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Abstract
Efficient processing of high-res video streams is safety-critical for many robotics

applications such as autonomous driving. To maintain real-time performance, many
practical systems downsample the video stream. But this can hurt downstream tasks
such as (small) object detection. Instead, we take inspiration from biological vision
systems that allocate more foveal “pixels" to salient parts of the scene. We introduce
FOVEA, an approach for intelligent downsampling that ensures salient image regions
remain “magnified" in the downsampled output. Given a high-res image, FOVEA
applies a differentiable resampling layer that outputs a small fixed-size image canvas,
which is then processed with an object detector, whose output is then differentiably
backward mapped onto the original image size. In order to maintain overall efficiency,
FOVEA makes use of cheap and readily available saliency cues, including dataset-
specific spatial priors or temporal priors computed from recent object predictions.
On the autonomous driving datasets Argoverse-HD and BDD100K, our proposed
method boosts the detection AP over standard Faster-RCNN, both with and without
finetuning. Without any noticeable increase in compute, we improve accuracy on
small objects by over 2x without degrading performance on large objects. Finally,
FOVEA sets a new record for streaming AP (from 17.8 to 23.0 on a GTX 1080 Ti
GPU), a metric designed to capture both accuracy and latency. However, FOVEA
is designed specifically for 2D object detection. To generalize to arbitrary spatial
tasks, in our followup work, we "learn to zoom" in on the input image, compute
spatial features, and then "unzoom" to revert any deformations (LZU). To enable
efficient and differentiable unzooming, we approximate the zooming warp with a
piecewise bilinear mapping that is invertible. LZU can be applied to any task with
spatial input and any model with spatial features, and we demonstrate this versatility
by evaluating on a variety of tasks and datasets: object detection on Argoverse-HD
and a synthetic video COCO, semantic segmentation on Cityscapes, and RGB-based
3D detection on NuScenes. Interestingly, we observe boosts in performance even
when high-resolution sensor data is unavailable, implying that LZU can be used to
"learn to upsample" as well.
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Chapter 1

Introduction

Safety-critical robotic agents such as self-driving cars make use of an enormous suite of high-
resolution perceptual sensors, with the goal of minimizing blind spots, maximizing perception
range, and ensuring redundancy [4, 6, 49]. We argue that “over-sensed” perception platforms
provide unique challenges for vision algorithms since those visual sensors must rapidly con-
sume sensor streams while continuously reporting back the state of the world. While numerous
techniques exist to make a particular model run fast, such as quantization [54], model compres-
sion [10], and inference optimization [42], at the end of the day, simple approaches that subsample
sensor data (both spatially by frame downsampling and temporally by frame dropping) are still
most effective for meeting latency constraints [30]. However, subsampling clearly throws away
information, negating the goals of high-resolution sensing in the first place! This status quo calls
for novel vision algorithms.

To address this challenge, we take inspiration from the human visual system; biological vision
makes fundamental use of attentional processing. While current sensing stacks make use of
regular grid sampling, the human vision system in the periphery has a much lower resolution than
in the center (fovea), due to the pooling of information from retinal receptors by retinal ganglion
cells. Such variable resolution is commonly known as foveal vision [26].

In this thesis, first, we propose FOVEAted image magnification (FOVEA) for object detection,
which retains high resolution for objects of interest while maintaining a small canvas size. We
exploit the sparsity of detection datasets – objects of interest usually only cover a portion of the
image. The key idea is to resample such that background pixels can make room for salient pixels
of interest. The input images are downsampled and warped such that salient areas in the warped
image have higher resolutions. While image warping has been explored for image classification
[22, 43] and regression [43], major challenges remain when applying such methods to detailed
spatial prediction tasks such as object detection. First, processing warped images will produce
warped spatial predictions (bounding box coordinates). We make use of differentiable backward
maps to unwarp spatial predictions back to the original space. Second, it is hard to efficiently
identify salient regions; in the worst case, a saliency network tuned for object detection may
be as expensive as the downstream detection network itself, thereby eliminating any win from
downsampling. In our case, we make use of cheap and readily available saliency cues, either in
the form of dataset-specific spatial priors (i.e., small objects tend to exist near a fixed horizon) or
temporal priors (small objects tend to lie nearby small object predictions from previous frames).
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Figure 1.1: Standard image downsampling (top right) limits the capability of the object detector to
find small objects. In this thesis, we propose an attentional warping method FOVEA (bottom right)
that enlarges salient objects in the image while maintaining a small input resolution. Challenges
arise when warping also alters the output labels (e.g., bounding boxes).

Third, previous image warps (tuned for image classification tasks) can produce cropped image
outputs. Since objects can appear near the image boundary, we introduce anti-cropping constraints
on the warping.

We validate our approach on two self-driving datasets for 2D object detection: Argoverse-
HD [30] and BDD100K [60]. First, we show that FOVEA can improve the performance of
off-the-shelf detectors (Faster R-CNN [45]). Next, we finetune detectors with differentiable image
warping and backward label mapping, further boosting performance. In both cases, small objects
improve by more than 2x in average precision (AP). Finally, we evaluate FOVEA under streaming
perception metrics designed to capture both accuracy and latency [30], producing state-of-the-art
results.

Then, we generalize our method to arbitrary tasks with spatial labels. This is trickier, but has
been accomplished in followup works for semantic segmentation (LDS [23]) and object detection
(FOVEA [51]). LDS [23] does not unzoom during learning, and so defines losses in the warped
space. This requires additional regularization that may not apply to non pixel-dense tasks such
as detection. FOVEA [51] does train 2D detectors by unzooming bounding boxes, but this is a
special purpose solution that avoids computing an inverse, making it inapplicable to tasks such as
semantic segmentation. Notwithstanding these otherwise elegant solutions, there does not appear
to be a general solution for learning to intelligently downsample across spatial tasks.

Our primary contribution is a general framework in which we "zoom" into an input image,
process the zoomed image, and then unzoom the output back with an inverse warp. "Learning to
zoom and unzoom" (LZU) can be applied to any network that makes use of 2D spatial features

1According to the reference implementation of [23], the forward "zoom" takes 3.4ms, and the inference-time
inversion takes 70.126s. We suspect that inversion is not optimized, so we provide a lower bound on the latency.
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Figure 1.2: LZU is characterized by "zooming" the input image, computing spatial features, then
"unzooming" to revert spatial deformations. LZU can be applied to any task and model that
makes use of internal 2D features to process 2D inputs. We show visual examples of output tasks
including 2D detection, semantic segmentation, and 3D detection from monocular images.

to process 2D spatial inputs (Fig. 1.2) with no adjustments to the network or loss. To unzoom,
we approximate the zooming warp using a piecewise bilinear mapping. This allows efficient and
differentiable computation of the forward and inverse warps.

To demonstrate the generalizability of LZU, we explore a variety of tasks: object detection
with RetinaNet [36] on Argoverse-HD [29] and a synthetic video COCO [34], semantic segmen-
tation with PSPNet[61] on Cityscapes [13], and RGB-based 3D detection with FCOS3D [57]
on NuScenes [5]. In our experiments, to maintain favorable accuracy-latency tradeoffs, we use
cheap sources of saliency (as in [51]) when determining where to zoom. On each task and dataset,
LZU increases performance over uniform downsampling and prior works with minimal additional
latency, as shown in Table 1.1.

Interestingly, for both 2D and 3D object detection, we also see performance boosts even when
processing low resolution input data. While prior works focus on performance improvements via
intelligent downsampling [43, 51], our results show that LZU can also improve performance by
intelligently upsampling (suggesting that current networks struggle to remain scale invariant for
small objects, a well-known observation in the detection community [34]).

3



Table 1.1: Summary of task-agnostic generalization of LZU. For each of the below tasks, we
evaluate LZU and compare to a uniform downsampling baseline and prior work. We also train a
soft uniform downsampling "upper bound" at a higher input resolution. For segmentation, our
baseline’s performance (55.4) varies from the reported performance in [23] (54). Details on the
choice of dataset, model, and input resolution are provided in Tables 6.1, 6.3, and 6.4.

2D Object Detection Semantic Segmentation 3D Detection

Method Acc (mAP) Lat (ms) Acc (mIoU) Lat (ms) Acc (NDS) Lat (ms)

Baseline 22.6 45.8 54 / 55.4 27.0 27.5 58.3
Prior Work 24.9 [51] 47.7 54 → 55 [23] ≥30.4 1 – –

LZU 25.3 49.7 55.4 → 56.8 29.3 29.3 58.7
Upper Bound 29.5 68.5 55.4 → 65.3 42.5 31.2 87.9
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Chapter 2

Related Work

In this section, we outline related works for both our methods FOVEA and LZU.

2.1 Related Works for FOVEA
We split related works for FOVEA into three sections. The first elaborates on the well-established
problem of object detection in computer vision. The second describes a class of approaches
dealing with online perception, and the last outlines methods in computer vision utilizing visual
attention to achieve better performance.

2.1.1 Object detection
Object detection is one of the most fundamental problems in computer vision. Many methods
have pushed the state-of-the-art in detection accuracy [7, 17, 35, 41, 45], and many others aim for
improving the efficiency of the detectors [3, 38, 44, 50]. The introduction of fully convolution
processing [48] and spatial pyramid pooling [18] have allowed us to process the input image in its
original size and shape. However, it is still a common practice to downsample the input image
for efficiency purposes. Efficiency becomes a more prominent issue when people move to the
video domain. In video object detection, the focus has been on how to make use of temporal
information to reduce the number of detectors invoked [39, 62, 63]. These methods work well on
simple datasets like ImageNet VID [47], but might be unsuitable for the self-driving car senarios,
where multiple new objects appear at almost every frame. Furthermore, those methods are usually
designed to work in the offline fashion, i.e., allowing access to future frames. Detection methods
are the building blocks of our framework, and our proposed approach is largely agnostic to any
particular detector.

2.1.2 Online/streaming perception
In the online setting, the algorithm must work without future knowledge. [33] proposes the
Temporal Shift Module that enables video understanding through channel shifting and in the
online setting, the shifting is restricted to be uni-directional. [2] proposes a multi-object tracking
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method that takes input previous frame detection as addition proposals for the current frame.
FOVEA also takes previous frame detection as input, but we use that to guide image warping.
Streaming accuracy [30] is a recently proposed metric that evaluates the output of a perception
algorithm at all time instants, forcing the algorithm to consider the amount of streaming data that
must be ignored while computation is occuring. [30] demonstrates that streaming object detection
accuracy can be significantly improved by tuning the input frame resolution and framerate. In
this work, we demonstrate that adaptive attentional processing is an orthogonal dimension for
improving streaming performance.

2.1.3 Adaptive visual attention
Attentional processing has been well studied in the vision community, and it appears in different
forms [14, 21, 24, 32, 37, 55]. Specially in this thesis, we focus on dynamic resolutions. For image
classification, [53] designs an algorithm to select high-resolution patches, assuming each patch
is associated with a data acquisition cost. [40] applies non-uniform downsampling to semantic
segmentation and relies on the network to learn both the forward and backward mapping, whose
consistency is not guaranteed. For object detection, a dynamic zoom-in algorithm is proposed
that processes high-resolution patches sequentially [16]. However, sequential execution might not
meet latency requirements for real-time applications. Most similar to our work, [43] proposes an
adaptive image sampling strategy that allocates more pixels for salient areas, allowing a better
downstream task performance. But the method only works for image classification and regression,
where the output is agnostic to the input transformation.

2.2 Related Work for LZU
We split related work for LZU into two sections. The first discusses the broad class of methods
aiming to improve efficiency by paying "attention" to specific image regions. The second delves
into works like LZU that accomplish this by differentiably resampling.

2.2.1 Spatial Attentional Processing
By design, convolutional neural networks (CNNs) pay equal "attention" (perform the same
computations) to all regions of the image. In many cases, this is suboptimal, and much work has
gone into developing attentional methods that resolve this inefficiency.

One such method is Dynamic Convolutions [55], an alternative to vanilla convolutions that
uses sparse convolutions to selectively compute outputs at only the salient regions. Similarly
gated convolutions are used in [25, 59]. Notably, these all use "hard" attention in that the saliency
is binary, and non-salient regions are ignored completely.

Deformable Convolutions [14, 64] provides a softer implementation of spatial attention by
learning per pixel offsets when applying convolutions, allowing each output pixel to attend
adaptively to pixels in the input image. SegBlocks [56] also provides a softer attention mechanism
by splitting the image into blocks and training a lightweight reinforcement learning policy to
determine whether each block should be processed at a high or low resolution. This is akin to LZU,

6



which also has variable resolution, albeit in a more continuous manner. LZU is also generalizable
to tasks in which it’s infeasible to "stitch" together outputs from different blocks of the image (e.g.
in detection where an object can span multiple blocks).

2.2.2 Spatial Attention via Differentiable Image Resampling
Spatial Transformer Networks [22] introduces a differentiable method to resample an image. They
originally propose this to invert changes in appearance due to viewpoint, thereby enforcing better
pose invariance.

Learning to Zoom (LZ) [43] later adapts this resampling operation to "zoom" on salient image
regions, acting as a spatial attention mechanism. Their key contribution is a transformation
parameterized by a saliency map such that regions with higher saliency are more densely sampled.
However, this deforms the image, requiring the task to have non-spatial labels.

Followup works [23, 51] adapt LZ downsampling to detection and semantic segmentation.
For object detection, FOVEA [51] exploits the fact that image resampling is implemented via an
inverse mapping to map predicted bounding boxes back into the original image space. This allows
all processing to be done in the downsampled space and the final bounding box regression loss to
be computed in the original space. However, when there are intermediate losses, as is the case
with two-stage detectors containing region proposal networks (RPNs) [45], this requires more
complex modifications to the usual delta loss formulation, due to the irreversibility of the inverse
mapping. For semantic segmentation, Jin et al. [23] applies LZ downsampling to both the input
image and the ground truth and computes the loss in the downsampled space. This is elegant and
model-agnostic but leads to misalignment between the training objective and the desired evaluation
metric. In the extreme case, the model learns degenerate warps that sample "easy" parts of the
image to reduce the training loss, and to address this, they introduce additional regularization on
the downsampler. Independently, [40] handcraft an energy minimization formulation to sample
more densely at semantic boundaries.

In terms of warping and unwarping, the closest approach to ours is Dense Transformer Net-
works [27], which also inverts deformations introduced by nonuniform resampling. However, their
warping formulation is not saliency-based, which makes it hard to work with spatial or temporal
priors and also makes it time-consuming to produce the warping parameters. Additionally, they
only show results for semantic segmentation, whereas we show that our formulation generalizes
across spatial vision tasks.

7
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Chapter 3

FOVEA [51]

Assume we are given a training set of image-label pairs (I, L). We wish to learn a nonlinear
deep predictor f that produces a low loss L(f(I), L). Inspired by past work [22, 43], we observe
that certain labeling tasks can be performed more effectively by warping/resampling the input
image. However, when the label L itself is spatially defined (e.g., bounding box coordinates or
semantic pixel labels), the label itself may need to be warped, or alternatively, the output of the
deep predictor may need to be inverse-warped.

In this section, we first introduce the saliency-guided spatial transform from related work as
the foundation of our method. Next, we introduce our solutions to address the challenges in image
warping for object detection. An overview of FOVEA, our method, is shown in Fig 3.1.

3.1 Background: Saliency-Guided Spatial Transform
The seminal work of spatial transformer networks (STN) introduces a differentiable warping
layer for input images and feature maps [22]. It was later extended to incorporate a saliency map
to guide the warping [43]. Here we provide implementation details that are crucial to FOVEA.
Please refer to the original papers [22, 43] for more details.

A 2D transformation can be written as:

T : (x, y) → (x′, y′), (3.1)

where (x, y) and (x′, y′) are the input and output coordinates. Since image pixels are usually
discrete, interpolation is required to sample values at non-integral coordinates. An image warp
WT takes input an image I , samples the pixel values according to the given transformation T ,
and outputs the warped image I ′:

I ′(T (x, y)) = I(x, y) (3.2)

Naive forward warping of discrete pixel locations from input I can result in non-integral target
pixel positions that need to be “splatted" onto the pixel grid of I , which can produce artifacts such
as holes. Instead, image warps are routinely implemented via a backward map [1]: iterate over
each output pixel grid location, compute its inverse mapping T −1 to find its corresponding input
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Figure 3.1: FOVEA for object detection. Given bounding box predictions from the previous frame
(if the input are videos) or a collection of all the ground truth bounding boxes in the training set,
the saliency generator creates a saliency map and that is fed into the spatial transformer (adapted
from [22, 43]) to downsample the high-resolution input frame while magnifying salient regions.
Then we feed the downsampled input into a regular object detector, and it produces bounding box
output in the warped space, which is then converted back to the original image space as the final
output.

coordinates (which may be non-integral), and bilinearly interpolate its color from neighboring
input pixel grid points:

I ′(x, y) = I(T −1(x, y)) (3.3)

In other words, the implementation of WT only requires the knowledge of the inverse transforma-
tion T −1. The pixel iteration can be replaced with a batch operation by using a grid generator and
apply the transformation T −1 over the entire grid.

STN uses a differentiable formulation of T −1
θ (parameterized by θ) and an ensuing bilinear

grid sampler, which is differentiable and parameter-free. [43] proposes a special form of T −1

parameterized by a saliency map S: T −1
θ = T −1

S . This transform has a convolution form and is
therefore fast, using the intuition that each input pixel (x, y) attracts samples from the original
image with a force S(x, y), leading to more sampling at salient regions. We point out that both
[22] and [43] ignore the effect of warping on the output label space and skip the modeling of the
forward transform T , which (we will show) is required for unwarping certain label types.

3.2 Image Warping for Object Detection

In this section, we first explain our high-level inference formulation, then our specific form of the
warping, and in the end some adjustments for training the task network.
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Warping        implemented 

with backward mapping

Labels in the 
original space

1. Identity for invariant

quantities (class labels)

2.           for coordinates

(bounding boxes)

3.     for images

(segmentation)

Labels in the 
warped space

Interpolation

Figure 3.2: Image warps WT are commonly implemented via a backward map T −1 followed by
(bilinear) interpolation of nearby source pixel grid values, since forward mapping T can result in
target pixel positions that do not lie on the pixel grid (not shown). Though image warping is an
extensively studied topic (notably by [22, 43] in the context of differentiable neural warps), its
effect on labels is less explored because much prior art focuses on global labels invariant to warps
(e.g. an image class label). We explore warping for spatial prediction tasks whose output must
be transformed back into the original image space to generate consistent output. Interestingly,
transforming pixel-level labels with warp WT −1 requires inverting T −1, which can be difficult
depending on its parameterization [1]. For FOVEA, we focus on transforming pixel coordinates
of bounding boxes, which requires only the already-computed backward map T −1 (the red arrow).

3.2.1 Inference formulation

We visually lay out the space of image and label warps in Fig 3.2. Recent methods for differentiable
image warping assume labels are invariant under the warping (the first pathway in Fig 3.2). For
object detection, however, image warping clearly warps bounding box outputs. To produce
consistent outputs (e.g., for computing bounding box losses during learning), these warped
outputs need to transformed back into the original space (the second pathway in Fig 3.2). Quite
conveniently, because standard image warping is implemented via the backward map T −1,
the backward map is already computed in-network and so can be directly applied to the pixel
coordinates of the predicted bounding box. The complete procedure for our approach f̂ can be
written as f̂(I, T ) = T −1(f(WT (I))). where f(·) is the nonlinear function that returns bounding
box coordinates of predicted detections. Importantly, this convenience doesn’t exist when warping
pixel-level values; e.g., when warping a segmentation mask back to the original image input space
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(the third pathway in Fig 3.2). Here, one needs to invert T −1 to explicitly compute the forward
warp T .

3.2.2 Warping formulation
We adopt the saliency-guided warping formulation from [43]:

T −1
x (x, y) =

∫
x′,y′

S(x′, y′)k((x, y), (x′, y′))x′∫
x′,y′

S(x′, y′)k((x, y), (x′, y′))
, (3.4)

T −1
y (x, y) =

∫
x′,y′

S(x′, y′)k((x, y), (x′, y′))y′∫
x′,y′

S(x′, y′)k((x, y), (x′, y′))
, (3.5)

where k is a distance kernel (we use a Gaussian kernel in our experiments). However, in this
general form, axis-aligned bounding boxes might have different connotations in the original
and warped space. To ensure axis-alignment is preserved during the mapping, we restrict the
warping to be separable along the two dimensions, i.e., T −1(x, y) = (T −1

x (x), T −1
y (y)). For each

dimension, we adapt the previous formulation to 1D:

T −1
x (x) =

∫
x′ Sx(x

′)k(x′, x)x′∫
x′ Sx(x′)k(x, x′)

, (3.6)

T −1
y (y) =

∫
y′
Sy(y

′)k(y′, y)y′∫
y′
Sy(y′)k(y, y′)

. (3.7)

We call this formulation separable and the general form nonseparable. Note that the nonseparable
formulation has a 2D saliency map parameter, whereas the separable formulation has two 1D
saliency maps, one for each axis. Fig 3.3 shows an example of each type of warp.

One nice property of T −1 is that it is differentiable and thus can be trained with backpropaga-
tion. One limitation though is that its inverse T doesn’t have a closed-form solution, nor does
its derivative. The absence of T is not ideal, and we propose some workaround as shown in the
following subsection.

3.2.3 Anti-Cropping Constraint
We find the convolution form of saliency-guided spatial transform tends to crop the images,
which might be acceptable for image classification where a large margin exists around the border.
However, any cropping in object detection creates a chance to miss objects. We solve this by using
reflect padding on the saliency map while applying the attraction kernel in Eq 3.6. This introduces
symmetries about each of the edges of the saliency map, eliminating all horizontal offsets along
vertical image edges and vice versa. Thus cropping is impossible under this formulation. A 1D
illustration is shown in Fig 3.4 to explain the problem and the solution.

3.2.4 Training formulation
Once we have the inference formulation, training is also straightforward as we require the loss
L to be computed in the original space: L(Q(f(WT (I)), L), where Q is the label-type-specific
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Figure 3.3: By restricting the general class of warps (left) to be separable (right), we ensure
that bounding boxes in the warped image (examples outlined in red) remain axis-aligned. We
demonstrate that such regularization (surprisingly) improves performance, even though doing so
theoretically restricts the range of expressible warps (details in Sec 4.1.2).

backward mapping as shown in Fig 3.2, and in our case, Q = T −1. Note that WT , f and T −1 are
all differentiable. While inference itself does not require the knowledge of T , it is not the case
for training detectors with region proposal networks (RPN) [45]. When training RPNs [45], the
regression targets are the deltas between the anchors and the ground truth, and the deltas are later
used in RoI Pooling/Align [18, 20]. The former should be computed in the original space (the
ground truth is in the original space), while the latter is in the warped space (RoI Pooling/Align is
over the warped image). This implies that the deltas need first to be learned in the original space,
applied to the bounding box, and then mapped to the warped space using T for RoI Pooling/Align.
But as discussed before, T cannot be easily computed. As a workaround, we omit the delta
encoding and adopt Generalized IoU (GIoU) loss [46] to account for the lost stability. The main
idea of GIoU is to better reflect the similarity of predicted and ground truth bounding boxes in
cases of zero intersection; this has been shown to improve results.

3.3 KDE Saliency Generator
Prior work [22, 43] trains a saliency network to generate saliency maps, which we explore as a
baseline in Sec 4.1. Because saliency maps for object detection appear hard to learn, we explore
cheap alternatives for saliency map construction: dataset-level priors over object locations or
temporal priors extracted from previous frame’s predictions. Both priors can be operationalized
with an approach that converts bounding boxes to a saliency map.

Intuitively, we build a saliency map by “overlaying" boxes on top of one another via non-
parametric kernel density estimation (KDE). More precisely, given a set of bounding boxes B
with centers ci, heights hi and widths wi, we model the saliency map SB as a sum of normal
distributions:

Sa,b
B =

1

K2
+ a

∑
(ci,wi,hi)∈B

N
(
ci, b

[
wi 0
0 hi

])
(3.8)

where a and b are hyperparameters for amplitude and bandwidth, respectively, and K is the size of
the attraction kernel k in Eq 3.6. Adding the small constant is done to prevent extreme warps. We
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(a) Default, σ ≈ 5.5 (b) Anti-crop, σ ≈ 5.5 (c) Anti-crop, σ ≈ 1.7

Figure 3.4: Saliency-guided transform illustrated in 1D. The red curve is a saliency map S. The
bottom row of dots are the output points (at uniform intervals), and the top row of dots are the
locations where we’ve sampled each output point from the original “image", as computed by
applying T −1

S to the output points. (a) The default transform can be understood as a weighted
average over the output points and thus ignores points with near zero weights such as those at the
boundaries. (b) Note the effects of introducing anti-crop reflect padding, and (c) how decreasing
the std dev σ of the attraction kernel k results in more local warping around each peak (better for
multimodal saliency distributions).

then normalize the 2D saliency map such that it sums to 1 and marginalize along the two axes if
using the separable formulation1. As laid out in the previous section, this is then used to generate
the image transformation T −1

S according to Eq 3.6. Ensuring that each kernel is locally normalized
produces our desired behavior; we’ll have high saliency for pixels covered by objects, and even
higher saliency for pixels covered by small objects (that have their Gaussian mass focused on a
smaller object size).

We can apply SB to the set of all bounding boxes in the training set to obtain a dataset-wide
prior (denoted as SD), or apply it to the previous frame’s predictions to obtain a image-specific
temporal prior (denoted as SI). The former encodes dataset-level spatial priors such as small
objects appearing near the horizon (Fig 4.2). The latter encodes a form of temporal contextual
priming, allocating pixel samples to previously seen objects (with a default of uniform saliency for
the first frame). We also experiment with a weighted combination of both: SC = α·SI+(1−α)·SD.
All of the above saliency generators are differentiable, so the final task loss can be used to learn
hyperparameters a, b, α.

1When using the separable formulation, we could instead skip the intermediate 2D saliency map representation.
However, we opt not to, because the intermediate 2D saliency map produces more interpretable visualizations, and
the difference in runtime is negligible.
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Chapter 4

FOVEA Experiments

We first compare FOVEA to naive downsampling on autonomous driving datasets such as
Argoverse-HD. Next, we use streaming perception metrics to show that the accuracy gain is
worth the additional cost in latency. Finally, we present results on BDD100K, showing the gener-
alization of FOVEA. We include additional results, diagnostic experiments, and implementation
details in the appendix.

4.1 Object Detection for Autonomous Navigation
Argoverse-HD [30] is an object detection dataset for autonomous vehicles. Noteably, it contains
high framerate (30 FPS) data and annotations. As is standard practice, we adopt AP for evalua-
tion. We also report end-to-end latency (including image preprocessing, network inference, and
bounding box postprocessing) measured on a single GTX 1080 Ti GPU. The image resolution for
this dataset is 1920× 1200, much larger than COCO’s, which is capped at 640. Since all models
used are fully convolutional, we run them with different input scales, denoted by ratios to the
native resolution, e.g., 0.5x means an input resolution of 960× 600.

4.1.1 Baseline and Setup

The baseline we compare to throughout our experiments is Faster RCNN [45] with a ResNet-50
backbone [19] plus FPN [35]. The default input scale for both the baseline and our method is 0.5x.
For the baseline, however, we additionally train and test at 0.75x and 1x scales, to derive a sense
of the latency-accuracy tradeoff using this model. Our contribution is orthogonal to the choice of
the baseline detector and we obtain similar results with other detectors including RetinaNet [36]
and YOLOF [9].

Notably, Argoverse-HD’s training set only contains pseudo ground truth (at the time of
experimentation) generated by running high-performing detector HTC [7] in the offline setting.
For all experiments, unless otherwise stated, we train on the train split with pseudo ground truth
annotations, and evaluate on the val split with real annotations. Additional measures are taken to
prevent overfitting to biased annotations. We finetune COCO pretrained models on Argoverse-HD
for only 3 epochs (i.e., early stopping). We use momentum SGD with a batch size of 8, a learning
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Figure 4.1: The learned direct separable (left) and nonseparable (right) dataset-wide warps.
Despite the vastly greater flexibility of nonseparable warps, the learned warp is almost separable
anyway.

rate of 0.02, 0.9 momentum, 10−4 weight decay, and a step-wise linear learning rate decay for this
short schedule [31]. Also, when training detectors with warped input, we apply our modifications
to RPN and the loss function as discussed in Sec 3.2.

4.1.2 Learned Saliency
Our first control experiment does not make use of bounding box KDE priors, but rather directly
learns a global, dataset-wide saliency map S(x, y) via backprop. We directly learn both separable
and nonseparable saliency maps in Tab 4.1.

We find that both separable and nonseparable warps significantly improve overall AP over
the baseline, owing to the boosted performance on small objects. However, there is also a small
decrease in AP on large objects. Interestingly, even though nonseparable warps are more flexible,
the learned solutions look nearly separable (Fig 4.1) but perform worse, indicating overfitting.
Therefore, going forward, we focus on separable warps in our experiments.

Following [43], we also learn a “saliency network" that maps each input image to its saliency
map via a ResNet-18 backbone [19]. In this sense, the learned saliency map would adapt to
each image. However, we find that this approach very unstable for object detection. From our
experiments, even with a small learning rate of 10−5 on the saliency network, the model learns
a degeneracy in which an extreme warp leads to no proposals being matched with ground truth
bounding boxes in the RoI bounding box head, leading to a regression loss of 0.

4.1.3 KDE Saliency Generator
This section makes use of the KDE construction in Sec 3.3 to generate saliency maps. We first
manually tune the amplitude a and bandwidth b to obtain desired magnifications. We find that an
amplitude a = 1 and a bandwidth b = 64 works the best, paired with an attraction kernel of std.
dev. of about 17.8% the image height, which allows for more local warps as illustrated in Fig 3.4.
We finetune our models using the same configuration as the baseline, the only difference being
the added bounding box and saliency-guided spatial transformation layer. We learn SD using all
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bounding boxes from the training set and for simplicity, learn SI with jittered ground-truth boxes
from the current frame (though at test-time it always uses predictions from the previous frame).
We set α = 0.5 for SC .

We then learn hyperparameters a and b through backpropagation, since our KDE formulation
is differentiable. We initialize parameters a′ and b′ to 0, under the construction that a = |1 + a′|+
0.1, b = 64 · |1 + b′| + 0.1. The learning rate of a′ and b′ is set to 10−4 with zero weight decay.
Other than this, we train the learned KDE (LKDE) model with the same configuration as the
baseline. We implement the SI formulation.

All results are shown in Table 4.1. Even without finetuning our detector, using a simple
fixed dataset-wide warp SD, we find significant improvements in AP. As we migrate to temporal
priors with finetuning, we see even more improvement. As in the learned saliency case, these
improvements in overall AP are due to large boosts in APS , outweighing the small decreases
in APL. Combining our saliency signals (SC) doesn’t help, because in our case, it seems that
the temporal signal is strictly stronger than the dataset-wide signal. Perhaps if we had an
alternate source of saliency like a map overlay, combining saliencies could help. Our best method
overall is LKDE, which learned optimal values a = 1.07, b = 71.6. Learning a nonseparable
saliency performs better than our hand-constructed dataset-wide warp SD; however, they’re both
outperformed by SI . Importantly, our LKDE not only significantly improves APS , but also
improves all other accuracy measures, suggesting that our method does not need to tradeoff
accuracy of large objects for that of small objects. Finally, we note that our increased performance
comes at the cost of only about 2 ms in latency.

Argoverse-HD before finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck Latency (ms)

Baseline 21.5 35.8 22.3 2.8 22.4 50.6 20.8 9.1 13.9 7.1 48.0 16.1 37.2 20.2 49.4 ± 1.0

KDE (SD) 23.3 40.0 22.9 5.4 25.5 48.9 20.9 13.7 12.2 9.3 50.6 20.1 40.0 19.5 52.0 ± 1.0
KDE (SI) 24.1 40.7 24.3 8.5 24.5 48.3 23.0 17.7 15.1 10.0 49.5 17.5 41.0 19.4 51.2 ± 0.7
KDE (SC) 24.0 40.5 24.3 7.4 26.0 48.2 22.5 14.9 14.0 9.5 49.7 20.6 41.0 19.9 52.0 ± 1.2

Upp. Bound (0.75x) 27.6 45.1 28.2 7.9 30.8 51.9 29.7 14.3 21.5 6.6 54.4 25.6 44.7 23.7 86.9 ± 1.6
Upp. Bound (1.0x) 32.7 51.9 34.3 14.4 35.6 51.8 33.7 21.1 33.1 5.7 57.2 36.7 49.5 24.6 133.9 ± 2.2

Argoverse-HD after finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck Latency (ms)

Baseline 24.2 38.9 26.1 4.9 29.0 50.9 22.8 7.5 23.3 5.9 44.6 19.3 43.7 26.6 50.9 ± 0.9

Learned Sep. 27.2 44.8 28.3 12.2 29.1 46.6 24.2 14.0 22.6 7.7 39.5 31.8 50.0 27.8 51.5 ± 1.0
Learned Nonsep. 25.9 42.9 26.5 10.0 28.4 48.5 25.2 11.9 20.9 7.1 39.5 25.1 49.4 28.1 50.0 ± 0.8

KDE (SD) 26.7 43.3 27.8 8.2 29.7 54.1 25.4 13.5 22.0 8.0 45.9 21.3 48.1 29.3 50.8 ± 1.2
KDE (SI) 28.0 45.5 29.2 10.4 31.0 54.5 27.3 16.9 24.3 9.0 44.5 23.2 50.5 28.4 52.2 ± 0.9
KDE (SC) 27.2 44.7 28.4 9.1 30.9 53.6 27.4 14.5 23.0 7.0 44.8 21.9 49.9 29.5 52.1 ± 0.9

LKDE (SI) 28.1 45.9 28.9 10.3 30.9 54.1 27.5 17.9 23.6 8.1 45.4 23.1 50.2 28.7 50.5 ± 0.8

Upp. Bound (0.75x) 29.2 47.6 31.1 11.6 32.1 53.3 29.6 12.7 30.8 7.9 44.1 29.8 48.8 30.1 87.0 ± 1.4
Upper Bound (1.0x) 33.3 53.9 35.0 16.8 34.8 53.6 33.1 20.9 38.7 6.7 44.7 36.7 52.7 32.7 135.0 ± 1.6

Table 4.1: Results before and after finetuning on Argoverse-HD. Without retraining, processing
warped images (KDE SI , top table) improves overall AP by 2.6 points and triples APS . Even
larger gains can be observed after finetuning, making our final solution (LKDE SI) performing
close to the 0.75x upper bound. Please refer to the text for a more detailed discussion.
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Baseline - 0.5x Baseline - 1x

KDE (SD) - 0.5x

KDE (SI) - 0.5x

KDE (SC) - 0.5x

KDE (SD) - 0.5x - Saliency Map

KDE (SI) - 0.5x - Saliency Map

KDE (SC) - 0.5x - Saliency Map

Figure 4.2: Qualitative results for FOVEA after finetuning on Argoverse-HD. The cars in the
distance (in the dotted boxes), undetected at 0.5x scale, are detected at 1x scale, and partially
detected by our methods. Different rows show the variations within FOVEA based on the source
of attention.
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ID Method AP APS APM APL

1 Prior art [30] 17.8 3.2 16.3 33.3

2 + Better implementation 19.3 4.1 18.3 34.9
3 + Train with pseudo GT 21.2 3.7 23.9 43.8

4 2 + Ours (SI) 19.3 5.2 18.5 39.0
5 3 + Ours (SI) 23.0 7.0 23.7 44.9

Table 4.2: Streaming evaluation in the full-stack (with forecasting) setting on Argoverse-HD.
We show that FOVEA significantly improves previous state-of-the-art by 5.2, in which 1.5 is
from better implementation, 1.9 is from making use of pseudo ground truth and 1.8 is from our
proposed KDE warping.

4.2 Streaming Accuracy for Cost-Performance Evaluation

Streaming accuracy is a metric that coherently integrates latency into standard accuracy evaluation
and therefore is able to quantitatively measure the accuracy-latency tradeoff for embodied
perception [30]. Such a setup is achieved by having the benchmark stream the data to the
algorithm in real-time and query for the state of the world at all time instants. One of their key
observations is that by the algorithm finishes processing, the world has around changed and
therefore proper temporal scheduling and forecasting methods should be used to compensate
for this latency. Here we adopt their evaluation protocol for our cost-performance analysis. In
our case of streaming object detection, the streaming accuracy refers to streaming AP. We use
the same GPU (GTX 1080 Ti) and their public available codebase for a fair comparison with
their proposed solution. Their proposed solution includes a scale-tuned detector (Faster R-CNN),
dynamic scheduler (shrinking-tail) and Kalman Filter forecastor. Our experiments focus on
improving the detector and we keep the scheduler and forecastor fixed.

Tab 4.2 presents our evaluation under the full-stack setting. We see that FOVEA greatly
improves the previous state-of-the-art. The improvement first comes from a faster and slightly
more accurate implementation of the baseline. Note that under streaming perception, a faster
algorithm while maintaining the same offline accuracy translates to an algorithm with higher
streaming accuracy. The second improvement is due to training on pseudo ground truth (discussed
in Sec 4.1.1). Importantly, our KDE image warping further boosts the streaming accuracy
significantly on top of these improvements. Overall, these results suggest that image warping is a
cost-efficient way to improve accuracy.

4.3 Cross-Dataset Generalization

Our experiments so far are all conducted on the Argoverse-HD dataset. In this section, we cross-
validate FOVEA on another autonomous driving dataset BDD100K [60]. Note that BDD100K
and Argoverse-HD are collected in different cities. For simplicity, we only test out off-the-shelf
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ID Method AP APS APM APL

1 Baseline (0.5x) 15.1 1.0 10.6 39.0
2 Ours SD (0.5x) 13.7 1.3 10.0 34.7
3 Ours SI (0.5x) 16.4 2.1 12.8 38.6

4 Baseline (0.75x) 19.7 3.0 16.1 44.2
5 Ours SD (0.75x) 18.2 3.4 15.4 40.0
6 Ours SI (0.75x) 20.1 5.2 17.0 42.5

7 Upper bound (1.0x) 22.6 5.7 20.1 45.7

Table 4.3: Cross-dataset generalization to BDD100K [60]. Rows 2 & 5 are saliency computed
on the Argoverse-HD training set, as expected, they fail to generalize to a novel dataset. Despite
operating at a larger temporal stride (5 FPS vs 30 FPS), our proposed image-adaptive KDE
warping generalizes to a novel dataset (row 3 & 6). Note that here the image native resolution is
smaller at 1280× 720.

generalization without any finetuning. We experiment on the validation split of the MOT2020
subset, which contains 200 videos with 2D bounding boxes annotated at 5 FPS (40K frames
in total). Also, we only evaluate on common classes between BDD100K and Argoverse-HD:
person, bicycle, car, motorcycle, bus, and truck. The results are summarized in Tab 4.3, which
demonstrate the generalization capability of FOVEA.
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Chapter 5

LZU [52]

5.1 Background for LZU
Before diving into our second approach LZU, since LZU is a generalization of previous works [23,
43, 51], we include this section as a condensed explanation of prerequisite formulations critical to
understanding LZU.

5.1.1 Image Resampling
Suppose we want to resample an input image I(x) to produce an output image I′(x), both indexed
by spatial coordinates x ∈ [0, 1]2. Resampling is typically implemented via the inverse map
T : [0, 1]2 → [0, 1]2 [1]. For each output coordinate, the inverse map computes the source
location from which to "steal" the pixel value, i.e. I′(x) = I(T (x)). In practice, we are
given a discretized input image I ∈ RH×W×C and are interested in computing a discretized
output I′ ∈ RH′×W ′×C . Formally, we compute I′(x) at grid points x ∈ Grid(H ′,W ′), where
Grid(H,W ) := Grid(H) × Grid(W ) and Grid(D) := { d−1

D−1
: d ∈ [D]}. However, T (x) may

return non-integer pixel locations at which the exact value of I is unknown. In such cases, we
use bilinear interpolation to compute I(T (x)). As proven in [22], such image resampling is
differentiable with respect to T and I.

5.1.2 Saliency-Guided Downsampling
When using nonuniform downsampling for information retention, it is useful to parameter-
ize T with a saliency map S(x) representing the desired sample rate at each spatial location
x ∈ [0, 1]2 [43]. Recasens et al. [43] go on to approximate this behavior by having each sam-
ple coordinate T (x) be "attracted" to nearby areas x′ with high saliency S(x′) downweighted
according to a distance kernel k(x,x′), as illustrated in Figure 5.1. Concretely,

TLZ(x) =

(∫
x′ S(x

′)k(x,x′)x′
x dx

′∫
x′ S(x′)k(x,x′) dx′ ,

∫
x′ S(x

′)k(x,x′)x′
y dx

′∫
x′ S(x′)k(x,x′) dx′

)
. (5.1)

[51] proposes anti-cropping and separable variants of this downsampler. The anti-cropping
variant TLZ,ac uses reflect padding on S(x′) when computing TLZ(x). This induces symmetries
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Figure 5.1: Illustration of TLZ [43]. Suppose we have a saliency map S ∈ Rh×w (visualized
in the background) and want a warped image of size H ′ × W ′. (1) We start with a uniform
grid of sample locations Grid(h,w). (2) Grid points are "attracted" to nearby areas with high
saliency. (3) Applying this "force" yields TLZ[Grid(h,w)]. (4) Finally, we upsample bilinearly to
get T̃LZ[Grid(H ′,W ′)].

Figure 5.2: Examples of the anti-cropping (ac) and separable (sep) variants of TLZ from [51].

about each edge, leading to zero displacement in the sample coordinates along each edge and
thus preventing cropping. The separable variant marginalizes the saliency map S(x) into two
1D saliency maps Sx(x) and Sy(y), and replaces the kernel k(x,x′) with a two 1D kernels kx
and ky (although generally kx = ky). The resulting inverse mapping is given by TLZ,sep(x) =
(TLZ,sep,x(xx), TLZ,sep,y(xy)) for

TLZ,sep,x(x) =

∫
x′ Sx(x

′)kx(x, x
′)x′ dx′∫

x′ Sx(x′)kx(x, x′) dx′ and TLZ,sep,y(y) =

∫
y′
Sy(y

′)ky(y, y
′)y′ dy′∫

y′
Sy(y′)ky(y, y′) dy′

. (5.2)

This preserves axis-alignment of rectangles, which is crucial to object detection where object
locations are specified via corners. We refer to the above method and all variants as LZ downsam-
plers, after the pioneering work "Learning to Zoom" [43]. Examples of each variant are shown in
Figure 5.2.

5.2 LZU
We begin by discussing our general technique for warp inversion. Then, we discuss the LZU
framework and how we apply warp inversion to efficiently "unzoom".
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5.2.1 Generalized Warp Inversion
Suppose we have a inverse mapping T : [0, 1]2 → [0, 1]2. Our primary technical innovation is
an approximation of the forward mapping T −1 : [0, 1]2 → [0, 1]2, even in cases where T has no
closed-form inverse. We do this by approximating T as a piecewise tiling of simpler invertible
transforms.

In practice, given a discretized input image I ∈ RH×W×d, to produce a warped image
I′ ∈ RH′×W ′×d, we evaluate T [Grid(H ′,W ′)] to determine for each grid point where to sample
the input image. Because T is difficult to invert, let us approximate it with another map T̃ that is
designed for easy inversion. Given a grid rectangle R(i, j) = [ i−1

H′−1
, i
H′−1

]× [ j−1
W ′−1

, j
W ′−1

] for i ∈
[H ′] and j ∈ [W ′], we define T̃ within R(i, j) by bilinearly interpolating the values at the corners,
making T̃ a continuous piecewise bilinear map. More precisely, letting BilinearTransformationij

be the ij-th bilinear map, the overall approximation is given by

T̃ (x) = BilinearTransformationij(x) for x ∈ R(i, j). (5.3)

Furthermore, so long as T̃ is injective (if each of the bilinear maps is nondegenerate/invertible and
no two bilinear maps overlap), we are guaranteed a well-defined left inverse T̃ −1 : [0, 1]2 → [0, 1]2

given by

T̃ −1(x) =

{
BilinearTransformation−1

ij (x) if x ∈ T̃ [R(i, j)]

0 else
. (5.4)

Eq 5.4 is efficient to compute, since determining if x ∈ T̃ [R(i, j)] simply involves checking if x
is in a quadrilateral and computing the inverse of a bilinear map amounts to solving a quadratic
equation [58]. This efficiency is crucial to maintaining favorable accuracy-latency tradeoffs. T̃ −1

is guaranteed to be differentiable with respect to T , since for each x ∈ T̃ [R(i, j)], the inverse
bilinear map BilinearTransformation−1

ij can be written as a quadratic function of the four corners
of tile ij (see supplement for exact expression). This allows gradients to flow back into T , letting
us learn the parameters of the warp.

In the case of LZ warps, TLZ has no closed form inverse to the best of our knowledge. Because
TLZ[Grid(H ′,W ′)] has no foldovers [43], T̃LZ must be injective, implying its inverse T̃ −1

LZ is
well-defined.

5.2.2 Learning to Zoom and Unzoom
In the Learning to Zoom and Unzoom (LZU) framework, we use existing LZ downsamplers (see
Section 5.1.2) to "zoom" in on the input image, compute spatial features, and then use our warp
inversion formulation to "unzoom" and revert any deformations in the feature map, as shown in
Figure 1.2. This framework is applicable to all tasks with 2D spatial input and all models with
some intermediate 2D spatial representation.

To maintain favorable accuracy-latency tradeoffs, we make several optimizations to our for-
ward and inverse warps. As with previous works [23, 43, 51], instead of computing TLZ[Grid(H ′,W ′)],
we compute TLZ[Grid(h,w)] for smaller h ≪ H ′ and w ≪ W ′ and bilinearly upsample this to
get T̃LZ[Grid(H ′,W ′)]. This also reduces the complexity of computing the inverse, by reducing
the number of cases in our piecewise bilinear map from H ′ ·W ′ to h · w.
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Figure 5.3: Inverting each axis of a separable warp. LZU first evaluates the forward warp TLZ,sep,x

(solid blue arrows) at a uniform grid of target locations (blue points). The resulting source
locations are shown as red points. LZU then approximates the warp in between these samples
via a linear transform; this piecewise linear map is T̃LZ,sep,x (dotted blue arrows). To evaluate the
inverse T̃ −1

LZ,sep,x (dotted green arrows), we must determine for each green point which red points it
falls between and invert the corresponding linear transform. An example is shown in the top-right.

We explore efficient implementations of both separable and nonseparable warp inversion, but
we find experimentally that nonseparable warps perform no better than separable warps for a
strictly higher latency cost, so we use separable warps for our experiments. Details for efficiently
inverting nonseparable warps are given in the supplementary. For separable warps TLZ,sep, we
invert each axis separately and take the Cartesian Product:

T̃ −1
LZ,sep[Grid(H ′,W ′)] = T̃ −1

LZ,sep,x[Grid(H ′)]× T̃ −1
LZ,sep,y[Grid(W ′)]. (5.5)

This further reduces our problem from inverting a piecewise bilinear map with h · w pieces to
inverting two piecewise linear maps with h and w pieces each. Figure 5.3 visualizes how to invert
each axis.

When unwarping after feature pyramid networks [35], we may have to evaluate the inverse
T̃ −1
LZ at multiple resolutions Grid(H ′,W ′), Grid(H ′/2,W ′/2), etc. In practice, we evaluate

T̃ −1
LZ [Grid(H ′,W ′)] and then approximate the inverse at lower resolutions via bilinear downsam-

pling.
Finally, as introduced in [51], we can also use a fixed warp to exploit dataset-wide spatial

priors, such as how objects are concentrated around the horizon in many autonomous driving
datasets. This allows us to cache forward and inverse warps, greatly reducing additional latency.

24



Chapter 6

LZU Experiments

First, we compare LZU to naive uniform downsampling and previous works on the tasks of 2D
object detection and semantic segmentation. We include ablations to evaluate the effectiveness of
training techniques and measure the importance of information retention. Then, we evaluate LZU
on RGB-based 3D object detection, a task which no previous works have applied "zooming" to. A
summary of our results is given in Table 1.1. We perform all timing experiments with a batch size
of 1 on a single RTX 2080 Ti GPU.

6.1 2D Object Detection
In all detection experiments, we use RetinaNet [36] with a ResNet-50 backbone [19] and FPN [35]
for the base model and the standard AP metric for evaluation. We split into sections by dataset.

6.1.1 Argoverse-HD

First, we evaluate LZU on Argoverse-HD [29], an object detection dataset for autonomous driving
with high resolution 1920× 1200 videos. We run all experiments at 0.5x scale. For our baseline,
we train and test vanilla RetinaNet with uniform downsampling. We also compare to FOVEA [51],
a previous work that applies LZ warping to detection by unwarping bounding boxes. Finally, we
train another uniform downsampling model at 0.75x scale, to get a sense of the usual accuracy-
latency tradeoff when varying the input resolution. We use the same hyperparameters and setup
as in [51]. We report baseline latency as the time taken for image preprocessing and inference.

Our LZU models "unzoom" the feature map at each level after the FPN [35]. We adopt the
low-cost saliency generators introduced in [51] — a "fixed" saliency map exploiting dataset-
wide spatial priors, and an "adaptive" saliency map exploiting temporal priors by zooming in on
detections from the previous frame. When training the adaptive version, we simulate previous
detections by jittering the ground truth for the first two epochs. For the last epoch, we jitter
detections on the current frame to better simulate previous detections; we call this "cascaded"
saliency. We use a learning rate of 0.01 and keep all other training settings identical to the baseline.
Latencies are reported relative to the baseline by timing only the additional operations (the "zoom"
and "unzoom").
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Table 6.1: 2D object detection results of RetinaNet [36] on Argoverse-HD [29]. LZU (3, 4)
consistently outperforms the uniform downsampling baseline (1) and prior work (2), with minimal
additional latency. Latencies for (2-6) are reported as a delta with respect to the baseline. Note
that the accuracy-latency tradeoff achieved by LZU is far better than the usual tradeoff associated
with varying the input resolution (1, 7). We also run several ablations to analyze why LZU is
effective. We find that using cascaded saliency (see Section 6.1) is crucial when training adaptive
LZU (5). We also find that LZU helps even in the absence of high-resolution inputs (6). This
suggests that simply allocating more pixels to small objects (without retaining extra information)
can help performance.

ID Scale Method AP AP50 AP75 APS APM APL Latency (ms)

1 0.5x Uniform 22.6 38.7 21.7 3.7 22.1 53.1 45.8

2 0.5x FOVEA [51] 24.9 40.3 25.3 7.1 27.7 50.6 +1.9
3 0.5x LZU, fixed 25.2 42.1 24.8 5.5 26.7 51.8 +0.7
4 0.5x LZU, adaptive 25.3 43.0 24.6 6.1 25.9 52.6 +3.9

5 0.5x 4 w/o cascaded saliency 22.8 39.3 22.3 5.1 22.7 48.9 +3.9
6 0.5x 4 w/o high-res inputs 24.0 41.7 23.0 5.4 24.5 51.2 +3.9

7 0.75x Uniform 29.5 48.4 29.6 9.1 32.4 55.1 68.5

Results are given in Table 6.1. We outperform both the uniform sampling baseline and FOVEA
while incurring an additional latency of < 4ms. Our boosts are due to better performance on small
and medium objects, with a small drop in performance on large objects.

We also perform several ablations on the adaptive LZU model. We confirm that using cascaded
saliency during the last epoch is crucial. We also test a version of LZU with no access to high
resolution inputs. This is implemented by first uniformly downsampling input images to 0.5x
scale and then "zooming" in on the downsampled image. Even in this case, there is a 1.4 AP
improvement over the baseline, showing that LZU can used even in the absence of high-resolution
sensor data.

6.1.2 Synthetic Video COCO

Then, we evaluate on COCO [34], a standard object detection dataset with 80 categories and
smaller images with side length at most 640 pixels and variable aspect ratios. We run experiments
at ≥0.5x scale, by scaling the longer side to 320 pixels, and at ≥1x scale, by scaling the longer
side to 640 pixels. For our baseline, again we train and test vanilla RetinaNet with uniform
downsampling. No prior works have applied "zooming" to COCO, so we only compare to this
naive baseline. we train from an ImageNet-pretrained backbone for 12 epochs using a batch size
of 16, a step learning schedule of 0.1 at epochs 8 and 11, a learning rate of 0.01. All other settings
are the same as with Argoverse-HD.

Again, our LZU model "unzooms" feature maps at each level after the FPN [35]. Unlike
Argoverse-HD [29], which has a strong dataset-wide prior of small objects near the center, the
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Table 6.2: 2D object detection results of RetinaNet on Synthetic Video COCO. Since COCO [34]
is not a video dataset, we simulate detections on the previous frame by jittering ground truths from
the current frame. This assumes almost perfect knowledge on where to zoom. LZU outperforms
uniform downsampling at both resolutions. Importantly, at the 640 × 640 resolution, LZU is
"learning" to adaptively upsample (by up to 3x on smaller images)!

Resolution Method AP AP50 AP75 APS APM APL

320× 320 (≥0.5x) Uniform 24.6 39.5 25.7 3.5 26.6 43.9
LZU, adaptive 24.9 41.1 25.6 3.4 27.7 44.5

640× 640 (≥1x) Uniform 33.0 51.1 34.9 14.0 37.5 47.8
LZU, adaptive 33.4 53.9 34.9 15.3 38.6 48.0

distribution of small objects in COCO is more arbitrary. So we choose to use an adaptive saliency
map based on previous detections, as in [51]. However, since COCO is not a video dataset, we
simulate previous detections by jittering ground truths from the current frame. Essentially, this
assumes we have almost perfect knowledge on where to zoom. We train and test with a jitter of
N (0, 10) pixels in the x and y directions. All other training settings are identical to the baseline.

Results are given in Table 6.2. LZU improves on the uniform downsampling baseline at both
resolutions. Performance increases come mostly at lower bounding box overlap thresholds (AP50

as opposed to AP75), suggesting that LZU is good at detecting the presence of objects but struggles
more at precisely localizing them. Interestingly, we see performance improvements even in the
upsampling regime of 640× 640 (≥ 1x) scale. In this regime, the "zoom" simply allocates more
pixels and computation to salient regions (without extra information retention), and it seems even
this can prompt performance gains.

6.2 Semantic Segmentation
For our semantic segmentation experiments, we compare to previous works [40] and [23], so we
adopt their setup. We test the PSPNet [61] model with a ResNet-50 backbone [19] and FPN [35]
on Cityscapes [13]. Cityscapes is an urban scene dataset with high resolution 1024× 2048 images
and 19 classes. We perform our experiments at several image scales (64 × 64, 128 × 128, and
256×256), taken by resizing a centered square crop of the input image. Our simple baseline trains
and tests PSPNet with uniform downsampling. We train for 80K iterations with the photometric
distortion augmentation (random adjustments in brightness, contrast, saturation, and hue), a batch
size of 16, momentum SGD with a learning rate of 0.01, momentum of 0.9, weight decay of 5e-4,
and a polynomial learning rate schedule with power 0.9. We evaluate every 10K iterations, and
report the best performance, to account for overfitting.

For our LZU model, we unzoom spatial features after the FPN and use a fixed saliency map.
Inspired by the idea of zooming on semantic boundaries in [40], we generate our fixed saliency
by averaging the ground truth semantic boundaries over the train set. All training settings are
identical to the baseline. We use the mIoU metric and report our results in Table 6.3. Since
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Table 6.3: Semantic segmentation results of PSPNet [61] on Cityscapes [13], in mIoU. We test at
three input resolutions and report results relative to the uniform downsampling baseline. At each
resolution, LZU outperforms uniform downsampling. At 256× 256, we outperform prior works.
At 64× 64 and 128× 128, we are worse than Optimal Edge [40] and LDS [23], perhaps because
"unzooming" features at such small scales is more destructive. We also posit the performance
losses from such aggressive downsampling factors (across all methods) may be too impractical
for deployment, and so focus on the 256× 256 downsampling regime.

Downsampled Resolution

Method 64× 64 128× 128 256× 256 512× 512

Uniform (theirs) 29 40 54 –
Uniform (ours) 25.8 41.4 55.3 65.3

Optimal Edge [40] 32 (+10.3%) 43 (+7.5%) 54 (+0.0%) –
LDS [23] 35 (+20.7%) 45 (+12.5%) 55 (+1.9%) –

LZU, fixed 26.6 (+3.1%) 43.7 (+5.6%) 56.9 (+2.8%) –

our baseline results are slightly different than reported in previous works [40] and [23], we
compare results using a percent change relative to the corresponding baseline. We find increased
performance over the baseline at all three scales, and at 256× 256, we beat both previous works
with only 2.3ms of additional latency.

6.3 RGB-based 3D Object Detection
Finally, we evaluate LZU on RGB-based 3D object detection. To the best of our knowledge,
no previous work has applied LZ downsampling to this task. We use FCOS3D [57], a fully
convolutional model for monocular 3D detection, with a ResNet-50 backbone [19] and FPN [35].
For our dataset, we use NuScenes [5], an autonomous driving dataset with multi-view 1600× 900
RGB images for 1000 scenes and 3D bounding box annotations for 10 object classes. As is
standard practice for NuScenes, we use the NuScenes Detection Score (NDS) metric, which is
a combination of the usual mAP and measures of translation error, scale error, orientation error,
velocity error, and attribute error (mATE, mASE, mAOE, mAVE, mAAE). We run all experiments
at 0.5x scale, at an input resolution of 800 × 450. Our baseline trains and tests FCOS3D with
uniform downsampling. We train for 12 epochs with a batch size of 16 with default parameters as
in [11].

For our LZU model, again we unzoom post-FPN features and use a fixed saliency map.
Inspired by FOVEA [51], our fixed saliency is generated by using KDE on the set of projected
bounding boxes in the image space. All training settings are identical to the baseline. Results are
given in Table 6.4. We close the gap to the 1x "upper bound" by almost half with just 0.4ms of
additional latency.
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Table 6.4: 3D object detection results of FCOS3D [57] on NuScenes [5]. Methods (1-3) are
trained at tested at 0.5x input scale, and latencies for (2, 3) are reported relative to the baseline
(1). Intuitively, size is an important cue for depth, and image deformations would stifle this
signal. Suprisingly, even with deformations, LZU (2) improves upon the uniform downsampling
baseline (1) in all categories and closes roughly half the gap to the 1x upper bound (4)! As with
2D detection, we see improvements even in the absence of high-resolution input data (3).

ID Method NDS mAP mATE mASE mAOE mAVE mAAE Latency (ms)

1 Uniform 27.5 17.5 90.1 28.8 75.5 131.6 17.8 58.3

2 LZU, fixed 29.3 20.1 88.9 28.3 73.9 130.6 16.7 +0.4
3 2 w/o high-res inputs 29.2 19.9 89.1 28.3 73.1 128.5 17.3 +0.4

4 Uniform (1x) 31.2 22.4 84.2 27.4 70.9 129.6 17.4 87.9
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Chapter 7

Conclusion

In our thesis, we propose two methods for foveated attention for neural nets: FOVEA and
LZU. FOVEA is a highly efficient attentional model for object detection. Our model magnifies
regions likely to contain objects, making use of top-down saliency priors learned from a dataset
or from temporal context. To do so, we make use of differentiable image warping that ensures
bounding box predictions can be mapped back to the original image space. The proposed approach
significantly improves over the baselines on Argoverse-HD and BDD100K. For future work, it
would be natural to make use of trajectory forecasting models to provide even more accurate
saliency maps for online processing.

Then, we generalize this method across tasks with LZU, a simple attentional framework
consisting of "zooming" in on the input image, computing spatial features, and "unzooming" to
invert any deformations. To unzoom, we approximate the forward warp as a piecewise bilinear
mapping and invert each piece. LZU is highly general and can be applied to any task with 2D
spatial input and any model with 2D spatial features. We demonstrate the versatility of LZU
empirically on a variety of tasks and datasets, including RGB-based 3D detection which has never
been done before. We also show that LZU may even be used when high-resolution sensor data is
unavailable. For future work, we can consider alternatives to the "unzoom" formulation that are
perhaps less destructive than simple resampling of features.

Broader impact. Our work focuses on increasing the efficiency and accuracy of flagship
vision tasks (detection, segmentation, 3D understanding) with high-resolution imagery. We share
the same potential harms of the underlying tasks, but our approach may increase privacy concerns
as identifiable information may be easier to decode at higher resolutions (e.g., facial identities or
license plates). Because our approach agnostic to the underlying model, it is reproducible with
minimal changes to existing codebases. As such, code is provided in the supplement. We include
a full checklist of concerns in the supplement.
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Chapter 8

Appendix

8.1 FOVEA

8.1.1 The Role of Explicit Backward Label Mapping

Related work either focus on tasks with labels invariant to warping like image classification or
gaze estimation [22, 43] (discussed in Sec 3.1), or expect an implicit backward mapping to be
learned through black-box end-to-end training [40] (discussed in Sec 2). In this section, we
suggest that the implicit backward label mapping approach is not feasible for object detection. To
this end, we train and test our KDE methods minus any bounding box unwarping. Specifically,
we no longer unwarp bounding boxes when computing loss during training and when outputting
final detections during testing. Instead, we expect the model to output detections in the original
image space.

Due to instability, additional measures are taken to make it end-to-end trainable. First, we
train with a decreased learning rate of 1e-4. Second, we train with and without adding ground
truth bounding boxes to RoI proposals. The main KDE experiments do not add ground truth to
RoI proposals, because there is no way of warping bounding boxes into the warped image space
(the implementation of T does not exist). We additionally try setting this option here, because
it would help the RoI head converge quicker, under the expectation that the RPN should output
proposals in the original space. All other training settings are identical to the baseline setup (
Sec 4.1.1) .

Results are shown in Tab 8.1. The overall AP is single-digit under all of these configurations,
demonstrating the difficulty of implicitly learning the backward label mapping. This is likely due
to the fact that our model is pretrained on COCO [34], so it has learned to localize objects based
on their exact locations in the image, and finetuning on Argoverse-HD is not enough to “unlearn"
this behavior and learn the backward label mapping. Another factor is that in the SI and SC cases,
each image is warped differently, making the task of learning the backwards label mapping even
more challenging. We suspect that training from scratch with a larger dataset like COCO and
using the warp parameters (e.g. the saliency map) as input may produce better results. However,
this only reinforces the appeal of our method due to ease of implementation and cross-warp
generalizability (we can avoid having to train a new model for each warping mechanism).

33



Figure 8.1: Plots showing the effect of motion (jitter) on AP using the KDE SI formulation.
Results have been normalized according to the AP at 0 jitter. As is intuitive, motion affects APS

the most and APL the least. After finetuning (with an artificial jitter of 50), we see that the model
reacts less adversely to jitter, indicating that our regularization has helped.

8.1.2 Sensitivity to Quality of Previous-Frame Detections
Two of our methods, SI and SC are dependent on the accuracy of the previous-frame detections. In
this section, we analyze the sensitivity of such a dependency through a soft upper bound on SI and
SC , which is generated using the current frame’s ground truth annotations in place of detections
from the previous frame. This soft upper bound is a perfect saliency map, up to the amplitude and
bandwidth hyperparameters. Note that this is only a change in the testing configuration.

We report results in Tab 8.1. We see a significant boost in accuracy in all cases. Notably,
the finetuned KDE SI model at 0.5x scale achieves an AP of 29.6, outperforming the baseline’s
accuracy of 29.2 at 0.75x scale.

8.1.3 Sensitivity to Inter-Frame Motion
Having noted that the SI and SC formulations are sensitive to the accuracy of the previous-frame
detections, in this section, we further test its robustness to motion between frames. We use ground
truth bounding boxes (rather than detections) from the previous frame in order to isolate the effect
of motion on accuracy. We introduce a jitter parameter j and translate each of the ground truth
bounding boxes in the x and y directions by values sampled from U(−j, j). The translation values
are in pixels in reference to the original image size of 1920 × 1200. As in Sec 8.1.2, this is a
purely testing-time change. Also note that the upper bound experiments in Sec 8.1.2 follows by
setting j = 0. We test only on SI and report the full results in Tab 8.1. We also plot summarized
results and discuss observations in 8.1.

8.1.4 FOVEA Beyond Faster R-CNN
In the main text and other sections of the appendix, we conduct our experiment based on Faster
R-CNN. However, our proposed warping-for-detection framework is agnostic to specific detectors.
To show this, we test our methods on RetinaNet [36], a popular single-stage object detector, and
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Argoverse-HD before finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck

Main Results (copied from the main text for comparison)
Baseline 21.5 35.8 22.3 2.8 22.4 50.6 20.8 9.1 13.9 7.1 48.0 16.1 37.2 20.2
KDE (SD) 23.3 40.0 22.9 5.4 25.5 48.9 20.9 13.7 12.2 9.3 50.6 20.1 40.0 19.5
KDE (SI) 24.1 40.7 24.3 8.5 24.5 48.3 23.0 17.7 15.1 10.0 49.5 17.5 41.0 19.4
KDE (SC) 24.0 40.5 24.3 7.4 26.0 48.2 22.5 14.9 14.0 9.5 49.7 20.6 41.0 19.9
Upp. Bound (0.75x) 27.6 45.1 28.2 7.9 30.8 51.9 29.7 14.3 21.5 6.6 54.4 25.6 44.7 23.7
Upp. Bound (1x) 32.7 51.9 34.3 14.4 35.6 51.8 33.7 21.1 33.1 5.7 57.2 36.7 49.5 24.6

Without an Explicit Backward Label Mapping (Sec 8.1.1)
KDE (SD) 5.4 14.2 3.7 0.0 0.9 20.7 3.2 0.4 1.2 0.8 27.9 0.0 5.3 4.2
KDE (SI) 6.1 15.6 4.0 0.2 0.8 20.3 2.3 0.6 0.7 1.8 30.8 0.0 7.0 5.4
KDE (SC) 6.0 15.9 3.8 0.1 0.9 21.9 3.0 0.6 0.9 1.5 30.2 0.0 6.7 5.2

Upper Bound with Ground Truth Saliency (Sec 8.1.2)
KDE (SI) 25.4 42.6 25.6 9.1 26.2 49.5 25.3 17.4 16.8 10.1 49.4 23.4 41.7 19.4
KDE (SC) 24.5 41.7 24.6 7.5 26.8 48.8 23.6 14.5 15.2 9.7 49.7 22.6 41.3 19.8

Sensitivity to Inter-Frame Motion (Sec 8.1.3)
KDE (SI), j = 10 25.3 42.9 25.3 8.4 26.7 49.1 25.0 16.4 16.2 10.1 48.8 25.0 41.8 19.5
KDE (SI), j = 25 24.1 41.0 24.5 6.4 26.1 49.0 24.0 12.6 15.2 9.0 48.5 22.9 41.1 19.6
KDE (SI), j = 50 22.5 38.3 22.9 4.2 24.1 49.1 21.9 9.9 14.4 8.2 48.4 18.5 39.0 19.7
KDE (SI), j = 100 20.9 35.1 21.6 2.8 21.9 48.0 20.1 7.1 14.0 6.8 47.8 15.3 36.7 19.1
KDE (SI), j = 200 20.0 33.5 20.6 2.5 20.5 46.7 19.2 6.0 13.4 6.2 46.7 14.3 35.5 18.5

Argoverse-HD after finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck

Main Results (copied from the main text for comparison)
Baseline 24.2 38.9 26.1 4.9 29.0 50.9 22.8 7.5 23.3 5.9 44.6 19.3 43.7 26.6
Learned Sep. 27.2 44.8 28.3 12.2 29.1 46.6 24.2 14.0 22.6 7.7 39.5 31.8 50.0 27.8
Learned Nonsep. 25.9 42.9 26.5 10.0 28.4 48.5 25.2 11.9 20.9 7.1 39.5 25.1 49.4 28.1
KDE (SD) 26.7 43.3 27.8 8.2 29.7 54.1 25.4 13.5 22.0 8.0 45.9 21.3 48.1 29.3
KDE (SI) 28.0 45.5 29.2 10.4 31.0 54.5 27.3 16.9 24.3 9.0 44.5 23.2 50.5 28.4
KDE (SC) 27.2 44.7 28.4 9.1 30.9 53.6 27.4 14.5 23.0 7.0 44.8 21.9 49.9 29.5
LKDE (SI) 28.1 45.9 28.9 10.3 30.9 54.1 27.5 17.9 23.6 8.1 45.4 23.1 50.2 28.7
Upp. Bound (0.75x) 29.2 47.6 31.1 11.6 32.1 53.3 29.6 12.7 30.8 7.9 44.1 29.8 48.8 30.1
Upp. Bound (1x) 33.3 53.9 35.0 16.8 34.8 53.6 33.1 20.9 38.7 6.7 44.7 36.7 52.7 32.7

Without an Explicit Backward Label Mapping (Sec 8.1.1)
KDE (SD), no RoI GT 2.1 2.6 2.5 0.0 0.0 4.0 0.6 0.0 0.0 0.6 14.8 0.0 0.0 0.9
KDE (SD) 1.8 2.7 1.9 0.0 0.0 3.2 0.6 0.0 0.0 0.0 13.3 0.0 0.1 0.6
KDE (SI), no RoI GT 2.5 3.0 2.9 0.0 0.1 4.3 0.7 0.0 0.0 0.6 17.0 0.9 0.0 0.9
KDE (SI) 2.0 2.8 2.4 0.0 0.0 3.7 0.6 0.0 0.0 0.0 14.8 0.0 0.3 0.5

Upper Bound with Ground Truth Saliency (Sec 8.1.2)
KDE (SI) 29.6 48.7 30.7 12.0 32.8 54.4 28.3 16.3 27.7 9.9 43.9 30.6 50.9 28.8
KDE (SC) 27.8 45.5 28.8 9.6 31.7 53.4 27.5 13.9 24.7 6.5 44.5 25.1 50.2 29.6

Sensitivity to Inter-Frame Motion (Sec 8.1.3)
KDE (SI), j = 10 29.4 48.3 30.7 11.5 32.8 54.6 27.9 15.9 27.2 9.7 43.7 31.1 50.6 28.7
KDE (SI), j = 25 28.0 46.1 29.2 9.2 32.1 55.3 26.4 13.9 25.9 9.3 43.9 26.8 49.2 28.7
KDE (SI), j = 50 26.2 42.9 27.7 6.6 30.5 54.9 24.1 12.1 24.9 8.6 44.1 21.8 46.2 27.9
KDE (SI), j = 100 24.5 39.9 25.8 4.8 28.6 53.5 22.3 10.2 23.5 7.6 43.5 17.7 43.9 27.1
KDE (SI), j = 200 23.6 38.3 25.2 4.2 27.8 53.0 21.4 8.6 22.8 7.4 42.9 16.6 42.7 26.6

Table 8.1: Additional Diagnostics Experiments on Argoverse-HD.
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Method AP AP50 AP75 APS APM APL

RetinaNet, Before Finetuning on Argoverse-HD
Baseline (0.5x) 18.5 29.7 18.6 1.3 17.2 48.8
KDE (SI) 18.5 31.2 17.9 4.5 16.8 44.9
Upp. Bound (0.75x) 24.8 38.8 25.5 4.5 28.7 52.0

RetinaNet, After Finetuning on Argoverse-HD
Baseline (0.5x) 22.6 38.9 21.4 4.0 22.0 53.1
KDE (SI) 24.9 40.3 25.3 7.1 27.7 50.6
Upp. Bound (0.75x) 29.9 48.6 30.1 9.7 32.5 54.2

YOLOF, Before Finetuning on Argoverse-HD
Baseline (0.5x) 15.0 25.4 14.3 0.6 11.0 46.0
KDE (SI) 16.8 29.0 16.0 0.9 14.0 46.4
Upp. Bound (0.75x) 21.6 35.5 22.3 2.3 22.2 52.7

YOLOF, After Finetuning on Argoverse-HD
Baseline (0.5x) 18.4 30.5 18.3 1.4 16.5 47.9
KDE (SI) 21.3 36.7 20.2 3.5 21.8 49.7
Upp. Bound (0.75x) 25.1 41.3 25.3 4.7 27.6 54.1

Table 8.2: Experiments with RetinaNet [36] and YOLOF [9]. We follow the same setup as the
experiment with Faster R-CNN. The top quarter suggests that unlike Faster R-CNN, RetinaNet
does not work off-the-shelf with our KDE warping. However, the second quarter suggests similar
performance boosts as with Faster R-CNN can be gained after finetuning on Argoverse-HD.
Interestingly, for YOLOF, our method boosts AP in all categories – small, medium, and large –
even with off-the-shelf weights.

on YOLOF [9], a recent YOLO variant that avoids bells and whistles and long training schedules
(up to 8x for ImageNet and 11x for COCO compared to standard schedules for YOLOv4 [3]).

For both these detectors, we test baselines at 0.5x and 0.75x scales both before and after
finetuning. We then compare these results against our KDE SI method at 0.5x scale. We use
a learning rate of 0.01 for the RetinaNet KDE SI model and 0.005 for the RetinaNet baselines.
All other training settings for RetinaNet are identical to the Faster-RCNN baseline. For YOLOF,
we use a learning rate of 0.012 and keep all other settings true to the original paper. Results are
presented in Tab 8.2.

8.1.5 Comparison Against Additional Baselines

There are other approaches that make use of image warping or patch-wise zoom for visual
understanding. The first noticeable work [43], explained extensively in the main text, warps the
input image for tasks that have labels invariant to warping. The second noticeable work [16]
employs reinforcement learning (RL) to decide which patches to zoom in for high-resolution
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processing. In this section, we attempt to compare our FOVEA with these two approaches.
Our method builds upon spatial transformer networks [22, 43] and we have already compared

against [43] sporadically in the main text. Here provides a summary of all the differences (see
Tab 8.3). A naive approach might directly penalize the discrepancy between the output of the
(warped) network and the unwarped ground-truth in an attempt to implicitly learn the inverse
mapping, but this results in abysmal performance (dropping 28.1 to 2.5 AP, discussed in Sec 8.1.1).
To solve this issue, in Sec 3.1, we note that [22, 43] actually learn a backward map T −1 instead
of a forward one T . This allows us to add a backward-map layer that transforms bounding box
coordinates back to the original space via T −1, dramatically improving accuracy. A second
significant difference with [22, 43] is our focus on attention-for-efficiency. If the effort required
to determine where to attend is more than the effort to run the raw detector, attentional processing
can be inefficient (see the next paragraph). [43] introduces a lightweight saliency network to
produce a heatmap for where to attend; however, this model does not extend to object detection,
perhaps because it requires the larger capacity of a detection network (see Sec 4.1.1). Instead,
we replace this feedforward network with an essentially zero-cost saliency map constructed via
a simple but effective global spatial prior (computed offline) or temporal prior (computed from
previous frame’s detections). Next, we propose a technique to prevent cropping during warping
(via reflection padding, as shown in Fig 3.4), which also boosts performance by a noticeable
amount. Finally, as stated in the training formulation in Sec 3.2, it doesn’t even make sense to
train a standard RPN-based detector with warped input due to choice of delta encoding (which
normally helps stabilize training). We must remove this standard encoding and use GIoU to
compensate for the lost stability during training.

Method AP

FOVEA (Ours full) 28.1
w/o Explicit backward mapping 2.5
w/o KDE saliency (using saliency net as in [43]) Doesn’t train
w/o Anti-crop regularization 26.9
w/o direct RPN box encoding N/A

Table 8.3: Summary of Key Modifications in FOVEA.

Next, we attempt to compare against this RL-based zoom method [16] using our baseline
detector (public implementation from mmdetection [8]) on their Caltech Pedestrian Dataset [15].
However, while their full-scale 800× 600 Faster R-CNN detector reportedly takes 304ms, our
implementation is dramatically faster (44ms), consistent with the literature for modern imple-
mentations and GPUs. This changes the conclusions of that work because full-scale processing
is now faster than coarse plus zoomed-in processing (taking 28ms and 25ms respectively), even
assuming a zero-runtime RL module (44ms < 28ms + 25ms).

8.1.6 Additional Visualizations
Please refer to Fig 8.2 and 8.3 for additional qualitative results of our method.
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Figure 8.2: Additional examples of the SI KDE warping method. Bounding boxes on the saliency
map denote previous frame detections, and bounding boxes on the warped image denote current
frame detections. The magnification heatmap depicts the amount of magnification at different
regions of the warped image. (a) is an example of SI correctly adapting to an off-center horizon.
(b) shows a multimodal saliency distribution, leading to a multimodal magnification in the x
direction. (c) is another example of SI correctly magnifying small objects in the horizon. (d) is a
failure case in which duplicate detections of the traffic lights in the previous frame leads to more
magnification than desired along that horizontal strip. One solution to this could be to weight our
KDE kernels by the confidence of the detection. (e) is another failure case of SI , in which a small
clipped detection along the right edge leads to extreme magnification in that region. One general
issue we observe is that the regions immediately adjacent to magnified regions are often contracted.
This is visible in the magnification heatmaps as the blue shadows around magnified regions. This
is a byproduct of the dropoff in attraction effect of the local attraction kernel. Perhaps using
non-Gaussian kernels can mitigate this issue.
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Figure 8.3: Examples of KDE warp computed from bounding boxes, extracted from a training
dataset (SD) or the previous frame’s detections (SI , SC). We visualize predicted bounding boxes
in the warped image. Recall that large objects won’t be visible in the saliency due to their large
variance from Eq 3.8. (a) SD magnifies the horizon (b) SI magnifies the center of the image,
similar to SD (c) SI adapts to magnify the mid-right region (d) SC’s saliency combines the
temporal and spatial biases.
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ID Method AP APS APM APL

1 Prior art [30] 13.0 1.1 9.2 26.6

2 + Better implementation 14.4 1.9 11.5 27.9
3 + Train with pseudo GT 15.7 3.0 14.8 27.1

4 2 + Ours (SI ) 15.7 4.7 12.8 26.8
5 3 + Ours (SI ) 17.1 5.5 15.1 27.6

Table 8.4: Streaming evaluation in the detection-only setting. First, we are able to improve over
previous state-of-the-art through better implementation (row 2) and training with pseudo ground
truth (row 3). Second, our proposed KDE warping further boosts the streaming accuracy (row
4-5).

8.1.7 Detection-Only Streaming Evaluation

In Sec 4.2 of the main text, we provide the full-stack evaluation for streaming detection. Here
we provide the detection-only evaluation for completeness in Tab 8.4. This setting only allows
detection and scheduling, and thus isolating the contribution of tracking and forecasting. We
observe similar trend as in the full-stack setting in Tab 4.2.

8.1.8 Additional Implementation Details

In this section, we provide additional details necessary to reproduce the results in the main text.
For the learned separable model from Sec 4.1.2 , we use two arrays of length 31 to model

saliency along the x and y dimensions, and during training, we blur the image with a 47 × 47
Gaussian filter in the first epoch, a trick introduced in [43] to force the model to zoom. For the
learned nonseparable model, we use an 11×11 saliency grid, and we blur the image with a 31×31
filter in the first epoch. We use an attraction kernel k with a standard deviation of 5.5 for both
versions. Additionally, we multiply the learning rate and weight decay of saliency parameters
by 0.5 in the first epoch and 0.2 in the last two epochs, for stability. We find that we don’t need
anti-crop regularization here, because learning a fixed warp tends to behave nicely.

For each of our KDE methods, we use arrays of length 31 and 51 to model saliency in the
vertical and horizontal directions, respectively. This is chosen to match the aspect ratio of the
original input image and thereby preserve the vertical and horizontal “forces" exerted by the
attraction kernel.

For the baseline detector, we adopt the Faster R-CNN implementation of mmdetection 2.7 [8].
All our experiments are conducted in an environment with PyTorch 1.6, CUDA 10.2 and cuDNN
7.6.5. For streaming evaluation, we mention a performance boost due to better implementation
in Tab 8.4 & Tab 4.2, and the changes are mainly adopting newer versions of mmdetection and
cuDNN compared to the solution in [30] (switching from a smooth L1 loss to L1 loss for the
regression part and code optimization).
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8.2 LZU

8.2.1 Bilinear Transformations

Figure 8.4: Geometric interpretation of bilinear transformations. Suppose we have such a
transformation from the unit square to an arbitrary quadrilateral. Given coordinates (u, v) in the
unit square, if we draw lines in the quadrilateral such that u = |xbxbl|

|xbrxbl|
= |xtxtl|

|xtrxtl|
and v = |xlxbl|

|xtlxbl|
=

|xrxbr|
|xtrxbr|

, they will intersect at BilinearTransformation(u, v).

Our construction in Section 4.1 assumes prior knowledge of bilinear transformations. Bilinear
transformations have actually been widely studied in the context of computer graphics [58]. Here,
for unfamiliar readers, we outline its definition and inverse formulation, as it appears in Eq 3, 4.

For simplicity, consider a bilinear transformation that maps the unit square to the quadrilateral
with corners xbl,xbr,xtl,xtr. True to its name, the transformation is defined within the square via
bilinear interpolation:

BilinearTransformation(u, v) = xbl+(xbr−xbl)u+(xtl−xbl)v+(xtr−xbr−xtl+xbl)uv (8.1)

Interestingly, this transformation also has a geometric interpretation, shown in Figure 8.4.
Now, consider the inverse of this mapping. Given a point (x, y) in the quadrilateral, we want

to find the point (u, v) in the unit square that maps to it. A full derivation is given in [58], but if
we define the following scalars

(a0, b0) = xbl (8.2)
(a1, b1) = xbr − xbl (8.3)
(a2, b2) = xtl − xbl (8.4)
(a3, b3) = xtr − xbr − xtl + xbl (8.5)

c0 = a1(b0 − y) + b1(x− a0) (8.6)
c1 = a3(b0 − y) + b3(x− a0) + a2b1 − a2b1 (8.7)
c2 = a3b2 − a2b3, (8.8)

then the solution (u, v) must satisfy

c2v
2 + c1x+ c0 = 0 (8.9)

and
u =

x− a0 − a2v

a1 + a3v
. (8.10)
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Applying the quadratic formula on Eq 8.9, we can solve for v. Then, we can substitute into
Eq 8.10 to find u. Given a point (x, y) in the quadrilateral, this will produce exactly one pair
of solutions (u, v) in the unit square (there may be extraneous solutions with u or v negative or
greater than 1).

Although these results assume a mapping from the unit square, they extend naturally to our
use case. Recall from Section 4.1 that BilinearTransformationij maps R(i, j) = [ i−1

H′−1
, i
H′−1

]×
[ j−1
W ′−1

, j
W ′−1

] to the quadrilateral formed by evaluating T at the corners. We can apply all previous
results, simply by normalizing the coordinates within R(i, j).

8.2.2 Efficient Inversion of Nonseparable Warps

In Section 4.2, we detail how to efficiently invert separable zooms T̃LZ,sep. To invert nonseparable
zooms T̃LZ, it no longer suffices to invert each axis. We must instead reason in the full 2D space.

Suppose we have a nonseparable zoom TLZ. We compute TLZ[Grid(h,w)] for small h,w
and use this to approximate the forward zoom as T̃LZ, an (h− 1)× (w − 1) piecewise tiling of
bilinear maps. Now, to unzoom to a desired output resolution of H ′′ ×W ′′, we must evaluate
T̃LZ[Grid(H ′′,W ′′)]. That is, for each x ∈ Grid(H ′′,W ′′), we must determine which of the
(h− 1)(w − 1) quadrilateral pieces it falls in and apply the corresponding inverse bilinear map.
Recall from Section 8.2.1 that applying an inverse bilinear map amounts to solving a quadratic.

In our actual implementation, we parallelize operations as much as possible. For the ij-th tile,
instead of first determining which points x ∈ Grid(H ′′,W ′′) are inside of it and then applying the
ij-th inverse bilinear map, we implement it the other way around. We consider a set of candidate
interior points, apply the ij-th inverse bilinear map to all of them, and keep only those with a
valid solution. The candidate points are those falling inside the axis-aligned rectangle enclosing
that tile. The full procedure is described in Algorithm 1 and visualized in Figure 8.5.

Our implementation takes about 12.6ms to invert a nonseparable warp with (h,w) = (31, 51)
and an output shape (H ′′,W ′′) = (600, 960), as in our Argoverse-HD [29] experiments. While
this is not fast enough to support favorable accuracy-latency tradeoffs,

8.2.3 Qualitative Results

We provide an array of qualitative results from our experiments in Figure 8.6.

8.2.4 Implementation Details

Our experiments are implemented using open-source libraries MMDetection [8], MMSegmenta-
tion [12], and MMDetection3D [11], all released under the Apache 2.0 License. We use GeForce
RTX 2080 Ti’s for training and training, which takes at most 5 GPU-days for any given model,
but the precise amount varies by model and task. We perform all timing experiments with a batch
size of 1 on a single GPU.
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Algorithm 1 Inverting nonseparable zooms TLZ.
In practice, we optimize this code as follows. We vectorize the loop on line 13. We also fix
Bij to be the max size over choices of (i, j), allowing us to implement the loop on line 4 using
batch-processing.

1: ▷ See Section 8.2.2 for the algorithm setup/meaning of variables

2: function UNZOOM(TLZ[Grid(h,w)], (H ′′,W ′′))

3: Initialize T −1
LZ (x) = (0, 0) for all x ∈ Grid(H ′′,W ′′)

4: for (i, j) ∈ [h− 1]× [w − 1] do

5: ▷ corners of R(i, j)

6: x′
tl,x

′
tr,x

′
bl,x

′
br =

(
i−1
h−1

, j−1
w−1

)
,
(
i−1
h−1

, j
w−1

)
,
(

i
h−1

, j−1
w−1

)
,
(

i
h−1

, j
w−1

)
7: ▷ corners of ij-th quadrilateral tile

8: xtl,xtr,xbl,xbr = T −1
LZ (x′

tl) , T −1
LZ (x′

tr) , T −1
LZ (x′

bl) , T −1
LZ (x′

br)

9: ▷ top-left and bottom-right corners of rectangle enclosing the quadrilateral tile

10: ctl, cbr = min(xtl,xtr,xbl,xbr),max(xtl,xtr,xbl,xbr)

11: ▷ set of all candidate points in the ij-th tile

12: Bij = {x ∈ Grid(H ′′,W ′′) : ctl ≤ x ≤ cbr}
13: for x ∈ Bij do

14: x′ = BilinearTransformation−1
ij (x)

15: if x′
tl ≤ x′ ≤ x′

br then

16: T −1
LZ (x) = x′

17: return T −1
LZ
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Figure 8.5: Unzooming in the nonseparable case. TLZ is approximated as T̃LZ, which is a
(h− 1)× (w − 1) tiling of bilinear transformations (left). We wish to compute T̃ −1

LZ (x) at each
green point x ∈ Grid(H ′′,W ′′), where H ′′×W ′′ is the desired output size (middle). For the ij-th
tile, we consider the set of all candidate green point x within the enclosing blue box (right) and
apply the inverse bilinear transformation. We set T̃ −1

LZ (x) = BilinearTransformation−1
ij (x) only

if it falls in the ij-th grid rectangle R(i, j).
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Figure 8.6: Examples of success and failure cases of LZU on 2D detection, semantic segmentation,
and 3D detection. Rows a, b, f, and g depict detection examples where zooming in on the horizon
helps the detector pick up smaller objects. On the other hand, there are failure cases, where
zooming leads to false negatives. For example, in row c, LZU misses the black car, and in row h,
LZU misses some objects near the edge of the image. For segmentation, note the consistently
improved quality near the center of the image.
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Argoverse-HD [29] Detection As done in [51], for our uniform downsampling experiments,
we finetune a COCO-pretrained model for 3 epochs with the random left-right image flip augmen-
tation, a batch size of 8, momentum SGD with a learning rate of 0.005, momentum of 0.9, weight
decay of 1e-4, learning rate warmup for 1000 iterations, and a per-iteration linear learning rate
decay [28].

For both LZU models, we use a learning rate of 0.01 and keep all other hyperparameters
identical to the baseline. To "zoom", we use a 31×51 saliency map and the separable anti-cropping
formulation TLZ,sep,ac (as proposed in [51] and discussed in Section 3.2).

For the fixed saliency LZU model, we use Gaussian distance kernels kx and ky of full-width-
half-maximum (fwhm) 22. To generate the fixed saliency map, we use kernel density estimation
(KDE) on all training bounding boxes with hyperparameters amplitude a = 1 and bandwidth
b = 64. For details on the effects of a and b, refer to [51].

For the adaptive saliency LZU model, we use Gaussian distance kernels kx and ky of fwhm
10. To generate adaptive saliency, we use KDE on detections from the previous frame with a = 1
and b = 64. When training, to simulate motion, we jitter bounding boxes by N (0, 7.5) pixels
horizontally and N (0, 3) pixels vertically.

For each LZU experiments, we run a grid search over separable/nonseparable, amplitude
a = 1, 5, 10, 50, 100, and distance kernel’s fwhm = 4, 10, 16, 22 to determine optimal settings.
This is done using an 80/20 split of the train set, so as to not overfit on the real validation set. We
generate this split such that locations between splits are disjoint. All other hyperparameters are
chosen one-shot.

Synthetic Video COCO [34] Detection We train the uniform downsampling baseline using
default MMDetection [8] hyperparameters. That is, we train from an ImageNet-pretrained
backbone for 12 epochs with random left-right flip augmentation, a batch size of 16, momentum
SGD with a learning rate of 0.01, momentum of 0.9, weight decay of 1e-4, learning rate warmup
for 500 iterations, and step learning schedule of multiplier 0.1 at epochs 8 and 11.

For our adaptive LZU model, we keep the same training hyperparameters as the uniform
downsampling baseline. For "zoom" hyperparameters, we use mostly the same configuration that
was determined optimal for our Argoverse-HD [29] experiments. That is, we use the separable
anti-cropping version TLZ,sep,ac with Gaussian distance kernels kx and ky of fwhm 10. To generate
saliency, we use KDE with amplitude a = 1 and bandwidth b = 64 (see [51] for details). Finally,
we train and test with a jitter of N (0, 10) pixels in the x and y directions. However, since COCO
images have variable aspect ratio, we are unable to maintain a fixed size saliency map. Instead,
we scale the shorter side length to 31. More precisely, given an input image of size H ×W , we
generate a saliency map of size ⌊Hs⌋×⌊Ws⌋ with a scale factor of 31 ·max(H,W )/min(H,W ).

Cityscapes [13] Segmentation We train the uniform downsampling baseline using mostly
the default hyperparameters from MMSegmentation [12]. The only changes are to the data
augmentation pipeline and the evaluation frequency. Comprehensively, we train for 80K iterations
with just the photometric distortion augmentation (random adjustments in brightness, contrast,
saturation, and hue), a batch size of 16, momentum SGD with a learning rate of 0.01, momentum
of 0.9, weight decay of 5e-4, and a polynomial learning rate schedule with power 0.9. To account
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for overfitting, we evaluate every 10K iterations, and report the best performance.
For the fixed LZU model, we use the same training hyperparameters as the baseline. To

"zoom", we use the separable anti-cropping formulation TLZ,sep,ac with a 45× 45 saliency map
and Gaussian distance kernels kx, ky of fwhm 15. To generate the fixed saliency, we aggregate
ground truth semantic boundaries over the train set. Precisely, we define boundaries to be pixels
which differ from at least one of its eight neighbors. We compute semantic boundaries for each
256× 256 ground truth segmentation, assign boundaries an intensity of 200 and background an
intensity of 1, and average pool down to a 45× 45 saliency map. The semantic boundary intensity
value was chosen qualitatively (for producing a reasonably strong warp) and tested one-shot.

NuScenes [5] 3D Detection We train the uniform downsampling baseline using all default
hyperparameters from [11], except the learning rate, which we reduce for stability. Specifically,
we train for 12 epochs with the random left-right flip augmentation, a batch size of 16, momentum
SGD with a learning rate of 0.001, momentum of 0.9, weight decay of 1e-4, doubled learning rate
on bias parameters with no weight decay, L2 gradient clipping, a step learning rate schedule with
drops at epochs 8 and 11, and a linear learning rate warmup for the first 500 iterations.

For the fixed LZU model, we use the same training hyperparameters as the baseline. To
"zoom", we use the separable anti-cropping formulation TLZ,sep,ac with a 27× 48 saliency map
and Gaussian distance kernels kx, ky of fwhm 10. To generate the fixed saliency, we project
3D bounding boxes into the image plane and reuse the same KDE formulation with the same
hyperparameters (a = 1 and b = 64) as used in 2D detection. These are all chosen and evaluated
one-shot.

8.2.5 Code
We include code for our NuScenes [5] 3D detection experiments in the supplementary zip
submission. To set this up, please install MMDetection3D [11] version 0.18.0 from source. The
attached lzu_mmdet3d.zip file contains all changes necessary to implement LZU. Please
unzip and move the modified files into the MMDetection3D codebase. We do this due to the
100MB supplementary quota. Finally, to run experiments, simply run the scripts under the
experiments folder.

We plan to release publicly release code for other tasks as well.
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