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Abstract

Fibonacci Encoding is a binary coding theme with applications in cryptography
and data transmission. However, fast addition of Fibonacci Encodings is non-trivial
due to carrying being bi-directional. We present and prove correctness for an O(n)
algorithm that when given two Fibonacci encoded natural numbers of length n, re-
turns a Fibonacci Encoding representing their sum, without decoding. The algorithm
is implemented and tested against the naı̈ve algorithm.
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Chapter 1

Introduction

Fibonacci Encoding is a binary coding scheme on positive natural numbers. The concept is based
on Zeckendorf’s Theorem [3] [8] [15], due to Belgian mathematician Edouard Zeckendorf, which
states that every natural number can be represented uniquely as a sum of distinct, non-consecutive
Fibonacci numbers. When encoded with 0-bits and 1-bits, Fibonacci encodings preserve the
important property that there are no consecutive 1-bits in the representation.

This property is vital to Fibonacci Encoding’s application as a variable length code in both
cryptography and the field of coding and data transmission. By eliminating consecutive 1-bits,
encoders can append a 1-bit to the most-significant side of every encoded integer to create an
instance of two consecutive 1-bits, and the decoder can recognize this pattern to understand
when to end decoding the current number and start decoding the next one.

Compared to other binary encodings, in particular base-2 encoding, Fibonacci Encoding har-
bors significant advantages and certain drawbacks. When applied to sequences of small integers
with few but significantly larger outliers, Fibonacci Encoding can effectively accomodate these
anomalies without padding every encoding to the bit-length of the largest integer. As a universal
code, Fibonacci Encoding is also resistant to errors and erasures: a single error or erasure can
only invalidate at most two transimssioned numbers, as the consecutive 1-bits as break marks
stop the error from propagating infinitely. One drawback of Fibonacci Encoding is that the num-
ber of bits needed to encode an integer is greater than that of base-2 encoding. Luckily, n bits
of Fibonacci Encoding can encode numbers up to approximately 1.618n, which implies that it is
only a constant factor longer than base-2 encoding. Another significant drawback is the lack of
hardware-level optimization for Fibonacci Encoding, as compared to base-2 encoding. This can
be resolved by optimizations at implementation level, and will not be the focus of this thesis.

Examples of real-world applications of Fibonacci Encodings include an approach to quan-
tum key distribution [10], digital image scrambling [4], loseless compression via Burrows-
Wheeler [2], image compression [11], and crosstalk avoidance in hardware design [9]. Specific
applications of addition of Fibonacci Encodings remain mostly theoretical at the moment, as the
naı̈ve quadratic algorithm is efficient enough to operate on relatively short encodings, but the
need for one is mentioned by Kautz in context of synchronization control [5]. It is reasonable
to envision that as the amount of data increases, longer encodings would need to be transmitted,
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and addition on long encodings would give rise to more efficient algorithms on the subject.

Knuth in his proof of associativity of ‘circle multiplication’ of Fibonacci Encodings [7] pre-
sented a procedure for adding two Fibonacci Encodings, applying two available carry rules re-
peatedly, as far to the more significant side as possible, but does not provide guarantee for lin-
earity. Although it is hard to find a witness for the nonlinearity of Knuth’s procedure, proving
linearity is also challenging, as operations executed at each iteration can differ drastically based
on the input sequence.

In this thesis, we present a two-part linear time algorithm that adds two Fibonacci Encodings
together using only three unidirectional scans of the input bitvector and runtime storage twice
the length of the input, with rooms for improvement. We also explicitly present a proof of
linearity for both parts of the algorithm. Experimental results on short inputs does not guarantee
advantage against naı̈ve algorithms due to hardware level optimizations on base-2 additions, but
acceleration is expected on longer inputs.
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Chapter 2

Addition of Fibonacci Encodings

2.1 Definitions

We start by introducing the Fibonacci Encoding Addition problem.

• Input: Two Fibonacci Encodings representing natural numbers a and b respectively.
• Output: A Fibonacci Encoding representing natural number a+ b.

As Fibonacci Encodings are only defined on natural numbers, we concern ourselves exclu-
sively with additions of natural numbers.

We also make the following definitions explicit:

• A Fibonacci Encoding of a natural number N is a sequence of 0’s and 1’s corresponding to
the unique decomposition of N into a set of distinct and non-adjacent Fibonacci numbers
that sum up to N . A Fibonacci Encoding consists of only 0’s and 1’s with no consecutive
1’s.

• A Fibonacci Sum with a value of some natural number N is a sequence of 0’s and 1’s that
corresponds to a set of distinct Fibonacci numbers that sums up to N . This set of Fibonacci
numbers can contain consecutive Fibonacci numbers, and thus is not necessarily unique for
N .

• A Sum of two Fibonacci Encodings, which we abbreviate as Bitwise Sum, is a sequence of
0’s, 1’s, and possibly 2’s, which is the bitwise sum of two Fibonacci Encodings. Decoding
a Bitwise Sum using Fibonacci Base arithmetics will yield the sum of the numbers encoded
by the two Fibonacci Encodings.

Throughout this thesis, we adopt the tradition that the leftmost bit is the least-significant bit.
The number 17, decomposed as 1 + 3 + 13, is thus encoded as 101001. Fibonacci Encodings
forbid the use of the 0th Fibonacci number, 1, to avoid confusion with the 1st Fibonacci number,
which is also 1.

The following notation will be used to represent an arbitrary subsequence of a sequence of
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bits:
· · ·

i

0
i+1

1
i+2

0
i+3

1
i+4

0 · · ·

where the index of each of the bits are appended on top of the bit. We abbreviate this notation
by only appending their relative indices with respect to one of the bits under our examination,
usually the first bit in the subsequence:

· · ·
0

0
1

1
2

0
3

1
4

0 · · ·

2.2 A naı̈ve Algorithm

A naı̈ve algorithm involves decoding the input, calculating in binary, and re-encoding the result.
This algorithm has an asymptotic complexity of O(n2), where n is the length of the input bitvec-
tor, which is not ideal. There exists prior works on fast encoding and decoding algorithms for
Fibonacci Encodings, but only a constant factor of acceleration is achieved, while the asymptotic
complexity of encoding and decoding remains identical [1] [14] [13].

One might inquire about using carries to eliminate possible 2-bits after bitwise addition, sim-
ilar to the technique used in base-2 addition. The following two carry rules apply to Fibonacci-
base addition:

· · · 1 1 0 · · · → · · · 0 0 1 · · ·

· · · 0 0 2 0 · · · → · · · 1 0 0 1 · · ·

However, notice that the second rule passes the carry not only to the immediate more signifi-
cant bit as in base-2 addition, but also to the less significant side. This double carry complicates
the carrying process, and prevents a simple iterative process from resolving all carries. The re-
sult of resolving a single 2-bit via carrying can cascade in both directions and result in multiple
additional 2-bits, if not handled properly. Thus, more intricate methods to resolve carrying are
needed. We show that there exists a method, that given two Fibonacci Encodings, adds them
together in linear, e.g. O(n) time, without decoding.
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Chapter 3

A Two-Part Linear Algorithm

Observe that we can partition this problem into two separate and independent parts:

• 2-Elimination: Given two Fibonacci Encodings of a and b as inputs, simplify the corre-
sponding Bitwise Sum and return a Fibonacci Sum with value c = a+ b.

• Canonicalization: Given a Fibonacci Sum of some value c, canonicalize it and return the
unique Fibonacci Encoding of c.

We present linear-time algorithms for both 2-Elimination and Canonicalization.

3.1 Canonicalization

We start by presenting an algorithm for Canonicalization, which is the easier part of the two.

The algorithm takes in a Fibonacci Sum, and scans the bitvector twice, first from the most-
significant bit (right) to the least-significant bit (left), and then the other way around. During
both scans, whenever the algorithm encounters consecutive 1’s, it carries them over to the bit to
their immediate right.

Theorem 1 (Correctness of Canonicalization). Algorithm 1 correctly returns the Fibonacci En-
coding of the value of the input Fibonacci Sum.

Proof. We start by noting that by our logic of operation, every pair of consecutive 1-bits removed
will result in the addition of another more-significant bit equal to the pair in value to be added.
Thus, the value represented by the bitvector throughout the execution is invariant. It remains to
show that the output is indeed a Fibonacci Encoding.

First of all, we examine the first pass of the scans (lines 3-10).

Lemma 2. No 2-bits will be generated at any point throughout the first scan in this algorithm.

Proof. By induction on the timestamp throughout the execution. Initially the input is guaranteed
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Algorithm 1 Canonicalization
1: function CANONICALIZE(FibSum as F)
2: i← len(F)− 1
3: while i > 0 do . Scan from MSB to LSB
4: if F[i] ≥ 1 and F[i− 1] ≥ 1 then
5: F[i− 1]← F[i− 1]− 1
6: F[i]← F[i]− 1
7: F[i+ 1]← F[i+ 1] + 1
8: end if
9: i← i− 1

10: end while
11: while i < len(F)− 1 do . Scan from LSB to MSB
12: if F[i] ≥ 1 and F[i+ 1] ≥ 1 then
13: F[i]← F[i]− 1
14: F[i+ 1]← F[i+ 1]− 1
15: F[i+ 2]← F[i+ 2] + 1
16: end if
17: i← i+ 1
18: end while
19: return F
20: end function

to not contain 2-bits. In the first pass, scanning from MSB to LSB, bits are only altered in lines
5-7. By I.H. we know that bits at indices i− 1 and i are both 1-bits. AFSOC that the bit at index
i + 1 was initially a 1-bit before the increment, but then notice that at the previous timestamp,
when we’re examining the index i + 1, we would have carried the 1-bits at indices i and i + 1
and set them to two 0-bits, which is a contradiction. Thus, the bit at index i+ 1 is guaranteed to
be a 0-bit, and thus will not be generated as a 2-bit.

To prove the same results for the second pass of the scans, we would need additional proper-
ties of the state of the bitvector after the first pass as invariants.

Claim 1. There are no runs of consecutive 1-bits with length longer than 2 after the first pass of
Algorithm 1.

Proof. Without loss of generality, AFSOC that there exists 3 consecutive 1-bits in the following
configuration:

· · ·
0

0
1

1
2

1
3

1
4

0 · · ·
with the leftmost 0-bit at relative index 0. Consider the two 1-bits at indices 2 and 3. By our
construction we know that while scanning over index 3 in the first pass, index 2 must be a 0-bit,
or else we will carry to index 4. The bit at index 2 must thus be the result of a carry that happened
at indices 0 and 1, as in the following configuration.

· · ·
0

1
1

2
2

0
3

1
4

0 · · ·
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However, this implies that at one point there exists a 2-bit at either index 1 or some indices
before it, which violates our invariant at Lemma 2 above and is thus a contradiction.

Additionally,

Claim 2. Two occurances of consecutive 1-bits must have an occurance of at least two consec-
utive 0-bits in between after the first pass of Algorithm 1.

We will see that this property is vital to our proof of correctness.

Proof. Observe that any configuration that violates our assumption must be of the form:

· · ·
0

1 1 0 1 0 1 · · · 1 0 1 0 1
n

1 · · ·

with arbitrarily many 1-bits in between. Notice that when there are no in-between 1-bits, the
formation will have four consecutive 1-bits, which by Claim 1 is impossible. Thus, without loss
of generality, assume that there are at least 1 in-between 1-bits. Additionally let the leftmost bit
be assigned index 0 and the rightmost bit be assigned index n.

By a logic similar to that in the proof of Claim 1, the 1-bit at index n− 1 must be a result of
a carry that happened to the left, as seen in the following configuration:

· · ·
0

1 1 0 1 0 1 · · · 1 0 2 1 0
n

1 · · ·

It seems like this is a violation of our invariant, but a possible scenario is that one of the 1-bits
in the 2-bit at index n−3 is a result of a carry that happened to the left, and as the carry at indices
n− 3 and n− 2 will happen before that, we can avoid generating the 2-bit as a byproduct. Thus,
we can further backtrack and obtain an earlier formation:

· · ·
0

1 1 0 1 0 1 · · · 2 1 1 1 0
n

1 · · ·

We resolve the 2-bit at index n − 5 in a recursive manner. We can do so infinitely until we
encounter two consecutive 0-bits, and obtain the following formation:

· · ·
0

1 1 0 1 0 1 0 0 2 1 1 1 0
n

1 · · ·

which can be backtracked into:

· · ·
0

1 1 0 1 0 1 1 1 1 1 1 1 0
n

1 · · ·

in which case no 2-bits are inferred to exist as byproducts anymore, and we’re done. If we en-
counter the two consecutive 1-bits at the beginning instead, implying that no occurance of two
consecutive 0-bits exists between two occurances of consecutive 1-bits, the following configura-
tion will occur:

· · ·
0

1 1 0 2 1 1 · · · 1 1 1 1 0
n

1 · · ·

· · ·
0

1 2 1 1 1 1 · · · 1 1 1 1 0
n

1 · · ·
at which point the existense of the 2-bit can no longer be circumvented, and we have a contra-
diction to our invariant at Lemma 2.
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We now have sufficient information to set out to prove the correctness after the second pass
of the scan (lines 11-18).

Lemma 3. No 2-bits will be generated during both passes throughout the execution of this algo-
rithm.

Proof. We have shown that 2-bits will not be generated by the first pass. It remains to show that
2-bits will not be generated by the second pass.

In the second pass, scanning from LSB to MSB, bits are only altered in lines 13-15 if they
form the following formation:

· · ·
0

1
1

1
2

0
3

X
4

X · · ·

where the X-bits are unknown bits and not necessarily identical, and the indices appended on top
are the relative indices with respect to the first bit at absolute index i.

If indices 0 and 1 are both 1-bits, by Claim 1 we know that index 2 must be a 0-bit, thus we
can carry the 1-bits at indices 0 and 1 to a new 1-bit at index 2 without directly creating 2-bits.

We also claim that this will not violate invariants Claim 1 and Claim 2.

Observe that setting index 2 to a 1-bit cannot violate Claim 1, or else we have two consecutive
1-bits at indices 3 and 4, and the configuration prior to our carrying will be:

· · ·
0

1
1

1
2

0
3

1
4

1 · · ·

which violates Claim 2 that two occurances of consecutive 1-bits must have an occurance of
consecutive 0-bits in between.

Also observe that setting index 2 can either create a new occurance of consecutive 1-bits, or
destroy an old occurance of consecutive 0-bits, depending on the bit at index 3. However, setting
index 2 will also create a new occurance of consecutive 0-bits to satisfy our invariants.

In the case where setting index 2 creates new consecutive 1-bits, we have the following
formation before and after the carry:

· · · X
0

1
1

1
2

0
3

1
4

0 X · · ·

· · · X
0

0
1

0
2

1
3

1
4

0 X · · ·

By our invariant, we know that there exists consecutive 0-bits both to the left of index 0 and
to the right of index 4. These occurances of consecutive 0-bits are not altered by our carry, so the
newly created consecutive 1-bits at indices 2 and 3 are still separated from other occurances of
consecutive 1-bits by consecutive 0-bits, thus satisfying Claim 2.

On the other hand, when we destroy an old occurance of consecutive 0-bits, we have the
following formation before and after the carry:

· · · X
0

1
1

1
2

0
3

0
4

1 X · · ·
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· · · X
0

0
1

0
2

1
3

0
4

1 X · · ·

In this case, no new occurances of consecutive 1-bits are created, so the two occurances of
consecutive 1-bits to the left of index 0 and to the right of index 4 are now adjacent to each other.
However, the newly created occurance of consecutive 0-bits at indices 0 and 1 are now separating
them apart, also keeping Claim 2 invariant.

Thus, by setting index 2 to a 1-bit we also cannot violate Claim 2.

We can thus conclude that every operation in the second pass of the scan will not generate
2-bits, and thus the algorithm will not generate 2-bits at any point of its execution, including the
end state.

This thus concludes the proof that Algorithm 1 correctly outputs a Fibonacci Sum. It remains
to show that there are no consecutive 1-bits, and thus the output is actually a Fibonacci Encoding.

Lemma 4. There are no consecutive 1-bits in the bitvector outputted by Algorithm 1.

Proof. AFSOC we have an occurance of consecutive 1-bits at indices i and i + 1. We know
that when we scan over index i, one of these two indices are 0-bits, or we would have carried
them over to index i + 2. As a result, one of the indices i and i + 1 were set to a 1-bit while
scanning over some index greater than i However, as our construction dictates, to set index i or
i + 1 to a 1-bit, we must be scanning either index i − 2 or i − 1, both less than i, which is a
contradiction.

We can thus conclude that the output contains only 0-bits and 1-bits with no consecutive 1-
bits, and has the same value as the input. Thus, the output is the unique Fibonacci Encoding of
the input value, and Algorithm 1 behaves correctly.

This thus concludes the proof of Theorem 1

It is trivial to see that Algorithm 1 runs in O(n) time.

Notice that the two passes of Algorithm 1 must follow the given order. If we scan and carry
from LSB to MSB first, it is very likely that we will encounter runs of consecutive 1-bits with
length longer than 2, which will result in the generation of 2-bits. The first pass from MSB to
LSB is meant to satisfy Claim 1 and Claim 2 to make sure that no 2-bits will be generated in the
following pass from LSB to MSB.

Additionally, we can further simplify line 4 to 7 and 12 to 15 of Algorithm 1 by directly
assigning values to bits instead of modifying them, in response to proven guarantees to their
value during runtime execution.

3.2 2-Elimination

We next present an algorithm for 2-Elimination.
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Algorithm 2 Simplified Canonicalization
1: function SIMPLECANONICALIZE(FibSum as F)
2: i← len(F)− 1
3: while i > 0 do . Scan from MSB to LSB
4: if F[i] = 1 & F[i− 1] = 1 then
5: F[i− 1]← 0
6: F[i]← 0
7: F[i+ 1]← 1
8: end if
9: i← i− 1

10: end while
11: while i < len(F)− 1 do . Scan from LSB to MSB
12: if F[i] = 1 & F[i+ 1] = 1 then
13: F[i]← 0
14: F[i+ 1]← 0
15: F[i+ 2]← 1
16: end if
17: i← i+ 1
18: end while
19: return F
20: end function

Instead of two scans in opposite directions, the algorithm keeps certain invariants and uses
only one scan from MSB to LSB, resolving every 2-bit it encounters locally, within the following
window of length 5 around the 2-bit:

· · ·
0

X
1

X
2

0
3

2
4

0 · · ·

where the X-bit at indices 0 and 1 are unknown. The bits at indices 2 and 4 are guaranteed by kept
invariants to be 0-bits. Notice that by decomposing the 2-bit at index 3, we will increment index
4 by 1 which is a stable carry that does not create additional 2-bits, while the other increment
to index 1 can be stablized together with the bit at index 0. More detailed descriptions of this
procedure can be found in the proof of Lemma 7 and Lemma 8, as well as line 4 to 13 of the
following pseudocode.
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Algorithm 3 2-Elimination
1: function 2ELIM(BitwiseSum as B)
2: i← len(B)− 1
3: while i > 0 do . Scan from MSB to LSB
4: if B[i] ≥ 2 then . Decompose a 2-bit
5: B[i]← B[i]− 2
6: B[i+ 1]← 1
7: B[i− 2]← B[i− 2] + 1
8: if B[i− 2] ≥ 1 & B[i− 3] ≥ 1 then . Stabilize the less significant carry
9: B[i− 3]← B[i− 3]− 1

10: B[i− 2]← B[i− 2]− 1
11: B[i− 1]← 1
12: end if
13: end if
14: i← i− 1
15: end while
16: return B
17: end function

Theorem 5 (Correctness of 2-Elimination). Algorithm 3 correctly returns a Fibonacci Sum with
the same value as the input Bitwise Sum.

Proof. With similar reasoning as that in Theorem 1, we can observe that the value represented by
the bitvector is invariant throughout the execution. It remains to show that the output is indeed a
Fibonacci Sum.

We first observe an important property of a valid Bitwise Sum.

Lemma 6. Indices adjacent to a 2-bit in a valid Bitwise Sum can only be 0-bits.

This is evident from the fact that every 2-bit corresponds to two 1-bits at the same index in
the two Fibonacci Encodings. As the properties of Fibonacci Encodings dictates it must be that
the adjacent indices in both encodings are all 0-bits, and thus the adjacent indices in the Bitwise
Sum must also be 0-bits.

Lemma 6 provides important guarantees to localize the potentially cascading effect of carry-
ing in two directions. We would like to keep it as an invariant throughout Algorithm 3.

Lemma 7. After every iteration of decomposing a 2-bit in Algorithm 3, indices adjacent to a
2-bit can only be 0-bits.

Here, an iteration of decomposing a 2-bit is defined as an application of the carry rule on
2-bits, as well as actions taken to stablize the less significant carry, as implemented by line 4 to
13 of Algorithm 3.

We also keep the following invariant, which is vital to proving the correctness of Algorithm 3:
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Lemma 8. There are only 0-bits and 1-bits to the more-significant side of the index Algorithm 3
is currently scanning over.

Confining the invariance of Lemma 7 within transition states between ‘steps’, defined as one
iteration of the while loop on line 3, is necessary as there exists temporary violations of this
invariant within each step that will be resolved by the end of the iteration.

Proof of Lemma 7 and Lemma 8. By induction on the number of iterations completed, if we
prove that after each step our invariants hold given that they hold at the start of the step, we
can conclude that Lemma 7 holds.

Each step starts with decomposing a 2-bit at index 0. The more-significant carry at index
1, implemented in line 6, is guaranteed to result in a 1-bit due to our invariants, which is what
we want. The less-significant carry at index −2 is much more complicated, as we have no
way to guarantee what bit index −2 originally houses. Luckily, we can use its adjacent bits to
help stablize this carry. We case on the possible combinations of indices −3 and −2 before the
decomposition of the 2-bit at index 0.

Case 00:
· · · X

-3

0
-2

0
-1

0
0

2
1

0 X · · ·

where the first X-bit corresponds to index −4, and the second X-bit corresponds to index 2. After
decomposing, we have:

· · · X
-3

0
-2

1
-1

0
0

0
1

1 X · · ·

The first X-bit at index −4 can potentially be a 2-bit, but our decomposition does not violate our
invariants.

Case 10:
· · · X

-3

1
-2

0
-1

0
0

2
1

0 X · · ·

After decomposing, we have:

· · · X
-3

1
-2

1
-1

0
0

0
1

1 X · · ·

The procedure on lines 8-12 of Algorithm 3 will further modify this to:

· · · X
-3

0
-2

0
-1

1
0

0
1

1 X · · ·

which satisfies our invariants.

Case 20:
· · · X

-3

2
-2

0
-1

0
0

2
1

0 X · · ·

After decomposing, we have:

· · · X
-3

2
-2

1
-1

0
0

0
1

1 X · · ·

The procedure on lines 8-12 will modify this to:

· · · X
-3

1
-2

0
-1

1
0

0
1

1 X · · ·
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Observe that the first X-bit at index −4 cannot be a 2-bit, as the bit adjacent to it at index −3
was initially a 2-bit as opposed to a 0-bit before decomposing the 2-bit at index 0. Thus, our
invariants are kept.

Case 01:
· · · X

-3

0
-2

1
-1

0
0

2
1

0 X · · ·
After decomposing, we have:

· · · X
-3

0
-2

2
-1

0
0

0
1

1 X · · ·
which will not be further modified.

Observe that although a new 2-bit has been created, it still satisfies our invariants as its ad-
jacent indices are all 0-bits. Algorithm 3 will then proceed to decompose this new 2-bit two
iterations later.

Case 11:
· · · X

-3

1
-2

1
-1

0
0

2
1

0 X · · ·
After decomposing, we have:

· · · X
-3

1
-2

2
-1

0
0

0
1

1 X · · ·
The procedure on lines 8-12 will modify this to:

· · · X
-3

0
-2

1
-1

1
0

0
1

1 X · · ·

which satisfies our invariants.

Case 02:
· · · X

-3

0
-2

2
-1

0
0

2
1

0 X · · ·
After decomposing, we have:

· · · X
-3

0
-2

3
-1

0
0

0
1

1 X · · ·
At this point we allow 3-bits to appear, and extend Lemma 7 to apply to 3-bits as well. Here,
Algorithm 3 will simply finish the current iteration and move on without processing the new
3-bit.

Although this seems like a worrying event, observe that a 3-bit is essentially a 2-bit and a
1-bit overlapped together, with the following carrying rule applicable:

· · · X
-3

0
-2

0
-1

0
0

3
1

0 X · · · → · · · X
-3

0
-2

1
-1

0
0

1
1

1 X · · ·

where an 1-bit remains at index 0 after the decomposition.

In all the six cases above, index 0 becomes a 0-bit after the iteration. Thus, we can safely
decompose 3-bits in an indentical method to decomposing 2-bits, only replacing the bit at index
0 with an 1-bit instead of a 0-bit, which is implemented in line 5 of Algorithm 3. This extra 1-bit
will not be adjacent to any 2-bit or 3-bit, thus our invariants are kept.

As we have shown our invariants to be kept for every possible combination of indices−3 and
−2, we can conclude by induction that Lemma 7 and Lemma 8 hold.

13



Given that Lemma 8 holds, we can conclude that at the end of the while loop, the entire
bitvector will be composed of 0-bits and 1-bits. As the value our bitvector represents are invari-
ant, the output is indeed a Fibonacci Sum with the same value as the input Bitwise Sum, and
Algorithm 3 behaves correctly.

This thus concludes the proof of Theorem 5.

It is also trivial to see that Algorithm 3 runs in O(n) time.

It is worth noting that the rule for 2-decompositions change when decomposing 2-bits at
indices 0 and 1, but it is trivial to case them prove correctness independently.

3.3 Conclusion

As correctness is proven, the concatenation of Algorithm 3 and Algorithm 2 is a linear-time
algorithm for the Fibonacci Encoding Addition problem. Given any pair of valid Fibonacci
Encodings of natural numbers a and b, we trivially run bitwise addition to them to acquire a
Bitwise Sum with value a + b, feed it into Algorithm 3 and obtain a Fibonacci Sum with value
a+ b, and finally use Algorithm 2 to canonicalize it and return the Fibonacci Encoding of a+ b.
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Chapter 4

Implementation

A version of this algorithm implemented with bitvectors and bitwise operators in C++ was de-
vised. This implementation, along with an initial realization of this algorithm in Python, can be
found at https://github.com/maoyuans/Linear-Fibonacci-Addition.

This implementation relies on the unsigned int128 type supported by GCC, an 128-
bit container capable of supporting bitwise operations. No libraries were used in the implemen-
tation.

To store 2-bits and 3-bits in a binary environment, during the 2-elimination part of the algo-
rithm, we keep two 128-bit containers to simulate the first and second bit of a 2-bit long container,
capable of storing 0 to 3 bits.

This implementation is tested on 10000 iterations of adding random 128-bit Fibonacci En-
codings, against the naı̈ve quadratic algorithm, using greedy encoding and decoding methods
and built-in base-2 addition. The time results, which is plotted below, confirmed that our imple-
mentation is indeed linear. The results also show that the theoretically quadratic naı̈ve imple-
mentation is more efficient than our implementation up to a constant factor, and it also follows
an approximately linear runtime with respect to input size.
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A possible explanation for this is that, due to the Word-RAM model widely applied to com-
puter architecture currently, addition on two n-bit integers takes O(1) time for small n like 64 or
128. As a result, each iteration of encoding and decoding only requires O(1) runtime as opposed
to O(n), which brings the total time complexity from quadratic to linear.

Theoretically, as the size of the input increases beyond 128 bits, the time required to finish the
naı̈ve algorithm will start growing quadratically, and should outgrow the runtime of our algorithm
soon. Doing so would require implementing the algorithm with containers larger than 128 bits,
or multiple containers chained together, with modifications to the algorithm to handle such cases,
which is a potential extension to this project.
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Chapter 5

Conclusion and Future Work

We have presented an linear-time algorithm for adding Fibonacci Encodings. We have also
shown with proof their correctness and time complexity bounds. Although the experimental
results does not show supremacy over the naı̈ve algorithm, it does convey growing advantages
with respect to increases in data size, as well as potential for improvements.

Conceptually, it is natural to ask next if a similar linear-time algorithm exists for subtraction
on Fibonacci Encodings. The basics of substraction on Fibonacci Encoding involve decomposing
more significant bits to negate ‘−1’-bits, or indices where an 1-bit from the minuend is subtracted
from a 0-bit in the subtrahend:

· · · 0 0 0 0 0 0 1 · · · → · · · 0 0 0 0 1 1 0 · · ·
→ · · · 0 0 1 1 0 1 0 · · ·
→ · · · 1 1 0 1 0 1 0 · · ·
· · ·

Potential problems that arise from these rules is that if a ‘−1’-bit is located an odd number
of bits towards the less significant side of the closest 1-bit, the continuous decomposition will
pass through and influence the bit immediately to the less significnat side of the ‘−1’-bit, which
might result in the generation of 2-bits.

A potential idea on this topic is done via shifting bits: The properties of Fibonacci numbers
dictate that given a Fibonacci Encoding x, we can express it as the sum of two Fibonacci Sums
x � 1 + x � 2, subject to minor modifications on a few indices near 0. Thus, given these two
Fibonacci Sums, for any ‘−1’-bit generated from bitwise subtraction, one of the two Fibonacci
Sums must contain an 1-bit of even distance to it. However, after subtracting an 1-bit from
one of the Fibonacci Sums, it is possible that there is some 1-bit in the minuend such that the
immediately adjacent 1-bits in both Fibonacci Sums are of odd distance to it, thus invalidating
the procedure. More analysis thus is needed to polish and expand on this idea.

Another class of encodings similar to Fibonacci Encodings is NegaFibonacci Encodings,
which uses negaFibonacci numbers [6] [12] as a base to encode all non-zero integers. Arithmetics
on NegaFibonacci Encodings can be investigated and applied as extensions to our algorithm.
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On the subject of optimization, there exists a lot of room for improvement. As mentioned
above, modifications to the algorithm and data structures can be made to allow storage and bit-
wise operations on inputs of size greater than 128 bits. Additionally, the application of bitwise
operators can be optimized to reduce the amount of operations needed to further improve runtime
on a constant factor level.

Algorithmically, the 2-elimination step can potentially be modified to combine the bitwise
sum step, as well as the first pass of the canonicalization step, to reduce the number of passes
needed and eliminate the need to allocate another container to store 2-bits and 3-bits. Our al-
gorithm is inherently sequential, but possible extensions to allow parallel executions should be
discussed as well.
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