

Towards Higher Disk Head Utilization:
Extracting “Free” Bandwidth

From Busy Disk Drives

Christopher R. Lumb, Jiri Schindler, Gregory R. Ganger,
Erik Riedel, David F. Nagle

May 2000
CMU-CS-00-130

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Freeblock scheduling is a new approach to utilizing more of disks’ potential media bandwidths.
By filling rotational latency periods with useful media transfers, 20{50% of a never-idle disk's
bandwidth can often be provided to background applications with no effect on foreground
response times. This paper describes freeblock scheduling and demonstrates its value with two
concrete applications: free segment cleaning and free data mining. Free segment cleaning often
allows an LFS file system to maintain its ideal write performance when cleaning overheads
would otherwise cause up to factor of 3 performance decreases. Free data mining can achieve
45 - 70 full disk scans per day on an active transaction processing system, with no effect on
transaction performance.

We thank the members and companies of the Parallel Data Consortium (including CLARiiON, EMC, HP, Hitachi,
Infineon, Intel, LSI Logic, MTI, Novell, PANASAS, Procom, Quantum, Seagate, Sun, Veritas, and 3Com) for their
interest, insights, and support.

We also thank IBM Corporation for supporting our research efforts.

Keywords: Disk scheduling, storage systems

1 Introduction

Disk drives increasingly limit performance in many computer systems, creating complex-

ity and restricting functionality. Interestingly, however, the rate of improvement in media

bandwidth (40{60% per year) has kept pace with other computer system attributes that are

driven by Moore's Law. It is only the mechanical positioning aspects (i.e., seek times and

rotation speeds) that fail to keep pace. If 100% utilization of the potential media bandwidth

could be realized, disk performance would scale in proportion to the rest of the system over

time. Unfortunately, utilizations of 2{15% are more commonly observed in practice.

This paper describes, develops, and analyzes a new approach to increasing media band-

width utilization called freeblock scheduling. By interleaving low priority disk activity with

the normal workload (here referred to as background and foreground, respectively), one can

replace many foreground rotational latency delays with useful background media transfers.

With appropriate freeblock scheduling, background tasks can receive 20{50% of a disk's po-

tential media bandwidth without any increase in foreground request service times. Thus,

this background disk activity is completed \for free" in the context of mechanical positioning

for foreground requests.

There are many disk-intensive background tasks that are designed to occur during other-

wise idle time. Examples include disk reorganization, �le system cleaning, back-up, prefetch-

ing, write-back, integrity checking, virus detection, tamper detection, report generation, and

index reorganization. When idle time does not present itself, these tasks either compete

with foreground tasks or are simply not completed. Further, when they do compete with

other tasks, these background tasks do not take full advantage of their relatively loose time

constraints and paucity of sequencing requirements. As a result, these \idle time" tasks often

cause performance or functionality problems in busy systems. With freeblock scheduling,

these background tasks can operate continuously and eÆciently, even when they do not have

the system to themselves.

This paper also quanti�es the e�ects of disk, workload, and scheduling algorithms on

potential free bandwidth. Algorithms are developed for increasing the available free band-

width and for eÆcient freeblock scheduling. For example, with less than a 6% increase in

1

average foreground access time, a Shortest-Positioning-Time-First scheduling algorithm that

favors reduction of seek time over rotational latency can provide an additional 66% of free

bandwith. Experiments also show that, with proper data structures and algorithms, free-

block scheduling decisions can be made eÆciently enough to be e�ective in systems with

high load.

This paper demonstrates the value of freeblock scheduling with concrete examples of

its use for storage system management and disk-intensive applications. The �rst example

shows that cleaning in a log-structured �le system can be done for free even when there is no

truly idle time, resulting in up to a 300% speedup. The second example explores the use of

free bandwidth for data mining on an active on-line transaction processing (OLTP) system,

showing that over 47 full scans per day of a 9GB disk can be made with no impact on OLTP

performance.

The remainder of this paper is organized as follows. Section 2 describes freeblock schedul-

ing and discusses its use in systems. Section 3 quanti�es the availability of potential free

bandwidth and how it varies with disk characteristics, foreground workloads, and foreground

disk scheduling algorithms. Section 4 describes our freeblock scheduling algorithm. Section 5

evaluates the use of free bandwidth for cleaning of LFS log segments. Section 6 evaluates the

use of free bandwidth for data mining of active OLTP systems. Section 7 discusses related

work. Section 8 summarizes the paper's contributions.

2 Free Bandwith

At a high-level, the time, Taccess , required for a media access can be computed as

Taccess = Tseek + Trotate + Ttransfer

Of Taccess , only Ttransfer represents useful utilization of the disk head. Unfortunately, the

other two components generally dominate. Many data placement and scheduling algorithms

have been devised over the years to increase disk head utilization by increasing transfer sizes

and reducing positioning overheads. Freeblock scheduling complements these techniques by

transfering additional data during the time gap of Trotate .

2

Fundamentally, the only time the disk head cannot be transferring data sectors to or

from the media is during a seek. In fact, for most disks, the �rmware will transfer a given

requests' data to or from the media \out of order" to minimize wasted time; this feature is

sometimes referred to as zero-latency or immediate access. While seeks are unavoidable costs

associated with accessing desired data locations, rotational latency is simply an artifact of

not being able to do something more useful with the disk head. The fact that disk platters

rotate constantly means that a given sector will pass under the disk head at a given time,

independent of what the disk drive is doing up until that time. So, there is an opportunity

to do something more useful than just waiting for desired sectors to arrive at the disk head.

Free block scheduling consists of predicting how much rotational latency will occur before

the next foreground media transfer, squeezing some additional media transfers into that time,

and still getting to the destination track in time for the foreground transfer. The additional

media transfers may be on the current or destination tracks, on another track near the two,

or anywhere between them as illustrated in Figure 1. In the two latter cases, additional

seek overheads will be involved, reducing the actual time available for the additional media

transfers, but not completely eliminating it.

Accurately predicting future rotational latencies requires detailed knowledge of a disk's

many performance attributes, including layout algorithms and time-dependent mechanical

positioning overheads. These predictions can utilize the same basic algorithms and informa-

tion that most modern disks employ for their internal scheduling decisions, which are based

on overall positioning overheads (seek time plus rotational latency) [42, 24]. However, this

may require that freeblock scheduling decisions be made by disk �rmware. Fortunately, the

increasing processing capabilities of disk drives [1, 26, 38] make advanced on-drive storage

management feasible [46].

2.1 Using Free Bandwidth

Potential free bandwidth exists in the time gaps that would otherwise be rotational latency

delays for foreground requests. Therefore, freeblock scheduling must opportunistically match

these potential free bandwidth sources to real bandwidth needs that can be met within the

given time gaps. The tasks that will achieve the largest fraction of potential free bandwidth

3

After read of A

(c) Another freeblock alternative.

(b) One freeblock alternative.

(a) Original sequence of foreground requests.
Seek to B's track Rotational latency After read of B

After freeblock read Seek to B's track

After freeblock readSeek to another track Seek to B's track

Disk Rotation

Figure 1: Illustration of two freeblock scheduling possibilities. Three sequences of steps are
shown, each starting after completing the foreground request to block A and �nishing after completing the
foreground request to block B. Each step shows the position of the disk platter, the read/write head (shown
by the pointer), and the two foreground requests (in black) after a partial rotation. The top row, labelled
(a), shows the default sequence of disk head actions for serving block B, which includes 4 sectors worth
of potential free bandwidth (a.k.a. rotatinal latency). The second row, labelled (b), shows free reading of
4 blocks on A's track using 100% of the potential free bandwidth The third row, labelled (c), shows free
reading of 3 blocks on another track, yielding 75% of the potential free bandwidth.

are those that provide the freeblock scheduler with the most exibility. Tasks that best �t

the freeblock scheduling model have low priority, large sets of desired blocks, no particular

order of access, and small working memory footprints.

Low priority. Free bandwidth is inherently in the background, and freeblock requests will

only be serviced when opportunities arise. Therefore, response times may be extremely long

for such requests. Further, for a set of equally important requests, freeblock scheduling

is not appropriate. All such requests should be considered by the foreground scheduling

algorithm, so as to minimize positioning delays and maximize disk head utilization. With

proper foreground scheduling, any request scheduled within free bandwidth would also have

been selected by the foreground scheduler, if it were in the foreground queue. Worse, putting

a subset of equally important requests onto the freeblock queue reduces the options of the

4

Function Name Arguments Description

freeblock readblocks diskaddrs, blksize, callback Register freeblock read request(s)
freeblock writeblocks diskaddrs, blksize, bu�ers, callback Register freeblock write request(s)
freeblock abort diskaddrs, blksize Abort registered freeblock request(s)
freeblock promote diskaddrs, blksize Promote registered freeblock request(s)
*(callback) diskaddr, blksize, bu�er Call-back to task with desired block

Table 1: A simple interface to a freeblock subsystem. freeblock readblocks and freeblock writeblocks
register one or more single-block freeblock requests, with an application-de�ned block size. freeblock abort and
freeblock promote are applied to previously-registered requests, to either cancel pending freeblock requests or
convert them to foreground requests. When promoted, multiple contiguous freeblock requests can be merged
into a single foreground request. *(callback) is called by the freeblock subsystem to report availability of
a single previously-requested block. When the request was a read, bu�er points to a bu�er containing the
desired data. The freeblock subsystem reclaims this bu�er when *(callback) returns, meaning that the callee
must either process the data immediately or copy it to another location before returning control.

foreground scheduler and may increase the total amount of mechnical positioning overhead.

Large sets of desired blocks. Since freeblock schedulers work with restricted free band-

width opportunities, their e�ectiveness tends to increase when they have more options. That

is, the larger the set of disk locations that are desired, the higher the probability that a free

bandwidth opportunity can be matched to a need. Therefore, tasks that involve larger frac-

tions of the disk's capacity generally utilize larger fractions of the potential free bandwidth.

No particular order of access. Ordering requirements restrict the set of requests that

can be considered by the scheduler at any point in time. Since the e�ectiveness of freeblock

scheduling is directly related to the number of outstanding requests, workloads with little or

no ordering requirements tend to utilize more of the potential free bandwidth.

Small working memory footprints. Signi�cant need to bu�er multiple blocks before

processing them causes memory limitations to create arti�cial ordering requirements. Work-

loads that can immediately process and discard data from freeblock requests tend to be able

to request more of their needed data at once.

To clarify the types of tasks that �t the freeblock model, Table 1 presents a sample

interface for a freeblock subsystem, ignoring component and protection boundary issues.

This interface is meant to be illustrative only; a comprehensive API would need to address

memory allocation, protection, and other issues.

This sample freeblock API has four important characteristics. First, no call into the

5

freeblock subsystem waits for a disk access. Instead, calls to register requests return imme-

diately, and subsequent callbacks report request completions. This allows applications to

register large sets of freeblock requests. Second, block sizes are provided with each freeblock

request, allowing applications to ensure that useful units are provided to them. Third, read

requests do not specify memory locations for read data. Completion callbacks provide point-

ers to bu�ers owned by the freeblock subsystem and indicate which requested data blocks

are in them. This allows tasks to register many more freeblock reads than their memory

resources would otherwise allow, giving greater exibility to the freeblock subsystem. For

example, the data mining example in Section 6 starts by registering freeblock reads for all

blocks on the disk. Fourth, freeblock requests can be aborted or promoted to foreground

requests at any time. The former allows tasks to register for more data than are absolutely

required (e.g., a search that only needs one match). The latter allows tasks to increase the

priority of freeblock requests that may soon impact foreground task performance (e.g., a

space compression task that has not made suÆcient progress).

2.2 Applications

Freeblock scheduling is a new tool, and we expect that system designers will �nd many

unanticipated uses for it. This section describes some of the applications we see for its use.

Scanning applications. In many systems, there are a variety of support tasks that

scan large portions of disk contents. Such activities are of direct bene�t to users, although

they may not be the highest priority of the system. Examples of such tasks include report

generation, virus detection, tamper detection [27], and back-up. Section 6 explores data

mining of an active transaction processing system as a concrete example of such use of free

bandwidth.

These disk-scanning application tasks are ideal candidates for free bandwidth utilization.

Appropriately structured, they can exhibit all four of the desirable characteristics discussed

above. For example, report generation tasks (and data mining in general) often consist of

collecting statistics about large sets of small, independent records. These tasks may be of

lower priority than foreground transactions, access a large set of blocks, involve no ordering

requirements, and process records immediately. Similarly, virus detectors examine large sets

6

of �les for known patterns. The �les can be examined in any order, though internal statistics

for partially-checked �les may have signi�cant memory requirements when pieces of �les are

read in no particular order. Backup applications can be based on physical format, allowing

exible block ordering with appropriate indices, though single-�le restoration is often less

eÆcient [23, 11]. Least exible of these examples would be tamper detection that compares

current versions of data to \safe" versions. While the comparisons can be performed in

any order, both versions of a particular datum must be available in memory to complete a

comparison. Memory limitations are unlikely to allow arbitrary exibility in free bandwidth

utilization.

Internal storage optimization. Another promising use for free bandwidth is internal

storage system optimization. Many techniques have been developed over the years for reor-

ganizing stored data to improve performance of future accesses. Examples include placing

related data contiguously for sequential disk access [31, 46], placing hot data near the center

of the disk [45, 40, 3], and replicating data on disk to provide quicker-to-access options for

subsequent reads [34]. Other examples include index reorganization [22, 17] and compression

of cold data [8]. Section 5 uses segment cleaning in log-structured �le systems as a concrete

example of such use of free bandwidth.

While the activities of internal storage optimization exhibit the �rst two qualities listed

in section 2.1, they can pose some ordering and memory restrictions on media accesses.

For example, reorganization generally requires clearing (i.e., reading or moving) destination

regions before di�erent data can be written there. Also, after opportunistically reading data

for reorganization, the task must write this data to their new locations. Eventually, progress

will be limited by the rate at which these writes can be completed, since available memory

resources for bu�ering such data are �nite.

Prefetching and Prewriting. Another use of free bandwidth is for anticipatory disk

activities such as prefetching and prewriting. Prefetching is well-understood to o�er signi�-

cant performance enhancements [36, 6, 19, 30]. Free bandwidth prefetching should increase

performance further by avoiding interference with foreground requests and by minimizing the

opportunity cost of aggressive predictions. Still, the amount of prefetched data is necessarily

limited by the amount of memory available for caching, restricting the number of freeblock

7

requests that can be issued.

Prewriting is the same concept in reverse. That is, prewriting is early writing out of dirty

blocks with the assumption that they will not be overwritten or deleted before write-back

is actually necessary. As with prefetching, the value of prewriting and its relationship with

non-volatile memory are well-known [4, 7, 5, 17]. Free bandwidth prewriting has the same

basic bene�ts and limitations as free prefetching.

3 Availability of Free Bandwidth

This section quanti�es the availability of potential free bandwidth, which is equal to a disk's

total potential bandwidth multiplied by the fraction of time it spends on rotational latency

delays. The amount of rotational latency delay depends on a number of disk, workload, and

scheduling algorithm features.

The experimental data in this section were generated with the DiskSim [16] simulator,

which has been shown to accurately model several modern disk drives [13], including those

explored here. By default, the experiments use a Quantum Atlas 10K disk drive and a syn-

thetic workload referred to as random. This random workload consists of 10000 foreground

requests issued one at a time with no idle time between requests (closed system arrival model

with no think time). Other default parameters for the random workload are request size of

4KB, uniform distribution of starting locations across the disk capacity, and 2:1 ratio of

reads to writes.

Most of the bar graphs presented in this section have a common structure. Each bar

breaks down disk head usage into several regions that add up to 100%, with each region

representing the percentage of the total attributed to the corresponding activity. All such

bars include regions for foreground seek times, rotational latencies, and media transfers. The

rotational latency region indicates the potential free bandwidth (as a percentage of the disk's

total bandwidth) available for the disk{workload combination.

8

Quantum Seagate Seagate Seagate IBM
Atlas 10K Cheetah 4LP Cheetah 9LP Cheetah 18LP Ultrastar 18ES

Year 1999 1996 1997 1998 1998
Capacity 9 GB 4.5 GB 9 GB 9 GB 9 GB
Cylinders 10042 6581 6962 9772 11474
Sectors per track 229{334 131{195 167{254 252{360 247{390
Spindle speed (RPM) 10025 10033 10025 10025 7200
Average seek 5.0 ms 7.7 ms 5.4 ms 5.2 ms 7.0 ms

Table 2: Basic characteristics of several modern disk drives.

0%

20%

40%

60%

80%

100%

 Cheetah 4LP Cheetah 9LP Cheetah 18LP Ultrastar 18ES Atlas 10k

D
is

k
H

ea
d

U
sa

ge

 Latency Transfer Seek

Figure 2: Disk head usage for several modern disks.

3.1 Impact of disk characteristics

Figure 2 shows breakdowns of disk head usage for �ve modern disk drives whose basic

characteristics are given in Table 2. Overall, for the random workload, about one third

(27{36%) of each disk's head usage can be attributed to rotational latency. Thus, about one

third of the media bandwidth is available for freeblock scheduling, even with no inter-request

locality.

At a more detailed level, the e�ect of key disk characteristics can be seen in the break-

downs. For example, the faster seeks of the Cheetah 9LP, relative to the Cheetah 4LP, can

be seen in the lower seek component. Also, the slightly lower ratio of average seek time to

rotation speed of the IBM 18ES, relative to the Atlas 10K, can be seen in the slightly smaller

seek component and slightly larger rotational latency component.

9

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Request Size (KB)

D
is

k
H

ea
d

U
sa

ge

 Latency Transfer Seek

Figure 3: Disk head usage as a function of request size.

3.2 Impact of Workload Characteristics

Figure 3 shows how the breakdown of disk head usage changes as the request size of the

random workload increases. As expected, larger request sizes yield larger media transfer

components, reducing the seek and latency components by amortizing larger transfers over

each positioning step. Still, even for large random requests (e.g., 256KB), disk head utiliza-

tion is less than 55% and potential free bandwidth is 15%.

Figure 4 shows how the breakdown of disk head usage changes as the degree of request

locality increases. Because access locality tends to reduce seek distances without directly

a�ecting the other components, this graph shows that both the transfer and latency com-

ponents increase. For example, when 70% of the requests are within the same \cylinder

group" [32] as the last request, almost 60% of the disk head's time is spent in rotational

latency and is thus available for freeblock scheduling. Figure 4 does not show the down-

side (for freeblock scheduling) of high degrees of locality | starvation of distant freeblock

requests. That is, if foreground requests keep the disk head in one part of the disk, it be-

comes diÆcult for a freeblock scheduler to successfully make progress on freeblock requests

in distant parts of the disk.

10

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% of Local Requests

D
is

k
H

ea
d

U
sa

ge

 Latency Transfer Seek

Figure 4: Disk head usage as a function of request locality. The default workload was modi�ed such
that a percentage of request starting locations are \local" (taken from a normal distribution centered on last
requested location, with a standard deviation of 4MB). The remaining requests are uniformly distributed
across the disk's capacity. This locality model crudely approximates the e�ect of \cylinder group" layouts
[32] on �le system workloads.

3.3 Impact of Scheduling Algorithm

Figure 5 shows how the breakdown of disk head usage changes for di�erent scheduling al-

gorithms applied to foreground requests. Speci�cally, four scheduling algorithms are shown:

First-Come-First-Served (FCFS), Circular-LOOK (C-LOOK), Shortest-Seek-Time-First (SSTF),

and Shortest-Positioning-Time-First (SPTF). FCFS serves requests in arrival order. C-

LOOK selects the next request in ascending starting address order; if none exists, it selects

the request with the lowest starting address. SSTF selects the request that will incur the

shortest seek. SPTF selects the request that will incur the smallest overall positioning delay

(seek time plus rotational latency).

On average, C-LOOK and SSTF reduce seek times without a�ecting transfer times and

rotational latencies. Therefore, we expect (and observe) the seek component to decrease

and the other two to increase. In fact, for this workload, the rotational latency component

increases to 50% of the disk head usage. On the other hand, SPTF tends to decrease both

overhead components, and Figure 5 shows that the rotational latency component decreases

signi�cantly (to 22%) relative to the other scheduling algorithms.

SPTF requires the same basic time predictions as freeblock scheduling. Thus, its supe-

11

0%

20%

40%

60%

80%

100%

 FCFS C-LOOK SSTF SPTF

D
is

k
H

ea
d

U
sa

ge

 Latency Transfer Seek

Figure 5: Disk head usage for several foreground scheduling algorithms. The default workload
was modi�ed to always have 20 requests outstanding. Lowering the number of outstanding requests reduces
the di�erences between the scheduling algorithms.

rior performance will make it a common foreground scheduling algorithm in systems with

freeblock scheduling. Unfortunately it's e�ect on potential free bandwidth is distressing.

To counter this e�ect, we propose a modi�ed SPTF algorithm that is weighted to select

requests with both small total positioning delays and large rotational latency components

The algorithm, here referred to as SPTF-SWn%, selects the request with the smallest seek

time component among the pending requests whose positioning times are within n% of the

shortest positioning time. So, logically, this algorithm �rst uses the standard SPTF algo-

rithm to identify the next most eÆcient request, denoted A, to be scheduled. Then, it makes

a second pass to �nd the pending request, denoted B, that has the smallest seek time while

still having a total positioning time within n% of A's. Request B is then selected and sched-

uled. This algorithm creates a continuum between SPTF (when n = 0) and SSTF (when

n =1), and we expect the disk head usage breakdown to reect this.

Figure 6 shows the breakdown of disk head usage and the average foreground request

access time when SPTF-SWn% is used for foreground request scheduling. As expected,

di�erent values of n result in a range of options between SPTF and SSTF. As n increases,

seek reduction becomes a priority and the rotational latency component of disk head usage

increases. At the same time, average access times increase as total positioning time plays a

less dominant role in the decision process. Fortunately, the bene�ts increase rapidly before

12

0%

20%

40%

60%

80%

100%

 SPTF

 SPTF-SW 5%

 SPTF-SW 10%

 SPTF-SW 20%

 SPTF-SW 30%

 SPTF-SW 40%

 SPTF-SW 50%

 SPTF-SW 60%

 SPTF-SW 70%

 SPTF-SW 80%

 SPTF-SW 90%

 SPTF-SW 100%
 SSTF

D
is

k
H

ea
d

U
sa

ge

 Latency Transfer Seek

(a) Disk head usage

0

1

2

3

4

5

6

 SPTF

 SPTF-SW 5%

 SPTF-SW 10%

 SPTF-SW 20%

 SPTF-SW 30%

 SPTF-SW 40%

 SPTF-SW 50%

 SPTF-SW 60%

 SPTF-SW 70%

 SPTF-SW 80%

 SPTF-SW 90%

 SPTF-SW 100%
 SSTF

A
ve

ra
ge

 A
cc

es
s

T
im

e
(m

s)

 Latency Transfer Seek

(b) Average access time

Figure 6: Disk head usage and average access time with SPTF-SWn% for foreground schedul-

ing. The default workload was modi�ed to always have 20 requests outstanding.

experiencing diminishing returns and the penalties increase slowly before ramping up. So,

using SPTF-SW40% as an example, we see that a 6% increase in average access time can

provide 66% more free bandwidth potential (i.e., 36% rotational latency for SPTF-SW40%

compared to SPTF's 22%). This represents half of the free bandwidth di�erence between

SPTF and SSTF at much less than the 25% foreground access time di�erence.

4 Freeblock Scheduling Decisions

This section describes and evaluates the computational overhead of the algorithm used in

our experiments for freeblock scheduling, which is the process of identifying free bandwidth

opportunities and matching them to pending freeblock requests.

Our freeblock scheduler works independently of the foreground scheduler and maintains

separate structures. After the foreground scheduler chooses the next request, B, the freeblock

scheduler is invoked. It begins by computing the rotational latency that would be incurred

in servicing B; this is the free bandwidth opportunity. This computation requires accurate

estimates of disk geometry, current head position, seek times, and rotation speed. The

freeblock scheduler then searches its list of pending freeblock requests for the most complete

13

use of this opportunity; that is, our freeblock scheduler greedily schedules freeblock requests

within free bandwidth opportunities based on the number of blocks that can be accessed.

The most complete use of a free bandwidth opportunity can be computed by selecting

the maximal answer to the question, \for each track on the disk, how many desired blocks

could be accessed in this opportunity?". For each track, t, answering this question requires

computing the extra seek time involved with seeking to t and then seeking to B's track, as

compared to seeking directly to B's track. Answering this question also requires determining

which disk blocks will pass under the head during the remaining rotational latency time and

counting how many of them correspond to pending freeblock requests. Note that no extra

seek is required for the source track or for B's track.

Obviously, such an exhaustive search can be extremely time consuming. We prune the

search space in several ways. First, the freeblock scheduler skips all tracks for which the

number of desired blocks is less than the best value found so far. Second, the freeblock

scheduler only considers tracks for which the remaining free bandwidth (after extra seek

overheads) is greater than the best value found so far. Third, the freeblock scheduler starts

by searching the source and destination cylinders (from the previous and current foreground

requests), which yield the best choices whenever they are fully populated, and then searching

in ascending order of extra seek time. Combined with the �rst two pruning steps, this ordered

search frequently terminates quickly.

The algorithm described above performs well when there is a large number of pending

freeblock requests. For example, when 20{100% of the disk is desired, freeblock scheduling

decisions are made in 0-2.5ms on a 550MHz Pentium III, which is much less than average

disk access times. For such cases, it should be possible to schedule the next freeblock re-

quest in real-time before the current foreground request completes, even with a less-powerful

CPU. With greater fragmentation of freeblock requests, the time required for the freeblock

scheduler to make a decision rises signi�cantly. The worst-case computation time of this

algorithm occurs when there are large numbers of small requests evenly distributed across

all cylinders. In this case, the algorithm searches a large percentage of the available disk

space in the hopes of �nding a larger section of blocks than it has already found. Fortunately,

search space pruning again provides a solution; instead of an exhaustive search, one can halt

14

searches after some amount of time (e.g., the time available before the previous foreground

request completes). In most cases, this has a negligible e�ect on the achieved bandwidth.

For all experiments in this paper, the freeblock scheduling algorithm was only allowed to

search for the next freeblock request in the time that the current foreground request is being

serviced. Development of more eÆcient freeblock scheduling algorithms is an important area

for further work.

5 Free cleaning of LFS segments

The log-structured �le system [39] (LFS) was designed to reduce the cost of disk writes.

Towards this end, it remaps all new versions of data into large, contiguous regions called

segments. Each segment is written to disk with a single I/O operation, amortizing the cost

of a single seek and rotational delay over a write of large number of blocks. A signi�cant

challenge for LFS is ensuring that empty segments are always available for new data. LFS

answers this challenge with an internal defragmentation operation called cleaning. Ideally,

all necessary cleaning would be completed during idle time, but this is not always possible

in a busy system. The potential and actual penalties associated with cleaning have been the

subject of heated debate and several research e�orts [41]. With freeblock cleaning, the cost

can be zero for many workloads.

5.1 Design

Cleaning of a previously written segment involves identifying the subset of live blocks, reading

them into memory, and writing them into the next segment. Live blocks are those that have

not been overwritten or deleted by later operations; they can be identi�ed by examining the

on-disk segment summary structure to determine the original identity of each block (e.g.,

block 4 of �le 3) and then examining the auxiliary structure for the block's original owner

(e.g., �le 3's i-node). Segment summaries, auxiliary structures, and live blocks can be read

via freeblock requests. There are ordering requirements among these, but live blocks can be

read in any order and moved into their new locations immediately.

Like other background LFS cleaners, our freeblock segment cleaner is invoked when the

15

number of empty segments drops below a certain threshold. When invoked, the freeblock

cleaner selects several non-empty segments and uses freeblock requests to clean them in

parallel with other foreground requests. Cleaning several segments in parallel provides more

requests and greater exibility to the freeblock scheduler. If the freeblock cleaner is not

e�ective enough,the foreground cleaner will be activated when the minimum threshold of

free segments is reached.

As live blocks in targeted segments are fetched, they are copied into the in-memory

segment that is currently being constructed by LFS writes. Because the live blocks are

written into the same segment as data of foreground LFS requests, this method of cleaning

is not entirely for free. The auxiliary data structure (e.g., i{node) that marks the location

of the block is updated to point to the block's new location in the new segment. When

all live blocks are cleaned from a segment on the disk, that segment becomes available for

subsequent use.

5.2 Experimental Setup

To experiment with freeblock cleaning, we have modi�ed a log-structured logical disk, called

LLD [12]. LLD uses segments consisting of 128 4KB blocks, of which 127 blocks are used

for data and one block is used for segment summary. The default implementation of LLD

invokes its cleaner only when the number of free segments drops below a threshold (set

to two segments). It does not implement background cleaning. Thus, all segment cleaning

activity interferes with the foreground disk I/O. We replaced LLD's default segment selection

algorithm for cleaning with LFS's cost-bene�t algorithm[39], yielding better performance for

all of the cleaners.

Our experiments are run under Linux 2.2.14 with a combination of real processing times

and simulated I/O times provided by DiskSim. To accomplish this, we merged LLD with

DiskSim, using a raw �le for the actual data. Computation times between disk I/Os are

measured with gettimeofday, which in turn uses the Pentium cycle counter. These times

are used to advance simulation time in DiskSim, with request completions reported at the

next entry into the application/LLD code.

All experiments are run on a 550 MHz Pentium III machine with 256MB of memory.

16

DiskSim was con�gured to model a modi�ed Quantum Atlas 10K disk. Speci�cally, since

the maximal size of an LLD disk is 400MB, we modi�ed the disk speci�cations of Atlas 10K

to have only one data surface resulting in a capacity of 1.5GB. Thus, the LLD \partition"

occupies about 1/4 of the disk.

To assess the e�ectiveness of the freeblock cleaner, we used the Postmark v. 1.11 bench-

mark, which simulates the small-�le activity predominant on busy internet servers [25].

Postmark initially creates a pool of �les, it then performs a series of transactions, and �nally

it deletes all �les created during the benchmark run. A single transaction is one access to

an existing �le (i.e., read or append) and one �le manipulation (i.e., �le creation or dele-

tion). We used the following parameter values: 5{10KB �le size (default Postmark value),

25000 transactions, and 100 subdirectories. The number of �les in the initial pool was var-

ied to provide a range of �le system capacity utilizations. The ratios of read-to-write and

create-to-delete were kept at their default values of 1:1.

To age the �le system, we run the transaction phase twice and report measurements for

only the second iteration. The rationale for running the set of transactions the �rst time is

to spread the blocks of the �le system among the segments in order to more closely resemble

steady-state operation. Recall that Postmark �rst creates all �les before doing transactions

which results in all segments being either completely full or completely empty { a situation

very unlikely in normal operation.

5.3 Results

Figure 7 shows Postmark's performance for three di�erent cleaner con�gurations: ORIGI-

NAL is the default LLD cleaner with the LFS segment selection algorithm. FREEBLOCK

is the freeblock cleaner where cleaning reads are freeblock requests and cleaning writes are

foreground requests. IDEAL subtracts all cleaning costs from ORIGINAL and computes the

corresponding throughput. IDEAL is unrealistic because in�nitely fast foreground cleaning

is not possible.

Figure 7 shows the transactions per second for di�erent FS space utilizations, corre-

sponding to di�erent numbers of �les initially created by Postmark. The high throughput

for low utilizations (less than 8% of capacity) is due to the LLD bu�er cache, which absorbs

17

0

20

40

60

80

100

120

0% 20% 40% 60% 80% 100%

% of Capacity Allocated

T
ra

n
sa

ct
io

n
s

p
er

 s
ec

o
n

d

IDEAL FREEBLOCK ORIGINAL

Figure 7: LLD performance for three cleaning strategies. Even with a heavy foreground work-
load(Postmark), segment cleaning can be completed with just freeblock requests until the FS is 93% full.

all of the disk activity. IDEAL's performance decreases as utilization increases, because

the larger set of �les results in fewer cache hits for Postmark's random �le accesses. As

disk utilization increases, ORIGINAL's throughput decreases consistently due to cleaning

overheads, halving performance at 60% capacity and quartering it at 85%. FREEBLOCK

maintains performance close to IDEAL (up to 93% utilization). After 93%, there is insuf-

�cient time for freeblock cleaning to keep up with the heavy foreground workload, and the

performance of FREEBLOCK degrades as the foreground cleaner increasingly dominates

performance. FREEBLOCK's slow divergence from IDEAL occurs between 40% and 93%,

because FREEBLOCK is being charged for the write cost of cleaned segments while IDEAL

is not.

6 Free data mining on OLTP systems

The use of data mining to elicit patterns from large databases is becoming increasingly

popular over a wide range of application domains and datasets [15, 9, 47]. One of the major

obstacles to starting a data mining project within an organization is the high initial cost of

purchasing the necessary hardware. Speci�cally, the most common strategy for data mining

on a set of transaction data is to purchase a second database system, copy the transaction

records from the OLTP system to the second system each evening, and perform mining tasks

18

only on the second system. This strategy can double the capital and operating expenses. It

also requires that a company gamble a sizable up-front investment to test suspicions that

there may be interesting \nuggets" to be mined from their OLTP databases.

Data mining can be an excellent application for free bandwidth. Many data mining

operations, including nearest neighbor search, association rules [2], ratio and singular value

decomposition [28], and clustering [48, 20], eventually translate into a few scans of the entire

dataset. Further, these scans parallelize easily, and individual records can be processed

immediately and in any order, matching three of the criteria fo e�ective freeblock functions.

In addition, through the use of processing directly on disk drives, smart disk systems [38,

1, 26], can perform many of these algorithms directly at the disk drives, making the media

bandwidth at the disks the limiting factor. Riedel, et al., argue that Active Disks and

freeblock scheduling make it possible for a signi�cant amount of data mining to be performed

on an active OLTP system, without the expense of a second dedicated system for mining

tasks [37].

6.1 Design

The Active Disks plus freeblock scheduling approach works well for data mining applications

that can be speci�ed abstractly as:

foreach block(B) in relation(X) (1)

�lter(B) ! B0 (2)

combine(B0) ! result(Y) (3)

where steps (1) and (2) can be performed directly at the disk drives in parallel and for

any ordering of the blocks, and step (3) combines the results from all the disks at the host

after the per-disk scans complete. The freeblock scheduler can ensure that only blocks of a

particular application-speci�c size (e.g., database pages) are provided and that all the blocks

requested are read exactly once, but the order of blocks will be determined by the pattern

of the foreground OLTP requests. When step (2) is operating directly at Active disk drives,

the blocks can be immediately processed, without ever having to be transferred to the host.

19

Applications that �t this model | low computation cost for the �lter function and high

selectivity (large data reduction) from B to B0 | will be limited by the raw bandwidth

available from the disk media. In a dedicated mining system, this bandwidth would be the

full sequential bandwidth of the individual disks. However, even in a system running a heavy

transaction processing workload, freeblock scheduling can provide a signi�cant fraction of

the available media bandwidth.

6.2 Experimental Setup

The experiments in Section 6.3 were conducted using the DiskSim simulator con�gured to

model the Quantum Atlas 10K and a synthetic foreground workload based on approxima-

tions of observed OLTP workload characteristics. The synthetic workload models a closed

system with per-task disk requests separated by think times of 30 milliseconds. We vary the

multiprogramming level (MPL), or number of tasks, of the OLTP workload to illustrate in-

creasing foreground load on the system. For example, a multiprogramming level of 10 means

that there are ten requests active in the system at any given point, either queued at one

of the disks or waiting in think time. The OLTP requests are uniformly-distributed across

the disk's capacity with a read to write ratio of 2:1 and a request size that is a multiple

of 4 kilobytes chosen from an exponential distribution with a mean of 8 kilobytes. Valida-

tion experiments (in [37]) show that this workload is suÆciently similar to disk traces of

Microsoft's SQL server running TPC-C for the overall freeblock-related insights to apply to

more realistic OLTP environments. All simulations run for the time required for the back-

ground data mining workload to complete ten full disk scans, and the results presented are

averages across these 10 scans. The background data mining workload uses free bandwidth

to make full scans of the disk's contents in 4 KB blocks, completing one scan before starting

the next. The experiments ignore record processing overheads, assuming that media scan

times dominate.

20

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 10 20

Multiprograming Level

D
is

k
H

ea
d

U
sa

ge

 Latency Transfer Seek Idle

(a) OLTP disk head usage

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Multiprogramming Level

A
ve

ra
g

e
F

re
e

B
an

d
w

id
th

 (
M

B
/s

)

Potential Achieved

(b) Free mining bandwidth

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 10 20

Multiprogramming Level

D
is

k
H

ea
d

U
sa

ge

 Free Transfer Extra Seek Latency

Transfer Seek Idle

(c) Combined head usage

Figure 8: Average freeblock-based data mining performance. (a) shows the disk head usage
breakdown for the foreground OLTP workload at various MPLs. (b) shows the overall free bandwidth
delivered to the data mining application for the same points. (c) shows the disk head usage breakdown with
both the foreground OLTP workload and the background data mining application.

6.3 Results

Figure 8 shows the disk head usage for the foreground OLTP workload at a range of MPLs

and the free bandwidth achieved by the data mining task. Low OLTP loads result in low data

mining throughput, because little potential free bandwidth exists when there are few fore-

ground requests. Instead, there is a signi�cant amount of idle disk head time that could be

used for freeblock requests, albeit not without some e�ect on foreground response times. Our

study here focuses strictly on use of free bandwidth. As the foreground load increases, oppor-

tunities to service freeblock requests are more plentiful, increasing data mining throughput

to about 4.9 MB/s (about 21% of the Atlas 10K's 23MB/s full potential bandwidth). This

represents a 7� increase in useful disk head utilization, from 3% to 24%, and it allows the

data mining application to complete over 47 full \scans per day" [18] of this 9GB disk with

no e�ect on foreground OLTP performance.

However, as shown in Figure 8b, freeblock scheduling realizes only half of the potential

free bandwidth for this environment. 18% of the remaining potential is lost to extra seek

time, which occurs when freeblocks are only available on a third track (other than the

previous and current foreground request). The remaining 28% continues to be rotational

latency, either as part of freeblock requests or because no freeblock request could be serviced

within the available slot.

21

0

20

40

60

80

100

120

0 500 1000 1500 2000

Time (seconds)

%
 o

f D
is

k
S

ca
nn

ed

 Potential Achieved

(a) Percent complete

0

2

4

6

8

10

12

0 500 1000 1500 2000

Time (seconds)

In
st

an
ta

ne
ou

s
B

an
dw

id
th

 (
M

B
/s

)

 Potential Achieved

(b) Instantaneous free BW

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500 2000

Time (seconds)

T
im

e
(m

s)

 Original Latency Free Transfer

 Unused Latency Extra Seek

(c) Per-requests breakdown

Figure 9: Freeblock-based data mining progress for MPL 7. (a) shows the potential and achieved
scan progress. (b) shows the corresponding instantaneous free bandwidth curves. (c) shows the usage of
potential free bandwidth (i.e., original OLTP rotational latency), partitioning it into free transfer time,
extra seek time, and unused latency. As expected, the shape of the free transfer time line matches that of
the achieved instantaneous mining bandwidth. Both exceed the potential free bandwidth early in the scan
because many foreground transfers can also be used by the freeblock scheduler when most blocks are still
needed.

Figure 9 helps to explain why only half of the potential free bandwidth is realized for

data mining. Speci�cally, it shows data mining progress and per-OLTP-request breakdown as

functions of the time spent on a given disk scan. The main insight here is that the eÆciency

of freeblock scheduling (i.e., achieved free bandwidth divided by potential free bandwidth)

drops steadily as the set of still-desired background blocks shrinks. As the freeblock scheduler

has more diÆculty �nding conveniently-located freeblock requests, it must look further and

further from the previous and current foreground requests. As shown in Figure 9c, this causes

extra seek times to increase. Unused rotational latency also increases as freeblock requests

begin to incur some latency and as increasing numbers of foreground rotational latencies are

found to be too small to allow any pending freeblock request to be serviced. As a result,

servicing the last few freeblock requests of a full scan takes a long time; for example, the last

5% of the freeblock requests take 30% of the total time for a scan.

One solution to this problem would be to increase the priority of the last few freeblock

requests, with a corresponding impact on foreground requests. The challenge would be

to �nd an appropriate trade-o� of impact on the foreground versus improved background

performance.

22

0

2

4

6

8

10

12

0% 20% 40% 60% 80% 100%

% of Disk Scanned

B
an

dw
id

th
 (

M
B

/s
)

 Potential Achieved

(a) Free mining bandwidth

0%

20%

40%

60%

80%

100%

10% 30% 50% 60% 70% 80% 90% 95% 100%

% of Disk Scanned

D
is

k
H

ea
d

U
sa

ge

 Free Transfer Extra Seek Latency Transfer Seek

(b) Disk head usage

Figure 10: Freeblock-based data mining performance for statistical queries. Here, it is assumed
that any X% of disk's data satisfy the needs of each query scan. Below 60%, achieved free bandwidth exceeds
potential free bandwidth, because of the ability to satisfy freeblocks from foreground transfers

An alternate solution would be to take advantage of the nature of many data mining

queries, which look for statistical features and correlations within large numbers of records.

Statistical sampling has been shown to provide accurate results for many queries and in-

ternal database operations after accessing only a (randomly-selected) subset of the total

dataset[35, 10]. Figure 10 shows the impact of such statistical data mining as a function of

the percentage of the dataset needed. Assuming that freeblock scheduling within the fore-

ground OLTP workload results in suÆciently random data selection or that the sampling

algorithm is adaptive to sampling biases[10], sampling can signi�cantly increase freeblock

scheduler eÆciency. When any 95% of the dataset is suÆcient, eÆciency is 40% higher than

for full disk scans. For 80% of the dataset, eÆciency is at 90% and data mining queries can

complete over 90 samples of the dataset per day.

7 Related Work

System designers have long struggled with disk performance, developing many approaches to

reduce mechanical positioning overheads and to amortize these overheads over large media

transfers. When e�ective, all of these approaches increase disk head utilization for foreground

23

workloads and thereby reduce the need for and bene�ts of freeblock scheduling; none have

yet eliminated disk performance as a problem. The remainder of this section discusses work

speci�cally related to extraction and use of free bandwidth.

The characteristics of background workloads that can most easily utilize free bandwidth

are much like those that can be expressed well with dynamic set [44] and disk-directed

I/O [29] interfaces. Speci�cally, these interfaces were devised to allow application writers to

expose order-independent access patterns to storage systems. Application-hinted prefetching

interfaces [6, 36] and cache management algorithms [36] share some of these same qualities.

Such interfaces may also be appropriate for specifying background activities to freeblock

schedulers.

Use of idle time to handle background activities is a long-standing practice in computer

systems. A subset of the many examples, together with a taxonomy of idle time detection

algorithms, can be found in [17]. Freeblock scheduling complements exploitation of idle time.

It also enjoys two superior qualities: (1) ability to make forward progress during busy periods

and (2) ability to make progress with no impact on foreground disk access times. Starting

a disk request during idle time can increase the response time of subsequent foreground

requests, by making them wait or by moving the disk head.

In their exploration of write caching policies, Biswas, et al., evaluate a free prewriting

mechanism called piggybacking [5]. Although piggybacking only considers blocks on the

destination track or cylinder, they found that most write-backs could be completed for free

across a range of workloads and cache sizes. Relative to their work, our work generalizes

both the freeblock scheduling algorithm and the uses for free bandwidth.

Freeblock scheduling relies heavily on the ability to accurately predict mechanical posi-

tioning delays (both seek times and rotational latencies). The �rmware of most high-end disk

drives now support Shortest-Positioning-Time-First (SPTF) scheduling algorithms, which re-

quire similar predictions. Based on this fact, we are con�dent that freeblock scheduling is

feasible. However, as is currently true of SPTF scheduling, it may only be possible within

disk drive �rmware, where complete knowledge of current state and internal algorithms is

available. (We are not aware of successful attempts to perform general-purpose SPTF-like

scheduling from outside of modern disk drives.)

24

The Cello disk scheduling framework [43] was designed to allow di�erent classes of disk

requests to be merged e�ectively. Speci�cally, it was designed for merging non-real-time

requests with real-time request streams without causing real-time requests to miss their

deadlines. To accomplish this, Cello allows class-speci�c schedulers to insert requests into a

serial class-independent schedule if they pass certain tests (e.g., the newly-inserted request

must not cause any already-scheduled request to miss its deadline or exceed its proportion).

It is possible that freeblock scheduling could be built into this framework as an extension to

the class-independent scheduler.

While freeblock scheduling can provide free media bandwidth, use of such bandwidth

also requires some CPU, memory, and bus resources. One approach to addressing these needs

is to augment disk drives with extra resources and extend disk �rmware with application-

speci�c functionality [1, 26, 38]. Potentially, such resources could turn free bandwidth into

free functionality. Such integration is one of the more compelling reasons for the \Active

Disk" concept.

Another interesting use of accurate access time predictions and layout information is

eager writing, or remapping new versions of disk blocks to free locations very near the disk

head [21, 14, 33, 46]. We believe that eager writing and freeblock scheduling are strongly

complementary concepts. Although eager writing decreases available free bandwidth during

writes by eliminating many seek and rotational delays, it does not do so for reads. Further, as

with the LFS cleaning example in Section 5, free bandwidth represents an excellent resource

for cleaning and reorganization enhancements [46].

8 Conclusions

This paper describes freeblock scheduling, quanti�es its potential under various conditions,

and demonstrates its value for two speci�c application environments. By servicing back-

ground requests in the context of mechanical positioning for normal foreground requests,

20{50% of a disk's potential bandwidth can be obtained with no impact on the original

requests. This paper shows that this free bandwidth can be used to clean LFS segments

on busy �le servers and to mine data on active transaction processing systems. While addi-

25

tional experience is needed to re�ne and realize freeblock scheduling in practice, these results

indicate signi�cant promise.

References

[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active disks: programming model, algorithms
and evaluation. Architectural Support for Programming Languages and Operating Systems (San
Jose, California), pages 81{91. ACM, 3{7 October 1998.

[2] D. Agrawal and A. Elabbadi. Using recon�guration for eÆcient management of replicated
data. IEEE Transactions on Knowledge and Data Engineering, 8(5):786{801, October 1996.

[3] Sedat Aky�urek and Kenneth Salem. Adaptive block rearrangement. ACM Transactions on

Computer Systems, 13(2):89{121, May 1995.

[4] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and Margo Seltzer. Non-volatile
memory for fast, reliable �le systems. Architectural Support for Programming Languages and
Operating Systems (Boston, MA, 12{15 October 1992). Published as Computer Architecture
News, 20(special issue):10{22, October 1992.

[5] Prabuddha Biswas, K. K. Ramakrishnan, and Don Towsley. Trace driven analysis of write
caching policies for disks. ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, pages 13{23, May 1993.

[6] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementation and performance of integrated
application-controlled �le caching, prefetching, and disk scheduling. ACM Transactions on

Computer Systems, 14(4):311{343, November 1996.

[7] Scott C. Carson and Sanjeev Setia. Analysis of the periodic update write policy for disk cache.
IEEE Transactions on Software Engineering, 18(1):44{54, January 1992.

[8] Vincent Cate and Thomas Gross. Combining the concepts of compression and caching for a
two-level �lesystem. Fourth International Conference on Architectural Support for Program-

ming Languages and Operating Systems (Santa Clara, CA 8{11 April 1991), pages 200{211.
ACM, 1991.

[9] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. SIGMOD

Record, 26(1):55, 1997.

[10] S. Chaudhuri, R. Motwani, and V. Narasayya. Random Sampling for Histogram Construction:
How much is enough? SIGMOD Record, 27(2):436-447, 1998.

[11] Ann Chervenak, Vivekenand Vellanki, and Zachary Kurmas. Protecting �le systems: A survey
of backup techniques. Joint NASA and IEEE Mass Storage Conference, March 1998.

[12] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C. Hsieh. The Logical Disk: a new ap-
proach to improving �le systems. ACM Symposium on Operating System Principles (Asheville,
NC), pages 15{28, 5{8 December 1993.

[13] Database of validated disk parameters for DiskSim. http://www.ece.cmu.edu/ ganger/disksim/diskspecs.ht

26

[14] Robert M. English and Alexander A. Stepanov. Loge: a self-organizing storage device. Winter

USENIX Technical Conference (San Francisco, CA), pages 237{251. Usenix, 20{24 January
1992.

[15] Ussama Fayyad. Taming the Giants and the Monsters: Mining Large Databases for Nuggets
of Knowledge. Databases Programming and Design, March 1998.

[16] Gregory R. Ganger, Bruce L. Worthington, and Yale N. Patt. The DiskSim Simulation Envi-

ronment Version 1.0 Reference Manual, CSE{TR{358{98. University of Michigan, February
1998.

[17] Richard Golding, Peter Bosch, Carl Staelin, Tim Sullivan, and John Wilkes. Idleness is not
sloth. Winter USENIX Technical Conference (New Orleans, LA), pages 201{212. Usenix
Association, Berkeley, CA, 16{20 January 1995.

[18] Jim Gray and Goetz Graefe. Storage metrics. Microsoft Research, Draft of March 1997.

[19] James GriÆoen and Randy Appleton. Reducing �le system latency using a predictive approach.
Summer USENIX Technical Conference (Boston, June 1994), pages 197{207. USENIX, June
1994.

[20] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An EÆcient Clustering Algorithm
for Large Databases. SIGMOD Record, 27(2):73, 1998.

[21] Robert B. Hagmann. Low latency logging. CSL{91{1. Xerox Palo Alto Research Center, CA,
February 1991.

[22] Eric H. Herrin II and Raphael A. Finkel. An implementation of service rebalancing. 191{91.
University of Kentucky, Department of Math Sciences, July 1991.

[23] Norman C. Hutchinson, Stephen Manley, Mike Federwisch, Guy Harris, Dave Hitz, Steven
Kleiman, and Sean O'Malley. Logical vs. physical �le system backup. Symposium on Operating

Systems Design and Implementation (New Orleans, LA, 22{25 February 1999), pages 239{249.
ACM, Winter 1998.

[24] David M. Jacobson and John Wilkes. Disk scheduling algorithms based on rotational position.
HPL{CSP{91{7. Hewlett-Packard Laboratories, Palo Alto, CA, 24 February 1991, revised 1
March 1991.

[25] Je�rey Katcher. PostMark: a new �le system benchmark. TR3022. Network Apliance, October
1997.

[26] Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. A case for intelligent disks
(IDISKs). SIGMOD Record, 27(3):42{52, September 1998.

[27] Gene H. Kim and Eugene H. Spa�ord. The design and implementation of Tripwire: a �le
system integrity checker. Conference on Computer and Communications Security (Fairfax,
Virginia), pages 18{29, 2{4 November 1994.

[28] F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio Rules: A New Paradigm for Fast,
Quanti�able Data Mining. VLDB, August 1998.

27

[29] David Kotz. Disk-directed I/O for MIMD multiprocessors. Symposium on Operating Sys-

tems Design and Implementation (Monterey, CA), pages 61{74. Usenix Association, 14{17
November 1994.

[30] Thomas M. Kroeger and Darrell D. E. Long. The case for eÆcient �le access pattern modeling.
Hot Topics in Operating Systems (Rio Rico, Arizona), pages 14{19, 29{30 March 1999.

[31] Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randolph Y. Wang, and Thomas E.
Anderson. Improving the performance of log-structured �le systems with adaptive methods.
ACM Symposium on Operating System Principles (Saint-Malo, France, 5{8 October 1997).
Published as Operating Systems Review, 31(5):238{252. ACM, 1997.

[32] Marshall K. McKusick, William N. Joy, Samuel J. Le�er, and Robert S. Fabry. A fast �le
system for UNIX. ACM Transactions on Computer Systems, 2(3):181{197, August 1984.

[33] Jai Menon, James Roche, and Jim Kasson. Floating parity and data disk arrays. Journal of
Parallel and Distributed Computing, 17(1{2):129{139, January-February 1993.

[34] Spencer W. Ng. Improving disk performance via latency reduction. IEEE Transactions on

Computers, 40(1):22{30, January 1991.

[35] F. Olken and D. Rotem. Simple random sampling from relational databases. VLDB, pages
160-169, 1986.

[36] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim Zelenka. In-
formed prefetching and caching. ACM Symposium on Operating System Principles (Copper
Mountain Resort, CO). Published as Operating Systems Review, 29(5):79{95, 3{6 December
1995.

[37] Eric Riedel, Christos Faloutsos, Gregory R. Ganger, and David F. Nagle. Data Mining on
an OLTP System (Nearly) for Free. ACM SIGMOD Conference (Dallas, Texas, 14{19 May
2000), page to appear, May 2000.

[38] Erik Riedel, Garth Gibson, and Christos Faloutsos. Active storage for large-scale data mining
and multimedia applications. International Conference on Very Large Databases (New York,
NY, 24{27 August, 1998). Published as Proceedings VLDB., pages 62{73. Morgan Kaufmann
Publishers Inc., 1998.

[39] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-
structured �le system. ACM Transactions on Computer Systems, 10(1):26{52, February 1992.

[40] Chris Ruemmler and John Wilkes. Disk Shu�ing. HPL-91-156. October 1991.

[41] Margo Seltzer. LFS and FFS Supplementary Information, 1995.
http://www.eecs.harvard.edu/ margo/usenix.195.

[42] Margo Seltzer, Peter Chen, and John Ousterhout. Disk scheduling revisited. Winter USENIX

Technical Conference (Washington, DC), pages 313{323, 22{26 January 1990.

[43] Prashant J. Shenoy and Harrick M. Vin. Cello: a disk scheduling framework for next gener-
ation operating systems. ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems (Madison, WI). Published as Performance Evaluation Review, 26(1):44{55,
June 1998.

28

[44] David C. Steere. Exploiting the non-determinism and asynchrony of set iterators to reduce
aggreggate �le I/O latency. ACM Symposium on Operating System Principles (Saint-Malo,
France, 5{8 October 1997). Published as Operating Systems Review, 31(5):252{263. ACM,
1997.

[45] Paul Vongsathorn and Scott D. Carson. A system for adaptive disk rearrangement. Software|
Practice and Experience, 20(3):225{242, March 1990.

[46] Randolph Y. Wang, David A. Patterson, and Thomas E. Anderson. Virtual log based �le sys-
tems for a programmable disk. Symposium on Operating Systems Design and Implementation

(New Orleans, LA, 22{25 February 1999), pages 29{43. ACM, Winter 1998.

[47] J. Widom. Research Problems in Data Warehousing. CIKM, November 1995.

[48] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: A New Data Clustering Algorithm and
Its Applications. Data Mining and Knowledge Discovery, 2(1), 1997.

29

	Document1.pdf
	Erik Riedel, David F. Nagle
	Abstract

