
Fast and Flexible Application-level Networking

on Exokernel Systems

Gregory R. Ganger1, Dawson R. Engler2, M. Frans Kaashoek3

H�ector M. Brice~no3, Russell Hunt4, Thomas Pinckney4

March 2000

CMU-CS-00-117

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1 Carnegie Mellon University
2 Stanford University
3 Massachusetts Institute of Technology
4 ExoTec, Inc.

Abstract

Application-level networking is a promising software organization for improving performance
and functionality for important network services. The xok/ExOS exokernel system includes
application-level support for standard network services, while at the same time allowing appli-
cation writers to specialize networking services. This paper describes how xok/ExOS's kernel
mechanisms and library operating system organization achieves this exibility, and shares our
experiences and lessons learned (both positive and negative). It also describes how we have used
this exibility to build and specialize three network data services: the Cheetah HTTP server,
the webswamp web benchmarking tool, and an application-level TCP forwarder. Overall mea-
surements show large performance improvements relative to similar services built on conventional
interfaces, in each case reaching the maximum possible end-to-end performance for the experi-
mental platform. For example, Cheetah provides factor of 2{4 increases in throughput compared
to highly-tuned socket-based implementations and 3{8 compared to conventional systems. Web-
swamp can o�er loads that are 2{8 times heavier. The TCP forwarder provides 50{300% higher
throughput while also providing end-to-end TCP semantics that cannot be achieved with POSIX
sockets. With more detailed measurements and pro�ling, these overall performance improve-
ments are also broken down and attributed to the speci�c specializations described, providing
server writers with insights into where to focus their optimization e�orts.

Keywords: network services, extensible systems, OS structure, fast servers.

1

1 Introduction

Application-level networking allows regularly-privileged applications to interact (almost) directly
with a network interface for their communication activities. This organization allows applica-
tion writers to directly manipulate their communication patterns and protocol semantics, which
can enable network communication systems to evolve more quickly and provide higher perfor-
mance than monolithic kernel- or server-based networking. For example, the transactional TCP
(T/TCP) protocol [8], which can provide higher HTTP performance, would undoubtedly have
become commonplace years ago if support for it could be bundled with web browsers and servers.
Application providers have more incentive to make their applications behave well than do oper-
ating system providers. In addition to enabling faster innovation, application-level networking
also allows for improved performance. As we show in this paper, the ability to integrate and
specialize networking code with application code can provide substantial performance increases
for real applications (e.g., up to a factor of 8 for an HTTP server).

An inherent problem with conventional systems is that they allow only privileged servers and
the kernel to interact with a network interface. Non-privileged applications are restricted to the
interfaces and implementations of this privileged software. This organization can limit application
functionality and performance. An interface designed to accommodate every application must
anticipate all possible needs. The all-serving implementation of such an interface must resolve all
tradeo�s and anticipate all ways that the interface could be used. Experience suggests that such
anticipation is infeasible and that the cost of mistakes is high [2, 6, 10, 20, 25, 43].

More speci�cally, a network service's performance and functionality are often dictated by its
network interactions, and yet support for demanding network-oriented applications remains prim-
itive in most systems. Speci�cally, the network abstractions found in current OSs are generally
high-level, inexible and (most importantly) a poor match to the needs of many network applica-
tions. While appropriate abstractions can simplify the construction and improve the portability of
applications, inappropriate abstractions often make it diÆcult or impossible to achieve semantic
and performance goals. For example, software overheads and ineÆcient use of resources prevent
many network data servers from exploiting the full performance of the underlying network. The
avoidance of operating system latencies alone have been shown to provide signi�cant bene�ts
(e.g., sub-100-microsecond round-trip latencies) [49]. It has also been clearly demonstrated that
servers can use hardware resources much more eÆciently than current OSs allow [22, 26]. Further,
because high-performance and correct semantics are critical, inappropriate abstractions increase
complexity as application writers struggle to match incompatible needs and interfaces to recoup
some of the desired behavior.

Application-level networking has the potential to eliminate these problems. By minimizing the
software that cannot be bypassed to minimal primitives (e.g., open stream, send packet, receive
packet) required for inter-application protection, one provides much greater exibility. This exi-
bility will allow application writers to specialize their networking activities to application-speci�c
needs, modifying default protocols and protocol implementations as necessary. Rather than re-
quiring all applications and all systems to adopt the same new software, as current kernel-based
approaches do, application-level networking allows distinct networking software to be bundled
with di�erent applications.

In this paper, we describe libraries and system daemons that safely and eÆciently provide full,
extensible application-level network services on top of the xok/ExOS exokernel system [25]. These
services include UDP/IP, TCP/IP, POSIX sockets, ARP, DNS, and tcpdump. Our conventional
networking abstractions provide performance that is competitive with a modern BSD system. In
fact, the application-level library for POSIX sockets outperforms the kernel-resident BSD socket

1

implementation by up to a factor of two. Simultaneously, on the same system, one can safely
execute aggressively-specialized networking applications (e.g., a high performance HTTP server
and a protocol forwarder with correct end-to-end semantics).

Our work builds on and augments earlier work in application-level networking in three main
ways: (1) it provides concrete examples of exploiting the specializability of application-level net-
working to improve end-to-end performance substantially, (2) it demonstrates that and describes
how full network services can be implemented as independent, application-level libraries, and (3)
it identi�es a set of base kernel mechanisms on which one can successfully do application-level
networking.

The remainder of this paper is organized as follows. Section 2 discusses application-level net-
working in general, including previous work, basic design considerations, and the general exokernel
system architecture. Section 3 details the design and implementation of xok/ExOS's networking
components, including the kernel network interfaces and mechanisms, and the application-level
implementation of standard network services. Section 4 describes the experimental setup used
in Sections 5{7 to evaluate the eÆciency of xok/ExOS's mechanisms and the bene�ts of their
exibility. Section 8 discusses interesting complications, lessons learned, and open questions.
Section 9 summarizes the paper's contributions.

2 Background

In most systems, networking software is hidden away in the operating system kernel; only an
abstract communication interface (e.g., POSIX sockets) is exposed to application writers. For
some applications, this is an ideal arrangement, since the abstract interface is often a cross-
platform standard that provides portability. However, when the interface is a poor match to
an application's needs, the application writer is left with few options. Only those interactions
explicitly supported by the kernel interface can be speci�ed. Further, only behaviors anticipated
by the kernel implementors will be supported well|for example, witness the order of magnitude
performance problems observed in [4, 21].

We are certainly not the �rst to note this dilemma. Abstractly, the end-to-end argument
addresses this dilemma|the Internet's protocol designers used end-to-end arguments to provide
remarkable scalability and robustness. Operating system implementers violated the argument
by embedding the resulting protocols in kernels, stopping just short of the true end-points: the
applications. There have been a variety of approaches to addressing this dilemma, including
application-level networking. The remainder of this section discusses this previous work, overviews
the support needed for application-level networking, and briey overviews the exokernel operating
system architecture.

2.1 Related Work

This section discusses previous approaches to improving and advancing support for applications'
varied network communication needs, broken into three categories: better kernel interfaces and
implementations, extensible operating systems, and application-level networking.

Better kernel interfaces and implementations. The traditional system organization can
be modi�ed to better support new distributed applications with two types of enhancements. First,
there have been many proposed improvements to the implementations of standard networking
interfaces over the years. Some notable enhancements targeted speci�cally for emerging network
services include Fbufs [13], LRP [12], and better implementations of the select system call [4]. A
second, and ultimately more powerful, form of enhancement is to provide more suitable and more

2

exible interfaces. Perhaps unfortunate examples of this are the various \setsockopt", \fcntl" and
\ioctl" calls for tweaking the behavior of network sockets in a small set of prede�ned ways. Many
superior interfaces for asynchronous and copy-free data movement have been proposed [3, 23, 27,
36, 37, 39, 48, 49], though most systems are still not using them. An interface with great potential
is NT's \send �le" system call, under which several interesting performance enhancements could
be implemented if the internal �le system and TCP/IP implementations were re-organized.

Both forms of enhancement su�er from major pragmatic and fundamental limitations. The
main pragmatic limitation is that it usually takes many years for a new OS interface or imple-
mentation technique to move from research prototypes to real systems, no matter how e�ective
the research results show it to be. Part of the reason for this is that changes become more com-
plicated as an OS matures, because enhancements often involve breaking modularity boundaries
and adding \fast path" replicas of existing code paths. Even if OS implementors could move
faster, a fundamental limitation is that support is always restricted to the needs foreseen by
the implementors. Computer system evolution continues to show that OS implementors possess
neither oracles nor omniscience.

Application-level networking o�ers a solution to both problems. By allowing application
writers to bundle new implementations and interfaces with their applications, application-level
networking bypasses the need for the critical shared resource (the OS kernel) to change for them.

Extensible operating systems. Several mechanisms have been proposed, evaluated, and
deployed to allow applications to replace resource management abstractions with varying degrees
of safety. For example, DOS and Alto [28] are completely open operating systems that give
arbitrary applications direct hardware access but provide no protection. Other systems, such as
Netware [31] and Windows NT, allow arbitrary exibility for privileged users only, again with no
protection. Of course, arbitrary static exibility is also available to anyone with source code to an
operating system and suÆcient access to boot it on a machine; this source of exibility forms the
basis of Network Appliance's and Plan 9's approaches to building high-performance networked
data servers [22, 40]. Several recent extensible operating systems, such as the Cache Kernel [10],
Vino [43], SPIN [6, 19], and the exokernel [15, 25], focus on allowing similar degrees of exibility
for arbitrary applications while maintaining inter-application protection and fault-isolation.

All of these approaches to OS extension provide the exibility needed to support changing
needs. This paper describes how the networking support in the exokernel provides speed and
exibility.

Application-level networking. Several previous researchers have proposed, evaluated and
developed mechanisms for supporting application-level networking (e.g., [34, 30, 47, 14, 49, 25, 7]).
These e�orts provided the arguments for the approach, showed that it could be used for some
protocols, and demonstrated clear bene�ts for important workloads (e.g., cluster-based parallel
computation). Based on this prior work, a standard network interface speci�cation (called the VI
Architecture [1]) is being developed and promoted by a set of companies led by Compaq, Intel,
and Microsoft.

Most of the prior work on application-level networking has focused on the latency improve-
ments provided by avoiding kernel entry and exit. A notable exception is the Nemesis system [7],
which focuses on the quality of service bene�ts provided by removing networking from the shared
kernel. (The Lazy Receiver Processing architecture [12] provides many of the same bene�ts for
in-kernel implementations.)

We believe that the most important aspect of application-level networking is the control that
it gives to application writers|network protocols and implementations can be integrated with
and specialized for application activities, providing order of magnitude increases in performance.
Our work extends earlier work in three main ways: (1) by providing concrete examples|such

3

as the Cheetah HTTP server|of exploiting the specializability of application-level networking
to improve end-to-end performance substantially, (2) by demonstrating that and describing how
full network services including TCP/IP, UDP/IP, POSIX sockets, ARP, DNS, and tcpdump can
be implemented as independent application-level libraries, and (3) by identifying a set of base
network interface (NI) and OS mechanisms on which one can successfully do #1 and #2.

2.2 Application-Level Networking

With application-level networking, untrusted applications transmit, receive, and process their
own network packets. This requires OS support for transferring packets between applications
and a low-level network interface exported by either an advanced network interface card (NIC) or
a device driver that emulates a NIC's role. This section briey describes general application-level
networking design issues; Section 3 describes in detail the xok/ExOS exokernel's implementation
choices.

Overview. The central requirement for safe application-level networking is multiplexing the
network interface. Multiplexing, or safely sharing, a network interface among a set of applications
(rather than giving ownership to a single entity) involves two main sets of issues: those related
to sending packets and those related to receiving packets. Common to both are some resource
management issues for the host operating system, including noti�cation, scheduling, and memory
accessibility. Each of these design issues is discussed below.

Transmission. At one level, application-level transmission of packets is straight-forward|an
application can simply give the network interface a pointer to the memory region(s) containing
the packet to be sent. Assuming that the NI includes DMA support, it can pull the packet
from memory and put it on the wire. For privacy purposes, there are also issues of pinning the
memory regions and ensuring that they are actually readable by the transmitting application.
Also, the application should be noti�ed when the packet data has been copied from the memory
regions|until this point, the application should avoid over-writing the regions in order to avoid
corruption of the packet being sent. Two somewhat controversial design considerations center on
whether and how to provide transmit queue fairness (among applications) and pre-transmission
veri�cation of packets.

Reception. The packet reception component of NI multiplexing can be broken into two steps:
packet demultiplexing and packet bu�ering. Packet demultiplexing is the process of identifying
with which connection or application a particular packet should be associated. It is the decision
process by which the contents of incoming packets are kept private from all applications except
those that have rights to them. Generally speaking, packet demultiplexing is accomplished by
checking particular data o�sets in the packet (usually corresponding to values in the various
headers). One powerful approach to doing this is to use some form of packet �lter technology
[34], which involves pattern matching a pre-loaded set of <o�set,value> pairs with the packet
contents. A match identi�es the appropriate receiver, and unmatched packets are handled via
some default path (e.g., by dropping them or giving them to a default OS routine). Packet

bu�ering involves safely delivering newly arrived packets to the applications for which they are
destined. Generally, this involves copying the packets into pre-registered memory regions. If
the NIC can do the demultiplexing, then it can place the packet into the correct bu�er directly.
Otherwise, a programmed copy is required. Safety requires that any physical pages directly
accessed by a NIC be pinned to prevent page faults or, worse, re-allocation by other applications.
Also, if there are no empty pre-registered bu�ers when a packet arrives, the packet is usually
dropped. One alternate option is to bu�er packets in the kernel (or on the NIC) and to give
an application in-place access to their packets. However, this is complex with current memory

4

Frame Buffer TLB Network Memory Disk

Exokernel (xok)

Web server

FS TCP

Barnes-Hut

CRL

IPC VM
Exception

csh

ExOS

Figure 1: Exokernel Operating System Architecture. A small \exo"kernel enforces protection (mul-

tiplexing) of hardware resources, but otherwise avoids abstraction and non-hardware-protection function-

ality. Applications can link libraries to obtain desired abstractions, such as the POSIX-like library called

\ExOS" used by the standard UNIX csh application shown. The web server and Barnes-Hut applications

shown use more specialized libraries that contain only the speci�c functionality they require.

protection mechanisms.
Resource management. Noti�cation, process scheduling, and memory management are im-

portant aspects of both transmission and reception, and many options exist for each. For example,
noti�cation approaches range between polling on status registers and interrupt-like schemes (e.g.,
upcalls or signals). Process scheduling can integrate some awareness of network events or be
independent, with a corresponding impact on round-trip latencies. Memory management must
deal with the need for pre-allocation and pinning, balanced against more conventional activities.

2.3 Exokernels and Library OSs

The work and experiments described in this paper is performed in the context of the Xok/ExOS
exokernel system [25]. The exokernel operating system architecture [15], shown in Figure 1, was
designed to give applications direct control over the management of their hardware resources
while providing strong inter-application protection and fault-isolation. In this architecture, a
small kernel, called an exokernel, does nothing except multiplex (i.e., time-share) the hardware
resources among the applications running on the system. Applications are given direct, low-level
access to their resources. The high-level resource abstractions that are traditionally provided by
operating systems are instead provided in libraries against which applications can link. This or-
ganization allows application writers to select from among multiple resource management options
or to construct their own. The exokernel ensures that aggressively specialized (and even buggy)
resource management strategies and implementations can be used by critical applications without
interfering with the correct operation of other programs on the system.

The ideal being pursued is that of safely allowing applications to bypass the high-level inter-
faces and complex implementations of conventional operating systems. This would allow applica-
tions to interact with their hardware resources without going through any intermediaries (kernel
or server) and without looking through any abstractions. In practice, of course, inter-application
protection has required that the exokernel insist on some degree of abstraction. Also, a server
or two has crept into our exokernel system prototype when we attempt to precisely and securely
emulate certain POSIX semantics. Still, by targeting the ideal case, we have learned a great
deal about how to support and build application-level services, some of which is discussed in this
paper.

5

telnetd

Filters

Packet
Demultiplexor

Network

Message

kernel

Cheetah Barnes-Hut

TCP
sockets

CRL

send
queue

Packet Ring Packet Ring

Figure 2: xok/ExOS's Application-level Networking Architecture. Applications transmit and receive
packets \directly" via virtual network interfaces. Received packets are compared to pre-speci�ed packet

�lters and copied into a pre-registered bu�er associated with the matched �lter. Transmitted packets are

linked into a shared send queue without copying the data; the four small squares in the application regions

contain the data for the four packets currently in the send queue. Three applications are shown: the

Cheetah HTTP server, which will be described further in Section 5, the Barnes-Hut parallel application on

top of the C Region Library (an explicit distributed shared memory system [24]), and the BSD telnetd

application on top of a POSIX-compliant TCP/IP socket library.

Xok is an exokernel for Intel x86-based computers, and ExOS is its default, POSIX-like library
operating system (libOS). Xok/ExOS is self-hosting (i.e., it can be edited, compiled, linked and
rebooted on itself), and can run many unmodi�ed UNIX programs (e.g., perl, gcc, telnet, and
most �le utilities). Relevant to this paper, it also supports a wide range of standard networking
protocols, tools and applications, including UDP/IP, TCP/IP, ARP, DNS, NFS, FTP, ftpd,
POSIX-like sockets, and a tightly-integrated, highly-specialized, very eÆcient HTTP server. The
remainder of this paper details how.

3 Application-level Networking on an Exokernel

This section describes the application-level network services implemented in the xok/ExOS exok-
ernel system [25]. It includes a high-level description of the application-level networking architec-
ture and detailed descriptions of xok's network interface multiplexing mechanisms, other relevant
xok mechanisms (e.g., for memory mapping and scheduling), and ExOS's implementations of
basic network services.

3.1 Overview of Software Architecture

Figure 2 shows the basic architecture of xok/ExOS's networking system, in which applications in-
teract (almost) directly with the network interface, a small kernel component makes this safe, and
libraries provide applications with networking abstractions that correspond to their needs. Out-
bound packets are sent directly from application memory. Applications invoke the \send packet"
system call to add descriptors of outbound packets to the kernel's FIFO send queue. Inbound
packets are received by xok's network device drivers (linked into the kernel) and passed into the
kernel proper. xok identi�es each packet's destination by use of a packet �lter engine and then

6

Transmit net xmit Asynchronously transmit a packet on a given network interface

Demux dpf insert Insert a �lter and associate a packet ring with it
dpf delete Dereference a �lter
dpf ref Add a reference a �lter for a new process

Bu�ering dpf pktring Route �lter's matches to a new packet ring
pktring setring Set up a new packet ring with speci�ed set of entries
pktring modring Add, delete, or replace packet ring entries
pktring delring Delete packet ring from kernel's view

Others wkpred Install wakeup predicate
insert pte Insert page table entry

Table 1: The main kernel functions for supporting application-level networking.

copies it into one or more rings of pre-registered bu�ers shared between the kernel and applica-
tions. The remainder of this section explains both the kernel mechanisms and the application-level
implementation of standard network services.

3.2 xok Interfaces and Mechanisms

This subsection describes the components of xok that are directly relevant to supporting fast and
exible application-level networking. Most of these were outlined in [25], but they are revisited
here with a focus on how they relate to application-level networking. The abstractions used by
xok to make inter-application protection tractable are the only ones that cannot be bypassed by
application writers. Therefore, their proper design will be critical to avoiding limitations down the
road. Fundamentally, our NI is quite similar to previous user-level NIs; there are some interesting
di�erences, but we describe xok's mainly to provide context for the application-level network
services described subsequently. Also, xok's non-NI support is signi�cantly di�erent from that of
other systems. Xok's main kernel functions for supporting application-level networking are listed
in Table 1. We discuss them in detail.

Memory Management. xok manages three main data structures to multiplex main mem-
ory: per-process x86-de�ned virtual memory (VM) page tables, per-page structures that identify
which processes have which access rights, and a free list. Physical pages are free when no pro-
cesses have access. Access rights are added in two situations: when a process allocates a physical
page from the free list and when a process with access gives the same or lesser access to another
process. Although it is outside the scope of this paper, this base support allows for hierarchical
memory management. A process can map its own page tables read-only. Processes can also
direct xok to modify their page tables by removing VM mappings or adding mappings to pages to
which they have appropriate access. Because each process manages its own page tables, processes
can ensure that they have physical pages backing important virtual address ranges, and they
can share memory with other processes in arbitrary and dynamic ways. When it is necessary to
revoke an allocation from a process, the kernel makes an upcall to that process|the process can
then pick a page, save it if needed and give it back to the kernel.

xok always \pins" physical pages that are being shared by the kernel, a device driver, or a
device. For example, this includes pages holding data to be transmitted and pages that hold
noti�cation variables. In this context, we are using the term, \pin", to indicate that the kernel
will not allow the page to be allocated from the free list, even if it were to be made free. This

7

does not imply that the kernel makes the page read-only or unaccessible, and the kernel does not
prevent the application from unmapping the page.

EÆcient Polling. WK (or WaKeup) predicates provide applications running on xok with
a general mechanism for very eÆcient polling. A WK predicate is a set of conditions (in sum-
of-products style) that describe the circumstances of interest to an application. Each condition
consists of comparing some memory location to either a constant value or another memory lo-
cation. When a process wants to wait for certain circumstances, it constructs the appropriate
predicate and gives it to xok. xok checks and dynamically compiles the predicate into eÆcient
native code; xok also pins all pages accessed by the predicate. The process scheduler will always
evaluate a sleeping process's current predicate (if any) before it considers giving the CPU to that
process. If the predicate evaluates to true, the process is marked runnable. To date, all of the
circumstances for which we have used polling (e.g., sleep(), select(), IPC, and I/O event noti�ca-
tions) have been expressable as simple predicates. As a result, many fewer context switches are
necessary as the system becomes populated with many polling processes.

CPU Scheduling. The current xok CPU scheduler manages the CPU with no particular
consideration for I/O devices. The one exception to this rule is that the current scheduling decision
is reconsidered whenever an I/O event (e.g., a packet arrival) related to a sleeping process occurs.
This reconsideration includes evaluating any corresponding WK predicates. If the I/O event
causes the corresponding process to awaken and that process should be granted the current CPU
time, the newly awakened process will be scheduled. I/O events that relate to a runnable or
running process do not cause the scheduler to be invoked. Also, the fact that the process is made
runnable does not guarantee that a context switch will occur immediately.

Packet Transmission. xok's packet transmission interface is quite simple, essentially con-
sisting of a system call that takes three parameters: the interface on which to send the packet,
an array of <address,size> pairs, and a pointer to an integer in memory. The kernel makes
certain that the initiator has read access to the set of memory regions and write access to the
integer. Then, unless the relevant device's transmit queue is full, the various pages are pinned
and the packet descriptor is appended to the queue. When the device driver eventually learns
that the packet has been sent by the card, xok decrements the integer in memory and unpins the
pages. Decrementing the noti�cation integer �ts well with the WK mechanism and allows both
per-packet and grouped handling by applications. It is up to the application to avoid over-writing
its own packet until it has been sent, which can be inferred from the value of the integer. xok's
current implementation enforces no inter-application fairness with respect to the transmit queue
and allows applications to transmit any data desired onto the network.

Packet Demultiplexing. xok uses a packet �lter engine, called Dynamic Packet Filter
(DPF) [16], to demultiplex packets among receivers. DPF uses dynamic code generation to make
packet �ltering much more eÆcient than previous software packet �lter systems [34, 42]. The
downside of DPF is that �lter installation is somewhat more expensive. In other respects, it is
similar to these previous packet �lter systems. Applications request access to particular types of
received packets (e.g., TCP packets to port 80) by constructing the corresponding DPF �lter and
passing it to the xok \install �lter" system call. The kernel veri�es that the new �lter either does
not overlap an existing �lter or that the application has access to said �lter.

Packet Bu�ering. Associated with each �lter is a packet ring identi�er. A packet ring is
a ring of bu�ers set up by an application and shared with xok. Each bu�er has a �eld that
indicates the owner: xok if zero and not-xok otherwise. As shown in �gure 2, when a received
packet matches a �lter associated with a particular packet ring, xok tries to copy it into the
current packet ring entry. If the entry is not owned by xok, the packet is dropped. If the packet
is longer than the entry, it is truncated. After the contents have been copied into place, the

8

original packet size is written into the ownership ag, simultaneously giving noti�cation and the
size information to the application. Applications handle their packets when and how they choose;
they return bu�ers to the kernel by simply writing a zero to the ownership ag. This interface
involves one copy for each received packet, because the kernel performs the demultiplexing; this
copy can be avoided with NICs that perform the demultiplexing.

3.3 ExOS Networking Abstractions

This subsection describes, with speci�c examples, the key mechanisms used in ExOS to achieve
eÆcient application-level network services. In the process, we will attempt to point out places
where, in retrospect, we could have made better design choices. Because most of ExOS is just a
library linked by applications, like the math library, our descriptions will often use \ExOS" and
\application" interchangeably when describing how ExOS works. It is important to note that
aggressive applications, like the Cheetah HTTP server described in Section 5, can bypass any and
all aspects of the ExOS support by simply not invoking them.

UDP/IP. The User Datagram Protocol (UDP) is a simple protocol, and it therefore repre-
sents a good example to start with. UDP is connectionless and has few built-in protocol activities
(no retransmission, no ow control, etc.). To create any networking end-point on xok, an ap-
plication (1) allocates physical memory, constructs a packet ring, and registers it with xok, and
(2) constructs a DPF �lter description and registers it with xok specifying that it be associated
with the new packet ring. After this setup, xok copies incoming packets that match the new
�lter into the new packet ring. To create a UDP end-point, ExOS builds a DPF �lter to identify
Internet Protocol (IP) packets that specify UDP as the protocol and have the desired source and
destination IP addresses and UDP port number values. The source IP address, the destination
IP address and the source UDP port number can be left as wildcards, meaning that they are not
checked during DPF's pattern match for this end-point's �lter. Any combination of these values
that does not overlap existing �lters will be allowed.

Once an application has made itself an end-point, it will receive packets and can process
them when and how it likes. To sleep waiting for packets, the application constructs a WK
predicate that tells the process scheduler to leave it sleeping until the ownership ag of the next
packet ring entry changes from zero (i.e., owned by xok) to non-zero. When a packet arrives, xok
copies it into the packet ring and puts its non-zero size into the ownership ag. The packet, in
UDP format, can then be parsed and processed by the application. To send a UDP packet, an
application constructs an appropriate header and passes to the xmit packet system call a gather
list of pointers to the header and the packet contents. The application will know that it can
re-use the memory regions holding the header and data when the noti�cation integer speci�ed in
the xmit packet call is decremented. (Note: no packet rings or DPF �lters are required for packet
transmission.)

TCP/IP. Operationally, application-level Transmission Control Protocol (TCP) end-points
are established and used in the same way as UDP end-points. However, TCP is a more in-
volved protocol and requires additional support from the underlying system in order to function
e�ectively and correctly. Some aspects, such as generating acknowledgements and holding onto
transmitted data bu�ers until acknowledgement rather than letting them be re-used after trans-
mission, are just part of the TCP implementation. Other aspects involve kernel mechanism or
careful organization of the core ExOS code. The four main examples are:

1. Listen/accept. TCP is a connection-oriented protocol, which means that two end-points
exchange messages to establish a connection before data are actually exchanged. The common
approach to doing this is to have one side establish an end-point that \listens" at a particular TCP

9

port number for other end-points to send a \connect" message. The listener then acknowledges
the connect message with a connect message of its own, thereby \accepting" the connection.
Generally, the new connection is viewed as a new end-point on the listener's system and the
listen end-point remains intact. To establish this new end-point, an application can create a new
packet ring and a new DPF �lter that gets the correct subset of the listener's packets. DPF allows
the creation of this more speci�c subsetting �lter, so long as the creator has the proper capability
for the �lter being subsetted. For performance purposes, ExOS generally does not actually create
a distinct xok-visible end-point until it is required for inter-application protection, if it ever is.
Instead, the listen end-point continues to get the packets for both the listen end-point and the
new connection. A second demultiplexing step in user space identi�es the speci�c connection.
This decision is discussed further below.

2. Timers and Timeouts. TCP requires timers1 to trigger a number of activities. For example,
TCP is a reliable protocol, which means that it retransmits data that are not acknowledged and
therefore may have been lost. To do this robustly, TCP waits some period of time before trying
again. It is straightforward to have the TCP code check for timeouts and arrived packets when
it is executing. However, an application may compute and/or sleep for extended periods of time
between calls into the TCP code. Therefore, ExOS supports WK add-ons and context switch

add-ons to enable timeouts and arrived packets to be handled in a timely manner. These add-ons
allow an application library to register functions to be called by ExOS each time a context switch
upcall is being processed or a WK predicate is being downloaded in the given application. The
application's context switch add-ons are called by ExOS when the process is given the processor
for a quantum.2 ExOS's TCP code uses a context switch add-on to check for and process timeouts
and arrived packets \in the background". This works well for TCP's purposes, because the timers
can be coarse-grain and imprecise without a�ecting correctness|and when performance is critical
because a lot of traÆc is going through the TCP code, the internal timer checks provide greater
precision. WK add-ons are called by ExOS when a WK predicate is to be downloaded, allowing
application modules to add \OR" conditions to the predicate. ExOS's TCP code uses the WK
predicate add-on to cause the process to be awakened at least by the next timeout or packet
arrival. A handler function associated with the WK add-on processes the TCP timeout, if that
is the reason for waking up. After calling such a handler, ExOS reconstructs the WK predicate
and puts the process back to sleep via the same algorithm as before.

3. TIME WAIT. TCP includes explicit support for preventing packets of previous connections
from being processed as part of a new connection. It does this by having at least one end-point
of a closing connection enter and remain in the TIME WAIT state for two times the maximum
round-trip time (speci�ed as two minutes in the TCP speci�cation [41]). This presents a problem
for application-level TCP implementations when applications want to close their connections
and terminate. The easiest solution, which ExOS used for awhile, is to have the process wait
for all of its TIME WAIT connections to fully close before allowing the process to terminate.
Unfortunately, this approach can have adverse e�ects on performance for applications, such as
command line shells, that wait for child processes to complete before continuing. The revised

1We distinguish here between passive use of timers to measure delays (e.g., the round-trip delay) and active use

of timers to trigger TCP-related activity. It is the latter that we are discussing here. To assist with the former, we

have considered having xok provide the packet arrival time in addition to the packet length when it �lls packet ring

entries. This would make round-trip time measurements independent of delays between packet arrival and packet

processing.
2Recall that exokernel applications participate in their own context switching (e.g., to save and restore registers).

This activity, which is a core component of the ExOS library, can also be specialized for other purposes, such as

the add-ons discussed here and software interrupt masking (for application-level critical sections on uniprocessors).

10

solution exploits the completely application-level nature of ExOS to deliver the \child is done"
signal to the parent process before actually terminating. Thus, a process can e�ectively terminate
from the POSIX process hierarchy point of view, while persisting until all TIME WAIT TCP
connections close. A third approach, which we recommend for most other types of systems, would
be to simply hand-o� TIME WAIT connections to a special-purpose server when the process wants
to terminate. This hand-o� involves a simple sequence of steps: provide the server with the few
relevant TCP control block values, give the corresponding DPF �lter to the server, and switch
its association from its current packet ring to the server's packet ring.

4. Port Number Selection. Implicit port number selection is an important aspect of a TCP
implementation. Although an application can choose its own if it desires, often it asks the system
to pick a good one for it. A \good one" means, at the least, one that is not currently in use.
Because of the TCP TIME WAIT state, it is also preferable to select one that has not recently
been used, since the application may try to use the same service on the same server as the
previous user of that port number. Our current approach, provided by our desire for maximum
decentralization, is to pick a random port number in the allowed range (e.g., 1024{65535) and
repick if the DPF �lter is rejected because someone else is currently using that port number.
This has worked well for us in practice. However, it will occasionally select a recently used port
number, which DPF will not complain about, and use it to open a connection to the same server
as before. In this case, a process can wait for a lengthy period of time for the remote TIME WAIT
state to clear. For this reason, centralized TCP implementations generally sequence through the
valid port number range to reduce the probability of such a collision. It is still possible (e.g.,
due to explicit port number selection and long-lived connections), but much less likely. We are
considering the use of a simple protected method (i.e., a safety-checked system call) to provide
this same support.

When all of the above is combined, what we have described and built is a completely-
decentralized, application-level TCP implementation. It has all of the performance bene�ts and
exibilities of application-level networking, and it communicates correctly with every TCP system
that we have tried. In addition, because it is at the application level, we have found it to be much
easier to enhance its performance. For example, by minimizing and isolating protocol control
blocks for TIME WAIT connections, we have largely eliminated the \TIME WAIT problems"
reported in [33, 17]. As a result of this and other modi�cations (e.g., heavy use of precomputed
values and careful recycling of bu�ers), our application-level TCP implementation outperforms
that of a popular BSD TCP by up to a factor of two (see Section 5).

POSIX Sockets. POSIX sockets provide a level of abstraction on top of UDP/IP and
TCP/IP end-points (as well as other protocols). Therefore, they have all of the same basic re-
quirements and components as described above for the protocols themselves. In addition, they
provide a number of additional features to hide characteristics of the underlying protocol. For
example, sockets process packets in the background and bu�er received data if the process has
not already provided a destination memory region. Also, sockets bu�er outgoing data and, for
TCP, keep the bu�ered data until it is acknowledged for retransmission purposes. All synchronous
socket calls (i.e., calls that may involve waiting for network packets) use WK predicates as de-
scribed earlier. This is also true of the select call, which waits for activity on any of a set of
sockets. It is important to note, however, that the application process may awaken to do work
in the socket library but then go back to sleep immediately after because the work only moved it
part way towards completion of the original socket call.

Inter-Endpoint Resource Sharing. It is fairly common for network-intensive applications
to simultaneously utilize multiple network end-points. It is important, in these cases, to share re-
sources such as bu�ers among these connections rather than statically partitioning such resources

11

a) Socket structures before and after accept

b) Socket structures after fork of TELNETD

c) Socket structures after INETD closes new socket

Structures for several INETD sockets

FD PCBs Buffers Packet Ring

Structures for several INETD sockets

FD PCBs Buffers Packet Ring

Structures for new socket

FD PCBs Bufs PackRing

Structures for new socket

FD PCBs Bufs PackRing

Structures for several INETD sockets

FD PCBs Buffers Packet Ring

Figure 3: Sharing of socket structures in inetd. This example shows the sharing of connections

between inetd and a child telnetd process as inetd (a) accepts a new connection, (b) forks the telnetd

process for it, and (c) closes the handed-o� socket. Each connected set of boxes represents a set of related

physical pages, and the ovals indicate which processes have access to them. The black oval represents

inetd and the grey oval represents telnetd.

among them. This sharing can also help to eliminate end-point setup costs for applications that
involve many simultaneous or short-lived connections. ExOS accomplishes this sharing across
endpoints owned by a particular application in several ways. First, as discussed above for TCP,
we exploit the fact that the DPF �lter for an accepted connection is a strict subset of the �lter
for the listen end-point. This allows us to avoid any xok-level setup for the new end-point, re-
placing it with ExOS-level demultiplexing across end-points owned by the application. Second,
we exploit the fact that xok allows multiple DPF �lters to place their packets into a single packet
ring. When a new end-point is desired for listen or connect, the relevant DPF �lter is registered
with xok and associated with the process's main packet ring. Third, we exploit the fact that
socket-level bu�ers are completely in application space to share the pool across sockets owned
by that application. These mechanisms reduce the CPU time and memory space requirements of
applications, like network servers, that use multiple connections.

Inter-Process Socket Sharing. An important aspect of POSIX sockets is inter-process
socket sharing, which generally occurs when one process opens a socket and then forks o� a
child process; both then share the open socket. The key to supporting this with application-
level networking is ensuring that everything associated with a set of sockets can be encapsulated
in a speci�c set of pages. This includes the �le descriptor and socket structures, the protocol
control blocks, the socket data bu�ers, and the packet rings exposed to the kernel for received
packets. To simultaneously support the inter-endpoint sharing just described, the ExOS software
and structures are organized to allow extraction of a socket from one such a set into a distinct set
of pages. Also, a single process can simultaneously utilize several such sets. This allows ExOS to
dynamically isolate one set of sockets from another. This ability allows ExOS to enforce a variety
of protection models, ranging from share-it-all-with-everyone to use-a-server-whenever-there-is-
more-than-one-app-with-access. Our default is in the middle|socket state for any given socket
is shared by exactly that set of processes that have access to it. Full support of POSIX's socket
isolation semantics would require the use of a third-party server (as in micro-kernel systems) for
policing access to shared socket structures.

Figure 3 illustrates how ExOS uses the ability to dynamically separate sets of socket structures

12

into distinct sets of pages. Speci�cally, it shows the inetd network service accepting a network
connection, forking a telnetd for that one new connection, and then closing the one new con-
nection. Before and after the accept, the ExOS structures related to all of inetd's connections
share one set of pages. In the process of forking the new process, ExOS separates the one shared
connection into a distinct set of pages, which it maps into the child process's address space at
the same virtual addresses. When inetd subsequently closes the socket, it unmaps the pages,
completing the socket hand-o�.

System-Wide Services. There are a number of system-wide services that are integral to the
successful provision of true networking services. This section describes three of these to illustrate
how such services are provided at the application level on top of xok's interfaces.

1. Naming and Routing. Naming, or the translation of a \higher-level" identi�cation to a
\lower-level" identi�cation, is core to networking. Two prime examples are the Domain Name
System (DNS), which translates alphanumeric machine names to IP addresses, and the Address
Resolution Protocol (ARP), which translates IP addresses to link-level addresses (e.g., ethernet).
Related to ARP-level translation is routing, whereby the link-level address for a non-local IP
address is replaced by the link-level address of the �rst router or gateway along the path to the
non-local machine. The key practical aspect of these naming services, from an implementors point
of view, is safe management of the translation tables. The sharing model is that everyone can
look at them, but updates need to be well-formed and correct according to the naming protocols'
rules. (DNS and ARP both rely on wire trust and are therefore subject to spoo�ng attacks).
Using ARP as a representative example, ExOS supports this sharing model by giving ownership
of the ARP table to an arpd application. This application, started during system initialization,
installs a DPF �lter that gives it all incoming ARP packets, including ARP responses. The ARP
table, which only arpd can update, is read-shared and mapped by all processes. When a process
desires ARP information, it simply looks in the table. If the desired entry is not present, the
application constructs and transmits an ARP request packet to get the information from other
network nodes. All received ARP packets are delivered by xok to arpd, which updates the ARP
table appropriately. An application that needs the update can use a WK predicate to wait for the
table to be modi�ed and repeat its table lookup. Of course, the application should also include
a timeout clause in its WK predicate and repeat the ARP request, in case the ARP packet was
lost. The same basic approach can be used for each of the name translation tables.

2. Error Reporting. An important practical consideration in networking is identifying erro-
neous packets and delivering noti�cation of problems to end-points. The best example of this
is the Internet Control Message Protocol (ICMP). Two aspects of this protocol are of special
interest here: transmitting ICMP messages and receiving ICMP messages. When a valid IP
packet with no interested end-point is received, an ICMP packet should usually be sent to the
IP packet's sender with an indication of the problem (e.g., unsupported protocol or unreachable
port). This service is provided in xok/ExOS by an ICMP server, started at system initiation
time, that downloads a DPF �lter that matches any IP packet but can be subsetted by any other
application. In this way, any unclaimed IP packets will be seen and responded to by the ICMP
server.

3. Monitoring of TraÆc. Although it is not a core network service, it is often useful to be able
to observe the traÆc on the local network link. One common approach to doing this is exempli�ed
by the UNIX tcpdump utility. tcpdump directs the kernel to give it copies of all received packets,
which it then prints in readable formats. xok provides support for delivering copies of speci�c
sets of packets to applications via a mechanism referred to as \copy �lters". A copy �lter uses the
same DPF mechanism as regular �lters, except that each copy �lter is evaluated independently
and �lter overlapping is allowed. Because the arbitrary overlapping violates privacy, super-user

13

privileges are required to install a copy �lter. As with regular �lters, matched packets are copied
into the associated packet ring. xok/ExOS's tcpdump-like application simply downloads a �lter
that matches all packets and processes the observed packets as speci�ed in the command-line
options.

3.4 Summary

The ExOS libraries and daemons described above safely provide complete networking services
entirely at the application level. These services include UDP/IP, TCP/IP, POSIX sockets, ARP,
DNS, and network monitoring. This is made possible by the network interface multiplexing
mechanisms in xok and careful organization of core ExOS modules.

4 Experimental Apparatus

Sections 5{7 evaluate the eÆciency and exibility of xok/ExOS's application-level networking
support. This section describes the experimental setup used.

All experiments were performed using standard personal computer technologies. All sys-
tems used include 200 MHz Intel Pentium Pro processors, the Intel VS440FX PCI chip set,
and 64 MB of main memory. The systems all use SMC EtherPower 10/100 fast ethernet (i.e.,
100Mbit/second) cards [44] and are connected via a dedicated SMC TigerSwitch 100 [45] high-
performance fast ethernet switch. The cards are based on the DEC 21140A LAN controller
chip [11] (a.k.a., the Tulip chip). The switch can interconnect eight full-duplex fast ethernets
at nearly full speed on its 1.8 Gbit/second backplane. It also dynamically selects between cut-
through and store-and-forward routing, to trade-o� propagation latency and collision rates. One
of the systems (used as the server when relevant) is equipped with three fast ethernet cards, and
each client communicates via the switch to a separate card.

Most of our experiments focus on the xok/ExOS system. However, we also compare the
end-to-end performance of our network service implementations to the performance provided by
OpenBSD 2.2, which is a free operating system based on 4.4 BSD [32]. The xok device drivers
were taken from OpenBSD, removing this potential variable. In general, OpenBSD outperforms
the exokernel-based system used in these experiments, which is functional but has not been
tuned signi�cantly. ExOS's TCP and socket libraries, on the other hand, have been tuned and
they consistently outperform OpenBSD when emulating the same interfaces|by 50{100% for the
examples in this paper. This fact allows us to focus on the bene�ts of specializability, rather than
having the result be clouded by unknown variables.

The performance measurements come from several sources. Measurements of elapsed time
use the Pentium Pro cycle counter to get 5 nanosecond granularity on the 200 MHz systems.
Network transmissions, disk requests, interrupts and other such event counts are maintained by
the kernel and exposed read-only to applications. All measurements presented are averages of at
least 5 executions, with coeÆcients of variation of less than 0.02 unless otherwise stated.

5 Cheetah: a fast HTTP server

This section illustrates the eÆciency and exibility of xok/ExOS's application-level networking
services, using HTTP servers as a case study. First, the same HTTP server is shown to deliver
twice the throughput when using the TCP/IP socket libraries described in Section 3 rather than
when running on OpenBSD. Then, the Cheetah HTTP server is used to demonstrate one of

14

the main advantages of application-level networking: specialization. By exploiting the ability
to safely specialize application-level implementations, we demonstrate an equivalently functional
HTTP server that delivers 3{8 times the throughput of servers running on OpenBSD. A brief
synopsis of this section appeared in an earlier paper [25]. Here, we motivate, describe and analyze
Cheetah's use of application-level networking.

5.1 Performance and Complexity Problems in HTTP Servers

It is quite easy to construct a functional HTTP server with the abstractions provided by current
general-purpose OSs. With a few hundred lines of code, an application can listen for TCP
connections via a socket interface, read requested documents from the �le system, and write
them to accepted connections. There are a variety of extensions (e.g., MIME header options and
CGI scripts) to this simple model, but it captures the performance-critical core.

Unfortunately, the performance of such implementations tends to be poor for several reasons.
First, all applications (HTTP servers and otherwise) on a given system share a single implementa-
tion of TCP sockets. Unfortunately, researchers have found the implementations present in most
systems to be inadequate for HTTP servers [4, 33, 46]. The restrictive interfaces of current sys-
tems prevent application programmers from customizing the behavior of the implementation to
avoid these performance problems. Second, the blocking nature of most �le system interfaces and
some socket interfaces restricts I/O parallelism. Third, the use of distinct, non-integrated sub-
systems (in this case, the �le system and the networking stack) results in signi�cant redundancy
(most notably, repeated data copying), both in work and in memory usage.

Because HTTP server performance is critical in many environments, application programmers
often adopt complex workarounds to recoup some of the lost performance, making these applica-
tions diÆcult to construct, debug and maintain. For example, to exploit I/O parallelism despite
blocking I/O interfaces, early HTTP servers created a new process for each client request [29, 35].
To avoid the associated fork/exit overheads, more recent implementations maintain a pool of
server processes [35], coordinating work via shared memory and interprocess communication.
To avoid �le system overheads and some copying from kernel space to application space, some
applications replicate document caching functionality at user level [9]. Because HTTP server im-
plementors do not have suÆcient control over TCP implementations via current socket interfaces,
complex connection reuse semantics (referred to as \Keep-Alive" or persistent connections) have
been made a required part of the HTTP/1.1 protocol speci�cation [18]. This complicates HTTP
servers, requiring them to replicate portions of the OS networking code, and can lead to conicts
between user-level connection management and kernel-level protocol implementations (e.g., the
order of magnitude performance decreases observed in [21]).

Clearly, server developers are willing to work to improve performance. Extensible systems
allow them to do so more directly. With appropriately re-usable libraries, this does not have
to signi�cantly increase complexity. In fact, the Cheetah server described below is substantially
faster and no more complex than the aggressively-optimized HTTP server using the standard
interfaces.

5.2 ExOS Socket Performance

To evaluate xok/ExOS's default application-level network services, we constructed a socket-based
HTTP/1.0 server. This socket-based server consists of one single-threaded application that ag-
gressively uses non-blocking socket I/O for its TCP/IP networking in order to achieve good
performance with standard interfaces. The �le system interfaces are blocking, but the experi-

15

0 Byte 100 Byte 1 KB 10 KB 100 KB
HTTP Page Size

0

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
co

nd
)

NCSA/BSD
Harvest/BSD
Baseline/BSD
Baseline/xok
Cheetah/xok
IIS/NT*

Figure 4: HTTP request throughput as a function of the document size for several HTTP/1.0 servers.

\NCSA/BSD" represents the NCSA/1.4.2 server running on OpenBSD. \Harvest/BSD" represents the

Harvest proxy cache running on OpenBSD. \Baseline/BSD" represents our socket-based HTTP server

running on OpenBSD. \Baseline/xok" represents our socket-based HTTP server running on xok/ExOS.

\Cheetah/xok" represents the Cheetah HTTP server running on xok/ExOS. \IIS/NT*" represents Mi-

crosoft's IIS server (version 2) running on Microsoft Windows NT. The *" highlights the fact that these

numbers are for a 300 MHz Pentium II system, as opposed to the 200 MHz Pentium Pro used for the

others. The throughput values are obtained with 6 clients (2 per client machine) repeatedly requesting the

same static web document (100% cache hits) with zero think time between the completion of one request

and the initiation of the next. Care was taken to avoid performance degradation of the OpenBSD servers

due to \TIME WAIT" connections (by using spaced bursts of requests)|no such provision is necessary

for servers running on xok/ExOS.

ments focus on �le cache hit performance, removing this as an issue. For robust performance,
additional complexity would be needed in this baseline server.

Figure 4 shows HTTP request throughput as a function of the requested document size for
four servers: our socket-based server (referred to as \Baseline") running on OpenBSD, Baseline
running on xok/ExOS, the NCSA 1.4.2 server [35] running on OpenBSD, the Harvest cache
[9] running on OpenBSD, the Cheetah server running on xok/ExOS, and Microsoft's IIS server
(version 2) running on Windows NT. (We also measured Apache 1.2.6 and 1.3 on both OpenBSD
and linux, but their \out-of-the-box" performance was always lower than NCSA.) All requests hit
in the server's �le cache. Comparing the two Baseline servers allows us to evaluate xok/ExOS's
TCP/IP socket implementations, while the NCSA and Harvest numbers give us con�dence that
the socket-based server's behavior is reasonable. The IIS numbers provide insight from another
system and are particular interesting because of Windows NT's \send�le" interface.

Each HTTP request consists of opening a TCP connection, receiving and parsing an ASCII
request, returning an ASCII header and the requested �le data, and closing the connection.
Therefore, small HTTP requests exercise connection creation/termination performance, and large
HTTP requests exercise bulk data movement performance. Figure 4 covers a spectrum that

16

includes both, and provides several interesting pieces of information.
First, our base HTTP server performs roughly as well as the Harvest cache, which has been

shown to outperform many other HTTP server implementations on general-purpose operating
systems. Both outperform the NCSA server. This gives us a reasonable starting point for evalu-
ating HTTP server performance.

Second, xok/ExOS's default socket implementation outperforms the OpenBSD socket im-
plementation by 100% for small requests and 80% for large documents. This indicates that
xok/ExOS's socket performance is quite good for both creation/termination activities and bulk
data movement. We do not have detailed explanations for why OpenBSD's TCP socket per-
formance is so much lower, though we do know that ExOS's implementation has been tuned
and streamlined aggressively. However, none of the performance enhancements are speci�c to an
application-level implementation, and there is no reason to believe that OpenBSD could not be
made to match them. This allows us to safely run both our baseline servers and our specialized
servers on xok/ExOS, removing several otherwise free variables.

Third, the IIS/NT measurements indicate that, like the Baseline servers, it is limited by
software overheads rather than the network for most �le sizes. IIS/NT's advantage over the
OpenBSD servers roughly matches the increased CPU performance (300 MHz versus 200 MHz)
for the 100byte and 0KB document sizes. For the larger sizes, the advantage is larger, presumably
because of the \send �le" support. However, it's performance for 1KB and 10KB document sizes is
still below xok/ExOS's sockets. For 100KB, IIS/NT is limited by the available network bandwidth
(3 100Mbit/second Ethernets).

5.3 Exploiting application-level networking

The real power of application-level networking is that it allows networking to be specialized
for and integrated with important applications. To provide a concrete example, this subsection
describes the use of and quanti�es the impact of such specialization in the context of an HTTP
server, called Cheetah. Cheetah incorporates a number of performance enhancements enabled by
application-level networking. As shown in Figure 4, these enhancements improve performance by
a factor of 4 for small HTTP documents and 80{100% for large documents, when compared to
the Baseline socket-based server (on xok/ExOS) evaluated in the previous section.

Cheetah uses much of the same code as the Baseline server, including all HTTP-related func-
tionality (e.g., request translation, MIME header processing, response header generation, etc.).
However, the main control loop is di�erent. Cheetah simply waits for any relevant event (e.g.,
network packet arrival) and then processes it. For event processing, Cheetah calls into private,
specialized instances of TCP/IP and �le system libraries. Once an event has been processed,
per-request state is checked to see if forward progress can be made on the HTTP request (e.g.,
the request has arrived and can be processed, or data is ready to be sent). This simpler and
more direct implementation (relative to socket interfaces) of a non-blocking event loop provides
some performance bene�ts, including automatically avoiding the select problems discussed in [4].
Avoiding layers of general-purpose code for �le descriptors and sockets further reduces overhead.
However, the largest improvements come from three extensions enabled by application-level net-
working:

Merged File Cache and Retransmission Pool: Cheetah avoids all in-memory data copy-
ing and the need for a distinct TCP retransmission pool by transmitting �le data directly from the
�le cache. Speci�cally, it calls a low-level �le system routine to obtain read-only pointers to �le
cache blocks, pin them and mark them copy-on-write. These pointers are then passed to a TCP
library routine to construct packets that include data directly from the �le cache. These packets

17

HTTPd

Network(s) Disk(s)

File
System

Cache

Disk Driver

O/SSockets

TCP/IP

Buffers

Network Driver

File
System

TCP/IP

Cheetah

Network(s) Disk(s)

Disk DriverNetwork Driver xok

Cache

(a) Conventional HTTP server (b) Integrated HTTP server

Figure 5: HTTP servers on conventional systems and exokernel systems. On a conventional OS,

many software layers and data copies are involved with an HTTP server's work. The solid lines represent

control ow, and the dotted lines represent data copies. Application-level networking and exokernels allow

the server to avoid these redundancies, integrating and streamlining the required software and merging

the data repositories.

can be transmitted, and retransmitted if necessary, via xok's transmit interface. This provides
zero-copy disk to network transfer, where the \to network" part is via a reliable protocol and can
be repeated endlessly. One issue of potential concern is synchronization with other applications
using the same �les | Cheetah handles this by simply not sharing the �les actively. Instead,
the �les are updated only by special-purpose maintenance tools that synchronize with Cheetah
explicitly.

Knowledge-Based Packet Merging: This exploits knowledge of per-request state transi-
tions to avoid sending distinct TCP control packets that can easily be merged (a.k.a., piggybacked)
with quickly forthcoming data packets. Two examples of this are setting the FIN bit on the last
data packet and explicitly delaying the ACK on clients' HTTP request packets. This reduces
the number of distinct packets, making both the network and the end-points more eÆcient. It
is particularly valuable for small document sizes, where the reduction represents a substantial
fraction (e.g., 20{33%) of the total number of packets.

Precomputed Checksums: Cheetah precomputes the per-packet Internet checksums for
the data in servable �les and stores them in those �les. These checksums are then provided
with the data to the TCP library routine that constructs packets. This extension reduces the
number of in-memory manipulations for transmitted data to zero (i.e., zero-touch disk to network
transmission) when combined with the merged �le cache/retransmission pool extension. The
checksums are added to the servable �les by the same maintenance tools discussed above for the
merged �le cache and retransmission pool.

As shown in Figure 4, Cheetah signi�cantly outperforms the servers that use traditional
interfaces. By exploiting application-level networking, Cheetah delivers 4 times the throughput
for small documents (1 KB and smaller) and almost twice the throughput for large documents.
Further, Cheetah's performance is limited by the network hardware in all cases. Speci�cally, small
document performance is limited by the number of minimally-sized packets that can be pushed
thru the system's network interfaces: measured at about 64K packets per second on our server
system, or 8000 HTTP requests at 8 packets each. Large document performance is limited by the
available network bandwidth (3 100Mbit/s Ethernets). In fact, while the Baseline implementation
is limited to only 16.5 MB/s with 100% CPU utilization, Cheetah delivers over 29.3 MB/s with

18

xok-enabled Enhancement 100-byte 100KB

Direct access to cache/net 100 % 20 %
Packet merging 50 % 1 %
Merge cache/retransmit 2 % 40 %
Checksum precompute 1 % 10 %
Header precompute 20 % <1 %

Total improvement 271 % (3.7X) 86% (1.9X)

Table 2: Estimated break-down of performance di�erence between Cheetah and Baseline HTTP server

implementations (for 100 byte �les and 100KB �les). The total improvement represents the product of the

improvements, since this breakdown assumes the improvements are cumulative.

the CPU idle over 30% of the time.
Cheetah Performance Breakdown. Table 2 provides a rough breakdown, based on ad-

ditional system statistics and detailed pro�ling, of Cheetah's performance advantage over the
Baseline implementation. The table shows the breakdown for two ends of the web document
size spectrum (larger sizes are similar to 100KB in behavior). The medium-sized performance is
explained as mixtures of these two end-points.

For the small request sizes, a 50% increase in throughput comes from the 33% reduction in
packets transmitted/received (due to the knowledge-based packet merging enhancement). Pro�l-
ing reveals that the Baseline server spends over half of its time in the various routines involved
with implementing the general-purpose �le descriptor and socket interfaces. Unfortunately for
optimization purposes, the time is spread widely among 108 functions involved with implement-
ing these very general abstractions; also, recall that the xok/ExOS implementations of these
abstractions are already well-tuned relative to OpenBSD.

For the large request sizes (e.g., 100KB), the Baseline server spends about 30% of its time
in bcopy and 8% in the checksum routine (as compared to 4% and 3% for Cheetah). Note that
these percentages can be usefully compared by recalling that Baseline uses 100% of the CPU and
Cheetah uses 70% of the CPU (for this document size); the only caveat is that Cheetah wastes
much more time context switching back and forth with the idle task (which accounts for some of
the 70% utilization). The remainder of the performance di�erence is again due to the layers of
code involved with the POSIX �le and socket interfaces.

Other Applications and Workloads. Although it is highly specialized, Cheetah shares
system resources (e.g., CPU and memory) like any other application on a time-sharing system.
As would be expected, we �nd that Cheetah has no signi�cant e�ect on the performance of other
applications when it is idle. Given a speci�c HTTP workload, other applications run faster when
sharing a system with Cheetah than when sharing with the Baseline server, because Cheetah
uses less CPU time (more eÆcient operation) and less main memory (no distinct retransmission
bu�ers). With respect to more substantial web servers, this increases the CPU power available
for useful services, such as CGI utilities and database searches.

We have also evaluated Cheetah with a more representative HTTP benchmark, called surge [5].
surge emulates the behavior, along many axes, of a con�gurable number of users concurrently
browsing the web site under test. The results indicate that Cheetah's average response time
is 87% lower (with 90% lower variance) than that of the Baseline server on xok/ExOS, whose
average response time is, in turn, 70% lower than the same server on OpenBSD. For example,
with 50 simulated users, the average response times for the two servers on xok/ExOS are 7 ms

19

and 54 ms, respectively. With 100 users, they are 38 ms and 286 ms.

5.4 Discussion

Clearly, any performance enhancement that an application writer can make with xok/ExOS's
application-level networking, a kernel programmer could make inside a conventional OS by repli-
cating or complicating the default networking stack. Therefore, Cheetah's performance could
certainly be achieved inside a conventional system, given OS source code, suÆcient development
and debugging time, and a willingness to live without protection boundaries. The power of
application-level networking lies in its ability to let application writers manipulate networking
features (e.g., those described here and the next, as yet unknown, set) that have traditionally
been hidden away in OS kernels.

It is also interesting to consider which aspects of Cheetah's performance could be realized
more incrementally in existing systems. For example, some of the extensions (e.g., delaying the
�rst ACK) could simply be incorporated into a system's default TCP implementation. How-
ever, although it improves performance for Cheetah's behavior, delaying the �rst ACK results
in undesirable retransmissions and window-shrinkage for other applications. The various packet
combining enhancements could be selectively supported with new ioctl and send ags.

The general overhead of the socket and �le system interfaces is unlikely to be reduced sub-
stantially { these aspects of xok/ExOS are already signi�cantly optimized, as evidenced by their
performance relative to OpenBSD. One possibility would be to introduce a variety of less gen-
eral interfaces to avoid the overhead of handling numerous states and options. As discussed in
Section 2, many copy-free interfaces could improve large �le performance, though the bu�ers
must be kept read-only for long periods of time if they are to double as retransmission bu�ers.
Given appropriately malleable TCP and �le system implementations, Cheetah's merging of �le
cache/retransmission pool, merging of the FIN packet and checksum precomputation could all be
provided behind interfaces such as IO-lite [38] or Windows NT's \send�le."

6 webswamp: a fast HTTP client

Servers are not always just passive accepters of connections; some also initiate connections (e.g.,
a proxy HTTP server fetching a missing page). This section describes a speci�c instance of
exploiting extensibility for a connection-initiating service: a web server benchmarking tool, called
webswamp. Several of webswamp's specializations apply generally to such services and to clients
as well.

6.1 Specialization of the \Client-side"

Early in the development of Cheetah, it became clear that existing web benchmarks were not ca-
pable of overloading it without excessive equipment|either very powerful or very numerous client
machines. Therefore, we used xok/ExOS's application-level networking to construct webswamp,
a low-level core upon which web benchmarks with di�erent o�ered workloads can be easily built.
A benchmark is developed by constructing a high-level driver that the webswamp core calls to get
the next web page and inter-request think time. We have built two high-level drivers, one that
repeatedly requests the same document with zero think times and one that uses the Surge [5]
algorithms to produce a more representative workload. The webswamp core emulates a number
of concurrent clients, each of which operates in a closed loop of \thinking" and then requesting
another document. The low-level core initiates connection establishment when think times expire,

20

handles incoming packets and any timeouts, generates/sends HTTP requests when connections
become open, acknowledges/counts data received, closes down connections that receive FIN bits,
and calls up to the high-level driver to get the next task when a connection is closed.

In addition to avoiding the overheads associated with layers of socket and �le descriptor
interface code, webswamp bene�ts from three main specializations:

Count-only Data Reception. Webswamp avoids the need to copy received data that will
be discarded. Like most web benchmarks, webswamp discards received data after counting it.
Because it can directly count the valid data in each received TCP packet, webswamp does not need
to copy the data into its own bu�ers in order to get a count. Thus, only the copying involved with
xok's kernel-emulated application-level networking interface prevents zero-copy data reception.

Skipping Checksum Veri�cation. Webswamp can be con�gured to not verify the integrity
of incoming packets, removing the overhead of checksum computation. While unacceptable for
general activity and not appropriate when using webswamp to test correct operation under heavy
loads, this does increase the potential o�ered load during benchmarks. In our current experimen-
tal testbed, this enhancement does not change end-to-end performance (it only increases client
machine idle time), because the previously discussed enhancements are suÆcient to make the
network itself the bottleneck.

Knowledge-Based Packet Merging. As Cheetah does, webswamp can exploit knowledge
of its activity to avoid sending distinct control packets that can be merged with other soon-to-
be-sent packets. Speci�cally, the ACK on the server's SYN packet can be discarded because the
client is going to immediately send a data packet (the HTTP request) on which the ACK can be
piggybacked. Similarly, the ACK on the server's last data packet and FIN bit can be discarded,
because the client is going to immediately close the connection and send a FIN packet on which
the acknowledgements can be piggybacked. For small document sizes, these two packet merging
enhancements reduce the total number of packets by 25%, on top of Cheetah's reduction in packet
count. (Note: because this enhancement changes the client load placed on the server, it is not
enabled for any of the experiments in the other sections.)

Like Cheetah's packet mergings, webswamp's improve end-to-end performance within the
con�nes of a correct TCP implementation, but result in undesirable TCP behavior when used in
other applications. An additional client-side packet merging, setting the FIN bit on the HTTP
request data packet, could be very bene�cial to web server performance under HTTP/1.0. While
this would not reduce the number of packets more than the mergings mentioned above, it would
transfer the task of supporting TIME WAIT connections to the more numerous clients. This was
not part of our experiments below.

6.2 HTTP Client Performance

To place webswamp's performance in context, we developed a socket-based version of the same
core functionality. It supports the same interface with the high-level driver and uses non-blocking
socket calls to connect to a server, send HTTP requests, and receive web pages.

Figure 6 shows the HTTP request throughput as a function of request size achieved by
four di�erent benchmark implementations: the socket-based client running on OpenBSD and
on xok/ExOS, and webswamp on xok/ExOS without and with the packet-merging enhancement.

Webswamp supports much higher throughputs than the socket-based implementations (a fac-
tor of 5 higher for small HTTP documents and 15% for 10KB documents), even with xok/ExOS's
superior socket performance (50{75% faster than OpenBSD for small documents and 22% for
10KB documents). The packets exchanged by client and server are exactly the same for all
three implementations. The throughputs converge as the �le size increases, because the single

21

0 Byte 100 Byte 1 KB 10 KB 100 KB
HTTP Page Size

0

2000

4000

6000

8000

10000

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d) sockclient/BSD

sockclient/xok
webswamp
mergeswamp

Figure 6: HTTP document throughput as a function of the document size for di�erent client-side im-

plementations benchmarking Cheetah. \Sockclient/BSD" and \sockclient/xok" represent the socket-based

version running on OpenBSD and xok/ExOS, respectively. \Webswamp" and \mergeswamp" represent

webswamp running on xok/ExOS without and with the packet merging extensions. The throughput values

are obtained with 6 clients on a single machine repeatedly requesting the same web document with zero

think time between the completion of one request and the initiation of the next.

(per-client) 100 Mbits/second link limits the bandwidth. Webswamp's performance advantage is
almost entirely due to the avoidance of overheads related to the general POSIX socket interface.

Figure 6 also illustrates the performance bene�t of knowledge-based packet merging on the
client-side. For 1 KB and smaller HTTP documents, the number of packets transmitted by the
client is reduced by 40% (from 5 to 3, representing a 25% reduction in the total number of packets
per request). This translates into a throughput increase of 25% for 0 KB documents, 21% for
100 byte documents, and 8% for 1 KB documents. For 0 KB and 100 byte documents, we see
again that the network interface's packet throughput limits end-to-end performance. For 1 KB
documents, bandwidth limitations reduce the overall improvement. For 10 KB documents, the
total number of packets is reduced by 10% but throughput only increases by 4%. The di�erence
for 100 KB �les is negligible.

Experiments with surgeswamp, the webswamp-based version of Surge, indicate that it can
usefully simulate a much larger number of clients than the default pthread-based implementation.
Also, the times at which surgeswamp initiates connections to the server more closely match those
requested by the high-level decisions, which means that the workload is more representative of
reality.

7 Application-level TCP Forwarder

With an example inspired by [19], we illustrate that extensible systems can be exploited to
simultaneously realize performance, simplicity and semantics not possible with conventional I/O
abstractions. The example is an application-level protocol forwarder that can be used to redirect

22

TCP connections to other hosts. Such functionality is useful for several purposes, the clearest
being transparent load balancing of client requests among a set of server machines.

For our experiments, we implemented two protocol forwarders that act as intermediaries
for connections to speci�c TCP ports. Both use the same code for deciding where to forward
connections and di�erent code for doing so. The �rst forwarder uses non-blocking sockets to listen
for and accept client connections. After accepting a client connection and choosing a back-end
server, the forwarder opens a second non-blocking connection to the chosen server. It passes
received data from each to the other and closes both when either side closes. These actions
are performed in parallel for multiple client connections. This socket-based implementation is
expensive in that data passes through the protocol code and is copied about multiple times.
More importantly, it violates the end-to-end semantics of the TCP protocol. For example, the
client receives acknowledgements from the intermediary (rather than the server), independently
of whether a server ever actually receives the corresponding information. This socket-based
forwarder also interferes with TCP's algorithms for end-to-end ow control and congestion control,
potentially reducing overall performance.

The second forwarder implementation exploits extensibility to provide both correct semantics
and improved performance. This forwarder simply waits for a relevant packet to arrive and deter-
mines if it is for an open connection. If it is, the forwarder modi�es the destination information
(ethernet addresses, IP addresses and TCP port numbers), patches the IP and TCP checksums
to reect the changes, and transmits the packet out the appropriate network interface. If the
packet is not for an existing connection and contains a SYN, the forwarder chooses a back-end
server, initializes demultiplexing structures for the client and chosen server, and then forwards the
packet as described above. With this implementation, the forwarder avoids processing of most
packets, acting mainly as a high-level router. More importantly, it provides correct end-to-end
TCP semantics, and its presence is invisible to the client.

Figure 7 shows the performance of these two forwarders acting as intermediaries between
webswamp on one fast ethernet and Cheetah on a second fast ethernet. Signi�cant performance
improvements are realized in the specialized direct-forwarding implementation by eliminating
extraneous packet processing/generation (for small requests) and copying (for large requests),
when compared to the socket-based forwarder. This translates into a factor of 3 increase in
throughput for small document sizes and 40{50% for larger document sizes. As with Cheetah
and webswamp, the performance of the specialized forwarder is limited by the network rather
than software overheads.

8 Discussion

The construction and revision of the xok/ExOS networking support came with several lessons
and controversial design decisions. This section discusses a number of these:

Event Noti�cation. All event noti�cation in xok/ExOS's network services is based on
polling and WK predicates. This form of event noti�cation is a powerful foundation for decen-
tralization, allowing processes to wait for and be awakened on events without having to tell any
other processes about them. Likewise, processes can awaken processes by simply updating mem-
ory normally, and they do not have to know who, if anyone, is waiting for the update. Still,
our experiences have not been all positive. In addition to the inherently higher event discovery
latency, we have observed two forms of scalability problems with WK predicates. First, the size
of a WK predicate grows linearly with the number of events of interest to an application, which
e�ects the storage space, the time to install the predicate, and the time for the scheduler to

23

0 Byte 100 Byte 1 KB 10 KB 100 KB
HTTP Page Size

0

1000

2000

3000

4000

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
co

nd
)

Socket Splicing
Direct Forwarding

Figure 7: HTTP document throughput as a function of the document size for application-level TCP

forwarding (from a client on one machine through the forwarder to an HTTP server on a third machine).

\Socket Splicing" moves data between a pair of sockets communicating with the client and server, respec-

tively. \Direct Forwarding" simply patches and forwards packets directly to the desired recipient, reducing

redundant protocol processing and data manipulation. In addition to the performance improvements,

\Direct Forwarding" provides correct end-to-end TCP semantics while \Socket Splicing" does not. The

throughput values are obtained with 6 clients on a single machine repeatedly requesting the same web

document with zero think time between the completion of one request and the initiation of the next.

24

check it. Second, the number of WK predicates checked by the scheduler grows linearly with the
number of processes in the system, since most processes in a system are waiting for events at
any given point in time. For systems with many processes and processes interacting with many
services (e.g., consider a select on 1000 connections), these are signi�cant problems. For network-
ing, more explicit noti�cation could be incorporated without hurting decentralization, since the
main events of interest come from the kernel (packet arrived, packet transmitted, time advanced).
Done eÆciently, more explicit noti�cation is probably the correct approach for application-level
networking.

DPF. To demultiplex incoming packets, some form of packet �lter engine is required|
xok/ExOS uses DPF [16], which uses dynamic code generation to improve �lter checking speeds.
While DPF o�ers improved performance and supports arbitrary �lters (i.e., �lters that claim
packets based on arbitrary �elds in packets), DPF's complexity has had a negative impact on
the evolution of xok/ExOS. For example, moving from the MIPS platform to the x86 platform
involved signi�cant work on DPF. Similarly, when bugs and shortcomings are encountered in the
x86 DPF, the latency of �xes is quite long because DPF's complexity limits the set of people who
can manipulate its internals. Finally, the exibility o�ered by allowing arbitrary �lters is of ques-
tionable value in the real world and creates an unsolved dilemma: what to do about overlapping
�lters. For example, if �lter A checks only byte #1 and �lter B checks only byte #2, there is no
clear way to know whether both should be allowed and which should win ties. An explicit goal
of the exokernel project was to avoid having the kernel understand any speci�c network proto-
cols. However, since all communication on a given network must use a consistent demultiplexing
scheme, exploiting this information to eliminate diÆcult problems makes too much sense.

Process Scheduling. xok's process scheduling mechanism does not explicitly consider in-
teractive responsiveness. With application-level networking, this can have a negative impact on
packet processing latencies. While xok's scheduler will give the CPU to an awakened process
whose turn it is to run, it will not preempt another process's turn. While this is more fair for pro-
cesses that care when they run, it does create performance problems for some forms of ping-pong
communication. Appropriate CPU scheduling support for application-level networking remains
an open area for research.

Unchecked Transmission. xok does not examine the contents of outgoing packets, allowing
applications to transmit any data desired onto the network. This controversial choice increases
exibility, increases performance, and simpli�es the implementation. However, it is clearly a
problem if one is trusting packets on the wire, and one inappropriately believes that none of the
other machines on the network allow some applications to transmit arbitrary packets (as most
do). Unfortunately, many environments still do make these faulty assumptions. Therefore, most
modern operating systems restrict the ability to send arbitrary packets to processes with \root"
privileges. The two known approaches to providing this same level of protection with application-
level networking are NI-attached headers and reverse packet �lters. The former somewhat reduces
exibility and only ensures that the added headers are correct. The latter involves checking the
appropriate header values of each packet to be sent and then ensuring that the headers are not
changed, which requires blocking writes or copying the headers. Still, several system vendors
have indicated a desire to see the protection in place, simply to increase the degree of diÆculty
for bad people.

Transmit Queue Fairness. Like most operating systems, xok's current implementation
enforces no fairness with respect to the transmit queue. For guaranteed rate or real-time commu-
nication, in particular, this is an important consideration. Fixing this problem requires explicitly
treating the di�erent applications as distinct sources of packets, and only letting them add to a
transmit queue when it is \their turn" according to the chosen policy. Nemesis [7] and U-net [49]

25

have both demonstrated that this type of fairness can be accomplished by allowing the NI explic-
itly schedule packets from separate per-application or per-connection transmission queues.

Inter-Endpoint Resource Sharing. As discussed in Section 3, we have found inter-
endpoint resource sharing to be critical to performance and scalability. For example, allowing
a single pre-posted packet bu�er to be used for any of a large set of open connections allows
application-level networking software to scale memory usage more like kernel implementations.
Unfortunately, the emerging Virtual Interface Architecture standard [1] for application-level net-
working is inappropriately preventing such sharing. Unchanged, this may limit the VI Architec-
ture's applicability to the small set of parallel computing applications with which it started.

Auxiliary Information about Packets. Although xok does not do so, we believe that there
is value in having additional values added to received packets at the point that they are copied into
the packet rings. Two speci�c additions of value are an identi�cation of which card received the
packet and the time of that reception. The card identi�cation can be valuable for authenticating
packet sources. The packet reception time would allow round-trip time measurements to not be
obfuscated by process scheduling delays.

9 Conclusions

This paper describes the architecture, implementation, performance, and exibility of xok/ExOS's
application-level networking. This system has demonstrated that network services such as TCP/IP,
UDP/IP, POSIX sockets, ARP, DNS, and tcpdump can be implemented as independent application-
level libraries. In addition, applications can safely employ highly specialized networking software
to achieve substantial performance and semantic improvements.

We hope that our successes and failures can help in the design of emerging standards for the
architecture and interfaces for NIC-multiplexed network interfaces. Poorly-designed protection
mechanisms can make safe application-level networking complex, slow and/or impossible. Well-
designed protection mechanisms can provide application-level library writers with the exibility
and functionality required for safely providing core network services, while also enjoying the
massive performance and functionality advantages (illustrated in [47, 14, 49] and Section 5.3)
possible with application-level networking.

Acknowledgements

We thank the past and present members of MIT's Parallel and Distributed Operating Systems
group, who helped to develop the ideas and xok/ExOS system described in this paper. Special
thanks to Josh Smith for helping us with a variety of the benchmark construction and data
collection tasks. We also thank Paul Barford for providing us with a pre-release copy of Surge.

This research was supported by a National Science Foundation (NSF) Young Investigator
Award and the Defense Advanced Research Projects Agency (DARPA) and Rome Laboratory
under agreement number F30602-97-2-0288.

References

[1] The virtual interface (vi) architecture. http://www.viarch.org/, 1998.

[2] T. Anderson. The case for application-speci�c operating systems. In Third Workshop on Workshop

Operating Systems, pages 92{94, 1992.

26

[3] G. Banga, P. Druschel, and J. Mogul. Better operating system features for faster network servers. In

Workshop on Internet Server Performance, June 1998.

[4] G. Banga and J. Mogul. Scalable kernel performance for internet servers under realistic loads. In

USENIX Technical Conference, June 1998.

[5] P. Barford and M. Crovella. Generating representative web workloads for network and server perfor-

mance evaluation. In ACM SIGMETRICS Conference, June 1998.

[6] B. N. Bershad, S. Savage, et al. Extensibility, safety and performance in the SPIN operating system.

In 15th ACM SOSP, pages 267{284, December 1995.

[7] R. Black, P. Barham, A. Donnelly, and N. Stratford. Protocol implementation in a vertically structured

operating system. In IEEE Conference on Local Computer Networks, 1997.

[8] R. Braden. T/tcp { tcp extensions for transactions functional speci�cation. RFC 1644,

USC/Information Sciences Institute, July 1994.

[9] A. Chankhunthod, P. B. Danzig, et al. A hierarchical internet object cache. In Usenix Technical

Conference, pages 153{163, January 1996.

[10] D. Cheriton and K. Duda. A caching model of operating system kernel functionality. In OSDI, pages

179{193, Nov. 1994.

[11] Digital semiconductor 21140A PCI fast ethernet LAN controller hardware reference manual. Digital

Equipment Corporation Publication Number EC-QN7NE-TE, November 1996.

[12] P. Druschel and G. Banga. Lazy receiver processing (lrp): A network subsystem architecture for

server systems. In OSDI, pages 261{276, oct 1996.

[13] P. Druschel and L. Peterson. Fbufs: A high-bandwidth cross-domain transfer facility. In 14th ACM

SOSP, pages 189{202, December 1993.

[14] A. Edwards, G. Watson, J. Lumley, D. Banks, C. Calamvokis, and C. Dalton. User-space protocols

deliver high performance to applications on low-cost gb/s lan. In ACM SIGCOMM 1994, pages 14{23,

September 1994.

[15] D. Engler, M. F. Kaashoek, and J. O'Toole. Exokernel: an operating system architecture for

application-speci�c resource management. In 15th ACM SOSP, pages 251{266, December 1995.

[16] D. Engler and M.F. Kaashoek. Dpf: fast, exible message demultiplexing using dynamic code gener-

ation. In ACM SIGCOMM 1996, pages 53{59, August 1996.

[17] T. Faber, J. Touch, and W. Yue. The TIME-WAIT state in TCP and its e�ect on busy servers. In

INFOCOM, pages 1573{1583, 1999.

[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext transfer protocol {

http/1.1. Proposed Standard RFC 2068, HTTP Working Group of IETF, January 1997.

[19] M. Fiuczynski and B. Bershad. An extensible protocol architecture for application-speci�c networking.

In USENIX Technical Conference, pages 55{64, January 1996.

[20] J.H. Hartman, A.B. Montz, et al. Scout: A communication-oriented operating system. Technical

Report TR 94-20, University of Arizona, Tucson, AZ, June 1994.

[21] J. Heidemann. Performance interactions between p-http and tcp implementations. ACM Computer

Communication Review, April 1997.

[22] D. Hitz. An NFS �le server appliance. Technical Report 3001, Network Applicance Corporation,

March 1995.

[23] N. Hutchinson and L. Peterson. The x-kernel: An architecture for implementing network protocols.

IEEE Transactions on Software Engineering, 17(1):64{76, January 1991.

27

[24] K. Johnson, M.F. Kaashoek, and D. Wallach. Crl: High-performance all-software distributed shared

memory. In 15th ACM SOSP, pages 213{228, December 1995.

[25] M.F. Kaashoek, D. Engler, G. Ganger, and et al. Application performance and exibility on exokernel

systems. In 16th ACM SOSP, pages 52{65, October 1997.

[26] M.F. Kaashoek, D. Engler, D. Wallach, and G. Ganger. Server operating systems. In SIGOPS

European Workshop, pages 141{148, September 1996.

[27] O. Krieger, M. Stumm, and R. Unrau. The alloc stream facility: A redesign of application-level

stream i/o. IEEE Computer, pages 75{82, March 1994.

[28] B. Lampson and R. Sproull. An open operating system for a single-user machine. In 7th ACM SOSP,

pages 98{105, December 1979.

[29] A. Luotonen, H. Frystyk, and T. Berners-Lee. CERN HTTPd.

http://www.w3.org/pub/WWW/Daemon/.

[30] C. Maeda and B. Bershad. Protocol service decomposition for high-performance networking. In 14th

ACM SOSP, pages 244{255, December 1993.

[31] D. Major, G. Minshall, and K. Powell. An overview of the NetWare operating system. In Winter

USENIX, pages 355{372, January 1994.

[32] M.K. McKusick, K. Bostic, M. Karels, and J. Quarterman. The Design and Implementation of the

4.4 BSD Operating System. Addison-Wesley Publishing Company, 1996.

[33] J. Mogul. The case for persistent-connection HTTP. In ACM SIGCOMM 1995, pages 299{313,

August 1995.

[34] J. Mogul, R. Rashid, and M. Accetta. The packet �lter: An eÆcient mechanism for user-level network

code. In 11th ACM SOSP, pages 39{51, November 1987.

[35] NCSA, University of Illinois, Urbana-Champaign. NCSA HTTPd.

http://hoohoo.ncsa.uiuc.edu/index.html.

[36] S. O'Malley and L. Peterson. A dynamic network architecture. ACM Trans. on Computer Systems,

10(2):110{143, May 1992.

[37] V. Pai, P. Druschel, and W. Zwaenepoel. Io-lite: A uni�ed i/o bu�ering and caching system. Technical

Report CS Technical Report TR97-294, Rice University, 1997.

[38] V. Pai, P. Druschel, and W. Zwaenepoel. Io-lite: A uni�ed i/o bu�ering and caching system. In

OSDI, pages 15{28, feb 1999.

[39] J. Pasquale, E. Anderson, and P. K. Muller. Container shipping: Operating system support for

I/O-intensive applications. IEEE Computer, pages 85{93, March 1994.

[40] R. Pike, D. Presotto, et al. Plan 9 from Bell Labs. Computing Systems, 8(3):221{254, 1995.

[41] J. Postel. Transmission control protocol. RFC 793, USC/Information Sciences Institute, September

1981.

[42] V. Jacobson S. McCanne. The bsd packet �lter: A new architecture for user-level packet capture. In

1993 Winter USENIX, pages 259{269, January 1993.

[43] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with disaster: surviving misbehaved kernel

extensions. In OSDI, pages 213{228, oct 1996.

[44] SMC EtherPower 10/100 fast ethernet PCI network card user guide. Standard Microsystems Corpo-

ration Publication Number 79-000668-001, 1996.

[45] User guide for SMC's TigerSwitch 100. Standard Microsystems Corporation Publication Number

900.168, November 1996.

28

[46] S. Spero. Analysis of http performance problems. http://sunsite.unc.edu/mdma-release/http-

prob.html.

[47] C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska. Implementing network protocols at user level.

In ACM SIGCOMM 1993, pages 64{73, September 1993.

[48] Virtual interface architecture speci�cation. Compaq, Intel, Microsoft, December 1997.

[49] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A user-level network interface for parallel

and distributed computing. In 15th ACM SOSP, pages 40{53, 1995.

29

