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Abstract

While multi-agent reinforcement learning algorithms have attracted many re-
search interests, very few algorithms in the field were deployed in real-world scenar-
ios due to their uninterpretablilty and sample inefficiency in the training process. In
this work, we propose an algorithm to use meta-strategy as regulators to train multi-
agent deep reinforcement learning agents to account for these challenges. We also
propose several approaches to solve for meta-strategies, including linear program
based approaches and shortest cycle based approaches. Through experiments, we
discuss the effectiveness of incorporating meta-strategy in reinforcement learning.
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Chapter 1

Introduction

Stackelberg security game is a game model in which the leader first commits to a strategy and
the follower then observes the leader’s policy before committing to his own strategy. Stackelberg
security game models have been successfully deployed in many real-world settings to protect
important infrastructure. [12] helps schedule patrolling and monitoring for the Los Angeles In-
ternational Airport (LAX). [1] is used by the United States Coast Guard (USCG) to combat
terrorism. [6] is deployed to protect wildlife in conservation sites. Outside of guarding phys-
ical infrastructure, game theoretic models have also been used to protect virtual targets. [13]
developed a browser extension to combat social engineering attacks.

Despite Stackelberg security game models’ success , deep reinforcement learning algorithms
have attracted an increasing amount of interests because these algorithms do not require domain
knowledge and are applicable in more than one scenarios. [8] developed an actor-critic, model-
free algorithm based on the deterministic policy gradient. [7] builds upon [8] to maximize the
agent’s policy’s entropy. [9] extends the line of work to incorporate coordination and competition
of multiple agents.

While deep reinforcement learning algorithms have attracted many research interests, very
few real-world applications have been built based upon these algorithms because of their un-
interpretablility and sample inefficiency during the training process. In this work, we propose
an algorithm to use meta-strategy in training deep reinforcement learning agents to increase in-
terpretability and sample efficiency. We also propose several different approaches to solve for
meta-strategies, including linear program based approaches and shortest cycel based approaches.

The algorithm follows two steps. In the first step, we solve for a meta-strategy. We then use
the meta-strategy as a regulator to train the reinforcement learning algorithm based on [7, 9] in
the second step.
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Chapter 2

Preliminaries and Related Work

2.1 Stackelberg Security Games

Security games are characterized by two players, a defender and an attacker, and a set of targets
that the defender tries to protect from the attacker [5, 15]. Solving security games relies on the
concept of Stackelberg equilibrium in which the defender first commits to a strategy that the
attacker can observe. A pair of strategies of the defender and the attacker is in Stackelberg equi-
librium if the attacker’s strategy is a best response to the defender’s strategy and the defender’s
strategy maximizes his utility when best responded by the attacker. When the game is zero-sum,
the solution concept Stackelberg equilibrium coincide with Nash equilibrium.

2.2 Patrolling Security Games

Patrolling security games are proposed as extensions to the normal form security games. A
patrolling security game is a two-player multi-stage game with infinite horizon, such that the de-
fender moves a single resource along the edges of an arbitrary graph to protect certain targets and
the attacker intrudes the environment by placing a resource on a selected target node [2]. Alarms
which inform the defender the presence of the attacker at some location are then incorporated
in the patrolling security game model [11]. [3] extends the alarm patrolling security games by
considering spatially uncertain alarm signals, which is able to detect an attack but is uncertain on
the exact location of the attacker. Recent progress in alarm patrolling security games also con-
siders false negatives of alarm detection. Other than alarms, latest progress in patrolling security
games also incorporates deep reinforcement learning to account for real-time information such
as footprints [17].

2.3 Deep Reinforcement Learning and Multi-Agent Reinforce-

ment Learning

A reinforcement learning problem is usually formulated as a Markov Decision Process, with the
transition probability P , the state space S, the action space A, the discount factor �, and the
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reward function r. The goal of reinforcement learning algorithm is to generate a policy ⇡ from
state s to action a for the player to take to maximize the expected total reward E⇡,P [

P1
t=0 �

t
Rt].

Q-learning is one of the early breakthroughs in reinforcement learning [14]. The Q term refers
to the value of a state-action pair (s, a) under policy ⇡ and is defined to be

Q
⇡(st, at) = E⇡,P [

1X

n=0

�
n
r(st+n, at+n)]

Another breakthrough in reinforcement learning is the introduction of using deep neural net-
work as approximation to the Q function [10]. Deep Q-Network learns the optimal policy by
minimizing the loss.

L(✓) = Es,a,s0 [(Q
✓(s, a)� (r + �max

a0
Q

✓̃(s0, a0)))2]

such that the Q is the target network used for training stabilization. The line of work of Q-
learning aims to generate an accurate Q-function, and take the action with the highest state-action
pair.

Another line of work called policy gradient methods are able to learn parameterized policy
directly without consulting approximate value functions. Recent breakthroughs in reinforcement
learning often involve actor-critic method which learns the policy and the value functions at the
same time. Actor refers to the learned policy and critic refers to the learned value function [14].
The algorithm Deep Deterministic Policy Gradient (DDPG) follows the actor-critic method and
learns the best policy by solving

max
✓

Es[Q✓(s, µ�(s))]

such that Q✓ is the value function that is learned in a similar manner as Q-learning and µ� is
the policy function. An extension to the DDPG algorithm is called the Soft Actor Critic (SAC)
algorithm [7]. SAC generate policies that maximize the expected future reward and the entropy
of the learned policy by solving

max
✓

Es[Q✓(s, ⇡�(s)) + ↵H(·|⇡✓)]

H(·|⇡✓) represents the policy’s entropy.
In the multi-agent reinforcement learning domain, one of the biggest breakthrough is the

introduction of Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. MAD-
DPG considers action policies of other agents and is able to successfully learn policies that
require complex multi-agent interaction [9]. MADDPG learns policy µi for agent i by updating
the gradient in which J is the expected utility and oi is agent i’s observation.

r✓iJ(µi) = Es,a[r✓iµi(ai|oi)raiQ
µ
i (s, a1, · · · , aN)|ai = µi(oi)]

2.4 KL-Divergence

The Kullback-Leibler divergence (KL-Divergence) is a metrics used to measure similarity of
two probability distributions. For distributions P and Q of a continuous random variable, the

4



KL-Divergence is defined to be

DKL(PkQ) = EP


P

Q

�

=

Z 1

�1
p(x) log

✓
p(x)

q(x)

◆
dx

5



6



Chapter 3

Green Security Game with Continuous

Space

The game takes place in a continuous space with discrete time steps. There are two players in
the game, the defender and the attacker. The defender controls one resource, the patroller and
the attacker controls one resource, the poacher. All agents move simultaneously with continu-
ous displacement. There are N targets in the game that are susceptible to be attacked by the
attacker. The attack is completed when the attacker moves close enough to one of the targets for
penetration time k time steps. The attacker is stealthy when not penetrating a target such that
even if the defender and the attacker meet in the continuous space, the defender cannot catch the
attacker. The attacker can only be caught at the target that she is attacking. The game ends when
the attacker is caught or an attack is completed. When the game starts, both the defender and the
attacker start from random initial locations. If the attacker attacks target n without being caught,
the attacker gains utility U

u
a (n) > 0, the defender gains utility U

u
d (n) < 0. If the attacker is

caught by the patroller, the attacker gains utility U
c
a < 0, and the defender gains utility U

c
d > 0.

7
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Chapter 4

Solving Meta-Strategy in Discrete Space

In this chapter, we present several different approaches to solve for meta-strategies including
Markovian patrolling strategies and shortest cycle based strategies.

4.1 Solving for Markovian Patrolling Strategies

In this section, we abstract the continuous space game into a discrete space game. We then
use various linear program based approaches to solve the abstracted game. The solved meta-
strategies are Markovian patrolling strategies.

4.1.1 Abstracted Game Setting

In the abstract game, the continuous space is abstracted as an undirected graph G = (E, V ). The
defender moves discretely along the edges and the attacker becomes a one-shot attacker, which
only chooses a node to land and attack. The game becomes zero-sum. The Attacker is able
to observe the defender’s strategy, but not able to observe the defender’s exact location on the
graph. Assume when the attacker is attacking, the defender has already patrolled long enough so
that the probability that the defender is in each node follows the stationary distribution.

4.1.2 Linear Program Formulation with Implicit Stationary Equations

In this section, we present the linear program formulation with implicit stationary equations.
Variable v represents the maximum expected payoff for the attacker. xij represent the flow of
the defender moving to node j given he is currently in node i. Aij is a constant which equals to
1 if there exists an edge between node i and node j and 0 otherwise. µi is the probability that
defender is in node i.

9



min
x,v

v (4.1)

µi =
X

j

xji 8i (4.2)

X

j

xij =
X

k

xki 8i, j, k (4.3)

xij  Aij 8i, j (4.4)
X

i

X

j

xij = 1 8i, j (4.5)

v � (1� µj)U
u
a (j) + µjU

c
a(j) 8j (4.6)

Constraint (4.2) states that the probability of defender in node i is equal to the sum of incom-
ing flow into node i. Constrain (4.3) ensures that the defender is only moving along the edges.
Constraint (4.4) ensures that µ is a valid probability distribution. Constraint (4.5) ensures that
the attacker is best responding to the defender’s patrolling strategy.

4.1.3 Linear Program Formulation with Explicit Stationary Equations

In this section, we present the linear program formulation with explicit stationary equations.

4.1.4 Markovian Strategy Non Linear Program Formulation

The non-linear program formulation to solve for the optimal Markovian defender strategy is
listed below. v represents the maximum expected payoff for the attacker. ⇡ij represent the
probability of the defender moving to node j given he is currently in node i. µi is the stationary
probability that defender is in node i.

min
µ,⇡,v

v (4.7)

s.t. ⇡ij � 0 8i, j (4.8)
X

j

⇡ij = 1 8i (4.9)

⇡ij  Aij 8i, j (4.10)

µi =
X

j

⇡jiµj 8i (4.11)

X

i

µi = 1 8i (4.12)

µi 2 [0, 1] 8i (4.13)
v � (1� µj)U

u
a (j) + µjU

c
a(j) 8j (4.14)
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Since the abstracted game is zero sum, minimizing the expected attacker payoff in equation (1)
is the same as minimizing defender payoff. equation (4.7) and (4.8) ensures that the transition
probability ⇡ij is a valid probability distribution. Equation (4.9) ensures that the defender can
only travel along the edges. Equation (4.10), (4.11) and (4.12) are the stationary equations to
compute the defender’s stationary probability µi. Equation (4.13) ensures that the attacker is
maximizing her expected utility.

Converting to Mixed Integer Linear Programming

To remove the non-convex constraints in the above formulations, we apply a technique used in
[16] to discretize variables and converting the program to a Mixed Integer Linear Program. The
solution will be approximate solutions to the original formulation. Let variables pl 2 [0, 1] be
the discrete levels with p0 = 0 and pL = 1, define dijl 2 {0, 1} to be binary variables such that
dijl indicates a particular discrete probability choice pl Let ⇡ij =

P
l pldijl Replace ⇡ij in the

original formulation and define wijl = dijlµi. Then adding the following constraints completes
the MILP.

µi � Z(1� dijl) wijl  µi + z(1� dijl) 8i, j (4.15)
�Zdijl wijl  Zdijl 8i, j (4.16)

Complete MILP formulation

We are now ready to present the complete mixed integer linear program for the abstract game for
Markovian patrolling strategy.

Below is the complete formulation for the single type attacker case.

11



min
µ,⇡,v

v (4.17)

s.t. dijl 2 {0, 1} 8i, j, l (4.18)
X

j

X

l

pldijl = 1 8i (4.19)

X

l

dijl = 1 8i, j (4.20)

X

l

pldijl  Aij 8i, j (4.21)

µj =
X

i

X

l

plwijl 8j (4.22)

X

i

µi = 1 8i (4.23)

µi 2 [0, 1] 8i (4.24)
µi � Z(1� dijl) wijl  µi + z(1� dijl) 8i, j (4.25)

�Zdijl wijl  Zdijl 8i, j (4.26)
v � (1� µj)U

u
a (j) + µjU

c
a(j) 8j (4.27)

4.1.5 Comparison of Implicit Stationary Equation and Explicit Stationary

Formulations

The size of the linear program of the implicit stationary formulation is much smaller than that
of the explicit stationary formulation. Therefore, the implicit stationary equation linear program
formulation runs faster. However, the abstract policy solved from implicit stationary equation
Formulation could result to multiple edges with flow 0 in the case of sparse targets, leading to
a weak guide for the reinforcement learning training. To provide stronger guides, for each node
with 0 outgoing flow, we pick the outgoing edge that leads the defender to the closest node with
non-zero outgoing flow. The explicit stationary equation formulation generates a valid action
probability distribution for each node on the graph, but the generated policy is an approximation
to the optimal Markovian patrolling strategy. Generating a better approximation would result
in larger program and cost more computation time. Since the generated defender’s stationary
distribution is similar in both settings, we use the implicit stationary equation linear program
formulation in later experiments because of its low running time.

4.2 Solving for Shortest Cycle Based Strategies

In this section, we do not consider a game setting. Instead, we use search algorithms to directly
solve for defender’s patrolling strategies. The continuous space is discretized into a graph G =
(E, V ). A subset Vr of the nodes represent the set of target nodes. We use Dijkstra’s algorithm

12



[4] to find the shortest paths from one node vi 2 Vr to another node vj 2 Vr such that covers
all the nodes in Vr. We can then compute the shortest cycle c

⇤ covering the set Vr. The cycle c
⇤

becomes part of the defender’s patrolling strategy. For node vn /2 Vr, we compute the shortest
path from vn to c

⇤, the defender would then would follow the cycle to patrol. Note when using
this patrolling strategy, the defender considers not just his current location. Therefore, this is a
non-Markovian patrolling strategy.

13
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Chapter 5

Meta Strategy Guided Reinforcement

Learning

5.1 KL-Divergence regularized reinforcement learning

Let  denote the abstract policy solved using MILP and ↵ denote the regularization coefficient.
Then the RL problem we are trying to solve becomes

⇡
⇤ = argmax

⇡
E⇡[

1X

t=0

�
t(R(st, at, st+1) + ↵DKL(⇡(·|st)k (·|st)))]

The Bellman equation for Q⇡ becomes

Q
⇡(s, a) = Es0 [Ea0 [R(s, a, s0) + �(Q⇡(s0, a0) + ↵DKL(⇡(·|s0)k (·|s0)))]]

= Es0


Ea0


R(s, a, s0) + �(Q⇡(s0, a0) + ↵Ea0


log

⇡(a0|s0)
 (a0|s0)

�
)

��

= Es0


Ea0


R(s, a, s0) + �(Q⇡(s0, a0) + ↵

✓
log

⇡(a0|s0)
 (a0|s0)

◆
)

��

5.1.1 Q-function update for defender

Since the above Q function is an expectation from the environment dynamics and the policy, it
can be approximated with samples.

Q
⇡(s, a) = Es0


Ea0


R(s, a, s0) + �(Q⇡(s0, a0) + ↵

✓
log

⇡(a0|s0)
 (a0|s0)

◆
)

��

⇡ r + �

✓
Q

targ
� (s0, ã0) + ↵

✓
log

⇡(ã0|s0)
 (ã0|s0)

◆◆
s.t. ã0 ⇠ ⇡(·|s0)

Suppose we have a random batch of transitions B = (s, a, r, s0, d) from the replay buffer. We
first compute targets for the Q function

15



y = r + �(Qtarg
� (s0, ã0) + ↵ log

⇡✓(ã0|s0)
 (ã0|s0) )

note ã
0 ⇠ ⇡✓(·|s0), is sampled from the current policy. we then update Q-function by one step of

gradient descent using

r✓
1

|B|
X

s2B

(Q✓(s
0
, ã

0)� y)

5.1.2 Policy update for defender

We update the policy to maximize the expected future return plus the expected future KL-
Divergence.

Ea⇠⇡✓
[Q(s, a) + ↵ log

⇡✓(ã|s)
 (ã|s) ]

Using the reparameterization trick, this term is also equal to

E⇠⇠N [Q(s, ã✓(s, ⇠)) + ↵ log
⇡✓(ã✓(s, ⇠)|s)
 (ã✓(s, ⇠)|s)

]

Thus, to maximize this term, we apply gradient ascent using the gradient

r✓
1

|B|
X

s2B

[Q(s, ã✓(s, ⇠)) + ↵ log
⇡✓(ã✓(s, ⇠)|s)
 (ã✓(s, ⇠)|s)

]

5.1.3 Complete Algorithm

In this section we present the complete algorithm. Algorithm 1 presents the whole training
procedure. Algorithm 1 is a standard training procedure for multi-agent reinforcement learning
settings. We loop until convergence and in each loop, each agent observes the current state,
executes action and gets reward and next state from the environment. Each agent will then train
parameters accordingly.

16



Algorithm 1 Training procedure

1: Initialize policy parameters ✓i, Q-function parameters �i
1, �i

2, replay buffer Di for each agent
i

2: Set target parameters equal to main parameters �i
targ,1 �

i
1, �i

targ,2 �
i
2

3: repeat

4: for each agent i do

5: Obtains observation si and select action ai ⇠ ⇡✓(·|si)
6: end for

7: Execute actions {a1, · · · , an} in the environment
8: for each agent i do

9: Obtains next observation s
0
i, reward ri, and done signal d

10: Execute TRAINAGENT i(si, a1, · · · , an, r, s0i, d)
11: end for

12: if done signal d is terminal then

13: Reset environment
14: end if

15: until convergence

Algorithm 2 presents training of an agent with meta strategy.

17



Algorithm 2 TRAINAGENT i with meta strategy
1: Input: observation si, actions of all agents a1, · · · , an, reward r, next observation s

0
i, done

signal d
2: Store (s1, · · · , sn, a1, · · · , an, r, s0i, d) in replay buffer Di

3: if it’s time to update then

4: for number of updates do

5: Randomly sample B = (s1, · · · , sn, a1, · · · , an, r, s0i, d) from D

6: Compute targets for the Q-functions:

y = r + �(1� d)

✓
min
k=1,2

Q
i
�i

targ,k
(s0i, ã1

0
, · · · , ãi0, · · · , ãn0) + ↵ log

⇡✓i(ãi
0|s0i)

 i(ãi
0|s0i)

◆

s.t. ãi0 ⇠ ⇡✓i(·|s0i)

7: Update Q-functions by one step of gradient descent using

r�i
k

1

|B|
X

(si,a1,··· ,an,r,s0i,d)2B

⇣
Q�i

k
(si, a1, · · · , an)� y

⌘2

for k = 1, 2

8: Update policy by one step of gradient ascent using

r✓i
1

|B|
X

(si,a1,··· ,an,r,s0i,d)2B

✓
min
k=1,2

Q�i
k
(s, a1, · · · , ãi✓i(si), · · · , an) + ↵ log

⇡✓i(ãi✓i(si)|si)
 i(ãi✓i(si)|si)

◆

s.t. ãi✓i(si) ⇠ ⇡✓i(·|si)

9: Update target network with

�targ,k  ⇢�
i
targ,k + (1� ⇢)�i

k

10: end for

11: end if

In line 5, unlike usual replay buffers, we store the observations and actions of all agents along
with reward of agent i from current step, agent i’s next state and whether the current episode has
reached an end. In line 6 and line 8, we make use of a centralized critic function similar to the
one used in [9]. We use double-Q trick to take the minimum of two Q-functions to stabilize
training. In line 9, the parameters of the target network is applied a soft update as in [8] to
stabilize training.
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Chapter 6

Experiments

In this section, we evaluate the effectiveness of the proposed algorithms through experiments.
Each defender is trained together with an attacker using [7, 9] in the competitive setting using
Algorithm 1. The list of defenders we evaluate is presented below:

• LPMeta1: Defender trained using Algorithm 2 with implicit stationary equation based LP
meta strategy (section 4.1.2). The number of nodes in the abstract graph is set to 100.

• LPMeta2: Defender trained using Algorithm 2 with implicit stationary equation based
LP meta strategy (section 4.1.2) but without flow conservation constraints. In this LP
formulation, we allow flow to stay at one node. The number of nodes in the abstract graph
is set to 100.

• CycleMeta: Defender trained using Algorithm 2 with shortest cycle based meta strategy
(section 4.2). The number of nodes in the abstract graph is set to 100. Since the shortest
cycle based meta strategy is a deterministic strategy, we fit a multivariate Gaussian distri-
bution in each node with mean being the action of the shortest cycle meta strategy in that
node and variance being the same as the variance of the trained policy. Distance based
reward shaping is also applied to help train the defender.

• MADDPG+: Defender trained using [7, 9]
• ResMeta: Defender trained using [9] but with solution of implicit stationary equation

based LP as residual.
• Heur: Heuristic defender that patrols along the shortest cycle between targets.

The setting of the environment is summarized in the table below.
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Table 6.1: Environment setting

Environment setting Details
Size 500 x 500
Maximum time steps 70
Number of targets 5
Target 0 location and reward (400, 400), 20
Target 1 location and reward (200, 100), 10
Target 2 location and reward (100, 200), 10
Target 3 location and reward (260, 50), 10
Target 4 location and reward (200, 200), 15
Penetration time 20
Defender speed 20
Attacker speed 20
Attacker appearance time range [0, 10]

The learning curves for different defenders are presented below. The y-axis is the mean and
standard deviation of defender’s utility of 100 test episodes after each training epoch. One epoch
of training consists of 4000 game steps.

(a) (b) (c)

Figure 6.1: Learning curve

We test each defender against the attackers listed below:
• MADDPG+: Attacker trained using [7, 9].
• Greedy: Heuristic attacker that attacks the target with the highest reward.
• Rand: Heuristic attacker that attacks a random target.
After training, each pair of defender and attacker plays 100 rounds of games against each

other. The mean and standard deviation of the defender’s utilities are listed in Table 6.2. We ob-
serve that using meta-strategies as regulators could improve defender’s utility while it could also
hurt defender’s utility. The choice of meta-strategy heavily influences defender’s performance.
We also test a heuristic defender that patrols along the shortest cycle among targets. We found
that the performance of the heuristic defender is comparable to that of the CycleMeta defender.
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Table 6.2: Mean and standard deviation of trained defender’s utility against each attacker

``````````````̀Defender
Attacker MADDPG+ Greedy Rand

LPMeta1 3.27, 14.18 -14.28, 5.19 -4.64, 10.79
LPMeta2 -22.16, 9.25 -23.61, 6.65 -2.75, 18.86
CycleMeta 11.26, 8.67 -1.36, 5.35 8.79, 15.99
MADDPG+ -10.73, 9.71 -17.43, 4.18 -4.47, 13.41
ResMeta -23.21, 5.04 -23.99, 6.58 -4.81, 16.47

We now present the solutions of the meta-strategies and example runs of the defenders. Here,
we fix the defender’s starting location to be the center of the environment. The solutions of the
implicit stationary equations based LP and shortest cycle meta-strategy is shown in Figure 6.2

Figure 6.2: Solutions of meta-strategies

Example runs of each trained defender is shown in Figure 6.3. The solutions of the implicit
stationary equation LP formulation encourage self-loops after the defender reaching the target.
The same self-looping behavior could be observed in LPMeta2 defender and ResMeta defender,
which uses the solutions of the implicit stationary equation LP formulation as meta-strategies.
The CycleMeta defender uses the shortest cycle based meta-strategy in training and exhibits
similar behaviors as the shortest cycle based meta-strategy, which is to patrol the targets along
the shorter paths. However, one improvement that is found by CycleMeta during training is
revisiting a nearby visited target before going for the next one if the next target is far away, as we
observed in Figure 6.3. The MADDPG+ attacker is showing similar behaviors as moving to the
closest target from its initial location.
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Figure 6.3: Example runs of trained defenders

Through experiments, we have shown that meta-strategy guided reinforcement learning agents
are able to gain higher utilities than traditional reinforcement learning agents. We also note that
the choice of meta-strategy has a significant effect on the outcome of the training. Not all meta-
strategies could have a positive effect in terms of defender’s utility. We have also found that
while trained meta-strategy guided reinforcement learning agents show certain similarities in
patrol paths to its meta-strategy, these agents are able to improve based on the input strategy by
patrolling scholastically and taking more efficient routes to patrol targets. LPMeta1 defender and
CycelMeta defender are able to perform better than MADDPG+ defender since during training,
meta-strategy guided agents are able to locate and patrol the targets more efficiently through the
help of meta-strategy regulator while the MADDPG+ defender could only establish a patrolling
strategy by exploration.

We have shown that meta-strategy guided reinforcement learning performs better than tra-
ditional deep reinforcement learning approaches in our patrolling environment. Meta-strategy
guided reinforcement learning could also help outside our proposed environment since it allows
us to provide an initial strategy to the agents and allow the agents to improve based on the input
meta-strategy.
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Chapter 7

Disscussions and Future Work

In this work, we presented some challenges of multi-agent reinforcement learning algorithms
including uninterpretability and sparse rewards. We presented a continuous space green security
game with two players and several approaches to solve for meta-strategies in the simplified game
including linear program based strategies and shortest cycle based strategies. We then use the re-
sults from the simpler setting to guide defender training in a multi-agent reinforcement learning
setting. Through experiments, we show that using meta-strategies as regulators could speed up
training for multi-agent reinforcement learning agents and lead to higher expected utility. While
using meta-strategies could lead to improvements in defender’s utility, it could also result in de-
crease of defender’s utility. The choice of meta-strategy heavily affects defender’s performance.
Through experiments, we have shown that meta-strategy guided reinforcement learning agents
have the ability to take in an initial meta-strategy and make improvements based upon the input
strategy.

For future work, human-UAV coordination is gaining significance in the green security field.
Having a UAV could help find locations of attacker and could send out alarming signals to deter
attackers. Incorporating recent work on human-UAV coordination would help further improve
defender’s patrolling strategy.
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