecker Graph described above, but then
calculated the likelihood and the parameter gradientsofor= [0.8,0.75;0.45,0.3]. We average the
likelihoods and gradients over buckets of 1,000 consecutive sampleéglanhow the log-likelihood
calculated over the sampled permutations approaches the true log-likelthabaé can compute since
G is a Stochastic Kronecker Graph).

First, we present experiments that aim to answer how many sam@epérmutations) does one need

to draw to obtain a reliable estimate of the gradient (see Equéat®n Figure5.14a) shows how the
estimated log-likelihood approaches the true likelihood. Notice that estimateelsvallickly converge

to their true valuesi.e., Metropolis sampling quickly moves towards “good” permutations. Similarly,
Figure5.12b) plots the convergence of the gradients. Notice thatand6fs of © andP; match, so
gradients of these two parameters should converge to zero and indgelbtt@n the other hand;, and

62, differ between©’ andP;. Notice, the gradient for one is positive as the param@teof © should

be decreased, and similarly féy;, the gradient is negative as the parameter value should be increased to
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Figure 5.12: Convergence of the log-likelihood and gradients towardasrttiue values for Metropolis
permutation sampling (algorith3) with the number of samples.

match the®’. In summary, this shows that log-likelihood and gradients rather quicklyerge to their
true values.

Moreover, in Figure$.12c) and (d) we investigate the properties of the Markov Chain Monte Carlo
sampling procedure, and asses convergence and mixing criteria. Fargliotthe fraction of accepted
proposals. It stabilizes at around 15%, which is quite close to the rudetlofimb of 25%. Second,
Figure5.12d) plots the autocorrelation of the log-likelihood as a function of the lag. ¢artelationr,

of a signalX is a function of the lag: wherer;, is defined as the correlation of signsl at timet with

X att + k, i.e, correlation of the signal with itself at lalg High autocorrelations within chains indicate
slow mixing and, usually, slow convergence. On the other hand fasy d@éeaitocorrelation means better
the mixing and thus one needs less samples to accurately estimate the grathientkalihood. Notice
rather fast autocorrelation decay.

All'in all, these experiments show that one needs to sample an order of thmisinds of permutations
for the estimates to converge. We also verified that the variance of the estisatéficiently small. In
our experiments we start with a random permutation and use long burn-in tines When performing
optimization we use the permutation from previous step to initialize the permutatianrantstep of
gradient descent. The intuition is that small changeB(in|G, ©) also mean small changeséh
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Figure 5.13: Convergence of the log-likelihood and gradients for Metligppermutation sampling (al-
gorithm 5.3) for different choices ofv that interpolates between tissvapNodes (w = 1)
andSwapEdgeEndpoints (w = 0) permutation proposal distributions.

Different proposal distributions

In section5.5.3we defined two permutation sampling proposal distributi@wapNodes where we pick
two nodes uniformly at random and swap their labels (node ids);SsmapEdgeEndpoints  where
we pick a random edge in a graph and then swap the labels of the edgaréadpe also discussed
that one can interpolate between the two strategies by exechtirgpNodes with probability w, and
SwapEdgeEndpoints  with probabilityl — w.

So, given a Stochastic Kronecker Gragghon N = 16,384 and E = 115, 741 generated fronP; =
[0.8,0.7;0.5,0.3] we evaluate the likelihood &' = [0.8,0.75; 0.45, 0.3]. As we sample permutations we
observe how the estimated likelihood converges to the true likelihood. Mereay also vary parameter
w that interpolates between the two permutation proposal distributions. Theegthe converge towards
the true log-likelihood the better the proposal distribution.

Figure5.13plots the convergence of the log-likelihood with the number of sampled perrmgatide plot
the average over non-overlapping buckets of 1,000 consecutiweufegtions. Faster convergence means
better permutation proposal distribution. When we use 8mgpNodes (w = 1) or SwapEdgeEndpoints
(w = 0) convergence is rather slow. We obtain best convergence émound0.6.

Similarly, Figure5.14(a) plots the autocorrelation as a function of the kafpr different choices ofv.
Faster autocorrelation decay means better mixing of the Markov chain. Augatice that we get best
mixing forw = 0.6. (Notice logarithmic y-axis.)

Last, we diagnose how long the sampling procedure must be run befogetieeated samples can be
considered to be drawn (approximately) from the stationary distributioncalV¢his the burn-in time of
the chain. There are various procedures for assessing coneerdéere we adopt the approach of Gelman
et al.[Gelman et a].2003, that is based on running multiple Markov chains each from a diffetartiisg
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Figure 5.14: (a) Autocorrelation plot of the log-likelihood for the diffent choices of parameter Notice
we get best mixing withv = 0.6. (b) The potential scale reduction that compares the
variance inside- and across- independent Markov chairdifferent values of parameter.

point, and then comparing the variance within the chain and between the .ciibmsooner the within-
and between-chain variances become equal the faster the burn-in.gmthe sooner the samples are
drawn from the stationary distribution.

Let [ be the parameter that is being simulated witldifferent chains, and then IéJYC) denote thek!"
sample of thej*” chain, wherej = 1,...,J andk = 1,..., K. More specifically, in our case we
run separate permutation sampling chains. So, we first sample permutffiﬂcmnd then calculate the

corresponding Iog-likelihoobf).

First, we compute between and within chain varianégsand 63,, where between-chain variance is
obtained by

K
J-1

J

(ly—1.)°
1

J
6% =
wherel; = LS5 1 andl. = 1 327 1

Similarly the within-chain variance is defined by

Then, the marginal posterior variance/a$ calculated using

. K—-1, 1,
02:7[( 0124/4—?0%

And, finally, we estimate thpotential scale reductiofGelman et al.2003 of [ by
- 52
Vi=\Z
Ow
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Figure 5.15: (a) Distribution of log-likelihood of permutations samgleniformly at random, and (b)
when sampled fronP(c|©,G). Notice the space of good permutations is rather small
but our sampling quickly finds permutations of high likelitb (c) Convergence of log-
likelihood for 10 runs of gradient descent, each from a d#ifee random starting point.

Note that as the length of the chalti — oo \/E converges to 1 from above. A recommendation for
convergence assessment frad@eJman et al.2003 is that potential scale reduction is below 1.2.

Figure 5.14b) gives the Gelman-Rubin-Brooks plot, where we plot the potential srealiection\/ﬁ
over the increasing chain lengti for different choices of parameter. Notice that the potential scale
reduction quickly decays towards 1. Similarly as in Figbré4the extreme values af give slow decay,
while we obtain fastest potential scale reduction wies 0.6.

Properties of the permutation space

Next we explore the properties of the permutation space. We would like tifpuahat fraction of per-
mutations are “good” (have high likelihood), and how quickly do we disctivem. For the experiment
we took a real networky (As-RoUTEVIEWS network) and the MLE parametes for it that we esti-
mated before hand((é)) ~ —150,000). The networkG has6, 474 nodes which means the space of all
permutations has: 102290 elements.

First, we sampled 1 billion1(?) permutationsr; uniformly at randomj.e., P(o;) = 1/(6,474!) and for
each evaluated its log-likelihoddo|©;) = log P(©;|G, o). We ordered the permutations in deceasing
log-likelihood and plotted(c|©;) vs. rank. Figures.15a) gives the plot. Notice that very few random
permutations are very badd., they give low likelihood), similarly few permutations are very good, while
most of them are somewhere in between. Notice that best “random” permuttetsolog-likelihood of

~ —320, 000, which is far below true likelihood(©) ~ —150,000. This suggests that only a very small
fraction of all permutations gives good node labelings.

On the other hand, we also repeated the same experiment but now samptedatiens from the per-
mutation distributiors; ~ P(c|©, G) using our Metropolis sampling scheme. Figbt&é5b) gives the
plot. Notice the radical difference. Now tliés|©;) very quickly converges to the true likelihood of
~ —150,000. This suggest that while the number of “good” permutations (accurate maghpings) is
rather small, our sampling procedure quickly converges to the “gooddptre permutation space where
node mappings are accurate.
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5.6.2 Properties of the optimization space

In maximizing the likelihood we use stochastic approximation to the gradient. THs \&tiance to
the gradient and makes efficient optimization techniques, like conjugateegtadighly unstable. Thus
we use gradient descent, which is slower but easier to control. First, \ke tha following observa-
tion:

Observation 5.6.1. Given a real graphG then finding the maximum likelihood Stochastic Kronecker
initiator matrix ©

A~

O = arg max P(G|O)

iS a non-convex optimization problem.

Proof. By definition permutations of the Kronecker graphs initiator maéixall have the same log-
likelihood. This means that we have several global minima that corresp@urmtations of parameter
matrix ©, and then between them the log-likelihood drops. This means that the optimipatiolem is
non-convex. O

The above observation seem not to give much promise to estimatiaging gradient descent as it is
prone to local minima. To check for the presence of other local minima whatkemt descent could get
stuck we run the following experiment: we generated 100 synthetic Krenepiaphs on 16,382{%)
nodes and 1.4 million edges on the average, with a randomly cl2os@mparameter matri©*. For each
of the 100 graphs we run gradient descent starting from a diffeagwtom parameter matri®’, and try

to recover®*. In 98% of the cases the gradient descent converged to the true parsimidany times
the algorithm converged to a different global minima,, © is a permuted version of original parameter
matrix ©*. Moreover, the median number of gradient descent iterations was only 52

This suggests surprisingly nice structure of our optimization space: it seefmshave like a convex
optimization problem with many equivalent global minima. Moreover, this expetinsealso a good
sanity check as it shows that given a Kronecker graph we can neaodeidentify the parameters that
were used to generate it.

Moreover, Figures.15c) plots the log-likelihood (©,) of the current parameter estima®g over the
iterationst of the stochastic gradient descent. We plot the log-likelihood for 10 differuns of gra-
dient descent, each time starting from a different random set of panangie Notice that in all runs
gradient descent always converges towards the optimum, and none it gets stuck is some local
maxima.

5.6.3 Convergence of the graph properties

We approached the problem of estimating Stochastic Kronecker initiator néatoix defining the like-
lihood over the individual entries of the graph adjacency matrix. Howevieat we would really like is
to be given a real grapy’ and then generate a synthetic gragtthat has similar network properties as
G. By properties we mean network statistics that can be computed from the grgpdiameter, degree
distribution, clustering coefficient, etc. A priori it is not clear that ourraggh which tries to match in-
dividual entries of graph adjacency matrix will also be able to reproduesetlylobal network statistics.
However, as show next this is not the case.
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Figure 5.16: Convergence of graph patterns with the number of iteratidrgradient descent using the
synthetic dataset.

To get some understanding of the convergence of the gradient dés¢erms of the network properties
we performed the following experiment. After every stayg stochastic gradient descent, we compare the
true graph(@ with the synthetic Kronecker grapki; generated using the current parameter estinfates
Figure5.16a) gives the convergence of log-likelihood, and (b) gives absolute & parameter values
(3" 1055 — 05,1, whered;; € ©,, andb;; € ©7). Similarly, Figure5.16(c) plots the effective diameter, and
(d) gives the largest singular value of graph adjacency mafres it converges to largest singular value

of G.

Note how with progressing iterations of gradient descent propertiesaphgy; quickly converge to
those ofGG even though we are not directly optimizing the similarity in network propertieslikaegihood
increases, absolute error of parameters decreases, diameter astidargular value ok’; both converge
to G. This is a nice result as it shows that through maximizing the likelihood the reggitaphs become
more and more similar also in their structural properties (even though wetd&ectly optimizing over
them).
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Figure 5.17: Autonomous SystemA$-ROUTEVIEWS): Overlayed patterns of real graph and the fitted
Kronecker graph. Notice that the fitted Kronecker graph hmed@atterns of the real graph
while using only four parameter8 ( 2 initiator matrix).

5.6.4 Fitting to real-world networks

Next, we present experiments of fitting Kronecker Graphs model to redthmetworks. Given a real
networkG we aim to discover the most likely parametérshat ideally would generate a synthetic graph
K having similar properties as reél. This assumes that Kronecker Graphs is a good model of the
network structure, and thatRONFIT is able to find good parameters. In previous section we showed that
KRONFIT can efficiently recover the parameters. Now we examine how well cang€kan graphs model

the structure of real networks.

We consider several different networks, like a graph of connectivitgpng Internet Autonomous systems
(As-ROUTEVIEWS) with N = 6,474 and F =26,467; a who-trusts-whom type social network from
Epinions Richardson et 812003 (EPINIONS) with N =75,879 and’ =508,960 and many others. The
largest network we consider for fitting is. EKR photo-sharing online social network with 584,207 nodes
and 3,555,115 edges.

For the purpose of this section we take a real netw@rkind parameter® using KRONFIT, generate a
synthetic graph using®, and then compar€é and K by comparing their properties that we introduced
in section5.2 In all experiments we started from a random point (random initiator matckyan gradient
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descent for 100 steps. At each step we estimate the likelihood and thegtzaed on 510,000 sampled
permutations where we discard first 10,000 samples to allow the chain tarburn-

Fitting to Autonomous Systems network

First, we focus on the Autonomous Systems network obtained from the iditywwef Oregon Route Views
project RouteViews 1997. Given the AS networky we run KRONFIT to obtain parameter estimat®s
Using the® we then generate a synthetic Kronecker grdphand compare the properties 6f and
K.

Figure5.17shows properties of & ROUTEVIEWS, and compares them with the properties of a synthetic
Kronecker graph generated using the fitted paramédeo$ size2 x 2. Notice that properties of both
graphs match really well. The estimated parameter®are[0.987,0.571;0.571,0.049].

Figure5.17a) compares the degree distributions of tre ROUTEV IEWS network and its synthetic Kro-
necker estimate. In this and all other plots we use the exponential binning ighacstandard procedure
the de-noise the data when plotting on log—log scales. Notice a very close imategree distribution
between the real graph and its synthetic counterpart.

Figure5.17Db) plots the cumulative number of pairs of nodgs) that can be reached i / hops. The
hop plot gives a sense about the distribution of the shortest path lengths metwork and about the
network diameter. Last, Figur&sl7c) and (d) plot the spectral properties of the graph adjacency matrix.
Figure5.17c) plots largest singular values vs. rank, and (d) plots the componel&g singular vector
(the network value) vs. the rank. Again notice good agreement with thgnagzh while using only four
parameters.

Moreover, on all plots the error bars of two standard deviations showatfi@nce of the graph properties
for different realizations?(©¥1). To obtain the error bars we took the safeand generated 50 real-
izations of a Kronecker graph. As for the most of the plots the error dr@&so small to be practically
invisible, this shows that the variance of network properties when giémgeaStochastic Kronecker graph
is indeed very small.

Also notice that the A-ROUTEVIEWS is an undirected graph, and that the fitted parameter métrix

is in fact symmetric. This means that without a priori biasing the fitting toward&ected graphs, the
recovered parameters obey this aspect of the network. FittexRAUTEVIEWS graph from a random

set of parameters, performing gradient descent for 100 iterationgatagalch iteration sampling half a
million permutations, took less than 10 minutes on a standard desktop PC. Thigmfi@ant speedup
over [Bezakowa et al, 2004, where by using a similar permutation sampling approach for calculating the
likelihood of a preferential attachment model on similes-ROUTEV IEWS graph took about two days on

a cluster of 50 machines, while in our case the computation took 10 minutes sktageC.

Choice of the initiator matrix size Ny

As mentioned earlier for finding the optimal number of parametegs, selecting the size of initiator
matrix, BIC criterion naturally applies to the case of Kronecker Graphsiré23b) shows BIC scores
for the following experiment: We generated Kronecker graph with= 2,187 and £ = 8,736 using
Ny = 3 (9 parameters) anl = 7. For1l < N; < 9 we find the MLE parameters using gradient
descent, and calculate the BIC scores. Model with the lowest scoredgsrthas figuréd.23b) shows we
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N || w6 | Nf | EF ||{degu) >0}| | BIC score
2 [ 152,499 | 8,192 [ 25,023 5,675 152,506
3 | —127,066 | 6,561 | 28,790 5,683 127,083
4 | —153,260 | 16,384 24,925 8,222 153,290
5 | —149,949 | 15,625] 29,111 9,822 149,996
6 | —128,241 | 7,776 | 26,557 6,623 128,309
As-ROUTEVIEWS | 26,467 | 6,474

Table 5.2: Log-likelihood at MLE for different choices of the size ofetinitiator matrix/V; for the As-
RouTEVIEWS graph. Notice the Iog-likelihoodé) generally increases with the model com-
plexity N;. Also notice the effect of zero-paddinge. for Ny = 4 and N; = 5 the con-
straint of the number of nodes being an integer poweNopfdecreases the log-likelihood.
However, the columi{degu) > 0}| gives the number of non-isolated nodes in the network
which is much less thaivf* and is in fact very close to the true number of nodes in tise A
RouTEVIEWS. Using the BIC scores we see thst = 3 or N; = 6 are best choices for the
size of the initiator matrix.

recovered the true modaele., BIC score is the lowest for the model with the true number of parameters,
Ny = 3.

Intuitively we expect a more complex model with more parameters to fit the dti&a. bEhus we expect
larger N, to generally give better likelihood. On the other hand the fit will also departt® size of the
graphG. Kronecker graphs can only generate graphsVgimodes, while real graphs do not necessarily
have N} nodes (for some, preferably small, integdfsandk). To solve this problem we chooseso that
Nf’l < N(G) < N}, and then augmerd by addingN{ — N isolated nodes. Or equivalently, we pad
the adjacency matrix off with zeros until it is of the appropriate siz&F x NF. While this solves the
problem of requiring the integer power of the number of nodes it also nihkditing problem harder as
whenN < NF we are basically fitting plus a large number of isolated nodes.

Table5.2shows the results of fitting Kronecker graphs te-ROUTEV IEwS while varying the size of the
initiator matrix Ny. First, notice that in general largéf; results in higher Iog—likelihood(é) at MLE.
Similarly, notice (columnVF) that while As-ROUTEVIEWS has6, 474 nodes, Kronecker estimates have
up to16, 384 nodes (6, 384 = 47, which is the first integer power of 4 greater titan74). However, we
also show the number of non-zero degree (non-isolated) nodes indhedder graph (columddeq«) >
0}])- Notice that the number of non-isolated nodes well corresponds to tnéeruof nodes in A-
RoOUTEVIEWS network. This shows that KRONFIT is actually fitting the graph well, it successfully fits
the structure of the graph plus a number of isolated nodes. Last, cdlifngives the number of edges in
the corresponding Kronecker graph which is close to the true numbeigekeof the A-ROUTEVIEWS

graph.

Last, comparing the log-likelihood at MLE and the BIC score in T&bPawe notice that the log-likelihood
heavily dominates the BIC score. This means that the size of the initiator matmb@nof parameters)
is so small that one does not really have to care about overfitting. Thusmvgist choose the initiator
matrix that maximizes the likelihood. A simple calculation shows that one would netadtednitiator
matrices with thousands of entries before the model complexity part of Bite seould start to play a
significant role.

We further examine the sensitivity of the choice of the initiator size by the follpwXperiment. We
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Figure 5.18: 3 by 3 Stochastic Kronecker Grap@iven a Stochastic Kronecker Grapghgenerated from
N; = 3 (red curve), we fit a Kronecker gragity with N{ = 2 (green) and<”’ with Ni' =3
(blue). Not surprisinglyK” fits the properties o perfectly as the model is the of same
complexity. On the other hanll’ has only 4 parameters (instead of 9 agirand K'') and
still fits well.

generate a Stochastic Kronecker Grdpton 9 parameters\; = 3), and then fit a Kronecker grapk’
with a smaller number of parameters (4 instead oN9,= 2). And also a Kronecker grapR” of the
same complexity a& (N7 = 3).

Figure 5.18 plots the properties of all three graphs. Not surprisingly (blue) fits the properties of
K (red) perfectly as the initiator is of the same size. On the other E&n@reen) is a simpler model
with only 4 parameters (instead of 9 as/inhand K”’) and still generally fits well: hop plot and degree
distribution match well, while spectral properties of graph adjacency maspeaally scree plot, are not
matched that well. This shows that nothing drastic happens and that evteio@ $imple model still fits
the data well. In general we observe empirically that by increasing the Ginéiator matrix one does
not gain radically better fits for degree distribution and hop plot. On the ditwed there is usually an
improvement in the scree plot and the plot of network values when oneasesdhe initiator size.
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Snapshotattmd N | E | 1(©) | Estimatesat MLEQ
T 2,048] 8,794 | —40,535 | [0.981,0.633;0.633, 0.043]
15 4,088| 15,711 —82,675 | [0.934,0.623;0.622,0.044]
T3 6,474 | 26,467| —152,499 | [0.987,0.571;0.571,0.049]

Table 5.3: Parameter estimates of the three temporal snapshots ofstROATEV IEWS network. Notice
that estimates stay remarkably stable over time.
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Figure 5.19: Autonomous systems network over ti(As-ROUTEVIEWS): Overlayed patterns of real
As-ROUTEVIEWS network at timel’; and the Kronecker graphs with parameters estimated
from As-ROUTEVIEWS at timeT} andT5,. Notice good fits which means that parameters
estimated on historic snapshots can be used to estimateaple i the future.

Network parameters over time

Next we briefly examine the evolution of the Kronecker initiator for a temporalbhéng graph. The
idea is that given parameter estimates of a real-gapat timet, we can forecast the future structure of
the graphiz,, . at timet + z, i.e., using parameters obtained frai we can generate a larger synthetic
graphK that will be similar toG ..

As we have the information about the evolution of the-ROUTEV IEWS network, we estimated param-
eters for three snapshots of the network when it had aPbubdes. Tablé.3 gives the results of the
fitting for the three temporal snapshots of the-ROUTEV IEWS hetwork. Notice the parameter estimates
© remain remarkably stable over time. This means that Kronecker graphsecaset to estimate the
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Network | N E | Estimated parametes | 1(0) | Time
AS-ROUTEVIEWS 6,474 26,467 | [0.987,0.571;0.571,0.049 —152,499 8ml5s
ATP-GR-QC 19,177 26,169 [0.902,0.253;0.221, 0.582 —242,493 | 7m40s
B10-PROTEINS 4,626 29,602 | [0.847,0.641;0.641,0.072] —185,130 | 43m41ls
EMAIL -INSIDE 986 32,128/ [0.999,0.772;0.772,0.257] —107,283 | 1h07m
CA-GR-QC 5,242 28,980 [0.999,0.245; 0.245, 0.691] —160,902 | 14m02s
AS-NEWMAN 22,963 96,872 [0.954,0.594;0.594, 0.019] —593,747 | 28m48s
BLOG-NATO05-6M 31,600 271,377 [0.999,0.569; 0.502,0.221] —1,994,943 | 47m20s
BLOG-NATOBALL 32,443| 318,815/ [0.999,0.578;0.517,0.221] | —2,289,009 | 52m31s
CA-HEP-PH 12,008 237,010 [0.999,0.437;0.437,0.484] —1,272,629 1h22m
CA-HEP-TH 9,877 51,9711 [0.999,0.271;0.271,0.587] —343,614 | 21m17s
CIT-HEP-PH 30,567 | 348,721 [0.994,0.439;0.355,0.5206] —2,607,159 | 51m26s
CIT-HEP-TH 27,770 352,807 [0.990,0.440;0.347,0.538] —2,507,167 | 15m23s
EPINIONS 75,879 508,837/ [0.999,0.532;0.480,0.129] | —3,817,121 | 45m39s
GNUTELLA-25 22,687 54,705 | [0.746,0.496; 0.654, 0.183] —530,199 | 16m22s
GNUTELLA-30 36,682 88,328/ [0.753,0.489; 0.632,0.178] —919,235 | 14m20s
DELICIOUS 205,282| 436,735/ [0.999,0.327;0.348,0.391] | —4,579,001 | 27m51s
ANSWERS 598,314 | 1,834,200/ [0.994,0.384;0.414,0.249] | —20,508,982 | 2h35m
CA-DBLP 425,957| 2,696,489| [0.999,0.307;0.307,0.574] | —26,813,878 | 3h0lm
FLICKR 584,207 3,555,115 [0.999,0.474;0.485,0.144] | —32,043,787 | 4h26m
WEB-NOTREDAME || 325,729| 1,497,134| [0.999,0.414;0.453,0.229] | —14,588,217 | 02h59m

Table 5.4: Results of parameter estimation for 20 different networKsbles in SectiorA.2 give the
description and basic properties of the above network ditas

structure of the networks in the futuiiee., parameters estimated from the historic data can extrapolate the
graph structure in the future.

Figure5.19further explores this. It overlays the graph properties of the reaR&UTEV IEWS network at

time T3 and the synthetic graphs for which we used the parameters obtained aithEspshots of A-
RouTEVIEWS at timesT; andT,. The agreements are good which demonstrates that Kronecker graphs
can forecast the structure of the network in the future.

Moreover, this experiments also shows that parameter estimates do ronsuéh from the zero padding

of graph adjacency matrix.€., adding isolated nodes to mak& have Nf nodes). Snapshots ofsA
RouTEVIEWS at T} and T, have close t@* nodes, while we had to add 26% (1,718) isolated nodes to
the network aff; to make the number of nodes P& Regardless of this we see the parameter estimates
© remain basically constant over time, which seems to be independent of thenafibolated nodes
added. This means that the estimated parameters are not biased too muperr@adding the adjacency
matrix of G.

5.6.5 Fitting to other large real-world networks

Last, we present results of fitting Stochastic Kronecker Graph to 20 taggevorld networks: large on-
line social networks, like EINIONS, FLICKR and DeLIcIous, web and blog graphs (A8-NOTREDAME,
BLOG-NAT05-6M, BLOG-NATOGALL), internet and peer-to-peer networksSSXAIEWMAN, GNUTELLA -
25, GNUTELLA-30), collaboration networks of co-authorships from DBLP (CA-DBldnd various
areas of physics (CA#£P-TH, CA-HEP-PH, CA-GR-QC), physics citation networks (C-HEP-PH, CIT-
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Figure 5.20: Blog network(BLOG-NATO6ALL): Overlayed patterns of real network and the estimated
Kronecker graph using 4 paramete®sx 2 initiator matrix). Notice that the Kronecker
graph matches all properties of the real network.

HEP-TH), an email network (EAIL -INSIDE), a protein interaction network IB-PROTEINS, and a bi-
partite affiliation network (authors-to-papersTAGR-QC). Refer to tableA.2 in the appendix for the
description and basic properties of these networks.

For each dataset we started gradient descent from a random @oido(n initiator matrix) and run it for
100 steps. At each step we estimate the likelihood and the gradient basé&@,08Gsampled permuta-
tions where we discard first 10,000 samples to allow the chain to burn-in.

Table5.4 gives the estimated parameters, the corresponding log-likelihoods analitretosk times. All
experiments were carried out on standard desktop computer. Notice ¢hestimated initiator matrix
© seems to have almost universal structure with a big value in the top left anteyy low value at the
bottom right corner and intermediate values in the other two corners. \#efudiscuss the implications
of such structure of Kronecker initiator matrix on the global network stredtuthe next section.

Last, Figure$.20and5.21show overlays of various network properties of real and the estimateetic
networks. In addition to the network properties we plotted in Figui& we also separately plot in- and
out-degree distributions (as both networks are directed) and plot theetriadgle participation in panel
(c), where we plot the number of triangles a node participates in versuasithier of such nodes. (Again
the error bars show the variance of network properties over ditfeeatizationsk(6*]) of a Stochastic
Kronecker graph.)

Notice that for both networks and in all cases the properties of the reabrieand the synthetic Kronecker
coincide really well. Using Stochastic Kronecker Graph with just 4 parametermatch the scree plot,
degree distributions, triangle participation, hop plot and network values.

Given the experience from the Autonomous systems we only presentsihiesrior the simplest model
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Figure 5.21: EPINIONS who-trusts-whom social networkOverlayed patterns of real network and the
fitted Kronecker graph using only 4 parameté& (2 initiator matrix). Again, the synthetic
Kronecker graph matches all the properties of the real nétwo

with initiator size Ny = 2. Empirically we also observe thaf; = 2 gives surprisingly good fits and the
estimation procedure is the most robust and converges the fastest. Ugegtiator matricesv; > 2
generally helps improve the likelihood but not dramatically. In terms of matchmgeitwork properties
we also get a slight improvement by making the model more complex. Fga&gives the percent
improvement in log-likelihood as we make the model more complex. We use the &ipdikd of a2 x 2
model as a baseline and estimate the log-likelihood at MLE for larger initiator reatriggain, models
with more parameters tend to fit better. However, sometimes due to zero-gaafdimaph adjacency
matrix they actually have lower log-likelihood.

5.6.6 Scalability

Last we also empirically evaluate the scalability of thed&iFIT. The experiment confirms thatRONFIT
runtime scales linearly with the number of edgédsn a graphG. More precisely, we performed the
following experiment.

We generated a sequence of increasingly larger synthetic graptisiodes an@ N edges, and measured
the time of one iteration of gradient descerd, sample 1 million permutations and evaluate the gradients.
We started with a graph on 1,000 nodes, and finished with a graph on 8 millaesnand 64 million
edges. Figur®.23a) shows KRONFIT scaledinearly with the size of the network. We plot wall-clock
time vs. size of the graph. Dashed line presents linear fit to the data points.
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Figure 5.23: (a) Processor time to sample 1 million gradients as the ggaplvs. Notice the algorithm
scales linearly with the graph size. (b) BIC score for moeéé&ction.

5.7 Discussion

Here we discuss several of the desirable properties of the propaoseddker Graphs.

Generality: Stochastic Kronecker Graphs include several other generatorg@alsgases: Fof;; = c,
we obtain classical Eis-Renyi random graph model; f@; ; € {0,1}, we obtain a deterministic Kro-
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(a) 2 x 2 initiator matrix  (b) Two recursive communities (c) Core-periphery

Figure 5.24: 2 x 2 Kronecker initiator matrix (a) can be thought of as two comitias where there are
a andd edges inside each of the communities arahdc edges crossing the communities
as illustrated in (b). The each sub-community can then berseely divided using the
same pattern. (c) The onion like core-periphery structurera the network gets denser and
denser as we move towards the center of the network.

necker graph; setting th&; matrix to a2 x 2 matrix, we obtain the RMAT generataChakrabarti et aJ.
2004. In contrast to Kronecker graphs, the RMAT cannot extrapolate irgduture, since it needs to
know the number of edges to insert. Thus, it is incapable of obeying thefidation power law.

Phase transition phenomenaThe Erdds-Renyi graphs exhibit phase transitiolg§iés and Rnyi, 1964.
Several researchers argue that real systems are “at the edgaosf’ {Bak, 1996 Sole and Goodwin
2004. Stochastic Kronecker Graphs also exhibit phase transitidasiflian and Xu2007 for the emer-
gence of the giant component and another phase transition for cavityecti

Implications to the structure of the large-real networks: Empirically we found thaR x 2 initiator
(N7 = 2) fits well the properties of real-world networks. Moreover, giveha2 initiator matrix, one can
look at it as a recursive expansion of two groups into sub-groupsiniduced this recursive view of
Kronecker graphs back in sectirB. So, one can then interpret the diagonal valugs aé the proportion
of edges inside each of the groups, and the off-diagonal valuestgivieaction of edges connecting the
groups. Figuré.24illustrates the setting for two groups.

For example, as shown in Figube24, largea, d and smalb, ¢ would imply that the network is composed
of hierarchically nested communities, where there are many edges instdea@amunity and few edges
crossing them. One could think of this structure as some kind of organizbtiooaiversity hierarchy,
where one expects the most friendships between people within same lakesstiietween people in the
same department, less across different departments, and the leashipsrio be formed across people
from different schools of the university.

However, parameter estimates for a wide range of networks presentall@b® suggests a very different
picture of the network structure. Notice that for most netwartks> b > ¢ > d. Moreover,a ~ 1,

b~ ¢~ 0.6 andd ~ 0.2. We empirically observed that the same structure of initiator métratso holds
when fitting3 x 3 or 4 x 4 models. Always the top left element is the largest and then the values on the
diagonal decay faster than off the diagonal.

This suggests a network structure which is also knowicas-periphery[Borgatti and Everett200Q
Holme, 2009, thejellyfish[Tauro et al.2001, Siganos et al2006, or theoctopug Chung and Lu20063
structure of the network as illustrated in Fig&r24(c).

All of the above basically say that the network is composed of a denselydlingavork core and the

135



periphery. In our case this would imply the following structure of the initiator ma@ore is modeled by
parameter and the periphery by. The most edges are inside the core (latpeand the fewest between

the nodes of periphery (smal). Then there are many more edges between the core and the periphery
than inside the periphery.(c > d). This is exactly what we see. Many edges are inside the core (large
a), there are very few edges among the periphery nodes (dinalhile there are relatively many edges
connecting the core with the periphetly ¢ are relatively large). And in spirit of Kronecker graphs the
structure repeats recursively — core has again the dense core gretifiteery, and so on. And similarly

the periphery itself has the core and the periphery.

This suggest an “onion” like network structure as illustrated in Figu2ég(c), where the network is com-

posed of denser and denser layers as one moves towards the cémeanetfvork. We also observe similar
structure of the Kronecker initiator when fittirigx 3 or 4 x 4 initiator matrix. The diagonal elements
have large but decreasing values with off diagonal elements following danreasing pattern.

One of the implications of this is that networks do not break nicely into hiei@aliy organized sets of
communities that nicely allow themselves to partitioning and community identificationithigsr On
contrary, this suggests that large networks can be decomposed inteedydarked core with many small
periphery pieces hanging off the core. This is in accordance with @enteesults [[eskovec et aJ.
20084, that make similar observation (but based on a completely different mdtmda@bout the struc-
ture of large real-world networks. We further explore this in greatetildatehapterl0.

5.8 Conclusion

In conclusion, the main contribution of this work is a family of models of netwadrnkcsure that uses a
non-traditional matrix operation, th&onecker productThe resulting graphs (a) have all the static prop-
erties (heavy-tailed degree distribution, small diameter, etc.), (b) all the tahgyoperties (densification,
shrinking diameter) that are found in real networks. And in addition, &tan formally prove all of these
properties.

Several of the proofs are extremely simple, thanks to the rich theory efd€ker multiplication. We also
provide proofs about the diameter and effective diameter, and we slavBtibchastic Kronecker Graphs
can mimic real graphs well.

Moreover, we also presentedRNFIT, a fast, scalable algorithm to estimate Stochastic Kronecker ini-
tiator, which can be then used to create a synthetic graph that mimics thet@epémr given real net-
work.

In contrast to earlier work, our work has the following novelties: (a) inimag the few that estimates the
parameters of the chosen generator in a principled way, (b) it is amongpittadit has a concrete measure
of goodness of the fit (namely, the likelihood), (c) it avoids the quadraticptexity of computing the
likelihood by exploiting the properties of the Kronecker graphs, and (@yatds the factorial explosion
of the node correspondence problem, by using the Metropolis sampling.

The resulting algorithm matches well all the known properties of real gragshwe show with the Epinions
graph and the AS graph, it scales linearly on the number of edges, anoritess of magnitudes faster
than earlier graph-fitting attempts: 20 minutes on a commodity PC, versus 2 dey<laster of 50
workstations Bezakowa et al, 2004 .

The benefits of fitting a Kronecker graph model into a real graph aeralev
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Extrapolation Once we have the Kronecker generatofor a given real matrixG (such thatGy is
mimicked by©*), a larger version of? can be generated kg+1],

Null-model When analyzing a real network one often needs to asses the significance of the
observation©!*! that mimicsG can be used as an accurate modeFof

Network structurefitted parameters give insight into the global network and community structure
of the network.

Forecasting As we demonstrated one can obt&nfrom a graphG, at timet such thatG is
mimicked by@[’“]. Then® can be used to model the structure®f, .. in the future.

Sampling Similarly, if we want a realistic sample of the real graph, we could use a smeajenent
in the Kronecker exponentiation, lik@!*—1.

AnonymizationSince®*] mimics G, we can publist®*], without revealing information about the
nodes of the real grapf.
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Part 1 — Network evolution: Conclusion

Despite the enormous recent interest in large-scale network data, anahtie of interesting patterns
identified for static snapshots of graplesq, heavy-tailed distributions, small-world phenomena), there
has been relatively little work on the properties of the time evolution of re@hgraThis was exactly the
focus of this part of the thesis.

Observations: In contrast to the standard modeling assumption that the average oué-degnans con-
stant over time, we discovered that real graphs have out-degreegdheadver time, following éDensifi-
cation power law Moreover, our experiments also show that the standard assumptiomyf gimwing
diameters does not hold in a range of real networks; ratheditimaetermay actually exhibit gradual
decreaseas the network grows. We then developed the Forest Fire Model, basedlyptwo parame-
ters, where the observed patterns naturaftyergefrom simple local rules that govern individual edge
creation.

Models: We then presented a detailed study of network evolution by analyzing fme taline social
networks with full temporal information about individual node and edgeals. The use of thenaximum-
likelihoodprinciple allowed us to quantify the bias of new edges towards the degudesgarof nodes, and

to objectively compare various models such as preferential attachmerdct|rotir work is the first to
directly quantify the amount of preferential attachment that occurs in ksogal networks. Based on
our observations, we derived an extremely simple yet surprisingly aicorodel of network evolution,
thatfully specifies three essential procestddng place in evolving networks: (a) node arrivals, (b) edges
arrivals, and (c) edge placement.

Algorithms: Last, we presented a family of models of network structure that uses-aaditional ma-

trix operation, theKronecker product We show that resulting graphs (a) have all the static properties
(heavy-tailed degree distribution, small diameter), (b) all the temporakptiep (densification, shrinking
diameter), and in addition, (c) we can formally prove all of these properfiésreover, we also pre-
sented KRONFIT, a fast, scalable algorithm to estimate Kronecker initiator, which can be theghtas
create a synthetic graph that mimics the properties of a given real gragpre &bproach to fitting would
take super-exponential time, whileRONFIT takeslinear time, by exploiting the structure of Kronecker
matrix multiplication and by using sampling. In contrast to earlier work, Kroeegkaphs arenathemat-
ically tractablemodel of network generation satisfying many real network propertiege wie can also
efficiently fit it to graphs on millions of nodes and edges.
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Part |l

Network cascades

How do influence and information spread over
the network, and

how to detect this quickly?
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Part 2 — Network cascades: Overview

A basic premise behind the study of social networks is that interaction leadsplex collective behav-
ior. Cascades are a form of collective behavior that has been addipte empirically and theoretically,
but for which the study of complete, large-scale datasets has been limitee .wdeshow that cascades
exist in a large real-world networks, and investigate some of their strliétatares.

We present two studies of diffusion and cascading behavior in netywhere for the first time we are
able to directly measure millions of propagations individually.

Observations: First, we study the influence and recommendation propagation in a largendrkéting
network. And then present our work on the information propagation onvéieand the cascades this
process results in. We make observations on the shepesand temporal characteristics of the cascades.
We also explore what product and recommendation network factors plale én the propagation and
purchases of products, and notice that the human adoption curve fdiavisishing returngrend, as
opposed to the critical threshold conjecture.

Models: We also analyzed one of the largest available collections of blog informaiminvestigate
how blogs behave and hoinformation propagateshrough the blogosphere. We develop a simple but
accurate model of information propagation on the blogosphere. In somiith viral marketing stars and
chains are basic components of blog cascades, with stars being more common

Algorithms: As we observe the cascades spreading through the network a natasdiog is how to
detect them effectively. For example, given a water distribution netwuahkere should we place sensors
to quickly detect contaminants? Or, which blogs should we read to avoid misgiagtant stories? These
seemingly different problems share common struct@atbreak detectiowan be modeled as selecting
nodes (sensor locations, blogs) in a network, in order to detect thadspgeof a virus or information as
quickly as possible. We present a general methodologypdar optimalsensor placement in these and
related problems. We demonstrate that many realistic outbreak detectionvagecdibit the property of
“submodularity”. We exploit submodularity to develop an efficient algorithat sitales to large problems,
achieving near optimal placements, while bet) timedaster than a simple greedy algorithm. We also
derive online bounds on the quality of the placements obtaineanialgorithm. Our algorithms and
bounds also handle cases where nodes (sensor locations, blogsiifferent costs.
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Chapter 6

Diffusion and cascading behavior in viral
marketing

6.1 Introduction

With consumers showing increasing resistance to traditional forms ofte&ingrsuch as TV or newspa-
per ads, marketers have turned to alternate strategies, including viratmgrkviral marketing exploits
existing social networks by encouraging customers to share prodaotiation with their friends. Previ-
ously, a few in depth studies have shown that social networks affeatitygion of individual innovations
and products (for a review seRggers 1995 or [Strang and Sould998). But until recently it has been
difficult to measure how influential person-to-person recommendatidnallcare over a wide range of
products. Moreover, Subramani and Rajagopaubfamani and Rajagopala2003 noted that “there
needs to be a greater understanding of the contexts in which viral markétitggy works and the char-
acteristics of products and services for which it is most effective. Thisuiscularly important because
the inappropriate use of viral marketing can be counterproductive dating unfavorable attitudes to-
wards products. What is missing is an analysis of viral marketing that higblgylstematic patterns in the
nature of knowledge-sharing and persuasion by influencers apdmsss by recipients in online social
networks.”

Here we were able to in detail study the above mentioned problem. We wern® aliectly measure and
model the effectiveness of recommendations by studying one online rstait@ntivised viral marketing

program. The website gave discounts to customers recommending any aidte{® to others, and then
tracked the resulting purchases and additional recommendations.

Although word of mouth can be a powerful factor influencing purchadiegjsions, it can be tricky for
advertisers to tap into. Some services used by individuals to communicatataral rcandidates for
viral marketing, because the product can be observed or advertigettaof the communication. Email
services such as Hotmail and Yahoo had very fast adoption curvasgeeevery email sent through them
contained an advertisement for the service and because they werkldtesail spent a mere $50,000 on
traditional marketing and still grew from zero to 12 million users in 18 monilsvetson200d. The
Hotmail user base grew faster than any media company in history — fasteCtiidnfaster than AOL,
even faster than Seinfeld’s audience. By mid-2000, Hotmail had over 66 miliers with 270,000 new
accounts being established each dagohson 1998. Google’'s Gmail also captured a significant part of
market share in spite of the fact that threly way to sign up for the service was through a referral.
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Most products cannot be advertised in such a direct way. At the same &bhdlte of products available

to consumers has increased manyfold thanks to online retailers who galg aupuch wider variety of
products than traditional brick-and-mortar stores. Not only is the variefyraducts larger, but one
observes a ‘fat tail' phenomenon, where a large fraction of purshe®eof relatively obscure items. On
Amazon.com, somewhere between 20 to 40 percent of unit sales fall oofsitdetop 100,000 ranked
products Brynjolfsson et al.2003. Rhapsody, a streaming-music service, streams more tracks outside
than inside its top 10,000 tuneAjonymous2005. Some argue that the presence of the long tail indicates
that niche products with low sales are contributing significantly to overal gaiéne.

We find that product purchases that result from recommendationafarrfrom the usual 80-20 rule.
The rule states that the top twenty percent of the products account feréent of the sales. In our case
the top 20% of the products contribute to about half the sales.

Effectively advertising these niche products using traditional advertégpgoaches is impractical. There-
fore using more targeted marketing approaches is advantageous botherttfent and the consumer,
who would benefit from learning about new products.

The problem is partly addressed by the advent of online product anchardrreviews, both at retail sites
such as EBay and Amazon, and specialized product comparison sitesstpinions and CNET. Of
further help to the consumer are collaborative filtering recommendations futtim “people who bought
also boughy” feature [Linden et al, 2003. These refinements help consumers discover new products and
receive more accurate evaluations, but they cannot completely subsétstanplized recommendations
that one receives from a friend or relative. It is human nature to be mmested in what a friend buys
than what an anonymous person buys, to be more likely to trust their opamarto be more influenced
by their actions. As one would expect our friends are also acquainteduitheeds and tastes, and can
make appropriate recommendations. A Lucid Marketing survey found 8%td individuals consulted
friends and relatives before purchasing home electronics — more thaalfiveho used search engines to
find product informationBurke, 2003.

In our study we are able to directly observe the effectiveness of pergerson word of mouth advertising
for hundreds of thousands of products for the first time. We find that rosmmendation chains do not
grow very large, often terminating with the initial purchase of a product. @& occasionally a product
will propagate through a very active recommendation network. We peogpeBnple stochastic model that
seems to explain the propagation of recommendations.

Moreover, the characteristics of recommendation networks influenceutbbase patterns of their mem-
bers. For example, individuals’ likelihood of purchasing a product initialtyeases as they receive addi-
tional recommendations, but a saturation point is quickly reached. Ititeglysas more recommendations
are sent between the same two individuals, the likelihood that they will bestekztreases.

We find that communities (automatically found by a community finding algorithm) wauelly centered
around a product group, such as books, music, or DVDs, but alia$tthem shared recommendations
for all types of products. We also find patterns of homophily, the tendehlilge to associate with like,
with communities of customers recommending types of products reflecting tin@mon interests.

We propose models to identify products for which viral marketing is effecte find that the category
and price of product plays a role, with recommendations of expensbaupts of interest to small, well
connected communities resulting in a purchase more often. We also obsgteme in the timing of

recommendations and purchases corresponding to times of day whde pesfikely to be shopping
online or reading email.
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We report on these and other findings in the following sections. We firseguhe related work in
section6.2 We then describe the characteristics of the incentivised recommendategram and the
dataset in sectiof.3. Section6.3.3studies the temporal and static characteristics of the recommenda-
tion network. We investigate the propagation of recommendations and modeldt&ding behavior in
section6.4. Next we concentrate on the various aspects of the recommendatiorssticre the view-
point of the sender and the recipient of the recommendation in seg&fomhe timing and the time lag
between the recommendations and purchases is studied in sé@&idiVe study network communities,
product characteristics and the purchasing behavior in se@ffohast, in sectior6.8we present a model
that relates product characteristics and the surrounding recommendatiwork to predict the product
recommendation success. We discuss the implications of our findings acidd®in sectior.10

6.2 Connection to viral marketing

Viral marketing can be thought of as a diffusion of information about tleelypect and its adoption over
the network. Primarily in social sciences there is a long history of the r@dsearthe influence of social
networks on innovation and product diffusion. However, such studigs been typically limited to small
networks and typically a single product or service. For example, BrawdriReingenBrown and Reingen
1987 interviewed the families of students being instructed by three piano teaamerser to find out the
network of referrals. They found that strong ties, those between famflyemds, were more likely to be
activated for information flow and were also more influential than weak Gearjovetter1973 between
acquaintances. Similar observations were also made by DeBruyn and Lili@eBruyn and Lilien
2004 in the context of electronic referrals. They found that characteristidbe social tie influenced
recipients’ behavior but had different effects at different stadefeoision making process: tie strength
facilitates awareness, perceptual affinity triggers recipients’ interedtdamographic similarity had a
positive influence on each stage of the decision-making process.

Social networks can be composed by using various informaitien geographic similarity, age, similar
interests and so on. Yang and Allenbahg and Allenby2003 showed that the geographically defined
network of consumers is more useful than the demographic network fdaieig consumer behavior
in purchasing Japanese cars. A recent study by Hill etll ¢t al., 2006 found that adding network
information, specifically whether a potential customer was already “talkingni@xisting customer, was
predictive of the chances of adoption of a new phone service optianthE@ustomers linked to a prior
customer the adoption rate was 3-5 times greater than the baseline.

Factors that influence customers’ willingness to actively share the informaidiih others via word of
mouth have also been studied. Frenzen and Nakarkoémzen and Nakamat@993 surveyed a group
of people and found that the stronger the moral hazard presented lyfdh@ation, the stronger the
ties must be to foster information propagation. Also, the network structuderdmrmation character-
istics interact when individuals form decisions about transmitting informat®mwman and Narayan-
das Bowman and Narayanda®001] found that self-reported loyal customers were more likely to talk to
others about the products when they were dissatisfied, but not morevikely they were satisfied.

In the context of the internet word-of-mouth advertising is not restrictqehtowise or small-group in-
teractions between individuals. Rather, customers can share theiiegxes and opinions regarding
a product with everyone. Quantitative marketing techniques have bepogad Montgomery 2007

to describe product information flow online, and the rating of productsna@thants has been shown
to effect the likelihood of an item being bougtRdsnick and Zeckhaus&2002 Chevalier and Mayzlin
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20049. More sophisticated online recommendation systems allow users to rate’ atwesvs, or di-
rectly rate other reviewers to implicitly form a trusted reviewer network that hesae very little over-

lap with a person’s actual social circle. Richardson and DominBasnjngos and Richardspi2001,
Richardson and Domingp2002k used Epinions’ trusted reviewer network to construct an algorithm to
maximize viral marketing efficiency assuming that individuals’ probability afchasing a product de-
pends on the opinions on the trusted peers in their network. Kempe, KlgiahdrTardoskempe et al.
2003 have followed up on Richardson and Domingos’ challenge of maximizingjivif@mation spread

by evaluating several algorithms given various models of adoption wesdismxt.

Most of the previous research on the flow of information and influenamutiir the networks has been
done in the context of epidemiology and the spread of diseases oventharkeSee the works of Bai-
ley [Bailey, 1979 and Anderson and Mayynderson and May2003 for reviews of this area. The classi-
cal disease propagation models are based on the stages of a diseasstiragplrson is firgusceptible
to a disease, then if she is exposed to an infectious contact she can hatectedand thusnfectious
After the disease ceases the persoreveredor removed The person is themmmunefor some pe-
riod. The immunity can also wear off and the person becomes again suseeptibs SIR (susceptible —
infected — recovered) models diseases where a recovered perssragain becomes susceptible, while
SIRS (SIS, susceptible — infected — (recovered) — susceptible) mammiéaion in which recovered host
can become susceptible again. Given a network and a set of infected tioakpidemic thresholds
studied,i.e., conditions under which the disease will either dominate or die out. In oer 848 model
would correspond to the case where a set of initially infected nodesspamds to people that purchased a
product without first receiving the recommendations. A node can psech product only once, and then
tries to infect its neighbors with a purchase by sending out the recommemsla®its model corresponds
to the less realistic case where a person can purchase a product multipleasirmaegsult of multiple
recommendations. The problem with these type of models is that they assurowia gocial network
over which the diseases (product recommendations) are spreading@aity a single parameter which
specifies the infectiousness of the disease. In our context this would timetatme whole population is
equally susceptible to recommendations of a particular product.

There are numerous other models of influence spread in social netvimksof the first and most influ-
ential diffusion models was proposed by BaBags 1969. The model of product diffusion predicts the
number of people who will adopt an innovation over time. It does not expliaitount for the structure
of the social network but it rather assumes that the rate of adoption isadumf the current proportion
of the population who have already adopted (purchased a product itese). The diffusion equation
models the cumulative proportion of adopters in the population as a functtbe oftrinsic adoption rate,
and a measure of social contagion. The model describes an S-shapedxhere adoption is slow at first,
takes off exponentially and flattens at the end. It can effectively modedwf-mouth product diffusion
at the aggregate level, but not at the level of an individual persoichw$one of the topics we explore in
this chapter.

Diffusion models that try to model the process of adoption of an idea ordupt@can generally be divided
into two groups:

e Threshold mode]Granovetter1978 where each node in the network has a threshotd [0, 1],
typically drawn from some probability distribution. We also asssgnnection weights,, ,, on the
edges of the network. A node adopts the behavior if a sum of the connegights of its neighbors
that already adopted the behavior (purchased a product in ourisagg®@ater than the threshold:

t< Zadoptersu) Wa,p-
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e Cascade modgfGoldenberg et al200] where whenever a neighborof nodeu adopts, then node
u also adopts with probability,, ,,. In other words, every time a neighborwpurchases a product,
there is a chance thatwill decide to purchase as well.

In the independent cascade model, Goldenberg eGalldenberg et al.200] simulated the spread of
information on an artificially generated network topology that consisted Hattrang ties within groups
of spatially proximate nodes and weak ties between the groups. Theytlaindeak ties were important
to the rate of information diffusion. Centola and Ma&ehtola and Macy2009 modeled product adop-
tion on small world topologies when a person’s chance of adoption is depeaon having more than one
contact who had previously adopted. Wu and Hubernviln dind Huberman2004 modeled opinion
formation on different network topologies, and found that if highly caneeé nodes were seeded with a
particular opinion, this would proportionally effect the long term distributibominions in the network.
Holme and NewmanHolme and Newmar200§ introduced a model where individuals’ preferences are
shaped by their social networks, but their choices of whom to include in gbeial network are also
influenced by their preferences.

While these models address the question of how influence spreads in alkgehey are based assumed
rather thammeasurednfluence effects. In contrast, our study tracks the actual diffusiora@mmenda-
tions through email, allowing us to quantify the importance of factors such aprédsence of highly
connected individuals, or the effect of receiving recommendatioma fraultiple contacts. Compared
to previous empirical studies which tracked the adoption of a single innovatiproduct, our data en-
compasses over half a million different products, allowing us to model auptsdsuitability for viral
marketing in terms of both the properties of the network and the product itself.

6.3 The recommendation network

Here we briefly describe our viral marketing dataset and the propertidseaecommendation net-
work.

6.3.1 Recommendation program and dataset description

Our analysis focuses on the recommendation referral program rurdbgearetailer. The program rules
were as follows. Each time a person purchases a book, music, or a mosieshe is given the option
of sending emails recommending the item to friends. The first person toge&the same item through
a referral link in the email gets a 10% discount. When this happens thersahitie recommendation
receives a 10% credit on their purchase.

The following information is recorded for each recommendation
1. Sender Customer ID (shadowed)

. Receiver Customer ID (shadowed)

2

3. Date of Sending

4. Purchase flagoQy-bif)
5

. Purchase Date (error-prone due to asynchrony in the servers)
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SYMBOL || DESCRIPTION

np Number of products

N Number of senders of recommendations

N, Number of recommendation receivers

N Number of nodesN = N, U N,

T Number of recommendations

E Number of edged,e., unique pairs of nodes that exchanged recommendatios
buy-bit Whether a recommendation results in a purchase that received discount
by, Number of purchases with buy-bit turned on

buy-edge| If a node got a recommendation and then sent another one then it mustdayle
be Number of purchases as determined via buy-edges

N, Number of nodes in the largest weakly connected component

Te Number of recommendation in the largest component

E, Number of edges in largest component

cc Fraction of nodes in largest connected component; 100N,./N

0% Power law degree exponepld) o d~7

Ny Size of the cascade at time

Dt Probability of a recommendation causing a purchase

Tpl Average number of reviews per product in 2001-2003

Vaw Average star rating

Cav Average number of people recommending a product

Dm Median product price

b, Purchases per recommendgr= (b, + b.)/r

Table 6.1: Table of symbols.

6. Product identifier
7. Price

The recommendation dataset consists of 15,646,121 recommendations mame 388,084 distinct

users. The data was collected from June 5 2001 to May 16 2003. In t68&5Z3 products were recom-
mended, 99% of them belonging to 4 main product groups: Books, DVDsjdvnd Videos. In addition

to recommendation data, we also crawled the retailer’s website to obtain paadegories, reviews and
ratings for all products. Of the products in our data set, 5813 (1%) disontinued (the retailer no
longer provided any information about them).

Although the data gives us a detailed and accurate view of recommendatiamudyg, it does have its
limitations. The only indication of the success of a recommendation is the obiearethe recipient
purchasing the product through the same vendor. We have no wagwiaif the person had decided in-
stead to purchase elsewhere, borrow, or otherwise obtain the pratheatlelivery of the recommendation
is also somewhat different from one person simply telling another aborgdugt they enjoy, possibly
in the context of a broader discussion of similar products. The recomriends received as a form
email including information about the discount program. Someone readingnta@ might consider it
spam, or at least deem it less important than a recommendation given in tegtadra conversation. The
recipient may also doubt whether the friend is recommending the prodcatibe they think the recipient
might enjoy it, or are simply trying to get a discount for themselves. Finallyalsethe recommendation
takes place before the recommender receives the product, it might basbd on a direct observation of
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the product. Nevertheless, we believe that these recommendation neasernieslective of the nature of
word of mouth advertising, and give us key insights into the influence délsoeetworks on purchasing
decisions.

6.3.2 Identifying successful recommendations

For each recommendation, the dataset includes information about the rendadr@roduct, sender and
received or the recommendation, and most importantly, the success ofmegaation. See secti@n3.1
for more details.

We represent this data set as a directed multi graph. The nodes remes®mers, and a directed edge
contains all the information about the recommendation. The &dgep, t) indicates that recommended
productp to customey at timet. Note that as there can be multiple recommendations between the persons
(even on the same product) there can be multiple edges between two nodes.

The typical process generating edges in the recommendation networkoiboassf a node first buys a
productp at timet and then it recommends it to nodgs. . ., j,. Thej nodes can then buy the product
and further recommend it. The only way for a node to recommend a prodtetfiist buy it. Note
that even if all nodeg buy a product, only the edge to the noflethat first made the purchase (within
a week after the recommendation) will be marked Hyug-bit Because the buy-bit is set only for the
first person who acts on a recommendation, we identify additional pugstgsthe presence of outgoing
recommendations for a person, since all recommendations mystebededby a purchase. We call
this type of evidence of purchasebay-edge Note that buy-edges provide only a lower bound on the
total number of purchases without discounts. It is possible for a custtmmat be the first to act on a
recommendation and also to not recommend the product to others. Untefjuttas was not recorded in
the data set. We consider, however, the buy-bits and buy-edgesessdfar the total number of purchases
through recommendations.

As mentioned above the first buyer only gets a discount (the buy-bit ieduon) if the purchase is
made within one week of the recommendation. In order to account for as maioljases as possible,
we consider all purchases where the recommendation preceded thagri(buy-edge) regardless of the
time difference between the two events.

To avoid confusion we will refer to edges in a multi graph as recommenddomsulti-edges) — there
can be more than one recommendation between a pair of nodes. We will usenthedge (or unique
edge) to refer to edges in the usual sensg there is only one edge between a pair of people. And, to get
from recommendations to edges we create an edge between a pair ofipgapiexchanged at least one
recommendation.

6.3.3 Properties of the recommendation network

For each product group we took recommendations on all products fregrttup and created a network.
Table 6.2 shows the sizes of various product group recommendation networksyyitieing the total
number of products in the product grould,the total number of nodes spanned by the group recommen-
dation network, and, the number of recommendations (there can be multiple recommendations between
two nodes). ColumrE’ shows the number of (unique) edges — disregarding multiple recommendations
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Group | ny N y E by be

Book 103,161 2,863,977 5,741,611 2,097,809 65,344 17,769
DvD 19,829 805,285 8,180,393 962,341 17,232 58,189
Music 393,598 794,148 1,443,847 585,738 7,837 2,739
Video 26,131 239,583 280,270 160,683 909 467
Full network || 542,719 3,943,084 15,646,121 3,153,676 91,322 79,164

Table 6.2: Product group recommendation statisties: number of products)V: number of nodes;,.:
number of recommendationg;; number of edgesy,: number of buy bitsh.: humber of buy

edges.
Group | N, e E. e bee
Book 53,681 033,988 184,188 1,919 1,921
DVD 39,699 6,903,087 442,747 6,199 41,744
Music 22,044 295,543 82,844 348 456
Video 4,964 23,555 15,331 2 74
Full network || 100,460 8,283,753 521,803 8,468 44,195

Table 6.3: Statistics for the largest connected component of eachuptagtoup. N.: humber of nodes
in largest connected component, number recommendations in the componét, number
of edges in the componerit,.: number of buy bitsp..: humber of buy edges in the largest
connected component, amg. andb.. are the number of purchase through a buy-bit and a
buy-edge, respectively.

between the same source and recipiest, qfumber of pairs of people that exchanged at least one recom-
mendation).

In terms of the number of different items, there are by far the most music folbsyed by books and

videos. There is a surprisingly small number of DVD titles. On the other Hax®s account for more

half of all recommendations in the dataset. The DVD network is also the mosedeaving about 10
recommendations per node, while books and music have about 2 recontimesger node and videos
have only a bit more than 1 recommendation per node.

Music recommendations reached about the same number of people as DMi®t8 more than 5 times
fewer recommendations to achieve the same coverage of the nodes. d8oakmendations reached by
far the most people — 2.8 million. Notice that all networks have a very small nuofilb@ique edges. For
books, videos and music the number of unique edges is smaller than the mfmbees — this suggests
that the networks are highly disconnecté&udds and Rnyi, 1964.

Back to table6.2 given the total number of recommendationsand purchasedy + b.) influenced by
recommendations we can estimate how many recommendations need to be ieddpesaht over the
network to induce a new purchase. Using this metric books have the mosghnitidliurecommendations
followed by DVDs and music. For books one out of 69 recommendationdtedsin a purchase. For
DVDs it increases to 108 recommendations per purchase and furtheagsesrto 136 for music and 203
for video.

Table6.3gives more insight into the structure of the largest connected componeatioproduct group’s
recommendation network. We performed the same measurements as & 2atith the difference being
that we did not use the whole network but only its largest weakly connedegonent. The table shows
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Figure 6.1: (a) The size of the largest connected component of custoonerdime. The inset shows the
linear growth in the number of custome¥sover time.

the number of noded/, the number of recommendations and the number of (unique) edgés in
the largest component. The last two columig @ndb..) show the number of purchases resulting in
a discount (buy-bitp,.) and the number of purchases through buy-edgg3 ih the largest connected
component.

First, notice that the largest connected components are very small. DWeghme largest - containing
4.9% of the nodes, books have the smallest at 1.78%. One would alsa é&xgethe fraction of the

recommendations in the largest component would be proportional to its sigenotée that this is not

the case. For example, the largest component in the full recommendatioorkemntains 2.54% of the
nodes and 52.9% of all recommendations, which is the result of heavy bi2¢Dnrecommendations.

Breaking this down by product categories we see that for DVDs 84.3#eofecommendations are in
the largest component (which contains 4.9% of all DVD nodes), vs. 1608%ook recommendations
(component size 1.79%), 20.5% for music recommendations (compone@t&r2é), and 8.4% for video

recommendations (component size 2.1%). This shows that the dynamic ingastleaomponent is very
much different from the rest of the network. Especially for DVDs we sa@ that a very small fraction of
users generated most of the recommendations.

6.3.4 Recommendation network over time

The recommendations that occurred were exchanged over an existiegyang social network. In the
real world, it is estimated that any two people on the globe are connectedivatahain of acquaintances
- popularly known as the small world phenomendnayers and Milgram1969. We examined whether
the edges formed by aggregating recommendations over all products svmillarly yield a small world
network, even though they represent only a small fraction of a persmmplete social network. We
measured the growth of the largest weakly connected component ovestioven in Figures.1 Within
the weakly connected component, any node can be reached from anyotle by traversing (undirected)
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Figure 6.2: Growth of the largest connected component (LCC). (a) thieibligion of sizes of components
when they are merged into the largest connected comporignsae as (a), but restricted
to cases when a member of the LCC sends a recommendation émserautside the largest
component. (c) a sender outside the largest component agedemmendation to a member
of the component.

edges. For example, if recommended produgtto v, andw recommended produgtto v, thenu andw
are linked through one intermediary and thus belong to the same weaklyctedmemponent. Note that
connected components do not necessarily correspond to communitigsr&lughich we often think of
as densely linked parts of the networks. Nodes belong to same compotiaytéan reach each other via
an undirected path regardless of how densely they are linked.

Figure 6.1 shows the size of the largest connected component, as a fraction of theditark. The
largest component is very small over all time. Even though we compose tiverkausing all the rec-
ommendations in the dataset, the largest connected component containame2$5% (100,420) of the
nodes, and the second largest component has6dlyodes. Still, some smaller communities, number-
ing in the tens of thousands of purchasers of DVDs in categories swmbsdsrns, classics and Japanese
animated films (anime), had connected components spanning about 20% ofeh®ers.

The insert in figuré.1shows the growth of the customer base over time. Surprisingly it was lirdsing
on average 165,000 new users each month, which is an indication thatvtoe $iself was not spreading
epidemically. Further evidence of non-viral spread is provided by tlagvely high percentage (94%) of
users who made their first recommendation without having previouslyeztene.

Growth of the largest connected component

Next, we examine the growth of the largest connected component (LE@yure 6.1 we saw that the
largest component seems to grow quadratically over time, but at the end dath collection period is
still very small,i.e., only 2.5% of the nodes belong to largest weakly connected componem wéeare
not interested in how fast the largest component grows over time but Faifhebig other components are
when they get merged into the largest component. Also, since our grapléted we are interested in
determining whether smaller components become attached to the largest catijyomeecommendation
sent from inside of the largest component. One can think of these recatati@rs as being tentacles
reaching out of largest component to attach smaller components. Thepo®bility is that the recom-
mendation comes from a node outside the component to a member of the lamesinent and thus the
initiative to attach comes from outside the largest component.
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We look at whether the largest component grows gradually, addingsmmu® by one as the members
send out more recommendations, or whether a new recommendation mightaabtidge to a compo-
nent consisting of several nodes who are already linked by their pevécommendations. To this end
we measure the distribution of a component’s size when it gets merged to thstlarepkly connected
component.

We operate under the following setting. Recommendations are arrivingtioverone by one creating
edges between the nodes of the network. As more edges are beingthddstzk of largest connected
component grows. We keep track of the currently largest componehinaasure how big the separate
components are when they get attached to the largest component.

Figure6.2(a) shows the distribution of merged connected component (CC) sizetheOGnaxis we plot
the component size (number of nod®3 and on the y-axis the number of components of siz¢hat
were merged over time with the largest component. We see that a majority of the Single node
(component of size 1) merged with the currently largest component. Ortliee @xtreme is the case
when a component df, 568 nodes merged with the largest component.

Interestingly, out of all merged components, in 77% of the cases theesolitlte recommendation comes
from inside the largest component, while in the remaining 23% of the cases & sthller component
that attaches itself to the largest one. Figar&b) shows the distribution of component sizes only for
the case when the sender of the recommendation was a member of the langpshentj.e., the small
component was attached from the largest component. Lastly, Fig(® shows the distribution for the
opposite case when the sender of the recommendation was not a membelaajelse component.e.,
the small component attached itself to the largest.

Also naotice that in all cases the distribution of merged component sizes faltwavy-tailed distribution.
We fit a power law distribution and note the power law exponent of 1.906f#ja)) when considering all
merged components. Limiting the analysis to the cases where the source dféhthat attached a small
component to the largest is in the largest component we obtain power lamexipof 1.96 (figh6.2(b)),
and when the edge originated from the small component to attached it to thst/dhgp power law expo-
nentis 1.76. This shows that even though in most cases the LCC absodmsdh component, we see that
components that attach themselves to the LCC tend to be larger (smaller povexplament) than those
attracted by the LCC. This means that the component sometimes grows a bé efttaches itself to
the largest component. Intuitively, an individual node can get attachibé targest component simply by
passively receiving a recommendation. But if it is the outside node thds serecommendation to some-
one in the giant component, it is already an active recommender and cordébtieehave recommended
to several others previously, thus forming a slightly bigger componenistiia¢n merged.

From these experiments we see that the largest component is very adtiteg smaller components by
generating new recommendations. Most of the time these newly merged camtgarequite small, but
occasionally sizable components are attached.

6.3.5 Preliminary observations and discussion

Even with these simple counts and experiments we can already make a fawatibss. It seems that
some people got quite heavily involved in the recommendation program, anthélyatended to recom-
mend a large number of products to the same set of friends (since the noiinggue edges is so small
as shown on tablé.2). This means that people tend to buy more DVDs and also like to recommend
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Figure 6.3: Examples of two product recommendation networks: (a) Riidtstudy guiderirst Aid for
the USMLE Step(b) Japanese graphic novel (man@d) My Goddess!: Mara Strikes Back

them to their friends, while they seem to be more conservative with books.p@ssible reason is that
a book is a bigger time investment than a DVD: one usually needs sevemataagad a book, while a
DVD can be viewed in a single evening. Another factor may be how informedulstomer is about the
product. DVDs, while fewer in number, are more heavily advertised orbilNoards, and movie theater
previews. Furthermore, it is possible that a customer has already watchedie and is adding the DVD
to their collection. This could make them more confident in sending recommenslatdore viewing the

purchased DVD.

One external factor which may be affecting the recommendation patter3\/ios is the existence of
referral websitesvjww.dvdtalk.com ). On these websites people, who want to buy a DVD and get
a discount, would ask for recommendations. This way there would be recasatiers made between
people who don'’t really know each other but rather have an econongatime to cooperate.

In effect, the viral marketing program is altering, albeit briefly and mostyikaintentionally, the struc-
ture of the social network it is spreading on. We were not able to find singfarral sharing sites for
books or CDs.

6.4 Propagation of recommendations

6.4.1 Forward recommendations

Not all people who accept a recommendation by making a purchase alde tiegive recommendations.
In estimating what fraction of people that purchase also decide to reconfiowvetd, we can only use
the nodes with purchases that resulted in a discount. TakEhows that only about a third of the people
that purchase also recommend the product forward. The ratio of fdm@aommendations is much higher
for DVDs than for other kinds of products. Videos also have a higher of forward recommendations,
while books have the lowest. This shows that people are most keen on rendingienovies, possibly
for the above mentioned reasons, while more conservative when recalimgd&ooks and music.

Figure 6.4 shows the cumulative out-degree distribution, that is the number of peomeserit out at
leastk,, recommendations, for a product. We fit a power law to all but the tail of thellison. Also,
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www.dvdtalk.com

Number of nodes
Group || Purchases Forward Percent
Book 65,391 15,769 24.2
DVD 16,459 7,336 44.6
Music 7,843 1,824 23.3
Video 909 250 27.6
Total 90,602 25,179 27.8

Table 6.4: Fraction of people that purchase and also recommend forviRutthases number of nodes
that purchased as a result of receiving a recommenddfmward: nodes that purchased and
then also recommended the product to others.

+ level O
—y=2.6|3
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—vy=2.0
+ level 2|1
—y=15
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—y=12
= |evel 4
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kp (recommendations by a person for a product)

Figure 6.4: The number of recommendations sent by a user with each cejpvesenting a different depth
of the user in the recommendation chain. A power law exponéafitted to all but the tail,
which shows an exponential drop-off at around 100 recommtgmas sent). This drop-off
is consistent across all depth levels, and may reflect e@th®atural disinclination to send
recommendation to over a hundred people, or a technica ibsl might have made it more
inconvenient to do so. The fitted lines follow the order of tbeel number ice., top line
corresponds to level 0 and bottom to level 4).

notice the exponential decay in the tail of the distribution which could be, armitey reasons, attributed
to the finite time horizon of our dataset. (Note that the reasons for exponeetiay here are different
than in Chapted where we investigated microscopic network evolution. There the powerd{ponents
remained constant and the exponential decay factor got strongedasiegree increased.)

The figure6.4 shows that the deeper an individual is in the cascade, if they choose wra@mmenda-
tions, they tend to recommend to a greater number of people on averagétéihdirfe has smaller slope
v, i.e,, the distribution has higher variance). This effect is probably due towatlyheavily recommended
products producing large enough cascades to reach a certain dept@iis®bbserve, as is shown in Ta-
ble 6.5, that the probability of an individual making a recommendation at all (whichocdy occur if they
make a purchase), declines after an initial increase as one gets ddepbeicascade.
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level || prob. buy & average
forward out-degree

0 N/A 1.99
1 0.0069 5.34
2 0.0149 24.43
3 0.0115 72.79
4 0.0082 111.75

Table 6.5: Statistics about individuals at different levels of theazate.
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Figure 6.5: Distribution of the number of recommendations and numbpuothases made by a customer.

6.4.2 ldentifying cascades

As customers continue forwarding recommendations, they contribute to rimatfon of cascades. In
order to identify cascadesge., the “causal” propagation of recommendations, we trawécessful rec-
ommendationss they influence purchases and further recommendations. We de&neramendation

to be successful if it reached a node befordiist purchase. We consider only the first purchase of an
item, because there are many cases when a person made multiple purétiasesame product, and in
between those purchases she may have received new recommendatibisscase one cannot conclude
that recommendations following the first purchase influenced the latengses.

Each cascade is a network consisting of customers (hodes) who pedctge same product as a result of
each other’'s recommendations (edges). We dédéterecommendations- all incoming recommenda-
tions that happened after the first purchase of the product. This wayake the networkime increasing

or causal— for each node all incoming edges (recommendations) occurred befaratgoing edges.
Now each connected component represents a time obeying propagatmowimendations.

Figure 6.3 shows two typical product recommendation networks: (a) a medical stuide gnd (b) a
Japanese graphic novel. Throughout the dataset we observeémday patters. Most product recommen-
dation networks consist of a large number of small disconnected compomeais we do not observe
cascades. Then there is usually a small number of relatively small compaviémi€commendations
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Figure 6.6: Size distribution of cascades (size of cascade vs. countyl IBe presents a power-fit.

successfully propagating. This observation is reflected in the heavy th#irtbution of cascade sizes
(see figures.6), having a power law exponent close to 1 for DVDs in particular. We detexd the power
law exponent by fitting a line on log-log scales using the least squares method.

We also notice bursts of recommendations (figbr&b)). Some nodes recommend to many friends,
forming a star like pattern. Figu@5shows the distribution of the recommendations and purchases made
by a single node in the recommendation network. Notice the power law distribudimhlong flat tails.

The most active customer made 83,729 recommendations and purchasedidle4ént items. Finally, we

also sometimes observe “collisions”, where nodes receive recommersl&tom two or more sources.

A detailed enumeration and analysis of observed topological cascadmpdtiethis dataset is made in
section6.9.

Last, we examine the number of exchanged recommendations betweenfgppaiple in figures.7. Over-

all, 39% of pairs of people exchanged just a single recommendation. Timberuwecreases for DVDs
to 37%, and increases for books to 45%. The distribution of the numbexcbbaged recommendations
follows a heavy tailed distribution. To get a better understanding of the distits we show the power
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Figure 6.7: Distribution of the number of exchanged recommendationsdxen pairs of people.

law decay lines. Notice that one gets much stronger decay exponenb(distr has weaker tail) of -2.7
for books and a very shallow power law exponent of -1.5 for DVD4ds Tireans that even a pair of people
exchanges more DVD than book recommendations.

6.4.3 The recommendation propagation model

A simple model can help explain how the wide variance we observe in the nwhbesommendations
made by individuals can lead to power laws in cascade sizes (f@g6reThe model assumes that each
recipient of a recommendation will forward it to others if its value exceedwhbitrary threshold that the
individual sets for herself. Since exceeding this value is a probabilistictelet’s callp; the probability
that at time step the recommendation exceeds the threshold. In that case the numbenmofrendations
Niy1 attime(t + 1) is given in terms of the number of recommendations at an earlier time by

Nip1 = (1+p) Ny (6.1)

where the probability; is defined over the unit interval.

Notice that, because of the probabilistic nature of the threshold beingded;eene can only compute the
final distribution of recommendation chain lengths, which we now proceed.to d

Subtracting from both sides of this equation the tévprand diving by it we obtain

N1y — N

= 6.2
N, b (6.2)

Summing both sides from the initial time to some very large tifnend assuming that for long times the
numerator is smaller than the denominator (a reasonable assumption) we ted, wpt constant

dN Niy1y — Ny
Wy NN, 6.3)

The left hand integral is just(/V'), and the right hand side is a sum of random variables, which in the limit
of a very large uncorrelated number of recommendations is normally distiibceatral limit theorem).
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This observation was first made by Gibr&iprat 193] to model the growth rates of firms and is known
as the Law of Proportional Effect or simply Gibrat’s Law.

So, this means that the logarithm of the number of messages is normally distrilfiteztjuivalently,
the number of messages passed is log-normally distributed. So, the probadility for N is given
by
1 ~(In(N) — p)?
P(N) = ex
() NvV2mo? P 202
which, for large variances describes a behavior whereby the typicabar of recommendations is small
(the mode of the distribution) but there are unlikely events of large chairecommendations which are
also observable.

(6.4)

Furthermore, for large variances, the lognormal distribution can bdheva power law for a range of
values. In order to see this, take the logarithms on both sides of the equetjigualent to a log-log plot)
and one obtains

In(P(N)) = — In(N) — In(vZro?) — IOV =) (6.5)

202

So, for largeo, the last term of the right hand side goes to zero, and since the seconi t@rconstant

one obtains a power law behavior with exponent value of minus Bnet[al, 200]. There are other

models which produce power law distributions of cascade sizes, butesermrours for its simplicity,

since it does not depend on network topolo@yuhl et al, 2004 or critical thresholds in the probability
of a recommendation being accept®dits 2003. Also, similar derivation of lognormal distribution can
be found in Johnson et 811994 and is also known as the “law of proportional effect”.

6.5 Success of Recommendations

So far we only looked into the aggregate statistics of the recommendation kethext, we ask questions
about the effectiveness of recommendations in the recommendation nétsedirkFirst, we analyze the
probability of purchasing as one gets more and more recommendations. wéesieasure recommen-
dation effectiveness as two people exchange more and more recommesdatistly, we observe the
recommendation network from the perspective of the sender of the requatitn. Does a node that
makes more recommendations also influence more purchases?

6.5.1 Human adoption curve: the probability of buying versus number of incoming rec-
ommendations

First, we examine how the probability of purchasing changes as one getsanmbmore recommendations.
One would expect that a person is more likely to buy a product if she getsremrsmmendations. On the
other had one would also think that there is a saturation point — if a persort baught a product after a
number of recommendations, they are not likely to change their minds afeavirgceven more of them.
So, how many recommendations are too many?

Figure6.8 shows the probability of purchasing a product as a function of the nuailyecoming recom-
mendations on the product. Because we exclude late recommendationgh#tasere received after the
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Figure 6.8: Probability of buying a book (DVD) given a number of incomirecommendations. This
shows the human adoption curve has the diminishing retuoyepty.

purchase, an individual counts as having received three recomirmrganly if they did not make a pur-
chase after the first two, and either purchased or did not receitreefilecommendations after receiving
the third one. As we move to higher numbers of incoming recommendations, iitgenof observations
drops rapidly. For example, there were 5 million cases with 1 incoming recomti@mda a book, and
only 58 cases where a person got 20 incoming recommendations on alpatimok. The maximum was
30 incoming recommendations. For these reasons we cut-off the plot whetthber of observations
becomes too small and the error bars too large.

We calculate the purchase probabilities and the standard errors of thetestimiich we use to plot the
error bars in the following way. We regard each point as a binomial randwoiable. Given the number
of observations, let m be the number of successes, anfk = n — m) the number of failures. In our
case,m is the number of people that first purchased a product after receiviagpmmendations on it,
andk is the number of people that received the totat @@commendations on a product (till the end of
the dataset) but did purchase it, then the estimated probability of purchagirgqis/»n and the standard

error s, of estimatey is s, = /p(1 — p)/n.

Figure6.8(a) shows that, overall, book recommendations are rarely followed. Eeea surprisingly, as
more and more recommendations are received, their success decWasssserve a peak in probability
of buying at 2 incoming recommendations and then a slow drop. This implies thateifsan doesn’t
buy a book after the first recommendation, but receives another, thayare likely to be persuaded by
the second recommendation. But thereafter, they are less likely to retpaaditional recommenda-
tions, possibly because they perceive them as spam, are less sustemtibkrs’ opinions, have a strong
opinion on the particular product, or have a different means of accgeisin

For DVDs (figure6.8(b)) we observe a saturation around 10 incoming recommendations. Thismea
that with each additional recommendation, a person is more and more likely terbgaded - up to a
point. After a person gets 10 recommendations on a particular DVD, thdiapildy of buying does not
increase anymore. The number of observations is 2.5 million at 1 incomingnneendation and 100 at 60
incoming recommendations. The maximal number of received recommendatib#a (and that person

158



did not buy), but someone purchased a DVD after 169 receivingmemmndations. The different patterns
between book and DVD recommendations may be a result of the recommeneetizenge websites
for DVDs. Someone receiving many DVD recommendations may have signéal neceive them for a
product they intended to purchase, and hence a greater numbeeiweerecommendations corresponds
to a higher likelihood of purchase (up to a point).

6.5.2 Success of subsequent recommendations

Next, we analyze how the effectiveness of recommendations changeg agceived more and more
recommendations from the same person. A large number of exchangedmnendations can be a sign of
trust and influence, but a sender of too many recommendations candegé/pdras a spammer. A person
who recommends only a few products will have her friends’ attention, feitnho floods her friends with
all sorts of recommendations will start to loose her influence.

We measure the effectiveness of recommendations as a function of theuotiaér of previously received
recommendations from a particular node. We thus measure how spendmgeshover time, where time
is measured in the number of received recommendations.

We construct the experiment in the following way. For every recommendat@nsome produch be-
tween nodes: and v, we first determine how many recommendations nedeceived fromw before
gettingr. Then we check whether, the recipient of recommendation, purchageafter the recommen-
dationr arrived. If so, we count the recommendation as successful sinceugintid the purchase. This
way we can calculate the recommendation success rate as more recommsndat®exchanged. For
the experiment we consider only node pditsv), where there were at least a total of 10 recommenda-
tions sent fromu to v. We perform the experiment using only recommendations from the samegbrod

group.

We decided to set a lower limit on the number of exchanged recommendatitinatsee can measure
how the effectiveness of recommendations changes amathetwo people exchange more and more rec-
ommendations. Considering all pairs of people would heavily bias our findiimge most pairs exchange
just a few or even just a single recommendation. Using the data from Bgimee see that 91% of pairs of
people that exchange at least 1 recommendation exchange less thar bOoks this number increases
to 96%, and for DVDs it is even smaller (81%). In the DVD network therel®2 thousand pairs that
exchanged more than 10 recommendations, and 70 thousand for thediookkn

Figure6.9shows the probability of buying as a function of the total number of rede®eommendations
from a particular person up to that point. One can think of x-axis as megdsime where the unit is the
number of received recommendations from a particular person.

For books we observe that the effectiveness of recommendation reatainsconstant up to 3 exchanged
recommendations. As the number of exchanged recommendations inctbaspsobability of buying
starts to decrease to about half of the original value and then levels @ffD¥Ds we observe an im-
mediate and consistent drop. We performed the experiment also for videmasic, but the number of
observations was too low and the measurements were noisy. This expesimogrg that recommenda-
tions start to lose effect after more than two or three are passed betwegedple. Also, notice that the
effectiveness of book recommendations show in Figu®&) decays much more slowly than that of DVD
recommendations (Figu&9(b)), flattening out at around 20 recommendations, compared to ar@und 1
DVD exchanged recommendations.
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Figure 6.9: The effectiveness of recommendations with the number @&ived recommendations.

This result has important implications for viral marketing practitioners as ivstibat by providing too
much incentive for people to recommend to one another can weaken thsoegaynetwork links that the
marketer is intending to exploit.

6.5.3 Success of outgoing recommendations

In previous sections we examined the data from the viewpoint of the exadithe recommendation. Now
we look from the viewpoint of the sender. The two interesting questionsheng does the probability

of getting a 10% credit change with the number of outgoing recommendatindggigen a number of

outgoing recommendations, how many purchases will they influence?

One would expect that recommendations would be the most effective velitemmended to the right
subset of friends. If one is very selective and recommends to too femds, then the chances of success
are slim. One the other hand, recommending to everyone and spamming theoeitimmendations may
have limited returns as well.

The top row of figure6.10 shows how the average number of purchases changes with the number of
outgoing recommendations. For books, music, and VHS videos the numperabifases soon saturates:
purchases grow fast up to around 10 outgoing recommendations anthth&end either slows down

or starts to drop. DVDs exhibit different behavior, with the expected rermolb purchases increasing
throughout.

These results are even more interesting since the receiver of the recdatioerdoes not know how

many other people also received the recommendation. Thus the plots of6idOrshow that there are

interesting dependencies between the product characteristics anddhemwender that manifest through
the number of recommendations sent. It could be the case that widely recaedneroducts are not
suitable for viral marketing (we find something similar in sec#08.2), or that the recommender did not
put too much thought into who to send the recommendation to, or simply that pspiestart to ignore

mass recommenders.
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Figure 6.10: Top row: Number of resulting purchases given a number of @ntgrecommendations.
Bottom row: Probability of getting a credit given a numbeiootgoing recommendations.

Plotting the probability of getting a 10% credit as a function of the number obinggecommendations,

as in the bottom row of figur6.10 we see that the success of DVD recommendations saturates as well,
while books, videos and music have qualitatively similar trends. The difterenthe curves for DVD
recommendations points to the presence of collisions in the dense DVD netwick has 10 recommen-
dations per node and around 400 per product — an order of magnituaetham other product groups.
This means that many different individuals are recommending to the sanmnparsl after that person
makes a purchase, even though all of them made a ‘successful recdatinahby our definition, only

one of them receives a credit.

6.5.4 Success of incoming recommendations

The collisions of recommendations are a dominant feature of the DVD reconati@mdetwork. Book
recommendations have the highest chance of getting a credit, but DVBinesodations cause the most
purchases. So far it seems people are very keen on recommendinggsvaYiDs, while very conservative
on recommending books. But how does the behavior of customers chatigey get more involved into
the recommendation network? We would expect that most of the peopletdreawly involved, so their
probability of buying is not high. In the extreme case we expect to findlpewpo buy almost everything
they get recommendations on.

There are two ways to measure the involvedness of a person in the nebydhe total number of incom-
ing recommendations (on all products) or the total number of differemtyats they were recommended.
For every purchase of a book at timewe count the number of different books (DVDs, ...) the person
received recommendations for before timeé\s in all previous experiments we delete late recommenda-
tions,i.e., recommendations that arrived after the first purchase of a product.

We show the probability of buying as a function of the number of differentipcts recommended in
Figure6.11 Figure6.12plots the same data but with the total number of incoming recommendations on
the x-axis. We calculate the error bars as described in se8tioh The number of observations is large
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Figure 6.11: The probability of buying a product given a number of differproducts a node got recom-
mendations on.

enough (error bars are sufficiently small) to draw conclusions abotrghds observed in the figures. For
example, there are more thah, 000 users that had 15 incoming DVD recommendations.

Notice that trends are quite similar regardless of whether we measure holwveidvs the user in the
network by counting the number of products recommended (figur® or the number of incoming rec-
ommendations (figs.12).

We observe two distinct trends. For books and music (figéiresand6.12 (a) and (c)) the probability of
buying is the highest when a person got recommendations on just 1 item,rasber of recommended
products increases to 2 or more the probability of buying quickly decsesasithen flattens.

Movies (DVDs and videos) exhibit different behavior (figéé1and6.12 (b) and (d)). A person is more
likely to buy the more recommendations she gets. For DVDs the peak is atatduncoming products,
while for videos there is no such peak — the probability remains fairly levétréstingly for DVDs the
distribution reaches its low at 2 and 3 items, while for videos it lies somewhéneebe 3 and 8 items.
The results suggest that books and music buyers tend to be consearadivocused. On the other hand
there are people who like to buy movies in general. One could hypothestaauttiag a book is a larger
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Figure 6.12: Probability of buying a product given a total number of indogirrecommendations on all
products.

investment of time and effort than buying a movie. One can finish a movie inemrey, while reading a
book requires more effort. There are also many more book and music tittesihae titles.

The other difference between the book and music recommendations in ésompr movies are the

recommendation referral websites where people could go to get recoratizersd One could see these
websites as recommendation subscription services — posting one’s emhdtaasults in a higher number

of incoming recommendations. For movies, people with a high humber of incoraamgmmendations

“subscribed” to them and thus expected/wanted the recommendations. ©thénehand people with

high numbers of incoming book or music recommendations did not “sign upthfem, so they may

perceive recommendations as spam and thus the influence of recommendabios.

Another evidence of the existence of recommendations referral websitedes the DVD recommenda-
tion network degree distribution. The DVDs follow a power law degree digioh with an exception of

a peak at out-degree 50. Other plots of DVD recommendation behavioexdoited abnormalities at
around 50 recommendations. These can be attributed to the recommendatiai veebsites.
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Figure 6.13: The time between the recommendation and the actual purcsase all purchases.
6.6 Timing of recommendations and purchases

The recommendation referral program encourages people to parakaoon as possible after they get
a recommendation, since this maximizes the probability of getting a discount. Wethtudime lag
between the recommendation and the purchase of different produgtgyreffectively how long it takes a
person to receive a recommendation, consider it, and act on it.

We present the histograms of the “thinking timeg,, the difference between the time of purchase and
the time the last recommendation was received for the product prior to ticbgae (figures.13. We
use a bin size of 1 day. Around 35%-40% of book and DVD purchasesred within a day after
the last recommendation was received. For DVDs 16% purchases mocarthan a week after the last
recommendation, while this drops to 10% for books. In contrast, if we cengiet lag between the
purchase and thirst recommendation, only 23% of DVD purchases are made within a day, while the
proportion stays the same for books. This reflects a greater likelihooa person to receive multiple
recommendations for a DVD than for a book. At the same time, DVD recommeteteido send out
many more recommendations, only one of which can result in a discountsidadis then often miss
their chance of a discount, which is reflected in the high ratio (78%) ofmezended DVD purchases that
did not a get discount (see tatBe2, columnsb, andb.). In contrast, for books, only 21% of purchases
through recommendations did not receive a discount.

We also measure the variation in intensity by time of day for three differentitaesiin the recommen-
dation system: recommendations (figéré4(a)), all purchases (figur@.14(b)), and finally just the pur-
chases which resulted in a discount (fig6r&4(c)). Each is given as a total count by hour of day.

The recommendations and purchases follow the same pattern. The only $i@edhde is that purchases
reach a sharper peak in the afternoon (after 3pm Pacific Time, 6pnritéiste). This means that the
willingness to recommend does not change with time, since about a constetitrfrof purchases also
result in recommendations sent (pl6td4(a) and (b) follow the same shape).

The purchases that resulted in a discount @ig@4(c)) look like a negative image of the first two figures.
If recommendations would have no effect then plot (c) should follow theesshape as (a) and (b), since

164



5 4
10 X 10

15

Recommendtions
All Purchases
[

0.5

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Hour of the Day Hour of the Day Hour of the Day

(a) Recommendations (b) Purchases (c) Purchases with Discount

Figure 6.14: Time of day for purchases and recommendations. (a) showdigtréution of recommen-
dations over the day, (b) shows all purchases and (c) sholwgorchases that resulted in a
discount.

a fraction of people that buy would become first buyées, the more recommendations sent, the more
first buyers and thus discounts. However, this does not seem to basbeThe number of purchases with
discount is high when the number of purchases is small. This means that htistaunted purchases
happened in the morning when the traffic (number of purchases/recoratierg] on the retailer's web-
site was low. This makes sense since most of the recommendations happengdite day, and if the
person wanted to get the discount by being the first one to purchaskadtihe highest chances when the
traffic on the website was the lowest.

There are also other factors that come into play here. Assuming that recatatioms are sent to people’s
personal (non-work) email addresses, then people probably ¢hesk email accounts for new email
less regularly while at work. So checking personal email while at wodkraacting to a recommenda-
tion would mean higher chances of getting a discount. Second, there aneetlgork effectsj.e., the
more recommendations sent, the higher chance of recommendation collisimwénehance of getting
discount, since one competes with the larger set of people.

6.7 Recommendations and communities of interest

Social networks are a product of the contexts that bring people togetier context can be a shared
interest in a particular topic or kind of a book. Sometimes there are circunestasiech as a specific job
or religious affiliation, that would make people more likely to be interested in thie sgpe of book or
DVD. We first apply a community discovery algorithm to automatically detect conitresrf individuals
who exchange recommendations with one another and to identify the kindsdfgis each community
prefers. We then compare the effectiveness of recommendations d&wok categories, showing that
books on different subjects have varying success rates.

6.7.1 Communities and purchases

In aggregating all recommendations between any two individuals in Segi®awe showed that the
network consists of one large component, containing a little over 100,086nceiss, and many smaller
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components, the largest of which has 634 customers. However, kntkdah@ hundred thousand cus-
tomers are linked together in a large network does not reveal whethedagbiin a particular category is
likely to diffuse through it. Consider for example a new science fiction beawkwould like to market by
word-of-mouth. If science fiction fans are scattered throughout ttveanlke, with very few recommenda-
tions shared between them, then recommendations about the new bookilely tm diffuse. If on the
other hand one finds one or more science ficiommunitieswhere sci-fi fans are close together in the
network because they exchange recommendations with one another,glmokrecommendation has a
chance of spreading by word-of-mouth.

In the following analysis, we use a community finding algorith@tauset et al.2004 in order to dis-
cover the types of products that link customers and so define a communéyaldorithm breaks up the
component into parts, such that the modularity Q,

@ = (number of edges within communities) — (expected number of such edges), (6.6)

is maximized. In other words, the algorithm identifies communities such that indilgdvithin those
communities tend to preferentially exchange recommendations with one another.

The results of the community finding analysis, while primarily descriptive, illtsstbmth the presence
of communities whose members are linked by their common interests, and thegeresess-cutting in-
terests between communities. Applying the algorithm to the largest componentemidyidnany small
communities and a few larger ones. The largest contains 21,000 n