
Adopting Zoned Storage in
Distributed Storage Systems

Abutalib Aghayev

CMU-CS-20-130

August 2020

Computer Science Department
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

�esis Committee:
George Amvrosiadis, Chair
Gregory R. Ganger
Garth A. Gibson

Peter J. Desnoyers, Northeastern University
Remzi H. Arpaci-Dusseau, University of Wisconsin–Madison

Sage A. Weil, Red Hat, Inc.

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2020 Abutalib Aghayev

�is research was sponsored by the Los Alamos National Laboratory award number: 394903; by a Hima and Jive
Fellowship in Computer Science for International Students; and by a Carnegie Mellon University Parallel Data Lab
(PDL) Entrepreneurship Fellowship.�e views and conclusions contained in this document are those of the author
and should not be interpreted as representing the o�cial policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

Keywords: �le systems, distributed storage systems, shingledmagnetic recording, zonednames-
paces, zoned storage, hard disk drives, solid-state drives

Abstract
Hard disk drives and solid-state drives are the workhorses of modern storage sys-

tems. For the past several decades, storage systems so�ware has communicated with
these drives using the block interface.�e block interfacewas introduced early onwith
hard disk drives, and as a result, almost every storage system in use today was built for
the block interface. �erefore, when �ash memory based solid-state drives recently
became viable, the industry chose to emulate the block interface on top of �ashmem-
ory by running a translation layer inside the solid-state drives.�is translation layer
was necessary because the block interface was not a direct �t for the �ash memory.
More recently, hard disk drives are shi�ing to shingled magnetic recording, which in-
creases capacity but also violates the block interface.�us, emerging hard disk drives
are also emulating the block interface by running a translation layer inside the drive.
Emulating the block interface using a translation layer, however, is becoming a source
of signi�cant performance and cost problems in distributed storage systems.
In this dissertation, we argue for the elimination of the translation layer—and

consequently the block interface. We propose adopting the emerging zone interface
instead—a natural �t for both high-capacity hard disk drives and solid-state drives—
and rewriting the storage backend component of distributed storage systems to use
this new interface. Our thesis is that adopting the zone interface using a special-
purpose storage backend will improve the cost-e�ectiveness of data storage and the
predictability of performance in distributed storage systems.
We provide the following evidence to support our thesis. First, we introduce Sky-

light, a novel technique to reverse engineer the translation layers of modern hard disk
drives and demonstrate the high garbage collection overhead of the translation layers.
Second, based on the insights from Skylight we develop ext4-lazy, an extension of
the popular ext4 �le system, which is used as a storage backend in many distributed
storage systems. Ext4-lazy signi�cantly improves performance over ext4 on hard disk
drives with a translation layer, but it also shows that in the presence of a translation
layer it is hard to achieve the full potential of a drive with evolutionary �le system
changes. �ird, we show that even in the absence of a translation layer, the abstrac-
tions provided by general-purpose �le systems such as ext4 are inappropriate for a
storage backend. To this end, we study a decade-long evolution of a widely used dis-
tributed storage system, Ceph, and pinpoint technical reasons that render general-
purpose �le systems un�t for a storage backend. Fourth, to show the advantage of a
special-purpose storage backend in adopting the zone interface, as well as the advan-
tages of the zone interface itself, we extend BlueStore—Ceph’s special-purpose storage
backend—to work on zoned devices. As a result of this work, we demonstrate how
having a special-purpose backend in Ceph enables quick adoption of the zone inter-
face, how the zone interface eliminates in-device garbage collection when running
RocksDB (a key-value database used for storing metadata in BlueStore), and how the
zone interface enables Ceph to reduce tail latency and increase cost-e�ectiveness of
data storage without sacri�cing performance.

iv

Acknowledgments
My doctoral journey has been far from the ordinary: it spanned two schools,

�ve advisors, and more years than I care to admit. In hindsight, it was a blessing in
disguise—I met many great people, some of whom became life long friends. Below, I
will try to acknowledge them, and I apologize if I miss anyone.
I am grateful to George Amvrosiadis and Greg Ganger for agreeing to advise me

at a critical stage ofmy studies and for helpingme cross the �nish line. It was a packed
two years of work, but George and Greg’s laid-back and cheerful attitude made them
bearable and fun. I thank Garth Gibson and Eric Xing for agreeing to advise me upon
my arrival at CMU and for introducing me to the �eld of machine learning systems.
Garthwas instrumental inmy coming toCMU, and I received his unwavering support
throughout the years, for which I am grateful. I am grateful to Peter Desnoyers for ad-
vising me at Northeastern, for supporting my decision to reapply to graduate schools
late into my studies, and for always being there for me. Remzi Arpaci-Dusseau has
been my uno�cial advisor since that lucky day when I �rst met him at SOSP ’13. I am
grateful for his continuous support inside and outside of academia and for his serving
in my thesis committee. While at CMU, I also brie�y worked with Phil Gibbons and
Ehsan Totoni, and I am grateful to them for the opportunity.
I was also fortunate to have great collaborators from the industry. Sage Weil and

�eodore Ts’o are two super hackers, respectively responsible for leading the develop-
ment of a distributed storage system and a �le system used bymillions. Yet they found
time to meet with me regularly, to patiently answer my questions, and to discuss re-
search directions. Towards the end of my studies, I asked Sage to serve on my thesis
committee, and he kindly agreed. I am grateful to Sage and Ted for their support.
Matias Bjørling turned my request for his slides into an internship, and thus started
our collaboration on zoned storage, which turned out to be crucial tomy dissertation.
Tim Feldman thoroughly answered my questions as I was getting started with my re-
search on shingled magnetic recording disks. I am grateful to Matias, Tim, and many
other brilliant engineers and hackers, including Samuel Just, Kefu Chai, Igor Fedo-
tov, Mark Nelson, Hans Holmberg, Damien Le Moal, Marc Acosta, Mark Callaghan,
and Siying Dong, whose answers to my countless queries greatly contributed to my
technical knowledge base.
As a member of the Parallel Data Lab (PDL) I bene�ted immensely from the op-

portunities it provided, and I am therefore grateful to all whomake the PDL a great lab
to be a part of.�ank you Jason Boles, Chad Dougherty, Mitch Franzos, and Chuck
Cranor for keeping the PDL clusters running and for �xing my never-ending techni-
cal problems.�ank you Joan Digney for always polishing my slides and posters and
proofreading my papers. �ank you Karen Lindenfelser, Bill Courtright, and Greg
Ganger for organizing the wonderful PDL events and for keeping it all running, and
Garth Gibson, for founding the PDL.�ank you all the organizations that contribute
to the PDL, and thank you Hugo Patterson for the PDL Entrepreneurship Fellowship.

I am thankful to the sta� of the Computer Science Department (CSD), including
Deb Cavlovich for her help with the administrative aspects of the doctoral process,
and Catherine Copetas for her help with organizing CSD events. I am thankful to
the anonymous donor who established the Hima and Jive Fellowship in Computer
Science for International Students.
During my studies I made many friends. It was a privilege to share an o�ce with

Samuel Yeom fromwhom I learned somuch, ranging from the �ner details of the U.S.
political system andwhy Ruth Bader Ginsburg is not retiring yet, to countless obscure
facts, thanks to our daily ritual of solving�e New York Times crossword a�er lunch.
(To be fair, Sam would mostly solve it and I would try to catch up and feel elated
when contributing an answer or two.) Michael Kuchnik, Jin Kyu Kim, and Aurick
Qiao were the best collaborators one could wish for: smart, humble, hard working,
and fun. SaurabhKadekodi and JinliangWei showedme the ropes around the campus
and the department when I �rst arrived at CMU. As I was preparing to leave CMU,
Anuj Kalia shared with me his experience of navigating the academic job market and
gave me useful tips. I thank all my friends, colleagues, and professors at CMU and
Northeastern, includingUmut Acar, MaruanAl-Shedivat, David Andersen, Joy Arul-
raj, Kapil Arya, Mehmet Berat Aydemir, Ahmed Badawi, Nathan Beckmann, Naama
Ben-David, Daniel Berger, BrandonBohrer, Sol Boucher, Harsh RajuChamarthi, Do-
minic Chen, Andrew Chung, Gene Cooperman, Henggang Cui, Wei Dai, Omar De-
len, Chris Fallin, Pratik Fegade, Matthias Felleisen, Mohammed Hossein Hajkazemi,
Mor Harchol-Balter, Aaron Harlap, Kevin Hsieh, Angela Jiang, David Kahn, Rajat
Kateja, Ryan Kavanagh, Jack Kosaian, Yixin Luo, Lin Ma, Pete Manolios, Sara McAl-
lister, Prashanth Menon, Alan Mislove, Mansour Shafaei Moghaddam, ToddMowry,
Ravi Teja Mullapudi, Onur Mutlu, Guevara Noubir, Jun Woo Park, İlqar Ramazanlı,
Alexey Tumanov, David Wajc, Christo Wilson, Pengtao Xie, Jason Yang, Hao Zhang,
Huanchen Zhang, and Qing Zheng, for their help and support and random fun chats
over the years.
My doctoral adventure would not have even started had it not been for the con-

stant support of my undergraduate professors. �ank you from the bottom of my
heart, Levent Akın, Mehmet Ufuk Çağlayan, and Can Özturan, for supporting me
despite my shenanigans and bad grades and never doubting me! And I would not
have become interested in computers were it not for my high school teacher, Em-
rullah Kaya. �ank you for gi�ing me that Pascal book and for teaching me how to
debug code!
Finally, I am grateful tomy parents and tomywife, Sevinj, for their unconditional

love and support. I do not think I can repay my debt to you, but I will try for the rest
of my life.

vi

Contents

1 Introduction 1
1.1 10,000-feet View of Distributed Storage Systems . 1
1.2 �e State of Current Storage Backends . 2

1.2.1 �e Block Interface Tax . 3
1.2.2 �e File Systems Tax . 4

1.3 Zoned Storage and Dilemma of Distributed Storage Systems 4
1.4 �esis Statement and Contributions . 5

1.4.1 Contributions . 6
1.5 �esis Outline . 7

2 Understanding and Quantifying the Block Interface Tax in DM-SMR Drives 9
2.1 Magnetic Recording Techniques and Overview of Skylight 9
2.2 Background on Shingled Magnetic Recording . 10
2.3 Test Drives . 13

2.3.1 Emulated Drives . 13
2.3.2 Real Drives . 14

2.4 Characterization Tests . 14
2.4.1 Characterization Goals . 14
2.4.2 Test Mechanisms . 15
2.4.3 Drive Type and Persistent Cache Type . 16
2.4.4 Disk Cache Location and Layout . 19
2.4.5 Cleaning Algorithm . 20
2.4.6 Persistent Cache Size . 23
2.4.7 Is Persistent Cache Shingled? . 26
2.4.8 Band Size . 28
2.4.9 Cleaning Time of a Single Band . 29
2.4.10 Block Mapping . 30
2.4.11 E�ect of Mapping Type on Drive Reliability 31
2.4.12 Zone Structure . 32

2.5 Related Work . 35
2.6 Summary and Recommendations . 36

vii

3 Reducing the Block Interface Tax in DM-SMR Drives by Evolving Ext4 39
3.1 SMR Adoption and Ext4-Lazy Summary . 39
3.2 Background on the Ext4 File System . 41
3.3 Design and Implementation of ext4-lazy . 43

3.3.1 Motivation . 43
3.3.2 Design . 44
3.3.3 Implementation . 44

3.4 Evaluation . 45
3.4.1 Journal Bottleneck . 45
3.4.2 Ext4-lazy on a CMR Drive . 47
3.4.3 Ext4-lazy on DM-SMR Drives . 50
3.4.4 Performance Overhead of Ext4-Lazy . 55

3.5 Related Work . 56
3.6 Summary . 57

4 Understanding and Quantifying the File System Tax in Ceph 59
4.1 �e State of Current Storage Backends . 59
4.2 Background on the Ceph Distributed Storage System 60

4.2.1 Evolution of Storage Backends in Ceph . 61
4.3 Building Storage Backends on Local File Systems is Hard 62

4.3.1 Challenge 1: E�cient Transactions . 63
4.3.2 Challenge 2: Fast Metadata Operations . 65
4.3.3 Other Challenges . 66

4.4 BlueStore: A Clean-Slate Approach . 67
4.4.1 BlueFS and RocksDB . 68
4.4.2 Data Path and Space Allocation . 70

4.5 Features Enabled by BlueStore . 70
4.5.1 Space-E�cient Checksums . 71
4.5.2 Overwrite of Erasure Coded Data . 71
4.5.3 Transparent Compression . 71

4.6 Evaluation . 72
4.6.1 Bare RADOS Benchmarks . 72
4.6.2 RADOS Block Device (RBD) Benchmarks 73
4.6.3 Overwriting Erasure Coded (EC) Data . 75

4.7 Challenges of Building Storage Backends on Raw Storage 75
4.7.1 Cache Sizing and Writeback . 76
4.7.2 Key-value Store E�ciency . 76
4.7.3 CPU and Memory E�ciency . 76

4.8 Related Work . 77
4.9 Summary . 78

viii

5 Freeing Ceph From the Block Interface Tax 79
5.1 �e Emergence of Zoned Storage . 79
5.2 Background . 80

5.2.1 Zoned Storage Overview . 81
5.2.2 RocksDB Overview . 82

5.3 Challenges of RocksDB on Zoned Storage . 83
5.3.1 Zone Cleaning . 83
5.3.2 Small SSTs . 83
5.3.3 Reordered Writes . 84
5.3.4 Synchronous writes to the WAL . 84
5.3.5 Misaligned writes to the WAL . 84

5.4 Handling Metadata Path—RocksDB on Zoned Storage 85
5.4.1 File types and space allocation . 85
5.4.2 Journaling and Superblock . 85
5.4.3 Caching . 86

5.5 Evaluation of RocksDB on HM-SMR HDDs . 86
5.5.1 Evaluation Setup . 86
5.5.2 Establishing CMR Baseline . 87
5.5.3 Establishing DM-SMR Baseline . 88
5.5.4 Getting RocksDB to Run on an HM-SMR Drive 89
5.5.5 Running Fast with Asynchronous I/O . 89
5.5.6 Running Faster with a Cache . 90
5.5.7 Space E�ciency . 92

5.6 Evaluation of RocksDB on ZNS SSDs . 92
5.6.1 Evaluation Setup . 92
5.6.2 Quantifying the Block Interface Tax of RocksDB on Conventional SSDs . 93
5.6.3 Avoiding the Block Interface Tax with RocksDB on ZNS SSDs 94

5.7 Handling Data Path—BlueStore on Zoned Storage 95
5.7.1 Additions and Modi�cations to BlueStore 95

5.8 Evaluation of Ceph on HM-SMR HDDs . 98
5.8.1 RADOSWrite�roughput . 99
5.8.2 RADOS Random Read IOPS . 100
5.8.3 Tail Latency of RADOS Random Reads During Garbage Collection 101

5.9 Summary . 102

6 Conclusion and Future Work 103
6.1 Conclusion . 103
6.2 Future Work . 105

6.2.1 Index Structures for Zoned Devices . 105
6.2.2 Shrinking Capacity Zoned Devices . 105

Bibliography 107

ix

x

List of Figures

1.1 10,000-feet view of the architecture found in most distributed storage systems.
�e scope of this dissertation is the storage backend that runs on every storage
node. 2

2.1 Shingled disk tracks with head width k = 2. 11
2.2 Surface of a platter in a hypothetical DM-SMRdrive. A persistent cache consisting

of 9 tracks is located at the outer diameter. �e guard region that separates the
persistent cache from the �rst band is simply a track that is written at a full head
width of k tracks. Although the guard region occupies the width of k tracks, it
contains a single track’s worth of data and the remaining k-1 tracks are wasted.
�e bands consist of 4 tracks, also separated with a guard region. Overwriting a
sector in the last track of any band will not a�ect the following band. Overwriting
a sector in any of the tracks will require reading and re-writing all of the tracks
starting at the a�ected track and ending at the guard region within the band. . . . 12

2.3 DM-SMR drive with the observation window encircled in red. Head assembly is
visible parked at the inner diameter. 15

2.4 Discovering drive type using latency of randomwrites. Y-axis varies in each graph.
. 16

2.5 Seagate-SMR head position during random writes. 16
2.6 Surface of a disk platter in a hypotheticalDM-SMRdrive divided into two 2.5 track

imaginary regions. �e le� �gure shows the placement of random blocks 3 and
7 when writing synchronously. Each internal write contains a single block and
takes 25ms (50ms in total) to complete. �e drive reports 25ms write latency
for each block; reading the blocks in the written order results in a 5ms latency.
�e right �gure shows the placement of blocks whenwriting asynchronously with
high queue depth. A single internal write contains both of the blocks, taking 25ms
to complete.�e drive still reports 25ms write latency for each block; reading the
blocks back in the written order results in a 10ms latency due to missed rotation. 18

2.7 Random write latency of di�erent write sizes on Seagate-SMR, when writing at
the queue depth of 31. Each latency graph corresponds to the latency of a group of
writes. For example, the graph at 25ms corresponds to the latency of writes with
sizes in the range of 4–26KiB. Since writes with di�erent sizes in a range produced
similar latency, we plotted a single latency as a representative. 19

2.8 Discovering disk cache structure and location using fragmented reads. 20

xi

2.9 Seagate-SMR head position during fragmented reads. 20
2.10 Discovering the type of cleaning using Test 3. 21
2.11 Seagate-SMR head position during pause in step 2 of Test Test 3. 21
2.12 Latency of reads of random writes immediately a�er the writes and a�er pauses. 22
2.13 Verifying hypothesized cleaning algorithm on Seagate-SMR. 22
2.14 �ree di�erent scenarios triggering cleaning on drives using journal entries with

quantized sizes and extent mapping.�e text on the le� in the �gure explains the
meaning of the colors. 24

2.15 Write latency of asynchronous writes of varying sizes with queue depth of 31 until
cleaning starts. Starting from the top, the graphs correspond to the lines 2-5 in
Table 2.2. When writing asynchronously, more writes are packed into the same
journal entry. �erefore, although the map merge operations still occur at every
240th journal write, the interval seems greater than in Figure 2.16. For 4KiB and
64KiB write sizes, we hit the map size limit �rst, hence cleaning starts a�er the
same number of operations. For 128KiB write size we hit the space limit before
hitting the map size limit; therefore, cleaning starts a�er fewer number of opera-
tions than in 64KiB writes. Doubling the write size to 256KiB con�rms that we
are hitting the space limit, since cleaning starts a�er half the number of operations
of 128KiB writes. 26

2.16 Write latency of 4KiB synchronous randomwrites, corresponding to the �rst line
in Table 2.2. As explained in § 2.4.3, when writing synchronously the drive writes
a journal entry for every write operation. Every 240th journal entry write results
in a ≈ 325ms latency, which as was hypothesized in § 2.4.3 includes a map merge
operation. A�er ≈ 23,000 writes, cleaning starts and the IOPS drops precipitously
to 0–3. To emphasize the high latency of writes during cleaning we perform 3,000
more operations. As the graph shows, these writes (23,000–26,000) have ≈ 500ms
latency. 27

2.17 Write latency of 30,000 random block writes with a repeating pattern. We choose
10,000 random blocks across the LBA space and write them in the chosen order.
We then write the same 10,000 blocks in the same order two more times. Unlike
Figure 2.16, the cleaning does not start a�er ≈ 23,000 writes, because due to the
repeating pattern, as the head of the log wraps around, the STL only �nds stale
blocks that it can overwrite without cleaning. 27

2.18 Write latency of 30,000 random block writes chosen from a pool of 10,000 unique
blocks. Unlike Figure 2.17, cleaning starts a�er ≈ 23,000, because as the head of the
log wraps around, the STL does not immediately �nd stale blocks. However, since
the blocks are chosen from a small pool, the STL still does �nd a large number of
stale blocks and can o�en overwrite without cleaning. �erefore, compared to
Figure 2.16 the write latency during cleaning (operations 23,000-26,000) is not as
high, since in Figure 2.16 the blocks are chosen across the LBA space and the STL
almost never �nds a stale block when the head of the log wraps around. 28

2.19 Discovering the band size. �e �at latency regions correspond to sequentially
reading a complete band from its native location. 29

xii

2.20 Head position during the sequential read for Seagate-SMR, corresponding to the
time period in Figure 2.19. 29

2.21 Detecting mapping type. 31
2.22 Sequential read throughput of Seagate-SMR. 32
2.24 Hard read error under Linux kernel 3.16 when reading a region a�ected by a torn

write. 34
2.25 Seagate-SMR head position during sequential reads at di�erent o�sets. 34
2.26 Sequential read latency of Seagate-CMR and Seagate-SMR corresponding to a

complete cycle of ascent and descent through platter surfaces. While Seagate-
CMR completes the cycle in 3.5 seconds, Seagate-SMR completes it in 1,800 sec-
onds, since the latter reads thousands of tracks froma single surface before switch-
ing to the next surface. 35

3.1 �roughput of CMR and DM-SMR drives from Table 3.1 under 4KiB random
write tra�c. CMR drive has a stable but low throughput under random writes.
DM-SMR drive, on the other hand, have a short period of high throughput fol-
lowed by a continuous period of ultra-low throughput. 40

3.2 (a) Ext4 writes a metadata block to disk twice. It �rst writes the metadata block to
the journal at some location J and marks it dirty in memory. Later, the writeback
thread writes the same metadata block to its static location S on disk, resulting
in a random write. (b) Ext4-lazy, writes the metadata block approximately once
to the journal and inserts a mapping (S , J) to an in-memory map so that the �le
system can �nd the metadata block in the journal. 41

3.3 O�sets of data and metadata writes obtained with blktrace, when compiling
Linux kernel 4.6 with all of its modules on a fresh ext4 �le system. �e work-
load writes 12GiB of data, 185MiB of journal (omitted from the graph), and only
98MiB of metadata, making it 0.77% of total writes. 42

3.4 (a) In ext2, the �rst megabyte of a 128MiB block group contains the metadata
blocks describing the block group, and the rest is data blocks. (b) In ext4, a single
�ex_bg concatenates multiple (16 in this example) block groups into one giant
block group and puts all of the metadata in the �rst block group. (c) Modifying
data in a �ex_bg will result in a metadata write that may dirty one or two bands,
seen at the boundary of bands 266,565 and 266,566. 43

3.5 Completion time for a benchmark creating 100,000 �les on ext4-stock (ext4 with
128MiB journal) and on ext4-baseline (ext4 with 10GiB journal). 45

3.6 �e volumeof dirty pages during benchmark runs obtained by sampling /proc/meminfo
every second on ext4-stock and ext4-baseline. 45

3.7 Microbenchmark runtimes on ext4-baseline and ext4-lazy. 47
3.8 Disk o�sets of I/O operations during MakeDirs and RemoveDirs microbench-

marks on ext4-baseline and ext4-lazy. Metadata reads and writes are spread out
while journal writes are at the center.�e dots have been scaled based on the I/O
size. In part (d), journal writes are not visible due to low resolution. �ese are
pure metadata workloads with no data writes. 47

xiii

3.9 �e top graph shows the throughput of the disk during a Postmark run on ext4-
baseline and ext4-lazy.�e bottom graph shows the o�sets of write types during
ext4-baseline run. �e graph does not re�ect sizes of the writes, but only their
o�sets. 50

3.10 Disk and CPU utilization sampled from iostat output every second, while com-
piling Linux kernel 4.6 including all itsmodules, with 16 parallel jobs (make -j16)
on a quad-core Intel i7-3820 (Sandy Bridge) CPU with 8 hardware threads. 51

3.11 Microbenchmark runtimes and cleaning times on ext4-baseline and ext4-lazy
running on aDM-SMRdrive. Cleaning time is the additional time a�er the bench-
mark run that the DM-SMR drive was busy cleaning. 51

3.12 �e top graph shows the throughput of a ST8000AS0002 DM-SMR drive with
a 400GB partition during a Postmark run on ext4-baseline and ext4-lazy. �e
bottom graph shows the o�sets of write types during the run on ext4-baseline.
�e graph does not re�ect sizes of the writes, but only their o�sets. 53

3.13 �e top graphs show the throughput of four DM-SMR drives on a full disk parti-
tion during a Postmark run on ext4-baseline and ext4-lazy. Ext4-lazy provides a
speedup of 5.4× 2×, 2×, 1.7× in parts (a), (b), (c), and (d), respectively.�e bot-
tom graphs show the o�sets of write types during ext4-baseline run. �e graphs
do not re�ect sizes of the writes, but only their o�sets. 54

3.14 Postmark reported transaction throughput numbers for ext4-baseline and ext4-
lazy running on four DM-SMR drives with a full disk partition. Only includes
numbers from the transaction phase of the benchmark. 54

4.1 High-level depiction of Ceph’s architecture. A single pool with 3× replication is
shown.�erefore, each placement group (PG) is replicated on three OSDs. 61

4.2 Timeline of storage backend evolution in Ceph. For each backend, the period of
development, and the period of being the default production backend is shown. . 62

4.3 �e overhead of running an object storeworkload on a journaling �le system. Ob-
ject creation throughput is 80%higher on a rawHDD(4TBSeagate ST4000NM0023)
and 70% higher on a raw NVMe SSD (400GB Intel P3600). 66

4.4 �e e�ect of directory splitting on throughput with FileStore backend.�e work-
load inserts 4 KiB objects using 128 parallel threads at the RADOS layer to a 16-
node Ceph cluster (setup explained in § 4.6). Directory splitting brings down the
throughput for 7minutes on an all-SSD cluster. Once the splitting is complete, the
throughput recovers but does not return to peak, due to combination of deeper
nesting of directories, increased size of the underlying �le system, and an imper-
fect implementation of the directory hashing code in FileStore. 67

4.5 �e high-level architecture of BlueStore. Data is written to the raw storage de-
vice using direct I/O. Metadata is written to RocksDB running on top of BlueFS.
BlueFS is a user space library �le system designed for RocksDB, and it also runs
on top of the raw storage device. 68

xiv

4.6 A possible on-disk data layout of BlueFS.�e metadata in BlueFS lives only in the
journal. �e journal does not have a �xed location—its extents are interleaved
with �le data. �e WAL, LOG, and SST �les are write-ahead log �le, debug log
�le, and a sorted-string table �les, respectively, generated by RocksDB. 69

4.7 �roughput of steady state object writes to RADOS on a 16-node all-HDD cluster
with di�erent I/O sizes using 128 threads. Compared to FileStore, the throughput
is 50-100% greater on BlueStore and has a signi�cantly lower variance. 72

4.8 95th and above percentile latencies of object writes to RADOS on a 16-node all-
HDD cluster with di�erent sizes using 128 threads. BlueStore has an order ofmag-
nitude lower tail latency than FileStore. 73

4.9 �roughput of 4KiB RADOS object writes with queue depth of 128 on a 16-node
all-SSD cluster. At steady state, BlueStore is 2× faster than FileStore. BlueStore
does not su�er from directory splitting. However, its throughput is gradually
brought down by the RocksDB compaction overhead. 74

4.10 Sequential write, randomwrite, and sequential read throughputwith di�erent I/O
sizes and queue depth of 256 on a 1 TB Ceph virtual block device (RBD) allocated
on a 16-node all-HDD cluster. Results for an all-SSD cluster were similar. 74

4.11 IOPS observed from a client performing random 4KiB writes with queue depth
of 256 to a Ceph virtual block device (RBD).�e device is allocated on a 16-node
all-HDD cluster. 75

5.1 Zoned storage model. 81
5.2 Zone state transition diagram. 81
5.3 Data organization inRocksDB.Green squares represent Sorted StringTables (SSTs).

Blue squares represent SSTs selected for two di�erent concurrent compactions. . . 82
5.4 Benchmark runtimes of RocksDB with default and optimized settings on a CMR

drive. 87
5.5 Memory used by the OS page cache and heap allocations, and the swap usage

during the optimized RocksDB run. 87
5.6 (a)�e number of seeks per second due to reads and (b) the number of fsync and

fdatasync system calls during the benchmark run with default and optimized
RocksDB settings on a CMR drive. 88

5.7 Benchmark runtimes of the baselines—RocksDB on DM-SMR and CMR drives
(on the le�)—and RocksDB on BlueFS iterations on an HM-SMR drive. �e
benchmark asynchronously inserts 150 million key-value pairs with 20-byte keys
and 400-byte values. 89

5.8 Insertion throughput, HM-SMR drive read/write throughput, and compaction
andmemtable �ush operations during the �rst 50 seconds of the benchmark with
RocksDB on HM-SMR drive using (a) synchronous and (b) asynchronous I/O. . 90

5.9 (a) Insertion throughput, (b) read andwrite throughput, (c) compaction andmemtable
�ush operations, and (d) number of zones allocated during the whole benchmark
run of RocksDB on HM-SMR drive using asynchronous I/O. 91

xv

5.10 (a) Insertion throughput and (b) read and write throughput during the whole
benchmark on run of RocksDB on HM-SMR drive using asynchronous I/O and
caching. 91

5.11 Device write ampli�cation of the enterprise SSD during RocksDB benchmarks.
First, the fillseq benchmark sequentially inserts 7 billion key-value pairs; it
completes in about two hours, �lling the drive up to 80%, and the write ampli-
�cation is 1 during this period. Next, the overwrite benchmark overwrites 7
billion key-value pairs in about 40 hours, during which the write ampli�cation
rises to about 5 and stays there. 93

5.12 Device write ampli�cation of the prototype ZNS SSD during RocksDB bench-
marks. First, the fillseq benchmark sequentially inserts 1.8 billion key-value
pairs; it completes in about an hour, �lling the drive up to 80%, and the write
ampli�cation is 1 during this period. Next, the overwrite benchmark overwrites
1.8 billion key-value pairs in about 26 hours, during which the write ampli�cation
stays around 1. 94

5.13 (a) Write throughput and (b) random read IOPS, at steady state to the RADOS
layer on an 8-node Ceph cluster with CMR, DM-SMR, and HM-SMR con�gura-
tions.�e benchmark issues reads and writes using 128 threads with three di�er-
ent I/O sizes. 100

5.14 95th and above percentile latencies of random 1MiB object reads at the RADOS
layer during garbage collection on an 8-node Ceph cluster with CMR, DM-SMR,
and HM-SMR con�gurations. �e benchmark issues reads using 128 threads.
Garbage collection happenswithin the device inDM-SMR and in the host inHM-
SMR. No garbage collection happens in CMR. 101

xvi

List of Tables

2.1 Emulated DM-SMR drive con�gurations. (For brevity, we drop DM from DM-
SMR when naming the drives.) . 13

2.2 Discovering persistent cache parameters. a�is estimate is based on the hypothe-
sis that all of 25ms during a single block write is spent writing to disk. While the
results of the experiments indicate this to be the case, we think 25ms latency is
arti�cially high and expect it to drop in future drives, which would require recal-
culation of this estimate. 25

2.3 Properties of the 5 TB and the 8 TBSeagate drives discovered using Skylightmethod-
ology. �e benchmarks worked out of the box on the 8 TB drive. Since the 8 TB
drive was on loan, we did not drill a hole on it; therefore, shingling direction for
it is not available. 36

3.1 CMR and DM-SMR drives from two vendors used for evaluation. 40
3.2 Distribution of the I/O types with MakeDirs and RemoveDirs benchmarks run-

ning on ext4-baseline and ext4-lazy. 48
3.3 Distribution of write types completed by the disk during Postmark run on ext4-

baseline and ext4-lazy. Metadata writes make 1.3% of total writes in ext4-baseline,
only 1/3 of which is unique. 49

3.4 Distribution of write types completed by a ST8000AS0002DM-SMRdrive during
a Postmark run on ext4-baseline and ext4-lazy. Metadata writes make up 1.6% of
total writes in ext4-baseline, only 1/5 of which is unique. 53

5.1 HDDs used in evaluation and their bandwidth at the �rst 125GiB of the LBA
space. We measured both sequential read and sequential write throughput for
all of the drives to be the same. 99

xvii

xviii

Chapter 1

Introduction

Data has surpassed oil as the world’s most valuable resource [56] 1. But unlike oil, of which there
is a limited supply, the world is drowning in data [155]. Extracting value from this new resource
requires large-scale distributed storage systems that can scale seamlessly to store vast volumes of
data in a cost-e�ectivemanner, granting the opportunity to e�ciently—with high throughput and
low latency—access and process the stored data.

�e systems community is on a constant quest for designing ever more cost-e�ective and e�-
cient distributed storage systems. To tame the complexity, these systems are conventionally con-
structed in layers. At their penultimate layer, distributed storage systems rely on general-purpose
�le systems. In a layer below, general-purpose �le systems communicate with the storage devices
using the block interface.�e block interface is a poor match for modern high-capacity hard disk
drives and solid-state drives, and emulating it inmodern storage devices imposes a “block interface
tax”—unpredictable performance [80, 221] and increased cost [206]—on storage devices and con-
sequently on the distributed storage systems. Moving back up a layer, although relying on general-
purpose �le systems is convenient for distributed storage system designers, in the long term it is
counterproductive because it imposes a “�le system tax”—reduced performance [143][10, 149],
accidental complexity and rigidity in the codebase [201].
In this dissertation we explore a clean-slate redesign of distributed storage systems that avoids

both the block interface tax and the �le system tax, in light of an emerging storage interface—the
zone interface—which is a natural interface for modern storage devices. To this end, we study and
quantify the block interface tax on modern hard disk drives and the �le system tax on the Ceph
distributed storage system. We then adapt Ceph to the zone interface and demonstrate how it
improves (1) cost-e�ectiveness, by storing data on high-capacity hard drives and (2) performance,
by achieving higher I/O throughput and lower tail latency on these drives.

1.1 10,000-feet View of Distributed Storage Systems

Distributed storage systems are complex, with many moving parts. In this section we give a high-
level overview of the architecture found in most such systems and outline the scope of our work.

1We color code citations: peer-reviewed articles are cited in blue and non-peer-reviewed articles are cited in red.

1

Storage Nodes

● ● ●

Client Nodes
Metadata Nodes

High-speed network

● ● ●

Storage Backend

●
 ●

.

. .

.

Figure 1.1: 10,000-feet view of the architecture found inmost distributed storage systems.�e scope
of this dissertation is the storage backend that runs on every storage node.

Distributed storage systems aggregate the storage space ofmultiple physical nodes into a single
uni�ed data store that o�ers high-bandwidth and parallel I/O, horizontal scalability, fault toler-
ance, and other desirable features. Over the years many such systems have been developed [74, 84,
202, 205][58], but almost all of them have followed the same high-level design shown in Figure 1.1:
�ere is the client-side implemented as a kernel module or a library in the client nodes that enables
users to transparently access the storage system; there is the storage backend implemented in the
storage nodes that serves user I/O requests; and there is themetadata service implemented on the
metadata nodes that lets the clients know which storage nodes to read data from.

�e scope of this dissertation is the storage backend that runs on the storage nodes.�e storage
nodes form the bulk of the nodes in a typical cluster running a distributed storage system, and
they store all of the data in the system.�e storage backend runs on every storage node, receives
I/O requests over the network and serves them by accessing the storage devices that are locally
attached to the storage node. �e storage backend is a crucial component that sits in the I/O path
and plays a key role in the performance of the overall system.

1.2 �e State of Current Storage Backends
Distributed storage systems di�er in the details of how they design the storage backend. Almost
all of them, however, rely on a general-purpose �le system, such as ext4 or XFS, for implementing
the storage backend [74, 84, 87, 177, 202, 205][58, 154, 190, 209]. �is design decision has come
largely unchallenged for the past several decades. Perhaps unwittingly, it has locked the distributed
storage systems into running only on the storage devices that support the block interface.�e block
interface is a method for the storage so�ware, such as a �le system, to communicate with a storage
device, and storage devices that support the block interface are called block devices. Almost every
major �le system is developed to run on block devices.

�e block interface and general-purpose �le systems impose signi�cant performance taxes on
distributed storage systems. Although they appear to be interrelated, in the following sections we

2

decouple them, explain howwe got here, and how each independently contributes to performance
problems.

1.2.1 �e Block Interface Tax
�ere have been tremendous technological advances in hard disk drive (HDD) manufacturing
process since IBM’s introduction of the �rst HDD in 1956 [88].�e essence of how data is inter-
nally stored in HDDs, however, has largely remained the same: bit patterns that can be indepen-
dently and randomly accessed and manipulated.�e block interface has evolved over the years to
match this essence of HDDs. It is a simple linear addressing scheme that represents the storage
device as an array of 512-byte blocks. Each block is identi�ed by an integer index and the blocks
can be read or written in random order.

�e earliest devices supporting the block interface appeared in 1986 [214], and it has been
the most dominant interface since then. Almost every major �le system developed in the past
few decades was designed for the block interface. Consequently, the block interface is deeply
entrenched in the storage ecosystem. So much that when the NAND �ashmemory paved the way
for a new breed of storage devices, the industry decided to emulate the block interface on top of
�ash memory, even though the block interface was a bad match for how �ash memory operated.
�us, solid-state drives (SSDs) were born.
Unlike HDDs that store data in blocks that can be randomly read or written, modern SSDs

store data in pages with sizes similar to that of blocks. �ese pages are grouped into erase units
spanning several megabytes, and all of the pages within an erase unit must be written sequen-
tially. Hence, in-place overwrite of pages is impossible, and rewriting pages is only possible a�er
�rst erasing all of the pages within an erase unit. To emulate the block interface on top of these
constraints SSDs internally run a translation layer that maps blocks to pages on erase units. To
handle a block overwrite, the translation layer writes data to a new page, remaps the block to the
new page, and marks the old page as stale. To reclaim space from the stale pages, the translation
layer performs garbage collection at arbitrary times: it copies non-stale pages from one erase unit
to another, remaps the corresponding blocks, and erases all the pages in the original erase unit.
Emulating the block interface using all thismachinery comeswith a high cost andperformance

penalty. Enterprise SSDs overprovision up to 28% of �ash memory and use gigabytes of RAM
for the e�cient operation of the translation layer, signi�cantly increasing the device cost [206].
Garbage collection performs extra internal writes that increases write ampli�cation—the ratio of
writes issued by the host to all thewrites performed internally by the device—leading to earlywear-
out of �ash cells. More importantly, garbage collection operations interfere with user requests and
lead to high tail latencies in distributed storage systems [80, 105].
Perhaps surprisingly, the block interface is becoming a burden formodernhigh-capacityHDDs

as well. To increase capacity, all three HDD manufacturers are shi�ing [130, 175, 176] to Shingled
Magnetic Recording (SMR) [215]. SMRHDDs internally store data in zones spanning hundreds of
megabytes. Not unlike erase units in �ash, the zones in SMR HDDs must be written sequentially
andmust be reset before being written again. To ease the adoption of SMRHDDs, drive manufac-
turers have introduced Drive-Managed SMR (DM-SMR) HDDs which, just like SSDs internally
run a translation layer to emulate the block interface. And just like SSDs they too su�er from an
unpredictable performance [2].

3

In summary, emulating the block interfacewith a translation layer onmodern SSDs andHDDs
increases the device cost and results in an unpredictable performance and high write ampli�ca-
tion due to garbage collection performed by the translation layer.�e unpredictable performance
is undesirable in general, and in particular it is a major contributor to high tail latencies in dis-
tributed storage systems. We refer to these cost and performance overheads collectively as the
block interface tax.

1.2.2 �e File Systems Tax
�e developers of distributed storage systems have conventionally designed storage backends to
run on top of general-purpose �le systems [74, 84, 87, 177, 202, 205][58, 154, 190, 209].�is conven-
tion is attractive at �rst glance because �le systems implement most of the functionality expected
from a storage backend, but in the long run it is counterproductive.
Developers hit the limitations of general-purpose �le systems once they start pushing �le sys-

tems tomeet the scaling requirements of distributed storage systems, for example, when they store
millions of entries in a single directory [10, 89, 149]. �ey continue, however, with their original
design and try and �t general-purpose �le system abstractions to their needs, incurring signi�-
cant accidental complexity [25], which results in lost performance and hard-to-maintain, fragile
code. �is design decision is o�en rationalized by arguing that building a storage backend from
scratch is akin to building a new general-purpose �le system, which is known to take a decade on
average [60, 210, 211][116]. Recent experience, however, shows that building a special-purpose stor-
age backend from scratch can reach production quality in less than two years while signi�cantly
outperforming storage backends implemented on top of general-purpose �le systems [5, 6].
Another major disadvantage of relying on �le systems is their resistance to change. Once a �le

system matures, “... �le system developers tend toward a high level of conservatism when it comes
to making changes; given the consequences of mistakes, this seems like a healthy survival trait.” [45].
E�ectively supporting the emerging storage hardware, on the other hand, o�en requires drastic
changes.
In summary, relying on general-purpose �le systems for distributed storage backends leads to

accidental complexity and lost performance, and it hinders swi� and e�ective adoption of emerg-
ing storage technologies. We refer to these complexity, performance, and rigidity overheads col-
lectively as the �le system tax.

1.3 ZonedStorage andDilemmaofDistributedStorage Systems
Although they are worlds apart in how they are built and how they work, SMR HDDs and SSDs
both manage their storage medium in the same manner: as a sequence of zones, each of which
spans megabytes and can only be written sequentially.�e Zoned Storage initiative [51] leverages
this similarity to introduce the zone interface for managing both SMRHDDs and SSDs.�e SMR
HDDs that support the zone interface are called Host-Managed SMR (HM-SMR) HDDs, and the
SSDs that support the zone interface are caled Zoned Namespace (ZNS) SSDs.

�ese zoned devices are speci�cally targeted at large-scale distributed storage systems, and they
come with multiple features that are attractive at scale. First, they are expected to scale to capaci-

4

ties of tens of terabytes in a single device. Second, zoned devices improve cost-e�ectiveness of data
storage without incurring garbage collection overhead. Speci�cally, HM-SMRHDDs increase ca-
pacity by 20% over conventional HDDs; and unlike enterprise SSDs, which declare themselves
dead a�er 28% percent of their �ash memory cells wear out, ZNS SSDs support dynamically de-
creasing the device capacity while continuing to store data on the remaining healthy cells.�ird,
the zoned devices move the control over explicit data placement from device to host: now the
host implements garbage collection and controls when it happens, thereby avoiding high tail la-
tencies caused by garbage collection kicking in at any moment in regular SSDs and DM-SMR
HDDs. More importantly, the host now has a chance to intelligently place data directly on zones
and eliminate garbage collection for certain common workloads [4].

�us, going forward, the distributed storage systems face a dilemma: should they adopt the
zoned storage and, if so, how?�is dissertation provides evidence that distributed storage systems
can avoid both—the block interface tax and the �le system tax—by adopting zoned storage using
a special-purpose storage backend.

1.4 �esis Statement and Contributions
�esis statement: Distributed storage systems can improve the cost-e�ectiveness of data storage
and the predictability of performance if they abandon the block interface for the zone interface and
general-purpose �le systems for special-purpose storage backends.

In this dissertation, we provide the following evidence to support our thesis statement:

We show that the block interface tax is becoming increasingly prohibitive. Distributed storage sys-
tems can run their storage backends on DM-SMRHDDs to be cost-e�ective and on regular SSDs
to be performant. Both of these are block devices that emulate the block interface with a transla-
tion layer. Researchers have shown that the block interface tax—the garbage collection overhead
incurred by the translation layer—leads to high tail latencies in SSDs [47, 80, 221]. We show that
the garbage collection overhead is even higher in DM-SMRHDDs by performing a thorough per-
formance characterization of popular DM-SMR HDDs (Chapter 2).

We show that it is hard to eliminate the block interface tax by evolutionary changes to general-
purpose �le systems. Distributed storage systems can eliminate the block interface tax by either
modifying current �le systems to work on zoned devices or by modifying �le systems to avoid
I/O patterns that cause garbage collection inside an emulated block device. Attempts to do the
former have stalled due to technical di�culties [35, 140], suggesting the �rst option to be im-
practical. We show that while the second option can signi�cantly improve the performance of
ext4—the canonical �le system for storage backends—on DM-SMRHDDs, it is hard to eliminate
the garbage collection-inducing behavior (Chapter 3).

We study and quantify the �le system tax and demonstrate that general-purpose �le systems are
un�t as distributed storage backends. We study the evolution of the storage backends in Ceph, a
widely used distributed storage system, over ten years, and we pinpoint technical reasons as to

5

why general-purpose �le system abstractions are either too slow or inappropriate for the needs of
storage backends and how they lead to performance problems.�e �le system tax would still exist
even in the absence block interface tax (Chapter 4).

We demonstrate that a distributed storage system that already avoids the �le system tax is also well-
suited to avoid the block interface tax by quickly and e�ectively adopting the zoned storage. We
adapt BlueStore, a special-purpose storage backend in Ceph, to zoned devices. We demonstrate
that BlueStore can quickly adopt the zoned storage, and as a result, Ceph can leverage the extra
capacity o�ered by SMR with high throughput and low tail latency, avoiding the block interface
tax of DM-SMR HDDs (Chapter 5).

1.4.1 Contributions

�is dissertation makes the following technical contributions:

• A novel methodology, Skylight, that combines so�ware and hardware techniques to reverse
engineer key properties of DM-SMR HDDs (Chapter 2).

• A full reverse engineering—using Skylight—of two real DM-SMR HDDs and their perfor-
mance characterization (Chapter 2).

• A set of kernel modules that implement state-of-the-art translation layer algorithms and
emulate DM-SMR HDDs on top of conventional HDDs (Chapter 2).

• �e design and implementation of ext4-lazy, an extension of the ext4 �le system, which
reduces I/O patterns that cause garbage collection on emulated block devices (Chapter 3).

• A demonstration of performance improvements of ext4-lazy over ext4 on four DM-SMR
HDDs from two vendors using micro- and macro-benchmarks (Chapter 3).

• �e discovery of a long-standing bottleneck in ext4 formetadata-heavyworkloads onHDDs
and a �x for the bottleneck (Chapter 3).

• A longitudinal study of storage backend evolution in Ceph that dissects technical reasons
leading to performance problems when building a storage backend on top of a general-
purpose �le system (Chapter 4).

• An introduction to the design of BlueStore, a clean-slate storage backend in Ceph, the chal-
lenges BlueStore solves and the opportunities it provides (Chapter 4).

• An extension to RocksDB, a popular key-value store that BlueStore uses for storing meta-
data, which enables RocksDB to run on zoned devices (Chapter 5).

• A demonstration of a surprisingly high write ampli�cation in an enterprise SSD when run-
ning a concurrent sequential workload, such as RocksDB (Chapter 5).

• Ademonstration of performance improvements of RocksDB running on zoned devices over
RocksDB running on block devices with a translation layer (Chapter 5).

• An extension to BlueStore that enables it to run on zoned devices and an extension to Ceph
that enables it to leverage the zone interface and the redundancy of data to avoid high tail
latencies (Chapter 5).

6

• An end-to-end demonstration on a cluster of how Ceph achieves cost-e�ective data storage
and high performance when running on HM-SMR HDDs compared to when running on
DM-SMR HDDs. (Chapter 5).

1.5 �esis Outline
�e rest of this thesis is organized as follows: In Chapter 2, we study the inner workings of a DM-
SMR drive—amodern high-capacity hard disk drive—and we show that the block interface tax is
becoming even more prohibitive with these drives. We then put our newly acquired knowledge
into use in Chapter 3, and we attempt to reduce the block interface tax in distributed storage
systems by optimizing ext4—a �le system used as a storage backend by many distributed storage
systems—to reduce the garbage collection overhead inDM-SMRdrives. While ourwork improves
the performance of ext4 signi�cantly on DM-SMR drives, it also demonstrates that it is hard to
avoid the block interface tax by making evolutionary changes to general-purpose �le systems. In
Chapter 4 we demonstrate the �le system tax—we show that implementing a storage backend
on top of general-purpose �le systems introduces signi�cant performance overhead and hinders
the adoption of novel storage hardware. In Chapter 5 we demonstrate that a distributed storage
system which already avoids the �le system tax is well-suited to avoiding the block interface tax
and achieve cost-e�ective data storage, high throughput, and low tail latency. We conclude in
Chapter 6.

7

8

Chapter 2

Understanding and Quantifying the Block
Interface Tax in DM-SMR Drives

In this chapter we introduce SMR and describe how it increases capacity over Conventional Mag-
netic Recording (CMR).We then introduce Skylight, a novelmethodology that combines so�ware
and hardware techniques to reverse engineer the translation layer operation in DM-SMR drives.
Using Skylight we quantify the block interface tax—the performance and cost overhead stemming
from emulating the block interface using a translation layer—on DM-SMR drives and introduce
guidelines for their e�ective use.

2.1 Magnetic Recording Techniques and Overview of Skylight
In the nearly 60 years since the �rst hard disk drive has been introduced [88], it has become
the mainstay of computer storage systems. In 2013 the hard drive industry shipped over 400 ex-
abytes [164] of storage, or almost 60 gigabytes for every person on earth. Although facing strong
competition from NAND �ash-based solid-state drives (SSDs), magnetic disks hold a 10× advan-
tage over �ash in both total bits shipped [157] and per-bit cost [55], an advantage that will persist
if density improvements continue at current rates.

�e most recent growth in disk capacity is the result of improvements to perpendicular mag-
netic recording (PMR) [146], which has yielded terabyte drives by enabling bits as short as 20 nm
in tracks 70 nm wide [167], but further increases will require new technologies [191]. SMR is the
�rst such technology to reach market: 5 TB drives are available from Seagate [166] and shipments
of 8 TB and 10 TB drives have been announced by Seagate [165] and HGST [83]. Other tech-
nologies (Heat-Assisted Magnetic Recording [110] and Bit-Patterned Media [53]) remain in the
research stage, and may in fact use shingled recording when they are released [196].
Shingled recording spaces tracks more closely, so they overlap like rows of shingles on a roof,

squeezing more tracks and bits onto each platter [215].�e increase in density comes at a cost in
complexity, as modifying a disk sector will corrupt other data on the overlapped tracks, requiring
copying to avoid data loss [9, 75]. Rather than push this work onto the host �le system [115], DM-
SMR drives shipped to date preserve compatibility with existing drives by implementing a Shingle
Translation Layer (STL) [29, 78][75] that emulates the block interface on top of this complexity.

9

Like an SSD, an DM-SMR drive combines out-of-place writes with dynamic mapping in or-
der to e�ciently update data, resulting in a drive with performance much di�erent from that of a
CMR drive due to seek overhead for out-of-order operations. Unlike SSDs, however, which have
been extensively measured and characterized [22, 32], little is known about the behavior and per-
formance of DM-SMR drives and their translation layers, or how to optimize �le systems, storage
arrays, and applications to best use them.
We introduce a methodology for measuring and characterizing such drives, developing a spe-

ci�c series of micro-benchmarks for this characterization process, much as has been done in the
past for conventional drives [77, 186, 216]. We augment these timing measurements with a novel
technique that tracks actual head movements via high-speed camera and image processing and
provides a source of reliable information in cases where timing results are ambiguous.
We validate this methodology on three di�erent emulated drives that use STLs previously de-

scribed in the literature [29, 78][40], implemented as a Linux device mapper target [49] over a
conventional drive, demonstrating accurate inference of properties. We then apply this method-
ology to 5 TB and 8TB DM-SMR drives provided by Seagate, inferring the STL algorithm and its
properties and providing the �rst public characterization of such drives.
Using our approach we are able to discover important characteristics of the Seagate DM-SMR

drives and their translation layer, including the following:
• Cache type and size. �e drives use a persistent disk cache of 20GiB and 25GiB on the
5 TB and 8TB drives, respectively, with high randomwrite speed until the cache is full.�e
e�ective cache size is a function of write size and queue depth.

• Persistent cache structure.�e persistent disk cache is written as journal entries with quan-
tized sizes—a phenomenon absent from the academic literature on SMRs.

• Block Mapping. Non-cached data is statically mapped, using a �xed assignment of logical
block addresses (LBAs) to physical block addresses (PBAs), similar to that used in CMR
drives, with implications for performance and durability.

• Band size. DM-SMR drives organize data in bands—a set of contiguous tracks that are re-
written as a unit; the examined drives have a small band size of 15–40MiB.

• Cleaning mechanism. Aggressive cleaning during idle times moves data from the persistent
cache to bands; cleaning duration is 0.6–1.6 s per modi�ed band.

Our results show the details that may be discovered using Skylight, most of which impact
(negatively or positively) the performance of di�erent workloads, as described in § 2.6. �ese
results—and the toolset allowing similar measurements on new drives—should thus be useful to
users of DM-SMR drives, both in determining what workloads are best suited for these drives
and in modifying applications to better use them. In addition, we hope that they will be of use
to designers of DM-SMR drives and their translation layers, by illustrating the e�ects of low-level
design decisions on system-level performance.

2.2 Background on Shingled Magnetic Recording
Shingled recording is a response to limitations on areal density with perpendicular magnetic
recording due to the superparamagnetic limit [191]. In brief, for bits to become smaller, write

10

Figure 2.1: Shingled disk tracks with head width k = 2.

heads must become narrower, resulting in weaker magnetic �elds.�is requires lower coercivity
(easily recordable) media, which is more vulnerable to bit �ips due to thermal noise, requiring
larger bits for reliability. As the head gets smaller this minimum bit size gets larger, until it reaches
the width of the head and further scaling is impossible.
Several technologies have been proposed to go beyond this limit, of which SMR is the sim-

plest [215]. To decrease the bit size further, SMR reduces the track width while keeping the head
size constant, resulting in a head that writes a path several tracks wide. Tracks are then overlapped
like rows of shingles on a roof, as seen in Figure 2.1. Writing these overlapping tracks requires
only incremental changes in manufacturing, but much greater changes in storage so�ware, as it
becomes impossible to re-write a single sector without destroying data on the overlapped sectors.
For maximum capacity an SMR drive could be written from beginning to end, utilizing all

tracks. Modifying any of this data, however, would require reading and re-writing the data that
would be damaged by that write, and data to be damaged by the re-write and so on, until the
end of the surface is reached.�is cascade of copying may be halted by inserting guard regions—
tracks written at the full head width—so that the tracks before the guard region may be re-written
without a�ecting any tracks following it, as shown in Figure 2.2.�ese guard regions divide each
disk surface into re-writable bands; since the guards hold a single track’s worth of data, storage
e�ciency for a band size of b tracks is b

b+k−1 .
Given knowledge of these bands, a host �le system can ensure they are only written sequen-

tially, for example, by implementing a log-structured �le system [115, 158]. Standards have also
been developed to allow a drive to identify these bands to the host [94]: HM-SMR drives expose
zones that are an order of magnitude larger than bands, which must also be written sequentially.
At the time of this work, however, these standards were still in dra� form and no drives based on
them were available on the open market.
Alternately the DM-SMR drives present a standard re-writable block interface that is imple-

mented by an internal Shingle Translation Layer, much as an SSD uses a Flash Translation Layer
(FTL). Although the two are logically similar, appropriate algorithms di�er due to di�erences in
the constraints placed by the underlying media: (a) high seek times for non-sequential access,

11

Platter
Persistent

Band 1

Band 2

Band 3

Band n

Spindle

TracksGuard Regions

.

. .

.

Cache

Figure 2.2: Surface of a platter in a hypothetical DM-SMR drive. A persistent cache consisting of 9
tracks is located at the outer diameter.�e guard region that separates the persistent cache from
the �rst band is simply a track that is written at a full head width of k tracks. Although the guard
region occupies the width of k tracks, it contains a single track’s worth of data and the remaining k-
1 tracks are wasted.�e bands consist of 4 tracks, also separated with a guard region. Overwriting
a sector in the last track of any band will not a�ect the following band. Overwriting a sector in
any of the tracks will require reading and re-writing all of the tracks starting at the a�ected track
and ending at the guard region within the band.

(b) lack of high-speed reads, (c) use of large (10s to 100s of MB) cleaning units, and (d) lack of
wear-out, eliminating the need for wear leveling.

�ese translation layers typically store all data in bands where it is mapped at a coarse granu-
larity, and devote a small fraction of the disk to a persistent cache, as shown in Figure 2.2, which
contains copies of recently-written data. Data that should be retrieved from the persistent cache
may be identi�ed by checking a persistent cache map (or exception map) [29, 78]. Data is moved
back from the persistent cache to bands by the process of cleaning (also known as garbage col-
lection), which performs read-modify-write (RMW) on every band whose data was overwritten.
�e cleaning process may be lazy, running only when the free cache space is low, or aggressive,
running during idle times.

In one translation approach, a static mapping algorithmically assigns a native location [29],
a physical block address (PBA) to each logical block address (LBA) in the same way as is done
in a CMR drive. An alternate approach uses coarse-grained dynamic mapping for non-cached
LBAs [29], in combination with a small number of free bands. During cleaning, the drive writes
an updated band to one of these free bands and then updates the dynamic map, potentially elim-
inating the need for a temporary staging area for cleaning updates and sequential writes.

In any of these cases drive operation may change based on the setting of the volatile cache
(enabled or disabled) [160]. When the volatile cache is disabled, writes are required to be persistent
before completion is reported to the host. When it is enabled, persistence is only guaranteed a�er
a FLUSH CACHE command [213] or a write command with the Force Unit Access (FUA) bit set.

12

Drive Name STL Persistent
Cache Type
and Size

Disk Cache
Multiplicity

Cleaning
Type

Band
Size

Mapping
Type

Size

Emulated-SMR-1 Set-associative Disk, 37.2 GiB Single at ID Lazy 40MiB Static 3.9 TB
Emulated-SMR-2 Set-associative Flash, 9.98GiB N/A Lazy 25MiB Static 3.9 TB
Emulated-SMR-3 Fully-associative Disk, 37.2 GiB Multiple Aggressive 20MiB Dynamic 3.9 TB

Table 2.1: EmulatedDM-SMRdrive con�gurations. (For brevity, we dropDM fromDM-SMRwhen
naming the drives.)

2.3 Test Drives
We now describe the drives we study. First, we discuss how we emulate three DM-SMR drives
using our implementation of two STLs described in the literature. Second, we describe the real
DM-SMR drives we study in this paper and the real CMR drive we use for emulating DM-SMR
drives.

2.3.1 Emulated Drives
We implement Cassuto et al.’s set-associative STL [29] and a variant of their S-blocks STL [29][79],
which we call fully-associative STL, as Linux device mapper targets. �ese are kernel modules
that export a pseudo block device to user-space that internally behaves like a DM-SMR drive—
the module translates incoming requests using the translation algorithm and executes them on a
CMR drive.

�e set-associative STL manages the disk as a set of N iso-capacity (same-sized) data bands,
with typical sizes of 20–40MiB, and uses a small (1–10%) section of the disk as the persistent cache.
�e persistent cache is also managed as a set of n iso-capacity cache bands where n ≪ N . When a
block in data band a is to be written, a cache band is chosen through (a mod n); the next empty
block in this cache band is written and the persistent cache map is updated. Further accesses to
the block are served from the cache band until cleaning moves the block to its native location,
which happens when the cache band becomes full.

�e fully-associative STL, on the other hand, divides the disk into large (we used 40GiB) zones
and manages each zone independently.�e notion of zone here comes from zone bit recording [?
] used in hard drives and is unrelated to SMR zones. A zone starts with 5% of its capacity provi-
sioned to free bands for handling updates. When a block in logical band a is to be written to the
corresponding physical band b, a free band c is chosen andwritten to and the persistent cachemap
is updated. When the number of free bands falls below a threshold, cleaning merges the bands b
and c and writes it to a new band d and remaps the logical band a to the physical band d, freeing
bands b and c in the process.�is dynamic mapping of bands allows the fully-associative STL to
handle streaming writes with zero overhead.
To evaluate the accuracy of our emulation strategy, we implemented a pass-through device

mapper target and found negligible overhead for our tests, con�rming a previous study [147].
Although in theory, this emulation approach may seem disadvantaged by the lack of access to
exact sector layout, in practice this is not the case—even in real DM-SMR drives, the STL running

13

inside the drive is implemented on top of a layer that provides linear PBAs by hiding sector layout
and defect management [66].�erefore, we believe that the device mapper target running on top
of a CMR drive provides an accurate model for predicting the behavior of an STL implemented
by the controller of a DM-SMR drive.
Table 2.1 shows the three emulated DM-SMR drive con�gurations we use in our tests. �e

�rst two drives use the set-associative STL, and they di�er in the type of persistent cache and
band size. �e last drive uses the fully-associative STL and disk for the persistent cache. We do
not have a drive con�guration combining the fully-associative STL and �ash for persistent cache.
�is is because the fully-associative STL aims to reduce long seeks during cleaning in disks, by
using multiple caches evenly spread out on a disk, but �ash does not su�er from long seek times.
To emulate a DM-SMR drive with a �ash cache (Emulate-SMR-2) we use the Emulate-SMR-1

implementation, but use a device mapper linear target to redirect the underlying LBAs corre-
sponding to the persistent cache, storing them on an SSD.
To check the correctness of the emulated DM-SMR drives we ran repeated burn-in tests using

fio [13]. We also formatted emulated drives with the ext4 �le system, compiled the Linux kernel
on top, and successfully booted the system with the compiled kernel. �e source code for the
set-associative STL (1,200 lines of C) and a testing framework (250 lines of Go) are available at
http://sssl.ccs.neu.edu/skylight.

2.3.2 Real Drives

Two real DM-SMR drives were tested: Seagate ST5000AS0011, a 5,900 RPM desktop drive (rota-
tion time ≈ 10ms) with four platters, eight heads, and 5 TB capacity (for brevity termed Seagate-
SMR below), and Seagate ST8000AS0002, a similar drive with six platters, twelve heads and 8TB
capacity. Emulated drives use a Seagate ST4000NC001 (Seagate-CMR), a real CMR drive identi-
cal in drive mechanics and speci�cation (except the 4 TB capacity) to the ST5000AS0011. Results
for the 8 TB and 5 TB DM-SMR drives were similar; to save space, we only present results for the
publicly-available 5 TB drive.

2.4 Characterization Tests
To motivate our drive characterization methodology we �rst describe the goals of our measure-
ments. We then describe themechanisms andmethodology for the tests, and �nally present results
for each tested drive. For emulated DM-SMR drives, we show that the tests produce accurate an-
swers, based on implemented parameters; for real DM-SMR drives we discover their properties.
�e behavior of the real DM-SMR drives under some of the tests engenders further investigation,
leading to the discovery of important details about their operation.

2.4.1 Characterization Goals

�e goal of our measurements is to determine key drive characteristics and parameters:
• Drive type. In the absence of information from the vendor, is a drive a DM-SMR or a CMR?

14

http://sssl.ccs.neu.edu/skylight

Figure 2.3:DM-SMR drive with the observation window encircled in red. Head assembly is visible
parked at the inner diameter.

• Persistent cache type. Does the drive use �ash or disk for the persistent cache? �e type of
the persistent cache a�ects the performance of random writes and reliable (volatile cache-
disabled) sequential writes. If the drive uses disk for persistent cache, is it a single cache, or
is it distributed across the drive [29][79]?�e layout of the persistent disk cache a�ects the
cleaning performance and the performance of the sequential read of a sparsely overwritten
linear region.

• Cleaning. Does the drive use aggressive cleaning, improving performance for lowduty-cycle
applications, or lazy cleaning, which may be better for throughput-oriented ones? Can we
predict the performance impact of cleaning?

• Persistent cache size. A�er some number of out-of-place writes the drive will need to begin
a cleaning process, moving data from the persistent cache to bands so that it can accept new
writes, negatively a�ecting performance. What is this limit, as a function of total blocks
written, number of write operations, and other factors?

• Band size. Since a band is the smallest unit that may be re-written e�ciently, knowledge
of band size is important for optimizing DM-SMR drive workloads [29][40]. What are the
band sizes for a drive, and are these sizes constant over time and space [68]?

• Blockmapping.�emapping type a�ects performance of both cleaning and reliable sequen-
tial writes. For LBAs that are not in the persistent cache, is there a staticmapping from LBAs
to PBAs, or is this mapping dynamic?

• Zone structure. Determining the zone structure of a drive is a common step in understand-
ing block mapping and band size, although the structure itself has little e�ect on external
performance.

2.4.2 Test Mechanisms
�e so�ware part of Skylight uses fio to generate micro-benchmarks that elicit the drive charac-
teristics. �e hardware part of Skylight tracks the head movement during these tests. It resolves

15

0

10
Emulated-SMR-1

L
at

en
cy

 (
m

s)

0.1

0.2
Emulated-SMR-2

0

10
Emulated-SMR-3

0

10

20 Seagate-CMR

10
20
30
40

0 50 100 150 200 250

Seagate-SMR
325 ms

Operation Number

Figure 2.4: Discovering drive type using latency
of random writes. Y-axis varies in each graph.

ID

map

OD

0 1 2 3 4 5 6

Time (s)

Figure 2.5: Seagate-SMR head position during
random writes.

ambiguities when interpreting the latency of the data obtained from the micro-benchmarks and
leads to discoveries that are not possible with micro-benchmarks alone. To track the head move-
ments, we installed (under clean-room conditions) a transparent window in the drive casing over
the region traversed by the head. Figure 2.3 shows the head assembly parked at the inner diameter
(ID).We recorded the headmovements using Casio EX-ZR500 camera at 1,000 frames per second
and processed the recordings with ffmpeg to generate head location value for each video frame.
We ran the tests on a 64-bit Intel Core-i3 Haswell system with 16GiB RAM and 64-bit Linux

kernel version 3.14. Unless otherwise stated, we disabled kernel read-ahead, drive look-ahead
and drive volatile cache using hdparm. Extensions to fio developed for these tests have been
upstreamed. Slow-motion clips for the head position graphs shown in the paper, as well as the
tests themselves, are available at http://sssl.ccs.neu.edu/skylight.

2.4.3 Drive Type and Persistent Cache Type

Test 1 exploits the unusual random write behavior of the DM-SMR drives to di�erentiate them
from CMR drives. While random writes to a CMR drive incur varying latency due to random
seek time and rotational delay, random writes to a DM-SMR drive are sequentially logged to the
persistent cache with a �xed latency. If random writes are not local, DM-SMR drives that use
separate persistent caches by the LBA range [29] may still incur varying write latency.�erefore,
random writes are done within a small region to ensure that a single persistent cache is used.
Figure 2.4 shows the results for this test. Emulated-SMR-1 sequentially writes incoming ran-

dom writes to the persistent cache. It �lls one empty block a�er another and due to synchronicity
of the writes it misses the next empty block by the time the next write arrives.�erefore, it waits
for a complete rotation resulting in a 10ms write latency, which is the rotation time of the underly-

16

http://sssl.ccs.neu.edu/skylight

Test 1: Discovering Drive Type
1 Write blocks in the �rst 1 GiB in random order to the drive.
2 if latency is �xed then the drive is DM-SMR else the drive is CMR.

ing CMR drive.�e sub-millisecond latency of Emulated-SMR-2 shows that this drive uses �ash
for the persistent cache. �e latency of Emulated-SMR-3 is identical to that of Emulated-SMR-
1, suggesting a similar setup. �e varying latency of Seagate-CMR identi�es it as a conventional
drive. Seagate-SMR shows a �xed ≈ 25ms latency with a ≈ 325ms bump at the 240th write. While
the �xed latency indicates that it is a DM-SMR drive, we resort to the head position graph to
understand why it takes 25ms to write a single block and what causes the 325ms latency.
Figure 2.5 shows that the head, initially parked at the ID, seeks to the outer diameter (OD) for

the �rst write. It stays there during the �rst 239 writes (incidentally, showing that the persistent
cache is at the OD), and on the 240th write it seeks to the center, staying there for ≈ 285ms before
seeking back and continuing to write.
Is all of 25ms latency associated with every block write spent writing or is some of it spent in

rotational delay? When we repeat the test multiple times, the completion time of the �rst write
ranges between 41 and 52ms, while the remainingwrites complete in 25ms.�e latency of the �rst
write always consists of a seek from the ID to theOD (≈ 16ms). We hypothesize that the remaining
time is spent in rotational delay—likely waiting for the beginning of a delimited location—and
writing (25ms). Depending on where the head lands a�er the seek, the latency of the �rst write
changes between 41ms and 52ms. �e remaining writes are written as they arrive, without seek
time and rotational delay, each taking 25ms. Hence, we hypothesize that a single block host write
results in a 2.5 track internal write. We realize that 25ms latency is arti�cially high and expect it
to drop in future drives, nevertheless, we base our further explanations on this assumption. In the
following section we explore this phenomenon further.

Journal Entries with Quantized Sizes

If a�er Test 1 we immediately read blocks in the written order, read latency is �xed at ≈ 5ms, in-
dicating 0.5 track distance (covering a complete track takes a full rotation, which is 10ms for the
drive; therefore 5ms translates to 0.5 track distance) between blocks. On the other hand, if we
write blocks asynchronously at the maximum queue depth of 31 [117] and immediately read them,
latency is �xed at ≈ 10ms, indicating a missed rotation due to contiguous placement. Further-
more, although the drive still reports 25ms completion time for every write, asynchronous writes
complete faster—for the 256 write operations, asynchronous writes complete in 216ms whereas
synchronous writes complete in 6,539ms, as seen in Figure 2.5. Gathering these facts, we arrive
at Figure 2.6. Writing asynchronously with high queue depth allows the drive to pack multiple
blocks into a single internal write, placing them contiguously (shown on the right). �e drive
reports the completion of individual host writes packed into the same internal write once the
internal write completes. �us, although each of the host writes in the same internal write is re-
ported to take 25ms, it is the same 25ms that went into writing the internal write. As a result, in
the asynchronous case, the drive does fewer internal writes, which accounts for the fast comple-
tion time. �e contiguous placement also explains the 10ms latency when reading blocks in the

17

7

3 3

7

Figure 2.6: Surface of a disk platter in a hypothetical DM-SMR drive divided into two 2.5 track
imaginary regions. �e le� �gure shows the placement of random blocks 3 and 7 when writing
synchronously. Each internal write contains a single block and takes 25ms (50ms in total) to
complete. �e drive reports 25ms write latency for each block; reading the blocks in the writ-
ten order results in a 5ms latency. �e right �gure shows the placement of blocks when writing
asynchronously with high queue depth. A single internal write contains both of the blocks, taking
25ms to complete. �e drive still reports 25ms write latency for each block; reading the blocks
back in the written order results in a 10ms latency due to missed rotation.

written order. Writing synchronously, however, results in doing a separate internal write for every
block (shown on the le�), taking longer to complete. Placing blocks starting at the beginning of
2.5 track internal writes explains the 5ms latency when reading blocks in the written order.
To understand how the internal write size changes with the increasing host write size, we keep

writing at the maximum queue depth, gradually increasing the write size. Figure 2.7 shows that
the writes in the range of 4KiB–26KiB result in 25ms latency, suggesting that 31 host writes in this
size range �t in a single internal write. As we jump to the 28KiB writes, the latency increases by
≈ 5ms (or 0.5 track) and remains approximately constant for the writes of sizes up to 54KiB. We
observe a similar jump in latency aswe cross from 54KiB to 56KiB and also from82KiB to 84KiB.
�is shows that the internal write size increases in 0.5 track increments. Given that the persistent
cache is written using a “log-structured journaling mechanism” [67], we infer that the 0.5 track of
2.5 track minimum internal write is the journal entry that grows in 0.5 track increments, and the
remaining 2 tracks contain out-of-band data, like parts of the persistent cache map a�ected by the
host writes.�e purpose of this quantization of journal entries is not known, but may be in order
to reduce rotational delay or simplify delimiting and locating them. We further hypothesize that
the 325ms delay in Figure 2.4, observed every 240th write, is a map merge operation that stores
the updated map at the middle tracks.
As the write size increases to 256KiB we see varying delays, and inspection of completion

times shows less than 31 writes completing in each burst, implying a bound on the journal entry
size. Di�erent completion times for large writes suggest that for these, the journal entry size is
determined dynamically, likely based on the available drive resources at the time when the journal
entry is formed.

18

20

40

60

80

100

120

5,800 5,900 6,000 6,100 6,200 6,300
L

at
en

cy
 (

m
s)

Operation Number

4-26 KiB
28-54 KiB
56-82 KiB

84-110 KiB
256 KiB

Figure 2.7:Randomwrite latency of di�erentwrite sizes on Seagate-SMR,whenwriting at the queue
depth of 31. Each latency graph corresponds to the latency of a group of writes. For example, the
graph at 25ms corresponds to the latency of writes with sizes in the range of 4–26KiB. Since
writes with di�erent sizes in a range produced similar latency, we plotted a single latency as a
representative.

2.4.4 Disk Cache Location and Layout
Wenext determine the location and layout of the disk cache, exploiting a phenomenon called frag-
mented reads [29]. When sequentially reading a region in a DM-SMR drive, if the cache contains
newer version of some of the blocks in the region, the head has to seek to the persistent cache and
back, physically fragmenting a logically sequential read. In Test 2, we use these variations in seek
time to discover the location and layout of the disk cache.

Test 2: Discovering Disk Cache Location and Layout
1 Starting at a given o�set, write a block and skip a block, and so on, writing 512 blocks in total.
2 Starting at the same o�set, read 1,024 blocks; call average latency lato f f set .
3 Repeat steps 1 and 2 at the o�sets high, low,mid.
4 if lathigh < latmid < latlow then

�ere is a single disk cache at the ID.
else if lathigh > latmid > latlow then

�ere is a single disk cache at the OD.
else if lathigh = latmid = latlow then

�ere are multiple disk caches.
else

assert(lathigh = latlow and lathigh > latmid)
�ere is a single disk cache in the middle.

�e test works by choosing a small region and writing every other block in it and then reading
the region sequentially from the beginning, forcing a fragmented read. LBA numbering conven-
tionally starts at the OD and grows towards the ID.�erefore, a fragmented read at low LBAs on
a drive with the disk cache located at the OD would incur negligible seek time, whereas a frag-
mented read at high LBAs on the same drive would incur high seek time. Conversely, on a drive

19

0
10
20
30 Emulated-SMR-1

L
at

en
cy

 (
m

s)

0 TB
2 TB

3.9 TB

0
10
20 Emulated-SMR-2 0 TB

2 TB
3.9 TB

0
10
20
30 Emulated-SMR-3 0 TB

2 TB
3.9 TB

0
10
20
30
40

0 300 600 900 1,200 1,500

Seagate-SMR

Operation Number

0 TB
2.5 TB

5 TB

Figure 2.8: Discovering disk cache structure and
location using fragmented reads.

ID

2.5 TB

OD

5,000 5,050 5,100 5,150 5,200 5,250

Time (ms)

0 TB 2.5 TB 5 TB

Figure 2.9: Seagate-SMR head position during
fragmented reads.

with the disk cache located at the ID, a fragmented read would incur high seek time at low LBAs
and negligible seek time at high LBAs. On a drive with the disk cache located at the middle di-
ameter (MD), fragmented reads at low and high LBAs would incur similar high seek times and
they would incur negligible seek times at middle LBAs. Finally, on a drive with multiple disk
caches evenly distributed across the drive, the fragmented read latency would be mostly due to
rotational delay and vary little across the LBA space. Guided by these assumptions, to identify the
location of the disk cache, the test chooses a small region at low, middle, and high LBAs and forces
fragmented reads at these regions.
Figure 2.8 shows the latency of fragmented reads at three o�sets on all DM-SMR drives.�e

test correctly identi�es the Emulated-SMR-1 as having a single cache at the ID. For Emulated-
SMR-2 with �ash cache, latency is seen to be negligible for �ash reads, and a full missed rotation
for each disk read. Emulated-SMR-3 is also correctly identi�ed as having multiple disk caches—
the latency graph of all fragmented reads overlap, all having the same 10ms average latency. For
Seagate-SMR (test performed with volatile cache enabled with hdparm -W1) we con�rm that it
has a single disk cache at the OD.
Figure 2.9 shows the Seagate-SMR head position during fragmented reads at o�sets of 0 TB,

2.5 TB and 5 TB. For the o�sets of 2.5 TB and 5 TB, we see that the head seeks back and forth be-
tween the OD and near-center and between the OD and the ID, respectively, occasionally missing
a rotation.�e cache-to-data distance for the LBAs near 0 TB was too small for the resolution of
our camera.

2.4.5 Cleaning Algorithm
�e fragmented read e�ect is also used in Test 3 to determine whether the drive uses aggressive or
lazy cleaning, by creating a fragmented region and then pausing to allow an aggressive cleaning
to run before reading the region.

20

Test 3: Discovering Cleaning Type
1 Starting at a given o�set, write a block and skip a block and so on, writing 512 blocks in total.
2 Pause for 3–5 seconds.
3 Starting at the same o�set, read 1024 blocks.
4 if latency is �xed then cleaning is aggressive else cleaning is lazy.

0
10
20
30 Emulated-SMR-1

L
at

en
cy

 (
m

s)

0
10
20 Emulated-SMR-2

0
5

10
15 Emulated-SMR-3

0
5

10
15

0 200 400 600 800 1,000

Seagate-SMR

Operation Number

Figure 2.10: Discovering the type of cleaning us-
ing Test 3.

ID

map
2.5 TB

OD

0 500 1,000 1,500 2,000 2,500 3,000 3,500

Time (ms)

Figure 2.11: Seagate-SMR head position during
pause in step 2 of Test Test 3.

Figure 2.10 shows the read latency graph of step 3 fromTest 3 at the o�set of 2.5 TB, with a three
second pause in step 2. For all drives, o�sets were chosen to land within a single band (§ 2.4.8).
A�er a pause the top two emulated drives continue to show fragmented read behavior, indicat-
ing lazy cleaning, while in Emulated-SMR-3 and Seagate-SMR reads are no longer fragmented,
indicating aggressive cleaning.
Figure 2.11 shows the Seagate-SMR head position during the 3.5 second period starting at the

beginning of step 2. Two short seeks from the OD to the ID and back are seen in the �rst 200ms;
their purpose is not known. �e RMW operation for cleaning a band starts at 1,242ms a�er the
last write, when the head seeks to the band at 2.5 TB o�set, reads for 180ms and seeks back to
the cache at the OD where it spends 1,210ms. We believe this time is spent forming an updated
band and persisting it to the disk cache, to protect against power failure during band overwrite.
Next, the head seeks to the band, taking 227ms to overwrite it and then seeks to the center to
update the map. Hence, cleaning a band in this case took ≈ 1.6 s. We believe the center to contain
the map because the head always moves to this position a�er performing a RMW, and stays there
for a short period before eventually parking at the ID. A�er 3 seconds, reads begin and the head
seeks back to the band location, where it stays until reads complete (only the �rst 500ms is seen
in Figure 2.11).
We con�rmed that the operation starting at 1,242ms is indeed an RMW: when step 3 is begun

before the entire cleaning sequence has completed, read behavior is unchanged from Test 2. We

21

0
10
20
30

L
at

en
cy

 (
m

s)

Read following the write

0
10
20
30 Read after a 10 min pause

0
10
20
30 Read after a 20 min pause

0
10
20
30

0 1,000 2,000 3,000 4,000

Operation Number

Read after a 20 min pause

Figure 2.12: Latency of reads of random writes
immediately a�er the writes and a�er pauses.

0

10

20

L
at

en
cy

 (
m

s)

1 min

0

10

20

0 50 100 150 200 250 300 350

Operation Number

2 min

Figure 2.13: Verifying hypothesized cleaning al-
gorithm on Seagate-SMR.

did not explore the details of the RMW; alternatives like partial read-modify-write [151] may also
have been used.

Seagate-SMR Cleaning Algorithm

Wenext start exploring performance-relevant details that are speci�c to the Seagate-SMR cleaning
algorithm, by running Test 4. In step 1, as the drive receives random writes, it sequentially logs
them to the persistent cache as they arrive. �erefore, immediately reading the blocks back in
the written order should result in a �xed rotational delay with no seek time. During the pause in
step 3, cleaning process moves the blocks from the persistent cache to their native locations. As a
result, reading a�er the pause should incur varying seek time and rotational delay for the blocks
moved by the cleaning process, whereas unmoved blocks should still incur a �xed latency.

Test 4: Exploring Cleaning Algorithm
1 Write 4,096 random blocks.
2 Read back the blocks in the written order.
3 Pause for 10–20 minutes.
4 Repeat steps 2 and 3.

In Figure 2.12 read latency is shown immediately a�er step 2, and then a�er 10, 30, and 50
minutes. We observe that the latency is �xed when we read the blocks immediately a�er the
writes. If we re-read the blocks a�er a 10-minute pause, we observe random latencies for the �rst
≈ 800 blocks, indicating that the cleaning process has moved these blocks to their native locations.
Since every block is expected to be on a di�erent band, the number of operations with random
read latencies a�er each pause shows the progress of the cleaning process, that is, the number of

22

bands it has cleaned. Given that it takes ≈ 30 minutes to clean ≈ 3,000 bands, it takes ≈ 600ms
to clean a band whose single block has been overwritten. We also observe a growing number of
cleaned blocks in the unprocessed region (for example, operations 3,000–4,000 in the 30 minute
graph); based on this behavior, we hypothesize that cleaning follows Algorithm 1.

Algorithm 1:Hypothesized Cleaning Algorithm of Seagate-SMR
1 Read the next block from the persistent cache, �nd the block’s band.
2 Scan the persistent cache identifying blocks belonging to the band.
3 Read-modify-write the band, update the map.

To test this hypothesis we run Test 5. In Figure 2.13 we see that a�er one minute, all of the
blocks written in step 1, some of those written in step 2, and all of those written in step 3 have been
cleaned, as indicated by the non-uniform latency, while the remainder of step 2 blocks remain in
the cache, con�rming our hypothesis. A�er twominutes all blocks have been cleaned. (�e higher
latency for step 2 blocks is due to their higher mean seek distance.)

Test 5: Verifying the Hypothesized Cleaning Algorithm
1 Write 128 blocks from a 256MiB linear region in random order.
2 Write 128 random blocks across the LBA space.
3 Repeat step 1, using di�erent blocks.
4 Pause for one minute; read all blocks in the written order.

2.4.6 Persistent Cache Size
Wediscover the size of the persistent cache by ensuring that the cache is empty and thenmeasuring
howmuchdatamay bewritten before cleaning begins. Weuse randomwrites across the LBA space
to �ll the cache, because sequential writes may �ll the drive bypassing the cache [29] and cleaning
may never start. Also, with sequential writes, a drive with multiple caches may �ll only one of
the caches and start cleaning before all of the caches are full [29]. With random writes, bypassing
the cache is not possible; also, they will �ll multiple caches at the same rate and cleaning will start
when all of the caches are almost full.

�e simple task of �lling the cache is complicated in drives using extent mapping: a cache
is considered full when the extent map is full or when the disk cache is full, whichever happens
�rst.�e latter is further complicated by journal entries with quantized sizes—as seen previously
(§ 2.4.3), a single 4KB write may consume as much cache space as dozens of 8 KB writes. Due
to this overhead, actual size of the disk cache is larger than what is available to host writes—we
di�erentiate the two by calling them persistent cache raw size and persistent cache size, respectively.
Figure 2.14 shows three possible scenarios on a hypothetical drive with a persistent cache raw

size of 36 blocks and a 12 entry extent map. �e minimum journal entry size is 2 blocks, and it
grows in units of 2 blocks to the maximum of 16 blocks; out-of-band data of 2 blocks is written
with every journal entry; the persistent cache size is 32 blocks.

23

a) Queue Depth = 1, Write Size = 1 block

b) Queue Depth = 4, Write Size = 1 block

 c) Queue Depth = 4, Write Size = 4 blocks

Persistent Cache

Persistent Cache Map

Journal entries are differen-

tiated with green and cyan.

Out-of-band data blocks are

in yellow.

Writes are differentiated with

vertical and horizontal stripes.

Free map entries are white,

occupied map entres are purple.

Figure 2.14:�ree di�erent scenarios triggering cleaning on drives using journal entries with quan-
tized sizes and extent mapping. �e text on the le� in the �gure explains the meaning of the
colors.

Figure 2.14 (a) shows the case of queue depth 1 and 1-blockwrites. A�er the host issues 9writes,
the drive puts every write to a separate 2-block journal entry, �lls the cache with 9 journal entries
and starts cleaning. Every write consumes a slot in the map, shown by the arrows. Due to low
queue depth, the drive leaves one empty block in each journal entry, wasting 9 blocks. Exploiting
this behavior, Test 6 discovers the persistent cache raw size. (In this and the following tests, we
detect the start of cleaning when the IOPS drops to near zero.)

Test 6: Discovering Persistent Cache Raw Size
1 Write with a small size and low queue depth until cleaning starts.
2 Persistent cache raw size = number of writes × (min. journal entry size + out-of-band data size).

Figure 2.14 (b) shows the case of queue depth 4 and 1-block writes. A�er the host issues 12
writes, the drive forms three 4-block journal entries. Writing these journal entries to the cache
�lls the map and the drive starts cleaning despite a half-empty cache. We use Test 7 to discover
the persistent cache map size.

Test 7: Discovering Persistent Cache Map Size
1 Write with a small size and high queue depth until cleaning starts.
2 Persistent cache map size = number of writes.

Finally, Figure 2.14 (c) shows the case of queue depth 4 and 4-blockwrites. A�er the host issues
8 writes, the drive forms two 16-block journal entries, �lling the cache. Due to high queue depth
and large write size, the drive is able to �ll the cache (without wasting any blocks) before the map
�lls. We use Test 8 to discover the persistent cache size.

24

Test 8: Discovering Persistent Cache Size
1 Write with a large size and high queue depth until cleaning starts.
2 Persistent cache size = total host write size.

Drive Write
Size

QD Operation
Count

Host
Writes

Internal
Writes

Seagate-SMR

4KiB 1 22,800 89MiB 100GiBa

4 KiB 31 182,270 0.7 GiB N/A
64 KiB 31 182,231 11.12 GiB N/A
128 KiB 31 137,496 16.78 GiB N/A
256 KiB 31 67,830 16.56 GiB N/A

Emulated-SMR-1 4KiB 1 9,175,056 35GiB 35GiB
Emulated-SMR-2 4KiB 1 2,464,153 9.4GiB 9.4GiB
Emulated-SMR-3 4KiB 1 9,175,056 35GiB 35GiB

Table 2.2: Discovering persistent cache parameters. a�is estimate is based on the hypothesis that
all of 25ms during a single blockwrite is spentwriting to disk. While the results of the experiments
indicate this to be the case, we think 25ms latency is arti�cially high and expect it to drop in future
drives, which would require recalculation of this estimate.

Table 2.2 shows the result of the tests on Seagate-SMR and Figure 2.15 shows the corresponding
graph. In the �rst row of the table, we discover persistent cache raw size using Test 6. Writing
with 4KiB size and queue depth of 1 produces a �xed 25ms latency (§ 2.4.3), that is 2.5 rotations.
Hypothesizing that all of the 25ms is spent writing and a track size is ≈ 2MiB at the OD, 22,800
operations correspond to ≈ 100GiB.
In rows 2 and 3 we discover the persistent cache map size using Test 7. For write sizes of 4

KiB and 64 KiB cleaning starts a�er ≈ 182,200 writes, which corresponds to 0.7 GiB and 11.12 GiB
of host writes, respectively. �is con�rms that in both cases the drive hits the map size limit,
corresponding to scenario (b) in Figure 14. Assuming that the drive uses a low watermark to
trigger cleaning, we estimate that the map size is 200,000 entries.
In rows 4 and 5 we discover the persistent cache size using Test 8. With 128 KiB writes we

write ≈ 17 GiB in fewer operations than in row 3, indicating that we are hitting the size limit. To
con�rm this, we increase write size to 256 KiB in row 5; as expected, the number of operations
drops by half while the total write size stays the same. Again, assuming that the drive has hit the
low watermark, we estimate that the persistent cache size is 20 GiB.
Journal entries with quantized sizes and extent mapping are absent topics in academic litera-

ture on SMR, so emulated drives implement neither feature. Running Test 6 on emulated drives
produces all three answers, since in these drives, the cache is block-mapped, and the cache size
and cache raw size are the same. Furthermore, set-associative STL divides the persistent cache into
cache bands and assigns data bands to them using modulo arithmetic.�erefore, despite having
a single cache, under random writes it behaves similarly to a fully-associative cache.�e bottom
rows of Table 2.2 show that in emulated drives, Test 8 discovers the cache size (see Table 2.1) with
95% accuracy.

25

0

300
L

at
en

cy
 (

m
s)

4 KiB

0

300
64 KiB

0

300
128 KiB

0

300

0 30,000 60,000 90,000 120,000 150,000 180,000

Operation Number

256 KiB

Figure 2.15: Write latency of asynchronous writes of varying sizes with queue depth of 31 until
cleaning starts. Starting from the top, the graphs correspond to the lines 2-5 in Table 2.2. When
writing asynchronously, more writes are packed into the same journal entry.�erefore, although
the map merge operations still occur at every 240th journal write, the interval seems greater than
in Figure 2.16. For 4KiB and 64KiBwrite sizes, we hit themap size limit �rst, hence cleaning starts
a�er the same number of operations. For 128KiBwrite size we hit the space limit before hitting the
map size limit; therefore, cleaning starts a�er fewer number of operations than in 64KiB writes.
Doubling thewrite size to 256KiB con�rms that we are hitting the space limit, since cleaning starts
a�er half the number of operations of 128KiB writes.

2.4.7 Is Persistent Cache Shingled?

We next determine whether the STL manages the persistent cache as a circular log [1]. While this
would not guarantee that the persistent cache is shingled (an STL could also manage a randomly
writable region as a circular log), it would strongly indicate that the persistent cache is shingled.
We start with Test 9, which chooses a sequence of 10,000 random LBAs across the drive space and
writes the sequence straight through, three times. Given that the persistent cache has space for
≈ 23,000 synchronous block writes (Table 2.2), a trivial STL would �ll the cache and start cleaning
before the writes complete.

Test 9: Discovering if the Persistent Cache is a Circular Log—Part I
1 Choose 10,000 random blocks across the LBA space.
2 for i ← 0 to i < 3 do
3 Write the 10,000 blocks from step 1 in the chosen order.

Figure 2.17 shows that unlike Figure 2.16, cleaning does not start a�er 23,000 writes. Two
simple hypotheses that explain this phenomenon are:

1. �e STL manages the persistent cache as a circular log. When the head of the log wraps
around, STL detects stale blocks and overwrites without cleaning.

26

0

300

600

900

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000

L
at

en
cy

 (
m

s)

Operation Number

4 KiB

Figure 2.16:Write latency of 4KiB synchronous random writes, corresponding to the �rst line in
Table 2.2. As explained in § 2.4.3, when writing synchronously the drive writes a journal entry for
every write operation. Every 240th journal entry write results in a ≈ 325ms latency, which as was
hypothesized in § 2.4.3 includes a mapmerge operation. A�er ≈ 23,000 writes, cleaning starts and
the IOPS drops precipitously to 0–3. To emphasize the high latency of writes during cleaning we
perform 3,000 more operations. As the graph shows, these writes (23,000–26,000) have ≈ 500ms
latency.

0

300

600

900

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000

L
at

en
cy

 (
m

s)

Operation Number

4 KiB

Figure 2.17:Write latency of 30,000 randomblockwrites with a repeating pattern. We choose 10,000
random blocks across the LBA space and write them in the chosen order. We then write the same
10,000 blocks in the same order two more times. Unlike Figure 2.16, the cleaning does not start
a�er ≈ 23,000 writes, because due to the repeating pattern, as the head of the log wraps around,
the STL only �nds stale blocks that it can overwrite without cleaning.

2. �e STL overwrites blocks in-place. Since there are 10,000 unique blocks, we never �ll the
persistent cache and cleaning never starts.

To �nd out which one of these is true, we run Test 10. Since there are still 10,000 unique
blocks, if the hypothesis (2) is true, that is if the STL overwrites the blocks in-place, we should
never consume more than 10,000 writes’ worth of space and cleaning should not start before the
writes complete. Figure 2.18 shows that cleaning starts a�er ≈ 23,000 writes, invalidating hypothe-
sis (2). Furthermore, if we compare Figure 2.18 to Figure 2.16, we see that the latency of writes a�er
cleaning starts is ≈ 100ms and ≈ 500ms, respectively.�is corroborates hypothesis (1)—latency is
lower in the former, because a�er the head of the logwraps around, the STL �nds some stale blocks
(since these blocks were chosen from a small pool of 10,000 unique blocks), that it can overwrite
without cleaning. When the blocks are chosen across the LBA space, as in Figure 2.16, once the
head wraps around, the STL ends up e�ectively cleaning before every write since it almost never
�nds a stale block.

27

0

300

600

900

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000

L
at

en
cy

 (
m

s)

Operation Number

4 KiB

Figure 2.18: Write latency of 30,000 random block writes chosen from a pool of 10,000 unique
blocks. Unlike Figure 2.17, cleaning starts a�er ≈ 23,000, because as the head of the log wraps
around, the STL does not immediately �nd stale blocks. However, since the blocks are chosen
from a small pool, the STL still does �nd a large number of stale blocks and can o�en overwrite
without cleaning.�erefore, compared to Figure 2.16 thewrite latency during cleaning (operations
23,000-26,000) is not as high, since in Figure 2.16 the blocks are chosen across the LBA space and
the STL almost never �nds a stale block when the head of the log wraps around.

Test 10: Discovering if the Persistent Cache is a Circular Log—Part II
1 Choose 10,000 random blocks across the LBA space.
2 for i ← 0 to i < 30,000 do
3 Randomly choose a block from the blocks in step 1 and write.

2.4.8 Band Size

STLs proposed to date [9, 29][79] clean a single band at a time, by reading unmodi�ed data from
a band and updates from the cache, merging them, and writing the merge result back to a band.
Test 11 determines the band size, by measuring the granularity at which this cleaning process oc-
curs.

Test 11: Discovering the Band Size
1 Select an accuracy granularity a, and a band size estimate b.
2 Choose a linear region of size 100 × b and divide it into a-sized blocks.
3 Write 4KiB to the beginning of every a-sized block, in random order.
4 Force cleaning to run for a few seconds and read 4KiB from the beginning of every a-sized block
in sequential order.

5 Consecutive reads with identical high latency identify a cleaned band.

Assuming that the linear region chosen in Test 11 lies within a region of equal track length, for
data that is not in the persistent cache, 4 KB reads at a �xed stride a should see identical latencies—
that is, a rotational delay equivalent to (a mod T) bytes where T is the track length. Conversely
reads of data from cache will see varying delays in the case of a disk cache due to the di�erent (and
random) order in which they were written or sub-millisecond delays in the case of a �ash cache.
With aggressive cleaning, a�er pausing to allow the disk to clean a few bands, a linear read of

the written blocks will identify the bands that have been cleaned. For a drive with lazy cleaning the

28

0

10

3,960 3,980 4,000 4,020 4,040 4,060

Emulated-SMR-1
L

at
en

cy
 (

m
s)

0

10

1,940 1,960 1,980 2,000 2,020 2,040

Emulated-SMR-2

0

10

1,940 1,960 1,980 2,000 2,020 2,040

Emulated-SMR-3

0

10

420 440 460 480 500 520

Seagate-SMR

Region Offset (MiB)

Figure 2.19: Discovering the band size. �e �at
latency regions correspond to sequentially read-
ing a complete band from its native location.

ID

2.5 TB

OD

3,800 3,900 4,000 4,100 4,200 4,300

Time (ms)

Figure 2.20: Head position during the sequen-
tial read for Seagate-SMR, corresponding to the
time period in Figure 2.19.

linear region is chosen so that writes �ll the persistent cache and force a few bands to be cleaned,
which again may be detected by a linear read of the written data.
In Figure 2.19 we see the results of Test 11 for a = 1MiB and b = 50MiB, respectively, with the

region located at the 2.5 TB o�set; for each drive we zoom in to show an individual band that has
been cleaned. We correctly identify the band size for the emulated drives (see Table 2.1).�e band
size of Seagate-SMR at this location is seen to be 30MiB; running tests at di�erent o�sets shows
that bands are iso-capacity within a zone (§ 2.4.12) but vary from 36MiB at the OD to 17MiB at
the ID.
Figure 2.20 shows the head position of Seagate-SMR corresponding to the time period in Fig-

ure 2.19. It shows that the head remains at the OD during the reads from the persistent cache up
to 454MiB, then seeks to 2.5 TB o�set and stays there for 30MiB, and then seeks back to the cache
at OD, con�rming that the blocks in the band are read from their native locations.

2.4.9 Cleaning Time of a Single Band
We observed that cleaning a band whose single block was overwritten can take ≈ 600ms whereas
if we overwrite 2MiB of the band by skipping every other block, cleaning time increases to ≈ 1.6 s
(§ 2.4.5). While ≈ 600ms cleaning time due to a single block overwrite gives us a lower bound on
the cleaning time, we do not know the upper bound. Now that we understand the persistent cache
structure and band size, in addition to the cleaning algorithm, we create an adversarial workload

29

that will give us an upper bound for the cleaning time of a single band.
Table 2.2 shows that with a queue depth of 31, we can write 182,270 blocks, that is 5,880 journal

entries, resulting in 700MiB host writes. Assuming the band size is 35MiB at the OD, 700MiB
corresponds to 20 bands. �erefore, if we distribute (through random writes) the blocks of 20
bands among 5,880 journal entries, the drive will need to read every packet to clean a single band.
Assuming 5–10ms read time for a packet, reading all of the packets to assemble the band will take
29–60 s. To con�rm this hypothesis, we shu�ed the �rst 700MiB worth of blocks and wrote them
with a queue depth of 31.�e cleaning took ≈ 15minutes, which is ≈ 45 s per band.

2.4.10 Block Mapping

Once we discover the band size (§ 2.4.8), we can use Test 12 to determine the mapping type.�is
test exploits varying inter-track switching latency between di�erent track pairs to detect if a band
was remapped. A�er overwriting the �rst two tracks of band b, cleaning will move the band to
its new location—a di�erent physical location only if dynamic mapping is used. Plotting latency
graphs of step 2 and step 4 will produce the same pattern for the static mapping and a di�erent
pattern for the dynamic mapping.

Test 12: Discovering mapping type.
1 Choose two adjacent iso-capacity bands a and b; set n to the number of blocks in a track.
2 for i ← 0 to i < 2 do

for j ← 0 to j < n do
Read block j of track 0 of band a
Read block j of track i of band b

3 Overwrite the �rst two tracks of band b; force cleaning to run.
4 Repeat step 2.

Adapting this test to a drive with lazy cleaning involves some extra work. First, we should
start the test on a drive a�er a secure erase, so that the persistent cache is empty. Due to lazy
cleaning, the graph of step 4 will be the graph of switching between a track and the persistent
cache. �erefore, we will �ll the cache until cleaning starts, and repeat step 2 once in a while,
comparing its graph to the previous two: if it is similar to the last, then data is still in the cache,
if it is similar to the �rst, then the drive uses static mapping, otherwise, the drive uses dynamic
mapping.
We used track and block terms to concisely describe the test above, but the size chosen for

these parameters of the test need not match track size and block size of the underlying drive.
Figure 2.21, for example, shows the plots for the test on all of the drives using 2MiB for the track
size and 16KiB for the block size. �e latency pattern before and a�er cleaning is di�erent only
for Emulated-SMR-3 (seen on the top right), correctly indicating that it uses dynamic mapping.
For all of the remaining drives, including Seagate-SMR, the latency pattern is the same before and
a�er cleaning, indicating a static mapping.

30

0

15
L

at
en

cy
 (

m
s)

Emulated-SMR-1 before cleaning

0

15
Emulated-SMR-1 after cleaning

0

15
Emulated-SMR-2 before cleaning

0

15

0 100 200 300 400 500

Operation Number

Emulated-SMR-2 after cleaning

0

15

L
at

en
cy

 (
m

s)

Emulated-SMR-3 before cleaning

0

15
Emulated-SMR-3 after cleaning

0

15
Seagate-SMR before cleaning

0

15

0 100 200 300 400 500

Operation Number

Seagate-SMR after cleaning

Figure 2.21:Detecting mapping type.

2.4.11 E�ect of Mapping Type on Drive Reliability

�e type of band mapping used in a DM-SMR drive a�ects the drive reliability for the reasons
explained next. Figure 2.22 shows sequential read throughput on Seagate-SMR. We get a similar
graph for sequential writes when we enable the volatile cache, which suggests that the drive sus-
tains full throughput for sequential writes. Seagate-SMR does not contain �ash and it uses static
mapping, therefore it can achieve full throughput only if it bu�ers the data in the volatile cache
and writes directly to the band, bypassing the persistent cache.

�is performance improvement, however, comes with a risk of data loss. Since there is no
backup of the overwritten data, if power is lost midway through the band overwrite, blocks in the
following tracks are le� in a corrupt state, resulting in data loss. We also lose the new data since it
was bu�ered in the volatile cache.
A similar error, known as torn write [15, 109], occurs in CMR drives as well, wherein only a

portion of a sector gets written before power is lost. InCMRdrives, the time required to atomically
overwrite a sector is small enough that reports of such errors are rare [109]. A DM-SMR drive
with static mapping, on the other hand, is similar to a CMR drive with large (in case of Seagate-
SMR, 17–36MiB) sectors.�erefore, there is a high probability that a random power loss during
streaming sequential writes will disrupt a band overwrite.
Figure 2.23 describes two error scenarios in a hypothetical DM-SMR drive that uses static

mapping. �ese errors are the consequence of the used mapping scheme, since the only way of
sustaining full throughput in such a scheme is to write to the band directly. Introducing small
amount of �ash to a DM-SMR drive for persistent bu�ering has its own challenges—exploiting
parallelism for fast �ash writes and managing wear-leveling is possible only if large amounts of
�ash is used, which is not feasible inside a DM-SMR drive. On the other hand, when using a dy-
namic band mapping scheme, similar to fully-associative STL, a drive can write the new contents
of a band directly to a free band without jeopardizing the existing band data. �is, followed by
an atomic switch in the mapping table would result in full-throughput sequential writes without

31

0

50

100

150

200

0 7,000 14,000 21,000 28,000 35,000
T

h
ro

u
g
h
p
u
t

(M
iB

/s
)

Time (s)

160

180

200

2,000 3,000

Figure 2.22: Sequential read throughput of Seagate-SMR.

sacri�cing reliability.�e idea is similar to log-block FTLs [106, 142] that have been successful in
overcoming slow block overwrites in NAND �ash. For the reasons described, we expect that the
next generation of DM-SMR drives will use dynamic band mapping.
We successfully reproduced torn writes on Seagate-SMR by using an Arduino UNO R3 board

with a 2-channel relay shield to control the power to the drive. A�er Running Test 13 at arbi-
trary o�sets, we could reproduce hard read errors as shown in Figure 2.24 on all of our sample
drives. �e o�set where errors occurred di�ered between drives. �ese errors disappeared a�er
overwriting the a�ected regions.

Test 13: Reproducing torn writes.
1 Choose an o�set.
2 for i ← 0 to i < 50 do
3 Power on the drive and start 1MiB sequential writes at o�set.
4 A�er 10 seconds power o� the drive; wait for 5 seconds and power on the drive.
5 Starting at the crash point, go back 5,000 blocks and read 6,000 blocks.

2.4.12 Zone Structure
We use sequential reads (Test 14) to discover the zone structure of Seagate-SMR. (As mentioned
before, the notion of zone here comes from zone bit recording [?] and is unrelated to SMR zones.)
While there are no such drives yet, on drives with dynamic mapping a secure erase that would
restore the mapping to the default state may be necessary for this test to work. Figure 2.22 shows
the zone pro�le of Seagate-SMR, with a zoom to the beginning.

Test 14: Discovering Zone Structure
1 Enable kernel read-ahead and drive look-ahead.
2 Sequentially read the whole drive in 1MiB blocks.

32

Track 1

Track 2

Track 3

0 3,999

7,999 4,000

8,000 11,999

Track 1

Track 2

Track 3

0 3,999

7,999 7,000

8,00011,999

4,000 6,999

10,000 9,999

Track 1

Track 2

Track 3

0 3,999

8,00011,999

6,999

10,000 9,999

Track 1

Track 2

Track 3

0 3,999

7,999 7,000

8,00011,999

4,000 6,999

10,000 9,999

Track 1

Track 2

Track 3

0 3,999

7,999 7,000

8,00011,999

4,000 6,999

10,000 9,999

Track 1

Track 2

Track 3

0 3,999

7,000

8,00011,999

7,999 4,000 6,999

10,000 9,999

4,0007,999 7,000

5,0004,999

11,000

1. Logical view of the band. 2. Physical layout of the band.

3a. After writing track 1.

3b. After writing track 2.

4a. After writing track 1.

4b. After writing part of track 2.

10,999

Figure 2.23: Torn write scenarios in a hypothetical DM-SMR drive with bands consisting of 3 tracks
and the write head with of 1.5 tracks. �e tracks are shown horizontally instead of circularly to
make the illustration clear. (1) shows the logical view of the band consisting of 3 tracks, each track
having 4,000 sectors. (2) shows the physical layout of the tracks on a platter that accounts for the
track skew. (3a) and (3b) show the corruption scenario when the power is lost during the track
switch.�e red region in (3a) shows the situation a�er track 1 of the band has been overwritten—
track 1 contains new data whereas track 2 is corrupted; track 3 contains the old data. (3b) shows
the situation a�er track 2 has been overwritten—track 1 and track 2 contain new data whereas
track 3 is corrupted. If power is lost while the head switches from track 2 to track 3, block ranges
10,000–11,999 and 8,000–9,999, or the single range of 8,000–11,999 is le� in a corrupt state. (4a)
and (4b) show the corruption scenario when the power is lost during the track overwrite. (4a)
is identical to (3a) and shows the situation a�er track 1 of the band has been overwritten. (4b)
shows the situation where power is lost a�er blocks 4,000–4,999 have been overwritten. In this
case, block ranges 7,000–7,999, 5,000–6,999, and 11,000–11,999, or two ranges of 5,000–7,999 and
11,000–11,999 are le� in a corrupt state.

Similar to CMR drives, the throughput falls as we reach higher LBAs; unlike CMR drives,
there is a pattern that repeats throughout the graph, shown by the zoomed part.�is pattern has
an axis of symmetry indicated by the dotted vertical line at 2,264th second.�ere are eight distinct
plateaus to the le� and to the right of the axis with similar throughputs.�e �xed throughput in
a single plateau and a sharp change in throughput between plateaus suggest a wide radial stroke
and a head switch. Plateaus corresponds to large zones of size 18–20GiB, gradually decreasing to
4GiB as we approach higher LBAs. �e slight decrease in throughput in symmetric plateaus on
the right is due to moving from a larger to smaller radii, where sector per track count decreases;
therefore, throughput decreases as well.
We con�rmed these hypotheses using the head position graph shown in Figure 2.25 (a), which

corresponds to the time interval of the zoomed graph of Figure 2.22. Unlike with CMR drives,
where we could not observe head switches due to narrow radial strokes, with this DM-SMR drive
head switches are visible to an unaided eye. Figure 2.25 (a) shows that the head starts at the OD
and slowly moves towards the MD completing this inwards move at 1,457th second, indicated by
the vertical dotted line. At this point, the head has just completed a wide radial stroke reading gi-
gabytes from the top surface of the �rst platter, and it performs a jump back to the OD and starts

33

ata2.00: exception Emask 0x0 SAct 0x1000 SErr 0x0 action 0x0
ata2.00: irq_stat 0x40000008
ata2.00: failed command: READ FPDMA QUEUED
ata2.00: cmd 60/c0:60:40:1d:19/02:00:80:00:00/40 tag 12 ncq 360448 in

res 41/00:c0:f8:1e:19/00:02:80:00:00/00 Emask 0x401 (device error) <F>
ata2.00: status: { DRDY ERR }

Figure 2.24:Hard read error under Linux kernel 3.16 when reading a region a�ected by a torn write.

1,500 2,000 2,500 3,000

(a) Head Position at the Outer Diameter.

O
D

30,500 31,000 31,500

(b) Head Position at the Inner Diameter.

ID

14,500 15,000

(c) Head Position at the Middle Diameter.

M
D

Time (s)

Figure 2.25: Seagate-SMR head position during sequential reads at di�erent o�sets.

a similar stroke on the bottom surface of the �rst platter. �e direction of the head movement
indicates that the shingling direction is towards the ID at the OD.�e head completes the descent
through the platters at 2,264th second—indicated by the vertical solid line—and starts its ascent
reading surfaces in the reverse order.�ese wide radial strokes create “horizontal zones” that con-
sist of thousands of tracks on the same surface, as opposed to “vertical zones” spanning multiple
platters in CMR drives. We expect these horizontal zones to be the norm in DM-SMR drives,
since they facilitate SMR mechanisms like allocation of iso-capacity bands, static mapping, and
dynamic band size adjustment [68]. Figure 2.25 (b) corresponds to the end of Figure 2.22, shows
that the direction of the headmovement is reversed at the ID, indicating that both at theOD and at
the ID, shingling direction is towards the middle diameter. To our surprise, Figure 2.25 (c) shows
that a conventional serpentine layout with wide serpents is used at the MD. We speculate that al-
though the whole surface is managed as if it is shingled, there is a large region in the middle that
is not shingled.
It is hard to con�rm the shingling direction without observing the head movement.�e exis-

tence of “horizontal zones”, on the other hand, can also be con�rmed by contrasting the sequential
latency graphs of Seagate-SMR and Seagate-CMR. Figure 2.26 (a) shows the latency graph for the
zoomed region in Figure 2.22. As expected, the shape of latency graph matches the shape of the

34

5
5.5

6
6.5

7
7.5

8

1,500 1,800 2,100 2,400 2,700 3,000

(a) Seagate-SMR

L
at

en
cy

 (
m

s)

5
5.5

6
6.5

7
7.5

8

0 0.5 1 1.5 2 2.5 3 3.5

(b) Seagate-CMR

Time (s)

Figure 2.26: Sequential read latency of Seagate-CMRand Seagate-SMRcorresponding to a complete
cycle of ascent and descent through platter surfaces. While Seagate-CMR completes the cycle in
3.5 seconds, Seagate-SMR completes it in 1,800 seconds, since the latter reads thousands of tracks
from a single surface before switching to the next surface.

throughput graph mirrored around the x axis. Figure 2.26 (b), shows an excerpt from the latency
graph of Seagate-CMR that is also repeated throughout the latency graph. �is graph too has
a pattern that is mirrored at the center, also indicating a completed ascent and descent through
the surfaces. However, Seagate-CMR completes the cycle in 3.5 s since it reads only a few tracks
from each surface, whereas Seagate-SMR completes the cycle in 1,800 s, indicating that it reads
thousands of tracks from a single surface.
Smaller spikes at the graph of Seagate-CMR correspond to track switches, and higher spikes

correspond to head switches. While the extra 1ms head switch latency every few megabytes does
not a�ect the accuracy of emulation, it shows up in some of the tests, for example as the bump
around 4,030th MiB in Figure 2.19. Figure 2.26 also shows that the number of platters can be
inferred from the latency graph of sequential reads.

2.5 RelatedWork

Little has been published on the subject of system-level behavior of DM-SMR drives. Although
several works have discussed requirements and possibilities for use of shingled drives in sys-
tems [9, 114], only three papers to date present example translation layers and simulation re-
sults [29, 78, 118]. A range of STL approaches is found in the patent literature [40, 65, 68, 79],
but evaluation and analysis is lacking. Several SMR-speci�c �le systems have been proposed, such
as SMRfs [76], SFS [115], andHiSMRfs [98]. He andDu [81] propose a staticmapping tominimize
re-writes for in-place updates, which requires high guard overhead (20%) and assumes �le system
free space is contiguous in the upper LBA region. Pitchumani et al.[147] present an emulator im-
plemented as a Linux device mapper target that mimics shingled writing on top of a CMR drive.
Tan et al.[187] describe a simulation of S-blocks algorithm, with a more accurate simulator cali-

35

Drive Model

Property ST5000AS0011 ST8000AS0011

Drive Type SMR SMR
Persistent Cache Type Disk Disk
Cache Layout and Location Single, at the OD Single, at the OD
Cache Size 20GiB 25GiB
Cache Map Size 200,000 250,000
Band Size 17–36MiB 15–40MiB
Block Mapping Static Static
Cleaning Type Aggressive Aggressive
Cleaning Algorithm FIFO FIFO
Cleaning Time 0.6–1.6 s/band 0.6–1.6 s/band
Zone Structure 4–20GiB 5–40GiB
Shingling Direction Towards MD N/A

Table 2.3: Properties of the 5 TB and the 8 TB Seagate drives discovered using Skylight methodol-
ogy.�e benchmarks worked out of the box on the 8 TB drive. Since the 8 TB drive was on loan,
we did not drill a hole on it; therefore, shingling direction for it is not available.

brated with data from a real CMR drive. Shafaei et al.[172, 173] propose DM-SMR models based
on the Skylight work. Wu et al.[218, 219] evaluate the performance of host-aware SMR drives,
which are hybrid SMR drives that can present both block interface and zone interface.

�is work draws heavily on earlier disk characterization studies that have usedmicro-benchmarks
to elicit details of internal performance, such as [161], [77], [108], [186], [216]. Due to the presence
of a translation layer, however, the speci�c parameters examined in this work (and the micro-
benchmarks for measuring them) are di�erent.

2.6 Summary and Recommendations
As Table 2.3 shows, the Skylight methodology enables us to discover key properties of two drive-
managed SMR disks automatically. With manual intervention, it allows us to completely reverse
engineer a drive. �e purpose of doing so is not just to satisfy our curiosity, however, but to
guide both their use and evolution. In particular, we draw the following conclusions from our
measurements of the 5 TB Seagate drive:

• Write latency with the volatile cache disabled is high (Test 1).�is appears to be an artifact
of speci�c design choices rather than fundamental requirements, and we hope for it to drop
in later �rmware revisions.

• Sequential throughput (with the volatile cache disabled) is much lower (by 3× or more,
depending on write size) than for conventional drives. (We omitted these test results, as
performance is identical to the random writes in Test 1.) Due to the use of static mapping
(Test 12), achieving full sequential throughput requires enabling volatile cache.

• Random I/O throughput (with the volatile cache enabled or with high queue depth) is high
(Test 7)—15× that of the equivalent CMR drive.�is is a general property of any DM-SMR

36

drive using a persistent cache.
• �roughput may degrade precipitously when the cache �lls a�er many writes (Table 2.2).
�e point at which this occurs depends on write size and queue depth. (Although results
with the volatile cache enabled are not presented in § 2.4.6, they are similar to those for a
queue depth of 31.)

• Background cleaning begins a�er ≈1 second of idle time, and proceeds in steps requiring
0.6–45 seconds of idle time to clean a single band (§ 2.4.9).

• Sequential reads of randomly-written datawill result in random-like read performance until
cleaning completes (§ 2.4.4).

DM-SMR drives like the ones we studied should o�er good performance if the following con-
ditions are met: (a) the volatile cache is enabled or a high queue depth is used, (b) writes display
strong spatial locality, modifying only a few bands at any particular time, (c) non-sequential writes
(or all writes, if the volatile cache is disabled) occur in bursts of less than 16GB or 180,000 opera-
tions (Table 2.2), and (d) long powered-on idle periods are available for background cleaning.

�e extra capacity and low energy consumption of DM-SMR drives make them ideal for in-
creasing the cost-e�ectiveness of data storage in distributed storage systems. �is is only possi-
ble, however, by a running general-purpose �le system, such as ext4 or XFS, on top of DM-SMR
drives. Yet in this chapter, we have shown that DM-SMR drives have high block interface tax—
even amoderate amount of randomwrites leads to prohibitively high garbage collection overhead.
We expect the high block interface tax of DM-SMR drives to cause performance problems with
current �le systems, which have been optimized for CMR drives for decades.
In the next chapter, we �rst con�rm our hunch and then use our newly acquired knowledge

of DM-SMR drive internals to modify the ext4 �le system to avoid I/O patterns that ampli�es the
block interface tax.

37

38

Chapter 3

Reducing the Block Interface Tax in
DM-SMR Drives by Evolving Ext4

Distributed storage systems can avoid the block interface tax by either modifying �le systems to
work directly on zoned devices or by modifying �le systems to avoid I/O patterns that amplify the
block interface tax. In this chapter we take the latter approach and introduce a simple technique
that almost eliminates random writes in journaling �le systems. We demonstrate our technique
on the ext4 �le system and achieve signi�cant performance improvement on DM-SMR drives.

3.1 SMR Adoption and Ext4-Lazy Summary
�e industry has tried to address SMR adoption by introducing two kinds of SMR drive: drive-
managed (DM-SMR) and host-managed (HM-SMR). DM-SMR drives are a drop-in replacement
for conventional drives that o�er higher capacitywith the traditional block interface, but can su�er
performance degradation when subjected to non-sequential write tra�c. Unlike CMR drives that
have a lowbut consistent throughput under randomwrites, DM-SMRdrives o�er high throughput
for a short period followed by a precipitous drop, as shown in Figure 3.1. HM-SMR drives, on the
other hand, o�er the backward-incompatible zone interface that requires major changes to the I/O
stacks to allow SMR-aware so�ware to optimize their access pattern.
A new HM-SMR drive interface presents an interesting problem to storage researchers who

have already proposed new �le system designs based on it [98, 115][33]. It also presents a challenge
to the developers of existing �le systems [36, 57, 59] who have been optimizing their code for CMR
drives for years. �ere have been attempts to revamp mature Linux �le systems like ext4 and
XFS [35, 140, 141] to use the new zone interface, but these attempts have stalled due to the large
amount of redesign required.�e Log-Structured File System (LFS) [158], on the other hand, has
an architecture that can be most easily adapted to an HM-SMR drive. However, although LFS has
been in�uential, hard disk �le systems based on it [169][107] have not reached production quality
in practice [124, 159][135] .
In this work, we take an alternative approach to SMR adoption. Instead of redesigning for the

zone interface used by HM-SMR drives, we make an incremental change to a mature, high per-
formance �le system, to optimize its performance on a DM-SMR drive.�e systems community

39

0.03

0.3

3

30

0.01

0.1

1

10

0 100 200 300 400 500
T

h
ro

u
g
h
p
u
t

(M
iB

/s
)

Time (s)

ST5000AS0011
ST8000AS0002
ST4000LM016
WD40NMZW

WD5000YS

Figure 3.1: �roughput of CMR and DM-SMR drives from Table 3.1 under 4KiB random write
tra�c. CMR drive has a stable but low throughput under random writes. DM-SMR drive, on the
other hand, have a short period of high throughput followed by a continuous period of ultra-low
throughput.

Type Vendor Model Capacity Form Factor

DM-SMR Seagate ST8000AS0002 8 TB 3.5 inch
DM-SMR Seagate ST5000AS0011 5 TB 3.5 inch
DM-SMR Seagate ST4000LM016 4 TB 2.5 inch
DM-SMR Western Digital WD40NMZW 4TB 2.5 inch

CMR Western Digital WD5000YS 500GB 3.5 inch

Table 3.1: CMR and DM-SMR drives from two vendors used for evaluation.

is no stranger to taking a revolutionary approach when faced with a new technology [23], only to
discover that the existing system can be evolved to take the advantage of the new technology with
a little e�ort [24]. Following a similar evolutionary approach, we take the �rst step to optimize
the ext4 �le system for DM-SMR drives, observing that random writes are even more expensive
on these drives, and that metadata writeback is a key generator of it.
We introduce ext4-lazy, a small change to ext4 that eliminates most metadata writeback. Like

other journaling �le systems [152], ext4 writes metadata twice: As Figure 3.2 (a) shows, it �rst
writes themetadata block to a temporary location J in the journal and thenmarks the block as dirty
in memory. Once it has been in memory for long enough (controlled by /proc/sys/vm/dirty_
expire_centisecs in Linux), the writeback (or �usher) thread writes the block to its static loca-
tion S, resulting in a random write. Although metadata writeback is typically a small portion of
a workload, it results in many random writes, as Figure 3.3 shows. Ext4-lazy, on the other hand,
marks the block as clean a�er writing it to the journal, to prevent the writeback, and inserts a
mapping (S , J) to an in-memory map allowing the �le system to access the block in the journal,
as seen in Figure 3.2 (b). Ext4-lazy uses a large journal so that it can continue writing updated
blocks while reclaiming the space from the stale blocks. During mount, it reconstructs the in-
memory map from the journal resulting in a modest increase in mount time. Our results show
that ext4-lazy signi�cantly improves performance on DM-SMR drives, as well as on CMR drives

40

.

. .

.

J

(b) Journaling under ext4-lazy

Disk

Journal

Memory

12

Map

JS

(a) Journaling under ext4
Disk

Journal

Memory

1

2

J

S

Figure 3.2: (a) Ext4 writes a metadata block to disk twice. It �rst writes the metadata block to the
journal at some location J and marks it dirty in memory. Later, the writeback thread writes the
same metadata block to its static location S on disk, resulting in a random write. (b) Ext4-lazy,
writes the metadata block approximately once to the journal and inserts a mapping (S , J) to an
in-memory map so that the �le system can �nd the metadata block in the journal.

for metadata-heavy workloads.
Our key contribution in this work is the design, implementation, and evaluation of ext4-lazy

on DM-SMR and CMR drives. Our change is minimally invasive—we modify 80 lines of existing
code and introduce the new functionality in additional �les totaling 600 lines of C code. On a
metadata-light (≤ 1% of total writes) �le server benchmark, ext4-lazy increases DM-SMR drive
throughput by 1.7-5.4×. For directory traversal and metadata-heavy workloads it achieves 2-13×
improvement on both DM-SMR and CMR drives.
In addition, we make two contributions that are applicable beyond our proposed approach:
• For purely sequential write workloads, DM-SMR drives perform at full throughput and do
not su�er performance degradation. We identify the minimal sequential I/O size to trigger
this behavior for a popular DM-SMR drive.

• We show that for physical journaling [152], a small journal is a bottleneck for metadata-
heavy workloads. Based on our result, ext4 developers have increased the default journal
size from 128MiB to 1GiB for �le systems over 128GiB [193].

3.2 Background on the Ext4 File System
�e ext4 �le system evolved [111, 127] from ext2 [28], which was in�uenced by Fast File System
(FFS) [128]. Similar to FFS, ext2 divides the disk into cylinder groups—or as ext2 calls them, block
groups—and tries to put all blocks of a �le in the same block group. To further increase locality,
the metadata blocks (inode bitmap, block bitmap, and inode table) representing the �les in a block
group are also placedwithin the same block group, as Figure 3.4 (a) shows. Group descriptor blocks,
whose location is �xed within the block group, identify the location of these metadata blocks that
are typically located in the �rst megabyte of the block group.
In ext2 the size of a block group was limited to 128MiB—the maximum number of 4KiB data

blocks that a 4KiB block bitmap can represent. Ext4 introduced �exible block groups or �ex_

41

0

10

20

30

40

50

60

0 200 400 600 800 1,000 1,200

D
is

k
 O

ff
se

t
(G

iB
)

Time (s)

Data Write
Metadata Write

Figure 3.3: O�sets of data and metadata writes obtained with blktrace, when compiling Linux
kernel 4.6 with all of its modules on a fresh ext4 �le system.�e workload writes 12GiB of data,
185MiB of journal (omitted from the graph), and only 98MiB of metadata, making it 0.77% of
total writes.

bgs [111], a set of contiguous block groups (we assume the default size of 16 block groups per �ex_
bg) whose metadata is consolidated in the �rst 16MiB of the �rst block group within the set, as
shown in Figure 3.4 (b).

Ext4 ensures metadata consistency via journaling, however, it does not implement journaling
itself; rather, it uses a generic kernel layer called the Journaling Block Device [194] that runs in
a separate kernel thread called jbd2. In response to �le system operations, ext4 reads metadata
blocks fromdisk, updates them inmemory, and exposes them to jbd2 for journaling. For increased
performance, jbd2 batches metadata updates frommultiple �le system operations (by default, for
5 seconds) into a transaction bu�er and atomically commits the transaction to the journal—a
circular log of transactions with a head and tail pointer. A transaction may commit early if the
bu�er reaches maximum size, or if a synchronous write is requested. In addition to metadata
blocks, a committed transaction contains descriptor blocks that record the static locations of the
metadata blocks within the transaction. A�er a commit, jbd2 marks the in-memory copies of
metadata blocks as dirty so that the writeback threads would write them to their static locations.
If a �le system operation updates an in-memorymetadata block before its dirty timer expires, jbd2
writes the block to the journal as part of a new transaction and delays the writeback of the block
by resetting its timer.

On DM-SMR drives, when the metadata blocks are eventually written back, they dirty the
bands that are mapped to the metadata regions in a �ex_bg, as seen in Figure 3.4 (c).�e bottom
part of Figure 3.4 (c) shows the logical view of Seagate ST8000AS0002—an 8TB DM-SMR drive
we studied in Chapter 2. With an average band size of 30MiB, the drive has over 260,000 bands
with sectors staticallymapped to the bands, and a ≈ 25GiB persistent cache that is not visible to the
host (and not shown in �gure).�e STL in this drive detects sequential writes and starts streaming
them directly to the bands, bypassing the persistent cache. Random writes, however, end up in
the persistent cache, dirtying bands. Since a metadata region is not aligned with a band, metadata
writes to it may dirty zero, one, or two extra bands, depending on whether the metadata region
spans one or two bands and whether the data around the metadata region has been written.

42

(a) ext2 Block Group

Super Block Group Desc Block Bitmap Inode Bitmap Inode Table Data Blocks

Block Group 0 Block Group 1

Data Blocks Data Blocks

Block Group 2

Data Blocks

(b) ext4 flex_bg

Block Group 15

Data Blocks

Metadata for all block groups in a flex_bg ~ 16 MiB

~ 1 MiB ~ 127 MiB

2 GiB

flex_bg 0 flex_bg 1

Band 0 Band 49

flex_bg 3999

Band 266,565 Band 266,566

(c) Disk Layout of ext4 partition on an 8 TB DM-SMR drive

Figure 3.4: (a) In ext2, the �rst megabyte of a 128MiB block group contains the metadata blocks
describing the block group, and the rest is data blocks. (b) In ext4, a single �ex_bg concatenates
multiple (16 in this example) block groups into one giant block group and puts all of the metadata
in the �rst block group. (c) Modifying data in a �ex_bg will result in a metadata write that may
dirty one or two bands, seen at the boundary of bands 266,565 and 266,566.

3.3 Design and Implementation of ext4-lazy

We start by motivating ext4-lazy, follow with a high-level view of our design, and �nish with the
implementation details.

3.3.1 Motivation

�e motivation for ext4-lazy comes from two observations: (1) metadata writeback in ext4 results
in random writes that cause a signi�cant cleaning load on a DM-SMR drive, and (2) �le system
metadata comprises a small set of blocks, and hot (frequently updated)metadata is an even smaller
set.�e corollary of the latter observation is that managing hot metadata in a circular log several
times the size of hot metadata turns random writes into purely sequential writes, reducing the
cleaning load on a DM-SMR drive. We �rst give calculated evidence supporting the �rst observa-
tion and follow with empirical evidence for the second observation.
On an 8TB partition, there are about 4,000 �ex_bgs, the �rst 16MiB of each containing the

metadata region, as shown in Figure 3.4 (c). With a 30MiB band size, updating every �ex_bg
would dirty 4,000 bands on average, requiring cleaning of 120GiB worth of bands, generating
360GiB of disk tra�c. A workload touching 1/16 of the whole disk, that is 500GiB of �les, would
dirty at least 250 bands requiring 22.5GiB of cleaning work. �e cleaning load increases further
if we consider �oating metadata like extent tree blocks and directory blocks.
Tomeasure the hot metadata ratio, we emulated the I/O workload of a build server on ext4, by

running 128 parallel Compilebench [126] instances, and categorized all of the writes completed by
disk. Out of 433GiB total writes, 388GiB were data writes, 34GiB were journal writes, and 11 GiB
were metadata writes. �e total size of unique metadata blocks was 3.5 GiB, showing that it was
only 0.8% of total writes, and that 90% of journal writes were overwrites.

43

3.3.2 Design
At a high level, ext4-lazy adds the following components to ext4 and jbd2:

Map: Ext4-lazy tracks the location of metadata blocks in the journal with jmap—an in-memory
map that associates the static location S of a metadata block with its location J in the journal.�e
mapping is updatedwhenever ametadata block iswritten to the journal, as shown in Figure 3.2 (b).

Indirection: In ext4-lazy all accesses to metadata blocks go through jmap. If the most recent
version of a block is in the journal, there will be an entry in jmap pointing to it; if no entry is
found, then the copy at the static location is up-to-date.

Cleaner:�e cleaner in ext4-lazy reclaims space from locations in the journal which have become
stale, that is, invalidated by the writes of new copies of the same metadata block.
Map reconstruction on mount: On every mount, ext4-lazy reads the descriptor blocks from the
transactions between the tail and the head pointer of the journal and populates jmap.

3.3.3 Implementation
We now detail our implementation of the above components and the trade-o�s we make during
the implementation. We implement jmap as a standard Linux red-black tree [113] in jbd2. A�er
jbd2 commits a transaction, it updates jmap with each metadata block in the transaction and
marks the in-memory copies of those blocks as clean so they will not be written back. We add
indirect lookup of metadata blocks to ext4 by changing the call sites that read metadata blocks
to use a function which looks up the metadata block location in jmap, as shown in Listing 3.1,
modifying 40 lines of ext4 code in total.

- submit_bh(READ | REQ_META | REQ_PRIO, bh);
+ jbd2_submit_bh(journal, READ | REQ_META | REQ_PRIO, bh);

Listing 3.1: Adding indirection to a call site reading a metadata block.

�e indirection allows ext4-lazy to be backward-compatible and gradually move metadata
blocks to the journal. However, the primary reason for indirection is to be able tomigrate cold (not
recently updated) metadata back to its static location during cleaning, leaving only hot metadata
in the journal.
We implement the cleaner in jbd2 in just 400 lines of C, leveraging the existing functionality.

In particular, the cleaner merely reads live metadata blocks from the tail of the journal and adds
them to the transaction bu�er using the same interface used by ext4. For each transaction it keeps
a doubly-linked list that links jmap entries containing live blocks of the transaction. Updating a
jmap entry invalidates a block and removes it from the corresponding list. To clean a transaction,
the cleaner identi�es the live blocks of a transaction in constant time using the transaction’s list,
reads them, and adds them to the transaction bu�er.�e beauty of this cleaner is that it does not
“stop-the-world”, but transparently mixes cleaning with regular �le system operations causing no
interruptions to them, as if cleaning was just another operation. We use a simple cleaning policy—
a�er committing a �xed number of transactions, clean a �xed number of transactions—and leave
sophisticated policy development, such as hot and cold separation, for future work.

44

10
0

10
1

10
2

10
3

T
im

e
 (

s)
ext4-stock

ext4-baseline

Figure 3.5: Completion time for a benchmark
creating 100,000 �les on ext4-stock (ext4 with
128MiB journal) and on ext4-baseline (ext4
with 10GiB journal).

0

0.5

1

0 150 300 450

D
ir

ty
 P

ag
es

 (
G

iB
)

Time (s)

ext4-stock
ext4-baseline

Figure 3.6: �e volume of dirty pages dur-
ing benchmark runs obtained by sampling
/proc/meminfo every second on ext4-stock
and ext4-baseline.

Map reconstruction is a small change to the recovery code in jbd2. Stock ext4 resets the journal
on a normal shutdown; �nding a non-empty journal on mount is a sign of crash and triggers the
recovery process. With ext4-lazy, the state of the journal represents the persistent image of jmap,
therefore, ext4-lazy never resets the journal and always “recovers”. In our prototype, ext4-lazy
reconstructs the jmap by reading descriptor blocks from the transactions between the tail and
head pointer of the journal, which takes ≈ 5 seconds when the space between the head and tail
pointer is ≈ 1 GiB.

3.4 Evaluation
We run all experiments on a system with a quad-core Intel i7-3820 (Sandy Bridge) 3.6GHz CPU,
16GB of RAM running Linux kernel 4.6 on the Ubuntu 14.04 distribution, using the drives listed
in Table 3.1. To reduce the variance between runs, we unmount the �le system between runs,
always start with the same �le system state, disable lazy initialization (mkfs.ext4 -E lazy_
itable_init=0,lazy_journal_init=0 /dev/<dev>) when formatting ext4 partitions, and �x
the writeback cache ratio [227] for our disks to 50% of the total—by default, this ratio is computed
dynamically from the writeback throughput [192]. We repeat every experiment at least �ve times
and report the average and standard deviation of the runtime.

3.4.1 Journal Bottleneck
Since it a�ects our choice of baseline, we start by showing that for metadata-heavy workloads, the
default 128MiB journal of ext4 is a bottleneck. We demonstrate the bottleneck on the CMR drive
WD5000YS from Table 3.1 by creating 100,000 small �les in over 60,000 directories, using Create-
Filesmicrobenchmark from Filebench [188].�e workload size is ≈ 1 GiB and �ts in memory.
Although ext4-lazy uses a large journal by de�nition, since enabling a large journal on ext4 is

45

a command-line option to mkfs, we choose ext4 with a 10GiB journal (created by passing ‘‘-J
size=10240’’ to mkfs.ext4) as our baseline. In the rest of this paper, we refer to ext4 with the
default journal size of 128MiB as ext4-stock, and we refer to ext4 with 10GiB journal as ext4-
baseline.

We measure how fast ext4 can create the �les in memory and do not consider the writeback
time. Figure 3.5 shows that on ext4-stock the benchmark completes in ≈ 460 seconds, whereas on
ext4-baseline it completes 46× faster, in ≈ 10 seconds. Next we show how a small journal becomes
a bottleneck.

�e ext4 journal is a circular log of transactions with a head and tail pointer (§ 3.2). As the �le
system performs operations, jbd2 commits transactions to the journal, moving the head forward.
A committed transaction becomes checkpointed when every metadata block in it is either written
back to its static location due to a dirty timer expiration, or it is written to the journal as part of a
newer transaction. To recover space, at the end of every commit jbd2 checks for transactions at the
tail that have been checkpointed, and when possible moves the tail forward. On a metadata-light
workloadwith a small journal and default dirty timer, jbd2 always �nds checkpointed transactions
at the tail and recovers the space without doing work. However, on a metadata-heavy workload,
incoming transactions �ll the journal before the transactions at the tail have been checkpointed.
�is results in a forced checkpoint, where jbd2 synchronously writes metadata blocks at the tail
transaction to their static locations and then moves the tail forward, so that a new transaction can
start [194].

We observe the �le system behavior while running the benchmark by enabling tracepoints in
the jbd2 code (/sys/kernel/debug/tracing/events/jbd2/). On ext4-stock, the journal �lls
in 3 seconds, and from then on until the end of the run, jbd2 moves the tail by performing forced
checkpoints. On ext4-baseline the journal never becomes full and no forced checkpoints happen
during the run.

Figure 3.6 shows the volume of dirtied pages during the benchmark runs. On ext4-baseline,
the benchmark creates over 60,000 directories and 100,000 �les, dirtying about 1 GiB worth of
pages in 10 seconds. On ext4-stock, directories are created in the �rst 140 seconds. Forced check-
points still happen during this period, but they complete fast, as the small steps in the �rst 140
seconds show. Once the benchmark starts �lling directories with �les, the block groups �ll and
writes spread out to a larger number of block groups across the disk. �erefore, forced check-
points start taking as long as 30 seconds, as indicated by the large steps, during which the �le
system stalls, no writes to �les happen, and the volume of dirtied pages stays �xed.

�is result shows that for disks, a small journal is a bottleneck for metadata-heavy bu�ered
I/O workloads, as the journal wraps before metadata blocks are written to disk, and �le system
operations are stalled until the journal advances via synchronous writeback of metadata blocks.
With a su�ciently large journal, all transactions will be written back before the journal wraps.
For example, for a 190MiB/s disk and a 30 second dirty timer, a journal size of 30s × 190MiB/s =
5,700MiB will guarantee that when the journal wraps, the transactions at the tail will be check-
pointed. Having established our baseline, we move on to evaluation of ext4-lazy.

46

10
20
30
40
50

MakeDirs ListDirs TarDirs RemoveDirs

T
im

e
(m

in
)

ext4-baseline ext4-lazy

10
20
30
40
50

CreateFiles FindFiles TarFiles RemoveFiles

T
im

e
(m

in
)

Figure 3.7:Microbenchmark runtimes on ext4-baseline and ext4-lazy.

0

200

400

0 50 100 150 200 250

D
is

k
 O

ff
se

t
(G

iB
)

(a) MakeDirs/ext4-baseline

Metadata Read Metadata Write Journal Write

0

200

400

0 500 1,000 1,500 2,000

D
is

k
 O

ff
se

t
(G

iB
)

(c) RemoveDirs/ext4-baseline

Metadata Read Metadata Write Journal Write

0

200

400

0 50 100 150 200 250

D
is

k
 O

ff
se

t
(G

iB
)

Time (s)

(b) MakeDirs/ext4-lazy

Metadata Read Journal Write

0

200

400

0 500 1,000 1,500 2,000

D
is

k
 O

ff
se

t
(G

iB
)

Time (s)

(d) RemoveDirs/ext4-lazy

Metadata Read Journal Write

Figure 3.8:Disk o�sets of I/O operations during MakeDirs and RemoveDirs microbenchmarks on
ext4-baseline and ext4-lazy. Metadata reads and writes are spread out while journal writes are at
the center. �e dots have been scaled based on the I/O size. In part (d), journal writes are not
visible due to low resolution.�ese are pure metadata workloads with no data writes.

3.4.2 Ext4-lazy on a CMRDrive

We�rst evaluate ext4-lazy on theCMRdriveWD5000YS fromTable 3.1 via a series ofmicrobench-
marks and a �le server macrobenchmark. We show that on a CMR drive, ext4-lazy provides a sig-
ni�cant speedup for metadata-heavy workloads, and speci�cally for massive directory traversal
workloads. On metadata-light workloads, however, ext4-lazy does not have much impact.

Microbenchmarks

We evaluate directory traversal and �le/directory create operations using the following bench-
marks.MakeDirs creates 800,000 directories in a directory tree of depth 10. ListDirs runs ls -lR
on the directory tree. TarDirs creates a tarball of the directory tree, and RemoveDirs removes the
directory tree. CreateFiles creates 600,000 4KiB �les in a directory tree of depth 20. FindFiles

47

Metadata Reads Metadata Writes Journal Writes

MakeDirs/ext4-baseline 143.7±2.8MiB 4,631±33.8MiB 4,735±0.1MiB
MakeDirs/ext4-lazy 144±4MiB 0MiB 4,707±1.8MiB
RemoveDirs/ext4-baseline 4,066.4±0.1MiB 322.4±11.9MiB 1,119±88.6MiB
RemoveDirs/ext4-lazy 4,066.4±0.1MiB 0MiB 472±3.9MiB

Table 3.2: Distribution of the I/O types with MakeDirs and RemoveDirs benchmarks running on
ext4-baseline and ext4-lazy.

runs find on the directory tree. TarFiles creates a tarball of the directory tree, and RemoveFiles
removes the directory tree. MakeDirs and CreateFiles—microbenchmarks from Filebench—run
with 8 threads and execute sync at the end. All benchmarks start with a cold cache obtained by
executing echo 3 > /proc/sys/vm/drop_caches as root.
Benchmarks that are in the �le/directory create category (MakeDirs, CreateFiles) complete

1.5-2× faster on ext4-lazy than on ext4-baseline, while the remaining benchmarks that are in the
directory traversal category, except TarFiles, complete 3-5× faster, as seen in Figure 3.7. We choose
MakeDirs and RemoveDirs as a representative of each category and analyze their performance in
detail.
MakeDirs on ext4-baseline results in ≈ 4,735MiB of journal writes that are transaction com-

mits containing metadata blocks, as seen in the �rst row of Table 3.2 and at the center in Fig-
ure 3.8 (a); as the dirty timer on the metadata blocks expires, they are written to their static loca-
tions, resulting in a similar amount of metadata writeback.�e block allocator is able to allocate
large contiguous blocks for the directories, because the �le system is fresh.�erefore, in addition
to journal writes, metadata writeback is sequential as well.�e write time dominates the runtime
in this workload, hence, by avoidingmetadata writeback and writing only to the journal, ext4-lazy
halves the writes as well as the runtime, as seen in the second row of Table 3.2 and Figure 3.8 (b).
On an aged �le system, the metadata writeback is more likely to be random, resulting in even
higher improvement on ext4-lazy.
An interesting observation about Figure 3.8 (b) is that although the total volume of metadata

reads—shown as periodic vertical spreads—is ≈ 140MiB (3% of total I/O in the second row of
Table 3.2), they consume over 30% of runtime due to long seeks across the disk. In this bench-
mark, the metadata blocks are read from their static locations because we run the benchmark on
a fresh �le system, and themetadata blocks are still at their static locations. As we show next, once
the metadata blocks migrate to the journal, reading them is much faster since no long seeks are
involved.
In RemoveDirs benchmark, on both ext4-baseline and ext4-lazy, the disk reads ≈ 4,066MiB

of metadata, as seen in the last two rows of Table 3.2. However, on ext4-baseline the metadata
blocks are scattered all over the disk, resulting in long seeks as indicated by the vertical spread in
Figure 3.8 (c), while on ext4-lazy they are within the 10GiB region in the journal, resulting in only
short seeks, as Figure 3.8 (d) shows. Ext4-lazy also bene�ts from skippingmetadata writeback, but
most of the improvement comes from eliminating long seeks for metadata reads.�e signi�cant
di�erence in the volume of journal writes between ext4-baseline and ext4-lazy seen in Table 3.2 is
caused by metadata write coalescing: since ext4-lazy completes faster, there are more operations

48

Data Writes Metadata Writes Journal Writes

ext4-baseline 34,185±10.3MiB 480±0.2MiB 1,890±18.6MiB
ext4-lazy 33,878±9.8MiB 0MiB 1,855±15.4MiB

Table 3.3:Distribution of write types completed by the disk during Postmark run on ext4-baseline
and ext4-lazy. Metadata writes make 1.3% of total writes in ext4-baseline, only 1/3 of which is
unique.

in each transaction, withmanymodifying the samemetadata blocks, each of which is only written
once to the journal.

�e improvement in the remaining benchmarks, are also due to reducing seeks to a small
region and avoiding metadata writeback. We do not observe a dramatic improvement in TarFiles,
because unlike the rest of the benchmarks that read only metadata from the journal, TarFiles also
reads data blocks of �les that are scattered across the disk.
Massive directory traversal workloads are a constant source of frustration for users of most

�le systems [11, 72, 120, 144, 171]. One of the biggest bene�ts of consolidating metadata in a small
region is an order of magnitude improvement in such workloads, which to our surprise was not
noticed by previous work [145, 156, 224]. On the other hand, the above results are obtainable
in the ideal case that all of the directory blocks are hot and therefore kept in the journal. If, for
example, some part of the directory is cold and the policy decides to move those blocks to their
static locations, removing such a directory will incur an expensive traversal.

File Server Macrobenchmark

We �rst show that ext4-lazy slightly improves the throughput of a metadata-light �le server work-
load. Next we try to reproduce a result from previous work without success.
To emulate a �le server workload, we �rst started with the Fileserver macrobenchmark from

Filebench, but we encountered bugs for large con�gurations.�e development on Filebench has
been recently restarted and the recommended version is still in alpha stage.�erefore, we decided
to use Postmark [102], with some modi�cations.
Like the Fileserver macrobenchmark from Filebench, Postmark �rst creates a working set of

�les and directories and then executes transactions like reading, writing, appending, deleting, and
creating �les on the working set. We modify Postmark to execute sync a�er creating the working
set, so that the writeback of the working set does not interfere with transactions. We also modify
Postmark not to delete the working set at the end, but to run sync, to avoid high variance in
runtime due to the race between deletion and writeback of data.
Our Postmark con�guration creates a working set of 10,000 �les spread sparsely across 25,000

directories with �le sizes ranging from 512 bytes to 1MiB, and then executes 100,000 transactions
with the I/O size of 1MiB. During the run, Postmark writes 37.89GiB of data and reads 31.54GiB
of data from user space. Because ext4-lazy reduces the amount of writes, to measure its e�ect, we
focus on writes.
Table 3.3 shows the distribution of data writes completed by the disk while the benchmark is

running on ext4-baseline and on ext4-lazy. On ext4-baseline, metadata writes comprise 1.3% of

49

20

30

40

50

0 200 400 600 800 1,000 1,200 1,400T
h
ro

u
g
h
p
u
t

(M
iB

/s
)

ext4-baseline
ext4-lazy

0

200

400

0 200 400 600 800 1,000 1,200 1,400

D
is

k
 O

ff
se

t
(G

iB
)

Time (s)

Data Write Metadata Write Journal Write

Figure 3.9:�e top graph shows the throughput of the disk during a Postmark run on ext4-baseline
and ext4-lazy. �e bottom graph shows the o�sets of write types during ext4-baseline run. �e
graph does not re�ect sizes of the writes, but only their o�sets.

total writes, all of which ext4-lazy avoids. As a result, the disk sees 5% increase in throughput
on ext4-lazy from 24.24MiB/s to 25.47MiB/s and the benchmark completes 100 seconds faster
on ext4-lazy, as the throughput graph in Figure 3.9 shows.�e increase in throughput is modest
because the workload spreads out the �les across the disk resulting in tra�c that is highly non-
sequential, as data writes in the bottom graph of Figure 3.9 show. �erefore, it is not surprising
that reducing random writes of a non-sequential write tra�c by 1.3% results in a 5% throughput
improvement. However, the same randomwrites result in extra cleaningwork forDM-SMRdrives
(§ 3.3.1).
Previous work [145] that writes metadata only once reports performance improvements even

in a metadata-light workloads, like kernel compile. �is has not been our experience. We com-
piled Linux kernel 4.6 with all its modules on ext4-baseline and observed that it generated 12GiB
of data writes and 185MiB of journal writes. At 98MiB, metadata writes comprised only 0.77%
of total writes completed by the disk.�is is expected, since metadata blocks are cached in mem-
ory, and because they are journaled, unlike data pages their dirty timer is reset whenever they are
modi�ed (§ 3.3), delaying their writeback. Furthermore, even on a systemwith 8 hardware threads
running 16 parallel jobs, we found kernel compile to be CPU-bound rather than disk-bound, as
Figure 3.10 shows. Given that reducing writes by 1.3% on a workload that utilized the disk 100%
resulted in only 5% increase in throughput (Figure 3.9), it is not surprising that reducing writes
by 0.77% on such a low-utilized disk does not cause improvement.

3.4.3 Ext4-lazy on DM-SMR Drives

We show that unlike CMR drives, where ext4-lazy had a big impact on just metadata-heavy work-
loads, on DM-SMR drives it provides signi�cant improvement on both, metadata-heavy and
metadata-light workloads. We also identify the minimal sequential I/O size to trigger streaming
writes on a popular DM-SMR drive.
An additional critical factor for �le systems when running on DM-SMR drives is the cleaning

50

0
25
50
75

100

0 200 400 600 800 1,000 1,200 1,400

U
ti

li
z
a
ti

o
n
 (

%
)

Time (s)

CPU Disk

Figure 3.10:Disk and CPU utilization sampled from iostat output every second, while compiling
Linux kernel 4.6 including all its modules, with 16 parallel jobs (make -j16) on a quad-core Intel
i7-3820 (Sandy Bridge) CPU with 8 hardware threads.

15

30

45

60

MakeDirs ListDirs TarDirs RemoveDirs

T
im

e
(m

in
)

ext4-baseline run
ext4-baseline clean

ext4-lazy run
ext4-lazy clean

5
10
15
20
25

CreateFiles FindFiles TarFiles RemoveFiles

T
im

e
(m

in
)

Figure 3.11:Microbenchmark runtimes and cleaning times on ext4-baseline and ext4-lazy running
on a DM-SMR drive. Cleaning time is the additional time a�er the benchmark run that the DM-
SMR drive was busy cleaning.

time a�er a workload. A �le system resulting in a short cleaning time gives the drive a better
chance of emptying the persistent cache during idle times of a bursty I/O workload, and has a
higher chance of continuously performing at the persistent cache speed, whereas a �le system
resulting in a long cleaning time is more likely to force the drive to interleave cleaning with �le
system user work.
In the next section we show microbenchmark results on just one of the DM-SMR drives—

ST8000AS0002 from Table 3.1. At the end of every benchmark, we run a vendor provided script
that polls the disk until it has completed background cleaning and reports the total cleaning time,
which we report in addition to the benchmark runtime. We achieve similar normalized results
for the remaining drives.

Microbenchmarks

Figure 3.11 shows results of the microbenchmarks (§ 3.4.2) repeated on ST8000AS0002 with a
2 TB partition, on ext4-baseline and ext4-lazy. MakeDirs and CreateFiles do not �ll the persistent
cache, therefore, they typically complete 2-3× faster than on CMR drive. Similar to CMR drive,
MakeDirs and CreateFiles are 1.5-2.5× faster on ext4-lazy. On the other hand, the remaining di-

51

rectory traversal benchmarks, ListDir for example, completes 13× faster on ext4-lazy, compared
to being 5× faster on CMR drive.

�e cleaning times for ListDirs, FindFiles, TarDirs, and TarFiles are zero because they do not
write to disk. (TarDirs and TarFiles write their output to a di�erent disk.) However, cleaning time
forMakeDirs on ext4-lazy is zero as well, compared to ext4-baseline’s 846 seconds, despite having
written over 4GB of metadata, as Table 3.2 shows. Being a pure metadata workload, MakeDirs
on ext4-lazy consists of journal writes only, as Figure 3.8 (b) shows, all of which are streamed,
bypassing the persistent cache and resulting in zero cleaning time. Similarly, cleaning time for
RemoveDirs and RemoveFiles are 10-20 seconds on ext4-lazy compared to 590-366 seconds on
ext4-baseline, because these too are pure metadata workloads resulting in only journal writes for
ext4-lazy. During deletion, however, some journal writes are small and end up in persistent cache,
resulting in short cleaning times.
We con�rmed that the drive was streaming journal writes in previous benchmarks by repeat-

ing the MakeDirs benchmark on the DM-SMR drive with an observation window shown in Fig-
ure 2.3 and watching the head movement. We �rst identi�ed the physical location of the journal
on the platter by observing the head while reading the journal blocks. We then observed that
shortly a�er starting the MakeDirs benchmark, the head moved to the physical location of the
journal on the platter and remained there until the end of the benchmark.�is observation lead
to Test 15 for identifying the minimal sequential write size that triggers streaming. Using this test,
we found that sequential writes of at least 8MiB in size are streamed. We also observed that a
single 4KiB random write in the middle of a sequential write disrupted streaming and moved the
head to the persistent cache; soon the head moved back and continued streaming.

Test 15: Identify the minimal sequential write size for streaming
1 Choose identi�able location L on the platter
2 Start with a large sequential write size S
3 do

Write S bytes sequentially at L
S = S - 1MiB

whileHead moves to L and stays there until the end of the write
4 S = S + 1MiB
5 Minimal sequential write size for streaming is S

File Server Macrobenchmark

We show that on DM-SMR drives the bene�t of ext4-lazy increases with the partition size and
ext4-lazy achieves a signi�cant speedup on a variety of DM-SMR drives with di�erent STLs and
persistent cache sizes.
Table 3.4 shows the distribution of write types completed by a ST8000AS0002 DM-SMR drive

with a 400GB partition during the �le server macrobenchmark (§ 3.4.2). On ext4-baseline, meta-
datawritesmake up 1.6%of totalwrites. Although the unique amount ofmetadata is only≈ 120MiB,
as the storage slows down, metadata writeback increases slightly, because each operation takes a
long time to complete and the writeback of a metadata block occurs before the dirty timer is reset.

52

Data Writes Metadata Writes Journal Writes

ext4-baseline 32,917±9.7MiB 563±0.9MiB 1,212±12.6MiB
ext4-lazy 32,847±9.3MiB 0MiB 1,069±11.4MiB

Table 3.4:Distribution of write types completed by a ST8000AS0002DM-SMRdrive during a Post-
mark run on ext4-baseline and ext4-lazy. Metadata writes make up 1.6% of total writes in ext4-
baseline, only 1/5 of which is unique.

0

50

100

150

200

0 200 400 600 800 1,000T
h
ro

u
g
h
p
u
t

(M
iB

/s
)

ext4-baseline
ext4-lazy

0

200

400

0 200 400 600 800 1,000D
is

k
 O

ff
se

t
(G

iB
)

Time (s)

Data Write Metadata Write Journal Write

Figure 3.12:�e top graph shows the throughput of a ST8000AS0002DM-SMRdrive with a 400GB
partition during a Postmark run on ext4-baseline and ext4-lazy. �e bottom graph shows the
o�sets of write types during the run on ext4-baseline. �e graph does not re�ect sizes of the
writes, but only their o�sets.

Unlike on the CMR drive, the e�ect is profound on the ST8000AS0002 DM-SMR drive.�e
benchmark completes more than 2× faster on ext4-lazy, in 461 seconds, as seen in Figure 3.12. On
ext4-lazy, the drive sustains 140MiB/s throughput and �lls the persistent cache in 250 seconds,
and then drops to a steady 20MiB/s until the end of the run. On ext4-baseline, however, the large
number of small metadata writes reduce throughput to 50MiB/s taking the drive 450 seconds
to �ll the persistent cache. Once the persistent cache �lls, the drive interleaves cleaning and �le
systemuserwork, and smallmetadatawrites become prohibitively expensive, as seen, for example,
between seconds 450-530. During this periodwe do not see any data writes, because the writeback
thread alternates between page cache and bu�er cache when writing dirty blocks, and it is the
bu�er cache’s turn. We do, however, see journal writes because jbd2 runs as a separate thread and
continues to commit transactions.

�e benchmark completes even slower on a full 8 TB partition, as seen in Figure 3.13 (a), be-
cause ext4 spreads the same workload over more bands. With a small partition, updates to dif-
ferent �les are likely to update the same metadata region.�erefore, cleaning a single band frees
more space in the persistent cache, allowing it to accept more random writes. With a full parti-
tion, however, updates to di�erent �les are likely to update di�erent metadata regions; now the
cleaner has to clean a whole band to free a space for a single block in the persistent cache. Hence,
a�er an hour of ultra-low throughput due to cleaning, it recovers slightly towards the end, and the

53

0

50

100

150

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

(a) Seagate ST8000AS0002

ext4-baseline
ext4-lazy

0

50

100

150

0 1,000 2,000 3,000 4,000 5,000

(b) Seagate ST4000LM016

ext4-baseline
ext4-lazy

0

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

D
is

k
 O

ff
se

t
(T

iB
)

Data Write Metadata Write Journal Write

0
1
2
3
4

0 1,000 2,000 3,000 4,000 5,000

Data Write Metadata Write Journal Write

0

50

100

150

0 1,000 2,000 3,000 4,000 5,000 6,000T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

(c) Seagate ST5000AS0011

ext4-baseline
ext4-lazy

0

50

100

150

0 500 1,000 1,500 2,000

(d) Western Digital WD40NMZW

ext4-baseline
ext4-lazy

0

0 1,000 2,000 3,000 4,000 5,000 6,000

D
is

k
 O

ff
se

t
(T

iB
)

Time (s)

Data Write Metadata Write Journal Write

0

0 500 1,000 1,500 2,000
Time (s)

Data Write Metadata Write Journal Write

Figure 3.13: �e top graphs show the throughput of four DM-SMR drives on a full disk partition
during a Postmark run on ext4-baseline and ext4-lazy. Ext4-lazy provides a speedup of 5.4× 2×,
2×, 1.7× in parts (a), (b), (c), and (d), respectively. �e bottom graphs show the o�sets of write
types during ext4-baseline run.�e graphs do not re�ect sizes of the writes, but only their o�sets.

0

20

40

60

80

100

Create Read Append Delete

T
h

ro
u

g
h

p
u

t
(o

p
s/

s)

Seagate ST8000AS0002

ext4-baseline ext4-lazy

0

20

40

60

80

100

Create Read Append Delete

Seagate ST4000LM016

ext4-baseline ext4-lazy

0

20

40

60

80

100

Create Read Append Delete

T
h

ro
u

g
h

p
u

t
(o

p
s/

s)

Seagate ST5000AS0011

ext4-baseline ext4-lazy

0

20

40

60

80

100

Create Read Append Delete

Western Digital WD40NMZW

ext4-baseline ext4-lazy

Figure 3.14: Postmark reported transaction throughput numbers for ext4-baseline and ext4-lazy
running on four DM-SMR drives with a full disk partition. Only includes numbers from the
transaction phase of the benchmark.

54

benchmark completes 5.4× slower on ext4-baseline.
On the ST4000LM016 DM-SMR drive, the benchmark completes 2× faster on ext4-lazy, as

seen in Figure 3.13 (b), because the drive throughput is almost always higher than on ext4-baseline.
With ext4-baseline, the drive enters a long period of cleaning with ultra-low throughput at 2,000th
second and recovers around 4,200th second completing the benchmark with higher throughput.
We observe a similar phenomenon on the ST5000AS0011 DM-SMR drive, as shown in Fig-

ure 3.13 (c). Unlike with ext4-baseline that continues with a low throughput until the end of the
run, with ext4-lazy the cleaning cycle eventually completes and the workload �nishes 2× faster.

�e last DM-SMR drive in our list, WD40NMZW model found in My Passport Ultra from
Western Digital [197], shows a di�erent behavior from previous disks, suggesting a di�erent STL
design. We think it is using an S-blocks-like architecture [29] with dynamic mapping that enables
cheaper cleaning (§ 2.2). Unlike previous drives that clean only when idle or when the persistent
cache is full, WD40NMZW seems to regularlymix cleaning with �le system user work.�erefore,
its throughput is not as high as the Seagate drives initially, but a�er the persistent cache becomes
full, it does not su�er as sharp of a drop and its steady-state throughput is higher. Nevertheless,
with ext4-lazy the disk achieves 1.4-2.5× increase in throughput over ext4-baseline, depending on
the state of the persistent cache, and the benchmark completes 1.7× faster.
Figure 3.14 shows Postmark transaction throughput numbers for the runs. All of the drives

show a signi�cant improvementwith ext4-lazy. An interesting observation is that, whilewith ext4-
baseline WD40NMZW is 2× faster than ST8000AS0002, with ext4-lazy the situation is reversed
and ST8000AS0002 is 2× faster than WD40NMZW, and fastest overall.

3.4.4 Performance Overhead of Ext4-Lazy
Indirection Overhead: To determine the overhead of in-memory jmap lookup, we populated
jmap with 10,000 mappings pointing to random blocks in the journal, and measured the total
time to read all of the blocks in a �xed random order. We then measured the time to read the
same random blocks directly, skipping the jmap lookup, in the same order. We repeated each
experiment �ve times, starting with a cold cache every time, and found no di�erence in total time
read time—reading from disk dominated the total time of the operation.
Memory Overhead: A single jmap entry consists of a red-black tree node (3×8 bytes), a doubly-
linked list node (2×8 bytes), a mapping (12 bytes), and a transaction id (4 bytes), occupying 56
bytes in memory. Hence, for example, a million-entry jmap that canmap 3.8GiB of hot metadata,
requires 53MiB of memory. Although this is already a modest overhead for today’s systems, it can
further be reduced with memory-e�cient data structures.
SeekOverhead:�e rationale for introducing cylinder groups in FFS, whichmanifest themselves
as block groups in ext4, was to create clusters of inodes that are spread over the disk close to the
blocks that they reference, to avoid long seeks between an inode and its associated data [129].
Ext4-lazy, however, puts hot metadata in the journal located at the center of the disk, requiring a
half-seek to read a �le in theworst case.�e TarFiles benchmark (§ 3.4.2) shows that when reading
�les from a large and deep directory tree, where directory traversal time dominates, putting the
metadata at the center wins slightly over spreading it out. To measure the seek overhead on a
shallow directory, we created a directory with 10,000 small �les located at the outer diameter of
the disk on ext4-lazy, and starting with a cold cache creating the tarball of the directory. We

55

observed that since �les were created at the same time, their metadata was written sequentially to
the journal.�e code for reading metadata blocks in ext4 uses readahead since the introduction
of �ex_bgs. As a result, the metadata of all �les was brought into the bu�er cache in just 3 seeks.
A�er �ve repetitions of the experiment on ext4-baseline an ext4-lazy, the average times were 103
seconds and 101 seconds, respectively.
Cleaning Overhead: In our benchmarks, the 10GiB journal always contained less than 10% live
metadata. �erefore, most of the time the cleaner reclaimed space simply by advancing the tail.
We kept reducing the journal size and the �rst noticeable slowdown occurred with a journal size
of 1.4 GiB, that is, when the live metadata was ≈ 70% of the journal.

3.5 RelatedWork
Researchers have tinkered with the idea of separating metadata from data and managing it di�er-
ently in local �le systems before. Like many other good ideas, it may have been ahead of its time
because the technology that would bene�t most from it did not exist yet, preventing adoption.

�e Multi-Structured File System[133] (MFS) is the �rst �le system proposing the separation
of data and metadata. It was motivated by the observation that the �le system I/O is becoming
a bottleneck because data and metadata exert di�erent access patterns on storage, and a single
storage system cannot respond to these demands e�ciently.�erefore, MFS puts data and meta-
data on isolated disk arrays, and for each data type it introduces on-disk structures optimized for
the respective access pattern. Ext4-lazy di�ers from MFS in two ways: (1) it writes metadata as a
log, whereas MFS overwrites metadata in-place; (2) facilitated by (1), ext4-lazy does not require a
separate device for storing metadata in order to achieve performance improvements.
DualFS [145] is a �le system in�uenced by MFS—it also separates data and metadata. Unlike

MFS, however, DualFS uses well known data structures for managing each data type. Speci�cally,
it combines an FFS-like [128] �le system for managing data, and LFS-like [158] �le system for
managing metadata. hFS [224] improves on DualFS by also storing small �les in a log along with
metadata, thus exploiting disk bandwidth for small �les. Similar to these �le systems ext4-lazy sep-
arates metadata and data, but unlike them it does not con�ne metadata to a log—it uses a hybrid
design where metadata can migrate back and forth between �le system and log as needed. How-
ever, what really sets ext4-lazy apart is that it is not a new prototype �le system; it is an evolution
of a production �le system, showing that a journaling �le system can bene�t from the metadata
separation idea with a small set of changes that does not require on-disk format changes.
ESB [101] separates data and metadata on ext2, and puts them on a CMR drive and an SSD,

respectively, to explore the e�ect of speeding up metadata operations on I/O performance. It
is a virtual block device that sits below ext2 and leverages the �xed location of static metadata to
forwardmetadata block requests to an SSD.�e downside of this approach is that unlike ext4-lazy,
it cannot handle �oatingmetadata, like directory blocks. ESB authors conclude that for metadata-
light workloads speeding up metadata operations will not improve I/O performance on a CMR
drive, which aligns with our �ndings (§ 3.4.2).
A separate metadata server is the norm in distributed storage systems like Ceph, Lustre [209],

and Panasas [205]. TableFS [156] extends the idea to a local �le system: it is a FUSE-based [185] �le
system that stores metadata in LevelDB [73] and uses ext4 as an object store for large �les. Unlike

56

ext4-lazy, TableFS is disadvantaged by FUSE overhead, but still it achieves substantial speedup
against production �le systems on metadata-heavy workloads.

3.6 Summary
In this chapter we take an evolutionary approach to adapting general-purpose �le systems to DM-
SMR drives. Our work has three takeaways. First, it shows how e�ective a well-chosen small
change can be. Second, it suggests that while three decades ago it was wise for �le systems to
scatter the metadata across the disk, today, with large memory sizes that cache metadata and with
changing recording technology, puttingmetadata at the center of the disk andmanaging it as a log
looks like a better choice.�ird, it shows that we can reduce the block interface tax only so much
using evolutionary changes to a mature �le system: Although we improved throughput for write-
heavy workloads on DM-SMR drives, the overhead of garbage collection was still signi�cant.
It appears that the only option for avoiding the block interface tax is to take the revolutionary

approach and design a new general-purpose �le system for the zone interface. At this point, it is
worth taking a step back and asking the following question: How appropriate are the abstractions
provided by a general-purpose �le system for a storage backend? Can a storage backend perform
better if it bypasses the �le system and runs on a raw device, and is it practical to do so? We answer
these questions in the next chapter.

57

58

Chapter 4

Understanding and Quantifying the File
System Tax in Ceph

In this chapter we study and quantify the �le system tax—the overhead in code complexity, per-
formance, and �exibility stemming from building a storage backend on top of a general-purpose
�le system—in Ceph, a widely used distributed storage system. To this end, we perform a lon-
gitudinal study of storage backend evolution in Ceph. We dissect reasons that impede building
high-performance storage backends on top of general-purpose �le systems and describe the de-
sign of BlueStore, a special-purpose storage backend.

4.1 �e State of Current Storage Backends
Traditionally distributed storage systems have built their storage backends on top of general-
purpose �le systems, such as ext4 orXFS [74, 84, 87, 177, 202, 205][58, 154, 190, 209].�is approach
has delivered a reasonable performance, precluding questions on the suitability of �le systems as
a distributed storage backend. Several reasons have contributed to the success of �le systems as
the storage backend. First, they allow delegating the hard problems of data persistence and block
allocation to a well-tested and highly performant code. Second, they o�er a familiar interface
(POSIX) and abstractions (�les, directories). �ird, they enable the use of standard tools (ls,
find) to explore disk contents.

�e team behind the Ceph distributed storage system [202] also followed this convention for
almost a decade. Hard-won lessons that the Ceph team learned using several popular �le systems
led them to question the �tness of �le systems as storage backends.�is is not surprising in hind-
sight. Stonebraker, a�er building the INGRES database for a decade, noted that “operating systems
o�er all things to all people at much higher overhead” [183]. Similarly, exokernels demonstrated
that customizing abstractions to applications results in a signi�cantly better performance [61, 100].
In 2015 the Ceph project started designing and implementing BlueStore, a user space stor-

age backend that stores data directly on raw storage devices, and metadata in a key-value store.
By taking full control of the I/O path, BlueStore has been able to e�ciently implement full data
checksums, inline compression, and fast overwrites of erasure-coded data, while also improving
performance on common customer workloads. In 2017, a�er just two years of development, Blue-

59

Store became the default production storage backend in Ceph. A 2018 survey among Ceph users
shows that 70%use BlueStore in productionwith hundreds of petabytes in deployed capacity [125].
Our �rst contribution in this work is outlining and explaining in detail the technical rea-

sons behind Ceph’s decision to develop BlueStore. �e �rst reason is that it is hard to imple-
ment e�cient transactions on top of existing �le systems. Transaction support in the storage
backend simpli�es implementing strong consistency that many distributed storage systems pro-
vide [87, 202][154, 209]. A storage backend can seamlessly implement transactions if the backing
�le system already supports them [112, 162]. Yet, most �le systems implement the POSIX standard,
which lacks a transaction concept.
A signi�cant body of work aims to introduce transactions into �le systems [85, 131, 137, 150,

162, 170, 180, 217], but none of these approaches have been adopted due to their high performance
overhead, limited functionality, interface complexity, or implementation complexity. �erefore,
distributed storage system developers typically resort to using ine�cient or complexmechanisms,
such as implementing a Write-Ahead Log (WAL) on top of a �le system [154], or leveraging a �le
system’s internal transactionmechanism [209].�e experience of the Ceph team shows that these
options deliver subpar performance or result in a fragile system.

�e second reason is that the �le system’s metadata does not scale, yet its performance can
signi�cantly a�ect the performance of the distributed storage system as a whole. Inability to
e�ciently enumerate large directory contents or handle small �les at scale in �le systems can
cripple performance for both centralized [205][209] and distributed [202][154] metadata man-
agement designs. To address this problem, distributed storage system developers use metadata
caching [154], deep directory hierarchies arranged by data hashes [202], custom databases [182],
or patches to �le systems [20, 21, 226].�e speci�c challenge that the Ceph team faced was enu-
merating directories with millions of entries fast, and the lack of ordering in the returned result.
Both Btrfs and XFS-based backends su�ered from this problem, and directory splitting opera-
tions meant to distribute the metadata load were found to clash with �le system policies, crippling
overall system performance.
Our second contribution, is to introduce the design of BlueStore, the challenges its design

overcomes, and opportunities for future improvements. Novelties of BlueStore include (1) storing
low-level �le system metadata, such as extent bitmaps, in a key-value store, thereby avoiding on-
disk format changes and reducing implementation complexity; (2) optimizing clone operations
and minimizing the overhead of the resulting extent reference-counting through careful interface
design; (3) BlueFS—a user space �le system that enables RocksDB to run faster on a raw storage
device; and (4) a space allocator with a �xed 35MiB memory usage per terabyte of disk space.
Finally, perform several experiments that evaluate the improvement of design changes from

Ceph’s previous production backend, FileStore, to BlueStore. We experimentally measure the per-
formance e�ect of issues like the overhead of journaling �le systems, double writes to the journal,
ine�cient directory splitting, and update-in-place mechanisms (as opposed to copy-on-write).

4.2 Background on the Ceph Distributed Storage System
Figure 4.1 shows the high-level architecture of Ceph. At the core of Ceph is the ReliableAutonomic
Distributed Object Store (RADOS) service [204]. RADOS scales to thousands of Object Storage

60

OSDs

PGs

...

...

Objects

Pool

Figure 4.1:High-level depiction of Ceph’s architecture. A single pool with 3× replication is shown.
�erefore, each placement group (PG) is replicated on three OSDs.

Devices (OSDs), providing self-healing, self-managing, replicated object storage with strong con-
sistency. Ceph’s librados library provides a transactional interface for manipulating objects and
object collections in RADOS. Out of the box, Ceph provides three services implemented using
librados: the RADOS Gateway (RGW), an object storage similar to Amazon S3 [8]; the RADOS
Block Device (RBD), a virtual block device similar to Amazon EBS [7]; and CephFS, a distributed
�le system with POSIX semantics.
Objects in RADOS are stored in logical partitions called pools. Pools can be con�gured to

provide redundancy for the contained objects either through replication or erasure coding. Within
a pool, the objects are sharded among aggregation units called placement groups (PGs). Depending
on the replication factor, PGs aremapped tomultiple OSDs using CRUSH, a pseudo-random data
distribution algorithm [203]. Clients also use CRUSH to determine the OSD that should contain
a given object, obviating the need for a centralized metadata service. PGs and CRUSH form an
indirection layer between clients and OSDs that allows the migration of objects between OSDs to
adapt to cluster or workload changes.
In every node of a RADOS cluster, there is a separate Ceph OSD daemon per local storage

device. Each OSD processes client I/O requests from librados clients and cooperates with peer
OSDs to replicate or erasure-code updates, migrate data, or recover from failures. Data is persisted
to the local device via the internal ObjectStore interface, which provides abstractions for objects,
object collections, a set of primitives to inspect data, and transactions to update data. A trans-
action combines an arbitrary number of primitives operating on objects and object collections
into an atomic operation. In principle each OSD may run a di�erent backend implementing the
ObjectStore interface, although in practice clusters tend to run the same backend implementation.

4.2.1 Evolution of Storage Backends in Ceph

�e �rst implementation of the ObjectStore interface was in fact a user space �le system called
Extent and B-Tree-based Object File System (EBOFS). In 2008, Btrfs was emerging with attrac-
tive features such as transactions, deduplication, checksums, and transparent compression, which
were lacking in EBOFS.�erefore, as shown in Figure 4.2, EBOFS was replaced by FileStore—an
ObjectStore implementation on top of Btrfs.

61

EBOFS

FileStore/Btrfs

FileStore/XFS

NewStore

BlueStore

2004 2006 2008 2010 2012 2014 2016 2018 2020

Development Production

Figure 4.2: Timeline of storage backend evolution in Ceph. For each backend, the period of devel-
opment, and the period of being the default production backend is shown.

In FileStore, an object collection is mapped to a directory and object data is stored in a �le.
Initially, object attributes were stored in POSIX extended �le attributes (xattrs), but were later
moved to LevelDB when object attributes exceeded size or count limitations of xattrs. FileStore
on Btrfs was the production backend for several years, throughout which Btrfs remained unstable
and su�ered from severe data and metadata fragmentation. In the meantime, the ObjectStore
interface evolved signi�cantly, making it impractical to switch back to EBOFS. Instead, FileStore
was ported to run on top of XFS, ext4, and later ZFS. Of these, FileStore on XFS became the de
facto backend because it scaled better and had faster metadata performance [82].
While FileStore on XFS was stable, it still su�ered from metadata fragmentation and did not

exploit the full potential of the hardware. Lack of native transactions led to a user space WAL
implementation that performed full data journaling and capped the speed of read-modify-write
workloads—a typical Ceph workload—to the WAL’s write speed. In addition, since XFS was not
a copy-on-write �le system, clone operations used heavily by snapshots were signi�cantly slower.
NewStore was the �rst attempt at solving the metadata problems of �le-system-based back-

ends. Instead of using directories to represent object collections, NewStore stored object metadata
in RocksDB, an ordered key-value store, while object data was kept in �les. RocksDB was also
used to implement the WAL, making read-modify-write workloads e�cient due to a combined
data and metadata log. Storing object data as �les and running RocksDB on top of a journaling
�le system, however, introduced high consistency overhead. �is led to the implementation of
BlueStore, which used raw disks.�e following section describes the challenges BlueStore aimed
to resolve. A complete description of BlueStore is given in § 4.4.

4.3 Building Storage Backends on Local File Systems is Hard

�is section describes the challenges faced by the Ceph team while trying to build a distributed
storage backend on top of local �le systems.

62

4.3.1 Challenge 1: E�cient Transactions
Transactions simplify application development by encapsulating a sequence of operations into
a single atomic unit of work. �us, a signi�cant body of work aims to introduce transactions
into �le systems [85, 131, 137, 150, 162, 170, 180, 217]. None of these works have been adopted by
production �le systems, however, due to their high performance overhead, limited functionality,
interface complexity, or implementation complexity.
Hence, there are three tangible options for providing transactions in a storage backend run-

ning on top of a �le system: (1) hooking into a �le system’s internal (but limited) transaction
mechanism; (2) implementing a WAL in user space; and (3) using key-value database with trans-
actions as a WAL. Next, we describe why each of these options results in signi�cant performance
or complexity overhead.

Leveraging File System Internal Transactions

Many �le systems implement an in-kernel transaction framework that enables performing com-
pound internal operations atomically [34, 43, 179, 194]. Since the purpose of this framework is to
ensure internal �le system consistency, its functionality is generally limited, and thus, unavailable
to users. For example, a rollbackmechanism is not available in �le system transaction frameworks
because it is unnecessary for ensuring internal consistency of a �le system.
Until recently, Btrfs was making its internal transactionmechanism available to users through

a pair of system calls that atomically applied operations between them to the �le system [43].�e
�rst version of FileStore that ran on Btrfs relied on these system calls, and su�ered from the lack of
a rollback mechanism. More speci�cally, if a Ceph OSD ecountered a fatal event in the middle of
a transaction, such as a so�ware crash or a KILL signal, Btrfs would commit a partial transaction
and leave the storage backend in an inconsistent state.
Solutions attempted by the Ceph and Btrfs teams included introducing a single system call

for specifying the entire transaction [198], and implementing rollback through snapshots [199],
both of which proved costly. Btrfs authors recently deprecated transaction system calls [26].�is
outcome is similar to Microso�’s attempt to leverage NTFS’s in-kernel transaction framework for
providing an atomic �le transaction API, which was deprecated due to its high barrier to entry
[104].

�ese experiences strongly suggest that it is hard to leverage the internal transaction mecha-
nism of a �le system in a storage backend implemented in user space.

Implementing the WAL in User Space

An alternative to utilizing the �le system’s in-kernel transaction framework was to implement a
logical WAL in user space. While this approach worked, it su�ered from three major problems.

Slow Read-Modify-Write. Typical Ceph workloads performmany read-modify-write operations
on objects, where preparing the next transaction requires reading the e�ect of the previous trans-
action. A user space WAL implementation, on the other hand, performs three steps for every
transaction. First, the transaction is serialized and written to the log. Second, fsync is called
to commit the transaction to disk. �ird, the operations speci�ed in the transaction are applied

63

to the �le system. �e e�ect of a transaction cannot be read by upcoming transactions until the
third step completes, which is dependent on the second step. As a result, every read-modify-write
operation incurred the full latency of the WAL commit, preventing e�cient pipelining.

Non-idempotent Operations. In FileStore, objects are represented by �les, and collections are
mapped to directories. With this data model, replaying a logical WAL a�er a crash is challenging
due to non-idempotent operations. While the WAL is trimmed periodically, there is always a
window of time when a committed transaction that is still in the WAL has already been applied
to the �le system. For example, consider a transaction consisting of three operations: 1© clone
a→b; 2© update a; 3© update c. If a crash happens a�er the second operation, replaying the
WAL corrupts object b. As another example, consider a transaction: 1© update b; 2© rename
b→c; 3© rename a→b; 4© update d. If a crash happens a�er the third operation, replaying
the WAL corrupts object a, which is now named b, and then fails because object a does not exist
anymore.

FileStore onBtrfs solved this problembyperiodically taking persistent snapshots of the �le sys-
tem and marking the WAL position at the time of snapshot.�en on recovery the latest snapshot
was restored, and the WAL was replayed from the position marked at the time of the snapshot.

When FileStore abandoned Btrfs in favor of XFS (§ 4.2.1), the lack of e�cient snapshots caused
two problems. First, on XFS the sync system call is the only option for synchronizing �le system
state to storage. However, in typical deployments with multiple drives per node, sync is too ex-
pensive because it synchronizes all �le systems on all drives.�is problem was resolved by adding
syncfs system call [200] to the Linux kernel, which synchronizes only a given �le system.

�e second problem was that with XFS, there is no option to restore a �le system to a speci�c
state a�erwhich theWAL can be replayedwithoutworrying about non-idempotent operations. To
address this problem, guards (sequence numbers) were added to avoid replaying non-idempotent
operations. �e guards were hard to reason about, hard to test, and slowed operations down.
Verifying correctness of guards for complex operations was hard due to the large problem space.
Toolingwaswritten to generate randompermutations of complex operation sequences, whichwas
combinedwith failure injection to semi-comprehensively verify that all failure caseswere correctly
handled, but the code ended up fragile and hard-to-maintain.

Double Writes. �e �nal problem with the WAL in FileStore is that it writes data twice: �rst
to the WAL, and then to the �le system, e�ectively halving the disk bandwidth on write-intensive
workloads.�is is awell-knownproblem that leadsmost �le systems to only logmetadata changes,
allowing data to be lost a�er a crash. It is possible to avoid the penalty of double writes for new
data, by �rst writing it to disk and then logging only the respective metadata. However, FileStore’s
approach of using the state of the �le system to infer the namespace of objects and their states
makes this method hard to use due to corner cases, such as partially written or temporary �les.
While FileStore’s approach turned out to be problematic, it was originally chosen for a technically
useful reason: the alternative required implementing an in-memory cache for data and metadata
to any updates waiting on the FileStore journal, despite the kernel having a page and inode cache
of its own.

64

Using a Key-Value Store as the WAL

With NewStore, the metadata was stored in RocksDB, an ordered key-value store, while the ob-
ject data were still represented as �les in a �le system. Hence, metadata operations could be per-
formed atomically; data overwrites, however, were logged into RocksDB and executed later. We
�rst describe how this design addresses the three problems of a logical WAL, and then show that
it introduces high consistency overhead that stems from running atop a journaling �le system.
First, slow read-modify-write operations are avoided because the key-value interface allows

reading the new state of an object without waiting for the transaction to commit.
Second, the problem of non-idempotent operation replay is avoided because the read side of

such operations is resolved at the time when the transaction is prepared. For example, for clone
a→b, if object a is small, it is copied and inserted into the transaction; if object a is large, a copy-
on-write mechanism is used, which changes both a and b to point to the same data and marks the
data read-only.
Finally, the problem of double writes is avoided for new objects because the object namespace

is now decoupled from the �le system state.�erefore, data for a new object is �rst written to the
�le system and then a reference to it is atomically added to the database.
Despite these favorable properties, the combination of RocksDB and a journaling �le system

introduces high consistency overhead, similar to the journaling of journal problem [97, 174]. Cre-
ating an object inNewStore entails two steps: (1) writing to a �le and calling fsync, and (2) writing
the object metadata to RocksDB synchronously [92], which also calls fsync. Ideally, the fsync in
each step should issue one expensive FLUSH CACHE command [213] to disk. With a journaling �le
system, however, each fsync issues two �ush commands: a�er writing the data, and a�er com-
mitting the corresponding metadata changes to the �le system journal. Hence, creating an object
in NewStore results in four expensive �ush commands to disk.
We demonstrate the overhead of journaling using a benchmark that emulates a storage back-

end creating many objects.�e benchmark has a loop in which each iteration �rst writes 0.5MiB
of data and then inserts a 500 byte metadata to RocksDB. We run the benchmark on two setups.
�e �rst setup emulates NewStore, issuing four �ush operations for every object creation: data is
written as a �le to XFS, and the metadata is inserted to stock RocksDB running on XFS.�e sec-
ond setup emulates object creation on raw disk, which issues two �ush operations for every object
creation: data is written to the raw disk and the metadata is inserted to a modi�ed RocksDB that
runs on a raw disk with a preallocated pool of WAL �les.
Figure 4.3 shows that the object creation throughput is 80% higher on raw disk than on XFS

when running on a HDD and 70% when running on an NVMe SSD.

4.3.2 Challenge 2: Fast Metadata Operations
Ine�ciency of metadata operations in �le systems is a source of constant struggle for distributed
storage systems [143][149, 226]. One of the key metadata challenges in Ceph with the FileStore
backend stems from the slow directory enumeration operations (readdir) on large directories,
and the lack of ordering in the returned result [178].
Objects in RADOS are mapped to a PG based on a hash of their name and enumerated by

hash order. Enumeration is necessary for operations like scrubbing [163], recovery, or for serving

65

0
5

10
15
20
25
30
35
40
45

HDD
O

b
je

ct
s/

s

Creating objects on XFS
Creating objects on raw device

0
100
200
300
400
500
600
700
800
900

1,000

SSD

O
b

je
ct

s/
s

Figure 4.3: �e overhead of running an object store workload on a journaling �le system. Object
creation throughput is 80% higher on a rawHDD (4TB Seagate ST4000NM0023) and 70% higher
on a raw NVMe SSD (400GB Intel P3600).

librados calls that list objects. For objects with long names—as is o�en the case with RGW—
FileStore works around the �le name length limitation in local �le systems using extended at-
tributes, whichmay require a stat call to determine the object name. FileStore follows a commonly-
adopted solution to the slow enumeration problem: a directory hierarchy with large fan-out is cre-
ated, objects are distributed among directories, and then selected directories’ contents are sorted
a�er being read.
To sort them quickly and to limit the overhead of potential stat calls, directories are kept

small (a few hundred entries) by splitting them when the number of entries within them grows.
�e process can be costly. While XFS tries to allocate the directory and its contents in the same
allocation group [93], subdirectories are typically placed in di�erent allocation groups to ensure
there is space for future directory entries to be located close together [128].�erefore, as the num-
ber of objects grows, directory contents spread out, and split operations take longer to complete.
�is can cripple performance if all Ceph OSDs start splitting in unison, and it has been a�ecting
many Ceph users over the years [27, 52, 181].
To demonstrate this e�ect, we con�gure a 16-node Ceph cluster (§ 4.6) with roughly half the

recommended number of PGs to increase load per PG and accelerate splitting, and we insert
millions of 4 KiB objects with queue depth of 128 at the RADOS layer (§ 4.2). Figure 4.4 shows
the e�ect of the splitting on FileStore for an all-SSD cluster. While the �rst split is not noticeable
in the graph, the second split causes a precipitous drop that kills the throughput for 7 minutes on
an all-SSD cluster and for 120 minutes on an all-HDD cluster (not shown), during which a large
and deep directory hierarchy with millions of entries is scanned and even a deeper hierarchy is
created. Splitting can dramatically a�ect workload performance on both HDDs and NVMe SSDs
since it happens inline with workload operations, and it can spawn enough I/O to even throttle
SSDs that can handle signi�cant operation parallelism.

4.3.3 Other Challenges

Many public and private clouds rely on distributed storage systems like Ceph for providing storage
services [139]. Without complete control of the I/O stack, it is hard for distributed storage systems

66

0

4,000

8,000

12,000

16,000

20,000

0 2 4 6 8 10 12 14 16
O

b
je

ct
s/

s

Time (min)

16-node all-SSD Ceph Cluster

Figure 4.4: �e e�ect of directory splitting on throughput with FileStore backend. �e workload
inserts 4 KiB objects using 128 parallel threads at the RADOS layer to a 16-node Ceph cluster
(setup explained in § 4.6). Directory splitting brings down the throughput for 7 minutes on an
all-SSD cluster. Once the splitting is complete, the throughput recovers but does not return to
peak, due to combination of deeper nesting of directories, increased size of the underlying �le
system, and an imperfect implementation of the directory hashing code in FileStore.

to enforce storage latency SLOs in these clouds. And yet, running the storage backend on top of a
�le system cedes the control of the I/O stack to the operating system policies and mechanisms.
One cause of high-variance request latencies in �le-system-based storage backends is the op-

erating system page cache. To improve user experience, most OSs implement the page cache using
write-back policy, in which a write operation completes once the data is bu�ered in memory and
the corresponding pages are marked as dirty. On a system with little I/O activity, the dirty pages
are written back to disk at regular intervals, synchronizing the on-disk and in-memory copies of
data. On a busy system, on the other hand, the write-back behavior is governed by a complex set
of policies that can trigger writes at arbitrary times [14, 44, 220].
Hence, while the write-back policy results in a responsive system for users with lightly loaded

machines, it complicates achieving predictable latency on busy storage backends. Even with a
periodic use of fsync, FileStore has been unable to bound the amount of deferred inodemetadata
write-back, leading to inconsistent performance.
Another challenge for �le-system-based backends is implementing operations thatwork better

with copy-on-write support, such as snapshots. If the backing �le system is copy-on-write, these
operations can be implemented e�ciently. However, even if the copy-on-write is supported, a �le
systemmay have other drawbacks, like fragmentation in FileStore on Btrfs (§ 4.2.1). If the backing
�le system is not copy-on-write, then these operations require performing expensive full copies
of objects, which makes snapshots and overwriting of erasure-coded data prohibitively expensive
in FileStore (§ 4.5.2).

4.4 BlueStore: A Clean-Slate Approach

BlueStore is a storage backend designed from scratch to replace backends that relied on �le systems
and faced the challenges outlined in the previous section. Some of the main goals of BlueStore

67

Storage Device

BlueStore

RocksDB

BlueFS

MetadataData

Figure 4.5:�e high-level architecture of BlueStore. Data is written to the raw storage device using
direct I/O.Metadata is written to RocksDB running on top of BlueFS. BlueFS is a user space library
�le system designed for RocksDB, and it also runs on top of the raw storage device.

were:
1. Fast metadata operations (§ 4.4.1)
2. No consistency overhead for object writes (§ 4.4.1)
3. Copy-on-write clone operation (§ 4.4.2)
4. No journaling double-writes (§ 4.4.2)
5. Optimized I/O patterns for HDD and SSD (§ 4.4.2)
BlueStore achieved all of these goals within just two years and became the default storage

backend in Ceph. Two factors played a key role in why BlueStore matured so quickly compared
to general-purpose POSIX �le systems that take a decade to mature [210, 211][60, 116]. First, Blue-
Store implements a small, special-purpose interface, and not a complete POSIX I/O speci�cation.
Second, BlueStore is implemented in user space, which allows it to leverage well-tested and high-
performance third-party libraries. Finally, BlueStore’s control of the I/O stack enables additional
features whose discussion we defer to § 4.5.

�e high-level architecture of BlueStore is shown in Figure 4.5. BlueStore runs directly on
raw disks. A space allocator within BlueStore determines the location of new data, which is asyn-
chronously written to disk using direct I/O. Internal metadata and user object metadata is stored
in RocksDB, which runs on BlueFS, a minimal user space �le system tailored to RocksDB.�e
BlueStore space allocator and BlueFS share the disk and periodically communicate to balance free
space.�e remainder of the section describes metadata and data management in BlueStore.

4.4.1 BlueFS and RocksDB
BlueStore achieves its �rst goal, fastmetadata operations, by storingmetadata in RocksDB. Blue-
Store achieves its second goal of no consistency overhead with two changes. First, it writes data
directly to raw disk, resulting in one cache �ush for data write. Second, it changes RocksDB to
reuse WAL �les as a circular bu�er, resulting in one cache �ush for metadata write, a feature that
RocksDB has now o�cially adopted.
RocksDB itself runs on BlueFS, a minimal �le system designed speci�cally for RocksDB that

68

Superblock

Journal inode

Journal data

WAL inode

WAL data

Figure 4.6:A possible on-disk data layout of BlueFS.�e metadata in BlueFS lives only in the jour-
nal. �e journal does not have a �xed location—its extents are interleaved with �le data. �e
WAL, LOG, and SST �les are write-ahead log �le, debug log �le, and a sorted-string table �les,
respectively, generated by RocksDB.

runs on a raw storage device. RocksDB abstracts its requirements out from the underlying �le sys-
tem in the Env interface. BlueFS is an implementation of this interface in the form of a user space,
extent-based, and journaling �le system. It implements basic system calls required by RocksDB,
such as open, mkdir, and pwrite. A possible on-disk layout of BlueFS is shown in Figure 4.6.
BlueFS maintains an inode for each �le that includes the list of extents allocated to the �le. �e
superblock is stored at a �xed o�set and contains an inode for the journal. �e journal has the
only copy of all �le system metadata, which is loaded into memory at mount time. On every
metadata operation, such as directory creation, �le creation, and extent allocation, the journal
and in-memory metadata are updated.�e journal is not stored at a �xed location; its extents are
interleaved with other �le extents.�e journal is compacted and written to a new location when
it reaches a precon�gured size, and the new location is recorded in the superblock.�ese design
decisions work because large �les and periodic compactions limit the volume of metadata at any
point in time.

Metadata Organization. BlueStore keeps multiple namespaces in RocksDB, each storing a dif-
ferent type of metadata. For example, object information is stored in the O namespace (that is,
RocksDB keys start withO and their values represent object metadata), block allocationmetadata
is stored in the B namespace, and collection metadata is stored in the C namespace. Each collec-
tion maps to a PG and represents a shard of a pool’s namespace.�e collection name includes the
pool identi�er and a pre�x shared by the collection’s object names. For example, a key-value pair
C12.e4-6 identi�es a collection in pool 12 with objects that have hash values starting with the 6
signi�cant bits of e4. Hence, the object O12.e532 is a member, whereas the object O12.e832 is
not.�is organization allows a collection of millions of objects to be split into multiple collections
merely by changing the number of signi�cant bits.�is collection splitting operation is necessary
to rebalance data across OSDs when, for example, a new OSD is added to the cluster, and it was a
costly operation with FileStore.

69

4.4.2 Data Path and Space Allocation
BlueStore is a copy-on-write backend. For incoming writes larger than aminimum allocation size
(64KiB for HDDs, 16 KiB for SSDs) the data is written to a newly allocated extent. Once the data
is persisted, the corresponding metadata is inserted to RocksDB.�is allows BlueStore to provide
e�cient clone operations. A clone operation simply increments the reference count of dependent
extents, and writes are directed to new extents. It also allows BlueStore to avoid journal double-
writes for object writes and partial overwrites that are larger than the minimum allocation size.
For writes smaller than theminimum allocation size, both data andmetadata are �rst inserted

to RocksDB as promises of future I/O, and then asynchronously written to disk a�er the trans-
action commits. �is deferred write mechanism has two purposes. First, it batches small writes
to increase e�ciency, because new data writes require two I/O operations whereas an insert to
RocksDB requires one. Second, it optimizes I/O based on the device type. 64KiB (or smaller)
overwrites of a large object on an HDD are performed asynchronously in place to avoid seeks
during reads, whereas on SSDs in-place overwrites only happen for I/O sizes less than 16KiB.

Space Allocation. BlueStore allocates space using two modules: the FreeList manager and the
Allocator. �e FreeList manager is responsible for a persistent representation of the parts of the
disk currently in use. Like all metadata in BlueStore, this free list is also stored in RocksDB.�e
�rst implementation of the FreeList manager represented in-use regions as key-value pairs with
o�set and length.�e disadvantage of this approach was that the transactions had to be serialized:
the old key had to be deleted �rst before inserting a new key to avoid an inconsistent free list.�e
second implementation is bitmap-based. Allocation and deallocation operations use RocksDB’s
merge operator to �ip bits corresponding to the a�ected blocks, eliminating the ordering con-
straint.�e merge operator in RocksDB performs a deferred atomic read-modify-write operation
that does not change the semantics and avoids the cost of point queries [91].

�e Allocator is responsible for allocating space for the new data. It keeps a copy of the free list
in memory and informs the FreeList manager as allocations are made. �e �rst implementation
of Allocator was extent-based, dividing the free extents into power-of-two size bins. �is design
was susceptible to fragmentation as disk usage increased.�e second implementation uses a hier-
archy of indexes layered on top of a single-bit-per-block representation to track whole regions of
blocks. Large and small extents can be e�ciently found by querying the higher and lower indexes,
respectively.�is implementation has a �xed memory usage of 35MiB per terabyte of capacity.

Cache. Since BlueStore is implemented in user space and accesses the disk using direct I/O, it can-
not use the operating system page cache. As a result, BlueStore implements its own write-through
cache in user space, using the scan resistant 2Q algorithm [99]. �e cache implementation is
sharded for parallelism. It uses an identical sharding scheme to Ceph OSDs, which shard requests
to collections across multiple cores.�is avoids false sharing, so that the same CPU context pro-
cessing a given client request touches the corresponding 2Q data structures.

4.5 Features Enabled by BlueStore
In this section we describe new features implemented in BlueStore.�ese features were previously
lacking because implementing them e�ciently requires full control of the I/O stack.

70

4.5.1 Space-E�cient Checksums
Ceph scrubs metadata every day and data every week. Even with scrubbing, however, if the data
is inconsistent across replicas it is hard to be sure which copy is corrupt. �erefore, checksums
are indispensable for distributed storage systems that regularly deal with petabytes of data, where
bit �ips are almost certain to occur.
Most local �le systems do not support checksums. When they do, like Btrfs, the checksum is

computed over 4KiB blocks to make block overwrites possible. For 10 TiB of data, storing 32-bit
checksums of 4KiB blocks results in 10GiB of checksummetadata.�is makes it di�cult to cache
checksums in memory for fast veri�cation.
On the other hand, most of the data stored in distributed storage systems is read-only and

can be checksummed at a larger granularity. BlueStore computes a checksum for every write and
veri�es the checksum on every read. While multiple checksum algorithms are supported, crc32c
is used by default because it is well-optimized on both x86 and ARM architectures, and it is suf-
�cient for detecting random bit errors. With full control of the I/O stack, BlueStore can choose
the checksum block size based on the I/O hints. For example, if the hints indicate that writes are
from the S3-compatible RGW service, then the objects are read-only and the checksum can be
computed over 128KiB blocks, and if the hints indicate that objects are to be compressed, then a
checksum can be computed a�er the compression, signi�cantly reducing the total size of check-
sum metadata.

4.5.2 Overwrite of Erasure Coded Data
Ceph has supported erasure coded (EC) pools (§ 4.2) through the FileStore backend since 2014.
However, until BlueStore, EC pools only supported object appends and deletions; overwrites were
slow enough to make the system unusable. As a result, the use of EC pools were limited to RGW;
for RBD and CephFS only replicated pools could be used.
To avoid the “RAIDwrite hole” problem [189], where crashing during amulti-step data update

can leave the system in an inconsistent state, Ceph performs overwrites in EC pools using two-
phase commit. First, all OSDs that store a chunk of the EC object make a copy of the chunk so that
they can roll back in case of failure. A�er all of the OSDs receive the new content and overwrite
their chunks, the old copies are discarded. With FileStore on XFS, the �rst phase is expensive
because each OSD performs a physical copy of its chunk. BlueStore, however, makes overwrites
practical because its copy-on-write mechanism avoids full physical copies.

4.5.3 Transparent Compression
Transparent compression is crucial for large-scale distributed storage systems because 3× replica-
tion increases storage costs [69, 86]. BlueStore implements transparent compression where writ-
ten data is automatically compressed before being stored.
Getting the full bene�t of compression requires compressing over large 128KiB chunks, and

compression works well when objects are written in their entirety. For partial overwrites of a
compressed object, BlueStore places the new data in a separate location and updates metadata to
point to it. When the compressed object gets too fragmented due tomultiple overwrites, BlueStore

71

0

100

200

300

400

500

64 128 256 512 1024 2048 4096
M

iB
/s

I/O Size (KiB)

BlueStore FileStore

Figure 4.7:�roughput of steady state object writes to RADOS on a 16-node all-HDD cluster with
di�erent I/O sizes using 128 threads. Compared to FileStore, the throughput is 50-100% greater
on BlueStore and has a signi�cantly lower variance.

compacts the object by reading and rewriting. In practice, however, BlueStore uses hints and
simple heuristics to compress only those objects that are unlikely to experience many overwrites.

4.6 Evaluation
�is section compares the performance of a Ceph cluster using FileStore, a backend built on a �le
system, and BlueStore, a backend using the storage device directly. We �rst compare the through-
put of object writes to the RADOS distributed object storage (§ 4.6.1).�en, we compare the end-
to-end throughput of random writes, sequential writes, and sequential reads to RBD, the Ceph
virtual block device built on RADOS (§ 4.6.2). Finally, we compare the throughput of random
writes to an RBD device allocated on an erasure-coded pool (§ 4.6.3).
We run all experiments on a 16-node Ceph cluster connected with a Cisco Nexus 3264-Q 64-

port QSFP+ 40GbE switch. Each node has a 16-core Intel E5-2698Bv3 Xeon 2GHz CPU, 64GiB
RAM, 400GB Intel P3600 NVMe SSD, 4TB 7200RPM Seagate ST4000NM0023 HDD, and a Mel-
lanox MCX314A-BCCT 40GbE NIC. All nodes run Linux kernel 4.15 on the Ubuntu 18.04 dis-
tribution and the Luminous release (v12.2.11) of Ceph. We use the default Ceph con�guration
parameters.

4.6.1 Bare RADOS Benchmarks

We start by comparing the performance of object writes to RADOS when using the FileStore
and BlueStore backends. We focus on write performance improvements because most BlueStore
optimizations a�ect writes.
Figure 4.7 shows the throughput for di�erent object sizes written with a queue depth of 128. At

the steady state, the throughput on BlueStore is 50-100% greater than FileStore. �e throughput
improvement on BlueStore stems from avoiding double writes (§ 4.3.1) and consistency overhead
of a journaling �le system (§ 4.3.1).
Figure 4.8 shows the 95th and above percentile latencies of object writes to RADOS. BlueStore

72

0.95

0.96

0.97

0.98

0.99

1

0 0.2 0.4 0.6 0.8 1 1.2

F
ra

ct
io

n
 o

f
W

ri
te

s

Latency (s)

BlueStore

64 KiB 128 KiB 256 KiB

0.95

0.96

0.97

0.98

0.99

1

0 4 8 12 16 20 24

F
ra

ct
io

n
 o

f
W

ri
te

s

Latency (s)

FileStore

512 KiB 1024 KiB 2048 KiB

Figure 4.8: 95th and above percentile latencies of object writes to RADOS on a 16-node all-HDD
cluster with di�erent sizes using 128 threads. BlueStore has an order of magnitude lower tail la-
tency than FileStore.

has an order of magnitude lower tail latency than FileStore. In addition, with BlueStore the tail
latency increases with the object size, as expected, whereas with FileStore even small-sized object
writes may have high tail latency, stemming from the lack of control over writes (§ 4.3.3).

�e read performance on BlueStore (not shown) is similar or better than on FileStore for
I/O sizes larger than 128KiB; for smaller I/O sizes FileStore is better because of the kernel read-
ahead [12]. BlueStore does not implement read-ahead on purpose. It is expected that the applica-
tions implemented on top of RADOS will perform their own read-ahead.
BlueStore eliminates the directory splitting e�ect of FileStore by storingmetadata in an ordered

key-value store. To demonstrate this, we repeat the experiment that showed the splitting problem
in FileStore (§ 4.3.2) on an identically con�guredCeph cluster using BlueStore backend. Figure 4.9
shows that the throughput on BlueStore does not su�er the precipitous drop, and in the steady
state it is 2× higher than FileStore throughput on SSD (and 3× higher than FileStore throughput
on HDD—not shown). Still, the throughput on BlueStore drops signi�cantly before reaching a
steady state due to RocksDB compaction whose cost grows with the object corpus.

4.6.2 RADOS Block Device (RBD) Benchmarks
Next, we compare the performance of RBD, a virtual block device service implemented on top
of RADOS, when using the BlueStore and FileStore backends. RBD is implemented as a kernel
module that exports a block device to the user, which can be formatted andmounted like a regular
block device. Data written to the device is striped into 4MiB RADOS objects and written in
parallel to multiple OSDs over the network.
For RBD benchmarks we create a 1 TB virtual block device, format it with XFS, and mount it

on the client. We use fio [13] to perform sequential and random I/O with queue depth of 256 and
I/O sizes ranging from 4KiB to 4MiB. For each test, we write about 30GiB of data. Before starting
every experiment, we drop the operating system page cache for FileStore, and we restart OSDs for
BlueStore to eliminate caching e�ects in read experiments. We �rst run all the experiments on
a Ceph cluster installed with FileStore backend. We then tear down the cluster, reinstall it with

73

0

400

800

1,200

1,600

2,000

0 40 80 120 160 200 240 280 320
O

b
je

ct
s/

s

Time (min)

BlueStore FileStore

Figure 4.9:�roughput of 4KiBRADOS object writes with queue depth of 128 on a 16-node all-SSD
cluster. At steady state, BlueStore is 2× faster than FileStore. BlueStore does not su�er from direc-
tory splitting. However, its throughput is gradually brought down by the RocksDB compaction
overhead.

0

100

200

300

400

500

600

128 256 512 1,024 2,048 4,096

M
B

/s

I/O Size (KiB)

BlueStore sequential write
FileStore sequential write

0

100

200

300

400

500

600

128 256 512 1,024 2,048 4,096

M
B

/s

I/O Size (KiB)

BlueStore random write
FileStore random write

0

100

200

300

400

500

600

4 8 16 32 64 128

M
B

/s
I/O Size (KiB)

BlueStore sequential read
FileStore sequential read

Figure 4.10: Sequential write, randomwrite, and sequential read throughput with di�erent I/O sizes
and queue depth of 256 on a 1 TBCeph virtual block device (RBD) allocated on a 16-node all-HDD
cluster. Results for an all-SSD cluster were similar.

BlueStore backend, and repeat all the experiments.
Figure 4.10 shows the results for sequential writes, random writes, and sequential reads. For

I/O sizes larger than 512 KiB, sequential and random write throughput is on average 1.7× and 2×
higher with BlueStore, respectively, again mainly due to avoiding double-writes. BlueStore also
displays a signi�cantly lower throughput variance because it can deterministically push data to
disk. In FileStore, on the other hand, arbitrarily-triggered metadata writeback (§ 4.3.3) con�icts
with the foreground writes to the WAL and introduces long request latencies.
For medium I/O sizes (128–512KiB) the throughput di�erence decreases for sequential writes

because XFS masks out part of the cost of double writes in FileStore. With medium I/O sizes
the writes to WAL do not fully utilize the disk. �is leaves enough bandwidth for another write
stream to go through and not have a large impact on the foreground writes toWAL. A�er writing
the data synchronously to theWAL, FileStore then asynchronously writes it to the �le system. XFS
bu�ers these asynchronous writes and turns them into one large sequential write before issuing
to disk. XFS cannot do the same for random writes, which is why the high throughput di�erence
continues even for medium-sized random writes.

74

0

200

400

600

800

1,000

1,200

BlueStore FileStore

IO
P

S

Rep 3X EC 4-2 EC 5-1

Figure 4.11: IOPS observed from a client performing random 4KiB writes with queue depth of 256
to a Ceph virtual block device (RBD).�e device is allocated on a 16-node all-HDD cluster.

Finally, for I/O sizes smaller than 64KiB (not shown) the throughput of BlueStore is 20%
higher than that of FileStore. For these I/O sizes BlueStore performs deferred writes by inserting
data toRocksDB�rst, and then asynchronously overwriting the object data to avoid fragmentation
(§ 4.4.2).

�e throughput of read operations in BlueStore is similar or slightly better than that of File-
Store for I/O sizes larger than 32KiB. For smaller I/O sizes, as the rightmost graph in Figure 4.10
shows, FileStore throughput is better because of the kernel readahead. While RBD does imple-
ment a readahead, it is not as well-tuned as the kernel readahead.

4.6.3 Overwriting Erasure Coded (EC) Data

One of the features enabled by BlueStore is e�cient overwrites of EC data. We measure the
throughput of random overwrites for both BlueStore and FileStore. Our benchmark creates 1 TB
RBD using one client. �e client mounts the block device and performs 5GiB of random 4KiB
writes with queue depth of 256. Since the RBD is striped in 4MiB RADOS objects, every write
results in an object overwrite. We repeat the experiment on a virtual block device allocated on a
replicated pool and on an EC pool with parameters k = 4 andm = 2 (EC4-2), and k = 5 andm = 1
(EC5-1).
Figure 4.11 compares the throughput of replicated and EC pools when using BlueStore and

FileStore backends. BlueStore EC pools achieve 6× more IOPS on EC4-2 and 8× more IOPS on
EC5-1 than FileStore.�is is due to BlueStore avoiding full physical copies during the �rst phase
of the two-phase commit required for overwriting EC objects (§ 4.5.2). As a result, it is practical
to use EC pools with applications that require data overwrite, such as RBD and CephFS, with the
BlueStore backend.

4.7 Challenges of Building Storage Backends on Raw Storage
�is section describes some of the challenges that the Ceph team faced when building a storage
backend on raw storage devices from scratch.

75

4.7.1 Cache Sizing andWriteback

�e operating system fully utilizes the machinememory by dynamically growing or shrinking the
size of the page cache based on the applications’ memory usage. It writes back the dirty pages
to disk in the background trying not to adversely a�ect foreground I/O, so that memory can be
quickly reused when applications ask for it.
A storage backend based on a �le system automatically inherits the bene�ts of the operat-

ing system page cache. A storage backend that bypasses the �le system, however, has to imple-
ment a similar mechanism from scratch (§ 4.4.2). In BlueStore, for example, the cache size is a
�xed con�guration parameter that requires manual tuning. Building an e�cient user space cache
with the dynamic resizing functionality of the operating system page cache is an open problem
shared by other projects, like PostgreSQL [46] and RocksDB [90]. With the arrival of fast NVMe
SSDs, such a cache needs to be e�cient enough that it does not incur overhead for write-intensive
workloads—a de�ciency that current page cache su�ers from [37].

4.7.2 Key-value Store E�ciency

�e experience of theCeph project demonstrates thatmoving allmetadata to an ordered key-value
store, like RocksDB, signi�cantly improves the e�ciency of metadata operations. However, the
Ceph team has also found embedding RocksDB to be problematic inmultiple ways: (1) RocksDB’s
compaction and high write ampli�cation have been the primary performance limiter when using
NVMe SSDs in OSDs; (2) since RockDB is treated as a black box, data is serialized and copied
in and out of it, consuming CPU time; (3) RocksDB has its own threading model, which limits
the ability to do custom sharding.�ese and similar problems with RocksDB and other key-value
stores keeps the Ceph team researching for better solutions.

4.7.3 CPU and Memory E�ciency

Modern compilers align and pad basic datatypes inmemory so that CPU can fetch data e�ciently,
thereby increasing performance. For applications with complex structs, the default layout can
waste a signi�cant amount of memory [39, 134]. Many applications are rightly not concerned with
this problem because they allocate short-lived data structures. A storage backend that bypasses
the operating system page cache, on the other hand, runs continously and controls almost all of
a machine’s memory. �erefore, the Ceph team spent a lot of time packing structures stored in
RocksDB to reduce the total metadata size and the compaction overhead. �e main tricks used
were delta and variable-integer encoding.
Another observation with BlueStore is that on high-end NVMe SSDs the workloads are be-

coming increasingly CPU-bound. For its next-generation backend, the Ceph community is ex-
ploring techniques that reduce CPU usage, such as minimizing data serialization-deserialization
and using the SeaStar framework [168], which avoids context switches due to locking by adopting
a shared-nothing model.

76

4.8 RelatedWork

�e primary motivator for BlueStore is the lack of transactions and unscalable metadata opera-
tions in �le systems. In this sectionwe compare BlueStore to previous research that aims to address
these problems.

Transaction Support. Previous work has generally followed three approaches when introducing
transactional interface to �le system users.

�e �rst approach is to leverage the in-kernel transaction mechanism present in the �le sys-
tems. Examples of the this are Btrfs’s export of transaction system calls to userspace [43], Transac-
tional NTFS [103], Valor [180], and TxFS [85].�e drawbacks of this approach are the complexity
and incompleteness of the interface, and the a signi�cant implementation complexity. For exam-
ple, Btrfs and NTFS both recently deprecated their transaction interface [26, 104] citing di�culty
guaranteeing correct or safe usage, which corroborates FileStore’s experience (§ 4.3.1). Valor [180],
while not tied to a speci�c �le system, also has a nuanced interface that requires correct use of a
combo of seven system calls, and a complex in-kernel implementation. TxFS is a recent work that
introduces a simple interface built on ext4’s journaling layer, however, its implementation requires
non-trivial amount of change to the Linux kernel. BlueStore, informed by FileStore’s experience,
avoids using �le systems’ in-kernel transaction infrastructure.

�e second approach builds a user space �le system atop a database, utilizing existing transac-
tional semantics. For example, Amino [217] relies on Berkeley DB [138] as the backing store, and
Inversion [137] stores �les in a POSTGRES database [184]. While these �le systems provide seam-
less transactional operations, they generally su�er from high performance overhead because they
accrue the overhead of the layers below. BlueStore similarly leverages a transactional database,
RocksDB, but incurs zero overhead because it eliminates the �le system and runs the database on
a raw disk. (RocksDB in BlueStore runs on BlueFS, which is a lightweight user space �le system
and not a full POSIX �le system, like ext4 or XFS.)

�e third approach provides transactions as a �rst-class abstraction in the operating system
and implements all services, including the �le system, using transactions. QuickSilver [162] is an
example of such system that uses built-in transactions for implementing a storage backend for a
distributed �le system. Similarly, TxOS [150] adds transactions to the Linux kernel and converts
ext3 into a transactional �le system.�is approach, however, is too heavyweight for achieving �le
system transactions, and such a kernel is tricky to maintain [85].

Metadata Optimizations. A large body of work has produced a plethora of approaches to meta-
data optimizations in local �le systems. BetrFS [96] introduces Bε-Tree as an indexing structure
for e�cient large scans. DualFS [145], hFS [224], and ext4-lazy [3] abandon traditional FFS [128]
cylinder group design and aggregate all metadata in one place to achieve signi�cantly faster meta-
data operations. TableFS [156] and DeltaFS [225] store metadata in LevelDB running atop a �le
system and achieve orders of magnitude faster metadata operations than �le systems.
While BlueStore also stores metadata in RocksDB—a LevelDB derivative—to achieve similar

speedup, it di�ers from the above in two important ways. In BlueStore, RocksDB runs on a raw
disk incurring zero overhead, and BlueStore keeps all metadata, including the internal metadata,
in RocksDB as key-value pairs. Storing internal metadata as variably-sized key-value pairs, as
opposed to �xed-sized records on disk, scales more easily. For example, the Lustre distributed �le

77

system, which uses an ext4-derivate called LDISKFS for the storage backend, has changed on-disk
format twice in a short period to accommodate for increasing disk sizes [20, 21].

4.9 Summary
Distributed storage system developers conventionally build their storage backends atop general-
purpose �le systems. �is convention is attractive at �rst because general-purpose �le systems
provide most of the needed functionality, but in the long run it incurs a heavy �le system tax—an
overhead in code complexity, performance, and �exibility—on distributed storage systems. While
the developers are acutely aware of the �le system tax, they continue to pay it because they believe
that developing a special-purpose storage backend from scratch is an arduous process, akin to
developing a new �le system, which takes a decade to mature.
Relying on the Ceph team’s experience, we show this belief to be inaccurate, and we demon-

strate that BlueStore, a special-purpose storage backend developed from scratch, liberates Ceph
from the �le system tax: First, it reclaims the signi�cant performance le� on the table when build-
ing a storage backend on top of a �le system. Second, it e�ciently implements new features, not
practically implementable otherwise, by gaining complete control of the I/O stack.�ird, it frees
a Ceph from being locked into the hardware that the �le system supports. In the next chapter, we
leverage this freedom to liberate Ceph from the block interface tax as well.

78

Chapter 5

Freeing Ceph From the Block Interface Tax

�e Ceph distributed storage system achieved freedom from the �le system tax by implementing a
clean-slate, special-purpose storage backend, BlueStore. In this chapter, we leverage this freedom
and �exibility to extend BlueStore to work on zoned devices and liberate Ceph from the block
interface tax as well. Since BlueStore stores metadata in RocksDB key-value store, we �rst extend
RocksDB to run on zoned devices. We then introduce new components to BlueStore that enable
data management on zoned devices. Finally, we demonstrate how freedom from the block inter-
face tax and the �le system tax allows Ceph to achieve cost-e�ective data storage and predictable
performance.

5.1 �e Emergence of Zoned Storage
�e hard drive industry paved theway to zoned storage by introducing ShingledMagnetic Record-
ing (SMR). SMR increases hard drive capacity by over 20% through partially overlappingmagnetic
tracks on top of each other, constraining writes to large sequential chunks and preventing small
random updates [75]. Hard drive manufacturers introduced Drive-Managed SMR (DM-SMR)
drives, which expose the block interface through a translation layer (Chapter 2). Realizing the
full potential of SMR without paying the block interface tax, however, is only possible with Host-
Managed SMR (HM-SMR) drives. HM-SMR drives expose the new and backward-incompatible
zone interface—technically known as ZBC/ZAC in the hard disk drive context, a�er the corre-
sponding new command sets added to SCSI and ATA standards [94, 95].
Despite the backward-incompatible interface, HM-SMR drives have seen widespread adop-

tion.�ey are natively supported in the Linux kernel with a mature storage stack, and they were
adopted by cloud storage providers [122, 123, 153] and storage server vendors [121][31]. Over half
of data center hard disk drives are expected to use SMR by 2023 [175].
While HDDs embraced sequential-write-only zones only recently through SMR, SSDs always

had them in the form of NAND �ash erase blocks. SSD designers, however, avoided breaking
backward-compatibility in the past by exploiting the fast I/O performance of NAND �ash, copi-
ous media overprovisioning [206], and sophisticated Flash Translation Layer (FTL) algorithms.
Nevertheless, the SSDs have not been able to completely avoid the block interface tax—the garbage
collection performed by the FTLhas long been identi�ed as a source of unpredictable performance

79

and high tail latency in SSDs [80, 105, 221], and the extra hardware needed for the e�cient oper-
ation of the FTL has signi�cantly increased the device cost.

�e Open-Channel SSD (OCSSD) initiative pioneered the elimination of the FTL by exposing
erase blocks to the host for achieving improved and predictable performance, as well as signi�cant
cost reduction [18]. AlthoughOCSSDhadmajor early backers [38, 70], the lack of standardization
led to vendor-speci�c implementations, impeding widespread adoption.
Zoned Namespaces (ZNS) [19] is a newNVMe standard that draws inspiration from the expe-

rience of the OCSSD architecture as well as from the success of ZBC/ZAC interface for HM-SMR
drives. OCSSD takes, in some implementations, an extreme approach in exposing the rawNAND
�ash to host, requiring the host tomanage low-level details, such as error correction and wear lev-
eling. ZNS, on the other hand, exposes sequentially written erase blocks using a clean interface,
hiding complex details of raw �ash management from host. ZNS leverages the similarity of SMR
zones to erase blocks and extends the ZBC/ZAC zoned storage model to manage NAND �ash
media, resulting in a new single interface—the zone interface—for managing both ZNS SSDs and
HM-SMR HDDs. (Although ZNS is an NVMe extension and ZBC/ZAC are SCSI/ATA exten-
sions, a library is in the works that hides this di�erence and enables the same application written
for the zone interface to run on both ZNS SSDs and HM-SMR HDDs [208].)�e zone interface
aligns a zone with sequentially written erase blocks in ZNS SSDs and a physical zone in HM-SMR
HDDs, obviating the need for in-device garbage collection. As such, it moves the responsibility
for data management and garbage collection to the host.
In this chapter, we demonstrate how the Ceph distributed storage system can avoid paying

the block interface tax through the adoption of the zone interface. Ceph is already avoiding the
�le system tax by implementing a special-purpose, clean-slate storage backend, BlueStore. We
extend BlueStore to work on zoned devices and demonstrate that Ceph can now (1) store data
more cost-e�ectively by leveraging the extra 20% of capacity in HM-SMR drives, without paying
for the performance penalty of the translation layer in DM-SMR drives and (2) reduce the I/O
tail latency by leveraging the control over the garbage collection and the redundancy of data in
a distributed setting. Also, since BlueStore relies on RocksDB—a widely used key-value store—
for storing metadata, as a part of this work we extend RocksDB to work on zoned devices, and
we demonstrate how RocksDB too avoids the block interface tax and eliminates in-device write
ampli�cation through intelligent data management.

5.2 Background

BlueStore stores metadata in RocksDB and data on a raw block device (Figure 4.5). Hence, we
extend BlueStore to work on zoned devices in two steps: �rst, we handle the metadata path and
extend RocksDB to run on zoned devices, and second, we handle the data path and extend Blue-
Store to store data on raw zoned devices. Before going into details how we accomplish these tasks,
we introduce the zone interface and give an overview of RocksDB’s architecture; the overview of
BlueStore’s architecture can be found in § 4.4.

80

Figure 5.1: Zoned storage model. Figure 5.2: Zone state transition diagram.

5.2.1 Zoned Storage Overview

�e zoned storage model partitions the device’s logical block address (LBA) space into �xed-sized
partitions called zones, as Figure 5.1 shows, and it introduces the following constraints: writes to a
zonemust be sequential in the LBA order, and a zonemust be reset through a zone reset command
before LBAs in it can be (sequentially) written again. Each zone also maintains a write pointer:
writes to a zone increment the write pointer and it points to the next writable LBAwithin the zone.
A zone can be in one of the following states, as the simpli�ed state diagram from the ZNS

technical proposal [19] in Figure 5.2 shows:
• Empty: No writes have been issued since the last zone reset operation.
• Open: A zone is partially written.
• Full: All the LBAs in the zone have been written.
• Closed: A zone has been transitioned fromOpen to Closed state due to resource constraints.
• Read Only orO�ine: A vendor-speci�c event has transitioned the zone to either Read Only
or O�ine state.

When the zone is in the empty state, the write pointer points to the �rst LBA of a given zone.
When the zone is in the open state, the write pointer points to an LBA within the zone, and when
the zone is full, the write pointer is invalid. If a write command attempts to write anywhere other
than the LBA pointed to by the write pointer, an I/O error occurs.
In addition to the zone state transitions caused by writes and device-side events, zone com-

mands are available to manipulate the zone states:�e open zone command transitions a zone in
the empty or closed state to the open state. �e close zone command transitions a zone from the
open state to the closed state. �e reset zone command transitions a zone from the open or full
state to the empty state. If the transition is not valid, the commands return an I/O error.
We leave the full treatment of the zone interface to respective speci�cations [19, 94, 95], and

conclude our overview of the zone interface by highlighting two of the di�erences between HM-
SMR HDDs and ZNS SSDs that are relevant to our discussion in the rest of this chapter.�e �rst
di�erence is about the zone size and zone capacity.�e zone size is �xed and equal for all zones in
both HM-SMRHDDs and ZNS SSDs and it is typically a power of two—a property used by block
layer [17] for fast serialization, boundary checks, and lookup of zone attributes.�e zone capacity,
on the other hand, identi�es the usable capacity of a zone: it is equal to the zone size in HM-SMR

81

Memtable (64 MiB) RAM

Hard DriveLevel 0 (256 MiB)

Level 1 (0.5 GiB)

Level 2 (5 GiB)

Level 3 (50 GiB)

Level 4 (500 GiB)

Figure 5.3: Data organization in RocksDB. Green squares represent Sorted String Tables (SSTs).
Blue squares represent SSTs selected for two di�erent concurrent compactions.

HDDs, but it is variable and usually smaller than the zone size in ZNS SSDs due to inherently
variable erase block sizes.

�e second di�erence is about how long a zone can stay in the open state. Contrary to the
zones in HM-SMRHDDs, the zones in ZNS SSDs cannot stay inde�nitely in a partially written—
that is in the open—state. A partially written zone contains partially written erase blocks, which
are prone to errors from read disturbances or physical properties of themedia unless they are fully
written.�us, to maintain data reliability, the host can pad the partially written zone or the SSD
itself can detect and pad such zones and transition them to the full state.

5.2.2 RocksDB Overview
RocksDB [62] is an instance of a Log-Structured Merge-Tree (LSM-Tree), an indexing data struc-
ture that increases the e�ective use of bandwidth by reducing seeks in hard disk drives, over the
alternative, the B-Tree [41]. Every key-value inserted to RocksDB is �rst individually written to
a Write-Ahead Log (WAL) �le using the pwrite system call, and then bu�ered in an in-memory
data structure called memtable. By default, RocksDB performs asynchronous inserts: pwrite re-
turns as soon as the data is bu�ered in the OS page cache and the actual transfer of data from
the page cache to storage is done later by the kernel writeback threads. Hence, a machine crash
may result in loss of data for an insert that was acknowledged. For applications that require the
durability and consistency of transactional writes RocksDB also supports synchronous inserts that
do not return until data is persisted on storage.
RocksDB stores data in �les called Sorted String Tables (SSTs), which are organized in levels

as shown in Figure 5.3. When the memtable reaches a precon�gured size, its content is written
out to an SST in level L0, and a new memtable is created. �e aggregate size of each level Li is a
multiple of Li−1, starting with a �xed size at L1. When the number of L0 SSTs reaches a threshold,
the compaction process selects all of L0 SSTs, reads them intomemory, sorts andmerges them, and
writes them out as new L1 SSTs. For higher levels, compactions are triggered when the aggregate
size of the level exceeds a threshold, in which case one SST from the lower level and multiple SSTs
from the higher level are compacted. For example, Figure 5.3 shows two concurrent compactions,
with the one of them happening between L1 and L2 and another one happening between L3 and
L4. If memtable �ushes or compactions cannot keep up with the rate of inserts, RocksDB stalls
inserts to avoid �lling storage and to prevent lookups from slowing down.

82

5.3 Challenges of RocksDB on Zoned Storage

RocksDB in BlueStore runs on top of BlueFS (§ 4.4.1), a minimal user space �le system that runs
on a block device. Every I/O system call issued by RocksDB is eventually issued by BlueFS to the
raw storage device. Hence, to get RocksDB to run on a zoned device we need to adapt BlueFS to
run on a zoned device, which comes with several challenges. Below we describe these challenges
and our solutions to them.

5.3.1 Zone Cleaning

Placing SSTs produced by RocksDB one a�er another into the zones of a zoned device leads to the
segment cleaning problemof the Log-Structured File System (LFS) [158]. Since SST sizes aremuch
smaller than the zone size, a�er multiple compactions zones become fragmented: in addition to
live SSTs, they end up containing dead SSTs that have been merged to a new SST that was written
to another zone. Reclaiming the space occupied by the dead SSTs requires migrating live SSTs to
another zone, which increases the write ampli�cation.
Recentwork proposes a newdata format and compaction algorithm to eliminate zone cleaning

and achieve the ideal write ampli�cation of 1 [222]. Cleaning can be eliminated, however, without
making any changes to the compaction algorithm or data format, by simply matching SST and
zone sizes and aligning the start of an SST with the start of a zone. Hence, by mapping a complete
SST to a zone, a dead SST space can be reclaimed by merely resetting the zone’s write pointer,
thereby eliminating zone cleaning and achieving the write ampli�cation of 1. �ere are other
compelling reasons for increasing the SST size, such as enabling disks to do streaming reads with
fewer seeks, reducing expensive sync calls, and reducing the number of open �le handles. �is
approach is similar to that of SMRDB [148], however, unlike SMRDBwedonot restrict the number
of LSM-Tree levels andwe do not introduce a new data format that breaks backward compatibility.

5.3.2 Small SSTs

While we can specify the size of an SST as a con�guration option to RocksDB, it is not guaranteed
that all generated SSTs will be of the speci�ed size. For example, if compaction takes nine SSTs
from L3 and one SST from L2 andmerges them, unless there is no overlap among themerged data,
the process may produce ten SSTs with the last one being smaller than the rest. Although having
an SST smaller than the zone is not a problem for HM-SMR drives, it is a problem for ZNS SSDs
because partially written zones may lose data a�er some time(§ 5.2.1).
To address this issue, as a �rst step, when running on ZNS SSDs we null-pad the zones that are

written a small SST. Since padding consumes device bandwidth and is a side-e�ect of the device’s
design, we count padding bytes as write ampli�cation. Our experiments that insert semi-random
data to RocksDB shows that padding results in a write ampli�cation of 1.2. We leave it as future
work to �ll the zones with useful data in case of small SSTs and reach the ideal write ampli�cation
of 1.

83

5.3.3 ReorderedWrites
Like most LSM-Tree implementations, RocksDB uses bu�ered I/O when writing compacted SSTs
to disk. �is keeps SSTs in the operating system page cache and improves performance signi�-
cantly for two reasons: (1) during compaction cached SSTs are read from memory, and (2) key
lookups in cached SSTs are served from memory.
Using bu�ered I/O, however, does not guarantee write ordering that is essential for zoned de-

vices. Pagewriteback can happen fromdi�erent contexts at the same time, and the pages picked up
by each context may not be zone-aligned. Furthermore, there are no write-alignment constraints
with bu�ered writes, so an application may write parts of a page across di�erent operations. In
this case, however, the same last page cannot be overwritten to add the remaining data when the
sequential write stream resumes. �us, to guarantee write ordering, (1) we must use direct I/O,
which is enabled by O_DIRECT �ag to the open system call, (2) issue writes to a zone sequentially,
and (3) use an I/O scheduler that preserves ordering of writes issued from user space, such as
deadline or mq-deadline I/O schedulers [42].
While direct I/O does not cause performance problems for ZNS SSDs due to low latency and

high internal parallelism, for HM-SMR drives it consumes a big chunk of storage bandwidth
for reading SSTs during compaction. To avoid this, we implement whole �le caching in BlueFS,
thereby serving SST �les from memory during compaction.

5.3.4 Synchronous writes to the WAL
�e libzbc [207] library is the de-facto method for interacting with zoned devices [124, 222]. It
provides the zbc_pwrite call for positional writes to the device, with similar semantics to the
pwrite system call. Even though pwrite is a synchronous call, when used with bu�ered I/O, as
in RocksDB (§ 5.2.2), it is e�ectively made asynchronous.
With zoned devices, however, we have to use direct I/O, which means the zbc_pwrite call

must wait for the device to acknowledge the write.�is has negligible overhead when data is writ-
ten in large chunks, as is the case for memtable �ushes and SST writes during compaction. Writes
to theWAL, on the other hand, happen a�er each key-value insertion. As a result, every insertion
must be acknowledged by the device, limiting the throughput to that of small synchronous writes
to the device.
To avoid this bottleneck, we switch to using libaio library—the in-kernel asynchronous I/O

framework—in BlueFS.�is approach works as long as the asynchronous I/O operations are is-
sued in order and the kernel I/O scheduler does not reorder I/Os [132]. We still use libzbc for
resetting zones and �ushing the drive.

5.3.5 Misaligned writes to the WAL
Random andmisaligned writes violate the zone interface and therefore cannot be used with zoned
devices. In RocksDB, there are three sources of such writes. First, when the key and value sizes
are smaller than 4KiB, the last block of SSTs may get overwritten when writing SSTs to disk.
We have found this to be a bug in RocksDB, which we have reported and the RocksDB team has
�xed [54]. Second, if an append operation to theWAL leaves empty space in the last written block,

84

the following append operation overwrites that block to �ll the empty space. �ird, RocksDB
produces a handful of small �les—such as the manifest �le—that receive negligible amounts of
I/O, which also requires page overwrites. In the following section we describe how we address the
second and third source of random writes.

5.4 Handling Metadata Path—RocksDB on Zoned Storage
All the I/O system calls issued by RocksDB are emulated by BlueFS, which is a user space �le
system that opens a raw block device and issues actual I/O system calls. Among other function-
alities, BlueFS also implements a block allocator and journaling for metadata consistency. Below
we describe several design changes we make to BlueFS to make it work on zoned devices.

5.4.1 File types and space allocation

�ere are three �le types that are essential for the correct operation of RocksDB: SSTs, WAL �les,
and manifest �les that act as a transactional log of RocksDB state changes.
SST and WAL �les are large �les that receive the bulk of the I/O. SSTs are the simplest to

handle—they are append-only �les and wemap them to individual zones upon creation and align
their size to the zone size. We handle misaligned writes to the WAL (§ 5.3.5) by wrapping every
WALwrite in a record with the write length stored inline and padded to the 4KiB boundary. With
this change, the WAL reads can no longer directly know the data o�set in an extent without �rst
reading the record lengths. �is, however, is not a problem because reading the WAL is not on
the hot path—it is only read sequentially and only during crash recovery. In addition, we allocate
a �xed number of zones for WAL �les and use them as a circular bu�er.
We handle last block overwrites in manifest �les by dedicating two zones to them, only one

of which is active at a time. When a manifest �le reaches a certain size, a new one is created
and appended to the end of the zone, invalidating the older version. When a zone becomes full,
the latest manifest �le is written to the other zone, the write pointer of the full zone is reset, and
these two zones are used as a circular bu�er. During boot, the latest manifest �le is identi�ed by
scanning both of the zones.

5.4.2 Journaling and Superblock

BlueFS maintains an inode for each �le with a serial number, the list of extents allocated to the
�le (complete zones in case of SST and WAL �les), the actual size of the �le, and so on. BlueFS
uses an internal journal for consistency, which contains the only copy of all metadata. At mount,
the journal is replayed and the inodes are loaded in memory. For every metadata operation, such
as �le creation or zone allocation, the journal and in-memory metadata are updated. When the
journal reaches a precon�gured size, it is compacted andwritten to a new zone, and the superblock
is updated to point to it.
Since a superblock cannot be updated in-place, we use the same two-zone circular bu�er

method that we used for manifest �les and append the latest version of the superblock to the

85

end of the zone. At mount, the latest version of the superblock is found by scanning the �rst two
zones of the drive.

5.4.3 Caching

To reduce the number of SST �les read from disk during compaction (§ 5.3.3), we implement a
FIFO whole �le cache in BlueFS. Every SST �le that is written is also placed to a cache of precon-
�gured size. A disadvantage of our cache implementation is that its unit of eviction is a �le. While
the operating system page cache will evict only a part of a �le when it runs out of space and con-
tinue to serve the remaining blocks from memory, by evicting a whole �le, our implementation,
for example, leaves 12.5% of the 2GiB cache empty when using 256MiB SST �les. We leave amore
e�cient cache implementation as future work.

5.5 Evaluation of RocksDB on HM-SMRHDDs

We evaluate RocksDB with BlueFS running on zoned devices in two parts. In this section, we
evaluate it on an HM-SMR drive, where we incrementally show how each of our optimizations
improves performance. In the next section, we take our optimized code and evaluate it on a pro-
totype ZNS SSD.

5.5.1 Evaluation Setup

We run all experiments on a system with AMD Opteron 6272 2.1 GHz CPU with 16 cores and
128GiB of RAM, running Linux kernel 4.18 on the Ubuntu 18.04 distribution. For evaluation we
use a 12 TB CMR drive (HGST HUH721212AL), a 14 TB HM-SMR drive (HGST HSH721414AL),
and an 8 TB DM-SMR drive (Seagate ST8000AS0022).�ese drives are similar mechanically and
have 200+MiB/s sequential I/O throughput at the outer diameter.
Unless otherwise noted, all our experiments run a benchmark that inserts 150 million pairs

of 20-byte keys and 400-byte values using the db_bench tool that comes with RocksDB. During
the benchmark run, RocksDB writes 200GiB of data through memtable �ushes, compaction, and
WAL inserts, and reads 100GiB of data due to compaction. �e size of the database is 59GiB
uncompressed and 31GiB compressed. To emulate a realistic environment where the amount of
data in the operating system page cache is a small fraction of the data stored on a high-capacity
drive, we limit the operating systemmemory to 6GiB.�is leaves slightlymore than 2GiB of RAM
for the page cache a�er the memory used by the operating system and benchmark application,
resulting in 1:15 ratio of cached to on-disk data. We repeat every experiment at least three times
and report the average and the standard deviation.
We establish two baselines. �e �rst baseline is RocksDB running on the XFS �le system

(recommended by the RocksDB team [63]) running on a CMR drive. �is is the baseline whose
performance we want to match with RocksDB running on BlueFS on an HM-SMR drive, given
that we are running RocksDB on a higher capacity device with a more restrictive interface. �e
second baseline is RocksDB running on the XFS �le system running on a DM-SMR drive. �is

86

0

500

1,000

1,500

2,000

2,500

3,000

Default Optimized

T
im

e
(s

)

Figure 5.4: Benchmark runtimes of RocksDB
with default and optimized settings on a CMR
drive.

0

0.5

1

1.5

2

2.5

3

0 500 1,000 1,500 2,000

S
iz

e
(G

iB
)

Time (s)

Heap
Page Cache

Swap

Figure 5.5: Memory used by the OS page cache
and heap allocations, and the swap usage during
the optimized RocksDB run.

is a baseline we want to beat given that it is the only viable option for running RocksDB on a
high-capacity SMR drive, but has suboptimal performance due to block interface tax.

5.5.2 Establishing CMR Baseline
WerunRocksDBonXFS and tuneRocksDB settings for optimal performance on aCMRdrive [64].
Figure 5.4 shows that with optimized settings, the benchmark completes 34% faster. Figure 5.5
shows the heap memory allocated by RocksDB and db_bench, the memory used up by the oper-
ating system page cache, and the swap usage. �e two key observations are that the page cache
almost always usesmore than 2GiB of RAM, andno swapping occurs. Next, we look at the settings
we change to get this e�ect.
We focus on two tunables that impact performancemost: compaction_readahead_size and

write_buffer_size. We increase the former from the default of 0MiB to 2MiB.�is setting
determines the size with which pread system call issues read requests for reading SSTs during
compaction. With the default setting, RocksDB issues 4KiB requests and prefetches 256KiB at
a time, however, given that the compaction threads read large SSTs sequentially into memory,
256KiB request size is suboptimal and incurs unnecessary seeks due to interruptions from other
ongoing disk operations. Figure 5.6 (a) shows that by increasing the request size to 2MiB, the
number of seeks drops from the average of 110 seeks per second to almost 20 seeks per second.
We also increase the write_buffer_size from the default of 64MiB to 256MiB.�is setting

determines the memtable size that will be bu�ered in memory before being �ushed to disk. As
expected, increasing thememtable size by 4×, reduces the number of expensive fsync/fdatasync
system calls issued by a similar amount, as Figure 5.6 (b) shows.

�ese two con�guration changes are the reason behind the 34% speedup shown in Figure 5.4.
We also experimented with the maximum number of concurrent background jobs and settled on
4 threads: lower or higher values result inworse performance. Finally, we increased SST sizes from
64MiB to 256MiB, but this change did not have a noticeable e�ect on performance; it did, how-
ever, allow us to exactly map an SST to an HM-SMR zone. We choose RocksDB with optimized

87

0

20

40

60

80

100

120

140

0 500 1,000 1,500 2,000 2,500 3,000

S
ee

k
s

p
er

 s
ec

o
n
d

Time (s)

(a)

Default
Optimized

0

2,000

4,000

6,000

8,000

10,000

Default Optimized

N
u
m

b
er

 o
f

fs
y
n
c

ca
ll

s

(b)

Figure 5.6: (a)�e number of seeks per second due to reads and (b) the number of fsync and
fdatasync system calls during the benchmark run with default and optimized RocksDB settings
on a CMR drive.

settings running on XFS on a CMR drive as our CMR baseline.

5.5.3 Establishing DM-SMR Baseline

�e optimized settings that we used for the CMR drive are bene�cial to a DM-SMR drive for the
same reasons. �e settings, however, have even bigger impact on the DM-SMR drive, where the
benchmark completes 63% faster than when running with the default settings. �is may sound
surprising, given two facts: (1) LSM-Trees are known to produce large sequential writes [119,
195][136], and (2) we have already established that DM-SMR drives handle sequential writes with
no overhead (§ 3.4.3). �en why does RocksDB, which produces sequential writes, su�er a per-
formance overhead on a DM-SMR drive? It turns out that current DM-SMR drives can detect
sequential writes only if there is a single stream. RocksDB, on the other hand, produces concur-
rent sequential streams due to memtable �ushes and concurrent compactions (§ 5.2.2), and the
block layer in the operating system splits large I/O requests into small chunks—for hard drives
the size of this chunk is 512 KiB by default in Linux. Chunks from di�erent streams get mixed and
sent to the drive in an arbitrary order, which appears as non-sequential writes to the drive. Meta-
data writes of the underlying �le system further complicates detecting sequential streams. Hence,
writes to otherwise append-only �les end up in the persistent cache and cause garbage collection,
incurring performance penalty to RocksDB running on DM-SMR drives.
We choose RocksDBwith optimized settings running onXFS on aDM-SMRdrive as ourDM-

SMR baseline.�e le� two bars in Figure 5.7 shows both of our baselines, where the CMRbaseline
is about 86% faster than the DM-SMR baseline. Our aim is to get RocksDB running on BlueFS
on an HM-SMR drive to beat RocksDB on a DM-SMR drive and to perform at least as good as
RocksDB on a CMR drive. For brevity, from now on we omit the �le system when discussing the
baselines and our work: RocksDB on CMR or DM-SMR drives implies that RocksDB is running
on XFS, and RocksDB on HM-SMR drive implies that RocksDB is running on BlueFS.

88

0

1,000

2,000

3,000

4,000

5,000

6,000

DM-SMR CMR HM-SMR
(sync I/O)

HM-SMR
(async I/O)

HM-SMR
(async I/O + cache)

T
im

e
(s

)

Figure 5.7: Benchmark runtimes of the baselines—RocksDB on DM-SMR and CMR drives (on the
le�)—and RocksDB on BlueFS iterations on an HM-SMR drive.�e benchmark asynchronously
inserts 150 million key-value pairs with 20-byte keys and 400-byte values.

5.5.4 Getting RocksDB to Run on an HM-SMR Drive
In our �rst iteration of changes to BlueFS we use libzbc and perform synchronous I/O on the
HM-SMR drive, which causes the writes to the WAL to become a bottleneck (§ 5.3.4). Figure 5.7
shows that on this iteration—denoted by HM-SMR (sync I/O)—the benchmark completes in
4,800 seconds—slower than both DM-SMR and CMR baselines.
Figure 5.8 (a) gives a detailed look at the �rst 50 seconds of the run. We see that in the �rst 7

seconds, during which only writes to the WAL happen, the write throughput is �xed at 40MiB/s.
In the next 3 seconds a memtable is �ushed, which increases the write throughput to 80MiB/s
and reduces the insert throughput to 60Kops/s. �is is expected because insert throughput is
determined by the speed of writes toWAL, and during memtable �ush, we have two threads shar-
ing the bandwidth: one is �ushing memtable data and the other is writing to the WAL. Once
the memtable �ush completes at the 10th second, the insert throughput jumps back and the write
throughput is again at 40MiB/s. Another memtable �ush happens and the pattern repeats, and
right at the end of the secondmemtable �ush a compaction starts at the 17th second.�is increases
read and write throughput because the compaction is done by a single thread that reads old SSTs
and writes new ones, and reduces insert throughput to the same level as during the memtable
�ush because we still have two threads sharing the bandwidth. Before the compaction completes,
another memtable �ush starts at the 23rd second. Now we have three threads sharing the disk
bandwidth.�e write bandwidth is the highest because all of them are writing, read bandwidth is
slightly lower, and most importantly, the insert throughput is at the lowest.
During the whole run, RocksDB never stalls inserts (§ 5.2.2) because the slow writes to the

WAL produce small enough work that memtable �ushes and compactions can keep up with.

5.5.5 Running Fast with Asynchronous I/O
In our second iteration we switch to libaio and perform asynchronous I/O on the HM-SMR
drive—we still rely on libzbc for zone operations. Figure 5.7 shows that on this iteration—

89

0
25
50
75

100

(a) HM-SMR (sync I/O)

K
o
p
s/

s Insert Throughput

0
20
40
60
80

M
iB

/s

Write Throughput Read Throughput

0
1
2

 0 5 10 15 20 25 30 35 40 45 50

T
h
re

ad

Time (s)

Compaction Memtable Flush

0
50

100
150
200

(b) HM-SMR (async I/O)

K
o
p
s/

s Insert Throughput Stalls

0
40
80

120
160

M
iB

/s

Write Throughput Read Throughput

0
1
2

0 5 10 15 20 25 30 35 40 45 50

T
h
re

ad

Time (s)

Compaction Memtable Flush

Figure 5.8: Insertion throughput, HM-SMR drive read/write throughput, and compaction and
memtable �ush operations during the �rst 50 seconds of the benchmark with RocksDB on HM-
SMR drive using (a) synchronous and (b) asynchronous I/O.

denoted by HM-SMR (async I/O)—the benchmark completes in 3,000 seconds, 60% faster than
when performing synchronous I/O. At this point, RocksDB on HM-SMR is already 30% faster
than RocksDB on DM-SMR, but it is not as fast as RocksDB on CMR because during compaction
it reads SSTs from disk using direct I/O and consumes the drive bandwidth that could be used for
writes.
Figure 5.8 (b) gives a detailed look at the �rst 50 seconds of the run. We see that writes to the

WALduring the �rst 3 seconds are almost twice as fast, andmemtable �ush starts 3 seconds earlier,
compared to Figure 5.8 (a). Fast inserts result in continuous memtables �ushes, and similarly,
compaction starts 7 seconds earlier and does not stop. Unable to keep up with the work, RocksDB
stalls inserts almost every 5 seconds, which results in a spiky throughput graph. Despite the stalls,
the average throughput is higher and RocksDB completes the benchmark 60% faster than when
using synchronous I/O.
Figure 5.9 shows the similar graph for the whole run. �e most outstanding pattern in Fig-

ure 5.9 (a) are the long periods of very low throughput, such as the one between 450th and 660th
seconds. Figure 5.9 (c) shows that during this period only compaction and no memtable �ushing
is happening, suggesting that RocksDB has stalled inserts until compaction backlog is cleared.
During this period, e�ectively only the compaction thread is running, and as the period between
450th and 660th seconds shows in Figure 5.9 (b), it divides the disk bandwidth between reading
SSTs from the drive and writing them out. To speed up the reads and thereby compactions, in our
next iteration we add whole �le caching of SSTs to BlueFS.

5.5.6 Running Faster with a Cache

In our third iterationwe add a simple write-through FIFO cache to BlueFS for caching the SST �les
produced at the end of compaction. Figure 5.7 shows that on this iteration—denoted byHM-SMR
(async I/O + cache)—the benchmark completes in 2,500 seconds—20% faster than the version

90

0
30
60
90

120
150
180

K
o

p
s/

s
(a)

Insert Throughput

0
30
60
90

120
150
180

M
iB

/s

(b)

Write Throughput Read Throughput

0
1
2
3

T
h

re
ad

(c)

Compaction Memtable Flush

0

50

100

150

200

250

0 300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000

Z
o

n
es

 A
ll

o
ca

te
d

Time (s)

(d)

Figure 5.9: (a) Insertion throughput, (b) read and write throughput, (c) compaction and memtable
�ush operations, and (d) number of zones allocated during the whole benchmark run of RocksDB
on HM-SMR drive using asynchronous I/O.

0
30
60
90

120
150
180

K
o

p
s/

s

(a)

Insert Throughput

0
30
60
90

120
150
180

0 300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000

M
iB

/s

Time (s)

(b)

Write Throughput Read Throughput

Figure 5.10: (a) Insertion throughput and (b) read and write throughput during the whole bench-
mark on run of RocksDB on HM-SMR drive using asynchronous I/O and caching.

91

with no cache. In this run, we set the SST cache size to 2GiB—the same amount of memory that
the operating system page cache uses when we run the benchmark on the CMR drive (§ 5.5.2).
Figure 5.10 shows the detailed graph for the whole run. Comparing it to Figure 5.9 we see that, for
example, up to 450th second, the read throughput is lower, and between 450th and 660th seconds
the read throughput stays below 30MiB/s compared to rising 40MiB/s, suggesting that some of
the reads are being served from the cache. Similarly, the write throughput stays above 60MiB/s
compared to staying at 40MiB/s, and the insertion throughput is not �at at the bottom, indicating
that writes to theWAL are still happening and the inserts are not stalled as badly as in the case with
no �le caching. Overall, Figure 5.10 has shorter periods of low insertion throughput compared to
Figure 5.9 and therefore, higher average insertion throughput. �us, with all our optimizations
we almost match the CMR baseline thereby avoiding the block interface tax—the small di�erence
is caused by the ine�ciency of whole �le caching, which can be improved with a better design
(§ 5.4.3).

5.5.7 Space E�ciency
Figure 5.9 (d) shows that RocksDB on HM-SMR makes optimal use of disk space. Matching the
�gure with Figure 5.9 (c) shows that allocated zones grow during long compaction processes and
they are released at the end. �is is because RocksDB �rst merges multiple SSTs into one large
temporary �le and then deletes the temporary �le a�er creating new SSTs as a result of the merge.
We see that the number of zones drop to 168, which corresponds to about 42GiB, which is sur-
prisingly larger than the 31 GiB database size (§ 5.5.1). �is is the result of the benchmarking
application, db_bench, shutting down as soon as it �nishes the benchmark, without waiting for
all compactions to complete, leaving some large temporary SSTs around. We modi�ed db_bench
to wait until all compactions have completed, and observed that the number of bands dropped to
135, which is about 33GiB, only slightly larger than the database size because some of the space is
occupied by the WAL �les, and some of the SSTs produced as a result of compaction may end up
being smaller than 256MiB.

5.6 Evaluation of RocksDB on ZNS SSDs
In this section we compare RocksDB on BlueFS running on ZNS SSD to RocksDB running on
XFS on a conventional enterprise SSD with an FTL inside. We show two results. First, we demon-
strate that despite popular belief, LSM-Trees in general and RocksDB in particular are not ideal
workloads for conventional SSDs—they can result in device write ampli�cation of 5 on enterprise
SSDs. Second, we demonstrate that the zone interface is a perfect match for LSM-Trees, and we
show how RocksDB on BlueFS uses zone interface to avoid the block interface tax and achieve a
write ampli�cation of 1.2.

5.6.1 Evaluation Setup
We perform all experiments on a system with a six-core Intel i7-5930K (Haswell-E) 3.5 GHz CPU,
running Linux kernel 5.2 on the Ubuntu 18.04 distribution. We �x thememory size to 6GiB using

92

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40

 0

 20

 40

 60

 80

 100

W
ri

te
 A

m
p
li

fi
ca

ti
o
n

U
se

d
 D

is
k
 S

p
ac

e
(%

)

Time (h)

Write Amplification Disk Space

Figure 5.11: Device write ampli�cation of the enterprise SSD during RocksDB benchmarks. First,
the fillseq benchmark sequentially inserts 7 billion key-value pairs; it completes in about two
hours, �lling the drive up to 80%, and the write ampli�cation is 1 during this period. Next, the
overwrite benchmark overwrites 7 billion key-value pairs in about 40 hours, during which the
write ampli�cation rises to about 5 and stays there.

a kernel boot setting to emulate a real-world settingwhere data does not �t intomemory. As a ZNS
SSDwe use a prototype device with a custom �rmware that implements ZNS as a shim layer inside
a 1 TB Western Digital PC SN720 NVMe SSD [50] on top of the existing FTL. As a conventional
SSD we use an enterprise data center SSD with 3.84 TB capacity.

5.6.2 Quantifying theBlock InterfaceTaxofRocksDBonConventional SSDs
Like most LSM-Trees, RocksDB generates large sequential writes when compacting SSTs and
�ushing memtables. While this pattern is ideal for low write ampli�cation, when these opera-
tions result in concurrent sequential streams, they lead to surprisingly high write ampli�cation
on conventional SSDs.
To demonstrate the high write ampli�cation caused by RocksDB when running on a conven-

tional SSD, we perform the following experiment. We install the XFS �le system on the enter-
prise SSD and con�gure RocksDB to use 512MiB SST �les. Since enterprise SSDs overprovision
28% NAND �ash [206], they do not start garbage collection until most of drive has been written.
�erefore, we �rst �ll 80% of the drive by inserting 7 billion key-value pairs of 20-byte keys and
400-byte values, using the fillseq benchmark of db_bench. We then start randomly overwrit-
ing these key-value pairs using the overwrite benchmark. We measure the write ampli�cation
of the enterprise SSD in 15-minute intervals, using proprietary tools obtained from the vendor.
Figure 5.11 shows the disk capacity usage and the write ampli�cation of the conventional en-

terprise SSD under these workloads.�e �llseq benchmark completes in about two hours, �lling
80% of the drive. During fillseq, a memtable is bu�ered in memory and �ushed to disk, and no
compaction happens due to the ordered nature of the inserted keys: moving an SST to a higher
level is a fast rename operation. As a result, write ampli�cation is 1 during the �rst two hours.
Once the fillseq benchmark completes, the overwrite benchmark starts, resulting in con-

tinuous concurrent compactions, taking almost 40 hours to complete. As Figure 5.11 shows, the

93

0

1

2

3

4

5

6

0 5 10 15 20 25

 0

 20

 40

 60

 80

 100

W
ri

te
 A

m
p
li

fi
ca

ti
o
n

U
se

d
 Z

o
n
es

 (
%

)

Time (h)

Write Amplification Zones

Figure 5.12: Device write ampli�cation of the prototype ZNS SSD during RocksDB benchmarks.
First, the fillseq benchmark sequentially inserts 1.8 billion key-value pairs; it completes in about
an hour, �lling the drive up to 80%, and the write ampli�cation is 1 during this period. Next, the
overwrite benchmark overwrites 1.8 billion key-value pairs in about 26 hours, during which the
write ampli�cation stays around 1.

write ampli�cation gradually increases to around 5 and stays there until the end.�e primary rea-
son for this surprisingly high write ampli�cation is the mixing of concurrent sequential streams.
Due to NAND �ash constraints the SSD has to bu�er certain amount of data—either in NVRAM
or capacitor-backed RAM—before writing data to the NAND �ash. Hence, although memtable
�ushes and compactions result in sequential writes, when they happen concurrently, the SSD
mixes these streams into a single internal bu�er that it then writes across NAND �ash dies to
increase parallelism. �e data from di�erent streams end up in di�erent erase blocks, e�ectively
resulting in random write behavior, which eventually leads to garbage collection and high write
ampli�cation.

5.6.3 Avoiding the Block Interface Tax with RocksDB on ZNS SSDs
To demonstrate how RocksDB running on BlueFS avoids high write ampli�cation, we repeat the
same experiment on the ZNS SSD, but using fewer keys due to prototype device’s smaller capacity,
and we measure the write ampli�cation at the bottom of the shim layer.
Figure 5.12 shows the zone usage and the write ampli�cationmeasured at the shim layer of the

prototype ZNS SSD under the similar workload.�e fillseq benchmark completes in about an
hour during which the write ampli�cation is 1 because no compaction occurs and the generated
SSTs are squarely �lled into zones.
Once the fillseq benchmark completes, the overwrite benchmark starts, during which

concurrent compactions produce SSTs smaller than the zone size. Likewedescribed before (§ 5.3.2),
we pad the zones containing small SSTs with nulls to avoid read disturbances (§ 5.2.1).�erefore,
we compute the write ampli�cation as (data bytes + pad bytes) / (data bytes). As Figure 5.12 shows,
the write ampli�cation in ZNS SSD is close to 1.2 on average.
Finally, although the benchmarkwe run on the ZNS SSDhas 3.8× fewer keys, it completes only

1.5× quicker thanwhen running on the enterprise SSDwith an FTL.�ere are two reasons for this.

94

First, the ZNS SSD prototype is based on a client SSD [50] that has less internal parallelism than
the enterprise SSD. Second, and most importantly, the shim layer in the prototype is still running
on top of an FTL of the client SSD. So while our measurements at the bottom of the shim layer
demonstrate a signi�cant reduction in write ampli�cation, this reduction does not translate to
faster completion time because writes to zones are still handled by the FTL running down below.
In a real ZNS SSD, reduced write ampli�cation will result in a signi�cantly faster completion time.
In summary, we demonstrate howLSM-Trees in general, andRocksDB in particular, can lever-

age the zone interface to avoid the block interface tax and achieve a signi�cant reduction in the
write ampli�cation. A work based on our contributions described here is currently being merged
to the RocksDB project [62]. We leave it as a future work—to the time when production ZNS
SSDs become available—to demonstrate how reduced write ampli�cation translates into better
performance.

5.7 Handling Data Path—BlueStore on Zoned Storage
�e work described so far in this chapter covered handling the metadata path for BlueStore on
zoned storage, which entailed getting RocksDB to run on zoned devices. In this section we de-
scribe handling the data path for BlueStore on zoned storage, which entails getting BlueStore to
manage data on zoned devices.
As described before (§ 4.2), out of the box Ceph provides three services on top of RADOS: the

RADOS Gateway (RGW), an object storage similar to Amazon S3 [8]; the RADOS Block Device
(RBD), a virtual block device similar to Amazon EBS [7]; and CephFS, a distributed �le system
with POSIX semantics.
Although all of these services run on top of the RADOS layer, they all result in di�erent I/O

patterns with varying complexity at the RADOS layer. In this work we target the service that re-
sults in the simplest I/O patterns—the RGW service—which provides operations for reading and
writing variable-sized immutable objects. Choosing to support RGW service restricts the object
operations at the RADOS layer to creating, deleting, truncating, appending, and fully overwriting
objects.

5.7.1 Additions and Modi�cations to BlueStore
To manage objects on zoned devices, we introduce a new space allocator, a new freelist manager,
and a new garbage collector to BlueStore. Next, we give a high-level overview of these new com-
ponents and other changes that we introduced to BlueStore.

ZonedAllocator

BlueStore already comes with several space allocators optimized for di�erent workloads (§ 4.4).
None of these allocators, however, can work with zoned devices due to a more restrictive inter-
face. More speci�cally, since block devices allow in-place overwrite of arbitrary blocks, no region
of a block device ever becomes stale due to deletion or overwrite—it only becomes free and im-
mediately reusable.�us, existing allocators designed for block devices do not track stale regions,

95

which regularly occur on zoned devices.
We introduce ZonedAllocator, which keeps in memory two bits of information per zone: a

write pointer and the number of stale bytes within the zone. When ZonedAllocator receives an
allocation request, it �nds the �rst zone that can �t the allocation request—starting at the lowest
numbered zone. Once a zone is found, ZonedAllocator returns the value of the in-memory write
pointer for that zone to the caller and advances the write pointer by the size of the allocation.�e
in-memory write pointer in ZonedAllocator is unrelated to the actual write pointer within the
device, which advances when data is written to the allocated space. When an object gets deleted
or truncated, ZonedAllocator receives a deallocation request with an o�set and size. In this case
ZonedAllocator computes from the o�set the zone in which the deallocation happens, and it in-
crements the number of stale bytes for that zone by the amount of the passed in size.

�e concurrent nature of storage backend operations in Ceph creates a challenge that is spe-
ci�c to ZonedAllocator. As explained before (§ 4.2), RADOSobjects are sharded among placement
groups (PGs), andmultiple PGs are associatedwith a single object storage device (OSD), which runs
the storage backend—BlueStore in our case. BlueStore maintains a group of threads for handling
object writes to all of the PGs associated with the OSD. Although all of the object writes within
a PG are serialized, object writes to di�erent PGs may happen concurrently in di�erent threads.
Furthermore, BlueStore writes an object using a transaction mechanism that goes through mul-
tiple states, where space allocation and data write are two separate states. �is poses a problem
for ZonedAllocator because two threads may allocate space from the same zone in one order, but
they may get rescheduled and write data to the zone in a di�erent order: for example, thread A
may call to ZonedAllocator and receive the o�set 0 from a zone, and then thread B may receive
the o�set 65,536 from the same zone. Later the threadsmay get rescheduled and thread Bmay run
�rst and issue a write to o�set 65,536 followed by thread A issuing a write to o�set 0—a violation
of the sequential write requirement.
One simple solution to this problem may seem to pin the threads to the zones, so that writes

within a zone are always sequential.�is solution, however, is costly for HM-SMRHDDs because
given the 256MiB zone size, 8 threads, for example, may issue writes within a 2GiB span, causing
signi�cant seek overhead. We implemented this solution and found over 50% reduction in write
throughput on a single OSD.
A better solution is to utilize the new ZONE APPEND command in the zone interface. �is

command, inspired by Nameless Writes [223], was introduced to avoid in-kernel lock contention
when multiple writers are writing to the same zone in a high-end ZNS SSD [16]. �e ZONE
APPEND command works as follows: A writer issues the command specifying the data and the
zone number to which the data should be written. �e drive (1) internally decides where within
the zone to write the data, (2) writes the data, and (3) returns the o�set of the write to the host.
�us, multiple threads can concurrently issue ZONE APPEND to the same zone and the kernel
does not have to serialize access to the zone using a lock.

�e ZONE APPEND command e�ectively moves space allocation to the device and further
simpli�es ZonedAllocator. Now, ZonedAllocator only tracks how much space is le� in each zone
and returns the zone number—instead of an o�set—in which the space was allocated. Reschedul-
ing of two threads performing concurrent space allocation and data write is not a problem any-
more because the o�sets of data writes are determined by the device at the time of writes. Unfor-
tunately, as of this writing the ZONE APPEND command has not stabilized in the Linux kernel;

96

therefore, we solved this problem by combining the space allocate and the data write steps in
BlueStore into a single atomic step, using a lock.

ZonedFreelistManager

�e freelist managermodule in BlueStore is responsible for a persistent representation of the parts
of the disk currently in use (§ 5.7). Like the existing space allocators, the existing freelist manager
is not adequate for zoned devices, for the same reason.
We introduce ZonedFreelistManager, whose design mostly parallels that of ZonedAllocator:

it also keeps a write pointer and the number of stale bytes for each zone. Unlike ZonedAllocator,
however, ZonedFreelistManager stores these persistently in RocksDB in the Z namespace using
the zone number as the key and two concatenated 32-bit unsigned integers as the value.
When the OSD boots, ZonedFreelistManager loads the state of each zone—the write pointer

and the number of stale bytes—from RocksDB. ZonedAllocator then reads the persistent state of
each zone from ZonedFreelistManager and initializes the in-memory state of each zone.
ZonedFreelistManager receives the same allocation request that ZonedAllocator has received,

a�er the data has been safely written to disk in the allocated space and in-device write pointer has
advanced. At this point ZonedFreelistManager advances the write-pointer in RocksDB to match
the in-device write pointer. Similarly, ZonedFreelistManager receives the same deallocation re-
quest that ZonedAllocator has received, a�er themetadata of the object residing in the deallocated
space has been deleted from RocksDB. At this point ZonedFreelistManager computes the corre-
sponding zone and increments the number of stale bytes in RocksDB for that zone by the amount
of the passed in size. To avoid the cost of point queries, ZonedFreelistManager uses the merge
operator in RocksDB [91] for updating the write pointer and the number of stale bytes.

ZonedCleaner

We introduce ZonedCleaner, a simple garbage collector that reclaims stale space from the frag-
mented zones. We call it ZonedCleaner because BlueStore already contains a component called
GarbageCollector, which serves an unrelated purpose: it defragments compressed objects that have
been fragmented by too many overwrites (§ 4.5.3) by reading and rewriting them.
Wemake several changes to I/O paths in BlueStore for the proper operation of ZonedCleaner.

BlueStore implements a transactional interface where a single transaction may create, delete, or
overwrite multiple objects. A transaction context tracks the state related to a single transaction—
it is created when a transaction starts and destroyed when a transaction completes. We maintain
an in-memory map per transaction context from an object identi�er to a list of o�sets, and we
update this map as follows: When a new object is created, we append its o�set to the list for that
object identi�er. When an object is deleted, we append the negative of its o�set to the list for that
object identi�er. And when an object is overwritten, we append the negative of its previous o�set
and its new o�set to the list for that object identi�er. When a transaction completes, we use the
in-memory map to update persistent cleaning information in RocksDB, as described next.
In addition to the in-memory map, we also maintain persistent cleaning information about

objects in RocksDB: for every object we store a key-value pair in the G namespace, where a key
is the concatenation of the zone number in which the object is located and the object identi�er,

97

and the value is the o�set of the object within that zone. When a transaction completes, we use
the in-memorymap from the transaction context to update the persistent cleaning information in
RocksDB as follows: we go through the in-memorymap and for every object identi�er, we process
the list of o�sets; for negative o�sets we take their absolute value, compute the zone number, and
remove the keys formed by the concatenation of the zone number and the object identi�er; for
positive o�sets we compute the zone number and insert a new key-value pair where a key is the
concatenation of the zone number and the object identi�er, and the value is the o�set. Hence, with
these updates happening at the end of every transaction, the object identi�ers of all live objects
within the zone ABC can be found by querying the G namespace for keys that have ABC as the pre�x.
With all the necessary cleaning information in place, the operation of ZonedCleaner is straight-

forward. It runs in a separate thread that starts when the OSD boots and goes to sleep until it is
woken up by a trigger event—currently this event is the drive becoming 80% full—to perform
cleaning. When it wakes up, ZonedCleaner asks ZonedAllocator for a zone number to clean.
ZonedAllocator sorts the zones by the number of stale bytes and returns the zone number with
the most stale bytes. ZonedCleaner then queries the G namespace for the keys that have the zone
number as the pre�x and obtains the object identi�ers of all live objects within a zone. It then reads
those objects from the fragmented zone, writes them to a new zone obtained fromZonedAllocator,
resets the fragmented zone, and informs ZonedAllocator and ZonedFreelistManager of a newly
freed zone.

Summary of Changes to BlueStore

Our initial set of changes to BlueStore described in this section has been merged to the Ceph
project [71]. In this �rst iteration of changes we aimed to keep things simple but correct: ZonedAl-
locator is a simple allocator that aims to improve throughput by �lling the disk starting at the outer
diameter, and ZonedCleaner implements the simplest of the cleaning policies—the greedy clean-
ing policy [158]. We leave researching and designing a more optimized space allocation, data
placement, and cleaning policies in a distributed setting as a future work.
Despite its simplicity, our initial set of changes are enough to demonstrate a key advantage of

the zone interface—reducing the tail latency by controlling the garbage collection. We demon-
strate this in the next section.

5.8 Evaluation of Ceph on HM-SMRHDDs

In this section we combine all the improvements described so far in the chapter and show how
they collectively enable Ceph to avoid paying the block interface tax. To this end, we run a set
of benchmarks on a Ceph cluster and demonstrate two things: First, Ceph is now more cost-
e�ective—it can leverage the extra 20% capacity o�ered by SMR without su�ering performance
loss [48]. Second, Ceph is now more performant—it can reduce the tail latency of I/O operations
by controlling the timing of garbage collection. Unfortunately, the COVID-19 pandemic [212] de-
layed the availability of production-quality ZNS SSDs; therefore, we are only able to demonstrate
these improvements on HM-SMR HDDs.

98

Type Vendor Model Capacity �roughput

CMR Hitatchi HUA72303 3 TB 160MiB/s
DM-SMR Western Digital WD30EFAX, WD40EFAX, WD60EFAX 3TB, 4 TB, 6 TB 186MiB/s (avg.)
HM-SMR HGST HSH721414AL 14 TB 220MiB/s

Table 5.1: HDDs used in evaluation and their bandwidth at the �rst 125GiB of the LBA space. We
measured both sequential read and sequential write throughput for all of the drives to be the same.

We run all experiments on an 8-node Ceph cluster connected with a Cisco Nexus 3264-Q 64-
port QSFP+ 40GbE switch. Each node has a 16-core AMD Opteron 6272 2.1 GHz CPU, 128GiB
of RAM, and a Mellanox MCX314A-BCCT 40GbE NIC. All nodes run Linux kernel 5.5.9 on the
Ubuntu 18.04 distribution and the Octopus release (v15.2.4) of Ceph. Although we developed our
changes on the development version of Ceph, which is signi�cantly ahead of the Octopus release
(v15.2.4), we backported our changes to v15.2.4 for a fair comparison. We use the default Ceph
con�guration parameters unless otherwise noted.
In the experiments described next, we use three di�erent Ceph hardware con�gurations called

CMR, DM-SMR, and HM-SMR.�e con�gurations are so called the hard drives used in their
storage nodes. Table 5.1 shows the capacity and sequential I/O bandwidth of these drives. �e
CMR andHM-SMR cluster con�gurations useHUA72303 andHSH721414AL drives, respectively,
on all of their eight nodes.�e DM-SMR cluster con�guration uses WD30EFAX drives on three
nodes,WD40EFAX on three nodes, andWD60EFAX on two nodes. (Unfortunately, we could not
purchase a uniform set of drives for the DM-SMR con�guration because there was a limit of three
drives per customer per drive type, due to the COVID-19 pandemic.) Each one of our experiments
writes about 1 TB of aggregate data to the cluster, which roughly corresponds to 125GiB of each
drive. Hence, we measure the throughput of each drive by performing sequential I/O to the �rst
125GiB of the drive and report it in Table 5.1. (For the DM-SMR con�guration we measured the
throughput of the WD30EFAX, WD40EFAX, and WD60EFAX drives as 180MiB/s, 190MiB/s,
and 200MiB/s, respectively, and reported their weighted average.)

5.8.1 RADOSWrite�roughput

Our �rst experiment compares the performance of writes to the RADOS layer in each of these
cluster con�gurations. Since we target the Amazon S3-like object storage (§ 5.7), we focus on
large I/O sizes: we write objects of sizes 1MiB, 2MiB and 4MiB using 128 threads. Figure 5.13 (a)
shows the throughput for all I/O sizes and cluster con�gurations: we observe thatDM-SMR is 17%,
34%, and 34% slower than CMR for I/O sizes of 1MiB, 2MiB, and 4MiB, respectively, although
raw sequential write throughput of DM-SMR drives is 16% higher (Table 5.1).

�is result is not surprising. As explained before (§ 3.4.3), DM-SMR drives can detect a single
sequential write stream and bypass the persistent cache; therefore, in Table 5.1 we achieve the
maximal drive throughput. In the presence of multiple sequential streams, however, the operating
systemmixes chunks from di�erent streams and sends them to the drive, which forces the drive to
write data into the persistent cache and introduce garbage collection overhead (§ 5.5.3).�erefore,
even though the benchmarkwrites large objects, DM-SMRdrive su�ers performance degradation.

99

0

50

100

150

200

250

300

1,024 2,048 4,096

M
iB

/s

I/O Size (KiB)

(a) Write throughput

CMR DM-SMR HM-SMR

0

100

200

300

400

500

1,024 2,048 4,096

IO
P

S

I/O Size (KiB)

(b) Random read IOPS

CMR DM-SMR HM-SMR

Figure 5.13: (a) Write throughput and (b) random read IOPS, at steady state to the RADOS layer
on an 8-node Ceph cluster with CMR, DM-SMR, and HM-SMR con�gurations.�e benchmark
issues reads and writes using 128 threads with three di�erent I/O sizes.

Hence, in this case, the block interface tax displays itself as a garbage collection overhead, even
though no garbage collection is needed for the workload.
As Figure 5.13 (a) shows, HM-SMR does not su�er from any overhead because data is written

directly to zones and no unnecessary garbage collection is performed. However, althoughTable 5.1
shows HM-SMR drive to have 37% higher sequential write throughput than the CMR drive, this
di�erence is not re�ected in Figure 5.13 (a)—HM-SMR has only slightly higher throughput than
CMR. We believe there are two reasons for this. First, adding a lock to BlueStore transaction
mechanism formaking two separate states—space allocation and data write—a single atomic state
introduces overhead (§ 5.7.1). �is overhead, however, is temporary, and it is likely to disappear
as the ZONE APPEND command stabilizes in the kernel and the lock is eliminated. Second, the
HM-SMR implementation is the �rst working code and it has not been optimized as the CMR
implementation. We expect the write throughput of HM-SMR to increase proportional to its
throughput advantage over CMR as the HM-SMR implementation gets optimized.

5.8.2 RADOS Random Read IOPS
Our second experiment compares the performance of random reads at the RADOS layer in the
same cluster con�gurations. We read the objects that were written in the previous experiment
(§ 5.8.1) using 128 threads. Figure 5.13 (b) shows the random read IOPS for all object sizes and
cluster con�gurations: we observe that DM-SMR is 29%, 14%, and 27% slower than CMR for I/O
sizes of 1MiB, 2MiB, and 4MiB, respectively, although raw sequential read throughput of DM-
SMR drives is 16% higher (Table 5.1).
Unlike the previous result (§ 5.8.1), however, this result is surprising because we do not expect

garbage collection operations to interfere with read operations: we paused for a few hours a�er
the write benchmark completed before starting the read benchmark, to ensure that all pending
garbage collection operations have completed. We leave the exploration of this phenomenon as
a future work, and for now we speculate that to reduce the garbage collection work, these DM-
SMR drives end up fragmenting a single RADOS object into individual writes they receive for the

100

0.95

0.96

0.97

0.98

0.99

1

0 5 10 15 20 25 30

F
ra

ct
io

n
 o

f
R

ea
d
s

Latency (s)

CMR DM-SMR HM-SMR

Figure 5.14: 95th and above percentile latencies of random 1MiB object reads at the RADOS layer
during garbage collection on an 8-node Ceph cluster with CMR, DM-SMR, and HM-SMR con-
�gurations. �e benchmark issues reads using 128 threads. Garbage collection happens within
the device in DM-SMR and in the host in HM-SMR. No garbage collection happens in CMR.

object, and the drives incur seek overhead when reading the objects. In any case, this is another
instance of block interface tax that should not happen in the �rst place.
As Figure 5.13 (b) shows, HM-SMRdoes not su�er from any overhead because objects are read

sequentially from the zones exploiting the full throughput of the drive. HM-SMR has 23% and
11% higher IOPS than CMR for 1MiB and 2MiB objects, respectively, but its IOPS is similar to
that of CMR for 4MiB objects. Again, we expect the read throughput of HM-SMR to increase
proportional to its throughput advantage over CMR as the HM-SMR implementation gets opti-
mized.

5.8.3 Tail Latency of RADOS Random Reads During Garbage Collection

Our third and last experiment compares the tail latency of reads during garbage collection in the
same cluster con�gurations. We demonstrate that by moving garbage collection to the host, the
zone interface allows a distributed storage system to reduce tail latency by leveraging the control
over the timing of garbage collection and the redundancy of data.
For DM-SMR and CMR we run the experiment as follows: We �rst write half a million 1MiB

objects using 128 threads. A�er these writes complete, we start writing another half a million
objects using 128 threads while at the same time randomly reading using 128 threads the objects
written earlier. Since DM-SMR drives regularly perform garbage collection during writes, we
expect the garbage collection to a�ect the tail latency of random reads. Obviously, no garbage
collection happens in the CMR case.
ForHM-SMRwe run the experiment as follows: To trigger early garbage collection, we restrict

the number of zones to 500 in each host. We then write one million 1MiB objects almost �lling
all of the zones in all of the nodes and then delete half a million of these objects. To simulate
a controlled garbage collection, we then start garbage collection on two of the nodes and start
reading half a million objects that weren’t deleted. We use Ceph’s OSD a�nity mechanism [30] to
redirect reads only to the nodes that are not performing garbage collection.
Figure 5.14 shows 95th and above percentile latencies of random 1MiB object reads from RA-

101

DOS: we observe that 99th and above tail latency of HM-SMR is 53% lower than DM-SMR. Fur-
thermore, the HM-SMR latency is within 13% of the CMR latency, and we expect it to improve
with future optimizations.

5.9 Summary
In this chapter, we leveraged the agility of BlueStore, a special-purpose storage backend in Ceph,
to swi�ly embrace the zone interface and liberate Ceph from the block interface tax. By adapting
BlueStore to work on HM-SMR drives, which expose the zone interface, we demonstrated that
Ceph can utilize the extra capacity o�ered by SMR at high throughput and low tail latency by
avoiding the garbage collection overhead of DM-SMR drives, which expose the block interface
through emulation.
As a part of this work, we also liberated RocksDB, a widely used key-value store powering

many large-scale internet services, from the block interface tax. Speci�cally, we demonstrated that
LSM-Trees in general, and RocksDB in particular, su�er unnecessary in-device garbage collection
and high write ampli�cation when emulating a block interface through a translation layer—all of
which can be eliminate by adopting the zone interface.

102

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we propose a new approach to distributed storage system design. More specif-
ically, we demonstrate that to unlock the full potential of modern data center storage devices the
distributed storage systems should abandon the decades old conventions in their storage backends—
the reliance on the block interface and general-purpose �le systems—and embrace the novel zone
interface and special-purpose storage backend design.
We �rst argue that the block interface is a poor match for modern data center storage devices.

�e block interface, whichwas designed for early hard disk drives, allows randomupdates of small
blocks, and it has been the dominant interface for the past three decades. As a result, almost ev-
ery �le system in use today was developed for the block interface. Modern storage technologies
such as solid-state drives or Shingled Magnetic Recording (SMR) hard drives, on the other hand,
are di�erent: unlike early storage media, which contained randomly writable bits, newer storage
media consist of large regions that must be written sequentially. So that we could continue using
our current �le systems, we currently shoehorn the block interface onto modern storage devices
by emulating it using a translation layer inside drives.�is emulation, however, introduces signif-
icant cost and performance overheads.�ese overheads can be eliminated by adopting the novel
zone interface, which exposes sequential regions to the host. But since the zone interface is not
compatible with the block interface, no current �le system can run on devices that expose the zone
interface.

�e performance overhead of emulating the block interface using translation layers is well
studied in solid-state drives. In our work, we study the emulation overhead in modern high-
capacity hard drives that use SMR, which are also known as drive-managed SMR (DM-SMR)
drives. To this end, we introduce Skylight, a novel methodology for measuring and characterizing
DM-SMRdrives. We develop a series ofmicro-benchmarks for this characterization and augment
these timingmeasurements with a novel technique that tracks actual drive headmovements using
a high-speed camera. Using our approach, we fully reverse engineer how the translation layer em-
ulates the block interface in DM-SMR drives. We discover that these drives can handle sustained
sequential writes with no overhead, but they su�er orders of magnitude performance degradation
in the presence of sustained random writes.

103

We then leverage the results of our characterization work to improve the performance of ext4,
a general-purpose �le system, on DM-SMR drives. We do so because ext4 is used by many dis-
tributed storage systems as a storage backend, and DM-SMR drives increase capacity by 20% or
more over conventional drives.�erefore, alleviating the emulation overhead by optimizing ext4
can increase cost-e�ectiveness of data storage without sacri�cing performance in distributed stor-
age systems. Consequently, we introduce ext4-lazy, an extension of ext4, which signi�cantly im-
proves the performance over ext4 on key workloads when running on top of DM-SMR drives.
Ext4-lazy achieves this by introducing a well-chosen, small but e�ective change that utilizes the
existing journaling mechanism: unlike ext4, which writes metadata twice—�rst, sequentially to
the journal and second, randomly to disk—ext4-lazy keeps o�en-updatedmetadata in the journal
and avoids the second write, thereby signi�cantly reducing random writes. Although ext4-lazy
achieves remarkable performance improvements, it also shows that eliminating the emulation
overhead using evolutionary changes is hard: on workloads with non-trivial amount of random
data writes, DM-SMR throughput running ext4-lazy still su�ers compared to the throughput of
conventional drives running ext4. Hence, the only way to eliminate the emulation overhead is to
not to emulate and adopt the backward-incompatible zone interface.
One approach to adopting the zone interface is to modify current �le systems that were de-

signed for the block interface to work with the zone interface.�is approach did not pan out for
major �le systems because it required a major redesign. Hence, the only remaining approach for
adopting the zone interface is to design a new general-purpose �le system for the zone interface.
However, before designing yet another �le system for running a distributed storage backend on
top, we take a step back and ask the following question: how appropriate is the �le system interface
for building distributed storage backends?
To answer this question, we perform a longitudinal study of storage backends inCeph, awidely

used distributed storage system, over ten years. We �nd that for eight of these ten years, the Ceph
project has followed the conventional wisdom of building its storage backend on top of local �le
systems.�is is a preferred choice for most distributed storage systems because it allows them to
bene�t from the convenience andmaturity of battle-tested �le system code.�e experience of the
Ceph team, however, shows that this comes with a high performance overhead. More speci�cally,
�rst, it is hard to develop e�cient transaction mechanism on top of a general-purpose �le system,
and second, the �le system metadata management is too heavyweight—it does not scale to the
needs of a distributed storage backend. Another disadvantage of relying on �le systems is that
they take a long time to mature and once mature, they are averse to major changes. E�ectively
adopting new hardware, on the other hand, o�en does require major changes. As a result, a�er
eight years theCeph teamdeparted from the conventional wisdomand in just two years developed
BlueStore, a clean-slate special-purpose storage backend that outperformed existing backends.
Finally, we demonstrate that a distributed storage system that is not bound by the progress of

general-purpose �le systems, can quickly adopt the zone interface and unlock the full potential of
modern storage devices. To this end, we adapt BlueStore to the zone interface in two steps. First,
we handle the metadata path in BlueStore and extend RocksDB, a key-value store that BlueStore
uses for storing metadata, to run on the zone interface. RocksDB is an instance of a data structure
called Log-Structured Merge Tree (LSM-Tree), and LSM-Trees are at the core of many large-scale
online services and applications. As a result of this work, we demonstrate how RocksDB leverages
smart data placement enabled by the zone interface to eliminate write ampli�cation inside solid-

104

state drives by 5×. Second, we handle the data path in BlueStore and introduce a garbage collector
that the host can explicitly control. We combine this control with the redundancy of data in a
distributed setting to eliminate garbage collection in some cases and to reduce the tail latency of
I/O operations in other cases.
In 2015, Dave Chinner, the maintainer of XFS—a widely used high-performance �le system—

claimed that in 20 years all current �le systems will be legacy �le systems, and since it takes a
decade to mature a �le system, we should start working on future �le systems soon [36]. While
this is a good call, we think it would be a mistake to build yet another monolithic POSIX �le
system that runs on everything, from our smartphones to large-scale distributed storage systems
powering the cloud.�e key implication of our work is that when it comes to distributed storage
systems—which power the enterprise and public clouds and are expected to host over 80% of
all of data [155] by 2025—we should build specialized storage systems that leverage the available
hardware and the domain knowledge to the fullest, delivering the best performance and greatest
user experience.

6.2 Future Work
�is dissertation is the �rst step towards improving the cost-e�ectiveness and performance of dis-
tributed storage systems through elimination of layers on top of raw storage medium. It demon-
strates that abandoning the block interface and general-purpose �le systems is feasible and useful
when designing a storage backend, but by starting from scratch on a raw storage device with a
new interface it brings up new research questions, a couple of which we describe next.

6.2.1 Index Structures for Zoned Devices
BlueStore is the �rst distributed storage backend that stores all of its metadata, including low-level
metadata, such as extent bitmaps, in a key-value store—RocksDB. Although RocksDBwas central
to improving the metadata performance in BlueStore, its compaction overhead has become the
new performance bottleneck. In addition, with low I/O latency on high-end NVMe SSDs, the
CPU time spent in serializing and deserializing data when reading from or writing to RocksDB
is becoming signi�cant. Finally, RocksDB compaction has 10× or more application-level write
ampli�cation, which is substantial considering the upcoming high-capacity SSDs that are based
on QLC NAND, which is even more susceptible to wear. Hence, the research question is how
to design an index structure that exploits the properties of storage backend workloads to reduce
write ampli�cation and also adheres to the zone interface constraints?

6.2.2 Shrinking Capacity Zoned Devices
Most storage systems are built assuming that the raw capacity of the underlying storage device does
not change.�is assumption precludes the possibility of a partially failed device that can continue
to provide usable storage. It was forged by early single-head HDDs that became unusable a�er
a head crash—it does not hold for SSDs and even for modern HDDs with multiple heads and
actuators. Most importantly, it comes at a high cost.

105

Enterprise SSDs overprovision 28% of NAND �ash for e�cient garbage collection. As pages
wear out, some of the overprovisioned �ash gets used as replacement.�is increases write ampli-
�cation due to less e�cient garbage collection and further accelerates wear-out of the remaining
pages. A�er losing the overprovisioned capacity, a drive declares itself dead, since it is unable to
meet the vendor-speci�ed QoS, despite having over 70% usable capacity.

�e zone interface accounts for the worn-out pages, allowing ZNS SSDs to shrink the zone
capacity and continue to operate normally otherwise. Yet the �le systems that are used as stor-
age backends in most distributed storage systems, as well as BlueStore, are unable to cope with
shrinking storage device. It appears that a distributed storage system is well suited to coping with
shrinking device capacity due to redundancy of data and availability of more storage devices for
data migration, but identifying the right interface and mechanisms for this purpose requires fur-
ther research.

106

Bibliography

[1] Abutalib Aghayev and Peter Desnoyers. Log-Structured Cache: Trading Hit-Rate for Stor-
age Performance (and Winning) in Mobile Devices. In Proceedings of the 1st Workshop
on Interactions of NVM/FLASH with Operating Systems and Workloads, INFLOW ’13, New
York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450324625. doi:
10.1145/2527792.2527797. URL https://doi.org/10.1145/2527792.2527797. [Cited
on page 26.]

[2] Abutalib Aghayev and Peter Desnoyers. Skylight—A Window on Shingled Disk Op-
eration. In 13th USENIX Conference on File and Storage Technologies (FAST 15),
pages 135–149, Santa Clara, CA, USA, February 2015. USENIX Association. ISBN
978-1-931971-201. URL https://www.usenix.org/conference/fast15/technical-
sessions/presentation/aghayev. [Cited on page 3.]

[3] Abutalib Aghayev, �eodore Ts’o, Garth Gibson, and Peter Desnoyers. Evolving Ext4
for Shingled Disks. In 15th USENIX Conference on File and Storage Technologies (FAST
17), pages 105–120, Santa Clara, CA, 2017. USENIX Association. ISBN 978-1-931971-
36-2105. URL https://www.usenix.org/conference/fast17/technical-sessions/
presentation/aghayev. [Cited on page 77.]

[4] Abutalib Aghayev, Sage Weil, Greg Ganger, and George Amvrosiadis. Reconciling LSM-
Trees with Modern Hard Drives using BlueFS. Technical Report CMU-PDL-19-102, CMU
Parallel Data Laboratory, April 2019. URL http://www.pdl.cmu.edu/PDL-FTP/FS/CMU-
PDL-19-102_abs.shtml. [Cited on page 5.]

[5] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gregory R. Ganger, and
George Amvrosiadis. File Systems Un�t as Distributed Storage Backends: Lessons from
10 Years of Ceph Evolution. In Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles, SOSP ’19, pages 353–369, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450368735. doi: 10.1145/3341301.3359656. URL
https://doi.org/10.1145/3341301.3359656. [Cited on page 4.]

[6] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gregory R. Ganger, and
George Amvrosiadis. �e Case for Custom Storage Backends in Distributed Storage Sys-
tems. ACM Trans. Storage, 16(2), May 2020. ISSN 1553-3077. doi: 10.1145/3386362. URL
https://doi.org/10.1145/3386362. [Cited on page 4.]

[7] Amazon.com, Inc. Amazon Elastic Block Store. https://aws.amazon.com/ebs/, 2019.
[Cited on pages 61 and 95.]

107

https://doi.org/10.1145/2527792.2527797
https://www.usenix.org/conference/fast15/technical-sessions/presentation/aghayev
https://www.usenix.org/conference/fast15/technical-sessions/presentation/aghayev
https://www.usenix.org/conference/fast17/technical-sessions/presentation/aghayev
https://www.usenix.org/conference/fast17/technical-sessions/presentation/aghayev
http://www.pdl.cmu.edu/PDL-FTP/FS/CMU-PDL-19-102_abs.shtml
http://www.pdl.cmu.edu/PDL-FTP/FS/CMU-PDL-19-102_abs.shtml
https://doi.org/10.1145/3341301.3359656
https://doi.org/10.1145/3386362
https://aws.amazon.com/ebs/

[8] Amazon.com, Inc. Amazon S3. https://aws.amazon.com/s3/, 2019. [Cited on pages 61
and 95.]

[9] Ahmed Amer, Darrell D. E. Long, Ethan L. Miller, Jehan-Francois Paris, and S. J.�omas
Schwarz. Design Issues for a Shingled Write Disk System. In Proceedings of the 2010 IEEE
26th Symposium on Mass Storage Systems and Technologies (MSST), MSST ’10, pages 1–
12, Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-1-4244-7152-2. doi:
10.1109/MSST.2010.5496991. URL http://dx.doi.org/10.1109/MSST.2010.5496991.
[Cited on pages 9, 28, and 35.]

[10] Andreas Dilger. Lustre Metadata Scaling. http://storageconference.us/2012/
Presentations/T01.Dilger.pdf, 2012. [Cited on pages 1 and 4.]

[11] AskUbuntu. Is there any faster way to remove a directory than "rm -rf "? http://
askubuntu.com/questions/114969, 2012. [Cited on page 49.]

[12] Jens Axboe. Queue sysfs �les. https://www.kernel.org/doc/Documentation/block/
queue-sysfs.txt, February 2009. [Cited on page 73.]

[13] Jens Axboe. Flexible I/O Tester. git://git.kernel.dk/fio.git, 2016. [Cited on pages
14 and 73.]

[14] Jens Axboe. �rottled Background Bu�ered Writeback. https://lwn.net/Articles/
698815/, August 2016. [Cited on page 67.]

[15] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
Garth R. Goodson, and Bianca Schroeder. An analysis of data corruption in the storage
stack. Trans. Storage, 4(3):8:1–8:28, November 2008. ISSN 1553-3077. doi: 10.1145/1416944.
1416947. URL http://doi.acm.org/10.1145/1416944.1416947. [Cited on page 31.]

[16] Matias Bjørling. Zone Append: A NewWay of Writing to Zoned Storage. Santa Clara, CA,
February 2020. USENIX Association. [Cited on page 96.]

[17] Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet. Linux block IO: Intro-
ducing Multi-Queue SSD Access on Multi-Core Systems. In Proceedings of the 6th interna-
tional systems and storage conference (SYSTOR). ACM, 2013. [Cited on page 81.]

[18] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. LightNVM: �e Linux Open-
Channel SSD Subsystem. In 15th USENIX Conference on File and Storage Technolo-
gies (FAST 17), pages 359–374, Santa Clara, CA, 2017. USENIX Association. ISBN
978-1-931971-36-2. URL https://www.usenix.org/conference/fast17/technical-
sessions/presentation/bjorling. [Cited on page 80.]

[19] Matias Bjørling et al. Zoned Namespaces. Technical Proposal 4053, NVM Express, June
2020. Available from https://nvmexpress.org/wp-content/uploads/NVM-Express-
1.4-Ratified-TPs.zip. [Cited on pages 80 and 81.]

[20] Artem Blagodarenko. Scaling LDISKFS for the future. https://www.youtube.com/
watch?v=ubbZGpxV6zk, 2016. [Cited on pages 60 and 78.]

[21] Artem Blagodarenko. Scaling LDISKFS for the future. Again. https://www.youtube.
com/watch?v=HLfEd0_Dq0U, 2017. [Cited on pages 60 and 78.]

[22] Luc Bouganim, Bjorn Jónsson, and Philippe Bonnet. uFLIP: understanding �ash IO pat-

108

https://aws.amazon.com/s3/
http://dx.doi.org/10.1109/MSST.2010.5496991
http://storageconference.us/2012/Presentations/T01.Dilger.pdf
http://storageconference.us/2012/Presentations/T01.Dilger.pdf
http://askubuntu.com/questions/114969
http://askubuntu.com/questions/114969
https://www.kernel.org/doc/Documentation/block/queue-sysfs.txt
https://www.kernel.org/doc/Documentation/block/queue-sysfs.txt
git://git.kernel.dk/fio.git
https://lwn.net/Articles/698815/
https://lwn.net/Articles/698815/
http://doi.acm.org/10.1145/1416944.1416947
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://nvmexpress.org/wp-content/uploads/NVM-Express-1.4-Ratified-TPs.zip
https://nvmexpress.org/wp-content/uploads/NVM-Express-1.4-Ratified-TPs.zip
https://www.youtube.com/watch?v=ubbZGpxV6zk
https://www.youtube.com/watch?v=ubbZGpxV6zk
https://www.youtube.com/watch?v=HLfEd0_Dq0U
https://www.youtube.com/watch?v=HLfEd0_Dq0U

terns. In Proceedings of the Int’l Conf. on Innovative Data Systems Research (CIDR), Asilo-
mar, California, USA, 2009. [Cited on page 10.]

[23] Silas Boyd-Wickizer, HaiboChen, RongChen, YandongMao, FransKaashoek, RobertMor-
ris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang, and Zheng Zhang.
Corey: An Operating System for Many Cores. In Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’08, pages 43–57, Berke-
ley, CA, USA, 2008. USENIX Association. URL http://dl.acm.org/citation.cfm?
id=1855741.1855745. [Cited on page 40.]

[24] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans
Kaashoek, Robert Morris, and Nickolai Zeldovich. An Analysis of Linux Scalability to
Many Cores. In Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation, OSDI’10, pages 1–16, Berkeley, CA, USA, 2010. USENIX Association.
URL http://dl.acm.org/citation.cfm?id=1924943.1924944. [Cited on page 40.]

[25] Frederick P Brooks Jr. No Silver Bullet—Essence and Accident in So�ware Engineering,
1986. [Cited on page 4.]

[26] Btrfs. Btrfs Changelog. https://btrfs.wiki.kernel.org/index.php/Changelog,
2019. [Cited on pages 63 and 77.]

[27] David C. [ceph-users] Luminous | PG split causing slow requests. http://lists.ceph.
com/pipermail/ceph-users-ceph.com/2018-February/024984.html, 2018. [Cited
on page 66.]

[28] Remy Card,�eodore Ts’o, and Stephen Tweedie. Design and Implementation of the Sec-
ond Extended Filesystem. In Proceedings of the �rst Dutch International Symposium on
Linux, volume 1, 1994. [Cited on page 41.]

[29] Yuval Cassuto, Marco A. A. Sanvido, Cyril Guyot, David R. Hall, and Zvonimir Z. Bandic.
Indirection Systems for Shingled-recording Disk Drives. In Proceedings of the 2010 IEEE
26th Symposium on Mass Storage Systems and Technologies (MSST), MSST ’10, pages 1–
14, Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-1-4244-7152-2. doi:
10.1109/MSST.2010.5496971. URL http://dx.doi.org/10.1109/MSST.2010.5496971.
[Cited on pages 9, 10, 12, 13, 15, 16, 19, 23, 28, 35, and 55.]

[30] ceph.io. Ceph: get the best of your SSD with primary a�nity. https://ceph.io/geen-
categorie/ceph-get-the-best-of-your-ssd-with-primary-affinity/, 2015.
[Cited on page 101.]

[31] Luoqing Chao and�under Zhang. Implement Object Storage with SMR based key-value
store. https://www.snia.org/sites/default/files/SDC15_presentations/smr/
QingchaoLuo_Implement_Object_Storage_SMR_Key-Value_Store.pdf, 2015. [Cited
on page 79.]

[32] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding Intrinsic Characteris-
tics and System Implications of FlashMemoryBased Solid StateDrives. InProceedings of the
Eleventh International Joint Conference onMeasurement andModeling of Computer Systems,
SIGMETRICS ’09, pages 181–192, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-511-
6. doi: 10.1145/1555349.1555371. URL http://doi.acm.org/10.1145/1555349.1555371.

109

http://dl.acm.org/citation.cfm?id=1855741.1855745
http://dl.acm.org/citation.cfm?id=1855741.1855745
http://dl.acm.org/citation.cfm?id=1924943.1924944
https://btrfs.wiki.kernel.org/index.php/Changelog
http://lists.ceph.com/pipermail/ceph-users-ceph.com/2018-February/024984.html
http://lists.ceph.com/pipermail/ceph-users-ceph.com/2018-February/024984.html
http://dx.doi.org/10.1109/MSST.2010.5496971
https://ceph.io/geen-categorie/ceph-get-the-best-of-your-ssd-with-primary-affinity/
https://ceph.io/geen-categorie/ceph-get-the-best-of-your-ssd-with-primary-affinity/
https://www.snia.org/sites/default/files/SDC15_presentations/smr/QingchaoLuo_Implement_Object_Storage_SMR_Key-Value_Store.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/smr/QingchaoLuo_Implement_Object_Storage_SMR_Key-Value_Store.pdf
http://doi.acm.org/10.1145/1555349.1555371

[Cited on page 10.]
[33] Stepehen P. Morgan Chi-Young Ku. An SMR-aware Append-only File System. In Storage

Developer Conference, Santa Clara, CA, USA, September 2015. [Cited on page 39.]
[34] Dave Chinner. XFS Delayed Logging Design. https://www.kernel.org/doc/

Documentation/filesystems/xfs-delayed-logging-design.txt, 2010. [Cited on
page 63.]

[35] Dave Chinner. SMR Layout Optimization for XFS. http://xfs.org/images/f/f6/Xfs-
smr-structure-0.2.pdf, March 2015. [Cited on pages 5 and 39.]

[36] Dave Chinner. XFS:�ere and Back... ...and�ere Again? In Vault Linux Storage and File
System Conference, Boston, MA, USA, April 2016. [Cited on pages 39 and 105.]

[37] Dave Chinner. Re: pagecache locking (was: bcachefs status update) merged). https:
//lkml.org/lkml/2019/6/13/1794, June 2019. [Cited on page 76.]

[38] Alibaba Clouder. Alibaba Deploys Alibaba Open Channel SSD for Next Generation
Data Centers. https://www.alibabacloud.com/blog/alibaba-deploys-alibaba-
open-channel-ssd-for-next-generation-data-centers_593802, July 2018. [Cited
on page 80.]

[39] William Cohen. How to avoid wasting megabytes of memory a few bytes
at a time. https://developers.redhat.com/blog/2016/06/01/how-to-avoid-
wasting-megabytes-of-memory-a-few-bytes-at-a-time/, 2016. [Cited on page 76.]

[40] Jonathan Darrel Coker and David Robison Hall. Indirection memory architecture with
reduced memory requirements for shingled magnetic recording devices, November 5 2013.
US Patent 8,578,122. [Cited on pages 10, 15, and 35.]

[41] Douglas Comer. Ubiquitous B-Tree. ACM Comput. Surv., 11(2):121–137, June 1979. ISSN
0360-0300. doi: 10.1145/356770.356776. URL http://doi.acm.org/10.1145/356770.
356776. [Cited on page 82.]

[42] �e Kernel Development Community. Switching Scheduler. https://www.kernel.org/
doc/html/latest/block/switching-sched.html, 2020. [Cited on page 84.]

[43] Jonathan Corbet. Supporting transactions in Btrfs. https://lwn.net/Articles/
361457/, Nov 2009. [Cited on pages 63 and 77.]

[44] JonathanCorbet. No-I/O dirty throttling. https://lwn.net/Articles/456904/, August
2011. [Cited on page 67.]

[45] Jonathan Corbet. Kernel quality control, or the lack thereof. https://lwn.net/
Articles/774114/, December 2018. [Cited on page 4.]

[46] Jonathan Corbet. PostgreSQL’s fsync() surprise. https://lwn.net/Articles/752063/,
2018. [Cited on page 76.]

[47] Je�rey Dean and Luiz AndrÃľ Barroso. �e Tail at Scale. Communications of the ACM, 56:
74–80, 2013. URL http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-
scale/fulltext. [Cited on page 5.]

[48] Wido denHollander. Do not use SMRdisks withCeph. https://blog.widodh.nl/2017/

110

https://www.kernel.org/doc/Documentation/filesystems/xfs-delayed-logging-design.txt
https://www.kernel.org/doc/Documentation/filesystems/xfs-delayed-logging-design.txt
http://xfs.org/images/f/f6/Xfs-smr-structure-0.2.pdf
http://xfs.org/images/f/f6/Xfs-smr-structure-0.2.pdf
https://lkml.org/lkml/2019/6/13/1794
https://lkml.org/lkml/2019/6/13/1794
https://www.alibabacloud.com/blog/alibaba-deploys-alibaba-open-channel-ssd-for-next-generation-data-centers_593802
https://www.alibabacloud.com/blog/alibaba-deploys-alibaba-open-channel-ssd-for-next-generation-data-centers_593802
https://developers.redhat.com/blog/2016/06/01/how-to-avoid-wasting-megabytes-of-memory-a-few-bytes-at-a-time/
https://developers.redhat.com/blog/2016/06/01/how-to-avoid-wasting-megabytes-of-memory-a-few-bytes-at-a-time/
http://doi.acm.org/10.1145/356770.356776
http://doi.acm.org/10.1145/356770.356776
https://www.kernel.org/doc/html/latest/block/switching-sched.html
https://www.kernel.org/doc/html/latest/block/switching-sched.html
https://lwn.net/Articles/361457/
https://lwn.net/Articles/361457/
https://lwn.net/Articles/456904/
https://lwn.net/Articles/774114/
https://lwn.net/Articles/774114/
https://lwn.net/Articles/752063/
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
https://blog.widodh.nl/2017/02/do-not-use-smr-disks-with-ceph/
https://blog.widodh.nl/2017/02/do-not-use-smr-disks-with-ceph/
https://blog.widodh.nl/2017/02/do-not-use-smr-disks-with-ceph/

02/do-not-use-smr-disks-with-ceph/, 2017. [Cited on page 98.]
[49] Linux Device-Mapper. Device-Mapper Resource Page. https://sourceware.org/dm/,

2001. [Cited on page 10.]
[50] WesternDigital. WesternDigital PC SN720NVMe SSD. https://www.westerndigital.

com/products/internal-drives/pc-sn720-ssd, 2019. [Cited on pages 93 and 95.]
[51] Western Digital. Zoned Storage. http://zonedstorage.io, 2019. [Cited on page 4.]
[52] Anton Dmitriev. [ceph-users] All OSD fails a�er few requests to RGW. http://lists.

ceph.com/pipermail/ceph-users-ceph.com/2017-May/017950.html, 2017. [Cited on
page 66.]

[53] Elizabeth ADobisz, Z.Z. Bandic, Tsai-WeiWu, and T. Albrecht. PatternedMedia: Nanofab-
rication Challenges of Future Disk Drives. Proceedings of the IEEE, 96(11):1836–1846,
November 2008. ISSN 0018-9219. doi: 10.1109/JPROC.2008.2007600. [Cited on page 9.]

[54] Siying Dong. Direct I/O Close() shouldn’t rewrite the last page. https://github.com/
facebook/rocksdb/pull/4771, 2018. [Cited on page 84.]

[55] DRAMeXchange. NANDFlash Spot Price, September 2014. URL http://dramexchange.
com. http://dramexchange.com. [Cited on page 9.]

[56] �e Economist. �e world’s most valuable resource is no longer oil, but data.
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-
resource-is-no-longer-oil-but-data, 2017. [Cited on page 1.]

[57] Jake Edge. Ideas for supporting shingled magnetic recording (SMR). https://lwn.net/
Articles/592091/, Apr 2014. [Cited on page 39.]

[58] Jake Edge. �e OrangeFS distributed �lesystem. https://lwn.net/Articles/643165/,
2015. [Cited on pages 2, 4, and 59.]

[59] Jake Edge. Filesystem support for SMR devices. https://lwn.net/Articles/637035/,
Mar 2015. [Cited on page 39.]

[60] Jake Edge. XFS: �ere and back ... and there again? https://lwn.net/Articles/
638546/, Apr 2015. [Cited on pages 4 and 68.]

[61] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An Operating System Ar-
chitecture for Application-level Resource Management. In Proceedings of the Fi�eenth
ACM Symposium on Operating Systems Principles, SOSP ’95, pages 251–266, New York,
NY, USA, 1995. ACM. ISBN 0-89791-715-4. doi: 10.1145/224056.224076. URL http:
//doi.acm.org/10.1145/224056.224076. [Cited on page 59.]

[62] Facebook. RocksDB. https://github.com/facebook/rocksdb/, 2020. [Cited on pages
82 and 95.]

[63] Facebook Inc. Performance Benchmarks. https://github.com/facebook/rocksdb/
wiki/Performance-Benchmarks, 2018. [Cited on page 86.]

[64] Facebook Inc. RocksDB Tuning Guide. https://github.com/facebook/rocksdb/
wiki/RocksDB-Tuning-Guide, 2018. [Cited on page 87.]

[65] Robert M Fallone and William B Boyle. Data storage device employing a run-length map-

111

https://blog.widodh.nl/2017/02/do-not-use-smr-disks-with-ceph/
https://blog.widodh.nl/2017/02/do-not-use-smr-disks-with-ceph/
https://blog.widodh.nl/2017/02/do-not-use-smr-disks-with-ceph/
https://sourceware.org/dm/
https://www.westerndigital.com/products/internal-drives/pc-sn720-ssd
https://www.westerndigital.com/products/internal-drives/pc-sn720-ssd
http://zonedstorage.io
http://lists.ceph.com/pipermail/ceph-users-ceph.com/2017-May/017950.html
http://lists.ceph.com/pipermail/ceph-users-ceph.com/2017-May/017950.html
https://github.com/facebook/rocksdb/pull/4771
https://github.com/facebook/rocksdb/pull/4771
http://dramexchange.com
http://dramexchange.com
http://dramexchange.com
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://lwn.net/Articles/592091/
https://lwn.net/Articles/592091/
https://lwn.net/Articles/643165/
https://lwn.net/Articles/637035/
https://lwn.net/Articles/638546/
https://lwn.net/Articles/638546/
http://doi.acm.org/10.1145/224056.224076
http://doi.acm.org/10.1145/224056.224076
https://github.com/facebook/rocksdb/
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide

ping table and a single address mapping table, May 14 2013. US Patent 8,443,167. [Cited on
page 35.]

[66] Tim Feldman. Personal communication, August 2014. [Cited on page 14.]
[67] Tim Feldman. Host-Aware SMR, November 2014. Available from https://www.youtube.

com/watch?v=b1yqjV8qemU. [Cited on page 18.]
[68] Timothy Richard Feldman. Dynamic storage regions, February 14 2011. US Patent App.

13/026,535. [Cited on pages 15, 34, and 35.]
[69] Andrew Fikes. Storage Architecture and Challenges. https://cloud.google.com/

files/storage_architecture_and_challenges.pdf, 2010. [Cited on page 71.]
[70] Mary Jo Foley. Microso� readies new cloud SSD storage spec for the Open Compute

Project. https://www.zdnet.com/article/microsoft-readies-new-cloud-ssd-
storage-spec-for-the-open-compute-project/, March 2018. [Cited on page 80.]

[71] �e Ceph Foundation. Ceph. https://github.com/ceph/ceph/, 2020. [Cited on
page 98.]

[72] FreeNAS. ZFS and lots of �les. https://forums.freenas.org/index.php?threads/
zfs-and-lots-of-files.7925/, 2012. [Cited on page 49.]

[73] Sanjay Ghemawat and Je�Dean. LevelDB. https://github.com/google/leveldb, 2019.
[Cited on page 56.]

[74] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung.�e Google File System. In Pro-
ceedings of theNineteenthACMSymposiumonOperating Systems Principles, SOSP ’03, pages
29–43, New York, NY, USA, 2003. ACM. ISBN 1-58113-757-5. doi: 10.1145/945445.945450.
URL http://doi.acm.org/10.1145/945445.945450. [Cited on pages 2, 4, and 59.]

[75] Garth Gibson and Greg Ganger. Principles of Operation for Shingled Disk Devices. Tech-
nical Report CMU-PDL-11-107, CMU Parallel Data Laboratory, April 2011. URL http:
//repository.cmu.edu/pdl/7. [Cited on pages 9 and 79.]

[76] Garth Gibson and Milo Polte. Directions for Shingled-Write and Two-Dimensional Mag-
netic Recording System Architectures: Synergies with Solid-State Disks. Technical Report
CMU-PDL-09-104, CMUParallel Data Laboratory, May 2009. URL http://repository.
cmu.edu/pdl/7. [Cited on page 35.]

[77] Jongmin Gim and Youjip Won. Extract and infer quickly: Obtaining sector geometry of
modernhard disk drives.ACMTransactions on Storage (TOS), 6(2):6:1–6:26, July 2010. ISSN
1553-3077. doi: 10.1145/1807060.1807063. URL http://doi.acm.org/10.1145/1807060.
1807063. [Cited on pages 10 and 36.]

[78] David Hall, John H Marcos, and Jonathan D Coker. Data Handling Algorithms For Au-
tonomous Shingled Magnetic Recording HDDs. IEEE Transactions on Magnetics, 48(5):
1777–1781, 2012. [Cited on pages 9, 10, 12, and 35.]

[79] David Robison Hall. Shingle-written magnetic recording (SMR) device with hybrid E-
region, April 1 2014. US Patent 8,687,303. [Cited on pages 13, 15, 28, and 35.]

[80] Mingzhe Hao, Gokul Soundararajan, Deepak Kenchammana-Hosekote, Andrew A. Chien,

112

https://www.youtube.com/watch?v=b1yqjV8qemU
https://www.youtube.com/watch?v=b1yqjV8qemU
https://cloud.google.com/files/storage_architecture_and_challenges.pdf
https://cloud.google.com/files/storage_architecture_and_challenges.pdf
https://www.zdnet.com/article/microsoft-readies-new-cloud-ssd-storage-spec-for-the-open-compute-project/
https://www.zdnet.com/article/microsoft-readies-new-cloud-ssd-storage-spec-for-the-open-compute-project/
https://github.com/ceph/ceph/
https://forums.freenas.org/index.php?threads/zfs-and-lots-of-files.7925/
https://forums.freenas.org/index.php?threads/zfs-and-lots-of-files.7925/
https://github.com/google/leveldb
http://doi.acm.org/10.1145/945445.945450
http://repository.cmu.edu/pdl/7
http://repository.cmu.edu/pdl/7
http://repository.cmu.edu/pdl/7
http://repository.cmu.edu/pdl/7
http://doi.acm.org/10.1145/1807060.1807063
http://doi.acm.org/10.1145/1807060.1807063

and Haryadi S. Gunawi. �e Tail at Store: A Revelation from Millions of Hours of
Disk and SSD Deployments. In 14th USENIX Conference on File and Storage Tech-
nologies (FAST 16), pages 263–276, Santa Clara, CA, 2016. USENIX Association. ISBN
978-1-931971-28-7. URL https://www.usenix.org/conference/fast16/technical-
sessions/presentation/hao. [Cited on pages 1, 3, 5, and 80.]

[81] Weiping He and David H. C. Du. Novel Address Mappings for Shingled Write Disks.
In Proceedings of the 6th USENIX Conference on Hot Topics in Storage and File Systems,
HotStorage’14, pages 5–5, Berkeley, CA, USA, 2014. USENIX Association. URL http:
//dl.acm.org/citation.cfm?id=2696578.2696583. [Cited on page 35.]

[82] Christoph Hellwig. XFS:�e Big Storage File System for Linux. USENIX ;login issue, 34(5),
2009. [Cited on page 62.]

[83] HGST. HGSTUnveils Intelligent, Dynamic Storage Solutions To Transform�e Data Cen-
ter, September 2014. Available from http://www.hgst.com/press-room/. [Cited on
page 9.]

[84] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, Robert N. Sidebotham,
and M. West. Scale and Performance in a Distributed File System. In Proceedings of the
Eleventh ACM Symposium on Operating Systems Principles, SOSP ’87, pages 1–2, New York,
NY, USA, 1987. ACM. ISBN 0-89791-242-X. doi: 10.1145/41457.37500. URL http://doi.
acm.org/10.1145/41457.37500. [Cited on pages 2, 4, and 59.]

[85] Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu Cheng, Vijay Chidambaram, and
EmmettWitchel. TxFS: Leveraging File-SystemCrashConsistency to ProvideACIDTrans-
actions. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 879–891,
Boston, MA, 2018. USENIX Association. ISBN 978-1-931971-44-7. URL https://www.
usenix.org/conference/atc18/presentation/hu. [Cited on pages 60, 63, and 77.]

[86] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit Gopalan,
Jin Li, and Sergey Yekhanin. Erasure Coding in Windows Azure Storage. In Presented
as part of the 2012 USENIX Annual Technical Conference (USENIX ATC 12), pages 15–26,
Boston, MA, 2012. USENIX. ISBN 978-931971-93-5. URL https://www.usenix.org/
conference/atc12/technical-sessions/presentation/huang. [Cited on page 71.]

[87] Felix Hupfeld, Toni Cortes, Björn Kolbeck, Jan Stender, Erich Focht, Matthias Hess, Je-
sus Malo, Jonathan Marti, and Eugenio Cesario. �e XtreemFS Architecture – a Case for
Object-based File Systems in Grids. Concurrency and Computation: Practice and Experi-
ence, 20(17):2049–2060, December 2008. ISSN 1532-0626. doi: 10.1002/cpe.v20:17. URL
http://dx.doi.org/10.1002/cpe.v20:17. [Cited on pages 2, 4, 59, and 60.]

[88] IBM. IBM 350 disk storage unit. https://www.ibm.com/ibm/history/exhibits/
storage/storage_350.html, 2020. [Cited on pages 3 and 9.]

[89] Shuichi Ihara and Shilong Wang. Lustre/ldiskfs Metadata Performance Boost. https:
//www.eofs.eu/_media/events/lad17/19_shuichi_ihara_lad17_ihara_1004.pdf,
October 2017. [Cited on page 4.]

[90] Facebook Inc. RocksDB Direct IO. https://github.com/facebook/rocksdb/wiki/
Direct-IO, 2019. [Cited on page 76.]

113

https://www.usenix.org/conference/fast16/technical-sessions/presentation/hao
https://www.usenix.org/conference/fast16/technical-sessions/presentation/hao
http://dl.acm.org/citation.cfm?id=2696578.2696583
http://dl.acm.org/citation.cfm?id=2696578.2696583
http://www.hgst.com/press-room/
http://doi.acm.org/10.1145/41457.37500
http://doi.acm.org/10.1145/41457.37500
https://www.usenix.org/conference/atc18/presentation/hu
https://www.usenix.org/conference/atc18/presentation/hu
https://www.usenix.org/conference/atc12/technical-sessions/presentation/huang
https://www.usenix.org/conference/atc12/technical-sessions/presentation/huang
http://dx.doi.org/10.1002/cpe.v20:17
https://www.ibm.com/ibm/history/exhibits/storage/storage_350.html
https://www.ibm.com/ibm/history/exhibits/storage/storage_350.html
https://www.eofs.eu/_media/events/lad17/19_shuichi_ihara_lad17_ihara_1004.pdf
https://www.eofs.eu/_media/events/lad17/19_shuichi_ihara_lad17_ihara_1004.pdf
https://github.com/facebook/rocksdb/wiki/Direct-IO
https://github.com/facebook/rocksdb/wiki/Direct-IO

[91] Facebook Inc. RocksDB Merge Operator. https://github.com/facebook/rocksdb/
wiki/Merge-Operator, 2019. [Cited on pages 70 and 97.]

[92] Facebook Inc. RocksDB Synchronous Writes. https://github.com/facebook/
rocksdb/wiki/Basic-Operations#synchronous-writes, 2019. [Cited on page 65.]

[93] Silicon Graphics Inc. XFS Allocation Groups. http://xfs.org/docs/xfsdocs-xml-
dev/XFS_Filesystem_Structure/tmp/en-US/html/Allocation_Groups.html, 2006.
[Cited on page 66.]

[94] INCITS T10 Technical Committee. Information technology - Zoned Block Commands
(ZBC). Dra� Standard T10/BSR INCITS 536, American National Standards Institute, Inc.,
September 2014. Available from https://www.t10.org/ftp/zbcr01.pdf. [Cited on
pages 11, 79, and 81.]

[95] INCITS T13 Technical Committee. Information technology - Zoned De-
vice ATA Command Set (ZAC). Dra� Standard T13/BSR INCITS 537, Amer-
ican National Standards Institute, Inc., December 2015. Available from
http://www.t13.org/Documents/UploadedDocuments/docs2015/di537r05-
Zoned_Device_ATA_Command_Set_ZAC.pdf. [Cited on pages 79 and 81.]

[96] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng Jiao,
AnkurMittal, Prashant Pandey, Phaneendra Reddy, LeifWalsh, Michael A. Bender, Martin
Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E. Porter. Betrfs: Write-
optimization in a kernel �le system. Trans. Storage, 11(4):18:1–18:29, November 2015. ISSN
1553-3077. doi: 10.1145/2798729. URL http://doi.acm.org/10.1145/2798729. [Cited
on page 77.]

[97] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and Youjip Won. I/O Stack
Optimization for Smartphones. In Proceedings of the 2013 USENIX Annual Techni-
cal Conference (USENIX ATC 13), pages 309–320, San Jose, CA, 2013. USENIX. ISBN
978-1-931971-01-0. URL https://www.usenix.org/conference/atc13/technical-
sessions/presentation/jeong. [Cited on page 65.]

[98] Chao Jin, Wei-Ya Xi, Zhi-Yong Ching, Feng Huo, and Chun-Teck Lim. HiSMRfs: a High
Performance File System for Shingled Storage Array. In Proceedings of the 2014 IEEE 30th
Symposium on Mass Storage Systems and Technologies (MSST), pages 1–6, June 2014. doi:
10.1109/MSST.2014.6855539. [Cited on pages 35 and 39.]

[99] �eodore Johnson and Dennis Shasha. 2Q: A Low Overhead High Performance Bu�er
Management Replacement Algorithm. In Proceedings of the 20th International Conference
onVery LargeData Bases, VLDB ’94, pages 439–450, San Francisco, CA,USA, 1994.Morgan
Kaufmann Publishers Inc. ISBN 1-55860-153-8. URL http://dl.acm.org/citation.
cfm?id=645920.672996. [Cited on page 70.]

[100] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector M. Briceño, Russell
Hunt, David Mazières, �omas Pinckney, Robert Grimm, John Jannotti, and Kenneth
Mackenzie. Application Performance and Flexibility on Exokernel Systems. In Proceedings
of the Sixteenth ACM Symposium on Operating Systems Principles, SOSP ’97, pages 52–65,
New York, NY, USA, 1997. ACM. ISBN 0-89791-916-5. doi: 10.1145/268998.266644. URL

114

https://github.com/facebook/rocksdb/wiki/Merge-Operator
https://github.com/facebook/rocksdb/wiki/Merge-Operator
https://github.com/facebook/rocksdb/wiki/Basic-Operations#synchronous-writes
https://github.com/facebook/rocksdb/wiki/Basic-Operations#synchronous-writes
http://xfs.org/docs/xfsdocs-xml-dev/XFS_Filesystem_Structure/tmp/en-US/html/Allocation_Groups.html
http://xfs.org/docs/xfsdocs-xml-dev/XFS_Filesystem_Structure/tmp/en-US/html/Allocation_Groups.html
https://www.t10.org/ftp/zbcr01.pdf
http://www.t13.org/Documents/UploadedDocuments/docs2015/di537r05-Zoned_Device_ATA_Command_Set_ZAC.pdf
http://www.t13.org/Documents/UploadedDocuments/docs2015/di537r05-Zoned_Device_ATA_Command_Set_ZAC.pdf
http://doi.acm.org/10.1145/2798729
https://www.usenix.org/conference/atc13/technical-sessions/presentation/jeong
https://www.usenix.org/conference/atc13/technical-sessions/presentation/jeong
http://dl.acm.org/citation.cfm?id=645920.672996
http://dl.acm.org/citation.cfm?id=645920.672996

http://doi.acm.org/10.1145/268998.266644. [Cited on page 59.]
[101] Jurgen Kaiser, Dirk Meister, Tim Hartung, and Andre Brinkmann. ESB: Ext2 Split Block

Device. In Proceedings of the 2012 IEEE 18th International Conference on Parallel and Dis-
tributed Systems, ICPADS ’12, pages 181–188, Washington, DC, USA, 2012. IEEE Computer
Society. ISBN 978-0-7695-4903-3. doi: 10.1109/ICPADS.2012.34. URL http://dx.doi.
org/10.1109/ICPADS.2012.34. [Cited on page 56.]

[102] Je�rey Katcher. Postmark: A New File System Benchmark. Technical report, Technical
Report TR3022, Network Appliance, 1997. [Cited on page 49.]

[103] John Kennedy and Michael Satran. About Transactional NTFS. https://docs.
microsoft.com/en-us/windows/desktop/fileio/about-transactional-ntfs, May
2018. [Cited on page 77.]

[104] John Kennedy and Michael Satran. Alternatives to using Transactional NTFS. https://
docs.microsoft.com/en-us/windows/desktop/fileio/deprecation-of-txf, May
2018. [Cited on pages 63 and 77.]

[105] Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards SLO Complying SSDs �rough
OPS Isolation. In 13th USENIX Conference on File and Storage Technologies (FAST
15), pages 183–189, Santa Clara, CA, 2015. USENIX Association. ISBN 978-1-931971-
201. URL https://www.usenix.org/conference/fast15/technical-sessions/
presentation/kim_jaeho. [Cited on pages 3 and 80.]

[106] Jesung Kim, Jong Min Kim, S.H. Noh, Sang Lyul Min, and Yookun Cho. A space-e�cient
�ash translation layer for compact�ash systems. Consumer Electronics, IEEE Transactions
on, 48(2):366–375, May 2002. ISSN 0098-3063. doi: 10.1109/TCE.2002.1010143. [Cited on
page 32.]

[107] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji Kihara, and Satoshi
Moriai. �e Linux Implementation of a Log-structured File System. SIGOPS Oper.
Syst. Rev., 40(3):102–107, July 2006. ISSN 0163-5980. doi: 10.1145/1151374.1151375. URL
http://doi.acm.org/10.1145/1151374.1151375. [Cited on page 39.]

[108] Elie Krevat, Joseph Tucek, and Gregory R. Ganger. Disks Are Like Snow�akes: No Two Are
Alike. In Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems,
HotOS’13, pages 14–14, Berkeley, CA, USA, 2011. USENIX Association. URL http://dl.
acm.org/citation.cfm?id=1991596.1991615. [Cited on page 36.]

[109] Andrew Krioukov, Lakshmi N. Bairavasundaram, Garth R. Goodson, Kiran Srinivasan,
Randy�elen, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dussea. Parity lost and
parity regained. In Proceedings of the 6th USENIX Conference on File and Storage Tech-
nologies, FAST’08, pages 9:1–9:15, Berkeley, CA, USA, 2008. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1364813.1364822. [Cited on page 31.]

[110] Mark Kryder, E.C. Gage, T.W.McDaniel, W.AChallener, R.E. Rottmayer, Ganping Ju, Yiao-
Tee Hsia, and M.F. Erden. Heat Assisted Magnetic Recording. Proceedings of the IEEE, 96
(11):1810–1835, November 2008. ISSN 0018-9219. doi: 10.1109/JPROC.2008.2004315. [Cited
on page 9.]

115

http://doi.acm.org/10.1145/268998.266644
http://dx.doi.org/10.1109/ICPADS.2012.34
http://dx.doi.org/10.1109/ICPADS.2012.34
https://docs.microsoft.com/en-us/windows/desktop/fileio/about-transactional-ntfs
https://docs.microsoft.com/en-us/windows/desktop/fileio/about-transactional-ntfs
https://docs.microsoft.com/en-us/windows/desktop/fileio/deprecation-of-txf
https://docs.microsoft.com/en-us/windows/desktop/fileio/deprecation-of-txf
https://www.usenix.org/conference/fast15/technical-sessions/presentation/kim_jaeho
https://www.usenix.org/conference/fast15/technical-sessions/presentation/kim_jaeho
http://doi.acm.org/10.1145/1151374.1151375
http://dl.acm.org/citation.cfm?id=1991596.1991615
http://dl.acm.org/citation.cfm?id=1991596.1991615
http://dl.acm.org/citation.cfm?id=1364813.1364822

[111] Aneesh Kumar KV, Mingming Cao, Jose R Santos, and Andreas Dilger. Ext4 block and
inode allocator improvements. In Proceedings of the Linux Symposium, volume 1, 2008.
[Cited on pages 41 and 42.]

[112] Butler Lampson andHoward E Sturgis. Crash recovery in a distributed data storage system.
1979. [Cited on page 60.]

[113] Rob Landley. Red-black Trees (rbtree) in Linux. https://www.kernel.org/doc/
Documentation/rbtree.txt, January 2007. [Cited on page 44.]

[114] Quoc M. Le, Kumar SathyanarayanaRaju, Ahmed Amer, and JoAnne Holliday. Workload
Impact on ShingledWrite Disks: All-Writes Can Be Alright. In Proceedings of the 2011 IEEE
19th Annual International Symposium on Modelling, Analysis, and Simulation of Computer
and Telecommunication Systems, MASCOTS ’11, pages 444–446, Washington, DC, USA,
2011. IEEE Computer Society. ISBN 978-0-7695-4430-4. doi: 10.1109/MASCOTS.2011.58.
URL http://dx.doi.org/10.1109/MASCOTS.2011.58. [Cited on page 35.]

[115] D. Le Moal, Z. Bandic, and C. Guyot. Shingled �le system host-side management of Shin-
gled Magnetic Recording disks. In Proceedings of the 2012 IEEE International Conference
on Consumer Electronics (ICCE), pages 425–426, January 2012. doi: 10.1109/ICCE.2012.
6161799. [Cited on pages 9, 11, 35, and 39.]

[116] Adam Leventhal. APFS in Detail: Overview. http://dtrace.org/blogs/ahl/2016/06/
19/apfs-part1/, 2016. [Cited on pages 4 and 68.]

[117] Libata FAQ. https://ata.wiki.kernel.org/index.php/Libata_FAQ, 2011. [Cited on
page 17.]

[118] Chung-I Lin, Dongchul Park, Weiping He, and David H. C. Du. H-SWD: Incorporating
Hot Data Identi�cation into Shingled Write Disks. In Proceedings of the 2012 IEEE 20th
International Symposium on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems, MASCOTS ’12, pages 321–330, Washington, DC, USA, 2012. IEEE
Computer Society. ISBN 978-0-7695-4793-0. doi: 10.1109/MASCOTS.2012.44. URL
http://dx.doi.org/10.1109/MASCOTS.2012.44. [Cited on page 35.]

[119] Chen Luo and Michael J. Carey. LSM-based Storage Techniques: A Survey. CoRR,
abs/1812.07527, 2018. URL http://arxiv.org/abs/1812.07527. [Cited on page 88.]

[120] Colm MacCárthaigh. Scaling Apache 2.x beyond 20,000 concurrent downloads. In
ApacheCon EU, July 2005. [Cited on page 49.]

[121] Peter Macko, Xiongzi Ge, John Haskins Jr., James Kelley, David Slik, Keith A. Smith, and
Maxim G. Smith. SMORE: A Cold Data Object Store for SMR Drives (Extended Ver-
sion). CoRR, abs/1705.09701, 2017. URL http://arxiv.org/abs/1705.09701. [Cited
on page 79.]

[122] Magic Pocket & Hardware Engineering Teams. Extending Magic Pocket Innovation with
the �rst petabyte scale SMR drive deployment. https://blogs.dropbox.com/tech/
2018/06/extending-magic-pocket-innovation-with-the-first-petabyte-
scale-smr-drive-deployment/, 2018. [Cited on page 79.]

[123] Magic Pocket & Hardware Engineering Teams. SMR: What we learned in our �rst

116

https://www.kernel.org/doc/Documentation/rbtree.txt
https://www.kernel.org/doc/Documentation/rbtree.txt
http://dx.doi.org/10.1109/MASCOTS.2011.58
http://dtrace.org/blogs/ahl/2016/06/19/apfs-part1/
http://dtrace.org/blogs/ahl/2016/06/19/apfs-part1/
https://ata.wiki.kernel.org/index.php/Libata_FAQ
http://dx.doi.org/10.1109/MASCOTS.2012.44
http://arxiv.org/abs/1812.07527
http://arxiv.org/abs/1705.09701
https://blogs.dropbox.com/tech/2018/06/extending-magic-pocket-innovation-with-the-first-petabyte-scale-smr-drive-deployment/
https://blogs.dropbox.com/tech/2018/06/extending-magic-pocket-innovation-with-the-first-petabyte-scale-smr-drive-deployment/
https://blogs.dropbox.com/tech/2018/06/extending-magic-pocket-innovation-with-the-first-petabyte-scale-smr-drive-deployment/

year. https://blogs.dropbox.com/tech/2019/07/smr-what-we-learned-in-our-
first-year/, 2019. [Cited on page 79.]

[124] Adam Manzanares, Noah Watkins, Cyril Guyot, Damien LeMoal, Carlos Maltzahn, and
Zvonimr Bandic. ZEA, A DataManagement Approach for SMR. In 8th USENIXWorkshop
on Hot Topics in Storage and File Systems (HotStorage 16), Denver, CO, USA, June 2016.
USENIX Association. URL https://www.usenix.org/conference/hotstorage16/
workshop-program/presentation/manzanares. [Cited on pages 39 and 84.]

[125] Lars Marowsky-Brée. Ceph User Survey 2018 results. https://ceph.com/ceph-blog/
ceph-user-survey-2018-results/, 2018. [Cited on page 60.]

[126] ChrisMason. Compilebench. https://oss.oracle.com/~mason/compilebench/, 2007.
[Cited on page 43.]

[127] AvantikaMathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex Tomas, and
Laurent Vivier. �e new ext4 �lesystem: current status and future plans. In Proceedings of
the Linux symposium, volume 2, 2007. [Cited on page 41.]

[128] Marshall K McKusick, William N Joy, Samuel J Le�er, and Robert S Fabry. A Fast File
System for UNIX. ACM Transactions on Computer Systems (TOCS), 2(3):181–197, 1984.
[Cited on pages 41, 56, 66, and 77.]

[129] Marshall Kirk McKusick, George V Neville-Neil, and Robert NM Watson. �e Design
and Implementation of the FreeBSD Operating System. Pearson Education, 2014. [Cited
on page 55.]

[130] Chris Mellor. Toshiba embraces shingling for next-gen MAMR HDDs. https:
//blocksandfiles.com/2019/03/11/toshiba-mamr-statements-have-shingling-
absence/, 2019. [Cited on page 3.]

[131] Changwoo Min, Woon-Hak Kang, Taesoo Kim, Sang-Won Lee, and Young Ik Eom.
Lightweight Application-Level Crash Consistency on Transactional Flash Storage. In
2015 USENIX Annual Technical Conference (USENIX ATC 15), pages 221–234, Santa Clara,
CA, 2015. USENIX Association. ISBN 978-1-931971-225. URL https://www.usenix.
org/conference/atc15/technical-session/presentation/min. [Cited on pages 60
and 63.]

[132] Damien LeMoal. blk-mq support for ZBC disks. https://lwn.net/Articles/742159/,
2017. [Cited on page 84.]

[133] Keith Muller and Joseph Pasquale. A High Performance Multi-structured File System
Design. In Proceedings of the �irteenth ACM Symposium on Operating Systems Princi-
ples, SOSP ’91, pages 56–67, New York, NY, USA, 1991. ACM. ISBN 0-89791-447-3. doi:
10.1145/121132.286600. URL http://doi.acm.org/10.1145/121132.286600. [Cited on
page 56.]

[134] Sumedh N. Coding for Performance: Data alignment and structures. https:
//software.intel.com/en-us/articles/coding-for-performance-data-
alignment-and-structures, 2013. [Cited on page 76.]

[135] NetBSD-Wiki. How to install a server with a root LFS partition. https://wiki.netbsd.

117

https://blogs.dropbox.com/tech/2019/07/smr-what-we-learned-in-our-first-year/
https://blogs.dropbox.com/tech/2019/07/smr-what-we-learned-in-our-first-year/
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/manzanares
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/manzanares
https://ceph.com/ceph-blog/ceph-user-survey-2018-results/
https://ceph.com/ceph-blog/ceph-user-survey-2018-results/
https://oss.oracle.com/~mason/compilebench/
https://blocksandfiles.com/2019/03/11/toshiba-mamr-statements-have-shingling-absence/
https://blocksandfiles.com/2019/03/11/toshiba-mamr-statements-have-shingling-absence/
https://blocksandfiles.com/2019/03/11/toshiba-mamr-statements-have-shingling-absence/
https://www.usenix.org/conference/atc15/technical-session/presentation/min
https://www.usenix.org/conference/atc15/technical-session/presentation/min
https://lwn.net/Articles/742159/
http://doi.acm.org/10.1145/121132.286600
https://software.intel.com/en-us/articles/coding-for-performance-data-alignment-and-structures
https://software.intel.com/en-us/articles/coding-for-performance-data-alignment-and-structures
https://software.intel.com/en-us/articles/coding-for-performance-data-alignment-and-structures
https://wiki.netbsd.org/tutorials/how_to_install_a_server_with_a_root_lfs_partition/
https://wiki.netbsd.org/tutorials/how_to_install_a_server_with_a_root_lfs_partition/
https://wiki.netbsd.org/tutorials/how_to_install_a_server_with_a_root_lfs_partition/

org/tutorials/how_to_install_a_server_with_a_root_lfs_partition/, 2012.
[Cited on page 39.]

[136] JuanCarlosOlamendy. An LSM-tree engine forMySQL. https://blog.toadworld.com/
2017/11/15/an-lsm-tree-engine-for-mysql, 2017. [Cited on page 88.]

[137] Michael A.Olson.�eDesign and Implementation of the Inversion File System. InUSENIX
Winter, Berkeley, CA, USA, 1993. USENIX Association. [Cited on pages 60, 63, and 77.]

[138] Michael A. Olson, Keith Bostic, and Margo Seltzer. Berkeley DB. In Proceedings of the An-
nual Conference on USENIX Annual Technical Conference, ATEC ’99, pages 43–43, Berke-
ley, CA, USA, 1999. USENIX Association. URL http://dl.acm.org/citation.cfm?id=
1268708.1268751. [Cited on page 77.]

[139] OpenStack Foundation. 2017 Annual Report. https://www.openstack.org/assets/
reports/OpenStack-AnnualReport2017.pdf, 2017. [Cited on page 66.]

[140] Adrian Palmer. SMRFFS-EXT4—SMR Friendly File System. https://github.com/
Seagate/SMR_FS-EXT4, 2015. [Cited on pages 5 and 39.]

[141] Adrian Palmer. SMR in Linux Systems. In Vault Linux Storage and File System Conference,
Boston, MA, USA, April 2016. [Cited on page 39.]

[142] Chanik Park, Wonmoon Cheon, Jeonguk Kang, Kangho Roh, Wonhee Cho, and Jin-Soo
Kim. A recon�gurable �l (�ash translation layer) architecture for nand �ash-based appli-
cations. ACM Trans. Embed. Comput. Syst., 7(4):38:1–38:23, August 2008. ISSN 1539-9087.
doi: 10.1145/1376804.1376806. URL http://doi.acm.org/10.1145/1376804.1376806.
[Cited on page 32.]

[143] Swapnil Patil andGarth Gibson. Scale and Concurrency of GIGA+: File SystemDirectories
withMillions of Files. InProceedings of the 9thUSENIXConference on File and Stroage Tech-
nologies, FAST’11, pages 13–13, Berkeley, CA, USA, 2011. USENIX Association. ISBN 978-
1-931971-82-9. URL http://dl.acm.org/citation.cfm?id=1960475.1960488. [Cited
on pages 1 and 65.]

[144] PerlMonks. Fastest way to recurse through VERY LARGE directory tree. http://www.
perlmonks.org/?node_id=883444, 2011. [Cited on page 49.]

[145] Juan Piernas, Toni Cortes, and JoséM.García. Dualfs: A new journaling �le systemwithout
meta-data duplication. In Proceedings of the 16th International Conference on Supercomput-
ing, ICS ’02, page 137âĂŞ146, New York, NY, USA, 2002. Association for Computing Ma-
chinery. ISBN 1581134835. doi: 10.1145/514191.514213. URL https://doi.org/10.1145/
514191.514213. [Cited on pages 49, 50, 56, and 77.]

[146] S. N. Piramanayagam. Perpendicular recording media for hard disk drives. Journal of
Applied Physics, 102(1):011301, July 2007. ISSN 0021-8979, 1089-7550. doi: 10.1063/1.2750414.
[Cited on page 9.]

[147] Rekha Pitchumani, Andy Hospodor, Ahmed Amer, Yangwook Kang, Ethan L. Miller, and
Darrell D. E. Long. Emulating a Shingled Write Disk. In Proceedings of the 2012 IEEE 20th
International Symposium on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems, MASCOTS ’12, pages 339–346, Washington, DC, USA, 2012. IEEE

118

https://wiki.netbsd.org/tutorials/how_to_install_a_server_with_a_root_lfs_partition/
https://wiki.netbsd.org/tutorials/how_to_install_a_server_with_a_root_lfs_partition/
https://wiki.netbsd.org/tutorials/how_to_install_a_server_with_a_root_lfs_partition/
https://blog.toadworld.com/2017/11/15/an-lsm-tree-engine-for-mysql
https://blog.toadworld.com/2017/11/15/an-lsm-tree-engine-for-mysql
http://dl.acm.org/citation.cfm?id=1268708.1268751
http://dl.acm.org/citation.cfm?id=1268708.1268751
https://www.openstack.org/assets/reports/OpenStack-AnnualReport2017.pdf
https://www.openstack.org/assets/reports/OpenStack-AnnualReport2017.pdf
https://github.com/Seagate/SMR_FS-EXT4
https://github.com/Seagate/SMR_FS-EXT4
http://doi.acm.org/10.1145/1376804.1376806
http://dl.acm.org/citation.cfm?id=1960475.1960488
http://www.perlmonks.org/?node_id=883444
http://www.perlmonks.org/?node_id=883444
https://doi.org/10.1145/514191.514213
https://doi.org/10.1145/514191.514213

Computer Society. ISBN 978-0-7695-4793-0. doi: 10.1109/MASCOTS.2012.46. URL
http://dx.doi.org/10.1109/MASCOTS.2012.46. [Cited on pages 13 and 35.]

[148] Rekha Pitchumani, James Hughes, and Ethan L. Miller. SMRDB: Key-value Data Store for
Shingled Magnetic Recording Disks. In Proceedings of the 8th ACM International Systems
and Storage Conference, SYSTOR ’15, pages 18:1–18:11, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3607-9. doi: 10.1145/2757667.2757680. URL http://doi.acm.org/10.
1145/2757667.2757680. [Cited on page 83.]

[149] Poornima G and Rajesh Joseph. Metadata Performance Bottlenecks in Gluster. https:
//www.slideshare.net/GlusterCommunity/performance-bottlenecks-for-
metadata-workload-in-gluster-with-poornima-gurusiddaiah-rajesh-joseph,
2016. [Cited on pages 1, 4, and 65.]

[150] Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexander Benn, and
Emmett Witchel. Operating System Transactions. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, SOSP ’09, pages 161–176, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-752-3. doi: 10.1145/1629575.1629591. URL
http://doi.acm.org/10.1145/1629575.1629591. [Cited on pages 60, 63, and 77.]

[151] Sundar Poudyal. Partial write system, March 13 2013. US Patent App. 13/799,827. [Cited on
page 22.]

[152] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Analysis
and Evolution of Journaling File Systems. In�e Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ’05), pages 105–120, Anaheim, CA, USA, April 2005. [Cited on
pages 40 and 41.]

[153] Lee Prewitt. SMR and ZNS – Two Sides of the Same Coin. https://www.youtube.com/
watch?v=jBxzO6YyMxU, 2019. [Cited on page 79.]

[154] Red Hat Inc. GlusterFS Architecture. https://docs.gluster.org/en/latest/Quick-
Start-Guide/Architecture/, 2019. [Cited on pages 2, 4, 59, and 60.]

[155] David Reinsel, John Gantz, and John Rydning. Data Age 2025: �e Evolution of Data to
Life-Critical. https://www.seagate.com/www-content/our-story/trends/files/
Seagate-WP-DataAge2025-March-2017.pdf, 2017. [Cited on pages 1 and 105.]

[156] Kai Ren and Garth Gibson. TABLEFS: Enhancing Metadata E�ciency in the Lo-
cal File System. In Proceedings of the 2013 USENIX Annual Technical Confer-
ence (USENIX ATC 13), pages 145–156, San Jose, CA, USA, 2013. USENIX. ISBN
978-1-931971-01-0. URL https://www.usenix.org/conference/atc13/technical-
sessions/presentation/ren. [Cited on pages 49, 56, and 77.]

[157] Drew Riley. Samsung’s SSD Global Summit: Samsung: Flexing Its Dominance In �e
NANDMarket, August 2013. URL http://www.tomshardware.com/reviews/samsung-
global-ssd-summit-2013,3570.html. [Cited on page 9.]

[158] Mendel Rosenblum and John K. Ousterhout. �e Design and Implementation of a Log-
structured File System. In Proceedings of the �irteenth ACM Symposium on Operating
Systems Principles, SOSP ’91, pages 1–15, New York, NY, USA, 1991. ACM. ISBN 0-89791-

119

http://dx.doi.org/10.1109/MASCOTS.2012.46
http://doi.acm.org/10.1145/2757667.2757680
http://doi.acm.org/10.1145/2757667.2757680
https://www.slideshare.net/GlusterCommunity/performance-bottlenecks-for-metadata-workload-in-gluster-with-poornima-gurusiddaiah-rajesh-joseph
https://www.slideshare.net/GlusterCommunity/performance-bottlenecks-for-metadata-workload-in-gluster-with-poornima-gurusiddaiah-rajesh-joseph
https://www.slideshare.net/GlusterCommunity/performance-bottlenecks-for-metadata-workload-in-gluster-with-poornima-gurusiddaiah-rajesh-joseph
http://doi.acm.org/10.1145/1629575.1629591
https://www.youtube.com/watch?v=jBxzO6YyMxU
https://www.youtube.com/watch?v=jBxzO6YyMxU
https://docs.gluster.org/en/latest/Quick-Start-Guide/Architecture/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Architecture/
https://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.usenix.org/conference/atc13/technical-sessions/presentation/ren
https://www.usenix.org/conference/atc13/technical-sessions/presentation/ren
http://www.tomshardware.com/reviews/samsung-global-ssd-summit-2013,3570.html
http://www.tomshardware.com/reviews/samsung-global-ssd-summit-2013,3570.html

447-3. doi: 10.1145/121132.121137. URL http://doi.acm.org/10.1145/121132.121137.
[Cited on pages 11, 39, 56, 83, and 98.]

[159] Ricardo Santana, Raju Rangaswami, Vasily Tarasov, and Dean Hildebrand. A Fast and
Slippery Slope for File Systems. In Proceedings of the 3rd Workshop on Interactions of
NVM/FLASH with Operating Systems and Workloads, INFLOW ’15, pages 5:1–5:8, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-3945-2. doi: 10.1145/2819001.2819003. URL
http://doi.acm.org/10.1145/2819001.2819003. [Cited on page 39.]

[160] SATA-IO. Serial ATA Revision 3.1 Speci�cation. Technical report, SATA-IO, July 2011.
[Cited on page 12.]

[161] Steven W. Schlosser, Jiri Schindler, Stratos Papadomanolakis, Minglong Shao, Anastassia
Ailamaki, Christos Faloutsos, and Gregory R. Ganger. On Multidimensional Data and
Modern Disks. In Proceedings of the 4th Conference on USENIX Conference on File and
Storage Technologies - Volume 4, FAST’05, pages 17–17, Berkeley, CA, USA, 2005. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=1251028.1251045. [Cited
on page 36.]

[162] Frank Schmuck and JimWylie. ExperiencewithTransactions inQuickSilver. InProceedings
of the �irteenth ACM Symposium on Operating Systems Principles, SOSP ’91, pages 239–
253, New York, NY, USA, 1991. ACM. ISBN 0-89791-447-3. doi: 10.1145/121132.121171. URL
http://doi.acm.org/10.1145/121132.121171. [Cited on pages 60, 63, and 77.]

[163] �omas J. E. Schwarz, Qin Xin, Ethan L. Miller, Darrell D. E. Long, Andy Hospodor, and
Spencer Ng. Disk Scrubbing in Large Archival Storage Systems. In Proceedings of the �e
IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems, MASCOTS ’04, pages 409–418,
Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2251-3. URL http:
//dl.acm.org/citation.cfm?id=1032659.1034226. [Cited on page 65.]

[164] Seagate. Seagate Technology PLC Fiscal Fourth Quarter and Year End 2013 Financial Re-
sults Supplemental Commentary, July 2013. Available from http://www.seagate.com/
investors. [Cited on page 9.]

[165] Seagate. Seagate Ships World’s First 8TB Hard Drives, August 2014. Available from http:
//www.seagate.com/about/newsroom/. [Cited on page 9.]

[166] Seagate Technology LLC. Seagate DesktopHDD: ST5000DM000, ST4000DM001. Product
Manual 100743772, Seagate Technology LLC, December 2013. [Cited on page 9.]

[167] SeagateTechnologyPLC. TerascaleHDD. Data sheetDS1793.1-1306US, SeagateTechnology
PLC, June 2013. [Cited on page 9.]

[168] Seastar. Shared-nothing Design. http://seastar.io/shared-nothing/, August 2019.
[Cited on page 76.]

[169] Margo Seltzer, Keith Bostic, Marshall Kirk Mckusick, and Carl Staelin. An Implementa-
tion of a Log-structured File System for UNIX. In Proceedings of the USENIX Winter 1993
Conference, USENIX’93, pages 3–3, Berkeley, CA, USA, 1993. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1267303.1267306. [Cited on page 39.]

120

http://doi.acm.org/10.1145/121132.121137
http://doi.acm.org/10.1145/2819001.2819003
http://dl.acm.org/citation.cfm?id=1251028.1251045
http://doi.acm.org/10.1145/121132.121171
http://dl.acm.org/citation.cfm?id=1032659.1034226
http://dl.acm.org/citation.cfm?id=1032659.1034226
http://www.seagate.com/investors
http://www.seagate.com/investors
http://www.seagate.com/about/newsroom/
http://www.seagate.com/about/newsroom/
http://seastar.io/shared-nothing/
http://dl.acm.org/citation.cfm?id=1267303.1267306

[170] Margo I. Seltzer. Transaction Support in a Log-Structured File System. In Proceedings of the
Ninth International Conference onData Engineering, pages 503–510,Washington, DC, USA,
1993. IEEEComputer Society. ISBN0-8186-3570-3. URL http://dl.acm.org/citation.
cfm?id=645478.654970. [Cited on pages 60 and 63.]

[171] ServerFault. Doing an rm -rf on a massive directory tree takes hours. http://
serverfault.com/questions/46852, 2009. [Cited on page 49.]

[172] Mansour Shafaei,MohammadHosseinHajkazemi, PeterDesnoyers, andAbutalibAghayev.
Modeling SMR Drive Performance. SIGMETRICS Perform. Eval. Rev., 44(1):389âĂŞ390,
June 2016. ISSN 0163-5999. doi: 10.1145/2964791.2901496. URL https://doi.org/10.
1145/2964791.2901496. [Cited on page 36.]

[173] Mansour Shafaei,MohammadHosseinHajkazemi, PeterDesnoyers, andAbutalibAghayev.
Modeling Drive-Managed SMR Performance. ACM Trans. Storage, 13(4), December 2017.
ISSN 1553-3077. doi: 10.1145/3139242. URL https://doi.org/10.1145/3139242. [Cited
on page 36.]

[174] Kai Shen, Stan Park, and Men Zhu. Journaling of Journal Is (Almost) Free. In Proceed-
ings of the 12th USENIX Conference on File and Storage Technologies (FAST 14), pages 287–
293, Santa Clara, CA, 2014. USENIX. ISBN ISBN 978-1-931971-08-9. URL https://www.
usenix.org/conference/fast14/technical-sessions/presentation/shen. [Cited
on page 65.]

[175] A. Shilov. Western Digital: Over Half of Data Center HDDs Will Use SMR by
2023. https://www.anandtech.com/show/14099/western-digital-over-half-of-
dc-hdds-will-use-smr-by-2023, 2019. [Cited on pages 3 and 79.]

[176] Anton Shilov. Seagate Ships 35th Millionth SMR HDD, Con�rms HAMR-Based
Drives in Late 2018. https://www.anandtech.com/show/11315/seagate-ships-
35th-millionth-smr-hdd-confirms-hamrbased-hard-drives-in-late-2018, 2017.
[Cited on page 3.]

[177] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. �e Hadoop
Distributed File System. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), MSST ’10, pages 1–10, Washington, DC, USA, 2010. IEEE
Computer Society. ISBN 978-1-4244-7152-2. doi: 10.1109/MSST.2010.5496972. URL http:
//dx.doi.org/10.1109/MSST.2010.5496972. [Cited on pages 2, 4, and 59.]

[178] Chris Siebenmann. About the order that readdir() returns entries in. https://utcc.
utoronto.ca/~cks/space/blog/unix/ReaddirOrder, 2011. [Cited on page 65.]

[179] Chris Siebenmann. ZFS transaction groups and the ZFS Intent Log. https://utcc.
utoronto.ca/~cks/space/blog/solaris/ZFSTXGsAndZILs, 2013. [Cited on page 63.]

[180] Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni, Erez Zadok, and Charles P.
Wright. Enabling transactional �le access via lightweight kernel extensions. In Procced-
ings of the 7th Conference on File and Storage Technologies, FAST ’09, pages 29–42, USA,
2009. USENIX Association. [Cited on pages 60, 63, and 77.]

[181] Stas Starikevich. [ceph-users] RadosGW performance degradation on the 18 millions

121

http://dl.acm.org/citation.cfm?id=645478.654970
http://dl.acm.org/citation.cfm?id=645478.654970
http://serverfault.com/questions/46852
http://serverfault.com/questions/46852
https://doi.org/10.1145/2964791.2901496
https://doi.org/10.1145/2964791.2901496
https://doi.org/10.1145/3139242
https://www.usenix.org/conference/fast14/technical-sessions/presentation/shen
https://www.usenix.org/conference/fast14/technical-sessions/presentation/shen
https://www.anandtech.com/show/14099/western-digital-over-half-of-dc-hdds-will-use-smr-by-2023
https://www.anandtech.com/show/14099/western-digital-over-half-of-dc-hdds-will-use-smr-by-2023
https://www.anandtech.com/show/11315/seagate-ships-35th-millionth-smr-hdd-confirms-hamrbased-hard-drives-in-late-2018
https://www.anandtech.com/show/11315/seagate-ships-35th-millionth-smr-hdd-confirms-hamrbased-hard-drives-in-late-2018
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
https://utcc.utoronto.ca/~cks/space/blog/unix/ReaddirOrder
https://utcc.utoronto.ca/~cks/space/blog/unix/ReaddirOrder
https://utcc.utoronto.ca/~cks/space/blog/solaris/ZFSTXGsAndZILs
https://utcc.utoronto.ca/~cks/space/blog/solaris/ZFSTXGsAndZILs

objects stored. http://lists.ceph.com/pipermail/ceph-users-ceph.com/2016-
September/012983.html, 2016. [Cited on page 66.]

[182] Jan Stender, BjörnKolbeck,MikaelHögqvist, and FelixHupfeld. BabuDB: Fast and E�cient
File SystemMetadata Storage. In Proceedings of the 2010 International Workshop on Storage
Network Architecture and Parallel I/Os, SNAPI ’10, pages 51–58, Washington, DC, USA,
2010. IEEE Computer Society. ISBN 978-0-7695-4025-2. doi: 10.1109/SNAPI.2010.14. URL
http://dx.doi.org/10.1109/SNAPI.2010.14. [Cited on page 60.]

[183] Michael Stonebraker. Operating System Support for Database Management. Communi-
cations of the ACM, 24(7):412–418, July 1981. ISSN 0001-0782. doi: 10.1145/358699.358703.
URL http://doi.acm.org/10.1145/358699.358703. [Cited on page 59.]

[184] Michael Stonebraker and Lawrence A. Rowe.�e Design of POSTGRES. In Proceedings of
the 1986 ACM SIGMOD International Conference on Management of Data, SIGMOD ’86,
pages 340–355, New York, NY, USA, 1986. ACM. ISBN 0-89791-191-1. doi: 10.1145/16894.
16888. URL http://doi.acm.org/10.1145/16894.16888. [Cited on page 77.]

[185] Miklos Szeredi et al. FUSE: Filesystem in userspace. https://github.com/libfuse/
libfuse/, 2020. [Cited on page 56.]

[186] Nisha Talagala, Remzi H. Arpaci-Dusseau, and D. Patterson. Microbenchmark-based Ex-
traction of Local and Global Disk Characteristics. Technical Report UCB/CSD-99-1063,
EECS Department, University of California, Berkeley, 1999. URL http://www.eecs.
berkeley.edu/Pubs/TechRpts/1999/6275.html. [Cited on pages 10 and 36.]

[187] S. Tan, W. Xi, Z.Y. Ching, C. Jin, and C.T. Lim. Simulation for a ShingledMagnetic Record-
ing Disk. IEEE Transactions on Magnetics, 49(6):2677–2681, June 2013. ISSN 0018-9464.
doi: 10.1109/TMAG.2013.2245872. [Cited on page 35.]

[188] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A Flexible Framework for File
System Benchmarking. USENIX ;login issue, 41(1), 2016. [Cited on page 45.]

[189] ZAR team. "Write hole" phenomenon. http://www.raid-recovery-guide.com/raid5-
write-hole.aspx, 2019. [Cited on page 71.]

[190] �inkParQ. An introduction to BeeGFS. https://www.beegfs.io/docs/whitepapers/
Introduction_to_BeeGFS_by_ThinkParQ.pdf, 2018. [Cited on pages 2, 4, and 59.]

[191] D.A�ompson and J.S. Best. �e future of magnetic data storage techology. IBM Journal
of Research and Development, 44(3):311–322, May 2000. ISSN 0018-8646. doi: 10.1147/rd.
443.0311. [Cited on pages 9 and 10.]

[192] Linus Torvalds and Peter Zijlstra. __wb_calc_thresh. http://lxr.free-electrons.
com/source/mm/page-writeback.c?v=4.6#L733, 2016. [Cited on page 45.]

[193] �eodore Ts’o. Release of e2fsprogs 1.43.2. http://www.spinics.net/lists/linux-
ext4/msg53544.html, September 2016. [Cited on page 41.]

[194] Stephen C Tweedie. Journaling the Linux ext2fs Filesystem. In�e Fourth Annual Linux
Expo, Durham, NC, USA, May 1998. [Cited on pages 42, 46, and 63.]

[195] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen Zhang, and Jason
Cong. An E�cient Design and Implementation of LSM-tree Based Key-value Store on

122

http://lists.ceph.com/pipermail/ceph-users-ceph.com/2016-September/012983.html
http://lists.ceph.com/pipermail/ceph-users-ceph.com/2016-September/012983.html
http://dx.doi.org/10.1109/SNAPI.2010.14
http://doi.acm.org/10.1145/358699.358703
http://doi.acm.org/10.1145/16894.16888
https://github.com/libfuse/libfuse/
https://github.com/libfuse/libfuse/
http://www.eecs.berkeley.edu/Pubs/TechRpts/1999/6275.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1999/6275.html
http://www.raid-recovery-guide.com/raid5-write-hole.aspx
http://www.raid-recovery-guide.com/raid5-write-hole.aspx
https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
http://lxr.free-electrons.com/source/mm/page-writeback.c?v=4.6#L733
http://lxr.free-electrons.com/source/mm/page-writeback.c?v=4.6#L733
http://www.spinics.net/lists/linux-ext4/msg53544.html
http://www.spinics.net/lists/linux-ext4/msg53544.html

Open-channel SSD. In Proceedings of the Ninth European Conference on Computer Systems,
EuroSys ’14, pages 16:1–16:14, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2704-6.
doi: 10.1145/2592798.2592804. URL http://doi.acm.org/10.1145/2592798.2592804.
[Cited on page 88.]

[196] Sumei Wang, YaoWang, and R.H. Victora. Shingled Magnetic Recording on Bit Patterned
Media at 10 Tb/in2. IEEE Transactions on Magnetics, 49(7):3644–3647, July 2013. ISSN
0018-9464. doi: 10.1109/TMAG.2012.2237545. [Cited on page 9.]

[197] WDC. My Passport Ultra. https://www.wdc.com/products/portable-storage/my-
passport-ultra-new.html, July 2016. [Cited on page 55.]

[198] Sage Weil. [RFC] big fat transaction ioctl. https://lwn.net/Articles/361439/, 2009.
[Cited on page 63.]

[199] Sage Weil. Re: [RFC] big fat transaction ioctl. https://lwn.net/Articles/361472/,
2009. [Cited on page 63.]

[200] Sage Weil. [PATCH v3] introduce sys_syncfs to sync a single �le system. https://lwn.
net/Articles/433384/, March 2011. [Cited on page 64.]

[201] Sage Weil. Goodbye XFS: Building a New, Faster Storage Backend for Ceph.
https://www.snia.org/sites/default/files/SDC/2017/presentations/
General_Session/Weil_Sage%20_Red_Hat_Goodbye_XFS_Building_a_new_faster_
storage_backend_for_Ceph.pdf, 2017. [Cited on page 1.]

[202] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn.
Ceph: A Scalable, High-performance Distributed File System. In Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, OSDI ’06, pages 307–320,
Berkeley, CA, USA, 2006. USENIX Association. ISBN 1-931971-47-1. URL http://dl.
acm.org/citation.cfm?id=1298455.1298485. [Cited on pages 2, 4, 59, and 60.]

[203] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. Crush: Controlled,
scalable, decentralized placement of replicated data. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC ’06, pages 122–es, NewYork, NY,USA, 2006.Association
for Computing Machinery. ISBN 0769527000. doi: 10.1145/1188455.1188582. URL https:
//doi.org/10.1145/1188455.1188582. [Cited on page 61.]

[204] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos Maltzahn. RADOS: A Scal-
able, Reliable Storage Service for Petabyte-scale Storage Clusters. In Proceedings of the 2Nd
International Workshop on Petascale Data Storage: Held in Conjunction with Supercomput-
ing ’07, PDSW ’07, pages 35–44, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-899-2.
doi: 10.1145/1374596.1374606. URL http://doi.acm.org/10.1145/1374596.1374606.
[Cited on page 60.]

[205] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Jason Small,
Jim Zelenka, and Bin Zhou. Scalable Performance of the Panasas Parallel File System.
In Proceedings of the 6th USENIX Conference on File and Storage Technologies, FAST’08,
pages 2:1–2:17, Berkeley, CA, USA, 2008. USENIXAssociation. URL http://dl.acm.org/
citation.cfm?id=1364813.1364815. [Cited on pages 2, 4, 56, 59, and 60.]

123

http://doi.acm.org/10.1145/2592798.2592804
https://www.wdc.com/products/portable-storage/my-passport-ultra-new.html
https://www.wdc.com/products/portable-storage/my-passport-ultra-new.html
https://lwn.net/Articles/361439/
https://lwn.net/Articles/361472/
https://lwn.net/Articles/433384/
https://lwn.net/Articles/433384/
https://www.snia.org/sites/default/files/SDC/2017/presentations/General_Session/Weil_Sage%20_Red_Hat_Goodbye_XFS_Building_a_new_faster_storage_backend_for_Ceph.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/General_Session/Weil_Sage%20_Red_Hat_Goodbye_XFS_Building_a_new_faster_storage_backend_for_Ceph.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/General_Session/Weil_Sage%20_Red_Hat_Goodbye_XFS_Building_a_new_faster_storage_backend_for_Ceph.pdf
http://dl.acm.org/citation.cfm?id=1298455.1298485
http://dl.acm.org/citation.cfm?id=1298455.1298485
https://doi.org/10.1145/1188455.1188582
https://doi.org/10.1145/1188455.1188582
http://doi.acm.org/10.1145/1374596.1374606
http://dl.acm.org/citation.cfm?id=1364813.1364815
http://dl.acm.org/citation.cfm?id=1364813.1364815

[206] Western Digital—Jorge Campello De Souza. What is Zoned Storage and the Zoned
Storage Initiative? https://blog.westerndigital.com/what-is-zoned-storage-
initiative/, 2019. [Cited on pages 1, 3, 79, and 93.]

[207] Western Digital Inc. ZBC device manipulation library. https://github.com/hgst/
libzbc, 2018. [Cited on page 84.]

[208] Western Digital Inc. Zoned block device manipulation library. https://github.com/
westerndigitalcorporation/libzbd, 2020. [Cited on page 80.]

[209] LustreWiki. Introduction to Lustre Architecture. http://wiki.lustre.org/images/6/
64/LustreArchitecture-v4.pdf, 2017. [Cited on pages 2, 4, 56, 59, and 60.]

[210] Wikipedia. Btrfs History. https://en.wikipedia.org/wiki/Btrfs#History, 2018.
[Cited on pages 4 and 68.]

[211] Wikipedia. XFS History. https://en.wikipedia.org/wiki/XFS#History, 2018. [Cited
on pages 4 and 68.]

[212] Wikipedia. COVID-19 pandemic. https://en.wikipedia.org/wiki/COVID-19_
pandemic, 2019. [Cited on page 98.]

[213] Wikipedia. Cache �ushing. https://en.wikipedia.org/wiki/Disk_buffer#Cache_
flushing, 2019. [Cited on pages 12 and 65.]

[214] Wikipedia. Parallel ATA. https://en.wikipedia.org/wiki/Parallel_ATA#IDE_and_
ATA-1, 2020. [Cited on page 3.]

[215] R.Wood, MasonWilliams, A Kavcic, and JimMiles.�e Feasibility of Magnetic Recording
at 10 Terabits Per Square Inch on Conventional Media. IEEE Transactions on Magnetics, 45
(2):917–923, February 2009. ISSN 0018-9464. doi: 10.1109/TMAG.2008.2010676. [Cited on
pages 3, 9, and 11.]

[216] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt, and John Wilkes. On-line Ex-
traction of SCSI Disk Drive Parameters. In Proceedings of the 1995 ACM SIGMETRICS
Joint International Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS ’95/PERFORMANCE ’95, pages 146–156, New York, NY, USA, 1995. ACM. doi:
10.1145/223587.223604. [Cited on pages 10 and 36.]

[217] Charles P. Wright, Richard Spillane, Gopalan Sivathanu, and Erez Zadok. Extending acid
semantics to the �le system. ACMTrans. Storage, 3(2):4–es, June 2007. ISSN 1553-3077. doi:
10.1145/1242520.1242521. URL https://doi.org/10.1145/1242520.1242521. [Cited on
pages 60, 63, and 77.]

[218] F. Wu, Z. Fan, M. Yang, B. Zhang, X. Ge, and D. H. C. Du. Performance Evaluation of Host
Aware Shingled Magnetic Recording (HA-SMR) Drives. IEEE Transactions on Computers,
66(11):1932–1945, 2017. [Cited on page 36.]

[219] Fenggang Wu, Ming-Chang Yang, Ziqi Fan, Baoquan Zhang, Xiongzi Ge, and David H. C.
Du. Evaluating host aware smr drives. In Proceedings of the 8th USENIX Conference on
Hot Topics in Storage and File Systems, HotStorage’16, page 31âĂŞ35, USA, 2016. USENIX
Association. [Cited on page 36.]

[220] Fengguang Wu. I/O-less Dirty �rottling. https://events.linuxfoundation.org/

124

https://blog.westerndigital.com/what-is-zoned-storage-initiative/
https://blog.westerndigital.com/what-is-zoned-storage-initiative/
https://github.com/hgst/libzbc
https://github.com/hgst/libzbc
https://github.com/westerndigitalcorporation/libzbd
https://github.com/westerndigitalcorporation/libzbd
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
https://en.wikipedia.org/wiki/Btrfs#History
https://en.wikipedia.org/wiki/XFS#History
https://en.wikipedia.org/wiki/COVID-19_pandemic
https://en.wikipedia.org/wiki/COVID-19_pandemic
https://en.wikipedia.org/wiki/Disk_buffer#Cache_flushing
https://en.wikipedia.org/wiki/Disk_buffer#Cache_flushing
https://en.wikipedia.org/wiki/Parallel_ATA#IDE_and_ATA-1
https://en.wikipedia.org/wiki/Parallel_ATA#IDE_and_ATA-1
https://doi.org/10.1145/1242520.1242521
https://events.linuxfoundation.org/images/stories/pdf/lcjp2012_wu.pdf
https://events.linuxfoundation.org/images/stories/pdf/lcjp2012_wu.pdf
https://events.linuxfoundation.org/images/stories/pdf/lcjp2012_wu.pdf

images/stories/pdf/lcjp2012_wu.pdf, June 2012. [Cited on page 67.]
[221] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman,

Andrew A. Chien, and Haryadi S. Gunawi. Tiny-Tail Flash: Near-Perfect Elimination of
Garbage Collection Tail Latencies in NAND SSDs. In 15th USENIX Conference on File
and Storage Technologies (FAST 17), pages 15–28, Santa Clara, CA, 2017. USENIX Associ-
ation. ISBN 978-1-931971-36-2. URL https://www.usenix.org/conference/fast17/
technical-sessions/presentation/yan. [Cited on pages 1, 5, and 80.]

[222] Ting Yao, Jiguang Wan, Ping Huang, Yiwen Zhang, Zhiwen Liu, Changsheng Xie, and Xu-
bin He. Geardb: A gc-free key-value store on hm-smr drives with gear compaction. In
17th USENIX Conference on File and Storage Technologies (FAST 19), pages 159–171, Boston,
MA, February 2019. USENIX Association. ISBN 978-1-939133-09-0. URL https://www.
usenix.org/conference/fast19/presentation/yao. [Cited on pages 83 and 84.]

[223] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. De-Indirection for Flash-Based SSDs with Nameless Writes. In Proceedings of
the 10th USENIX Conference on File and Storage Technologies, FASTâĂŹ12, page 1, USA,
2012. USENIX Association. [Cited on page 96.]

[224] Zhihui Zhang and KanadGhose. hFS: AHybrid File System Prototype for Improving Small
File andMetadata Performance. In Proceedings of the 2Nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, EuroSys ’07, pages 175–187, New York, NY, USA,
2007. ACM. ISBN 978-1-59593-636-3. doi: 10.1145/1272996.1273016. URL http://doi.
acm.org/10.1145/1272996.1273016. [Cited on pages 49, 56, and 77.]

[225] Qing Zheng, Charles D. Cranor, Danhao Guo, Gregory R. Ganger, George Amvrosiadis,
Garth A. Gibson, Bradley W. Settlemyer, Gary Grider, and Fan Guo. Scaling Embed-
ded In-situ Indexing with deltaFS. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis, SC ’18, pages 3:1–3:15,
Piscataway, NJ, USA, 2018. IEEE Press. URL http://dl.acm.org/citation.cfm?id=
3291656.3291660. [Cited on page 77.]

[226] Alexey Zhuravlev. ZFS:Metadata Performance. https://www.eofs.eu/_media/events/
lad16/02_zfs_md_performance_improvements_zhuravlev.pdf, 2016. [Cited on pages
60 and 65.]

[227] Peter Zijlstra. sysfs-class-bdi. https://www.kernel.org/doc/Documentation/ABI/
testing/sysfs-class-bdi, January 2008. [Cited on page 45.]

125

https://events.linuxfoundation.org/images/stories/pdf/lcjp2012_wu.pdf
https://events.linuxfoundation.org/images/stories/pdf/lcjp2012_wu.pdf
https://events.linuxfoundation.org/images/stories/pdf/lcjp2012_wu.pdf
https://www.usenix.org/conference/fast17/technical-sessions/presentation/yan
https://www.usenix.org/conference/fast17/technical-sessions/presentation/yan
https://www.usenix.org/conference/fast19/presentation/yao
https://www.usenix.org/conference/fast19/presentation/yao
http://doi.acm.org/10.1145/1272996.1273016
http://doi.acm.org/10.1145/1272996.1273016
http://dl.acm.org/citation.cfm?id=3291656.3291660
http://dl.acm.org/citation.cfm?id=3291656.3291660
https://www.eofs.eu/_media/events/lad16/02_zfs_md_performance_improvements_zhuravlev.pdf
https://www.eofs.eu/_media/events/lad16/02_zfs_md_performance_improvements_zhuravlev.pdf
https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-bdi
https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-bdi

	1 Introduction
	1.1 10,000-feet View of Distributed Storage Systems
	1.2 The State of Current Storage Backends
	1.2.1 The Block Interface Tax
	1.2.2 The File Systems Tax

	1.3 Zoned Storage and Dilemma of Distributed Storage Systems
	1.4 Thesis Statement and Contributions
	1.4.1 Contributions

	1.5 Thesis Outline

	2 Understanding and Quantifying the Block Interface Tax in DM-SMR Drives
	2.1 Magnetic Recording Techniques and Overview of Skylight
	2.2 Background on Shingled Magnetic Recording
	2.3 Test Drives
	2.3.1 Emulated Drives
	2.3.2 Real Drives

	2.4 Characterization Tests
	2.4.1 Characterization Goals
	2.4.2 Test Mechanisms
	2.4.3 Drive Type and Persistent Cache Type
	2.4.4 Disk Cache Location and Layout
	2.4.5 Cleaning Algorithm
	2.4.6 Persistent Cache Size
	2.4.7 Is Persistent Cache Shingled?
	2.4.8 Band Size
	2.4.9 Cleaning Time of a Single Band
	2.4.10 Block Mapping
	2.4.11 Effect of Mapping Type on Drive Reliability
	2.4.12 Zone Structure

	2.5 Related Work
	2.6 Summary and Recommendations

	3 Reducing the Block Interface Tax in DM-SMR Drives by Evolving Ext4
	3.1 SMR Adoption and Ext4-Lazy Summary
	3.2 Background on the Ext4 File System
	3.3 Design and Implementation of ext4-lazy
	3.3.1 Motivation
	3.3.2 Design
	3.3.3 Implementation

	3.4 Evaluation
	3.4.1 Journal Bottleneck
	3.4.2 Ext4-lazy on a CMR Drive
	3.4.3 Ext4-lazy on DM-SMR Drives
	3.4.4 Performance Overhead of Ext4-Lazy

	3.5 Related Work
	3.6 Summary

	4 Understanding and Quantifying the File System Tax in Ceph
	4.1 The State of Current Storage Backends
	4.2 Background on the Ceph Distributed Storage System
	4.2.1 Evolution of Storage Backends in Ceph

	4.3 Building Storage Backends on Local File Systems is Hard
	4.3.1 Challenge 1: Efficient Transactions
	4.3.2 Challenge 2: Fast Metadata Operations
	4.3.3 Other Challenges

	4.4 BlueStore: A Clean-Slate Approach
	4.4.1 BlueFS and RocksDB
	4.4.2 Data Path and Space Allocation

	4.5 Features Enabled by BlueStore
	4.5.1 Space-Efficient Checksums
	4.5.2 Overwrite of Erasure Coded Data
	4.5.3 Transparent Compression

	4.6 Evaluation
	4.6.1 Bare RADOS Benchmarks
	4.6.2 RADOS Block Device (RBD) Benchmarks
	4.6.3 Overwriting Erasure Coded (EC) Data

	4.7 Challenges of Building Storage Backends on Raw Storage
	4.7.1 Cache Sizing and Writeback
	4.7.2 Key-value Store Efficiency
	4.7.3 CPU and Memory Efficiency

	4.8 Related Work
	4.9 Summary

	5 Freeing Ceph From the Block Interface Tax
	5.1 The Emergence of Zoned Storage
	5.2 Background
	5.2.1 Zoned Storage Overview
	5.2.2 RocksDB Overview

	5.3 Challenges of RocksDB on Zoned Storage
	5.3.1 Zone Cleaning
	5.3.2 Small SSTs
	5.3.3 Reordered Writes
	5.3.4 Synchronous writes to the WAL
	5.3.5 Misaligned writes to the WAL

	5.4 Handling Metadata Path—RocksDB on Zoned Storage
	5.4.1 File types and space allocation
	5.4.2 Journaling and Superblock
	5.4.3 Caching

	5.5 Evaluation of RocksDB on HM-SMR HDDs
	5.5.1 Evaluation Setup
	5.5.2 Establishing CMR Baseline
	5.5.3 Establishing DM-SMR Baseline
	5.5.4 Getting RocksDB to Run on an HM-SMR Drive
	5.5.5 Running Fast with Asynchronous I/O
	5.5.6 Running Faster with a Cache
	5.5.7 Space Efficiency

	5.6 Evaluation of RocksDB on ZNS SSDs
	5.6.1 Evaluation Setup
	5.6.2 Quantifying the Block Interface Tax of RocksDB on Conventional SSDs
	5.6.3 Avoiding the Block Interface Tax with RocksDB on ZNS SSDs

	5.7 Handling Data Path—BlueStore on Zoned Storage
	5.7.1 Additions and Modifications to BlueStore

	5.8 Evaluation of Ceph on HM-SMR HDDs
	5.8.1 RADOS Write Throughput
	5.8.2 RADOS Random Read IOPS
	5.8.3 Tail Latency of RADOS Random Reads During Garbage Collection

	5.9 Summary

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Index Structures for Zoned Devices
	6.2.2 Shrinking Capacity Zoned Devices

	Bibliography

