
Multitask Learning

Rich Caruana

23 September 1997

CMU-CS-97-203

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy.

Thesis Committee:

Tom Mitchell, Chair

Herb Simon

Dean Pomerleau

Tom Dietterich, Oregon State

This work was supported by NSF Grant BES-9402439, by Wright Laboratory, Aeronautical Systems

Center, Air Force Materiel Command, USAF, and DARPA Grant F33615-93-1-1330, by the Agency for

Health Care Policy and Research grant HS06468, and by the Justsystem Pittsburgh Research Center. The

U.S. Government is authorized to reproduce reprints for government use. The views contained herein are

those of the authors and do not necessarily represent Wright Laboratory, the National Science Foundation,

or the U.S. Government.

Keywords: machine learning, neural networks, k-nearest neighbor, multitask learn-

ing, inductive bias, medical decision making, pneumonia, ALVINN, autonomous vehicle

navigation, pattern recognition, inductive transfer, learning-to-learn

Dedicated to my parents, for fostering my interest in science,

to Herb Simon, for teaching me to ask bigger questions, and

to Diane, for being willing to come to Pittsburgh.

Acknowledgements

Thanks go �rst to my advisors, Tom Mitchell and Herb Simon, and to the other two

members of my thesis committee, Dean Pomerleau and Tom Dietterich. They did a great

job pushing, prodding, questioning, interpreting, and suggesting as the research progressed.

I'd also like to thank Greg Cooper, Michael Fine, Constantin Alifers, Tom Mitchell,

and other members of the Pitt/CMU Cost-E�ective Health Care group for help with the

Pneumonia Databases; Dean Pomerleau for the use of his road simulator; Tom Mitchell,

Reid Simmons, Joseph O'Sullivan, and other members of the Xavier Robot Project for

help with Xavier the robot; and Tom Mitchell, Dayne Freitag, David Zabowski, and other

members of the Calendar Apprentice Project for help using the CAP data.

Thanks also go to the Mitre Group for the Aspirin/Migraines Neural Net Simulator and

to Geo� Hinton's group at the University of Toronto for the Xerion Neural Net Simulator.

Rankprop was developed with Shumeet Baluja and Tom Mitchell. The work on input

features that are more useful as extra output tasks is joint work with Virginia de Sa.

This research bene�ted from discussions with many people, most notably Shumeet

Baluja, Justin Boyan, Tom Dietterich, Virginia de Sa, Dayne Frietag, Scott Fahlman, Ken

Lang, Tom Mitchell, Andrew Moore, Dean Pomerleau, Herb Simon, Sebastian Thrun, Dave

Touretzky, and Raul Valdes-Perez. It also bene�ted from the feedback I received from many

friends who sat through nearly a dozen pizza seminars on this and related topics.

Finally, I'd like to thank Tom Mitchell again, who served both as a doubting Thomas

in the early days, and as an unwavering source of support and encouragement in the later

days. Thanks Tom.

Abstract

Multitask Learning is an approach to inductive transfer that improves learning for one

task by using the information contained in the training signals of other related tasks. It does

this by learning tasks in parallel while using a shared representation; what is learned for

each task can help other tasks be learned better. In this thesis we demonstrate multitask

learning for a dozen problems. We explain how multitask learning works and show that

there are many opportunities for multitask learning in real domains. We show that in

some cases features that would normally be used as inputs work better if used as multitask

outputs instead. We present suggestions for how to get the most out of multitask learning in

arti�cial neural nets, present an algorithm for multitask learning with case-based methods

like k-nearest neighbor and kernel regression, and sketch an algorithm for multitask learning

in decision trees. Multitask learning improves generalization performance, can be applied

in many di�erent kinds of domains, and can be used with di�erent learning algorithms. We

conjecture there will be many opportunities for its use on real-world problems.

Contents

1 Introduction 16

1.1 Motivation . 16

1.2 MTL with Backprop Nets . 18

1.3 A Motivating Example . 20

1.4 A Brief Analysis . 25

1.5 A Second Example . 29

1.6 Training Signals as an Inductive Bias . 31

1.7 Thesis Roadmap . 33

1.8 Chapter Summary . 34

2 Does It Work? 36

2.1 1D-ALVINN . 36

2.1.1 The Problem . 36

2.1.2 Results . 38

2.2 1D-DOORS . 39

2.2.1 The Problem . 39

2.2.2 Results . 41

2.3 Pneumonia Prediction: Medis . 42

2.3.1 The Medis Problem . 42

2.3.2 The Medis Dataset . 43

2.3.3 The Performance Criterion . 43

2.3.4 Using the Future to Predict the Present 44

7

CONTENTS 8

2.3.5 Methodology . 45

2.3.6 Results . 49

2.3.7 How Well Does MTL Perform on the Extra Tasks? 49

2.3.8 What Extra Tasks Help the Main Task? 51

2.3.9 Comparison with Feature Nets . 54

2.4 Pneumonia Prediction: PORT . 57

2.4.1 The PORT Problem . 57

2.4.2 The PORT Dataset . 58

2.4.3 The Main Task . 59

2.4.4 Extra Tasks In Port . 60

2.4.5 Methodology . 61

2.4.6 Results . 62

2.4.7 Combining Multiple Models . 63

2.5 Chapter Summary . 64

3 How Does It Work? 67

3.1 MTL Requires Related Tasks . 68

3.2 What are Related Tasks? . 70

3.2.1 Related Tasks are not Correlated Tasks 73

3.2.2 Related Tasks Must Share Input Features 75

3.2.3 Related Tasks Must Share Hidden Units to Bene�t Each Other when

Trained with MTL-Backprop . 76

3.2.4 Related Tasks Won't Always Help Each Other 76

3.2.5 Summary . 77

3.3 Task Relationships that MTL-Backprop Can Exploit 77

3.3.1 Data Ampli�cation . 77

3.3.2 Eavesdropping . 80

3.3.3 Attribute Selection . 81

3.3.4 Representation Bias . 81

3.3.5 Over�tting Prevention . 84

3.3.6 How Backprop Bene�ts from these Relationships 84

CONTENTS 9

3.4 The Peaks Functions . 85

3.4.1 The Peaks Functions . 85

3.4.2 Experiment 1 . 87

3.4.3 Experiment 2 . 89

3.4.4 Experiment 3 . 90

3.4.5 Feature Selection in Peaks Functions 91

3.5 Backprop MTL Discovers How Tasks Are Related 93

3.6 Related Revisited . 99

3.7 Chapter Summary . 100

4 When To Use It 104

4.1 Introduction . 104

4.2 Using the Future to Predict the Present . 105

4.3 Multiple Metrics . 106

4.4 Multiple Output Representations . 107

4.5 Time Series Prediction . 109

4.6 Using Non-Operational Features . 111

4.7 Using Extra Tasks to Focus Attention . 112

4.8 Tasks Hand-Crafted by a Domain Expert 114

4.9 Handling Other Categories in Classi�cation 114

4.10 Sequential Transfer . 115

4.11 Multiple Tasks Arise Naturally . 117

4.12 Similar Tasks With Di�erent Data Distributions 117

4.13 Learning from Quantized or Noisy Data . 119

4.14 Learning With Hierarchical Data . 121

4.15 Outputs Can Beat Inputs . 121

4.16 Chapter Summary . 122

5 Some Inputs Work Better as Extra Outputs 123

5.1 Promoting Poor Features to Supervisors . 124

5.1.1 Poorly Correlated Features . 126

CONTENTS 10

5.1.2 Noisy Features . 129

5.1.3 A Classi�cation Problem . 133

5.1.4 Discussion . 136

5.2 Selecting Inputs and Extra Outputs . 136

5.2.1 Feature Selection . 137

5.2.2 The DNA SPLICE-JUNCTION Problem 138

5.2.3 Experiments . 138

5.3 Using Features as Both Inputs and MTL Outputs 143

5.3.1 Using Network Architecture to Isolate Outputs from Inputs 144

5.3.2 Results . 145

5.3.3 Discussion . 147

5.4 Chapter Summary . 148

6 Beyond Basics 150

6.1 Early Stopping . 151

6.2 Learning Rates . 155

6.2.1 Learning Rate Optimization . 155

6.2.2 E�ect on the Main Task . 156

6.2.3 Learning Rates and How Fast the Tasks Train 157

6.2.4 The Performance of the Extra Tasks 160

6.2.5 Learning Rates for Harmful Tasks 160

6.2.6 Computational Cost . 162

6.2.7 Learning Rate Optimization For Other Tasks 162

6.3 Beyond Fully Connected Hidden Layers . 163

6.3.1 Net Capacity . 163

6.3.2 Private Hidden Layers . 163

6.3.3 Combining MTL with Feature Nets 165

6.4 Chapter Summary . 168

7 MTL in K-Nearest Neighbor 172

7.1 Introduction . 172

CONTENTS 11

7.2 Background . 173

7.2.1 K-Nearest Neighbor . 173

7.2.2 Locally Weighted Averaging . 174

7.2.3 Feature Weights and the Distance Metric 175

7.3 Multitask Learning in KNN and LCWA . 176

7.4 Pneumonia Risk Prediction (review) . 177

7.5 Soft Ranks . 178

7.6 The Error Metrics . 179

7.7 Empirical Results . 180

7.7.1 Methodology . 180

7.7.2 Experiment 1: Learning Task Weights with MTL 181

7.7.3 Taking Full Advantage of LCWA . 184

7.7.4 Experiment 2: How Large Is the MTL Bene�t? 187

7.7.5 Experiment 3: MTL without Extra Tasks 189

7.7.6 Feature Weights Learned with STL and MTL 191

7.8 Summary and Discussion . 193

8 Related Work 196

8.1 Backprop Nets With Multiple Outputs . 196

8.2 Constructive Induction . 198

8.3 Serial Transfer . 200

8.4 Hints . 202

8.5 Unsupervised Learning . 203

8.6 Theories of Parallel Transfer . 204

8.7 Methods for Handling Missing Data . 206

8.8 Bayesian Graphical Models . 207

8.9 Other Uses of MTL . 208

8.9.1 Committee Machines . 208

8.9.2 Input Reconstruction (IRE) . 208

8.9.3 Task-Speci�c Selective Attention . 211

CONTENTS 12

9 Contributions, Discussion, and Future Work 212

9.1 Contributions . 212

9.2 Discussion and Future Work . 215

9.2.1 Predictions for Multiple Tasks . 215

9.2.2 Sharing, Architecture, and Capacity 216

9.2.3 Computational Cost . 217

9.2.4 Task Selection . 220

9.2.5 Inductive Transfer Can Hurt . 220

9.2.6 What are RELATED Tasks? . 221

9.2.7 Is MTL Psychologically Plausible? 223

9.2.8 Why PARALLEL Transfer? . 225

9.2.9 Intelligibility . 227

9.2.10 MTL Thrives on Complexity . 228

9.2.11 Combining MTL and Boosting . 228

9.2.12 MTL With Other Learning Methods 229

9.2.13 Combining MTL With Other Learning Methods 231

10 Bibliography 233

A Net Size and Generalization in Backprop Nets 239

A.1 Introduction . 239

A.2 Why Nets that are \Too Big" Should Generalize Poorly 240

A.3 An Empirical Study of Generalization vs. Net Capacity 240

A.3.1 Goals . 240

A.3.2 Methodology . 241

A.3.3 Results . 241

A.4 Why Excess Capacity Does Not Hurt Generalization 242

A.5 Conclusions . 243

A.6 Final Note . 244

CONTENTS 13

B Rank-Based Error Metrics 245

B.1 Motivating Problem: Pneumonia Risk Prediction 245

B.2 The Traditional Approach: SSE on 0/1 Targets 246

B.3 Rankprop . 247

B.4 Soft Ranks . 249

B.5 Discussion . 251

B.5.1 Other Applications of Rank-Based Methods 254

B.6 Summary . 255

\Your ability to juggle many tasks will take you far."

{ Fortune Cookie

Chapter 1

Introduction

Multitask Learning is an approach to inductive transfer that improves learning for one task

by using the information contained in the training signals of other related tasks. It does

this by learning tasks in parallel while using a shared representation; what is learned for

each task can help other tasks be learned better. In this thesis we demonstrate multitask

learning for a dozen problems. We explain how multitask learning works and show that

there are many opportunities for multitask learning in real domains. We show that in

some cases features that would normally be used as inputs work better if used as multitask

outputs instead. We present suggestions for how to get the most out of multitask learning in

arti�cial neural nets, present an algorithm for multitask learning with case-based methods

like k-nearest neighbor and kernel regression, and sketch an algorithm for multitask learning

in decision trees. Multitask learning improves generalization performance, can be applied

in many di�erent kinds of domains, and can be used with di�erent learning algorithms. We

conjecture there will be many opportunities for its use on real-world problems.

1.1 Motivation

The world we live in requires us to learn many things. These things obey the same physical

laws, derive from the same human culture, are preprocessed by the same sensory hard-

ware. . . . Perhaps it is the similarity of the many tasks we learn that enables us to learn so

much with so little experience.

16

CHAPTER 1. INTRODUCTION 17

You learn to play tennis in a world that asks you to learn many other things. You also

learn to walk, to run, to jump, to exercise, to grasp, to throw, to swing, to recognize objects,

to predict trajectories, to rest, to talk, to read, to study, to practice, etc. These tasks are

not the same|running in tennis is di�erent from running on a track|yet they are related.

Perhaps the similarities between the thousands of tasks you learn are what enable you to

learn any one of them, including tennis, given so little training data.

An arti�cial neural network (or a decision tree, ...) trained tabula rasa on a single,

isolated, di�cult task is unlikely to learn it well. For example, a net with a 1000x1000 pixel

input retina is unlikely to learn to recognize complex objects in real-world scenes given the

number of training patterns likely to be available. Might it be better to require the learner to

learn many things simultaneously? If the tasks can share what they learn, the learner may

�nd it is easier to learn them together than in isolation. Thus, if we simultaneously train

a net to recognize object outlines, shapes, edges, regions, subregions, textures, reections,

highlights, shadows, text, orientation, size, distance, etc., it may learn better to recognize

complex objects in the real world. We call this approach to learning Multitask Learning

(MTL).

The thesis of this research is that a task will be learned better if we can leverage the

information contained in the training signals of other related tasks during learning. We use

the term \task" to refer to a target function that will be learned from a sample of points

(called the training set) drawn from the target function. A training set consists of a �nite

number of data points de�ned on a vector of k attributes (the input features),

Xn = (X1;n;X2;n;X3;n; : : : ;Xk;n); (1.1)

each with an associated target value yn (or training signal):

TrainingSet = f(yn;Xn) n = 1; : : : ; Ng (1.2)

In supervised learning the goal is to learn models that accurately predict new values y

for future instances of X (the test set). We call the task we wish to learn better the main

task. The related tasks whose training signals are used by multitask learning to learn the

CHAPTER 1. INTRODUCTION 18

main task better are the extra tasks.1 Usually, we do not care how well extra tasks are

learned; their sole purpose is to help the main task be learned better. We call the union of

the main task and all extra tasks a domain. In this thesis, we usually restrict ourselves to

domains where tasks are de�ned on a common set of k input features (X1;n;X2;n; : : : ;Xk;n)

(though some extra tasks may be functions of only a subset of the k features). Not all

tasks in a domain will necessarily be bene�cial to the main task. One goal of this thesis

is to develop learning methods that are robust to interference between tasks, i.e., methods

that do not allow the performance on the main task to be made worse by extra tasks that

are not helpful to it. Another goal is to develop heuristics to help us select tasks from the

domain that are likely to be helpful.

1.2 MTL with Backprop Nets

Hinton proposed that generalization in arti�cial neural networks improves if networks learn

to represent underlying regularities of the domain [Hinton 1986]. A learner that learns

many related tasks at the same time can use these tasks as inductive bias for each other

and thus better learn the domain's regularities. This can make learning more accurate and

may allow hard tasks to be learned that could not be learned in isolation.

Figure 1.1 shows four separate arti�cial neural nets. Each net is a function of the same

eight inputs and has one output. (An \output" in a backprop net is where the training

signals y for the target function are fed into the net during training, and where predictions

of y are read from the net during testing. In this thesis we often use the term \output" as a

synonym for task or target function.) Backpropagation is applied to these nets by training

each net in isolation. Because the four nets are not connected what is learned by one net

does not a�ect the other nets. We call this Single Task Learning (STL).

Figure 1.2 shows a single net with the same eight inputs as the four nets in Figure 1.1,

but which has four outputs, one from each of the nets in Figure 1.1. Note that the four

outputs are fully connected to a hidden layer that they share.2 Backpropagation is done in

1As is common in machine learning, we make no assumption that the k features are necessary, nor

su�cient, inputs for learning accurate models of the tasks, including the main task.

2More complex architectures than a fully connected hidden layer sometimes work better. See Section 6.3.2

CHAPTER 1. INTRODUCTION 19

.

Task 1 Task 2 Task 3 Task 4

INPUTS INPUTSINPUTS INPUTS

Figure 1.1: Single Task Backprop (STL) of four tasks with the same inputs.

parallel on the four outputs in this MTL net. Because the four outputs share a common

hidden layer, it is possible for internal representations that develop in the hidden layer for

one task to be used by other tasks. Sharing what is learned by di�erent tasks while tasks

are trained in parallel is the central idea in multitask learning [Suddarth & Kergosien 1990;

Dietterich, Hild & Bakiri 1990, 1995; Suddarth & Holden 1991; Caruana 1993a, 1993b,

1994, 1995; Baxter 1994, 1995, 1996; Caruana & de Sa 1996].

INPUTS

. . .

Task 1 Task 2 Task 3 Task 4

Figure 1.2: Multitask Backprop (MTL) of four tasks with the same inputs.

Multitask learning is a collection of learning algorithms, analysis methods, and heuris-

tics, not a single learning algorithm. It is an approach to inductive transfer (using what is

learned for one problem to help another problem) that emphasizes learning multiple tasks

in parallel while using a shared representation so that what is learned by all tasks is avail-

CHAPTER 1. INTRODUCTION 20

able to the main task. By learning multiple tasks in parallel, MTL is able to use the extra

information about the domain contained in the training signals of the related tasks. In back-

propagation, MTL allows features developed in the hidden layer for one task to be used

by other tasks. It also allows features to be developed to support several tasks that would

not have been developed in any STL net trained on the tasks in isolation. Importantly,

MTL-backprop also allows some hidden units to become specialized for just one or a few

tasks; other tasks can ignore hidden units they do not �nd useful by keeping the weights

connected to them small.

1.3 A Motivating Example

Consider the following boolean functions de�ned on eight bits, B1 � � �B8:

Task1 = B1 _ Parity(B2 � � �B6)

Task2 = :B1 _ Parity(B2 � � �B6)

Task3 = B1 ^ Parity(B2 � � �B6)

Task4 = :B1 ^ Parity(B2 � � �B6)

where \Bi" represents the ith bit, \:" is logical negation, _" is disjunction, \^" is con-

junction, and \Parity(B2 � � �B6)" is the parity of bits 2{6. Bits B7 and B8 are not used by

the functions.

These tasks are related in several ways:

� they are all de�ned on the same inputs, bits B1 � � �B8;

� they all ignore the same bits in the inputs, B7 and B8;

� each is de�ned using a common computed subfeature, Parity(B2 � � �B6);

� on those inputs where Task 1 must compute Parity(B2 � � �B6), Task 2 does not need

to compute parity, and vice versa (when B1 = 1, Task 1 does not need to compute

Parity(B2 � � �B6), but Task 2 does, and vice versa);

CHAPTER 1. INTRODUCTION 21

� on those inputs where Task 3 must compute Parity(B2 � � �B6), Task 4 does not need

to compute parity, and vice versa.

We can train arti�cial neural nets on these tasks with backpropagation. Bits B1 � � �B8

are the inputs to the net. The task values computed for the functions are the target outputs.

We create a data set for these tasks by enumerating all 256 combinations of the eight input

bits, and computing for each setting of the bits the task signals for Tasks 1, 2, 3, and 4 using

the de�nitions above. This yields 256 di�erent cases, with four di�erent training signals for

each case.

From the 256 synthesized cases, we randomly sample 128 cases and place them in a

training set. We use the remaining 128 cases as a test set. The test set is not used for

training, but is used to evaluate the trained nets on instances on which they were not

trained. For simplicity, we ignore the complexity of early stopping and the need to set

aside halt sets to determine when to stop training. The tasks have been carefully devised

so over�tting is not too signi�cant.

We've done an experiment where we train Task 1 on the three nets shown in Fig-

ure 1.3. In Figure 1.3,left Task 1 is trained alone. This is STL-backprop of Task 1. In

Figure 1.3,center Task 1 is trained on a net with Task 2. This is MTL-backprop with two

tasks. In Figure 1.3,right Task 1 is trained with Tasks 2, 3, and 4. This is MTL-backprop

with four tasks. How well will Task 1 be learned by the di�erent nets?

INPUTS

. . .

Task 1

B1 B2 B3 B4 B5 B6 B7 B8

INPUTS

. . .

Task 1 Task 2

B1 B2 B3 B4 B5 B6 B7 B8

INPUTS

. . .

Task 1 Task 2 Task 3 Task 4

B1 B2 B3 B4 B5 B6 B7 B8

Figure 1.3: Three Neural Net Architectures for Learning Task 1

All nets are fully connected feed-forward nets with 8 input units, 100 hidden units, and

1{4 outputs. Where there are multiple outputs, each output is fully connected to the 100

hidden units. Nets are trained using backpropagation with MITRE's Aspirin/MIGRAINES

CHAPTER 1. INTRODUCTION 22

6.0 with learning rate = 0.1 and momentum = 0.9. Weights in the nets are updated each

epoch, i.e., after each full pass through the training set. Every 5000 epochs we evaluate the

performance of the nets on the held out test set. We measure performance two ways. First,

we measure the root-mean-squared error (RMSE) of the output with respect to the target

values. This is the error criterion being optimized by backpropagation. We also measure

the percent accuracy of the output in predicting the boolean values of the function. If the

net output is less than 0.5, it is treated as a prediction of 0, otherwise it is treated as a

prediction of 1.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50000 100000 150000 200000

 R
M

S
E

 Training Epochs

 trial.20.train
 trial.20.test

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50000 100000 150000 200000

 %
 C

o
rr

e
c
t

 Training Epochs

 trial.20.train
 trial.20.test

Figure 1.4: Training curves for one run of backprop STL on Task 1

Figure 1.4 shows the training curves for a single run of backpropagation on the STL

net for Task 1. The graph on the left shows the RMSE error as a function of training

epochs. Lower RMS error is better. The graph on the right shows the percent accuracy

of the model. Both graphs show performance on both the training set (the data actually

being used by backpropagation to train the net) and the test set. As often happens, the

nets learn the training set so well that RMS error on the training set approaches 0.0 and

accuracy approaches 100%. Performance on the independent test set, however, is not as

good. The net has over�t to the training set.

We perform 25 independent trials of sampling training and test sets from the 256 cases,

and training and evaluating nets on these sets. Di�erent random seeds are used to generate

the training and test sets and to initialize the nets in each trial. For each trial, we train

CHAPTER 1. INTRODUCTION 23

three nets: an STL net for Task 1, an MTL net for Tasks 1 and 2, and an MTL net for Tasks

1{4. For this experiment we measure performance only on the output for Task 1. When

there are extra outputs for Task 2 or Tasks 2{4, these are trained with backpropagation,

but ignored when the net is evaluated. The sole purpose of the extra outputs is to a�ect

what is learned in the hidden layer these outputs share with Task 1.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50000 100000 150000 200000

 T
es

t-
S

et
 R

M
S

E
 (

A
ve

ra
ge

 o
f 2

5
tr

ia
ls

)

 Training Epochs

STL: Task 1
MTL: Tasks 1+2

MTL: Tasks 1+2+3+4

Figure 1.5: RMSE Test-set Performance of Three Di�erent Nets on Task 1.

Figure 1.5 shows the test-set RMSE training curves for the three nets on Task 1. The

three curves in the graph are each the average of 25 trials.3 RMSE on Task 1 is reduced

when Task 1 is trained on a net simultaneously trained on other related tasks. RMSE is

reduced when Task 1 is trained with Task 2, and is further reduced when Tasks 3 and 4

are added. Training multiple tasks on one net does not increase the number of training

patterns seen by that net. Each net sees exactly the same training cases. The MTL nets

3Average training curves can be misleading, particularly if training curves are not monotonic. For ex-

ample, it is possible for method A to always achieve better error than method B, but for the average of

method A to be everywhere worse than the average of method B because the regions where performance on

method A is best do not align, but do align for method B. Before presenting average training curves, we

always examine the individual curves to make sure the average curve is not misleading.

CHAPTER 1. INTRODUCTION 24

do not see more training cases; they receive more training signals with each case.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 50000 100000 150000 200000

 T
es

t-
S

et
 %

 C
or

re
ct

 (
A

ve
ra

ge
 o

f 2
5

tr
ia

ls
)

 Training Epochs

STL: Task 1
MTL: Tasks 1+2

MTL: Tasks 1+2+3+4

Figure 1.6: Test-set Percent Correct of Three Di�erent Nets on Task 1.

Figure 1.6 shows the test-set percent correct on Task 1 for the three di�erent nets.

Again, each curve is the average of 25 trials. Table 1.1 summarizes the results of examining

the training curve from each trial.

Table 1.1: Test-set performance on Task 1 of STL of Task 1, MTL of Tasks 1 and 2, and
MTL of Tasks 1, 2, 3, and 4. *, **, *** indicate performance is statistically better than
STL at .05, .01, .001, or better, respectively.

NET STL: 1 MTL: 1+2 MTL: 1+2+3+4

Root-Mean-Squared-Error 0.211 0.134 *** 0.122 ***
Percent Correct 79.7% 87.5% *** 88.9% ***

On average, Task 1 has boolean value 1 75% of the time. A simple learner that learned to

predict the output value 1 all the time should achieve about 75% accuracy. When trained

alone (STL), performance on Task 1 is about 80%. When Task 1 is trained with Task

2, performance increases to about 88%. When Task1 is trained with Tasks 2, 3, and 4,

performance increases further to about 90%.

Qualitatively similar graphs and measurements result if we examine the performance of

CHAPTER 1. INTRODUCTION 25

any one of the four tasks when trained alone or in combination with the other tasks. There is

nothing unique about Task 1; all the tasks help, and are helped by, each other. Performance

is poorest when one task is trained in isolation, i.e., by STL. Better generalization is achieved

when a single net is trained on several of the tasks at the same time. The more tasks trained

on the MTL net, the better the performance.

1.4 A Brief Analysis

Why is each task learned better if trained on a net learning other related tasks at the same

time? Is it because the tasks are related and what is learned for the tasks helps the other

tasks, or is it because backpropagation just works better with nets that have more outputs,

even when the outputs are not related? We ran a number of experiments to verify that the

performance increase with MTL is due to the fact that the tasks are related, and not just

a side e�ect of training multiple outputs on one net.

Adding noise to neural nets sometimes improves their generalization performance [Holden

1992]. To the extent that MTL tasks are uncorrelated, their contribution to the aggregate

gradient may appear as noise to other tasks and this might improve generalization. To see

if this e�ect explains the bene�ts we see from MTL, in the �rst experiment we train Task

1 on a net with three random tasks. This lets us test whether it is the lack of relationship

between Tasks 1{4 that improves performance.

A second e�ect to be concerned about is that adding tasks might change backprop's

weight update dynamics to somehow favor nets with more tasks. For example, having more

outputs tends to increase the e�ective learning rate on the input-to-hidden layer weights

because the gradients from the multiple outputs add at the hidden layer. Does performance

improve on MTL using Tasks 1{4 just because extra outputs help backprop train multilayer

nets? To test for this, we train an MTL net with four copies of Task 1. Each of the four

outputs receives exactly the same training signals. This is a degenerate form of MTL where

no extra information is given to the net by the extra task training signals.

A third e�ect that needs to be ruled out is net capacity. 100 hidden units is a lot for

these tasks. Does the MTL net, which has to share the 100 hidden units among four tasks,

CHAPTER 1. INTRODUCTION 26

generalize better just because each task has fewer hidden units? To test for this, we train

Task 1 on STL nets with 200 hidden units and with 25 hidden units. This will tell us if

generalization would be better with more or less capacity.

Finally, we run a fourth experiment based on the heuristic used in [Valdes-Perez & Simon

1994] to discover complex patterns in data. In this experiment we shu�e the training signals

(the target output values) for Tasks 2, 3, and 4 in the data set before training an MTL net

on the four outputs. We shu�e the training signals for Tasks 2, 3, and 4 independently,

i.e., we do not mix the training signals between the tasks. Shu�ing randomly reassigns the

target values yn to the input vectors Xn) in the training set for each task. Task 1 is not

a�ected by this shu�ing and is still the same function of the inputs. The training signals

for outputs 2{4 have the same distributions as those for Tasks 2{4, but they are no longer

related to Task 1 because the functional relationship between the inputs and those task

signals has been randomized. This is a powerful test that has the potential to rule-out most

mechanisms that do not depend on there being relationships between the tasks.

We ran each experiment 25 times using exactly the same data sets used in the previous

section. Figure 1.7 shows the generalization performance on Task 1 in the four experiments.

For comparison, the performance of of STL, MTL with Tasks 1 and 2, and MTL with Tasks

1{4 from the previous section are also shown in the �gure.

When Task 1 is trained with random extra tasks, performance on Task 1 drops below

the performance on Task 1 when it is trained alone on an STL net. We conclude MTL of

Tasks 1{4 probably does not learn Task 1 better because the di�erences between the tasks

promotes generalization by adding noise to the learning process.

When Task 1 is trained with three additional copies of Task 1, the performance is

comparable to that when Task 1 is trained alone with STL.4 We conclude that MTL does

not learn Task 1 better just because backprop works better when there are multiple outputs.

4We sometimes observe that training multiple copies of a task on one net does improve performance on

that task. When we have observed this, the size of the bene�t is not large enough to explain away the

bene�ts observed with MTL. But it is an interesting and surprising e�ect, as the improvement is gained

without any additional information being given to the net. The most likely explanation is that the multiple

connections to the hidden layer allow di�erent hidden layer predictions to be averaged and thus act as a

boosting mechanism [Perrone 1994, . . .].

CHAPTER 1. INTRODUCTION 27

0.65

0.7

0.75

0.8

0.85

0.9

0 50000 100000 150000 200000

 T
es

t-S
et

 %
 C

or
re

ct
 (A

ve
ra

ge
 o

f 2
5

tri
al

s)

 Training Epochs

STL: Task 1
MTL: Tasks 1+2

MTL: Tasks 1+2+3+4
STL: Task 1 (25 hidden units)

STL: Task 1 (200 hidden units)
4 Copies of Task 1

Task1 + Shuffled Tasks 2,3,4
Task 1 + 3 Random Tasks

Figure 1.7: RMSE test-set performance of Task 1 when trained with: MTL with three
random tasks; MTL with three more copies of Task 1; MTL with shu�ed training signals
for Tasks 2{4; STL on nets with 25 or 200 hidden units.

When Task 1 is trained on an STL net with 25 hidden units, performance is comparable

to the performance with 100 hidden units. Moreover, when Task 1 is trained on an STL

net with 200 hidden units, it is slightly better. (The di�erences between STL with 25, 100,

and 200 hidden units are not statistically signi�cant.) We conclude that performance on

Task 1 is relatively insensitive to net size for nets between 25 and 200 hidden units, and, if

anything, Task 1 would bene�t from a net with more capacity, not one with less capacity.

Thus it is unlikely that MTL on Tasks 1{4 performs better on Task 1 because Tasks 2{4

are using up extra capacity that is hurting Task 1. See Appendix 1 for a discussion of the

e�ect of excess capacity on generalization in nets trained with backpropagation.

When Task 1 is trained with training signals for Tasks 2{4 that have been shu�ed, the

performance of MTL drops below the performance of Task 1 trained alone on an STL net.

CHAPTER 1. INTRODUCTION 28

Clearly the bene�t we see with MTL on these problems is not due to some accident caused

by the extra outputs. The extra outputs must be related to the main task to help it.

These experiments rule out most|if not all|explanations for why MTL outperforms

STL on Task 1 that do not require Tasks 2{4 be related to Task 1. So why is Task 1 learned

better when trained in parallel with Tasks 2{4?

One reason is that Task 1 needs to learn to compute a subfeature, Parity(B2 � � �B6),

that it shares with Tasks 2{4. Tasks 2{4 give the net information about this subfeature that

it would not get from Task 1 alone. For example, when B1 = 1, the training signal for Task

1 contains no information about Parity(B2 � � �B6) because the disjunction operator that

combines B1 with the Parity subfeature is insensitive to the value of the Parity subfeature

when B = 1. We say B1 blocks Parity(B2 � � �B6) when B1 = 1. But the training signals

for Task 2 provide information about the Parity subfeature in exactly those cases where

Task 1 is blocked. Thus the hidden layer in a net trained on both Tasks 1 and 2 gets twice

as much information about the Parity subfeature as a net trained on one of these tasks,

despite the fact that they see exactly the same training cases. The MTL net is getting more

information with each training case.

Another reason why MTL helps Task 1 is that all the tasks are functions of the same

inputs, bits B1 � � �B6, and ignore the same inputs, B7 and B8. Feature selection can be

di�cult when learning a complex function from a �nite sample. Because the tasks overlap

on the features they use and don't use, the MTL is better able select which input features

to use. (As we discuss later in Section 3.3.3, this feature selection e�ect goes away if the

di�erent tasks are completely di�erent functions of the same features.)

A third reason why MTL helps Task 1 is that there are relationships between the way

the di�erent tasks use the inputs that promote learning good internal representations. For

example, all the tasks logically combine input B1 with a function of inputs B2 � � �B6. This

similarity tends to prevent the net from learning internal representations that, for example,

directly combine bits B1 and B2. A net trained on all the tasks together is biased to learn

more modular, more correct internal representations that support the multiple tasks. We

conjecture that this bias towards modular internal representations helps reduce the net's

tendency to learn spurious correlations that occur in any �nite training sample: there may

CHAPTER 1. INTRODUCTION 29

be a random correlation between bit B3 and the output for Task 1 that looks fairly strong

in this one training set, but if that spurious correlation does not also help other Tasks, it

is less likely to be learned. By biasing the net to learn hidden representations that support

multiple tasks, over�tting to spurious details of the training set is reduced.

Before continuing, note that when Task 1 is trained with extra tasks that are random

functions, or extra related tasks whose task signals have been shu�ed, performance dropped

below the performance of training the Task alone on an STL net. This is the �rst example

of MTL hurting performance because the extra tasks are not related to the main task. This

issue comes up again later in Section 4.3, Section 4.5, and in Sections 9.2.4{9.2.6.

1.5 A Second Example

One might be tempted to conclude from the previous example that MTL will only help

on hard problems, such as functions that internally use hard-to-learn subfeatures like 5-bit

parity. Is MTL worthwhile with simpler problems? One might also be tempted to conclude

that unused inputs are important to success with MTL. Does MTL help when there is

no feature selection problem? Finally, one might be tempted to conclude that most of

the bene�t from MTL comes from adding the �rst related task, particularly if that task

\completes" the dataset on an important subfeature as Task 2 did for 5-bit Parity in the

last example. Can MTL bene�t from many tasks, particularly when many of those tasks

don't have that special relationship?

Consider these boolean functions:

TaskA = B1 _ (2 �NO BITS(B2 � � �B4) < NO BITS(B5 � � �B8))

TaskB = :B1 _ (2 �NO BITS(B2 � � �B4) < NO BITS(B5 � � �B8))

TaskC = B1 ^ (2 �NO BITS(B2 � � �B4) < NO BITS(B5 � � �B8))

TaskD = :B1 ^ (2 �NO BITS(B2 � � �B4) < NO BITS(B5 � � �B8))

where NO BITS() is a simple procedure that counts the number of bits set to 1 in its

argument (e.g., NO BITS(0101) = 2), and (? <?) is the standard less-than boolean con-

ditional test. We multiply NO BITS(B2 � � �B4) (which is a function of three bits) by 2

CHAPTER 1. INTRODUCTION 30

before comparing it to NO BITS(B5 � � �B8) (which is a function of four bits) to balance

the outcome of the conditional test so that it is true 50% of the time. (This balancing

cannot be achieved if the number of bits in the two sides are the same. This balancing is

not essential, but it simpli�es the functions pedagogically.) Note that bits B7 and B8 are

now used by the functions; there are no don't care bits.

Tasks A{D are much easier to learn than Tasks 1{4 because the principle subfeature

they compute, 2 � NO BITS(B2 � � �B4) < NO BITS(B5 � � �B8), is much easier to learn

than Parity. To prevent all nets trained on these functions from achieving nearly 100%

generalization accuracy, we reduce the training set size from the 128 cases used with Tasks

1{4 to only 32 cases. The remaining 224 cases from each trial are used as a test sets.

Figure 1.8 is the test-set RMSE of Task A trained on three nets like those in Figure 1.3.

The �rst net is STL of Task A. The second net is Task A trained with Task B. The third

net is Task A trained with Tasks B{D. Figure 1.9 is the test-set percent correct of Task A

trained on the three nets.

As before, MTL outperforms STL. It is better to train Task A on a net with other

related tasks than to train it alone. Unlike before, the bene�t of adding Task B to the Task

A net is small. This is in spite of the fact that Task A and Task B share the same blocking

relationship of the common subfeature, 2 � NO BITS(B2 � � �B4) < NO BITS(B5 � � �B8),

that Tasks 1 and 2 shared in the previous problems. And unlike before, the largest increase

in bene�t to Task A occurs when Tasks C and D are added to the net.

Table 1.2 summarizes the performance of the three nets. The accuracy on Task A trained

alone is about 90%. When Task 2 is added to the net, accuracy increases by a half percent

or less. When Task A is trained with Tasks B{D, accuracy increases to about 92%. The

improvement due to MTL with Tasks A{D is less than that observed for Tasks 1{4. Part of

the reason why the improvement is less is because Tasks A{D are so much easier to learn.

Even with only 32 cases in the training set, accuracy is higher on STL TASK A than on

MTL with Tasks 1{4.

Because Tasks A{D do not have a feature selection problem, achieving good performance

with MTL does not depend on the tasks having a feature selection problem. Also, most of

the MTL bene�t observed for Tasks A{D did not come when Task A's use of the blocked

CHAPTER 1. INTRODUCTION 31

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 T
es

t-
S

et
 R

M
S

E
 (

A
ve

ra
ge

 o
f 2

5
tr

ia
ls

)

 Training Epochs

STL: A
MTL: A+B

MTL: A+B+C+D

Figure 1.8: RMSE Test-set Performance of Three Di�erent Nets on Task A.

Table 1.2: Test-Set Performance on Task A of STL of Task A, MTL of Tasks A and B, and
MTL of Tasks A, B, C, and D. * indicates performance is statistically better than STL at
0.05 or better.

NET STL: A MTL: A+B MTL: A+B+C+D

Root-Mean-Squared-Error 0.106 0.103 0.090 *
Percent Correct 90.2% 90.6% 92.2% *

subfeature was completed by Task B. MTL can work even when there are not unusual

relationships between tasks. Perhaps the most interesting result learned from Tasks A{D,

however, is that MTL can help even simple problems be learned better when the data set

is small. Simple problems become hard when there is little training data.

1.6 Training Signals as an Inductive Bias

Inductive bias is anything that causes an inductive learner to prefer some hypotheses over

other hypotheses. Bias-free learning is impossible; in fact, much of the power of an inductive

learner follows directly from the power of its inductive bias [Mitchell 1980].

MTL is based on the notion that tasks can serve as mutual sources of inductive bias.

CHAPTER 1. INTRODUCTION 32

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 T
es

t-
S

et
 %

 C
or

re
ct

 (
A

ve
ra

ge
 o

f 2
5

tr
ia

ls
)

 Training Epochs

STL: A
MTL: A+B

MTL: A+B+C+D

Figure 1.9: Test-set Percent Correct of Three Di�erent Nets on Task A.

MTL is one particular kind of inductive bias. It uses the information contained in the

training signal of related tasks to bias the learner towards hypotheses that bene�t multiple

tasks. One does not usually think of training data as a bias, but when the training data

contains the teaching signal for more than one task, it is easy to see that, from the point of

view of any one task, the other tasks' training signals may serve as bias. For this multitask

bias to exist, the inductive learner must be biased to prefer hypotheses that have utility

across multiple tasks.

MTL is one way to achieve inductive transfer between tasks. The goal of inductive

transfer is to leverage additional sources of information to improve the performance of

learning on the current task. Inductive transfer can be used to improve generalization

accuracy, the speed of learning, and the intelligibility of learned models. In this thesis we

focus solely on improving accuracy. We are not concerned about the computational cost of

learning nor the intelligibility of what is learned. One way transfer improves generalization is

by providing a stronger inductive bias than would be available without the extra knowledge.

This can yield better generalization with a �xed training set, or it can reduce the number

CHAPTER 1. INTRODUCTION 33

of training patterns needed to achieve some �xed level of performance.

1.7 Thesis Roadmap

This chapter introduced multitask learning in backprop nets and showed it can work on

synthetic problems. Chapter 2 demonstrates that MTL works on real problems. We com-

pare the performance of single task learning and multitask learning in backprop nets on

three problems. One of these problems is a real-world problem created by researchers other

than the author who did not consider using MTL when they collected the data.

Chapter 3 discusses what related tasks are and explains how MTL works in backprop

nets. Section 3.1 reviews the evidence showing tasks must be related for MTL to improve

learning. Section 3.2 discusses how tasks should and should not be related for backprop

MTL to bene�t from them. Section 3.3 presents seven speci�c kinds of relationships between

tasks where MTL-backprop leverages information in the extra training signals to improve

generalization. Section 3.4 introduces the Peaks Functions, a set of related tasks designed

speci�cally for research in parallel transfer. Section 3.5 uses the Peaks Functions to show

that backprop MTL nets discover how tasks are related without being given explicit training

signals about task relatedness. Finally, Section 3.6 revisits the notion of relatedness and

proposes a de�nition for it.

Chapter 4 is an important part of this thesis. It shows that there are many opportunities

for MTL (and for inductive transfer in general) in real-world problems. This might seem

surprising|at �rst glance most of the problems one sees in machine learning today do not

look like multitask problems. We believe most current problems in machine learning appear

to be single task because of how we have been trained to do machine learning. Many|

in fact, we believe most|real-world problems are multitask problems and performance is

being sacri�ced when we treat them as single task problems.

Chapter 5 shows that extra tasks can be so useful that sometimes it is better to use an

input feature as an extra output task instead. This is surprising, when a feature is used

as an output instead of as an input, that feature is ignored when using the learned model

for prediction. In this chapter we also show that some features are useful both as inputs

CHAPTER 1. INTRODUCTION 34

and as extra outputs, though the bene�ts from these two uses are di�erent. We present

an approach to multitask learning that allows some features to be used as both inputs and

extra outputs at the same time, and thus gain both bene�ts.

Chapter 6 discusses how to get the best performance from MTL in backprop nets. This

thesis is the �rst to study thoroughly what happens when multiple outputs are trained on a

backprop net. We have discovered several important heuristics that help MTL in backprop

nets work better. Some of these heuristics are so important that without them MTL nets

can perform worse than STL nets instead of better than them.

In Chapter 7 we present an MTL algorithm for k-nearest neighbor and kernel regression.

In Chapter 9.2.12 we sketch an algorithm for MTL in decision trees. While these algorithms

look rather di�erent from MTL in backprop nets, there is strong overlap of mechanisms and

issues; all MTL algorithms must address essentially the same set of problems, even if the

speci�c mechanism in each algorithm is di�erent. By showing how MTL can be used to

leverage the same source of extra knowledge in backprop nets, k-nearest neighbor, and

decision trees (three very di�erent learning methods that are among the most successful

machine learning methods to date) we are able to demonstrate the generality and utility of

the MTL approach.

Related work is presented in Chapter 8. Chapter 9 summarizes the contributions of

this thesis and discusses directions for future research. Appendix A discusses the e�ects of

excess capacity on generalization in arti�cial neural nets trained with backprop. Appendix B

discusses error metrics based on ranking the training data instead of directly learning a

target function for the data.

1.8 Chapter Summary

The standard methodology in machine learning is to learn one thing at a time. Large prob-

lems are broken into small, reasonably independent subproblems that are learned separately

and then recombined (see, for example, Waibel's work on connectionist glue [Waibel 1989]).

This thesis argues that this modularity can be counterproductive because it ignores a po-

tentially rich source of information available in many real-world problems: the information

CHAPTER 1. INTRODUCTION 35

contained in the training signals of other related tasks.

Chapter 2

Does It Work?

Chapter 1 demonstrated multitask learning in backprop nets on two sets of problems care-

fully devised to introduce the reader to MTL. Before jumping into how multitask learning

works, what related tasks are, and when to use MTL (the subjects of Chapters 3 and 4),

we �rst demonstrate in this chapter that it works on real problems. We do this not only

to convince the reader that MTL is useful on real problems, but because the examples will

help the reader develop intuitions about how MTL works and where it is applicable.

This chapter presents four applications of MTL in backprop nets. The �rst uses simu-

lated data for an ALVINN-like road-following domain. The second uses real data collected

with a robot-mounted camera. This data was collected speci�cally to demonstrate MTL.

The third and fourth apply MTL to medical decision-making domains. The data in these

domains were collected by other researchers who did not consider using MTL when collecting

the data. Most of this chapter is spent working with the two medical domains.

2.1 1D-ALVINN

2.1.1 The Problem

1D-ALVINN uses a road image simulator developed by Pomerleau to permit rapid testing

of learning methods for road-following domains [Pomerleau 1992]. The original simulator

generates synthetic road images based on a number of user de�ned parameters such as road

width, number of lanes, angle and �eld of view of the camera. We modi�ed the simulator

36

CHAPTER 2. DOES IT WORK? 37

to generate 1-D road images comprised of a single 32-pixel horizontal scan line instead

of the original 2-D 30x32-pixel image. We did this to speed learning so more thorough

experimentation could be done using the computers available to us in 1992 and 1993|

training nets with the full 2-D retina was computationally too expensive with the size nets

necessary for good MTL performance to allow many replications and rapid testing of ideas.

Figure 2.1 shows several 2-D road images.

Figure 2.1: Sample single and two lane roads generated with Pomerleau's road simulator.
The 1D images are horizontal stripes taken 1/3 of the way up the images from the bottom.

The smaller input size of the 1-D retinas (960 pixels vs. 32 pixels) makes learning easier so

smaller training sets can be used. (Our training sets contain 250 images.) Nevertheless, 1D-

ALVINN retains much of the complexity of the original 2-D domain. The main complexity

lost is that road curvature is no longer visible. The simulated roads still have curvature

in the simulator, and this a�ects the desired steering direction. The loss of curvature

information thus limits the accuracy achievable by even perfect learning in the 1D-ALVINN

domain. Contrary to what you might expect, road curvature is not the most important

part of learning to steer in the ALVINN domain. The backprop nets do not know before

training how input pixels are spatially related, so they must learn how the input pixels are

arranged. This is di�cult. Also, as is evident in Figure 2.1, the generated road images allow

the vehicle to be positioned anywhere on the road, far to the left or right of where a good

driver would keep a vehicle. This is done to promote robustness by insuring the net learns

how to recover from a broad range of situations. Finally, we train on images containing

CHAPTER 2. DOES IT WORK? 38

both one and two-lane roads. This greatly increases the variety of the input images. The

correct steering direction is very dependent on whether one is driving on a single lane road,

or on a two-lane road where the vehicle should be centered in the right lane instead of the

road center.

The principal task in both 1D-ALVINN and 2D-ALVINN is to predict steering direction.

For the MTL experiments, eight additional tasks were used:

� whether the road is one or two lanes � location of centerline (2-lane roads only)

� location of left edge of road � location of right edge of road

� location of road center � intensity of road surface

� intensity of region bordering road � intensity of centerline (2-lane roads only)

These additional tasks are all computable from the internal variables in the simulator. We

modi�ed the simulator so that the training signals for these extra tasks were added to

the synthetic data along with the training signal for the main steering task. (If we were

learning from 2D-retinas, we would also use road curvature and its �rst derivative, both

internal parameters in the generator, as additional extra tasks.)

2.1.2 Results

Table 2.1 shows the performance of ten runs of single and multitask learning on 1D-ALVINN

using nets with one hidden layer. The MTL net has 32 inputs, 16 hidden units, and 9

outputs. The 36 STL nets have 32 inputs, 2, 4, 8 or 16 hidden units, and 1 output each.1

Note that the size of the MTL nets was not optimized.

The entries under the STL and MTL headings are the generalization error for nets of

the speci�ed size when early stopping is used to halt training. The bold STL entries are

the STL runs that yielded best performance. (Most of the di�erences between STL runs

on di�erent size nets are not statistically signi�cant.) The last two columns compare STL

and MTL. The �rst column is the percent reduction in error of MTL over the best STL

run. Negative percentages indicate MTL performs better. This test is biased in favor of

STL because it compares runs of MTL on an unoptimized net size with several independent

1A similar experiment using nets with 2 hidden layers containing 2, 4, 8, 16, or 32 hidden units per layer

for STL and 32 hidden units per layer for MTL yielded similar results.

CHAPTER 2. DOES IT WORK? 39

Table 2.1: Performance of STL and MTL with one hidden layer on tasks in the 1D-ALVINN
domain. The underlined entries in the STL columns are the STL runs that performed best.
Di�erences statistically signi�cant at .05 or better are marked with an *.

ROOT-MEAN SQUARED ERROR ON TEST SET

TASK Single Task Backprop (STL) MTL Change MTL Change MTL
2HU 4HU 8HU 16HU 16HU to Best STL to Mean STL

1 or 2 Lanes .201 .209 .207 :178 :156 -12.4% * -21.5% *
Left Edge :069 .071 .073 .073 :062 -10.1% * -13.3% *
Right Edge .076 .062 .058 :056 :051 -8.9% * -19.0% *
Line Center .153 :152 .152 .152 :151 -0.7% -0.8%
Road Center .038 :037 .039 .042 :034 -8.1% * -12.8% *
Road Greylevel :054 .055 .055 .054 :038 -29.6% * -30.3% *
Edge Greylevel :037 .038 .039 .038 :038 2.7% 0.0%
Line Greylevel .054 .054 :054 .054 :054 0.0% 0.0%
Steering .093 :069 .087 .072 :058 -15.9% * -27.7% *

runs of STL that use di�erent random seeds and are able to �nd near-optimal net size.

The last column is the percent improvement of MTL over the average STL performance.

Di�erences marked with an *" are statistically signi�cant at 0.05 or better. Note that on

the important steering task, MTL outperforms STL 15{30%. It does this without having

access to any extra training patterns: exactly the same training patterns are used for both

STL and MTL. The only di�erence is that the MTL training patterns have the training

signals for all nine tasks, whereas the STL training patterns have training signals for only

one task at a time.

2.2 1D-DOORS

2.2.1 The Problem

1D-ALVINN is not a real domain; the data is generated with a simulator. To test MTL on a

more realistic problem, we created an object recognition domain similar in some respects to

1D-ALVINN. In 1D-DOORS, the main tasks are to locate doorknobs and to recognize door

types (single or double) in images of doors collected with a robot-mounted color camera.

We collected a thousand images as a robot wandered somewhat randomly around the 5th

oor of Wean Hall at CMU. From these 1000 images, the 402 images where a doorknob was

CHAPTER 2. DOES IT WORK? 40

visible in the image were selected. There are two or more pictures of most doorways. The

images were grouped according to the doorway they represented. Two thirds of the groups

where used for training, the other 1/3 being used for testing. (We sample from doorways

instead of images of doorways because we want test sets to contain doorways the nets are

not trained on.) This sampling process yielded training sets containing about 270 images.

Figure 2.2 shows several door images from the database.

As with 1D-ALVINN, the problem was simpli�ed by using horizontal stripes from the

images, one for the green channel and one for the blue channel. Each stripe is 30 pixels

wide (accomplished by applying Gaussian smoothing to the original 150 pixel-wide image)

and occurs at the vertical height in the image where the doorknob is located. Ten tasks

were used. These are:

� horizontal location of doorknob � single or double door

� horizontal location of doorway center � width of doorway

� horizontal location of left door jamb � horizontal location of right door jamb

� width of left door jamb � width of right door jamb

� horizontal location of left edge of door � horizontal location of right edge of door

Figure 2.2: Sample single and double doors from the 1D-DOORS domain.

As this is a real domain, training signals for these tasks had to be acquired manually.

We used a mouse to click on the appropriate features in each image in the training and test

sets. Since it was necessary to process each image manually to acquire the training signals

CHAPTER 2. DOES IT WORK? 41

for the two main tasks, it was not that di�cult to acquire training signals for the extra

tasks.

2.2.2 Results

The di�culty of 1D-DOORS precluded running as exhaustive a set of experiments as with

1D-ALVINN; comparison could be done only for the two tasks we considered most impor-

tant: doorknob location and door type. STL was tested on nets using 6, 24, and 96 hidden

units. MTL was tested on nets with 120 hidden units. The results of ten trials with STL

and MTL are in Table 2.2.

MTL generalizes 20{30% better than STL on these tasks, even when compared to the

best of three di�erent runs of STL. Once again, note that the training patterns used for STL

and MTL are identical except that the MTL training patterns contain additional training

signals. It is the information contained in these extra training signals that helps the hidden

layer learn a better internal representation for recognizing door types and the location of

doorknobs.

Table 2.2: Performance of STL and MTL on the two main tasks in 1D-DOORS. The
underlined entries in the STL columns are the STL runs that performed best. Di�erences
statistically signi�cant at .05 or better are marked with an *.

ROOT-MEAN SQUARED ERROR ON TEST SET

TASK Single Task Backprop (STL) MTL Change MTL
6HU 24HU 96HU 120HU to Best STL

Doorknob Loc .085 .082 :081 :062 -23.5% *
Door Type .129 :086 .096 :059 -31.4% *

The 1D-ALVINN domain used simulated data. Although the simulator was not built

with MTL in mind, it was modi�ed to make extra task signals available in the training

data. The 1D-DOORS domain used real data collected from a real camera on a real robot

wandering around a real hallway. Although every attempt was made to keep this domain

challenging (e.g., the robot was not kept parallel to the hallway and the distance to the doors

and illumination was allowed to vary, and some of the training signals were collected using

a trackball on a laptop computer while riding a public bus), it is still a domain contrived

speci�cally to demonstrate MTL. How well will MTL work on a real domain which was not

CHAPTER 2. DOES IT WORK? 42

customized for it?

2.3 Pneumonia Prediction: Medis

The pneumonia risk prediction problem we now examine is an excellent test bed for MTL

research. It is a complex problem for which an unusually large and complete data set is

available. This makes it easier to do thorough experiments. Moreover, it is a real domain.

The data was collected by researchers who did not know what learning methods might be

applied to it. And it turns out that there are many opportunities to apply MTL to this

domain and others like it.

2.3.1 The Medis Problem

In this problem the diagnosis of pneumonia has already been made. The goal is not to

diagnose if the patient has pneumonia, but to determine how much risk the illness poses

to the patient. Of the 3,000,000 cases of pneumonia each year in the U.S., 900,000 are

admitted to the hospital. Most pneumonia patients recover given appropriate treatment,

and many can be treated e�ectively without hospitalization. Nonetheless, pneumonia is

serious: 100,000 of those hospitalized for pneumonia die from it, and many more are at

elevated risk if not hospitalized.

A primary goal in medical decision making is to accurately, swiftly, and economically

identify patients at high risk from diseases like pneumonia so they may be hospitalized to

receive aggressive testing and treatment; patients at low risk may be more comfortably,

safely, and economically treated at home. The goal in this problem is to use information

available for patients with pneumonia before they are admitted to the hospital (e.g., patient

history and the results of simple tests like blood pressure) to predict each patient's risk of

dying from pneumonia. Low-risk patients can be considered for outpatient care. Note that

the diagnosis of pneumonia has already been made. The goal is to assess how much risk

the pneumonia represents.

Because some of the most useful tests for predicting pneumonia risk are usually measured

after one is hospitalized, they will be available only if preliminary assessment indicates

CHAPTER 2. DOES IT WORK? 43

hospitalization and further testing is warranted. But low risk patients can often be identi�ed

using measurements made prior to admission to the hospital. We have a database in which

all patients were hospitalized. It is the extra lab tests made after these patients are admitted

to the hospital that will be used as extra tasks for MTL; they cannot be used as inputs

because they will not be available for most future patients when the decision to hospitalize

must be made.

2.3.2 The Medis Dataset

The Medis Pneumonia Database [Fine et al. 1995] contains 14,199 pneumonia cases collected

from 78 hospitals in 1989. Each patient in the database was diagnosed with pneumonia and

hospitalized. 65 measurements are available for most patients. These include 30 basic

measurements acquired prior to hospitalization, such as age, sex, and pulse, and 35 lab

results, such as blood counts or blood gases, usually not available until after hospitalization.

The database indicates how long each patient was hospitalized and whether the patient lived

or died. 1,542 (10.9%) of the patients died. The most useful decision aid for this problem

would predict which patients will live or die. But this is too di�cult. In practice, the

best that can be achieved is to estimate a probability of death (POD) from the observed

symptoms. In fact, it is su�cient to learn to rank patients by their POD so lower-risk

patients can be discriminated from higher risk patients; patients at least risk may then be

considered for outpatient care.

2.3.3 The Performance Criterion

The performance criteria used by others working with the Medis database [Cooper et al.

1995] is the accuracy with which one can select prespeci�ed fractions of the patient popula-

tion who will live. For example, given a population of 10,000 patients, �nd the 20% of this

population at least risk. To do this we learn a risk model and a threshold for this model

that allows 20% of the population (2000 patients) to fall below it. If 30 of the 2000 patients

below this threshold die, the error rate is 30/2000 = 0.015. We say that the error rate for

FOP 0.20 is 0.015 (FOP stands for \fraction of population"). In this paper we consider

FOPs 0.1, 0.2, 0.3, 0.4, and 0.5. Our goal is to learn models and model thresholds, such

CHAPTER 2. DOES IT WORK? 44

that the error rate at each FOP is minimized.

2.3.4 Using the Future to Predict the Present

The Medis database contains results from 35 lab tests that usually will be available only

after patients are hospitalized. These results typically will not be available when the model

is used because the patients will not yet have been admitted. We use MTL to bene�t from

these future lab results. The extra lab values are used as extra backprop outputs, as shown

in Figure 2.3. The expectation is that the extra outputs will bias the shared hidden layer

toward representations that better capture important features of each patient's condition.2

A
ge Se
x

C
he

st
 P

ai
n

A
st

hm
at

ic

D
ia

be
tic

H
ea

rt
 M

um
ur

W
he

ez
in

g

St
ri

do
r

Mortality
 Rank Hematocrit White Blood

 Cell Count
Potassium

. . .

. . .

INPUTS

INPUT LAYER

OUTPUT LAYER

SHARED HIDDEN LAYER

RANKPROP

OUTPUT

FUTURE LABS

. . .

Figure 2.3: Using future lab results as extra outputs to bias learning for the main risk
prediction task. (Rankprop is described in Section 2.3.5 and in Appendix B.) The lab tests
would help most if they could be used as inputs, but will not yet have been measured when
risk must be predicted, so we use them as extra MTL outputs instead.

2It is interesting to note that other researchers who tackled this problem using this database ignored the

the extra lab tests because they knew the lab tests would not be available at run time and did not see ways

to use them other than as inputs.

CHAPTER 2. DOES IT WORK? 45

2.3.5 Methodology

The straightforward approach to this problem is to use backprop to train an STL net to

learn to predict which patients live or die, and then use the real-valued predictions of this

net to sort patients by risk. This STL net has 30 inputs for the basic measurements, a

single hidden layer, and a single output trained with targets 0=lived, 1=died.3 Given an

in�nite training set, a net trained this way should learn to predict the probability of death

for each patient, not which patients live or die. In the real world, however, we rarely have

an in�nite number of training cases. If the training sample is small, the net will over�t

and begin to learn a very nonlinear function that outputs values near 0/1 for cases in the

training set, but which does not generalize well. It is critical to use early stopping to halt

training before this happens.

We developed a method called Rankprop speci�cally for this domain that learns to

rank patients without learning to predict mortality. \Rankprop" is short for \backprop-

agation using sum-of-squares errors (SSE) on repeatedly re-estimated ranks". Figure 2.4

compares the performance of SSE on 0/1 targets with rankprop on this problem. Rankprop

outperforms traditional backprop using sum-of-squares errors on targets 0=lived,1=died by

10%-40% on this domain, depending on which FOP is used for comparison. See Appendix B

for details about rankprop and a comparison of the performance of rankprop and traditional

backprop on this domain.4

The STL net has 8 hidden units and one output for the rankprop risk prediction. The

MTL net has 64 hidden units. (Preliminary experiments suggested 8{32 hidden units was

optimal for STL, and that MTL would perform somewhat better with nets as large as 512

hidden units. We use 8 hidden units with STL and 64 hidden units with MTL so that we

can a�ord to run many experiments.) The MTL net is shown in Figure 2.3. It has the same

inputs as the STL net, and also has the same rankprop output that learns to order patients

3We tried both squared error and cross entropy with these outputs (0=lived,1=died). The di�erences

between the two approaches was small, with squared error performing slightly better. The results we report

in this thesis are for squared error.
4We use rankprop for our experiments with MTL because it is the best performer we know of on this

problem. (It outperforms SSE for both STL and MTL.) We are not interested in developing methods that

improve inferior algorithms. We want MTL to make the best algorithms better.

CHAPTER 2. DOES IT WORK? 46

0.01

0.02

0.03

0.04

0.1 0.2 0.3 0.4 0.5

 T
es

t-
S

et
 E

rr
or

 R
at

e

 Fraction of Population (FOP)

STL with SSE on 0/1 Targets
STL with Rankprop

Figure 2.4: The performance of SSE with 0/1 targets and rankprop on the 5 FOPs in the
pneumonia risk prediction domain. Lower error indicates better performance.

by risk. This is the main task. In addition to the main task, the MTL net also has 35 extra

outputs. These are the extra tasks the net will learn while also learning to predict risk. In

this domain the extra tasks are to predict the results of lab tests that usually will not be

ordered unless a preliminary risk assessment suggests the patient should be hospitalized.

We train the net using training sets containing 1000 patients randomly drawn from the

database. Training is halted using a halt set containing another 1000 patients drawn from

the database. Training is halted on both the STL and MTL nets when over�tting is observed

on the main rankprop risk task. Over�tting is detected by observing the performance of

the backprop nets during training on an independent test set (often called the halt set) not

used for backpropagation. When performance on the halt set stops improving or begins

getting worse, training is stopped and the model weights are frozen. On the MTL net,

the performance of the extra tasks is not taken into account for early stopping. Only the

performance of output(s) for the main task are considered when deciding where to halt

training. (See Section 6.1 for more discussion of early stopping with MTL nets. Figure 6.1

in that section shows an interesting assortment of halt-set curves used for early stopping.)

CHAPTER 2. DOES IT WORK? 47

Once training is halted, the net is tested on the remaining unused patients in the database.

This process of randomly sampling training and halt sets and testing on the remaining cases

is repeated 10 times.

The Medis database contains 14,199 patients. We use training sets containing only 1000

cases for several reasons. The main reason is that at the time we began working with this

data we were preparing to work with a di�erent, more complex database that contains only

about 2,400 cases. We viewed the Medis database as a warm-up exercise for this more

interesting database. Unfortunately, access to the other database was delayed two years

by complications in coding and verifying the data. That database is so complex that even

routine manipulations can require days of manual labor if done correctly. We gained access

to a subset of this other database only recently. The results of our �rst experiments with

this other database are presented in Section 2.4 at the end of this chapter.

Another reason we use small training sets with the Medis database is illustrated in

Figure 2.5. This �gure shows the performance of k-nearest neighbor on the Medis pneumonia

problem as a function of the number of training cases. Performance asymptotes as the

number of training cases increases above 5,000 cases. Preliminary experiments suggest

backprop nets also bene�t little from training sets containing more than about 5,000 cases.

By de�nition, consistent learning procedures converge to the true function given enough

data. Interesting di�erences between consistent procedures such as KNN and backprop

(given large enough nets) show up at small-to-moderate sample sizes. Many of MTL's

bene�ts derive from mechanisms where the extra tasks compensate for some di�culties of

training with a limited sample (see Section 3.3). We expect little bene�t from MTL on this

problem with training sets containing more than about 5,000 cases. This was borne out

by preliminary experiments which suggested MTL helped performance most with training

sets containing 250{2,500 training cases. MTL seems to improve performance with training

sets as large as 7,000 cases (the largest we tested), but the improvement is small and it is

di�cult to achieve statistical signi�cance when comparing the methods. (We believe it is

not worthwhile to try to show statistical signi�cance where di�erences are too small to be

interesting.)

A third reason we use small training sets is that the experiments run much faster.

CHAPTER 2. DOES IT WORK? 48

0

0.01

0.02

0.03

0.04

0.05

0.06

0 1000 2000 3000 4000 5000 6000

T
es

t S
et

 E
rr

or
 R

at
e

Number of Patients in Training Set

"FOP_0.2"
"FOP_0.3"
"FOP_0.4"
"FOP_0.5"

Figure 2.5: Generalization performance of k-nearest neighbor as a function of training set
size for pneumonia FOP's 0.2, 0.3, 0.4 and 0.5.

The cost of each epoch increases linearly (or worse if one considers cache performance)

with the number of training cases, and the number of epochs required for over�tting to

begin also increases with the number of training patterns. To make things worse, rankprop

trains slower than backprop with 0=lives/1=dies targets. But Rankprop is the best STL

performer on this problems, so we want to use it. All these factors greatly favored using

smaller training sets.

In the end, we settled on train and halt sets containing 1000 cases each because this

number was not only practical, but also seemed to be the largest sizes that would be usable

with the other pneumonia database we hoped to use. It is important to realize that it is

possible to make more accurate predictions than we report here for the Medis pneumonia

problem by training on more of the available data. We do not feel this diminishes the

importance of the results we report here because few medical databases contain as many

cases as the Medis database.

CHAPTER 2. DOES IT WORK? 49

2.3.6 Results

Table 2.3 shows the mean performance of ten runs of rankprop using STL and MTL. The

bottom row shows the percent improvement over STL. Negative percentages indicate MTL

reduces error. Although MTL lowers the error at each FOP compared with STL, only

the di�erences at FOP 0.3, 0.4, and 0.5 are statistically signi�cant with ten trials using a

standard t-test.

Table 2.3: Error Rates (fraction deaths) for STL with Rankprop and MTL with Rankprop
on Fractions of the Population predicted to be at low risk (FOP) between 0.0 and 0.5. MTL
makes 5{10% fewer errors than STL.

FOP 0.1 0.2 0.3 0.4 0.5

STL Rankprop .0083 .0144 .0210 .0289 .0386
MTL Rankprop .0074 .0127 .0197 .0269 .0364

% Change -10.8% -11.8% -6.2% * -6.9% * -5.7% *

The improvement due to MTL is 5{10%. This improvement can be of considerable con-

sequence in a medical domain. To verify that the bene�ts seen here are due to relationships

between what is learned for the future labs and the main task, we ran the shu�e test (see

Section 1.4) on the pneumonia problem. We shu�ed the training signals for the extra tasks

in the training sets before training the nets with MTL.

Figure 2.6 shows the results of MTL with shu�ed training signals for the extra tasks.

For comparison, the results of STL, and of MTL with unshu�ed extra tasks, are also shown.

Shu�ing the training signals for the extra tasks reduces the performance of MTL below that

of STL. We conclude that it probably is the relationship between the main task and the

extra tasks that lets MTL perform better on the main task; the bene�t disappears when

these relationships are broken by shu�ing the extra task signals.

2.3.7 How Well Does MTL Perform on the Extra Tasks?

One might be interested in how well the MTL net performed on the extra tasks compared

with STL nets learning those same tasks. Because most extra tasks are not well learned

given these inputs, we don't expect to see large di�erences in performance.

We trained STL nets on each extra task. The inputs to these nets are the same inputs

CHAPTER 2. DOES IT WORK? 50

0.01

0.02

0.03

0.04

0.1 0.2 0.3 0.4 0.5

 T
es

t-
S

et
 E

rr
or

 R
at

e

 Fraction of Population (FOP)

STL
MTL

MTL: shuffled extra task signals

Figure 2.6: Performance of STL, MTL, and MTL with shu�ed extra task signals on pneu-
monia risk prediction at the �ve FOPs.

used above, the regular pre-admission patient measurements. We repeated this 10 times,

using the same samples used for the 10 trials above. Thus we trained 36�10 = 360 individual

nets. Early stopping was used to stop training on each net individually. Computationally,

training this many STL nets is far more expensive than training the 10 MTL nets the STL

nets will be compared against.5

We compared the performance of the individual STL nets on the 35 tasks to the per-

formance of the MTL net trained on the main task with the 36 extra tasks. Figure 2.7

5We use a trick when training STL nets like this that makes running the experiment simpler and that

saves some computation. Instead of actually training a separate net for each output, we train one net with

all 36 outputs. This hidden layer of this net, however, is broken into smaller pieces that connect only to one

output. Thus the �rst 8 hidden units connect to output 1, the next 8 to output 2, etc. The hidden layers are

fully connected to the inputs. This is equivalent to training the outputs separately, as long as one does early

stopping on the outputs individually. The advantage of this procedure is that whatever machinery has been

developed to work on the MTL net will also work on the STL net because the nets have the same inputs

and outputs. The only di�erence is that the hidden layers are not allowed to share what is learned by the

di�erent tasks.

CHAPTER 2. DOES IT WORK? 51

shows the percent change in RMS error of going from STL to MTL for the 36 extra tasks.

MTL yields lower error than STL for 28 of the 36 outputs. A sign test shows that this is

signi�cant at the .001 level. Moreover, in the few cases where STL performs better than

MTL, the di�erences are all small. MTL, however, sometimes outperforms STL by several

percent. (The average improvement due to STL is 0.22%; the average improvement due to

MTL is 0.69%.)

-5

-4

-3

-2

-1

0

1

5 10 15 20 25 30 35

%
 C

ha
ng

e
in

 R
M

S
 E

rr
or

 w
ith

 M
T

L

Extra Task

Figure 2.7: Percent improvement in RMS Error on the extra tasks when MTL is compared
with STL. Negative improvements indicate MTL performs better.

Caution: one might be tempted to view the results on the extra tasks as 35 di�erent

experiments comparing STL and MTL. For example, one might interpret the results as

suggesting that MTL will outperform STL roughly 28/36 = 78% of the time. Because these

tasks are drawn from the same domain, the tests are not independent, so this is a risky

inference.

2.3.8 What Extra Tasks Help the Main Task?

A natural question to ask when using MTL is what extra tasks a�ected the main task

most. A related, though di�erent, question is what extra tasks helped the main task most.

CHAPTER 2. DOES IT WORK? 52

Unfortunately, answering these questions can be expensive. The most thorough approach

to addressing these questions is to train all possible combinations of extra tasks with the

main task and see which sets of extra tasks change or improve performance on the main

task most. This combinatorial approach is, of course, usually impractical. A more practical

approach is to ask which extra tasks were themselves learnable. Presumably an extra task

that is not learnable from the inputs can contribute little to the main task because nothing is

learned for it. It is possible, however, that a task learned just a little bit better than random

might still have substantial e�ect on what is learned in the hidden layer. Poor performance

on a task does not necessarily imply that nothing of value is learned for that task. The

task may be intrinsically di�cult to predict even given the optimal learned representation.

Conversely, a task that is easily learned to high accuracy may not lead to the development

of interesting internal representations that are useful to other tasks. As an extreme example

of this, consider an output that duplicates one of the inputs (i.e., the training signal for the

output has the same values as one of the input features). Such an output can be learned

almost perfectly by a backprop net because the net need only learn to feed the value of the

input directly through the hidden layer to the output it duplicates. In doing this, nothing

new is learned in the hidden layer that was not already available as an input.

We examined the training curves for all the outputs of the MTL net. Many of the extra

outputs are not learnable from the inputs. This should not come as a surprise. First, we

assume that a lab test is worth measuring only if the outcome of the test could not be

well predicted before doing the test. Second, most of the lab tests reect more speci�c,

more accurate measurements of the patient than the measurements available before that

patient is admitted to the hospital. It is going to be di�cult, if not impossible, to predict

most detailed internal measurements such as blood chemistry from simpler, more general

measurements such as age, sex, and blood pressure.

Figure 2.8 shows the training curves for the eight extra outputs that were most learnable.

We judged how learnable an output was by examining all the test-set learning curves. If the

learning curve showed signi�cant or interesting improvements in accuracy during training,

we assumed this was because something interesting was learnable for that output. For

comparison, the SSE output for VITSAT, the main task, is also included.

CHAPTER 2. DOES IT WORK? 53

The rapid drop in RMSE that occurs in the �rst few passes of backprop is not that

meaningful. The net is just learning the mean of the distribution for that output. It is the

changes in RMSE that occur after this drop that are consequential. Most changes are small.

None of these tasks are well learned. This does not, however, mean that what is learned is

not meaningful or useful. For example, the output for VITSAT, the non-rankprop output

for the main task, shows a similarly small drop in error. Yet the model that is learned to

create this small drop in error allows patients to be ranked by risk with good accuracy.

Small changes in RMSE can reect signi�cant changes in what the model has learned.

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0 2.5e+06 5e+06 7.5e+06 1e+07

 R
M

S
E

 o
n
 T

e
s
t
S

e
t

 Backprop Passes (epochs x 1000)

BUN (blood urea nitrogen, task 6)

0.27

0.275

0.28

0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0 2.5e+06 5e+06 7.5e+06 1e+07

 R
M

S
E

 o
n
 T

e
s
t
S

e
t

 Backprop Passes (epochs x 1000)

BUND (quantized BUN, task 7)

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0 2.5e+06 5e+06 7.5e+06 1e+07

 R
M

S
E

 o
n
 T

e
s
t
S

e
t

 Backprop Passes (epochs x 1000)

CREAT (blood creatinine, task 8)

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

0 2.5e+06 5e+06 7.5e+06 1e+07

 R
M

S
E

 o
n
 T

e
s
t
S

e
t

 Backprop Passes (epochs x 1000)

CREATD (quantized blood creatinine, task 9)

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0 2.5e+06 5e+06 7.5e+06 1e+07

 R
M

S
E

 o
n
 T

e
s
t
S

e
t

 Backprop Passes (epochs x 1000)

GLUC (glucose, task 10)

0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2.5e+06 5e+06 7.5e+06 1e+07

 R
M

S
E

 o
n
 T

e
s
t
S

e
t

 Backprop Passes (epochs x 1000)

GLUCD(quantized glucose, task 11)

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.29

0.295

0.3

0 2.5e+06 5e+06 7.5e+06 1e+07

 R
M

S
E

 o
n
 T

e
s
t
S

e
t

 Backprop Passes (epochs x 1000)

HEMAT (blood hematocrit, task 12)

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0 2.5e+06 5e+06 7.5e+06 1e+07

 R
M

S
E

 o
n
 T

e
s
t
S

e
t

 Backprop Passes (epochs x 1000)

HEMATD (quantized hematocrit, task 13)

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0 2.5e+06 5e+06 7.5e+06 1e+07

 R
M

S
E

 o
n
 T

e
s
t
S

e
t

 Backprop Passes (epochs x 1000)

VITSTAT (lived = 0, died = 1, main task)

Figure 2.8: Learning curves for the eight most learnable extra tasks. The learning curve for
the SSE 0/1 output for the main task (VITSTAT) is shown for comparison.

Interestingly, the tasks that we judged to be most learnable are tasks which also show

some of the largest di�erences in performance between STL and MTL in Figure 2.7. (Learn-

CHAPTER 2. DOES IT WORK? 54

able tasks were selected before we had seen the results in Figure 2.7, so we were not biased

by those results.)

2.3.9 Comparison with Feature Nets

The future lab tests used as extra tasks by MTL are the lab tests doctors order to help

assess pneumonia risk and decide on patient treatment. They are excellent features for

pneumonia risk prediction. Figure 2.9 shows the performance that could be obtained if we

were able to use the future lab tests as extra inputs.

0.01

0.02

0.03

0.04

0.1 0.2 0.3 0.4 0.5

 T
e
st

-S
e
t
E

rr
o
r

R
a
te

 Fraction of Population (FOP)

STL: Inputs = Basic Labs
STL: Inputs = Basic + Future Labs

Figure 2.9: The Basic Labs that are available for use as inputs include some items from
the patient histories and simple measurements such as weight and blood pressure that can
conveniently be measured prior to hospitalization. Using the future lab tests as extra inputs
would improve performance considerably.

Unfortunately, we cannot use them as regular inputs to a net learning to predict risk

because they usually will not be available when the model would be used. They will be

missing. But they are available in the training set. An alternate approach to using the

training signals for the future labs as extra outputs is to learn models to predict the lab

CHAPTER 2. DOES IT WORK? 55

tests that will be missing, and provide these predictions as extra inputs to a net learning

the main risk prediction task. Feature nets [Davis & Stentz 1995] is a competing approach

to MTL that does this. It trains nets to predict the missing future measurements and

uses the predictions, or the hidden layers learned for these predictions, as extra inputs. See

Figure 2.10. Using predictions imputed for missing values as inputs when learning to predict

another is a standard technique in statistics. Using the hidden layers that are trained to

imput these values as extra inputs, however, is a new and interesting approach that often

outperforms simple value imputation.

.

Task 2 Task 3 Task 4

. . .

Main Task

Inputs

Figure 2.10: Feature Nets allow the main task to be trained with STL but still bene�t from
what can be learned for auxiliary tasks.

We tried feature nets on the pneumonia problem. We trained each of the extra tasks on

STL nets with 8 hidden units. There are 35 extra tasks, so we trained 35 STL nets for each

of the ten trials. Early stopping is used to halt training on these nets when performance on

the tasks is maximized as measured with a halt set. We used the same training and halt

sets to train all the nets. These are the same samples of data that were used to train the

CHAPTER 2. DOES IT WORK? 56

MTL net.

After training the 35 individual STL nets for each trial, we did two experiments. In

one experiment, the predictions made by the nets for the 35 future labs were provided as

extra input features for an STL net learning the main risk prediction task. This net has

30 regular inputs, plus 35 additional inputs for the predictions made by the STL feature

nets. In the second experiment we did not use the predictions of the STL nets, but used

the hidden layer activations of those nets as additional inputs to a net learning the main

task. This net has 30 regular inputs, and 8*35=280 extra inputs for the hidden layers of

the 35 STL nets.

0.01

0.02

0.03

0.04

0.1 0.2 0.3 0.4 0.5

 T
e

s
t-

S
e

t
E

rr
o

r
R

a
te

 Fraction of Population (FOP)

STL
MTL

STL Feature Nets: predictions

0.01

0.02

0.03

0.04

0.1 0.2 0.3 0.4 0.5

 T
e

s
t-

S
e

t
E

rr
o

r
R

a
te

 Fraction of Population (FOP)

STL
MTL

STL Feature Nets: hidden layers

Figure 2.11: Performance of both approaches to feature nets compared with STL and MTL.

Figure 2.11 compares the performance of using feature nets for future lab tests with

that of STL and MTL. The left graph is the performance when the predictions from the

feature nets are used as extra inputs to the net learning the main risk prediction task. The

graph on the right is the performance when the hidden layers learned in the 35 feature nets

are used as extra inputs to the net learning the main task.

Neither approach to feature nets yields improvements comparable to MTL on this do-

main. This does not mean MTL will always outperform feature nets. If the extra tasks

are highly predictable, using predictions for them as extra inputs should yield performance

CHAPTER 2. DOES IT WORK? 57

comparable to what could be achieved if the real values for these inputs could be measured

and used as regular inputs. However, in this domain, the future lab tests cannot be pre-

dicted accurately, so the models learned for them provide little useful extra information

when used as inputs. Yet as extra outputs, they do help. This might seem surprising. A

more complete analysis of why this can happen will be made in Chapter 5. To summarize,

when predictions for tasks are used as extra inputs, any noise in those predictions is in-

jected into the input of the network. This not only makes learning more di�cult, but also

makes the learned model sensitive to the noise in those input predictions later when the

net is tested. If the output of a net is a function of noisy inputs, the output must be noisy,

too. Using noisy predictions as extra inputs may reduce bias, but is also likely to increase

variance. If variance increases more than bias is reduced, prediction accuracy is hurt.

When used as extra outputs, however, this noise is not a problem. The training signals

the net sees when given extra tasks as outputs are not noisy because they are the real training

signals collected for those training cases. The training signals have not been corrupted by

a marginal learning process.

2.4 Pneumonia Prediction: PORT

In Section 2.3 we used the Medis pneumonia risk problem. In this section we apply MTL to

another pneumonia risk problem. The pneumonia problem we now tackle uses a database

called the PORT Database. We'll refer to this problem as the \PORT" problem to avoid

confusion with the Medis pneumonia problem in the previous section.

2.4.1 The PORT Problem

Like the Medis pneumonia problem used in Section 2.3, the PORT problem is a real domain

for which data was collected by researchers who did not know about MTL methods. As

before, the diagnosis of pneumonia has already been made. The goal is not to diagnose if

the patient has pneumonia, but to determine how much risk the the pneumonia poses to

the patient.

Unlike the previous pneumonia domain, not all patients in the Port domain have been

CHAPTER 2. DOES IT WORK? 58

admitted to the hospital. Roughly 1/3 of the patients have been treated as outpatients.

The principal task in the PORT domain is not to predict which patients are at low enough

risk to be considered for outpatient treatment as in the previous section, but to predict

which patients are at high risk from their pneumonia. In the PORT domain, patients at

high risk are de�ned as those that develop one (or more) of the following dire outcomes:

� will need treatment in a critical care unit (ICU)

� develop any of �ve di�erent severe complications

� die

The goal in this domain is to accurately predict those patients at highest risk of devel-

oping one or more of these dire outcomes.

2.4.2 The PORT Dataset

Unlike the Medis Database used in Section 2.3 that contained 14,199 patients, the PORT

Pneumonia Database contains only 2,287 pneumonia cases. The total number of cases

available in the PORT database is similar to the number of cases we used for training

with the Medis pneumonia problem. (This is not an accident. We knew about the PORT

database was when we began working with the larger Medis database, and viewed the work

with the Medis database as a warm-up exercise for working with the richer, more complex,

and smaller PORT database.)

Each patient in the PORT database was diagnosed with pneumonia. More than a

thousand variables are available in the database for most patients. The e�ort required to

preprocess all the variables, however, is daunting, so only the 203 measurements in the core

database have been coded thus far and are available for our use. These 203 measurements

are available for most patients. These include all basic measurements acquired prior to

hospitalization (e.g., age, sex, and pulse) and all lab results (e.g., blood counts and blood

gases) available after hospitalization. Because some patients were not hospitalized, some

variables have missing values. We used a k-nearest neighbor method we devised speci�cally

for this dataset to impute (�ll-in) missing values.6

6We do not know how important imputing missing values is to our results on this problem because we

CHAPTER 2. DOES IT WORK? 59

The PORT database also indicates how long each patient was hospitalized, the total

cost of hospitalization, whether the patient was admitted to intensive care, whether the

patient developed any of a number of complications, and whether the patient was still alive

30, 60, and 90 days after they were admitted.

2.4.3 The Main Task

A useful decision aid for PORT is to predict which patients are at high risk. In this problem

high risk patients are de�ned as:

DireOutcome = ICU _Comp1 _ Comp2 _ � � � _ Comp5 _Death (2.1)

where ICU is a boolean indicating whether or not the patient entered the intensive care

unit, Comp1 � � �Comp5 are booleans for �ve di�erent severe complications, and Death is a

boolean indicating whether or not the patient survived at least 90 days.

The main task in the PORT domain is to predict DireOutcome. As with the Medis

pneumonia problem, predicting which patients will experience a dire outcome is too di�cult.

In practice, the best that can be achieved is to estimate a probability of a dire outcome

from the observed variables so that patients with higher probability of DireOutcome can

be distinguished from those with lower probability.

The performance criteria used by others working with the PORT database to predict

DireOutcome are the accuracy, positive predictive value, negative predictive value, sensi-

tivity, speci�city, and ROC curve area. These are de�ned as follows:

MODEL PREDICTION

| 1 0 |

- - - + - - - - - - - - - - - + - - - - -

TRUE 1 | A B | A+B

| |

OUTCOME 0 | C D | C+D

- - - + - - - - - - - - - - - + - - - - -

| A+C B+D | A+B+C+D

have not tried running experiments without �lled-in missing values. We do not discuss the method for �lling

in missing values because we are patenting it.

CHAPTER 2. DOES IT WORK? 60

Accuracy = (A+D) / (A+B+C+D)

Positive PV = A / (A+C)

Negative PV = D / (B+D)

Sensitivity = A / (A+B)

Specificity = D / (C+D)

Accuracy is the usual measure of the fraction of cases properly predicted. In this domain

we do not expect to achieve accuracies signi�cantly better than the default accuracy achieved

by predicting all patients to be in the most frequent class, DireOutcome = 0. Positive

Predictive Value is the accuracy with which cases with true outcome 1 are predicted. It is a

measure of how often the model misses cases that have true outcome 1. Negative Predictive

Value is the accuracy with which cases with true outcome 0 are predicted. It is a measure

of how often the model misses cases that have true outcome 0. Sensitivity is the fraction

of cases predicted to be outcome 1 that actually are outcome 1. It is a measure of how

reliable the prediction is when it predicts an outcome of 1. Speci�city is the fraction of

cases predicted to be outcome 0 that actually are outcome 0. It is a measure of how reliable

the prediction is when it predicts an outcome of 0.

An ROC curve is a graph of Sensitivity vs. 1-Speci�city as the threshold for the boundary

between high and low risk is sweeped from one limit to the other. (See Figure 2.12 for

examples of ROC curves.) If there is no relationship between the model prediction and

the true outcome, the ROC curve is a (possibly noisy) diagonal line and the area under

the curve is about 0.5. If the model's predictions strongly predict the true outcome, the

ROC curve rises quickly and has area near 1.0. If the model prediction strongly predicts

anti-truth, the ROC area is less than 0.5. In summary, good models have ROC areas greater

than 0.5, with better models having ROC areas closer to 1.0.

2.4.4 Extra Tasks In Port

The PORT database indicates how long each patient was hospitalized, the total cost of the

hospitalization, whether the patient was in intensive care, whether the patient developed

any severe complications, the predictions of a logistic regression model developed by medical

CHAPTER 2. DOES IT WORK? 61

experts to predict pneumonia risk using this database, and whether the patient was still

alive 30, 60, and 90 days after they were admitted. We use these variables as extra outputs

for MTL while training the main task output to predict DireOutcome. As before, the

expectation is that the extra outputs will bias the shared hidden layer toward representations

that better capture important features of each patient's condition, and this will improve

performance on the main DireOutcome prediction task. Some of the extra tasks in PORT

are disjunctive subcomponents of the main task (see Equation 2.1), which was not the case

when we applied MTL to the Medis problem in Section 2.3.

2.4.5 Methodology

The straightforward approach to this problem is to use backprop to train an STL net to

learn to predict the boolean DireOutcome, and then compute the error measures such

as the ROC area using the real-valued predictions of the trained net. This STL net has

203 inputs, a single hidden layer, and a single output trained with boolean 0/1 targets.

Because our training sets are small, the net will eventually over�t and begin to learn a very

nonlinear function that outputs values near 0/1 for cases in the training set, but which does

not generalize well. It is critical to use early stopping to halt training before this happens.7

The STL net has 64 hidden units and one output for DireOutcome prediction. The

MTL net also has 64 hidden units. The MTL net has the same 203 inputs as the STL net,

and also has the same DireOutcome output. This is the main task. In addition to the main

task, the MTL net also has 34 extra outputs.

We split the 2,287 cases in the PORT database into a �nal test set containing 686

patients, and a training set containing the remaining 1601 cases. This was done once: there

is only one �nal test set and training is never done using any of the cases in this �nal test

set. We randomly split the 1601 training cases into training sets containing 1200 cases, and

early stopping test-sets containing 401 cases. We did this ten di�erent times so we could

run ten trials. For each trial, STL and MTL nets are trained with backpropagation on

7Because the PORT database became available only recently, we have not yet applied Rankprop to it.

The experiments we report here train the nets using standard squared error on 0/1 targets. We do not

know if Rankprop would yield better performance than SSE on 0/1 targets, though it probably would. This

di�erence makes the results we present here more independent from the results presented in Section 2.3.

CHAPTER 2. DOES IT WORK? 62

the training sets. Training is halted when performance on the halt-set is maximized. We

use ROC area as the performance criterion for early stopping, not SSE error. As always,

performance is only measured using the main task output; the extra tasks on the MTL nets

are ignored when deciding where to halt training.

2.4.6 Results

Table 2.4 shows the average performance of the 10 STL and MTL nets on the held-out test

set. MTL outperforms STL on every measure.8 The average improvement of MTL over

STL is 8.75%. On the important ROC area measure, MTL improves the ROC area 10.5%.

Note that we do not know what the best ROC area that could be achieved in this domain

is. Because the domain is stochastic, however, it is unlikely that ROC areas near 1.0 are

achievable. Thus MTL probably improves the ROC area more than 10.5%.

Table 2.4: Performance of STL and MTL on the PORT DireOutcome prediction problem
using a number of di�erent performance measures. The Di�erence column is the percent
reduction in error of MTL over STL.

METRIC STL MTL Difference

Accuracy 0.8717 0.8819 -7.95 %
Positive PV 0.4348 0.4861 -9.08 %
Negative PV 0.9206 0.9283 -9.70 %
Sensitivity 0.3797 0.4430 -10.20 %
Speci�city 0.9357 0.9390 -5.13 %
ROC Area 0.8617 0.8748 -10.46 %

Average -8.75 %

Figure 2.12 shows the average ROC curves for ten trials of STL and MTL. The ROC

curve for MTL dominates the ROC curve for STL over most of the graph. This di�erence

is also reected in the ROC area for STL and MTL in Table 2.4; the ROC area for MTL is

10.5% closer to 1.0 than the STL ROC area.

We performed our experiments on the PORT Database as members of a larger project

studying this problem. Members of this project applied other learning methods to the

PORT problem using the same test and training sets we used for STL and MTL. These

8Because the same held-out test set is used in each of the ten trials, it is inappropriate to use t-tests to

estimate the signi�cance of the improvements of MTL over STL as the test sets are not independent.

CHAPTER 2. DOES IT WORK? 63

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
e
n
si

tiv
ity

1 - Specificity

"average.STL"
"average.MTL"

Figure 2.12: The ROC curve for MTL dominates the ROC curve for STL in most regions
of the graph.

researchers applied rule-learning methods, Bayesian methods, and logistic regression to the

PORT problem. These researchers are experts in the methods they tried, and ran their

experiments concurrently with our STL and MTL experiments; we did not know how well

other methods would perform at the time we ran our experiments . Backprop nets trained

with STL andMTL yielded better performance than all other methods tried on this problem.

MTL is currently the best performing learning method we know of on this problem.

2.4.7 Combining Multiple Models

The results reported in Table 2.4 are the average performance of models trained on 1200

cases and early stopped on 401 cases. Because of the need to do early stopping, none of the

models was ever trained on the entire 1601 cases available for training. Because the same

test set is used for all ten trials, we can combine the predictions from each of the models for

the ten trials to make one prediction for each case in the test set. Because the 1200 cases

CHAPTER 2. DOES IT WORK? 64

used for training are randomly re-sampled from the 1601 cases for each trial, this combined

prediction better utilizes the total 1601 cases available for training.

To combine the ten models we averaged their predictions for each case in the test set.

Table 2.5 shows the ROC areas for STL and MTL before and after combining model pre-

dictions this way. As expected, combining model predictions does improve the performance

of both STL and MTL. The e�ect, however, is not large. Moreover, the bene�t of us-

ing MTL is almost as large after model predictions are combined as it is before they are

combined. This demonstrates that in this domain the bene�ts of MTL are not the same

bene�ts one achieves by combining multiple experts, and that some of the bene�ts achieved

by combining multiple experts are additive with the bene�ts of MTL.

Table 2.5: ROC Area of STL and MTL on PORT DIREOUT prediction before and after
the predictions of the ten di�erent models (from the ten trials) are combined. The entry
in the bottom right cell is the di�erence between STL without model combining and MTL
with model combining.

STL MTL Difference

Before Combining 0.8617 0.8748 -10.46 %
After Combining 0.8649 0.8769 -8.88 %

Difference -2.31 % -1.68 % -11.00 %

2.5 Chapter Summary

In this chapter we demonstrated multitask learning on four realistic domains. The �rst

domain, 1D-ALVINN, used data generated using a simulator written by Pomerleau. The

only modi�cations made to this simulator were to make some internal variables available as

extra task signals, and to simplify the problem by learning from a single horizontal stripe

in the image. MTL reduced error on the important steering task in this domain by about

20%.

The second domain, 1D-DOORS, was an attempt to create a domain similar to 1D-

ALVINN that used real data instead of data generated with a simulator. In this domain,

a robot wandered down the hallway in Wean Hall and collected images of doorways. The

main tasks in this domain were to �nd the horizontal location of doorknobs in the images

CHAPTER 2. DOES IT WORK? 65

and to estimate the width of the doorways. Although the domain was designed and the data

were collected speci�cally for experiments with MTL, every attempt was made to make this

domain realistic. The robot imaged doorways from di�erent distances, di�erent angles, and

under di�erent illuminations, and the types of doorways included in the data set were as

varied as the 5th oor of Wean Hall permits. In 1D-DOORS, MTL improved accuracy on

the main tasks by about 25%.

The third domain, Medis pneumonia risk prediction, is a real medical decision making

problem. The data were collected by researchers other than the author. We got involved

in this project not because it looked promising for MTL, but because we were asked to

apply backprop to the domain for comparison with other learning methods. Moreover,

the rankprop method developed by the author (with Shumeet Baluja and Tom Mitchell) for

single task learning in this domain is the strongest single task competitor we know of. (When

we �rst saw how much Rankprop improved the performance of STL on this domain we didn't

think there was room left for improvement with MTL.) MTL reduces error 5{10% when

trained on samples containing 1000 training cases. Additional experiments demonstrated

that this bene�t could not be achieved with feature nets, an alternate method for using the

extra task signals. (In Section 6.3.3 we show how to combine MTL with feature nets to get

even better performance.)

The fourth domain is the PORT pneumonia risk prediction problem. The data used in

the PORT problem is very di�erent from the data used in the Medis problem. There is an

order of magnitude less data, an order of magnitude more features per case, the features

used as extra outputs in Medis are used as inputs in PORT, and most of the extra tasks used

for MTL in PORT are measurements not available in the Medis dataset. The prediction

problems are also di�erent. In Medis the goal was to predict which patients are at least risk

from pneumonia. In PORT the goal is to predict patients that will experience a dire outcome

(i.e., those patients at high risk) from their pneumonia. Rankprop, which was used for the

Medis problem, was not used for the PORT problem. With PORT we used traditional

SSE on 0/1 targets. The error metrics used for PORT and Medis also di�er. In PORT we

measure the overall accuracy of the prediction, it's positive and negative predictive values,

it's sensitivity and speci�city, and the ROC curve area. On the PORT DireOoutcome

CHAPTER 2. DOES IT WORK? 66

problem, MTL reduces error on all measures, yielding an average reduction in error of

8.75%, including an 10.5% reduction in error on the important ROC area measure.

From the results reported in this chapter, we conclude MTL works on real problems and

yields large enough improvements to be worthwhile.

Chapter 3

How Does It Work?

Chapters 1 and 2 showed that MTL works in backprop nets. How do MTL backprop nets

bene�t from the information in the training signals of the other tasks? What relationships

between tasks enable MTL backprop to work? How do backprop nets trained with MTL

know how tasks are related?

This chapter is an attempt to de�ne what \related" means. Before discussing what

related tasks are, Section 3.1 briey reviews the experiments in Section 1.4 that show MTL

only works if tasks are related. Section 3.2 is an informal discussion of how tasks must be

related for backprop MTL to work. Section 3.3 presents seven detailed task relationships

that allow backprop MTL nets to learn better internal representations for related tasks.

The mechanism that enables MTL-backprop to bene�t from these relationships is the con-

structive and destructive interference of backprop error gradients when they are summed

in the hidden layer shared by the tasks. Section 3.4 introduces the Peaks Functions, a

set of synthetic problems speci�cally designed to elucidate how MTL in backprop works.

After demonstrating that MTL works on the peaks functions, we use the peaks functions

to demonstrate some of the task relationships described in Section 3.3. Section 3.5 employs

the peaks functions to show that backprop MTL discovers how tasks are related without

being given explicit training signals about task relatedness. In this section we introduce a

measure of task sharing that examines how di�erent tasks overlap in their use of the hidden

layer. Finally, Section 3.6 returns to the issue of related tasks. In this section we propose

a de�nition of \related" that, while not perfect, is (hopefully) a step in the right direction.

67

CHAPTER 3. HOW DOES IT WORK? 68

3.1 MTL Requires Related Tasks

There are many potential reasons why adding extra outputs to a backprop net might improve

generalization performance. In Section 1.4 we mentioned several of these:

� Adding noise to backpropagation sometimes improves generalization [Holmstrom & Koistinen

1992]. To the extent that tasks are uncorrelated, their contribution to the aggregate gradient

(the gradient that sums the error fed back from each layer's outputs) can appear as noise to

other tasks. Thus uncorrelated tasks might improve generalization by acting as a source of

noise.

� Adding tasks might change weight updating dynamics to somehow favor nets with more tasks.

For example, adding extra tasks increases the e�ective learning rate on the input-to-hidden

layer weights relative to the hidden layer-to-output weights. Maybe larger learning rates on

the �rst layer improves learning.

� Reduced net capacity might improve generalization. MTL nets share the hidden layer between

all tasks. Perhaps the reduced capacity improves generalization.

There are many others. For example, backprop might be prone to getting stuck in local

minima. The extra tasks might help push the hidden layer out of inferior local minima be-

cause the local minima for di�erent tasks might be in di�erent places. As another example,

MTL might introduce a competitive e�ect in the hidden layer that acts as a regularizer.

When only one task is trained on a net, any hidden unit that correlates with errors on the

output will be tuned for that task. But with many tasks trained on the same net, there

is a competition in the hidden layer for hidden units (assuming tasks do not all require

the identical hidden layer representation). This competition will cause hidden units to be

trained for a task only if the force exerted by that task on that hidden unit is stronger than

the forces exerted on the hidden unit by other tasks. This means only those hidden units

that are most relevant to each task are trained by that task. As a �nal example, neural

nets trained on single task su�er from a problem called the \herd" e�ect [Fahlman 1989]

that causes all hidden units to try to �t the largest source of error early in training. Then,

after some hidden units �t that error, the remaining hidden units \herd" again to try to �t

the largest residual error, etc. In other words, learning in backprop nets is more serial than

parallel if one looks at the sequence of concepts being learned [Weigend 1993]. But training

CHAPTER 3. HOW DOES IT WORK? 69

multiple tasks on one net might reduce the herd e�ect by causing early di�erentiation of

hidden units because there are many di�erent error signals to try to �t at the same time.

There are many more potential explanations of why training multiple tasks in parallel

on one backprop net might improve performance. In MTL we are mainly interested in

improvements that are due to tasks being related. This is not because other e�ects

might not also be worthwhile or interesting, but because MTL is a method designed for

inductive transfer, and inductive transfer between unrelated tasks does not seem sensible.

Because we are only interested in MTL if it works because tasks are related, in Section

1.4 we ran experiments to try to disprove alternate mechanisms. In one experiment we

trained the main task on an MTL net with extra random functions. In another experiment

we trained multiple copies of the main task on an MTL net. In a third experiment we

varied the number of hidden units to see if restricting the capacity of the net might improve

generalization.

Each of these experiments attempts to disprove a single alternate explanation. There

are many possible alternate explanation. It is impractical to devise tests to disprove each

one individually. In Section 1.4 we ran an experiment that was not aimed at disproving any

speci�c alternate mechanism. In this experiment, we shu�ed the training signals for the

extra tasks to disrupt the relationships between the main task and the extra tasks, while

preserving the distributions of the extra tasks. The shu�e test directly tests the assumption

that MTL works because tasks are related. If the bene�t disappears when the relationship

between tasks is broken by shu�ing, this is evidence that the relationships are what was

important.

In the experiments, the performance bene�ts from MTL disappear when the relation-

ship between the main task and extra tasks is disrupted. Similar �ndings resulted from

performing the shu�e test on the pneumonia risk prediction problem in Section 2.3. We

conclude that the improvement from MTL is due to mechanism(s) that depend on the tasks

being related. MTL leverages the information contained in the training signals for related

tasks. If tasks are related, MTL can learn them better. If tasks are not related, MTL may

learn worse than STL.

CHAPTER 3. HOW DOES IT WORK? 70

3.2 What are Related Tasks?

What do we mean by related? This is a di�cult question. Ideally, we would like to know

what extra tasks would improve performance on the main task:

Related(MainTask;ExtraTask) = 1
�

Learning(MainTaskkExtraTask) > Learning(MainTask)

This says we would like to de�ne a relation Related which, given the main task and an

extra task, is true i� learning generalizes better on that main task when it learns the extra

task in parallel with the main task.

One potential problem with this de�nition is that it does not specify the learning pro-

cedure. Clearly, not all learning methods are equivalent. Some learning methods may be

better at multitask learning than others, and some methods may be able to exploit rela-

tionships between tasks that other methods cannot. Given this, a more useful de�nition of

Related might be the following:

Related(MainTask;ExtraTask; LearningAlg) = 1
�

LearningAlg(MainTaskkExtraTask) > LearningAlg(MainTask)

This de�nition acknowledges that the bene�t may depend on the learning algorithm used

for multitask learning.1 This de�nition of Related is appealing, but raises several important

issues. The �rst of these issues was mentioned in the previous section. Suppose

Related(MainTask1; ExtraTask1; LearningAlg1) = 1

This says MainTask1 is learned better when trained with ExtraTask1. Suppose, how-

ever, that ExtraTask1 is a random function of the inputs. MainTask1 bene�ts from being

trained with ExtraTask1 because of some e�ect ExtraTask1 has on the learning procedure

LearningAlg1, not because what is learned for the extra task is useful for the main task.

Wouldn't it be better to modify the learning method so that it bene�ts from this e�ect

1The bene�t also may depend on other factors such as the number of training patterns and the parameters

used to control learning such as learning rates. We assume all such information is encapsulated in the

descriptions of the main task, the extra tasks, and the learning algorithm.

CHAPTER 3. HOW DOES IT WORK? 71

without needing the training signals for ExtraTask1? If ExtraTask1 regularizes the back-

prop net by acting as a source of random signals, wouldn't it be better to add randomness

to backpropagation by a method that does not need extra training signals? If ExtraTask1

helps because it alters learning rates, wouldn't it be better to �nd a way to directly control

learning rates? Should Related be de�ned so that extra tasks are considered related that

are bene�cial solely because they perturb learning in ways that could be achieved by mod-

ifying the learning algorithm and throwing away the extra task training signals? The extra

task would become unrelated once we improved the algorithm. Should we have called the

extra task Related in the �rst place?

The second issue is exempli�ed by the following:

Related(MainTask1; ExtraTask1; LearningAlg1)
6=

Related(MainTask1; ExtraTask1; LearningAlg2)

ExtraTask1 bene�ts MainTask1 with one of two di�erent learning algorithms. Assume

LearningAlg1 bene�ts and LearningAlg2 does not. Further assume that this is not a case

where the extra task helps by some e�ect that could be achieved without the extra task

training signals by modifying the algorithm. LearningAlg1 is able to exploit relationships

between tasks that LearningAlg2 cannot exploit. As an example, suppose we have two tasks

that are identical except that their training signals have been corrupted by independent

noise processes.

Task1 = Task + noise1

Task2 = Task + noise2

We have more information about the task to be learned given both task signals. Task1 and

Task2 are clearly related. An inductive transfer method that does not recognize nor bene�t

from this relationship is clearly imperfect. Is it reasonable to say that Task1 and Task2 are

unrelated just because LearningAlg2 is not able to bene�t from the relationship? Wouldn't

it be better to recognize the relationship between the tasks, and then devise algorithms that

could bene�t from this type of relationship?

The third issue is probably the most important. Suppose we are given two tasks. Can

we determine whether the Related relationship is true or false for these tasks before applying

CHAPTER 3. HOW DOES IT WORK? 72

learning? Can relatedness be judged by mechanisms di�erent (and hopefully easier and/or

more reliable) than those used for multitask learning?

We do not know of reliable ways to judge task relatedness using the information typically

present when tackling real-world machine learning problems. Does this mean we must resort

to trying all possible extra tasks to see which help? No. We believe heuristics can be

developed to make judging task relatedness reliable enough for most practical applications

of multitask learning in the real world.

Do such heuristics exist? Yes. In Chapter 2 we did not use hospital tests from pneumonia

patients as extra tasks for 1D-ALVINN. It is possible that the training signals from a

patient's medical history might help us learn to drive their car better, but it is unlikely.

Largely unconsciously, we dismissed a nearly in�nite number of potential training signals

because our models of driving did not suggest relationships between those extra tasks and

steering. While it is almost certainly true that we failed to recognize some extra tasks that

would have bene�ted the steering main task in 1D-ALVINN, it is also certainly true that we

successfully ignored many tasks that would not have helped steering. We did this without

formal models of backpropagation, multitask learning, and autonomous navigation. We

used heuristics.

Where possible, heuristics should be made precise. In this thesis we are interested in

two kinds of heuristics:

1. heuristics that de�ne what relationships between tasks can be exploited by some

particular learning algorithm

2. heuristics that de�ne relationships between tasks that should be exploitable by any

good multitask learning algorithm

The remainder of this chapter is devoted to heuristics of the �rst type. (The next chapter

is devoted to heuristics of the second type.) In Section 3.3 we will present seven speci�c

relationships between tasks that allow backprop to bene�t when learning those tasks par-

allel. Those relationships are the most precise de�nition we have for what \related" means

in backprop MTL. But those relationships are somewhat abstract. In the remainder of this

section we address the issue of task relatedness at a more informal level before jumping to

CHAPTER 3. HOW DOES IT WORK? 73

that level of detail.

3.2.1 Related Tasks are not Correlated Tasks

Correlation is one of the simplest ways of measuring a relationship between two variables.

Correlation measures the joint variation of two variables. Unlike regression, correlation does

not assume one of the variables is dependent on the other. Instead, correlation assumes both

variables are measured by being drawn together from a population of instances. In many

ways, though, correlation is similar to regression. In this section we use linear correlation.

We are not interested in models that are necessarily linear. However, we have found that

many real-world relationships that are more complex than linear still have reasonably strong

linear components. Thus linear correlation serves as a useful, easily computable proxy for

more precise relationships between variables such as mutual information.

One de�nition of the correlation coe�cient, �, for a sample of points X and Y is:

� =

Pn
i=1(Xi �X)(Yi � Y)qPn
i=1(Xi �X)2(Yi � Y)2

(3.1)

This formula makes it clear that correlation is a measure of the degree to which the variation

of X above and below its mean co-occurs with variation of Y above and below (or below

and above for negative correlations).

One might assume that for two tasks to be related, they would have to be correlated.

This is not true. What counts for MTL is not that the task signals themselves be correlated,

but that the internal representations that could be used for the di�erent tasks be correlated.

Related tasks are correlated, but at the level of representation, not necessarily at the output

level.

To see this, consider the following synthetic tasks:

F1(A;B) = SIGMOID(A+B)

F2(A;B) = SIGMOID(A�B)

where SIGMOID(x) = 1=(1 + e(�x))

F1(A,B) and F2(A,B) do not correlate because A+B and A�B do not correlate. The

correlation coe�cients for the training sets we create for this problem are typically less

CHAPTER 3. HOW DOES IT WORK? 74

than �0:01. Figure 3.1 shows a scatter plot of F1(A,B) vs. F2(A,B) for A and B uniformly

sampled from the interval [-5,+5].

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
-B

A+B

Figure 3.1: Scatter plot of F1(A,B) vs. F2(A,B) shows there is no correlation between
them.

Suppose A and B are presented as inputs to a backprop net by coding them �rst using

the standard powers-of-2 binary code. If we use 10 bits for A and 10 bits for B, there are

10 inputs to the net coding for A, and 10 inputs to the net coding for B. A net trying to

learn either F1(A,B) or F2(A,B) must learn to decode the inputs. Although F1(A,B) and

F2(A,B) do not correlate, the internal representations each might learn in a hidden layer

to decode the inputs strongly correlate.

We trained an STL net on just F1(A,B), and an MTL net on both F1(A,B) and F2(A,B).

The STL net has 20 inputs, 16 hidden units, and one output. The MTL net has the same

architecture, but two outputs, one for F1(A,B) and one for F2(A,B). We generate training

sets containing 50 patterns. This is enough data to get good performance with STL on

F1(A,B) or F2(A,B), but not so much that there is not room for improvement. Each trial

uses new random training, halt, and test sets. We use large halt and test sets|1000 cases

each|to minimize the e�ect of sampling error in the measured performances. The target

outputs are the unary real (unencoded) values for F1(A,B) and F2(A,B).

Table 3.1 shows the mean performance of 50 trials of STL and MTL. The MTL net

CHAPTER 3. HOW DOES IT WORK? 75

generalizes a little better. F1(A,B) and F2(A,B) are not correlated, but they are related

because both bene�t from decoding the binary input encodings for A and B. That is,

F1(A,B) and F2(A,B) have correlated hidden layer representations. All related tasks are

not correlated (but all correlated tasks are related).

Table 3.1: Mean Test Set Root-Mean-Squared-Error on F1

Network Trials Mean RMSE Signi�cance

STL 50 0.0648 -

MTL 50 0.0631 0.013*

The improvement of MTL over STL in the previous experiment is small (though statis-

tically signi�cant). Many of our experiments with synthetic functions, both in this chapter

and throughout the rest of this thesis, show modest improvements. This is because the

bene�t from any one task is usually small, particularly if that task has been designed to

take advantage of only one or two of the task relationships to be presented in Section 3.3.

Larger e�ects can be obtained by adding more extra tasks to these synthetic domains. We

use as few extra tasks as possible with synthetic problems to keep them simple, and count

on careful experiments with many trials and large test sets to show the e�ect. Using only

one extra task is a kind of worst case for MTL.

3.2.2 Related Tasks Must Share Input Features

Suppose we have two tasks, T1 and T2, that are functions of subsets of the inputs to the

backprop net, IT1 and IT2. If IT1\IT2 = ;, the tasks are not related in a way that backprop

MTL can bene�t from. If T1 uses only IT1, and T2 uses only IT2, then the functions they

compute from these disjoint sets of input features are also disjoint, and no sharing at the

hidden layer can occur. Simple MTL nets share only the weights in the input-to-hidden

layer (i.e., they share the hidden layer). They do not share the hidden-to-output layer

weights. (See [Ghosn & Bengio 1996] for experiments with MTL architectures that do

share the output weights.)

This is a limitation of the backprop MTL method discussed in this thesis. Other ap-

proaches to inductive transfer might not have this limitation. The basic problem is that

CHAPTER 3. HOW DOES IT WORK? 76

backprop nets are propositional. They cannot learn �rst-order theories. This restricts MTL

to bene�ting from tasks that are related by propositional functions of the inputs.

One way to measure task relatedness is to measure the amount of overlap in the input

features they share. Tasks that share many input features are likely to be more related

because they are more likely to share hidden units computed on those input features. We

use this measure of task relatedness later in Sections 3.4 and 3.5.

3.2.3 Related Tasks Must Share Hidden Units to Bene�t Each Other

when Trained with MTL-Backprop

It is not su�cient that tasks overlap in the input features they use. Two tasks that compute

completely di�erent functions (and subfunctions) of the same input features probably will

not bene�t each other when trained together. For MTL-backprop to bene�t from related

tasks, the tasks must share some of the representation learned at the hidden layer. Given

that there are usually many internal representations that could be learned for a task, it

is di�cult to make this notion of task relatedness operational. Backprop nets often learn

internal representations surprisingly di�erent from the representations we expect (or want)

them to learn. Tasks that look completely unrelated when we write down the mathematical

description for them often turn out to be related in the hidden layer representations actually

learned by the nets.

3.2.4 Related Tasks Won't Always Help Each Other

Just because tasks are related does not mean they will necessarily help each other. The

e�ect of learning related tasks together depends on the algorithm. Better algorithms will

bene�t more from di�erent task relationships. To see this, consider the simple case of

a modi�ed backprop algorithm that trained multiple outputs by �rst training the net to

completion on output 1, then trained the net to completion on output 2, but using only

those hidden units not already used by output 1. This is a legitimate algorithm for training

nets with multiple outputs, but it speci�cally precludes MTL. It would be wrong to decide

that tasks are unrelated just because this algorithm did not bene�t from the relationships.

The tasks are related, but the algorithm failed to take advantage of it. The goal for a

CHAPTER 3. HOW DOES IT WORK? 77

theory of task relatedness in MTL, and inductive transfer in general, is to �nd those task

relationships that di�erent algorithms can take advantage of. If we �nd task relationships

that an algorithm cannot bene�t from (or is hurt by), then the mission is to improve the

algorithm.

3.2.5 Summary

Tasks can be related in ways that backprop MTL cannot bene�t from. For backprop MTL

to work, tasks must be functions of some of the same inputs, and some of the subfunctions

computed from those inputs must be correlated with each other. In the next section we

present seven speci�c relationships between tasks that MTL-backprop is able to use to

develop a better hidden layer representation.

3.3 Task Relationships that MTL-Backprop Can Exploit

This section presents seven speci�c task relationships that can improve generalization in

backprop nets trained simultaneously on tasks with these relationships. The mechanism that

allows backpropagation to bene�t from these relationships is the summing of error gradient

terms at the hidden layer from di�erent task outputs. Each of the seven relationships

bene�ts from this error gradient summing in a somewhat di�erent way. For any of these

task relationships to bene�t learning, backprop must perform an unsupervised clustering of

what is learned at the hidden layer for di�erent tasks because it is not given explicit training

signals about how tasks are related. This critical unsupervised learning component of MTL

is examined in Section 3.5.

3.3.1 Data Ampli�cation

Data ampli�cation is an e�ective increase in sample size due to extra information in the

training signal of related tasks. There are three types of data ampli�cation.

CHAPTER 3. HOW DOES IT WORK? 78

Statistical Data Ampli�cation

Consider two tasks, T and T 0. T and T 0 are two target functions to be learned from �nite

training sets. For simplicity, we assume that there are the same number of training patterns

for T and T 0, that T and T 0 are both to be learned from the same input features, I, and that

we have the training signals for both T and T 0 for the same input vectors. In other words,

we have one training set and for each pattern in this training set we have the training signal

for both T and T 0.

Statistical ampli�cation, occurs when there is noise in the training signals. Suppose T

and T 0 have independent noise added to their training signals. Further suppose that both

T and T 0 bene�t from computing a hidden layer feature F of their common inputs.

T (I) = F (I) +G(I) + epsilon1

T 0(I) = F (I) +H(I) + epsilon2

where epsilon1 and epsilon2 are independent noise sources. A net learning both T and

T 0 can, if it recognizes that the two tasks share F , use the two training signals to learn

F better by averaging F through the di�erent noise processes. The simplest case is when

G(I) = H(I), so that T = T 0. In this case the two outputs are independently corrupted

versions of the same signal. If this is known apriori, we can train a net on one task whose

training signals are the average of the training signals for T and T 0. But this situation

rarely occurs in practice, and training on the average training signal is incorrect otherwise.

Training one MTL net with separate outputs for T and T 0 is more widely applicable.

Sampling Data Ampli�cation

Sampling ampli�cation is similar to statistical ampli�cation, but occurs when there is no

noise in the training signals. Consider two tasks, T and T 0, with no noise added to their

training signals, that both bene�t from computing a hidden layer feature F of the inputs.

T (I) = F (I) +G(I)

T 0(I) = F (I) +H(I)

Learning T or T 0 well from a small training sample may be di�cult because nonlinear

regions in the functions T or T 0 may not be sampled adequately by the small training

sample. The number of data points necessary to adequately sample a nonlinear function of

CHAPTER 3. HOW DOES IT WORK? 79

I input dimensions grows exponentially with the number of input dimensions in the worst

case. We rarely have enough training data in high dimensional spaces to fully characterize

complex functions. Because of this, there may be many di�erent models in the class of

functions being learned that have similar error on this particular �nite training set. In

other words, we have more free parameters in our model class than we can set reliably with

the small training sample.

By supposition, both T and T 0 bene�t from computing the same hidden layer feature

F from the inputs. A net learning both T and T 0 can, if it recognizes that the two tasks

share F , use the two training signals to learn F better because the two di�erent uses of F

made by T and T 0 can yield di�erent samples of F . If T and T 0 are such simple functions

of F that nets training on T or T 0 would both see high-�delity error signals at the hidden

layer for F , then the net may not bene�t from training T and T 0 if the training samples for

T and T 0 are identical. This is because F is a function of the inputs I, and there is little

bene�t to internally computing the same error signals for F on the same sets of inputs. If,

however, the training patterns for T and T 0 are di�erent samples from the input space, then

the error signals computed internally for F are not redundant. In this case, training both

T and T 0 together on one net doubles the e�ective sample size for F . This can improve the

learning of F , which may then help T and T 0 be learned better. The simplest case of this

is when T = T 0, i.e., when the two outputs are the same function and we have di�erent

training samples for T and T 0. This is a rather trivial case, however, and if we knew T and

T 0 had this relationship we would do better by pooling the independent samples.

A more interesting, and more realistic, case of sampling ampli�cation occurs when T

and T 0 both bene�t from F as before, but T and T 0 are di�erent enough, and complex

enough, functions of F that small training sets do not provide reliable error signals for F

in nets learning T or T 0. In these cases, the error signals for F provided by T and T 0 are

not redundant, even if T and T 0 are sampled by the same training set. In this case, a net

learning both T and T 0 in parallel can, if it recognizes that T and T 0 share F , learn a better

internal model of F by combining the error signals for F backpropagated by T and T 0. One

of the simplest cases of this is:

T (I) = c1 � F (I)

CHAPTER 3. HOW DOES IT WORK? 80

T 0(I) = c2 � F (I)

Here T and T 0 are both simple linear functions of a common F , but the slopes c1 and c2

in the linear relationships must be estimated from the data. Given a small training sample

(relative to the complexity of F), the estimates for c1 and c2 will be imperfect and thus will

yield di�erent error signals for F , even at the same points in the input space. A net learning

both T and T 0 in parallel can combine these estimates to yield an improved internal model

of F , which in turn will yield improved estimates of c1 and c2 and, therefore, learned models

for T and T 0.

Blocking Data Ampli�cation

The third form of data ampli�cation is really just an extreme form of sample ampli�cation.

Consider two tasks, T and T 0, that use a common feature F computable from the inputs,

but each uses F for di�erent training patterns. A simple example is:

T = A
W
F

T 0 = NOT (A)
W
F

(The parity functions from Section 1.3 are instances of this class.) T uses F when A = 0 and

provides no information about F when A = 1. Conversely, T 0 provides information about F

only when A = 1. A net learning just T gets information about F only on training patterns

for which A = 0, but is blocked when A = 1. But a net learning both T and T 0 at the same

time gets information about F on every training pattern; it is never blocked. It does not

see more training patterns, it gets more information for each pattern. If the net learning

both tasks recognizes the tasks share F , it will see a larger sample of F . Experiments with

blocked functions like T and T 0 (where F is a hard but learnable function of the inputs

such as parity) indicate backprop does learn common subfeatures better due to the larger

e�ective sample size.

3.3.2 Eavesdropping

Consider a feature F , useful to tasks, T and T 0, that is easy to learn when learning T , but

di�cult to learn when learning T 0 because T 0 uses F in a more complex way. A net learning

T will learn F , but a net learning just T 0 may not. If the net learning T 0 also learns T , T 0

CHAPTER 3. HOW DOES IT WORK? 81

can eavesdrop on the hidden layer learned for T (e.g., F) and thus learn better. Moreover,

once the connection is made between T 0 and the evolving representation for F , the extra

information from T 0 about F will help the net learn F better from the other relationships.

The simplest case of eavesdropping is when T = F . Abu-Mostafa calls these catalytic hints

[Abu-Mostafa 1990]. In this case the net is being told explicitly to learn a feature F that

is useful to the main task. Eavesdropping sometimes causes non-monotonic generalization

curves for the tasks that eavesdrop on other tasks. This happens when the eavesdropper

begins to over�t, but then �nds something useful learned by another task, and begins to

perform better as it starts using this new information.

3.3.3 Attribute Selection

Consider two tasks, T and T 0, that use a common subfeature F . Suppose there are many

inputs to the net, but F is a function of only a few of the inputs. A net learning T will, if

there is limited training data and/or signi�cant noise, have di�culty distinguishing inputs

relevant to F from those irrelevant to it. A net learning both T and T 0, however, will better

select the attributes relevant to F because data ampli�cation provides better training signals

for F and that allows it to better determine which inputs to use to compute F . (Attribute

selection depends on data ampli�cation. Data ampli�cation, however, does not depend on

there being an attribute selection problem.)

We've run experiments with synthetic problems where we arti�cially create an attribute

selection problem. MTL's attribute selection mechanism is observed by comparing the

magnitude of the weights in the input-to-hidden layer for the relevant input features with

those for the irrelevant features. The weights to the relevant features grow more quickly

when the net is trained with MTL. See Section 3.4.5.

3.3.4 Representation Bias

Because nets are initialized with random weights, backprop is a stochastic search procedure;

multiple runs rarely yield identical nets. Consider the set of all nets (for �xed architecture)

learnable by backprop for task T . Some of these generalize better than others because

they better \represent" the domain's regularities. Consider one such regularity, F , learned

CHAPTER 3. HOW DOES IT WORK? 82

di�erently by the di�erent nets. Now consider the set of all nets learnable by backprop

for another task T 0 that also learns regularity F . If T and T 0 are both trained on one net

and the net recognizes the tasks share F , search will be biased towards representations of

F near the intersection of what would be learned for T or T 0 alone. We conjecture that

representations of F near this intersection often better capture the true regularity of F

because they satisfy more than one task from the domain.

T T’

 Representations Findable by Backprop

Best Reps

A form of representation bias that is easier to experiment with occurs when the repre-

sentations for F sampled by the two tasks represent di�erent local minima in representation

space. Suppose there are two minima, A and B, a net can �nd for task T . This means

that a net learning T can �nd two distinct hidden layer representations for T , and that

all paths in weight space joining these two distinct representations yield higher training-set

error than either of the local minima. The local minima located at A and B are surrounded

by basins of attraction where the error gradient leads to only one of the minima. For sim-

plicity, assume that A and B are the only two minima for task T , and that the basins of

attraction for A and B are similar in size.

Suppose a net learning task T 0 also has only two local minima, A and C, both of which

also have attractor basins of similar size. Note that both T and T 0 share the local minimum

at A, but B and C are dissimilar, i.e., are located in di�erent regions of weight space.

Suppose A, B, and C are roughly equidistant from each other and from the origin. (This

is likely in a high dimensional weight space.) Backprop nets are initialized near the origin

in weight space. The backpropagated error signals for a net trained on both T and T 0 in

parallel tend to constructively interfere in the direction towards A, but not in directions

towards B or C. In fact, because of our assumption that B and C are equidistant from the

origin and each other, gradients towards B partially cancel gradients towards C on average,

and vice-versa. (This destructive interference is only partial.) Because of this, the combined

gradient for the hidden layer towards A will likely be stronger than the combined gradient

CHAPTER 3. HOW DOES IT WORK? 83

for B or C, so the net is more likely to fall into the representation for A.

Because A is a local minimum for both T and T 0, there is little pressure for either the

output for T or T 0 to pull away from the A representation once one of the two tasks falls into

A's attractor basin. If T moves towards B, however, this does not reduce error on T 0. (By

supposition T 0 has local minima only at A and C, and B is not near A, and thus not in the

direction of A.) Task T 0 must either learn zero-valued weights to the representation forming

in the hidden layer for A, or counter the \tide" towards B. If T is already too deep in the

attractor basin for B to be signi�cantly a�ected by T 0, the hidden layer representations for

F learned by T and T 0 will become disjoint. But this situation is unlikely to arise given the

bias early in search towards A, the representation they share.

We ran two experiments to test this. In the �rst, we selected the minima so that nets

trained on T alone are equally likely to �nd A or B, and nets trained on T 0 alone are equally

likely to �nd A or C. Nets trained on both T and T 0 usually fall into A for both tasks.2

Backprop nets with two or more outputs tend to use hidden layer representations that can

be used by two or more tasks.

In the second experiment we selected the minima so that T has a strong preference for

B over A: a net trained on T always falls into B. T 0, however, still has no preference

between A or C. When both T and T 0 are trained on one net, T falls into B as expected:

the bias from T 0 is unable to pull it to A. Surprisingly, T 0 usually falls into C, the minimum

it does not share with T ! T creates a \tide" in the hidden layer representation towards B

that ows away from A. T 0 has no preference for A or C, but is subject to the tide created

by T . Thus T 0 usually falls into C; it would have to �ght the tide from T to fall into A.

Backprop nets with two or more outputs tend to not use hidden layer representations for

any one output that other outputs tend to avoid.

2In these experiments the nets have su�cient capacity to �nd independent minima for the tasks. They

are not forced to share the hidden layer representations. But because the initial weights are random, they

do initially share the hidden layer and will separate the tasks (i.e., use independent chunks of the hidden

layer for each task) only if learning causes them to.

CHAPTER 3. HOW DOES IT WORK? 84

3.3.5 Over�tting Prevention

Suppose tasks T and T 0 both use feature F . Suppose T has trained to the point where it

would begin to over�t F if T were trained in isolation. Two situations can help prevent T

from over�t F , and this in turn will tend to prevent T from over�tting.

Suppose T 0 has not yet reached the point where it will over�t F . Then T 0 provides

a gradient that continues to drive F towards better models instead of towards over�tted

models. If the net recognizes that both T and T 0 overlap on F , and this leads to sharing

the hidden layer representation for F , T 0 will provide a pressure that tends to keep F from

over�tting.

The second situation is similar. Suppose T and T 0 both depend on F in di�erent ways.

Perhaps both T and T 0 are ready to begin over�tting F . However, because they use F

di�erently, changes in F will a�ect T and T 0 in di�erent ways. Since they share F , any

direction that reduces error on T by changing F , but which raises error on T 0 as a result of

that change, will be disfavored. The only changes in F that will be allowed are those that

lower error on both T and T 0. We conjecture that there are fewer changes available that

lower error on both T and T 0 and which are over�tting F , so over�tting of F should be less

likely. Tasks should be less likely to over�t if they share more features with other tasks.

3.3.6 How Backprop Bene�ts from these Relationships

The \tide" mentioned while discussing representation bias results from the aggregation of

error gradients from multiple tasks at the hidden layer. Because nets are randomly initial-

ized, most movement in the hidden layer caused by one output is \felt" by all tasks. This

random initialization is critical to MTL-backprop. It allows error gradients to constructively

and destructively interfere in the shared hidden layer, and this biases the search trajectory

towards better performing regions of weight space. Because the di�erent relationships be-

tween tasks are all exploited by this same mechanism, it easy for the relationships to act in

concert. Their combined e�ect can be substantial.

Each relationship between tasks has di�erent e�ects on what is learned. Changes in

architecture, representation, and the learning procedure a�ect may alter the way backprop

bene�ts from tasks with di�erent relationships in di�erent ways. One particularly notewor-

CHAPTER 3. HOW DOES IT WORK? 85

thy di�erence between the relationships is that if there are local minima, representation

bias a�ects learning even with in�nite sample size. The other relationships are e�ective

only with �nite sample size: data ampli�cation (and thus attribute selection), eavesdrop-

ping, and over�tting prevention are bene�cial only when the sample size is too small for the

training signal for one task to provide enough information to the net for it to learn good

models.

3.4 The Peaks Functions

Section 3.3 presented seven task relationships that MTL-backprop can bene�t from. It

would help if we had a set of tasks where there are many di�erent relationships between

the tasks and where the relationships between the tasks is known apriori. We created the

Peaks Functions to serve this purpose.

3.4.1 The Peaks Functions

We devised a set of test problems called the Peaks Functions. Each peak function is of the

form:

IF (?1 > 1/2), THEN ?2, ELSE ?3

where ?1, ?2, and ?3 are instantiated from the alphabet fA,B,C,D,E,Fg without duplication.

There are 120 such functions:

P001 = IF (A > 1/2) THEN B, ELSE C

P002 = IF (A > 1/2) THEN B, ELSE D

...

P014 = IF (A > 1/2) THEN E, ELSE C

...

P024 = IF (B > 1/2) THEN A, ELSE F

...

P120 = IF (F > 1/2) THEN E, ELSE D

CHAPTER 3. HOW DOES IT WORK? 86

The variables A{F are de�ned on the real interval [0,1]. A{F are provided as inputs to

a backprop net learning peaks functions. The values for A{F are given to the net via an

encoding, rather than as simple continuous inputs. A net learning peaks functions must

not only learn the functions, but must learn to properly decode the input encodings. The

encoding we used has ten inputs for each of the six inputs A{F, so there are 60 inputs

altogether. Figure 3.2 shows the input representation used for peaks functions. Each

variable has 10 inputs. We use a Gaussian peak with standard deviation 0.1 and height 0.5

centered at the real value for that variable to code for the value.

0

0.25

0.5

0.75

1

0 10 20 30 40 50 60

C
od

ed
 In

pu
t V

al
ue

s

Input Bit Position

A = 0.66 B = 0.00 C = 0.84 D = 0.88 E = 0.28 F = 0.60

"A"
"B"
"C"
"D"
"E"
"F"

Figure 3.2: Input Representation Used for the Peaks Functions

We generate synthetic data for the Peaks Problems by uniformly sampling values for

the variables A{F from the interval [0,1]. The numbers are then coded using the input

encoding in Figure 3.2. This gives us the 60 real-valued inputs for the net that code for

the 6 input variables. For each set of values, we compute all 120 function values for the

functions P001{P120. Since this is a synthetic domain de�ned on reals, we can generate as

much data as we want. We use relatively small training sets to keep learning interesting;

these problems can be learned perfectly by backprop given large enough training samples.

CHAPTER 3. HOW DOES IT WORK? 87

The relatedness of two peaks functions depends on how many variables they have in

common, and whether they use those variables in the same way. For example, P001 does

not share any variables with P120, so it is not related to P120. P001 shares two variables

with P024, though neither of these is used in the same way; P001 is moderately related to

P024. P001 also shares two variables with P014, and both variables are used the same way.

Thus P001 is more related to P014 than to P024.

We have run enough experiments on the peaks functions to �ll a book. Out of con-

sideration for the reader, we present here only the results of some of the more interesting

experiments.

3.4.2 Experiment 1

The �rst experiment demonstrates that MTL is e�ective with the peaks functions. We

trained six strongly related peaks functions on an MTL net, and compared the performance

with an STL net trained on one of these at a time. We used the six peaks functions that

are all de�ned on the variables A, B, and C. These are:

P001 = IF (A > 1/2) THEN B, ELSE C

P005 = IF (A > 1/2) THEN C, ELSE B

P021 = IF (B > 1/2) THEN A, ELSE C

P025 = IF (B > 1/2) THEN C, ELSE A

P041 = IF (C > 1/2) THEN A, ELSE B

P045 = IF (C > 1/2) THEN B, ELSE C

These are strongly related functions as they are all de�ned on the same subfeatures.

The nets have 60 inputs, 10 inputs for the codings for each of the six variables A{F.

Figure 3.3 shows two graphs. The left graph is the test-set training curves for Task

P001. The right graph is for Task P005. Each graph shows the performance of STL on

the task, MTL with 5 additional copies of the same task (i.e., the six outputs of the net

all receive the same training signals), and MTL when that task is trained with the other

5 strongly related peaks tasks listed above. The training sets contain 25 training patterns

(the peaks functions have been carefully tweaked by adjusting the input representations and

CHAPTER 3. HOW DOES IT WORK? 88

0

0.05

0.1

0.15

0.2

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

"STL: P001 alone"
"MTL: 6 copies of P001"

"MTL: P001 + 5 related tasks"

0

0.05

0.1

0.15

0.2

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

"STL: P005 alone"
"MTL: 6 copies of P005"

"MTL: P005 + 5 related tasks"

Figure 3.3: Generalization performance of STL, MTL with six copies of the same task, and
MTL with six strongly related tasks on P001 (left) and P005 (right). The vertical axis is
the RMS error on the test set. Lower error indicates better performance. The horizontal
axis is the number of backprop passes. In each graph the best performing curve is for MTL
with six strongly related tasks. In the left graph MTL with six copies of P001 performs
better than STL of P001, but in the right graph STL of P005 performs slightly better than
six copies of P005.

the complexity of the boolean function that combines the input terms so that reasonable

performance can be obtained with training sets as small as 25{100 cases, making it practical

to run many experiments.) The test sets contain 350 cases. Note, these graphs are not the

average of multiple runs. These are the results from single trials. We've examined the

training curves for additional runs to insure that this behavior is typical.

The vertical axis is root-mean-squared error on the test set. Zero error would be perfect

generalization. It is clear from the graphs that STL performs poorest. Training a net with

six copies of the task improves performance. But training an MTL net on six strongly

related peaks tasks yields the best performance. MTL works on the peaks tasks when the

tasks are related.

CHAPTER 3. HOW DOES IT WORK? 89

3.4.3 Experiment 2

In Section 3.4.2 we trained six strongly related peaks functions on an MTL net and observed

better generalization. What happens if we train �ve strongly related peaks functions, and

one completely unrelated peak function, on an MTL net with six outputs? The �ve related

tasks should bene�t each other, but the unrelated sixth task should see no bene�t from the

other �ve tasks.

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

"P120"
"P001"
"P005"
"P021"
"P025"
"P041"

Figure 3.4: Generalization performance of �ve strongly related functions compared with
the performance of one completely unrelated function when trained on one MTL net.

Figure 3.4 shows the test-set training curves for six tasks trained on an MTL net. Five

of the tasks are P001, P005, P021, P025, and P041 from above. They are strongly related.

The sixth task is P120. It does not share any features with the other �ve. Once again,

lower error indicates better generalization. It is clear from the graph that the �ve related

tasks bene�t from each other. But the task that has no related tasks does not bene�t. In

fact, performance on task P120 is somewhat worse than it would be if it were trained alone

on an STL net. Training it with the other tasks hurts it.

The results from this experiment provide the strongest evidence we have that some of

CHAPTER 3. HOW DOES IT WORK? 90

the bene�ts of MTL depend on tasks being related. What makes this evidence so strong

is the fact that the output distributions for all peaks functions are identical. The training

signals for each peak function is the value of one of the variables A{F. Variables A{F are

all drawn uniformly from the interval [0,1]. They all have the same distribution. Thus

changing which peaks functions are trained on a net has no e�ect on the distribution of the

outputs. Moreover, unlike with the shu�e test, any peaks function is as learnable from the

inputs as any other peaks function. Shu�ing maintains the output distributions, but makes

the shu�ed functions harder to learn because it also destroys the relationship between the

inputs and the task signals for the shu�ed function.

This experiment convincingly demonstrates that some of the bene�t we see with MTL

is due to relationships between the tasks trained on the MTL net.

3.4.4 Experiment 3

This experiment compares the generalization performance of STL and MTL on the six

strongly related peaks functions as a function of the number of training patterns in the

training set. This experiment was run by Joseph O'Sullivan. He is using the peaks functions

to explore combining MTL with Explanation-Based Neural Nets (EBNN), a serial inductive

transfer method developed by Mitchell and Thrun. (See Section 8.3 for more information

about EBNN and the results of an experiment run by O'Sullivan to compare MTL and

EBNN on a robotics task.)

Figure 3.5 shows the test-set performance of STL and MTL on Task P001. The measure

used is the average percent accuracy of the prediction for the task. The error bars are 95%

con�dence intervals. When the number of training patterns is low, both methods perform

comparably. As the number of training patterns increases, MTL begins to outperform STL.

In the region between 50 and 100 training patterns, MTL performs as well as STL with

30{100% more data. STL performs so well with 120 or more cases in the training set that

there is less room for MTL to do better.

CHAPTER 3. HOW DOES IT WORK? 91

3

4

5

6

7

8

9

10

11

12

13

0 20 40 60 80 100 120 140

P
er

ce
nt

 E
rr

or
 o

n
T

es
t S

et

Size of Training Set

Single Task Learning

Multitask Learning

Figure 3.5: Generalization performance of STL and MTL on P001 as a function of the
number of training patterns.

3.4.5 Feature Selection in Peaks Functions

One use of the peaks functions is to demonstrate that MTL-backprop can bene�t from

the relationships between tasks described earlier in Section 3.3. In this section we demon-

strate the feature selection mechanism described in Section 3.3.3. Feature selection allows

backprop to better di�erentiate between relevant and irrelevant inputs for the tasks being

learned. We trained STL and MTL nets on the strongly related tasks used in Experiment

1. The STL net is only trained on one task at a time. All of these tasks are functions of

only the inputs that code for A, B, and C. The inputs coding for D, E, and F are still given

to the nets, but they are irrelevant for these tasks.

During training, we measured the sensitivity of what was learned to the di�erent sets

of inputs. We did this by computing the average derivative of the output for P001 to

each input on the input vectors in a large test set. There are 60 inputs, so we computed

sixty derivatives for each point in the test set. The average of each derivative tells us how

sensitive the output is to changes in that input. We then averaged the absolute value of

CHAPTER 3. HOW DOES IT WORK? 92

the sensitivities for inputs A{C, and for inputs D{F. This gives us the average sensitivity

of what is learned to the relevant (A{C) and irrelevant (D{F) inputs.

Figure 3.6 plots the average sensitivities to the two di�erent groups of inputs for STL

(left) and MTL (right). Sensitivity to all inputs increases with the number of backprop

passes. This is expected. Backprop does a poor job of keeping weights low for irrelevant

inputs. (This is one of the reasons why over�tting is such a problem with backprop.) In both

graphs, sensitivity to the relevant inputs (those for A,B,C) increases faster than sensitivity

to the irrelevant inputs (those for D,E,F). But the relative sensitivity to the relevant vs.

irrelevant inputs grows faster in the MTL net than in the STL net. The MTL net does a

better job of determining what inputs are relevant for P001.

0

0.5

1

1.5

2

2.5

3

1e+06 2e+06 3e+06 4e+06

A
v
e

ra
g

e
 S

e
n

s
it
iv

it
y
 t

o
 I

n
p

u
ts

Backprop Passes

"STL: Inputs for D,E,F"
"STL: Inputs for A,B,C"

0

0.5

1

1.5

2

2.5

3

1e+06 2e+06 3e+06 4e+06

A
v
e

ra
g

e
 S

e
n

s
it
iv

it
y
 t

o
 I

n
p

u
ts

Backprop Passes

"MTL: Inputs for D,E,F"
"MTL: Inputs for A,B,C"

Figure 3.6: Sensitivity of STL (left) and MTL (right) to the inputs coding for A, B, and
C, and the inputs coding for D, E, and F. Only A, B, and C are relevant inputs for the
functions being trained.

The graphs also demonstrate that MTL helps prevent over�tting. The sensitivity to the

inputs levels o� and is nearly at beyond about 1,000,000 passes for MTL. The STL net,

however, which is poorer at distinguishing the two sets of inputs, is still rapidly increasing

its sensitivity to the inputs after 3,000,000 passes. The STL net is over�tting more than

the MTL net.

CHAPTER 3. HOW DOES IT WORK? 93

3.5 Backprop MTL Discovers How Tasks Are Related

Section 3.3 presented seven relationships between tasks that MTL backprop nets can exploit

to learn those tasks better. In that section we frequently used the phrase \a net learning

both T and T 0 can, if it recognizes that the two tasks share F , use the two training signals

to learn F better by. . . ." MTL nets are not told how tasks are related. They are not

told which tasks share F , or even what the many F for the di�erent tasks are. Do MTL

backprop nets discover how tasks are related? Clearly they must. We have shown on

synthetic problems that the bene�t of MTL-backprop depends on the tasks being related.

If tasks are not related, or if the relationship between tasks is broken by shu�ing training

signals, the bene�t of MTL-backprop disappears. If the bene�t of MTL-backprop depends

on exploiting task relationships, MTL backprop nets must discover some of the relationships

between tasks themselves. They are not told how tasks are related.

Backprop nets, though primarily used for supervised learning, perform a limited kind

of unsupervised learning on the hidden layer features learned for di�erent tasks (di�erent

outputs). The details of how this unsupervised learning occurs and how well it works are

not yet fully understood. It is worthwhile, however, to demonstrate here that backprop

does discover task relatedness.

We trained one MTL net on all 120 peaks functions. This net has 60 inputs and 120

outputs, one for each of the 120 peaks functions. We examined the weights to see how much

di�erent outputs shared the hidden layer. We did a sensitivity analysis for each output with

each hidden unit at the input points contained in a representative test set. There are 120

outputs and 64 hidden units, so we did 15,360 sensitivity analyses. By comparing the

sensitivity of output P001 to each hidden unit with that of output P002 to each hidden

unit, we are able to measure how much outputs P001 and P002 share the hidden units in

the hidden layer.

We compare the sensitivity of di�erent outputs to the 64 hidden units by �rst ranking

the hidden units for each output sensitivity. Hidden units that are more important to

the output are ranked higher. We compare how much di�erent outputs share the hidden

layer by computing the rank correlation on the rankings obtained for di�erent hidden units.

Rank-correlation is a nonparametric measure similar to correlation. One way to compute

CHAPTER 3. HOW DOES IT WORK? 94

the rank correlation is to compute the ranks for the measurements X and Y independently

and then compute the usual continuous correlation coe�cient of these ranks. A simpler

method is to use the formula:

RankCorrelation = 1�
6(
PN

i=1(R(Xi)�R(Yi)))

N(N2 � 1)
(3.2)

where R(Xi) is the rank assigned to the X value and R(Yi) is the rank assigned to the

Y value. We used the non-parametric rank correlation because we were uncertain of the

distributions of sensitivities. Rank correlations behave similarly to regular correlations. A

value of 1 indicates the two rankings agree perfectly, a value of -1 indicates the two rankings

disagree perfectly, and a value of 0 indicates the two rankings are not related.

There are 120 output tasks on the net. For each pair of tasks we compute the degree

of sharing using the rank correlation procedure described above. If the rank correlation is

0.0, then the two tasks do not agree (or disagree) about which hidden units are important

and not important. The expected value of the rank correlation is 0.0 for random tasks if

the hidden layer contains two or more hidden units. If the rank correlation is signi�cantly

greater than 0.0, this indicates the two tasks are sensitive to the same hidden units. The

hidden units important to one task are important to the other. In other words, the two

tasks share parts of the hidden layer. If the rank correlation is below 0.0, this indicates the

hidden units that are important to one task are not important to the other, and vice-versa.

This anti-correlation means the tasks use di�erent parts of the hidden layer. There is less

overlap than would be expected by chance.

There are 120 tasks, so there are 7140 pairs of tasks. We computed the degree of sharing

for all 7140 pairs of tasks. Rather than try to show the raw correlations between pairs of

tasks, we summarize the results by computing the average rank correlation for tasks that

are related in di�erent ways. For example, there are 360 pairs of tasks that do not have any

features in common. One such pair is:

P001 = IF (A > 1/2) THEN B, ELSE C

P120 = IF (F > 1/2) THEN E, ELSE D

There are 3240 pairs of tasks that have exactly one feature in common. One such pair is:

CHAPTER 3. HOW DOES IT WORK? 95

P001 = IF (A > 1/2) THEN B, ELSE C

P063 = IF (D > 1/2) THEN A, ELSE E

Similarly, there are 3240 pairs of tasks that have two features in common. One such pair is:

P001 = IF (A > 1/2) THEN B, ELSE C

P002 = IF (A > 1/2) THEN B, ELSE D

Finally, there are 300 pairs of tasks that have all three features in common. One such pair

is:

P001 = IF (A > 1/2) THEN B, ELSE C

P021 = IF (B > 1/2) THEN A, ELSE C

We compute the average degree of sharing for groups of tasks such as these. The

expectation is that groups that contain more related tasks will have higher average degree

of sharing than groups containing less related tasks.

Figure 3.7 shows the average degree of sharing between tasks as a function of how related

they are using the groups de�ned above. In this graph, the data point at \0 features in

common" compares how much tasks having no features in common share the hidden layer.

The data points at \3 features in common" show the degree of hidden unit sharing between

tasks that use exactly the same three features (though these features are not necessarily

in the same places in the tasks). The line labelled \any feature" disregards the position of

the features in the tasks. Tasks that have one feature in common might or might not use

that common feature the same way. The line labelled \test must match", however, requires

that the feature in the conditional test be the same. Thus if two tasks have one feature in

common, this feature must be the feature used in the conditional.

The general trend of both lines is that tasks share hidden units more if they are more

related. The small negative correlation for tasks that do not share any variables suggests

that a complete lack of relatedness between functions leads to anti-correlated sharing, i.e.,

outputs for unrelated functions tend to use di�erent hidden units. Because tasks are most

sensitive to only a few hidden units, and tend to be somewhat randomly sensitive to the

CHAPTER 3. HOW DOES IT WORK? 96

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3

R
an

k
C

or
re

la
tio

n
of

 th
e

64
 H

id
de

n
U

ni
ts

Number of Features in Common

"any_feature"
"test_must_match"

Figure 3.7: Sharing in the hidden layer as a function of the similarity between tasks. Tasks
that are more related share more hidden units.

remaining hidden units, we do not expect to see strong negative rank correlations for un-

related tasks if the hidden layer is large. The negative correlation observed at 0, though

small, is statistically signi�cantly di�erent from 0.0. (We don't show con�dence intervals

on the graph because most are too small to see.) Unless the net capacity is tightly con-

strained (something which usually hurts performance on all tasks), unrelated tasks tend

to act more like randomly related tasks (correlations near zero) than anti-correlated tasks

(negative correlations).

The correlations for the \test must match" line is higher than the correlations for

the \any feature" line. The only thing that makes these two lines di�erent is that the

\test must match" line contains only pairs of tasks that share the feature used in the con-

ditional. This suggests that overlap in the conditional IF test is more important for hidden

layer sharing than overlap in the THEN or ELSE part of the tasks.

The degree of sharing for the \test must match" line when the task relatedness score

equals one tells us something interesting. In Section 3.2.1 we used two synthetic test func-

tions to show that tasks that are uncorrelated can still be related in ways that backprop

CHAPTER 3. HOW DOES IT WORK? 97

MTL can bene�t from. If only one feature in the pair of functions matches, and the test

must match, then the only feature in common is the test. This data point represents pairs

of functions like:

P001 = IF (A > 1/2) THEN B, ELSE C

P011 = IF (A > 1/2) THEN D, ELSE E

As was mentioned in Section 3.4.4, the distributions for all variables are the same. That

means the distributions for \THEN B ELSE C" and \THEN D ELSE E" are the same. But

B and C, and D and E are sampled randomly, so there is no correlation between them, and

thus there is no correlation between \THEN B ELSE C" and \THEN D ELSE E". This

means there is no correlation between task P001 and P011, nor between any other pair

of tasks in this group. Yet, the tasks in this group are related because they all share the

variable used in the conditional test. Not only will training these kinds of tasks together

improve their performance, but Figure 3.7 shows that the degree of sharing between the

tasks is substantial. Section 3.2.1 showed task correlation is not necessary for MTL bene�t.

Figure 3.7 shows that the degree of sharing between two tasks can be high despite them

being uncorrelated.

Figure 3.8 shows the average degree of sharing for di�erent groupings of the tasks than

in Figure 3.7. There are two di�erences in this �gure. First, there are seven groups in

Figure 3.8 instead of the four groups in Figure 3.7. Tasks are placed in the �rst six groups,

groups 0{5, by the following procedure: Initialize the group similarity score to 0. Add 1 for

each feature common to both tasks, but in di�erent places. Add 2 for each feature in the

THEN or ELSE clause of the two tasks that is the same feature in the same place. Add 3 if

the feature in the conditional IF part of the task is the same (because Figure 3.7 suggests

sharing the conditional feature is more important than sharing either the THEN or ELSE

features.). The maximum score a pair can achieve is 5. This requires the feature in the

conditional IF test match, and one of the other features be the same feature in the same

place.

If two tasks were identical, the maximum score they could achieve would be 7 (3 points

for overlapping on the conditional, and 2 points each for overlapping on the THEN and

CHAPTER 3. HOW DOES IT WORK? 98

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

R
an

k
C

or
re

la
tio

n
of

 th
e

64
 H

id
de

n
U

ni
ts

Score for Number of Features in Common

Figure 3.8: Sharing in the hidden layer as a function of the similarity score between tasks.
See the text for how the score is computed. A score of 7 is for pairs of identical tasks trained
on the same net.

ELSE features). Group 7 is the other di�erence between Figures 3.7 and 3.8. We trained

an MTL net on 240 peaks tasks instead of 120 tasks as before by training two copies of each

task on the net. Thus there are two outputs trained on task P001, two for P002, etc. The

MTL net does not know which output tasks are copies of each other. In Figure 3.8, groups

that have a score of 7 are the 120 pairs of identical tasks trained on di�erent outputs.

There are other relationships between peaks functions we could examine. For exam-

ple, we have looked at the degree of sharing for tasks that do not share the conditional

IF feature, for tasks that have both the THEN and ELSE features in the same place,

For every relationship between peaks functions we examined, degree of sharing was posi-

tively correlated with hidden unit sharing. This suggests that, for the peaks functions at

least, backpropagation using a shared hidden layer is able to discover how tasks are related

on hidden layer features without being given explicit training signals about task related-

ness. Backprop MTL discovers the relationships between tasks via the constructive and

destructive interference of the error gradients summed at the shared hidden layer.

CHAPTER 3. HOW DOES IT WORK? 99

One �nal note before leaving the peaks functions: In these experiments we restricted

peaks functions to functions using each feature only once. We did not allow functions like:

P121 = IF (A > 1/2) THEN A, ELSE A

It would be interesting to run experiments that use all 216 possible peaks functions. Part of

what makes this interesting is that functions like P121 above directly map coded inputs to

their unencoded output values. This kind of function could serve as a strong hint to the net

because it would help the net learn to decode the inputs without the complexity of having

to learn a boolean function that combines three variables at the same time.3

3.6 Related Revisited

This thesis does not purport to propose a general theory or general mechanisms for all

inductive transfer. The scope of this thesis is the inductive transfer performed by training

related tasks in parallel while using a shared representation. In backprop nets, this shared

representation is a hidden layer shared by the outputs. With other learning procedures,

something else will be shared. With k-nearest neighbor, the distance function will be shared.

With decision trees, the splits will be shared. For each of these MTL algorithms, we can

devise a de�nition for relatedness. For multitask learning in backprop nets such a de�nition

is:

Two tasks are related for backprop MTL if there is correlation (positive or negative)

between the training signal for one task (or more correctly the backpropagated errors for

that task's training signals) and what is learned in the hidden layer for the other task when

they are trained together.

It is important to note that the fact that there is this correlation during learning does

not necessarily mean MTL will bene�t from it. If the algorithm is not good enough, some

kinds of correlation may hurt performance instead of helping it. In theory, one would al-

ways expect such a correlation between a task and hidden layer representation to improve

3Note that the net would not necessarily learn a complete representation for tasks like P121 coding for

an input at the hidden layer because the output for P121 also can use the weights from the hidden layer to

the output (which are not shared with other tasks) to learn a model for P121.

CHAPTER 3. HOW DOES IT WORK? 100

performance; correlation suggests the extra signal provides additional information. But

theory and practice do not always agree. Because we deal with imperfect learning proce-

dures, there are going to be correlations between what is learned that, in theory, should

help learning, but which in practice will hurt learning. Part of the problem is that we often

deal with small data sets, and we have little or no apriori information about the nature of

the relationships between tasks. This means the correlations must be discovered from the

small data set, a process fraught with uncertainty and error.

3.7 Chapter Summary

Section 3.1 reviewed work showing that MTL helps learning because tasks are related.

Section 3.2 discussed some basic properties of related tasks. For backprop MTL to bene�t

from related tasks, the tasks must be related by having overlapping sets of relevant input

features and must be able to share hidden units. Tasks which are functions of di�erent

inputs cannot help each other via backprop MTL. Surprisingly, we were able to show that

related tasks need not be correlated. Section 3.3 presented seven relationships between

tasks that a backprop net trained on multiple tasks can exploit to learn the tasks better.

These relationships are: statistical data ampli�cation, sampling data ampli�cation, blocking

data ampli�cation, attribute selection, eavesdropping, representation bias, and over�tting

prevention. All the relationships can improve learning because of the constructive and

destructive interference of the error gradients summed at the shared hidden layer. Because

of this, it is easy for the mechanisms to act in concert.

Section 3.4 introduced the Peaks Functions, a set of 120 problems designed to serve

as a test-bed for inductive transfer algorithms. One of the experiments with the peaks

functions provides very solid evidence that some of the bene�t of backprop MTL is due to

the relationships between tasks. In Section 3.5 we \opened up" an MTL net trained on

120 peaks functions and showed that tasks that are more related share more in the hidden

layer. Part of what makes this result so interesting is that backprop MTL is not given

explicit training signals about how tasks are related. It discovers task relationships itself

using a form of unsupervised learning that clusters tasks by the similarity of the hidden

CHAPTER 3. HOW DOES IT WORK? 101

layer representation learned for them. This is a heretofore unrecognized and unstudied

capability of backpropagation (that we plan to investigate further). Finally, Section 3.6

proposed a heuristic de�nition of relatedness. Two tasks are related (for inductive transfer)

if there is correlation between what is learned for one task and the loss function applied to

the training signals of the other task. The next chapter presents more than a dozen cases

where real-world tasks are likely to satisfy this heuristic.

\Half the trick of �nding clues is knowing that they're there."

{ Sherlock Holmes

Chapter 4

When To Use It

Chapter 3 presented a number of mechanisms that allow backprop to bene�t from di�er-

ent kinds of relationships between tasks and attempted to de�ne relatedness. In practice,

however, it is more important to be able to �nd useful related tasks than it is to be able to

de�ne precisely what a related task is. This chapter is designed to help us recognize related

tasks in real-world problems.

4.1 Introduction

How often will training data for useful extra tasks be available? This chapter shows that

many real world problems present opportunities for multitask learning. This is important|

it doesn't matter how well multitask learning works if it won't be applicable to many prob-

lems in the real world. This chapter presents more than a dozen prototypical applications

of multitask transfer where the training signals for related tasks are often available and can

be leveraged. Each prototypical application is described and one or two concrete examples

are described. In a few cases, empirical data for sample problems is also presented.

We believe most real-world problems fall into one or more of these domain types. This

claim might sound surprising given that few of the test problems traditionally used in ma-

chine learning are multitask problems. We believe most of the problems traditionally used

in machine learning have been so heavily preprocessed to �t STL that most opportunities

for MTL were eliminated before learning was attempted.

104

CHAPTER 4. WHEN TO USE IT 105

This is one of the simplest chapters in this thesis. It is also one of the most important.

This chapter shows that there are many opportunities for using MTL on real-world problems

because potentially useful extra tasks are available in many di�erent kinds of domains.

4.2 Using the Future to Predict the Present

Often valuable features become available after the predictions must be made. These features

cannot be used as inputs because they will not be available at run time. If learning is done

o�ine, however, they can be collected for the training set and used as extra MTL tasks.

The predictions the learner makes for these extra tasks are ignored when the system is used.

Their sole function is to provide extra information to the learner during training.

One application of learning from the future is medical risk evaluation. Consider the

pneumonia risk problem used in Section 2.3. Each patient has been diagnosed with pneu-

monia and hospitalized. 65 measurements are available for most patients. These include

30 basic measurements acquired prior to hospitalization such as age, sex, and pulse, and 35

lab tests, such as blood counts and blood gases, made in the hospital. Some of the most

useful tests for assessing risk are these lab tests that become available only after the patient

is hospitalized.

Table 4.1 shows the improvement in performance that is obtained on this domain by

using the future lab measurements as extra outputs as shown in Figure 4.1. (This is the

same as Table 2.3 and the same �gure as Figure 2.3.)

Table 4.1: STL and MTL Errors on Pneumonia Risk

FOP 0.1 0.2 0.3 0.4 0.5

STL .0083 .0144 .0210 .0289 .0386

MTL .0074 .0127 .0197 .0269 .0364

% Change -10.8% -11.8% -6.2% -6.9% -5.7%

Future measurements are available in many o�ine learning problems because they can

be added to the training set after the fact. As a very di�erent example, a robot or au-

tonomous vehicle can more accurately measure the size, location, and identity of objects

later as it passes near them. For example, road stripes or the edge of the road can be de-

CHAPTER 4. WHEN TO USE IT 106

A
ge Se
x

C
he

st
 P

ai
n

A
st

hm
at

ic

D
ia

be
tic

H
ea

rt
 M

um
ur

W
he

ez
in

g

St
ri

do
r

Mortality
 Rank Hematocrit White Blood

 Cell Count
Potassium

. . .

. . .

INPUTS

INPUT LAYER

OUTPUT LAYER

SHARED HIDDEN LAYER

RANKPROP

OUTPUT

FUTURE LABS

. . .

Figure 4.1: Using Future Lab Results as Extra Outputs To Bias Learning

tected reliably as a vehicle passes alongside them, but detecting them far ahead of a vehicle

is hard. Since driving brings future road closer to the car, stripes and road borders can be

measured accurately when passed and added to the training set. They can't be used as in-

puts because they will not be available in time while driving. As we have already seen with

1D-ALVINN, extra tasks of this kind can be used as extra MTL outputs to provide extra

information to help learning without requiring they be available at run time. Using future

measurements as extra output tasks will probably be one of the most frequent sources of

extra tasks in real problems.

4.3 Multiple Metrics

Sometimes it is hard to capture everything that is important in one error metric or one

output representation. When alternate metrics or representations capture di�erent, but

useful, aspects of a problem, MTL can be used to bene�t from them.

An example of using MTL with di�erent metrics is the pneumonia domain from Sec-

tion 2.3. There we used an error metric called rankprop (see Appendix B) designed specif-

ically for tasks where it is important to learn to order instances correctly. Rankprop out-

performs backprop using traditional SSE by 20-40% on this problem. Rankprop, however,

can have trouble learning to rank cases at such low risk that virtually all patients survive.

Rankprop outperforms SSE on these low risk patients, but this is where it has the most

di�culty learning a stable rank.

CHAPTER 4. WHEN TO USE IT 107

Interestingly, SSE is at its best when cases have high purity, as in regions of feature

space where most cases have low risk (e.g., FOPs 0.1 or 0.2). SSE has the most di�culty

in regions where similar cases have di�erent outcomes. SSE is at its best where rankprop is

weakest. Suppose we add an additional SSE output to a network learning to predict risk

using rankprop?

Table 4.2: Adding an Extra SSE Task to Rankprop

FOP 0.1 0.2 0.3 0.4 0.5

w/o SSE .0074 .0127 .0197 .0269 .0364

with SSE .0066 .0116 .0188 .0272 .0371

% Change -10.8% -8.7% -4.6% +1.1% +1.9%

Adding an extra SSE output has the expected e�ect. It lowers error at the rankprop

output for the low risk FOPs, while slightly increasing error at the high risk FOPs. Table 4.2

shows the results with rankprop before and after adding the extra SSE output. Note that

the extra output is completely ignored when predicting patient risk. It has been added

solely because it provides a useful bias to the net during training. We have not examined if

combining the extra output with the predictions of the rankprop output might yield further

improvements. The earliest example of using multiple output representations we know of

is [Weigend 1991] which uses both SSE and cross-entropy outputs for the same task.

4.4 Multiple Output Representations

Sometimes it is not apparent what output encoding to use for a problem. Alternate codings

of the main task can be used as extra outputs the same way alternate error metrics were used

above. For example, when using sigmoid output units with outputs on the interval [0,1],

sometimes it is not clear if boolean task values should be represented as 0.0 and 1.0, or some

other values such as 0.15, 0.85, or 0.25, 0.75, that do not force the sigmoid output units to

their extreme values. If there is reason to believe that di�erent sets of output values might

yield di�erent bene�ts, MTL can be used to achieve both bene�ts by using both output

representations at the same time. We can train multiple outputs on the MTL net and code

the boolean as 0.0/1.0 on one output, 0.15/0.85 on another, and 0.25/0.75 on a third. We

CHAPTER 4. WHEN TO USE IT 108

can combine the multiple outputs by addition or voting, or can select whichever output

appears to perform best. The reason why this can improve performance is that the output

trained on the 0.0/1.0 representation is the one that learns to separate the classes most, but

is also the output most driven to learn a nonlinear mapping. The 0.25/0.75 output does

not learn to separate the classes as much, but may be less prone to learning unnecessarily

nonlinear mappings. Learning models that strongly distinguish di�erent classes is usually

good. So is learning less nonlinear functions. MTL provides one way to bias a backprop

net to try to accomplish both objectives. Similar reasoning can be applied to other cases

such as the use of polar and cartesian output representations for problems involving spatial

recognition. The radius or angle may more easily represent some regularities in the problem,

but the x,y,z coordinates may more easily represent other regularities. The two coordinate

systems are redundant. Either output representation should be su�cient. But learning

might be improved by using both representations on one MTL net.

As another example, distributed output representations often help parts of a problem

be learned because the parts have separate error gradients. But if prediction requires all

outputs in the distributed representation to be correct, a non-distributed representation

can be more accurate. MTL is one way to merge these conicting requirements in one net.

For example, consider the problem of learning to classify a face as one of twenty faces. One

output representation for this problem is to have one output for each of the twenty persons

the net is supposed to recognize. Another output representation is to train the net on a

set of face features that are su�cient to classify the twenty faces. These might be features

like beard/no beard, mustache/no mustache, glasses/no glasses, long hair/short hair/bald,

hair color(blonde, red, white, brown, black), eye color(blue, brown), male/female, etc. It

is easy to imagine that a set of these features might be su�cient to correctly classify the

twenty individuals. Correct classi�cation, however, might require each feature be correctly

predicted. Yet some of these features may be di�cult to predict with high accuracy. The

non-distributed output representation that uses one output for each individual may be more

reliable on average. But training the recognition net to recognize speci�c traits should help

training, too. MTL allows us to use both output representations for the problem, even if

only one representation will be used for prediction.

CHAPTER 4. WHEN TO USE IT 109

When using redundant output representations, an interesting issue is what outputs

to use to make the �nal prediction. Sometimes better accuracy might be achieved by

combining the predictions from the redundant representations rather than choosing one of

the representations. This issue is orthogonal to MTL whose principle goal is to provide

a mechanism for improving the accuracy of one of the representations. Where similar

accuracy is achieved with several redundant output representations, we suspect accuracy

often would improve by combining their predictions. If it is possible, however, to optimize

the performance of any one of these output representations at the expense of the other

representations, better performance often will be achieved by using the better performing

representation. If combining predictions is still is desirable, multiple independent MTL

nets can be trained and their predictions combined, each net possibly being optimized to

perform well on one representation at a time. (See Chapter ?? for discussion of how to

optimize MTL nets for one task at a time.)

An interesting, related approach to using multiple alternate output encodings for the

same problem is error correcting codes [Dietterich & Bakiri 1995]. In this approach, the

multiple encodings for the outputs are designed so that predictions from the multiple outputs

can be combined such that the combined prediction is less sensitive to occasional errors in

some of the outputs. It is not clear at this time how much error correcting codes bene�t

from MTL-like mechanisms. In fact, ECOC methods may bene�t more from being trained

on STL nets (instead of MTL nets) so that di�erent outputs do not share the same hidden

layer and thus make less correlated predictions.

4.5 Time Series Prediction

Applications of this type are a subclass of using the future to predict the present, where

future tasks are identical to the current task except that they occur at a later time. This

is a large enough subclass to deserve special attention. Also, the additional knowledge that

the future tasks are identical to the current task sometimes allows additional structure to

be brought to bear on MTL approaches to these problems.

The simplest way to use MTL for time series prediction is to use a single net with

CHAPTER 4. WHEN TO USE IT 110

multiple outputs, each output corresponding to the same task at a di�erent time. If output

k refers to the prediction for the time series task at time Tk, this net makes predictions for

the same task at K di�erent times. Often, good performance is obtained if the output used

for prediction is the middle output (temporally) so that there are tasks earlier and later

than it trained on the net.

We tested MTL on time sequence data in a robot domain where the goal is to predict

future sensory states from the current sensed state and the planned action. We were in-

terested in predicting the sonar readings and camera image that would be sensed N meters

in the future given the current sonar and camera readings, for N between 1 and 8 meters.

Figure 4.2 shows the MTL architecture for this problem. As the robot moves, it collects a

stream of sense data. (Strictly speaking, this sense data is a time series only if the robot

moves at constant speed. We used dead reckoning to determine the distance the robot

traveled, so our data might be described as a spatial series.)

...... ...

INPUTS

. . .

1 meter 2 meters 4 meters 8 meters

...

sonar ring and horizontal camera stripe

Figure 4.2: Predicting a temporal sequence of sense measurements with MTL

We used a backprop net with four sets of outputs. Each set predicts the sonar and

camera image that will be sensed at a future distance. Output set 1 is the prediction for 1

CHAPTER 4. WHEN TO USE IT 111

meter, set 2 is for 2 meters, set 3 is for 4 meters, and set 4 for 8 meters. The performance

of this net at each prediction distance is compared in Table 4.3 with STL nets learning to

predict each distance separately. Each entry is the SSE averaged over all sense predictions.

Error increases with distance, and MTL outperforms STL at all distances except 1 meter.

Table 4.3: STL and MTL SSE on Sensory Prediction

METERS 1 2 4 8

STL .074 .098 .145 .183

MTL .076 .094 .131 .165

% Change +2.7% -4.1% -9.7% * -10.9% *

The loss of accuracy at 1 meter is not statistically signi�cant. We conjecture, however,

that a pattern in this data may be common. That is, MTL may often help harder predictions

most, possibly at the expense of easier predictions. This is not an insurmountable problem.

Where this is known to be true, one can use STL for shorter term predictions, but use

MTL for the harder longer term predictions. Note that one must still use the shorter term

predictions in the MTL net that will be used for the longer term predictions, even though

they may not be used, because they provide bene�t for the longer term predictions. The

goal in MTL is to use whatever extra tasks are available that might help the main task,

even if performance on those extra tasks is not important, or is made worse, by MTL.

4.6 Using Non-Operational Features

Some features are impractical to use at run time. Either they are too expensive to compute,

or they need human expertise that won't be around or would be too slow. Training sets,

however, are often small, and we usually have the luxury to spend more time preparing

them. Where it is practical to compute non-operational feature values for the training set,

these may be used as extra MTL outputs.

A good example of this is in scene analysis where human expertise is often required

to label important features. Usually the human will not be in the loop when the learned

system is to be used. Does this mean that features labelled by humans cannot be used for

learning? No. If the labels can be acquired for the training set, they can be used as extra

CHAPTER 4. WHEN TO USE IT 112

tasks for the learner; features used as extra tasks will not be required later when the system

is used.

An example is the 1D-DOORS domain from Section 2.2. There we used a mouse to

de�ne several features in images of doorways collected from a robot-mounted camera. The

main tasks were the horizontal location of the doorknob and the doorway center. The extra

features were created just to give the backprop net more information. But because a human

had to manually de�ne these features, they cannot be used as inputs. The human will not

be there to de�ne these features when the robot is operating autonomously. Because a

human had to process each image to de�ne the training signals for the doorknob location

and doorway center main tasks, it was easy to collect the additional features at the same

time for the training set. The following extra tasks were employed:

� horizontal location of doorknob � single or double door

� horizontal location of doorway center � width of doorway

� horizontal location of left door jamb � horizontal location of right door jamb

� width of left door jamb � width of right door jamb

� horizontal location of left edge of door � horizontal location of right edge of door

These extra tasks helped MTL learn the main tasks 20{30%. See Section 2.2 for more

information about this domain.

There are many domains where human-labelled data is available for the training sets, but

will not be available when the trained system is used. Examples include hand-labelled im-

ages, hand-labelled text data, hand-labelled medical data, hand-labelled acoustic or speech

data, etc. Whenever there are hand-labelled features that are not themselves the main focus

of learning, these may be used as extra output tasks that potentially will bene�t the tasks

that are the focus of learning.

4.7 Using Extra Tasks to Focus Attention

Learning often learns to use large, ubiquitous patterns in the inputs, while ignoring small

or less common inputs that might also be useful. MTL can be used to coerce the learner

to attend to patterns in the input it would otherwise ignore. This is done by forcing it to

CHAPTER 4. WHEN TO USE IT 113

learn internal representations to support related tasks that depend on such patterns.

A good example of this is road following. Here, STL nets often ignore lane markings

when learning to steer because lane markings are usually a small part of the image, are

constantly changing, and are often di�cult to see (even for humans) because of poor lighting

and wear. If a net learning to steer is also required to learn to recognize road stripes, the

net will learn to attend to those parts of the image where stripes occur. To the extent that

the stripe tasks are learnable, the net will develop internal representations to support them.

Since the net is also learning to steer using the same hidden layer, the steering task can use

the parts of the stripe hidden representation that are useful for steering.

In Section 2.1 we used a road image simulator developed by Pomerleau to generate

synthetic road images. The main tasks were to predict steering direction and the location

of the center of the road. The following extra tasks related to the centerline were used for

MTL:

� does the road have 1 or 2 lanes?

� horizontal-location of centerline 10 meters ahead (if present)

� intensity of the centerline

The performance bene�t of MTL using these extra tasks is shown in Section 2.1. It is not

easy to analyze a net trained on 1D-ALVINN to see what it has learned about centerlines.

Instead, we ran an experiment using the STL and MTL nets trained for steering on 1D-

ALVINN to test how important centerstripes in the images are to the STL and MTL nets.

Because the data is generated with a simulator, we were able to eliminate the stripes from

the generated road images in the test set (the training data still contains centerstripes).

The centerstripes are replaced in the image with the same grey levels as the surrounding

road. If MTL learned more about centerstripes than STL, and uses what it learned about

centerstripes for the main steering task, we expect to see steering performance degrade more

for MTL than for STL when we remove the centerstripes from the images.

On images with removed centerstripes, error increased by a factor of 2.0 for the STL

nets, whereas error increased by a factor of 3.1 for the MTL nets. MTL's performance

on the main steering task is more sensitive to the presence of centerstripes in the image,

CHAPTER 4. WHEN TO USE IT 114

presumably because many of the extra tasks trained on the MTL net coerce the net to learn

about centerstripes.

4.8 Tasks Hand-Crafted by a Domain Expert

Experts excel at applying their expertise, but are poor at codifying it. Most learning

algorithms are poor at incorporating unstructured advice from experts, but are good at

learning from examples. MTL is one way to collect domain-speci�c inductive bias from

an expert and give it to the learning procedure by capitalizing on the strengths of each.

Having domain experts de�ne \helper" tasks is a convenient way to use human expertise to

bias learning. Using extra outputs or extra error terms applied to the existing outputs to

provide hints to ANNs is well documented in [Abu-Mostafa 1989]. One example of hints is

to use extra tasks to help a net learn desired properties such as monotonicity or symmetry.

For example, one might want the relationship between household income and the maximum

size loan that can safely be awarded to that household to rise monotonically with income,

all other things being equal. Hints provide one way of biasing the net to learn models

satisfying this condition. Although this can be done by constructing carefully designed

extra tasks, it is most easily accomplished by applying additional error terms that penalize

nonmonotonicity on the output for the main task.

4.9 Handling Other Categories in Classi�cation

Consider the problem of digit recognition. This is a classi�cation problem where the goal is

to label input images with the classes 0{9. In real-world applications of digit recognition,

it is common that some of the images that will be given to the classi�er will not be digits.

For example, sometimes images containing alphabetic characters or punctuation marks will

be given to the classi�er. We do not want the classi�er to accidentally classify a \t" as the

digit one or seven. One common way to help prevent this is to create an additional category

called \other" which is the correct classi�cation for all images that do not contain digits.

MTL provides a better way to do this. Consider the large variety of characters that

are to be mapped to this one \other" class. Because of this diversity, and the need of the

CHAPTER 4. WHEN TO USE IT 115

classi�er to not allow images of any of the legal digits 0{9 to be confused with this class,

learning this class will be very di�cult. By throwing so many di�erent images together into

one class, we have made learning that class potentially very di�cult. A better approach is

to split the \other" class into separate classes for the individual characters that are trained

in parallel with the main digit tasks. By breaking-out the separate other tasks into separate

MTL tasks, the net has a better chance of learning to discriminate digits from non-digits.

[LeCun, 1997 (private communication)]

4.10 Sequential Transfer

MTL is parallel transfer. It might seem that sequential transfer [Pratt & Mostow 1991; Pratt

1992; Sharkey & Sharkey 1992; Thrun & Mitchell 1994; Thrun 1995] should be easier. This

may not be the case. Some of the advantages of parallel transfer are:

� The full detail of what is being learned for all tasks is available to all tasks because

all tasks are learned at the same time.

� In many applications extra tasks are available when the main task is to be learned.

Parallel transfer does not require one to choose a training sequence|the order in

which tasks are trained usually has signi�cant impact in serial transfer.

� Tasks often bene�t each other mutually, something a linear sequence cannot capture.

If task 1 is learned before task 2, task 2 can't help task 1. This not only reduces

performance on task 1, but it can also reduce task 1's ability to help task 2.

� Sequential transfer does not bene�t prior learned tasks unless they are re-trained, and

this is probably best done through a parallel method.

� In Chapter 6 we will see that it can be important to optimize MTL technique to favor

performance on the main task at the expense of worse performance on the extra tasks.

It is di�cult to perform this optimization if the extra tasks have already been learned

and are now �xed.

Often, however, tasks do arise serially and it is not prudent to wait for all the tasks to

begin learning. In these cases it is straightforward (though not necessarily computationally

CHAPTER 4. WHEN TO USE IT 116

e�cient) to use parallel transfer to do sequential transfer. If the training data can be

stored, perform MTL using whatever tasks have become available, re-learning as new tasks

and/or new data arise. If training data cannot be stored, or if we already have models

learned from previous data that is no longer available, synthetic data can be generated from

models that have already been learned and used as extra training signals. This approach

to sequential transfer avoids the serious problem of catastrophic interference (forgetting old

tasks while learning new ones). Moreover, it is applicable even where the analytical methods

of evaluating domain theories used by other serial transfer methods [Pratt 1992; Thrun &

Mitchell 1994] are not available. For example, the domain theory need not be di�erentiable

or inspectable. It merely needs to be able to do prediction.

We've only tested this synthetic data approach on synthetic problems. Its performance

is indistinguishable from having the original training data if the prior models were learned

accurately. Interestingly, the performance often does not degrade that rapidly as the prior

learned models become less accurate because MTL nets are less a�ected by noise in extra

outputs than an STL net would be to that same amount of noise in its inputs. (See

Section 5.1.2 for a more thorough discussion of this di�erence.)

One issue that arises when synthesizing data from prior models is what distribution to

sample from. We used the distribution of the training patterns for the current task. We

pass the input features for current training patterns through the prior learned models and

use the predictions of those models as extra MTL outputs when learning the new main

task. This sampling may not always be satisfactory. If the learned models are complex

(suggesting a large sample would be needed to represent them with high �delity), but the

new sample of training data is small, it is bene�cial to sample the prior model at more

points than the current sample. See [Craven & Shavlik 1994] for a thorough discussion of

synthetic sampling.

It is interesting to note that it is relatively straightforward to use parallel transfer to do

serial transfer, but it does not seem to be easy to use serial transfer to do parallel transfer.

It is also important to note that it is possible to combine serial and parallel transfer to

get some of the bene�ts of each. (O'Sullivan and Mitchell are currently doing research on

methods that combine MTL and EBNN for life-long learning in robots.)

CHAPTER 4. WHEN TO USE IT 117

4.11 Multiple Tasks Arise Naturally

Often the world gives us sets of related tasks to learn. The traditional approach is to

separate these into independent problems trained in isolation. This is counterproductive|

related tasks can bene�t each other if trained together. An early, almost accidental, use

of multitask transfer in ANNs is NETtalk [Sejnowski & Rosenberg 1986]. NETtalk learns

the phonemes and stresses to give a speech synthesizer to pronounce the words given it as

inputs. NETtalk used one net with many outputs, partly because the goal was to control a

synthesizer that needed both phonemes and stresses at the same time. Although they never

analyzed the contribution of multitask transfer to NETtalk, there is evidence that NETtalk

is harder to learn using separate nets [Dietterich, Hild & Bakiri 1990; 1995].

A recent example of multiple tasks arising naturally is Mitchell's Calendar Apprentice

System (CAP) [Dent 1992; Mitchell et al. 1994]. In CAP, the goal is to learn to predict

the Location, T ime Of Day, Day Of Week, and Duration of the meetings it schedules.

These tasks are functions of the same data and share many common features. Early results

using MTL decision trees on this domain suggest that MTL outperforms STL 2%{10%.

4.12 Similar Tasks With Di�erent Data Distributions

Often there are many instances of virtually the same problem, but the distribution of

instances from which the data are sampled di�er for each instantiation. For example, most

hospitals diagnose and treat pneumonia patients, but the demographics of the patients each

hospital serves may be di�erent. Hospitals in Florida may see older patient populations,

urban hospitals may see poorer patient populations that have had less access to health care,

hospitals in San Francisco may see more AIDS patients, rural hospitals may see fewer AIDS

patients, etc.

Predictive models learned for one hospital will not be as accurate for another hospital

as models learned for that other hospital. In medicine, however, often there are few cases of

some ailments at many hospitals. It may not be possible to collect a large enough training

sample for each hospital. A rural hospital might see fewer than 100 cases of pneumonia

each year, and in any one year none of these cases may be AIDS-related. Yet next year that

CHAPTER 4. WHEN TO USE IT 118

hospital might see three AIDS-related cases. Clearly pneumonia prediction in a hospital in

California is a strongly related problem to pneumonia prediction in a hospital in Wyoming.

But it is probably suboptimal to pool data from all hospitals and learn one model to make

predictions for all hospitals. MTL provides one solution to this problem.

SYMPTOMS

. . .

Hospital 1 Hospital 2 Hospital 3 Hospital 4

PNEUMONIA PREDICTION

Figure 4.3: Predicting the same problem for di�erent hospitals with MTL

Consider the MTL-backprop net shown in Figure 4.3. The net takes patient histories,

symptoms, and lab tests as inputs. It has four outputs. Each output predicts the same

medical condition (e.g., pneumonia risk), but for a di�erent hospital. There may be 10

training cases for Hospital 1, 100 cases for Hospital 2, 1000 cases for Hospital 3, and 2,000

cases for Hospital 4. Note that each patient is a training case for only one hospital. That

means we only have a target value for one output for each input vector. When backprop-

agation is done on this MTL net, errors are backpropagated only through the output that

has a target value for that input vector.

Because the outputs share a hidden layer, however, the representation learned for each

hospital's prediction model is available to be used by other hospital models. Thus Hospitals

1 and 2 can bene�t from the larger pneumonia populations seen by Hospitals 3 and 4.

CHAPTER 4. WHEN TO USE IT 119

Nevertheless, the model learned for Hospital 1 will not (necessarily) be the same as the

models learned for Hospitals 2, 3, or 4. Hospital 1 can bene�t from what was learned for

the other hospital models, but it is not constrained to be the same model. Each output

(i.e., each hospital model) has di�erent hidden-to-output weights trained only on the patient

population at that hospital. Although these tasks are, presumably, very strongly related,

some features may develop in the hidden layer that are useful to only some of the hospitals.

There are many domains where there are multiple instances of strongly related prob-

lems, but where each instance of the problem is di�erent enough to make pooling the data

inappropriate. Yet collecting su�cient data to learn models for each instance of the problem

may be impractical. MTL provides one approach to sharing the data collected for these

problems without committing to the very strong sharing that results from pooling the data.

Other domains of this type include:

� learning to steer di�erent types of cars, or cars with di�erent types of tires, or cars

driven on di�erent types of roads or in di�erent countries.

� learning to control multiple manufacturing and process control lines in manufacturing,

where each line is composed of similar equipment and processes similar jobs.

4.13 Learning from Quantized or Noisy Data

Suppose the main task we wish to predict is a variable that has been heavily quantized

and/or polluted with noise. Quantization is any process that takes a variable with N

distinct values and re-represents it with M < N values. For example, temperature is a

continuous variable, but some process might quantize this continuous variable to a few

discrete values such as cold, warm, and hot. Quantization of this type is common when

human judgment is part of the measurement process.

Quantization can make it more di�cult to train a model to predict the quantized variable

from other measurements of the system. This is because quantization represents some

instances that are similar as di�erent, and classi�es other instances that are di�erent as

similar. For example, temperatures of 100 degrees and 200 degrees might both be classi�ed

as warm, but 201 degrees might be classi�ed as hot. This abrupt change in the quantized

CHAPTER 4. WHEN TO USE IT 120

function makes learning hard by requiring the model to be relatively at from 100 to 200

degrees, but also to make a sharp transition between 200 and 201 degrees. Quantization

does not map similarity in input space to similarity in output space. If there is another less

quantized task that correlates with the unquantized variable, training it as an extra task

on the MTL net can help the main quantized task.

As a di�erent example, consider a stochastic process that converts a probability to an

outcome. In medicine, for example, we rarely know the probability of an adverse outcome

for patients. We can, however, collect a training set consisting of patients for which we know

if the adverse outcome happened or not. We still do not know the original probability of

the outcome for the patients, only the outcome. A system learning to predict outcomes for

new patients can have great di�culty if the probability of a positive outcome is not much

higher for the high risk patients than it is for the low risk patients. For example, suppose

high risk patients have a positive outcome probability of 0.10 and low risk patients have

an outcome probability of 0.05. High risk patients have twice the probability of a positive

outcome as the low risk patients. In a large training set, however, 1/3 of the patients with

positive outcomes will actually be low risk cases, and the vast majority of cases will have

negative outcome. Learning to distinguish high risk from low risk cases with 33.3% class

noise will be di�cult for much the same reason that quantization makes learning di�cult.

Patients with virtually identical symptoms may have di�erent outcomes, and patients with

very dissimilar symptoms may have the same outcomes. Similarity in input space is not

well mapped to similarity in output space by the random process. As with quantization, if

there are other tasks less disrupted by random sampling, using these as extra outputs on

the MTL net can aid learning of the main task. We observe this in the pneumonia domain.

There, a patient's probability of death (i.e., risk) is unknown to us. All we know is if the

patient lived or died. But other tasks, such as hospital duration, admission to the ICU,

and doctor's assessment of patient risk along a three point scale (low, medium, high) can

be used to help guide an MTL net to assess risk better. Hospital stay is a particularly

interesting extra task because long stays are indicators of higher risk, but short stays may

be due to very low risk causing the patient to be discharged or very high risk causing the

patient to die. The relationship between tasks that help each other may be complex.

CHAPTER 4. WHEN TO USE IT 121

4.14 Learning With Hierarchical Data

Many classi�cation domains admit a structuring of the classes into a semantic hierarchy.

For example, the classi�cation of living things to species is usually treated as a hierarchical

classi�cation problem that descends a hierarchy of classes and subclasses. But there are

other examples. Motorized vehicles can be classi�ed via a hierarchy. Documents in a library

are usually classi�ed hierarchically. And recently considerable manual e�ort has gone into

hierarchically classifying documents on the web into the Yahoo! hierarchy.

Surprisingly, most applications of machine learning to data that can be hierarchically

classi�ed make little use of the hierarchical information. MTL provides one way of exploit-

ing hierarchical information. When training a classi�er to make class distinctions at one

particular point in the hierarchy, include as extra tasks all classi�cation tasks that arise for

ancestors and descendants of the current classi�cation task. For example, when training a

backprop net to distinguish between student and faculty web pages in a department, use

extra tasks on the MTL net that require the net to distinguish between associate professor,

full professor, research faculty (descendant tasks), extra tasks that require the net to distin-

guish undergraduate from graduate students (also descendant tasks), and extra tasks that

require the net to distinguish between di�erent departments in the university or between

academic and other institutions (both ancestor tasks). One way to accomplish this is to

train one MTL net to predict all class distinctions in the total hierarchy.

4.15 Outputs Can Beat Inputs

Most of the sections in this chapter present domains where it is impractical to use some

features as inputs, because they will not be available in time, are too expensive to compute,

or require human expertise. In these cases, MTL provides a way of bene�ting from these

features (instead of ignoring them) by using them as extra tasks. Some domains contain

features that can be used as inputs, but which are more useful when used as extra outputs

instead. In some cases this is because the features are actually harmful when used as inputs,

but helpful when used as outputs. In other cases this is because the feature is useful as an

input, but more useful as an extra output. This application of MTL is so surprising, and

CHAPTER 4. WHEN TO USE IT 122

potentially so ubiquitous, that we dedicate the next chapter to it.

4.16 Chapter Summary

This chapter shows that there are many domains where potentially useful extra tasks will

be available. One of the contributions of this thesis is to show that there are many di�erent

kinds of extra tasks to be used with MTL. The list of prototypical domains provided in this

chapter is not complete. We are con�dent more types of extra tasks will be identi�ed in

the future.

Chapter 5

Some Inputs Work Better as Extra

Outputs

The previous chapter presented a number of di�erent domain types where training signals

for extra tasks are available. This chapter presents a source of extra tasks that may be

more ubiquitous. In this chapter we show that sometimes it is bene�cial to move features

that would normally be used as inputs from the input side of a backprop net to the output

side of the net and use them instead as extra tasks for MTL.1

In supervised learning there is usually a clear distinction between inputs and outputs|

inputs are what you will measure, outputs are what you will predict from those measure-

ments. MTL blurs this distinction; some features are more useful as extra outputs than as

inputs. By using a feature as an output we get more than just the case values, but can

learn a mapping from the other inputs to that feature. Although we no longer have access

to the case values when doing prediction, we do have access to the mapping learned by the

MTL net from the case values in the training set. For some features, this mapping may be

more useful than the feature value itself.

In Section 5.1 we present two regression problems and one classi�cation problem where

performance improves if features that could have been used as inputs are used as extra

outputs instead. This section uses synthetic problems carefully constructed to show this

1The material presented in this chapter is joint work with Virginia de Sa.

123

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 124

e�ect and make it clear why the features work better as extra outputs than as inputs.

The problems in Section 5.1 are synthetic and were carefully designed to demonstrate

that some features can be more useful as extra outputs than as input. Do real-world

problems also have features that would be more useful as extra outputs? If they do, how

would we determine which features are more useful as extra outputs? In Section 5.2 we

demonstrate that there are features in real-world problems that are better used as extra

output tasks. In this section we use feature selection to determine which features should be

used as inputs, and treat the remaining features not used as inputs as candidates for use as

extra output tasks.

The results in Sections 5.1 and 5.2 make it clear that some features help learning when

used as input features, and also help learning if used as extra outputs, instead. Is it possible

to use some features as both inputs and as extra outputs at the same time and accrue both

bene�ts? In Section 5.3 we present an MTL architecture that is able to achieve some of the

bene�ts of features used as inputs and used as extra outputs on one net. We demonstrate

this approach using two of the synthetic problems from Section 5.1.

5.1 Promoting Poor Features to Supervisors

The goal in supervised learning is to learn functions that map inputs to outputs with high

predictive accuracy. The standard practice in neural nets is to use all features that will be

available for the test cases as inputs, and use as outputs only the features to be predicted.

MTL shows that using instance attributes as outputs can be very useful. Since any input

could be used as an output, would some inputs be more useful as outputs? Surprisingly, yes.

Sometimes it is more e�ective to give information to a backprop net through an output than

through an input. Some features are less useful (or even harmful) when used as inputs than

when used as extra outputs. This demonstrates that the bene�ts of outputs are di�erent

from the bene�ts of inputs.

This section presents three synthetic problems where it is better to use some features

as extra outputs than as inputs. The basic approach in our synthetic problems is to move

features to the output side of an MTL net that are either too noisy, or too poorly correlated

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 125

with the main task, to be helpful when used as inputs. As outputs, they bias the learning

of the input-to-hidden layer weights. This leads the shared hidden layer to develop more

useful features, thus improving performance on the main task. All the problems are simple

functions of 1 or 2 input variables. These input variables are encoded, however, to make

the task more challenging. The extra features are chosen so that if the inputs were properly

decoded there would be little or no bene�t from the extra features as inputs. The informa-

tion in the extra features is redundant with that in the regular inputs. The extra features,

however, are not coded like the regular input variables. This makes it potentially easier

for learning to use the extra features than to use the encoded regular inputs. If the extra

features are noisy, however, there is a tradeo� between ease of learning from the uncoded

extra features and the problems created by the noise in those features.

Section 5.1.1 uses the regression problem from Section 3.2.1 where, because a feature has

no correlation with the main task, it is not useful as an input. But, because the underlying

subfeatures it depends on are the same as the main task, it is useful if used as an extra

output. Section 5.1.2 presents a similar regression problem where there are features useful

as inputs if their noise is low, but which become harmful as inputs if their noise increases.

However, because noise has di�erent e�ects on inputs and outputs, these features remain

useful as extra outputs even when the noise makes them harmful as inputs. Section 5.1.3

presents a binary classi�cation problem where the information in an extra input feature is

unnecessary because the optimal class boundary is provably independent of this feature.

Because the extra feature correlates with the other input features the class boundary is

de�ned on, however, it helps classi�cation. By adjusting the problem in a well de�ned way,

we are able to create variations where the bene�t of the extra feature is greatest when used

as an extra output instead of as an extra input. Section 5.1.4 discusses issues common to

all three problems.

In this chapter we use the following terms: The Main Task is the output to be learned.

The goal is to improve performance on the Main Task. Regular Inputs are the features

provided as inputs in all experiments. The Regular inputs are always used as inputs, never

as outputs. Extra Inputs are the extra features when they are used as inputs. Extra Outputs

are the same extra features, but when used as extra outputs.

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 126

5.1.1 Poorly Correlated Features

This section presents a simple synthetic problem where it is easy to see why using a feature

as an extra output is better than using that same feature as an extra input. This is the

same problem used in Section 3.2.1 to show that tasks do not need to be correlated to be

useful for MTL.

Consider the following function:

F1(A;B) = SIGMOID(A+B)

where SIGMOID(x) = 1=(1 + e(�x))

The STL net in Figure 5.1 has 20 inputs, 16 hidden units, and one output. We use

backpropagation on this net to learn F1(A;B). Data is generated by uniform random

sampling of A and B from the interval [�5; 5]. The inputs to the network are a binary

coding for A and B. The range [�5; 5] is discretized into 210 bins and the binary code of

the resulting bin number is used as the input coding. The �rst 10 input units receive the

code for A and the second 10 receive the code for B. The target output is the unary real

(unencoded) value F1(A;B).

binary inputs
coding for A

binary inputs
coding for B

Main Output

R e g u l a r I n p u t s

fully connected
 hidden layer

STL

Figure 5.1: STL architecture for learning F1 from the regular inputs.

Backpropagation is done with per-epoch updating and early stopping. Each trial uses

new random training, halt, and test sets. Training sets contain 50 patterns. This is enough

data to get good performance, but not so much that there is not room for improvement.

We use large halt and test sets|1000 cases each|to minimize the e�ect of sampling error

in the measured performances. Halt and test sets containing 5000 cases each yield similar

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 127

results.

Table 5.1 shows the mean performance of 50 trials of STL with the regular inputs when

trained with backpropagation and early stopping.

Table 5.1: Mean Test Set Root-Mean-Squared-Error on F1

Network Trials Mean RMSE Signi�cance

STL 50 0.0648 -

STL+IN 50 0.0647 ns

MTL+OUT 50 0.0631 0.013*

Now consider a similar function:

F2(A;B) = SIGMOID(A�B)

Suppose, in addition to the 10-bit codings for A and B, you are given the unencoded

unary value F2(A;B) as an extra input feature. Will this extra input help you learn

F1(A;B) better? Probably not. A+ B and A � B do not correlate for random A and B.

The correlation coe�cient for our training sets is typically less than �0:01. Because of this,

knowing the value of F2(A;B) does not tell you much about the target value F1(A;B) (and

vice-versa).2 Figure 5.2 shows a scatter plot of F1(A;B) vs. F2(A;B) for a large sample

of randomly generated values for A and B.

F1(A;B)'s poor correlation with F2(A;B) hurts backprop's ability to learn to use

F2(A;B) to predict F1(A;B). The STL net shown in Figure 5.3 has 21 inputs|20 for the

binary codes for A and B, and an extra input for F2(A;B). The second line in Table 5.1

shows the performance of STL+IN for the same training, halting, and test sets used by

STL; the only di�erence is that there is an extra input feature in the data sets for STL+IN.

Note that the performance of STL+IN is not signi�cantly di�erent from that of STL|the

extra information contained in the feature F2(A;B) does not help backpropagation learn

F1(A;B) when used as an extra input.

If F2(A;B) does not help backpropagation learn F1(A;B) when used as an input,

should we ignore it altogether? No. F1(A;B) and F2(A;B) are strongly related. They

2Note that A+B does correlate with jA�Bj, just not with A�B itself. Knowing F2(A;B) does provide

information about F1(A;B). Unfortunately, backprop usually needs correlation between inputs and the

current output errors to bene�t from the inputs.

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 128

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
-B

A+B

Figure 5.2: Scatter plot of F1(A,B) vs. F2(A,B) shows no correlation between them.

both bene�t from decoding the binary input encoding to compute the subfeatures A and B.

If, instead of using F2(A;B) as an extra input, it is used as an extra output trained with

backpropagation, it will bias the shared hidden layer to learn A and B better, and this will

help the net learn to predict F1(A;B) better.

Figure 5.4 shows a net with 20 inputs for A and B, and 2 outputs, one for F1(A;B)

and one for F2(A;B). Error is back-propagated from both outputs, but the performance

of this net is evaluated only on the output F1(A;B) and early stopping is done using only

the performance of this output. The third line in Table 5.1 shows the mean performance

binary inputs
coding for A

binary inputs
coding for B

Main Output

R e g u l a r I n p u t s

Extra Input

fully connected
 hidden layer

STL+IN

Figure 5.3: STL architecture for learning F1 from the regular inputs plus the extra input.

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 129

binary inputs
coding for A

binary inputs
coding for B

Main Output

R e g u l a r I n p u t s

Extra Output

fully connected
 hidden layer

MTL

Figure 5.4: MTL architecture for learning F1 and the extra task from the regular inputs.

of 50 trials of this MTL net on F1(A;B). Using F2(A;B) as an extra output improves

performance on F1(A;B). Using the extra feature as an extra output is better than using

it as an extra input. By using F2(A;B) as an output we make use of more than just

the individual output values F2(A;B), we learn to extract information about the function

mapping the inputs to F2(A;B). This is a key di�erence between using features as inputs

and outputs.

Why does F2 help F1 when used as an extra output? Because F1 and F2 both would

bene�t from computing the same features of the inputs at the hidden layer, the gradients

backpropagated from the two outputs constructively reinforce in directions in the weight

space that lead to the shared features. The extra information contained in the training

signal for F2 biases the shared network representation towards features useful to F1.

5.1.2 Noisy Features

This section presents two problems where extra features are more useful as inputs if they

have low noise, but which become more useful as outputs as their noise increases. Because

the extra features are ideal features for these problems, this demonstrates that what we

observed in the previous section does not depend on the extra features being contrived so

that their correlation with the main task is low|features with high correlation to the main

task training signals can still be more useful as outputs.

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 130

Problem 1

Once again, consider the main task from the previous section:

F1(A;B) = SIGMOID(A+B)

Now consider these extra features:

EF (A) = A+NOISE SCALE �Noise1

EF (B) = B +NOISE SCALE �Noise2

where the features EF (A) and EF (B) are not encoded and where Noise1 and Noise2 are

uniformly sampled on [�1; 1]. If NOISE SCALE is not too large, EF (A) and EF (B) are

excellent input features for learning F1(A;B) because the net can avoid learning to decode

the binary input representations coding for A and B, and instead needs only to learn to add

the new inputs EF (A) and EF (B). However, as NOISE SCALE increases, EF (A) and

EF (B) become less useful, and it is better for the net to learn F1(A;B) from the binary

inputs for A and B.

As before, we try using the extra features as either extra inputs or as extra outputs.

Again, the training sets have 50 patterns, and the halt and test sets have 1000 patterns.

We ran preliminary tests to �nd the best net size. The results showed 256 hidden units to

be about optimal for the STL nets with early stopping on this problem.

Figure 5.5 plots the average performance of 50 trials of STL with the extra inputs and

MTL with the same features used as extra outputs as NOISE SCALE varies from 0.0

to 10.0. The performance of STL with the regular inputs, which does not use EF (A)

and EF (B), is shown as a horizontal line; it is independent of NOISE SCALE. Let's

�rst examine the results of STL using EF (A) and EF (B) as extra inputs. As expected,

when the noise is small, using EF (A) and EF (B) as extra inputs improves performance

considerably. As the noise increases, however, this improvement decreases. Eventually there

is so much noise in EF (A) and EF (B) that they no longer help the net if used as inputs.

And, if the noise increases further, using EF (A) and EF (B) as extra inputs actually hurts

performance. Finally, as the noise gets very large, performance asymptotes back towards

the performance obtained without the extra features.

Using EF (A) and EF (B) as extra outputs yields quite di�erent results. When the

noise is low, they do not help as much as they did as extra inputs. As the noise increases,

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 131

0.045

0.05

0.055

0.06

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

T
es

t S
et

 R
M

S
E

Feature Noise Scale

"STL+IN"
"MTL"
"STL"

Figure 5.5: Performance on F1(A,B) of STL with the regular inputs, STL with the extra
input for F2(A,B), and MTL with the extra output task for F2(A,B).

however, at some point they help more as extra outputs than as extra inputs, and never

hurt performance the way the noisy extra inputs did. For NOISE SCALE greater than

about 0.5, it is better to use the extra feature as an extra output than as an input.

Why does noise cause STL with the extra inputs to perform worse than STL without

those inputs? With a �nite training sample, correlations in the sample between noisy inputs

and the main task cause the network to use the noisy inputs. To the extent that the main

task is a function of the noisy inputs, it must pass the noise to the output, causing the

output to be noisy. Also, as the net comes to depend on the noisy inputs, it depends less

on the noise-free binary inputs. The noisy inputs explain away some of the training signal,

so less is available to encourage learning to decode the binary inputs.

Why does noise in the extra outputs not hurt MTL as much as noise in those extra

inputs hurts STL? As outputs, the net is learning the mapping from the regular inputs to

EF (A) and EF (B). Early in training, the net learns to interpolate through the noise and

thus learns smooth functions for EF (A) and EF (B) that have reasonable �delity to the

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 132

true mapping. This makes learning less sensitive to the noise added to these features.3

Problem 2

F1(A;B) is only mildly nonlinear because A and B do not go far into the tails of the

SIGMOID. Do the results depend on this smoothness? To check, we modi�ed F1(A;B)

to make it more nonlinear. Consider this function:

F3(A;B) = SIGMOID(EXPAND(SIGMOID(A)��SIGMOID(B)))

where EXPAND scales the inputs from (SIGMOID(A) � �SIGMOID(B)) to the

range [�12:5; 12:5], and A and B are drawn from [�12:5; 12:5]. F3(A;B) is signi�cantly

more nonlinear than F1(A;B) because the expanded scales of A and B, and expanding the

di�erence to [�12:5; 12:5] before passing it through another sigmoid, cause much of the data

to fall in the tails of either the inner or outer sigmoids.

Consider these extra features:

EF (A) = SIGMOID(A) +NOISE SCALE �Noise1

EF (B) = SIGMOID(B) +NOISE SCALE �Noise2

where the Noises are sampled as before. Figure 5.6 shows the results of using extra features

EF (A) and EF (B) as extra inputs or as extra outputs. The trend is similar to that in

Figure 5.5, but the bene�t of MTL with the extra outputs is even larger at low noise. A

blow-up of the region probably of most interest in real problems is shown in the left graph

in Figure 5.11.

The similarity between the graphs in Figure 5.5 and Figure 5.6 might raise concern

that the behavior we are seeing is an artifact of these problems or some aspect of how

they are trained. The similarity between the two graphs is due to the ubiquity of the

phenomena. The data for the two sets of experiments were generated using di�erent seeds.

The �rst experiment was run using steepest descent and Mitre's Aspirin simulator. The

second experiment used conjugate gradient and Toronto's Xerion simulator. And the two

functions are not as similar as their de�nitions might suggest: expanding the range of the

3It is easy to shift the graphs of STL with extra inputs and MTL relative to each other by changing the

functions or the sampling distributions. For example, sampling A and B so that their values are closer makes

SIGMOID(A) � SIGMOID(B) smaller and thus more sensitive to input noise. This shifts the tradeo�

point between STL with extra outputs and MTL towards lower NOISE SCALE.

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 133

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

T
es

t S
et

 R
M

S
E

Feature Noise Scale

"STL+IN"
"MTL"
"STL"

Figure 5.6: Performance on F3(A,B) of STL with the regular inputs, STL with the extra
input for EF(A) and EF(B), and MTL with extra output tasks for EF(A) and EF(B).

data before passing it through a sigmoid, and then passing the di�erences through another

sigmoid creates a much more nonlinear problem. Moreover, we used very large halt and

test sets, and we were able to run 50 trials of each method at each noise level. The results

are reliable.

5.1.3 A Classi�cation Problem

This section presents a problem that combines feature correlation (Section 5.1.1) and feature

noise (Section 5.1.2) into one problem.

Consider the 1-D classi�cation problem, shown in Figure 5.7, of separating two Gaussian

distributions with means 0 and 1, and standard deviations of 1. This problem is simple

to learn if the 1-D input is coded as a single, continuous input. It can be made harder by

embedding it non-linearly in a higher dimensional space. Consider encoding input values

de�ned on [0.0,15.0] using an interpolated 4-D Gray code(GC). In an interpolated 4-D Gray

code integer values are mapped to a 4-D binary Gray code in the usual way. The intervening

non-integers are mapped linearly to intervening 4-D vectors between the binary Gray codes

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 134

for the bounding integers. Because the Gray code ips only one bit between neighboring

integers, this mapping involves simply interpolating along the one dimension in the 4-D unit

cube that changes. For example, the value 3.4 is encoded as :4(GC(4) �GC(3)) +GC(3).

GC(3) = 0010. GC(4) = 0110. Only the 2nd bit (from the left) changes going from 3 to 4.

To represent the decimal part of the value 3.4, we scale this 2nd bit by 0.4, yielding 0,.4,1,0.

Interpolated Gray codes are useful because they have the property of regular Gray codes

that only one bit changes for transitions between neighboring values, but the representation

is still continuous. Classi�cation now requires decoding the Gray code input representation

and determining the classi�cation threshold.

X0 1

ρ=0 ρ=0.5 ρ= 1

0

1

10

1

10X X X

Y YY

1

1

Figure 5.7: Two overlapped Gaussian classes (left), and an extra feature (y-axis) correlated
di�erent amounts (� = 0: no correlation, � = 1: perfect correlation) with the unencoded
version of the regular input (x-axis)

The extra feature is a 1-D value correlated (with correlation �) with the original unen-

coded regular input, X. The extra feature is drawn from a Gaussian distribution with mean

� � (X � :5) + :5 and standard deviation
p
(1� �2). Examples of the distributions of the

unencoded original dimension and the extra feature for various correlations are shown in

Figure 5.7. This problem has been carefully constructed so that the optimal classi�cation

boundary does not change as � varies.

Consider the extreme cases. At � = 1, the extra feature is exactly an unencoded version

of the regular input. An STL net using this feature as an extra input could ignore the

encoded inputs and solve the problem using this feature alone. An MTL net using this

extra feature as an extra output would have its hidden layer biased towards representations

that decode the Gray code, which is useful to the main classi�cation task. At the other

extreme (� = 0), we expect nets using the extra feature to learn no better than one using

just the regular inputs because there is no useful information provided by the uncorrelated

extra feature. The interesting case is between the two extremes. We can imagine a situation

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 135

where as an output, the extra feature is still able to help MTL by guiding it to decode the

Gray code, but as an input does not help STL because of the high level of noise.

0.6

0.61

0.62

0.63

0.64

0.65

0.00 0.25 0.50 0.75 1.00

T
es

t S
et

 E
rr

or

Correlation of Extra Feature

"STL+IN"
"MTL"
"STL"

Figure 5.8: STL, STL with the feature used as an extra input, and MTL where the feature
used as an extra output vs. � on the Classi�cation Problem. The improvement of MTL
over STL at � = 0 is not statistically signi�cant, but does appear to �t the MTL trend well.
We suspect this improvement may be due to noise injected by this uncorrelated output into
the hidden layer acting as a regularizer. See Section 1.4 for more discussion of this e�ect.

The class output unit uses a sigmoid transfer function and cross-entropy error measure.

The output unit for the correlated extra feature uses a linear transfer function and squared

error measure. Figure 5.8 shows the average performance of 50 trials of STL, STL using the

extra feature as an extra input, and MTL which uses the extra feature as an extra output

as a function of � using networks with 20 hidden units, 70 training patterns, and halt and

test sets of 1000 patterns each. As in the previous section, STL is much more sensitive to

changes in the extra feature than MTL, so that by � = 0:75 the curves cross and for � less

than 0:75, the dimension is actually more useful as an output dimension than as an extra

input. The graph on the right side of Figure 5.11 shows a blow-up of the more interesting

region of Figure 5.8.

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 136

5.1.4 Discussion

The problems used in this section are contrived. They are the simplest problems we could

devise that exhibit the phenomenon. But we may have observed evidence for this sensitivity

to noise in inputs on the pneumonia problem. Recall that when we tried feature nets on

the pneumonia problem (Section 2.3.9), we did not observe improvements in performance

comparable to MTL. The MTL net is learning an internal representation for the extra

tasks. Feature nets provide a learned internal representation for the same extra tasks as

extra inputs to a net. Are these two approaches that di�erent? One di�erence is that the

models learned for the extra tasks in the pneumonia domain are noisy; the extra tasks are

not learned well. Because the models are poor, they act as noisy inputs. As we see above,

noise in inputs can hurt learning even if those inputs contain otherwise useful information.

As extra MTL outputs, however, there is no noise in the task signals because we can use

the signals in the database, not predictions for them. If one compares the zero-noise points

for MTL with the moderate-noise points for STL with extra inputs in Figures 5.5, 5.6, and

5.8, it is easy to see why MTL could outperform feature nets in domains like this where

the extra tasks are not learned well. When the choice is between using extra tasks as extra

MTL outputs, or using poor predictions of the extra tasks as extra inputs, using them as

extra MTL outputs will probably work better.

5.2 Selecting Inputs and Extra Outputs

In the previous section we used synthetic problems to demonstrate that some input features

are more useful when used as extra outputs than when used as inputs. In this section we

use feature selection on a real problem, DNA splice-junction, to �nd features that are more

useful when used as outputs than as inputs. We use the feature selection method devised by

Koller and Sahami [Koller & Sahami 1996] to select which features to use as inputs. Instead

of ignoring the features eliminated by feature selection, we will use them as extra outputs

for MTL. On the DNA splice-junction problem, using some features as inputs and other

features as extra outputs yields better performance than using all features as inputs or using

just selected features as inputs. Since many real-world problems have excess features, this

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 137

process makes MTL applicable to real-world domains where other sources of extra tasks

may not exist.

5.2.1 Feature Selection

Feature selection is the process of selecting a subset of the available features to use as inputs

for learning. When there are few features and all of these are relevant for learning, feature

selection is not important. In real-world problems, however, there is often an excess of

features. Many of the features may be irrelevant to the learning task at hand. And many

features may be redundant with information contained in other features. Because learning

algorithms usually have di�culty coping with large numbers of redundant and irrelevant

features, performance often improves considerably when the learning method is given only

the subset of features most useful for the learning task.

Here we use the feature selection method developed by Koller and Sahami. This method

is a learning-algorithm independent feature selector that uses information theoretic mea-

sures of feature importance to select the features most likely to be useful as inputs. Cur-

rently, the Koller-Sahami algorithm is applicable only to classi�cation problems de�ned on

boolean features.

The theoretical motivation behind the Koller-Sahami algorithm is to remove attributes

which have markov blankets in the remaining attributes. The markov blanket of an attribute

is the minimal set of other attributes such that all other attributes not in the blanket

are conditionally independent of the attribute when conditioned on the markov blanket

attributes. A markov blanket isolates an attribute from all other attributes. If an attribute

has a markov blanket in the other attributes, then this attribute provides no additional

information, and the class decision is independent of the value of this attribute conditioned

on the values of the other attributes in the blanket. In practice, �nding markov blankets

is not practical given a large number of attributes. The Koller-Sahami algorithm makes

several simplifying approximations that allow the degree to which an attribute is blanketed

by other attributes to be estimated in reasonable time. These approximations yield an

algorithm capable of doing feature selection on problems containing hundreds to several-

thousands of features in a few hours on a workstation.

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 138

The Koller-Sahami feature selector is a greedy feature selector. The preferred way

of using the algorithm is backward-elimination. Start with all features in the set, and

remove attributes one-at-a-time, at each step removing the attribute most covered by the

other attributes remaining in the set. That is, at each step the algorithm removes the

attribute that appears to provide the least additional information for the class given the

other remaining attributes. This greedy approach, while suboptimal in many domains, is

e�ective and works well on many domains, including the DNA splice-junction domain.

5.2.2 The DNA SPLICE-JUNCTION Problem

DNA contains coded information that is used by cells to construct proteins. In the process of

building a messenger RNA (mRNA) molecule that will be used as a template from which to

build a protein, large sections of the original DNA coding are ignored. The coded sequences

that are used are known as \exons", while the ignored sequences are known as \introns".

The nature of the boundaries between exons and introns, known as \splice junctions", is a

subject of active research.

The DNA splice-junction Problem we use is available in the UCI machine learning

repository [Noordewier, Towell & Shavlik 1991]. For each case in the database we are given

a sequence of 60 nucleotides. The goal is to predict if the center of the nucleotide sequence

codes for an exon-to-intron boundary, an intron-to-exon boundary, or neither. 25% of the

cases are EI boundaries, 25% are IE boundaries, and 50% are neither EI or IE boundaries.

For compatibility, we use the nucleotide coding scheme used by Koller and Sahami. This

scheme codes each of the 60 nucleotides in the DNA sequence using 3 bits. This yields a

total of 180 boolean attributes that might be used as inputs. Typical performance on this

problem is 92-94% accuracy when trained on training sets containing 1000-2000 cases.

5.2.3 Experiments

We've run two experiments with the DNA problem. In the �rst experiment, we determine

how many hidden units to use in the backprop nets. This experiment also shows the

bene�t of using feature selection to limit the number of features used as inputs to the nets.

In the second experiment we determine if using some features as extra outputs improves

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 139

performance on splice-junction recognition.

In all our experiments we use backprop nets composed of sigmoid units. We train

the nets using conjugate gradient in the Xerion simulator from the University of Toronto.

We use early stopping on an independent halt set to determine when to stop training.

The performance of the net is then measured on an independent test set not used for

backpropagation or early stopping. The dataset we are using contains 2000 cases. We

randomly split this set into train, halt, and test sets containing 667, 666, and 667 cases,

respectively. We repeatedly sample the dataset this way to generate multiple trials.

Our coding for the main splice-junction task uses three outputs, one for IE, one for

EI, and one for neither. We use a normalized cross-entropy loss function for the outputs

for the main task. Normalized cross entropy is a standard way of preserving probability

semantics when multiple outputs code for mutually exclusive classes. The output activations

are normalized by dividing each output's activation by the sum of the activations of the

three outputs coding for IE,EI,Neither. This normalization is done prior to computing and

backpropagating the error at each output. The classi�cation of the net prediction is done in

the usual way by �nding which of the three outputs has the highest activation. When some

of the boolean attributes are used as extra outputs, we use a non-normalized cross-entropy

loss function to train them.

Experiment 1: Performance vs. Net Size

The purpose of this experiment is to determine what net size yields the best performance

on the DNA domain. We tried nets containing 5, 20, 80, 320, and 1280 hidden units. The

nets have 3 outputs that code for the main task.

Figure 5.9 shows the test set cross-entropy error for the nets of the di�erent sizes when

trained with all 180 input features, and when trained with the 30 input features selected

by the Koller-Sahami feature selector. (We select 30 features from the 180 because this is

the number of features Koller and Sahami selected for their experiments with this domain.)

Each data point is the average of 12 trials; the vertical bars are 95% con�dence intervals

for the estimates. From the graph it is clear that better performance is achieved with nets

with 80, 320, or 1280 hidden units. (It is common for early stopping to favor large nets.)

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 140

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 100 1000

Cr
os

s-
En

tro
py

 L
os

s o
n

Te
st

Se
t

Number of Hidden Units (logscale)

180 INPUTS

30 INPUTS

Figure 5.9: Cross-Entropy performance of di�erent size nets with all 180 inputs and 30
selected inputs

From the graph it is also clear that cross-entropy performance is signi�cantly better for nets

that use only 30 selected features as inputs as compared to nets that use all 180 features as

inputs.

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

10 100 1000

Pe
rc

en
t A

cc
ur

ac
y o

n
Te

st
Se

t

Number of Hidden Units (logscale)

30 INPUTS

180 INPUTS

Figure 5.10: Prediction accuracy of di�erent size nets with all 180 inputs and 30 selected
inputs

Figure 5.10 shows the splice-junction prediction accuracy of the 180 and 30 input nets

as a function of net size. Once again, performance is best with large nets, although this

graph suggests that accuracy is best with nets nearer to 320 hidden units than to 1280

hidden units. This graph also shows that using the reduced set of input features improves

accuracy on this domain.

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 141

We conclude from the experiments in this section that the optimal net size is approx-

imately 320 hidden units, and that training nets with the 30 features selected with the

Koller-Sahami feature selector yields better performance than using all 180 inputs.

Experiment 2: Using Unused Features as Extra Outputs

In the previous experiment, the 150 features not selected for use as inputs by feature selection

were thrown away. They were not used as inputs or as outputs. In this section we use some

of the features not used as inputs as extra outputs for multitask learning.

The Koller-Sahami algorithm is told how many attributes to remove. It does not auto-

matically determine when to stop removing attributes. We ran the Koller-Sahami feature

selector and had it remove all 180 attributes in the DNA problem. Because the feature

selector is a greedy algorithm that removes attributes one-at-a-time, this creates an order-

ing on the attributes. As above, we use the last 30 attributes removed by the algorithm as

inputs.

Rather than ignore the remaining 150 attributes, we use the next 30 attributes as extra

outputs for multitask learning. These are the attributes of the remaining 150 attributes

that the feature selector considers most useful. (We use 30 of the remaining attributes

instead of all 150 as extra outputs mainly for computational e�ciency. When the number

of extra outputs on a net is large, the number of hidden units must be increased almost

proportionately so that each output is guaranteed a certain minimum number of hidden

units. Using all 150 unused inputs as extra outputs yields nets so large that we could not

a�ord to run many trials.)

The multitask learning net has 30 inputs, 3 outputs for the main task, and an additional

30 outputs for the 30 attributes that were not selected to be used as inputs. The multitask

learning net has 1280 hidden units (instead of 320) because it is learning many more tasks.

We have not attempted to �nd the optimal number of hidden units for the multitask learning

net, and we suspect that the multitask learning net would perform better with more than

1280 hidden units. This biases our experiments in favor of the nets that do not use extra

outputs because we are using a nearly optimal number of hidden units on those nets (and

that near-optimal net size was determined using the same dataset).

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 142

Table 5.2: Cross-Entropy Performance of Di�erent Combinations of Inputs and Outputs.
All di�erences except the di�erence between Net2 and Net4 are statistically signi�cant at
.05 or better.

Net HiddenUnits Inputs ExtraOutputs CrossEntropy StdErr

Net1 320 180 0 0.257 0.006
Net2 320 30 0 0.180 0.009
Net3 1280 30 30 0.167 0.006
Net4 320 60 0 0.187 0.006

Table 5.2 shows the cross-entropy error for four di�erent nets. Table 5.3 shows the

prediction accuracy for the same four nets. Net1 has 320 hidden units and uses all 180

inputs. This is the traditional way of training on this task without any feature selection.

Net2 has the same number of hidden units, but uses only the 30 features selected by feature

selection as inputs. Net3 is the multitask learning net. It uses the same 30 attributes as

inputs as Net2. Net3, however, also uses the next best 30 attributes as extra outputs. These

are attributes that are ignored by Net2. Finally, Net4 uses as inputs both the 30 attributes

used by Net2 as inputs, and the 30 attributes used by Net3 as extra outputs. Net4 thus uses

all the attributes Net3 uses, but Net4 uses all of them as inputs. It has no extra outputs.

Table 5.3: Predictive Accuracy of Di�erent Combinations of Inputs and Outputs. The
di�erence between Net2 and Net3 just misses being signi�cant at .05 with 10 trials.

Net HiddenUnits Inputs ExtraOutputs % Accuracy StdErr

Net1 320 180 0 90.98% 0.35
Net2 320 30 0 94.16% 0.19
Net3 1280 30 30 94.32% 0.18
Net4 320 60 0 93.66% 0.21

Net1 is clearly the worst performer on this problem. Using all 180 attributes as inputs

is not the best thing to do. Using only the 30 features selected with the Koller-Sahami

algorithm as inputs (Net2) yields signi�cantly better performance. Net3, however, performs

even better. It is best to use some of the features not used as inputs as extra outputs

instead of ignoring them. Net4, which uses all features used by Net3 (but as inputs), does

not perform as well as Net3 (nor even as well as Net2).

Net3 reduces the cross entropy 7.2% compared with Net2, and 10.7% compared with

Net4, which uses the same features. In predictive accuracy, Net3 reduces the error 2.7%

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 143

compared to Net2, and 10.4% compared with Net4. In the DNA splice-junction domain

it is better to use some of the features as extra outputs than as inputs. Moreover, in this

domain at least, the Koller-Sahami feature selection algorithm is an e�ective way of selecting

some input features as candidates for use as extra outputs. We do not, however, know if

the Koller-Sahami algorithm is an e�ective way of selecting which of the available outputs

should be used for MTL. Although we used the next 30 features not used as inputs as the

extra MTL outputs, we do not know if this yields the best 30 outputs for MTL.

The results with splice-junction show that the bene�t of using a feature as an extra

output is di�erent from the bene�t of using that feature as an input. As an input, the net

has access to the feature's values on the training and test cases for prediction. As an output,

however, the net is instead biased to learn a mapping from the other input features to that

output. The splice-junction results demonstrate that what is learned for this mapping is

sometimes more useful than the feature value itself, particularly if the value of the feature

as an additional input is marginal or even harmful.

This section showed that the DNA splice-junction domain contains features that improve

recognition accuracy more if used as extra outputs than if used as inputs. This result

con�rms our expectation that there are real-world problems where some features could be

better used as extra outputs than as inputs. Using the features selected with the Koller-

Sahami feature selector as inputs yields better accuracy than using all the features as inputs.

Even better accuracy can be obtained by using some of the features not used as inputs as

extra outputs instead of ignoring them (or using them as additional inputs). Many real-

world problems might bene�t from a similar combination of feature selection and multitask

learning.

5.3 Using Features as Both Inputs and MTL Outputs

We have extra tasks that can be used as inputs, but using them as inputs sometimes hurts

performance (e.g., if they are too noisy). The bene�t of using the extra MTL outputs,

however, is sometimes not as large as the bene�t of using them as inputs (e.g., when they

are not too noisy). Furthermore, there is an interesting regime where they help learning

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 144

when used as an output, or as an input. Figure 5.11 shows a blow-up of these regions from

two of the problems presented in Section 5.1.

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.0 0.2 0.5 0.8 1.0 1.2 1.5

Te
st

 S
et

 R
M

S
E

Feature Noise Scale

"STL+IN"
"MTL"
"STL"

0.6

0.61

0.62

0.63

0.64

0.50 0.60 0.70 0.80 0.90 1.00

Te
st

 S
et

 E
rr

or

Correlation of Extra Feature

"STL+IN"
"MTL"
"STL"

Figure 5.11: Blow-ups of the regions of most practical interest for the problem in Sec-
tion 5.1.2 and the classi�cation problem in Section 5.1.3. STL is STL using the regular
inputs. STL+IN is STL using the extra feature(s) as extra inputs. MTL uses the extra
feature as an extra output.

In this region there are bene�ts from using the extra features both as extra inputs and as

extra outputs.

Wouldn't it be nice if we could use these extra tasks both as extra input features and

as extra output tasks? The di�culty of using the same task values as inputs and outputs is

that backprop would almost certainly learn connections that would directly map the input

to its corresponding output. Since a direct connection like this would present zero error

to the output, nothing of interest would be learned for the extra outputs in the hidden

layer. Putting the same task values on the inputs and outputs of a simple, fully-connected

feedforward MTL net e�ectively turns MTL o�.

5.3.1 Using Network Architecture to Isolate Outputs from Inputs

Figure 5.12 shows an architecture that combines the architectures in Figures 5.3 and 5.4. It

uses two disjoint hidden layers to prevent output tasks from \seeing" the same task value

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 145

that is used as an input. The architecture allows some of the bene�ts of MTL. That is,

it learns models internally for the extra tasks (even though they are used as inputs) and

makes what is learned by those models available to the main task.

binary inputs
coding for A

binary inputs
coding for B

R e g u l a r I n p u t s

Extra Input

Main OutputExtra Output

MTL Hidden
 Layer

STL+IN Hidden
 Layer

Figure 5.12: An MTL architecture that combines learning the main task using an extra
input feature, and learning an extra task that is this input feature. Each arrow represents
full feed-forward connections between the two layers.

The two hidden layers in Figure 5.12 are not at di�erent depths, but connect to di�erent

inputs and outputs. The hidden layer on the right \sees" all inputs, and connects on the

output side to the main task (and to any extra tasks that would not be used as extra inputs).

This is similar to the hidden layer in the STL net that has extra inputs (Figure 5.3). The

hidden layer on the left, however, does not see the extra inputs; it sees only the regular

inputs. On the output side, however, it connects to not only the main task, but also to

the extra tasks that are also being used as extra inputs. This hidden layer is similar to the

hidden layer in the MTL net in Figure 5.4. It learns the extra tasks, but does not see those

tasks as inputs. Because this hidden layer does not see the extra tasks as inputs, it cannot

learn direct connections to map tasks used as inputs to those same tasks used as outputs.

It must learn a model for the extra outputs, even though a di�erent part of the same net is

using those same extra tasks as extra inputs.

5.3.2 Results

Figure 5.13 shows the results of using the architecture in Figure 5.12 on problem F1(A,B)

using EF(A) and EF(B) both as extra input features and as extra output tasks. MTL

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 146

using the extra features as both inputs and outputs performs as well as MTL with just the

extra outputs in the high noise regions of the graph, and better in the low noise regions of

the graph. The performance of STL using the extra features as extra inputs is still better

when the extra features have very low noise. But the tradeo� point where it becomes

better to use the extra features as extra outputs shifts towards lower noise when compared

with Figure 5.5. Although MTL+IN appears to perform better than MTL for high noise

regions of the graph, these di�erences are not signi�cant. All methods are not statistically

distinguishable from each other for noise scales 10.0 or above.

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

T
es

t S
et

 R
M

S
E

Feature Noise Scale

"STL+IN"
"MTL"
"STL"

"MTL+IN"

Figure 5.13: Performance on F3(A,B) of STL with the regular inputs, STL with the extra
input for EF(A) and EF(B), and MTL with extra output tasks for EF(A) and EF(B).

Figure 5.14 shows the results of using the same architecture on the classi�cation problem

from Section 5.1.3. Again, using the extra feature as both inputs and outputs improves the

performance of MTL in the region where � is closer to one (i.e., where the features have less

noise and are more useful as inputs) and shifts the point where the tradeo� between using

the extra feature only as an extra input, and using it as both extra inputs and outputs,

happens. Although performance appears to be slightly worse at the low � part of the graph,

the di�erences there are not statistically signi�cant with 50 trials.

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 147

0.6

0.61

0.62

0.63

0.64

0.65

0.00 0.25 0.50 0.75 1.00

T
es

t S
et

 E
rr

or

Correlation of Extra Feature

"STL+IN"
"MTL"
"STL"

"MTL+IN"

Figure 5.14: STL, STL with the feature used as an extra input, and MTL where the feature
used as an extra output vs. � on the Classi�cation Problem

Figure 5.15 shows blow-ups of Figures 5.13 and 5.14 similar to those shown in Fig-

ure 5.11. In both graphs, the curve for MTL+IN yields performance between STL+IN and

MTL where the extra feature is most useful (low noise or high correlation). This shifts the

tradeo� points where it is better to just use the extra feature as an input for STL. This

suggests MTL+IN will outperform STL+IN on real problems. Moreover, it demonstrates

the existence of regions (noise scales 0.75{1.5 and � 0.6{0.8) where MTL+IN is the best

performer. If you want best performance on these problems in these regions you must use

MTL+IN.

5.3.3 Discussion

We conclude that this approach to using some features as both inputs and as extra outputs

has promise. If we can devise better architectures that allow MTL+IN to always perform

as well as, or better than, the best of STL and MTL, there will never be a reason to use

STL or STL+IN.

Not all features can be used as extra outputs using the architecture in Figure 5.12. In

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 148

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.0 0.2 0.5 0.8 1.0 1.2 1.5

Te
st

 S
et

 R
M

S
E

Feature Noise Scale

"STL+IN"
"MTL"
"STL"

"MTL+IN"

0.6

0.61

0.62

0.63

0.64

0.50 0.60 0.70 0.80 0.90 1.00

Te
st

 S
et

 E
rr

or

Correlation of Extra Feature

"STL+IN"
"MTL"
"STL"

"MTL+IN"

Figure 5.15: Blow-ups of the same regions shown in 5.11. STL is STL using the regular
inputs. STL+IN is STL using the extra feature(s) as extra inputs. MTL uses the extra
feature as an extra output. MTL+IN is the addition to the graphs. It uses the extra
feature(s) as both inputs and extra MTL outputs.

order for extra outputs to be more useful than the extra inputs, there must be enough

information in the other inputs to learn the problem. Fortunately, in many real world

domains there is considerable redundancy in the input features. We are convinced many

real problems would bene�t from using some of the inputs as outputs instead. We are

currently exploring alternate architectures that may improve performance further, and that

will allow all features to be used as both inputs and outputs.

5.4 Chapter Summary

This chapter shows that the bene�t of using a feature as an extra output is di�erent from

the bene�t of using that feature as an input. As an input, the net has access to the value

of the feature on both the training and test cases. As an output, the net only has access

to the value of the feature during training, and it is biased to learn a mapping from the

other inputs in the training set to that output. It is this mapping that is then available to

the net during testing instead of the value of the feature itself. Because of this di�erence,

sometimes it is better to use some features as outputs rather than as inputs.

CHAPTER 5. SOME INPUTS WORK BETTER AS EXTRA OUTPUTS 149

In Section 5.1 we demonstrated that some features are more useful as extra outputs.

In this section we used synthetic problems where it is easy to understand which features

would more useful as outputs than as inputs and why. In Section 5.2 we showed a real-world

problem, DNA SPLICE-JUNCTION, where some features were more useful as outputs than

as inputs. We also showed that feature selection could be employed to �nd inputs that might

be more useful as extra outputs. Feature selection �nds a good subset of the features to

use as inputs. Features not used as inputs are then candidates for use as extra outputs.

This approach avoids the combinatorial explosion that would occur if we tried to evaluate

all possible combinations of features used as inputs or as extra outputs.

The graphs in Section 5.1 make it clear that some features help when used either as an

input, or as an output. Since the bene�t of using a feature as an extra output is di�erent

from that of using it as an input, can we get both bene�ts? Yes. The approach we followed is

to break the single fully connected hidden layer used in previous MTL nets into two disjoint

hidden layers, one of which is not able to see all the inputs. This architecture reaps both

bene�ts by allowing some features to be used simultaneously as both inputs and outputs

while preventing learning direct feedthrough identity mappings. This method is still being

re�ned, but the early results are promising. We were able to achieve performance on two

synthetic problems from Section 5.1 using some features as both inputs and extra outputs

that we could not achieve by using those features as just inputs or just extra outputs.

Further development and testing on real problems is necessary before we can judge how

useful it will be in practice to use features as both inputs and extra MTL outputs.

Most of the performance di�erences we observe in this chapter are small. The bene�t of

using some features that could be used as inputs as extra outputs instead is often not that

large. Using inputs as extra MTL outputs probably will not be the most important applica-

tion of MTL to real problems. This chapter does, however, show that MTL can potentially

be applied to any real world problem because most real problems have a feature selection

problem and this creates the possibility that some of those features not selected for use as

inputs might best be used as outputs instead of discarded. Moreover, if we can improve the

technology that allows features to be used as both inputs and extra MTL outputs on one

net, MTL potentially would be applicable to all problems in machine learning.

Chapter 6

Beyond Basics

The basic machinery for doing multitask learning in neural nets is already present in back-

propagation. Backprop, however, was not designed to do MTL well. This chapter is presents

a few techniques that make multitask learning in backprop nets work better. Some of the

techniques may be counterintuitive. Some are so important that if they are not followed,

multitask learning can hurt generalization performance instead of helping it.

MTL trains multiple tasks in parallel not because this is a more e�cient way to learn

many tasks, but because the information in the training signals for other tasks can help

one task be learned better. Sometimes what is optimal for one task is not optimal for all

tasks. When this is the case, it is important to optimize the technique so that performance

on the main task is best, even if this hurts performance on the extra tasks. If several or

all of the tasks are important, it may be best to rerun learning for each important task,

with the technique optimized for each important task one at a time. This point-of-view

is important. It allows us to develop asymmetric methods that favor performance on one

task at the expense of poorer performance on other tasks. Unlike previous chapters, all

the methods in this chapter improve performance on the main task(s) by treating the main

task(s) di�erently than the extra tasks. The only method described in this chapter used on

problems earlier in this thesis is early stopping on tasks individually. The other methods

presented in this chapter could be applied to most problems examined in this thesis. We

expect that in many cases this would improve the performance of MTL.

150

CHAPTER 6. BEYOND BASICS 151

6.1 Early Stopping

Most of the neural net experiments reported in this thesis use early stopping. Early stopping

is a way of preventing over�tting by halting the training of error-driven procedures like

backprop before they achieve minimum error on the training set. Early stopping is usually

done using an independent test set (the \halt set") that is not used for backpropagating

errors. Performance on the halt set is monitored as backpropagation is done on the training

set, and training is halted when performance on the halt set stops improving or starts

getting worse. Early stopping is important in most applications of backprop nets if one is

to achieve best performance.

Recall the 1D-ALVINN domain used in Section 2.1. In this problem the main task is to

predict the steering direction for an autonomous vehicle given images of the road in front of

the vehicle. We applied MTL to 1D-ALVINN by training a neural net on eight extra tasks

while it trained on the main steering task:

� whether the road is one or two lanes � location of centerline (2-lane roads only)

� location of left edge of road � location of right edge of road

� location of road center � intensity of road surface

� intensity of region bordering road � intensity of centerline (2-lane roads only)

The MTL net for 1D-ALVINN has nine outputs, one for the main steering task and one

for each of the eight extra tasks. Figure 6.1 shows nine graphs, one for each of the nine tasks

trained on the MTL net. Each graph is the root-mean-squared-error of one of the outputs

on a halt set as the MTL net trains. Usually, training causes the error on the halt set to

fall, then level o�, then begin to rise again; performance on the training set (not shown

because it quickly falls o� the bottom of the scale) continues to fall throughout training.

Early stopping halts training at the epoch where performance on the halt set is best.

By examining the graphs, it is clear that the best place to halt training di�ers for each

task. The road center task reaches peak performance after 200,000 backprop passes, but

the main steering task would perform best if halted at 125,000 passes. (Table 6.1 shows the

best place to halt each task.) There is no one epoch where training can be stopped so as

to achieve maximum performance on all tasks. If all the tasks are important, and one net

CHAPTER 6. BEYOND BASICS 152

0.4

0.45

0.5

0.55

0.6

0.65

0 200000 400000 600000 800000 1e+06

 r
o

o
t-

m
e

a
n

-s
q

u
a

re
d

-e
rr

o
r

 backprop passes (epochs x 100)

number_of_lanes

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 200000 400000 600000 800000 1e+06

 r
o

o
t-

m
e

a
n

-s
q

u
a

re
d

-e
rr

o
r

 backprop passes (epochs x 100)

road_left_edge

0.3

0.35

0.4

0.45

0.5

0.55

0 200000 400000 600000 800000 1e+06

 r
o

o
t-

m
e

a
n

-s
q

u
a

re
d

-e
rr

o
r

 backprop passes (epochs x 100)

road_right_edge

0.45

0.5

0.55

0.6

0.65

0.7

0 200000 400000 600000 800000 1e+06

 r
o

o
t-

m
e

a
n

-s
q

u
a

re
d

-e
rr

o
r

 backprop passes (epochs x 100)

line_center

0.15

0.2

0.25

0.3

0.35

0.4

0 200000 400000 600000 800000 1e+06

 r
o

o
t-

m
e

a
n

-s
q

u
a

re
d

-e
rr

o
r

 backprop passes (epochs x 100)

road_center

0.55

0.6

0.65

0.7

0.75

0.8

0 200000 400000 600000 800000 1e+06

 r
o

o
t-

m
e

a
n

-s
q

u
a

re
d

-e
rr

o
r

 backprop passes (epochs x 100)

road_greylevel

0.55

0.6

0.65

0.7

0.75

0.8

0 200000 400000 600000 800000 1e+06

 r
o

o
t-

m
e

a
n

-s
q

u
a

re
d

-e
rr

o
r

 backprop passes (epochs x 100)

nonroad_greylevel

1

1.2

1.4

1.6

1.8

2

0 200000 400000 600000 800000 1e+06

 r
o

o
t-

m
e

a
n

-s
q

u
a

re
d

-e
rr

o
r

 backprop passes (epochs x 100)

line_greylevel

0.25

0.3

0.35

0.4

0.45

0.5

0 200000 400000 600000 800000 1e+06

 r
o

o
t-

m
e

a
n

-s
q

u
a

re
d

-e
rr

o
r

 backprop passes (epochs x 100)

steering_direction

Figure 6.1: Test-Set Performance of MTL Net Trained on Nine 1D-ALVINN Tasks.

is to be used to predict all the tasks, one place to halt training is where the error on all the

outputs combined is minimized. Figure 6.2 shows the mean RMS error of the nine tasks

combined as the MTL net is trained. The best average RMSE occurs at 75,000 backprop

passes.

But using one net to make predictions for all the tasks is suboptimal. Better performance

can be achieved by halting training on each output individually and using the snapshot of

the net taken at that epoch to make predictions for that task. We refer to the net halted

when performance on particular task is best as a \snapshot" because the MTL net is still

trained on all tasks until a snapshot has been made for all tasks of interest. In 1D-ALVINN,

CHAPTER 6. BEYOND BASICS 153

0.55

0.6

0.65

0.7

0.75

0.8

0 200000 400000 600000 800000 1e+06

 r
oo

t-
m

ea
n-

sq
ua

re
d-

er
ro

r

 backprop passes (epochs x 100)

all_9_tasks_combined

Figure 6.2: Combined Test-Set Performance on all 1D-ALVINN Tasks.

if all tasks were of interest (unlikely since there probably is little use for predictions of the

road intensity), there would be nine snapshots made of the MTL net, one for each of the

nine tasks.

Table 6.1 compares the performance on 1D-ALVINN if early stopping is done per task

with the performance that would be obtained by halting training for the entire MTL net

at one place using the combined RMSE. On average, halting tasks individually reduces

error 9.0%. This is a large di�erence. For some tasks, the performance of the MTL net is

worse than the performance of STL on this task if the MTL net is not halted on that task

individually but is halted at the point where the combined error is lowest. We conclude

that if tasks do not all reach peak performance at the same time (the usual case), it is

important to do early stopping individually on each task of interest. Early stopping on

tasks individually is very important. We used it for all experiments reported in this thesis.

(Section 8.1 shows how performance on NETtalk could be improved by stopping on tasks

individually.

Before leaving this topic, it is important to recognize that the training curves for the

CHAPTER 6. BEYOND BASICS 154

Table 6.1: Performance of MTL on each 1D-ALVINN task when training is halted on
each task individually compared with the performance on the tasks when halting using the
combined RMSE across all tasks. Halting on each task individually reduces error about 9%
on average.

TASK Halted Individually Halted Combined Difference

BP Pass Performance BP Pass Performance

1: 1 or 2 Lanes 100000 0.444 75000 0.456 2.7%
2: Left Edge 100000 0.309 75000 0.321 3.9%
3: Right Edge 100000 0.376 75000 0.381 1.3%
4: Line Center 75000 0.486 75000 0.486 0.0%
5: Road Center 200000 0.208 75000 0.239 14.9%
6: Road Greylevel 750000 0.552 75000 0.680 23.2%
7: Edge Greylevel 375000 0.518 75000 0.597 15.3%
8: Line Greylevel 1 1.010 75000 1.158 14.7%

9: Steering 125000 0.276 75000 0.292 5.8%

individual outputs on a net with multiple outputs like an MTL net are not necessarily

monotonic. While it is not unheard of for the test-set error of a single-output net to be non-

monotonic, the training-set error for a single-output net should descend monotonically or

become at. If batch gradient descent is done properly, the training-set error should never

increase. This does not hold for errors measured for individual outputs on a multiple-output

net. The aggregate training-set error summed across all outputs should never increase,

and the aggregate test-set error will usually have a single minimum, but any one output

may exhibit more complex behavior. The graph for road greylevel (graph number 6) in

Figure 6.1 shows a strong multimodal test-set curve. The corresponding training set curve

for this output is similar in shape. The extra complexity of MTL training curves sometimes

makes judging when to halt training more di�cult.

Because the generalization curves for individual tasks often are multimodal, we do early

stopping by training MTL nets until the halt-set performance of all tasks appears to have

levelled o� or begun over�tting. Often this is well beyond the point where the main task

stopped improving. We then examine the entire generalization curve for the main task to

�nd the backprop pass where performance was maximized. We use the network saved at

that time for future predictions (or repeat training but stop at that backprop pass).

CHAPTER 6. BEYOND BASICS 155

6.2 Learning Rates

The graphs showing the learning curves for the nine 1D-ALVINN tasks in the previous

section raise some interesting questions. Is it possible to control the rates at which di�erent

tasks train so they each reach their best halt-set performance at the same time? Might

controlling the rates at which di�erent tasks train yield better MTL performance for the

main task? Would best performance on each task be achieved if each task reached peak

performance at the same time? If not, is it better for extra tasks to learn slower or faster

than the main task? Can we make a general statement about how fast extra tasks should

learn relative to the main task, or will this be di�erent for each extra task?

The rate at which di�erent tasks learn using vanilla backpropagation is almost certainly

not optimal for MTL. Consider a task that trains many times slower than the main task.

Most of what is learned for the slow task is learned after the snapshot for the main task is

taken. Thus most of what is learned for the slow task cannot bene�t the main task.

Surprisingly, a task that is learned many times faster than the main task can also hurt

the performance of the main task. If the fast task is well into over�tting by the time the

main task is learned, the representation in the hidden layer for the fast task probably is not

as useful to the main task as it would have been before it began to over�t. Moreover, if the

main task shares considerably with this faster task, the faster task may pull the main task

into premature over�tting.

6.2.1 Learning Rate Optimization

The easiest and most direct method of controlling the rate at which di�erent tasks learn

is to use di�erent learning rate on each task, i.e., on each output. Consider again the 1D-

ALVINN problem. The MTL net for 1D-ALVINN has nine outputs, one for the main task

and one for each of the eight extra tasks. In the previous experiments we used the same

learning rate for each output. To roughly balance the importance of each task to training,

we preprocessed the data sets by rescaling the outputs for each task so that they have the

same variance. Even with this variance preprocessing, however, we observed that tasks

train at di�erent rates as shown in Figure 6.1.

CHAPTER 6. BEYOND BASICS 156

Rather than use the same learning rate for each task, can we adjust learning rates so

that performance on the main task is optimized? For problems like 1D-ALVINN that have

a small number of extra tasks, we can use gradient descent to optimize the learning rates

of the extra tasks.

We use perturbation to estimate the gradient of the generalization performance of the

main task with respect to the learning rates of the extra tasks. First, we estimate the

generalization performance of the initial learning rates (usually we initialize the learning

rates of all tasks to 1.0) by training an MTL net until early stopping on the main task halts

training. The performance on the halt set is an estimate of the performance given those

learning rates. Then we perturb the learning rate for one task by increasing it. Again we

train a net (from the same initial weights as before, and using the same train and halt sets),

halt training on the main task using the halt set, and measure the performance of the net

on the halt set. We do this for each extra task. If there are eight extra tasks, we must train

nine neural nets to estimate the gradient once.1

6.2.2 E�ect on the Main Task

We applied gradient descent on the learning rates for the eight extra tasks in 1D-ALVINN

using the estimated gradients computed as described above. To minimize the number

of times the gradient must be computed, we do line searches so that each gradient is fully

exploited before a new one must be computed. Once the line search converges, we recompute

the gradient at the new point. We repeat the process until the early-stopping performance

on the halt set stops improving.

Because this procedure repeatedly evaluates performance on the same halt set, over�t-

ting to that halt set is more likely than it is when using the halt set once for early stopping.

1It is possible to analytically compute the gradient of the learning rate for each output that will reduce

error on the main task output fastest on each backprop pass. This has the disadvantage, however, of favoring

learning rates that optimize performance on the training set, not generalization performance. Often what

works best on the training set does not generalize well. The main goal of MTL is to improve generalization

accuracy. Because of this, we use the performance on the test set as the criterion we wish to optimize.

Unfortunately, we know of no general way to analytically compute or estimate the e�ect of di�erent learning

rates on test set performance, though there may heuristic methods that work well in practice..

CHAPTER 6. BEYOND BASICS 157

We have not found this to be a problem so far. As usual, we report results from a second

independent test set to prevent this from yielding optimistically good estimated generaliza-

tion performance. (Where over�tting to the halt set becomes a problem, one solution is to

split the halt set into two halt sets, one which is used to do early stopping when each net is

trained, and the other used to halt the outer level learning rate optimization process before

it over�ts to the �rst halt set.)

Table 6.2 shows the performance on the main task before and after optimizing the

learning rates of the eight extra tasks. The �rst �ve rows in the table are the results from

�ve di�erent runs using di�erent data sets and initial network weights. The bottom row in

the table is the average of the �ve trials. Optimizing the learning rates for the extra MTL

tasks improved the performance on the main task an additional 11.5%. This improvement

is over and above the original improvement of 15%{25% for MTL over STL.

Table 6.2: Performance of MTL on the main Steering Direction task before and after
optimizing the learning rates of the eight extra task. The performance is measured using
an an independent test set not used for backpropagation or training learning rates.

TRIAL Before Optimization After Optimization Difference

Trial 1 0.227 0.213 -6.2%
Trial 2 0.276 0.241 -12.7%
Trial 3 0.249 0.236 -5.2%
Trial 4 0.276 0.231 -16.3%
Trial 5 0.276 0.234 -15.2%

Average 0.261 0.231 -11.5% *

6.2.3 Learning Rates and How Fast the Tasks Train

Table 6.3 shows the �nal optimized learning rates for each of the eight extra MTL tasks

in each of the �ve trials. Each of the learning rates was initialized to 1.0 before gradient

descent.

From Table 6.2 we know that optimizing the learning rates for the extra tasks improves

performance considerably on the main task. Yet no strong pattern emerges from the learning

rates learned for these extra tasks in Table 6.3. (Because we are using small training sets

here, considerable variation between runs is expected.) One clear pattern is that the average

learning rate learned for the extra tasks is somewhat smaller than that for the main task.

CHAPTER 6. BEYOND BASICS 158

Table 6.3: Learning rates learned for the eight extra tasks in 1D-ALVINN. All learning
rates were initialized to 1 before training.

TASK Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average

1: 1 or 2 Lanes 1.22 0.83 0.92 0.99 0.94 0.98
2: Left Edge 0.56 1.24 1.05 0.99 1.05 0.98
3: Right Edge 0.74 0.62 1.01 0.96 0.87 0.88
4: Line Center 1.43 0.58 0.91 0.51 0.98 0.88
5: Road Center 0.68 0.59 1.04 0.75 1.11 0.83
6: Road Greylevel 1.19 1.16 0.91 1.42 1.02 1.14
7: Edge Greylevel 1.02 0.89 0.83 0.64 0.90 0.86
8: Line Greylevel 0.95 0.79 0.92 1.02 0.98 0.93

Average 0.97 0.84 0.95 0.91 0.98 0.93

It also looks like the Road Greylevel task consistently receives large learning rates, and the

Road Center task often receives low learning rates.

Examining the training curves for all the tasks as the learning rates are optimized shows

that the changes in the learning rates of the extra tasks has a signi�cant e�ect on the rate at

which the extra tasks are learned. And, perhaps more interestingly, it also has a signi�cant

e�ect on the rate at which the main task is learned.

It is di�cult to present learning curves for all the tasks during gradient descent on learn-

ing rates in a concise and intelligible fashion without some form of animation. Figure 6.7 (at

the end of this chapter) is an attempt to summarize the e�ect of learning rate optimization

during one of the shorter optimization runs. The horizontal axis is the number of epochs

required for peak generalization performance on each task to be achieved. This is a measure

of how fast tasks are training. Points towards the left side of the graph indicate tasks that

trained quickly (in few epochs); points toward the right side of the graph indicate tasks

that trained more slowly (required more epochs). The �gure shows �ve snapshots during

learning. The �rst snapshot is before optimization has begun when the learning rates are

all equal to 1. The second snapshot is after 2 steps of gradient descent, the third after 3

steps of descent, etc. Each snapshot shows the learning speed of all nine tasks.

Several things are evident from looking at graphs like those in Figure 6.7. Task 8

(predicting the greylevel of the centerline) is always predicted best before the MTL net

has been trained with backpropagation. This is consistent with the learning curve for this

CHAPTER 6. BEYOND BASICS 159

task shown in Figure 6.1 which shows that it begins over�tting immediately. This is not

too surprising: the centerline is an extremely small feature in the images, so learning it is

probably too di�cult given the relatively small training sets used in these experiments.

The speed at which Task 9, the main steering task, reaches optimum performance

changes considerably during learning rate optimization. This is surprising because the

learning rate of the main task is not changed. The only way learning rate optimization can

a�ect the main task is by a�ecting the hidden layer representation developing for the extra

tasks, which the main task can share.

By the end of learning rate optimization, all tasks except Task 6 reach their peak

performance before the main task, Task 9, even though they did not all train faster than

the main task before the learning rates were optimized. We see this in most trials. In some

trials, the speed of the main task (Task 9) is slowed so that the other tasks come before it,

as in this trial. In other trials where the speed of the main task is not slowed, the other

tasks are speeded up so that they fall before or nearer the main task. In general, it seems

that learning rate optimization drives the extra tasks so that they learn roughly 1 to 2 times

faster than the main task. This suggests that tasks bene�cial to the main task help it most

if they are learned somewhat faster than the main task, but not too much faster.

So what about Task 6, predicting the road greylevel? In all trials this task ended up

being learned last. Surprisingly, if one looks at the learning rates for this task in Table 6.3,

it is the one task that consistently receives a learning rate greater than 1. In the absence

of other e�ects, one expects increasing the learning rate to make an output train faster.2

We can only conclude that just as the learning speed of the main task can be slowed by

reducing the learning rates on other tasks it shares with, Task 6 is also slowed by the reduced

learning rates on the other tasks (and is, perhaps, even more sensitive to this). The increase

in the learning rate for Task 6 may be an attempt by optimization to partially overcome

this slowing { Task 6 would be learned even later if its learning rate were not increased.

2Pushing a task to train faster does not necessarily mean it will reach its peak performance faster, but

we observe that it usually does in practice.

CHAPTER 6. BEYOND BASICS 160

6.2.4 The Performance of the Extra Tasks

What is the performance on the eight extra tasks after the learning rates for these tasks

have been optimized to maximize the performance of the main task? Is performance on the

extra tasks sacri�ced to obtain better performance on the main task?

Table 6.4 shows the RMS Error for the eight extra outputs before and after learning rate

optimization. Performance on 7 of the 8 extra tasks also improves. This is surprising because

the criterion being optimized is the performance on the main task, not the performance on

any of these extra tasks.3 What is good for the goose appears to be good for the gander.

The main task is learned best if performance on the extra tasks is also improved. In this

domain, learning rate optimization improves performance on the main task by adjusting the

learning rates of the extra tasks so that a hidden layer representation is learned that has

broad utility to most tasks in the domain. It would be interesting to see if this optimization

increases sharing in the hidden layer.

Table 6.4: Performance of the MTL nets on the extra tasks before and after learning rates
have been optimized to improve performance on the main task.

TASK Before Optimization After Optimization % Difference

1: 1 or 2 Lanes 0.398 0.387 -2.8%
2: Left Edge 0.282 0.272 -3.5%
3: Right Edge 0.356 0.287 -19.4%
4: Line Center 0.459 0.381 -17.0%
5: Road Center 0.232 0.176 -24.1%
6: Road Greylevel 0.531 0.586 +10.4%
7: Edge Greylevel 0.632 0.537 -15.0%
8: Line Greylevel 1.007 0.920 -8.6%

Average 0.487 0.443 -9.0%

6.2.5 Learning Rates for Harmful Tasks

Interestingly, the only task whose performance is hurt by learning rate optimization is Task

6, the task that learns slowest after learning rate optimization, and the task that consistently

gets the largest learning rates from the optimization. This raises an interesting question: is

3For this experiment we do early stopping on the �nal training run for each task individually so that we

see how well each extra task is learned by the learning rates that were optimized for the main task.

CHAPTER 6. BEYOND BASICS 161

Task 6 bene�cial to the main task or not? Does learning rate optimization slow the rate at

which Task 6 learns to mitigate conict between Task 6 and the main task? Or, does the

larger learning rate Task 6 receives suggest Task 6 is bene�cial to the main task, but it is

unnecessary to learn Task 6 faster than the main task for the main task to get this bene�t?

What does learning rate optimization do to the learning rate for extra tasks not related to

the main task?

To try to answer this, we added an additional task to the 1D-ALVINN problem that

consists of a noisy training signal. The training targets are random numbers uniformly

distributed on an interval similar to the other training signals. Because the training signals

for this extra task are random, they cannot be related to the main steering task. This is not

to say that adding an extra noisy output to a backprop net might not improve performance

on the main task. But in general, we do not expect extra tasks such as these to be very

useful.

Table 6.5: Performance on the main Steering Direction Task when an unrelated, noisy
extra task is added to the MTL net along with the other eight extra tasks, before and after
learning rate optimization. The learning rates learned for the noisy extra task are shown
in the third column.

TRIAL Before Optimization After Optimization Noise Learning Rate

Trial 1 0.240 0.216 0.74
Trial 2 0.265 0.228 0.77
Trial 3 0.290 0.252 0.89
Trial 4 0.283 0.220 0.24
Trial 5 0.330 0.253 1.13

Average 0.282 0.234 0.76

Table 6.5 shows the performance on the main steering task before and after learning rate

optimization. As expected, the average performance before optimization is worse with an

extra noise task on the MTL net than without it (compare the before optimization column

in Tables 6.5 and 6.2). Comparing the �nal performance after learning rate optimization

with and without the extra noise task, however, shows that learning rate optimization

is able to achieve performance with the extra noise task (Table 6.2) comparable to the

performance of learning rate optimization without the extra noise task (Table 6.1). Learning

rate optimization is able to mitigate much of the impact of having extra output tasks that

CHAPTER 6. BEYOND BASICS 162

are harmful to the main task.

Table 6.5 also shows the learning rate learned for the noisy extra output for the same �ve

trials used before. The average learning rate learned for the extra noise task is 0.76. This

is smaller than the learning rates learned for any of the other eight tasks. This con�rms

our suspicion that a noisy extra task should not be as useful as a real task drawn from

the domain. It also demonstrates that learning rate optimization can perform a limited

kind of output task selection. We say limited because it did not drive the learning rate of

the irrelevant extra task to zero. This is because backprop nets are fairly good at learning

disjoint hidden layer representations for outputs that have little overlap if there is su�cient

capacity in the hidden layer to do so.

6.2.6 Computational Cost

Using gradient descent to optimize learning rates can be expensive. On average, each trial

computed the gradient 10 times, and performed an average of 7 line search steps with each

gradient. Thus each trial required training about 150 MTL nets. For important applications

(e.g., medicine, autonomous vehicle navigation) this cost is not so prohibitive as to be

impractical. Other currently popular procedures for improving generalization performance

such as boosting and bagging also require that many models be trained. It may be possible

to amortize the cost of training the learning rates of the extra tasks by combining a form

of boosting with learning rate gradient descent.

6.2.7 Learning Rate Optimization For Other Tasks

Optimizing the learning rates for di�erent outputs is applicable to problems that may not be

thought of as multitask problems. For example, classi�cation problems with more than two

classes are often trained on one net using multiple outputs, one for each class. We suspect

that learning rate optimization would yield improved accuracy in these kinds of problems

as well. One potentially valuable use of this approach may be when di�erent output classes

have very di�erent frequencies. Increasing the learning rate on low frequency classes may

improve the accuracy of the learned models on those classes.

CHAPTER 6. BEYOND BASICS 163

6.3 Beyond Fully Connected Hidden Layers

6.3.1 Net Capacity

One might think that it would be important to keep MTL hidden layers small to promote

sharing. Usually this is not correct. In our experience, limited capacity hurts MTL more

than it hurts STL. It is better not to think of MTL as a way of providing additional

constraint on what is learned, but to think of MTL as providing an opportunity for tasks to

share what they learn. This might seem like a minor di�erence in point-of-view. In practice,

it makes a signi�cant di�erence. If one adopts the \constraint" point-of-view, one begins to

apply methods that falsely assume there is a compact representation that will fully support

all tasks with high accuracy. In real-world problems, the multiple tasks are often more

di�erent from each other than they are the same. Because of this, much of what is learned

for each task is not useful to other tasks. When possible, it is better to allow su�cient

capacity for tasks to be learned independently. In this way, sharing will only happen when

there is su�ciently strong statistical correlation to cause it to happen.

6.3.2 Private Hidden Layers

Providing su�cient capacity for the main task and all extra tasks to bene�cially coexist

can be di�cult when there are many tasks. As is discussed in Appendix 1, it is surprising

how many hidden units are needed for optimal performance on even one task. We often

�nd the optimal number of hidden units is more than 100 hidden units per output. If there

are a hundred extra tasks this translates into many thousands of hidden units. This not

only creates computational di�culties, but eventually can degrade performance on the main

task. The reason for this is simple: if there are 10,000 hidden units, most of which have

developed representations useful mainly to other tasks, the output unit for the main task

has a massive feature selection problem. It must �nd the relatively small number of hidden

units that are useful to it.

It might seem that this would limit the usefulness of MTL to situations where there

are not too many extra tasks. This is not the case. Instead of using a single, very large,

fully connected hidden layer shared equally by all tasks, we can develop an asymmetric

CHAPTER 6. BEYOND BASICS 164

architecture that is optimal for the main tasks but not for the extra tasks. This allows us

to use an arbitrarily large number of extra tasks without risking swamping the main task

in a sea of largely irrelevant hidden units.

 I n p u t s

Main Output(s)Extra Outputs

MTL Hidden
 Layer

Private Hidden
Layer for Main

 fully connected
to input features

 fully connected
to input features

...

Figure 6.3: MTL Architecture With a Private Hidden Layer Used Just by the Main Task(s),
and a Shared Hidden Layer Used by the Main Task(s) and the Extra Tasks. The Shared
Hidden Layer can be Much Smaller than Would be Necessary for Good Performance on the
Extra Tasks.

Figure 6.3 shows the simplest asymmetric net architecture that accomplishes this. In-

stead of one hidden layer shared equally by all tasks, there are now two disjoint hidden

layers. Hidden layer 1 is a private hidden layer used only by the main task(s). Hidden layer

2 is the hidden layer shared by the main task and the extra tasks. This is the hidden layer

that supports MTL transfer. This net architecture is asymmetric because the main task

can see and a�ect the hidden layer used by the extra tasks, but the extra tasks can not see

or a�ect the hidden layer reserved for the main tasks(s).

The size of the private hidden layer can be optimized in the usual way with STL on

the main task(s). This hidden layer will probably contain hundreds of hidden units. The

MTL hidden layer shared by the main and extra tasks does not need to be large enough to

support optimal performance on the extra tasks. The size of this hidden layer should be

optimized to provide maximum performance on the main task(s).

CHAPTER 6. BEYOND BASICS 165

6.3.3 Combining MTL with Feature Nets

Feature nets is an approach to using extra tasks by learning models for them that then are

used to provide extra inputs for a net learning the main task. This is a good idea. We

compared feature nets with MTL on the pneumonia risk prediction domain in Section 2.3.9.

Although feature nets did not work as well as MTL on this domain, we are con�dent that

in other domains feature nets will work well, and will sometimes outperform MTL. It would

be nice to have a way to combine feature nets with MTL.

Figure 6.4 shows the feature net architecture. (This �gure is a copy of Figure 2.10.) It

is possible to combine MTL and feature nets at two di�erent levels. At the �rst level, note

that in Figure 6.4 separate nets were used to learn the models for the extra tasks before

the main net was trained on the main task. In other words, the models for the extra tasks

were learned with STL. Instead, we can use MTL to learn the models for the extra tasks.

MTL should yield better predictions on average for the extra task signals and should yield

a more useful hidden layer in the MTL net learned for the extra tasks. This level is a

straightforward application of MTL to feature nets.

The second level is a little more interesting. Suppose, as in Figure 6.4, there are inputs

given to the main net (which is learning the main task) coming from the feature net models

learned for the extra tasks. Can the main net also be an MTL net learning extra tasks as

well? Yes.

Figure 6.5 shows a net that uses MTL at both levels in feature nets. Each STL net

in the traditional feature net architecture (Figure 6.4) has been replaced by an MTL net.

MTL feature nets uses an MTL net to learn the models for the extra tasks that are to be

used as extra inputs. MTL feature nets also uses an MTL net to learn the main task; the

extra outputs on this net are the same extra tasks for which predictions are being provided

as extra inputs from the previous net.

One might be concerned that providing inputs to an MTL net that are predictions for

some of the tasks that will be used as extra outputs might prevent the MTL net from

learning anything interesting for those extra tasks. This is because backprop could learn

direct connections between the predictions for a task provided as an input and that task's

CHAPTER 6. BEYOND BASICS 166

.

Task 2 Task 3 Task 4

. . .

Main Task

Inputs

Figure 6.4: Feature Nets allows on to train a main task with STL but still bene�t from
what can be learned for auxiliary tasks.

output.4 This is not as large a problem as it might seem. Consider two cases. In the

�rst case, the predictions for the extra tasks are poor and there is room for improvement.

Because the MTL net's extra outputs are training signals more accurate than the input

predictions, backprop will attempt to learn models in the MTL more accurate than the

predictions provided as inputs. The input predictions will probably be a strong component

of those models, but the MTL net will learn more if it is possible given the information

available. Moreover, the MTL net now has the possibility of using the predictions for the

other extra inputs as inputs.

In the second case, the predictions for the extra task are good. Little improvement can

be made on them given the data at hand. In this case the MTL net will learn models that

are mainly jump connections feeding the predicted inputs through to the corresponding

4In Chapter 5 we presented an MTL architecture that is able to use the same task signals as both inputs

and extra outputs.

CHAPTER 6. BEYOND BASICS 167

. . .

 Main Task 2 Task 3 Task 4

. . .

 Main Task 2 Task 3 Task 4

Regular Inputs

MTL at
Level 1

MTL at
Level 2

Figure 6.5: Feature Nets can be used with MTL at two di�erent levels. Level 1: the net used
to learn models for the extra tasks can be an MTL net. Level 2: the main net used to learn
the main task using the regular inputs and extra task models as extra inputs can also be
an MTL net. This diagram shows MTL Feature Nets where the hidden layer representation
learned by the MTL net at Level 1 is passed as inputs to the MTL net at Level 2. It
is also possible to pass the output predictions of the MTL net at Level 1 to the net at
Level 2. Usually, passing the hidden layer activations works better than passing the output
predictions. (We have not tried passing both.)

outputs. This is good, however. If we assume the main task could be learned better if the

extra tasks could be provided as extra inputs, the MTL net learning the main task now has

the opportunity to use high-�delity predictions for the extra tasks as inputs, and thus will

perform well.

In summary, MTL feature nets can provide the advantages of both MTL and feature

nets. MTL helps better models be learned for the extra tasks. It also provides the MTL

bias for the main task when it is being learned. And it allows the main task to bene�t from

using high-�delity predictions for the extra tasks as inputs when these are possible.

Figure 6.6 shows the performance on the pneumonia problem using MTL nets for the

CHAPTER 6. BEYOND BASICS 168

0.01

0.02

0.03

0.04

0.1 0.2 0.3 0.4 0.5

 T
es

t-
S

et
 E

rr
or

 R
at

e

 Fraction of Population (FOP)

STL
MTL

MTL Feature Net Level 2

Figure 6.6: Performance of Feature Nets with MTL applied at both levels.

nets at both levels in feature nets. Performance improves considerably at the larger FOPs,

but may be worse than MTL alone at the lowest FOPS. We do not know if the data point

for FOP 0.2 is representative or not.

6.4 Chapter Summary

The goal in MTL is to learn the main task better by taking advantage of the information

contained in the training signals of the extra tasks. Sometimes the main task and extra

tasks can be treated equally. Often, however, better performance on the main task can be

achieved by employing methods that favor performance on the main task possibly at the

expense of worse performance on the extra tasks.

In Section 6.1 we saw that even if tasks are trained as equal outputs on an MTL net,

it is important to do early stopping for the main task without considering the error on

other outputs. Note that this is not the usual way of doing early stopping in the machine

learning community. Typically, net training is halted when the total error measured across

all outputs reaches a minimum on the test-set. This is almost certainly an inferior way to

CHAPTER 6. BEYOND BASICS 169

train any net that has multiple outputs. Better performance can usually be achieved on each

output by halting training on each output individually, and using the di�erent snapshots

acquired this way to make future predictions for those di�erent outputs. This is true even

if one does not think of the learning problem as a multitask problem. If there are multiple

outputs, it is a multitask problem.

In Section 6.2 we saw that training all output tasks on an MTL net the same way

probably does not yield optimal performance on the main task. We used optimization to

�nd the learning rates for the extra tasks that yielded the best performance on the main

task. Although the gradient descent procedure we used is expensive, this approach should

be practical for most problems having 25 or fewer tasks. For these problems the bene�t

can be substantial. Tuning the learning rates yielded a 10% further reduction in error for

MTL in the 1D-ALVINN domain. In domains where there are many extra tasks, applying

gradient descent to the learning rate of each extra task probably will not be practical. In

these domains, one approach is to group extra tasks into clusters that all receive the same

learning rate, thereby reducing the number of learning weights that need to be optimized.

The simplest way to do this is to use one learning rate for all extra tasks and to optimize

this single parameter so as to maximize performance on the main task. One conclusion

we drew from the experiments with learning rate optimization is that extra tasks seem to

bene�t the main task most if they are learned just before the main task. This suggests

another simple approach to tuning learning rates: increase the learning rates on all tasks

that are learned after the main task until they are learned at a rate similar to the main

task. This is a fairly simple optimization problem that is much more tractable when there

are many extra tasks.

In Chapter 5 we used feature selection to �nd features that might be used as outputs

because they are not useful as inputs. In Section 5.3 we showed that some features are so

useful as extra outputs that it is worth using an architecture that allows these features to

be used as both inputs and as outputs. Both of these approaches beg the question: how

can we tell what extra tasks are useful?

Even if we use some task selection method to �nd useful extra outputs, there may still

be hundreds or thousands of extra outputs to train. This creates two problems. First,

CHAPTER 6. BEYOND BASICS 170

training a hidden layer large enough to support both the main tasks and extra tasks may

be prohibitively costly. Second, even if one could a�ord to train this large hidden layer, the

number of hidden units dedicated to the extra tasks will eventually grow so large that the

main task output will su�er from an internal \representation" selection problem that will

hurt its performance. To avoid these problems, in Section 6.3.2 we present an architecture

that uses a private hidden layer for the main task and a public hidden layer shared by the

main tasks and the extra tasks. The public hidden layer is not large enough to support

optimal performance on the extra tasks. Keeping the public hidden layer small promotes

generalization in what is learned for the extra tasks, insures that there will not be so many

hidden units dedicated to extra tasks that the main task is unable to do selection at the

hidden layer, and makes the total number of weights that must be trained much smaller.

In Section 6.3.3 we examined another architecture that expanded the usefulness of MTL.

Here we combined feature nets with multitask learning. This architecture is our �nal exam-

ple of treating the main task di�erently than the extra tasks. One reason why we present

this architecture last is because it demonstrates an important point about MTL nets: an

MTL net can be employed anywhere an STL net can be used. The extra tasks on the MTL

net are there only to improve performance on the main task. Because the MTL net has the

same inputs as the STL net, and because the extra outputs on the MTL net can be ignored

after the net is trained, MTL nets are functionally equivalent to STL nets in every way,

except that they often generalize better.

CHAPTER 6. BEYOND BASICS 171

..step.0

1 or 2 lanes | 1 |

Left Edge | 2 |

Right Edge | 3 |

Line Center | 4 |

Road Center | 5 |

Road Greylevel | 6 |

Edge Greylevel | 7 |

Line Greylevel |8 |

Steering (main) | 9 |

..step.2

1 or 2 lanes | 1 |

Left Edge | 2 |

Right Edge | 3 |

Line Center | 4 |

Road Center | 5 |

Road Greylevel | 6|

Edge Greylevel | 7 |

Line Greylevel |8 |

Steering (main) | 9 |

..step.3

1 or 2 lanes | 1 |

Left Edge | 2 |

Right Edge | 3 |

Line Center | 4 |

Road Center | 5 |

Road Greylevel | 6 |

Edge Greylevel | 7 |

Line Greylevel |8 |

Steering (main) | 9 |

..step.4

1 or 2 lanes | 1 |

Left Edge | 2 |

Right Edge | 3 |

Line Center | 4 |

Road Center | 5 |

Road Greylevel | 6 |

Edge Greylevel | 7 |

Line Greylevel |8 |

Steering (main) | 9 |

..step.5

1 or 2 lanes | 1 |

Left Edge | 2 |

Right Edge | 3 |

Line Center | 4 |

Road Center | 5 |

Road Greylevel | 6 |

Edge Greylevel | 7 |

Line Greylevel |8 |

Steering (main) | 9 |

..

0 200000 400000 600000 800000 1000000

Pattern Presentations (epochs x 100) To Peak Performance

Figure 6.7: Task Learning Speeds During Learning Rate Optimization

Chapter 7

MTL in K-Nearest Neighbor

7.1 Introduction

Multitask Learning is an inductive transfer method that improves generalization by learn-

ing extra tasks in parallel with the main task while using a shared representation; what is

learned for the extra tasks can help the main task be learned better. Previously we demon-

strated multitask learning in backprop nets. In backprop MTL, the representation used for

multitask transfer is a hidden layer shared by all tasks. Is multitask learning useful only in

arti�cial neural nets?

Many learning methods do not have a representation naturally shared between tasks.

Can MTL be used with methods like these? Yes. This chapter shows that multitask learning

can be used with case-based methods such as k-nearest neighbor and kernel regression that

do not have a built-in means of sharing a representation between multiple tasks. The

approach we follow is to use an error metric that combines performance on the main task

with a weighted contribution of the performance on the extra tasks. This causes models to

be learned that perform well on both the main task and the extra tasks.

We demonstrate this approach to multitask transfer on the same pneumonia risk pre-

diction domain used with MTL in backprop nets. As we will see, MTL reduces the error

of kernel regression 5{10% on this problem. We also introduce soft ranks, a ranking proce-

dure that makes rank-based error metrics di�erentiable and thus more amenable to gradient

search.

172

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 173

7.2 Background

The basic assumption underlying most machine learning methods is that similarity in feature

space correlates with similarity in prediction space. K-nearest neighbor and kernel regression

explicitly use this heuristic for prediction. They search the training set for cases most similar

to the new case, and return as a prediction for the new case the class (or value) of those

most similar cases.

Similarity is usually de�ned by a distance metric computed over case features. The

distance metric most commonly used is weighted Euclidean distance:

DISTANCE(c1; c2) =

vuutNO FEATSX
i=1

WEIGHTi � (FEATi;c1 � FEATi;c2)2

where c1 and c2 are two cases, NO FEATS is the dimensionality of feature space, FEATi;c

is feature i for case c, and WEIGHTi is a weight for each feature dimension that controls

how important that dimension is to the distance calculation. In simple unweighted Euclidean

distance, 8i, WEIGHTi = 1:0.

7.2.1 K-Nearest Neighbor

K-nearest neighbor (KNN) searches the training set for the K cases closest to the new

case. In classi�cation problems, KNN returns as its prediction for the new case either the

predominant class of the K nearest neighbors, or a probability for each class estimated from

the number of nearest neighbors in each class:

PROBABILITY (C) =
1

K

KX
i=1

CLASS(i = C)

where K is the number of neighbors, PROBABILITY (C) is the predicted probability that

the new case belongs in class C, and CLASS(i = C) is an indicator equal to 1 if case i is

a member of class C, and 0 otherwise. The predominant class is the class with the highest

predicted probability.

In regression, KNN returns the average of the K nearest neighbors:

PREDICTED VALUE =
1

K

KX
i=1

VALUEi

where PREDICTED VALUE is the regression value KNN will predict for the new case,

and VALUEi is the value of training case i.

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 174

The best value of K to use depends both on the structure of the problem space and

the density of samples. If K is too large, KNN becomes insensitive to the �ne structure

of the problem because the neighborhoods are too large. If K is too small, predictions

become noisy as they are based on smaller samples than necessary to capture the problem's

structure. Good values for K are usually found via cross validation.

7.2.2 Locally Weighted Averaging

Locally weighted averaging (LCWA, also known as kernel regression) is similar to KNN in

that it uses a distance metric to determine how similar the new case is to each case in the

training set. This distance is used to weight the contribution of each training case to the

prediction for the new case, training cases closest to the new case having the largest e�ect.

In classi�cation problems, the weight is used to accumulate the probability that the new

case belongs to each class:

PROBABILITY (C) =

PNO TRAIN
i=1 CLASS(i = C) � e�

DISTANCE(ci;cnew)

KERNEL WIDTH

PNO TRAIN
i=1 e�

DISTANCE(ci;cnew)

KERNEL WIDTH

where NO TRAIN is the number of cases in the training set, DISTANCE(ci; cnew) is

the distance between case ci in the training set and the new case measured using some

distance metric, CLASS(i = C) is an indicator as before, the numerator accumulates the

predictions of the training cases, weighted inversely by an exponentially decreasing function

of the distance relative to theKERNEL WIDTH, and the denominator is a normalization

factor.

In regression problems, distance is used to weight how much the value of each training

case adds to the predicted value:

PREDICTED VALUE =

PNO TRAIN

i=1 VALUEi � e
�

DISTANCE(ci;cnew)

KERNEL WIDTH

P
i=1NO TRAINe�

DISTANCE(ci;cnew)

KERNEL WIDTH

Predictions made with LCWA are a�ected by all cases in the training set, though cases far

away have little e�ect. Where K controls the size of the neighborhood used for prediction

in KNN, the KERNEL WIDTH controls the scale of the neighborhood that has most

e�ect in LCWA. Cases closer to the new case than KERNEL WIDTH have signi�cant

impact on the prediction for that case, cases further away than KERNEL WIDTH have

impact that falls o� exponentially with distance.

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 175

7.2.3 Feature Weights and the Distance Metric

The performance of KNN and LCWA depends on the quality of the distance metric. Simple

Euclidean distance (all feature weights equal to 1.0) often works reasonably well, but is usu-

ally suboptimal. Finding good feature weights is essential to optimal performance. Search

for good feature weights can be cast as an optimization problem using cross validation.

Leave-one-out cross validation (LOOCV) is particularly e�cient and easy to implement

in KNN and LCWA: remove each case from the training set one at a time, and use the

remaining N � 1 cases as the pool from which to �nd neighbors for prediction.

Gradient descent and LOOCV can be used to search for good feature weights. Feature

weights are initialized to some starting value. The LOOCV performance of these initial

weights are calculated, yielding an estimate of their generalization performance. The gra-

dient of the LOOCV performance with respect to the feature weights is calculated, either

analytically or by numerical approximation.1 A step is taken along the negative gradient.

This step changes the feature weights, usually by a small amount. If the updated feature

weights yield improved performance as measured by a new LOOCV on the training set, the

step is accepted. If not, the step is rejected and the step size is reduced. When a step is

accepted, the gradient at the new point is computed and the process repeats. Search termi-

nates when a local minimum in LOOCV performance is found. Local minima are detected

when the step size needed to improve LOOCV performance becomes very small.

Because this search repeatedly uses the same training set for optimization, over�tting

to the training set is likely, particularly if the training set is small. To protect against this,

a separate test set is used to determine when to halt training. This halt set is not used

to calculate gradients, but performance on the halt set (using the training set as the case

database) is watched during gradient search to determine when over�tting occurs. Gradient

search is terminated when performance on the halt set appears to be getting worse.

1One advantage of LCWA over KNN is that because LCWA predictions use all cases, LCWA performance

is di�erentiable with respect to the feature weights. KNN is usually discontinuous when cases move in and

out of the K nearest neighborhoods. There are modi�cations to KNN that make it di�erentiable, or search

can be done using an optimization method that does not require di�erentiability.

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 176

7.3 Multitask Learning in KNN and LCWA

Finding good feature weights is essential to optimal performance with KNN and LCWA.

MTL can be used to �nd better weights. In KNN and LCWA, the distance metric (i.e.,

the feature weights) is what we will share between tasks.2 The assumption is that feature

weights appropriate to one task drawn from the domain will tend to be appropriate to other

tasks in the domain, so �nding feature weights that perform well on all tasks should, on

average, improve performance on each task.3 The basic approach is to �nd feature weights

that yield good performance on both the main task and a set of related tasks drawn from the

same domain. The approach we follow is to use an error metric that combines performance

on the main task with a weighted contribution of the performance on the extra tasks. This

causes models to be learned that perform well on both the main task and the extra tasks.

It is possible for many extra tasks to swamp the error signal of the main task if the extra

tasks are too dissimilar. To prevent this, we weight the contribution of the extra tasks in a

combined error metric. The degree to which each extra task t a�ects the evaluation function

is controlled by weights �t:

Eval Metric = Perf Main Task +
NO TASKSX

t=1

�t � Perf Taskt

where Eval Metric is the criterion being minimized via gradient descent on the feature

weights, Perf Main Task is the performance on the main task, Perf Taskt is the perfor-

mance on extra task t, and �t is a nonnegative weight. �t = 0 causes learning to ignore the

extra task t, �t � 1 causes learning to give as much weight to performance on the extra task

t as to the main task, and �t � 1 causes learning to pay more attention to performance on

the extra tasks than to the main task.

In this chapter we consider only the case where all �t take on the same value, �. We do

this to reduce the computational cost of the experiments we run and to simplify the presen-

2Other things such as K and the KERNEL WIDTH can also be shared for MTL.
3This is the same assumption made in [O'Sullivan & Thrun 1996]. There, feature weights learned for a

previous task are used for a new task when the number of samples for the new task is too small to support

learning. This approach di�ers from MTL where the goal is to learn better feature weights by learning all

available extra tasks in parallel. Learning one set of feature weights for multiple tasks and using feature

weights learned separately for multiple independent tasks are not the same thing.

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 177

tation of results. We have run experiments where each �t is permitted to vary individually,

using gradient descent on the halt set to determine the optimal task weights. Although this

sometimes outperforms using a single � for all extra tasks, in the experiments we have run

so far it does not appear to perform so much better that it is worth the extra complexity it

would add to the discussion here. Also, over�tting appears to be more of a problem when

separate �t values are used for each extra task.

To further simplify the presentation, we've scaled lambda to the interval [0,1]. Now,

Eval Metric = (1� �) � Perf Main Task +
NO TASKSX

t=1

� � Perf Taskt

When � = 0, all weight is given to the main task and the extra tasks are completely

ignored. This is traditional single task learning (STL). When � = 1=2, equal weight is given

to the main task and to each extra task. This is multitask learning where all tasks have

comparable weight. When � = 1, all weight is given to the extra tasks and the main task

is ignored.

7.4 Pneumonia Risk Prediction (review)

We demonstrate MTL in KNN and LCWA using the Medis pneumonia risk prediction task

used for MTL backprop in Chapter 2. In this problem, the primary goal is to identify

patients at high risk from pneumonia so they may be hospitalized to receive aggressive

testing and treatment. Some of the most useful tests for predicting pneumonia risk usually

require hospitalization and will be available only if preliminary assessment indicates further

testing and hospitalization is warranted. But low-risk patients can often be identi�ed using

measurements made prior to hospitalization.

The Medis Pneumonia Database [Fine et al. 1993] indicates whether each patient lived

or died. 1,542 (10.9%) of the patients died. As before, the most useful decision aid for this

problem would predict which patients will live or die. But this is too di�cult. In practice,

the best that can be achieved is to estimate a probability of death (POD) from the observed

symptoms. In fact, it is su�cient to learn to rank patients by POD so lower risk patients can

be discriminated from higher risk patients. Patients at least risk may then be considered

for outpatient care.

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 178

As before, the criterion used to evaluate learning is the accuracy with which one can

select a fraction of the patients that do not die. For example, given a population of 10,000

patients, �nd the 20% of this population at least risk. To do this we learn a risk model and

a model threshold that allows 20% of the population (2000 patients) to fall below it. If 30

of the 2000 patients below this threshold die, the error rate is 30/2000 = 1.5%. We say that

the error rate for FOP 0.20 is 1.5% (\FOP" stands for fraction of population). We consider

FOPs 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. The goal is to learn models that minimize the error

rate at each FOP.

The Medis database contains results of 33 lab tests that will be available only after

patients are hospitalized. These results will not be available when the model is used because

the tests will not yet have been ordered. Previously, we used MTL in backpropagation to

bene�t from these future lab results. The extra lab values were used as extra tasks (extra

outputs) on a backprop net learning the main risk prediction task. The extra tasks biased

the shared hidden layer to learn representations that yielded better performance on the main

risk prediction task. Here we use the same extra tasks to demonstrate MTL in LCWA.

7.5 Soft Ranks

It is di�cult to directly learn models that minimize error rates at FOPs between 0.1 and

0.6. Not only are there six di�erent criteria, but error rates measured on FOPs are discrete

because lives/dies is boolean. Discrete metrics cannot be used with gradient descent.

In the neural net solution to the pneumonia problem we devised an error metric and

training procedure called rankprop that learned to predict ranks of the data. Rankprop

can be adapted to KNN and LCWA. Rankprop, however, requires rank models be learned

gradually with many epochs of learning interleaved with the repeated re-rankings performed

internal to the Rankprop algorithm. (See Appendix B for the Rankprop algorithm.) This is

not an issue with backpropagation which usually trains very slowly. But in our experience,

feature weights in KNN and LCWA can be trained much faster. It would be unfortunate

to slow KNN and LCWA learning by using a very small gradient step size just so that

rankprop is given the opportunity to frequently re-rank the training data. This led us to

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 179

search for another way to learn ranks with KNN and LCWA. The result is the soft rank

sum, which is based on a generalization of standard discrete ranks that we call soft ranks.

This modi�cation gives ranks a continuous avor, making it easy to create di�erentiable

error metrics based on the ranks.

Qualitatively, soft ranks behave like traditional ranks, but have the nice additional

property that they are continuous: small changes to item values yield small changes in the

soft ranks. Moreover, if small changes in the values cause items to swap positions with

neighboring items, the soft ranks reect this in a smooth way. See Appendix 1 for more

detail about soft ranks.

7.6 The Error Metrics

The main prediction task is mortality risk. KNN and LCWA are used to predict the risk of

each new case by examining whether its neighbors in the training set lived or died. Predicted

cases are then sorted by this predicted risk. The optimization error metric we use here for

this task is the sum of the soft ranks for all patients in the sample who live. The goal is to

order patients by risk, least risk �rst. Successfully ordering all patients that live before all

patients that die minimizes this sum. We scale the sum of soft ranks so that 0 indicates all

patients who live have been ranked with lower risk than all patients who die. This is ideal

performance. The scaling is done so that a soft rank sum of 1 indicates that all patients

who die have been ranked with lower risk than all patients who live. This is maximally

poor performance. Random ordering of the patients yields soft rank sums around 0:5. Good

performance on this domain requires soft rank sums less than 0:05.

The extra tasks include tasks such as predicting the white blood cell count and the

partial pressure of oxygen in the blood. The error metric for the extra tasks is the standard

sum-of-squares error (SSE). Note that extra tasks are not used to predict the risk sort order

of patients|we do not know what values (or combinations of values) of the extra tasks raise

or lower risk. The soft rank sum is computed only for the main mortality prediction task

using only the KNN and LCWA predictions for mortality. Learning to predict the SSE of

the extra tasks is useful only if it helps learn feature weights that improve performance on

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 180

the main risk task.

7.7 Empirical Results

We've run experiments using KNN and LCWA on pneumonia. With small to medium size

training sets, LCWA consistently outperforms KNN. The reason for this is simple. Roughly

90% of the patients survive, and even patients at high risk have a relatively low probability

of death (POD). If K is small, most KNN neighborhoods will include few (if any) deaths.

This means the predicted POD for most cases will be 0=K, with a few PODs of 1=K, fewer

PODs of 2=K, etc. A small number of discrete PODs does not support useful ranking of

patients. Using largeK reduces this problem, but sensitivity to �ne structure in the problem

is then lost. Because LCWA accumulates contributions from all cases in the training set, it

can make small distinctions between cases without being forced to gloss over �ne structure,

and thus provides a better basis for predicting relative risk. Because of this we report only

the LCWA results. The results of using MTL with KNN are qualitatively similar. MTL is

as applicable to KNN as to LCWA.

7.7.1 Methodology

In this chapter we report the results of three large experiments using MTL in LCWA

with soft ranks. In these experiments, the goal is to �nd feature weights that yield good

performance on the main task: predicting relative mortality risk from pneumonia. The

three experiments use similar methodology. The original dataset of 14,199 cases is randomly

subsampled to create learning and test sets. The learning set is then split into equally sized

training and halt sets. The training set is used for gradient descent on the feature weights,

and the halt set is used to halt gradient descent on the feature weights when over�tting

begins. The remaining cases in the test set are used as an independent test set to evaluate

the performance of the learned feature weights.

Caution: be careful not to confuse feature weights with task weights. Feature weights

are what will be trained with gradient descent. They determine the distance metric used to

�nd neighbors. Task weights control how much each task contributes to the error criterion

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 181

optimized by gradient descent. In this chapter, all task weights are controlled by a single

parameter � set via cross-validation.

The feature weights for the 30 input features are initialized to 1.0. Gradient descent with

line searches is done using LOOCV on the training set. We use KERNEL WIDTH = 1:0,

a value preliminary experiments indicated performed well on this problem. TheKERNEL WIDTH

is not trained via gradient descent because training the feature weights allows the distance

metric to adjust the e�ective KERNEL WIDTH. During learning, performance at each

gradient step is evaluated on the halt set. Because halt set performance is not always mono-

tonic, premature stopping is a potential problem. To prevent this, gradient descent is run

for a large, �xed number of steps, and the feature weights yielding best performance on the

halt set are found by examining the entire training curve. The learned weights are then

evaluated on the independent test set.

7.7.2 Experiment 1: Learning Task Weights with MTL

The �rst experiment examines how much attention learning should pay to the extra tasks.

Is it better to ignore the extra tasks and optimize performance only on the main task, or is

better performance on the main task achieved by optimizing performance on all the tasks?

500 Training Cases

Figure 7.1 shows the mean rank sum error on the independent test sets for 50 trials of

learning as a function of � for training and halt sets containing 500 patterns each. Each

data point has error bars indicating the standard error of the mean. In the graphs and

tables, the performance shown is for the main mortality risk prediction task.

The horizontal line at the top of the graph is the performance of LCWA when all feature

weights are 1.0, before any training has been done. This is LCWA using simple unweighted

Euclidean distance. Because there are no weights to train (i.e., no weight learning), this

performance is independent of �; no multitask learning has yet taken place.

The lower curve in Figure 7.1 shows how varying � a�ects MTL performance. All points

on the curve have better performance than the the horizontal line representing untrained

weights. Unweighted Euclidean distance (feature weights all equal to 1.0) performs worse

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 182

0.055

0.056

0.057

0.058

0.059

0.06

0.061

0 0.2 0.4 0.6 0.8 1

R
an

k
Er

ro
r (

In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Figure 7.1: Rank Sum Error as a function of MTL's � (Train = 500 cases; Halt = 500
cases). � = 0 is STL; the extra tasks are ignored. The horizontal line near the top of the
graph is the performance before feature weights are trained. This is the performance of
simple, unweighted Euclidean distance.

than feature weights trained with gradient descent.

The point at � = 0 is the performance of LCWA trained with traditional single task

learning (STL); the extra tasks are completely ignored by gradient descent when � = 0.

STL training of the feature weights reduces rank sum error about 5% compared with weights

equal to 1.0.

The points for � > 0 correspond to multitask learning. Larger values of � give more

weight to the extra tasks.4 From the graph it is clear that learning yields better performance

on the main task if it searches for feature weights that are good for both the main task and

for the extra tasks. MTL does not use any extra training patterns, it uses extra training

signals in each pattern. The optimal value of � is between 0.2{0.8. Interestingly, these �s

give similar weight to the main task and each extra task. At � = 0:5 all tasks|including the

main task|are given equal weight. At the optimal �, MTL reduces error another 5{10%.

The improvement of MTL over STL is larger than the improvement of STL with trained

4The vertical axis shows performance on only the main risk prediction task. The contribution of the

extra tasks to the error metric that gradient descent is optimizing is not shown|though its e�ect on what

is learned should be apparent.

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 183

1.8

1.9

2

2.1

2.2

2.3

2.4

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.1

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.3

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.4

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.5

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.6

Figure 7.2: Performance on Di�erent Fractions of the Population as � Varies (Train = 500;
Halt = 500)

weights over STL with untrained weights.

Figure 7.2 shows the performance of MTL as a function of � for the six di�erent FOP

metrics.5 The shape of the FOP curves is qualitatively similar to the Soft Rank Sum curve

in Figure 7.1.

Table 7.1 summarizes the performance of STL and MTL LCWA at � = 0:5. � = 0:5 is

not necessarily the optimal value. We choose � = 0:5 because performance is good at this

value, because performance appears to be at for � on both sides of this value, and because

5Because the 20% FOP contains the cases in the 10% FOP, the graphs are not statistically independent.

However, because more errors (deaths) occur later in an FOP (when learning is working well), the graphs are

more independent than the population fractions suggest. ROC curves would probably be more appropriate.

We use FOP metrics for compatibility with previous studies using this database.

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 184

it represents the point where all tasks are given equal weight. Di�erences marked with *",

" and *" are statistically signi�cant at 0.05, 0.01, and 0.001 or better, respectively.

MTL with � � 0:5 reduces FOP errors 5{10% compared with STL.

Table 7.1: Error rates of STL LCWA and MTL LCWA (� = 0:5) on the pneumonia problem
using train and test sets with 500 cases each.

FOP 0.1 0.2 0.3 0.4 0.5 0.6 SoftRankSum

STL LCWA .0216 .0291 .0367 .0440 .0520 .0611 .0585
MTL LCWA .0197 .0265 .0329 .0404 .0476 .0571 .0556

% Change -8.8% -8.9% -10.4% ** -8.2% ** -8.5% *** -6.5% *** -5.0% ***

1000 Training Cases

Figures 7.1 and 7.2 show the performance with training and halt sets sets containing 500

patterns each. In the backprop MTL experiments with this domain in Chapter 2 we used

train and halt sets containing 1000 patterns each. Figures 7.3 and 7.4 and Table 7.2 show

the performance of STL and MTL LCWA with 1000 cases in the train and halt sets. The

results of MTL LCWA with training and halt sets of size 1000 are qualitatively similar to

those of size 500; the main di�erence is that performance improves considerably with the

larger training sets. The improvement due to doubling the size of the training sets is larger

than the improvement due to using MTL instead of STL with the smaller training sets.

(We return to this issue in Section 7.7.4.)

Table 7.2: Error rates of STL LCWA and MTL LCWA (� = 0:5) on the pneumonia problem
using train and test sets with 1000 cases each.

FOP 0.1 0.2 0.3 0.4 0.5 0.6 SoftRankSum

STL LCWA .0147 .0216 .0285 .0364 .0447 .0540 .0530
MTL LCWA .0141 .0196 .0263 .0343 .0425 .0522 .0516

% Change -4.1% -9.3% -7.7% * -5.8% * -4.9% * -4.0% -2.6% **

7.7.3 Taking Full Advantage of LCWA

Figures 7.3 and 7.4 showed the performance of LCWA using 1000 patterns in the training

and halt sets. Because KNN and LCWA use the training set itself to make predictions,

they do not need to be \retrained" if new training data becomes available. We can take

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 185

0.051

0.0515

0.052

0.0525

0.053

0.0535

0.054

0.0545

0.055

0 0.2 0.4 0.6 0.8 1

R
an

k
Er

ro
r (

In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Figure 7.3: Rank Sum Error as a Function of � During MTL (Train = 1000; Halt = 1000)

advantage of this to make better use of the data in the halt sets. As before, train the feature

weights using gradient descent on the training set, and stop training when performance on

the halt set starts to get worse. Then, instead of discarding the halt set, add the cases

in the halt set to the training set before making predictions on unseen instances. In our

experiments, this doubles the number of cases used to make predictions. Although the

feature weights were trained with gradient descent on only half the data, KNN and LCWA

will almost certainly perform better when the learned feature weights are used with more

data.6

Figures 7.5 and 7.6 and Table 7.3 show the performance of LCWA using 1000 patterns

in the train and halt set, but when the halt set is added to the case base before making

predictions on the test set. The feature weights are trained using 1000 cases, and training

is halted using another 1000 cases, but �nal predictions are made using 2000 cases. Using

the halt set this way improves performance considerably. MTL still improves performance,

6It would be di�cult to use a backprop halt set this same way. With backprop, one would need to retrain

the neural net model from scratch using both the training and halt set patterns. Not only is this expensive,

but, because learning with the extra patterns might follow a di�erent trajectory, it is not clear that halting

the net trained on both sets of data at the same number of epochs used to halt the net trained on just the

training set is a reliable procedure.

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 186

0.0125

0.013

0.0135

0.014

0.0145

0.015

0.0155

0.016

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.1

0.018

0.019

0.02

0.021

0.022

0.023

0.024

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.1

0.025

0.026

0.027

0.028

0.029

0.03

0.031

0.032

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.1

0.032

0.033

0.034

0.035

0.036

0.037

0.038

0.039

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.1

0.04

0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.1

0.05

0.051

0.052

0.053

0.054

0.055

0.056

0.057

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.1

Figure 7.4: Performance on Di�erent Fractions of the Population as � Varies (Train = 1000;
Halt = 1000)

though with this many training patterns there is less room for improvement than there was

with fewer patterns.

Summary of Experiment 1

Experiment 1 examined the bene�t of MTL as a function of �. For values of � � 0:5,

MTL outperforms STL 2{15%, depending on the criterion and sample size. MTL does this

without having access to any additional cases. It merely has more information available

in each case. MTL uses the extra information in the cases in a way that does not require

that information to be available for future test cases. It uses the extra feature values as

extra tasks, not as extra inputs. As extra tasks, the extra information is used solely to

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 187

0.049

0.0495

0.05

0.0505

0.051

0.0515

0.052

0 0.2 0.4 0.6 0.8 1

R
an

k
Er

ro
r (

In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Figure 7.5: Rank Sum Error as a Function of � During MTL (Train = 1000; Halt = 1000;
RunTime = 1000+1000)

Table 7.3: Error rates of STL LCWA and MTL LCWA (� = 0:5) on the pneumonia problem
using train and test sets with 1000 cases each, and then combining the train and halt sets
to form a runtime set with 2000 cases.

FOP 0.1 0.2 0.3 0.4 0.5 0.6 SoftRankSum

STL LCWA .0091 .0146 .0201 .0282 .0368 .0483 .0505
MTL LCWA .0088 .0124 .0184 .0259 .0360 .0461 .0498

% Change -3.3% -15.1% ** -8.5% -8.2% -2.2% -4.6% -1.4%

bias what is learned to capture better regularities in the domain. Before proceeding to the

next experiment, it is interesting to note that an experiment that considered many possible

di�erent weightings for the extra tasks (including giving them no weight at all) determined

that, for this problem at least, best performance resulted from giving the same weight to

each extra task as to the main task. We do not believe this will be true in general. We

suspect that in many domains it will be better to give more weight to the main task than

to some or all of the extra tasks.

7.7.4 Experiment 2: How Large Is the MTL Bene�t?

Multitask LCWA outperforms traditional single task LCWA about 5{10% on this domain

when the training is done with 500 or 1000 cases. But the improvement in STL due to

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 188

0.0082

0.0084

0.0086

0.0088

0.009

0.0092

0.0094

0.0096

0.0098

0.01

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.1

0.0115

0.012

0.0125

0.013

0.0135

0.014

0.0145

0.015

0.0155

0.016

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.2

0.0175

0.018

0.0185

0.019

0.0195

0.02

0.0205

0.021

0.0215

0.022

0.0225

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.3

0.024

0.025

0.026

0.027

0.028

0.029

0.03

0.031

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.4

0.034

0.035

0.036

0.037

0.038

0.039

0.04

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.5

0.044

0.045

0.046

0.047

0.048

0.049

0.05

0.051

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.6

Figure 7.6: Performance on Di�erent Fractions of the Population as � Varies (Train = 1000;
Halt = 1000; RunTime = 1000+1000)

doubling the size of the training set was larger than the improvement of MTL over STL

with the same size training set. How many more training examples are needed with STL to

yield improvement comparable to MTL? We ran experiments using training sets containing

200, 400, 800, 1600, and 3200 training patterns, using STL and MTL with � = 0:5.

Figure 7.7 shows the performance of 25 trials of traditional STL LCWA (� = 0) and

MTL LCWA with � = 0:5 as a function of training set size. Performance improves quickly

with increasing sample size when the sample size is small. In the region between 200 and

1000 cases, the improvement due to MTL is equivalent to a 50{100% increase in the number

of training patterns, but decreases when the sample size gets large. With training sets larger

than 3200 cases each, the performance with � = 0:5 may be worse than with � = 0 because

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 189

0.05

0.055

0.06

0.065

0.07

0.075

0 500 1000 1500 2000 2500 3000

R
an

k
Su

m
 E

rro
r (

In
de

pe
nd

en
t T

es
t S

et
)

Total Patterns Used for Training (Train+Halt)

"STL--lambda=0.0"
"MTL--lambda=0.5"

Figure 7.7: Rank Sum Error of STL (� = 0) and MTL (� = 0:5) as a Function of the Size
of the Training+Halt Sets

one does not need the inductive bias from the extra tasks if the sample size is large enough

to insure excellent performance from optimizing the main task alone. Values of � in the

range 0 < � < 0:5 however, may yield better performance than STL (� = 0) even with large

training sets. (It would be interesting to see the optimal value of � as a function of the

amount of training data for this problem. We haven't done this experiment, but reducing

the strength of the MTL bias as more data is available should improve performance. In the

limit with in�nite data, � = 0 should be best.)

7.7.5 Experiment 3: MTL without Extra Tasks

Experiments 1 and 2 used lab tests that were available for the training data that will not

usually be available for future patients as extra tasks to help learn good feature weights for

the main task. Suppose there are no extra tasks. Can MTL still be used? Yes, sort of. The

elegance of KNN and LCWA allows us to treat each input as an extra task that is used to

help learn a better distance metric for the main task.

Suppose there is one main task to learn given N attributes. When predicting the main

task, we apply KNN or LCWA with a distance metric de�ned on all N attributes. But

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 190

we treat each attribute as an extra task, predicted from all the other attributes, using a

distance metric de�ned on N-1 attributes.7 The feature weights used in this distance metric

are the same feature weights used to predict the main task, except that the feature weight

for each attribute is ignored when predictions for that attribute are made. Thus we have

N+1 tasks in total.

Figures 7.8 and 7.9 show the performance of STL LCWA and MTL LCWA on pneu-

monia risk prediction using train and test sets containing 500 cases each when the pre-

hospitalization basic measurements are used as extra tasks predicted from the remaining

attributes. In this experiment the future lab tests are not used at all; we are doing MTL

solely using the input features as extra tasks.

Using the attributes themselves as extra tasks does not improve performance on the

main risk prediction task nearly as much as using the future lab tests as extra features.

Performance on the rank error metric is possibly worse using MTL with the attributes as

extra tasks. MTL Performance for FOP 0.1 and 0.2 has probably improved compared with

STL, performance for FOP 0.3, 0.4, and 0.5 is comparable to STL, and performance for

FOP 0.6 is probably worse than STL. This is an interesting result. When � = 1:0, KNN

MTL using features as the extra tasks is equivalent to performing unsupervised learning on

the problem and then seeing how well the resulting clusters predict the main risk task. The

fact that we do not see improvements in performance when doing MTL this way strongly

suggests that unsupervised learning would not be e�ective on this domain if the goal is to

predict pneumonia risk using the unsupervised model.

7One might imagine using the main task as an attribute, but we are not interested in learning models

that are functions of the main task signal. Treating the main task as an attribute and giving equal weight

to all tasks would e�ectively turn MTL KNN and LCWA into unsupervised learning algorithms. In a few

domains this might be the best thing to do. But supervised learning typically outperforms unsupervised

learning when the main prediction task is known. MTL is an intermediate point between supervised and

unsupervised learning. Usually MTL performs best if it takes advantage of the fact that the goal is to

maximize performance on one task at a time.

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 191

0.057

0.0575

0.058

0.0585

0.059

0.0595

0 0.2 0.4 0.6 0.8 1

R
an

k
Er

ro
r (

In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Figure 7.8: Rank Sum Error as a Function of � During MTL using the Attributes as the
Extra Tasks (Train = 500; Halt = 500) The horizontal line is the baseline performance with
all weights initialized to 1. The lower curve is the performance of the weights trained with
MTL as a function of �. As before, � = 0 ignores the extra tasks completely and is thus
equivalent to STL.

7.7.6 Feature Weights Learned with STL and MTL

The goal of using MTL with LCWA is to learn feature weights that yield a distance function

that makes the predictions returned by LCWA more accurate. The experiments in the

previous sections clearly demonstrate that MTL using the future labs as extra MTL tasks

signi�cantly improves performance on pneumonia risk prediction. But how do the weights

learned by STL and MTL di�er? Table 7.4 lists the 30 feature weights learned by STL

and MTL (� = 0:5) with train and halt sets containing 500 cases each at the point where

training was stopped, i.e., where performance on the halt set was best. The �rst column

gives the feature number. The second column gives the feature weights learned by STL for

trial 1. The third column gives the feature weights learned for the same trial with MTL.

The fourth column gives the average of the feature weights learned with STL over the 50

trials. The �fth column is this same average for MTL. We present both the results of a

single trial, and the average weights, because the averages tend to obliterate some of the

detail of what is learned in the individual trials. The sixth column is the signi�cance of the

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 192

1.8

1.9

2

2.1

2.2

2.3

2.4

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.1

2.7

2.8

2.9

3

3.1

3.2

3.3

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.2

3.5

3.6

3.7

3.8

3.9

4

4.1

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.3

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

4.8

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.4

5.1

5.15

5.2

5.25

5.3

5.35

5.4

5.45

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.5

5.9

5.95

6

6.05

6.1

6.15

6.2

6.25

6.3

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
t M

or
ta

lit
y

(In
de

pe
nd

en
t T

es
t S

et
)

Weight of Extra Tasks Compared with Main Task

Fraction of Population = 0.6

Figure 7.9: Performance on Di�erent Fractions of the Population as � Varies using the
Attributes as the Extra MTL Tasks (Train = 500; Halt = 500)

di�erences between the weights learned by STL and MTL. *", **", and ***" indicate

that the feature weight learned by 50 trials of STL is signi�cantly di�erent from the weight

learned by MTL at the 0.05, 0.01, and 0.001 con�dence level, respectively. Examining

weights given to individual dimensions in a high dimension space this way is questionable.

We do it not because the tests have any strong meaning, but because they are valuable in

focusing one's attention on interesting di�erences in the learned feature weights.

Feature weights are initialized to 1.0 before learning. STL typically does not learn feature

weights that di�er as much from 1.0 as those learned by MTL. Examining the feature weights

explored by STL during gradient descent, one observes that STL does explore settings of the

feature weights that are far from 1.0, but these typically do not yield good performance on

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 193

the halt set. In other words, STL appears to over�t signi�cantly to the training set. MTL

learns feature weights further from 1.0 that perform well on the halt sets. MTL appears to

over�t less then STL. In some cases the di�erence between the feature weights learned by

STL and MTL are considerable. See, for example, features 2 and 30.

One �nal note. Most learned feature weights are not that far from their initial value 1.0.

The pneumonia problem is a real problem. It is hard to believe all features are useful|let

alone roughly similarly useful|for predicting risk. Why do none of the features have values

near 0.0 or larger than 2.0? We suspect that the search space has many local minima, and

this prevents search from successfully exploring regions far from the initial weights. It would

be interesting to run these experiments many times starting from di�erent initial conditions,

or to use a search procedure more immune to local minima such as a genetic algorithm. This

might lead to further improvements in performance, or might lead to increased over�tting

to the training sets. It might also be interesting to to run these experiments with weight

decay regularization to keep feature weights near zero except where larger weights bene�ted

learning signi�cantly.

7.8 Summary and Discussion

Soft ranks and the soft rank sum should be useful in many domains, in part because ranks of

functions are often easier to learn than the functions themselves. Soft ranks should broaden

the utility of rank-based error metrics by making it easier to use gradient-based learning

methods with them.

Currently there is no theory to predict which extra tasks are helpful. There is also no

theory to predict the best �. We were surprised to �nd � � 0:5 was best on this problem,

and we do not expect � � 0:5 will be optimal for all sample sizes (or for all domains). KNN

and LCWA perform well in the large sample limit. The extra information from the training

signals for the extra tasks is unnecessary, and possibly misleading, near the asymptotic limit.

Given large training sets, � � 0 would probably be best. (We are running an experiment to

test this.) Currently, the only way to choose � is by cross validation. We have devised an

algorithm that uses LOOCV with the halt set so that � search does not require additional

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 194

training examples. This algorithm is e�cient enough to be able to learn a separate �t for

each extra task. This is useful because it explicitly learns how useful each extra task is to

the main task, and can learn to ignore harmful extra tasks by setting �t � 0 for those tasks.

KNN and LCWA often do not perform well in feature spaces with many dimensions.

This is because points tend to become equidistant as dimension increases. KNN and LCWA

depend on the di�erences in the distances between cases to make estimates. Another way

to view this is that all samples are sparse in a high dimensional space, and sparse samples

are rarely much closer to some points than they are to all the other points. Neighborhoods

become rural in high dimensional spaces. Because neighborhoods are less dense in high

dimensional spaces, �nding good feature weights is more important, and more di�cult,

in high dimensional spaces. We conjecture that MTL is most useful in high dimensional

feature spaces. In the pneumonia domain, MTL improved the performance of LCWA 5-10%

when the future lab tests were used as extra tasks. Cross-validation on �, the parameter

that determines how much emphasis is given to the extra tasks, indicates that for this

domain optimal performance results from giving near equal weight to the main task and

the extra tasks. Experiments with MTL using the input features as extra tasks indicate

that unsupervised learning is not able to yield bene�ts comparable to MTL with extra tasks

in this domain.

CHAPTER 7. MTL IN K-NEAREST NEIGHBOR 195

Table 7.4: Feature weights learned by STL and MTL. Columns 2 and 3 are the weights
learned by the �rst trial. Columns 4 and 5 are the average feature weights learned from the
50 trials.
Feature STL (trial 1) MTL (trial 1) STL (avg. 50 trials) MTL (avg. 50 trials) Signi�cance

1 1.650 1.700 1.04912 1.42282 ***
2 1.141 0.525 0.89608 0.63568 ***
3 0.491 1.222 0.93732 0.96712
4 0.672 0.659 0.89578 0.62448 ***
5 1.478 0.739 1.01854 0.97756
6 0.249 0.645 0.96282 0.9648
7 0.677 0.874 1.02142 0.9441 *
8 0.974 1.314 0.96666 1.1382 ***
9 1.152 0.580 1.03448 0.88668 ***
10 0.234 0.660 0.91214 0.65284 ***
11 0.722 1.042 0.97104 0.80258 ***
12 1.123 0.859 1.00142 0.94856 **
13 1.906 1.571 1.0289 1.39302 ***
14 1.101 1.148 0.992 0.93146 *
15 1.643 1.264 1.07256 1.08256
16 0.996 0.773 1.00506 0.99514
17 0.976 1.057 0.9911 0.91536 **
18 0.451 0.715 0.93096 0.79924 ***
19 1.000 1.000 1.00048 0.99994
20 0.672 0.659 0.9007 0.62628 ***
21 0.770 0.408 0.99382 0.8478 **
22 1.009 0.994 1.00294 0.99636
23 0.987 0.991 0.99396 0.98934
24 1.000 1.000 0.99608 0.99234
25 0.895 0.949 0.99508 0.92924 *
26 0.993 0.966 0.99812 1.01138
27 1.063 0.606 1.01532 0.92734 *
28 0.639 0.851 0.99914 1.03478
29 1.270 1.704 1.08908 1.16508
30 0.900 1.868 0.99522 1.58114 ***

Chapter 8

Related Work

8.1 Backprop Nets With Multiple Outputs

It is common to train neural nets with multiple outputs. When this is done, usually the

multiple outputs encode what is e�ectively a single task. For example, in classi�cation tasks

it is common to use one output to code for each class (see, for example, [Le Cun et al. 1989]).

Although it is usually bene�cial to train these multiple outputs on one net instead of on

separate nets for the reasons described in this thesis, outputs coding for the di�erent classes

of one task are not usually thought of as di�erent tasks. This is unfortunate. Treating

the multiple outputs coding for di�erent classes as di�erent tasks allows one to optimize

performance for each class individually by stopping early on the individual outputs, by

adjusting the relative learning rates of the outputs, etc. Although this thesis emphasizes

MTL with tasks more heterogeneous than the outputs coding for a multi-class problem,

most of what has been learned can be used to improve learning in multi-class problems.

The bene�ts of MTL in multi-class problems will probably be smaller, however, than we

sometimes see with more heterogeneous sets of tasks.

Using one backprop net to train a few strongly related tasks at one time is also not new.

The classic NETtalk [Sejnowski & Rosenberg 1986] application uses one backprop net to

learn both phonemes and the stresses to be applied to those phonemes. Using one backprop

net seems natural for NETtalk because the goal is to learn to control a synthesizer that

needs both phoneme and stress commands at the same time. NETtalk is an early example

196

CHAPTER 8. RELATED WORK 197

0.7

0.75

0.8

0.85

0.9

0.95

1

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

 T
es

t S
et

 A
cc

ur
ac

y

 Number of Pattern Presentations

STRESS
PHONEMES

Figure 8.1: On NETtalk, the Stress task trains very quickly and then over�ts long before
the Phoneme task reaches peak performance.

of MTL. But the builders of NETtalk viewed the multiple outputs as codings for a single

problem, not as independent tasks that bene�ted each other by being trained together. For

example, Figure 8.1 graphs the NETtalk learning curves for the phoneme and stress tasks

separately. From the �gure it is clear that the stress tasks begin to over�t long before the

phoneme tasks reach peak performance. The stress tasks reach peak performance by 5,000

backprop passes, whereas the phoneme tasks don't reach peak performance until about

1,100,100 backprop passes, by which time the stress task has signi�cantly over�tted. Better

performance could easily have been obtained in NETtalk by doing early stopping on the

stress and phoneme tasks individually, or by balancing the learning rates of the di�erent

outputs so they reach peak performance at roughly the same time.

[Dietterich, Hild & Bakiri 1990, 1995] performed a thorough comparison of NETtalk and

ID3 on the NETtalk text-to-speech domain. One explanation they considered as to why

backpropagation outperformed ID3 on this problem is that backpropagation bene�ts from

sharing hidden units between di�erent outputs, something ID3 does not do. They conclude

that although hidden unit sharing (i.e., MTL) does help, it is not the largest di�erence

CHAPTER 8. RELATED WORK 198

between the two learning methods, and suggest that adding sharing to ID3 probably would

not be worthwhile.

8.2 Constructive Induction

Constructive Induction is one of the branches of machine learning most interested in learning

representations. Most work in this �eld, however, attempts to assess representation quality

for a single task. The best summary of the current state of the �eld and its relation to MTL

is the following comments made by Sutton in 1994 at a constructive induction workshop:

\Everyone knows that good representations are key to 99% of good learning

performance. Why then has constructive induction, the science of �nding good

representations, been able to make only incremental improvements in perfor-

mance of machine learning systems?

People can learn amazingly fast because they bring good representations to

the problem, representations they learned on previous problems. For people,

then, constructive induction does make a large di�erence in performance. The

di�erence, I argue is not the di�erence between people and machines, but in the

way we are assessing performance.

The standard machine learning methodology is to consider a single concept

to be learned. That itself is the crux of the problem. Within this paradigm,

constructive induction is doomed to appear a small, incremental, second-order

e�ect. Within a single problem, constructive induction can use the �rst half of

the training set to learn a better representation for the second half, and thus

potentially improve performance during the second half. But by then most of

the learning is already over. Most learning occurs very early in training. It

may be possible to detect improvements due to constructive induction in this

paradigm, but they will always be second order. They will always be swamped

by �rst-order e�ects such as the quality of the base learning system, or, most

importantly, by the quality of the original representation.

CHAPTER 8. RELATED WORK 199

This is not the way to study constructive induction! We need a methodology,

a way of testing our methods, which will emphasize, not minimize, the e�ect of

constructive induction. The standard one-concept learning task will never do

this for us and must be abandoned. Instead we should look to natural learning

systems, such as people, to get a better sense of the real task facing them. When

we do this, I think we �nd the key di�erence that, for all practical purposes,

people face not one task, but a series of tasks. The di�erent tasks have di�erent

solutions, but they often share the same useful representations.

This completely breaks the dilemma facing facing constructive induction,

which now becomes a �rst order e�ect. If you can come to the nth task with an

excellent representation learned from the preceding n-1 tasks, then you can learn

dramatically faster than a system that does not use constructive induction. A

system without constructive induction will learn no faster on the nth task than

on the 1st. Constructive induction becomes a major e�ect, a 99% e�ect rather

than a 1% e�ect. Most importantly, we now have a sensitive measure of the

quality of our constructive induction methods, a measure unpolluted by tricky

issues such as the original learner or the original representation. All those things

are factored out. For the �rst time we will see pure e�ects due to changes in

representation. This, I hope, would enable us to evaluate our methods better

and lead to faster progress in the �eld."

Some of Sutton's early work in reinforcement learning also recognizes the importance

of learning from multiple examples. Although the methods he develops do not signi�cantly

address MTL, it is clear some of his original motivation is identical to MTL:

\Finally, a broad conclusion I make from this work has to do with the im-

portance of looking at a series of related tasks, such as here in a non-stationary

tracking task, as opposed to conventional single learning tasks. Single learning

tasks have certainly proved extremely useful, but they are also limited as ways

of exploring important issues such as representation change and identi�cation

of relevant and irrelevant features. Such meta-learning issues may have only a

CHAPTER 8. RELATED WORK 200

small, second-order e�ect in a single learning task, but a very large e�ect in a

continuing sequence of related learning tasks. Such cross-task learning may well

be the key to powerful human-level learning abilities." [Sutton 1992]

8.3 Serial Transfer

Transferring learned structure between related tasks is not new. The early work on sequen-

tial transfer of learned structure between neural nets [Pratt et al. 1991; Pratt 1992; Sharkey

& Sharkey 1992] clearly demonstrates that what is learned for one task can be used as a

bias for other tasks. Unfortunately, this work failed to �nd improvements in generalization

performance; the main bene�t was speeding up learning.

More recently, Mitchell and Thrun devised a serial transfer method called Explanation-

Based Neural Nets (EBNN) [Thrun & Mitchell 1994; Thrun 1995, 1996] based on tangent

prop [Simard et al. 1992] that yields improved generalization when trained on a sequence of

learned tasks. EBNN trains the partial derivative of outputs with respect to the inputs at

the same time the outputs are being trained with the target values. The partial derivative

information is computed from previously learned related models. For example, if the partial

derivative of the output of a previously learned model is strong and positive with respect to

some input, EBNN biases the new model that is being trained to also have a strong, positive

derivative with respect to this input. One noteworthy component of EBNN is the heuristic it

uses to moderate the strength of this bias. If the current instance is not well predicted by the

previous model, EBNN assumes that the partial derivative information from this previous

model is less likely to be relevant to the new model and gives less weight to the tangent

prop error term. This is important because applying a constraint directly to the output

being used for a new task is a much stronger bias than applying it through an additional

output that shares a large hidden layer with the new task. This ability to moderate the

strength of the EBNN bias allows EBNN to degrade gracefully to the performance of STL

in some cases where the previous tasks are not well related to the new task.

One disadvantage of EBNN compared with MTL-backprop is that EBNN does not have

access to the internal representations learned by backprop for previously learned tasks.

CHAPTER 8. RELATED WORK 201

Because of this, one might expect EBNN to have feature selection capabilities comparable

to or better than MTL-backprop (because this information is well captured by input/output

relations like partial derivatives), but to be poorer at eavesdropping on features developed by

other tasks. Also, because derivatives are sensitive to noise and other sources of nonlinearity,

MTL-backprop is likely to bene�t more than EBNN from noisy related tasks, or related

tasks that are highly nonlinear in ways that do not match nearly perfectly between tasks.

Because EBNN and MTL-backprop use di�erent mechanisms and may bene�t from dif-

ferent kinds of task relationships, combining them may be bene�cial. O'Sullivan is exploring

a thesis that does this in an attempt to build life-long learning robots. As part of this work,

he performed a comparison of EBNN and MTL-backprop on a robot perception task. Fig-

ure 8.2 shows the percent improvement due to EBNN and MTL-backprop over traditional

STL-backprop in this robot domain as a function of the number of training examples.

-5

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

P
er

ce
nt

 Im
pr

ov
em

en
t O

ve
r

S
T

L

Sample Size (# Training Patterns)

MTL

EBNN

Figure 8.2: Improvement of EBNN and MTL-backprop over STL-backprop on a Robot
Life-Long Learning Task (courtesy Joseph O'Sullivan).

Although in this domain MTL-backprop yields signi�cantly more bene�t than EBNN,

O'Sullivan reports that combining the two methods on this problem performs better than

MTL-backprop or EBNN alone, suggesting that some of the bene�ts of EBNN and MTL-

CHAPTER 8. RELATED WORK 202

backprop are di�erent.

[O'Sullivan & Thrun 1996] devised a serial transfer mechanism called TC for KNN that

clusters previously learned tasks into sets of related tasks. In TC, the KNN attribute

weights learned for previous tasks in the cluster most similar to the new task are used

for the new task when the number of training patterns for the new task are too small to

support accurate learning. TC is similar in some ways to the MTL-KNN method presented

in Chapter 7. The main di�erence is that MTL-KNN attempts to learn the set of attribute

weights that yields optimal performance on both the main task and the extra tasks. The

TC method does not learn a set of attribute weights optimal for a group of tasks. Instead,

it uses the weights optimized for some previous task for the new task until enough training

patterns for the new task are available to make optimizing attribute weights for the new

task alone feasible. Combining MTL-KNN with TC should yield a method with the bene�ts

of each.

[Breiman & Friedman 1995] present a method called Curds & Whey that also combines

sequential and parallel learning. Curds & Whey takes advantage of correlations between

di�erent prediction tasks. Models for di�erent tasks are trained separately (i.e., via STL),

but predictions from the separately learned models are combined before making the �nal

predictions. This sharing of the predictions of the models instead of the internal struc-

ture learned by the models is quite di�erent from MTL; combining the two methods is

straightforward and might be advantageous in some domains.

8.4 Hints

[Hinton 1986] suggested that generalization in arti�cial neural nets would improve if nets

learned to represent underlying regularities of the domain better. Suddarth and Abu-

Mostafa were among the �rst to recognize that this might be accomplished by providing

extra information at the outputs of a net. [Suddarth & Kergosien 1990; Suddarth & Holden

1991] used extra outputs to inject rule hints into networks about what they should learn.

This is MTL where the extra tasks are carefully engineered to coerce the net to learn

speci�c internal representations. The centerline extra tasks in the 1D-ALVINN domain in

CHAPTER 8. RELATED WORK 203

Section 2.1 are good examples of rule-injection hints. Suddarth and Holden were not very

successful, however, in making their approach work on real problems.

[Abu-Mostafa 1990, 1993, 1996] provides hints to backprop nets via extra terms in the

error signal backpropagated for the main task output. The extra error terms constrain

what is learned to satisfy desired properties of main task such as monotonicity [Sill & Abu-

Mostafa 1997], symmetry, or transitivity with respect to certain sets of inputs. MTL, which

currently does not use extra error terms on the task outputs, could easily be used in concert

with these techniques. EBNN, which also provides extra information through an output by

adding an extra error term to that output (the error term for the partial derivative) is a

form of hint where the information for the extra error term comes not from expertise about

the domain but from previously learned related tasks.

8.5 Unsupervised Learning

We showed in Section 3.5 that MTL-backprop depends on a heretofore unrecognized ability

of backprop to discover relationships between tasks without being given explicit training

information about task relationships. In e�ect, MTL-backprop does unsupervised cluster-

ing of outputs based on their hidden layer representations. It should come as no surprise,

then, that MTL is similar in some ways to other methods used for clustering and unsu-

pervised learning. For example, small changes to the indices in COBWEB's [Fisher 1987]

probabilistic information metric yields a metric suitable for judging splits in multitask de-

cision trees. Whereas COBWEB considers all features as tasks to predict, MTL decision

trees allow the user to specify which signals are inputs and which are training signals. This

makes it easier to create additional tasks without committing to extra training information

being available at run time, and also makes learning simpler in domains where some input

features cannot reasonably be predicted. [Martin 1994, Martin & Billman 1994] explore

how concept formation systems such as COBWEB can be extended to acquire overlapping

concept descriptions. Their OLOC system is an incremental concept learner that learns

overlapping probabilistic descriptions that improve predictive accuracy.

de Sa's Minimizing Disagreement Algorithm (MDA) [de Sa 1994] is an unsupervised

CHAPTER 8. RELATED WORK 204

learning method similar in spirit to MTL-backprop. In MDA, multiple unsupervised learn-

ing tasks are trained in parallel and bias each other via supervisory signals from the other

unsupervised tasks. One point-of-view that helps unify these two approaches is as follows:

MTL-backprop is an attempt to bring an unsupervised learning component to backpropa-

gation (a supervised learning method) by giving extra information to the MTL net through

the extra training signals applied to extra outputs on the net. MDA is an attempt to bring

a supervised learning component to vector quantization (an unsupervised learning method)

by giving auxiliary signals to each vector quantization process through the extra training

signals derived from vector quantization processes learning related unsupervised problems.

The goal in both MTL-backprop and MDA is to improve the generalization capability of

what is learned. (The work in Chapter 5 is joint work with de Sa. Because both MTL-

backprop and MDA have supervised and unsupervised learning components, de Sa and

I are both interested in understanding what information is best used for supervised and

unsupervised learning.)

8.6 Theories of Parallel Transfer

Attempts have been made to develop theories of parallel transfer [Abu-Mostafa 1993; Baxter

1994, 1995, 1996]. The most advanced thus far is Baxter's theory for representation learning

in neural nets. It shows that the number of training patterns required to learn N strongly

related tasks on one net grows as

O(a+ b
N
)

where O(a) is a bound on the minimum number of training examples required to learn a

single task, and O(a+b) is a bound on the number of examples required to learn all the tasks

independently. What this bound says is that for a su�ciently large number of tasks, N ,

the number of training examples needed to learn the Nth task gets smaller if the previous

N � 1 tasks already have been learned by the same net. For this to be true, one must

assume that all tasks can be learned accurately from a common, compact representation,

that the training patterns for each task are independently sampled, and that the learning

procedure is an empirical risk minimizer that is able to bene�t from the training signals of

CHAPTER 8. RELATED WORK 205

the multiple tasks.

Unfortunately, the theory developed so far has little relation to real-world uses of MTL.

Limitations of the current theory are the following:

� Because the theory assumes the training patterns for each task are independent, it
does not apply to most uses of MTL where the same training patterns are used for
all (or most) tasks.

� The theory lacks a well de�ned notion of task relatedness. In lieu of this, the current
theory makes assumptions about how much tasks overlap. For example, Baxter's
representation learning theory assumes that all tasks can be learned from one shared
hidden layer that is small relative to the number of tasks to be trained on it. In other
words, the theory assumes a bottleneck hidden layer is the appropriate architecture for
the tasks. This bottleneck assumption is rarely satis�ed in practice unless the tasks
are very strongly related. We usually �nd optimal performance requires increasing the
number of hidden units in the shared hidden layer as the number of tasks increases.
This empirical �nding conicts with assumption made by the theory that the hidden
layer is constant size for any number of tasks. MTL is often applied to a number of
tasks that is small relative to the number of hidden units in the hidden layer because
MTL is often applied to tasks that are not so strongly related.

� The theory yields loose worst-case bounds. It is possible to create synthetic problems
that satisfy the assumptions of the theory, but where increasing the number of tasks
hurts performance instead of helping as the theory predicts. The results are consistent
with the theory, but only because the bounds are loose enough to allow it.

� The theory makes assumptions about the search procedure that are not easily justi�ed
and is unable to account for behaviors of the search procedure that, in practice, are
critical. As just one example, if early stopping is not done correctly, MTL-backprop
often hurts performance instead of helping it. The theory is unable to account for
critical phenomena such as early stopping because it does not model how nets are
trained. This failure to model the search procedure is more serious than it might
seem. Consider an arti�cial data set where training signals for multiple tasks are
generated from a common pre-de�ned hidden layer. MTL-backprop nets trained on
these tasks often are unable to learn the tasks well when trained with the same number
of hidden units as the generator net even though the theory predicts that the net
with the same number of hidden units as the generator net should perform best. In
practice, often it is necessary to use more hidden units in the net being trained than
in the generator net. This is because backpropagation is a greedy search procedure
that does not perform well in tightly constrained search spaces. Nets trained with
backpropagation often need extra hidden units to facilitate search, even though a
smaller number of hidden units is su�cient to represent the model to be learned.
Because the theory does not model the search procedures used to train nets in practice,
it makes di�erent predictions from what often is observed in practice, and is thus
di�cult to use prescriptively.

CHAPTER 8. RELATED WORK 206

The fundamental problem with the theories of inductive transfer developed so far is that

they are all based on restricted capacity arguments: if one �xes the size of the model class

(e.g., by �xing the size of the hidden layer), but increases the complexity of what is to be

learned (e.g., by making it predict more outputs), then the odds of �nding a model in the

�xed-model space that falsely appears to have high accuracy is reduced. This is equivalent

to saying that if more task training signals can be accounted for using a �xed number of bits,

the probability that the model captured by those bits will reliably predict future patterns is

greater. But capacity in arti�cial neural nets trained with backprop is poorly understood.

The number of hidden units is a poor measure of net capacity. Training the weights in a

net changes its e�ective capacity. Since we will train all nets, both STL and MTL, until

we achieve maximum accuracy on the training and halt sets, we cannot claim that one net

has more or less capacity once it is trained. Any net that is large enough can be trained

to zero error on the training set. Thus all large enough nets can be trained to the same

�nal e�ective capacity. Our empirical results suggest best performance usually requires

more hidden units as the number of tasks increases. Part of the reason for this is that if

small nets are to �t a nonlinear training set they must use larger weights. This makes them

more nonlinear. Larger nets can �t the same nonlinear training set using smaller weights

because more weights are available. This makes them less nonlinear. Thus larger nets often

learn smoother functions for the same training set. But the theory does not yet account

for phenomena like this because it ignores the training procedure (e.g., backprop) and only

applies to nets with restricted capacity.

8.7 Methods for Handling Missing Data

One application of MTL is to take features that will be missing at run time, but that are

available for the training set, and use them as outputs instead of inputs. There are other

ways to handle missing values. One approach is to treat each missing feature as a separate

learning problem, and use predictions for missing values as inputs. (We tried this on the

pneumonia problem and did not achieve performance comparable to MTL, but in some

domains this works well.) Other approaches to missing data include marginalizing over

CHAPTER 8. RELATED WORK 207

the missing values in learned probabilistic models [Little & Rubin 1987; Tresp, Ahmad &

Neuneier 1994], and using methods like EM to iteratively reestimate missing values from

current estimates of the data density [Ghahramani & Jordan 1994, 1997].

8.8 Bayesian Graphical Models

Models trained with supervised learning usually model only the likelihood of the output

given the inputs, i.e., they usually learn only the conditional probability of the output

given the inputs. MTL makes better predictions for the outputs given the same inputs

because it learns more complete models; training one model on multiple tasks drawn from

the same domain helps the model better learn the regularities of that domain, and this

helps prediction. Some Bayesian methods (frequently called graphical models) also learn

domain models more complete than those usually learned with supervised learning. They

learn the full joint probability distribution function that relates inputs and outputs. The

comprehensiveness of these models allows them to handle missing values. Graphical models

and MTL are attempting to do similar things: both try to make better predictions by

learning more complete models. The largest di�erences between graphical models and

MTL are the following:

1. Graphical models have a strong probability semantics with normative (or normative

approximating) procedures for doing learning and making predictions from what has

been learned.

2. Graphical models often attempt to model the entire joint probability density for all

features and outputs, and in doing so treat inputs and outputs alike.

3. Graphical models sometimes attempt to learn models with causal semantics.

Di�erence 1 is a point in favor of graphical models; where practical, strong probability

semantics is desirable. Di�erence 2, however, may not be an advantage. The main strength

of supervised learning over unsupervised learning is that supervised learning knows what

the outputs and inputs are, and it is free to do anything that yields better prediction on the

outputs given the inputs. Supervised learning does not tradeo� reduced accuracy on the

CHAPTER 8. RELATED WORK 208

outputs in order to achieve increased �delity of the models for some of the inputs. Because

graphical models often attempt to learn models that capture the causal structure of the

domain, they are more constrained than traditional unsupervised learning techniques, and

this may minimize some of the di�culties associated with trying to learn models of all

features. Nevertheless, the models learned by Bayesian graphical model methods may still

learn more structure about a domain than is needed for optimal prediction on a prespeci�ed

set of outputs. It is not clear just now whether graphical models represent a better approach

to accomplishing what MTL accomplishes, or whether the extra complexity of their models

will make them inferior to traditional supervised learning and MTL.

8.9 Other Uses of MTL

8.9.1 Committee Machines

[Munro & Parmanto 1997] use extra tasks to improve the generalization performance of

a committee machine that combines the predictions of multiple learned experts. Because

committee machines work better if the errors made by di�erent committee members are

decorrelated, they use a di�erent extra task for each committee member to bias how it

learns the main task. Each committee member learns the main task in a slightly di�erent

way, and the performance of the committee as a whole improves. Committee machines

trained with extra tasks can be viewed as MTL with architectures more complex than

the simple, fully connected MTL architectures presented here. One interesting feature

of committee MTL architectures is that multiple copies of the main task are used, and

this improves performance on the main task. Sometimes this same e�ect is observed with

simpler, fully connected MTL nets, too [Caruana 1993]. [Dietterich & Bakiri 1995] examine

a much more sophisticated approach to bene�tting from multiple copies of the main task

by using multi-bit error-correcting codes as the output representation.

8.9.2 Input Reconstruction (IRE)

Pomerleau's ALVINN system used arti�cial neural nets to learn to steer an autonomous

vehicle. One of the important issues that arose in the ALVINN research was how to assess

CHAPTER 8. RELATED WORK 209

con�dences in the steering predictions made by the net. Pomerleau developed a method

called IRE (Input Reconstruction) to help assess con�dences in the predictions. Figure 8.3

shows an IRE net.

Sharp
 Left

Sharp
Right

4 Hidden
 Units

30 Output
 Units

 30x32 Sensor
 Input Retina

Straight
 Ahead

30x32 Encoder
 Output Array

Figure 8.3: IRE Net for Assessing Prediction Con�dences in ALVINN (courtesy Dean
Pomerleau).

The input to the net is a retina image of the road in front of the vehicle. There are

two sets of outputs. The �rst set of 30 outputs is a distributed output encoding used to

represent steering direction. We would call this the main task. The second set of outputs

is 30X32 rectangular image of outputs trained to reconstruct the input retina image. This

reconstruction is trained in parallel with the main steering task, and it shares the hidden

layer with the steering task. The hidden layer is small to prevent the net from learning

direct connections between the retina inputs and the reconstructed output, and to insure

that the hidden layer representation used for retina reconstruction is also used for the main

steering task.

By assessing how closely the reconstructed image matches the input images, IRE is able

CHAPTER 8. RELATED WORK 210

to estimate how well the internal representations capture the structure in this particular

road image. If the image is well reconstructed, presumably the hidden layer representation

does a good job \understanding" this road image and thus one expects the steering direction

predicted by the net should also be reliable. If, however, the image is poorly reconstructed,

then the hidden layer presumably does not \recognize" this image and thus one might

expect the steering prediction to be poorer.

The goal of IRE is to provide a mechanism for assessing con�dences in predictions

made by an ALVINN net, not to use image reconstruction as an extra task to improve

performance on the main steering task. Pomerleau points out that IRE has the potential to

hurt performance on the main steering task by training one hidden layer to learn steering

and whatever features are necessary to reconstruct the image, even if they are unrelated to

steering. Pomerleau notes, however, that in practice IRE did not hurt performance on the

main steering task. Pomerleau also goes on to suggest a more complex IRE architecture

that separates the hidden layer used for reconstruction from the hidden layer used for the

main task. This architecture is virtually identical to the MTL-backprop architecture with

separate private and public hidden layers described in Section 6.3.2.

As shown in Figure 8.3, Pomerleau's ALVINN nets use a distributed output coding for

the main steering task. Instead of using one continuous output unit to code for the entire

steering range, he uses 30 outputs trained to reproduce a Gaussian bump centered at the

correct steering angle. This distributed output representation improves the accuracy and

reduces the variance of the steering predictions. It is not clear what relation this multiple

output representation has to MTL-backprop. It may be more similar to error-correcting

output codes [Dietterich & Bakiri 1995] than to MTL. For example, steering accuracy

might even improve if the 30 distributed outputs where trained on separate nets if this

would de-correlate their errors enough to make the �tted Gaussian bump more accurate.

When trained on a single ALVINN net as Pomerleau does, steering performance probably

could be improved by doing early stopping for each of the 30 outputs individually. Better

performance might also be achieved by training 30 MTL nets on the outputs where each

net has 30 outputs, but each net is optimized to perform best on one output at a time.

CHAPTER 8. RELATED WORK 211

8.9.3 Task-Speci�c Selective Attention

Baluja's thesis [Baluja 1996] considers the problem of training backprop nets on problems

where knowing where to look improves recognition accuracy. For example, he trains back-

prop nets to locate and recognize +'s and x's in a sequence of images where the +'s and x's

move around in the input retina in a predictable (i.e., learnable) fashion. His main result

shows that if there is noise in the input images (in the form of spurious +'s or x's that show

up at random locations), the net learns better to locate and identify the non-spurious +'s

and x's if the net is also used to predict where the non-spurious symbol will appear in the

next image and this prediction is used to focus the attention of the net when it \sees" the

next image. This focus of attention mechanism does not train the hidden layer jointly for the

prediction and recognition tasks as MTL would. It does, however, use the prediction task

to modify the inputs the net \sees" on the next image, and this a�ects what the net learns

as it is trained with backpropagation. This is a di�erent approach to using related extra

tasks (in this case location prediction) to improve the performance on the main tasks (in

this case symbol localization and recognition). Because the main task has two components,

location and recognition, Baluja performs experiments comparing separate nets trained on

the two tasks with a single net trained on both tasks. The results of these experiments that

when the noise is high, there is a bene�t to training the two tasks together on one backprop

net.

Chapter 9

Contributions, Discussion, and

Future Work

9.1 Contributions

This thesis provided a clear demonstration that generalization performance can be improved

by learning sets of related tasks together instead of learning them one at a time (Chapter 2).

Although much of the work in this thesis was done using backpropagation in arti�cial neural

nets (Chapters 1{6), we also presented an algorithm for multitask learning in k-nearest

neighbor/kernel methods (Chapter 7), and sketch an algorithm for multitask learning in

decision trees (Section 9.2.12). These are three of the more mature, and more successful,

learning methods to date. The fact that multitask learning can be applied to each of these

machine learning methods demonstrates the generality and potential impact of research in

multitask transfer.

We applied multitask learning in arti�cial neural nets and in k-nearest neighbor to a

number of problems, both real and synthetic. We found that multitask learning almost

always helps generalization performance, and rarely hurts generalization performance. Our

experience on these problems yielded a number of prescriptions for how to get the best

results, some of which are counter intuitive, yet important to success (Chapter 6). We

developed a method for automatically balancing the relative importance of extra tasks in

k-nearest neighbor (Chapter 7). For arti�cial neural nets, we presented a method of auto-

212

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 213

matically adjusting the rate at which di�erent tasks learn that maximizes the opportunity

for bene�cial cross-task transfer (Section 6.2). This method not only makes multitask learn-

ing work better and easier to use, but may subsume some of the class frequency balancing

techniques that have been applied in many real world problems.

We showed that most learning problems have opportunities for multitask learning if

the problems are not �rst overly sanitized by those following the standard practice of the

single task learning paradigm that currently dominates machine learning (e.g., Sections 2.3{

2.4 and Chapter 4). With STL, we have been throwing away valuable information, often

without realizing it, merely because we did not know how to use it. Multitask learning is

one way of making use of information that does not easily �t into the traditional single task

mold.

This thesis demonstrated that the bene�t of using extra tasks can be substantial. Al-

though the bene�t from any one task is usually small, the e�ect from multiple extra tasks

can be additive, so the bene�t from a large number of extra tasks (10 or more) can be

large. Through careful experiments, we were able to show that the bene�ts of multitask

learning are due to the extra information contained in the training signals for the extra

tasks, not due to some other property of backpropagation nets that might be achieved in

another way (Sections 1.4, 2.3.6, and 3.4.3). We were able to elucidate seven di�erent kinds

of relationships between tasks that enable them to bene�t from each other when learned in

parallel (Chapter 3). These relationships serve as heuristics to help us identify when back-

propagation can bene�t from the training signals of extra tasks. Although we may never

have an adequate theory to predict what extra tasks are and are not helpful, we believe a

similar set of heuristics can be developed for any multitask learning procedure.

To examine what is happening inside arti�cial neural nets learning related tasks in

parallel, we developed a method of measuring how much di�erent tasks share hidden layer

representations (Section 3.5). When applied to tasks where we know beforehand how related

the di�erent tasks are, we found that the more the tasks are related, the more the tasks

share features developed at the hidden layer (Section 3.4). Interestingly, for this to happen,

backpropagation must be doing a form of unsupervised clustering of the tasks based on their

hidden layer representations. That is, MTL-backprop is clustering tasks in function space,

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 214

not in feature space. We suspect that this heretofore unrecognized and largely unexploited

capability of backpropagation to perform unsupervised clustering may be useful not only

for multitask learning, but also for general clustering as well. This is particularly interesting

because it helps forge a link between supervised and unsupervised learning.

An empirical analysis of the bene�t of using certain features as extra inputs or as extra

outputs clearly demonstrates that the bene�t of a feature when used as an input can be

quite di�erent from the bene�t of that same feature when used as an output. We were able

to demonstrate that in some domains some features that could be used as inputs were more

useful when used as outputs (Chapter 5). Because some features are bene�cial when used

as inputs, and when used as outputs, we devised and demonstrated a multitask learning

method that allows a backprop net to use the same features as both inputs and as outputs

at the same time (Section 5.3). This method yielded better performance than using these

features just as extra input features or just as extra multitask outputs.

Acquiring domain-speci�c inductive bias is subject to the usual knowledge acquisition

bottleneck. Multitask learning allows inductive bias to be acquired via the training signals

of related additional tasks drawn from the same domain. Inductive learning probably isn't

going to keep getting better if background knowledge isn't brought to bear on the learning

problem. Multitask learning is one way of bringing domain speci�c background knowledge

to bear by exploiting the one thing the current learning algorithms are best at|tabula rasa

learning from examples.

Other contributions of the thesis that are not directly connected to multitask learning

are an empirical study of generalization performance vs. capacity for backprop nets trained

with early stopping (Appendix 1), and the development of two rank-based error metrics,

Rankprop (Section 2.3.5 and Appendix 2) and Soft Ranks (Section 7.5 and Appendix 2).

We believe rank-based metrics will be useful for a number of problems currently of interest

in machine learning (e.g., information retrieval).

Perhaps the most important contribution of this thesis is that we have identi�ed a

number of situations that commonly arise in real-world domains where multitask learning

should be applicable (Chapter 4). This is surprising|few of the standard test problems used

in machine learning today are multitask problems. We conjecture that as machine learning

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 215

is applied to unsanitized, real-world problems, the opportunities for multitask learning will

increase.

9.2 Discussion and Future Work

9.2.1 Predictions for Multiple Tasks

MTL trains multiple tasks in parallel on one learner. This does not mean one learned model

should be used to make predictions for those multiple tasks. The reason for training multiple

tasks on one learner is so tasks can bene�t from the information contained in the training

signals of other tasks, not to reduce the number of models that must be learned. Tradeo�s

often can be made between mediocre performance on all tasks and optimal performance on

one task. Where this is the case, it is better to optimize performance on each important

task one at a time and allow performance on the extra tasks to degrade. The adaptive

learning rates used in MTL-backprop (see Section 6.2) and the � weight(s) used for extra

tasks in MTL-KNN/LCWA (see Section 7.3) make this tradeo� explicit; learning can even

ignore some of the extra tasks to achieve better performance on the main task. The MTL-

backprop architecture that reserves a private hidden layer for the main task, while training

extra tasks using a more resource-limited public hidden layer (see Section 6.3.2), is also an

example of optimizing training to favor the main task.

The current standard approach to early stopping in backprop nets is to stop training

when some aggregate test-set measure like the sum squared error across all outputs begins

to get worse. When early stopping is used in MTL, it is important to apply it to each task

individually because not all tasks train|or over�t|at the same rate. If other regularization

procedures such as weight decay are used instead of early stopping, it is important to adjust

the weight decay parameters for each task individually. This is one reason to use early

stopping instead of weight decay with MTL. With early stopping, we can sometimes train

one MTL net for all the tasks, take snapshots of the net when performance on each task is

best, and continue training the MTL net until peak performance on the last important task

is reached. This is more e�cient than training nets for each main tasks tasks with di�erent

weight decay parameters optimized for each net's main task. Another advantage of early

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 216

stopping over weight decay for MTL is that weight decay restricts net capacity which forces

sharing. As we discuss in the next section, too much sharing can be bad. Early stopping

allows more independent control of regularization to prevent over�tting and the pressure for

sharing. Sharing pressure can be controlled by the architecture and the size of the hidden

layer(s), whereas regularization can be controlled by early stopping. This extra exibility

gives more control and better performance with MTL.

9.2.2 Sharing, Architecture, and Capacity

One important lesson we learned is that it is important not to provide too strong a bias for

sharing, as this usually hurts performance. If tasks are more di�erent than they are alike

(which is often the case), it is important to allow tasks to learn reasonably independent

models and overlap only where there is common structure in the learned models. For

example, we observe that MTL-backprop performance often drops if the size of the shared

hidden layer is much smaller than the sum of the sizes of the STL hidden layers that would

provide good performance on the tasks when trained separately. Making the hidden layer

tight to promote sharing usually hurts performance. (The only time we observe that a tight

net helps MTL performance is with synthetic tasks that were all generated by one generator

net that has a small hidden layer. Training tasks like these on a net of just the right size

(or often a little larger) usually does improve performance. But real tasks are rarely this

strongly related.)

Many applications of MTL-backprop work well with a single fully connected hidden

layer shared equally by all tasks. Sometimes, however, more complex net architectures

work better. For example, sometimes it is bene�cial to have a private hidden layer for

the main task and a separate public hidden layer shared by both the main task and extra

tasks (see Section 6.3.2). Similarly, if some features are to be used both as inputs and as

extra output tasks, architectures with disjoint hidden layers must be used to prevent those

outputs from \seeing" the corresponding input signals (see 5.3). Too many private hidden

layers (e.g., a private hidden layer for each task), however, can reduce the opportunities for

sharing and thus reduce the bene�ts of MTL. We do not have principled ways to determine

what architecture is best for each problem. Fortunately, simple architectures often work

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 217

well, if not optimally. [Ghosn & Bengio 1997] experiment with several di�erent architectures

for MTL in backprop nets.

It might seem that deeper net architectures would work better with MTL-backprop; an

extra hidden layer would make it possible for one task to form non-linear functions of the

hidden-layer representation developed for other tasks. We have run a few MTL experiments

with nets deeper than one hidden layer. In those experiments we did not observe bene�ts

from using deeper nets. Moreover, the nets took longer to train. We suspect that one of

the reasons we did not observe a bene�t from the deeper nets is that current backprop

algorithms are not very good at training deep nets. The following modi�cation to the way

deep nets are trained might prove bene�cial for MTL: train a standard MTL-net with one

hidden layer, and stop training when either the �rst task begins to over�t, the main task

begins to over�t, or when the aggregate error across all tasks begins to over�t. Then insert

a new (randomly initialized) hidden layer between this hidden layer and the outputs, and

continue training this new deeper net. Early in training, the inputs to the new hidden

layer in this deeper net are the hidden layer representation learned by the shallower MTL

net. As training progresses, both the �rst hidden layer and the new second hidden layer

are updated by backprop. The potential advantage of this approach is that the second

hidden layer has the opportunity to nonlinearly combine the representations developed for

di�erent tasks in the �rst hidden layer. (This approach is similar to the architecture we used

to combine MTL with feature nets, except that there we did not allow backpropagation to

change the representation learned on the �rst hidden layer. See Section 6.3.3.) This process

of inserting new hidden layers can be repeated until additional hidden layers begin to injure

performance. We have not tried this.

9.2.3 Computational Cost

The main goal of MTL is to improve generalization, not reduce computational cost. What

e�ect does MTL have on learning speed? In backprop nets, the MTL net is usually larger

than the STL net and thus requires more computation per backprop pass. However, if all

tasks need to be learned, training one MTL net usually requires less total computation

than training individual STL nets for all tasks. This advantage disappears, however, if the

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 218

architecture or learning rates will be optimized for each main task because training the

multiple MTL nets will probably be more costly than training the multiple STL nets.

We sometimes �nd that tasks trained with MTL need fewer epochs than the same tasks

trained alone. This partially compensates for the extra computational cost of each MTL

epoch. But MTL nets often have more complex training curves|both the training and

test set error curves can be multimodal for any one output|so early stopping can be more

di�cult. Because of this, we must sometimes train MTL nets well past the apparent early

stopping point to make sure performance on the main task does not start getting better

again later.

Table 9.1 shows the time required to train STL and MTL nets for four of the problems

used in this thesis. These are timing results for the actual experiments. They are a realistic

measure of the relative cost of STL and MTL for these problems, not the results of a

theoretical analysis of complexity. If the larger MTL nets do not �t the machine's cache size

as well as the smaller STL nets, the penalty for cache misses is included in the measured cost.

(Theoretical analyses of algorithm complexity often ignore important issues such as this.)

The results in the table are from experiments run on di�erent workstations (Sun Sparcs,

DEC Alphas, and Intel PPros) that have di�erent memory size, memory architectures, and

CPU speeds. For each problem, however, STL and MTL were run on the same architecture.

The main extra cost when training MTL nets is that MTL nets often require larger

hidden layers. The number of weights in a backprop net grows linearly with the number

of hidden units if the hidden layer is fully connected to the inputs and outputs. The next

largest cost when training MTL nets is that sometimes MTL nets must be trained longer

(more epochs) than STL nets trained on the same tasks. This is not because MTL nets

train slower, but because the multimodal behavior of some MTL training curves makes early

stopping more di�cult; one trains longer to insure one has not stopped prematurely. The

third largest cost when training MTL nets is the cost of updating the weights that connect

the hidden layer to the extra outputs. Unless there are very many extra tasks, this cost

is usually small. Finally, because there are extra training signals in the MTL training and

test sets, these are larger than the STL training and test sets, and may not �t in computer

memory as easily. The results in Table 9.1 combine all these e�ects. For the four tasks in

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 219

Table 9.1: Relative Speed of STL-Backprop and MTL-Backprop on several problems used
in this thesis. The \Time Per Trial" columns are the clock time required to run a single trial
of that problem. Because problems were run on di�erent machines, the speed of di�erent
problems should not be compared. For each problem, however, STL and MTL were run on
the same architectures and are comparable. Each problem and method (STL or MTL) were
run using the number of hidden units that preliminary experiments suggested worked well.
(In some cases MTL was run with fewer hidden units than was optimal because larger nets
were too expensive to train. This means optimal results with MTL would take longer in
some cases than those reported here.) The �nal column is a ratio telling how much longer
it took to train MTL than STL for that problem.

Input Extra # of Hidden Units Time Per Trial Time
Problem Features Outputs STL MTL STL MTL Ratio

Parity 8 3 100hu 100hu 2.41 hr 2.42 hr 1.00
1D-ALVINN 32 8 8hu 32hu 0.56 hr 2.57 hr 4.59
Medis 30 35 8hu 64hu 0.57 hr 5.95 hr 10.44
Port 204 33 64hu 64hu 1.50 hr 1.72 hr 1.15

Average 4.30

the table, MTL nets take on average about 4 times more computation to train than STL

nets. As can be seen from the entries in the table for each problem, the di�erence between

STL and MTL is very problem dependent.

Once an MTL net is trained, there is no extra cost using the MTL net to make predictions

compared with a similar sized STL net because the extra weights from the hidden layer to

the extra tasks are not needed once training is completed. Because predictions for the extra

tasks are usually ignored, the weights and nodes associated with the extra tasks can be

removed if the net used for prediction must be kept as small and fast as possible. Often,

however, MTL nets must be larger than the STL nets for the same main task. Thus MTL

nets will often be larger and slower than STL nets even if the weights and outputs for the

extra tasks are removed.

In k-nearest neighbor, kernel regression, and decision trees, MTL adds little to the cost

of training the MTL model. The only extra cost is the computation needed to evaluate

performance on the multiple tasks instead of the one main task. This is a small constant

factor that is easily dominated by other more expensive steps in these methods, such as

computing distances between cases, �nding nearest neighbors, �nding the best threshold for

splits of continuous attributes in decision trees, etc. The most signi�cant additional cost

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 220

of using MTL with these algorithms is cross-validating the � parameters that control the

relative weight of the main and extra tasks.

9.2.4 Task Selection

In many real-world domains there are so many features that feature selection is a serious

problem. MTL provides machinery that allows us to use some features as inputs, some

features as extra outputs, and some features as both inputs and extra outputs. Multitask

learning, by giving us more options, makes the feature selection problem worse. We need

to develop methods that will e�ciently determine which of the available features should be

used as inputs, outputs, or inputs and outputs.

Even where input features will not be used as extra outputs, we may still have a large

number of extra tasks that could be used for MTL. Some of these extra tasks may be unre-

lated to the main task. Others might be related, but harmful, given the MTL algorithm we

are using. We need task selection procedures, analogous to the feature selection procedures

currently used in machine learning, that will select from a large set of potential extra tasks

those most related to or most helpful to the main task. As we discuss in the next two

sections, �nding tasks that are related to the main task, and �nding tasks that are helpful

to the main task, are not necessarily the same thing.

9.2.5 Inductive Transfer Can Hurt

MTL does not always improve performance. In the Medis pneumonia domain, prediction

performance dropped for high-risk patients when an extra SSE output was added to the

MTL rankprop net predicting risk (see Section 4.3), even though performance on the low-

risk patients improved. This result was consistent with our model of the relative strengths

and weaknesses of the main and extra task on this problem. MTL is a source of inductive

bias. Some inductive biases help. Some inductive biases hurt. It depends on the problem.

Because we are learning tasks, we don't know their internal structure in advance. Since

internal structural sharing is critical to the success of MTL, there is no way we can predict in

advance whether one task will bene�t fromMTL with another task. There are measurements

that can be made (e.g., mutual information between tasks, mutual information between

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 221

tasks and the input features, pairwise correlations between tasks) that might suggest that

there is an opportunity for structural sharing, but these are only heuristics. Furthermore,

even if we could reliably predict structural overlap between tasks, we don't know whether

some particular algorithm such as backprop would be able to discover and exploit it.

We may never have an operational theory of what tasks will help or hurt for MTL. For

now, the safest approach is to treat MTL as a tool that must be tested on each problem.

Fortunately, on most problems where we have tried it, MTL helps. There are several reasons

for this: First, the intuition about what are useful extra tasks is often correct. (Chapter 4

is our attempt to collect these heuristics in one place.) Second, most tasks that do not help

the main task do not appear to hurt the main task either. We can easily create harmful

extra tasks for synthetic problems, but tasks like these don't seem to arise often in practice.

Finally, the bene�t from the helpful extra tasks seems to be larger than the loss due to

harmful or not helpful extra tasks.

9.2.6 What are RELATED Tasks?

One of the most important open problems in inductive transfer is to characterize, either

formally or heuristically, how tasks need to be related for MTL to improve generalization

accuracy. The lack of an adequate operational de�nition of task relatedness is one of the

obstacles standing in the way of the development of more useful theories of inductive trans-

fer. Some characteristics of task relatedness are already clear. If two di�erent tasks are each

the same function, but have independent noise added to their task signals, clearly the two

tasks are related. If two tasks are to predict di�erent aspects of the health of the same indi-

vidual, these tasks are more related than two tasks to predict di�erent aspects of the health

of di�erent individuals. Two tasks that are negatively correlated or have negative mutual

information are still related. Tasks which have no correlation or mutual information can

still be related (see Section 3.2.1) if there is correlation between the representations learn

for each one by some learning algorithm.

We must be careful. There is a di�erence between tasks being related to each other

and tasks being helpful to each other. Some related tasks may be harmful when trained

with some MTL algorithms. This does not mean the tasks are not related, just that that

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 222

MTL algorithm was unable to bene�t from the relationship. The algorithm needs to be

improved. On the other hand, some unrelated tasks may be helpful. Just because two tasks

help each other when trained together does not necessarily mean they are related. For

example, sometimes injecting noise through an extra output on a backprop net improves

generalization on other outputs by regularizing the hidden layer, but this does not mean the

noise task is related to the other tasks it helps. And tasks that are most strongly related are

not necessarily the ones that are most helpful to each other. For example, two identical tasks

are maximally related, yet neither provides additional information for the other. Finally,

while relatedness is symmetric, bene�t may not be. For some MTL algorithm, Task A

might help Task B, but Task B might hurt Task A (see Section 4.5). Although Task A and

B are related to each other, one bene�ts the other, but not vice-versa.

The most precise de�nition for relatedness we have been able to devise so far is the

following: Tasks A and B are related if there exists an algorithm M such that M learns

better when given training data for B as well, and if there is no modi�cation to M that

allows it to learn A this well when not given the training data for B. While precise, this

de�nition is not very operational. It may be easy to demonstrate that the training signals

for B improve learning on A with any particular algorithm, but it is di�cult to show that

there do not exist other algorithms (modi�cations to M) that might perform as well or

better given just the training signals for A.

It might seem that this notion of task relatedness misses the mark. That we don't care

what tasks are related. We just care what tasks help each other. This is shortsighted. What

we really want are MTL algorithms that bene�t whenever tasks are related. To attempt to

achieve this, we need a notion of task relatedness that goes beyond statements like \Task

A improves the performance of Task B when trained with Method M." If Task A does not

improve the performance of Task B when trained with Method M-, we want to know why M

bene�ts and M- does not. And we may want to improve M- so it bene�ts, too. Furthermore,

if Task A helps Task B on Method M just because Task A injects noise into Method M, or

just because Task A reduces the capacity Method M has left for Task B, or just because

Task A increases the e�ective learning rate of Method M, or for any similar reason, but not

because Task A and Task B are related, we want to know this. There probably are better,

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 223

more controllable ways of introducing this e�ect into Method M, and once we have that

control we won't need the training signals for Task A to train Task B.

We may never have a theory of relatedness that allows us to reliably predict which

tasks will help or hurt each other when used for inductive transfer. Because of this, we

are focusing part of our e�ort on ways to e�ciently determine which tasks are bene�cially

related to each other (task selection) and on developing methods robust to interference from

unrelated extra tasks. Algorithms that automatically adjust the MTL bias using heuristics

or cross-validation are important steps for making MTL more useful in practice. It is

important, however, to continue developing heuristics that better enable us to characterize

and recognize related tasks in real problems.

9.2.7 Is MTL Psychologically Plausible?

MTL is not intended as a cognitive model. To use a well worn analogy, MTL is intended

to help planes y better, not to explain how birds y. Nevertheless, it is interesting to ask

if there is evidence for MTL-like mechanisms in natural learning, or if MTL might suggest

directions for cognitive or neurophysiological research.

That inductive transfer occurs in human learning is probably not subject to debate.

The common saying is you can't learn something unless you almost already know it. Since

you need to have learned something to almost already know it, this suggests you can't learn

something unless you have already learned something very much like it. When humans

tackle new problems, they bring to bear what they have learned before for related problems.

It is interesting to speculate about how natural intelligences de�ne related problems.

There may be some evidence in psychology as to how natural intelligences cluster tasks.

Natural intelligences usually use context information as cues for learning, recall, and future

performance. As a contrived example, if you learn to do all your math while scuba diving,

you will learn to do proofs better underwater than on dry land. The context of being

underwater while learning an activity is somehow linked to future performance of that

activity. Contextual clues like these might be essential elements of a system in natural

intelligences that attempts to predict what tasks are related to each other. This heuristic

may help prevent natural intelligences from trying to share representations between tasks

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 224

that are not strongly related. Learning to cluster tasks using auxiliary information such

as the context in which the data is collected, or the kind of task the data is for (e.g.,

recognition tasks vs. speaking tasks vs. positioning tasks), may provide valuable heuristics

for �nding related tasks for MTL. As one example example, if all tasks in machine learning

had associated with them a short text description, methods like those used in information

retrieval might be useful for clustering the tasks for MTL.

One seemingly large di�erence between MTL and natural intelligence is that animals

don't save up all their experiences and then learn all the things they need to learn in parallel

at one point in time. MTL emphasizes parallel learning and transfer, not the serial process

that seems evident in natural learning. Does this make MTL psychologically implausible?

Not necessarily. In natural intelligences, experience for di�erent tasks is usually interleaved.

We do not learn everything about one task before moving on to the next task. (Though

there is a general trend to learning simpler tasks before learning more complex tasks, a

phenomenon MTL addresses only obliquely.) The learning algorithms used for MTL in this

thesis are memoryless batch algorithms. They do not themselves store experience, and they

do all learning during a single explicit training phase. The algorithms depend on the system

they are embedded in to collect training data and present it in a coherent fashion during

training. But learning systems that use memory and interleave learning and experience for

multiple tasks can perform parallel learning and transfer. An online (i.e., non-batch) model

of MTL can easily perform interleaved learning of and transfer between related tasks. The

key to parallel transfer is that learning never completely �nishes for any one task, and all

tasks have the potential to share what is learned with other related tasks.

This brief discussion is not an attempt to argue that MTL is plausible psychologically.

Given how little is known about the mechanisms underlying natural intelligence, we prefer

not to make any claims about the psychological plausibility of MTL. Nonetheless, given

how easy it is to do MTL online, and the observation that experience in nature rarely

comes in monolithic single-task chunks, we see little reason to believe that MTL is less

psychologically plausible than other inductive transfer methods. Perhaps the only statement

we are con�dent in making is that if natural intelligences do MTL, the mechanisms they

use will be much more complex than the simple ones we explore in this thesis.

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 225

9.2.8 Why PARALLEL Transfer?

Inductive transfer is a good idea. But why try to do it by learning all the related tasks at

one time? Wouldn't it be easier to learn tasks one-at-a-time, and save learning the main

task until last?

Probably not. There are several reasons why parallel transfer can work better than serial

transfer. Perhaps the most important is that if you are doing tabula rasa learning, almost

everything you know about a task is contained in the training data for that task. If you

train tasks independently, and then do transfer using only the models learned for each task

(instead of the training signals for those tasks), you have probably lost information contained

in the training signals but not captured by the models. The representations learned to

achieve good performance on tasks trained individually may not be the representations

that a learner learning a related task will �nd most useful. Since it is di�cult to know

what information in the training data is useful for another task, doing inductive transfer

from models trained without considering the main task risks losing valuable information

compared with training the tasks at the same time. This problem becomes more important

if the technique is being optimized to maximize performance on the main task. How do

you optimize the learning of extra tasks if the extra tasks are learned before training on the

main task begins? What is the advantage of sequential transfer if the steps in the sequence

need to be optimized to maximize the performance of the last step?

Another advantage to parallel learning is that each task has access to the representation

for other tasks as they evolve during learning. MTL allows tasks to see the full trajectory

of other tasks during learning, not just the �nal state after learning completes. It is the

di�erence between dancing with a partner, and dancing alone after your partner has �nished.

The advantages of this are subtle, but potentially signi�cant. For example, tasks might

become entwined early in search in ways that lead to more complex representation shaping

and sharing later in search. This can only happen if the tasks have access to each other's

representation early in search.

A related di�culty is that sometimes there are several di�erent representations that

learning could use for a given problem. Where the learning system must make choices like

these, it is better to select the representation that is most useful for inductive transfer (i.e.,

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 226

most useful to other tasks). It is not possible to do this if all learning for the previous task

is completed before learning for the related task is attempted.

The key to MTL is that the two tasks must share substructure. To detect this shared

substructure, it is best to search the space of hypotheses to �nd hypotheses that �t both

tasks. Searching a space of hypothesis for one task before considering how these hypotheses

perform on another task reduces transfer. If we choose one particular structural hypothesis

for A and it is not one that shares substructure with task B, then we lose the transfer.

One signi�cant advantage of parallel learning over serial learning is that tasks often

bene�t each other mutually. Task A learns better when trained with Task B, and Task B

learns better when trained with Task A. Sequential transfer, by being forced to train these

tasks in a sequence, cannot achieve both bene�ts. It might seem that this is a problem

only if we are interested in both tasks. If Task A is there only to help the main task, Task

B, then maybe this doesn't matter. Just train A before B. But this is not necessarily the

case. We expect that Task A will help Task B more if Task A is learned better (otherwise

we wouldn't worry about training Task A well, or at all). One way to learn Task A better

is to train it in parallel with Task B. When task signals are available simultaneously, it is

probably suboptimal to de�ne a sequence on those tasks to train them serially.

Serial transfer, however, does seem to �t more naturally than parallel transfer in domains

where tasks naturally arrive in sequences. This is the principle motivation behind life-long

learning. Although we showed in Section 4.10 how parallel transfer can be used for serial

transfer by using previously learned models to generate synthetic data to use for extra MTL

outputs when learning the current task, it is unfortunate to incur the expense of training

new models as each new task arrives. Can we reuse the old models and just add the new

models to them?

O'Sullivan is exploring techniques that combine serial and parallel transfer in his thesis.

One approach that may be worth trying is to use net growing algorithms such as cascade-

correlation and C2 [Fahlmann 1992, 1997] which have the potential to not only be e�ective

at growing MTL nets, but to be able to grow MTL nets dynamically as new tasks arise. The

beauty of methods like C2 is that they freeze the hidden units learned previously, making

them available to subsequent learning as new features. It may be that methods like C2

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 227

would have to be modi�ed to work well with MTL. For example, adding one hidden unit

at a time might promote sharing too aggressively. Perhaps hidden units need to be added

N at a time, one new unit for each MTL task.

9.2.9 Intelligibility

The main goal in MTL is to improve generalization performance, not to learn more intel-

ligible models. Breiman recently suggested the following \uncertainty" principle relating

model intelligibility and accuracy:

Intelligibilty �Accuracy � Breiman0sConstant (9.1)

This principle says you can't have it both ways. Models that are more accurate are also

going to be less intelligible. Because MTL models are usually more accurate, this relation

suggests they may often be less intelligible. The nets used for MTL-backprop usually have

more hidden units and connection weights than those used for STL, and this probably

makes understanding the net model more di�cult. The main reason we have not attempted

to \open up" more MTL nets trained in this thesis is because optimal MTL performance

usually requires the nets to be large, and this makes analyzing the nets very hard. Even

in domains where there are natural one or two dimensional representations for the input

variables (e.g., image recognition domains where retinas are used for inputs), it is di�cult

to interpret the kind of hidden unit activation diagrams others have used when the nets are

as large as most MTL nets. Even if a few of the hidden units in an MTL net appear to have

sensible activation patterns, this does not necessarily mean we understand how the net as

a whole makes predictions. When there are few hidden units (say 10 or less) this problem

is less severe and we can attempt to understand the role of each hidden unit and how they

are combined to form the �nal prediction.

Rather than trying to understand STL and MTL nets, we are currently trying to use

methods like rule extraction to try to understand the di�erence between STL and MTL

nets. That is, rather than learn rules that mimic the STL net and the MTL net and look

for di�erences between those rules, we are trying to learn rules that directly represent the

di�erence between the STL and MTL nets. If we are successful, this approach should give

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 228

us insight into what the MTL net learns that makes it generalize better than the STL net.

9.2.10 MTL Thrives on Complexity

Perhaps the most important lesson we have learned from applying MTL to real problems

is that the MTL practitioner must get involved before the problem and data have been

sanitized. MTL bene�ts from the extra information that often would be engineered away

because traditional STL techniques would not be able to use it. Few of the standard

problems in collections such as the UCI Machine Learning Repository are suitable for MTL

research; most of them have been carefully simpli�ed to make them suitable for STL.

The opportunities for applyingMTL often decrease as one becomes further removed from

the raw data or the data collection process. MTL provides new ways of using information

that are not obvious from the traditional STL point-of-view. Sometimes it is necessary to

\nudge" (sometimes not so gently!) those in charge of data collection and data management

to provide the extra information MTL can use. It is not uncommon to be told \You can't

use that because..." or asked \What can you do with that?"

Even someone experienced in applying MTL can easily miss opportunities for using it.

Our best suggestion for applying MTL to a new domain is to collect, or at least consider

collecting, every bit of information that you can possibly imagine collecting, and then throw

away (or don't collect) only those pieces which you are absolutely certain you can't use.

Even then you'll probably be wrong half the time. Part of what makes MTL and inductive

transfer so exciting is that it provides hooks for so many di�erent kinds of information that

traditionally have been di�cult to exploit.

9.2.11 Combining MTL and Boosting

Bagging [Breiman 1994], Boosting [Schapire 1990][Freund 1995], Error-Correcting Codes

[Dietterich & Bakiri 1995], and other voting schemes that combine multiple predictions for

a task from di�erent learned models are an exciting recent advance in machine learning.

Hopefully the bene�ts provided by these mechanisms are partially orthogonal to the bene�ts

of MTL. If this is the case, combining MTL with boosting methods should generalize better

than either method alone. One interesting direction to explore along these lines is the

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 229

discovery in this thesis that training multiple copies of the same task on an MTL-backprop

net can improve the performance. We suspect that this may be due to a boosting-like

mechanism that arises because the net is initialized with di�erent random weights from the

copies of the task on the outputs to the shared hidden units.

9.2.12 MTL With Other Learning Methods

This thesis discusses MTL mainly in the context of arti�cial neural nets trained with back-

propagation and in methods like k-nearest neighbor and kernel regression. MTL is not any

particular algorithm. It is an approach to learning that attempts to improve accuracy by

leveraging the information contained in the training signals of related tasks. MTL can be

applied to many di�erent learning algorithms, and often there are many ways to do MTL

with each algorithm.

Sketch of an Algorithm for MTL in Decision Trees

The basic recursive step in the top-down induction of decision trees (TDIDT) is to determine

which of the available splits to add to the current node in a growing decision tree. Typically

this is done using an information gain metric that measures how much class purity is

improved by the available splits. Class purity is a measure of how much accuracy on the

task is improved by adding the split.

Decision trees are usually single task: leaves assign cases to one class for one task.

Multitask decision trees are possible if leaves assign cases to classes for many tasks. For

example, a leaf might assign cases to class A for Task 1, class C for Task 2, etc... What

is the advantage of multiclass decision trees? Because decision trees are induced top-down

in greedy fashion, signi�cant e�ort is spent during the greedy induction process to �nd

good splits. Once a split is installed in the tree, all subsequent decisions are a�ected by it.

Moreover, splits in a decision tree cause data rapidly to become sparse. We usually cannot

a�ord to install useless or suboptimal splits if we do not have a large training set.

Usually, the only information available is how well the splits separate classes on a single

task. In a multitask decision tree one evaluates splits by how well they separate classes

from multiple tasks. If the multiple tasks are related, preferring splits that have utility to

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 230

multiple tasks should improve the quality of the selected splits. The basic assumption is

that the boundaries between classes for di�erent but related tasks tend to lay in similar

regions of the input space. Preferring splits that bene�t multiple tasks should help class

boundaries be found more reliably.

The bene�t of preferring splits that have utility across multiple tasks should be most

dramatic when inducing decision trees from small samples. When there is little training

data it is important to �nd splits that properly discriminate the underlying structure of the

problem. Failure to do this results in leaf classes with high purity on the training data that

do not represent regions of high purity for the real problem distribution.

How do we select splits good for multiple tasks? The basic approach is straightforward:

compute the information gain of each split for each task individually, combine the gains,

and select the split with the best aggregate performance. The MTL decision tree algorithm

presented in [Caruana 1993] combines task gains by averaging them; the selected splits are

the ones whose average utility across all tasks is highest.

There is a problem, however, with simple averaging. Splits good for Task 1 are not

necessarily good for Task 2. Because each split in a decision tree a�ects all nodes below

it, it is di�cult for a multitask decision tree to isolate tasks that di�er. This is something

MTL-backprop nets can do if there is enough capacity for hidden units to specialize to

di�erent tasks. MTL backprop often worsens performance if there is insu�cient capacity

for this specialization.

As the number of tasks grows large, fewer splits in the tree will be optimal for any one

task. Recursive splitting dilutes the data before the structure needed for any one task is

learned. In other words, tasks can starve in a multiclass decision tree. This is bad if the

task that starves is the main task.

The goal of MTL is to improve performance on one task by leveraging information

contained in the training signals of other tasks. We do not care if the MTL decision tree

grown for Task 1 performs well on Task 2. If Task 2 is also important, we can grow a

separate MTL decision tree for it. This gives us freedom to use the splits preferred by other

tasks only if they help the main task.

Averaging the information gain across all tasks places all tasks on equal footing. Using

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 231

a weighted average allows us to bias splits in favor of speci�c tasks. Assume the main task

has weight 1. If the weight for some extra task is near 0, that task is ignored because it

contributes little to the aggregate information gain. Conversely, if a task has weight � 1,

the installed splits are very sensitive to how much they gain for this task.

Hillclimbing on a hold-out set can be used to learn task weights that yield good gen-

eralization on the main task. Unfortunately, the partial derivatives of performance with

respect to task weights are discontinuous and thus not di�erentiable: small weight changes

often have no a�ect on the learned tree, and large changes in performance sometimes occur

when the test installed at some node suddenly changes. So we can't use gradient descent.

Fortunately, there are simple accounting tricks that can be used at interior nodes in the

decision tree to keep track of the smallest weight changes that will alter the learned tree.

This allows us to use steepest descent hillclimbing to learn the task weights.

This approach to learning task weights requires decision tree induction be fast enough

to run many times. It may not be practical for problems with large data sets and many

attributes. There is also a danger of over�tting the test set if it is too small. An attractive

feature of this scheme is that after the weights have been learned, they can be inspected to

see which extra tasks are most bene�cially related to the main task.

9.2.13 Combining MTL With Other Learning Methods

There are other learning methods that also might bene�t from MTL. As one example, rein-

forcement learning is a challenging learning method where the supervisory signals received

from the environment are infrequent rewards (success or failure, or a positive or negative

reward on some scale). This makes learning very di�cult because the learner may need to

perform a complex series of actions before a reward is received. (By contrast, in traditional

supervised learning each action has an associated training signal that guides the learner

towards good performance.) Training a reinforcement learner on multiple related reinforce-

ment learning problems that give rewards in di�erent states and for di�erent sequences of

behavior might be one way to guide reinforcement learning to learn good behaviors. For

example, a reinforcement learner that is learning to navigate from a start position to a goal

position, might also be given rewards for related tasks such as crossing the room, following

CHAPTER 9. CONTRIBUTIONS, DISCUSSION, AND FUTURE WORK 232

a wall, passing through a doorway, crossing its own trajectory a second time (a negative

reward), trajectories that are smooth, trajectories that do not hit objects, trajectories that

do not go too close to objects, etc. These extra tasks can be viewed as a way of giving re-

inforcement learning partial credit for successfully executing behaviors bene�cial to success

on the main task.

Applying MTL to other learning methods is an important direction of future research.

The two learning areas we are most interested in applying MTL to are methods for scienti�c

discovery and methods for unsupervised learning. We were led to �rst consider MTL by

trying to answer the simple question \how could one use a backprop net to do scienti�c

discovery?" A backprop net trained on a single set of data, say data points for a planet

orbiting the sun, would likely learn a simple interpolating model for the data. It would not

discover anything general such as the law of gravitation. But a backprop net trained on

dozens of di�erent problems, all of which depended on gravity in some way (e.g., planets

orbiting the sun, stars orbiting the galactic center, moons orbiting planets, apples falling

to earth) might, if biased to learn a single comprehensive model that captured all these

discovery tasks, discover something like gravity. This is, of course, a fanciful example. But

it was the original motivation for this thesis, and still poses a challenging and potentially

rewarding direction for future research.

Forging a stronger connection between MTL and unsupervised learning is important

because it is now clear that MTL depends implicitly on unsupervised learning. We may

have supervisory training signals for each task individually, but we are not given training

signals or supervision about how tasks are related and what should be shared between them.

This must be discovered by the MTL algorithm via an unsupervised learning mechanism.

Better understanding the role of this unsupervised learning in MTL, and learning how to

make it work better, are important directions for improving MTL.

Chapter 10

Bibliography

Abu-Mostafa, Y. S., \Learning from Hints in Neural Networks," Journal of Complexity,
1990, 6(2), pp. 192{198.

Abu-Mostafa, Y. S., \Hints and the VC Dimension," Neural Computation, 1993, 5(2).

Abu-Mostafa, Y. S., \Hints," Neural Computation, 1995, 7, pp. 639-671.

Baluja, S., \Expectation-Based Selective Attention," Doctoral Thesis, Carnegie Mellon Uni-
versity, CMU-CS-96-182, 1996.

Baluja, S. and Pomerleau, D. A., \Using the Representation in a Neural Network's Hidden
Layer for Task-Speci�c Focus of Attention," Proceedings of the International Joint Confer-
ence on Arti�cial Intelligence 1995, IJCAI-95, Montreal, Canada, 1995, pp. 133-139.

Baum, E. B. and Haussler, D., \What Size net gives valid Generalization?," Neural Com-
putation, 1989, 1:1, pp. 151-160.

Baxter, J., \Learning Internal Representations," Ph.D. Thesis, The Flinders Univeristy of
South Australia, Dec. 1994.

Baxter, J., \Learning Internal Representations," Proceedings of the 8th ACM Conference
on Computational Learning Theory, (COLT-95), Santa Cruz, CA, 1995.

Baxter, J., \A Bayesian/Information Theoretic Model of Bias Learning,", Proceedings of the
9th International Conference on Computational Learning Theory, (COLT-96), Desenzano
del Gardo, Italy, 1996.

Becker, S. and Hinton, G. E., \A Self-organizing Neural Network that Discovers Surfaces
in Random-dot Stereograms," Nature, 1992, 355, pp. 161-163.

Breiman, L., \Bagging Predictors," TR No. 421 (1994), Department of Statistics, University
of California, Berkeley, 1994.

233

CHAPTER 10. BIBLIOGRAPHY 234

Breiman, L. and Friedman, J. H., \Predicting Multivariate Responses in Multiple Linear
Regression," 1995, ftp://ftp.stat.berkeley.edu/pub/users/breiman/curds-whey-all.ps.Z.

Caruana, R., \Multitask Learning: A Knowledge-Based Source of Inductive Bias," Pro-
ceedings of the 10th International Conference on Machine Learning, ML-93, University of
Massachusetts, Amherst, 1993, pp. 41-48.

Caruana, R., \Multitask Connectionist Learning," Proceedings of the 1993 Connectionist
Models Summer School, 1994, pp. 372-379.

Caruana, R., \Learning Many Related Tasks at the Same Time with Backpropagation,"
Advances in Neural Information Processing Systems 7, (Proceedings of NIPS-94), 1995, pp.
656-664.

Caruana, R., Baluja, S., and Mitchell, T., \Using the Future to \Sort Out" the Present:
Rankprop and Multitask Learning for Medical Risk Prediction," Advances in Neural Infor-
mation Processing Systems 8, (Proceedings of NIPS-95), 1996, pp. 959-965.

Caruana, R. and de Sa, V. R., \Promoting Poor Features to Supervisors: Some Inputs Work
Better As Outputs," to appear in Advances in Neural Information Processing Systems 9,
(Proceedings of NIPS-96), 1997.

Cooper, G. F., Aliferis, C. F., Ambrosino, R., Aronis, J., Buchanan, B. G., Caruana, R.,
Fine, M. J., Glymour, C., Gordon, G., Hanusa, B. H., Janosky, J. E., Meek, C., Mitchell,
T., Richardson, T., and Spirtes, P., \An Evaluation of Machine Learning Methods for
Predicting Pneumonia Mortality," Arti�cial Intelligence in Medicine 9, 1997, pp. 107-138.

Craven, M. and Shavlik, J., \Using Sampling and Queries to Extract Rules from Trained
Neural Networks," Proceedings of the 11th International Conference on Machine Learning,
ML-94, Rutgers University, New Jersey, 1994, pp. 37-45.

Davis, I. and Stentz, A., \Sensor Fusion for Autonomous Outdoor Navigation Using Neural
Networks," Proceedings of IEEE's Intelligent Robots and Systems Conference, 1995.

Dent, L., Boticario, J., McDermott, J., Mitchell, T., and Zabowski, D., \A Personal Learn-
ing Apprentice," Proceedings of 1992 National Conference on Arti�cial Intelligence, 1992.

de Sa, V. R., \Learning Classi�cation with Unlabelled Data," Advances in Neural Informa-
tion Processing Systems 6, (Proceedings of NIPS-93), 1994, pp. 112-119.

Dietterich, T. G., Hild, H., and Bakiri, G., \A Comparative Study of ID3 and Backpropa-
gation for English Text-to-speech Mapping," Proceedings of the Seventh International Con-
ference on Arti�cial Intelligence, 1990, pp. 24-31.

Dietterich, T. G., Hild, H., and Bakiri, G., \A Comparison of ID3 and Backpropagation for
English Text-to-speech Mapping," Machine Learning, 18(1), 1995, pp. 51-80.

CHAPTER 10. BIBLIOGRAPHY 235

Dietterich, T. G. and Bakiri, G., \SolvingMulticlass Learning Problems via Error-Correcting
Output Codes," Journal of Arti�cial Intelligence Research, 1995, 2, pp. 263-286.

Fine, M. J., Singer, D., Hanusa, B. H., Lave, J., and Kapoor, W., \Validation of a Pneumo-
nia Prognostic Index Using the MedisGroups Comparative Hospital Database," American
Journal of Medicine, 1993.

Fisher, D. H., \Conceptual Clustering, Learning from Examples, and Inference," Proceedings
of the 4th International Workshop on Machine Learning, 1987.

Freund, Y., \Boosting a Weak Learning Algorithm by Majority," Information and Compu-
tation, 121(2):256-285, 1995.

Ghahramani, Z. and Jordan, M. I., \Supervised Learning from Incomplete Data Using an
EM Approach," Advances in Neural Information Processing Systems 6, (Proceedings of
NIPS-93,) 1994, pp. 120-127.

Ghahramani, Z. and Jordan, M. I., \Mixture Models for Learning from Incomplete Data,"
Computational Learning Theory and Natural Learning Systems, Vol. IV, R. Greiner, T. Petsche
and S.J. Hanson (eds.), Cambridge, MA, MIT Press, 1997, pp. 67-85.

Ghosn, J. and Bengio, Y., \Multi-Task Learning for Stock Selection," Advances in Neural
Information Processing Systems 9, (Proceedings of NIPS-96), 1997.

Hinton, G. E., \Learning Distributed Representations of Concepts," Proceedings of the 8th
International Conference of the Cognitive Science Society, 1986, pp. 1-12.

Holmstrom, L. and Koistinen, P., \Using Additive Noise in Back-propagation Training,"
IEEE Transactions on Neural Networks, 1992, 3(1), pp. 24-38.

Hsu, G. T. and Simmons, R., \Learning Footfall Evaluation for a Walking Robot," Pro-
ceedings of the 8th International Conference on Machine Learning, 1991, pp. 303-307.

Lang, K. \NewsWeeder: Learning to Filter News," Proceedings of the 12th International
Conference on Machine Learning, 1995, pp. 331-339.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackal, L. D., \Backpropagation Applied to Handwritten Zip-Code Recognition," Neural
Computation, 1989, 1, pp. 541-551.

Little, R. J. A. and Rubin, D. B., Statistical Analysis with Missing Data, 1987, Wiley, New
York.

Liu, H. and Setiono, R., \A Probibilistic Approach to Feature Selection|A Filter Solution,"
Proceedings of the 13th International Conference on Machine Learning, ICML-96, Bari,
Italy, 1996, pp. 319-327.

Martin, G. L. and Pittman, J. A., \Recognizing Hand-Printed Letters and Digits Using

CHAPTER 10. BIBLIOGRAPHY 236

Backpropagation Learning," Neural Computation, 1991, 3, pp. 258-267.

Martin, J. D., \Goal-directed Clustering," Proceedings of the 1994 AAAI Spring Symposium
on Goal-directed Learning, 1994.

Martin, J. D. and Billman, D. O., \Acquiring and Combining Overlapping Concepts,"
Machine Learning, 1994, 16, pp. 1-37.

Mitchell, T., \The Need for Biases in Learning Generalizations," Rutgers University: CBM-
TR-117, 1980.

Mitchell, T., Caruana, R., Freitag, D., McDermott, J., and Zabowski, D., \Experience with
a Learning Personal Assistant," Communications of the ACM: Special Issue on Agents, July
1994, 37(7), pp. 80-91.

Munro, P. W. and Parmanto, B., \Competition Among Networks Improves Committee
Performance," to appear in Advances in Neural Information Processing Systems 9, (Pro-
ceedings of NIPS-96), 1997.

O'Sullivan, J. and Thrun, S., \Discovering Structure in Multiple Learning Tasks: The TC
Algorithm," Proceedings of the 13th International Conference on Machine Learning, ICML-
96, Bari, Italy, 1996, pp. 489-497.

Pomerleau, D. A., \Neural Network Perception for Mobile Robot Guidance," Doctoral
Thesis, Carnegie Mellon University: CMU-CS-92-115, 1992.

Pratt, L. Y., Mostow, J., and Kamm, C. A., \Direct Transfer of Learned Information Among
Neural Networks," Proceedings of AAAI-91, 1991.

Pratt, L. Y., \Non-literal Transfer Among Neural Network Learners," Colorado School of
Mines: MCS-92-04, 1992.

Pratt, L. Y., Mostow, J., and Kamm, C. A., \Direct Transfer of Learned Information Among
Neural Networks," Proceedings of AAAI-91, 1991.

Quinlan, J. R., \Induction of Decision Trees," Machine Learning, 1986, 1, pp. 81-106.

Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufman Publishers, 1992.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J., \Learning Representations by Back-
propagating Errors," Nature, 1986, 323, pp. 533-536.

Sejnowski, T. J. and Rosenberg, C. R., \NETtalk: A Parallel Network that Learns to Read
Aloud," John Hopkins: JHU/EECS-86/01, 1986.

Schapire, R., \The Strength of Weak Learnability," Machine Learning, 5(20:197-227, 1990.

Sharkey, N. E. and Sharkey, A. J. C., \Adaptive Generalisation and the Transfer of Knowl-

CHAPTER 10. BIBLIOGRAPHY 237

edge," University of Exeter: R257, 1992.

Sill, J. and Abu-Mostafa, Y., \Monotonicity Hints," to appear in Neural Information Pro-
cessing Systems 9, (Proceedings of NIPS-96), 1997.

Simard, P., Victorri, B., LeCun, Y., and Denker, J., \Tangent Prop|A Formalism for
Specifying Selected Invariances in an Adaptive Neural Network," Advances in Neural In-
formation Processing Systems 4, (Proceedings of NIPS-91) 1992, pp. 895-903.

Suddarth, S. C. and Holden, A. D. C., \Symbolic-neural Systems and the Use of Hints
for Developing Complex Systems," International Journal of Man-Machine Studies, 1991,
35(3), pp. 291-311.

Suddarth, S. C. and Kergosien, Y. L., \Rule-injection Hints as a Means of Improving
Network Performance and Learning Time," Proceedings of the 1990 EURASIP Workshop
on Neural Networks, 1990, pp. 120-129.

Sutton, R., \Adapting Bias by Gradient Descent: An Incremental Version of Delta-Bar-
Delta,", Proceedings of the 1-th International Conference on Arti�cial Intelligence (AAAI-
92), 1992, pp. 171-176.

Thrun, S. and Mitchell, T., \Learning One More Thing," Carnegie Mellon University: CS-
94-184, 1994.

Thrun, S., \Lifelong Learning: A Case Study," Carnegie Mellon University: CS-95-208,
1995.

Thrun, S., \Is Learning the N-th Thing Any Easier Than Learning The First?," Advances
in Neural Information Processing Systems 8, (Proceedings of NIPS-95), 1996, pp. 640-646.

Thrun, S., Explanation-Based Neural Network Learning: A Lifelong Learning Approach,
1996, Kluwer Academic Publisher.

Tresp, V., Ahmad, S., and Neuneier, R., \Training Neural Networks with De�cient Data,"
Advances in Neural Information Processing Systems 6, (Proceedings of NIPS-93), 1994, pp.
128-135.

Utgo�, P. and Saxena, S. \Learning a Preference Predicate," Proceedings of the 4th Inter-
national Conference on Machine Learning, 1987, pp. 115-121.

Valdes-Perez, R., and Simon, H., \A Powerful Heuristic for the Discovery of Complex Pat-
terned Behavior," Proceedings of the 11th International Conference on Machine Learning,
ML-94, Rutgers University, New Jersey, 1994, pp. 326-334.

Waibel, A., Sawai, H., and Shikano, K., \Modularity and Scaling in Large Phonemic Neural
Networks," IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(12),
pp. 1888-1898.

CHAPTER 10. BIBLIOGRAPHY 238

Weigend, A., Rumelhart, D., and Huberman, B., \Generalization by Weight-Elimination
with Application to Forecasting," Advances in Neural Information Processing Systems 3,
(Proceedings of NIPS-90), 1991, pp. 875-882.

Appendix A

Net Size and Generalization in

Backprop Nets

A.1 Introduction

This appendix summarizes the results from experiments we ran in 1992 and 1993.

The conventional wisdom is that arti�cial neural networks that are too big generalize poorly.

In this appendix we present empirical results that suggest otherwise: if early stopping is used to

prevent over�tting, excess capacity does not signi�cantly reduce the generalization performance

of fully connected feed-forward backprop nets. Moreover, too little capacity hurts generalization

performance more than too much capacity.

Analysis suggests that all backprop nets, regardless of size, learn task subcomponents in similar

sequence. Big nets pass through intermediate stages similar to those learned by small nets. Thus

early stopping can stop big nets at a point that yields generalization performance comparable to

smaller nets. If the big net is too large, the penalty is higher computational cost, not poorer

generalization. But if a small net is too small, bigger nets will generalize better.

This work is important for this thesis because an MTL net being trained on multiple tasks needs

more capacity than the STL net being trained on one of those tasks. If we are to perform a fair

comparison between the results obtained with STL and MTL, we need to train STL and MTL using

net sizes appropriate to each method. Unfortunately, because backprop nets are expensive to train,

it is often infeasible to search for the optimal net size. Fortunately|and quite unexpectedly|our

experiments suggest that generalization performance is remarkably insensitive to net size as long

as the net is large enough. Excess capacity rarely hurts generalization if early stopping is used to

239

APPENDIX A. NET SIZE AND GENERALIZATION IN BACKPROP NETS 240

prevent over�tting. This is great news. It means we can do a fair comparison between STL and

MTL as long as we don't use nets that are too small with either method. It is more feasible to

determine what net size is large enough than to determine what net size is optimal. In fact, if this

work had suggested generalization performance was so sensitive to net size that it was necessary to

�nd the optimal net size before each experiment, we would not have pursued this thesis using neural

nets.

A.2 Why Nets that are \Too Big" Should Generalize Poorly

It is commonly believed that arti�cial neural networks that are too big will generalize poorly. The

argument for this is that if the net has too much capacity, then it is more likely to learn to do

table lookup on the training data than to generalize on it. The way to obtain good generalization

is to restrict capacity so that the net is forced to generalize because it has insu�cient capacity to

memorize the training data.

This argument is consistent with a VC-dimension analysis of net capacity and generalization.

The more free parameters in the net the larger the VC-dimension of the hypothesis space for the net

(i.e., the larger the number of hypotheses the net could represent by changing weights). The higher

the VC-dimension, the less likely the training sample is large enough to select a correct or nearly

correct net hypothesis. [Baum & Haussler 1989]

A.3 An Empirical Study of Generalization vs. Net Capacity

A.3.1 Goals

Several groups using backprop have noted that performance on their task does not worsen (and

sometimes continues to improve) as they try larger networks.

We �nd only marginal and inconsistent indications that constraining net capacity im-

proves generalization. [Martin & Pittman 1991]

Unfortunately, the anecdotal evidence su�ers methodological aws. It comes from experiments

that use questionable criteria to halt training and that do not consider large enough networks. This

is not a critique of the studies. The studies were motivated to achieve performance on their respective

tasks, not to investigate capacity e�ects.

Our goal is to do a methodologically sound investigation of capacity e�ects in backprop nets.

We want to empirically answer these questions:

APPENDIX A. NET SIZE AND GENERALIZATION IN BACKPROP NETS 241

1. How sensitive is generalization performance to network capacity? Is it critical to �nd just the

right size, or is performance insensitive to small changes in capacity?

2. Does excess capacity reduce generalization performance as is widely believed? If so, how

much?

3. How e�ective is early stopping at mitigating the e�ects of over�tting?

4. Do large networks learn qualitatively di�erent internal representations than small networks?

A.3.2 Methodology

We selected seven test problems and trained nets of di�erent sizes (2 to 800 hidden units) on them

using backpropagation. We used hold-out sets to measure generalization performance during train-

ing. Where possible, we collected complete generalization curves, i.e., we trained until generalization

performance began to fall or became so at that we were reasonably con�dent it would not improve

later. Where possible we ran multiple trials. We kept training sets small to make generalization

challenging. The study required approximately one Sparc year of computation.

The problems we used are:

� NETtalk [Sejnowski 1986]

� parity (7 bit and 12 bit)

� an inverse kinematic model for a robot arm1

� two sensor modeling tasks using real sonar data collected from a real robot

� vision data used to steer an autonomous vehicle [Pomerleau 1992]

Some of these are boolean, others are continuous. Some have noise, others are noise-free. Some

have large numbers of inputs or outputs, others have small numbers of inputs or outputs. Some are

real, others are synthetic.

A.3.3 Results

Figure A.1 shows the generalization curves we obtained on four of the test problems. The results

surprised us. On a few tasks, nets that were too large did have poorer peak generalization perfor-

mance than smaller networks. But where there was a drop in generalization performance, it was

always very small. Many replications were required before statistical tests could con�rm that the

1Many thanks to Sebastian Thrun for letting us use his robot arm simulation code.

APPENDIX A. NET SIZE AND GENERALIZATION IN BACKPROP NETS 242

di�erences were statistically signi�cant. Moreover, the data suggest that generalization performance

is more likely to be hurt by using a network that is too small than by using one that is too large. It is

better to err on the side of making the network too large than too small if generalization performance

(and not training time) is the important criterion.

0.12

0.13

0.14

0.15

0.16

0.17

0 100000 200000 300000 400000 500000 C
ro

ss
-V

al
id

at
io

n
RM

S
Er

ro
r

 Pattern Presentations

 NETtalk

10 hidden units
25 hidden units
50 hidden units
100 hidden units
200 hidden units
400 hidden units
800 hidden units

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2e+06 4e+06 6e+06 8e+06 1e+07 C
ro

ss
-V

al
id

at
io

n
RM

S
Er

ro
r

 Pattern Presentations

 Inverse Kinematics

2 hidden units
8 hidden units

32 hidden units
128 hidden units
512 hidden units

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0 2e+06 4e+06 6e+06 8e+06 C
ro

ss
-V

al
id

at
io

n
RM

S
Er

ro
r

 Pattern Presentations

 Base 1: Average of 10 Runs

2 hidden units
8 hidden units

32 hidden units
128 hidden units
512 hidden units

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0 200000 400000 600000 800000 C
ro

ss
-V

al
id

at
io

n
RM

S
Er

ro
r

 Pattern Presentations

 Base 2: Average of 10 Runs

2 hidden units
8 hidden units

32 hidden units
128 hidden units
512 hidden units

Figure A.1: Generalization Performance vs. Network Size for Four of the Test Problems

For most tasks and net sizes we trained well beyond the point where generalization performance

peaked. Because we had such complete generalization curves, we noticed something we did not

expect. On some tasks, small nets over�tted considerably. We conclude that early stopping is

critical for nets of all sizes|not just ones that are too big. It is not safe to assume that because a

net has restricted capacity that it is unlikely to over�t the data.

A.4 Why Excess Capacity Does Not Hurt Generalization

A proper theoretical analysis of net capacity and generalization must to take into account the search

procedure used to �nd hypotheses consistent with the data. If backpropagation is used to train

the net, hypotheses of di�erent complexity are not given equal opportunity. Usually one initializes

weights to small values. Weights become large only when the data require it and when the number

APPENDIX A. NET SIZE AND GENERALIZATION IN BACKPROP NETS 243

of weight updates is large enough to allow it. Thus backprop is biased to consider net hypotheses

with small weights before considering hypotheses with large weights. Net with larger weight ranges

have greater representational power, so this is tantamount to searching simpler hypotheses before

searching more complex hypotheses.

We analyzed what nets of di�erent sizes learned as they train. We compared the input/output

behavior of networks at di�erent stages of learning on large samples of test patterns drawn from

their domain. For example, we compared the input/output behavior of a large net as it trained with

the behavior of smaller nets as they trained on the same problem.

We discovered that large nets go through intermediate stages during training similar (in I/O

behavior) to smaller nets. That is, a large net �rst learns something most similar to what a very

small net learns. Then it begins to learn what somewhat larger nets learn. Later, its behavior is

most similar to intermediate sized nets. And so on. Thus nets with excess capacity �rst learn what

small nets can learn. Then, as small nets run out of capacity, large nets begin to behave more like

intermediate size nets. . .

If the large net is too big, early stopping will detect where its generalization performance begins

to drop. At this point it is functionally similar to some smaller net trained on that task. The only

penalty of using a net that is too big is the extra computation required to train it. Early stopping

provides an apparently reliable means of stopping the training on this net at a stage functionally

equivalent to what might have been obtained with a smaller net. If the net is not too big, then it

will perform better than smaller net.

A.5 Conclusions

1. Early stopping is just as important with small nets as it is with large nets.

2. On some tasks, generalization performance does decrease with excess net capacity. But gener-

alization performance is remarkably insensitive to excess net capacity. When excess capacity

reduces generalization, it reduces it very little.

3. Using nets that are too small hurts generalization more than using nets that are too large.

4. Nets with excess capacity appear to go through a sequence of stages of learning that are

functionally similar to what smaller nets learn.

5. When comparing methods that need di�erent sized nets (e.g., STL and MTL), a fair compar-

ison can be made if one is carefully not to use nets that are too small. One does not need to

precisely tune net size to each task or set of tasks.

APPENDIX A. NET SIZE AND GENERALIZATION IN BACKPROP NETS 244

A.6 Final Note

Since completing this empirical study in 1992{1993, we have trained thousands of backprop nets

on more than a dozen additional problems. For many of these problems we performed preliminary

studies to quickly assess the e�ect of net size on generalization performance. Because computers

have become signi�cantly more powerful, in some of these studies we were able to consider nets with

thousands of hidden units. Also, we ran some of later studies using conjugate gradient backprop

instead of steepest descent. The results of all our experiments are consistent with the results we

report here. We �nd little, if any, loss in generalization performance as nets become very large if

early stopping is used to halt training. Where there is some small sensitivity to excess net capacity,

the net size that is found to be optimal is usually much larger than one might expect. For example,

it is not uncommon for the optimal net size on a problem with a few dozen inputs, a few outputs, and

several hundred training patterns to be 1000 hidden units. Given that a net this size contains well

over 10,000 free parameters, it is clear that the traditional rules that the number of free parameters

should be less than the number of training cases does not apply to backprop nets trained with early

stopping.

Appendix B

Rank-Based Error Metrics

The methods described in this appendix are applicable to domains where the goal is to learn to

rank instances, usually according to some unknown function or probability distribution. Instead of

learning the function or probability Often we according to some unknown function such a proba-

bility function. In addition to medical decision making, this class includes problems as diverse as

investment analysis in �nancial markets.

B.1 Motivating Problem: Pneumonia Risk Prediction

The Medis Pneumonia Database [Fine et al. 1995] contains 14,199 patients diagnosed with pneu-

monia. The database indicates whether each patient lived or died. 1,542 (10.9%) of the patients

died. The most useful decision aid for this problem would predict which patients will live or die.

But this is too di�cult. In practice, the best that can be achieved is to estimate a probability of

death (POD) from the observed symptoms. In fact, it is su�cient to learn to rank patients by POD

so lower risk patients can be discriminated from higher risk patients. The patients at least risk may

then be considered for outpatient care.

The performance criterion used by others working with the Medis database [Cooper et al. 1996]

is the accuracy with which one can select a prespeci�ed fraction of the patient population that do not

die. For example, given a population of 10,000 patients, �nd the 20% of this population at least risk.

To do this we learn a risk model and a threshold for this model that allows 20% of the population

(2000 patients) to fall below it. If 30 of the 2000 patients below this threshold died, the error rate

is 30/2000 = 0.015. We say that the error rate for FOP 0.20 is 0.015 for this model (\FOP" stands

for fraction of population). In this paper we consider FOPs 0.1, 0.2, 0.3, 0.4, and 0.5. Our goal is

245

APPENDIX B. RANK-BASED ERROR METRICS 246

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1e+07 2e+07 3e+07 4e+07 5e+07

 S
SE

 o
n

0/
1

Ta
rg

et
s

 Pattern Presentations (Epochs X 1000)

"./train.rms.plot"
"./test.rms.plot"

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 1e+07 2e+07 3e+07 4e+07 5e+07

 E
rro

r (
fra

ct
io

n
of

 d
ea

th
s)

 in
 F

O
P

 Pattern Presentations (Epochs X 1000)

FOP = 0.1
FOP = 0.2
FOP = 0.3
FOP = 0.4
FOP = 0.5

Figure B.1: Learning Curves (left graph) and Error Rates For Each FOP (right graph)

to learn models and model thresholds, such that the error rate at each FOP is minimized. Models

with acceptably low error rates might then be employed to help determine which patients do not

require hospitalization.

B.2 The Traditional Approach: SSE on 0/1 Targets

The straightforward approach to this problem is to use backprop to train a net to learn to predict

which patients live or die, and then use the real-valued predictions of this net to sort patients by

risk. This net has 30 inputs, 1 for each of the observed patient measurements, a hidden layer with

8 units1, and a single output trained with 0=lived, 1=died.2 Given an in�nite training set, a net

trained this way should learn to predict the probability of death for each patient, not which patients

live or die. In the real world, however, where we rarely have an in�nite number of training cases, a

net will over�t and begin to learn a very nonlinear function that outputs values near 0/1 for cases in

the training set, but which does not generalize well. In this domain it is critical to use early stopping

to halt training before this happens.

Figure B.1 shows the learning curve for fully connected feedforward nets with 8 hidden units

trained as described above with learning rate = 0.1 and momentum = 0.9.3 It is clear from the plot

that signi�cant over�tting can occur. Figure 1 also shows the error rates for the di�erent FOP values

1To make comparisons between methods fair, we �rst found hidden layer sizes and learning parameters

that performed well for each method.
2Di�erent representations such as 0.15/0.85 and di�erent error metrics such as cross entropy did not

perform better than SSE on 0/1 targets.
3To make the comparison between the methods fair, the size of the hidden layer and the learning pa-

rameters have been tuned for each method via preliminary experiments to �nd settings that yielded good

performance with that method.

APPENDIX B. RANK-BASED ERROR METRICS 247

(measured on the 1K halting set, not on �nal 12K test set) as a function of training. Note that

minimum FOP error does not occur at the same epoch where SSE is minimized. In fact, di�erent

FOPs reach minimum error at di�erent epochs.

The fact that error rate performance at FOPs between 0.1 and 0.5 do not reach their best

value when SSE on the test set is minimized suggests two things. First, better performance can be

obtained by halting training based on FOP error rates instead of SSE. Second, if SSE on 0/1 targets

does not correlate well with our performance criterion, perhaps it should not be used as the training

criterion. The second issue is addressed by rankprop in the next section.

Given that our goal is to predict patient risk, this represents a serious lack of the appropriate

training information that motivates our use of rank-based learning methods.

Table B.1 shows the error rates of nets trained with SSE on 0/1 targets for the �ve FOPs. Each

entry is the mean of ten trials. The �rst entry in the table indicates that on average, in the 10% of

the test population predicted by the nets to be at least risk, 1.4% died. We do not know the best

achievable error rates for this data.

Table B.1: Error Rates of SSE on 0/1 Targets

FOP 0.1 0.2 0.3 0.4 0.5

Error Rate .0140 .0190 .0252 .0340 .0421

B.3 Rankprop

Because the goal is to �nd the fraction of the population least likely to die, it is su�cient

just to learn to rank patients by risk. Rankprop learns to rank patients without learning to

predict mortality. \Rankprop" is short for \backpropagation using sum of squares errors

on estimated ranks". The basic idea is to sort the training set using the target values, scale

the ranks from this sort (we scale uniformly to [0.25,0.75] with sigmoid output units), and

use the scaled ranks as target values for standard backprop with SSE instead of the 0/1

values in the database.

Ideally, we'd rank the training set by the true probabilities of death. Unfortunately, all

we know is which patients lived or died. In the Medis database, 89% of the target values

are 0's and 11% are 1's. There are many possible sorts consistent with these values. Which

sort should backprop try to �t? It is the large number of possible sorts of the training set

APPENDIX B. RANK-BASED ERROR METRICS 248

that makes backpropagating ranks challenging. Rankprop solves this problem by using the

net model as it is being learned to order the training set when target values are tied. In

this database, where there are many ties because there are only two target values, �nding

a proper ranking of the training set is a serious problem. Rankprop learns to adjust the

target ranks of the training set at the same time it is learning to predict ranks from that

training set.

How does rankprop do this? Rankprop alternates between rank passes and backprop

passes. On the rank pass it records the output of the net for each training pattern. It then

sorts the training patterns using the target values (0 or 1 in the Medis database), but using

the network's predictions for each pattern as a secondary sort key to break ties.4 The basic

idea is to �nd the legal rank of the target values (0 or 1) maximally consistent with the

ranks the current model predicts. This closest match ranking of the target values is then

used to de�ne the target ranks used on the next backprop pass through the training set.

Rankprop's pseudo code is:

foreach epoch do {

foreach pattern do {

network_output[pattern] = forward_pass(pattern)}

target_rank = sort_and_scale_patterns(target_value, network_output)

foreach pattern do {

backprop(target_rank[pattern] - network_output[pattern])}}

where \sort and scale patterns" sorts and ranks the training patterns using the sort

keys speci�ed in its arguments, the second being used to break ties in the �rst.

One might worry that the net could learn to order the 0's (or the 1's) backwards, ranking

lower risk 0's above the higher risk 0's. In theory this is possible. What prevents this in

practice is that the net must learn to rank 0's below 1's because patterns with 0 targets are

4Actually, our implementation collects the net's outputs at the same time it is backpropagating errors

computed using the sorted outputs collected during the previous epoch. This saves time because the col-

lection forward pass is eliminated on all except the �rst pass, but means that the error signals fed back are

always one epoch out of date.

APPENDIX B. RANK-BASED ERROR METRICS 249

always ranked less than patterns with 1 targets and this biases the net toward models that

give lower rank to cases with less risk.

Table B.2 shows the mean rankprop performance using nets with 8 hidden units. The

bottom row shows improvements over SSE on 0/1 targets. All di�erences are statistically

signi�cant at .05 or better.

Table B.2: Error Rates of Rankprop and Improvement Over Standard Backprop

FOP 0.1 0.2 0.3 0.4 0.5

Error Rate .0083 .0144 .0210 .0289 .0386

% Change -40.7% * -24.2% * -16.7% * -15.0% * -8.3% *

B.4 Soft Ranks

Here's how soft ranks work. Suppose we have �ve items, each with an associated real value

that will be used to order the data. Sorting and ranking this data the usual way yields:

A: 0.25 E: 0.08 -> 1

B: 0.13 B: 0.13 -> 2

C: 0.54 => A: 0.25 -> 3

D: 0.27 D: 0.27 -> 4

E: 0.08 C: 0.54 -> 5

Because ranks are discrete, small changes to the predicted value of a case will not usually

a�ect the rankings of the cases. For example, if the predicted value of B changes from 0.13

to 0.14, it still gets ranked second. It is di�cult to apply gradient descent to error metrics

de�ned on discrete ranks because of these plateaus in the error metric.

A small modi�cation to ranks eliminates this problem while preserving the semantics.

Order the data as usual and temporarily assign to each item the traditional rank. Then,

post-process the traditional ranks as follows:

SoftRank(i) = TradRank(Prev(i)) + 0:5 +
V al(i)� V al(Prev(i))

V al(Post(i)� V al(Prev(i))

APPENDIX B. RANK-BASED ERROR METRICS 250

/noindent where TradRank(i) is the traditional rank of item i, SoftRank(i) is the contin-

uous rank of item i, V al(i) is the value of item i, and Prev(i) and Post(i) denote the items

that rank just before and just after item i, respectively.

The soft ranks computed this way for the �ve items above are:

E: 0.08 -> 1 -> 1

B: 0.13 -> 2 -> 2.088

A: 0.25 -> 3 -> 3.300

D: 0.27 -> 4 -> 3.569

C: 0.54 -> 5 -> 5

Consider item A. Its value, 0.25, is closer to 0.27 (the value of D, the item ranked just after

it) than to 0.13 (the value of B, the item ranked just before it). The soft rank reects this

by assigning to item A a soft rank closer to the soft rank of D than to the soft rank of B.

Notice that the soft rank of the �rst and last items is the same as their traditional rank.

For items in the interior, the SoftRank is always within �0:5 of its TradRank. Also, the

TradRank and SoftRank have the same range.5

Qualitatively, soft ranks behave like traditional ranks, but have the nice additional

property that they are continuous: small changes to item values yield small changes in the

soft ranks. Moreover, if small changes in the values cause items to swap positions with

neighboring items, the soft ranks reect this in a smooth way. For example, if we increase

the value of item A in the example above from 0.27 to 0.29, the new soft ranks are:

E: 0.08 -> 1 -> 1

B: 0.13 -> 2 -> 2.088

D: 0.27 -> 3 -> 3.433

A: 0.28 -> 4 -> 3.537

C: 0.54 -> 5 -> 5

5With a little more e�ort, it is possible to de�ne a SoftRank similar to the above where the range of the

TradRank and SoftRank is not the same, but their means are the same. This SoftRank is more useful in

some circumstances, but the extra complexity is not necessary here so we use the simpler de�nition.

APPENDIX B. RANK-BASED ERROR METRICS 251

The traditional ranks of items A and D change abruptly as A passes D, but the soft ranks

do not. It is possible to use soft ranks in most error metrics that use traditional ranks.

Most error metrics de�ned on soft ranks will have behavior similar to their behavior when

de�ned on traditional ranks, except that smoothness of soft ranks will not make the error

metric discontinuous as the traditional ranks would. This means that we can apply gradient

descent to error metrics based on soft ranks.

The main prediction task in the pneumonia domain is mortality risk. KNN and LCWA

are used to predict the risk of each new case by examining whether its neighbors in the

training set lived or died. Predicted cases are then sorted by this predicted risk. The

optimization error metric we use pneumonia risk is the sum of the soft ranks for all patients

in the sample who live. The goal is to order patients by risk, least risk �rst. Successfully

ordering all patients that live before all patients that die minimizes this sum. We scale the

sum of soft ranks so that 0 indicates all patients who live have been ranked with lower risk

than all patients who die. This is ideal performance. The scaling is done so that a soft

rank sum of 1 indicates that all patients who die have been ranked with lower risk than all

patients who live. This is maximally poor performance. Random ordering of the patients

yields soft rank sums around 0:5. Good performance on this domain requires soft rank sums

less than 0:05.

B.5 Discussion

Why do sort-based methods like rankprop and soft rank sums work better than learning

to rank patients by �rst learning to estimate patients' probabilities of death? Consider

traditional SSE on 0/1 targets on Medis. It attempts to drive every person who lived to a

value of 0, and every person who dies to a value of 1, regardless of their true, but unknown,

probability of death. Now compare this with a rank-based metric on the same database.

Let's assume 90and 10does not have to drive all patients that live to one �xed value. Instead,

it has to �nd some ordering of the patients that live. This means it is possible that the

patients who live and have low probability of death will be sorted to the left of patients who

live but have high(er) probability of death. Ditto for patients who die. If such orderings can

APPENDIX B. RANK-BASED ERROR METRICS 252

be found, the function that is to be learned should be less nonlinear than the function that

would have to be learned by SSE on 0/1/ targets. The reasoning behind this is similar to

that for quantized data: there exists a ranking of the database (which only contains 0's and

1's) such that the ranking is more similar to the original underlying probability function

than the function SSE on 0/1 targets tries to learn.

Consider the function in Figure B.2a. Backprop should have no di�culty learning it|

it's the sigmoid. Now imagine that this function has been quantized by some process to

�ve discrete levels as in Figure B.2b. We no longer know the function in Figure B.2a, we

only get training data from Figure B.2b. Given a large training set, backprop can learn this

new function well. As the number of training patterns is reduced, however, it will begin

to have di�culty. Suppose our true objective is to sort patterns according to the original

underlying function in Figure B.2a, but we are only given a small number of samples from

Figure B.2b. Must we learn the function f(x) in Figure B.2b, or might it be bene�cial to

learn something else instead? All we really need to do is learn some function g(x) such that

[g(x1) � g(x2)]! [f(x1) � f(x2)]. There can be many such functions g(x) for a given f(x),

and some of these may be easier to learn well given a small training set.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

f(
x
)

x

a

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

q
u
a
n
ti
z
e
d
_
5
(f

(x
))

x

b

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

ra
n
k
(s

o
rt

(q
u
a
n
ti
z
e
d
_
5
(f

(x
))

))

x

c

Figure B.2: E�ects of Quantizing and then Ranking a Friendly Function

Figure B.2c shows one possible ranking of the data of Figure B.2b. Note that because

ranks are evenly spaced, Figure B.2c is less nonlinear than Figure B.2b. If a net can learn

a ranking similar to Figure B.2c for a training sample drawn from Figure B.2b, while at

the same time learning a ranking function that predicts outputs for patterns corresponding

to the rankings, it will sort future patterns well. On the other hand, if the net learns Fig-

ure B.2b directly from a small sample, it will have di�culty �nding a function nonlinear

APPENDIX B. RANK-BASED ERROR METRICS 253

enough to �t Figure B.2b, but not so nonlinear as to become at or nonmonotonic, either

of which would hurt sort performance. The more coarsely quantized the data, the larger

the potential di�erence between rankprop and SSE on the quantized targets. The pneumo-

nia database is a worst case scenario: the quantization is maximally coarse and has been

corrupted by binomial noise. A net using SSE on corrupted 0/1 targets must not only learn

the nonlinear quantization function, but also attempts to learn a function nonlinear enough

to drive to 0 and 1 similar cases that by chance had di�erent outcomes.

To make this more precise, we are given data from a target function f(x). Suppose

the goal is not to learn a model of f(x), but to learn to sort patterns by f(x). Must we

learn a model of f(x) and use its predictions for sorting? No. It su�ces to learn a function

g(x) such that for all x1; x2, [g(x1) � g(x2)] ! [f(x1) � f(x2)]. There can be many such

functions g(x) for a given f(x), and some of these may be easier to learn than f(x).

Consider the probability function in Figure B.3a that assigns to each x the probability

p = f(x) that the outcome is 1; with probability 1� p the outcome is 0. Figure B.3b shows

a training set sampled from this distribution. Where the probability is low, there are many

0's. Where the probability is high, there are many 1's. Where the probability is near 0.5,

there are 0's and 1's. This region causes problems for backprop using SSE on 0/1 targets:

similar inputs are mapped to dissimilar targets.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pr
ob

ab
ili

ty
 o

ut
co

m
e

is
 a

 1

x

.

.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ta
rg

et
s

fo
r

tr
ad

iti
on

al
 S

S
E

x

.

.

0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ta
rg

et
s

fo
r

be
st

 r
an

k

x

.

.

0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1

Figure B.3: SSE on 0/1 Targets and on Ranks for a Simple Probability Function

Learning sees a very nonlinear function when trained on Figure B.3b. This is unfortu-

nate: Figure B.3a is smooth and maps similar inputs to similar outputs. If the goal is to

learn to rank the data, we can learn a simpler, less nonlinear function instead. There exists

a ranking of the training data such that if the ranks are used as target values, the resulting

function is less nonlinear than the original target function. Figure B.3c shows these target

APPENDIX B. RANK-BASED ERROR METRICS 254

rank values. Similar input patterns have more similar rank target values than the original

target values.

Rank-based methods like rankprop try to learn simple functions that directly support

ranking. One di�culty with this is that rankprop must learn a ranking of the training

data while also training the model to predict ranks. We do not yet know under what

conditions this parallel search will converge. We conjecture that when rank-based methods

do converge, it will often be to simpler models than it would have learned from the original

target values (0/1 in Medis), and that these simpler models will often generalize better.

Rankprop should work best when the following assumptions are satis�ed: 1) the original

underlying function, f(x), is less nonlinear than the discretized function, quantized(f(x)),

for which we have training data; 2) there exists a function rank such that rank(quantized(f(x)))

is less nonlinear than quantized(f(x)); 3) rankprop can learn this rank(quantized(f(x)));

4) given the ranks imposed on the training set, backprop with SSE can learn to predict

these ranks from the inputs; and 5) backprop generalizes better from limited data when

learning less nonlinear functions.

B.5.1 Other Applications of Rank-Based Methods

Rank-Based Methods are applicable wherever a relative assessment is more useful or more

learnable than an absolute one. One application is domains where quantitative measure-

ments are not available, but relative ones are [Hsu 1991]. For example, a game player might

not be able to evaluate moves quantitatively , but might excel at relative move evaluation

[Utgo� & Saxena 1987]. Another application is where the goal is to learn to order data

drawn from a probability distribution, as in medical risk prediction. But it can also be ap-

plied wherever the goal is to order data. For example, in information �ltering it is usually

important to present more useful information to the user �rst, not to predict how important

each is [Lang 1995].

APPENDIX B. RANK-BASED ERROR METRICS 255

B.6 Summary

This appendix presents two rank-based methods that can improve generalization on a broad

class of problems. The �rst method, rankprop, tries to learn simple models that support

ranking future cases while simultaneously learning to rank the training set. The second

method, the soft rank sum, is an error criterion that results from generalizing ranks so that

they are di�erentiable. Experiments using a database of pneumonia patients indicate that

rankprop outperforms standard backpropagation by 10-40%.

