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Abstract

The detection of masqueraders and novel attacks are two of the more difficult
problems facing intrusion detection systems. While anomaly-based intrusion
detection approaches appear to be among the most promising techniques
for dealing with these problems, confidence in the detection results requires
precise knowledge of the detector’s characteristics. These include identifying
conditions under which the detector fails, as well as those in which it works
well.

One of the best-known anomaly detectors that has been applied to intrusion
detection is stide!. Developed at the University of New Mexico, stide aims
to detect attacks that exploit processes that run with root privileges. The
original work on stide presented empirical results indicating that sequences
of length six and above were required for effective intrusion detection.

This paper presents an evaluation framework that maps out stide’s effective
operating space, and identifies the conditions that contribute to detection
strength, blindness or weakness. A theoretical justification for why sequence
lengths six and above were effective is given, and the consequences of a
different choice on detector performance is explained.

In addition, we give results of our investigation, which characterizes regions
of the anomaly space in which stide is capable of anomaly detection and those
in which it is not. We believe that relating detector properties of this kind to
manifestations of intrusive activities is necessary if effective anomaly-based
intrusion detection systems are to be built and deployed.



1 Introduction

In a solid body of work inspired by the way the natural immune system
distinguishes self from other, Forrest et al. [3] presented and analyzed the
effectiveness of a detection scheme aimed at enhancing the security of com-
puter systems. Analogous to the natural immune system, computer system
security was seen as an instance of the more general problem of distinguish-
ing self, e.g., the normal behavior of system programs, from other, e.g., the
behavior of trojanized system programs. The resulting anomaly detector was
initially presented as a change-detection algorithm applied to the detection
of computer viruses [2]. It has since been applied to the task of detecting
intrusions or exploits by way of detecting abnormal behavior in processes
that run with root privileges on UNIX systems. Named “stide”, (Sequence
TlIme-Delay Embedding), the anomaly detector was designed to operate on
categorical data in the form of system kernel calls issued by the running pro-
cess to the kernel of the host system. The reference to “time” in the name
of the detector reflects the time-series nature of the categorical data upon
which the detector was deployed.

Through the series of papers that have documented the many experiments
aimed at studying the effectiveness of stide with respect to the detection of
exploits and intrusions in UNIX systems, the one curiosity that has been most
conspicuous due to its significant impact on the performance of the detector,
has been the question of the “best” or most appropriate detector-window
length or sequence length required in any application of the algorithm. Note
that in this study, the terms detector-window length (DW), sequence length
and sequence size are used interchangeably to refer to the number of individ-
ual, categorical elements that make up a sequence. For stide, this value is
set a priori, and used to determine the length of all the sequences obtained
from both training and test data. In the literature, we find that a sequence
length of six occurs consistently with stide in the experiments performed by
the authors of the detector. For example, although a sequence length of 10
was finally settled on, in the results for the experiments in [5], it was also
observed that a sequence length of at least six appeared to be necessary in
order to detect all the intrusive data presented to the detector. This obser-
vation naturally prompts questions regarding the appropriate value of the
detector-window parameter for stide, a problem that is not at all foreign to
the community [12]. Questions such as:



e if not by “ad-hoc means” [12], how else can the “best” detector-window
length determined?

o why does a detector-window length of six appear to work, and not
lengths less than six?

e will it be the case that six will be appropriate for all data from differing
environments?

e what is the impact on accuracy if an incorrect detector-window length
is set? That is, what happens if six is selected but it is not the optimal
length?

That the value of the sequence-length parameter impacts the performance
of the detector has not only been noted by the original authors, but also in
subsequent, independent, work [12, 9, 5]. Lee & Xiang [12] did propose
an information theoretic solution to the problem of choosing the optimal
detector-window length for stide. We address their solution in section 3.

The question of the appropriate detector-window length may have impli-
cations for aspects of detection other than performance. In particular, we
were interested to know whether the results obtained by the original investi-
gators represent a serendipitous match between the particular data sets used
and the detector-window length. In other words, is six a necessary parameter
value for this kind of detector, or simply sufficient for the data at hand? We
feel that answering questions of this nature is essential if we wish to avoid
deploying sensors of this kind (anomaly detectors in general, not just stide)
in environments where they will simply fail.

Our study into the detection efficacies of stide have vastly increased our
understanding, not only of the performance of anomaly detectors, but also of
the anomaly-detection process itself, as it is applied to intrusion detection.
We would like to note at this point that it would have been extremely difficult,
if not impossible, to validate our research on the performance of anomaly
detectors, particularly stide, if it were not for the generosity of the researchers
at the University of New Mexico in making their datasets, detector and
documentation readily available.



2 A brief description of stide

Stide acquires a model of normal behavior by segmenting the training data
into fixed length sequences. This is done by sliding a detector-window of
length DW over the training data. Fach length DW sequence obtained
from the data stream is stored in the "normal database” of sequences of
length DW. A similarity metric is then used to establish the degree of
similarity between the test data and the model of normal behavior obtained
in the previous step. Again sequences of length DW are obtained from the
test data using a sliding window, and for each length DW sequence, the
similarity metric simply establishes whether that sequence exists or does not
exist in the normal database. A length DW sequence from the test data
that is found to exist in the normal database (where ”existing” requires that
an 1dentical sequence be found in the normal database that matches the
sequence obtained from the test data), is assigned the number 0. Sequences
that do not exist in the normal database are assigned the number 1. The
decision is binary, there is an exact match for a sequence from the test data
in the normal database (0) or not (1).

The detector’s final response to the test data, or anomaly signal, involves
a parameter known as the “locality frame”. The locality frame is a value
determining the length of a temporally local region over which the number
of mismatches are summed up. For example, if the locality frame is set to
20, then at each point of the test data the number of mismatches in the last
20 sequences including the current sequence is determined. The number of
mismatches that occur within a locality frame is referred to as the locality
frame count (LFC). The locality frame count is the final anomaly signal that
is used to determine how anomalous the test data is. The length of the
locality frame is a user-set parameter that is independent of the length of the
detector-window used to segment both training and test data.

3 Conditional entropy and stide performance

In a paper presented in 2001 [12], it was suggested that the conditional
entropy of the intrusive sequences was a key factor contributing to the op-
timality of six-symbol sequences in the stide data. Plots of the conditional
entropy of the UNM sendmail data are shown in [12, Figure 1] where it is
suggested that the knee in the data that appears in the plots indicates that



little or no additional information occurs beyond the fifth or sixth symbol in
the sequence.

In this experiment we aim to show that contrary to the suggestion in
[12], conditional probabilities do not affect stide. In order to do this we
need to establish pairs of training and test data that differ only in terms of
increasing irregularity (measured as conditional entropy) and nothing else.
This means that the alphabet size, alphabet symbols and sample size are all
kept constant, while irregularity is calibrated to increase at fixed and steady
intervals. We used 11 streams of training and test data pairs [6] that comply
with these requirements. The data-generation process does not introduce
anomalous sequences or symbols into the test-data stream. The reason for
this is because introducing obviously-anomalous phenomena into the data
stream would confound the results of the experiment; we would not know
whether the detector was responding to the fluctuations in data regularity
or to the presence of anomalous sequences.

ROk r ke The data pairs are labelled
1 to 11, and each pair differs

age of false alarm:

from the preceding pair in terms

of a measured increase in ir-
regularity. The training and
test-data pair labelled 1 are
therefore the most regular, and
the pair labelled 11 are com-
pletely random data. For de-
tails on the generator and data-
generation technique, see [6,

00 0l0 0% 0% 0i0 0% 0 070 080 0% 100 Section 2], Into ea,ch Of these

py (regularity)
Hit and false alarm rate vs. regularity for stide

11 datasets we inject a single
Figure 1: Hit and false alarm rate for stide anomaly consisting of a sin-
gle symbol not present in the
training data. This is the simplest unequivocally anomalous event that stide
can be expected to detect. The detector-window length for stide in this
experiment was set to 2 to be consistent with the data generator in which
probability each element depended only on the value of the previous element
in the sequence.
For stide, a hit occurs when a mismatch is registered. In the case of
our test data, this will occur whenever the anomalous character is within
the detector window. The effect of the locality frame was ignored, because
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the locality frame only serves to magnify or enhance the anomalies, i.e.,
mismatches, that may have clustered within a temporally local region. In
our case there is only a single anomaly; it produces a single cluster consisting
of two consecutive mismatches as the anomalous symbol passes through the
detector window of length 2. An anomaly or mismatch anywhere else will
be regarded as a false alarm regardless of whether or not it occurs in some
temporally local region; therefore we focus only on whether or not the basic
anomaly, in terms of a sequence mismatch, was registered.

Figure 1 presents experimental results in terms of hits and false alarms.
We can see that, given a situation where everything was kept constant, in-
cluding the type of anomalous phenomenon introduced into the data streams,
stide remained unaffected by the regularity increase from one data stream
to the next, and continued to detect the anomalous symbol present in each
of the 11 test-data streams. These results appear sensible, because stide has
no notion of probability, and will only be affected by probability if some as-
pect of probability introduces anomalous sequences into the test data. If the
data-generation process does not introduce anomalous sequences, the fluctu-
ations in data regularity itself, in isolation, makes no impact on the ability
of stide to detect the anomalous symbol. If data regularity, measured as con-
ditional entropy, does not affect the stide detector, then it is highly unlikely
that this aspect of categorical data would be the determining factor for the
appropriate sequence length that must be employed by stide.

4 Sequences: rare, common, and foreign

Stide characterizes the normal behavior of a monitored process in terms
of a database comprised of sequences of length DW. These sequences are
obtained by sliding a window of this length along the trace (or traces) of
system calls that have been obtained from the monitored process in the
absence of intrusions. Stide only checks to see if a test sequence is in the
database or not, but the frequency with which each sequence occurs in the
traces is key to the exposition in section 5.3 below.

For purposes of that discussion, we define a rare sequence as one that
occurs infrequently in the training data. For our purpose, we arbitrarily
define as rare, sequences that have a frequency of occurrence of less than 0.5%
in the normal traces. All others are considered to be common sequences.

Foreign sequences are those that do not occur at all in trace(s) that were



used to define normal behavior. Note that a sequence can be foreign by
virtue of containing:

e foreign symbols, i.e., symbols that are not contained in the alphabet
set of the training data, or

e a foreign order of symbols, i.e., a sequence in which each individual
symbol within the sequence is a member of the training-set alphabet,
but where the order of the symbols is one that does not exist in the set
of sequences obtained from the training-set, or

e combinations of both.

In this work we focus specifically on the second condition, where a foreign
sequence is foreign by virtue of the foreign order of its constituent symbols.

The term minimal foreign sequence is defined as a foreign sequence of the
second type, having the property that all of its proper subsequences do exist
in the trace(s). Put simply, a minimal foreign sequence is a foreign sequence
that contains within it no smaller foreign sequences, [10].

4.1 Reproducing the original experiments

As a result of the present study, we are able to show that a detector-window
of at least six was required to detect all intrusive traces in the Hofmeyr [5]
dataset because of the existence of a very specific type of anomaly in the
data which we describe as a minimal foreign sequence composed of rare or
common subsequences.

In order to verify this, we first reproduce the experiment documented in
Hofmeyr, et al [5]. It was this experiment that gave rise to the “why six”
question. We do this using their Hamming-distance-based similarity metric,
and then apply stide to the same data specifically to demonstrate that the
“why six” question applies to the performance of stide, irrespective of the
differing similarity metrics.

The data on which the experiment was run was obtained from the Uni-
versity of New Mexico website [4]. Table 1 provides summary information
about the data.

The results presented in Figure 5 show the response of the detector that
employed the Hamming-distance similarity measure. This graph only shows
the curves associated with the sunsendmailcp, decode and syslogd attacks,



Program Normal Data Intrusion Data
No of | No of Name of No of | No of
traces | lines attack traces | lines
Synthetic sendmail (UNM) | 346 sunsendmailcp 3 1119
decode 12 3067
forwardingloops 10 2569
Synthetic sendmail (CERT) | 294 syslogd 23 6504
unsuccessful intrusion smb65a 3 275
unsuccessful intrusion smbx 8 1537
Synthetic ftp 8 wu.ftpd 5 1363
Synthetic lpr 9 lprep 1001 | 164,232
Live Ipr (MIT) 2698 lprep 1001 | 165,248
Live Ipr (UMN) 1231 Iprep 1001 | 164,232

Table 1: The data obtained from the University of New Mexico, and used to
replicate the experiments documented in [5].

and was done to replicate the graph of results presented in [5]. We find in our
results, as did they, that the important features are present in both cases,
namely the absence of an anomaly signal for sequence lengths of less than
six in the intrusive trace labelled “decode 1”7, which corresponds to the file
named sm-280.int for the kernel calls associated with the PID 283.

As can be seen in both Figure 5 and Figure 6, the decode intrusion is
not detectable for sequence lengths of less than six. The implication of these
results, as stated in [5], is that a sequence length of six or greater is required
because that will allow the detection of anomalies in all intrusive traces.

5 Effect of minimal foreign sequences on stide’

performance

We have shown above that (ir)regularity in data, as measured by conditional
entropy, does not affect the stide algorithm, nor does it determine the ap-
propriate detector-window length to set, as stated by [12]. Consequently,
we seek to identify the phenomenon that does determine the appropriate
detector-window length.

We hypothesize that a detector-window length of at least six is required
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to detect all intrusive traces in the Hofmeyr experiments, because the length
of the smallest minimal foreign sequence present in one of the intrusive traces
was six, and that this minimal foreign sequence of length six must have been
composed of either rare or common subsequences. This explains why stide
or the Hamming distance detector did not detect this anomaly for detector-
window lengths of less than six, i.e., because the smaller subsequences that
make up the minimal foreign sequence of length six already exist in the
training trace that produced the normal database.

The strength of the stide algorithm is in the detection of foreign sequences.
The stide algorithm is capable of detecting foreign sequences simply because
foreign sequences match no other sequence in the normal database. However,
factors such as the relation between the length of the sliding window and
the length of the foreign sequence, as well as the effect of sliding a window
over the foreign sequence, do make a significant impact on the detection
capabilities of stide. The following experiments will show that it is possible
for a foreign sequence to be composed of a mixture of rare and common
sequences, and that the length of the smallest minimal foreign sequence in
a given trace is what prescribes the appropriate detector-window length for
the stide detector.

We will use a detector based on Markov models [6] as a tool for compar-
ison in order to help illustrate the factors that do or do not affect stide, but
that may or may not affect another detector employing a different approach.
We will refer to the detector based on Markov models as the Markov detector.
The Markov detector employs conditional probabilities in its function as an
anomaly detector. Briefly, it determines the probability of seeing an event,
given the previous N events. The following is an outline of the experimental
procedure that we will employ to show that the length of the minimal for-
eign sequence prescribes the length of the appropriate detector window that
must be set to detect anomalies in a stream of data known to contain the
manifestations of an intrusion, fault or attack.

o (Generate training data;
o (Generate background test-data stream;

e Use the training data to select minimal foreign sequences of lengths 2
to 9, composed of rare subsequences;

o Inject the anomalies into the generated background test-data stream
to create the final stream of test data;



e Deploy both anomaly detectors (stide and Markov) on the same train-
ing and test data, while varying their detector-window lengths with
respect to the length of the injected anomalous sequence;

e Record the response of detector to the injected anomaly.

5.1 Constructing training data

The training data were constructed using a Markov-model transition matrix.
The precise method for generating the training data is documented in [6].
Although numbers were used to represent the elements of the training-data
stream, the numbers were treated as categories.

The transition matrix used to generate the training data had a conditional
entropy value of 0.1. This means that at each point in the data stream, the
next element is highly predictable given the current element, i.e., there is low
uncertainty as to what the next element will be. Such a transition matrix was
chosen simply because it generated data with the following characteristics:

o A large proportion of the data consists of a repetition of the sequence
1,2,3,4,5, 6,7, 8 Ninety-eight perecnt of a one-million-element data
stream, generated with this transition matrix, will consist of a repeti-
tion of the sequence 1, 2, 3, 4, 5, 6, 7, 8. This results in a consistent
set of obviously common sequences, regardless of the length required
of the sequences. This is particularly necessary when constructing the
test-data stream. A test-data stream made up of commonly-occurring
sequences is desirable in order to allow us to observe the response
of a detector to the injected anomaly without being confounded by
naturally-occurring rare or foreign sequences.

o Despite the repetition in a large portion of the data resulting in a usable
set of common sequences, there is a small amount of unpredictability
in the probabilities that populate the matrix which ensures the oc-
currence of rare sequences necessary for selecting the constituent rare
subsequences in a minimal foreign sequence.

The alphabet size for the training data was 8. It is noted that alphabet
sizes in real-world data are certainly much higher than this; for example, there
are about 243 unique kernel calls in BSM audit data. However, the method
aims to evaluate the capabilities of the detector in detecting the higher-level



concept of an anomaly. Although alphabet size may play a role with respect
to certain aspects of the data, such as influencing the size of the set of possible
foreign sequences or the size of the set of possible sequences that populate
the normal database, a foreign sequence is still a foreign sequence regardless
of the alphabet size, and the concept of a rare sequence will also remain
immutable regardless of alphabet size. This abstraction allows us to study
the response of the detector using synthetic data, as well as to apply the
results from the synthetic environment to real-world environment.

The aforementioned matrix was used to generate a training-data stream
of 1,000,000 elements. The sample size of 1,000,000 was an arbitrary choice,
selected so that the data set would not be insufficiently small. There were
two parameters that were chosen arbitrarily in this experiment, the sample
size of 1,000,000 elements, and the length of the minimal foreign sequence

(AS), which ranged from 2 to 9.

5.2 Constructing background test data

The background data for the test-data stream consisted of the most com-
monly occurring sequences only, which given the training data described
above, consists of a repetition of the sequence 1, 2, 3, 4, 5, 6, 7, 8. This
ensured that only common sequences populated the background data. This
was a desired property primarily because our aim was to observe the response
of a detector to the specific minimal foreign sequence that we were going to
introduce into the background data in the second phase of this procedure.
We therefore wanted background data that would not interfere with a detec-
tor’s response by containing within it any obviously anomalous event that
may constitute noise to a particular detector, for example naturally occurring
rare or foreign sequences.

5.2.1 Characteristics of the anomaly

We will be introducing an anomaly that consists of a minimal foreign se-
quence of length AS, composed of rare subsequences, into the data stream.
As noted above, a rare sequence is defined to be a sequence that occurs less
than 0.5% of the time in the training data.

The selection of rare sequences was prompted by the expectation that
the Markov detector will have the ability to detect rare sequences. In cases
where the length of the detector-window is decidedly less than the length
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of the anomaly AS, we encounter the situation where the detector does not
“see” all of the minimal foreign sequence at once. Instead, the detector is
relegated to producing an anomaly signal based only on the smaller sub-
sequences that pervade the larger minimal foreign sequence. Under such
situations, we would like to observe the effect of the rare subsequences on
the performance of both the Markov-based detector and stide. Although
we already know that stide does not have the ability to respond to rare se-
quences, we will nevertheless apply the stide detector to an anomaly with
these characteristics, primarily for the sake of charting and comparing the
performance space of both detectors in an attempt to quantify how much
more the ability to detect rare sequences actually confers upon the detection
of foreign sequences under such circumstances.

5.3 Producing and injecting minimal foreign sequences

The minimal foreign sequences and their constituent subsequences must now
be carefully chosen so that the injection process itself does not introduce
unintended perturbations in the background data. This is particularly sig-
nificant with respect to the sequences at the boundaries, i.e., where some
elements of the injected anomalous sequence and some elements of the back-
ground data may combine within a detector’s window to produce sequences
that affect the anomaly detector in uncontrolled and unintended ways. In
particular, we want to avoid producing additional, undesired, foreign se-
quences due to the combination of symbols from the injected sequence and
surrounding symbols from the trace.

We have determined that sequences composed by concatenating short,
rare sequences from the training trace are likely to be foreign, simply due to
the improbability that a substantial number of rare sequences would appear
in the training trace in the chosen order. It is easy to generate such sequences,
and to verify their foreignness and minimality. These same properties com-
plicate the problem of injecting the anomaly, which remains somewhat of an
art. Essentially, the problem is one of ensuring that all of the 2(DW — 1)
sequences of length DW that can be composed at the boundary of the injec-
tion, using contiguous symbols from the anomaly and the background trace,
are actually in the database. If this is not the case for some location in the
trace, a new anomaly must be produced and the process repeated.

The final suite of evaluation data contains one stream of training data
and 8 streams of test data, where each test-data stream contains a single
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minimal foreign sequence whose length is selected from the range 2 to 9.
This set of 9 data streams is then repeated for each detector-window length
of 2 to 15. Note that the length of the detector window dictates the length
of the subsequences that compose each minimal foreign sequence. In total
we have 112 test data streams.

5.4 Deploying detectors

We deployed the stide and Markov based detectors on the suite of data
created in the preceding sections. For each minimal foreign sequence being
detected, we varied the length of the detector window from 2 to 15. It should
be noted that for stide we ignored the locality frame count, focusing on the
indication of a match (0) or mismatch (1). We reasoned that although further
processing can be performed on the results of the similarity measure for
purposes of smoothing away noise or enhancing signal strength, no amount of
subsequent processing can compensate for the underlying inability to detect
a specific phenomenon.

The locality frame count (LFC) sums up the number of mismatches ex-
perienced within the span of the locality frame. Although the LFC does
contribute to the final anomaly signal, it only comes into play after a se-
quence has been determined to be a match or mismatch. If the detection of
a foreign sequence is missed, meaning that it does not register as a mismatch,
then no amount of applying the LFC or adjusting its length will cause the
missed anomaly to be detected.

5.5 What is meant by hit, miss, detection blindness
and detection weakness?

The results of our experiments are expressed in terms of hits and misses, and
in terms of regions of detection blindness and weakness. When a detector
window slides over an anomaly, e.g., a foreign sequence, at various points
of its journey it will view sequences that are composed of a combination of
the elements from the foreign sequence and elements from the background
data. Under such circumstances, the interaction between the elements of
the foreign sequence and the background data will cause sequence types to
arise that prompt the anomaly detector to respond in one fashion or another.
Regardless of how the detector responds, the response is still influenced by
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elements of the foreign sequence. Only when the detector window completely
clears the entire foreign sequence (i.e., no elements within the detector win-
dow belong to the foreign sequence), can we say that the response of the
detector is no longer influenced to the foreign sequence. In other words, as
long as some part of the foreign sequence is viewed by the sliding detector
window, it can be argued that the detector’s response is due to the pres-
ence of the foreign sequence in the data. As a result, the response of the
detector in such a circumstance should also be considered in the process of
determining hits or misses. This line of reasoning resulted in the concept of
the incident span that we use to determine hits and misses. The incident
span includes the DW — 1 elements of the background data adjacent to the
anomalous sequence on one side of the detector window, the AS elements
of the anomalous sequence, and the DW — 1 events of the background data
adjacent to the anomalous sequence on the other side of the detector window
(see Figure 2). The length of this span is therefore AS+2(DW —1) elements.
Alternatively, it can be said that AS + (DW — 1) sequences of length DW
are contained within the incident span.

Using the situation where only a single anomaly was introduced into
each test stream, and letting the detector response range from 0 (indicating
completely normal) to 1 (indicating maximal abnormality), we describe a
detector as

e blind, in the case where the detector response is 0 for every sequence
of the incident span;

e weak, in the case where the maximum detector response registered in
the incident span is greater than 0 and less than 1, indicating that
something that is not definitely normal has been seen;

e capable, in the case where at least one detector response of 1 was
registered in the incident span.

Binary detectors, such as the sequence-matching portion of stide, are
only capable of generating responses of 0 or 1; however, the Markov detector
can generate weak responses. Weak responses can be converted to binary
responses by applying a threshold that converts responses below the threshold
to 0 and others to 1.
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Figure 2: The incident span. A detector’s response to the sequences in the
incident span are considered when determining hits and misses.

To avoid the compounding effects of varying the threshold of the Markov
detector, we set its threshold at 1, recognizing only maximally anomalous
(foreign) sequences as “hits.”?

5.6 Results and discussion
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IDetection thresholds are often used to determine “alarm-worthy” events. The most
anomalous detector response will always register as an alarm regardless of where the
detection threshold is set. An anomalous phenomenon generating such a response will
never “disappear” or become a miss when the detection threshold is raised or lowered.



unable to detect the foreign sequence whose corresponding length is marked
on the x-axis, where unable to detect means that the maximum anomalous
response recorded along the entire incident span was 0, signifying completely
normal.

Since the Markov detector is based on the Markov assumption, i.e., that
the next state is dependent only upon the current state, the smallest window
length possible is 2. This means that the next expected, single, categorical
element is dependent only on the current, single, categorical element. As a
result, the y-axis marking the detector-window lengths in Figure 3 begins at
2. Although it is possible to run stide using a detector window of length 1,
doing so would produce results that do not include the sequential ordering of
events, a property that comes into play with all the detector-window lengths
that are larger than 1. This, together with the fact that there is no equivalent
on the side of the Markov detector, argued against running stide with a
window of 1.
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Figure 4: Stide detector efficacy

foreign sequences, their differing similarity metrics significantly affect their
detection capabilities. There are three main points to note from the results.
First, for stide, the detector-window length parameter must be greater than
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or equal to the length of the foreign sequence. The minimum length of the de-
tector window required to detect each minimal foreign sequence is the size of
the minimal foreign sequence itself. As can be seen from diagonal line in the
results, the correlation between detector-window length and anomaly length
is strong: y = z. Second, the results show that the similarity metric used by
each detector significantly affects detection performance. In stide’s case, even
though we know that there is a foreign sequence present in the data stream,
this foreign sequence is only visible if the length of the detector window is at
least as large as the length of the foreign sequence. The similarity measure
employed by stide appears to have a weakness in that it is unable to detect
minimal foreign sequences composed of rare subsequences under conditions
where DW < AS. As a result, there are no guarantees that stide will detect
faults even if they do manifest as foreign sequences in the data. The Markov
detector, on the other hand, appears to have no such weakness. The foreign
sequence in the data stream is visible to the Markov detector, even when
the length of the detector window is smaller than the length of the foreign
sequence. This suggests that there are factors in this data stream that fa-
vor detectors that employ conditional probabilities. These factors, however,
appear to have no effect on the sequence-matching approach employed by
stide. Finally, by charting the performance of stide and the Markov detector
with respect to the detection of minimal foreign sequences, we are able to
observe the nature of the gain achieved in detection performance between an
algorithm that employs conditional probabilities and one that employs the
sequence-matching scheme used by stide. This gain in detection ability, due
to the use of conditional probabilities, is significant and is illustrated by the
blind region marked out in Figure 4.

These results provide evidence that shows a strong relationship between
the length of the minimal foreign sequence and the length of the detector
window required to detect such a phenomenon. It appears that the appro-
priate sequence length for stide is prescribed by the length and composition
of the minimal foreign sequences present in the data.

6 Locating minimal foreign sequences in real-
world data.

In the previous section we saw that some phenomena in the “decode 1”7 in-
trusive trace caused both stide and the Hamming-distance-based detector to
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dec.1

1

2 2 7 4 3 8 3 6 4
3 1 13 7 2 1 8 1 8 2
4 4 1 4 2 2 1 4
5 2 2 2 2

6 1 1

7 2 2 1 2

8

Table 2: The raw number of minimal foreign sequences of lengths 1 to 20 for
each named intrusive trace. The empty cells mean that no minimal foreign
sequences of that length could be found in the trace. Note the single length-
six minimal foreign sequence in the dec.l (decode 1) column. The smallest
minimal foreign sequence in every other trace is of length 2. In order for
stide to detect all intrusive traces, a detector window of length 6 is required.

completely miss the anomalies present in the “decode 1”7 intrusive trace when
detector-window lengths of less than six were employed. In experiments with
synthetic data, we found that such behavior is typical of both detectors in
the presence of minimal foreign sequences composed of rare or common sub-
sequences. This final section ties these observations together, and proposes
that the solution to the “why six” problem lies in the presence of a length-six
minimal foreign sequence, composed of rare or common subsequences, in the
decode 1 intrusive trace. Since no minimal foreign sequences exist in the de-
code 1 trace with lengths less than six, unlike all the other intrusive traces,
no anomalies could be detected when detector-window lengths of less than
six were used. This meant that a detector-window length of six was necessary
in order to detect anomalies in all intrusive traces, including decode 1.

Our task at this point is to identify the minimal foreign sequences that
are present in the Hofmeyr data. We wish to chart characteristics, such as
their constituent subsequences, and their various lengths.

This serves three purposes:

e to show that the anomaly types we laid out in the anomaly domain
actually exist in real-world data;
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o to show that regardless of the data, i.e., synthetic or real-world, when
the performance of a detector has been established with respect to the
anomaly types described in [7], the performance results for a detector
are immutable, and will persist reliably across datasets;

e to verify that, in the case of these detectors, it is the presence of
these anomaly types in the data stream that dictates the appropriate
detector-window length to set;

e to solve the “why six” problem.

We proceed to identify all the minimal foreign sequences of lengths 2
to 20 in the sunsendmailcp, decode and syslogd intrusive data, using all
the normal data for the system programs associated with those intrusive
traces. We concentrate only on these traces, because the observation made
by Hofmeyr et al. regarding the fact that a sequence length of at least six
was required to detect anomalies in all the intrusive traces, was made on
these traces from the detection results presented in [5].

Table 2 lists the length and number of minimal foreign sequences present
in the intrusive traces decode 1, decode 2, sunsendmailcp and forward-
ingloops. We can see from the table that decode 1 contains only one minimal
foreign sequence of length six, whereas in every other intrusive trace the
smallest minimal foreign sequence was of length 2. This means that stide re-
quired a detector-window length of six in order to detect that single anomaly
in decode 1 because, there were no minimal foreign sequence anomalies of
lengths less than six to detect in that intrusive trace. Upon further analysis
of the single minimal foreign sequence in decode 1, we find that it is actually
a minimal foreign sequence of length 6 with rare subsequences. Precisely:

Filename: sm-280.1int283.

Actual Sequence: 2, 95, 6, 6, 95, 5

Translated to system calls: fork, connect, close, close, connect, open
Start line number: 79

End line number:84
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Figure 5: Normalized Hamming-distance similarity measure plotted against
sequence length DW for a detector employing the Hamming-distance simi-
larity measure. We replicated the experiment documented in [5] to validate
the observation that a detector-window length of at least six is required to
detect all intrusive traces.
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Figure 6: The response of stide plotted against sequence length. The same
observation made in [5] can be made here as well. It appears that at least a
sequence length of six is required to detect anomalies in every intrusive trace.
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7 Conclusions and future work

From the series of experiments above, we have confirmed our hypothesis that
a detector-window length of at least six was required to detect all intrusive
traces in the experiments in [5]. This was because the length of the smallest
minimal foreign sequence present in one of the intrusive traces was six. We
found that the intrusive trace labelled “decode 1”7 contained a single size-six
minimal foreign sequence, composed of rare subsequences. The rare subse-
quences meant that only when the detector-window length was large enough
to see the entire minimal foreign sequence would that sequence register as an
anomaly.

Detection accuracy will be compromised in situations where the length of
the detector window employed by stide is set to be smaller than the length of
the smallest minimal foreign sequence. In such cases, attacks that may man-
ifest as those minimal foreign sequences will elude the detector altogether.
Since DW < AS, no anomalies will register in the data stream. However, if
a larger detector-window length is used, the minimal foreign sequences will
suddenly be detectable.

We showed the effect of minimal foreign sequences composed of rare or
common subsequences on stide’s performance, and how their presence un-
dermines the claim that stide will detect foreign or “unusual” sequences that
occur in a stream of data. We have identified the conditions under which
stide is completely unable to detect the presence of foreign sequences in a
data stream. Identifying minimal foreign sequences, and establishing their
effect on stide, enabled us to provide a solution to the question of the “best”
or most appropriate detector-window size to select in any application of the
stide algorithm.

We have also shown that the performance characteristics established for
stide on synthetic data remained pertinent across datasets. In this case,
even when the detector was deployed on real-world data, we were able to
explain its performance behavior using the lessons learnt for that detector
on synthetic data.

As a final note, we remind the reader that we are assuming that the
foreign sequences we encountered in the real-world data actually are the
manifestations of the intrusions of interest. We are currently not aware of
any analysis that established whether the intrusions actually manifested in
the system call data obtained from the “strace” sensor, and whether those
manifestations were anomalous. As a result, we really do not know if the
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foreign sequences we identified in the intrusive data were or were not the
result of the intrusions. This makes it hard to determine if the detection of
those foreign sequences were hits or false alarms. It is equally likely that
the single minimal foreign sequence of size six in the decode 1 trace was the
result of insufficient training data.

These speculations raise a more general issue. To what extent can we
establish a link between detectable anomalies and intrusive behaviors? How
can we decide, a priorit, what kind of a sensor stream is appropriate and
what detector characteristics are likely to be well matched to the stream.
For example, the “decode—1” intrusion is characterized, in the UNM data, by
exactly one minimal foreign sequence of length six. We have shown that stide,
with a window size of less than six, cannot detect this particular incident. Are
there intrusive scenarios that would produce minimal foreign sequences with
greater lengths? In a similar vein, given knowledge of the detector and the
working definition of normal, i.e., the database, is it possible to either modify
an attack so that its trace appears to contain only normal sequences, or so
that it contains only minimal foreign sequences of length greater than the size
of the detector window? We are beginning to investigate these questions, and
preliminary results indicate that escaping detection in these ways is possible
for stide-like detectors. We would like to extend these investigations to other
anomaly-detection schemes.

8 Acknowledgements

The work herein was supported by the U.S. Defense Advanced Research
Projects Agency (DARPA) under contracts F30602-99-2-0537 and F30602-
00-2-0528. Many other people also contributed in various ways; the authors
are grateful to Kevin Killourhy, Sami Saydjari and Tahlia Townsend for their
help. The authors particularly wish to thank John McHugh for his time and
contribution to this paper. This paper draws on Kymie Tan’s forthcoming
dissertation [10].

References

[1] Stephanie Forrest, Alan S. Perelson, Lawrence Allen, and Rajesh
Cherukuri, “Self-nonself discrimination in a computer”, In IEEE Sympo-

21



2]

3]

[4]

[5]

[6]

(7]
8]
[9]

[10]
[11]

stum on Research in Security and Privacy, pp. 202-212, IEEE Computer
Security Press, Los Alamitos, CA, 16-18 May 1994, Oakland, CA.

Patrick D’haeseleer, Stephanie Forrest and Paul Helman, “An immuno-
logical approach to change detection: algorithms, analysis and impli-
cations”, Proceedings of the 1996 IEEE Symposium on Research in Se-
curtty and Privacy, pp. 110-119, IEEE Computer Society Press, Los
Alamitos, CA, May 1996, Oakland, CA.

Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff, “A sense of self for Unix processes”, In Proceedings 1996
IEEFE Symposium on Security and Privacy, pp. 120-128, IEEE Computer
Society Press, Los Alamitos, CA, May 1996, Oakland, CA.

University of New Mexico, “Computer Immune Systems”, Internet:
http://www.cs.unm.edu/ immsec/data-sets.htm, 2000.

Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji, “Intrusion
detection using sequences of system calls”, Journal of Computer Secu-

rity, vol. 6, no. 3, pp. 151-180, 1998.

Roy A. Maxion and Kymie M. C. Tan, “Benchmarking anomaly-based
detection systems” International Conference on Dependable Systems
and Networks, Los Alamitos, California, 2001, pp. 623-630, IEEE Com-
puter Society Press, 25-28 June, New York, New York.

Author-1 and Author-2, “Removed for purposes of blind review”.
Author-1 and Author-2, “Removed for purposes of blind review”.

M. Stillerman, C. Marceau, and M. Stillman, “Intrusion detection for
distributed applications” Communications of the ACM, 42(7), pp. 62-69,
July 1999.

Author-1, “Removed for purposes of blind review”.

Christina Warrender, Stephanie Forrest and Barak Pearlmutter, “De-
tecting intrusions using system calls: Alternative data models”, In Pro-
ceedings of the 1999 IEEFE Symposium on Security and Privacy, pp.
133-145, IEEE Computer Society Press, Los Alamitos, CA, 9-12 May
1999, Oakland, CA.

22



[12] Wenke Lee and Dong Xiang, “Information-theoretic measures for
anomaly detection” In Proceedings of the 2001 IEEFE Symposium on
Research in Security and Privacy, pp. 130-134, IEEE Computer Society
Press, Los Alamitos, CA, May 2001, Oakland, CA.

23



