
Checkpoint-Free Fault Tolerance for
Recommendation System Training via Erasure

Coding
Kaige Liu

CMU-CS-20-140

Dec 2020

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Rashmi K. Vinayak, Chair

Phillip Gibbons

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright © 2020 Kaige Liu

Keywords: Recommendation systems, erasure coding, machine learning, fault tolerance

Abstract
Deep-learning-based recommendation models (DLRMs) are widely deployed to

serve personalized content to users. DLRMs are large in size due to their use of em-
bedding tables, and are trained by distributing the model across the memory of tens
or hundreds of servers. Checkpointing is the predominant approach used for fault
tolerance in these systems. However, it incurs significant training-time overhead
both during normal operation and when recovering from failures. As these over-
heads increase with DLRM size, checkpointing is slated to become an even larger
overhead for future DLRMs.

In this thesis, we present ECRM, a DLRM training system that achieves efficient
fault tolerance using erasure coding. ECRM chooses which DLRM parameters to en-
code and where to place them in a training cluster, correctly and efficiently updates
parities during normal operation, and recovers from failure without pausing train-
ing and while maintaining consistency of the recovered parameters. The design of
ECRM enables training to proceed without any pauses both during normal operation
and during recovery. We implement ECRM atop XDL, an open-source, industrial-
scale DLRM training system. Compared to checkpointing, ECRM reduces training-
time overhead by up to 88%, recovers from failures significantly faster, and allows
training to proceed during recovery. These results show the promise of erasure cod-
ing in imparting efficient fault tolerance to training current and future DLRMs.

iv

Acknowledgments
I would like to thank my advisor, Rashmi Vinayak, for providing guidance for the

direction of my research and patiently resolving my concerns. I would like to thank
my mentor Jack Kosaian, for giving me invaluable suggestions, providing essential
feedback and resolving my concerns. I would like to thank Phillips Gibbons, the
instructor for Advanced Distributed & Operating Systems course, during which I
had performed an early exploration of this direction and used it as my course project
, for providing thorough feedback and critiques. I would like to thank my course
project partner Anlun Xu for his fundamental contribution to the early stage of this
work.

vi

Contents

1 Introduction 1

2 Background and Motivation 5
2.1 DLRM training systems . 5
2.2 Checkpointing and its downsides . 6

2.2.1 Time penalty during normal operation 6
2.2.2 Time penalty during recovery . 8

2.3 Fault tolerance via proactive redundancy? . 8
2.3.1 Replication . 8
2.3.2 Erasure codes: proactive, low-overhead 9

3 ECRM: erasure-coded training 11
3.1 Overview of ECRM . 11
3.2 Encoding and placing parity parameters . 12
3.3 Correctly and efficiently updating parities . 14

3.3.1 Challenges in keeping up-to-date parities 14
3.3.2 Difference propagation . 15

3.4 Pause-free recovery from failure . 16
3.4.1 Challenges in erasure-coded recovery 17
3.4.2 Training during recovery in ECRM . 17

3.5 Maintaining consistency of recovered DLRM 18
3.6 Tradeoffs in ECRM . 19

4 Evaluation 21
4.1 Evaluation setup . 21
4.2 Performance during recovery . 23
4.3 Performance during normal operation . 25

5 Related Work 31
5.1 DLRM training and inference systems . 31
5.2 Checkpointing . 31
5.3 Coding in machine learning systems . 32

6 Conclusion 33

vii

Bibliography 35

viii

List of Figures

1.1 Example of the distributed setup used to train DLRMs. 2
1.2 Naive erasure-coded DLRM with k = 3 and r = 1. 2

2.1 Time required to read and write checkpoints . 7
2.2 Effect of checkpointing on total training time 7
2.3 Example of ECRM with k = 3, r = 1. 9

3.1 Components and operation of a server in ECRM. Shaded boxes store data, and
unshaded boxes are used for control flow. 12

4.1 Throughput when recovering from failure at 10 minutes. 22
4.2 Training progress (bottom) when recovering from failure at 10 minutes. 23
4.3 Time to fully recover a failed server. 24
4.4 Effects of the number of partitions on recovery time 25
4.5 Training-time overhead in the absence of failures 26
4.6 Throughput of training Criteo-2S-2D . 27
4.7 Progress of training Criteo-2S-2D . 28
4.8 Average training throughput with varying number of workers during normal op-

eration . 29

ix

x

List of Tables

1.1 Alibaba’s DLRM sizes. 2

3.1 Example timeline that results in ECRM inconsistency. 19

xi

xii

Chapter 1

Introduction

Recommendation systems are currently deployed for a variety of tasks at large internet compa-
nies. In general, a recommendation system seeks to predict the “rating” or “preference” a user
would give to an item using user data, such as the location and page view history, and utilizes
the data to predict our interest in a specific item. For example, in an advertisement system, user
interest is measured with click-through rate (CTR), which is the probability that we are actually
going to click in and see more detail.

Content filtering was the most common technique used in early recommendation systems. A
set of experts classified products into categories, while users selected their preferred categories
and were matched based on their preferences. Later on, collaborative filtering is introduced in the
recommendation system, where recommendations are based on past user behaviors, such as prior
ratings given to products. Neighborhood methods that provide recommendations by grouping
users and products together and latent factor methods that characterize users and products by
certain implicit factors via matrix factorization techniques were later deployed with success.

Deep learning is one of the most exciting breakthroughs of artificial intelligence and is ex-
tensively applied to solve real-world problems in many areas such as speech recognition, com-
puter vision, natural language processing, and medical diagnosis. Deep-learning-based recom-
mendation models (DLRMs) are key tools in serving personalized content to users at Internet
scale [8, 17, 27]. As the value generated by recommendations often relies on the system’s abil-
ity to reflect recent data, production services frequently retrain DLRM on new data and roll out
the newly-trained DLRMs into production [4]. Reducing the amount of time it takes to train a
DLRM is thus critical to maintaining an accurate and up-to-date model.

Typically in recommendation models, training samples are extremely sparse, meaning the
number of total features available is usually many scales greater than the number of features
presented in each sample. For example, in current recommendation systems, petabytes of log
data of user behavior are generated every day. Training samples typically contain billions to
trillions of features, while only a few of these dimensions are non-zero for each sample.

To handle high-dimensional sparse training samples, DLRMs consist of embedding tables
and neural networks. Embedding tables are large matrices that map sparse categorical features
(e.g., properties of a user) to a learned dense representation [17]. Embedding tables can be
thought of as lookup tables where rows (called “entries”) correspond to sparse features (typically
in millions or billions [12, 17]) and columns correspond to dense representations (typically in

1

Features Samples per day Average IDs/sample Total model size
1 Billion 1.5 Billion 5000 17TB

Table 1.1: Alibaba’s DLRM sizes.

∇0

e0

Optimizer

Server 0
Shard 0

∇1

e1

Server 1
Shard 1

Optimizer

update

e2

Server 2
Shard 2

Optimizer

update

Worker 0 Worker 1

Figure 1.1: Example of the distributed setup used to train DLRMs.

∇0

e0

Optimizer

Server 0
Shard 0

∇1 ∇1

e1

Server 1
Shard 1

Optimizer

update

∇0

p = e0 + e1 + e2

Server 3
“Parity Shard”

Optimizer

updatesupdate

Worker 0 Worker 1

e2

Server 2
Shard 2

Optimizer

Figure 1.2: Naive erasure-coded DLRM with k = 3 and r = 1.

tens or hundreds). A small fully-connected neural network processes the dense representations
corresponding to embedding table entries for a given training sample. Embedding tables are
generally large, typically ranging from hundreds of gigabytes to terabytes in size [17]. In con-
trast, the neural networks used in DLRMs are comparatively smaller. Table 1.1 shows the typical
volume of production data used by Alibaba’s DLRM called XDL. It shows 17TB of model pa-
rameters needs to be stored in main memory.

The de facto approach to training such large models is to distribute training across a cluster of
tens or hundreds of nodes [17], as depicted in Figure 1.1. Embedding tables and neural network
parameters are sharded across a set of servers and kept in memory for fast access. Workers
perform neural network training by accessing model parameters from servers and send gradients
to servers to update parameters via an optimizer (e.g., Adam). In a single training iteration, a
worker reads embedding table entries corresponding to the given training sample from servers,
performs a forward and backward pass over the neural network using the retrieved entries to
generate gradients, and sends gradients to the servers hosting the corresponding parameters. An
optimizer (e.g., Adam) on each server calculates updates for model parameters based on the

2

received gradients and the optimizer’s internal state, and applies updates to the corresponding
parameters. The many workers in the system train in parallel, typically in an asynchronous
fashion [17]. As each training sample accesses only a few of the billions of embedding table
entries, embedding table entries are updated sparsely. In contrast, all neural network parameters
are typically updated in each training iteration.

Training DLRMs is resource and time intensive, often taking multiple days or weeks. Since
model parameters are stored in memory, any server failure requires training to restart from
scratch. Given that failures are common in large-scale settings, it is imperative for DLRM train-
ing to be fault tolerant. Checkpointing is the predominant approach employed for fault tolerance
in DLRM training [17]. This involves periodically pausing training and writing the current pa-
rameters and optimizer state to stable storage. If a failure occurs, the entire system resets to the
most recent checkpoint and restarts training from that point.

While simple, checkpointing requires frequent pauses during training to write model state
to stable storage and a lengthy recovery process to redo lost work after failure. We show in
§2.2 these pauses can significantly increase training time, and that this overhead increases with
DLRM size, causing 4%-33% training overhead during normal training even without any failure.
Our analysis is in line with observations from Facebook in a recent concurrent study [24]. Given
the common trend of increasing model size to improve accuracy [23, 31] checkpointing is slated
to become an even larger overhead in training future DLRMs.

An alternative to checkpointing is to replicate DLRM state. In a replication-based DLRM
training system, model parameters are replicated onto separate servers and gradients are sent to
all servers containing replicas of the corresponding parameter. By maintaining multiple copies of
up-to-date model parameters on separate servers, the system can immediately continue training
in the event of a server failure. However, replication requires at least 2× as much server memory
as checkpointing. Given the large memory footprint of embedding tables even in the absence of
redundancy, replicating embedding tables is impractical.

An ideal approach to fault-tolerant DLRM training would (1) operate with low training-time
overhead during normal operation and recovery (like replication), with (2) low memory overhead
(like checkpointing).

Erasure codes are coding-theoretic tools for adding proactive redundancy (like replication)
but with significantly less memory overhead, which have been widely employed in storage and
communication systems (e.g., [16, 29, 33, 34, 37]). An erasure code encodes k data units to
generate r redundant “parity units” such that any k out of the total (k + r) data and parity units
are sufficient for a decoder to recover the original k data units. Therefore, erasure codes operate
with resource overhead of k+r

k
, which is less than that of replication by setting r < k. These

properties have made erasure codes a widely-deployed alternative to replication in storage and
communication systems [29, 34].

Due to their low overhead, erasure coding offers promising potential for imparting efficient
fault tolerance to DLRM training. An example is demonstrated in Figure 1.2. In this example,
a parity parameter p is constructed from parameters e0, e1, and e2 via the encoding function
p = e0 + e1 + e2, and placed on a separate server. If a server fails, the system recovers lost
parameters by reading the k available parameters and performing the erasure code’s decoding
process (e.g., e1 = p− e0 − e2).

While erasure codes appear promising for imparting efficient fault tolerance to DLRM train-

3

ing, there are a number of challenges in bringing this vision to practice. (1) Parities must be kept
up-to-date with their corresponding DLRM parameters to ensure correct recovery. This requires
additional communication and computation in the system, which can reduce throughput. (2) As
will be shown in §3.3.1, correctly updating parities when using optimizers that store internal
state (e.g., Adagrad, Adam) is challenging without incurring significant memory overhead. (3)
An erasure code’s recovery process is typically resource intensive [33, 35]. This can potentially
lead to long recovery times during which training can stall.

In this thesis, we present ECRM,1 an erasure-coded DLRM training system that overcomes
the aforementioned challenges through careful system design adapting simple erasure codes and
ideas from storage systems to DLRM training. ECRM enables correct and low-overhead oper-
ation in the absence of failures (challenges 1 and 2) by delegating the responsibility of keeping
parity entries up-to-date to servers, rather than workers. This maintains low training-time over-
head, and circumvents the difficulty of maintaining correctness with stateful optimizers. ECRM
recovers quickly from failure (challenge 3) by enabling training to continue during the erasure
code’s recovery process. The net result of ECRM’s design is a DLRM training system that re-
covers quickly from failures with low training-time and memory overhead, and without requiring
pauses during training or recovery.

We implement ECRM atop XDL, an open-source, industrial-scale DLRM training system
developed by Alibaba [17]. We evaluate ECRM in training the DLRM used for the Criteo
dataset [1] in MLPerf [2] and other variants across 20 nodes. ECRM recovers from failures
significantly faster than checkpointing and operates with lower training-time overhead during
normal operation. For example, ECRM reduces training-time overhead by up to 88% compared
to checkpointing (more precisely, from 33.4% to 4%). ECRM’s benefits in training-time over-
head improve for larger DLRMs, showing the promise of ECRM in imparting efficient fault
tolerance to the training of current and future DLRMs. Furthermore, ECRM recovers from fail-
ure up to 10.3× faster than the average case for checkpointing, and, critically, enables training to
continue during recovery with only a 6%–12% drop in throughput, while checkpointing forces
training to pause during recovery. ECRM’s benefits come at the cost of additional memory re-
quirements and load on the training cluster. However, ECRM keeps memory overhead to only
a fractional amount and balances additional load evenly among servers. These results showcase
the promise of erasure coding as an alternative to checkpointing to enable low-latency, resource-
efficient fault tolerance to current and future DLRM training systems.

In this thesis, we make the following contributions:
• Analyzing the overhead of checkpointing in distributed DLRM training systems.
• Identifying the potential of using erasure-codes to impart low-overhead fault tolerance to

DLRM training systems, as well as the challenges in doing so.
• Designing, implementing, and evaluating ECRM, the first erasure-coded DLRM training

system, which overcomes the challenges in applying erasure coding to DLRM training.

1ECRM: Erasure-Coded Recommendation Model

4

Chapter 2

Background and Motivation

We next provide background on DLRM training systems and the inefficiency of current ap-
proaches to fault tolerance in such systems.

2.1 DLRM training systems

DLRMs are widely deployed at Internet scale to deliver personalized content to users [8, 17, 27].
These models take in as input a set of categorical features (e.g., about a user), and return a pre-
diction (e.g., video or advertisement recommendation). DLRMs consist of two primary compo-
nents: (1) embedding tables that translate categorical features into learned dense representations,
and (2) a neural network that takes in the resultant dense representation to deliver a prediction.
Embedding tables are typically massive in size, spanning hundreds of gigabytes to terabytes [17].
In contrast, the neural networks used are comparatively smaller, often consisting of a few fully-
connected layers [27].

As described in §1, DLRMs are typically large in size due to embedding tables that span hun-
dreds of gigabytes to terabytes in size, and DLRM training is typically distributed across a set
of servers and workers (Figure 1.1). Consequently, model parameters are sharded across servers
and kept in memory for fast access. In a training iteration, workers first read the embedding table
entries in the batch of training samples and compute a dense representation with the embedding
table entries. Next, the workers perform a forward and backward pass over the neural network
using the dense representations computed as inputs. Using the gradients calculated during back-
ward pass, each worker first updates neural network parameters locally, and sends embedding
table gradients back to the servers hosting the entries. An optimizer (e.g., Adagrad) on each
server uses received gradients to update model parameters via a so-called update function. We
note that there are two methods widely used to stored neural network parameters: on parameter
servers or on workers. In the first method, neural network parameters are stored on the parame-
ters server, same as the embedding tables. In each training iteration, workers will pull the entire
neural network from the parameter servers, and perform training locally. In the second approach,
neural network parameters are replicated across workers. Therefore, the parameter updates in the
backward pass are accumulated with an allreduce and applied to the replicated parameters
on each device with a specific interval.

5

Each sample used in training typically accesses only a few embedding table entries, but all
neural network parameters. Thus, embedding table entries are accessed and updated sparsely,
while neural network parameters are updated frequently. Finally, many workers proceed in a
data-parallel fashion, where each worker is pre-assigned a number of distinct training samples to
train on. Many systems, such as those used by Facebook and Alibaba [17, 27], use asynchronous
training, where each worker is assigned a number of batches of training samples, and proceed
through the training samples without waiting for any other worker. Alternatively, in synchronous
training, each worker works on one batch of training data, and proceed to the next batch only
after all workers are done with the current batch. We focus on this asynchronous regime in this
work, but describe in §3.5 how the techniques we propose can apply to synchronous training.

Many popular optimizers use per-parameter state in updating parameters (e.g., Adam, Ada-
grad, momentum SGD). We refer to such optimizers as “stateful optimizers.” For example, Ada-
grad [10] tracks the sum of squared gradients for each parameter over time and uses this when
updating the parameter. Per-parameter optimizer state is kept in memory alongside model param-
eters on servers and is updated when the corresponding parameter is updated. As per-parameter
state grows with the number of DLRM parameters [31], optimizer state for embedding tables can
consume a large amount of memory.

2.2 Checkpointing and its downsides

Given the large number of nodes on which DLRMs are trained, failures are to be expected during
training [17]. Due to the time it takes to train such models and the fact that such model is usually
retrained on a constant basis, it is critical that DLRM training be made fault tolerant so training
progress won’t be lost due to failure. Currently, checkpointing is the primary approach used to
achieve fault tolerance in DLRM training. Under checkpointing, training is periodically paused
and DLRM parameters and optimizer state are written to stable storage (often via a distributed
file system, such as HDFS). Upon failure, the most recent checkpoint is read back from stable
storage, and the entire system restarts training from this checkpoint.

Checkpointing can significantly extend training time due to two time penalties (1) during
normal operation and (2) during recovery. We will discuss each of the downsides thoroughly in
this section.

2.2.1 Time penalty during normal operation

We first analyze and evaluate the overhead incurred by checkpointing on training in the absence
of failures. Consider a system in which checkpoints are taken every CP time units, and for which
it takes CW time units to write a checkpoint to stable storage. In such a system, training is paused
every CW out of every CP + CW time units, giving checkpointing an overhead during normal
operation of CW

CP+CW
. Writing checkpoints to stable storage is a slow process given the large

sizes of embedding tables, and training is paused during this time so to ensure the consistency of
the saved models. Intuitively, the overhead of checkpointing on normal operation increases the
longer it takes to write a checkpoint and the more frequently checkpoint.

6

Embedding table size per server(GB)

C
he

ck
po

in
tin

g
tim

e
(m

in
ut

es
)

0

2

4

6

8

10

44 88 176

Write Read

Figure 2.1: Time required to read and write checkpoints

Embedding table size per server(GB)

In
cr

ea
se

 in
 tr

ai
ni

ng
 ti

m
e

0

10

20

30

40

44 88 176

Checkpoint every 30 minutes
Checkpoint every 60 minutes

Figure 2.2: Effect of checkpointing on total training time

This mechanism that pauses training when checkpoints are being taken is commonly re-
ferred to as synchronous checkpointing. An alternative to synchronous checkpointing is asyn-
chronous checkpointing where training resumes normally when a checkpoint is being taken. In
asynchronous checkpointing, parameters can be updated during checkpointing and therefore can
be inconsistent. As verified by our conversations with Facebook and Google’s teams working
on DLRM training, asynchronous checkpointing might have an unexpected effect on the con-
vergence of the model. Therefore, synchronous checkpoints is the state-of-the-art approach to
checkpointing DLRM systems and is most commonly adopted in the industry.

As described above, checkpointing frequently pausing training to save the current DLRM
state to stable storage. To illustrate this overhead, we evaluate checkpointing DLRMs in XDL.
Training is performed on a cluster of 15 workers and 5 servers, with checkpoints periodically
written to an HDFS cluster (full setup described in §4.1). Production recommendation model
training systems typically write checkpoints to general-purpose, HDFS-like distributed storage
systems: Alibaba’s recommendation model training system leverages HDFS, and a recent paper
from Facebook [6] reports using their HDFS-based Hive storage system during training. We train
the DLRM used for the Criteo Terabyte dataset in MLPerf and its variations, which requires 220-

7

880 GB of memory for embedding tables (44-176 GB per server), corresponding to memory sizes
of 64 - 256 GB per server.

Figure 2.1 shows that the time overhead for writing checkpoints is significant (on the order
of minutes. This overhead is inline with observations in production settings as confirmed by our
discussions with multiple DLRM teams and a recent concurrent study by Facebook [24]. Fig-
ure 2.2 shows the overhead of checkpointing on normal training with two checkpointing periods:
30 and 60 minutes. We measure the time it takes for a each setup to reach the same number
of iterations that a system with no fault tolerance (and thus no overhead) reaches in four hours.
As expected, training time increases both with increased DLRM size and with decreased time
between checkpoints.

2.2.2 Time penalty during recovery
Upon failure, checkpointing-based DLRM training systems must (1) roll back the DLRM to the
state of the most recent checkpoint by reading the this checkpoint from stable storage and (2)
redo any of the training iterations that occurred between the previous checkpoint and the failure.
Training is paused during this time, as new training iterations cannot be completed.

Figure 2.1 shows that the time it takes to read back checkpoints from stable storage is signifi-
cant and grows with DLRM size. In addition to the checkpoint reading time, the time required to
redo lost training iterations depends on when failure occurs, which ranges from 0 to the check-
pointing interval. For example, if checkpoints are written every CP time units, this time will
be zero in the best case (failing immediately after writing a checkpoint), CP in the worst case
(failing just before writing a checkpoint), and CP

2
on average. Intuitively, increasing the time

between checkpoints increases the expected recovery time.
Takeaways. Checkpointing suffers a fundamental tradeoff between training-time overhead

in the absence of failures and when recovering from failure [9]. Increasing the time between
checkpoints reduces the fraction of time paused saving checkpoints, but increases the expected
amount of work to be redone upon recovery. Furthermore, the experiments above illustrate that
time overheads both during normal operation and during recovery increase with increasing model
size. Given the common trend of increasing model size to improve accuracy [23, 31] checkpoint-
ing is slated to become an even larger overhead in training future DLRMs. This calls for alternate
approaches to fault tolerance in DLRM training.

2.3 Fault tolerance via proactive redundancy?

2.3.1 Replication
An alternative to checkpointing is to proactively provision redundant servers that can immedi-
ately take over for failed servers. Replication is the most common form of proactive redundancy.
Replication for DLRM training would involve using twice as much memory to store copies of
DLRM parameters and optimizer state on two servers. Gradients for a given parameter are sent
to and applied on both servers holding copies of the parameter. The system seamlessly continues
training if a single server fails by accessing parameters from the replica. Thus, replication allows

8

Server 2

Optimizer

Worker 0

Optimizer

Server 0 Server 1

Optimizer

Server 3

Optimizer

e10 ∇10

p0 = e1 + e2 + e3

e3

e6

e9

e0

p1 = e3 + e4 + e5

e7

e10

e1

e4

p2 = e6 + e7 + e8

e11

e2

e5

e8

p3 = e9 + e10 + e11

entry diff
optimizer state diffupdate

Worker 1

Figure 2.3: Example of ECRM with k = 3, r = 1.

training to proceed unscathed from failure. Replication successfully reduces the need for any
rollback once failure occurs. Additionally, replication removes the overhead of pausing training
due to synchronous checkpointing. However, a replicated DLRM training system requires at
least twice as much memory as a non-replicated one. Given the large sizes of embedding tables,
the memory overhead of replication is impractical for DLRM training systems.

Takeaways. Summarizing the advantages and disadvantages of checkpointing and replica-
tion, an ideal approach to fault-tolerant DLRM training would have (1) the low-latency recovery
of replication and (2) the low memory overhead of checkpointing.

2.3.2 Erasure codes: proactive, low-overhead
Erasure codes are coding-theoretic tools used for imparting resilience against unavailability in
storage and communication systems with significantly less overhead than replication [29, 34, 37].
An erasure code encodes k data units to generate r redundant “parity units” such that any k out
of the total (k+ r) data and parity units suffice for a decoder to recover the original k data units.
Therefore, erasure codes operate with overhead of k+r

k
, which is less than that of replication by

setting r < k. Figure 1.2 shows an example of how erasure codes could potentially be used
in DLRM training. These properties have led to wide adoption of erasure codes in storage and
communication systems [29, 34]. Due to the above reasons, we believe that erasure codes offer
promising potential for achieving these goals to impart efficient fault tolerance to DLRM training.
This thesis explores the potential of the use of erasure codes in DLRM training, unearthing the
challenges and designing a system that overcomes them.

9

10

Chapter 3

ECRM: erasure-coded training

We now describe ECRM, a system that imparts efficient fault tolerance to DLRM training through
careful system design adapting simple erasure codes and ideas from storage systems to DLRM
training. Using erasure codes in DLRM training raises unique challenges compared to the tradi-
tional use of erasure codes in storage and communication. We first provide a high-level overview
of ECRM and then discuss these challenges and how ECRM overcomes them.

3.1 Overview of ECRM

Figure 2.3 provides a high-level picture of erasure-coded operation in ECRM. ECRM encodes
DLRM parameters using an erasure code and distributes the resultant parities throughout the
cluster before training begins. Groups of k embedding table entries from separate servers are
encoded together to produce r parities that are stored in memory on separate servers. ECRM
thus requires k+r

k
-times as much memory as the original system. We describe in §3.2 exactly

which parameters are encoded and how parities are placed throughout the cluster. As encoded
parameters are updated during training, ECRM must also keep the corresponding parities up-to-
date. In the event of a server failure, ECRM uses the erasure code’s decoder to reconstruct lost
DLRM parameters.

While the use of erasure codes in DLRM training is enticing, there are many system design
decisions and challenges that affect the correctness and efficiency of erasure-coded DLRM train-
ing: (1) Which parameters of a DLRM should be encoded and where should parities be placed
(§3.2)? (2) How can parities be updated correctly and efficiently (§3.3)? (3) How can ECRM
avoid pausing training when recovering from failure (§3.4)? (4) How can ECRM guarantee the
consistency of the DLRM recovered after failure (§3.5)?

We next describe how ECRM addresses these system design choices and challenges. Fig-
ure 3.1 illustrates the components added to servers in ECRM that will be described next for
maintaining correct and efficient operation for reference in future sections.

11

Embedding Table
Entries

Parity Embedding
Table Entries

Optimizer

State Parity
State

Difference
Receiver

Gradient
Receiver

Difference
Propagator

Access
Receiver

Update
Buffer

Access
Sender

Recovery
Manager

get e2 e2

∇1

diff e0

diff o0

diff e1

diff o1

components of
original system

components added by ECRM
for normal operation

locked
entries

components added by
ECRM for recovery

Decoder
entries for
decoding

entries for
decoding

Figure 3.1: Components and operation of a server in ECRM. Shaded boxes store data, and
unshaded boxes are used for control flow.

3.2 Encoding and placing parity parameters

DLRMs have many parameters: embedding tables, neural networks, and optimizer state. We
next describe how ECRM selects which parameters should be encoded and where in the cluster
the resultant parities should be placed.

Which parameters should be encoded? Fault tolerance is primarily needed in DLRM train-
ing to recover failed servers, which hold DLRM parameters and optimizer state. If a server fails,
the portion of the DLRM hosted on that server is lost, and training cannot proceed. In contrast,
DLRM training systems with architectures as described in §2.1 are naturally tolerant of worker
failures, as the system can continue training with fewer workers while replacement workers are
provisioned.

Furthermore, as each worker pulls all neural network parameters from servers when train-
ing, the neural network is naturally replicated on workers. If a server fails, the neural network
parameters it held can be recovered from a worker.1

In contrast, embedding tables and optimizer state are not naturally replicated. Embedding
tables and optimizer state are sharded across many servers, and each worker accesses only a few
entries in each training iteration. Thus, lost embedding table entries and optimizer state cannot
be recovered from workers. Furthermore, replicating embedding tables and optimizer state is
impractical, given their large size. Thus, ECRM encodes only embedding tables and optimizer
state; neural network parameters need not be encoded.

Where should parities be placed? Recall from §2.1 that embedding tables and optimizer

1While the asynchronous training described in §2.1 does not guarantee that all workers will have the most up-to-
date neural network parameters, recovering neural network parameters from a worker will still result in recovering
a neural network that is equivalent to one that could be observed under asynchronous training.

12

state are sharded across servers. ECRM encodes groups of k embedding table entries from
different shards to produce a “parity entry,” and places the parity entry on a separate server.
Optimizer state is also encoded to form “parity optimizer state,” which is placed on the same
server hosting the corresponding parity entry.

The parity entries in ECRM are updated whenever any of the k corresponding embedding
table entries are updated. Hence parity entries are updated significantly more frequently than
the original embedding table entries. Parities must be placed carefully within the cluster so as
not to introduce load imbalance among servers for updating parities. ECRM uses rotating parity
placement to distribute parities among servers, resulting in an equal number of parities per server.
An example of this approach is illustrated in Figure 2.3 with k = 3. Each server is chosen to
host a parity in a rotating fashion and the entries used to encode that parity are hosted on the
3 other servers in the system. This approach is inspired by the approach of placing parities in
RAID-5 [29] hard-disk systems.

Encoder, decoder, and sharding. Embedding tables and optimizer state are encoded and
distributed throughout the cluster prior to beginning training. During encoding, each embedding
table is divided into groups of k embedding table entries. Groups of k embedding table entries
from different shards are then encoded together to produce r redundant “parity entries,” and
all (k + r) entries are placed in memory on separate servers. If the training utilizes a stateful
optimizer, the optimizer state corresponding to each embedding table entry is also encoded to
form “parity optimizer state,” which is placed on the same server hosting the corresponding
parity entry. ECRM thus requires k+r

k
-times as much memory as the original training system.

This can be accomplished by either using more memory per server, or by provisioning k+r
k

-times
as many servers.

We focus on using erasure codes with parameter r = 1 (i.e., constructing a single parity from
k embedding table entries and being able to recover from a single failure) throughout this work.
Within this setting, ECRM uses the simple summation encoder illustrated in Figure 2.3, and the
corresponding subtraction decoder. For example, with k = 3, embedding table entries e0, e1, and
e2 are encoded to generate parity p as p = e0 + e1 + e2. If the server holding e1 fails, e1 will be
reconstructed as e1 = p− e0 − e2. We focus on this r = 1 for a few reasons:

1. r = 1 represents the most common failure scenario experienced by a cluster in datacen-
ters [32, 33].

2. The unlikely event of more than one failure among k+1 servers happening at a time is not
catastrophic in ECRM, as it simply requires restarting training.

Though ECRM currently focuses on recovering from a single failure, it can easily be adapted
to cases in which higher fault tolerance is merited with r > 1. Currently in ECRM given a coding
scheme with parameters r and k, any r + 1 simultaneous server failures among all servers could
cause the system to be unable to recover. The likelihood of such failure increases with the number
of servers. To reduce the likelihood of such events, ECRM can be adapted to leverage “coding
groups.” A coding group is a group of k + r servers where all parameters stored on any server
in the group is only coded with parameters from other servers in the same group. ECRM divides
servers into coding groups of size near k+r, and place parity entries correspondingly. To cause a
failure with such a system using coding groups, r+1 server failures must happen simultaneously
in the same coding group of k + r. The likelihood is much lower and is independent of the total

13

number of servers.
As we pointed out, it’s high unlikely that two servers failed within the same coding group and

cause ECRM to be unable to recover. Even though it’s highly unlikely, we want to point out that
ECRM can utilize multi-level checkpointing [26] with a much lower checkpointing frequency
as a backup. Modern DLRMs are retrained constantly from a daily basis. After a longer time
interval, DLRMs have to be written to stable storage, regardless of fault tolerance. Such low
checkpoint frequency will serve as the backup recovery solution given at highly unlikely failure
of two server simultaneously, and allows training to restart from a reasonable point.

3.3 Correctly and efficiently updating parities
As described in §3.2, ECRM must keep parity entries up-to-date to enable an erasure code to
correctly reconstruct lost embedding table entries. We now describe challenges with keeping
parity entries up-to-date and how ECRM overcomes them.

3.3.1 Challenges in keeping up-to-date parities
Maintaining correctness with stateful optimizers. Embedding table entries are updated when
workers send a set of gradients corresponding to the corresponding embedding table entries at a
server. As described in §3.2, ECRM maintains a single parity entry that is the sum of k embed-
ding table entries. To maintain this invariant, ECRM needs to guarantee that the parity entries
are updated correctly to be the sum of the embedding table entries after each gradient update to
one of the k entries throughout training.

To illustrate the challenges with keeping parity entries up-to-date, we will first illustrate how
a naive approach to erasure-coded DLRM training would keep parities up-to-date. First, consider
the SGD update function in which parameter e0 is to be updated using gradient∇0. Let ei,t denote
the value of embedding table entry ei after t updates, and ∇i,t denote the gradient for ei,t. SGD
updates e0 using learning rate α as:

e0,t+1 = e0,t − α∇0,t (3.1)

A closer look at the properties of this update function illustrates that parity p can be kept up-
to-date by simply applying the same update using gradient ∇0 directly on the parity, without
accessing other embedding table entries:

pt+1 = pt − α∇0,t (3.2)
= (e0,t + e1,t + e2,t)− α∇0,t (3.3)
= (e0,t − α∇0,t) + e1,t + e2,t (3.4)
= e0,t+1 + e1,t + e2,t (3.5)

The same argument holds for all linear update functions applied atop a linearly-encoded
parity.

However, this naive approach to erasure-coded DLRM training suffers a fundamental chal-
lenge in correctly updating parity entries when using a stateful optimizer. Consider the same

14

example described above but now using the Adagrad optimizer [10] instead of SGD. The update
performed by Adagrad for e0,t with gradient∇0,t is:

e0,t+1 = e0,t −
α√

G0,t + ε
∇0,t (3.6)

where α is a constant learning rate,

G0,t = ∇2
0,0 +∇2

0,1 + . . .+∇2
0,t (3.7)

is the sum of squares of the previous gradients for parameter e0, and ε is a small constant. G0,t,
which we call e0’s “accumulator,” is an example of optimizer state.

As described in §3.2, ECRM maintains one “parity accumulator” per parity entry. For ex-
ample, using the encoder described in §3.1, a parity accumulator for this example would be
Gp = G0 + G1 + G2. This parity accumulator is easily kept up-to-date by adding the squared
gradient for updated entries to the parity accumulator. However, using this parity accumulator to
update the parity entry based on∇0,t would result in an incorrect parity entry, as G0,t 6= Gp,t.

This issue arises for any stateful optimizer, such as Adagrad, Adam, and momentum SGD.
Given the popularity of such optimizers, ECRM must employ some means of maintaining correct
parities when using stateful optimizers.

One potential approach to overcome this issue is by keeping replicas of the optimizer state
of each of the k embedding table entries corresponding to the parity on the server hosting the
parity. However, as described in §3.1, optimizer state is typically large and grows in size with
embedding tables. Thus, replicating optimizer state is impractical.

Maintaining low overhead in the absence of failures. Even if the issues described above
were not present, the naive approach to erasure-coded DLRM training shown in Figure 1.2 will
have high training-time overhead. Under this naive approach, keeping parity entries up-to-date
requires that gradients for a given embedding table entry be communicated both to the server
hosting the entry as well as to the server hosting the corresponding parity entry, and that the
optimizer’s update function be applied on both servers. Thus, maintaining up-to-date parity
entries can result in overhead in network bandwidth and compute for workers. Given that workers
are typically the bottleneck in DLRM training systems [17], ECRM must minimize the effect of
this overhead on training throughput.

3.3.2 Difference propagation
The challenges described above stem from sending gradients directly to the servers hosting pari-
ties, a naive approach which we term “gradient propagation.” Under gradient propagation, work-
ers must do additional work to send duplicate gradients, resulting in CPU and network bandwidth
overhead on workers. Servers holding parity entries receive only the gradient corresponding to
the original embedding table entry and must both calculate an optimizer’s update function and
correctly update the parity entry and optimizer state. As described above, performing these up-
dates correctly given only parity optimizer state and gradients is challenging.

15

To overcome these downsides, ECRM introduces difference propagation. As illustrated in
Figure 2.3, under difference propagation, workers send gradients only to the servers holding
embedding table entries corresponding to that gradient. After applying the optimizer’s update
function to embedding table entries and updating optimizer state, the server then asynchronously
sends the differences in the entry and optimizer state to the server holding the corresponding
parity entry. The receiving server adds these differences to the corresponding parity entry and
optimizer state. Note that we use a linear encoder for the parity entries, so the coding will be
automatically maintained by sending and updating difference.

Difference propagation has three key benefits over gradient propagation.

1. By sending differences to servers, rather than gradients, difference propagation updates
parity entries correctly when using stateful optimizers.

2. Difference propagation adds no overhead to workers. This is important, given that workers
are typically the bottleneck in DLRM training [17].

3. Parity updates can be performed asynchronously, and potentially lazily with no urgency,
which allows better utilization of servers’ resources advantages of difference propagation
over the naive approach.

4. Difference propagation avoids computing the optimizer’s update function on both the
server holding the original embedding table entry and the server holding the parity en-
try, as is required in gradient propagation. This saves server CPU cycles.

Difference propagation does introduce network and CPU overhead on servers for transmitting
and applying differences. This overhead grows with the amount of state used by an optimizer.
Despite this, §4 will show that difference propagation significantly outperforms gradient propa-
gation.

3.4 Pause-free recovery from failure

We next describe how ECRM recovers from failure without requiring training to pause.
ECRM inherits XDL’s approach for detecting server failures: one worker is delegated as the

coordinator, and all servers periodically send heartbeat messages to the coordinator. If a heartbeat
message is missed from a server, the server is considered to have failed, and the coordinator
triggers recovery. XDL uses a ten second heartbeat interval by default. While this leaves a
window of time from when a server has failed to when recovery is triggered, all workers that
attempt to contact the failed server will block until recovery takes place. Thus, new training
iterations will not begin after the server has failed.

Once a failure is detected, all workers stop training new data batches and attempt to finish
sending all gradients that have been already calculated. After all workers receive either acknowl-
edgements or failure messages regarding the gradient updates and the failed server restarts, the
recovery process begins. Due to the property of the erasure codes described in §2.3 that any k
out of the total (k+1)original and parity units suffice to recover the original k units, ECRM can
continue training even when a single server fails. For example, a worker in ECRM could read
entry e1 in Figure 2.3 even if Server 2 fails by reading e0, e2, and p, and decoding e1 = p−e0−e2.

16

Reading unavailable data in such a manner is commonly referred to as operating in “degraded
mode” in erasure-coded storage systems.

3.4.1 Challenges in erasure-coded recovery
Despite the ability to perform degraded reads, ECRM must still fully recover failed servers to
remain tolerant of future failures. However, prior work on erasure-coded storage has shown that
full recovery can be time-intensive [33, 35]. Full recovery in ECRM requires reconstructing
all embedding table entries and optimizer state held by the failed server. Given the large sizes
of embedding tables and optimizer state, waiting for full recovery to complete before resuming
training can significantly pause training. Thus, waiting for full reconstruction of a failed server
before continuing to train can delay training for a significant period of time.

3.4.2 Training during recovery in ECRM
Rather than solely performing degraded reads after a failure or pausing until full recovery is com-
plete, ECRM enables training to continue while full recovery takes place. Upon failure, ECRM
begins full recovery of lost embedding table entries and optimizer state. In the meantime, the
system continues performing new training iterations, with workers performing degraded reads to
access entries from the failed server. If a worker needs to read an embedding table entry from
the failed server, it does so via a degraded read by reading k embedding table entries from the k
other servers encoded with the missing entry, and decoding the needed embedding table entry on
demand.

Care must be taken to ensure correct recovery when performing new training updates con-
currently with full recovery. In particular, ECRM must avoid updating an embedding table entry
in parallel with its use for recovery. If the recovery process reads the new value of the entry, but
the old value of the parity entry (e.g., because the update was not yet applied to the parity), then
the recovered entry will be incorrect. (see §3.5 for an example).

To ensure correctness of the recovered embedding tables, ECRM employs granular locking
to avoid such race conditions. At the beginning of the process, ECRM divides the embedding
table in L equally-sized partitions. Each server initializes an empty write buffer and “locks” the
first partition of the lost embedding table entries that the recovery process will decode. While
the recovery process holds this lock, all updates to embedding table and parity entries that will
be used in recovery for the locked partition are written to the write buffers on servers until the
lock is released. Workers attempting to read an updated, but locked entry will do so by reading
from the write buffer. When a lock is released, all buffered updates are applied to the original
embedding tables, and the the lock will be switched to the next partition. The process will be
repeated for all L partitions.

The number of embedding table entries covered by each lock introduces a tradeoff between
time overhead in switching locks and server memory overhead for buffering updates. Increasing
the number of locks will reduce the memory overhead due to the need to buffer fewer writes the
expense of higher overhead in switching locks.We will demonstrate this tradeoff in §4.

There are various implementation of the write buffer. We choose to use an array implemen-
tation for the write buffer. Each server initializes an array, with equal size to one partition of the

17

embedding table stored on the server. Before the recovery of a partition of the embedding table,
the server copies the entire embedding table partitions to the write buffer array. During recov-
ery, all worker reads and writes are directly performed on the write buffer. The server flushes
the write buffer by performing a single memory copy from the write buffer to the correspond-
ing embedding table offset. The array implementation creates minimal overhead for the worker
reads/writes since all embedding table entries can be accessed with a direct access. The array im-
plementation also creates low overhead at lock switching by performing a single memory copy.
While the array implementation creates a constant memory overhead, that is the worst case with
the hashmap implementation, the memory overhead is strictly 1/L of the embedding table size,
and can be alleviated with a larger number of locks.

3.5 Maintaining consistency of recovered DLRM
We next describe how ECRM provides the same guarantees regarding the consistency of a re-
covered DLRM as the general asynchronous training on top of which ECRM is built.

Consistency of individual parameters. ECRM ensures that each embedding table entry and
optimizer state entry is recovered to the value from its most recent update that was applied both
to the original entry and the parity. There is one case that requires care: when recovery is
triggered while updating both an embedding table entry and its corresponding parity. If recovery
is triggered after the update had been applied to the embedding table entry but before it has been
applied to the parity entry, the decoded entry will be incorrect. ECRM avoids this scenario by
ensuring that all in-flight updates are completed before recovery begins. As XDL ensures that the
transmission and application of updates do not fail, this condition above is sufficient to guarantee
the consistency of individual parameters.

Consistency across parameters. ECRM guarantees that a recovered DLRM represents one
that could have been reached by asynchronous training, but does not guarantee that the recovered
DLRM represents a state that was truly experienced during recovery. We will next illustrate this
by example and show how the guarantee above results in ECRM providing the same consistency
semantics as asynchronous training.

Consider the following timeline of events in DLRM training with embedding table entries x
and y. We consider the state of the DLRM to be the combined state of each of these parameters.

As illustrated in the Table 3.1, due to the asynchronous property of difference propagation,
the recovery process results in a DLRM state {xt, yt+1} that was never experienced during train-
ing: in training, x was in state t+ 1 before yt was even read.

Though the DLRM state recovered by ECRM in the timeline above was never truly experi-
enced during training, it is a DLRM state that could have just as easily been experienced during
asynchronous training. Under asynchronous training, it would be just as valid for the event at
time 0 to have been performed after the event at time 2, which would have resulted in the DLRM
state being {xt, yt+1} for a period. Thus, the state recovered by ECRM is still valid from the lens
of asynchronous training.

18

Time Prev. State New State Event

0 xt, yt xt+1, yt
Embedding table entry x is updated from xt to xt+1 on Server 0.
Entry and optimizer difference is asynchronously propagated
to the server holding the parity.

1 xt+1, yt xt+1, yt Embedding table entry yt is read from Server 1.

2 xt+1, yt xt+1, yt+1
Embedding table entry y is updated from yt to yt+1 on Server 1.
Entry and optimizer difference is asynchronously propagated
to the server holding the parity.

3 xt+1, yt+1 xt+1, yt+1 The parity corresponding to entry y is updated to reflect the update to y.

4 xt+1, yt+1 xt+1, yt+1 Server 0 fails, having not yet transmitted the difference for x.

5 xt+1, yt+1 xt, yt+1 The recovery process decodes x.

Table 3.1: Example timeline that results in ECRM inconsistency.

ECRM in synchronous training settings. As described in §2.1, many of the organizations
deploying some of the mostly widely used recommendation systems use asynchronous train-
ing [17, 27]. As described in §4.1, we build ECRM atop XDL, an asynchronous training frame-
work from Alibaba. However, ECRM can also support synchronous training. Synchronous
training adds a barrier after certain number of training iterations in which workers communicate
gradients with one another and servers, combine these gradients, and perform a single update to
each modified parameter. In such a synchronous framework, ECRM would require that parity
entries also be updated during this barrier so that they are kept consistent with training updates.
As this setting is not the focus of our work, we leave a full study and evaluation of ECRM in
synchronous settings to future work.

3.6 Tradeoffs in ECRM

We next discuss the effect of parameter k in ECRM as well as the consistency guarantees that
can be made by ECRM.

Recall from §3.1 that ECRM encodes k embedding table entries into a single parity entry
(r = 1) (and similarly for optimizer state). The parameter k results in tradeoffs in resource and
time overhead and fault tolerance in ECRM, some of which differ significantly from traditional
use of erasure codes.

Increasing k decreases fault tolerance. As ECRM encodes one parity entry for every k em-
bedding table entries (same for optimizer state), since the erasure codes employed by ECRM can

19

recover from any one out of (k+1) failures, increasing k decreases the fraction of failed servers
ECRM can tolerate.

Increasing k decreases memory overhead. ECRM encodes one parity entry for every k em-
bedding table entries (same for optimizer state). ECRM thus requires less memory for storing
parities with increased k.

Increasing k does not change load during normal operation. As each embedding table entry
in ECRM is encoded to produce a single parity entry, each update applied to an entry will also
be applied to one parity entry. Thus, the overall increase in load due to ECRM is 2×, regardless
of the value of parameter k. In addition to this constant increase in load, we will also show in
§4.3 that ECRM balances this load evenly with various values of k.

Increasing k increases the time to fully recover. Recovery in ECRM requires reading k avail-
able entries from separate servers and decoding (and similarly for optimizer state). Thus, the
amount of network traffic and computation required during recovery increases with k, which in-
creases the time it takes to fully recover a failed server. However, as described in §3.4.2, ECRM
allows training to continue during this time.

20

Chapter 4

Evaluation

In this chapter, we evaluate the performance of ECRM. The highlights of the evaluation include:
• ECRM recovers from failure up to 10.3× faster than the average recovery time for check-

pointing.
• ECRM enables training to proceed with only a 6%–12% throughput drop during recovery,

whereas checkpointing requires training to completely pause.
• ECRM reduces training-time overhead by up to 88% compared to checkpointing (more pre-

cisely, from 33.4% to 4%). ECRM’s improvements increase with increasing DLRM size,
showing promise for training both current and future DLRMs.

• The increased load introduced by ECRM for updating parities is alleviated by improved
cluster load balance, which helps reduce training-time overhead.

4.1 Evaluation setup

We implement ECRM in C++ on XDL, an open-source DLRM training system from Alibaba [17].

Dataset. We evaluate with the Criteo Terabyte dataset, which is used in MLPerf. We randomly
draw from the dataset a number of examples equivalent to one day of the dataset by picking each
sample with a fixed probability 1

24
in one pass through the entire dataset, and use this subset in

evaluation to reduce storage requirements. The random sampling described above ensures that
the sampled dataset mimics the full dataset.

Models. We use the open-source DLRM architecture for the Criteo dataset used in MLPerf [27]
and its variants. This DLRM has 13 embedding tables, for a total of nearly 200 million embed-
ding table entries. Each entry maps to 128 dense features. We use SGD with momentum as the
optimizer, which adds a single floating point value of optimizer state per parameter. Any other
optimizer can similarly be handled. The total size of the embedding tables and optimizer state is
220 GB. The DLRM uses a multilayer perceptron with seven layers with 128–1024 features per
layer as a neural network [3].

21

We evaluate on DLRMs of different sizes by varying the sizes of embedding tables in two
ways: (1) Increasing the number of embedding table entries (i.e., sparse dimension). This re-
quires more memory per server and increases the amount of data that must be checkpointed/erasure-
coded and recovered, but does not change other resource consumption in the system. (2) Keeping
same number of entries, but increasing the size of each entry (i.e., dense dimension). This in-
creases the memory consumed per server, the amount of data that must be checkpointed/erasure-
coded, and also other resource consumption during training: increasing the size of each entry
increases the network bandwidth consumed in transferring entries and their gradients, the work
performed by neural networks (as neural networks process entries), and the work done by servers
in updating entries. We consider three variants of the DLRM: (1) Criteo-Original, the original
Criteo DLRM, (2) Criteo-2S, which has 2× the number of embedding table entries (i.e., 2× the
sparse dimension), and (3) Criteo-2S-2D, which has 2× the number of entries and with each
entry being 2× as large (i.e., 2× the sparse and dense dimensions). These variants have size 220
GB, 440 GB, and 880 GB, respectively.

Figure 4.1: Throughput when recovering from failure at 10 minutes.

Coding parameters and baselines. We evaluate ECRM with r = 1 and k of 2, 4, and 10,
representing scenarios with 50%, 25%, and 10% memory overhead, respectively. We compare
ECRM to taking checkpoints to HDFS with every 30 minutes (Ckpt. 30) and every 60 minutes
(Ckpt. 60), as production recommendation systems typically use general-purpose, HDFS like
distributed storage systems. We evaluate with k = 10 in only a limited set of experiments due to
the cost of the large cluster needed.

Cluster setup. We evaluate on AWS with 5 servers of type r5n.8xlarge, each containing 32
vCPUs, 256 GB of memory, and 25 Gbps network bandwidth (r5n.12xlarge is used for Criteo-
2S-2D due to memory requirements). We use 15 workers of type p3.2xlarge, each equipped

22

Figure 4.2: Training progress (bottom) when recovering from failure at 10 minutes.

with a V100 GPU, 8 vCPUs, and 10 Gbps of network bandwidth. This ratio of worker to server
nodes is inspired from XDL [17]. We also evaluate with varying number of workers ranging up
to 25 in §4.3. Each worker uses a batch size of 2048. When evaluating checkpointing, we use
15 additional nodes of type i3en.xlarge as HDFS nodes, each equipped with NVMe SSDs and
25 Gbps of network bandwidth. All nodes use AWS ENA networking. We perform additional
experiments in which we limit the CPU and network resources available on servers to stress the
overhead of ECRM’s components.

Metrics. For performance during recovery, we measure the time to fully recover a failed server
and the training throughput (in samples per second) during recovery. For performance during
normal operation, we measure training-time overhead as percentage increase in the time to per-
form training on a certain number of samples and the training throughput (in samples per second).

4.2 Performance during recovery

We first evaluate ECRM and checkpointing in recovering from failure. As the recovery time
for checkpointing depends on when failure occurs (see §2.2), we show the best-, average-, and
worst-case recovery for checkpointing. Additionally, we compare the performance of ECRM
recovery with different number of granular locks and evaluate its effect on the overall recovery
performance.

The recovery performance of each approach is best illustrated in Figure 4.1, which shows

23

R
ec

ov
er

y
tim

e
(m

in
ut

es
)

0

20

40

60

80

Criteo-Original Criteo-2S Criteo-2S-2D

Ckpt. 60 best

Ckpt. 60 average

Ckpt. 60 worst

Ckpt. 30 best

Ckpt. 30 average

Ckpt. 30 worst

ECRM (k = 4)

ECRM (k = 2)

Figure 4.3: Time to fully recover a failed server.

the throughput and training progress of ECRM and Ckpt. 30 on Criteo-2S-2D after a single
server failure (at time 10). ECRM fully recovers from the failure faster than the average case for
Ckpt. 30, and, critically, maintains throughput within 6%–12% of that during normal operation
during this time. As illustrated in the bottom figure, which plots the time taken to reach a par-
ticular number of training samples, ECRM’s high throughput during recovery enables it to make
greater progress in training than even the best case for Ckpt. 30. The recovery performance of
Ckpt. 60 would have been even worse than that for Ckpt. 30, though we omit it from the plots
for clarity.

Figure 4.3 shows the time it takes for ECRM, Ckpt. 30, and Ckpt. 60 to recover a failed server.
ECRM recovers a failed server significantly faster than the average case of checkpointing. For
example, ECRM with k = 4 recovers 1.9–6.8× faster and 1.1–3.5× faster than the average case
for Ckpt. 60 and Ckpt. 30, respectively (and up to 10.3× faster with k = 2). While Ckpt. 30
does recover faster from failure than Ckpt. 60, §4.3 will show that Ckpt. 30 has significantly
higher training-time overhead during normal operation. More importantly, unlike checkpointing,
ECRM enables training to continue during recovery with high throughput.

Effect of parameter k. Figure 4.3 illustrates that it takes longer for ECRM to fully recover
with higher value of parameter k. The intuition behind this is described in §3.6 However, Fig-
ure 4.1 shows that ECRM maintains high throughput during recovery for each value of k.

Effect of DLRM size. Figure 4.3 also shows that the time to fully recover increases with
DLRM size for both ECRM and checkpointing, as expected (see §2.2 and §3.6). ECRM’s recov-

24

R
ec

ov
er

y
tim

e
(s

ec
on

ds
)

0

100

200

300

400

Criteo-Original, k=4 Criteo-2S, k=4 Criteo-2S-2D, k=4

1 lock 10 locks

Figure 4.4: Effects of the number of partitions on recovery time

ery time increases more quickly with DLRM size than checkpointing due to the k-fold increase
in data read and compute performed by a single server in ECRM when decoding. However,
this does not significantly affect training in ECRM because ECRM can continue training during
recovery with high throughput.

Effect of lock granularity We have discussed the idea of granular locks in §3.4.2. In order to
evaluate the effect of locking granularity on recovery time, we compare the recovery time with
a single lock with the recovery time using 10 partitions for each experimental setup. Figure 4.4
shows the effects of the number of partitions on recovery time. Using 10 granular locks with a
10% memory overhead increases the recovery time from 7.45% to 23.32%, mostly depending
on the model size. The experimental results show that granular locking increases recovery time
only by a moderate amount and demonstrates the applicability of granular locking. Meanwhile,
the average training throughput during recovery remains the same level as with using a single
lock.

4.3 Performance during normal operation

Figure 4.5 shows the training-time overhead of ECRM and checkpointing as compared to a sys-
tem with no fault tolerance (and thus no overhead) in a four hour run. ECRM reduces training-
time overhead in the absence of failure by 71.3%–88% and 41.3%–71.6% compared to Ckpt. 30
and Ckpt. 60, respectively. While the training-time overhead of checkpointing decreases with de-

25

In
cr

ea
se

 in
 tr

ai
ni

ng
 ti

m
e

(%
)

0

10

20

30

40

Criteo-Original Criteo-2S Criteo-2S-2D

Ckpt. 60 Ckpt. 30 ECRM (k = 4) ECRM (k = 2)

Figure 4.5: Training-time overhead in the absence of failures

creased checkpointing frequency, §4.2 showed that this came the expense of significantly worse
recovery performance. Furthermore, ECRM’s benefit over checkpointing grows with DLRM
size. For example, on the 880 GB Criteo-2S-2D, Ckpt. 30 has training-time overhead of 33.4%,
while ECRM has training-time overheads of 4.2% and 4% with k of 4 and 2, respectively. This
illustrates the promise of ECRM for future DLRMs, which will likely grow in size [23, 31].

Training progress. Figure 4.6 plots the throughput of ECRM and Ckpt. 30 compared to train-
ing with no fault tolerance (No FT) on Criteo-2S-2D. As shown in the inset, ECRM has slightly
lower throughput compared to No FT, while Ckpt. 30 causes throughput to fluctuate from that
equal to No FT, to zero when writing a checkpoint. The effects of this fluctuation are shown in
Figure 4.7: Ckpt. 30 progresses significantly slower than ECRM and No FT.

Effect of parameter k. As described in §3.6, ECRM has constant network bandwidth and
CPU overhead during normal operation regardless of the value of parameter k. This is illustrated
in Figures 4.5, 4.6, and 4.7, where ECRM has nearly equal performance with k = 2 and k = 4.

We also measure the training-time overhead of ECRM with k = 10 on a cluster twice the
size as that described in §4.1 (to accommodate the higher value of k) and on a version of Criteo-
Original scaled up to have the same number of embedding table entries per server as in the
original cluster. In this setting, ECRM has training-time overhead of 0.5%. This smaller over-
head stems not from the increase in parameter k, but from the decreased load on each server
due to the increased number of servers. Nevertheless, this experiment illustrates that ECRM can
support high values of k.

26

Figure 4.6: Throughput of training Criteo-2S-2D

Effect of ECRM on load imbalance. We next evaluate the effect of ECRM’s approach to
parity placement (§3.2) on cluster load imbalance. We measure the load imbalance by counting
the number of updates that occur on each server when training Criteo-Original.

When training without erasure coding, the most-heavily loaded server performs 2.28× more
updates than the least-heavily loaded server. In contrast, in ECRM with k = 2 and k = 4, this
difference in load is 1.64× and 1.58×, respectively. This indicates that the increased load intro-
duced by ECRM leads to improved load balance. Under ECRM, parities corresponding to the
entries of a given server are distributed among all other servers. Thus, the same amount of load
that an individual server experiences for non-parity updates will also be distributed among the
other servers to update parities. While all servers will experience increased load, the most-loaded
server is likely to experience the smallest increase in load because all other servers for whom it
hosts parities have lower load. A similar argument holds for the least-loaded server experienc-
ing the largest increase in load. Hence, the expected difference in load between the most- and
least-loaded servers will decrease. Thus, while ECRM doubles the total number of updates in
the system, its impact is alleviated by improved load balancing provided by its approach to parity
placement.

Effect of a large number of workers To evaluate scenarios in which the servers in ECRM
are more heavily-loaded, we additionally performed experiments with a different number of
workers based on our current server setup. Figure 4.8 shows the average training throughput

27

Figure 4.7: Progress of training Criteo-2S-2D

attained as the number of workers vary from 5 to 25, corresponding to 1× to 5× the number
of the servers. As the number of servers increase, embedding table entries are accessed more
frequently and therefore servers become more heavily loaded, which increases the severity of
server-side bottlenecks. Compared to No FT approach, ECRM’s overhead increases with the
number of workers from 1.4% for 5 workers to 2.7% for 15 workers, and finally to 7.5% for 25
workers. Such increase is expected as ECRM adds load to servers in performing parity updates.
Figure 4.8 also shows the training throughput of Ckpt. 30 with a constant overhead of 9.0%.
The results show that even in settings with higher worker to server ratio, ECRM maintains lower
overhead than checkpointing during normal operation.

Effect of reduced server computational and networking resources. As ECRM introduces
CPU and network bandwidth overhead on servers during training, it is expected that ECRM will
have higher training-time overhead when server CPU and network resources are limited. We
evaluate ECRM in these settings by artificially limiting these resources when training Criteo-
Original. To evaluate ECRM with limited server CPU resources, we replace the r5n.8xlarge
server instances described in §4.1 with x1e.2xlarge instances, which have the same amount of
memory, but 4× less CPU cores. ECRM’s training-time overhead with k = 4 is 11.1% when
using these instances, higher than that on the more-capable servers (2.6%).

To evaluate ECRM with limited server network bandwidth, we replace the r5n.8xlarge in-
stances (which have 25 Gbps) described in §4.1 with r5.8xlarge instances (which have 10 Gbps).
ECRM’s training-time overhead with k = 4 is 6.5% on these bandwidth-limited instances, higher
than that on the more-capable servers (2.6%).

Even on these resource-limited servers, ECRM still benefits from significantly improved per-

28

Figure 4.8: Average training throughput with varying number of workers during normal opera-
tion

formance during recovery compared to checkpointing and has training-time overhead compara-
ble to Ckpt. 30 and slightly higher than Ckpt. 60.

Note that such limited resources represent a purposely unrealistic cases in the industry, due to
the fact that custers in which production DLRMs are typically equipped with high-performance
networks. A study by Facebook [6] reports that clusters used for DLRM training contain net-
works with 100 Gbps bandwidth and often utilize Infiniband to ensure network bandwidth is not
the overall system’s bottleneck.

Benefit of difference propagation. One of the motivations behind ECRM’s approach of dif-
ference propagation described in §3.3.2 was to reduce the training-time overhead of keeping
parities up-to-date. To illustrate this reduced overhead, we compare ECRM to the naive alter-
native, gradient propagation in training Criteo-Original. With k = 4, gradient propagation has
a training-time overhead of 9.0%, while difference propagation has an overhead of only 2.6%.
This illustrates the benefit of difference propagation in ECRM.

29

30

Chapter 5

Related Work

5.1 DLRM training and inference systems

Many aspects of DLRM systems have been explored: workload analysis [6, 15, 23], architectural
support [19], system design [12, 17, 18], and model-system codesign [14]. To the best of our
knowledge, ECRM is the first system to focus on efficient fault tolerance for DLRM training.
Most the related work mentioned above are thoroughly discussed in the main thesis in §2.

5.2 Checkpointing

Checkpointing has long been a topic of intense study in high-performance computing in which
the large-scale in which scientific simulations are performed requires efficient general-purpose
approaches to fault tolerance [9, 26].

Recently, approaches to reduce the overhead of checkpointing in large-scale neural network
training have begun to arise [28]. Some techniques take approximate checkpoints to reduce
overhead [7, 30], but it is difficult for practitioners to reason about losses in accuracy due to such
approximation. Other approaches continue training while writing a checkpoint [5], but this can
result in inconsistent checkpoints; given the amount of time it takes to write checkpoints, many
training updates may have been applied to the final model parameters being written since the
time that the first parameters were written.

More closely related to our target setting of DLRM training, recent works have explored
leveraging partial recovery [24] and checkpoint quantization [13] to reduce the overhead of
checkpointing in DLRM training. However, like the approaches described above, these tech-
niques can potentially change the trajectory of training by reloading approximate models after
a failure has occurred. Our conversations with production DLRM training teams have indicated
that such approximation is difficult for practitioners to reason about, and is thus avoided.

ECRM differs from the techniques above by (1) making use of erasure codes in novel ways
to alleviate overheads associated with checkpointing, (2) specializing its design to the unique
characteristics of DLRM training, and (3) introducing no additional inconsistency or accuracy
loss to training.

31

5.3 Coding in machine learning systems
A line of work has explored the use of coding-theoretic ideas in machine learning systems. This
work has primarily been applied to alleviating straggling workers in training limited classes of
machine learning models (e.g., [11, 22, 25, 36, 38]) and serving neural networks [20, 21]. In
contrast, ECRM imparts fault tolerance to DLRM training, which differs significantly in model
architecture and system design to the settings considered by these works.

32

Chapter 6

Conclusion

ECRM is a new approach to fault tolerance in DLRM training that employs erasure coding to
overcome the downsides of checkpointing-based fault tolerance. ECRM encodes the large em-
bedding tables and optimizer state in DLRMs, maintains up-to-date parities with low overhead,
and enables training to continue during recovery while maintaining consistency of recovered
entries. Compared to checkpointing, ECRM reduces training-time overhead in the absence of
failures by up to 88%, recovers from failures faster, and allows training to proceed without any
pauses both during normal operation or recovery. While ECRM’s benefits comes at the cost of
additional memory requirements and load on the servers, the impact of these is alleviated by the
fact that memory overhead is only fractional and that load gets evenly distributed. ECRM shows
the potential of erasure coding as a superior alternative to checkpointing for fault tolerance in
efficiently training current and future DLRMs.

33

34

Bibliography

[1] Display advertising challenge: Ctr terabyte ads data set. https://www.kaggle.com/
c/criteo-display-ad-challenge. Last accessed 3 October 2020. 1

[2] MLPerf Training. https://mlperf.org/training-overview/, . Last accessed
10 September 2020. 1

[3] MLPerf Inference Github Repository. https://github.com/mlperf/
inference, . Last accessed 10 October 2020. 4.1

[4] Introducing NVIDIA Merlin HugeCTR: A Training Framework Dedicated to Recom-
mender Systems. https://tinyurl.com/yy82pd2l. Last accessed 10 September
2020. 1

[5] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), 2016. 5.2

[6] Bilge Alcun, Matthew Murphy, Xiaodong Wang, Jade Nie, and Kim Wu, Carole-
Jean Hazelwood. Understanding Training Efficiency of Deep Learning Recommendation
Models at Scale. arXiv preprint arXiv:2011.05497, 2020. 2.2.1, 4.3, 5.1

[7] Yu Chen, Zhenming Liu, Bin Ren, and Xin Jin. On Efficient Constructions of Checkpoints.
In Proceedings of the International Conference on Machine Learning (ICML 20), 2020. 5.2

[8] Paul Covington, Jay Adams, and Emre Sargin. Deep Neural Networks for YouTube Rec-
ommendations. In Proceedings of the 10th ACM Conference on Recommender Systems,
2016. 1, 2.1

[9] John T Daly. A Higher Order Estimate of the Optimum Checkpoint Interval for Restart
Dumps. Future Generation Computer Systems, 22(3):303–312, 2006. 2.2.2, 5.2

[10] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization. Journal of Machine Learning Research, 12(7),
2011. 2.1, 3.3.1

[11] Sanghamitra Dutta, Ziqian Bai, Haewon Jeong, Tze Meng Low, and Pulkit Grover. A
Unified Coded Deep Neural Network Training Strategy Based on Generalized PolyDot
Codes. In 2018 IEEE International Symposium on Information Theory (ISIT 18), 2018. 5.3

35

https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://mlperf.org/training-overview/
https://github.com/mlperf/inference
https://github.com/mlperf/inference
https://tinyurl.com/yy82pd2l

[12] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey Pupyrev,
Kim Hazelwood, Asaf Cidon, and Sachin Katti. Bandana: Using Non-Volatile Memory
for Storing Deep Learning Models. In The Second Conference on Systems and Machine
Learning (SysML 19), 2019. 1, 5.1

[13] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere, Raghuraman
Krishnamoorthi, Murali Annavaram, Krishnakumar Nair, and Misha Smelyanskiy. Check-
N-Run: A Checkpointing System for Training Recommendation Models. arXiv preprint
arXiv:2010.08679, 2020. 5.2

[14] Antonio Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James Zou. Mixed
Dimension Embeddings with Application to Memory-Efficient Recommendation Systems.
arXiv preprint arXiv:1909.11810, 2019. 5.1

[15] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen, David
Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al. The Archi-
tectural Implications of Facebook’s DNN-based Personalized Recommendation. In 2020
IEEE International Symposium on High Performance Computer Architecture (HPCA 20),
2020. 5.1

[16] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin.
Erasure Coding in Windows Azure Storage. In 2012 USENIX Annual Technical Conference
(USENIX ATC 12), 2012. 1

[17] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui Zhou, Yang Zheng, Sui Huang,
Xinyang Guo, Dongyue Wang, Yue Song, et al. XDL: An Industrial Deep Learning Frame-
work for High-Dimensional Sparse Data. In Proceedings of the 1st International Workshop
on Deep Learning Practice for High-Dimensional Sparse Data, 2019. 1, 1, 1, 2.1, 2.2,
3.3.1, 2, 3.5, 4.1, 4.1, 5.1

[18] Dhiraj Kalamkar, Evangelos Georganas, Sudarshan Srinivasan, Jianping Chen, Mikhail
Shiryaev, and Alexander Heinecke. Optimizing Deep Learning Recommender Systems’
Training On CPU Cluster Architectures. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC 20), 2020. 5.1

[19] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku Diril,
Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S Lee, et al. RecNMP: Accel-
erating Personalized Recommendation with Near-Memory Processing. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA 20), 2020. 5.1

[20] Jack Kosaian, K. V. Rashmi, and Shivaram Venkataraman. Parity Models: Erasure-Coded
Resilience for Prediction Serving Systems. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP 19), 2019. 5.3

[21] Jack Kosaian, K. V. Rashmi, and Shivaram Venkataraman. Learning-Based Coded Compu-
tation. IEEE Journal on Selected Areas in Information Theory, 2020. 5.3

[22] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and Kannan
Ramchandran. Speeding Up Distributed Machine Learning Using Codes. IEEE Transac-
tions on Information Theory, July 2018. 5.3

36

[23] Michael Lui, Yavuz Yetim, Özgür Özkan, Zhuoran Zhao, Shin-Yeh Tsai, Carole-Jean Wu,
and Mark Hempstead. Understanding Capacity-Driven Scale-Out Neural Recommendation
Inference. arXiv preprint arXiv:2011.02084, 2020. 1, 2.2.2, 4.3, 5.1

[24] Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark C Jeffrey, Vikram Saraph, Bor-Yiing Su,
Caroline Trippel, Jiyan Yang, Mike Rabbat, Brandon Lucia, and Carole-Jean Wu. CPR: Un-
derstanding and Improving Failure Tolerant Training for Deep Learning Recommendation
with Partial Recovery. arXiv preprint arXiv:2011.02999, 2020. 1, 2.2.1, 5.2

[25] Raj Kumar Maity, Ankit Singh Rawat, and Arya Mazumdar. Robust Gradient Descent via
Moment Encoding with LDPC Codes. arXiv preprint arXiv:1805.08327, 2018. 5.3

[26] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R De Supinski. Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing System. In Proceed-
ings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC 10), 2010. 3.2, 5.2

[27] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan
Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Az-
zolini, et al. Deep Learning Recommendation Model for Personalization and Recommen-
dation Systems. arXiv preprint arXiv:1906.00091, 2019. 1, 2.1, 3.5, 4.1

[28] Bogdan Nicolae, Jiali Li, Justin Wozniak, George Bosilca, Matthieu Dorier, and Franck
Cappello. DeepFreeze: Towards Scalable Asynchronous Checkpointing of Deep Learning
Models. In CCGrid’20: 20th IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing, 2020. 5.2

[29] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays of
Inexpensive Disks (RAID). In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD 88), 1988. 1, 2.3.2, 3.2

[30] Aurick Qiao, Bryon Aragam, Bingjing Zhang, and Eric Xing. Fault Tolerance in Iterative-
Convergent Machine Learning. In International Conference on Machine Learning, pages
5220–5230, 2019. 5.2

[31] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory
Optimization Towards Training a Trillion Parameter Models. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis
(SC 20), 2020. 1, 2.1, 2.2.2, 4.3

[32] K. V. Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and Kannan
Ramchandran. A solution to the network challenges of data recovery in erasure-coded dis-
tributed storage systems: A study on the facebook warehouse cluster. In USENIX Workshop
on Hot Topics in Storage and File Systems, 2013. 1

[33] K. V. Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and Kannan
Ramchandran. A Hitchhiker’s Guide to Fast and Efficient Data Reconstruction in Erasure-
Coded Data Centers. In Proceedings of the 2014 ACM SIGCOMM Conference (SIGCOMM
14), 2014. 1, 1, 3.4.1

[34] Luigi Rizzo. Effective Erasure Codes for Reliable Computer Communication Protocols.

37

ACM SIGCOMM Computer Communication Review, 27(2):24–36, 1997. 1, 2.3.2

[35] Mahesh Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos, Alexandros G Di-
makis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur. XORing Elephants: Novel
Erasure Codes for Big Data. Proceedings of the VLDB Endowment, 6(5), 2013. 1, 3.4.1

[36] Rashish Tandon, Qi Lei, Alexandros G Dimakis, and Nikos Karampatziakis. Gradient Cod-
ing: Avoiding Stragglers in Distributed Learning. In International Conference on Machine
Learning (ICML 17), 2017. 5.3

[37] Hakim Weatherspoon and John D Kubiatowicz. Erasure Coding vs. Replication: A Quan-
titative Comparison. In International Workshop on Peer-to-Peer Systems (IPTPS 2002),
2002. 1, 2.3.2

[38] Qian Yu, Netanel Raviv, Jinhyun So, and A Salman Avestimehr. Lagrange Coded Com-
puting: Optimal Design for Resiliency, Security and Privacy. In Proceedings of the 22nd
International Conference on Artificial Intelligence and Statistics (AISTATS 19), 2019. 5.3

38

	1 Introduction
	2 Background and Motivation
	2.1 DLRM training systems
	2.2 Checkpointing and its downsides
	2.2.1 Time penalty during normal operation
	2.2.2 Time penalty during recovery

	2.3 Fault tolerance via proactive redundancy?
	2.3.1 Replication
	2.3.2 Erasure codes: proactive, low-overhead

	3 ECRM: erasure-coded training
	3.1 Overview of ECRM
	3.2 Encoding and placing parity parameters
	3.3 Correctly and efficiently updating parities
	3.3.1 Challenges in keeping up-to-date parities
	3.3.2 Difference propagation

	3.4 Pause-free recovery from failure
	3.4.1 Challenges in erasure-coded recovery
	3.4.2 Training during recovery in ECRM

	3.5 Maintaining consistency of recovered DLRM
	3.6 Tradeoffs in ECRM

	4 Evaluation
	4.1 Evaluation setup
	4.2 Performance during recovery
	4.3 Performance during normal operation

	5 Related Work
	5.1 DLRM training and inference systems
	5.2 Checkpointing
	5.3 Coding in machine learning systems

	6 Conclusion
	Bibliography

