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Abstract
Multi-view clustering involves clustering data with different, possibly distinct

feature sets simultaneously. In many application domains, multi-view data arises
naturally. For example, news articles can be described by both text and pictures, and
multimedia segments can be described by their video signals from cameras and audio
signals from voice recorders. Multi-view clustering has a wide range of potentially
high impact applications. Yet, the benefits of using graph-based local similarity in-
formation to learn better representations of data for clustering, and the flexibility of
incorporating pairwise constraints which may be accessible to improve clustering
performance, are still under-explored in multi-view clustering.

In this thesis, we present Local Similarity Graph based Multi-view Clustering
(LSGMC), a new and improved correlation-based multi-view clustering approach.
The method leverages local similarity graphs constructed by mutual K nearest neigh-
bors. LSGMC uses the graphs to guide the search for a better data representation
through exploring first order proximity within views, and utilizing complementary
information across views. We empirically show that LSGMC can efficiently use in-
formation from multiple views to improve clustering accuracy, and outperform state-
of-the-art multi-view alternatives on a variety of benchmark and real world datasets,
including image data for hand digit recognition, text data for language recognition
and acoustic-articulatory data for speech recognition. We further show that LSGMC
is flexible in incorporating pairwise constraints and thus it can be naturally extended
to handle semi-supervised learning problems.
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Chapter 1

Introduction

In this chapter, we first provide a general background on multi-view data and multi-view
clustering. We argue the significance of multi-view clustering approaches. We state our motiva-
tion for developing a new multi-view clustering approach and summarize our contributions. At
the end of this chapter, we provide a roadmap of this thesis.

1.1 Motivation
Multi-view clustering involves clustering data with different, possibly distinct feature sets si-

multaneously. In many application domains such multi-view data arises naturally. For example,
the news can be described by both text and pictures [27], multimedia segments can be described
by their video signals from cameras and audio signals from voice recorders [10], a person can
be identified by his/her face, fingerprints, signature, or iris, with information obtained from mul-
tiple sources [36]. It has further been observed that even artificially splitting features to create
multi-view data can improve the performance under multi-view learning compared to single view
learning [24].

One might argue that a reasonable and simple way of performing multi-view clustering is to
concatenate features from all views in order to convert multi-view clustering into a more familiar
single-view setting. However, such concatenation may exacerbate the risk of over-fitting, espe-
cially with small training datasets, and it may diminish the interpretation of the resulting models
since each view often has specific properties [36]. Thus, it is generally preferable to consider
methods that can efficiently leverage information from multiple views.

Our motivation for developing a new multi-view clustering approach comes from the follow-
ing gaps between single-view clustering and multi-view clustering:

1. While the use of local similarity graphs–often constructed by K nearest neighbors (KNN)
or mutual K nearest neighbors (MKNN) –has been widely explored and shown to be ef-
fective in improving performance in single-view clustering, e.g. [2, 11, 20, 28, 29], its use
and effect remain under-explored in multi-view clustering.
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Figure 1.1: An example illustrating the usefulness of MKNN graphs: t-SNE plot on the first two
components of 100 samples from a real world dataset with 6 classes. Each colored point indicates
a sample from a class indicated by its color as shown by the color bar on the right. Each dotted
red line represents an edge in the mutual K nearest neighbor graph (K=10) constructed on the
data samples using cosine similarity measure.

To see how MKNN graphs might help clustering tasks, we consider an example in Fig-
ure 1.1, where each point represents the first two components in the t-SNE embedding of
100 samples from a real world dataset with 6 classes and each dotted red line represents
edges in the MKNN graph constructed on the 100 samples using cosine similarity mea-
sure. We observe that the MKNN graph contains clique-like structures which could reveal
true information about data clusters, even though such information might be noisy. For
example, the edges at the upper right corner form a dense region over the green colored
points, most of which come from class 3.

2. Sometimes we may have access to must-link and cannot-link pairs on certain datasets,
which could also reveal true information about the clusters. Such constraints have been
shown to be helpful in improving single-view clustering performance [6, 25], where the
setting is often referred to as semi-supervised clustering or constrained clustering. Exist-
ing single-view clustering algorithms that are guided by a local similarity graph have been
shown to adapt well to the semi-supervised clustering setting where the graph is augmented
with known pairwise constraints [11, 29]. We would like to develop a new multi-view clus-
tering approach that can also easily incorporate such constraints and improve the clustering
performance when such constraints are available.
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1.2 Contributions
In this thesis, we present Local Similarity Graph based Multi-view Clustering (LSGMC), an

improved correlation based multi-view clustering approach. LSGMC learns an improved data
representation in a lower dimensional embedding space through nonlinear maps. To guide this
search for a better data representation, LSGMC draws on the following ideas:

1. The ability to reconstruct samples from the low dimensional embedding.

2. Correlation among data across views.

3. First order proximity which preserves the local structure of relationships among samples
within views.

4. Complementary information across views through a unified similarity graph which is based
on similarity graphs observed in the individual views.

LSGMC is able to naturally adapt to the semi-supervised setting in which we have prior
knowledge about pairs of data elements that should belong to the same or different clusters.
Our experiments demonstrate that the proposed approach outperforms state-of-the-art multi-view
clustering approaches, including canonical correlation analysis (CCA) based deep clustering.

Our main contributions are as follows:

1. We explore the usage of local similarity graphs in multi-view clustering, which is under-
explored in current literature.

2. We present a new multi-view clustering approach we term LSGMC.

3. We show that LSGMC is able to outperform state-of-art multi-view clustering alternatives
on datasets of various types.

4. We further show the flexibility of LSGMC in incorporating pairwise constraints.

1.3 Thesis Organization
The rest of the thesis is organized as follows:

• In Chapter 2, we survey related work on non-centroid based clustering, multi-view cluster-
ing and the usage of local similarity graphs in single-view clustering. We further present
the connection between related work and our proposed approach.

• In Chapter 3, we first formally define the multi-view clustering problem. We introduce
one popular technique from multi-view clustering, Canonical Correlation Analysis (CCA)
and one non-centroid based clustering method, Robust Continuous Clustering (RCC), as
well as their deep extensions. We further discuss how we combine those ideas into a new,
improved multi-view clustering approach.
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• In Chapter 4, we describe in detail each component in our proposed approach LSGMC and
motivations for designing the objective functions.

• In Chapter 5, we introduce our experiment settings for evaluating LSGMC. We introduce
the datasets used in the experiments and state-of-the-art multi-view clustering alternatives
we used as benchmarks for comparison. We further include implementation details and
describe the evaluation metrics.

• In Chapter 6, we report results from all the experiments. We visualize the MKNN graphs
and the learned data embeddings by all multi-view clustering methods for comparison on
two chosen datasets. We discuss and analyze our results. We further include a set of
experiments in semi-supervised setting showing the flexibility of LSGMC in incorporating
pairwise constraints.

• In Chapter 7, we conclude the thesis work, discuss implications and limitations of LSGMC
and motivate future work.
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Chapter 2

Related Work

In this chapter, we survey related work on non-centroid based clustering, multi-view clus-
tering and the usage of local similarity graphs in single-view clustering. We further show how
related work connects to our work.

2.1 Non-centroid Based Clustering

K means clustering is one of the most widely applied clustering methods. Figure 2.1 shows
an example of K means clustering on 9 synthetic data points from two clusters. During training,
K means clustering maintains a set of center points, which is shown as the star points in the
example. K means alternates between assigning data points to the closest center and updating
the center points.

The clustering framework of the proposed algorithm is related to continuous, non-centroid
based clustering approaches, proposed in works for single-view clustering such as [11, 29]. Un-
like K Means clustering, there is no center points in non-centroid based clustering methods.
Instead of learning a set of cluster centers, non-centroid based clustering methods maintain rep-
resentatives for each data sample and learn to collapse those representations into clusters under
the guidance of local similarity graphs. Figure 2.2 shows an example of such clustering method
again on 9 synthetic data points. These clustering techniques enjoy several benefits, including
the flexibility of incorporating pairwise constraints, reduced sensitivity to initialization and ef-
fectiveness in high dimensions [29]. However, the non-centroid clustering framework and the
use of local similarity graphs are under-explored in multi-view setting. LSGMC draws on these
ideas in a multi-view setting.

2.2 Multi-view Clustering Principles

In multi-view clustering, two general concepts are exploited: the consensus and complemen-
tary principles [36]. Within the consensus principle, the goal is to maximize agreement among

5



Figure 2.1: An example of K means clustering. The magenta points represent data samples from
one class and the cyan points represent data samples from another class. The red edges represent
edges in local similarity graphs. The stars represent center points for each cluster. The left figure
represents samples before training and the right figure represents samples after training.

Figure 2.2: An example of non-centroid based clustering. The magenta points represent data
samples from one class and the cyan points represent data samples from another class. The red
edges represent edges in the local similarity graph constructed by mutual K nearest neighbors
(K=3) using cosine similarity measure. The left figure represents samples before training and the
right figure represents samples after training.
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multiple views since they are obtained by simultaneously observing the same object. The com-
plementary principle states that each view of the data may contain some knowledge that other
views do not have [36]. [10] further divide multi-view clustering algorithms into generative ap-
proaches and discriminative approaches. According to this survey, discriminative approaches
usually perform better than generative approaches in multi-view clustering [10]. The proposed
LSGMC is an unsupervised discriminative approach for multi-view clustering and explores both
the consensus and the complementary principle.

2.3 Popular Multi-view Clustering Methods
A popular strategy for multi-view clustering is to first project various feature spaces into

similar lower dimensional embedding spaces (data representation) and then regularizes those
embeddings or learns a unified embedding while keeping the consistency between views maxi-
mized. After that, we can apply basic unsupervised clustering algorithms, such as K means and
spectral clustering, to the learned data representation to obtain a final cluster assignment. There
are various approaches for maximizing agreement between views, including co-regularization
and co-training based methods [16, 17, 34], matrix factorization based methods [19, 40, 41] and
subspace clustering based methods under the general assumption that data from multiple views
are generated from the same latent space [9, 12, 21, 37, 38]. Deep learning has also been ex-
plored in multi-view clustering. These deep methods usually learn a data representation through
autoencoders or convolutional neural networks, which are able to extract nonlinear features from
the original data space. Deep clustering approaches have been shown to outperform traditional
clustering methods [1, 5, 13, 30, 31, 39].

2.4 Local Similarity Graphs
Existing work on single-view clustering has shown that graph based local similarity can be

useful to improve clustering performance [2, 11, 20, 28, 29]. For example, the work in [29] and
[11] demonstrates that a connectivity matrix built via mutual K nearest neighbors (MKNN) can
bear a useful training signal and that clustering algorithms can overcome the noise contained in
such a matrix.

Further, it has been shown that local similarity graphs constructed via MKNN perform better
than K nearest neighbors (KNN) on a variety of data mining tasks. Consider two data points a
and b, in KNN graphs, an edge is added to the graph if a is one of the K nearest neighbors to b
or b is one of the K nearest neighbors to a. The neighborhood is determined based on similarity
measures between a and b, e.g. cosine similarity or Euclidean distance. But in MKNN graphs,
an edge is added if and only if a and b are both one of the K nearest neighbors to each other. To
see the difference between KNN and MKNN graphs, we show an example in Figure 2.3, where
the left plot shows a graph constructed by KNN and the right plot shows a graph constructed
by MKNN. Consider two classes of data samples represented as magenta and cyan points in the

7



plot. The blue edges indicate correct edges whose incident nodes belong to the same class. Such
edges can provide correct information for clustering during training. The red edges indicate the
wrong edge whose incident nodes belong to different classes. Such edges will provide noisy
information during training. We can see that MKNN is more conservative in adding edges, po-
tentially reduces the number of incorrect edges and could be more robust to outliers.

Figure 2.3: An example showing the difference between a mutual K nearest neighbors (MKNN)
graph and a K nearest neighbors (KNN) graph. Both graphs are constructed on the same set of
synthetic data points using cosine similarity measure. The two magenta points represent samples
in class 0 while the other three cyan points represent samples from class 1. We plot edges in the
KNN graph on the left and edges in the MKNN graph on the right. Blue edges represent edges
whose incident nodes belong to the same class and red edges represent edges whose incident
nodes belong to different classes.

2.5 Connections to Our Work
The following diagram shows how related work mentioned in previous sections connects to

our proposed method, LSGMC:

Multi-view Clustering
View regularization (CCA)

Single-view Clustering
Non-centroid based clustering (RCC)

Local similarity graphs (MKNN)

New Multi-view Clustering
LSGMC

We draw ideas from techniques used in different domains. We use a popular technique for
regularizing views, canonical correlation analysis (CCA), from multi-view clustering. We also
use a non-centroid based clustering method, Robust continuous clustering (RCC), and local simi-
larity graphs constructed by mutual K nearest neighbors (MKNN), in single-view clustering. We
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realize that current multi-view clustering approaches based on CCA can be improved with those
ideas from single-view clustering.

In the next chapter, we first formally define the multi-view clustering problem. We then
describe those techniques in detail. After that, we show how we combine those ideas into a new,
improved multi-view clustering method.
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Chapter 3

Background

In this chapter, we first formally define the multi-view clustering problem. We then intro-
duce one single-view clustering approach, Robust Continuous Clustering (RCC) and one multi-
view clustering approach, Canonical Correlation Analysis (CCA). We further introduce the deep
extension of RCC: Clustering Driven Deep Embedding with Pairwise Constraints (CPAC) as
well as two deep extensions of CCA: Deep Canonical Correlation Analysis (DCCA) and Deep
Canonical Correlation Autoencoder (DCCAE). After that, we show how our proposed approach
LSGMC improves upon DCCA and DCCAE based on ideas from RCC and CPAC.

3.1 Multi-view Clustering

We first formally define the multi-view clustering problem. Consider n data points available
in V views. For the v-th view, X(v)

= [x
(v)
1 ,x

(v)
2 , . . . ,x

(v)
n ] ∈ Rn×dv , where x

(v)
i is the i-th data

point and dv is the feature number of view v. Our task is to partition n data points into c clusters
based on {X(v)

}Vv=1.

3.2 Robust Continuous Clustering

Robust Continuous Clustering (RCC) [29] is a single-view, non-centroid based clustering
method which uses local information from nearest neighbor graphs based on a relaxation of
convex clustering problems. Given n data points of a single view with d features X ∈ Rn×d,
RCC optimizes an embedding space U ∈ Rn×d through the following objective:

min
U

1

2

n

∑
i=1

∣x(i) −u(i)∣22 +
λ

2
∑
p,q∈E

wp,qρ(∣u
(p) −u(q)∣2)

Here, E is a set of edges in a connectivity graph constructed by MKNN on X. ρ is a penalty
function on the regularization norm that can be chosen as, for example, the l2 norm. wp,q is
the weight balancing the contribution of each data point to the pairwise terms. λ is a parameter
balancing the two terms in the objective.
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Clustering-driven Deep Embedding with Pairwise Constraints (CPAC) [11] is an extension of
RCC, which learns the embedding space U through a deep autoencoder and reconstruct samples
from the embedding space through a decoder. CPAC has been shown to outperform RCC on sev-
eral datasets. Compared to RCC, apart from the ability of directly extracting non-linear features
from data through an autoencoder, one advantage of CPAC is that the learned embedding space
U can be a lower dimensional space than the original X . Let X ∈ Rn×d and U ∈ Rn×m, where
m < d. CPAC reformulates the objective as follows, where v(i) denotes the i-th reconstructed
data samples through the decoder and x(i) denotes the i-th data sample:

min
θ,δ

1

d

n

∑
i=1

∣v(i) −x(i)∣22 +
λ

m
∑
p,q∈E

wp,qρ(∣u
(p) −u(q)∣22)

where E , λ, ρ,w have the same definition as in RCC, and θ, δ are parameters for the autoencoder
and decoder respectively.

3.3 Canonical Correlation Analysis (CCA)
We introduce a general formulation of Canonical Correlation Analysis (CCA), a widely ap-

plied data analysis technique. Given a dataset with two views X1,X2, let Σ1, Σ2 be the co-
variance matrices for each view and Σ12 be the cross-covariance. CCA finds pairs of linear
projections of the two views (wT

1 X1,wT
2 X1) such that they are maximally correlated:

max
w1,w2

wT
1 Σ12w2

√
wT

1 Σ1w1wT
2 Σ2w2

CCA is more often reformulated as

max
w1,w2

wT
1 Σ12w2

subject to wT
1 Σ1w1 =wT

2 Σ2w2 = 1

We often consider finding multiple pairs of projections, where CCA is typically formulated
to obtain such directions that subsequent projections are uncorrelated with previous ones:

max
W 1,W 2

Tr(X1Σ12X2)

subject to W T
1 Σ1W 1 =W T

2 Σ2W 2 = I

w
(i)T
1 Σ12w

(j)
2 = 0,∀i, j ∈ {1,2, . . . , n}, i ≠ j

3.4 Deep Canonical Correlation Analysis
With recent advances in deep learning, traditional CCA is sometimes parameterized with

autoencoders to better extract features and learn data representation. Deep Canonical Correlation
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Analysis (DCCA) [5] is a deep extension of CCA. DCCA is shown to outperform traditional
CCA and kernel CCA on two-view clustering tasks across a variety of datasets. Let f1;θ1 , f2;θ2

denote the autoencoders for data from view 1 and view 2, and θ1, θ2 denote the parameters. We
have the DCCA objective as follow:

max
W 1,W 2,θ1,θ2

1

n
Tr(W T

1 f1;θ1(X1)f2;θ2(X2)
TW 2)

subject to W T
1 (

1

n
f1;θ1(X1)f1;θ1(X1)

T + r1I)W 1 = I

W T
2 (

1

n
f2;θ2(X2)f2;θ2(X2)

T + r2I)W 2 = I

w
(i)T
1 f1;θ1(X1)f2;θ2(X2)

Tw
(j)
2 = 0,∀i, j ∈ {1,2, . . . , n}, i ≠ j

where r1, r2 > 0 are regularization parameters.

An improved version of DCCA, Deep Canonical Correlation Autoencoder (DCCAE) [31]
combines DCCA and reconstruction based regularization. The method optimizes both the corre-
lation between the embedding of two views and the reconstruction error through decoders. DC-
CAE essentially offers a trade-off between the information captured in the projection to a lower
dimensional embedding space and the information in the relationship across different views. Let
v denote the reconstructed data, x(i) denotes the i-th sample and δ1, δ2 denote the parameters for
the decoders. The DCCAE objective is as follow:

max
W 1,W 2,θ1,θ2,δ1,δ2

1

n
Tr(W T

1 f1;θ1(X1)f2;θ2(X2)
TW 2)

+
λ

n
(
n

∑
i=1

∣x
(i)
1 − v

(i)
1 ∣22 + ∣x

(i)
2 − v

(i)
2 ∣22)

with the same set of constraints as DCCA. λ > 0 is a trade-off parameter.

3.5 Improvement Over Existing Approaches
We list and compare how the objective function changes over correlation based multi-view

clustering approaches: CCA, DCCA, DCCAE and our proposed LSGMC. We highlight the im-
provement as the yellow part.

• CCA objective [1936]:

max
W 1,W 2

Tr(X1Σ12X2)

• DCCA objective [2013]:

max
W 1,W 2,θ1,θ2

1

n
Tr(W T

1 f1;θ1(X1)f2;θ2(X2)
T W 2)
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• DCCAE objective [2015]:

max
W 1,W 2,θ1,θ2,δ1,δ2

DCCA objective +
λ

n
(
n

∑
i=1

∣x
(i)
1 − v

(i)
1 ∣22 + ∣x

(i)
2 − v

(i)
2 ∣22)

• LSGMC objective [proposed]:

max
W 1,W 2,θ1,θ2,δ1,δ2

DCCAE objective + ∑
p,q∈E

2

∑
v=1

∣fv;θv(x
(p)
v ) − fv;θv(x

(q)
v )∣22

We have introduced techniques from both single-view clustering and multi-view clustering.
We have further described how our proposed approach improves upon existing correlation based
multi-view clustering approaches. In the next chapter, we describe our proposed multi-view
clustering approach LSGMC in detail.
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Chapter 4

Local Similarity Graph based Multi-view
Clustering (LSGMC)

In this chapter we describe each component of LSGMC in detail. Figure 4.1 provides an
overview of the network architecture. We learn a lower dimensional embedding for data in
each view and maximize the consistency between data across views through canonical corre-
lation analysis (CCA). Additionally, we construct view specific local similarity graphs through
mutual K nearest neighbors based on the original data of each view. We describe how we use
the graphs to explore first order proximity within views and complementary information across
views, which provide additional signals for learning a better data representation. We focus our
analysis on data with two views (V = 2), but our approach can be extended to more than two
views. In the following paragraphs we detail the steps of the proposed clustering algorithm for
which pseudo code is provided in Algorithm 1.

4.1 Learning Latent Data Representations
Since data from different views may stem from various different distributions–e.g. text data

and image data–it is natural to learn a representation of the data in some lower dimensional
subspace through nonlinear maps. This allows us to compute additional losses across views
in the lower dimensional representation. Autoencoders have been demonstrated as an effective
way of modeling feature nonlinearity on a variety of single-view clustering approaches [11, 35],
and multi-view clustering approaches [5, 15, 31, 39]. In LSGMC, we use autoencoders to learn
an embedding for each view. Let fθv , gφv denote the autoencoder and decoder for view v, with
parameters θv, φv respectively. We fix the dimension of the embedding space to be p for all views.
Let U (v) = fθv(X

(v)
) ∈ Rn×p be the latent embedding for view v. We learn the embedding by

the following reconstruction loss:

L
(v)
rec = ∣X(v)

− gφv(U
(v)

)∣22 (4.1)

Note that the reconstruction loss is an important component to keep the embedding learned
through LSGMC meaningful and to prevent inevitable false connections provided in local simi-
larity graphs from corrupting the embedding.
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Algorithm 1 LSGMC training procedure

Input: {X(v)
}Vv=1, hyperparameters λ1, λ2, common edge weight update interval c.

Output: cluster labels y.
for v in 1 . . . V do

θv, φv ← weight init()
Construct local similarity graph G(v).

end for
Compute Gunion = ∪

V
v=1G

(v).
Compute Gcommon = ∩

V
v=1G

(v).
for epoch in 1 . . .max epoch do

for all sampled minibatch indices do
Sample a batch of X(v), ∀v.
Compute L(v)rec, ∀v by Eq. 4.1.
Compute L(v)prox, ∀v by Eq. 4.3.
Compute Lcorr by Eq. 4.2.
θv ← RMSprop(θv,−∇L

(v)
rec,−∇L

(v)
prox,−∇Lcorr)

φv ← RMSprop(φv,−∇L
(v)
rec,−∇L

(v)
prox,−∇Lcorr)

end for
if epoch mod c == 0 then: ▷ Optional

Uniformly sample a subset of edges G′ from Gcommon.
Compute Lcom based on G′ by Eq. 4.4.
θv ← RMSprop(θv,−∇Lcom)

φv ← RMSprop(φv,−∇Lcom)

end if
end for
y ← KMeans(U (v)) for any v.

4.2 Consistency Between Data Across Views
One widely accepted assumption in multi-view clustering is that data from different views

have certain forms of consistency. Through maximizing a linear correlation between data from
two views, CCA is an effective way of maximizing data consistency across views. Since CCA has
a closed form solution [5], we can maximize view consistency through the following correlation
loss. Let

Ū
(v)

= U (v) −
1

n
U (v)1

be the re-centered embedding for view v,

Σ(v) =
1

n − 1
Ū
(v)T

Ū
(v)

the covariance matrix of view v’s embedding, and

Σ(v1,v2) =
1

n − 1
Ū
(v1)T Ū

(v2)
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Figure 4.1: Architecture Overview: LSGMC uses one autoencoder per view (f1, f2) to project the
data from the respective view to an embedding space (U (1), U (2)) and a corresponding decoder
(g1, g2) reconstructs the data representation. LSGMC further constructs local similarity graphs
for each view (G(1), G(2)) based on the input data. LSGMC merges local similarity graphs into
a unified graph (Gunified) and optionally constructs a graph with common edges between view
specific local similarity graphs (Gcommon). LSGMC trains the encoders and decoders to keep
reconstruction error of each view small, maximizes correlation between embeddings of different
views to enforce view consistency, all while explores first order proximity within each view and
complementary information across views via Gunified and Gcommon to search for better data
representations.

the cross-covariance matrix between embeddings of view v1 and v2. We further denote

T = Σ(v1)−1/2Σ(v1,v2)Σ(v2)−1/2

and using the singular values of T we define the correlation loss

Lcorr = −
p

∑
i=1

σi (4.2)

where the σi’s are the top p singular values of T , with p being the dimension of the latent
embedding.
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4.3 Utilizing Local Similarity Graphs

A desirable property of good data representations is that if two data points are close in the
original space via some domain appropriate similarity function, their representations in the em-
bedding space should also be close. Further, one might observe that if two data points are close
to each other in the original space, they are more likely to be from the same cluster. We call
a graph of pairs established via such a heuristic a local similarity graph and use it to guide the
search for a better embedding since an edge in such a graph indicates a higher probability that
two incident nodes belong to the same cluster.

To further improve the quality of the graph, we use a mutual nearest neighbor approach,
meaning that two nodes are only connected if they are both nearest neighbors of each other in a
K nearest neighbor graph. Prior research [8] has shown that graphs constructed through mutual
K nearest neighbors can better capture local similarities in clustering tasks. We construct one
such local similarity graph G(v) for each view v and in our experiments use cosine similarity
between data points in the original space.

4.4 Using Information From Graphs Across Views

We observe that view specific local similarity graphs encode view specific information as
they differ across views due to different data representations in the respective original spaces.
Thus, view specific graphs can provide complementary information. An edge connected in G(v1)

might be disconnected in G(v2) but is expected to still provide valuable information in learning
the embedding for view v2. Thus we consider unifying all view specific graphs into one common
graph G = ∪Vi=1G

(v) and use the common graph to guide the learning of embeddings for all views.

To encourage first order proximity in the embedding space, we define the following proximity
loss, ∀v,

L
(v)
prox = ∑

(i,j)∈G
∣U
(v)
i −U

(v)
j ∣22 (4.3)

It is important to note two potential drawbacks of the proximity loss in isolation. First, a
trivial solution to minimizing the loss is to collapse all data representations in the embedding into
a single cluster. The embedding thus fails to represent the actual relationship between data points.
Second, due to relying on a heuristic such as K mutual nearest neighbors, view specific graphs
will inevitably contain false connections. L(v)prox by itself provides no mechanism to account for
such mistakes. However, the reconstruction loss is able to counter such issues. By forcing a
reconstructed sample to be close to its representation in the original space, the reconstruction
loss encourages learning of a meaningful embedding and avoids collapse of all samples towards
a single point.
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4.5 Injecting Beliefs About Consensus
We may consider a complementary operation of unifying all view specific similarity graphs

G(v) to find the common edges among all graphs. A natural belief derived from the multi-
view consensus clustering assumption is that edges occurring in all view specific local similarity
graphs are more likely to provide true information that two incident nodes belong to the same
cluster. In order to avoid reinforcing false information, we consider uniformly sampling a subset
of the common edges. Let G′

= sample(∩Vv=1G
(v)

). We can encourage proximity through a
subset of common edges as follows

Lcom = ∑
(i,j)∈G′

∣U
(v)
i −U

(v)
j ∣22 (4.4)

every constant number of epochs, to reinforce the consensus belief.

4.6 Overall Objective and Optimization
Let Θ = {θv, φv}Vv=1 denote the overall parameters to train. The joint objective including all

previously mentioned losses is

LΘ =
V

∑
v=1

(L
(v)
rec + λ

(v)
1 L

(v)
prox) +Lcorr + λ2Lcom (4.5)

where λ1 and λ2 are trade-off hyperparameters to balance the losses. In our experiments, we set
λ
(v)
1 =

∣X(v)∣F
σ , where ∣ ⋅ ∣F denotes the Frobenius norm and σ is the largest eigenvalue of the graph

Laplacian based on the cosine similarity matrix we used to construct G(v). See [29] for details.
We set λ2 = 1. The overall LSGMC learning procedure is presented in Algorithm 1. Equa-
tion 4.5 can be minimized through standard backpropagation algorithms to update parameters in
the encoder and the decoder for each view. In our implementation we use RMSprop to learn Θ
and apply K Means to obtain the final clustering based on the embeddings that were learned. We
note that the correlation loss can be optimized efficiently only if the gradient is estimated using
a sufficiently large minibatch [31].

4.7 Extension to Semi-supervised Clustering
In some applications one may have access to reliable pairwise information for a small portion

of observations from ground truth or meta data. Such pairs usually come in the form of pairwise
must-link and cannot-link constraints. LSGMC is able to incorporate such information by aug-
menting all local similarity graphs.

We have presented our proposed LSGMC. In the next chapter, we describe the experiment
settings for evaluating LSGMC.
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Chapter 5

Experiment Setup

In this chapter, we present the experiment settings to evaluate LSGMC. We begin by intro-
ducing four benchmark and real world datasets for evaluating multi-view clustering approaches
from different domains that will be used in our experiments. We then introduce five state-of-
the-art multi-view clustering alternatives that our LSGMC will be compared against. We further
describe our implementation details and introduce four commonly applied evaluation metrics for
clustering.

5.1 Datasets
We use four widely used multi-view clustering benchmarks and real world datasets for LS-

GMC evaluation. Figure 5.1 and Figure 5.2 show examples from the Noisy MNIST dataset and
the Digit/MNIST-USPS dataset respectively. Table 5.1 presents a summary of all datasets used
in the experiments.

Dataset # samples # features view 1 # features view 2 # clusters type

Noisy MNIST 4000 784 784 10 image
Digit/MNIST-USPS 4000 784 256 10 image
BBC+The Guardian 169 3560 3631 6 text

XRMB 20,000 273 112 20 acoustic-articulatory

Table 5.1: A summary of experiment datasets.

5.1.1 Noisy MNIST
1 Following [31], we create two noisy views from MNIST handwritten digits [18]. We ran-

domly select a small subset of 4000 samples out of the entire 70K samples, with 400 samples
per class. The first view is a random rotation of the original digit with angles sampled uniformly
within range [−π4 ,

π
4 ]. The corresponding second view is randomly selected from the same class

1https://csc.lsu.edu/˜saikat/n-mnist/
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(a) Noisy MNIST view 1 (b) Noisy MNIST view 2

Figure 5.1: Examples of Noisy MNIST data.

(a) Digit/MNIST-USPS view 1 (b) Digit/MNIST-USPS view 2

Figure 5.2: Examples of Digit/MNIST-USPS data.

from the original dataset. The pixel values are scaled to [0,1], masked with i.i.d noise uniformly
drawn from [0,1], and subsequently truncated to [0,1]. Each view has a dimension of 784. The
dataset has 10 classes.
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5.1.2 Digit/MNIST-USPS

Following [26] we randomly select 4000 samples from MNSIT and USPS, with 400 samples
per class. We randomly match digits from MNIST with digits of the same class from USPS to
form a two view handwritten digits data. The first view (MNIST) has a dimension of 784 and the
second view (USPS) has a dimension of 256. The dataset has 10 classes.

5.1.3 BBC+The Guardian
2 The Three Sources Dataset is a multi-view text dataset consisting of news articles collected

from three online news sources: BBC, The Guardian, and Reuters. All articles are represented
as bag-of-words and each article is annotated with at least one of six topics. Following [7], we
use 169 articles that are available in all three sources. We use one annotation for each article and
use BBC and The Guardian as the first and second view. The first view (BBC) has a dimension
of 3560 and the second view (the Guardian) has a dimension of 3631. The dataset has 6 classes.

5.1.4 XRMB
3 The Wisconsin X-ray Microbeam (XRMB) data consists of simultaneously recorded speech

and articulation measurements from 47 American English speakers. We use a processed version
from [32]. The first view (acoustic measurements) has 39 features consisting of mel-frequency
cepstral coefficients (MFCCs) and their first and second derivatives, and the second view (articu-
lation measurements) has horizontal/vertical displacement of 8 pellets attached to different parts
of the vocal tract. Both features are concatenated over a 7-frame window around each frame,
resulting in a total of 273 features for the first view and 112 features for the second view. The
task is to cluster phones based on two set of features. We randomly sample 20 phones from 35
speakers, with each phone 1000 samples, resulting in a total of 20,000 samples.

5.2 Methods for Comparison
We use LSGMC to denote our proposed approach without injecting beliefs about consensus

among edges across local similarity graphs from different views. We use LSGMC+ to denote our
proposed approach with injecting beliefs about consensus. In our experiments using LSGMC+,
we uniformly sample 20% common edges and compute Lcom every 5 epochs. We compare
LSGMC and LSGMC+ against the following state-of-the-art multi-view clustering approaches:

5.2.1 Deep Canonical Correlation Analysis (DCCA)

Deep Canonical Correlation Analysis (DCCA) [5] is a multi-view clustering method based
on canonical correlation analysis (CCA) for regularizing data from two views. DCCA improves

2https://github.com/mbrbic/Multi-view-LRSSC
3https://ttic.uchicago.edu/˜klivescu/XRMB_data/full/README
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CCA by using deep autoencoders to better extract nonlinear features from data. DCCA is shown
to outperform CCA and kernel CCA on various datasets.

5.2.2 Deep Canonically Correlated Autoencoders (DCCAE)
Deep Canonically Correlated Autoencoders (DCCAE) [31] is an improved version of DCCA.

DCCAE uses not only CCA parameterized by deep autoencoders but also uses decoders and
reconstruction errors to improve the learned data embedding. DCCAE is able to outperform
DCCA on several datasets.

5.2.3 Deep Matrix Factorization (DMF)
Deep Matrix Factorization (DMF) [41] explores complementary information across views

by using semi-nonnegative matrix factorization to learn the hierarchical semantics of multi-view
data in a layer-wise fashion, with graph regularizers to represent intrinsic geometric structure in
each view data.

5.2.4 Low-rank Sparse Subspace Clustering (LRSSC)
Multi-view Low-rank Sparse Subspace Clustering (LRSSC) [7] learns a joint subspace rep-

resentation by constructing the similarity matrix shared among all views while encouraging spar-
sity and low-rankness solutions at the same time. Note that LRSSC has four different variations.
We report the highest scores among the four variations in our experiments.

5.2.5 Deep Multimodal Subspace Clustering (DMSC)
Deep Multimodal Subspace Clustering (DMSC) [1] is a convolutional neural network based

deep multimodel subspace clustering mainly for image datasets. DMSC uses encoders and de-
coders for learning a lower dimensional data representation and explores different affinity fusion
techniques to regularize data across views. The DMSC implementation does not allow the clus-
tering of multi-view data with different dimensionality for each view. We are thus only able to
report the results of DMSC on dataset where the number of features in both views is the same.

5.3 Implementation Details
In order to enable a fair comparison of LSGMC against DCCA and DCCAE, we use the

same set of hyperparameters and optimizer across the three approaches. In computing correla-
tion loss, we use the top p singular values, where p is the same as the embedding dimension. We
evaluate all clustering methods in an unsupervised clustering setting using K means clustering
on the learned data representation for each view and report the best score among two views. For
our approach, to construct the local similarity graph for each view, we fix the number of nearest
neighbors to 10 to create a mutual K nearest neighbors graph for each dataset. [22] suggests a
lower bound on the number of neighbors in a mutual K nearest neighbors graph to successfully
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identify clusters as K ∝ log(n) where n is the number of samples. In our experiments, our sam-
ples range from about 200 to 4000, meaning the lower bound lies in [7.5,12].

We use the RMSprop optimizer with a weight decay of 1e − 5 and a learning rate of 1e − 3.
We fix the dimension of the embedding space to be 10, which is the same as the original setting
used in both DCCA and DCCAE. The autoencoder for each view has three hidden layers and
each layer has 1024 units. We run the experiment for at most 100 epochs for Noisy MNIST,
BBC+The Guardian and XRMB dataset, at most 300 epochs for Digit/MNIST-USPS dataset. We
use a batch size of 800 in each minibatch update. We use random initialization of all parameters
in the encoders and decoders without pre-training. We did not find a significant improvement in
the clustering performance using pre-training.

5.4 Evaluation Metrics
Consistent with relevant literature [4, 23], we use four extrinsic metrics, which compare the

output of the clustering algorithm and a ground truth (true classes/labels), for evaluating the
clustering performance: Normalized Mutual Information (NMI), Adjusted RAND Index (ARI),
F1 score and Purity for evaluating clustering performance. Those four widely applied metrics
in clustering literature captures different aspects of the clustering algorithms. NMI is a metric
based on entropy. The entropy of a predicted cluster reflects how the members of different true
classes are distributed within each cluster. ARI is a metric which considers statistics over pairs of
items. Purity and F1 score are metrics based on set matching. Both assume a one to one mapping
between predicted clusters and true classes, and used precision and recall for comparison. We
give a detailed description of each metric below.

Since we are comparing the quality of learned data embedding, we assume the true number
of clusters, k, is known a priori during evaluation. Let Y = {y1, . . . , yk} be the set of true classes,
C = {c1, . . . , ck} be the set of predicted clusters and N be the number of samples.

5.4.1 Normalized Mutual Information (NMI)
NMI is an information theory based metric. NMI is defined as

NMI(Y,C) =
2 × I(Y ;C)

H(Y ) +H(C)

I(Y ;C) =∑
i

∑
j

Pr[yi ∩ cj] log
Pr[yi ∩ cj]

Pr[yi]Pr[cj]

=∑
i

∑
j

∣yi ∩ cj ∣

N
log

N ∣yi ∩ cj ∣

∣yi∣∣cj ∣

H(Y ) = −∑
i

Pr[yi] log Pr[yi]

= −∑
i

∣yi∣

N
log

∣yi∣

N
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where Pr[yi], Pr[cj] and Pr[yi ∩ cj] denote the probability of a data sample being in class yi,
predicted cluster cj and in the intersection of yi and cj , respectively. I(⋅; ⋅) is the mutual informa-
tion and H(⋅) is the entropy. H(C) is defined similarly as H(Y ).

Mutual information (MI) I(Y ;C) measures the amount of information by which our knowl-
edge about the true class increases when we are told what the predicted clusters are. The mini-
mum of I(Y ;C) is 0 if the clustering is random. The maximum of I(Y ;C) is when C matches
Y exactly. A larger number of clusters will result in a larger I(Y ;C). In order to have a more
direct comparison when the number of clusters varies, MI is normalized by H(Y )+H(C)

2 since a
larger number of clusters results in an increase in the entropy. H(Y )+H(C)

2 is a tight upper bound
of I(Y ;C) and thus NMI(Y ;C) ∈ [0,1].

5.4.2 Adjusted RAND Index (ARI)

ARI measures the similarity between cluster assignments based on pairs of samples. ARI is
an adjusted version of the RAND index (RI) to account for the fact that RI sometimes fails to
capture the quality of the clustering assignment C due to randomness. We provide a detailed
derivation of ARI from RI in this section based on [3, 14]. We begin by introducing RI, the
drawback of RI under randomness and then discuss how ARI comes into the picture.

Consider the contingency table between true classes Y and predicted clusters C, where nij =
∣ci ∩ yj ∣, ni⋅ = ∣ci∣ and n⋅j = ∣yj ∣ as follow

y1 y2 . . . yk
c1 n11 n12 . . . n1k n1⋅
c2 n21 n22 . . . n2k n2⋅
. . . . . .
ck nk1 nk2 . . . nkk nk⋅

n⋅1 n⋅2 . . . n⋅k N

Table 5.2: The contingency table between true classes Y and predicted clusters C.

For each pair of samples among (
N
2
) all possible pairs, one of the four cases: {True Posi-

tive, False Positive, False Negative, True Negative} applies. We calculate the total number of
samples in each case. Further notice that total # FP, total # FN and total # TN are all constant
linear transformation of total # TP. We adopt part of the calculation and notation from [3]. Let
P = ∑

k
i=1 n

2
i⋅ −N , Q = ∑

k
j=1 n

2
⋅j −N .

26



1. True Positive (TP): two samples from the same true class are assigned to the same cluster.

total # TP =
k

∑
i=1

k

∑
j=1

(
nij
2

)

=
1

2

k

∑
i=1

k

∑
j=1

n2
ij −

N

2

2. False Positive (FP): samples from two different classes are assigned to the same cluster.

total # FP =
k

∑
i=1

(
ni⋅
2
)

=
1

2

k

∑
i=1

n2
i⋅ −

1

2

k

∑
i=1

k

∑
i=1

n2
ij

=
1

2
P − [total # TP]

3. False Negative (FN): samples from the same class are assigned to different clusters.

total # FN =
k

∑
j=1

(
n⋅j
2
)

=
1

2

k

∑
j=1

n2
⋅j −

1

2

k

∑
i=1

k

∑
j=1

n2
ij

=
1

2
Q − [total # TP]

4. True Negative (TN): two samples from different classes are assigned to different clusters.

total # TN = (
N

2
) − (TP + FP + FN)

=
1

2
(N2 +

k

∑
i=1

k

∑
j=1

n2
ij − (

k

∑
i=1

n2
i⋅ +

k

∑
j=1

n2
⋅j))

= (
N

2
) −

1

2
(P +Q) + [total # TP]

The RAND index (RI) denotes the percentage of pairs of samples which have an agreed
assignment in Y and C among all pairs – i.e. both samples in a pair are assigned to the same
class in Y and C (TP) or both samples in a pair are assigned to different classes in Y and C (TN).
Formally, RI is defined as

RI =
total # TP + total # TN

(
N
2
)

=
(
N
2
) + 2∑

k
i=1∑

k
j=1 (

nij

2
) − (∑

k
i=1 (

ni⋅

2
) +∑

k
j=1 (

n⋅j
2
))

(
N
2
)
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Since RI counts the number of pairs that are assigned to different classes in Y and C, if the
number of classes k is large, then there will be a higher chance for a pair that comes from differ-
ent classes in Y to be assigned to different clusters inC, even whenC is a bad cluster assignment.
For example, consider two samples from different true classes x1 ∈ y1 and x2 ∈ y2. Consider a
uniformly random clustering assignment C. When k = 2, x1, x2 are assigned to different clusters
in C with probability 0.5. When k = 100, however, the probability of x1, x2 being assigned to
different clusters becomes 0.99. Thus randomness might result in a high RI and RI might fail to
reflect the true quality of C. We need a better measurement that can account for this fact.

Adjusted RAND Index (ARI) is an “adjusted for chance” correction to RI proposed by Hubert
and Arabic in 1985 [14], under the assumption that contingency table is constructed from the
generalized hypergeometric distribution, i.e. Y and C partitions are picked at random, subject to
having the original number of classes and objects in each. A general form of a statistic index –
in our case, the RAND index – corrected for chance is

Corrected Index =
Index − Expected Index

1 − Expected Index

where the Expected Index represents the probability of a pairing due to randomness with fixed
marginal counts and is calculated under the null distribution.

We begin by calculating the expected RAND index with fixed sets of marginal counts. As
an analogy to the expected number of samples in the cell (i, j) in the contingency table being
E[nij] =

ni⋅×n⋅j
N , the expected number of TP pairs that are both assigned to yi and cj in the cell

(i, j), is defined as

E[(
nij
2

)] =
(
ni⋅

2
) × (

n⋅j
2
)

(
N
2
)

By linearity,

E[total # TP] = E[
k

∑
i=1

k

∑
j=1

(
nij
2

)] =
∑
k
i=1 (

ni⋅

2
)∑

k
j=1 (

n⋅j
2
)

(
N
2
)

As we noted above that total # FP, total # FN, total # TN are all constant linear transformations
of total # TP, we can derive E[total # TP + total # TN] directly from E[total # TP]. Therefore,

28



we have

E[RI] =
E[total # TP + total # TN]

(
N
2
)

=
E[(

N
2
) + 2∑

k
i=1∑

k
j=1 (

nij

2
) − (∑

k
i=1 (

ni⋅

2
) +∑

k
j=1 (

n⋅j
2
))]

(
N
2
)

=
(
N
2
) + 2E[∑

k
i=1∑

k
j=1 (

nij

2
)] − (∑

k
i=1 (

ni⋅

2
) +∑

k
j=1 (

n⋅j
2
))

(
N
2
)

= 1 + 2
∑
k
i=1 (

ni⋅

2
)∑

k
j=1 (

n⋅j
2
)

(
N
2
)

2 −
∑
k
i=1 (

ni⋅

2
) +∑

k
j=1 (

n⋅j
2
)

(
N
2
)

With RI and E[RI], we can now calculate ARI as follow

RI −E[RI] = 1 + 2
∑
k
i=1∑

k
j=1 (

nij

2
)

(
N
2
)

−
∑
k
i=1 (

ni⋅

2
) +∑

k
j=1 (

n⋅j
2
)

(
N
2
)

−

(1 + 2
∑
k
i=1 (

ni⋅

2
)∑

k
j=1 (

n⋅j
2
)

(
N
2
)

2 −
∑
k
i=1 (

ni⋅

2
) +∑

k
j=1 (

n⋅j
2
)

(
N
2
)

)

= 2(
∑
k
i=1∑

k
j=1 (

nij

2
)

(
N
2
)

−
∑
k
i=1 (

ni⋅

2
)∑

k
j=1 (

n⋅j
2
)

(
N
2
)

2 )

ARI =
RI −E[RI]
1 −E[RI]

=

2(
∑k

i=1∑k
j=1 (

nij
2
)

(N
2
) −

∑k
i=1 (

ni⋅
2
)∑k

j=1 (
n
⋅j
2
)

(N
2
)2

)

∑k
i=1 (

ni⋅
2
)+∑k

j=1 (
n
⋅j
2
)

(N
2
) − 2

∑k
i=1 (

ni⋅
2
)∑k

j=1 (
n
⋅j
2
)

(N
2
)2

=
∑
k
i=1∑

k
j=1 (

nij

2
) − [∑

k
i=1 (

ni⋅

2
)∑

k
j=1 (

n⋅j
2
)]/(

N
2
)

1
2[∑

k
i=1 (

ni⋅

2
) +∑

k
j=1 (

n⋅j
2
)] − [∑

k
i=1 (

ni⋅

2
)∑

k
j=1 (

n⋅j
2
)]/(

N
2
)

The maximum ARI is 1 when Y and C have exactly the same cluster assignments. Notice
that ARI can be negative under randomness. A random cluster assignment will get an expected
ARI of 0.

5.4.3 F1 score

F1 score is a trade-off between clustering correctly all samples from the same true category
into the same predicted cluster and making sure that each predicted cluster contains points from
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only one category. Let Precision and Recall for a true category yi and a predicted cluster cj
defined as follow

Precision(yi, cj) =
∣cj ∩ yi∣

∣cj ∣

Recall(yi, cj) =
∣cj ∩ yi∣

∣yi∣

Let F denote the harmonic mean of Precision and Recall. We have the F1 score as

F(yi, cj) =
2 ×Recall(yi, cj)Precision(yi, cj)
Recall(yi, cj) + Precision(yi, cj)

F1 score(Y,C) =∑
i

∣yi∣

N
max
j
F (yi, cj)

A bad clustering will have a low F1 score, while an exact match between Y and C will get a F1
score of 1.

5.4.4 Purity
Purity is a simple and straight-forward evaluation metric based on set matching. When cal-

culating purity, each predicted cluster cj is assigned to the category yi which is most frequent
in the cluster and then the accuracy of this assignment is measured by counting the number of
correctly assigned samples and dividing by N . Specifically, Purity is defined as

Purity(Y,C) =
1

N
∑
j

max
i

∣yi ∩ cj ∣

A bad clustering will get purity 0 and an exact matching between Y and C will get purity 1.
However, high purity can also be achieved when the number of cluster is large. Thus we might
also need to consider alternative evaluation metrics when assessing the clustering performance.

We have presented our experiment setups. In the next chapter, we present the experiment
results. We further discuss and analyze our results.
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Chapter 6

Results

In this chapter, we present our experiment results. We first compare evaluation metrics nu-
merically on all datasets. We then visualize local similarity graphs used during training on two
datasets, i.e. Noisy MNIST and BBC+The Guardian. We further visually compare the learned
embeddings on the two datasets. We characterize the local similarity graphs used during training
on all datasets. After that, we discuss and analyze our results. Finally we describe our results in
semi-supervised setting.

6.1 Performance Comparison

We conduct 5 random runs of each experiment and report mean and standard deviation of
values of the best under each metric from each run. Figure 6.1, Figure 6.2, Figure 6.3 and
Figure 6.4 provide comparisons of the clustering performance of LSGMC against other state-
of-art approaches on each respective dataset. We represent the performance of each multi-view
clustering method as a column with mean value (in percentage) achieved under four evaluation
metrics (NMI, ARI, F1 Score and Purity) described in the previous chapter across 5 runs. We
represent the standard deviation as a black bar on top of each column. Under each metric, the
two rightmost columns represent LSGMC (colored brown) and LSGMC+ (colored pink). We
first compare LSGMC against related methods and then compare LSGMC against LSGMC+.

LSGMC, DCCA and DCCAE perform better than the other clustering methods on the image
datasets. On Noisy MNIST, LSGMC significantly outperforms DCCA and DCCAE, across all
performance metrics we compute, see Figure 6.1. On Digit/MNIST-USPS, LSGMC also out-
performs all related approaches, but the gap in performance is less pronounced as the methods
achieve high quality clustering results, see Figure 6.2.

On the text data, LSGMC and LRSSC perform better than the related methods. LSGMC sig-
nificantly outperforms LRSSC as can be seen in Figure 6.3. On the acoustic-articulatory data,
LSGMC and DCCA perform better than the related methods. LSGMC slightly outperforms
DCCA as can be seen in Figure 6.4.
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Figure 6.1: Performance on Noisy MNIST dataset.

Figure 6.2: Performance on Digit/MNIST-USPS dataset.
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Figure 6.3: Performance on BBC+The Guardian dataset.

Figure 6.4: Performance on XRMB dataset.
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The results comparing our LSGMC and LSGMC+ methods are inconclusive. LSGMC+,
which takes into account additional consensus information, slightly outperforms LSGMC on the
Noisy MNIST data, but not significantly. LSGMC+ has the same performance as LSGMC on
Digit/MNIST-USPS and XRMB dataset, and performs slightly worse on the small BBC+The
Guardian dataset.

6.2 Visualization of Local Similarity Graphs

(a) NoisyMNIST

(b) BBC+The Guardian

Figure 6.5: Visualization of edges constructed by Mutual K nearest graphs in each view on the
two components of t-SNE embeddings of the original data.

To better understand the local similarity graphs constructed by Mutual K nearest neighbors
(MKNN), in Figure 6.5, we plot the view specific MKNN graphs, on two components of t-SNE
embeddings of the original data, on the Noisy MNIST and BBC+The Guardian datasest. Each
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dot in the plot represents a data point in the original space, and each red dashed line represents
an edge in the MKNN graph. We observe that the density of MKNN edges provide some infor-
mation about the clusters.

6.3 Visualization of the Embeddings
In Figure 6.6 and Figure 6.7 we visualize and compare t-SNE plots of the low dimen-

sional embeddings learned on the Noisy MNIST and BBC+The Guardian dataset, where LS-
GMC greatly outperforms the other multi-view clustering methods. The plots strongly suggest
that the representation learned by our proposed LSGMC is more separable. The t-SNE plots
provide visual evidence suggesting that local connectivity graph can be a very useful signal in
unsupervised learning on multi-view data.
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(a) DCCA (NMI: 60.56, ARI: 49.80, F1 score: 54.88, Purity: 70.79)

(b) DCCAE (NMI: 62.53, ARI: 52.88, F1 score: 57.72, Purity: 70.65)

(c) DMSC (NMI: 48.27, ARI: 28.98, F1 score: 37.52, Pu-
rity: 56.43)

(d) DMF (NMI: 15.16, ARI: 5.85, F1 score: 15.30,
Purity: 18.47)
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(e) LRSSC (highest: NMI: 47.73, ARI: 34.61, F1 score: 41.34, Purity: 57.25)

(f) LSGMC (NMI: 74.22, ARI: 61.94, F1 score: 65.90, Purity: 79.59)

Figure 6.6: t-SNE plots of the learned data representation (embedding) on 4000 samples Noisy
MNIST dataset (10 classes) by different multi-view clustering approaches. The embedding of
view 1 is on the left and view 2 on the right. Note that DMSC applies fusion algorithms on the
learned data representation from different views to gain a unified representation. We only plot
the final data representation learned by DMSC.
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(a) DCCA (NMI: 44.83, ARI: 35.41, F1 score: 50.05, Purity: 66.63)

(b) DCCAE (NMI: 45.08, ARI: 38.49, F1 score: 51.86, Purity: 65.68)

(c) DMF (NMI: 33.78, ARI: 20.82, F1 score: 36.97, Pu-
rity: 59.41)
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(d) LRSSC (highest: NMI: 56.36, ARI: 45.97, F1 score: 57.45, Purity: 77.32)

(e) LSGMC (NMI: 73.95, ARI: 72.21, F1 score: 78.52, Purity: 84.33)

Figure 6.7: t-SNE plots of the learned data representation (embedding) on 169 samples
BBC+The Guardian dataset (6 classes) by different multi-view clustering approaches. The em-
bedding of view 1 is on the left and view 2 on the right.
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6.4 Discussion

Our experiments suggest that the proposed LSGMC outperforms state-of-the-art multi-view
clustering alternatives consistently on popular image and text benchmark datasets as well as a
real world acoustic-articulatory dataset. While correlations between data from different views
can be powerful in regularizing view consistency, the guidance of local similarity graphs can
significantly improve the performance of a clustering algorithm. This is evidenced by the per-
formance of LSGMC over related correlation based multi-view clustering methods, DCCA and
DCCAE.

We report three characteristics of the local similarity graphs on each dataset in Table 6.1. To
illustrate the three characteristics, consider an example in Figure 6.8. In the example, we plot
5 synthetic data samples, where the two magenta points represent samples in class 0 while the
other three cyan points represent samples from class 1. We also plot all edges in the graph across
5 data samples. We use red edges to denote the ones selected by MKNN and blue edges to denote
the non-selected ones.

We first consider the percentage of edges (% Total) selected by MKNN among all possible
edges in a graph. In the toy example, this corresponds to 6

10 since there are 6 red edges among a
total of 10 edges. We then report the number of true/correct edges, whose incident nodes belong
to the same cluster, among the selected edges by MKNN (# True). In this example, edges {(a),
(d), (e), (f)} are the correct ones and thus the number of correct edges is 4 in this case. We also
report the percentage of true edges (% True) among all edges selected by MKNN, which is 4
among 6 edges in the example.

Figure 6.8: An example illustrating three characteristics of the local similarity graphs we report
on each dataset. The two magenta points represent samples from class 0 while the other three
cyan points represent samples from class 1. We plot a complete graph, where the red edges are
the ones selected by MKNN graph while the blue edges are the ones not selected.
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Dataset View 1 View 2 Unified Common
%Total #True %True %Total #True %True %Total #True %True %Total #True %True

Noisy MNIST 0.14 9765 88.62 0.07 3773 67.29 0.21 13498 81.39 5e-4 40 95.24
Digit 0.14 10669 95.18 0.13 9764 93.17 0.27 20291 94.17 1.8e-3 142 100.00

BBC+Gua 4.09 469 80.72 3.68 424 81.07 5.78 653 79.53 1.99 240 84.81
XRMB 0.027 31012 57.34 0.026 27323 53.42 0.051 55227 54.21 0.0017 3108 92.50

Table 6.1: Characterization of local similarity graphs from view 1, view 2, unified graph and
graph with common edges on different datasets. %Total, #True and %True denote the percentage
of the number of edges in the graph of interest among all edges in a complete graph, the total
number of correct edges in the graph of interest and the percentage of correct edges in the graph
of interest.

We report the above three characteristics of four graphs: the local similarity graphs from
view 1, view 2, the unified graph and the common edges in Table 6.1. We observe that the
percentage of correct edges of unified graphs is ≳ 80% on each dataset except XRMB on which
the percentage of correct edges is only 54%, while covering only a small portion of all possible
edges. We further observe that the number of edges selected by MKNN is extremely small. The
results demonstrate that a small amount of information from the local similarity graphs with a
reasonable quality can be used as a powerful training signal to guide the search for a better em-
bedding space. Our experiments and results demonstrate that this is indeed the case for several
different data types and common multi-view benchmark datasets. We did not tune the number of
neighbors for each dataset to improve the quality of the graphs but rather chose a fixed value in
a range suggested by the analysis presented in [8].

Additionally, the characteristics of local similarity graphs provide insights into the perfor-
mance difference between LSGMC and LSGMC+ on different datasets.

On Noisy MNIST, the quality of view 2’s local similarity is low, with only 67.29% correct
edges, compared to view 1’s local similarity graph, with 88.62% correct edges. As a result, the
unified graph has only 81.39% correct edges, while there are 95.24% correct edges among the
common edges between view 1 and view 2. On XRMB, the quality of both view 1 and view
2’s local similarity is low, with only 57.34% and 53.42% correct edges respectively. The uni-
fied graph has only 54.21% correct edges while there are 92.50% correct common edges. Since
LSGMC uses the unified graph to learn the embedding for both views, the common edge graph
with high correctness could provide valuable additional information to the learning process. This
explains why we observe > 1% increase in ARI and F1 score in LSGMC+ on Noisy MNIST, and
a slight increase in ARI, F1 score and Purity in LSGMC+ on XRMB, even if we only use the
information of 20% common edges selected uniformly randomly every 5 epochs in training. This
case corresponds to the general belief on consensus that common edges could provide more reli-
able training signals.

On the other two datasets, however, the difference between the percentage of correct edges
in the unified graph and the graph with common edges is small, with 5.83% and 5.28% on
Digit/MNIST-USPS and BBC+The Guardian respectively. Common edges do not provide much
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more information than edges in the unified graph. The slight drop in performance of LSGMC+
on the two datasets may be explained by the fact that the algorithm is biased towards a small
subset of common edges despite them not being much more accurate than other edges. This
case is contrary to the belief that common edges could provide more reliable training signals. In
conclusion, whether a graph with common edges across views should be used as an additional
training signal to the unified graph, depends on the inherent local structure of the data.

6.5 Extension to Semi-supervised Clustering
We demonstrate the use of LSGMC in the semi-supervised clustering setting and demon-

strate the flexibility it offers in incorporating pairwise must-link and cannot-link constraints, on
the Noisy MNIST dataset.

We set up the experiment by first constructing a unified MKNN graph on all available data
samples, and split our data samples into a training set and a testing set. We then incorporate
must-link or cannot-link constraints to the training set only and evaluate the performance on the
testing set. To illustrate the experiment setting, consider an example in Figure 6.9. We construct
the MKNN graph based on all samples, as shown by red edges in the plot. In the example,
the training set consists of data samples {(a), (b), (h), (i)}. We add must-link constraints through
subsampling a small amount of true edges across data samples in the training set. In the example,
we could add the edge connecting nodes {(a), (b)}, or the edge connecting nodes {(h), (i)}. We
add cannot-link constraints through subsampling a small amount of false edges among training
data samples in the ones selected by MKNN graph and remove them. In this example, we could
remove the edge connecting nodes {(a), (i)}.

Figure 6.9: An example illustrating the experiment setting for evaluating semi-supervised clus-
tering. The magenta and cyan points represent data samples from two classes. The red edges
represent edges in the MKNN graph. Points in the black circle represent samples in the training
set and the rest of the points represent samples in the testing set.
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In the experiment, we consider {50% training - 50% testing, 60% training - 40% testing,
70% training - 30% testing} split of the entire data samples. As in the unsupervised setting, we
conduct 5 random runs of each experiment and report the mean and standard deviation of values
achieved under each metric across 5 runs.

For pairwise must-link constraints, we randomly select {500, 1000, 5000, 10000} pairs of
samples within the training set which belong to the same cluster and which do not appear in the
unified local similarity graph.

For pairwise cannot-link constraints, we randomly remove {100, 500, 1000} pairs from the
unified similarity graph within the training set which belong to different clusters.

The results for incorporating pairwise must-link constraints are presented in Figure 6.10,
6.11 and 6.12. The results for removing pairwise cannot-link constraints are presented in Figure
6.13, 6.14 and 6.15.

We observe a slight increase across all performance metrics in most cases, as the number of
must-link or cannot-link constraints increase. However, it is not necessary that as the number of
pairwise constraints increases, the performance will increase for sure. Sometimes there might
even be a slight drop in performance when the number of pairwise constraints increases. For
example, on 50% training - 50% testing split, incorporating more pairwise constraints will not
necessarily increase the performance across all metrics. The performance achieves the maxi-
mum value when we add 1000 pairs of must-link constraints and the performance drops when we
add 5000 and 10000 must-link constraints. On 60% training - 40% testing split, the performance
drops slightly to be below the baseline as we use 100 cannot-link constraints across three metrics:
ARI, F1 score and Purity. However, in most cases, incorporating pairwise constraints performs
no worse than the baseline or slightly outperforms the baseline.

This shows LSGMC can make use of pairwise information about the data, when such infor-
mation is available to some extent. However, compared to unsupervised setting, LSGMC only
has a slight advantage by incorporating pairwise constraints.

We have presented results from the experiments and have shown empirically that LSGMC
can outperform several state-of-the-art multi-view clustering alternatives on a variety of datasets.
We further show the flexibility of LSGMC in incorporating pairwise constraints to some extent.
In the next chapter, we conclude the thesis work and pose several future directions.
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Figure 6.10: Performance on Noisy MNIST dataset with must-link constraints, 50% training
data, 50% testing data.

Figure 6.11: Performance on Noisy MNIST dataset with must-link constraints, 60% training
data, 40% testing data.
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Figure 6.12: Performance on Noisy MNIST dataset with must-link constraints, 70% training
data, 30% testing data.

Figure 6.13: Performance on Noisy MNIST dataset with cannot-link constraints, 50% training
data, 50% testing data.
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Figure 6.14: Performance on Noisy MNIST dataset with cannot-link constraints, 60% training
data, 40% testing data.

Figure 6.15: Performance on Noisy MNIST dataset with cannot-link constraints, 70% training
data, 30% testing data.
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Chapter 7

Conclusion

In this chapter, we first summarize the thesis work and discuss implications of LSGMC. We
further discuss several limitations of our current work, how we could potentially address those
limitations and propose future directions.

7.1 Conclusion

In this thesis, we study an important data mining task – clustering of multi-view data – which
often arises naturally in many application domains. It has been shown that sometimes artificially
splitting features to create multi-view data can improve the performance. Simply concatenating
data from different views, which could come from very different distributions, in order to convert
multi-view clustering into single-view clustering may exacerbate the risk of over-fitting and fur-
ther diminish the interpretation of the resulting models. Thus developing multi-view clustering
approaches which leverage data from various views to improve clustering performance could be
important and beneficial for many applications.

We observe that the use of local similarity graphs and the flexibility of incorporating some-
times available must-link and cannot-link constraints, often referred to as semi-supervised clus-
tering, are well studied in single-view clustering but under-explored in multi-view clustering.
In this thesis, we present LSGMC, an improved correlation based multi-view clustering method
which explores first order proximity within each view and complementary information across
views. The proposed approach does so by using a unified graph based on local similarity graphs
from each view. The informative local similarities can be a powerful learning signal in un-
supervised methods and LSGMC unifies this information with correlation-based representation
learning. LSGMC also allows for flexibility in incorporating pairwise constraints and can thus
be easily extended to semi-supervised clustering.

Results from experiments presented in this thesis suggest that LSGMC is able to leverage ex-
tremely sparse local similarity information to improve clustering performance and outperforms
a large number of existing state-of-the-art multi-view clustering approaches on image, text and
acoustic-articulatory datasets. Results from experiments further show that LSGMC is able to
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incorporate pairwise information to slightly improve the learned data representation when such
information is available.

LSGMC demonstrates the usefulness of local similarity graphs in multi-view clustering, even
though such training signal is extremely sparse. This implies we might be able to combine other
view-regularization techniques – for example, instead of using CCA to find directions that the
correlation between the two embeddings of two views is maximized, we could co-regularize
view embeddings into a unified representation – with training signals from view specific local
similarity graphs. Those view specific local similarity graphs provide complement information
across views. By incorporating this piece of information, we could potentially improve a broad
class of existing multi-view clustering approaches.

7.2 Future Work
Our current work on LSGMC has several limitations. We discuss the implication of those

limitations in practice and how we could potentially address these limitations as directions for
future work.

1. LSGMC is unable to handle data with more than two views due to the limitation of CCA.
This means we are currently not able to apply LSGMC on data with more than two views,
which limits the application of LSGMC. We might want to consider multi-view CCA,
which finds linear projections between every pair of views (e.g. [33]), or attempt other
view regularization techniques (e.g. regularizing views towards a common representation).

2. LSGMC is only able to remove cannot-link constraints from the unified local similarity
graphs and thus cannot handle such constraints if the links are not present in the graph un-
der semi-supervised learning. We might want to add additional regularization terms to the
objective function to force margins between pair of samples with cannot-link constraints.
For example, we might want to penalize some cannot-link pair if the distance between the
two data samples is below some threshold.

3. The experiments show that LSGMC has a large advantage over other multi-view cluster-
ing methods in unsupervised setting but has only a slight advantage in semi-supervised
setting when we incorporate pairwise constraints. The current LSGMC is more suitable
for unsupervised clustering but not semi-supervised clustering. This means that directly
augmenting the local similarity graph might not be an efficient way of propagating pair-
wise information across all clusters. We might want to consider other ways of propagating
such information in semi-supervised literature and compare against other semi-supervised
clustering methods.

4. The quality of local similarity graphs could have a large impact on the clustering perfor-
mance. The more accurate (i.e. correct number of pairs) the local similarity graph is and
the more extensive the information (i.e. pairwise information indicated by edges across
various data samples) the local similarity graph contains, the better LSGMC is able to
perform. In an actual unsupervised clustering task, we would have no idea how good

48



the quality of the constructed local similarity graph is and how much improvement in the
performance LSGMC is able to achieve. Therefore, we might want to pre-determine the
quality of such local similarity graphs and predict how well LSGMC could perform to
see whether LSGMC is a suitable multi-view clustering approach on certain datasets. We
might want to check whether there is a correlation between some graph properties of the
local similarity graphs, e.g. eigenvalues of the graph Laplacian, and the performance of
LSGMC.
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