
Automatic Repair of Framework Applications

Zack Coker

CMU-CS-20-106

May 2020

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Claire Le Goues, Chair

Joshua Sunshine
David Garlan
Ciera Jaspan

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2020 Zack Coker

This research was sponsored by the National Science Foundation under the Graduate Research Fellowship
Program (grant numbers 0946825 and DGE1252522) and grant numbers CCF-1446966, and CCF-1618220, the
Department of Defense under grant number FA872105C003, and the Air Force Research Laboratory under grant

numbers FA87501910501 and FA87501620042.

The views and conclusions contained herein are those of the author and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of any sponsoring institution, the

U.S. government or any other entity.

Keywords: Frameworks, Automated repair, Debugging, APIs, Directives

To the people who gave to me without asking for anything in return.

iv

Abstract

Developers commonly build framework applications. Developers who use frame-
works get a productivity boost from being able to reuse parts of previous applications
that have been shown to work in a given domain. However, the reuse provided by
frameworks also comes with a variety of challenges. Frameworks impose many
assumptions about a framework application on developers and require developers
to write applications in a way that conforms to the framework’s expectations. To
provide the benefits of framework reuse to developers of new applications, frame-
works require developers to build applications using programming concepts (such
as inversion of control, where the framework calls the unique parts of the frame-
work application only when required, instead of the unique framework application
code controlling the execution flow of the application) that either do not occur in
other programming situations or occur in a significantly higher frequency in frame-
work development. The different programming concepts that developers encounter
when creating framework applications present problems to developers. The goal of
this dissertation is to address the problems that framework application developers
encounter with tool support.

This dissertation presents a structured process for assisting framework applica-
tion developers with tool support. First, I identified the challenges that developers
faced in the framework application development process. This study demonstrated
that an automated repair technique for framework applications would benefit devel-
opers. An automated repair technique needs to be able to both identify the problem
and then create a possible repair for the problem. The second part of this disser-
tation discusses a strategy for automatically identifying problems in framework ap-
plications while the third part of the dissertation discusses an approach to generate
repairs for framework application problems.

As mentioned earlier, the first step in assisting framework application develop-
ers was to gain an understanding of the problems that framework application de-
velopers encounter in the framework application development process. Online de-
veloper sites, like StackOverflow, demonstrated the difficulty that developers have
fixing problems in framework applications and leads to the insight that improving the
framework application debugging process would benefit developers. Based on these
insights, I performed an exploratory study to investigate the framework application
debugging process. The exploratory study followed a mixed-methods approach and

adapted well-known qualitative research methodologies, such as grounded theory, to
the debugging cases of interest. To approach framework application problems in a
rigorous manner, I focused on directives, testable and possibly surprising require-
ments for how a framework application should interact with a framework. Through
a preliminary study on framework directives, I found that violating directives can
lead to seven different consequences — ways that errors are presented to developers.
I then used the set of consequences to guide a debugging study on framework appli-
cation debugging scenarios. I used directives to guide the problems in the debugging
study. From the debugging study, I found that developers encountered challenges,
such as understanding how inversion of control would affect objects passed to the
framework application. The study also found that developers encountered partic-
ular difficulty debugging state-based issues, those where object instance variables
contained values that conflicted with method call assumptions.

From this study, I theorized that framework application developers would ben-
efit from an automated repair tool, tailored to fix state-based issues in framework
applications. The automated repair tool would need both 1) a way to detect issues
in framework applications and 2) to propose possible repairs. I created a static anal-
ysis tool to detect issues in framework applications. In this static analysis tool, a
person knowledgeable with the framework converts the property to check into an
API (Application Programming Interface) call, defined by a specification language
I created. These API calls are then converted into composable checks to determine
if the application violates the specification. I evaluated the language on a taxonomy
of object protocols. I found that the language was able to easily support five out of
seven categories. I also ran the checkers on real applications in the F-Droid dataset,
which detected bugs in real applications.

The other part of the automated repair tool was the repair generation process. I
created a tool, FrameFix, that uses common aspects of framework applications to
propose repairs. The repair process includes moving methods to locations where
objects may be in the right state and using similarly named methods from applica-
tions on GitHub to guide repairs. I found that the tool was able to repair a set of
personally-created applications, problems injected into real applications, and prob-
lems found in real applications.

These projects were done with the goal that the techniques would apply to a wide
variety of frameworks. The debugging study was conducted on two frameworks
to ensure that conclusions were not framework-specific. While the static analysis
check and the repair tool were built for only one framework (due to implementa-
tion limitations), the techniques the tool uses were designed in a way that were not
framework-specific. The tools were evaluated over a large number (close to 2,000)
real applications to demonstrate that they apply to real framework applications.

vi

Acknowledgments

Thank you to everyone that supported me throughout my Ph.D. Claire Le Goues,
my adviser, and Joshua Sunshine were instrumental in helping me become the scien-
tist I am today, and I am grateful for their investment in my learning process. I would
also like to thank my undergraduate adviser Munawar Hafiz, for helping me start the
journey into research. My other committee members, David Garlan and Ciera Jas-
pan, and other professors who I interacted with during my PhD provided insights
that made my experience more rewarding. My parents and the rest of my family
provided a lot of support. The people in my research group who worked with me
throughout the years (Cody, Chris, Afsoon, Deby, Jeremy, Rijnard, Leo, Mau, and
the many undergrads and other temporary research group members) were important
to my development and I enjoyed working with them. I also appreciate the peo-
ple who helped me have a social life during the process, including Kelvin, Sanjana,
Aram, Dougal, David, Sid, Goran, and Sol. Finally, thank you to the professors,
bosses, and other people who took an interest in me and helped me develop into the
person I am today. Thank you Katie, for proof-reading my dissertation. I am sure
there are many people who have helped me along the way, and I am sorry I forgot
to mention you. While I may have not mentioned them here, I am very grateful for
what they did for me.

viii

Contents

1 Introduction 1
1.1 Frameworks . 1

1.1.1 Basic Terms . 1
1.1.2 Examples . 2
1.1.3 What Makes Framework Development Unique 2
1.1.4 Current State of Framework Development 4

1.2 Scope . 5
1.3 Goals and Evaluation Criteria . 7

1.3.1 Challenges of Framework Application Debugging 7
1.3.2 Specification Language . 7
1.3.3 FrameFix . 8

1.4 Contributions . 8
1.5 Outline . 9

2 Background and Related Work 11
2.1 Introduction to the Frameworks Used in this Work 11
2.2 Directives . 12
2.3 Architectural Mismatch . 13
2.4 Object Protocols . 14
2.5 Program Repair . 15

2.5.1 Debugging Process . 15
2.5.2 Automated Program Repair . 15
2.5.3 Android and Framework Repair . 17

3 Framework Application Debugging 19
3.1 Methodology and Preliminary Study . 20

3.1.1 Frameworks in the Study . 20
3.1.2 Task Creation Methodology . 22
3.1.3 Directive Categorization By Consequence 24
3.1.4 Debugging Task Methodology . 27
3.1.5 Coding Process . 28

3.2 Framework Debugging Benefits and Challenges 29
3.2.1 Static Challenges . 31
3.2.2 Historical Challenges . 32

ix

3.2.3 Dynamic Benefits . 32
3.2.4 Static Benefits . 33
3.2.5 Historical Benefits . 33

3.3 Difficulty By Consequence . 34
3.4 Limitations . 35
3.5 Summary . 37

4 Automated Identification of State-Based Directive Violations 39
4.1 Specification Language Approach . 39
4.2 Statically Identifying Directive Violations . 42
4.3 Specification Evaluation . 43
4.4 Directives Implemented in Tool . 44
4.5 Applicability of Directives Covered . 48

4.5.1 Error Detection on F-Droid . 49
4.6 Limitations . 49
4.7 Inspiration for Specification Language . 50
4.8 Summary . 52

5 FrameFix 53
5.1 Introduction . 53
5.2 FrameFix Approach . 54
5.3 Automatic Repair Technique . 55

5.3.1 Method Order Repair . 56
5.3.2 Method Move Repair . 58
5.3.3 Callback-Based Repair . 58

5.4 Evaluation . 64
5.4.1 Repair of Manually Built Applications 64
5.4.2 Repairs of F-Droid Applications . 65
5.4.3 Repair of Injected Errors . 65

5.5 Limitations . 66
5.6 Context and Prior Work . 67
5.7 Summary . 68

6 Conclusion and Future Work 69
6.1 Summary . 69
6.2 Discussion . 71

6.2.1 Problems handled by FrameFix . 71
6.2.2 Benefits and Limitations of Implementation Decisions 71
6.2.3 Essential Parts of Technique . 73

6.3 Future Work . 74
6.3.1 Further Evaluation . 74
6.3.2 Possible Near-Term Improvements . 74
6.3.3 Long-Term Ideas . 75

x

Bibliography 77

xi

xii

List of Figures

1.1 Inversion of control example . 3
1.2 Object protocol example . 4
1.3 Declarative artifact example . 5
1.4 Standard organization example . 6
1.5 Framework tags on StackOverflow . 10

2.1 Automated repair process diagram . 16

3.1 Fragment example . 21
3.2 Debugging task example . 23
3.3 Individual task times . 36
3.4 Time per debugging task (averaged) . 37

4.1 Specification language grammar . 41

5.1 FrameFix high-level process . 54
5.2 FrameFix repair steps . 55
5.3 Method order repair examples . 57
5.4 Implicit method move repair example . 59
5.5 Sample callback-based repair . 61
5.6 FrameFix type and method extraction . 62
5.7 Add and delete list creation . 63

xiii

xiv

List of Tables

3.1 Debugging tasks . 25
3.2 Preliminary study — directive categorization 26
3.3 Debugging task raw results . 34
3.4 Debugging task processed results . 35

4.1 API specifications for taxonomy examples . 43
4.2 F-Droid detected errors . 48

5.1 F-Droid repairs . 65
5.2 Repair results of injected problems . 65

xv

xvi

Chapter 1

Introduction

Due to both the high demand for software products and the complexity of building these soft-
ware products, our society repeatedly invests in improving the software development process.
One of these innovations that has been widely adopted by the software industry is frameworks.
A framework provides a partially complete application that can be extended to produce custom
applications [34]. Frameworks improve the software development process through architec-
tural reuse [8]. The architecture of the framework refers to the static class structure of internal
framework classes, as well as the dynamic interactions between the framework and additional
framework application code. The architectural reuse allows developers to re-purpose a software
design that has been proven to work in a given domain to their unique application [34], which
increases developer productivity [50].

1.1 Frameworks

1.1.1 Basic Terms
For the purposes of this dissertation, a framework application (often shortened to application)
refers to a complete software program, built with one or more frameworks, that completes a task.
When a developer builds a framework application with a software framework, the application
consists of two parts. The first part is the software framework, often shortened to framework.
The framework is a reusable piece of software that controls the execution flow and data flow of
the rest of the application [21]. The second part of the application is the plugin, the application-
specific part that extends the basic framework to perform a task. The framework interacts with
the plugin through defined interaction points. In these interaction points, the framework calls the
plugin and passes data about the state of the application to the plugin. Plugins then perform their
application-specific task and relinquish control (and optionally pass data) back to the framework
code.

1

1.1.2 Examples
To illustrate the relationship between a framework and a developer-built plugin, consider CoBot,
a robot controlled by a framework application. CoBot is an autonomous navigation robot that
contains sensors, wheels, and a screen for interacting with a human [89]. Researchers at Carnegie
Mellon University use CoBot to perform many different navigational studies and to autonomously
deliver candy to office workers on Halloween. CoBot was built using the Robotic Operating
System (ROS [79]) framework, which is a framework for building robotic applications. ROS
structures and controls the way messages are passed between different parts of the robot. To
create the ROS application that controls CoBot, a developer would write the code for the unique
parts of the robot (the plugin), such as how to sense and make decisions based on the current
situation. ROS would provide the structure for communicating between the different parts of the
robot, reducing the difficulty of coordinating a multi-part system. In this case, the plugin devel-
opers are able to use the event-based architecture provided by ROS to save development effort,
allowing them to reuse the architecture that has been tested in previous robotic applications.

Another example is an Android application. Android is a framework for creating mobile
applications [38]. Consider a developer who wants to build an application to receive medical
alerts and updates for the user’s current location. To build this application, the developer would
build a plugin that shows medical alerts to users on top of the Android framework. The Android
framework simplifies the process for interacting with user input, such as the process of starting
the application when it is selected by the user. Android also provides a standard way to process
and update an application with location information. Instead of requiring the developer to process
GPS information from a satellite and monitor this information to keep the location information
current, the framework provides location updates to the plugin. The plugin developer would then
create the logic to update the application based on the location information, which is a large
reduction in complexity compared to creating a complete location system.

1.1.3 What Makes Framework Development Unique
The process of developing framework plugins has major differences from the process of devel-
oping other programs, such as a program that calls out to libraries. The major differences are as
follows:

• Inversion of control - In many programs, the code that developers write controls the ex-
ecution flow and data flow of the application. However, this is not the case for many
framework applications. Since the same execution flow and data flow can be reused across
framework applications, the execution flow and data flow are managed by the framework.
Due to the fact that the developer-created plugin is not managing these flows, the developer
must instead interact with the framework through interaction points that are defined by the
framework.
Example: Android requires plugin developers to create a class that extends the Android
Activity class. The framework will then call the methods in this new class that over-
ride the base methods in the original Activity class. Android documentation recom-
mends that plugin developers override at least two methods: onCreate(Bundle) and
onPause(). Figure 1.1 illustrates how the framework calls methods in the plugin, which

2

Figure 1.1: An example of how inversion of control is implemented in an Android application.
The Android framework controls the execution of the application and then calls plugin meth-
ods, such as onCreate(Bundle) and onPause when the plugin needs to handle associated
events. Data is passed from the framework to the plugin through parameters, such as Bundle
and returned at the end of the method call. After executing each method, execution is returned to
the internal framework code.

relinquish control when they are finished.
• Object protocols - Object protocols are partial ordering restrictions on method calls on a

software object [85]. This means that a given object goes through state transitions where
only certain method calls are allowed in each state. While object protocols occur in many
programming contexts, they are heavily prevalent in framework development [8]. Frame-
work application programming is further complicated by the way object protocols are im-
plemented in frameworks. Frameworks will often change the state of objects in internal
framework code, in a way that is not immediately obvious to developers. And, due to the
way that data is passed through inversion of control, framework application developers
will often need to keep track of the possible states of objects the framework passes to the
plugin.
Example: One of the most common example of an object protocol is a File object, as
shown in Figure 1.2. In the File-object protocol, the file object must be opened before the
program can read or write to the file. Once the file object has been closed, the read and
write methods cannot successfully alter the file object.

• Declarative artifacts - Framework applications often need statically-defined files, often
configuration files, e.g., static layout or string definition files [21]. While declarative ar-
tifacts create a standard place to define important application information, they also dis-
tribute important information into multiple places in the application. Plugin developers
must understand how the static configuration interacts with dynamically executed applica-
tion code.
Example: Figure 1.3 shows an example declarative artifact from Android. This is a sample

3

Figure 1.2: The File object protocol. Notice how certain method calls, such as read and write,
are only available after opening the file and before closing the file.

layout file that statically defines how to show a sample string to the viewer. Android will
then create a ViewGroup object from this layout definition when it should be displayed
to the user.

• Standard organization - To provide architectural reuse, frameworks often impose a gen-
eral architectural structure on an application. This structure requires plugin developers to
organize the parts of the plugin that interact with the internal framework code in a similar
manner across multiple applications. The similar structure across multiple plugins likely
makes it easier to understand different applications for the same framework.
Example: When creating a basic Activity in Android Studio, the official Integrated
Development Environment of Android, the application is generated with a basic file struc-
ture. This file structure, shown in Figure 1.4, separates the source code files into the java
folder, and the resources (such as the static layout files) into the res folder. Android im-
poses this file structure on plugins, so that the framework can access needed resources on
request.

1.1.4 Current State of Framework Development
Due to the known and substantial productivity gains, frameworks are used by the software de-
velopment industry to create a large number of diverse applications. For example, in 2019,
the Google Play store generated 29.3 million dollars in yearly revenue [1] from about 2.9 mil-
lion applications [2], all written using the Android framework. While frameworks are widely
used, developers still encounter significant challenges when developing framework applications.
Of the top 20 tagged question categories on StackOverflow (a popular developer question-and-
answer site), shown in Figure 1.5, 6 correspond to framework categories, and these categories
contain over 3 million questions [3]. Ko et al. investigated the challenges faced by plugin devel-

4

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>
<a n d r o i d x . c o n s t r a i n t l a y o u t . w id ge t . C o n s t r a i n t L a y o u t x m l n s : a n d r o i d =”

h t t p : / / schemas . a n d r o i d . com / apk / r e s / a n d r o i d ”
xmlns : app =” h t t p : / / schemas . a n d r o i d . com / apk / r e s−a u t o ”
x m l n s : t o o l s =” h t t p : / / schemas . a n d r o i d . com / t o o l s ”
a n d r o i d : l a y o u t w i d t h =” match paren t ”
a n d r o i d : l a y o u t h e i g h t =” match paren t ”
a p p : l a y o u t b e h a v i o r =” @s t r i n g / a p p b a r s c r o l l i n g v i e w b e h a v i o r ”
t o o l s : c o n t e x t =” . M a i n A c t i v i t y ”
t o o l s : s h o w I n =” @layout / a c t i v i t y m a i n ”>

<TextView
a n d r o i d : l a y o u t w i d t h =” wrap con ten t ”
a n d r o i d : l a y o u t h e i g h t =” wrap con ten t ”
a n d r o i d : t e x t =” H e l l o World ! ”
a p p : l a y o u t c o n s t r a i n t B o t t o m t o B o t t o m O f =” p a r e n t ”
a p p : l a y o u t c o n s t r a i n t L e f t t o L e f t O f =” p a r e n t ”
a p p : l a y o u t c o n s t r a i n t R i g h t t o R i g h t O f =” p a r e n t ”
a p p : l a y o u t c o n s t r a i n t T o p t o T o p O f =” p a r e n t ” />

< / a n d r o i d x . c o n s t r a i n t l a y o u t . w id ge t . C o n s t r a i n t L a y o u t>

Figure 1.3: An example declarative artifact. This is an example layout file written in
XML. The file specifies to create a TextView with the contents Hello World! inside of a
ConstraintLayout.

opers new to a framework (VisualBasic.NET), and found six different categories of challenges,
demonstrating that new framework application developers encounter a diverse set of program-
ming challenges (such as not knowing how to apply compiler feedback to get the program to
compile) [55]. So while frameworks improve developer productivity overall, framework appli-
cation developers still encounter many challenges.

1.2 Scope

While researchers have investigated problems in the framework application development process,
none of them have investigated the challenges of debugging framework applications in-depth (Ko
et al. included one debugging task in their study [55]). I hypothesized that the unique aspects
of framework debugging would lead to unique debugging challenges. To investigate the unique
challenges of framework application development, as the first contribution of this dissertation,
I studied the challenges of debugging framework applications with a mixed methodology ap-
proach that used techniques from grounded theory and qualitative content analysis. I found that
repairs concerning framework-imposed state constraints, that is, repairs that involved understand-

5

Figure 1.4: The project structure when a developer creates a basic Activity. Notice how the
source code files, layout files, and build files are organized into different folders by default.

ing when values and method calls were valid in the framework application — were particularly
challenging for developers. Notably, developers struggled with these repairs even when the fail-
ure location was provided [23].

These results motivate an automated technique for repairing state-based constraints. To ad-
dress this need, I created, FrameFix, an automated repair technique for framework state constraint
violations that exploits how framework state constraints limit the number of repair options. This
repair technique consisted of two main parts: 1) a static analysis to identify the state constraint
violations, with a new specification language consisting of a combination of known approaches,
and 2) the repair generation process. The static analysis technique and the specification language
were evaluated on both its generality to cover specifications in a specification taxonomy and its
ability to scale to real applications. I evaluated the repair technique with respect to its accuracy
and generality. Accurate, in the context of the automated repair technique, means that the repair
technique removes the specified fault while retaining specified functionality. A repair technique
can only be practically useful if it is accurate. Generality, in this case, means that the tech-
nique can apply to a large number framework applications, and that the technique could apply to
more framework constraints than those addressed in the initial implementation, if the necessary
software infrastructure were created. A state constraint repair technique should be applicable to
more state constraints than those used to build it.

The previous paragraph is summarized into the following thesis statement:

Thesis statement: Framework application developers encounter distinct challenges when
reusing the architecture provided by frameworks, such as framework state constraints. An auto-
mated repair technique that exploits the similarities between framework state constraints can fix
violations of these constraints in an accurate and general manner.

6

1.3 Goals and Evaluation Criteria

1.3.1 Challenges of Framework Application Debugging
The goal of the debugging study was to identify the challenges that experienced developers face
in the framework debugging process. At a high level, I created debugging scenarios from two
frameworks and had multiple developers debug the scenarios. To guide the creation of debug-
ging scenarios, I performed a preliminary study to investigate the different ways that framework
applications present problems to developers. Then, to increase the chance that the scenarios rep-
resented problems that real developers encounter, I created the scenarios using questions from
StackOverflow. I had multiple developers debug each scenario, and recorded their actions during
the debugging process. I then analyzed the recordings and compiled them to identify the chal-
lenges that developers faced during the framework application debugging process. The results of
from this analysis are discussed in Section 3.2.

1.3.2 Specification Language
My investigation into the challenges of framework application debugging found that developers
especially struggled to repair state-based constraints in a framework application. This discovery
led to the conclusion that developers would benefit from an an automated repair tool that fixes
state-based constraints in framework applications. The current approaches for repairing frame-
work applications require either both the framework and application to be written in a language
that uses contracts [93] or use a set of transformations derived from an empirical study into com-
mon root-causes for Android application crashes [86]. These approaches require either a large
overhead in using contract languages, or only fix application problems that cause the program’s
execution to stop. Instead, a technique should be able to detect more error conditions, including
both silent failures and stopped executions.

An important part of repairing state-based framework problems is to identify applications
with those problems, and to identify the location of the problem. To identify a problem, FrameFix
needs a specification of the state-based interaction rules between the framework and framework
application. I created a language to specify a static analysis that FrameFix uses to determine
whether an application violates a state-based interaction rule. I evaluated the specification lan-
guage by checking if the specification language could handle an example of each object protocol
category in an object protocol taxonomy [13]. I chose to evaluate the specification language on
the object protocol taxonomy to demonstrate that the specification language can generalize to the
different type of framework state-based problems that the tool could encounter. The results of
this evaluation are discussed in Section 4.3 and Section 4.5.

7

1.3.3 FrameFix
The last chapter of this dissertation describes the complete repair technique, with a focus on the
novel repair process. The goal of the evaluation was to show that the repair technique could fix
a wide range of plugin problems and that the technique works for problems in real applications.
Thus, I evaluated FrameFix, the automated repair technique for plugins, with respect to three
claims:

1. that the directive violations covered by FrameFix apply to a diverse set of constraints in
the framework, which I evaluated through a manually created dataset of applications with
constraint violations

2. that FrameFix is able to fix problems in real applications, which I evaluated with applica-
tions taken from the FDroid dataset [4].

3. that FrameFix can repair known problems in a diverse set of applications, which I evaluated
by automatically injected problems into applications in the FDroid dataset.

The results of these experiments are elaborated in Section 5.4.

1.4 Contributions

The main contributions of this dissertation are as follows:
• A categorization of how violations of framework directives are presented to developers.
• An enumeration of the benefits and challenges in debugging misuses of framework APIs.
• A reproduction package and study notes from two human studies of debugging directive

violations in the Android Fragment class and the Robotic Operating System (ROS).
• A specification language for specifying static analysis checks of state-based directive vio-

lations
• An automated repair technique based on frameworks’ heavy use of object protocols and

inversion of control to guide the automated repair process.
• An instantiation of the technique for Android applications, called FrameFix.
• An evaluation of FrameFix on F-Droid, a set of 1,964 open-source Android applications.
The goals presented in the thesis statement were to gain insights that generalize to a wide

variety of frameworks and to demonstrate the accuracy of the specification language and repair
technique. The following is a high-level summary of the ways that this dissertation demonstrates
these goals.

• I investigated the Android Fragment class that investigated the ways that violations of
expected framework-framework application interactions are presented to developers. By
understanding the set of ways that violations are presented to developers, I was able to
create a diverse set of debugging study scenarios that investigated the different cases.

• The debugging study covered framework-plugin interaction violations from two different
frameworks.

• The debugging study included at least ten different developers for each framework. De-

8

velopers solved violations in both frameworks, which ensures results from a more diverse
set of developers. At least four participants attempted to repair each violation, providing
multiple data-points from which to draw conclusions.

• I evaluated the expressiveness of the specification language on every category from a tax-
onomy of object protocols (excluding the catch-all ‘other’ category), created in prior re-
search [13]. This evaluation was done to demonstrate that the specification language could
apply to a diverse set of specification requirements.

• Both the specification language and repair technique, FrameFix, were evaluated on appli-
cations in the F-Droid dataset [4], an open-source collection of 1,964 Android applications,
to demonstrate that the tools apply to a large percentage of real-world applications.

This dissertation finds that developers encounter debugging challenges related to unique as-
pects of framework development: inversion of control and the heavy use of object protocols. It
also finds that a repair technique based on the unique aspects of framework development can fix
plugin problems.

1.5 Outline
Chapter 2 discusses background and related work to this dissertation. Chapter 3 presents the
debugging study to better understand the challenges that developers face when debugging frame-
work application issues. Chapter 4 presents the specification language and static analysis used to
identify state-based issues in framework applications. Chapter 5 presents the automated repair
technique for state-based framework application bugs. Chapter 6 presents the conclusions and
final thoughts of this dissertation.

9

Figure 1.5: The top 20 tags on StackOverflow on March 4th, 2020. The six with red boxes around
them are associated with frameworks. Frameworks are also the second largest tag category in the
top 20 (11 — programming languages, 6 — frameworks, 1 — database systems, 1 — libraries,
and 1 — programming concepts).

10

Chapter 2

Background and Related Work

In this section, I discuss topics that will be helpful for understanding and to situate the contri-
butions presented in this dissertation in the literature. In this section, I first introduce important
terms from the two frameworks I used in my dissertation (Section 2.1). Next, I introduce di-
rectives in Section 2.2, which I used to select general plugin problems for this work. The next
section (Section 2.3) discusses architectural mismatches. Then, I discuss the related research into
object protocols in Section 2.4, an important and well-studied aspect of framework programming
that has a significant number of prior investigations. Object protocols are both referenced in the
debugging study (Chapter 3), and in the FrameFix repair process (Chapter 5). Work in object
protocols also provides context for my specification language (Chapter 4). The next topic is
a brief introduction into research on the debugging process (Section 2.5.1), to describe studies
related to my framework debugging study (Chapter 3). I end the background section by introduc-
ing automated program repair (Section 2.5.2) and previous work into Android and plugin repair
approaches (Section 2.5.3) to provide context for my automated repair technique (Chapter 5).

2.1 Introduction to the Frameworks Used in this Work

To ensure that this work drew conclusions that apply to real frameworks, I both performed the
debugging study on and built a prototype of the automated repair approach for real frameworks.
Here I provide a brief introduction to the two frameworks I used, Android and ROS, to familiarize
the reader with applicable terms that are used in later sections. While the list of terms for both
frameworks is incomplete, they are terms that are used to explain the developer challenges and
constraints imposed by frameworks that appear in later chapters. I revisit these frameworks in
Section 3.1.1, where I explain the reasons for selecting these frameworks for the debugging study.

Android is a framework for building mobile applications, most notably the applications used
on Android phones. In an Android application, the Activity class is the main entry point. An
Activity may contain multiple Fragments. Fragments are reusable subcomponents of
an Activity that allow for further organization of an application’s logic. Intents are the
objects that Android passes between applications, which facilities the communication between
different applications. An OptionsMenu is the class that encapsulates the main menu of an
Android application. OptionsMenus typically contain the ability to adjust application-wide

11

settings, but the content of the OptionsMenu is left to the discretion of the plugin developer. A
View is the class that dynamically encapsulates the behavior of a section of a screen the plugin
presents to the user. When the View can be defined statically, the View‘s contents are defined in
a layout file, which is an XML file that defines the View’s subcomponents. The plugin developer
can then reference the layout files using a resource identifier, for example R.layout.sample -
view. An Android application is deployed as one or more executable files called APKs (Android
Packages).

ROS, the Robot Operating System, is a framework for building robotic applications. In a
ROS application, different conceptual parts of the robot are organized into Nodes. The Nodes
communicate with each other by passing Messages from one Node to another. A Service
is a set of two messages: a request and a reply. This class encapsulates requesting information
from a Node and then the Node responding to that request. When a response is not required,
ROS supports indirect messages (th publish-subscribe pattern) with the Topic class. Instead
of two Nodes connecting directly to one another, a Node can follow Messages posted to a
topic. When another Node posts a Message to a Topic, all followers of the topic are sent
the Message. ROS application are started from the configuration settings in a launch file. The
launch file defines the starting Nodes and communication paths for a ROS application, although
this initial setup may change at runtime.

2.2 Directives

I designed the debugging investigation and the automated repair of state-based framework ap-
plications to target framework-specific states, in a way that should be useful across many appli-
cations built against a given framework. The problems investigated in this dissertation meet the
following criteria:

1. The problems are non-trivial. Trivial problems may make the debugging and fixing process
so easy that there are no possible improvements on the process.

2. The problems are not application specific. While application-specific problems are inter-
esting for case studies, results from a debugging study on application-specific problems
are less likely to generalize. Likewise, a tool that only repairs a set number of application-
specific issues are only useful for that subset of problems. Instead, problems that develop-
ers may make then repeat in other cases were of more interest.

3. The problems are testable and deterministic. While fixing non-testable or non-deterministic
problems are important, it is easier to conduct the investigations if a test could determinis-
tically demonstrate and reproduce the problem.

To meet these criteria, I focused on directives. Directives are unexpected or surprising API
specifications for how to use a class or method correctly [27]. I was lenient with the “unexpected
or surprising” requirement and included any framework directive that was not already checked
by the type system or language-enforced runtime checks (e.g., an array out of bounds error).
One type of directive I included were object protocol specifications. For example, a Fragment
cannot call setArguments after the Fragment has been initialized. This means that the
Fragment object instance can only call the setArguments method when it is in the unini-

12

tialized state. Directives are often documented by framework developers in READMEs, tutorials,
and comments, but they may only be documented in the source code (often by throwing an error
when a certain condition is met).

Prior studies into directives have proposed three different directive classification schemes.
One classification scheme is based on the abnormal aspect specified in the directive (e.g., the
calling restrictions, method limitations, or side-effects) [27] while another focused on the seg-
ment of code covered by the directive (e.g., line, method, or object) [69]. The third classification
scheme is based on the keywords in the directive (e.g., directives with the word ’error’ or ‘ille-
gal’ are grouped into the same category) [61]. Another study showed that developers were more
likely to successfully debug applications with directive violations when presented the directives
important to the problem’s context [28]. Other researchers have investigated certain directive
categories: directives specifying how to extend objects to implement the framework [18] and
parameter usage constraints [99]. One study found that about 58% of sentences in API docu-
mentation contains constraints [5]. My work adds to the collective knowledge on directives by
showing that when developers are debugging plugins, notifying developers of the violated direc-
tive that is causing the problem does not lead to quickly fixing the problem. Instead, developers
also need guidance on how to fix the directive violation.

2.3 Architectural Mismatch

When building framework applications, one source of difficulty is the assumptions that the frame-
work imposes on plugins. Multiple approaches have investigated how to enforce framework
constraints on plugins. Design patterns provide a way to catalog usage patterns in frameworks,
which can be checked for compliance [32]. The Framework Constraint Language provides a
function-based specification technique for enforcing structural constraints [44, 45]. Another
specification technique, the Fusion analysis tool, specifies how to check object relationships in a
framework [46], and the constraints imposed by declarative artifacts [47]. Another approach for
specifying framework interactions with plugins include the text based Hook specification, where
the interaction points between a framework and framework application are specified in a text
format that describes the requirements of using the hook and how the hook affects the rest of the
application [36]. FRED detects violations of framework interactions specified in diagrams [41].
Due to their design for a broader set of specifications than my specification language, previous
techniques for specifying framework constraints require too much specification overhead for my
use cases (further discussed in Section 4.7), and none of these technique try to automatically
repair the detected problems.

Other research has investigated the challenges that arise when building software composed of
components with differing assumptions. Researchers have proposed a technique to evaluate the
architectural mismatch between a proposed framework application and the possible frameworks
in which the application could be implemented [74]. This system compares the events the frame-
work application needs to respond to with the events addressed by the framework’s inversion of
control mechanisms. The researchers found that the mismatch evaluation technique predicted the
difficulty of creating applications in the proposed framework for two applications. A case study
on combining reusable software components found that the assumptions made by components

13

led to difficulties combining the different components into a software product [37]. Researchers
have found message-passing incompatibilities are a main contributor to architectural mismatch in
Service Oriented Architectures (SOA) [16]. Another study formalized architectural mismatches
in cyber-physical systems as conflicts of automatically deduced invariants of the different system
components [51]. While my work contributes to architectural mismatch literature by investigat-
ing the challenges that plugin developers encounter with framework constraints, it focuses on
developer debugging issues, and not directly on the difficulties of combining components with
different assumptions.

2.4 Object Protocols

When building applications for real-word situations, the developer or system must keep track of
multiple states. For example, what needs to be saved so a user can can restore the application
later? Which application needs to handle the current user interaction? Which window should be
closed or saved for later? These various concerns are stored as states, so that the application can
perform the correct action at the correct time. States are also important for individual objects to
ensure that the objects produce the correct behavior. Objects need to be in the correct state before
certain methods are called, to ensure that the method does not produce an error or nonsensical
result. These state requirements for certain methods of an object are known as object proto-
cols [13]. When developing an application with a framework, object protocols frequently arise,
because of the way that frameworks are often implemented. Frameworks often implement exten-
sibility by invoking part of the plugin at the right time [8]. For example, the Android framework
invokes the onCreate method of an Activity class to perform any plugin-specific initial-
ization steps when the application has been started by the user or another application. This
invocation usually passes state information to the application, both by what method is called (for
example, if an initialization method is called, the developer is inclined to assume that most of the
application will either be uninitialized, or in a relatively refreshed state) and the state of objects
that are passed to the method call. This object state change at different points in a framework
application is used by the FrameFix repair process.

A human study has found that developers spend time trying to figure out which states are
possible in an object protocol and how to cause certain state transitions in object protocols [85].
One approach to add tool support for object protocols is typestates. Typestates treat each impor-
tant state of a programming abstraction as a separate but related type. A tool or compiler can then
check whether method calls are allowed for a certain type of an object. As an example, typestates
have been used to determine whether pointers can be dereferenced by treating an invalid pointer
(a pointer that points to uninitialized memory or freed memory) and a valid pointer (a pointer
that points to value) as two different types [84]. The typestate checking system then flags any
pointer dereference on an invalid pointer type. Typestates have also been used to track differ-
ent states of an object, assigning different types to different possible object variable values [29].
Another approach extended typestates to track the type of subtypes and the reduction of possi-
ble states to important states. Instead of treating each possible number of characters in a input
buffer as a different state, the possible states reduced down to two possible states: 1) the empty
state, where no content was in the buffer, and 2) the full state, where the buffer contained content

14

[14]. Another approach used access permissions (restricting aliases with read/write permissions)
to improve the the soundness of typestate analysis [15]. While general typestate techniques can
address changes in object protocol state, none of the general typestate techniques were designed
for frameworks. Since internal framework code often changes the states of objects, there may
not be a direct application of the technique to plugin code, or the technique may only address a
small subset of the challenges of plugin development.

Session Types are a specification approach to sequenced interactions [42], and are a straight-
forward way to apply the concept of object protocols to functional programming. Prior re-
search has demonstrated how session types can be applied to the interactions of multiple actors
at once [43]. Dezani-Ciancaglini and de’Liguoro present a survey of session type papers and
include demonstrations of how session types can be used to maintain values in sessions (corre-
spondence assertions) and how session types can be applied in functional and object oriented
languages [30]. Session types would have limited applicability to FrameFix because FrameFix
is focused on actions that are allowed or disallowed in certain states and not the communication
sequences of different components.

2.5 Program Repair

2.5.1 Debugging Process
Debugging is defined as the process of identifying and correcting the cause of a software fail-
ure [98]. Debugging is a wide field and includes many different subfields, including investiga-
tions into the debugging process and debugging tools. Prior work in debugging into the debug-
ging process found that locating the failure, referred to as fault localization [24], was the main
cost of the debugging process [90]. More recent investigations have found that developers use
scent finding when locating the failure [57] and the ability to easily answer dataflow questions
can significantly reduce debugging time [54]. Another study has found that developers encounter
design decisions during the debugging process, such as choosing the correct location to fix in-
correct data passed between multiple components [70].

2.5.2 Automated Program Repair
Automated Program Repair is an area of research that focuses on removing identified software
failures through computer-generated patches. One family of automated repair approaches is
generate-and-validate, typified by approaches like GenProg [59, 94]. Figure 2.1 illustrates a
generate-and-validate repair process. The process uses a program and a set of specifications
as input and produces a fixed program as output, in the successful case. When the process
is unsuccessful, the process ends, usually due to a set timeout, without producing a fix In the
generate-and-validate repair process, a repair technique creates possible repair options and then
evaluates those possible repairs on a set of program specifications, such as test cases. These
specifications are used to determine if the proposed repair successfully fixes the problem. In
the case where techniques use test cases as specifications, the test case set usually consists of
one or more failing test cases and multiple passing test cases. The techniques use the failing

15

Figure 2.1: A diagram of a successful generate-and-validate automated repair process. The in-
puts are a program that needs to be fixed and a set of test cases that demonstrate the problem. The
repair process localizes the fault and possible fix locations. Then it generates multiple possible
fixes. These fixes are tested against the test cases. If none of the proposed fixes pass all test cases,
then the technique generates more possible fixes. If one of the fixes pass all test cases, then it is
considered a valid solution.

test cases to determine the likely problem location and to validate when the problem has been
fixed. The techniques use the passing test cases to determine if possible fixes retain the required
functionality of the application — if a fix causes one of the tests in the originally passing test set
to fail, then the fix is invalid.

Automated repair techniques currently fall into three families of fix generation strategies.
FrameFix is part of the heuristic repair family, which generates possible fixes by transforming
the program through a a set of possible changes, often referred to as mutation operators. These
mutation operators are usually a set of ways to change code (add and remove sections of code)
or a set of common fixes for a known domain [53]. The typical heuristic repair process starts by
estimating the possible change location and then generating one or more possible fixes. Some
examples include AE [95], RSRepair [78], SPR [64], and SapFix [66].

In contrast to the heuristic generation approach, another major family is semantic-based re-
pair techniques, such as Angelix [68], SemFix [72], DirectFix [67], Qlose [26] and S3 [58].
Semantic-based program repair uses dynamic semantic analysis, commonly symbolic execution,
and a set of test cases to infer desired program behavior. These techniques treat the program as
an equation and use the test cases as constraints on the equations. Semantic-based techniques
produce a repair by solving the equation, adjusting the program so that the program produces
all desired outputs from the provided inputs. These approaches are different from FrameFix,
because FrameFix is not a semantic-based technique. Semantic techniques are currently either
tailored to a subclass of problems (such as boolean or integer problems) that do not directly com-
pletely cover directive issues, or require multiple fix examples to create a repair specification to
solve for (such as Refrazer [80]), which FrameFix does not require.

The final family is learning-based repair, where the techniques use machine learning and
past fixes to propose repairs. These techniques turn past fixes into a format that can be handled
by a classifier, for example by counting the number of operators added or removed in a fix. After
training the classifier on these past fixes, when the classifier is given a new problem, the classifier

16

generates new fixes based on past fixes applied to similar sections of code. Examples from this
group include Prophet [65] and DeepFix [40]. FrameFix does not learn from past repairs, so it is
not a learning-based repair technique.

Currently, there are two main approaches to determine whether a generated repair success-
fully fixes an issue. Dynamic validation runs the program to validate that the repair was success-
ful. Most techniques perform dynamic validation with a set of test cases that usually consists
of one or more failing test cases and multiple passing test cases. The techniques use the failing
test cases to determine the likely problem location and to validate when the problem has been
fixed. The techniques use the passing test cases to determine if possible fixes retain required
functionality. If a candidate fix causes one of the tests in the originally passing test set to fail,
then the fix is invalid. Most of the previously mentioned techniques use this approach. FrameFix
uses dynamic validation when tests are available, after performing static validation.

The other main approach is static validation. This approach analyzes the code without run-
ning it to determine if the repair succeeded, usually with static analysis. One static validation ap-
proach that is similar to FrameFix is Phoenix [12]. Phoenix uses static analysis to identify faults
and validate fault repairs. FrameFix differs from Phoenix in the types of bugs that each repair
technique fixes and the general repair approach, Phoenix fixes errors caught by Findbugs [10]
using a programming-by-example approach to synthesize repairs, while FrameFix avoids hav-
ing to specify an example for each detected problem type (directive violation). Another static
repair technique is FootPatch [88] which uses static analysis to identify heap-based problems.
This technique uses static analysis, similar to FrameFix, but is focused on repairing a different
subset of problems. A third static validation technique is Getafix [11], which generalizes a set
of collected bug fixes to AST-based repair patterns. Getafix then applies those patterns to other
detected problems. While FrameFix also uses static validation, Getafix repairs only uses local
information to detect and fix the problem. Other approaches in this category include the abstract
interpreter approach of Logozzo and Ball [63], a formal verification approach (Maple) [73], and
a linear temporal logic approach by Jobstmann et al. [49].

2.5.3 Android and Framework Repair
Recent work on the Android framework has categorized a large number of Android exceptions
and extracted common repair patterns for problems that produce exceptions [33]. Some of these
repair patterns are useful for an Android specific implementation of FrameFix. Droidx repaired
crashing Android applications using manually created patterns [86]. Droidx’s repair patterns
served as a source of inspiration for some of the framework repairs in FrameFix. This approach
differs from FrameFix in that the repair process requires a recorded event sequence to produce
a crash, and repairs were manually validated, — either by comparing the intermediate code
change to developer changes or by running the application to determine if the crash was fixed.
In contrast to these approaches, FrameFix was designed to be framework independent and thus
handles a wider set of framework issues than those handled in the Android repair techniques.

Other research has taken a different approach to repairing framework applications than Frame-
Fix. One approach to framework repair is to use contracts and dynamically created object be-
havior models to guide repairs [93]. This approach requires a significant developer investment to
work for most frameworks, since both the framework and application would need to be written in

17

a language that uses contracts. FrameFix instead only requires specifying the directive to check
and how to translate the directive into code if a custom check is required. Another tool, SemDiff,
fixes out-of-date API calls by recommending methods that were added in the version where the
API call became out-of-date [25]. This tool addresses a different subclass of API problems than
FrameFix.

Researchers have modeled the Android callback system for static analysis. One study eval-
uated how the changes between different versions of Android can be used to detect method call
ordering bugs in callbacks [96]. Another automatically generated interprocedural call graphs
from callbacks in an application [75]. An investigation into popular Android static analysis re-
search tools found that incorrect modeling of the Android callback sequence can lead to unsound
analysis results [91]. Instead of focusing on accurate static modeling of Android callbacks, this
work uses the similarities between callbacks in different applications for repair.

18

Chapter 3

Framework Application Debugging

Debugging software is a common and time consuming task. The difficulty of debugging a soft-
ware application has spawned numerous research areas. Some examples include debugging stud-
ies [54, 56], debugging strategies [97, 98], and automated debugging assistance (such as fault
localization[7, 52]). Yet, debugging is still a difficult and time-consuming task. While studying
the general debugging process has produced promising results, it is possible to produce scientific
insights by investigating interesting programming situations that are likely to present unique de-
bugging challenges. Framework application debugging is one subset that further study could lead
to more insights. I hypothesize that the unique aspects of creating framework applications, dis-
cussed in Section 1.1.3, are likely to present unique debugging challenges and may also present
unique benefits for the debugging process. Therefore, I performed an exploratory study to ob-
serve what debugging challenges developers encounter while debugging framework application
problems. In this study, developers were given a debugging task — a framework application that
contained a testable problem — and were asked to fix the problem. Since many qualitative study
techniques are based on other forms of data collection than debugging trials, such as interviews, I
performed the debugging study using a mixed methods approach. The mixed methods approach
used techniques from both grounded theory [20], and qualitative content analysis [82]. These
approaches were used to guide both the design of the study, as well as the analysis of the results.
From this study, I found that developers have difficulty understanding how the framework has
altered the state of variables passed to the problematic method, but that the similar structure of
applications that used the framework aided developers’ debugging efforts.1

1This chapter references work from A Qualitative Study on Debugging [23].

19

3.1 Methodology and Preliminary Study

I performed an exploratory study into framework API debugging to understand the unique ben-
efits and challenges that framework application developers encounter during the debugging pro-
cess. The exploratory study consisted of multiple participants performing lab-created debugging
tasks. The main benefit of this approach is that it is possible to observe multiple developers ap-
proaching the same task, reducing the chance that observations are biased by the performance of
an individual developer and increasing the chance that patterns are observed across multiple par-
ticipants. The main risk of this approach is that the conclusions may not apply to real framework
debugging scenarios, since the developers would not be debugging problems that they created in
their own applications, but instead debugging problems in the application given to them for the
scenario. To mitigate this risk, I took steps to make the tasks as realistic as possible, basing the
tasks off debugging scenarios encountered by actual developers in practice. I further elaborate
on the methodology I used to select the frameworks to study Section 3.1.1 and create the tasks
in Section 3.1.2. The results from an investigation into the possible types of directive viola-
tions, used to inform the chosen tasks, are presented in Section 3.1.3. Once I created the tasks,
I recruited study participants and conducted debugging trials, using the procedure described in
Section 3.1.4. After recording participants performing the tasks, I coded the recordings using
an iterative process. First, I coded the interesting actions of the first few participants in each
framework that provided insight on the problem solving process — for example, I recorded if
a participant ran the debugger or made a problem related statement but I did not include if a
participant accidentally clicked on a wrong tab. Then, I defined coding frames of the interesting
actions using qualitative content analysis, a technique that condenses verbal or visual data into
important topics [82], and used the coding frames to code the recordings. After I finished cod-
ing, I performed theoretical sorting to condense the coded data into the benefits and challenges
of framework debugging [20]. A summary of the coding process is described in Section 3.1.5.

3.1.1 Frameworks in the Study
This section provides a brief introduction to the two frameworks I used in the debugging study
to explain my motivation for selecting these frameworks. This section complements the terms-
of-interest for each framework covered in Section 2.1.

I focused the debugging study on scenarios from two frameworks: Android (v. 5.0 Lollipop–
API 21, with a focus on the Fragment class), and the Robotic Operating System (ROS) (Kinetic
Kame). The goal was to select two distinct frameworks to collect observations that do not apply
to a single framework or subset of frameworks. Thus, I selected two frameworks with different
application domains and architectures.

Google’s Android [38] provides a Java framework for developing mobile applications. An-
droid is a widely-used, mature framework, released in 2008 (over seven years at the time of the
study). In the Android framework, the Fragment class represents a reusable component of an
Android application’s user interface. A picture of an Android Fragment in an example Android
application is shown in Figure 3.1,2 to illustrate its usage. I began with the Android framework

2Taken from https://developer.android.com/guide/components/fragments

20

Figure 3.1: This diagram shows an example of the Fragment class, taken from the Android
development documentation. This diagram demonstrates how the Fragment class is a reusable
subcomponent of an Activity. An Activity is the class that controls the lifecycle of an
Android application and is often the class that controls most of the communication between the
framework and application specific code. The lifecycle of Android application is the major, state
changes possible for an application — when the application is created, when the application is
paused, when the application is destroyed, etc.

for three reasons:
• it is widely-used and well-established
• it makes heavy use of inversion of control and object protocols, key features that differen-

tiate frameworks from libraries
• multiple developers express difficulties with the framework, as demonstrated by the many

questions on StackOverflow about it.
After selecting the Android framework, I decided to perform an in-depth analysis into the

directives of one class, to collect a diverse set of directive violation consequences. I queried
StackOverflow for questions by class, finding that the Activity class had the highest number
of posts and the Fragment class had the second highest number of posts. After investigating the
questions for both, I focused on the Fragment class because the Activity keyword often turned
up questions that were not related to the class. The Fragment class also requires developers
to correctly implement the Fragment lifecycle inside of the Activity lifecycle, a fairly
complicated workflow, which I speculated might lead to more or more interesting debugging
challenges.

To increase the chance that the results of the study do not apply to a small subset of frame-
works, I selected ROS as a second framework for study. The Robot Operating System [79] (ROS)
is a framework for creating robotics applications, with a focus on the communication between
various robotic components. ROS applications are built as a collection of nodes that communi-
cate in an event driven model. ROS is also a mature framework and had been released for over
eight years at the time of the study (released in 2007). ROS is written in both C++ and Python,

21

but I focused on the C++ version of ROS in the ROS scenarios. The criteria for the second
framework was that it should focus on a substantially different domain than Android, and have
a different framework architecture. ROS satisfies these criteria, because: (1) ROS is designed
for robotic applications instead of mobile applications, (2) ROS uses an event based architecture
instead of the tiered architecture of Android, (3) ROS is written in C++ instead of Java, and (4)
ROS has a smaller user base, but still sufficient users that I could find experienced participants
for the study.3

3.1.2 Task Creation Methodology
The debugging tasks that developers solved consisted of framework directive violations. Frame-
work directives are possibly surprising statements in a documentation source about how to use
the framework (e.g., “setHasOptionsMenu(true) must be called to execute an overrid-
den onCreateOptionsMenu method”) [27]. Focusing on directive violations was key to
this study because violations thereof capture mistakes specific to framework programming rather
than bugs related to plugin logic. This moreover improves the chances that the results generalize
to other framework API misuse errors. Framework directives are also likely require a non-trivial
debugging process to fix, due to their surprising nature, increasing the chance of the study finding
new insights on the application debugging process.

The process of extracting directives for both frameworks was performed with the assistance
of one of my co-investigators, since having another person check the directive increases the
validity that it is a directive. The process for extracting the directives from documentation con-
sisted of one investigator extracting directives from the documentation and another investigator
double-checking the extracted directives, similar to the coding process in prior work [83]. Both
investigators extracted some directives and double-checked other directives. For the purposes of
this study, I was lenient on the definition of “possibly surprising” and included any developer
guidance that was not already checked by the type system or did not focus on the possible null
value for a parameter. This means that extra constraints added by the framework on the frame-
work application were included in the directive set. However, I restricted the directive set to
directives that were testable, since directives that only cover recommended best practices may
not produce a clear problem for developers to debug. Thus, in this study, the term directive vi-
olation refers a section of code or application that does not conform to a testable specification
requirement.

To inform the task selection, I first investigated the consequences of violating Android
Fragment directives and how those violations were presented to developers. I collected 45
Android Fragment directives from three official documentation sources, in order: (1) 11 from
the Fragment page in the developer’s guide,4 (2) 19 from the Fragment API page,5 and
(3) 15 from the Fragment class’s source code. If directives were found to occur in two
documents, I only included the directives once and listed them as occurring in the first document
in the order shown above. I created violation scenarios for each directive through a manual

3This chapter references work from A Qualitative Study on Debugging [23]. Code associated with the project
can be found at https://www.dropbox.com/sh/9b7ayp25oa248dn/AAB88KclAKjWxp3gft2pYgE3a?dl=0.

4developer.android.com/guide/components/fragments.html
5developer.android.com/reference/android/app/Fragment.html

22

process of violating the directive and then confirming the directive violation, either through the
scenario’s output or through print statements. I then categorized the directives by the directive
violation consequence, or the effect on the application that the developer sees when that directive
is violated. The directive violation consequence categories are discussed in Section 3.1.3.

(a) The starting view of An-
droid Task 5. The problem with
the task is the behavior of the
CHANGE COLORS! button.

(b) The desired behavior of
the application. When the
CHANGE COLORS! button
is pressed, it changes the SHOW
NOTIFICATION button’s

color. However, at the start
of the task, this functionally
only worked if the user pressed
the CHANGE COLORS! but-
ton before opening the HEADS
UP tab.

(c) The crash that occurs when
participants first open the
HEADS UP tab and then press
the CHANGE COLORS!
button. Participants were
asked to remove this crash so
that the button successfully
changes colors, even if the
participant had navigated to the
HEADS UP tab first.

Figure 3.2: Android Task 5. Participants were given an application that crashed when participants
interacted with the application in a certain way and asked to fix the crash.

To select tasks, I searched for StackOverflow questions that cover Android Fragment di-
rectives from a wide range of violation consequence categories. I used keywords taken from
the directives or error messages produced by an author-written violation of the directive to find
the StackOverflow questions. I found seven unique questions that covered directives in different
consequence categories and provided enough information to reproduce the problem. These seven

23

questions were used to create seven Android tasks. The seven tasks were created by taking an
Android Lollipop (version 5.0) sample application6 that demonstrated the various notifications
available in Android Lollipop and changing the application to encompass the scenarios men-
tioned in the StackOverflow questions. An example of one of the tasks is shown in Figure 3.2.

For the ROS framework, I extracted 28 directives from two sources: (1) 9 from the official
ROS C++ documentation,7 and (2) 19 from ROS C++ source code.8 Due to the relatively low
number of online questions about ROS, I was unable to collect ROS directive scenarios from
StackOverflow. Instead, I choose three directives that represented materially different cases, and
manually created tasks for each. I created the first and third task by modifying the TurtleSim
scenario,9 a two node configuration where a virtual turtle in one window moves and publishes
the movements so the virtual turtle in the other window mimics the movements. The second task
involved a simple, custom-built directory reading application.

In the rest of this chapter, the Android tasks and participants will be prefixed with a “TA”
and “PA” respectively. The ROS tasks and participants will be prefixed with a “TR” and “PR”
respectively. Table 3.1 lists the number of participants per task and briefly explains the Android
and ROS tasks. A link to the Android tasks and steps to recreate the ROS tasks can be found in
the readme of https://github.com/cbogart/ViolationOfDirectives.

3.1.3 Directive Categorization By Consequence
To inform the debugging study trials, I investigated the ways that frameworks present errors to
developers. This investigation provided a greater understanding of the debugging situations that
developers encounter when debugging framework applications, and ensured a diversity of debug-
ging study tasks. For the investigation, I manually violated 41 of the 45 Android Fragment
directives, and then grouped the violation consequences into categories. 4 of the 45 directives
were not violated, because I was unsure how to directly map the directives to code, and the goal
of the study was to sample directive violation consequences to understand the different possi-
ble categories, not exhaustively catalog all violation consequences. I then collected three ROS
directive violations and found that they fit into the previously created categories. Due to the
limited investigation, I do not make claims that the categories will generalize to all frameworks.
However, the results are useful as an initial investigation into the ways that frameworks present
directive violations to developers.

The consequences of violating 41 Android Fragment directives are shown in Table 3.2 and
explained below. I found that violating certain directives can produce multiple consequences
(e.g., a violation can produce a tool warning and crash with reference to the directive), but each
consequence is mutually exclusive (the same consequence could not be categorized in multiple
categories - an application crash cannot be both classified as crash with reference to the directive
and crash without reference to the directive). It was possible to violate one directive in two
different ways to produce three possible consequences. I was also able to violate two directives
in two ways, each with different consequences.

6github.com/googlesamples/android-LNotifications
7wiki.ros.org
8docs.ros.org/api
9http://wiki.ros.org/ROS/Tutorials/UsingRxconsoleRoslaunch

24

Task Count Goal Violated Directive Result of Directive Violation

TA1 5 The participant must connect Application components must Any attempt to access one of
user inputs to the output have a unique ID to be the components with the
message when input components referenced individually. same ID returned the last
initially share the same ID. component added.

TA2 6 The participant must display the The application should not AndroidStudio displayed a
application start time on a pass time data through warning and recommended
tab without a warning. the constructor. a fix.

TA3 4 The participant must make the The framework only checks for The OptionsMenu does not
framework check for an an OptionsMenu if the application appear, although an
updated OptionsMenu. calls setHasOptionsMenu(true). OptionsMenu is defined.

TA4 5 The participant must display the The Fragment could only access The application crashed
application’s Activity (the entry the Activity if the Activity was with a notification that the
point for an Android application) attached to the Fragment, and Activity was not set.
title in a pop-up message on a the Activity was not attached.
specific tab.

TA5 4 The participant must fix a problem A tab’s arguments can only The application crashed, stating
that occurs when the application be set before the tab is that arguments can only be
tries to change the color of a accessed. set before the tab has started.
button on a tab when the tab
had been previously accessed.

TA6 3 The participant must change a Items should be added to the The OptionsMenu would not
specified ContextMenu to an OptionsMenu in the appear.
OptionsMenu. onCreateOptionsMenu method.

TA7 5 The participant must fix an In the application’s current state, The application crashed with
incorrect inflate method call. the last parameter of the inflate a stack trace that pointed

call must be false. towards core framework code.

TR1 8 The participant must fix an spinOnce() cannot be used when A node in the application would
incorrect spinOnce() call. the framework should perform quit unexpectedly without an

the callback more than once. error message.

TR2 8 The participant must fix an Local namespaces are not checked The parameter search returned
application node’s parameter if a global namespace is used that the parameter does not exist.
access. in a parameter search.

TR3 6 The participant must fix an An incorrect message type was The application crashed with an
obsolete message type. used for this version of ROS. incorrect type declaration error.

Table 3.1: Tasks in the debugging study. TA tasks indicate Android tasks; TR indicates ROS
tasks. “Count” shows the number of participants per task. “Goal” indicates what the study parti-
pant must do to successfully complete the task. “Violated Directive” is a simplified explanation
of the violated directive motivating the task. “Result of Directive Violation” explains how the
application presented errors to participants.

25

Directive Violation Consequence Count

Compiler Error 3
Crash With Reference To Directive 19
Crash Without Reference To Directive 2
Missing Feature 9
No Obvious Effect 5
Tool Warning 3
Wrong Value Returned 2

Table 3.2: Categorized consequences from violating 41 directives. A directive violation may
have multiple consequences, but each consequence is mutually exclusive.

Compiler Error. When these directives were violated, the framework threw a compiler error,
preventing the application from compiling. This consequence occurred when invalid semantics
produced a directive violation. One example is when the documentation specified that a method
could not be overridden. The compiler prevented a developer from overriding this method be-
cause the method was declared with the final modifier in the parent class.

Crash With Reference To Directive. When these directives were violated, the application
crashed with an exception that notified the user of the directive violation either directly or in-
directly. One example of this category is, getActivity() should not be called when the
Fragment is not attached to the Activity. If this directive was violated, the application
crashed with a null return from getActivity(). This category contains a high number of
directives because all the directives found in the Fragment class’s code were of this type.

Crash Without Reference To Directive. When these directives were violated, the application
crashed with an exception that did not notify the developer that a directive was violated, usually
with an error pointing to where the application crashed instead of the location where the applica-
tion needed to be fixed. Violations in this category occur when a more general exception message
is thrown, or violating the directive puts the application into an invalid state and the invalid state
is caught in a later line. One example in this category is when the result of the inflate method
is used as the return result for onCreateView, the last parameter to the inflate method
call must be false. If this directive was violated, the application would crash with a stack trace
that pointed to internal framework code and not the inflate line.

Missing Feature. When these directives were violated, the framework application did not pro-
duce the intended effect of the relevant section of code (i.e., the code ran without errors but the
section of code with the directive violation did not produce the intended feature). The effect did
not occur either because violating the directive caused the control flow to change or the seman-
tics were changed. For example, one directive states that an application will only execute the
Fragment’s onCreateOptionsMenu method if the Fragment calls hasOptionsMenu
(true) in the onCreate method. If the hasOptionsMenu(true) call is removed, the
OptionsMenu will not appear, even if the Fragment overrides onCreateOptionsMenu.

No Obvious Effect When these directives were violated, the framework correctly performed the
intended action of the associated code segment without crashing the application. One example

26

of this category is a directive that states that if a Fragment does not have a user interface (UI),
then the Fragment should be accessed by findFragmentByTag(), but the Fragment
without a UI could be accessed by findFragmentById() without noticeable consequences.
These directives may be for some other non-functional, quality attribute, such as performance or
readability, but further investigation would be needed to draw definitive conclusions.

Tool Warning. While the application still compiled with these directive violations, if these di-
rectives are violated, the recommended tools for developing applications in the framework (in the
case of Android, AndroidStudio, the recommended Android Integrated Development Environ-
ment) warn developers about the code, and sometimes recommend a possible fix. For example,
the directive, classes that subclass the Fragment class must have a public no-argument con-
structor produces a warning when violated. An application will compile if the class subclassing
Fragment lacks an empty constructor, but AndroidStudio displays a warning in the class’s
source file.

Wrong Value Returned. When these directives were violated, the application did not crash, but
a reference to a part of the application was lost or used incorrectly. Any attempt to use the lost or
incorrect reference returned a wrong value. For example, when a developer dynamically added
a UI element, the developer must assign a unique tag to the added UI element. If the added
UI element does not use a unique tag, the new tag overrides the matching tag of a previous UI
element. The previous UI element is now unreachable through framework supported methods.

3.1.4 Debugging Task Methodology
I based the methodology of the debugging tasks on other previous studies of developers, such as
study by Piorkowski et al. [76]. After I obtained IRB approval for the study, the debugging study
process started with a pre-survey to document participants’ framework experience. I provided
participants a Surface Pro 3 tablet containing the tasks, and I instructed them to perform think-
aloud debugging, vocalizing what they thought as they went through the debugging process [71].

I assigned a task to each participant, and asked them to fix the bug. I did not inform par-
ticipants of the directive violation in the task because I was interested in also studying the fault
localization process. If participants finished a task and could stay for another 20 minutes, I asked
them to attempt another task. I did this to gain more insight on if certain tasks were hard or if
certain participants were much more efficient at all the tasks. All but one participant was willing
to spend more than twelve minutes to attempt the task once they started. I initially assigned
tasks randomly, but later selected tasks that the fewest participants had attempted, to produce
relatively even task coverage. Android participants participated in tasks for about two to three
hours in total. Due to removing an unhelpful pre-trial application familiarization period, the ROS
sessions lasted around one hour. Participants were permitted to quit at any time (I never stopped
them in their work). I allowed participants to search online for anything, including the inspiration
for the tasks, but I did not allow them to post questions. While searching online, no participant
found the inspiration for any of the study’s tasks. During think-aloud debugging, if participants
stopped explaining their thought processes, I prompted them through questions like “What are
you thinking now?” and “What is your reasoning for that?” Occasionally, I asked “Why not?”
if participants commented they would normally do an action, but they were choosing not to. In

27

addition to asking them to vocalize aloud their thoughts and strategies during the tasks, I asked
participants about their approach in greater detail at the end of each participant’s session.

For the Android study, I recruited a convenience sample of 15 participants. Eleven of the
participants had over 2 years of industrial Java or Android experience, and 14 of the participants
had more than a year of industrial Java or Android experience. Two participants were profes-
sional developers, and 13 were graduate students (12 with professional background). For the
ROS study, I collected a convenience sample of 12 participants. Nine of the 12 participants pre-
ferred the C++ version of ROS over the Python version. Two of the participants had more than
2 years of ROS experience and 5 of the participants had over a year of experience. Three of
the participants were research staff, 8 of the participants were graduate students, and 1 was an
undergraduate student. None of the participants did both the Android and ROS study.

I made several procedure changes between the two case studies. For Android, I gave partici-
pants time to learn the application before attempting the tasks, while I did not provide a learning
period for the ROS tasks. I made this change because I found that participants commonly spent
the Android learning period exploring sections of the application that were not relevant to the
tasks. In the Android study, I required participants to use the recommended Android Integrated
Development Environment (IDE), AndroidStudio, because it provides warnings for directive vi-
olations. I did not require participants to use any particular IDE for the ROS tasks, because ROS
does not have a recommended IDE.

3.1.5 Coding Process
To analyze the results of the human studies, I coded the actions and statements of participants
from the trial video (participants’ screens during the trials) and audio (all audio from the trials)
recordings. I followed an iterative, open-coding practice based on techniques from Qualitative
Content Analysis [82] and Constructivist Grounded Theory [20]. I made adaptations to the tech-
niques, which are described for interview-focused studies, to render them suitable for the human
trial method of data collection used in this study.

The iterative aspect of the coding process involved analyzing recordings of the first few par-
ticipants for important concepts before conducting debugging trials with the remaining partici-
pants. After analyzing the recordings from these participants, I then conducted more debugging
trials. I alternated between conducting and analyzing trials, and adjusted my coding frame based
on the new trial results. As recommended by Contructivist Grounded Theory, I tried to reduce the
impact of prior work on my coding process (to avoid analyzing the data with a pre-determined
code and thus possibly bias the results) [20]. I thus limited my initial reading of prior work to a
few similar studies, and investigated the rest of the related work after finishing the analysis.

The coding process consisted of two different investigators coding different aspects of the
study. One investigator conducted and coded the Android trials while another investigator con-
ducted and coded the ROS trials. I allowed the coding categories for both the Android and ROS
study to emerge independently, although both were checked and guided by an expert in the area
of frameworks, which led to variations in the categories and granularity of the different coding
categories.10

10While the IRB approval prevents releasing the recorded trials, I have released the coding categories along with

28

The Android coding categories consisted of six categories that focused on the mental aspects
of the debugging process (‘deductions,’ ‘questions asked,’ with a subcategory of ‘hypothesis cre-
ation,’ and ‘hypothesis rejection’) and the actions that participants took (‘coding/testing actions,’
and ‘activities taken to learn the framework or code base’). Finally, a miscellaneous category
included behaviors such as reading the scenario specific prompt, or a participant expressing an
opinion (such as annoyance with the lack of documentation on a topic). The ROS coding cat-
egories consisted of four major categories: ‘goals,’ ‘activities,’ ‘learning,’ and ‘miscellaneous.’
Each category contained multiple sub-categories, for example, the subcategories under ‘goals’
were ‘fix an identified problem,’ ‘answer a question,’ ‘test a hypothesis,’ ‘find a file,’ or ‘other
goal’ (not included in the previous four). The coding categories of both studies were refined
over time. For example, the Android coding categories initially contained a ‘goal’ category, but
this was eventually merged with the ‘questions’ category as participants often expressed goals in
question form.

I then condensed the coding data from both studies into the final categories of framework
benefits and challenges using theoretical sorting. There are multiple acceptable approaches for
theoretically sorting data in constructivist grounded theory [20]. I choose to categorize the results
into the benefits and challenges of framework debugging, as this frame provided the most insight.

3.2 Framework Debugging Benefits and Challenges
I first present the challenges that developers faced while debugging the tasks: those relating
to dynamic behavior (Section 3.2), static structure (Section 3.2.1), and historical changes to
the framework (Section 3.2.2). Next, I present the benefits of framework debugging: dynamic
benefits (Section 3.2.3), static benefits (Section 3.2.4), and historical benefits (Section 3.2.5).
Finally, I discuss the difficulty of debugging violations in relation to their consequence categories
(Section 3.3).

Dynamic Challenges

Throughout the tasks in this study, participants struggled to determine the order in which a frame-
work executes application code, which increased the difficulty of the debugging process. Partic-
ipants seem to prefer a cause and effect ordering. However, framework application code does
not typically follow a sequential ordering, instead it executes plugin code only when needed.
This requires code to be structured as non-sequential event handlers. This can create uncertainty
about which parts of project-specific code are called and when, and which project method will
execute “next.” Object protocols exacerbate this issue by requiring participants to understand
which states various objects can be in when the framework calls their code.

Inversion of Control. In framework programs, plugin method execution order is not always
transparent to the plugin developer. This sometimes led participants to misunderstand an appli-
cation’s control flow, which increased the difficulty of locating the error and fix locations. For
example, in the ROS study, participants (PR18, PR20) assumed the framework would not call a

the identity-scrubbed and coded trial summaries to promote future researchers reproducing the study’s results at
https://github.com/squaresLab/frameworkStudyTranscripts.

29

section of code, when instead a problem in that code segment caused the application to terminate
earlier than expected. In Android, two participants (PA10, PA11) tried to use the debugger to
understand control flow, but struggled to do so. Both participants stepped past a plugin method
and were unable to figure out how to step back from the framework code into the plugin code.
This led participant PA10 to reach incorrect conclusions about which code executed in task TA7.
In ROS, while trying to understand how two nodes communicated, PR22 did not realize that a
third node linked two other nodes, because the nodes relied on the framework to handle commu-
nication. Participant PR22 read four files before understanding how the framework routed the
nodes’ communication. Another participant (PR23) made incorrect control flow deductions due
to the way ROS redirects and filters statements printed to standard output.

Inversion of control also made localizing errors difficult. In Android, one participant (PA5)
searched for an error message thrown by the application, but could not find it in the project. The
search failed because the error message was generated from core framework code, not plugin
code.

Some problems stemmed from participants’ uncertainty about the hidden ordering of critical
framework activity between events. When participants (PA4, PA12) saw the getActivity
call returned NULL, they questioned whether the framework had incorrectly constructed its own
reference to the parent Activity. In fact, getActivity was called in an event that occurred
before the framework had attached the Activity to the Fragment.

Takeaway: The inversion of control in frameworks increases the difficulty of understanding
the application’s control flow, which increases the difficulty of debugging the application.

Object Protocols. Object protocols are object states that dictate how an object can be used.
An example of object protocols in Android are lifecycles: state transitions between starting,
active, and stopping for components. Participants experienced challenges with object protocols
(e.g., accessing values before they were set). Object protocols are explained and diagrammed
explicitly in the documentation, but implemented indirectly in the framework code, and invisible
to non-framework code. This likely increases the difficulty of understanding the relevant object
protocols.

Object protocol issues in tasks TA4 and TA5 significantly contributed to the amount of time
those tasks took (see Section 3.3). Most participants assumed the application had performed an
invalid action, rather than that an action that was invalid only in a given state. Object protocol
misunderstandings also led participants to incorrectly conclude that certain values were available
to use in the application. Three participants (PA4, PA6, PA11) mistakenly wrote code to access
variables storing user selections before the user could have selected them. Participants were
then confused when the accessed values did not match those they selected in testing. Participants
(PA6, PA10) were confused about the circumstances in which they needed to commit and finalize
a Fragment transaction (as opposed to the cases in which transactions were automatically
committed). PA1 expressed exasperation on the difficulty of keeping track of when methods
were called, stating “You look at the Fragments documentation and it's like lifecycles inside of
lifecycles inside of other lifecycles. It's annoying. It's like, how do I keep track of all this?” In
the ROS study, participant PR26 mentioned uncertainty about how to modify a method because
of the states the application could be in when that method was called.

Takeaway: The way frameworks hide object protocols causes problems when diagnosing the

30

problem location and when producing the correct fix.

3.2.1 Static Challenges
The static structure of frameworks, such as declarative artifacts and the mapping between source
files and executable components, presented multiple challenges to participants. Participants com-
monly struggled to understand the separation between static structure and dynamic changes,
determine the effects of the application’s static configuration, and use that knowledge to solve
problems. This led to uncertainty about whether errors should be addressed by modifying static
files, or via a dynamic solution. Participants also often struggled with determining the correct
framework terminology for their situation, which increased the difficulty of finding related doc-
umentation and online solutions.

In ROS, participants had difficulty understanding how source files map to executable compo-
nents, partially because ROS executables consist of various components (Nodes, Services, and
Topics) that do not map directly to source. ROS also does not provide an easy or well-known
way to find source code corresponding to a given component. Participant PR16 struggled to
understand how the publisher and subscriber methods in the C++ files integrated with the data
redirections in the launch file. Other participants (PR17, PR18, PR20, PR22, PR25, PR27) sim-
ilarly struggled to understand how the application remapped data between components. In one
case, Participant PR17 diagnosed the problem but struggled to find the appropriate source file,
due to both the organization of the ROS application files and their confusion about how to use
the ROS filesystem commandline tools: “I am looking for source code for [this node]. . . Unfor-
tunately ROS is trying to isolate me from the file system, which I dislike, because it cannot isolate
me fully.” About 16 minutes into the task, Participant PR17 exclaimed “This is ridiculous, I can’t
even find the code that I am supposed to be debugging!” They eventually used grep to find a
node, more than half an hour into the task.

Multiple participants were confused about which framework concept applied to the current
task. For example, both TA3 and TA6 asked participants to add an OptionsMenu to the ap-
plication. Participants were given an application were the OptionsMenu did not appear and a
picture that showed the application’s OptionsMenu. Participants were asked to fix the problem
in the application so that the OptionsMenu appeared. Android’s OptionsMenu appears on
the ActionBar but is not managed by the ActionBar class directly. At the beginning of the
task PA9 commented “I believe that is probably related to the ActionBar, because I think that is
where the user defined menus can go.” PA9 ended up performing three different searches related
to icons in the ActionBar which all initially looked promising to the participant but were ul-
timately unsuccessful. The participant’s fourth search, linearlayout action bar, found a site that
directed the participant to add the options through the OptionsMenu and lead to a successful
completion of the task. PA1, PA2, PA3, PA9 all demonstrated difficulty determining the correct
framework terms and concepts related to the issue.

Participants in the study were often unsure if changes to the application were performed
dynamically with method calls or statically with adjustments to options in a declarative artifact,
such as the XML layout specifications in Android. In the same tasks (TA3 and TA6), many
participants (PA9, PA13, PA14, PA15) were initially confused if the OptionsMenu was added
through a declarative artifact or through a method call. These participants looked through the

31

Android layout editor for an OptionsMenu or tried to add an OptionsMenu to a XML file,
before realizing that it must be added dynamically. Another participant (PA9) investigated the
strings.xml file after an online answer suggested that the problem may lie in an undefined
icon title. Participant PA10 remembered that a specific theme setting could cause errors and
checked if the theme caused the error.

Takeaway: Unclear mappings between declarative artifacts and the application’s source code
provides a source of debugging difficulty.

3.2.2 Historical Challenges
The fact that frameworks change over time can increase the difficulty of debugging framework
errors: both participants’ knowledge and online help or solutions may be out of date.

Legacy Challenges. Previous versions of both Android and ROS created issues for several par-
ticipants. In Android, one participant (PA9) questioned whether a feature should be implemented
in a backwards-compatible way, later discovering that the application was not configured to work
with backwards-compatible components. A few participants (PA8, PA9, PA14) avoided online
answers older than two years because they assumed they would no longer apply. Other partici-
pants (PA1, PA15) mentioned they were familiar with Android a couple years ago, but there had
been many changes to the framework since they were proficient with it.

Some ROS participants incorrectly diagnosed the obsolete message type in task TR2 as cor-
rect because they had used it previously. Participant PR21 recognized that the message type
caused an issue, searched the message type online, and found its official documentation, not
realizing that the documentation was for an older ROS version. This was a problem because
the documentation indicated that the file was using the message type correctly. The participant
investigated four other possible error sources before realizing that a different message type was
needed.

Past Experience. While past experience was often helpful, one participant in the Android study
(PA10) misdiagnosed an error message due to previous experience. This caused the participant
to conclude to “not trust your experience.”

Takeaway: Out-of-date knowledge about a framework and similar error messages that cause
developers to incorrectly diagnose the problem increase the difficulty of debugging framework
applications.

3.2.3 Dynamic Benefits
Throughout the study, participants commonly used the framework to perform actions that would
have been much more difficult to recreate without the help of the framework. When faced with
a task, almost all participants tried to implement the correct, prescribed framework method for
performing the required action (although PA1, PA3, PA5, PA8, and PA11 implemented custom
solutions for certain tasks, such as implementing a custom message passing solution in TA1). For
example, PA6 in TA1 correctly used the FindFragmentById method to access user input,
instead of writing code to pipe the user input through the application. Overall, frameworks can
provide developers with a prescribed way to address problems in their plugins.

32

Takeaway: Frameworks provide methods to address common task in a framework applica-
tion. These methods can decrease the difficulty of implementing a bug fix.

3.2.4 Static Benefits
Study participants found the static organization of the framework helpful when trying to gain an
overview of the application, which helped them find files of interest more easily than through
unstructured search. In ROS, participants used the launch files as a way to start exploring the
application. For example, participant PR27 looked through the ROS launch files to understand
which nodes were involved in the application. Participant PR26 mentioned that they liked to use
launch files to get an overview of the application. Multiple participants (PR17, PR18, PR19,
PR22, PR26, PR27) used the launch files as a table of contents, using them to determine appli-
cation components, how they interact, and locate source files of components.

Similarly, in Android, participants (PA1, PA2, PA3, PA6, PA8, PA9, PA10, PA11, PA13,
PA14, PA15) used the structure of Android application to quickly find resource files and test
case files. For example, PA8 was able to quickly look up the correct options menu layout file
when writing the required options menu code. None of the tasks required participants to resolve
bugs in declarative artifacts, so it’s possible that this type of problem would be especially easy to
debug.

Takeaway: The common structure of frameworks applications reduces the time to find nec-
essary information when debugging.

3.2.5 Historical Benefits
Participants often found that past experience was helpful; some were able to correctly diagnose
a ROS error simply by looking at the failing section of code and relating it to code or problems
they had seen before. Multiple ROS participants (PR17, PR21, PR26, PR27, PR28) were able
to diagnose an error and suggest a working alternative based on past experience. While working
on task TR2, participant PR28 noticed the error in the code and said, “I think the fact that
there’s a beginning slash means that instead of looking under this node’s namespace it’s gonna
look under the global namespace [where] this parameter doesn’t exist.” The participant was
correct. Detailed knowledge of a framework, built up by through experience, can help mitigate
barriers frameworks impose. Other participants (PR18, PR22, PR26, PR27) stated that past
experience shaped their general ROS debugging strategy. One participant remembered to set
framework environment variables, attributing past environment problems. Another participant
(PR26) always used grep to find calls to a function modified over the course of a debugging
session, to guard against unforeseen side effects, which was a problem they had faced in the past.

Takeaway: The common elements of applications created in a framework allows developers
to build debugging experience in the framework.

33

Task Times for Successful Completion (min) Times for Unsuccessful Completion (min)

TA1 20, 41, 70, 89 35
TA2 4, 18, 20, 23, 24, 26
TA3 8, 32, 42 33
TA4 17, 24 25, 46, 92
TA5 25 40, 64, 88
TA6 5, 27, 49
TA7 8, 11, 13, 41 25
TR1 16, 22, 30, 42, 68 58, 62, 93
TR2 14, 34, 36, 43, 48 8, 45, 60
TR3 13, 15, 18, 25, 39, 40

Table 3.3: Time spent on each task in minutes, grouped by successful and unsuccessful attempts.

3.3 Difficulty By Consequence

I analyzed participant results from both the Android and ROS tasks using the consequence cat-
egories collected from the Android investigation. I validated these categories by creating ROS
trials and found that all of the ROS directive violation consequences fit into previously created
categories. While I did not perform enough trials of each task for statistical significance, the
results from the trials provide insight on the difficulties between the tasks, which is useful for
directing research towards the tough framework problems. I present the time participants spent
on each task and whether they successfully finished the task in Table 3.3. The mean time and
success rate, grouped by consequence category, is shown in Table 3.4. The time participants
spent on each violation category is presented as a number not to represent a precisely measured
time for the task, but to present a better sense of the data than descriptive terms (i.e., much longer,
longer, about the same, shorter, much shorter). Figure 3.3 show the time participants spent on
tasks in the study, along with their success or failure rate. Figure 3.4 shows a box-and-whisker
plot to provide a visual comparison of the average time spent on each task. There was a sub-
stantial difference in the mean time to complete tasks (ranging from 19 to 51 minutes) and the
success rate on tasks (ranging from 33% to 100%) of difference consequences.

The consequence of violating a directive appears to influence how long it takes to debug the
error as well as how likely a developer is to succeed in doing so over a short debugging session.
A surprising result compared to prior research on debugging is that participants had significant
difficulty with finding a fix once they were aware of the problem location. As an example of prior
research in this area, Vessey [90] found that fault localization often took longer than finding
the fix. However, developers who worked on the tasks in Android: Crash With Reference To
Directive category were notified of the fault location immediately, yet this category had one
of the longest mean times. One hypothesis that explains this phenomenon is that framework
developers made error messages for these directives because the crash was extremely difficult to
debug without referencing the directives. Further investigating this question, such as through a
code archeology study, might provide further insight, but it was not in the scope of this work.
However, even for other tasks that participants were immediately notified of the fault location,

34

Violation Time Sessions Sessions Success
Consequence (Mean) Completed Attempted Rate (%) Tasks

1. Android: Wrong Value
Returned

51 min 4 5 80 TA1

2. Android: Crash With
Reference To Directive

47 min 3 9 33 TA4, TA5

3. Android: Missing Feature 28 min 4 8 50 TA3, TA6
4. Android: Tool Warning 23 min 6 6 100 TA2
5. Android: Crash Without
Reference To Directive

19 min 4 5 80 TA7

6. ROS: Missing Feature 49 min 5 8 63 TR1
7. ROS: Wrong Value Returned 36 min 5 8 63 TR2
8. ROS: Compiler Error 25 min 6 6 100 TR3

Table 3.4: Mean time on task and task completion rate, by consequence. Time on task includes
failed attempts.

participants did not immediately determine the correct fix, often taking 20 or more minutes (TA2,
TA4, TR3). In these cases, participants knew that certain directives were violated but they did
not know how to fix the error. Participants found this frustrating, with one participant stating
“Why don’t they [the documentation] tell me the right thing to use? They tell me it is going to
cause a problem but they don’t tell me what the alternative is.”

Takeaway: I observed that it appears important not only to notify developers of directive
violations but also to help fix directive violations explicitly.

3.4 Limitations

External Limitations. I attempted to mitigate the risk that the results will fail to generalize to
other frameworks or languages by investigating two different frameworks and a wide range of
framework debugging problems. I have probably not discovered all of the benefits and challenges
of framework debugging (or Android and ROS debugging), but I have reduced this risk by first
investigating the space of error presentations that developers face (the consequence categories)
and then investigating those categories in-depth with the human trials. The categorization of
framework directives by violation consequence may not generalize (e.g., other frameworks may
not have recommended development tools), and it may be incomplete; in particular, I did not
consider potential non-functional violation effects, such as degraded performance. The lack of
completeness could motivate future work.

The constructed tasks may not represent solving real-world debugging issues. This concern
was reduced by basing the Android tasks on StackOverflow questions. Additionally, participants
were new to the code in each task, possibly leading to unrealistic code familiarity problems. I
sought to reduce this threat by providing Android participants with a learning period, but I note
that, for example, one participant mentioned that it would be preferable to spend a day reading

35

Figure 3.3: The time participants spent on tasks, with marked successes and failures.

documentation before tackling the tasks. As such, time limitations may have influenced the re-
sults. Finally, the participants in the study may not represent the population of framework users,
and instead might be biased by the large number of student participants. I attempted to address
this limitation by recruiting participants with framework experience: 14 of the Android study par-
ticipants had over a year of industrial Android or Java experience and 7 of the ROS participants
had over a year of ROS experience. It is likely that the study’s results represent the challenges
of developers that are moderately skilled in the framework, and may not apply to multi-year ex-
perts. The sample sizes of both number of trials in each category and number of tasks in each
category are too low of a sample size to draw conclusions with statistical significance. While im-
portant in certain cases, my goal was to perform a qualitative-exploratory study, where statistical
significance was not a primary concern. My goal was to determine what problems developers
have instead of how often these problems occur. Achieving statistical significance with number
of tasks or participants is left to future work.

Internal Limitations. Participants could freely decide, in a low-risk situation, when to quit a
task. Participants were also asked to think-aloud, and prompted to do so by the researcher. These
prompts may have altered the approach a participant would have taken absent the prompt. The
think-aloud component may affect how long participants took to solve the tasks. I believe that the
think-aloud component affected tasks roughly equally, such that tasks which took significantly
longer than the others are likely to have taken longer in a non-think-aloud context. While the
size of the different problems were restricted to directives, the amount of code required to fix the
directive was not consistent across all tasks. However, all tasks could be fixed with ten additional
lines or less. Finally, some participants mentioned they would have been more comfortable if the
researcher were not watching, and if they were able to use their preferred IDE, OS, or laptop.
These irritants may have caused participants to perform differently than they would have in their

36

Figure 3.4: Average time spent per task. Times includes failed attempts. There are not enough
points to demonstrate statistical significance, but the graphs are provided a way to quick compare
average time trends.

preferred environment.

3.5 Summary
In the thesis statement (Section 1.2), the first goal was to understand the challenges of frame-
work development. To investigate these challenges, I performed an exploratory study to better
understand the challenges that developers face when debugging due to the unique aspects of
framework application development. I found that developers encounter challenges when debug-
ging plugins but also benefited from the methods and structure provided by the framework. The
way that frameworks separate the execution flow, data flow, and definitions reduces the locality
of the problem, requiring developers to understand multiple components of the framework ap-
plication to be able to fix the problem. Developers seemed to have extra difficulty fixing state
related issues, where the framework and plugin both expect changes that are non locally clear to
the developer. Developers also would benefit from guidance on how to solve problems in a plu-
gin, because developers occasionally find the way the framework expects the plugin developer to
fix an issue to be not obvious. These results motivate an automated repair approach to fix plugin
problems. I explore automatically identifying these problems in Section 4 and the full automated

37

repair technique in Section 5.

38

Chapter 4

Automated Identification of State-Based
Directive Violations

The insight from the debugging study lead to the conclusion that plugin developers would benefit
from a tool to assist the framework application debugging process, specifically when debugging
state-based directives. Based on this insight, I created an automated repair technique for plugin
problems. The first step in creating an automated technique to assist plugin developers is to iden-
tify when a plugin contains a problem. To identify problems in plugins, I created a specification
language for specifying how to detect state-based directive violations, cases where an object or
other entity in the framework was in an invalid state for a particular method call. FrameFix then
automatically converts specifications written in this language into static analysis checks. Frame-
Fix or plugin developers can use this check to determine if the application contains a problem.
I evaluated the expressivity this language using a taxonomy of object protocols to demonstrate
that the language covers a wide variety of state-based issues. I then implemented the checks
written in the specification language on the F-Droid dataset. I found that a test set of directive
specifications applied to over 80% of real applications and that the specifications were able to
detect multiple problems in real applications.1

4.1 Specification Language Approach

A specification language for testable, state-based directives needs to be able to state the spec-
ification goal in a checkable form. For example, to check the directive setPackage and
setSelector cannot be called on the same Intent instance, the specification would need
to be able to state that for all Intent instances, either setPackage or setSelector can
be called but not both. However, directives written in natural language are often imprecise or
use terms that do not clearly map to something that can be easily checked in static analysis.
For example, in the directive getResources cannot be called in a background Fragment, a

1At the time of writing, the content of this chapter is currently under submission for peer
review with the title FrameFix: Automatically Repairing Statically-Detected Directive Viola-
tions in Framework Applications [22]. Code associated with the project can be found at
https://www.dropbox.com/sh/9b7ayp25oa248dn/AAB88KclAKjWxp3gft2pYgE3a?dl=0.

39

background Fragment is a Fragment that the plugin is not showing to the user. This concept
is difficult to map directly to a static analysis check. There are multiple ways to address this is-
sue, but I chose to require the specification to be written in a checkable form that maps to code to
simplify the implementation. Thus there is some specification burden associated with translating
a state-based directive into the specification language format. Due to the difficulty of translating
the specification into a checkable form, a person knowledgeable in the framework (likely the
framework developer) is needed to translate the directives into the specification language. While
this translation may require expert knowledge, each directives only needs to be specified once,
and then can be checked for all framework plugins or client applications.

Once the specification has been written in the specification language, the tool translates the
specification into a set of functions that are composed and evaluated to determine if the applica-
tion violates the specification. This approach allows the specification language to check a wide
variety of state-based properties.

Figure 4.1 provides the grammar for the directive specification language, which includes
both assertions (which define checks), and control statements, to logically compose assertions.
Assertions can either be a context assertion or simple assertion.

A context assertion limits the assertion to a part of the code base. For example, to check that
Fragment classes contain a definition for the onCreateOptionsMenu method, the context
assertion would be written as checkSubclassesOf(“Fragment”).defines(“
onCreateOptionsMenu”). Some other examples of contexts are nested classes and method
definitions. Since multiple contexts are often required to define the section of code to check (e.g.,
a method definition in subclasses of a certain Class), contexts can be nested with the ‘.’ operator.

Simple assertions do not require a context, but can be modified by a context. For example, a
simple assertion could check if the application defines a necessary configuration file. In contrast,
a simple-context-assertion requires a context, thus it can only be part of a context assertion.

While a context is designed to encode a location to check in the plugin, a state is a list of
methods where the desired object state is known to be true. The state is then checked using the
methods in the stack trace (i.e. if the static path in the call-graph from the current method to the
start of execution contains this method call, then the application is known to be in this state).

A method-call, which specifies the method call to look for in the code — when checking
if setHasOptionsMenu is called in onCreate, setHasOptionsMenu is the method-
call, while onCreate is the context. method-call has an optional parameter-list, which adds
parameter requirements to the call. For example, if the checker is only interested in cases of
setHasOptionsMenu when called with the parameter true, true would be defined as a
required parameter. Required parameters can either be constant values, which only match if the
constants are equal, or identifiers, which only match if the same object reference is used across
multiple method calls (e.g., an object must unregister all receivers that it previously registered).
If a parameter does not need to be matched, a wild card ‘*’ is used.

Two of the simple-context-assertions, firstCannotFollowSecond and secondCannotOccurBe-
foreFirst, are similar but differ on which parameter triggers the check — which means that the
ordering constraint is not triggered if only the non-trigger method call is present. In the first-
CannotFollowSecond check, once the first method call parameter is found, the analysis checks
if the second method parameter preceded the first method call parameter in the context. If this
condition occurs, then the check documents an error. Alternatively, the secondCannotOccurBe-

40

⟨expression⟩ ::= ⟨control-expression⟩ | ⟨assertion-expression⟩

⟨control-expression⟩ ::= and(⟨expression⟩, ⟨expression⟩)
| or(⟨expression⟩, ⟨expression⟩)
| if(⟨expression⟩) then (⟨expression⟩)
| not(⟨expression⟩)
| ⟨created-control-expression⟩

⟨assertion-expression⟩ ::= ⟨simple-assertion⟩ | ⟨context-assertion⟩

⟨simple-assertion⟩ ::= isDefined(⟨item⟩)
| ⟨created-simple-assertion⟩

⟨state⟩ ::= list(⟨methods-where-true⟩)
| ⟨created-state-representation⟩

⟨context-assertion⟩ ::= ⟨context⟩.⟨assertion-for-context⟩

⟨context⟩ ::= methodToCheck(⟨method-call⟩)
| instanceOf(⟨type⟩)
| checkSubclassesOf(⟨class⟩)
| checkClassesWithOuterClassThatAreSubclassOf(⟨class⟩)
| ⟨created-context⟩

⟨assertion-for-context⟩ ::= ⟨simple-assertion⟩
| ⟨simple-context-assertion⟩
| ⟨control-expression⟩
| ⟨context-assertion⟩

⟨simple-context-assertion⟩ ::= contains(⟨method-call⟩)
| in(⟨method-call⟩, ⟨state⟩)
| secondCannotOccurBeforeFirst(⟨method-call⟩, ⟨method-call⟩)
| firstCannotFollowSecond(⟨method-call⟩, ⟨method-call⟩)
| methodCallExclusiveOr(⟨method-call⟩, ⟨method-call⟩)
| ⟨created-assertion-for-context⟩

⟨item⟩ ::= ⟨file-type⟩
| ⟨method-call⟩

⟨method-call⟩ ::= ⟨method⟩
| ⟨method⟩(⟨parameter-list⟩)

⟨parameter-list⟩ ::= ⟨parameter⟩
| ⟨parameter⟩, ⟨parameter-list⟩

⟨parameter⟩ ::= ⟨wild-card⟩
| ⟨constant⟩
| ⟨identifier⟩

Figure 4.1: Grammar for creating the heuristic analyses of directives. Shown here are the analysis
assertions and the possible control statements for combining the assertions.

41

foreFirst check is triggered when the second method parameter is found. The analysis checks
the context to determine if the second method parameter was not preceded by the first method
parameter, and throws an error if this occurs. These two simple-context-assertions could be com-
bined into a three parameter check, such as an enforceOrder call, where the first two parameters
are method-calls and the last parameter specifies the triggering method-call (which could be done
through a new triggering-parameter rule). The two simple-context-assertions were not combined
in the current version of the specification language to reduce the number of rules that needs to be
defined for the language and in attempt to make the triggering method call obvious to a casual
reader of the language.

Control-statements include standard first-order logic operators like and, or, and not.
if-then is provided as convenient shorthand for compositions of assertions.

Since the specification language was not created with an exhaustive list of directives in mind,
users of the language may want to extend the language to new static analysis checks. The spec-
ification language defines extension and customization points through the created-* language
terms, which could be defined by the user of the language.

4.2 Statically Identifying Directive Violations

To translate the specification to a static analysis check, the assertions are converted into compos-
able functions, which are then combined using the control statements. The composable functions
perform different checks depending on the check specified. Some check if a pattern exists in the
code (for example, contains checks if a method call occurs in the expected location). Others
checks for invalid method call ordering using data flow (e.g., firstCannotFollowSecond). The
simple context assertion in checks if calls of a known state exist in all the paths in the call graph
from the currently evaluated method to the start of execution. This combined check produces a
final count of the number of violations of the directive in an application.

Example. Consider the directive:

“findViewById cannot be called before setContentView
has been called”

This directive translated in the API specification language discussed in Section 4.1, would be

checkIfSubclassOf(“Activity”).methodToCheck(“onCreate”).
secondCannotOccurBeforeFirst(“setContentView”, “findViewById”))

This specification statement states to first check if the file contains a class that is a subclass of
Activity. If the file is a subclass of Activity, then, in the onCreate method, require that
setContentView is called before findViewById. However, only require the call order if
a call to findViewById occurs in the method (meaning that findViewById is not required
to follow setContentView). While the check to only investigate classes that are subclasses
of Activity is not mentioned in the directive, this context assertion is included because the
directive only applies to subclasses of the Activity class.

While not explicitly mentioned in the directive, the API specification restricts the check to

42

Category Statement Specification

Initialization getEncoded cannot be called before
init is called on an
AlgorithmParameters
instance

instanceOf(“AlgorithmParameters”).
secondCannotOccurBefore-
First(“init”,“getEncoded”)

Deactivation a closed BufferInputStream
cannot be reopened

instanceOf(“BufferInputStream”).
firstCannotFollowSecond(“open”,“close”)

Type qualifier a Collection.
unmodifiableList instance
cannot call the add method of its List
superclass

instanceOf(“Collection.unmodiableList”).
not(contains(“add”))

Dynamic preparation For an Iterator instance, remove
can only be called after next

instanceOf(“Iterator”). firstMustOccurBe-
foreSecond(“next”,“remove”)

Boundary there a limited number of valid next
calls to an Iterator instance

instanceOf(“Iterator”).
callLimit(“next”,7)

Redundant operation an AbstractProcessor instance
cannot call init twice

instanceOf(“AbstractProcessor”).
callLimit(“init”,1)

Domain mode an ImageWriteParam instance
can only call
setCompressionType when the
instance is in explicit compression mode

instanceOf(“ImageWriteParam”).
firstMustOccurBeforeSecond(
“setCompressionMode(MODE -
EXPLICIT)”,
“setCompressionType”)

Table 4.1: API specifications for the examples of the different categories from the Beckman
taxonomy.

the onCreatemethod because an Activitywith a user interface should set the user interface
by calling setContentView in onCreate. The checker will then check the execution paths
of onCreate to make sure that findViewById is not called before setContentView.

4.3 Specification Evaluation
To evaluate if the API specification approach can apply to a diverse set of specification require-
ments, I evaluated the specification approach using the Beckman taxonomy of object proto-
cols [13]. Beckman manually classified the different types of over 600 object protocols found in
4 programs or libraries. Beckman provided an example protocol for each category (except for
the ‘other’ category, so I excluded it). I then checked if the example protocols could be encoded
in the directive specification language.

The encoded API specifications for each of the Beckman taxonomy categories are shown
in Table 4.1. Five of the seven examples translated easily to into the specification language.
For the other examples, a new simple-context-assertions had to be defined to limit the number
of method calls for an object. The Boundary category was the most difficult to translate into
the directive specification language, because the example checked a dynamic property (limiting
calls to the number of items in the Iterator). While not a perfect solution, if I assume that the
number of valid calls can be determined statically (in this example, I use the value seven), then
the specification language can handle this case. Incorporating dynamic checks to the language

43

would address this issue, and is left to future work.

4.4 Directives Implemented in Tool
Another important evaluation of the check system is to show that the static analysis system can
be used to check if real applications violate state-based directives. To evaluate the static analysis,
I implemented checks for a set of directives taken from the Android Activity, Fragment,
and Intent classes. The directives are listed here for reference.

1. Directive name: GetActivity

Directive text: getActivity can only be called when the Fragment has been attached to
an associated Activity.

Explanation: A Fragmentmust be in an Activity-attached state, otherwise getActivity
returns null

Result of violating the directive: NullPointerException

Directive specification:
checkSubclassOf(“Fragment”).in(“getActivity”, “activityAttachedState”)

activityAttachedState = list(“Fragment.onAttach”, “Fragment.onCreate”,
“Fragment.onCreateView”, “Fragment.onViewCreated”, “Fragment.onActivityCreated”,
“Fragment.onStart”, “Fragment.onResume”, “Fragment.onPause”, “Fragment.onStop”,
“Fragment.onDestroyView”, “Fragment.onDestroy”, “Fragment.onDetach”,
“Fragment.onActivityResult”, “Fragment.onClick”, “Fragment.onPreferenceClick”)

2. Directive name: OptionsMenu

Directive text: To use a Fragment’s OptionsMenu, the application must contain both the
call setHasOptionsMenu(true), and define onCreateOptionsMenu

Explanation: If the Fragment is in the (static) has-OptionsMenu state, through the presence
of a defined onCreateOptionsMenu, then the Fragmentmust call setHasOptionsMenu
; Alternatively, if the Fragment can request OptionsMenu (through a call to
setHasOptionsMenu(true)), then it must start in the has-OptionsMenu state.

Result of violating the directive: The OptionsMenu will not appear.

44

Directive specification:
subClassFragment(Fragment).or(if(contains(“onCreateOptionsMenu”)) then (
methodToCheck(“onCreate”).contains(“setHasOptionsMenu(true)”), if(
methodToCheck(“onCreate”).contains(“setHasOptionsMenu(true)”)) then (
contains(“onCreateOptionsMenu”))

3. Directive name: SetArguments

Directive text: setArguments cannot be called until after the Fragment is instantiated.

Explanation: Once a Fragment instance has passed out of its instantiation state, a call to
setArguments is illegal

Result of violating the directive: RuntimeException

Directive specification:
or(checkSubclassOf(“Fragment”).in(“setArguments”, “fragmentInitializedState”),and(
methodToCheck(“onClick”).contains(“setArguments”), and (methodToCheck(“onTabSelected”).
contains(“add”)), methodToCheck(“onTabUnselected”).contains(“hide”))

fragmentInitializedState = list(“Fragment.onAttach”, “Fragment.onCreate”,
“Fragment.onCreateView”, “Fragment.onViewCreated”, “Fragment.onActivityCreated”,
“Fragment.onStart”, “Fragment.onResume”, “Fragment.onPause”, “Fragment.onStop”,
“Fragment.onDestroyView”, “Fragment.onDestroy”, Fragment.onDetach”,
“Fragment.onActivityResult”, “Fragment.onClick”)

4. Directive name: Inflate

Directive text: The onCreateView method in a Fragment that will attach to the user inter-
face, should return the result of a call to inflate where the last parameter is false.

Explanation: If the Fragment will become part of the Activity user interface (a static state
designation) then the fragment’s View must be initialized correctly

Result of violating the directive: Crash due to an internal framework error.

Directive specification:
checkSubclassOf(“Fragment”).not(checkSubclassOf(“DialogFragment”))
.methodToCheck(“onCreateView”).contains(“inflate(*,*,false)”)

45

5. Directive name: FindViewById

Directive text: setContentView must be called before findViewById.

Explanation: Android does not associate an ID with a View until the View is in the initialized
state.

Result of violating the directive: RuntimeException

Directive specification:
checkSubclassOf(“Activity”).methodToCheck(“onCreate”).
firstMustOccurBeforeSecond(“setContentView”, “findViewById”)

6. Directive name: GetResources

Directive text: getResources cannot be called in a background Fragment.

Explanation: getResources can only be called on a Fragment when it is attached to an
Activity, a state that a background Fragment is not in by definition.

Result of violating the directive: RuntimeException

Directive specification:
checkSubclassOf(“AsyncTask”).checkClassesWithOuterClassThatAreSubclassOf(“Fragment”).
not(contains(“getResources”))

7. Directive name: SetInitialSavedState

Directive text: setInitialSavedState cannot be called after the Fragment is attached
to an Activity.

Explanation: A Fragment cannot be initialized once it is in the attached-to-Activity state.

Result of violating the directive: RuntimeException

Directive specification:

46

subClass(“Fragment”).not(in(“setInitialSavedState”, “fragmentInitializedState”))

fragmentInitializedState = list(“Fragment.onAttach”, “Fragment.onCreate”,
“Fragment.onCreateView”, “Fragment.onViewCreated”, “Fragment.onActivityCreated”,
“Fragment.onStart”, “Fragment.onResume”, “Fragment.onPause”,
“Fragment.onStop”, “Fragment.onDestroyView”, “Fragment.onDestroy”, Fragment.onDetach”,
“Fragment.onActivityResult”, “Fragment.onClick”)

8. Directive name: SetTheme

Directive text: setTheme cannot be called after setContentView.

Explanation: It is an error for an Activity to set an application theme after it has entered the
View-initialized state

Result of violating the directive: RuntimeException

Directive specification:
checkSubclassOf(“Activity”).methodToCheck(“onCreate”).
firstCannotFollowSecond(“setContentView”, “setTheme”)

9. Directive name: SetPackageSetSelector

Directive text: setPackage and setSelector cannot be called on the same Intent
instance.

Explanation: Intent instance is already in the package-set or selector-set state, it cannot enter
the other state.

Result of violating the directive: RuntimeException

Directive specification:
instanceOf(“Intent”).methodCallExclusiveOr(“setPackage”, “setSelector”)

47

Directive # of apps Percentage (%) # with Error % of
violation check applies of total error apps that apply

GetActivity 950 53.9 458 48.2

OptionsMenu 194 10.5 44 22.7

SetArguments 605 32.6 3 0.5

Inflate 435 23.4 13 3.0

FindViewById 368 19.8 0 0.0

GetResources 21 1.1 7 33.3

SetInitialSavedState 60 3.2 0 0.0

SetTheme 368 19.8 0 0.0

SetPackageSetSelector 554 29.8 0 0.0

At least one directive applies 1572 84.7 - -

Table 4.2: This table shows the number of applications in the F-Droid dataset where the directive
checks apply. It also shows the number of applications where the checks signaled a possible
error. The second and third column are the count and percentage of applications in the dataset
that applied to each directive violation specification. At least one check means the number of
applications where at least one directive could apply to the application — applications contain
the method call mentioned in the directive. The fourth and fifth column are the number of
violations detected in the F-Droid dataset and the percentage of detected errors out of the number
of applications where the check applies. - means that this value was not calculated. The
directives selected in Section 4.4 occur in a large number of Android applications (about 85%)
and are important for development. Since the static analysis is neither sound nor complete, and
certain analyses have a high false positive rate, the number of detected errors may not accurately
represent the number of directive violations in the application.

4.5 Applicability of Directives Covered

To investigate if the chosen directives apply to a large percentage of Android applications, I built
an implementation of the specification language on top of FlowDroid, an Android static analysis
tool [9]. I then collected 1,964 applications from F-Droid2, a catalog of open source Android
applications. FlowDroid threw an error when analyzing 108 of the applications, so those were
removed from the dataset, leaving 1,856 applications to analyze. I downloaded the applications
and determined if the applications used the methods mentioned in the directives discussed in
Section 4.4. Table 4.2 shows how many applications use each directive in the dataset. These
percentages are calculated out of the number of applications in the dataset for which FlowDroid
was able to produce a call graph (1,865). The main takeaway from this table is that at least one
directive applies to 84.7% of the applications in the dataset, demonstrating that the directives

2https://f-droid.org/en/ (dataset: https://doi.org/10.5281/zenodo.3698376)

48

covered in this investigation apply to wide range of applications.

4.5.1 Error Detection on F-Droid
With the goal of evaluating how well the checkers apply to a diverse set of applications, I ran the
checkers on the applications in the F-Droid dataset. I found that 138 applications in the dataset
produced call graph errors in Soot and were unable to be evaluated by the analysis. I then found
that 65 of the applications produced other errors, often an analysis failure due to the application’s
language — the current implementation of FrameFix assumes that the application is written in
Java, while some Android applications in the dataset were written in Kotlin. After removing
the applications with errors from the evaluation, I ran the checkers over the remaining 1,761
applications in the dataset.

Only five checkers found errors in the applications. The errors counts detected by the five
checkers are shown in Table 4.2. The high number of GetActivity errors is due to the fact that
the checker heuristically checks if the method is used in the right context, and throws an error if
GetActivity is used in any context that can not easily be determined to be correct.

4.6 Limitations
There are a few limitations to the current approach. The goal of the specification language is
to be sufficiently expressive to support a study of automatic repair of directive violations. It
does not include all possibly useful features in specifying all conceivable state-based directives.
For example, I assume the number of arguments to a method are fixed; it also does not support
explicitly stating alternative contexts created by program branching in the specification, but pro-
gram branching can be checked in the underlying data flow analysis. The specification language
supports extension and customization through the created-* language terms. Another limitation
is that it might be difficult for the average framework application developer to translate a direc-
tive into a check in the specification language. This difficulty occurs because natural-language
directives are not always easily translated into a precise definition. My approach addresses a part
of this limitation by allowing multiple developers to reuse the same specification, meaning that
the specification only has to be written once by someone knowledgeable with the framework.
The other part of this limitation is that it is easy to specify directive checks in a heuristic way
that leads to neither sound nor complete results. This limitation was not addressed in this work
and may be addressed in the future.

49

4.7 Inspiration for Specification Language

The specification language was inspired by fluent interfaces, such as Truth [39], and other
framework constraint languages (SCL [45], the Fusion constraint language [21], and design pat-
terns [32]). Fluent interfaces are an approach to specifying program steps, such as filtering a
dataset, using method chaining, nested functions, and object scoping [35]. Fluent interfaces
are commonly implemented in a way such that a chain of method calls perform modifications
on an object. By contrast, my specification language instead uses the chain of method calls to
add context restrictions to the final analysis check in the chain. These preceding method calls
either add context restrictions (which are converted to if statements that limit the location of the
static analysis checks) or describe how to combine independent code properties to check into a
single detected violation. One similar fluent interface is Truth. Truth is a library for writing flu-
ent Android assertions [39], which dynamically checks object values instead of the static check
performed by my specification language.

This approach was also inspired by other framework constraint specification languages. I
chose not to use them directly primarily because of the overhead associated with specifying
a directive violation in those constraint languages. To illustrate the differences between my
constraint language and other constraint languages that inspired my constraint language, I will
use the directive “setContentView must be called before findViewById” as an example,
In my specification language, this would be written as follows.

checkIfSubclassOf(“Activity”).methodToCheck(“onCreate”).
firstMustOccurBeforeSecond(“setContentView”,“findViewById”)

This specification says to check that findViewById does not occur unless
setContentView occurs first in the onCreate method of an Activity class. In this case,
both the checkIfSubclassOf and the methodToCheck specification are context specifications,
which limit the analysis to methods of that name in classes of that type. The
onCreate method specification is added even though it was not mentioned in the directive
because the setContentView method occurs in the onCreate method of an Android appli-
cation.

One source of inspiration was the Structural Constraint Language (SCL), where program con-
straints are written as functions [45]. In Structural Constraint Language, the preceding directive
is specified as follows.

1 def Objects as class(``Activity'')
2
3 for p: packages, c:classes(p), m: methods(c), ce: exprs(m)
4 (
5 //if a defined onCreate method contains the call findViewbyID
6 (name(m)==``onCreate'' & method(ce)=``findViewById'')
7 =>
8 //there exists a call to setContentView in the method
9 (exists e: exprs(m)

50

10 (method(e) =``setContentView'' &
11 //and it occurs before findViewById
12 (exists cde: cd(e)
13 (method(cde)=``findViewById''))
14)
15)
16)

This approach specifies to directly iterate over the classes and methods in a project, while my
fluent style does this implicitly. My approach also reduces some of the required & operators
through call chaining.

Another source of inspiration was the Fusion constraint language [21], which is designed
to allow specifying constraints between multiple objects. Fusion is written as method annota-
tions, which means that the annotation would need to occur before each overridden onCreate
method. An example of specifying this constraint in Fusion is as follows, using the user-defined
methods precededBy(m), which defines that method m occurs before the current method call,
and FoundView, which returns the correct instance of the view.

1 @Constraint(
2 op="findViewById",
3 trigger="{}",
4 requires="precededBy(setContentView)",
5 effect={"FoundView(v)"})
6 @Override
7 protected void onCreate(Bundle savedInstanceState){

This specification approach puts an annotation burden on developers, requiring developers to
place the check in the correct spot. This approach, when compared to my approach, makes it
easier for the developer to verify where the constraint is being checked. However, there may
be cases where the same constraint applies to multiple method calls (such as overridden meth-
ods), where the developer would have to copy the constraint to multiple locations, increasing the
chance that the developer mistakenly forgets to add the constraint to a method where it applies.

A third source of inspiration was design patterns [32]. This approach specifies constraints as
an XML specified pattern. This approach adds overhead with the XML end tags and by listing
methods in order, it is harder to specify that the first must precede the second method only if the
second method exists.

While these three similar approaches can be used to specify directives of interest, my ap-
proach has a more minimal specification requirement, which I have shown with two examples.

51

4.8 Summary
In this chapter I presented an API-based specification language to specify static analysis checks
of framework state constraints. While this section does not directly address any part of the thesis
statement, the static analysis check is an important subcomponent of the automated repair process
mentioned in the thesis statement. The static analysis is important because the automated repair
technique needs to be able to identify the approximate fault location in plugins, to guide the repair
location of generated possible fixes. The repair technique also needs to be able to determine
when the problem has been removed from the plugin. For the static analysis to be useful for
automated repair, I need an analysis technique that I can identify the plugin repair problems
of interest in real applications. Thus, I evaluated the specification language on a taxonomy of
object protocols and found to be able to support seven of the eight categories. I also evaluated
the specification language and checker on a set of directives. I found that five of the nine static
analysis checks were able to detect problems in real applications. This static analysis technique
meets the requirements to be used as the fault localization component of the automated repair
technique, discussed in the next chapter.

52

Chapter 5

FrameFix

5.1 Introduction
The debugging study (Section 3) showed that plugin developers would benefit from a system
that recommended fixes to complement identifying the problem. An automated program repair
technique for plugins is one way to recommend fixes to developers, and has been shown to
help in the debugging process [87]. Automated program repair is a research area for generating
possible solutions to known problems in a program. While a repair technique has been created
to fix crashing Android applications, no technique has been created to fix the other problems
that plugin developers encounter, such as the plugin silently missing a feature. To address this
problem, I created FrameFix, an automated repair technique for framework plugins. FrameFix
uses the static analysis checks discussed in Section 4 to locate the problem in a plugin and then
determine if the problem is fixed. The unique approach of FrameFix is that FrameFix uses
unique aspects of framework plugin development to guide its repair strategies. First, FrameFix
tries to move problematic methods to the correct location in the plugin. If that approach does
not fix the problem, FrameFix will then use similarly named methods off GitHub, an online
source code repository tool, to guide proposed changes in the current application. While there
are many important properties of an automated repair technique, such as usability, at minimum,
an automated repair technique needs to be able to fix a diverse set of problems and be able to
repair problems in real applications. Thus, FrameFix was evaluated on a set of manually built
applications, problems detected in the F-Droid dataset, and problems randomly injected into
F-Droid applications.1

1At the time of writing, the content of this chapter is currently under submission for peer
review with the title FrameFix: Automatically Repairing Statically-Detected Directive Viola-
tions in Framework Applications [22]. Code associated with the project can be found at
https://www.dropbox.com/sh/9b7ayp25oa248dn/AAB88KclAKjWxp3gft2pYgE3a?dl=0.

53

Figure 5.1: The high-level FrameFix process. The framework developer creates the analysis
check specification (Section 4.1) and defines the variables required to perform the repair for that
problem. When a developer is developing an application using the framework, the developer can
run the analysis check to see if the analysis check detects any problems in the application. If a
problem is detected, FrameFix will attempt to repair the application by generation possible fixes
(Section 5.3). If a fix fails to pass the checker and application test cases, FrameFix generates
another possible fix. If FrameFix is able to generate a repair that passes both the analysis check
and all the application’s test cases, the application is considered to be fixed.

5.2 FrameFix Approach
FrameFix is an end-to-end approach for statically detecting and repairing certain classes of
framework-specific errors. Figure 5.1 provides a high-level overview of the approach. A knowl-
edgeable engineer (likely a developer of the framework) specifies directives relevant to correct
usage of that framework, in a way that allows for statically detecting their violation (Section 4)
and, ultimately, repairing them.2 FrameFix requires the engineer to specify the static analysis
check and a few other variables for the repair process, such as terms to guide the GitHub search.
The cost of writing these specifications is highly amortized, and can be considered part of the
process of documenting correct usage (which developers already do). Any application developer
with this specification information can then use FrameFix to statically check for violations of the
associated directives in client plugins (Section 4.2)

FrameFix attempts to construct repairs for detected violations (Section 5.3). The static vio-
lation report serves to localize the error. Once the error is localized, FrameFix leverages unique
aspects of the framework application development to guide automated repair of the framework
application. Specifically, FrameFix leverages the object protocols and inversion of control in-
herent in framework applications to repair framework application problems. Since frameworks
often change object states in internal framework code, FrameFix can move method calls that
have incorrect states to other parts of the application with different states, removing the state
problem. Frameworks also implement inversion of control through callbacks, method calls with
specific signatures, FrameFix can use the signatures to find applications that contain the same

2Inferring specifications from natural language documentation or source code analysis may be possible, but is
left for future work.

54

Figure 5.2: The steps and ordering of the FrameFix repair process.

call signature and use code from other applications which implemented the callbacks correctly.
FrameFix then validates generated repairs using the static analysis check, as well as by com-

piling the application and running any test cases associated with the application. Following a
standard generate-and-validate repair paradigm [60], FrameFix attempts multiple repairs until
either a time limit is exceeded, or one is found that satisfies all validation checks.

There are many properties of a successful automated repair technique.

5.3 Automatic Repair Technique
As shown in Figure 5.1, to initialize a repair, someone knowledgeable with the framework will
need to define a few variables for the repair process. These variables include the method of
interest and any possible second method of interest (the method or methods that were checked).
The likely location of the methods of interest if one exists (such as the onCreate method).
And search terms that can be used to narrow down the GitHub search. These variables should be
defined when the check specification is written.

FrameFix tries three strategies to repair detected violations; Figure 5.2 provides an overview.
FrameFix tries three high-level repair strategies. They are ordered by the likely worst-case time
of each step — smallest to largest. The strategies in order:

1. Method reordering. Frameworks’ heavy use of object protocols can lead to problems
associated with calling methods while in the wrong state. One possible solution to this
problem is to reorder the problematic method calls, to see if an incorrect method call
order leads to one of the methods being called in the wrong state. FrameFix therefore
starts by exploring rearrangements of the methods mentioned in the directive specification
(Section 5.3.1).

2. Method movement. Directive violations can also be caused by calling methods when the
application is not in the appropriate framework state. Thus, FrameFix next tries moving
implicated method calls to alternative locations altogether, in an effort to move a necessary
call to a location corresponding to an appropriate state (Section 5.3.2).

3. Callback-informed search. Inversion of control is typically implemented via methods
with framework-specific type signatures and, as such, applications typically interact with

55

the framework through highly rigid API calls. This provides a useful filtering mechanism
to constrain the search space of similar code suitably to inform repair. Thus, if the preced-
ing attempts do not work, FrameFix searches GitHub for similar code to inform a candidate
repair, based on the method signatures used in the code under repair (Section 5.3.3).

The goal of the repair technique is to fix the detected problem while also retaining the correct
functionality of the application. Thus repairs are validated three different ways. The first valida-
tion step is the static analysis check. If the proposed fix passes the checker, then the problem has
been removed. The second validation FrameFix performs is to compile the changed application,
in attempt to verify that the proposed fix did not produce an invalid program. Unfortunately, it
is still possible that the proposed repair removes the problem and removes other necessary parts
of the application as well. For example, the technique could trivially remove the error by delet-
ing the failing line and any other lines in the application that depend on the result of that line.
To avoid this problematic result as a recommended solution, FrameFix’s third validation step
evaluates repairs on the available test cases for the application. FrameFix assumes that that the
required functionality of the application is encoded in the test cases, and thus uses the test cases
to ensure the proposed fix retains any required functionality. If none of the proposed repairs in a
set amount of time produce a fix, then FrameFix was unsuccessful in fixing that error instance.

5.3.1 Method Order Repair
Since frameworks heavily use object protocols, in both internal framework code and in how
objects are used in framework applications, an application bug may mean that a method call
occurs in the wrong object state. For example, a call to get a resource view item in Android
cannot occur before the view has been initialized — otherwise an exception will occur that can
crash the application. In this case, the Activity is performing steps in the wrong order, but
the calls would be valid if they were performed in the other order. FrameFix uses the insight that
method order is important to generate repairs that reorder method calls in the current method
definition. FrameFix only tries this repair approach if multiple methods are mentioned in the
repair specification variables provided by the initial repair specifier. These multiple methods are
intended to match the number of variables mentioned in the directive. FrameFix only tries to
reorder the methods mentioned in the specification variables.

FrameFix generates three possible repairs for this strategy: 1) move the originally later
method before the occurrence of the other method, 2) move the originally first method after
the occurrence of the other method, 3) delete the occurrence of the later method. For example,
assume that method foo should be called before method bar, but bar occurs on line 3 and
foo occurs on line 6. Also assume that line 4 uses the result of bar, as shown in Figure 5.3a. In
this strategy, the first proposed repair is to move foo before bar (move line 6 to be a new line
4 and move line 4 and 5 back 1 line), as shown in Figure 5.3b. The second proposed repair is
to move line 3 and line 4 (the lines that use bar) after line 6 (the line that uses foo), as shown
in Figure 5.3c. If neither of these repairs pass the validation check, the last proposed repair will
propose to delete the line with the last method of interest (in this case, line 6 with foo), shown
in Figure 5.3d.

56

1 public int exampleMethod() {
2 ... //unimportant line
3 int i = bar();
4 someOtherCall(i);
5 ...
6 foo();
7 }

(a) The original example code.

1 public int exampleMethod() {
2 ... //unimportant line
3 foo();
4 int i = bar();
5 someOtherCall(i);
6 ...
7 }

(b) The an example of moving foo before the
bar method call.

1 public int exampleMethod() {
2 ... //unimportant line
3 ...
4 foo();
5 int i = bar();
6 someOtherCall(i);
7 }

(c) The an example of moving bar after the
foo method call.

1 public int exampleMethod() {
2 ... //unimportant line
3 int i = bar();
4 someOtherCall(i);
5 ...
6 }

(d) An example of deleting the second method
call of interest (foo).

Figure 5.3: Examples of the different repairs tried by the method order repair technique.

57

5.3.2 Method Move Repair
Method reordering addresses another instance of bugs caused by object protocols. Since frame-
works often change the state of objects internally, developers can call API methods in the right
order, but at program points when the framework internals are in the incorrect state. This prob-
lem can occur when a method call occurs in the wrong point of the framework life-cycle or
before other required state changes have occurred. One example is that the Fragment method
getActivity can only be called after the Fragment has been completely initialized. This
type of violation can be fixed by moving the problematic call to a different method definition,
where hopefully the objects associated with the method call are in the correct state. Methods in
the class that contain the problem under repair are tried first, followed by other methods in the
application.

When an application implicitly calls a method on the current object instance, moving the
method to a new class or static method requires adding the object instance to the method
call. When moving an implicitly called method, FrameFix first tries to move the method call to
locations where a variable instance of that type already exists. If those locations do not produce
a fix, then, FrameFix creates a new instance of the object and calls the method on that object in
each new tried location. These locations start with the static locations in the current class file
and then other methods in the application.

For example, assume there is a class Foo with a failing implicit call to instance method bar,
as shown in Figure 5.4a. When the bar method is moved to class Baz, first a new instance of
Foo will be created. Then that instance will call the bar method, so the new code addition will
compile, shown in Figure 5.4b. This is often needed for the setArguments directive, where
setArguments needs to be called before the Fragment is instantiated.

When FrameFix moves certain method calls, it tries to ensure that the parameters used in the
method call are still valid in a different context. FrameFix achieves this by scanning the preced-
ing lines in the method definition for references to variables used in the method call to move.
FrameFix will then copy any preceding lines in the current method where the parameters are al-
tered. For example, if one of the parameters are set in the preceding line, then the preceding line
will also be copied when moving the method (the line is copied in case that changed variable is
still needed in a later line). If the moved code requires try-catch statements to compile, FrameFix
will also copy the original try-catch statements to the next context.

5.3.3 Callback-Based Repair
The difficult part of using reference applications from GitHub is that there are many possible
code sections to use as a reference. Since frameworks often implement inversion of control
through methods that have the same signature across all applications, my insight is that there
are likely other instances of the same callback that can be referenced to fix a directive violation.
FrameFix will try to repair a faulty method by using examples of that method from GitHub.

If the previous repair techniques do not identify repairs, FrameFix searches GitHub for ap-
plications that implement similar methods (determined by the name of the method) and other
keywords provided with the directive specification (e.g., for inflate, the keywords ’inflate’ and
’Fragment’ are also included). Once a matching application is found, the application code from

58

1 public class Foo {
2
3 public int m1() {
4 bar();
5 ... //unimportant line
6 }
7
8 public void bar() {
9 ...

10 }
11 }
12
13 public class Baz {
14 public int m2() {
15 ...
16 }
17 }

(a) The original example code.

1 public class Foo {
2
3 public int m1() {
4 ... \\unimportant line
5 }
6
7 public void bar() {
8 ...
9 }

10 }
11
12 public class Baz {
13 public int m2() {
14 Foo f = new Foo();
15 f.bar();
16 ...
17 }
18 }

(b) An example of how FrameFix moves an im-
plicit method to a new class, creating a new in-
stance in the process, if no instance of the class
is already found in the new context.

Figure 5.4: An example of the move method repair when moving a method to a new class.

59

To use a Fragment’s OptionsMenu, the application must contain both the call
setHasOptionsMenu(true) and define onCreateOptionsMenu

(a) The directive used in the example.

1 public void onCreate(@Nullable Bundle savedInstanceState) {
2 super.onCreate(savedInstanceState);
3
4 // set the user's search query
5 searchQuery = getArguments().getString(QUERY);
6 }
7 ... //unimportant code
8 public void onCreateOptionsMenu(Menu menu, MenuInflater

inflater) {
9 ...

(b) Example code that violates the directive. onCreateOptionsMenu is defined but
setHasOptionsMenu(true) is not called.

curl -n https://api.github.com/search/code?q=onCreate+Fragment+ onCreateOptions-
Menu+in: file+language:java?page=1&per page=100&sort=stars&order=desc

(c) The search query used to find similar code from GitHub. Terms in bold are developer defined repair
variables related to the directive.

3 public void onCreate(
@Nullable Bundle

4 savedInstanceState) {
5 super.onCreate(

savedInstanceState);
6 setHasOptionsMenu(true);
7 }

(d) The onCreate method from GitHub used for
reference. This is compared to the onCreate
method in the original code.

1 setHasOptionsMenu(true);

(e) The add list, which FrameFix creates by
looking for lines in the reference application’s
method (onCreate method in Figure 5.5d)
that are not used in the original application’s
method (onCreate method in Figure 5.5b).

60

1 public void onCreate(@Nullable Bundle savedInstanceState) {
2 super.onCreate(savedInstanceState);
3
4 // set the user's search query
5 searchQuery = getArguments().getString(QUERY);
6 setHasOptionsMenu(true); //Added line!!!
7 }

(f) The repaired application with the line setHasOptionsMenu(true) added from the added list.

Figure 5.5: An example of how the callback-based repair fixes an application problem.

GitHub is reduced down to the method call of interest (e.g., if the repair is set to look for in-
stances of the onViewCreated method, the application off GitHub is reduced down to only
the onViewCreate method). FrameFix will then compare the method from GitHub to the
method with the same signature in the application to repair. (using the same example, FrameFix
compares the onViewCreate method from GitHub to the onViewCreate method in the
application to repair). An example of this repair technique is shown in Figure 5.5.

To compare the two methods, the methods are converted to a list of method calls and a list
of types per line, as shown in Figure 5.6. The intuition behind this approach is the application
under repair likely needs to correct a method call or correct the types in the method call. Thus,
the application under repair is first evaluated against the method from GitHub for method call
differences, and then for type differences.

First, the method calls per line are compared. If the a line in the GitHub application’s method
is found to contain a method that is not in the application under repair, that line is saved as a
possible line to add. If a line in the application under repair contains method call that is not used
in the GitHub application’s method, then that line is saved in the possible deletion list. The first
proposed repairs will try to add a single line from the line to add list to the application under
repair. If the proposed repairs do not pass the validation tests, then the next proposed repairs will
try to delete a single line from the line to remove list. If deleting a single line does not produce
a valid fix, then the next repairs generated will try all combinations of adding a single line from
the line to add list and removing a single line from the line to delete list. This process repeats for
adding and removing two or more lines until all add/delete combinations have been proposed.
When lines are added from the GitHub application to the application under repair, the instance
variables in the lines are changed to instance variable names with the same type in the application
under repair.

If the application under repair is still not fixed, FrameFix will then recreate the addition and
deletion list, but this time by comparing the types of variables in the lines of the method to
compare. Lines are not directly compared (line 4 in one method is not always compared to line 4
in the other method). Instead, lines are compared on the order in which an instance of that type
is found (e.g., if a View instance occurs on line 3 and line 5 one method and line 2 and 4 in the
other method, then line 3 will be compared to line 2 and line 4 will be compared to line 5), to
avoid the case where an added line always causes the following lines to not match. One exception

61

1 @Override
2 public View onCreateView(LayoutInflater inf, ViewGroup cont,

Bundle saved) {
3 View v = inf.inflate(R.listView, cont, false);
4 dLE = new DLE(this, this, getActivity());
5 ((ListView) v.findView(R.DirList)).setAdapter(dLE);
6 return v;
7 }

(a) The original code.

3 inflate()
4 DLE(), getActivity()
5 findView(), setAdapter()

(b) The code converted to a list of method calls in each line. Constructors are included in the method call
list and lines can contain multiple method calls.

3 View, LayoutInflater, constant_reference, ViewGroup, false
4 DLE
5 View, constant_reference, DirList
6 View

(c) The code converted to types per line. R. references become constant references. true and false
are separate type values. this references and method call return types are not included (unless the call
is to a constructor) for ease of implementation purposes.

Figure 5.6: An example of how a method definition is turned into the list of method calls and
types in each line. The repair technique uses both approaches to determine differences between
the application to repair and the reference application from GitHub.

62

1 @Override
2 public View onCreateView(LayoutInflater inflater, ViewGroup

container,
3 Bundle savedInstanceState) {
4 View v = inf.inflate(R.listView, cont, true);
5 dLE = new DLE(this, this, getActivity());
6 ((ListView) v.findView(R.DirList)).setAdapter(dLE);
7 return v;
8 }

(a) The original code with the problem

1 @Override
2 public View onCreateView(LayoutInflater inf, ViewGroup cont,

Bundle saved) {
3 View v = inf.inflate(R.listView, cont, false);
4 dLE = new DLE(this, this, getActivity());
5 ((ListView) v.findView(R.DirList)).setAdapter(dLE);
6 return v;
7 }

(b) The example code off GitHub. This only differs from the original code by the type of the boolean on
line 3.

3 View, LayoutInflater,
constant_reference,
ViewGroup, true

4 DLE
5 View, constant_reference,

DirList
6 View

(c) The the original code converted to types per
line.

3 View, LayoutInflater,
constant_reference,
ViewGroup, false

4 DLE
5 View, constant_reference,

DirList
6 View

(d) The code from GitHub converted to types
per line. Notice the difference from the original
types on the first line.

1 View v = inf.inflate(R.
listView, cont, true);

(e) The lines to delete list. These are the lines
in the original code with type differences from
the application on GitHub.

1 View v = inf.inflate(R.
listView, cont, false);

(f) The lines to add list. These are the line in
the code from GitHub that have type differences
when compared to the original code.

Figure 5.7: An example of how the original code and the code from GitHub are converted in to
lines to add and line to delete lists.

63

to evaluating the lines by type is that true and false are treated as different types. If a line
is found to contain a type difference in the application under repair, then that line is added to the
lines to delete. If a line is found to have a unique type in the application from GitHub, that line
is added to the list of lines to add. All combinations of adding and deleting type lines are used to
generate proposed fixes, the same way FrameFix generated repairs using method difference.

If FrameFix is unable to find a successful repair for the selected referenced application, an-
other sample application is selected and the process is repeated for the new application. The
sample applications are selected in the order returned from a GitHub API request for code that
contains the method name of interest. This process is repeated until a set timeout is reached,
currently set at one hour.

5.4 Evaluation
I evaluated FrameFix to demonstrate three claims: 1) that the directive violations covered by
FrameFix apply to diverse set of applications in the framework, 2) that FrameFix works on real
applications, and 3) FrameFix can repair problems in a diverse set of applications.

5.4.1 Repair of Manually Built Applications
To evaluate the repair process, I manually created applications that violated the nine Android
directives mentioned in Section 4.4. I knew from the earlier investigation that these directives
apply to a large number of real world applications (Section 4.2), so if the repair technique could
fix these problems, then the fixes would apply to real-world applications. I created the repair sce-
narios by starting with a base application. The base application was either a sample application
from the Google website3 or, if the directive did not apply to the sample application, a default
Activity application from AndroidStudio. Then, if I had a StackOverflow question that cor-
responded to the directive, I added code similar to the code/scenario mentioned in the question to
the base application. For the violation that did not have a corresponding StackOverflow question,
I created the application with a violation by manually creating code that violated the directive.

Framefix was able to fix seven out of the ten cases (counting the two ways to violate Op-
tionsMenu as different cases). Three scenarios were not repaired due to limitations in the cur-
rent approach. For the OptionsMenu case, the technique is unable to repair the case where
onCreateOptionsMenu is undefined because a successful repair would require adding a
new method to the application, which is not currently supported by the repair approach. The
GetResources and SetArguments encounter similar problems. While the problematic methods
could just be deleted to pass the check, often the application needs an alternative way to pass
the data that the user intended with these calls, which requires adding significant code to fix.
Addressing these problems are possible interesting areas of future work, particularly trying to
guide repairs from the functionality of the failing method call.

3github.com/googlesamples/android-LNotifications

64

Application Directive Violated Repaired? Repair Type

DeltaCamera GetActivity Yes Move Method

PSLab GetActivity Yes Move Method

RXDroid OptionsMenu (tests fail) GitHub

RXDroid Inflate (tests fail) GitHub

Table 5.1: The list of repairs on F-Droid applications with a problem detected.
#

Directive Violated Repair Type Inj. Repaired

SetPackageSetSelector Reorder Methods 4 4

SetContentView Reorder Methods 22 22

SetTheme Reorder Methods 19 19

SetInitialSavedState Move Method 3 3

GetActivity Move Method 4 1

Inflate GitHub 3 1

OptionsMenu GitHub 1 1

Table 5.2: The number of injected (inj.) F-Droid applications with the violations, and the number
of injected applications repaired.

5.4.2 Repairs of F-Droid Applications

Table 5.1 shows that FrameFix is able to fix detected problems in real applications. Unfortu-
nately, the number of repairs are small compared to the number of detected errors at this time.
The main problem is that it is difficult to build most of the applications, due to dependencies not
being found. Some of the other repair cases are situations that cannot be currently repaired —
GetResources and SetArguments.

The successful repair cases are shown in Table 5.1. While FrameFix produces a fix for
RXDroid, RXDroid’s test cases fail because the testing code uses a version of Closure that is
incompatible with more recent Java versions. I was unable to get the tests to work before or after
the repair.

5.4.3 Repair of Injected Errors

To further evaluate FrameFix, I wanted to test the repair techniques in FrameFix on other direc-
tives that were not covered in the error dataset. To simulate repairing applications with problems,
I created a script to inject the problem mentioned in the directive into a random but valid spot for
violating the directive — if the problem could be injected into multiple spots in the application,
a spot was chosen at random.

65

Next, I collected a set of application repositories where I could inject the problem in the
source code. I collected these repositories from the open source applications in F-Droid that had
a publicly accessible repository posted in the F-Droid metadata folder. 1,657 repositories met
this requirement.

The list of available repositories was reduced down to the repositories in the dataset that
were written in Java. The injection technique also needs to be able to build APKs, since the
static analysis only worked on compiled Android executables. I only included applications that
contained a set of test cases and passed the set of test cases without problems. Thus, I used the
standard process to build a debug APK in an Android application and run the test cases for the
build (the Gradle assembleDebug and test commands). Of the 1,657 repositories tested,
115 applications met all of these checks without errors.

Using those 115 application repositories, I checked which repositories used code that applied
to the directives being violated, so injecting the problem did not require significantly changing
the applications. Often only about five applications met all of these criteria for each directive
that was tested. I also only tested the seven directive violation types that I are able to fix with
the current FrameFix approach. The results of injecting repairs are shown in Table 5.2, showing
that the repair technique is able to fix most of the injected problems. FrameFix was not perfect
when repairing the GetActivity cases, due to the difficulty of finding a valid method to call
getActivity, and the Inflate cases due to injecting the problem in a long method definition.
This long method definition caused the repair to generate a large number of possible repairs,
eventually timing out before successfully repairing the application.

5.5 Limitations
While I designed FrameFix to apply to multiple frameworks in multiple languages, I have not
verified that FrameFix applies to other frameworks or languages, due to the overhead of incor-
porating FrameFix into another static analysis tool. While I believe that the size of the dataset is
enough to demonstrate the feasibility of the claims that FrameFix handles a wide range of cases,
a larger dataset could reduce the possibility of sampling error.

FrameFix’s repair approach is currently limited to small change repairs. When a directive
violation requires the addition of a new class or method to solve the problem, FrameFix is unable
to repair those cases. A promising future approach that I have started to investigate is using
template repair to fix the unsupported repair cases. Template repair is showing promise for one
of the OptionsMenu cases, and might be able to fix the other two cases. FrameFix is also not
able to fix problems due to environmental settings, such as the phone application not working
because the application requires a permission that the user has not granted to the application.

66

5.6 Context and Prior Work

FrameFix uses static analysis to identify bugs and validate that bugs have been repaired. There
exists other techniques that use static analysis at various points in the automated program repair
process. One automated repair approach that uses static analysis validation is Phoenix [12].
Phoenix uses FindBugs [10], a static analysis tool for detecting problematic code patterns, to
collect multiple examples of bug patterns with associated fixes from source control history. It
uses these examples to synthesize transformation for newly-identified static violations.

Phoenix’s approach could be used to address plugin issues, but requires multiple fix examples
to determine the correct transformation steps, which FrameFix does not require. Phoenix would
likely have difficulty with the directives that require moving method calls between functions
also. FootPatch [88] uses separation logic and bi-directional static analysis to identify and fix
heap-based problems. This technique uses static analysis to locate problems, calculate possible
fixes, and to validate repairs. FrameFix uses static analysis to locate bugs and to validate repairs,
but it does not use static analysis to calculate or identify the fix. Although it is conceivable that
separation logic could encode the properties captured by directives, it is not a natural fit, and
would certainly pose a significant annotation burden on the analysis developer, when compared
to FrameFix. Infer [19], the current static analysis tool used in Footpatch, is also known to
have technical limitations for Android lifecycles, which currently limit the tool’s effectiveness
for repairing Android plugin issues [31]. Getafix [11], generalizes a set of collected bug fixes to
AST-based repair patterns. GetAFix, unlike FrameFix, requires a set of previous fixes to create
repair pattern to fix a new bug category. ErrorProne uses static analysis to detect problems and
recommend fixes, but the static analysis is limited to detecting bug patterns (which means it
does not use dataflow or callgraphs to detect errors, as FrameFix does) [81]. There are other
automated repair approaches that use static validation but manually define how to repair each
error class. For example, the repair approach by Liu et al. [62], that uses FindBugs to identify
issues and repairs problems with manually specified patterns, and Refaster [92], which defines
refactoring patterns to fix code issues. While FrameFix is similar to these approaches, since they
use static analysis to identify issues, FrameFix attempts to reduce the specification burden on
developers by providing fix approaches that work for multiple directive violations and by not
requiring developers to specify the fix (although developers currently have to specify variables
for the repair process related to the directive).

FrameFix borrows from dynamic repair techniques, such as GenProg [48, 59], that randomly
produce fixes within a given repair search space. Template-based repair, such as PAR [53], may
be able to fix the directives addressed by FrameFix if a template were created for each directive.
These approaches verify possible repairs using test cases, which adds extra specification burden
on users to fix directives. These techniques would require that plugin developers write tests,
that are often non-trivial, for particular directive violations. As a general comment, FrameFix is
unique compared to other repair techniques in the way it blends elements of past heuristic and
semantic repair techniques. FrameFix uses static analysis to locate and validate the error, but it
does not use deep semantic reasoning, synthesis, or logic to produce possible repairs. Instead,
FrameFix only limits the repair space using framework-specific heuristics.

FrameFix is also closely related to techniques that automatically repair problems in frame-

67

work applications. One closely related work is Droix, which repairs crashing Android appli-
cations using manually created patterns [86]. While the repair patterns in Droix served as a
source of inspiration for the repairs in FrameFix, Droix differs from FrameFix in that the repair
process requires a recorded event sequence to produce a crash, and that repairs were manually
validated - either by comparing the intermediate code change to developer changes or by running
the application to determine if the crash was fixed (dynamic validation). Another difference is
that Droix was designed to work on the Android byte code. FrameFix, instead, produces re-
pairs in the source code, which is makes it easier for developers to integrate the fix into their
project’s source code repository. Fan et al. categorized a large number of Android exceptions
and extracted common repair patterns for problems that produce exceptions, by looking at de-
veloper produced repairs [33]. This work did not not try to automatically repair any problems
with their repair patterns, so it is not an automated repair technique. The move method repair
(Section 5.3.2) in this work is based on the Works in right callback repair pattern found in study
of developer produced repairs, but differs in that method calls can be moved to other methods
that are not callbacks. In contrast to these approaches, FrameFix was designed to be framework
independent, with the novel GitHub repair approach, and thus handles a wider set of framework
issues than those handled in the Android repair techniques.

Other research has taken a different approach to repairing framework applications than Frame-
Fix. One approach to framework repair is to use contracts and dynamically created object be-
havior models to guide repairs [93]. This approach requires a significant developer investment
to work for most frameworks, since both the framework and application would need to be writ-
ten in a language that uses contracts. FrameFix instead only requires specifying the directive to
check and how to translate the directive into code if a custom check is required. Another tool,
SemDiff, fixes out-of-date API calls by recommending methods that were added in the version
where the API call became out-of-date [25]. SemDiff addresses an important issue in Android
plugin debgugging as noted by the challenges that developers faced in the debugging study tasks
due to different versions of Android (Section 3.2.2). However, SemDiff addresses a different bug
class than FrameFix and should be used at different points the development process (Developers
should use SemDiff when the framework API is updated, while developers could use FrameFix
to address more fundamental development concerns).

5.7 Summary
In this chapter, I addressed the last goal of the thesis statement: to make an automated repair tech-
nique for plugins. This repair technique, FrameFix, tries to exploit the unique aspect of frame-
work plugins to repair problems that may arise in plugin development. I evaluated FrameFix on
a manually created application set, real applications from F-Droid, and problems automatically
injected into applications from F-Droid. I showed that FrameFix was accurate in that it could fix
all of the injected problems for five directives. I also showed that FrameFix’s repair approach
generalizes to multiple directives and is able to fix detected problems in real applications.

68

Chapter 6

Conclusion and Future Work

6.1 Summary

Due to the wide adoption of frameworks in the software development industry, small improve-
ments to the plugin development process could have significant impact. To better understand the
problems that plugin developers face, I performed a plugin debugging study where I analyzed
the challenges developers encounter when fixing plugin problems. Some of the main findings
from this study are:

• Developers have difficulty with the distributed nature of related debugging content. Inver-
sion of control, object protocols, and declarative artifacts can interact in a way where the
information required to solve a problem is not easily found near the fault location. This
can make it harder for developers to correctly diagnose the problem and produce a correct
fix.

• Developers would benefit from guidance on possible fixes. Frameworks both restrict the
design of plugins, to interact correctly with them, and provide a common approach to solv-
ing problems that are regularly encountered in that domain. In the context of debugging
plugins, developers encounter difficulty determining the expected or recommended way to
achieve their goal. A tool could assist developers by proposing the recommended solution
in the framework.

• Developers seem to encounter particular difficulty with state-based issues. Since frame-
works perform many changes to object states that are not always easily visible to a plugin
developer, developers have difficulty understanding both the states that lead to an error
condition as well as the possible states that a correct solution must handle.

One of the goals of this dissertation is to produce results that generalize. For the debugging
study, the goal was to produce conclusions that generalize to other plugin development contexts.
This was achieved by focusing the study on directive violations, a set of problems that are not
plugin specific, and by studying how developers solved problems in two fundamentally different
frameworks.

The results from the previous study implied that plugin developers would benefit from an
automated repair technique. An automated repair technique needs to be able to both identify a
problem, so the technique can determine when the problem is fixed, and propose repairs that may

69

fix it. To ease the burden of identifying problems, I created a way to statically check plugins for
directive violations. In this technique, a person interested in creating a new check for a directive
violation would use the specification language to guide the tool to identify problems in plugins.
I evaluated the generalizability of the specification language and tool in two ways:

• A taxonomy of object protocols. I evaluated the specification language on the Beckman
taxonomy of object protocols and found that five of the seven categories could be easily
encoded in the language. This result implies that the language generalizes to a wide variety
of cases in which a developer may use the language and that the language can be adapted
to handle the cases.

• The F-Droid applications. I also evaluated the static analysis checks on a set of real appli-
cation to show that the technique generalizes to real applications. I found that the set of
directives covered by the tool apply to over 80% of applications in the dataset and that the
technique is able to detect problems in real applications.

The other important part of a repair technique is the repair strategy. I created a tool, FrameFix,
for fixing directive violations in a plugin. FrameFix is based on the unique aspects of framework
programming, the heavy use of object protocols and similarly named methods to implement
inversion of control, to guide its repair strategies. FrameFix uses method reordering and differ-
ences determined by comparing to a reference application to guide repairs. I evaluated FrameFix
in three ways:

• On a reference set of manually built applications. I used this set of applications to demon-
strate how well these repair techniques generalize across the types of problems encoded in
directives. I found that the technique was able to repair seven of the nine cases.

• On applications in F-Droid. The goal of this evaluation was to determine how well Frame-
Fix generalized to real applications. While FrameFix was only able to repair a small num-
ber of the detected problems, often due to difficulties building the application from source
code, the technique demonstrated that it can work on real applications.

• On a set of problems injects into F-Droid applications. I also wanted to evaluate the ac-
curacy of FrameFix. To do this, I randomly injected directive violation into applications
where the directive applied. I found that FrameFix was able to repair all injected cases
except for those for two directives.

This dissertation aims to apply a systematic method to improving the plugin development pro-
cess, from scoping and identifying the problem to producing a proof-of-concept tool to address a
significant challenge for developers. I hope this work can be used to guide future improvements
in the plugin development process.

70

6.2 Discussion

In this section I discuss the kinds of bugs in framework application code that FrameFix can and
cannot both detect and fix (Section 6.2.1). I then discuss benefits and challenges presented by
the different implementation decisions in FrameFix (Section 6.2.2) providing a summary of the
implementation trade-offs that were made to implement FrameFix. I then describe the essential
parts of FrameFix (Section 6.2.3), which would be required to re-implement FrameFix, possibly
for a new context.

6.2.1 Problems handled by FrameFix
Here I will attempt to characterize the problems that FrameFix can and cannot address in the cur-
rent implementation. One class of problems that FrameFix is designed to fix is single-threaded,
intra-procedural method call ordering issues. Another problem class FrameFix is designed to fix
is small (measured in number of lines added or deleted) problems in methods that are commonly
extended in applications. These problems likely need to stem from a method call problem (the
method is missing, the parameters are incorrect, the call occurs in the wrong place). FrameFix
is unlikely to fix issues by adding extra control statements, such as if blocks or try-catch blocks.
FrameFix is not likely to be able to fix multi-threading issues, cases where fixes require large
code additions (such as adding new method definition or adding a new way to pipe data across
classes in the plugin), or problems that arise from environmental settings (such as an application
lacking a required permission). FrameFix’s use of static analysis also creates scope limitations.
There are problems that are difficult for static analysis to detect, such as problems that arise from
looping too many times. There are also limitations related to understanding developer intent —
it might be difficult to determine something is a problem if it is difficult to determine whether
the developer intended it or not. Finally, FrameFix’s static analysis is currently not designed
for declarative artifacts. While FrameFix could be extended to address problems in declarative
artifacts, they are not not currently addressed by the tool.

6.2.2 Benefits and Limitations of Implementation Decisions
Directives
There are various approaches to studying plugin problems. For instance, one way would be
to collect applications with known issues and then filter out problems that were application-
specific. Directives provide a defined way to focus on plugin problems that are not application-
specific. But, since directives are specified in natural language, there is an extra step to specify
the directive in a checkable form.

Static analysis
FrameFix’s use of static analysis provides both implementation benefits and difficulties. The
benefits of the approach is that FrameFix can identify a large subset of directive violations and
that the analysis provides useful information for the fix process, such as the possible valid method
move locations (although static analysis is not required to get the information). Static analysis
is not a perfect solution because it can be difficult to detect some problems with static analysis,

71

such as whether a Fragment is attached to in Activity in a given context, and it’s harder
to confirm the problem in the application. Incorporating other analysis techniques, such as dy-
namic analysis, would allow FrameFix to identify more problems and provide more validation to
generated repairs.

Android
The decision to implement FrameFix for Android provided multiple benefits. The first benefit is
the large number of Android applications that can be analyzed and used for reference. Another
benefit is the large amount of documentation that makes collecting directives easier. There are
some implementation difficulties associated with selecting Android. The first is that Android is a
framework that uses it own byte code, meaning that the implementation of FrameFix for Android
could not be tested on other frameworks, which makes it difficult to confirm that the technique
generalizes to other frameworks. Another problem is that the Android framework and associated
tool chain undergoes rapid evolution. Many of the directives collected applied to sections of
the framework that became deprecated before FrameFix was finished. Simultaneously, Google
was constantly updating the build tools; I had to make multiple updates to applications’ build
process files throughout the study. Another important source of implementation difficulty is that
Android switched the preferred language from Java to Kotlin, so there are many applications
in both languages, which increases the difficulty of statically analyzing Android applications.
Android also adds other sources of difficulty when trying to analyze the application’s call graph.
Android frequently uses the observer pattern, which requires objects to dynamically register to
respond to events and obscures the static call graph.

FlowDroid
FrameFix was built on top of FlowDroid (version 2.6.1). FlowDroid provides an analysis in-
frastructure for Android applications. FrameFix uses FlowDroid to analyze APKs, and provide
the necessary data flow and call graph information to detect and fix the problems detected by
the technique. FlowDroid also added some limitations to the implementation of FrameFix. One
source of limitations was that FlowDroid cannot always generate call graphs for applications. I
also encountered call graph limitations when trying to use the tool. One problem I encountered
was that method calls of anonymous classes did not appear in the call graph. Another source
of imprecision is that Android has an implied ordering of method calls, for example, that the
onTabSelected method is called after the initialization function of a
FragmentTabListener class. This order was lost from the call graph. Security researchers
have uncovered some limitations of FlowDroid through mutation testing, such as FlowDroid not
including the DialogFragment.onCreateDialog() callback in the call graph [17].

Source code repairs
Repairing applications at the source code level can make it easier to produce a repair — the fix
is just a textual substitution in the right file — instead of repairing Android byte code. Source
code level repairs can also be more useful for people developing an application, so they can
incorporate the fix into the application. Fixes at the source code level also makes it easier to
compare the current problematic application with reference applications from GitHub, since the
reference applications do not have to be compiled. However, many plugin users will only have
the final APK and not the source code. The current implementation of FrameFix could identify

72

problems in the APK but could not fix the issue without the source code. Repairing applications
at the source code level adds other difficulties, since evaluating the repairs requires compiling
the source code of other applications. FrameFix could be extended to do fixes at the btye code
level, but the fix techniques would need to be altered to work at the byte code level.

6.2.3 Essential Parts of Technique
At a high level, FrameFix has the same needs as any automated repair technique but with a focus
on directive violations: the ability to detect the directive violation, fix the directive violation, and
validate that the violation is fixed. To detect directive violations, FrameFix needs to be able to
perform dataflow analysis (to determine method call ordering) and determine the states of objects
relevant to the directive (which FrameFix did with call graphs). The different repair components,
discussed in Section 5.3, each address different directives. These components either make as-
sumptions or contain implementation details that increase their effectiveness. The move method
repair approach can only work when objects in the problematic method call are in different states
in different methods. If this assumption is not true for the plugin, a different approach to chang-
ing objects’ state would be required. The GitHub repair technique requires other applications
built in the framework to use as a reference. The repair technique also requires that the prob-
lem occurs in a method that is defined in multiple applications and can be found from either a
matching method signature (for example, the onCreate’s method signature of an Activity)
or a matching subset of the method signature. Another essential requirement is being able to find
a correct implementation of the problematic code in a reference application. This requirement
limits FrameFix to addressing problems that are common to plugins in the framework and have a
context-independent fix (with the exception of variable names and other parameters). FrameFix
could be extended to produce context-dependent fixes, if FrameFix could detect the right context
and apply the right context-specific repair. FrameFix also needs to find a reference plugin with
the necessary method differences to fix the problematic plugin. FrameFix attempts to find ref-
erence applications using a GitHub search query that incorporates developer provided keywords
related to the directive, while also sorting the result by the most starred repositories and filtering
by language. The query returns a list of reference applications.

The GitHub repair technique also employs strategies to reduce the detection of spurious dif-
ferences between the current application and the reference application. While the reduction
strategies are not essential to the technique, reducing spurious differences can be essential to
whether the technique produces a repair before a set timeout. The repair technique tries to re-
duce spurious differences by first treating each type instance as a generic type variable and not
the specific instance name (variable names are not likely to match between two different applica-
tions). Another strategy that the technique uses to reduce spurious differences is to match lines
by types instead of line numbers. The technique matches lines by type through the process of
comparing all lines where variables of a type are used with all lines in the reference application
where the variable type is used, in-order. The reason that the technique does not compare by
line number (the first line of the problematic method in the plugin is compared to the first line of
the method in the reference plugin, and so on) is that the addition of an extra line to one of the
methods, such as an early log statement, would cause the rest of the lines to not match.

73

6.3 Future Work
There are many possible ways to build on this dissertation. In the short term, there are projects
that another researcher or I could do to further evaluate the current tool, and make the tool more
usable, either by reducing human input or applying the tool to new situations. In the long term,
there are also multiple research ideas that could build off this dissertation.

6.3.1 Further Evaluation
While FrameFix was evaluated for the qualities discussed in the thesis statement, there are other
qualities that are important to developers. One important quality for developers to use the tool
in practice is usability. FrameFix would benefit from a human study into how developers would
use the tool in a development situation. This user-focused study would either provide evidence
that the tool assists developers in the plugin development process or other challenges that arise
in the development process when FrameFix is used. This study could uncover future research
challenges and provide further validity to the claims in this study.

6.3.2 Possible Near-Term Improvements
There are couple of ways FrameFix could be improved. Currently, FrameFix is only able to
address a limited set of repair situations. One case where FrameFix has difficulty is when the
repair requires a significant amount of code, such as a new method. Repair templates, where a
base fix is adjusted to the current code and problem, could be one way to add the necessary code.
Preliminary investigations into one of the OptionsMenu cases has shown promise, but there were
challenges associated with creating a template that would apply to the different setArguments
and getResources cases that may arise. Another way to fix these directive cases may be to apply
learning repair techniques, by proposing new fixes based on the code elements used in past fixes.

FrameFix currently has a relatively high specification cost, requiring developers to under-
stand the framework to create a static analysis and repair specification. It may be possible to
combine natural language processing and knowledge of the framework internals to automati-
cally translate natural language directives into the information required by FrameFix. Further
work in this direction could attempt to automatically infer the required knowledge from the
internal framework code, reducing the required inputs to specify a directive to fix to only the
framework and the natural language directive. Another possibly might be automatically infer-
ring usage protocols [77] and then converting those into the inputs FrameFix requires.

The evaluation of FrameFix discovered that it is difficult to fix the source code and then build
the fixed version of many Android applications. While FrameFix is currently implemented to
produce source code repairs, a future version of FrameFix could be created to fix the application
in byte code. This change would increase the number of applications that the tool could fix, since
the source code may not be available for all applications.

74

6.3.3 Long-Term Ideas
There are some other research directions that FrameFix makes available. While FrameFix is
able to address plugin problems, FrameFix addresses these problems from a method-call focused
perspective — assuming that the problem is related to one or a few method calls in the applica-
tion. It may be possible to adapt FrameFix or create another repair technique to automatically
repair other types of problems that plugin developers encounter, such as problems that occur in
declarative artifacts.

Another research direction is to investigate how to make repair techniques that use source
code knowledge less language-dependent. One major limitation of FrameFix is the overhead
required to use the tool on a framework in a new language. The technique currently needs a
static analysis tool to identify problems in the application, as well as information about method
call location and call graphs to produce repairs. For FrameFix, it may be possible to reduce this
dependency through the use of other fault localization techniques, such as only using a set of test
cases, and other repair strategies. For future automated repair research, improving language in-
dependence may involve investigating which repair approaches are language dependent and how
the fix rate of the approach would change if a language-independent choices were used instead.
This knowledge would help automated repair tool developers select the intended trade-off in their
repair designs and also serve as a source of motivation for decreasing language dependence for
automated repair techniques.

Another interesting research possibility for automated repair would be to create other tech-
niques to find relevant code for reference and apply it to currently problematic section of code.
Previous work has found sections of code with similar input-output characteristics [6] and this
work used similarly named methods to find relevant sections. It may be possible to use another
heuristic, like the prevalence of certain method calls in a section of code, to find a reference that
can guide a successful repair.

75

76

Bibliography

[1] https://www.statista.com/statistics/444476/
google-play-annual-revenue/, Accessed Mar. 16th, 2020.

[2] https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/,
Accessed Mar. 4th, 2020.

[3] stackoverflow.com/tags, Accessed Mar. 4th, 2020.

[4] https://f-droid.org/en/ (dataset: https://doi.org/10.5281/zenodo.3698376), Ac-
cessed Oct. 11th, 2019.

[5] Hadil Abukwaik, Mohammed Abujayyab, and Dieter Rombach. Towards seamless analysis
of software interoperability: Automatic identification of conceptual constraints in api doc-
umentation. In European Conference on Software Architecture, ECSA ’16’, pages 67–83,
2016.

[6] Afsoon Afzal, Manish Motwani, Kathryn Stolee, Yuriy Brun, and Claire Le Goues. Sos-
repair: Expressive semantic search for real-world program repair. IEEE Transactions on
Software Engineering, (to appear), 2020.

[7] Hiralal Agrawal, Joseph R. Horgan, Saul London, and W. Eric Wong. Fault localization us-
ing execution slices and dataflow tests. In International Symposium on Software Reliability
Engineering, ISSRE ’95, pages 143–151, Oct 1995.

[8] Jonathan Aldrich. The power of interoperability: Why objects are inevitable. In Pro-
ceedings of the 2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software, Onward! ’13, pages 101–116, 2013.

[9] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In
Programming Language Design and Implementation, PLDI ’14, pages 259––269, 2014.

[10] Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgenthaler, and John
Penix. Using static analysis to find bugs. IEEE Software, 25(5):22–29, Sep. 2008.

[11] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. Getafix: Learning to
fix bugs automatically. ACM on Programming Languages, 3(OOPSLA), 2019.

[12] Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad. Phoenix: Automated data-driven
synthesis of repairs for static analysis violations. In Joint Meeting of the European Software

77

https://www.statista.com/statistics/444476/google-play-annual-revenue/
https://www.statista.com/statistics/444476/google-play-annual-revenue/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
stackoverflow.com/tags
https://f-droid.org/en/

Engineering Conference and the Symposium on the Foundations of Software Engineering,
ESEC/FSE ’19, pages 613–624, 2019.

[13] Nels E. Beckman, Duri Kim, and Jonathan Aldrich. An empirical study of object protocols
in the wild. In European Conference on Object-Oriented Programming, ECOOP’11, pages
2–26, 2011. ISBN 978-3-642-22654-0.

[14] Kevin Bierhoff and Jonathan Aldrich. Lightweight object specification with typestates.
SIGSOFT Software Engineering Notes, 30(5):217—-226, September 2005.

[15] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In
Conference on Object-Oriented Programming Systems and Applications, OOPSLA ’07,
pages 301—-320, New York, NY, USA, 2007.

[16] Kevin Bierhoff, Mark Grechanik, and Edy S. Liongosari. Architectural mismatch in
service-oriented architectures. In Workshop on Systems Development in SOA Environments,
SDSOA ’07.

[17] Richard Bonett, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and Denys Poshyvanyk.
Discovering flaws in security-focused static analysis tools for android using systematic mu-
tation. In USENIX Conference on Security Symposium, SEC’18, pages 1263—-1280, USA,
2018. USENIX Association.

[18] M. Bruch, M. Mezini, and M. Monperrus. Mining subclassing directives to improve frame-
work reuse. In Mining Software Repositories, MSR ’10, pages 141–150, 2010.

[19] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimeijer,
Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Ro-
driguez. Moving fast with software verification. In NASA Formal Methods, NFM ’15,
pages 3–11, 2015.

[20] Kathy Charmaz. Constructing Grounded Theory. Sage Publications, Los Angeles, CA, 2nd
edition, 2014. ISBN 978-0-85702-914-0.

[21] Jaspan Ciera. Proper Plugin Protocols. PhD thesis, Carnegie Mellon University, 2011.

[22] Zack Coker, Joshua Sunshine, and Claire Le Goues. Framefix: Automati-
cally repairing statically-detected directive violations in framework applications.
In (under submission). URL https://drive.google.com/open?id=
1VkCK5JokajdVxBermvq20rdeSa7vAJoA.

[23] Zack Coker, David Gray Widder, Claire Le Goues, Christopher Bogart, and Joshua Sun-
shine. A qualitative study on framework debugging. In International Conference on Soft-
ware Maintenance and Evolution, ICSME ’19, pages 568–579, 2019.

[24] James S. Collofello and Larry Cousins. Towards automatic software fault location through
decision-to-decision path analysis. In International Workshop on Managing Requirements
Knowledge, AFIPS ’87, pages 539–544, 12 1987.

[25] Barthelemy Dagenais and Martin P. Robillard. Semdiff: Analysis and recommendation
support for api evolution. In International Conference on Software Engineering, ICSE ’09,
pages 599–602, 2009.

[26] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. Qlose: Program repair with quan-

78

https://drive.google.com/open?id=1VkCK5JokajdVxBermvq20rdeSa7vAJoA
https://drive.google.com/open?id=1VkCK5JokajdVxBermvq20rdeSa7vAJoA

titative objectives. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Ver-
ification, pages 383–401. Springer International Publishing, 2016.

[27] Uri Dekel. Increasing awareness of delocalized information to facilitate API usage. PhD
thesis, Carnegie Mellon University, 2009.

[28] Uri Dekel and James D. Herbsleb. Improving api documentation usability with knowledge
pushing. In International Conference on Software Engineering, ICSE ’09, pages 320–330,
2009.

[29] Robert DeLine and Manuel Fähndrich. Typestates for objects. In European Conference on
Object-Oriented Programming, ECOOP ’04, pages 465–490, 2004.

[30] Mariangiola Dezani-Ciancaglini and Ugo de’Ligruoro. Sessions and session types: An
overview. Web Services and Formal Methods, 6194:1–28, 2010.

[31] Facebook. https://fbinfer.com/docs/limitations, Accessed May 5th,
2020.

[32] George Fairbanks, David Garlan, and William Scherlis. Design fragments make using
frameworks easier. In Object-oriented Programming Systems, Languages, and Applica-
tions, OOPSLA ’06, pages 75–88, 2006.

[33] Lingling Fan, Ting Su, Sen Chen, Meng Guozhu, Yang Liu, Lihua Xu, Geguang Pu, and
Zhendong Su. Large-scale analysis of framework-specific exceptions in android apps. In
International Conference on Software Engineering, ICSE ’18, pages 408–419, 2018.

[34] Mohamed Fayad and Douglas C. Schmidt. Object-oriented application frameworks. Com-
munications of the ACM, 40(10):32–38, October 1997.

[35] Martin Fowler. Fluentinterface. https://martinfowler.com/bliki/
FluentInterface.html, Accessed April 29th, 2020.

[36] Garry Froehlich, H. James Hoover, Ling Liu, and Paul Sorenson. Hooking into object-
oriented application frameworks. In International Conference on Software Engineering,
ICSE ’97, pages 491—-501, 1997.

[37] David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch or why it’s hard
to build systems out of existing parts. In International Conference on Software Engineering,
ICSE ’95, pages 179––185, 1995.

[38] Google. Android. www.android.com, 2017. Accessed: 2/15/17.

[39] Google. https://opensource.googleblog.com/2019/07/
truth-10-fluent-assertions-for-java-and.html, Accessed May
6th, 2020.

[40] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing common
c language errors by deep learning. In Association for the Advancement of Artificial Intel-
ligence, AAAI ’17’, pages 1345–1351, 2017.

[41] Markku Hakala, Juha Hautamäki, Kai Koskimies, Jukka Paakki, Antti Viljamma, and Jukka
Viljamaa. Annotating reusable software architectures with specialization patterns. In Inter-
national Conference on Software Architecture, ICSA ’01, pages 171–180, 2001.

79

https://fbinfer.com/docs/limitations
https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html
https://opensource.googleblog.com/2019/07/truth-10-fluent-assertions-for-java-and.html
https://opensource.googleblog.com/2019/07/truth-10-fluent-assertions-for-java-and.html

[42] Kohei Honda. Types for dyadic interaction. In International Conference on Concurrency
Theory, CONCUR ’93, pages 509–523, 1993.

[43] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. Journal of the ACM, 63(1):9:1–9:67, March 2016. ISSN 0004-5411.

[44] Daqing Hou, H. James Hoover, and Eleni Stroulia. Supporting the deployment of object-
oriented frameworks. In Advanced Information Systems Engineering, CAiSE 2002, pages
151–166. Springer Berlin Heidelberg, 2002.

[45] Daquing Hou and H. James Hoover. Using scl to specify and check design intent in source
code. IEEE Transactions on Software Engineering, 32(6):404–423, 2006.

[46] Ciera Jaspan and Jonathan Aldrich. Checking semantic usage of frameworks. In Library-
Centric Software Design, LCSD ’07, pages 1–10, 2007.

[47] Ciera Jaspan and Jonathan Aldrich. Retrieving relationships from declarative files. 2009.

[48] Ciera Jaspan and Jonathan Aldrich. Are object protocols burdensome?: An empirical study
of developer forums. In SIGPLAN Workshop on Evaluation and Usability of Programming
Languages and Tools, PLATEAU ’11, pages 51–56, 2011.

[49] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program repair as a game.
In Computer Aided Verification, CAV ’05, pages 226–238, 2005.

[50] Ralph E. Johnson. Frameworks = (components + patterns). Communications of the ACM,
40(10):39–42, October 1997. ISSN 0001-0782.

[51] Taylor T. Johnson, Stanley Bak, and Steven Drager. Cyber-physical specification mismatch
identification with dynamic analysis. In International Conference on Cyber-Physical Sys-
tems, ICCPS ’15, pages 208–217, 2015.

[52] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test information
to assist fault localization. In International Conference on Software Engineering, pages
467–477, 2002.

[53] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch gener-
ation learned from human-written patches. In International Conference on Software Engi-
neering, ICSE ’13, pages 802–811, 2013.

[54] Amy J. Ko and Brad A. Myers. Debugging reinvented: Asking and answering why and
why not questions about program behavior. In International Conference on Software Engi-
neering, ICSE ’08, pages 301–310, 2008.

[55] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. Six learning barriers in end-user pro-
gramming systems. In Visual Languages - Human Centric Computing, VLHCC ’04, pages
199–206, 2004.

[56] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. An exploratory study
of how developers seek, relate, and collect relevant information during software mainte-
nance tasks. IEEE Transactions of Software Engineering, 32(12):971–987, December 2006.
ISSN 0098-5589.

[57] Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bellamy, Kyle Rector,

80

and Scott D. Fleming. How programmers debug, revisited: An information foraging theory
perspective. IEEE Transations of Software Engingeering, 39(2):197–215, February 2013.

[58] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser. S3:
Syntax- and semantic-guided repair synthesis via programming by examples. In 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, pages 593–604,
2017.

[59] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A sys-
tematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each. In
International Conference on Software Engineering, ICSE ’12, pages 3–13, 2012.

[60] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated program repair.
Communications of the ACM, 62(12):56–65, 2019.

[61] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and Zhao
Xuejiao. Improving api caveats accessibility by mining api caveats knowledge graph. In In-
ternational Conference on Software Maintenance and Evolution, pages 183–193, 09 2018.

[62] Kui Liu, Dongsun Kim, Tegawende F. Bissyande, Shin Yoo, and Yves Le Traon. Mining
fix patterns for findbugs violations. Transactions on Software Engineering, (Early Access):
1–24, 2018.

[63] Francesco Logozzo and Thomas Ball. Modular and verified automatic program repair. In
Object Oriented Programming Systems Languages and Applications, OOPSLA ’12, pages
133—-146, 2012.

[64] Fan Long and Martin Rinard. Staged program repair with condition synthesis. In Joint
Meeting of the European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering, ESEC/FSE ’15, pages 166–178, 2015.

[65] Fan Long and Martin Rinard. Automatic patch generation by learning correct code. In
Principles of Programming Languages, POPL ’16, pages 298–312, New York, NY, USA,
2016. ACM.

[66] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia, Ke Mao,
Alexander Mols, and Andrew Scott. Sapfix: Automated end-to-end repair at scale. In In-
ternational Conference on Software Engineering: Software Engineering in Practice, ICSE-
SEIP ’19, pages 269–278, 2019.

[67] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Directfix: Looking for simple
program repairs. In International Conference on Software Engineering, ICSE ’15, pages
448–458, 2015.

[68] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable multiline pro-
gram patch synthesis via symbolic analysis. In 38th International Conference on Software
Engineering, ICSE ’16, pages 691–701, New York, NY, USA, 2016.

[69] Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira Mezini. What should devel-
opers be aware of? An empirical study on the directives of api documentation. Empirical
Software Engineering, 17(6):703–737, 2012.

[70] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan. The design space of bug fixes

81

and how developers navigate it. IEEE Transactions on Software Engineering, 41(1):65–81,
Jan 2015.

[71] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon. Programmers are users too: Human-
centered methods for improving programming tools. Computer, 49(7):44–52, July 2016.

[72] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. Sem-
fix: Program repair via semantic analysis. In 2013 International Conference on Software
Engineering, ICSE ’13, pages 772–781, 2013.

[73] Thanh-Toan Nguyen, Quang-Trung Ta, and Wei-Ngan Chin. Automatic program repair
using formal verification and expression templates. In Verification, Model Checking, and
Abstract Interpretation, VMCAI ’19, pages 70–91, 2019.

[74] Naoya Nitta, Izuru Kume, and Yasuhiro Takemura. A method for early detection of mis-
matches between framework architecture and execution scenarios. In Asia-Pacific Software
Engineering Conference (APSEC), volume 1 of APSEC ’13’, pages 517–522, 2013.

[75] Danilo Dominguez Perez and Wei Le. Generating predicate callback summaries for the
android framework. In Mobile Software Engineering and Systems, MOBILESoft ’17, pages
68–78, 2017.

[76] David Piorkowski, Scott D. Fleming, Christopher Scaffidi, Margaret Burnett, Irwin Kwan,
Austin Z. Henley, Jamie Macbeth, Charles Hill, and Amber Horvath. To fix or to learn?
how production bias affects developers’ information foraging during debugging. In Inter-
national Conference on Software Maintenance and Evolution, ICSME ’15, pages 11–20,
Sep. 2015.

[77] Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross. Statically checking
api protocol conformance with mined multi-object specifications. In International Confer-
ence on Software Engineering, ICSE ’12, pages 925––935, 2012.

[78] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The strength
of random search on automated program repair. In International Conference on Software
Engineering, ICSE ’14, pages 254–265, 2014.

[79] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating system. In ICRA
Workshop on Open Source Software, 2009.

[80] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani,
Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. Learning syntactic program transforma-
tions from examples. In International Conference on Software Engineering, ICSE ’17,
pages 404—-415, 2017.

[81] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jas-
pan. Lessons from building static analysis tools at google. Communications of the ACM
(CACM), 61 Issue 4:58–66, 2018.

[82] Margrit Schreier. Qualitative Content Analysis in Practice. EBL-Schweitzer. SAGE Publi-
cations, Thousand Oaks California, USA, 2012. ISBN 9781849205931.

[83] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded theory in software engineer-

82

ing research: A critical review and guidelines. In International Conference on Software
Engineering, ICSE ’16, pages 120–131, 2016.

[84] R E Strom and S Yemini. Typestate: A programming language concept for enhancing
software reliability. IEEE Transactions on Software Engineering, 12(1):157–171, January
1986.

[85] Joshua Sunshine. Protocol Programmability. PhD thesis, Carnegie Mellon University,
2013.

[86] Shin Hwei Tan, Zhen Dong, Xiang Gao, and Abhik Roychoudhury. Repairing crashes
in android apps. In International Conference on Software Engineering, ICSE ’18, pages
187–198, 2018.

[87] Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. Automatically generated patches as
debugging aids: A human study. In Foundations of Software Engineering, FSE ’14, pages
64—-74, 2014.

[88] Rijnard van Tonder and Claire Le Goues. Static automated program repair for heap prop-
erties. In International Conference on Software Engineering, ICSE ’18, pages 151–162,
2018.

[89] Manuela Veloso, Joydeep Biswas, Brian Coltin, and Stephanie Rosenthal. Cobots: Ro-
bust symbiotic autonomous mobile service robots. In International Joint Conference on
Artificial Intelligence, IJCAI’15, pages 4423—-4429, 2015.

[90] Iris Vessey. Expertise in debugging computer programs: A process analysis. International
Journal of Man-Machine Studies, 23(5):459 – 494, 1985.

[91] Yan Wang, Hailong Zhang, and Atanas Rountev. On the unsoundness of static analysis for
android guis. In State Of the Art in Program Analysis, SOAP ’16, pages 18–23, 2016.

[92] Louis Wasserman. Scalable, example-based refactorings with refaster. In Workshop on
Refactoring Tools, WRT ’13’, 2013.

[93] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand Meyer, and
Andreas Zeller. Automated fixing of programs with contracts. In International Symposium
on Software Testing and Analysis, ISSTA ’10, pages 61–72, 2010.

[94] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. Automati-
cally finding patches using genetic programming. In International Conference on Software
Engineering, ICSE ’09, pages 364–374, 2009.

[95] Westley Weimer, Zachary P. Fry, and Stephanie Forrest. Leveraging program equivalence
for adaptive program repair: Models and first results. In Automated Software Engineering,
ASE ’13, pages 356–366, 2013.

[96] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. Static control-
flow analysis of user-driven callbacks in android applications. In International Conference
on Software Engineering, ICSE ’15, pages 89–99, 2015.

[97] Andreas Zeller. Yesterday, my program worked. today it does not. why? In European
Software Engineering Conference Held Jointly with Foundations of Software Engineering,
ESEC/FSE ’99, pages 253–267, 1999.

83

[98] Andreas Zeller. Automated debugging: Are we close? Computer, 34(11):26–31, 2001.

[99] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and Harald
Gall. Analyzing APIs documentation and code to detect directive defects. In International
Conference on Software Engineering, ICSE ’17, pages 27–37, 2017.

84

	Introduction
	Frameworks
	Basic Terms
	Examples
	What Makes Framework Development Unique
	Current State of Framework Development

	Scope
	Goals and Evaluation Criteria
	Challenges of Framework Application Debugging
	Specification Language
	FrameFix

	Contributions
	Outline

	Background and Related Work
	Introduction to the Frameworks Used in this Work
	Directives
	Architectural Mismatch
	Object Protocols
	Program Repair
	Debugging Process
	Automated Program Repair
	Android and Framework Repair

	Framework Application Debugging
	Methodology and Preliminary Study
	Frameworks in the Study
	Task Creation Methodology
	Directive Categorization By Consequence
	Debugging Task Methodology
	Coding Process

	Framework Debugging Benefits and Challenges
	Static Challenges
	Historical Challenges
	Dynamic Benefits
	Static Benefits
	Historical Benefits

	Difficulty By Consequence
	Limitations
	Summary

	Automated Identification of State-Based Directive Violations
	Specification Language Approach
	Statically Identifying Directive Violations
	Specification Evaluation
	Directives Implemented in Tool
	Applicability of Directives Covered
	Error Detection on F-Droid

	Limitations
	Inspiration for Specification Language
	Summary

	FrameFix
	Introduction
	FrameFix Approach
	Automatic Repair Technique
	Method Order Repair
	Method Move Repair
	Callback-Based Repair

	Evaluation
	Repair of Manually Built Applications
	Repairs of F-Droid Applications
	Repair of Injected Errors

	Limitations
	Context and Prior Work
	Summary

	Conclusion and Future Work
	Summary
	Discussion
	Problems handled by FrameFix
	Benefits and Limitations of Implementation Decisions
	Essential Parts of Technique

	Future Work
	Further Evaluation
	Possible Near-Term Improvements
	Long-Term Ideas

	Bibliography

