
Compiling with Types

Greg Morrisett

December, 1995

CMU{CS{95{226

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy.

Thesis Committee:

Robert Harper, Co-Chair

Jeannette Wing, Co-Chair

Peter Lee

Andrew Appel, Princeton University

Copyright c
1995 Greg Morrisett

This research was sponsored in part by the Defense Advanced Research Projects Agency, CSTO,

under the title "The Fox Project: Advanced Development of Systems Software", ARPA Order No. 8313,

issued by ESD/AVS under Contract No. F19628-91-C-0168. Support also was sponsored by the Wright

Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, and the Advanced

Research Projects Agency ([ARPA]) under grant F33615-93-1-1330. The US Government is authorized

to reproduce and distribute reprints for Government purposes, notwithstanding any copyright notation

thereon. Views and conclusions contained in this document are those of the author and should not be

interpreted as representing the o�cial policies, either expressed or implied, of Wright Laboratory or the

United States Government.

Keywords: compiling, types, Standard ML, unboxing, garbage collection, closure

conversion.

Abstract

Compilers for monomorphic languages, such as C and Pascal, take advantage of types

to determine data representations, alignment, calling conventions, and register selec-

tion. However, these languages lack important features including polymorphism, abstract

datatypes, and garbage collection. In contrast, modern programming languages such as

Standard ML (SML), provide all of these features, but existing implementations fail to

take full advantage of types. The result is that performance of SML code is quite bad

when compared to C.

In this thesis, I provide a general framework, called type-directed compilation,

that allows compiler writers to take advantage of types at all stages in compilation. In

the framework, types are used not only to determine e�cient representations and calling

conventions, but also to prove the correctness of the compiler. A key property of type-

directed compilation is that all but the lowest levels of the compiler use typed intermediate

languages. An advantage of this approach is that it provides a means for automatically

checking the integrity of the resulting code.

An important contribution of this work is the development of a new, statically-

typed intermediate language, called �ML
i . This language supports dynamic type dispatch,

providing a means to select operations based on types at run time. I show how to

use dynamic type dispatch to support polymorphism, ad-hoc operators, and garbage

collection without having to box or tag values. This allows compilers for SML to take

advantage of techniques used in C compilers, without sacri�cing language features or

separate compilation.

To demonstrate the applicability of my approach, I, along with others, have

constructed a new compiler for SML called TIL that eliminates most restrictions on the

representations of values. The code produced by TIL is roughly twice as fast as code

produced by the SML/NJ compiler. This is due at least partially to the use of natural

representations, but primarily to the conventional optimizer which manipulates typed,

�ML
i code. TIL demonstrates that combining type-directed compilation with dynamic

type dispatch yields a superior architecture for compilers of modern languages.

1

Acknowledgements

I owe a great deal of thanks to a great number of people. My wife Tanya (also known as

Jack), went well beyond the reasonable call of duty in her help and support. Not only did

she take care of day-to-day tasks (such as making dinner), but she also helped proofread this

document.

This thesis and my work in general are direct re
ections of Bob Harper's teaching and

mentoring. Jeannette Wing also deserves a great deal of credit: Not only did she su�er through

early drafts of this document, but she supported me in many other ways throughout my stay

at CMU. Peter Lee, Andrew Appel, and Matthias Felleisen also deserve a great deal of credit

for passing on their knowledge, wisdom, and experience. I am deeply honored to have studied

under all of these people.

The TIL compiler wouldn't be here without David Tarditi, Perry Cheng, or Chris Stone. I

truly enjoyed working with all of these guys and hope to do so again. Andrzej Filinski has been

the ultimate o�cemate throughout my graduate career. Many other folks have been especially

good to me over the years and deserve special recognition including Nick Barnes, Lars Birkedal,

Sharon Burks, Prasad Chalasani, Art Charlesworth, Julie Clark, Olivier Danvy, Rich Good-

win, Gary Green�eld, Jonathan Hardwick, Maurice Herlihy, Susan Hinrichs, Puneet Kumar,

Mark Leone, Mark Lillibridge, Kevin Lynch, David MacQueen, Yasuhiko Minamide, Scott Net-

tles, Brian Noble, Chris Okasaki, Sue Older, Scott Reilly, Norman Sobel, David Steere, An-

drew Tolmach, and Mark Wheeler.

Of course, my mother and father deserve the most thanks and credit (especially for the

ZX81!). Thanks everyone!

Greg Morrisett

December, 1995

Contents

1 Introduction 8

1.1 Type Directed Translation : 11

1.2 The Issue of Variable Types : 12

1.2.1 Previous Approach: Eliminate Variable Types : : : : : : : : : : : 15

1.2.2 Previous Approach: Restrict Representations : : : : : : : : : : : : 16

1.2.3 Previous Approach: Coercions : 19

1.3 Dynamic Type Dispatch : 21

1.4 Typing Dynamic Type Dispatch : 23

1.5 Overview of the Thesis : 25

2 A Source Language: Mini-ML 27

2.1 Dynamic Semantics of Mini-ML : 28

2.2 Static Semantics of Mini-ML : 30

3 A Calculus of Dynamic Type Dispatch 36

3.1 Syntax of �MLi : 36

3.2 Dynamic Semantics of �MLi : 38

3.3 Static Semantics of �MLi : 41

3.4 Related Work : 42

4 Typing Properties of �MLi 46

4.1 Decidability of Type Checking for �MLi : : : : : : : : : : : : : : : : : : : 46

4.1.1 Reduction of Constructors : 47

4.1.2 Local Con
uence for Constructor Reduction : : : : : : : : : : : : 51

4.1.3 Strong Normalization for Constructor Reduction : : : : : : : : : : 55

4.1.4 Decidability of Type Checking : 59

4.2 �MLi Type Soundness : 63

5 Compiling with Dynamic Type Dispatch 70

5.1 The Target Language: �MLi -Rep : 71

2

CONTENTS 3

5.2 Compiling Mini-ML to �MLi -Rep : 73

5.2.1 Translation of Types : 73

5.2.2 Translation of Terms : 76

5.2.3 Translation of Equality : 76

5.2.4 Translation of Functions : 78

5.2.5 Translation of Applications : 81

5.2.6 Translation of Type Abstraction and Application : : : : : : : : : 83

5.3 Correctness of the Translation : 83

5.4 Compiling Other Constructs : 87

5.4.1 C-style Structs : 87

5.4.2 Type Classes : 95

5.4.3 Communication Primitives : 98

5.5 Related Work : 100

6 Typed Closure Conversion 102

6.1 An Overview of Closure Conversion : 103

6.2 The Target Language: �MLi -Close : 105

6.3 The Closure Conversion Translation : 109

6.3.1 The Constructor and Type Translations : : : : : : : : : : : : : : 109

6.3.2 The Term Translation : 111

6.4 Correctness of the Translation : 113

6.4.1 Correctness of the Constructor Translation : : : : : : : : : : : : : 113

6.4.2 Type Correctness of the Term Translation : : : : : : : : : : : : : 116

6.4.3 Correctness of the Term Translation : : : : : : : : : : : : : : : : 118

6.5 Related Work : 121

7 Types and Garbage Collection 122

7.1 Mono-GC : 124

7.1.1 Dynamic Semantics of Mono-GC : : : : : : : : : : : : : : : : : : 125

7.1.2 Static Semantics of Mono-GC : 127

7.2 Abstract Garbage Collection : 132

7.3 Type-Directed Garbage Collection : 135

7.4 Generational Collection : 141

7.5 Polymorphic Tag-Free Garbage Collection : : : : : : : : : : : : : : : : : 143

7.5.1 �MLi -GC : 144

7.5.2 Static Semantics of �MLi -GC : 146

7.5.3 Garbage Collection and �MLi -GC : : : : : : : : : : : : : : : : : : : 151

7.6 Related Work : 158

CONTENTS 4

8 The TIL/ML Compiler 161

8.1 Design Goals of TIL : 161

8.2 Overview of TIL : 163

8.3 SML and Lambda : 166

8.4 Lmli : 168

8.4.1 Kinds, Constructors, and Types of Lmli : : : : : : : : : : : : : : 168

8.4.2 Terms of Lmli : 172

8.5 Lambda to Lmli : 179

8.5.1 Translating Datatypes : 179

8.5.2 Specializing Arrays and Boxing Floats : : : : : : : : : : : : : : : 181

8.5.3 Flattening Datatypes : 182

8.5.4 Flattening Arguments : 184

8.6 Bform and Optimization : 184

8.7 Closure Conversion : 187

8.8 Ubform, Rtl, and Alpha : 188

8.9 Garbage Collection : 189

8.10 Performance Analysis of TIL : 190

8.10.1 The Benchmarks : 191

8.10.2 Comparison against SML/NJ : 191

8.10.3 The E�ect of Separate Compilation : : : : : : : : : : : : : : : : : 197

8.10.4 The E�ect of Flattening : 198

9 Summary, Future Work, and Conclusions 212

9.1 Summary of Contributions : 212

9.2 Future Work : 213

9.2.1 Theory : 213

9.2.2 Practice : 214

9.3 Conclusions : 216

List of Figures

1.1 A Polymorphic Merge Sort Function : 13

1.2 Natural Representation of a Floating Point Array : : : : : : : : : : : : : 18

1.3 Boxed Representation of a Floating Point Array : : : : : : : : : : : : : : 18

2.1 Syntax of Mini-ML : 28

2.2 Contexts and Instructions of Mini-ML : : : : : : : : : : : : : : : : : : : 29

2.3 Contextual Dynamic Semantics for Mini-ML : : : : : : : : : : : : : : : : 30

2.4 Static Semantics for Mini-ML : 32

3.1 Syntax of �MLi : 38

3.2 Values, Contexts, and Instructions of Constructors : : : : : : : : : : : : : 38

3.3 Rewriting Rules for Constructors : 39

3.4 Values, Contexts, and Instructions of Expressions : : : : : : : : : : : : : 40

3.5 Rewriting Rules for Expressions : 40

3.6 Constructor Formation : 41

3.7 Constructor Equivalence : 43

3.8 Type Formation : 44

3.9 Type Equivalence : 44

3.10 Term Formation : 45

5.1 Syntax of �MLi -Rep : 71

5.2 Added Constructor Formation Rules for �MLi -Rep : : : : : : : : : : : : : 73

5.3 Added Term Formation Rules for �MLi -Rep : : : : : : : : : : : : : : : : : 74

5.4 Translation from Mini-ML to �MLi -Rep : : : : : : : : : : : : : : : : : : : 77

5.5 Relating Mini-ML to �MLi -Rep : 85

6.1 Syntax of �MLi -Close : 107

6.2 Closure Conversion of Constructors : 110

6.3 Closure Conversion of Terms : 112

7.1 Syntax of Mono-GC Expressions : 124

7.2 Syntax of Mono-GC Programs : 126

5

LIST OF FIGURES 6

7.3 Rewriting Rules for Mono-GC : 128

7.4 Static Semantics of Mono-GC Expressions : : : : : : : : : : : : : : : : : 130

7.5 Static Semantics of Mono-GC Programs : : : : : : : : : : : : : : : : : : 131

7.6 Postponement and Diamond Properties : : : : : : : : : : : : : : : : : : : 134

7.7 Syntax of �MLi -GC : 144

7.8 �MLi -GC Evaluation Contexts and Instructions : : : : : : : : : : : : : : : 146

7.9 �MLi -GC Constructor and Type Rewriting Rules : : : : : : : : : : : : : : 147

7.10 �MLi -GC Expression Rewriting Rules : 148

8.1 Stages in the TIL Compiler : 164

8.2 Kinds and Constructors of Lmli : 169

8.3 Terms of Lmli : 173

8.4 TIL Execution Time Relative to SML/NJ : : : : : : : : : : : : : : : : : 193

8.5 TIL Heap Allocation Relative to SML/NJ (excluding fmult and imult) : 194

8.6 TIL Physical Memory Used Relative to SML/NJ : : : : : : : : : : : : : : 194

8.7 TIL Executable Size Relative to SML/NJ (without runtimes) : : : : : : : 195

8.8 Til Compilation Time Relative to SML/NJ : : : : : : : : : : : : : : : : : 195

8.9 TIL Execution Time Relative to SML/NJ for Separately Compiled Programs199

8.10 Execution Time of Separately Compiled Programs Relative to Globally

Compiled Programs : 199

List of Tables

8.1 Benchmark Programs : 192

8.2 Comparison of TIL Running Times to SML/NJ : : : : : : : : : : : : : : 204

8.3 Comparison of TIL Heap Allocation to SML/NJ : : : : : : : : : : : : : : 205

8.4 Comparison of TIL Maximum Physical Memory Used to SML/NJ : : : : 206

8.5 Comparison of TIL Stand-Alone Executable Sizes to SML/NJ (excluding

runtimes) : 207

8.6 Comparison of TIL Compilation Times to SML/NJ : : : : : : : : : : : : 208

8.7 Separately Compiled Benchmark Programs : : : : : : : : : : : : : : : : : 209

8.8 Comparison of TIL Execution Times Relative to SML/NJ for Separately

Compiled Programs : 210

8.9 E�ects of Flattening on Running Times : : : : : : : : : : : : : : : : : : : 210

8.10 E�ects of Flattening on Allocation : 211

7

Chapter 1

Introduction

The goal of my thesis is to show that types can and should be used throughout imple-

mentations of modern programming languages. More speci�cally, I claim that, through

the use of type-directed translation and dynamic type dispatch (explained below), we can

compile polymorphic, garbage-collected languages, such as Standard ML [90], without

sacri�cing natural data representations, e�cient calling conventions, or separate compi-

lation. Furthermore, I claim that a principled language implementation based on types

lends itself to proofs of correctness, as well as tools that automatically verify the in-

tegrity of the implementation. In short, compiling with types yields both safety and

performance.

Traditionally, compilers for low-level, monomorphic languages, such as C and Pascal,

have taken advantage of the invariants guaranteed by types to determine data represen-

tations, alignment, calling conventions, register selection and so on. For example, when

allocating space for a record, a C compiler can determine the size of the record from its

type. When allocating a register for a variable of type double, a C compiler will use a

oating point register instead of a general purpose register. Some implementations take

advantage of types to support tag-free garbage collection [23, 119, 6] and so-called \con-

servative" garbage collection [21]. Types are also used to support debugging, printing

and parsing, marshaling, and other means of traversing a data structure.

In addition to directing implementation, types are useful for proving formal properties

of programs. For instance, it is possible to prove that every term in the simply-typed

�-calculus terminates. Similarly, it is possible to show that there is no closed value in

the Girard-Reynolds polymorphic �-calculus with the type 8�:�. Compilers can take

advantage of these properties to produce better code. For instance, a compiler can

determine that a function, which takes an argument of type 8�:�, will never be called

simply because there are no values of the argument type. Therefore, the compiler can

safely eliminate the function.

Types are also useful for proving relations between programs. In particular, types

8

CHAPTER 1. INTRODUCTION 9

are useful for showing that two programs are equivalent, in the sense that they compute

equivalent values. This provides a powerful mechanism for proving that a compiler is

correct: Establish a set of simulation relations based on types, and then show that every

source program and its translation are in the relation given by the source program's type.

Unfortunately, two obstacles have prevented language implementors from taking full

advantage of types. The �rst obstacle is that implementors have lacked a su�ciently

powerful, yet convenient framework for formally expressing their uses of types. Instead,

implementors rely upon informal, ad hoc speci�cations of typing properties. This in turn

prevents the implementor from proving formal properties based on types, and from recog-

nizing opportunities for better implementation techniques within a compiler or runtime

system.

A good example of this issue comes from the literature on type-based, tag-free garbage

collection, where we �nd many descriptions of clever schemes for maintaining type in-

formation at run time to support memory management. Many of the approaches are

surprisingly di�cult to implement and rely upon very subtle typing properties. Yet, few

if any of these descriptions are formal in any sort of mathematical sense. Indeed, the

basic de�nitions of program evaluation and what it means for a value to be garbage

are at best described informally, and at worst left unstated. Consequently, we have no

guarantee that the algorithms are in any way correct. Practically speaking, this keeps

us from modifying or adapting the algorithms with any assurance, simply because the

necessary invariants are left implicit.

The second obstacle keeping implementors from fully taking advantage of types is

that types have become complex, relative to the simple monomorphic type systems of

C and Pascal. To support better static type checking, abstraction, code reuse, separate

compilation, and other software engineering practices, we have evolved from using simple

monomorphic types, to using the complex, modern types of Standard ML (SML), Haskell,

and Quest. These modern types include polymorphic types, abstract types, object types,

module types, quali�ed types, and even dependent types. These kinds of types have one

thing in common: They include component types that are unknown at compile time. In

fact, many of these types contain components that are variable at run time.

Most of the type-based implementation techniques used in compilers for C and Pascal

rely critically upon knowing the type of every object at compile time. Implementors have

lacked a su�ciently general approach for extending these techniques to cover unknown

or variable types. Because of this, compilers for languages like SML, which have variable

types, have traditionally ignored type information, and treated the language as if it

was uni-typed. Consequently and ironically, implementations of modern languages su�er

performance problems because they provide advanced types, but fail to take advantage

of simple types.

The purpose of this thesis is to remove these two obstacles and open the path for

language implementors to take full advantage of types. To address the �rst obstacle,

CHAPTER 1. INTRODUCTION 10

lack of formalism, I demonstrate how to formalize key compilation phases and a run-time

system using a methodology called type-directed translation. This methodology provides

a unifying framework for specifying and proving the correctness of a compiler that takes

full advantage of types. However, to compile languages like SML, the methodology of

type-directed translation requires some formal mechanism for dealing with the second

obstacle | variable types.

To address variable types, I provide a new compilation technique, dynamic type dis-

patch, that extends traditional approaches for compiling monomorphic languages to han-

dle modern types. In principle, dynamic type dispatch has none of the drawbacks of

previous approaches, but it introduces some issues of its own. In particular, to take

full advantage of dynamic type dispatch, we must propagate type information through

each phase of a compiler. Fortunately, type-directed translation provides a road map for

achieving this goal.

In short, the two contributions of this thesis, type-directed translation and dynamic

type dispatch, are equally important because they rely critically upon each other. To

demonstrate the practicality of these two techniques, I (with others) have constructed a

compiler for SML called TIL. TIL, which stands for Typed Intermediate Languages, takes

advantage of both type-directed translation and dynamic type dispatch to provide natural

representations and calling conventions. The type-directed transformations performed by

TIL reduce running times by roughly 40% and heap allocation by 50%.

In addition to type-directed translation and dynamic type dispatch, TIL employs a

set of conventional functional language optimizations. These optimizations account for

much of the good performance of TIL, in spite of the fact that they operate on statically-

typed intermediate languages. Indeed, TIL produces code that is roughly twice as fast as

code produced by the SML/NJ compiler [12], which is one of the best existing compilers

for Standard ML.

The rest of this chapter serves as an overview of the thesis. In Section 1.1, I give an

overview of type-directed translation. In Section 1.2, I discuss the problem of compiling

in the presence of variable types, discuss previous approaches to this problem, and show

why these solutions are inadequate. In Section 1.3, I give an overview of dynamic type

dispatch and discuss why it is a superior to previous approaches of compiling in the

presence of variable types. In Section 1.4, I discuss the key issue of using dynamic type

dispatch in conjunction with type-directed translation | how to type check a language

that provides dynamic type dispatch. Finally, in Section 1.5, I give a comprehensive

overview of the rest of the thesis.

CHAPTER 1. INTRODUCTION 11

1.1 Type Directed Translation

A compiler transforms a program in a source language into a program in a target language.

Usually, we think of the target language as more \primitive" than the source language

according to functionality. As an example, consider the compilation of SML programs

to a lower-level language such as C. We consider C \lower-level" because SML provides

features that C does not directly provide, such as closures, exceptions, automatic memory

management, algebraic data types, and so forth. These high-level constructs must be

encoded into constructs that C does support. For instance, closures can be encoded in C

as a struct containing both a pointer to a C function and a pointer to another struct

that contains values of the free variables in the closure.

It is a daunting task to compile a high-level language, such as SML, to a relatively low-

level language, such as C, and even more daunting to compile to an extremely low-level

language, such as machine code. The only feasible approach to overcome the complexity

is to break the task into a series of simpler compilers that successively map their source

language to closely related, but slightly simpler target languages. Taking the sequential

composition of these simpler compilers yields a compiler from the original source language

to the �nal target language. Decomposing a compiler into a series of simpler compilers

has an added bene�t: Correctness of the entire compiler can be established by proving

the correctness of each of the simpler compilers.

The initial task a compiler writer faces is deciding how to break her compiler into

smaller, more manageable compilation steps. She must decide what language feature(s)

to eliminate in each step of compilation and she must develop a strategy for how this is

to be accomplished. Next, for each stage of compilation she must design and specify the

intermediate target languages. This includes formally specifying a dynamic semantics so

that we know precisely what each target language construct means. Then, the compiler

writer must formulate a precise, but su�ciently high-level description of an algorithm

that maps the source language to the target language for each stage. Finally, the compiler

writer must prove each of the translation algorithms correct. A translation is correct if

when we run the source program (using the source language dynamic semantics) and we

run the translation of the program (using the target language dynamic semantics), then

we get \equivalent" answers. For simple answers, such as strings or integers, \equivalent"

usually means syntactic equality. However, weaker, semantic notions of equivalence are

needed to relate more complex objects such as functions.

In this thesis, I demonstrate this methodology by deriving key parts of a compiler

from a simple ML-like functional language to a relatively low-level language that makes

representations, calling conventions, closures, allocation, and garbage collection explicit.

I formulate the translation as a series of type-directed and type-preserving maps. By type-

directed, I mean that the source language of each stage is statically typed and source

types are used to guide the compilation at every step. For instance, given a generic

CHAPTER 1. INTRODUCTION 12

structural equality operation at the source level, we can select the code that implements

the operation according to the type assigned to the arguments of the operation. If that

type is int, we use integer equality, and if the type is
oat, we use
oating point equality,

and so on.

By a type-preserving translation, I mean the following: �rst, both the source and

the target languages are typed. Second, a type-preserving translation speci�es a type

translation in addition to a term translation. Third, if a source expression e has type � ,

the term translation of e is e0, and the type translation of � is � 0, then e0 has type � 0.

Therefore, assuming the input is well-typed, so is the output.

By using a typed target language in addition to a typed source language, we ensure

that any later translations in the compiler can continue to take advantage of types for their

own purpose. For example, in Chapter 7, I take advantage of these types to implement

garbage collection.

In type-directed translation, we not only use types to guide the translation, but we

also use types to argue that the translation is correct. Indeed, it is the presence of

types that allows us to de�ne what it means for the translation to be correct! Thus, the

contribution of types to the compilation process is many fold: We use types to select

appropriate representations, calling conventions, and primitive operations, and we use

types to prove that the compiler is correct.

1.2 The Issue of Variable Types

Modern programming languages, such as C++, CLU, Modula-3, Ada, Standard ML, Eif-

fel, and Haskell all provide type systems that are much more expressive than the simple,

monomorphic systems of C and Pascal. In particular, each of these languages supports

at least one notion of unknown or variable type. Variable types arise in conjunction

with two key language advances: abstract data types and polymorphism. These features

are the building blocks of relatively new language features including modules, generics,

objects, and classes.

The SML code in Figure 1.1 provides an example use of an unknown type. The code

implements a merge sort on a list of values of uniform, but unknown type, denoted by

�. The function sort takes a predicate lt (less-than) of type � * � -> bool, a list of

� values, and produces a list of � values. We can apply the sort function to a list of

integers, passing integer less-than as the comparison operator:

sort (op < : int*int->bool) [5,7,2,1,3,9,10]

Alternatively, we can apply the sort function to a list of
oating point values, passing

oating point less-than as the comparison operator:

sort (op < : real*real->bool) [138.0,3.1415,4.79]

CHAPTER 1. INTRODUCTION 13

fun sort (lt:�*�->bool) (l:� list) : � list =

let fun merge (nil,l) = l

| merge (l,nil) = l

| merge (x::tx,y::ty) =

if lt(x,y) then x :: merge(tx,y::ty)

else y :: merge(x::tx,ty)

fun split ([],one,two) = (sort lt one,sort lt two)

| split (x::tl,one,two) = split (tl,two,x::one)

in

case l of

:: :: => merge (split(l,[],[]))

| => l

end

Figure 1.1: A Polymorphic Merge Sort Function

In fact, we can pass a list of any type to the sort routine provided we have an appropriate

comparison operation for that type. By abstracting the component type of the list as a

type variable, we can write the sort code once and use it at as many types as we like. For

monomorphic languages like Pascal, which strictly enforce types, a sort implementation

must be copied for each instantiation of �. This can waste code space and make program

maintenance more di�cult. For instance, if we �nd a bug in the sort implementation,

then we must make sure to eliminate the bug in all copies.

The ability to use code at di�erent types, as in the preceding sort example, is usually

called polymorphism, meaning \many changing". Polymorphism is closely related to the

notion of abstract data types (ADTs). ADTs are objects that implement some data

type and its corresponding operations, but hold the representation of the data type and

the implementation of the operations abstract. For example, the following SML code

implements a stack of integers as an ADT via the abstype mechanism:

abstype stack = Stack of int list

with

val empty = Stack nil

fun push (x, Stack s) = Stack (x :: s)

exception Empty

fun pop (Stack nil) = raise Empty

| pop (Stack (x :: s)) = (x, Stack s)

end

CHAPTER 1. INTRODUCTION 14

The type system of SML prevents the client of an abstype from examining the represen-

tation of the abstracted type. Hence, if we try to use a stack as if it is an integer list, we

will get a type error. A key advantage of abstracting the type is that, in principal, we

can separately compile the de�nition of the ADT from its uses. Furthermore, we should

be able to change the representation of the abstracted type without having to recompile

clients of the abstraction. For example, we could use a vector to represent the stack of

integers instead of a list.

But how do we compile in the presence of variable types? Consider, for example, the

following issues:

1. Functions can have arguments of unknown type:

fun id (x:�) : � = x

Since � can be instantiated to any type, what register should we use to pass the

argument to id? Should we use a
oating point or general purpose register?

2. The following function creates a record of values whose types are unknown:

fun foo (x:�,y:�) = (x,y,x,y)

How much space should we allocate for the data structure? How do we align the

components of the record to support e�cient access? Should we add padding?

Should we pack the �elds of the record?

3. In languages such as SML, n-argument functions are represented by functions taking

a single n-tuple as an argument. This makes the language uniform and simpli�es the

semantics. But for e�ciency, we want to \
atten" a tuple argument into multiple

arguments. If the argument to a function has a variable type, then how do we know

if we should
atten the argument?

4. When compiling an ad-hoc polymorphic operation such as structural equality (e.g.,

eq(e1; e2)) and the type of the arguments is a variable, what code should we gener-

ate? Should we generate an integer comparison,
oating point comparison, or code

that extracts components and recursively compares them for equality?

5. How do we determine the size and pointers of a value of unknown type so that we

can perform tracing garbage collection?

In this section, I explore existing solutions to these issues and discuss their relative

strengths and weaknesses. As I will show, none of the existing approaches preserves all

of the following desirable implementation properties:

� separate compilation

CHAPTER 1. INTRODUCTION 15

� natural representations and calling conventions

� fully polymorphic de�nitions or fully abstract data types

1.2.1 Previous Approach: Eliminate Variable Types

The easiest way to implement a language with variable types is to contrive either the

language or the implementation so that all of the variable types are eliminated before

compilation begins. This allows us to use a standard, monomorphic compiler.

The \elimination" approach has been used in various guises by implementations of

C++ [114], Ada [121], NESL [20], and Gofer [74] to support ADTs and polymorphism.

� When de�ning a new class in C++, the de�nition is placed in a \.h" �le. The

de�nition is #included by any client code that wishes to use the abstraction.

Hence, the compiler can always determine the representation of an abstract data

type. The type system enforces the abstracted type within the client, but the �rst

stage of compilation eliminates the abstracted type variable, and replaces it with

its implementation de�nition.

� When de�ning an ADT via the package mechanism of Ada, it is sometimes neces-

sary to expose the representation of the ADT in the interface of the package. This

representation is \hidden" in a private part of the interface. Again, the type system

of the language enforces the abstraction, but the �rst stage of compilation replaces

the abstract type variable with the implementation representation.

� NESL is a programming language for parallel computations that allows program-

mers to de�ne polymorphic functions [20]. However, the NESL implementation

delays compiling any polymorphic de�nitions. Instead, whenever a polymorphic

function is instantiated with a particular type, the type is substituted for the occur-

rences of the type variable within the polymorphic code. The resulting monomor-

phic code is compiled. A caching scheme is used to minimize code duplication.

� Gofer, a dialect of Haskell, provides both polymorphism and type classes. Mark

Jones constructed an implementation that, like the NESL implementation, performs

all polymorphic instantiation at compile time [73].

Unfortunately, the \eliminate variable types" approach has many drawbacks. One

drawback is that polymorphic code is never shared. Instead, each polymorphic de�nition

is copied at least once for each unique instantiation. This can have a serious e�ect on both

compile times and instruction cache locality. For C++, the de�nitions in the \.h" �le

must be processed each time a client is compiled. Newer compilers attempt to cache the

results of this processing in a separate �le precisely to avoid this compilation overhead.

CHAPTER 1. INTRODUCTION 16

The caching scheme used by NESL ensures that exactly one copy is made for a given

type, but no code is actually shared across di�erent instantiations. Both caching schemes

introduce a coherence problem: When the polymorphic de�nition is updated, the cached

de�nitions must be discarded. For languages like Gofer, Haskell, and SML, which provide

nested polymorphic de�nitions, it is possible that the number of copies of a polymorphic

de�nition could grow exponentially with the number of type variables in the de�nition.

(However, Jones reports that this does not occur in practice [73].)

Even if code size, compile times, and instruction cache locality were not an issue, the

\eliminate" approach sacri�ces separate compilation of an ADT or polymorphic de�nition

from its uses. For example, if we change the implementation of an ADT implemented

using an Ada package, then we must also change the private portion of the package

speci�cation. Since all clients depend upon this speci�cation, changing the ADT imple-

mentation requires that all clients be recompiled. Similarly, a simple change to a class

de�nition in C++ can require the entire program to be recompiled.

Increasingly, we are moving away from a world where we have access to all of the source

�les of a program, and where we can \batch" process the compilation, linking, and loading

of a program. For example, vendor-supplied, dynamically-linked libraries (e.g., Xlib, Tk)

are now the norm instead of the exception. Often, it is impossible to get the source

code for such libraries and it is prohibitively time-consuming to recompile them for each

application, especially during development. We now have languages such as Java [51] and

Obliq [27, 28] where objects and code are dynamically transmitted from one machine to

another via a network, compiled to a native representation, and then dynamically linked

into a running program. Hence, the ability to compile program components separately is

becoming increasingly important and any compilation methodology must provide some

level of support for separate compilation.

Finally, for many newer programming languages, it is simply impossible to eliminate

all polymorphism or all ADTs at compile time. Consider, for example, a language that

supports �rst-class polymorphic de�nitions. Such objects can be placed in data struc-

tures, passed as arguments to functions, and so forth. Thus, determining all of the types

that instantiate a given de�nition becomes in general undecidable.

1.2.2 Previous Approach: Restrict Representations

A di�erent approach to compiling in the presence of variable types is to restrict the

types that can instantiate a type variable. This approach, known as boxing, restricts

type variables so that, no matter what the actual type is, the representation of the value

has the same size. As an example, Modula-3 allows only pointer types (e.g., ptr[�]) to

be used as the implementation of an abstract type. Assuming all pointers are the same

CHAPTER 1. INTRODUCTION 17

size1, we can always allocate a data structure containing values of type ptr[t], even if t

is unknown. Similarly, we know that such values will be passed in general purpose as

opposed to
oating point registers.

Languages like SML do not make a restriction on polymorphism or variable types at

the source level, but almost all implementations use such a restriction in compilation. In

essence, they perform a type-directed translation that maps variable types (t) to pointer

types (ptr[t]). Unfortunately, a naive translation that always maps type variables to

pointer types is not type-preserving. Consider for example the polymorphic identity

function and its use at some type:

let fun id (x:�) : � = x

in

(id :
oat->
oat) 3.1415

end

The naive translation yields:

let fun id (x:ptr[�]) : ptr[�] = x

in

(id : ptr[
oat]->ptr[
oat]) 3.1415

end

However, this translation is ill-typed because id takes a pointer as an argument, but the

literal 3.1415 is a
oating point value. Since the translation is ill-typed, the rest of the

compiler will produce erroneous code. For example, the translation of the application

of id to the
oating point value may place the argument into a
oating point register,

whereas the code of the function will be translated with the expectation that the argument

is in a general purpose register.

The problem is that in general, it is impossible to tell whether or not a value will be

passed to a polymorphic function. If a value is passed as an argument of unknown type

to some routine, then the value must be boxed (i.e., represented as a pointer.) Because

it is impossible to tell whether or not a value will be passed to a polymorphic function,

most ML compilers, including Poly/ML [88], Bigloo [107], Caml [126], and older versions

of SML/NJ [9], box all objects.

Boxing supports separate compilation and dynamic linking, but unfortunately, it con-

sumes space and time because of the extra indirection that is introduced. For example,

to support polymorphic array operations, an array of
oating point values must be repre-

sented by an array of pointers to singleton records that contain the actual
oating point

values (see Figures 1.2 and 1.3). An extra word is used as the pointer for each array

1Even this is a dangerous assumption in many environments, including MS-DOS versions of Borland

C, where distinctions are made between \near" and \far" pointers.

CHAPTER 1. INTRODUCTION 18

3.141592653587931 2.718281828459045 42.00000000000000

Figure 1.2: Natural Representation of a Floating Point Array

3.141592653587931

2.718281828459045

42.00000000000000

Figure 1.3: Boxed Representation of a Floating Point Array

element. For systems such as SML/NJ that use tagging garbage collection, an additional

tag word is required for each element. Hence, the polymorphic array can consume twice

as much space as its monomorphic counterpart. Furthermore, accessing an array element

requires an additional memory operation. As memory speeds become slower relative to

processor speeds, this extra memory operation per access becomes more costly. Finally,

in the presence of a copying garbage collector, the elements of the array could be scat-

tered across memory. This could destroy the spatial locality of the array, resulting in

increased data cache misses and even longer access times.

In addition to causing performance problems, boxing also interferes with interoper-

ability. As with tags to support garbage collection, adding extra indirection can impede

communication with systems that do not use boxing. In particular, it becomes di�cult

to communicate with libraries, runtime services, and operating system services, because

they tend to be written in low-level languages such as C or Fortran that do not provide

variable types. Extra code must be written to \marshal" a data structure from its boxed

representation to the representation used by the library, runtime, or operating system.

Finally, although boxing addresses many of the issues of compiling in the presence

of variable types, it does not help us eliminate overloaded operators (such as structural

equality) or perform garbage collection. Hence, standard implementations of SML both

box and tag all values to support their advanced language features. As a direct result,

CHAPTER 1. INTRODUCTION 19

the quality of the code emitted by most SML compilers, even when these features are

not used, is far below the quality of compilers for languages like C or Fortran.

1.2.3 Previous Approach: Coercions

Because boxing and tagging are so expensive, a great deal of research has gone into

minimizing these costs [75, 81, 64, 65, 102, 110]. A particularly clever approach was

suggested by Xavier Leroy for call-by-value languages based on the ML type system [81].

The fundamental idea is to compile monomorphic code in exactly the same way that it

is compiled in the absence of variable types, and to compile polymorphic code assuming

that variables of unknown type are boxed and tagged. As we showed in Section 1.2.2, this

results in a type mismatch when a polymorphic object is instantiated. Leroy's solution is

to apply a coercion to the polymorphic object to mitigate this mismatch. The coercion

is based on the type of the object and the type at which it is being instantiated. A

fascinating property of Leroy's solution is that, for languages based on the ML type

system, the appropriate coercion to apply in a given situation can always be determined

at compile time.

As an example, the naive boxing translation of the identity function produced the

following incorrect code:

let fun id (x:ptr[�]) : ptr[�] = x

in

(id : ptr[
oat]->ptr[
oat]) 3.1415

end

Leroy's translation �xes the mismatch by applying a boxing coercion to the argument of

the polymorphic function and an unboxing coercion to the result:

let fun id (x:ptr[�]) : ptr[�] = x

in

unbox[
oat]

(id : ptr[
oat]->ptr[
oat]) (box[
oat](3.1415))

end

Assuming box and unbox convert a value to and from a pointer representation and add

any necessary tags, the resulting code is operationally correct. In general, a polymorphic

object of type 8�:� [�] is compiled with the type 8�:� [ptr[�]]. When instantiated with

some type � 0, the object has the type � [ptr[� 0]], but the object is expected to have the

type � [� 0]. A coercion is applied to the instantiated object to correct the mismatch.

The coercion is calculated via a function S that maps the type scheme � [�] and the

CHAPTER 1. INTRODUCTION 20

instantiating type � 0 to a term as follows:

S[�; � 0] = �x: unbox[� 0](x)

S[int; � 0] = �x: x

S[
oat; � 0] = �x: x

S[h�1 � � � � � �ni; �
0] = �x: let x1=�1 x; � � � ; xn=�n x

in hS[�1; �
0](x1); � � � ; S[�n; �

0](xn)i

S[�1 ! �2; �
0] = �f: �x: S[�2; �

0](f (G[�1; �
0]x))

The de�nition of S at arrow types uses the dual coercion function G:

G[�; � 0] = �x: box[� 0](x)

G[int; � 0] = �x: x

G[
oat; � 0] = �x: x

G[h�1 � � � � � �ni; �
0] = �x: let x1=�1 x; � � � ; xn=�n x

in hG[�1; �
0](x1); � � � ; G[�n; �

0](xn)i

G[�1 ! �2; �
0] = �f: �x:G[�2; �

0](f (S[�1; �
0]x))

The coercions generated by S and G deconstruct a value into its components until we

reach a base type or a type variable. The coercion at a base type is the identity but the

coercion at a variable type requires either boxing or unboxing that component. Once the

components have been coerced, the aggregate value is reassembled. Hence, it is fairly

easy to show that:
S[� [�]; � 0] : � [ptr[� 0]]! � [� 0]

G[� [�]; � 0] : � [� 0]! � [ptr[� 0]]

and thus S and G appropriately mitigate the type mismatch that occurs at polymorphic

instantiation.

The coercion approach o�ers the best mix of features from the set of solutions pre-

sented thus far. In particular, as with full boxing, it supports separate compilation and

code sharing. Unlike full boxing, monomorphic code does not have to pay the penalties of

boxing and tagging. Leroy found that his coercion approach cut execution time by up to

a factor of two for some benchmarks run through his Gallium compiler, notably numeric

codes that manipulate many integer or
oating point values. However, for at least one

contrived program with a great deal of polymorphism, the coercion approach slowed the

program by more than a factor of two [81]. Nevertheless, his coercion approach has an

attractive property: You pay only for the polymorphism you use.

Other researchers have also found that eliminating boxing and tagging through coer-

cions can cut execution times and allocation considerably. For instance, Shao and Appel

were able to improve execution time by about 19% and decrease heap allocation by 36%

via Leroy-style coercions for their SML/NJ compiler [110]. However, much of their im-

provement (11% execution time, 30% of allocation) comes by performing a type-directed

attening of function arguments as part of the coercion process.

CHAPTER 1. INTRODUCTION 21

Unfortunately, the coercion approach has some practical drawbacks: First, the coer-

cions operate by deconstructing a value, boxing or unboxing some components, and then

building a copy of the value out of the coerced components. Building a copy of a large

data structure, such as a list, array, or vector, requires mapping a coercion across the

whole data structure. Such coercions can be prohibitively expensive and applying them

may well outweigh the bene�ts of leaving the data structure unboxed. Second, in the

presence of recursive types (ML data types), refs, or arrays, not only must the compo-

nents corresponding to type variables be boxed, but their components must be recursively

boxed [81]. Third, and perhaps most troublesome, it is di�cult if not impossible to make

a copy of a mutable data structure such as an array. The problem is that updates to

the copy must be re
ected in the original data structure and vice versa. Hence, it is

impossible to apply a coercion to refs or arrays and consequently, the components of

such data structures must always be boxed.

It is possible to represent refs and arrays as a pair of \get" and \set" functions

whose shared closure contains the actual ref cell or array. Then the standard functional

coercions can be applied to the get and set operations to yield a coerced mutable data

structure. However, having to perform a function call to access a component of an array

can easily o�set any bene�ts from leaving the array unboxed.

Finally, the coercion approach to variable types is simply a stop-gap measure. It takes

advantage of certain properties of the ML type system { notably the lack of �rst-class

polymorphic objects { to ensure that the appropriate coercion can always be calculated

at compile time. This approach breaks down when we move to a language with �rst-class

polymorphism.

1.3 Dynamic Type Dispatch

There is an approach for compiling in the presence of variable types, �rst suggested by

the Napier '88 implementation [97], which avoids the drawbacks of boxing or coercions

without sacri�cing separate compilation. The idea is to delay deciding what code to

select until types are known. This is accomplished by passing types that are unknown

at compile-time to primitive operations. Then, the operations can analyze the type in

order to select and dispatch to the appropriate code needed to manipulate the natural

representation of an object. I call such an approach dynamic type dispatch.

For example, a polymorphic subscript function on arrays might be compiled into the

following pseudo-code:

sub = ��. typecase � of

int => intsub

|
oat => floatsub

| ptr[�] => ptrsub[�]

CHAPTER 1. INTRODUCTION 22

assuming the following operations, where we elide the \ptr[�]" around arrow and array

types for clarity:

intsub : [intarray; int]! int

floatsub : [
oatarray; int]!
oat

ptrsub[ptr[�]] : [ptrarray[ptr[�]]; int]! ptr[�]

Here, sub is a function that takes a type argument (�), and then performs a case analysis

to determine the appropriate specialized subscript function that should be returned. For

example, sub[int] returns the integer subscript function that expects an array of integers,

whereas sub[
oat] returns the
oating point subscript function that expects a double-

word aligned array of
oating point values. All other types are pointers, so we assume

the array has boxed components and thus sub returns the boxed subscript function at

the appropriate large type.

If the sub operation is instantiated with a type that is known at compile-time (or

link-time), then the overhead of the case analysis can be eliminated by duplicating and

specializing the de�nition of sub at the appropriate type. For example, the source ex-

pression

sub(x,4) + 3.14,

will be compiled to the target expression

sub[
oat](x,4) + 3.14,

since the result of the sub operation is constrained to be a
oat. If the de�nition of sub is

inlined into the target expression and some simple reductions are performed, this yields

the optimized expression:

floatsub(x,4) + 3.14.

Like the coercion approach to compiling with variable types, dynamic type dispatch

supports separate compilation and allows us to pay only for the polymorphism that we

use. In particular, monomorphic code can be compiled as if there are no variable types.

Furthermore, unlike coercions, dynamic type dispatch supports natural representations

for large data structures (such as lists, arrays, or vectors) and for mutable data structures

(such as arrays). Instead of coercing the values of the data structures, we coerce the

behavior of the operations. Hence, we do not have to worry about keeping copies of a

mutable data structure coherent. As a result, dynamic type dispatch provides better

interoperability than any of the previously tried solutions, without sacri�cing separate

compilation.

As I will show, dynamic type dispatch also supports tag-free overloaded operations.

For example, we can code an ML-style polymorphic equality routine by dispatching on

a type:

CHAPTER 1. INTRODUCTION 23

typerec eq[int] = �(x,y).= int(x,y)

| eq[
oat] = �(x,y).=
oat(x,y)

| eq[ptr[h�1 � �2i]] =

�(x,y). eq[�1](�1 x,�1 y) andalso eq[�2](�2 x,�2 y)

| eq[ptr[�1 ! �2]] = �(x,y). false

The same approach can be used to dynamically
atten arguments into registers, dy-

namically
atten structs and align their components, and so on. Finally, by passing

unknown types to the garbage collector at run-time, dynamic type dispatch supports

tag-free garbage collection.

In short, dynamic type dispatch provides a smooth transition from compilers for

monomorphic languages to compilers for modern languages with variable types.

1.4 Typing Dynamic Type Dispatch

If we are to use types to support register allocation, calling conventions, data structure

layout, and garbage collection, we must propagate types through compilation to the stages

where these decisions are made. Many of these decisions are made after optimization or

code transformations, so it is important that we can propagate type information to as

low a level as possible.

An intermediate language that supports run-time type dispatch allows us to express

source primitives, such as array subscript or polymorphic equality, as terms in the lan-

guage. This exposes the low-level operations of the source primitive to optimization and

transformations that may not be expressible at the source level.

If we are to use an intermediate language that supports run-time type dispatch, we

must be able to assign a type to terms that use typecase. But what type should we

give a term such as sub, shown previously? We cannot use a parametric type such as

8�:[array[�]; int]! �, because instantiating sub with int for instance, yields the intsub

operation of type [intarray; int]! int which is not an instantiation of the parametric type.

My approach to this problem is to consider a type system that provides type dispatch

at the type level via a \Typecase" construct. For example, the sub de�nition can be

assigned a type of the form:

8�:[SpclArray[�]; int]! �

where the specialized array constructor SpclArray is de�ned using Typecase as follows:

SpclArray[�] = Typecase � of

int => intarray

|
oat =>
oatarray

| ptr[�] => ptrarray[ptr[�]]

CHAPTER 1. INTRODUCTION 24

The de�nition of the constructor parallels the de�nition of the term: If the parameter

� is instantiated to int, the resulting type is intarray; if the parameter is instantiated to

oat, the resulting type is
oatarray.

In this thesis, I present a formal calculus called �MLi that provides run-time type

passing and type dispatch operations. The calculus is intended to provide the formal

underpinnings of a target language for compiling in the presence of variable types. I prove

two important properties regarding �MLi : The type system is sound and type checking is

decidable.

In its full generality, �MLi allows types to be analyzed not just by case analysis (i.e.,

typecase), but also via primitive recursion. This allows more sophisticated transforma-

tions to be coded within the target language, yet type checking for the target language

remains decidable.

An example of a more sophisticated translation made possible by primitive recursion

is one where arrays of pointers to pairs are represented as a pointer to a pair of arrays.

For example, an array of ptr[hint�
oati] is represented as a pointer to a pair of an intarray

and a
oatarray. This representation allows the integer components of the array to be

packed and allows the
oating point components to be naturally aligned. It also saves

n � 1 words of indirection for an array of size n, since pairs are normally boxed. The

subscript operation for this representation is de�ned using a recursive typecase construct

called typerec in the following manner:

typerec sub[int] = intsub

| sub[
oat] = floatsub

| sub[ptr[h�1 � �2i]] = �[hx,yi,i].hsub[�1]x,sub[�2]yi

| sub[ptr[�]] = ptrsub[ptr[�]]

If sub is given a product type, ptr[h�1 � �2i], it returns a function that takes a pair of

arrays (hx,yi) and an index (i), and returns the pair of values from both arrays at that

index, recursively calling the sub operation at the types �1 and �2.

The type of this sub operation is:

8�:[RecArray[�]; int]! �

where the recursive, specialized array constructor RecArray is de�ned using a type-level

\Typerec":

Typerec RecArray [int] = intarray

j RecArray [
oat] =
oatarray

j RecArray [ptr[h�1 � �2i]] = ptr[hRecArray[�1]� RecArray[�2]i]

j RecArray[ptr[�]] = ptrarray[ptr[�]]

Again, the de�nition of the constructor parallels the de�nition of the sub operation. If

the parameter is instantiated with int, then the resulting type is ptr[intarray]. If the

CHAPTER 1. INTRODUCTION 25

parameter is instantiated with ptr[h�1 � �2i], then the resulting type is the product of

RecArray[�1] and RecArray[�2].

1.5 Overview of the Thesis

In this thesis, I show that we can take advantage of types to compile languages with vari-

able types, without losing control over data representations or performance. In particular,

I show that dynamic type dispatch can be used to support e�cient calling conventions

and native representations of data without sacri�cing e�cient monomorphic code, sepa-

rate compilation, or tag-free garbage collection. I also show how key pieces of a standard

functional language implementationmust be extended to accommodate dynamic type dis-

patch. For instance, I show that representation analysis, closure conversion, and garbage

collection can all be extended to work with and take advantage of dynamic type dispatch.

A signi�cant contribution of my thesis is that I formulate these aspects of language

implementation at a fairly abstract level. This allows me to present concise proofs of

correctness. Even if we ignore dynamic type dispatch, exhibiting compact formulations

and correctness arguments for representation analysis, closure conversion, and garbage

collection is a signi�cant contribution.

The TIL compiler demonstrates not only that dynamic type dispatch is a viable

technique for compiling in the presence of variable types, but also that type-directed

compilation does not interfere with standard optimization, such as inlining (�-reduction),

common sub-expression elimination, and loop invariant removal. Also, TIL demonstrates

that these standard optimizations are, for the most part, su�cient to eliminate the

overheads of dynamic type dispatch for an SML-like language.

I now brie
y outline the remainder of the thesis: In Chapter 2, I present a simple, core

polymorphic source language called Mini-ML. I de�ne the syntax, dynamic semantics,

and static semantics of the language. I also state the key properties of the static semantics

for the language. Readers familiar with ML-style polymorphism may want to skip this

chapter, but compiler writers unfamiliar with formal semantic speci�cations may �nd

this chapter illuminating.

In Chapter 3, I present a core intermediate language called �MLi . This language

provides the formal underpinnings of a calculus with dynamic type dispatch that is

used in the subsequent chapters. I de�ne the syntax, dynamic semantics, and static

semantics of the language. In Chapter 4, I summarize the key semantic properties of

the formal calculus, including decidability of type checking and soundness of the static

semantics. Proofs of these properties follow for those interested in the underlying type

theory. Compiler writers may want to skip these details.

In Chapter 5, I de�ne a variant of �MLi , called �MLi -Rep, that makes calling conventions

explicit. I show how to map Mini-ML to �MLi -Rep. In the compilation, I show how to

CHAPTER 1. INTRODUCTION 26

eliminate polymorphic equality and
atten function arguments, in order to demonstrate

the power and utility of dynamic type dispatch. I establish a suitable set of logical sim-

ulation relations between Mini-ML and �MLi -Rep and use them to prove the correctness

of the translation. I then demonstrate how other language features can be implemented

using dynamic type dispatch, including
attened data structures with aligned compo-

nents, unboxed
oating point arguments, Haskell-style type classes, and communication

primitives.

In Chapter 6, I show how to map �MLi to a language with closed code, explicit environ-

ments, and explicit closures. This translation, known as closure conversion, is important

because it eliminates functions with free variables. The key di�culty is that I must

account for free type variables as well as free term variables when producing the code

of a closure and thus, environments must contain bindings for both value variables and

type variables. Unlike most accounts of closure conversion, the target language of my

translation is still typed. This allows me to propagate type information through clo-

sure conversion. In turn, this supports other type-directed transformations after closure

conversion, as well as run-time type dispatch and tag-free garbage collection.

In Chapter 7, I provide an operational semantics for a monomorphic subset of closure

converted �MLi code. The semantics makes the heap and the stack explicit. I formalize

garbage collection as any rewriting rule that drops portions of the heap without a�ecting

evaluation. I specify and prove correct an abstract formulation of copying garbage col-

lection based on the abstract syntax of terms (i.e., tags). I then show how types can be

used to support tag-free garbage collection and prove that this approach is sound. Then

I show how to extend the tag-free approach to a type-passing, polymorphic language like

�MLi .

In Chapter 8, I give an overview of TIL and the practical issues involved in compiling

a real programming language to machine code in the presence of dynamic type dispatch.

I also examine some aspects of the performance of TIL code: I compare the running times

and space of TIL code against the code produced by SML/NJ. I also measure the impact

that various type-directed translations have on both the running time and amount of

data allocated.

Finally, in Chapter 9, I present a summary of the thesis, and discuss future directions.

Chapter 2

A Source Language: Mini-ML

In this chapter, I specify a starting source language, called Mini-ML, that is based on the

core language of Standard ML [90, 31]. Although Mini-ML is a fairly limited language,

it has many of the constructs that one might �nd in a conventional functional program-

ming language, including integers and
oating point values; �rst-class, lexically-scoped

functions; tuples (records); and polymorphism. Indeed, I have designed Mini-ML so that

it brings out the key issues one must address when compiling a modern language like

SML.

The syntax of Mini-ML is given in Figure 2.1. There are four basic syntactic classes:

monotypes, polytypes, values, and expressions. The monotypes of Mini-ML describe

expressions and consist of type variables (t), base types including int,
oat and unit,

and constructed types including h�1 � �2i and �1 ! �2. The monotypes are distinct

from types that contain a quanti�er (8). Polytypes, also referred to as type schemes,

are either monotypes or prenex, universally-quanti�ed monotypes. Type variables range

over monotypes. Thus, polytypes are forbidden from instantiating a type variable.

Values consist of variables (x), integer and
oating point literals (i and f), unit (hi),

pairs of values, term functions (�x:�:e), and type functions (�t1; � � � ; tn:e). Term and type

functions are sometimes referred to as term or type abstractions, respectively. Expres-

sions contain variables, literals, unit, pairs of expressions, term functions, a structural

equality operation (eq(e1; e2)), a test for zero, projections (�i e), and term applications

(e1 e2).

Expressions also include a def construct, which binds a variable to a value. Since

values include type abstractions, this provides a means for binding a type abstraction to

a variable, much like the let construct of SML. Finally, expressions include applications

of values to monotypes (v[�1; � � � ; �n]). The typing rules, explained in Section 2.2 restrict

v to be either a def-bound variable or a �-abstraction. Hence, the only thing that can

be done with a �-abstraction is either bind it to a variable via def or apply it to some

monotypes. This means that, as in SML, type abstractions are \second-class" because

27

CHAPTER 2. A SOURCE LANGUAGE: MINI-ML 28

(types) � ::= t j int j
oat j unit j h�1 � �2i j �1 ! �2

(schemes) � ::= � j 8t1; � � � ; tn:�

(values) v ::= x j i j f j hi j hv1; v2i j �x:�: e j �t1; � � � ; tn:e

(expressions) e ::= x j i j f j �x:�: e j e1 e2 j hi j he1; e2i j �1 e j �2 e j

eq(e1; e2) j if0 e1 then e2 else e3 j def x:� = v in e2 j

v[�1; � � � ; �n]

Figure 2.1: Syntax of Mini-ML

they cannot be placed in data structures, passed as arguments to functions, or returned

as the result of a function.

I use def instead of let because I reserve let as an abbreviation. In particular, I use

let x:� = e1 in e2 as an abbreviation for (�x:�: e2) e1.

Following conventional formulations of �-calculus based languages [15], I consider the

variable x in �x:�: e to be bound within the body of the function e. Likewise, I consider x

to be bound within e in the expression def x:� = v in e, and the type variables t1; � � � ; tn
to be bound within the body of the expression �t1; � � � ; tn:e. Likewise, t1; � � � ; tn are bound

within � for the polytype 8t1; � � � ; tn:� . If a variable is not bound in an expression/type,

it is said to be free. I consider expressions/types to be equivalent modulo �-conversion

(i.e., systematic renaming) of the bound variables.

Finally, I write fe0=xge to denote capture avoiding substitution of the closed ex-

pression e0 for the variable x in the expression e. Likewise, I write f�=tg� to denote

capture-avoiding substitution of the monotype � for t within the polytype �.

2.1 Dynamic Semantics of Mini-ML

I describe evaluation of Mini-ML programs using a contextual rewriting semantics in the

style of Felleisen and Hieb [41]. This kind of semantics describes evaluation as an abstract

machine whose states are expressions and whose steps are functions, or more generally,

relations between expressions. The �nal state of this abstract machine is a closed value.

Each step of the abstract machine proceeds according to a simple algorithm: We break

the current expression into an evaluation context, E, and an instruction expression, I.

The evaluation context is an expression with a \hole" ([]) in the place of some sub-

expression. The original expression, e, is formed by replacing the hole in the context with

CHAPTER 2. A SOURCE LANGUAGE: MINI-ML 29

(contexts) E ::= [] j E1 e2 j v1E2 j hE1; e2i j hv1; E2i j �iE j

eq(E1; e2) j eq(v1; E2) j if0 E1 then e2 else e3

(instructions) I ::= eq(v1; v2) j �i hv1; v2i j if0 i then e2 else e3 j (�x:�: e) v j

def x:� = v in e j (�t1; � � � ; tn:e) [�1; � � � ; �n]

Figure 2.2: Contexts and Instructions of Mini-ML

the instruction expression, denoted e = E[I]. Roughly speaking, the evaluation context

corresponds to the control state (or \stack") of a conventional computer whereas the

instruction corresponds to the registers and program counter1. We replace the instruction

expression with a result expression R within the hole of the context to form a new

expression e0 = E[R]. This new expression serves as the next expression to process in

the evaluation sequence.

The expression contexts and instructions of Mini-ML are given in Figure 2.2 and

the rewriting rules are given in Figure 2.3. The form of the evaluation contexts re
ects

the fact that Mini-ML evaluates expressions in a left-to-right, inner-most to outer-most

order. Furthermore, the context v1E2 shows that Mini-ML is an eager (as opposed to

lazy) language with respect to function application, because evaluation proceeds on the

argument before applying the function to it. Similarly, the contexts for data structures,

namely pairs, show that these data structures are eager with respect to their components.

A def instruction is evaluated by substituting the value v for all occurrences of the

variable x within the scope of the def, e. Application of a �-expression to a set of

monotypes is evaluated by substituting the monotypes for the bound type variables

within the body of the abstraction.

Rewriting a primitive instruction is fairly straightforward with the exception of the

equality operation. In particular, the rewriting rule for equality must select the appro-

priate function (e.g., =int versus =
oat) according to the syntactic class of the values

given to the operation as arguments.

Evaluation does not proceed into the branches of an if0 construct. Instead, the �rst

component is evaluated and then one of the arms is selected according to the resulting

value. When rewriting an application, (�x:�: e) v, we �rst substitute the value v for the

free occurrences of the variable x within the body of the function e. Likewise, when

rewriting a def construct, we substitute the value v for the variable x within the body

of the def.

1The relationship between contexts and instructions, and a stack and registers is made explicit in

Chapter 7.

CHAPTER 2. A SOURCE LANGUAGE: MINI-ML 30

E[eq(i1; i2)] 7�! E[1] (i1 =int i2)

E[eq(i1; i2)] 7�! E[0] (i1 6=int i2)

E[eq(f1; f2)] 7�! E[1] (f1 =
oat f2)

E[eq(f1; f2)] 7�! E[0] (f1 6=
oat f2)

E[eq(hv1; v2i; hv
0
1; v

0
2i)] 7�! E[if0 eq(v1; v

0
1) then 0 else eq(v2; v

0
2)]

E[eq(�x1:�1: e1; �x2:�2: e2)] 7�! E[0]

E[if0 0 then e2 else e3] 7�! E[e2]

E[if0 i then e2 else e3] 7�! E[e3] (i 6= 0)

E[�i hv1; v2i] 7�! E[vi] (i = 1; 2)

E[(�x : �: e) v] 7�! E[fv=xge]

E[def x:� = v in e] 7�! E[fv=xge]

E[(�t1; � � � ; tn:e) [�1; � � � ; �n]] 7�! E[f�1=t1; � � � ; �n=tnge]

Figure 2.3: Contextual Dynamic Semantics for Mini-ML

Formally, I consider the rewriting rules to be relations between programs. I consider

evaluation to be the least relation formed by taking the re
exive, transitive closure of

these rules, denoted by 7�!�. I de�ne e + v to mean that e 7�!� v, and e * to mean that

there exists an in�nite sequence, e 7�! e1 7�! e2 7�! � � �.

2.2 Static Semantics of Mini-ML

I formulate the static semantics for Mini-ML as a deductive system allowing us to derive

judgments of the form �; � ` e : � and �; � ` v : �. The �rst judgment means that

under the assumptions of � and �, the expression e can be assigned the monotype � .

Similarly, the second judgment asserts that the value v can be assigned the type scheme

� under the assumptions of � and �. Both judgments' assumptions include a set of type

variables (�) and a type assignment (�). The type assignment maps term variables to

type schemes, written fx1:�1; � � � ; xn:�ng. At most one type scheme is assigned to any

variable in an assignment. Therefore, we can think of � as a partial function that maps

variables to types. I use the notation �] fx:�g to denote the type assignment obtained

by extending � so that it maps x to � , under the requirement that x does not already

occur in the domain of �.

I assume that the free type variables of the range of �, the free type variables of e

and v, and the free type variables of � are contained in �. Hence, � tracks the set of

type variables that are in scope for the expression, value, or type. Similarly, the domain

of � contains the set of free variables of e and v and thus tracks the set of term variables

CHAPTER 2. A SOURCE LANGUAGE: MINI-ML 31

that are in scope for the expression or value. I write � ` � and � ` � to assert that �

and � are well-formed with respect to �.

The axioms and inference rules that allow us to derive these judgments are given in

Figure 2.4. Most of the rules are standard, but a few deserve some explanation: If the

assumptions map x to the scheme �, then we can conclude that x has the type �. Note

that x can be viewed as a value or an expression and � could be a monotype (�).

The eq rule requires that both arguments have the same type. For now, I make

no restriction to \equality types" (i.e., types not containing an arrow) as in SML2. The

dynamic semantics simply maps equality of two functional values to 0.

The most interesting rules are def, tapp, and tabs. The def rule allows us to

bind a polymorphic value v to some variable within a closed scope e. If we assign the

value a quanti�ed type, then we can only use the variable in another def binding or type

application. Consequently polymorphic objects are \second-class". The tapp rule allows

us to instantiate a polymorphic value of type 8t1; � � � ; tn:� , with types �1; � � � ; �n. The

resulting expression has the monotype formed by replacing ti with �i in � . Finally, the

tabs rule assigns the scheme 8t1; � � � ; tn:� to the type abstraction �t1; � � � ; tn:e if, adding

t1; � � � ; tn to the assumptions in �, we can conclude that e has type � . Note that the

notation �] ft1; � � � ; tng precludes the ti from occurring in �.

I write ` e : � if ;; ; ` e : � is derivable from these axioms and inference rules. The

following lemmas summarize the key properties of the static semantics for Mini-ML.

Lemma 2.2.1 (Type Substitution) If �] ftg; � ` e : � and � ` � , then

�; f�=tg(�) ` f�=tg(e) : f�=tg(�).

Proof (sketch): By induction on the derivation of �] ftg; � ` e : �. 2

Lemma 2.2.2 (Term Substitution) If �;�] fx:�0g ` e : � and �;� ` e0 : �0, then

�;� ` fe0=xge : �.

Proof (sketch): By induction on �; �] fx:�0g ` e : �. Simply replace all occurrences

of the var rule used to assign x the type �0 with the derivation of �; � ` e0 : �0. 2

Lemma 2.2.3 (Canonical Forms) Suppose ` e : �. Then if � is:

� int, then v is some integer i.

�
oat, then v is some
oating-point value f .

� unit, then v is hi.

2I address the issue of equality types in Section 5.4.2.

CHAPTER 2. A SOURCE LANGUAGE: MINI-ML 32

(var) �; �] fx:�g ` x : � (int) �; � ` i : int (
oat) �; � ` f :
oat

(eq)
�; � ` e1 : � �;� ` e2 : �

�;� ` eq(e1; e2) : int

(if0)
�; � ` e1 : int �;� ` e2 : � �;� ` e3 : �

�;� ` if0 e1 then e2 else e3 : �

(unit) �; � ` hi : unit (pair)
�; � ` e1 : �1 �;� ` e2 : �2

�;� ` he1; e2i : h�1 � �2i

(proj)
�; � ` e : h�1 � �2i

�;� ` �i e : �i
(i = 1; 2)

(abs)
�; �] fx:�1g ` e : �2

�;� ` �x:�1: e : �1 ! �2
(app)

�; � ` e1 : �1 ! �2 �;� ` e2 : �1

�;� ` e1 e2 : �2

(def)
�; � ` v : � �;�] fx:�g ` e : �

�;� ` def x:� = v in e : �

(tapp)

� ` �1 � � � � ` �n
�;� ` v : 8t1; � � � ; tn:�

� ` v[�1; � � � ; �n] : f�1=t1; � � � ; �n=tng�

(tabs)
�] ft1; � � � ; tng; � ` e : �

�;� ` �t1; � � � ; tn:e : 8t1; � � � ; tn:�

Figure 2.4: Static Semantics for Mini-ML

CHAPTER 2. A SOURCE LANGUAGE: MINI-ML 33

� h�1 � �2i, then v is hv1; v2i, for some v1 and v2.

� �1 ! �2, then v is �x:�1: e, for some x and e.

� 8t1; � � � ; tn:� , then v is �t1; � � � ; tn:e, for some e.

Proof: By an examination of the typing rules. 2

Lemma 2.2.4 (Unique Decomposition) If ` e : �, then either e is a value v or else

there exists a unique E, e0, and �0 such that e = E[e0] and ` e0 : �0. Furthermore, for all

e00 such that ` e00 : �0, ` E[e00] : �.

Proof (sketch): By induction on the derivation of ` e : �. Suppose e is not a value.

There are seven cases to consider. I give one of the cases here. The other cases follow in

a similar fashion.

case: e is e1 e2 for some e1 and e2. Then a derivation of ` e : � must end with a use

of the app rule. Hence, there exists �1 and �2 such that ` e1 : �1 ! �2, ` e2 : �1 and

� = �2. By induction, either e1 is a value or else there exists unique E1, e
0
1, and �01 such

that e1 = E1[e
0
1] and ` e

0
1 : �

0
1. If e1 is not a value, then we take E = E1 e2, e

0 = e01, and

�0 = �01. Otherwise, e1 = v1 for some v1. By induction, either e2 is a value or else there

exists unique E2, e
0
2 and �02 such that e2 = E2[e

0
2] and ` e

0
2 : �

0
2. If e2 is not a value, then

E = v1E2, e
0 = e02, and �

0 = �02. Otherwise, e2 = v2 for some v2. Thus, E = [], e0 = v1 v2
and �0 = �. 2

Lemma 2.2.5 (Preservation) If ` e : � and e 7�! e0, then ` e0 : �.

Proof: By Unique Decomposition and the fact that e 7�! e0, there exists a unique E,

I, and e00 such that e = E[I], I 7�! e00, and e0 = E[e00]. Furthermore, there exists a �0

such that ` I : �0 and for all e000 such that ` e000 : �0, ` E[e000] : �. Hence, it su�ces to

show that regardless of I and e00, ` e00 : �0. There are six cases to consider:

case: If I = eq(v1; v2) then a derivation of ` I : �0 must end with an application of the

eq rule. Hence, �0 = int and there exists a � such that ` v1 : � and ` v2 : � . If v1 and

v2 are integers,
oats, or �-abstractions, then I 7�! i for some i and ` i : �0. If v1 and

v2 are pairs, hva; vbi and hv
0
a; v

0
bi, then I 7�! if0 eq(va; v

0
a) then 0 else eq(vb; v

0
b). By

examination of the typing rules, � must be of the form h�a � �bi. Since ` v1 : h�a � �bi

and ` v2 : h�a � �bi, derivations of these facts must end with a use of the pair rule.

Hence, ` va : �a, ` vb : �b, ` v0a : �a, and ` v0b : �b. By the eq rule, ` eq(va; v
0
a) : int

and ` eq(vb; v
0
b) : int. Thus, by the if0 rule, ` if0 eq(va; v

0
a) then 0 else eq(vb; v

0
b) : int.

Hence, ` e00 : �0.

CHAPTER 2. A SOURCE LANGUAGE: MINI-ML 34

case: If I = if0 i then e1 else e2, then a derivation of ` I : �0 must end with an

application of the if0 rule. Hence, there exists a � such that ` e1 : � and ` e2 : � and

�0 = � . If i is 0, then I 7�! e1 else I 7�! e2. Regardless, the resulting expression has

type �0.

case: If I = �i v for i = 1; 2, then a derivation of ` I : �0 must end with an application

of the proj rule. Hence, there exists �1 and �2 such that ` v : h�1 � �2i and �0 = �i.

By Canonical Forms, v must be of the form hv1; v2i and I 7�! vi. A derivation of

` hv1; v2i : h�1 � �2i must end with the pair rule, hence ` vi : �i and ` e
00 : �0.

case: If I = (�x:�1: e1) v then e00 = fv=xge1. A derivation of ` I : �0 must end with a

use of the app rule. Hence, �0 = �2 for some �2 and ` �x:�1: e1 : �1 ! �2 and ` v : �1.

By Term Substitution, ` fv=xge1 : �2. Hence, ` e
00 : �0.

case: If I = (�t1; � � � ; tn:e1) [�1; � � � ; �n] then e00 = f�1=t1; � � � ; �n=tnge1. A derivation of

` I : �0 must end with a use of the tapp rule. Hence, �0 = f�1=t1; � � � ; �n=tng� for some �

such that ` �t1; � � � ; tn:e1 : 8t1; � � � ; tn:� . By Type Substitution, ` f�1=t1; � � � ; �n=tnge1 :

f�1=t1; � � � ; �n=tng� . Thus, ` e
00 : �0. 2

Lemma 2.2.6 (Progress) If ` e : �, then either e is a value or else there exists some

e0 such that e 7�! e0.

Proof: If e is not a value, then by Unique Decomposition, there exists an E, e1, and �
0

such that e = E[e1] and ` e1 : �
0. I argue that e1 must be an instruction and hence, there

is an e2 such that e1 7�! e2 and thus E[e1] 7�! E[e2]. There are �ve cases to consider,

where e1 could possibly be stuck.

case: If e1 is of the form ea eb, then ea and eb must both be values, else by Unique

Decomposition, e1 can be broken into a nested evaluation context and expression. Thus,

e1 = v1 v2 for some v1 and v2. Since ` v1 v2 : �
0, the derivation must end in an application

of the app rule. Thus, there exists a � 0 and � such that ` v1 : �
0 ! � and ` v2 : �

0 and

�0 = � . Since ` v1 : �
0 ! � , v1 is closed, by Canonical Forms, v1 must be of the form

�x:� 0: e00 for some x and e00. Thus, e1 7�! fv2=xge
00.

case: If e1 is of the form �i e1 for i = 1; 2, then e1 must be a value v1, else by Unique

Decomposition, e1 can be broken into a nested evaluation context and expression. Thus,

e1 = v for some v. Since ` �i v : �
0, by an examination of the typing rules, a derivation

of this fact must end with a use of the proj rule. Hence, ` v : �1 � �2 for some �1 and

�2 such that �i = �0. By Canonical Forms, there exists two values v1 and v2 such that

v = hv1; v2i. Hence, e1 7�! vi.

case: If e1 is of the form eq(ea; eb) then ea and eb must be values, v1 and v2. Since

` e1 : �
0, a derivation of this fact must end with the eq rule. Hence, �0 is int and there

exists a � such that ` v1 : � and ` v2 : � . By Canonical Forms, v1 and v2 are both either

integers,
oats, pairs, or functions. Hence, e1 7�! i for some i.

CHAPTER 2. A SOURCE LANGUAGE: MINI-ML 35

case: If e1 is of the form if0 ea then eb else ec, then ea must be a value v. Since

` e1 : �
0, a derivation of this fact must end with a use of the if0 rule. Hence, ` v : int.

By canonical forms, v is some integer i. If i is 0, then e1 7�! eb else e1 7�! ec.

case: If e1 is of the form v [�1; � � � ; �n], then since ` e1 : �0, a derivation of this fact

must end with a use of the tapp rule. Hence, there exists some 8t1; � � � ; tn:� such that

` v : 8t1; � � � ; tn:� , where �0 = f�1=t1; � � � ; �n=tng� . By Canonical Forms, v must be

�t1; � � � ; tn:e
00 for some e00. Hence, e1 7�! f�1=t1; � � � ; �n=tnge

00. 2

This last lemma implies that well-typed Mini-ML expressions cannot \get stuck"

during evaluation. From a practical standpoint, this means that it is impossible to have

a well-typed program that attempts to apply a non-function to some arguments, or to

project a component from a non-tuple. Therefore, any implementation that accurately

re
ects the dynamic semantics will never \dump core" when given a well-typed program.

Corollary 2.2.7 (Soundness) If ` e : �, then either e * or else there exists some v

such that e + v and ` v : �.

Proof: By induction on the number of rewriting steps, if e 7�!� e0, then by Preser-

vation, ` e0 : � and by Progress, either e0 is a value or else there exists an e00 such that

e0 7�! e00. Therefore, either there exists an in�nite sequence, e 7�!� e0 7�! e1 7�! e2 7�!

� � �, or else e + v and ` v : �. 2

Chapter 3

A Calculus of Dynamic Type

Dispatch

I argued in Chapter 1 that compiling a polymorphic language without sacri�cing con-

trol over data representations or the ability to compile modules separately requires an

intermediate language that supports dynamic type dispatch. In this chapter, I present

a core calculus called �MLi that provides a formal foundation for dynamic type dispatch.

In subsequent chapters, I derive intermediate languages based on this formal calculus

and show how to compile Mini-ML to these lower-level languages, taking advantage of

dynamic type dispatch to implement various language features.

3.1 Syntax of �MLi

�MLi is based on �ML [94], a predicative variant of the Girard-Reynolds polymorphic cal-

culus, F! [47, 46, 106]. The essential departure from the impredicative systems of Girard

and Reynolds is that, as in Mini-ML, there is a distinction made between monotypes

(types without a quanti�er) and polytypes, and type variables are only allowed to range

over monotypes. Such a calculus is more than su�cient for the interpretation of ML-style

polymorphism1 and makes arguments based on logical relations easier than an impred-

icative calculus. The language �MLi extends �ML with intensional (or structural [52])

polymorphism, which allows non-parametric functions to be de�ned via intensional anal-

ysis of types.

The four syntactic classes of �MLi are given in Figure 3.1. The expressions of the

language are described by types. Types include int, function types, explicitly injected

constructors (T (�)) and polymorphic types (8t::�:�). Types that do not include a quanti-

�er are called monotypes, whereas types that do include a quanti�er are called polytypes.

1See Harper and Mitchell [94] for further discussion of this point.

36

CHAPTER 3. A CALCULUS OF DYNAMIC TYPE DISPATCH 37

The language easily extends to
oat, products, and inductively generated types like lists;

I omit these here to simplify the formal treatment of the calculus.

The constructors of �MLi form a language that is isomorphic to a simply-typed �-

calculus extended with a single, inductively de�ned base type (such as lists or trees) and

an induction elimination form (such as fold). In this case, the inductively de�ned base

type is given by the set of constructor values which are generated as follows:

� ::= Int j Arrow(�1; �2):

Each constructor value � names a monotype �. In particular, Int is a constructor value

that names the type int. If �1 names the type �1 and �2 names the type �2, then

Arrow(�1; �2) names the type �1 ! �2.

To distinguish expression-level types from constructor-level types, I call the latter

kinds (�). Closed constructors of kind
 compute constructor values. If � computes the

constructor value � , and � names the monotype �, then I use the explicit injection T (�)

to denote the monotype �. The precise relationship between constructors and monotypes

is axiomatized in Section 3.3.

As in standard polymorphic calculi, constructor abstractions (�t::�:e) let us de�ne

functions from constructors to terms. Unlike languages based on the Hindley-Milner type

system including Mini-ML, SML, and Haskell, I do not restrict constructor abstractions

to a \second-class" status. This is re
ected in the types of the language, because there

is no prenex-quanti�er restriction. Hence, constructor abstractions can be placed in data

structures, passed as arguments, or returned from functions.

The Typerec and typerec forms give us the ability to de�ne both constructors and

terms by structural induction on monotypes. The Typerec and typerec forms may be

thought of as eliminatory forms for the kind
 at the constructor and term level respec-

tively. The introductory forms are the constructors of kind
; there are no introductory

forms at the term level in order to preserve the phase distinction [25, 60]. In e�ect, Typerec

and typerec let us fold some computation over a monotype. Limiting the computation

to a fold, instead of some general recursion, ensures that the computation terminates |

a crucial property at the constructor level. However, many useful operations, including

pattern matching, iterators, maps, and reductions can be coded using folds.

I consider � to bind the type variable t within a constructor function, �t::�: e. I also

consider 8t::�:� to bind t within the scope of �. I consider � to bind the expression

variable x within an expression function, �x:�: e. I consider � to bind the type variable

t within a constructor abstraction �t::�:e. Finally, I consider t to be bound in � for the

\[t:�]" portion of a typerec expression. This type scheme on typerecs is needed to make

the language explicitly typed. As usual, I consider constructors, types, and expressions

to be equivalent modulo �-conversion of bound variables.

CHAPTER 3. A CALCULUS OF DYNAMIC TYPE DISPATCH 38

(kinds) � ::=
 j �1 ! �2

(constructors) � ::= t j Int j Arrow(�1; �2) j �t::�: � j �1 �2 j

Typerec � of (�int;�arrow)

(types) � ::= T (�) j int j �1 ! �2 j 8t::�:�

(expressions) e ::= x j i j �x:�: e j �t::�:e j e1 e2 j e[�] j

typerec � of [t:�](eint; earrow)

Figure 3.1: Syntax of �MLi

(values) u ::= Int j Arrow(u; u) j �t::�: �

(contexts) U ::= [] j U � j uU j Typerec U of (�int;�arrow)

(instructions) J ::= (�t::�: �1) u j Typerec Int of (�int;�arrow) j

Typerec Arrow(u1; u2) of (�int;�arrow)

Figure 3.2: Values, Contexts, and Instructions of Constructors

3.2 Dynamic Semantics of �MLi

The dynamic semantics for �MLi consists of a set of rewriting rules for both constructors

and expressions. I use a contextual semantics to describe evaluation at both levels.

The values, evaluation contexts, and instructions for constructors are given in Fig-

ure 3.2. I choose to evaluate constructors in a call-by-value fashion, though either call-

by-name or call-by-need would also be appropriate. Therefore, the values of constructors

consist of variables, functions, Int, or Arrow constructors with value components. The

evaluation contexts of constructors consist of a hole, an application with a hole some-

where in the function position, an application of a value to constructor with a hole in the

argument position, or a Typerec with a hole somewhere in the argument. The instructions

consist of an application of a function to a value, or a Typerec where the the argument

constructor is either Int or Arrow.

The rewriting rules for constructors are given in Figure 3.3. The rule for function

CHAPTER 3. A CALCULUS OF DYNAMIC TYPE DISPATCH 39

U [(�t::�: �1) u2] 7�! U [fu2=tg�1]

U [Typerec Int of (�int;�arrow)] 7�! U [�int]

U [Typerec Arrow(u1; u2) of (�int;�arrow)] 7�!

U [�arrow u1 u2 (Typerec u1 of (�int;�arrow)) (Typerec u2 of (�int;�arrow))]

Figure 3.3: Rewriting Rules for Constructors

application is straightforward. The rules for Typerec select the appropriate clause ac-

cording to the head component of the argument constructor. Thus, �int is chosen if the

argument is Int, while �arrow is chosen if the argument is Arrow(u1; u2). If the argument

constructor has components, then we pass these components as arguments to the clause.

We also pass the the \unrolling" of the Typerec on these components. For instance, if

the argument constructor is Arrow(u1; u2), then we pass u1, u2, and the same Typerec

applied to u1 and u2 to the �arrow clause. In this fashion, the Typerec is folded across the

components of a constructor.

The values, evaluation contexts, and instructions for the expressions of �MLi are given

in Figure 3.4. The evaluation contexts and values show that �MLi expressions are evaluated

in a standard call-by-value fashion. As at the constructor level, I choose to evaluate con-

structor application eagerly. Hence, a constructor is reduced to a constructor value before

it is substituted for the �-bound type variable of a constructor abstraction. Evaluation

of an expression-level typerec is similar to the evaluation of a constructor-level Typerec.

First, the argument is evaluated and then, the appropriate clause, either eint or earrow is

chosen according to this component. Any nested constructor components are passed as

constructor arguments to the clause as well as the \unrolling" of the typerec on these

components. Hence, evaluation of a typerec applied to the constructor Arrow(u1; u2)

selects the earrow clause, passes it u1 and u2 as constructor arguments and the same

typerec applied to u1 and u2 as value arguments.

CHAPTER 3. A CALCULUS OF DYNAMIC TYPE DISPATCH 40

(values) v ::= i j �x:�: e j �t::�:e

(contexts) E ::= [] j E1 e2 j v1E2 j E[�]

(instructions) I ::= (�x:�: e) v j (�t::�:e)[U [J]] j (�t::�:e)[u] j

typerec U [J] of [t:�](eint; earrow) j

typerec Int of [t:�](eint; earrow) j

typerec Arrow(u1; u2) of [t:�](eint; ; earrow)

Figure 3.4: Values, Contexts, and Instructions of Expressions

E[(�x:�: e) v] 7�! E[fv=xge]

E[(�t::�:e)[U [J]]] 7�! E[(�t::�:e)[U [�]]] when U [J] 7�! U [�]

E[(�t::�:e)[u]] 7�! E[fu=tge]

E[typerec U [J] of [t:�](eint; earrow)] 7�!

E[typerec U [�] of [t:�](eint; earrow)] when U [J] 7�! U [�]

E[typerec Int of [t:�](eint; earrow)] 7�! E[eint]

E[typerec Arrow(u1; u2) of [t:�](eint; earrow)] 7�!

E[earrow [u1] [u2] (typerec u1 of [t:�](eint; earrow))

(typerec u2 of [t:�](eint; earrow))]

Figure 3.5: Rewriting Rules for Expressions

CHAPTER 3. A CALCULUS OF DYNAMIC TYPE DISPATCH 41

(var) �] ft::�g ` t :: � (int) � ` Int ::

(arrow)
� ` �1 ::
 � ` �2 ::

� ` Arrow(�1; �2) ::

(fn)
�] ft::�1g ` � :: �2

� ` �t::�1: � :: �1 ! �2
(app)

� ` �1 : �1 ! �2 � ` �2 : �1

� ` �1 �2 : �2

(trec)

� ` � ::
 � ` �int :: �

� ` �arrow ::
!
! �! �! �

� ` Typerec � of (�int;�arrow) :: �

Figure 3.6: Constructor Formation

3.3 Static Semantics of �MLi

The static semantics of �MLi consists of a collection of rules for deriving judgments of the

form
� ` � :: � � is a constructor of kind �

� ` �1 � �2 :: � �1 and �2 are equivalent constructors

� ` � � is a valid type

� ` �1 � �2 �1 and �2 are equivalent types

�; � ` e : � e is a term of type �;

where � is a kind assignment, mapping type variables (t) to kinds (�), and � is a type

assignment, mapping term variables (x) to types (�). These judgments may be derived

from the axioms and inference rules of Figures 3.6, 3.7, 3.8, 3.9, and 3.10, respectively.

Constructor formation (see Figure 3.6) is standard with the exception of Typerec.

Here, I require that the argument of the Typerec be of kind
. When evaluating a Typerec,

one of the clauses is chosen according to the value of the argument. Any components

are passed as arguments to the clause as well as the unrolling of the Typerec on these

components. Therefore, the whole constructor is assigned the kind � only if �int has kind �

(since the Int constructor has no components) and �arrow has kind
!
! �! �! �,

(since it has two components).

To type check an expression, we need to be able to tell when two types are equivalent.

Since constructors can be injected into types, we need an appropriate notion of construc-

tor equivalence. Therefore, I de�ne de�nitional equivalence [113, 87] via the judgment

� ` �1 � �2 :: �. Figure 3.7 gives the axioms and inference rules that allows us to derive

CHAPTER 3. A CALCULUS OF DYNAMIC TYPE DISPATCH 42

de�nitional equivalence. The rules consist of �- and �-conversion, recursion equations

governing the Typerec form, and standard rules of equivalence and congruence. In the

following chapter, I show that every well-formed constructor � has a unique normal form,

with respect to the obvious notion of reduction derived by orienting these equivalence

rules to the right. Furthermore, I show that this reduction relation is con
uent, from

which it follows that constructor equivalence is decidable [113].

The type formation and equivalence rules can be found in Figures 3.8 and 3.9 respec-

tively. The rules of type equivalence de�ne the interpretation T (�) of the constructor

� as a type. For example, T (Int) � int and T (Arrow(�1; �2)) � T (�1) ! T (�2). Thus,

T takes us from a constructor that names a type to the actual type. The other type

equivalence rules make the relation an equivalence and congruence with respect to the

type constructs.

The term formation rules may be found in Figure 3.10. Term formation judgments

are of the form �; � ` e : �. I make the implicit assumption that all free type variables

in �, e, and the range of � can be found in the domain of �. Hence, � provides the set

of type variables that are in scope.

The term formation rules resemble the typing rules of Mini-ML (see Figure 2.4)

with the exception of the constructor abstraction, application, typerec and equivalence

rules. Similar to value abstraction, constructor abstraction adds a new type variable

of the appropriate kind to the current kind assignment to give a type to the body of

the abstraction. Again, the \]" notation ensures that the added variable does not

already occur in �. For a constructor application, e [�], if e is given a polymorphic

type 8t::�:�, and � has kind � under the current type and kind assignments, then the

resulting expression has the type obtained by substituting � for the free occurrences of t

within �. The equivalence rule ascribes the type � to an expression of type �0 if � and

�0 are de�nitionally equivalent.

A typerec expression of the form typerec � of [t:�](eint; earrow) is given the type

obtained by substituting the argument constructor � for t in the type � if the following

conditions hold: First, � must be a constructor of kind
, since only these constructors

can be examined via typerec. Second, each of the clauses must have a type obtained by

replacing the appropriate constructor for t within �. Furthermore, earrow must abstract

the components of the Arrow constructor as well as the result of unwinding the typerec

on these components.

3.4 Related Work

There are two traditional interpretations of polymorphism, the explicit style (due to Gi-

rard [47, 46] and Reynolds [106]), in which types are passed to polymorphic operations,

and the implicit style (due to Milner [89]), in which types are erased prior to execution.

CHAPTER 3. A CALCULUS OF DYNAMIC TYPE DISPATCH 43

(�)
�] ft :: �0g ` �1 :: � � ` �2 :: �

0

� ` (�t::�0: �1)�2 � f�2=tg�1 :: �

(�)
� ` � :: �1 ! �2

� ` �t::�1: (� t) � � :: �1 ! �2
(t 62 Dom(�))

(trec-int)

� ` �int :: �

� ` �arrow ::
!
! � ! � ! �

� ` Typerec Int of (�int;�arrow) � �int :: �

(trec-arrow)

� ` �1 ::
 � ` �2 ::
 � ` �int :: �

� ` �arrow ::
!
! �! �! �

� ` Typerec Arrow(�1; �2) of (�int;�arrow) �

�arrow �1 �2 (Typerec �1 of (�int;�arrow))

(Typerec �2 of (�int;�arrow)) :: �

(re
)
� ` � :: �

� ` � � � :: �
(tran)

� ` �1 � �2 :: � � ` �2 � �3 :: �

� ` �1 � �3 :: �

(symm)
� ` �1 � �2 :: �

� ` �2 � �1 :: �
(arrow)

� ` �1 � �01 ::
 � ` �2 � �02 ::

� ` Arrow(�1; �2) � Arrow(�01; �
0
2) ::

(fn)
�] ft::�1g ` �1 � �2 :: �2

� ` �t::�1: �1 � �t::�1: �2 :: �1 ! �2

(app)
� ` �1 � �01 :: �1 ! �2 � ` �2 � �02 :: �1

� ` �1 �2 � �01 �
0
2 :: �2

(trec)

� ` � � �0 ::
 � ` �int � �0int :: �

� ` �arrow � �0arrow ::
!
! � ! � ! �

� ` Typerec � of (�int;�arrow) � Typerec �0 of (�0int;�
0
arrow) :: �

Figure 3.7: Constructor Equivalence

CHAPTER 3. A CALCULUS OF DYNAMIC TYPE DISPATCH 44

� ` int
� ` � ::

� ` T (�)

� ` �1 � ` �2

� ` �1 ! �2

�] ft::�g ` �

� ` 8t::�: �

Figure 3.8: Type Formation

� ` T (Int) � int � ` T (Arrow(�1; �2)) � T (�1)! T (�2)

� ` � � �0 ::

� ` T (�) � T (�0)

� ` � � �
� ` � � �0

� ` �0 � �

� ` �1 � �2 � ` �2 � �3

� ` �1 � �3

� ` �1 � �01 � ` �2 � �02

� ` h�1 � �2i � h�
0
1 � �02i

� ` �1 � �01 � ` �2 � �02

� ` �1 ! �2 � �01 ! �02

�] ft::�g ` � � �0

� ` 8t::�:� � 8t::�:�0

Figure 3.9: Type Equivalence

CHAPTER 3. A CALCULUS OF DYNAMIC TYPE DISPATCH 45

(var) �; �] fx:�g ` x : � (int) �; � ` i : int

(fn)
�; �] fx:�1g ` e : �2

�;� ` �x:�1: e : �1 ! �2
(app)

�; � ` e1 : �1 ! �2 �;� ` e2 : �1

�;� ` e1 e2 : �2

(tfn)
�] ft::�g; � ` e : �

�;� ` �t::�: e : 8t::�:�
(tapp)

�; � ` e : 8t::�:� � ` � :: kappa

�;� ` e[�] : f�=tg�

(trec)

� ` � :

�; � ` eint : fInt=tg�

�;� ` earrow : 8t1::
:8t2::
:ft1=tg� ! ft2=tg� ! fArrow(t1; t2)=tg�

�;� ` typerec � of [t:�](eint; earrow) : f�=tg�

(equiv)
�; � ` e : �0 � ` �0 � � ::

�; � ` e : �

Figure 3.10: Term Formation

In their study of the type theory of Standard ML [93, 59], Harper and Mitchell argued

that an explicitly-typed interpretation of ML polymorphism has better semantic proper-

ties and scales more easily to cover a full programming language. Harper and Mitchell

formulated a predicative type theory, XML, a theory of dependent types augmented with

a universe of small types, adequate for capturing many aspects of SML. This type theory

was later re�ned by Harper, Mitchell, and Moggi [60], and provides the fundamental basis

for the type theory of �MLi .

The idea of adding an inductively generated ground type (the natural numbers) with

an elimination rule like Typerec, to the typed �-calculus is implicit in G�odel's original

\functionals of �nite type"[48]. Thus, the constructor language of �MLi is fundamentally

based on this work. According to Lambek and Scott [79], Marie-France Thibault [117]

studied the correspondence between such calculi and cartesian closed categories equipped

with \strong" natural number objects. However, the notion of constructor equivalence

in �MLi corresponds to what Lambek and Scott term a \weak" natural number object.

The idea of adding an inductively generated universe, with a term-level elimination

rule such as typerec, was derived from the universe elimination rules found in NuPrl [32],

though the idea was only described in unpublished work of Robert Constable. Harper

and I devised the original formulation of �MLi [62, 61].

Chapter 4

Typing Properties of �
ML
i

In this chapter, I present proofs of two important properties of �MLi : Type checking

�MLi terms is decidable, and the type system is sound with respect to the operational

semantics. Hence, �MLi enjoys many of the same semantic properties as more conventional

typed calculi.

Readers anxious to see how dynamic type dispatch can be used may wish to skip this

chapter and come back to it later.

4.1 Decidability of Type Checking for �MLi

If we remove the equivalence rule from the term formation rules, then type checking �MLi

terms would be entirely syntax-directed. This is due to the type label on �-abstractions

at the expression level, the kind label on �-abstractions at the constructor level, and the

type scheme [t:�] labelling typerec expressions. But in the presence of the equivalence

rule, we need an alternative method for determining whether an expression may be

assigned a type, and if so, what types it may be given.

In this section, I show that every well-formed constructor has a unique normal form

with respect to a certain notion of reduction, and that two constructors are de�nition-

ally equivalent if and only if they have syntactically identical normal forms, modulo

�-conversion. From this notion of normal forms for constructors, it is straightforward

to generalize to a normal form for types: Normalize any constructor components of the

type, and recursively replace T (Int) with int and T (Arrow(�1; �2)) with T (�1)! T (�2).

From this, it is easy to see that two types are de�nitionally equivalent i� their normal

forms are syntactically equivalent, modulo �-conversion.

With normal forms for types, we can formulate a di�erent proof system for the well-

formedness of �MLi terms that is entirely syntax directed: At each step in the derivation,

we replace the type on the right-hand side of the \:" with its normal form. Given a

46

CHAPTER 4. TYPING PROPERTIES OF �MLI 47

procedure for determining normal forms, since the rest of the rules are syntax directed,

type checking in the new proof system is entirely syntax directed. Furthermore, it is

easy to see that the resulting proof system is equivalent to the original system. Any

proof in the new system can be transformed into a proof in the old system simply by

adding applications of the equivalence rule at each step, asserting that the type ascribed

by the old system and its normal form are equivalent. Any proof in the old system can

be transformed into a proof in the new system since normal forms are unique.

Consequently, if I can establish normal forms for constructors, show that two con-

structors are de�nitionally equivalent i� they have the same normal form, and give a

procedure for �nding normal forms, then we can use this procedure to formulate an

entirely syntax-directed type checking system.

4.1.1 Reduction of Constructors

I begin by de�ning a reduction relation, � �! �0, on \raw" constructors that (potentially)

contain free variables. This primitive notion of reduction is generated from four rules:

one rule each for �- and �-reduction of functionals, and two rules for reducing Typerecs:

(�) (�t::�: �) �0 �! f�0=tg�

(�) (�t::�: (� t)) �! � (t 62 FV (�))

(t1) Typerec Int of (�int;�arrow) �! �int

(t2) Typerec Arrow(�1; �2) of (�int;�arrow) �!

�arrow �1 �2 (Typerec �1 of (�int;�arrow))(Typerec �2 of (�int;�arrow))

I use T to abbreviate the union of these four relations:

T = � [� [t1 [t2

I extend the relation to form a congruence by de�ning term contexts which are arbitrary

raw constructors with a single hole in them, much like constructor evaluation contexts,

but with no restrictions governing where the hole can occur:

C ::= [] j Arrow(C; �) j Arrow(�; C) j �t::�: C j C � j �C j

Typerec C of (�int;�arrow) j Typerec � of (C;�arrow) j Typerec � of (�int;C)

The constructor C[�] represents the result of replacing the hole in C with the constructor

�, possibly binding free variables of �.

De�nition 4.1.1 �1 �! �2 i� there exists �01, �
0
2, and C such that �1 = C[�01], �2 =

C[�02], and (�01; �
0
2) 2 T.

CHAPTER 4. TYPING PROPERTIES OF �MLI 48

I write �1 �!
� �2 for the re
exive, transitive closure of �1 �! �2, �1 ! �2 for

the symmetric closure of �1 �! �2, and �1 !
� �2 for the least equivalence relation

generated by �1 �!
� �2. The constructor � is in normal form if there is no �0 such that

� �! �0. I say that a constructor � is strongly normalizing (SN) if there is no in�nite

reduction sequence � �! �1 �! �2 �! � � �.

Lemma 4.1.2

1. If �1 �! �2, then f�3=tg�1 �! f�3=tg�2.

2. If �1 �! �2, then f�1=tg�3 �! f�2=tg�3.

Proof (sketch): Straightforward induction on terms and case analysis of the reduction

relation. 2

The following lemmas relate the reduction relation to de�nitional equivalence. In

particular, two well-formed constructors �1 and �2 are de�nitionally equivalent i� we can

convert from �1 to �2 via the !
� equivalence relation.

Lemma 4.1.3 (Substitution) If �] ft::�0g ` � :: � and � ` �0 :: �0, then � `

f�0=tg� :: �.

Lemma 4.1.4 If � ` C[�] :: �, then there exists some �0 and �0 such that �0 ` � :: �0

and if �0 ` �0 :: �0, then � ` C[�0] :: �.

Proof (sketch): By induction on C. 2

Lemma 4.1.5 (Kind Preservation) If � ` � :: � and � �! �0, then � ` �0 :: �.

Proof: Suppose � ` C[�] :: �. By the previous lemma, there exists some �0 and �0

such that �0 ` � :: �0. Hence, it su�ces to show that (�; �0) 2 T implies �0 ` �0 :: �0.

� : � = (�t::�1: �1)�2 and �0 = f�2=tg�1. Follows from the typing rule for functions

and the Substitution Lemma.

� : � = �t::�1: (�1 t) (t 62 FV (�1)) and �0 = �1. By the typing rule for functions,

�0] ft::�1g ` �1 t :: �2 for some �2 and �0 = �1 ! �2. By the application rule,

�0] ft::�1g ` �1 :: �
0. Since t does not occur free in �1, �

0 ` �1 :: �
0.

t1 : � = Typerec Int of (�i;�a) and �
0 = �i. By the typing rule for Typerec, �

0 ` � :: �0

and � ` �i :: �
0.

CHAPTER 4. TYPING PROPERTIES OF �MLI 49

t2 : � = Typerec Arrow(�1; �2) of (�i;�a) and

�0 = �a �1 �2 Typerec �1 of (�i;�a)Typerec �2 of (�i;�a):

By the typing rule for Typerec, �0 ` � :: �0 and � ` �i :: �
0, �0 ` �a ::
 !

 ! �0 ! �0 ! �0. By the rule for Arrow, �0 ` �1 ::
 and �0 ` �2 ::
. By the

application rule, �a �1 �2 has type �
0 ! �0 ! �0. By the typing rule for Typerec,

�0 ` Typerec �1 of (�i;�a) :: �
0 and likewise for �2. Thus, by the application rule,

�0 ` �0 :: �0.

2

Lemma 4.1.6 If � ` � :: � and � �! �0, then � ` � � �0 :: �.

Proof (sketch): Suppose � ` C[�] :: � and (�; �0) 2 T. Then there exists some

�0, �0 such that �0 ` � :: �0 and by preservation, �0 ` �0 :: �0. Argue by cases that

�0 ` � � �0 :: �0. Then show by induction on C that �0 ` � � �0 :: �0 implies

� ` C[�] � C[�0] :: �. 2

Lemma 4.1.7 If � ` �1 :: �, � ` �2 :: �, and there exists a � such that �1 �!
� � and

�2 �!
� �, then � ` �1 � �2 : �.

Proof: By the previous lemma, � ` �1 � � :: � and � ` �2 � � :: � and by symmetry

and transitivity, � ` �1 � �2 :: �. 2

Lemma 4.1.8 � ` �1 � �2 :: � i� �1 !
� �2.

Proof: The \only-if" is apparent from the previous lemma. Hence, I must show

that � ` �1 � �2 :: � implies �1 !
� �2. I argue by induction on the derivation of

� ` �1 � �2 :: �. Re
exivity, symmetry, and transitivity follow from the de�nition of

 !�. The arrow, fn, app, and trec rules follow by building an appropriate context C

for each of the component constructors �, using the induction hypothesis to argue that

� � �0 implies � !� �0 and thus C[�] � C[�0]. The subcases are glued together via

transitivity. The �, �, trec-int, and trec-arrow rules all follow from their counterparts in

T. 2

The main results of this chapter are that the reduction relation \�!�" is con
uent

and strongly normalizing for well-formed constructors. That is, every reduction sequence

terminates and the reduction sequences have the diamond property: If a constructor

reduces to two di�erent constructors, then those two constructors reduce to a common

constructor.

CHAPTER 4. TYPING PROPERTIES OF �MLI 50

Proposition 4.1.9 (Strong Normalization) If � ` � :: �, then � is strongly normal-

izing.

Proposition 4.1.10 (Con
uence) If � �!� �1 and � �!� �2, then there exists a

constructor �0 such that �1 �!
� �0 and �2 �!

� �0.

Con
uence for \�!�" is important because of the following immediate corollaries:

First, normal forms are unique up to �-conversion:

Corollary 4.1.11 If � �!� �1 and � �!� �2 and �1 and �2 are normal forms, then

�1 = �2.

Second, the reduction system has the \Church-Rosser" property, which tells us that

�nding and comparing normal forms is a complete procedure for determining equivalence

of constructors.

Corollary 4.1.12 (Church-Rosser) � !� �0 i� there exists a �00 such that � �!� �00

and �0 �!� �00.

Proof: The \if" part is obvious. For the \only if", I argue by induction on the length

of the sequence � ! �1 ! � � � ! �n ! �0. For n = 0, � ! �0 and thus either

� �! �0 or else �0 �! �. Without loss of generality, assume � �! �0. Then choose

�00 = �0 and we are done. Assume the theorem holds for all values up through n. We

have � ! �1 ! � � � ! �n and �n ! �0. I must show that there is a �00 such that

�n �!
� �00 and �0 �!� �00. By the induction hypothesis, there exists �a and �b such

that � �!� �a, �n �!
� �a, �n �!

� �b, and �
0 �!� �b. Since �n reduces to both �a and

�b, we have via con
uence that there exists a �00 such that �a �!
� �00 and �b �!

� �00

and hence � �!� �00 and �0 �!� �00. 2

Since for well-formed constructors, convertibility is the same as de�nitional equiva-

lence, the Church-Rosser property implies that two well-formed constructors are de�ni-

tionally equivalent i� there is some common reduct. If I can show that all well-formed

constructors are strongly normalizing, then we have a decision procedure for determining

constructor equivalence: Choose any reduction sequence for the two constructors and

eventually, we will reach normal forms, since the two constructors are strongly normal-

izing. Then, the Church-Rosser theorem together with unique normal forms, tells us

that the two constructors are equivalent i� the two normal forms are equivalent modulo

�-conversion.

In the presence of strong normalization, con
uence is equivalent to local con
uence:

If � �! �1 and � �! �2, then there exists a �0 such that �1 �!
� �0 and �2 �!

� �0.

Lemma 4.1.13 If � is strongly normalizing and locally con
uent, then � is con
uent.

CHAPTER 4. TYPING PROPERTIES OF �MLI 51

Proof: Suppose � �!� �1 in m steps and � �!� �2 in n steps. Since � is strongly

normalizing, there exists some bound b on the number of steps any reduction sequence

can take. I argue by induction on b and reduce the problem to m � 1, n � 1. If m = 0

or n = 0 then there is nothing to prove. The case m = 1, n = 1 is handled by local

con
uence.

Suppose m > 1 or else n > 1. Then, we have � �! �01 �!
m�1 �1 and � �!

�02 �!
n�1 �2 where m� 1 > 0 or n� 1 > 0. By local con
uence, we know there is a �00

such that �01 �!
� �00 and �02 �!

� �00.

Now �01 and �02 have smaller bounds than �, so by the induction hypothesis, there

exists �001 and �002 such that �1 �!
� �001, �

00 �!� �001, �2 �!
� �002, and �00 �!� �002.

Again, �00 has a bound less than b, so applying the induction hypothesis, we know that

there exists a �0 such that �001 �!
� �0 and �002 �!

� �0. Thus, �1 �!
� �0 and �2 �!

� �0.

The result is summarized by the following diagram, where assuming the solid arrows,

we have shown that the dotted arrows exist:

�

�01 �02

�1 �00 �2

�001 �002

�0

�

�

�

�

�

�+

1
Q

Q

Q

Q

Q

Qs

1

�

�

�

�

�

�+

m� 1 Q

Q

Q

Q

Q

Qs

n� 1
.s

�

.........+

�

.........+

�

.s

�

.s

�

.........+

�

.s

�

.........+

�

2

All that remains is to establish local con
uence and strong normalization, which I

address in Sections 4.1.2 and 4.1.3, respectively.

4.1.2 Local Con
uence for Constructor Reduction

To show that the reduction system for constructors is locally con
uent, I must show

that whenever � �! �1 and � �! �2, then there exists a �0 such that �1 �!
� �0 and

�2 �!
� �0.

CHAPTER 4. TYPING PROPERTIES OF �MLI 52

Let D range over the set of expressions with exactly two holes in them. This set can

be described by the following grammar:

D ::= Arrow(C1; C2) j C1C2 j Typerec C1 of (C2;�arrow) j

Typerec C1 of (�int;C2) j Typerec � of (C1; C2) j C[D]

where I use C[D] to denote the two-holed constructor formed by replacing the hole in C

with D and I use D[�1; �2] to denote the constructor obtained by replacing the left-most

hole in D with �1 and the right-most hole in D with �2.

Suppose � = Ca[�a], (�a; �
0
a) 2 T, and � = Cb[�b] and (�b; �

0
b) 2 T. The two

constructors, �a and �b are said to overlap in � if one constructor is only found as a

subterm of the other (i.e., �a = C[�b] or �b = C[�a] for some C). If �a and �b do not

overlap, then it is clear that there exists some D such that � = D[�a; �b] and thus:

� = D[�a; �b] �! D[�0a; �b] �! D[�0a; �
0
b]

and

� = D[�a; �b] �! D[�a; �
0
b] �! D[�0a; �

0
b]:

Therefore, we need only consider overlapping constructors to show local con
uence.

Let �a and �b be overlapping constructors in �, such that � = Ca[�a], �a = Cb[�b],

and suppose (�a; �
0
a) 2 T and (�b; �

0
b) 2 T. Without loss of generality, we may ignore the

outer context, Ca. There are four cases for the reduction from �a to �
0
a. I consider each

case below and show that, for each rule taking �b to �
0
b, there exists a �

0 and sequence of

reductions which takes �0a to �
0 and Cb[�

0
b] to �

0. Each argument is made by presenting

a diagram where the left-arrow represents the reduction from �a to �0a, and the right

arrow represents the reduction from �a = Cb[�b] to Cb[�
0
b]. The solid arrows represent

assumptions, whereas the dotted arrows represent the relations I claim exist. I use t to

represent some arbitrary reduction from T, � to represent � conversion, = to represent

zero reductions, and t� to represent zero or more applications of a t reduction.

case �: Both sub-cases follow from lemma 4.1.2, part 1 and 2 respectively.

(�t::�: �1)�2

f�2=tg�1 (�t::�: �01)�2

f�2=tg�
0
1

�

�

�

�
�+

� Q

Q

Q

Q
Qs

t

.st

.......+ �

(�t::�: �1)�2

f�2=tg�1 (�t::�: �1)�
0
2

f�02=tg�1

�

�

�

�
�+

� Q

Q

Q

Q
Qs

t

.st�

.......+ �

CHAPTER 4. TYPING PROPERTIES OF �MLI 53

case �: The constructor is an �-redex �t::�: (�1 t). If the inner reduction occurs within

�1, then the result is obvious, since t cannot occur freely within �1. If the inner reduction

is an application of � because �1 is a function, then the results of the outer reduction

and inner reduction yield terms that are equal, modulo �-conversion.

�t::�: (�1 t)

�1 �t::�: (�01 t)

�01

�

�

�

�

��+

� Q

Q

Q

Q
Qs

t

.s
t

........+
�

�t::�: ((�t0::�0: �1) t)

�t0::�0: �1 �t::�: ft=t0g�1

�t0::�0: �1

�

�

�

�
�+

� Q

Q

Q

Q
Qs

�

.s
=

.......+
�

case t1: The constructor is a Typerec applied to Int. The inner reduction either mod-

i�es �i or �a. If �i is reduced, then after performing the Typerec reduction, the same

reduction can be applied. If �a is reduced, then after performing the Typerec reduction,

�a disappears, and the terms are equal.

Typerec Int of (�i;�a)

�i Typerec Int of (�0i;�a)

�0i

�

�

�

�

��+

t1 Q

Q

Q

Q
Qs

t

.s
t

........+
t1

Typerec Int of (�i;�a)

�i Typerec Int of (�i;�
0
a)

�i

�

�

�

�

��+

t1 Q

Q

Q

Q
Qs

t

.s
=

........+
t1

case t2: The constructor is a Typerec applied to Arrow(�1; �2). There are four sub-

cases: �1, �2, �i, or �a is reduced. In any of these cases, we can apply the same reduction,

CHAPTER 4. TYPING PROPERTIES OF �MLI 54

possibly multiple times to yield the same term.

Typerec Arrow(�1; �2) of (�i;�a)

�a �1 �2 (Typerec �1 of (�i;�a))

(Typerec �2 of (�i;�a))
Typerec Arrow(�01; �2) of (�i;�a)

�a �
0
1 �2 (Typerec �

0
1 of (�i;�a)) (Typerec �2 of (�i;�a))

�

�

�

�

�

��=

t2

Z

Z

Z

Z

Z

Z

Z
Z~

t

.~

t�

............=
t2

Typerec Arrow(�1; �2) of (�i;�a)

�a �1 �2 (Typerec �1 of (�i;�a))

(Typerec �2 of (�i;�a))
Typerec Arrow(�1; �

0
2) of (�i;�a)

�a �1 �
0
2 (Typerec �1 of (�i;�a)) (Typerec �

0
2 of (�i;�a))

�

�

�

�

�

�
�=

t2

Z

Z

Z

Z

Z

Z

Z
Z~

t

.~
t�

............=
t2

Typerec Arrow(�1; �2) of (�i;�a)

�a �1 �2 (Typerec �1 of (�i;�a))

(Typerec �2 of (�i;�a))
Typerec Arrow(�1; �2) of (�

0
i;�a)

�a �1 �2 (Typerec �1 of (�0i;�a)) (Typerec �2 of (�0i;�a))

�

�

�

�

�

��=

t2

Z

Z

Z

Z

Z

Z

Z
Z~

t

.~
t�

............=
t2

CHAPTER 4. TYPING PROPERTIES OF �MLI 55

Typerec Arrow(�1; �2) of (�i;�a)

�a �1 �2 (Typerec �1 of (�i;�a))

(Typerec �2 of (�i;�a))
Typerec Arrow(�1; �2) of (�i;�

0
a)

�0a �1 �2 (Typerec �1 of (�i;�
0
a)) (Typerec �2 of (�i;�

0
a))

�

�

�

�

�

�
�=

t2

Z

Z

Z

Z

Z

Z

Z
Z~

t

.~

t�

............=
t2

Finally, from the diagrams above, we have the desired property.

Theorem 4.1.14 (Local Con
uence) If � �! �1 and � �! �2, then there exists a

�0 such that �1 �!
� �0 and �2 �!

� �2.

All that remains is to show that well-formed constructors are strongly normalizing.

4.1.3 Strong Normalization for Constructor Reduction

Our proof of strong normalization for the constructor reduction relation uses unary logical

relations (predicates), but in a setting where we can have open terms. The ideas follow

closely those of Harper [55] and Lambek and Scott [79].

The predicates are indexed by both a kind (�) and a kind assignment (�) and are

de�ned as follows:

jj
jj� = f� j � ` � :: �; � SNg

jj�1 ! �2jj� = f� j � ` � :: �1 ! �2; 8�
0 � �: 8�1 2 jj�1jj�0: � �1 2 jj�2jj�0g

The idea is to include only those constructors that are strongly normalizing and then

show that every well-formed constructor is in the appropriate set. From the de�nitions,

it is clear that if � 2 jj�jj� then � ` � :: � and for all �0 � �, jj�jj�0.

Lemma 4.1.15 t �1 �2 � � � �n is SN i� each �i is SN .

The following lemma shows that every constructor in one of the sets is strongly

normalizing and that a variable t is always in jj�jj�, whenever �(t) = �.

Lemma 4.1.16 1. If � 2 jj�jj�, then � is SN .

CHAPTER 4. TYPING PROPERTIES OF �MLI 56

2. If � ` t :: �1 ! � � � ! �n ! �, �0 ` �i :: �i and �i is SN (1 � i � n) for some

�0 � �, then t �1 � � � �n 2 jj�jj�0.

Proof: Simultaneously by induction on �. If � =
, then part 1 is built in to the

de�nition and part 2 follows since t �1 � � � �n is SN whenever each of the �i are SN .

Suppose � = �0 ! �00 and � 2 jj�jj�. Take �
0 = �]ft::�0g. By induction hypothesis

2, t 2 jj�0jj�0 and � t 2 jj�00jj�0 from which it follows via induction hypothesis 1 that � t

is SN . This in turn implies that � is SN .

Suppose � = �0 ! �00, � ` t :: �1 ! � � � ! �n ! �, and �0 ` �i :: �i is SN for some

�0 � �. Let � 2 jj�0jj�0. I must show that t �1 � � � �n � 2 jj�
00jj�0. But by induction

hypothesis 1, � is SN . Hence, by induction hypothesis 2, the result holds. 2

Corollary 4.1.17 If � ` t :: �, then t 2 jj�jj�.

The following lemma shows that the predicates are closed under a suitable notion of

�-expansion. This lemma is crucial for showing that well-formed �-terms are in the sets

and therefore are strongly normalizing.

Lemma 4.1.18 Suppose �] ft::�0g ` � :: �1 ! � � � ! �n ! � and �i 2 jj�ijj�
(0 � i � n). If (f�0=tg�)�1 � � � �n 2 jj�jj�, then (�t::�0: �)�0 �1 � � � �n 2 jj�jj�.

Proof:

By induction on �. Assume � =
. I must show �a = (�t::�0: �)�0 �1 � � � �n is in

jj
jj�. It su�ces to show that this term is SN . Suppose not. Then there exists some

in�nite reduction sequence starting with �a. Since (f�0=tg�)�1 � � � �n 2 jj
jj�, this

term is SN and hence all of its components are. Moreover, since �0 2 jj�0jj�, �0 is SN .

Hence, no in�nite reduction sequence can take place only within �; �0; �1; � � � ; �n. Thus,

any in�nite reduction sequence has the form:

(�t::�0: �)�0 �1 � � � �n �!
�

(�t::�0: �
0)�00 �

0
1 � � � �

0
n �!

(f�00=tg�
0); �01; � � � ; �

0
n �! �00 �! � � �

Consequently, � �!� �0, �0 �!
� �00, and f�0=tg� �!

� f�00=tg�
0. Thus, we can construct

an in�nite reduction sequence:

(f�0=tg��1 � � � �n �!
�

(f�00=tg�
0 �01 � � � �

0
n �! �00 �! � � �

contradicting the assumption. Therefore, �a 2 jj
jj�.

CHAPTER 4. TYPING PROPERTIES OF �MLI 57

Assume � = �0 ! �00, and let �0 2 jj�0jj�0 for �0 � �. I must show that

(�t::�0: �)�0 �1 � � � �n �
0

is in jj�00jj�0. By the induction hypothesis, this holds if

(f�0=tg�)�1 � � � �n �
0

is in jj�00jj�0. But this follows from the assumption that

(f�0=tg�)�1 � � � �n

is in jj�0 ! �00jj�. 2

Corollary 4.1.19 If �] ft::�0g ` � :: �, �0 2 jj�0jj�, and f�0=tg� 2 jj�jj�, then

(�t::�0: �)�0 2 jj�jj�.

The following lemma shows that the predicates are closed under a suitable notion

of Typerec-expansion. This lemma is crucial for showing that well-formed Typerec-

constructors are in the sets and hence are strongly normalizing.

Lemma 4.1.20 Let �0 = �1 ! � � � ! �n ! � and suppose � ` Typerec � of (�i;�a) ::

�0, �j 2 jj�jjj� (1 � j � n), � 2 jj
jj�, �i 2 jj�
0jj�, and �a 2 jj
 !
 ! �0 ! �0 !

�0jj�. Then Typerec � of (�i;�a) 2 jj�
0jj�.

Proof:

By induction on �. If � =
, then it su�ces to show that

Typerec � of (�i;�a)�1 � � � �n

is SN . I argue by induction on the height (h) of the normal form of �. Suppose h = 0.

Then the normal form of � is either a variable or Int. Since � 2 jj
jj�, �i 2 jj�
0jj�, �a is

in

jj
!
! �0 ! �0 ! �0jj�;

and �j 2 jj�jjj� (1 � j � n), �, �i, �a, and �1; � � � ; �n are all SN . Hence, any in�nite

reduction sequence cannot occur only within these terms. Thus, any such sequence

must perform a Typerec reduction and the normal form of � must be Int, so the in�nite

reduction sequence has the form:

Typerec � of (�i;�a)�1 � � � �n �!
�

Typerec Int of (�0i;�
0
a)�

0
1 � � � �

0
n �! �0i �

0
1 � � � �

0
n �! � � �

CHAPTER 4. TYPING PROPERTIES OF �MLI 58

But since �i 2 jj�
0jj�, and �j 2 jj�jjj� (1 � j � n), �0i �

0
1 � � � �

0
n is SN . Therefore,

Typerec � of (�i;�a) 2 jj�
0jj� when h = 0.

Suppose the theorem holds for all terms with normal forms of height less than h and

suppose the normal form of � has height h + 1. By the same previous argument, any

in�nite reduction sequence must perform a Typerec reduction. Furthermore, since the

normal form of � has height h+ 1, such a sequence must have the form:

Typerec � of (�i;�a)�1 � � � �n �!
�

Typerec Arrow(�1; �2) of (�
0
i;�

0
a)�

0
1 � � � �

0
n �!

((�0a �1 �2 (Typerec �1 of (�0i;�
0
a)) (Typerec �2 of (�0i;�

0
a)))�

0
1 � � � �

0
n) �! � � �

Since � is SN , it must be the case that �1 and �2 are SN , and hence �1; �2 2 jj
jj�.

Furthermore, the heights of the normal forms of �1 and �2 must be less than or equal

to h. Hence, via the inner induction hypothesis, Typerec �1 of (�0i;�
0
a) 2 jj
jj� and

Typerec �1 of (�0i;�
0
a) 2 jj
jj�. Since by assumption �a 2 jj
!
! �0 ! �0 ! �0jj�,

(�0a �1 �2 (Typerec �1 of (�0i;�
0
a)) (Typerec �2 of (�0i;�

0
a)))�

0
1 � � � �

0
n

is SN and in jj
jj�.

Now suppose � = �0 ! �00 and let �0 2 jj�0jj�0 for some � � �. I must show that

(Typerec � of (�i;�a))�1 � � � �n �
0 2 jj�00jj�0. But this follows from the outer induction

hypothesis. 2

Corollary 4.1.21 If � ` Typerec � of (�i;�a) :: �, � 2 jj
jj�, �i 2 jj�jj�, and �a 2

jj
!
! �! �! �jj�, then Typerec � of (�i;�a) 2 jj�jj�.

Let � range over substitutions of constructors for constructor variables.

De�nition 4.1.22

1. �0j` � :: �[�] i� �(�) 2 jj�jj�0.

2. �0j` � :: � i� Dom(�) = Dom(�) and for each t in Dom(�), �(t) 2 jj�(t)jj�0.

3. j` � ` � :: � i� for every �0 and every � such that �0j` � :: �, �0j` � :: �[�].

Theorem 4.1.23 If � ` � :: �, then j` � ` � :: �.

Proof: By induction on the derivation of � ` � :: �. Suppose �0j` � :: �.

var: Holds by the assumption �0j` �.

int: Holds, since �(Int) = Int is trivially SN and thus Int 2 jj
jj�0.

CHAPTER 4. TYPING PROPERTIES OF �MLI 59

arrow: Must show �0j ` Arrow(�1; �2) ::
[�]. By the induction hypothesis, �(�1) 2

jj
jj�0 and �(�2) 2 jj
jj�0. Hence, �1 and �2 are SN and Arrow(�1; �2) is SN . Thus,

Arrow(�1; �2) 2 jj
jj�0.

fn: Must show �(�t::�1: �) 2 jj�1 ! �2jj�0. Let �1 2 jj�1jj�00 for some �00 = �0]ft::�1g.

I must show that f�1=tg�(�) 2 jj�2jj�00. By the induction hypothesis, �� 2 jj�2jj�00 so

the result follows from lemma 4.1.19

app: Must show �(�1 �2) 2 jj�2jj�0. By the induction hypotheses, �(�1) 2 jj�1 ! �2jj�0

and �(�2) 2 jj�1jj�0, so the result follows from the de�nition of jj�1 ! �2jj�0.

trec: Must show �(Typerec � of (�i;�a)) 2 jj�jj�0. By the induction hypotheses, �(�) 2

jj
jj�0, �(�i) 2 jj�jj�0, and �(�a) 2 jj
!
! �! �! �jj�0, so the result follows from

lemma 4.1.21. 2

Corollary 4.1.24 (Strong Normalization) If � ` � :: �, then � is strongly normal-

izing.

Proof: Pick � to be the identity substitution for �. That is, � = ft=t j t 2 Dom(�)g.

Then it is easy to see that �j ` � :: �. Moreover, �(�) = � 2 jj�jj� and thus � is SN .

2

Corollary 4.1.25

1. Every constructor � has a unique normal form, NF (�).

2. If � is well-formed, there is an algorithm to calculate NF (�).

3. Conversion of well-formed constructors is decidable.

4.1.4 Decidability of Type Checking

In the following de�nitions, I establish a suitable notion of a normalized derivation for

typing judgments. I then show that a term is well typed i� there is a normal derivation

of the judgment. The proof is constructive, and thus provides an algorithm for type

checking �MLi .

De�nition 4.1.26 (Normal Types, Judgments) A type � is in normal form i� it is

int, T (�) where � is normal, �1 ! �2 where �1 and �2 are normal, or 8t::�:�0 where �0

is normal. A judgment �;� ` e : � is normal i� � is normal.

From the properties of constructors, it is clear that every well-formed type �, has

a unique normal form NF (�), and that �nding this form is decidable | we simply

normalize all of the constructor components and replace all occurrences of T (Int) with

int and all occurrences of T (Arrow(�1; �2)) with T (�1) ! T (�2). Furthermore, this

normalization process preserves type equivalence.

CHAPTER 4. TYPING PROPERTIES OF �MLI 60

Lemma 4.1.27 If � ` �, then � ` � � NF (�).

Proof (sketch): Follows from con
uence and strong normalization of constructors.

2

In the absence of typerec, a normal typing derivation is simply a derivation where

we interleave uses of the non-equiv rules and a single use of the equiv rule to normalize

the resulting type. However, for uses of typerec, we need additional uses of equiv to

\undo" the normalization for the inductive cases.

De�nition 4.1.28 (Normal Derivations) A typing derivation D of the normal judg-

ment �;� ` e : NF (�) is in normal form i� D ends in an application of the equiv

rule,

(equiv)

(R)
D1 � � � Dn

�;� ` e : �
� ` � � NF (�)

�; � ` e : NF (�)

and:

1. the rule R is an axiom, or

2. R is neither equiv nor trec, and D1; � � � ;Dn are normal, or

3. R is a use of trec where the sub-derivations D1 and D2 are of the form:

(equiv)
D0

1 � ` NF (fInt=tg�) � fInt=tg�

� ` ei : fInt=tg�

and

(equiv)
D0

2

� ` NF (8t1; t2::
:ft1=tg� ! ft2=tg� ! fArrow(t1; t2)=tg�) �

8t1; t2 ::
:ft1=tg� ! ft2=tg� ! fArrow(t1; t2)=tg�

� ` ea : t1; t2:ft1=tg� ! ft2=tg� ! fArrow(t1; t2)=tg�

and D0
1 and D0

2 are normal.

Theorem 4.1.29 �;� ` e : � i� there exists a normal derivation of �;� ` e : NF (�).

Proof: The \if" part is immediate: The normal derivation ends in �; � ` e : NF (�).

Since a type and its normal form are equivalent, a single additional application of the

equiv rule yields a derivation of �; � ` e : �.

For the \only if" part, we use the following algorithm to transform the derivation of

�; � ` e : � into a normal derivation of �; � ` e : NF (�). The algorithm is given by

induction on the derivation D of �; � ` e : �.

CHAPTER 4. TYPING PROPERTIES OF �MLI 61

If D is an axiom, then we add an additional equiv rule, using the fact that � `

NF (�) � �. The resulting derivation is in normal form.

If D ends with an application of equiv,

(equiv)

(R)
D1 � � � Dn

�;� ` e : �0
� ` �0 � �

�;� ` e : �

then the normal form of �0 must also be NF (�). Hence if D0
1 and D0

n are the normal

derivations of D1 through Dn respectively, the derivation

(equiv)

(R)
D0

1 � � � D0
n

�;� ` e : �00
� ` �00 � NF (�)

�; � ` e : NF (�)

is normal.

If D ends in

(R)
D1 � � � Dn

�;� ` e : �

where R is not equiv, we �rst transform D1 through Dn to normal derivations D0
1

through D0
n. I must now show that the rule R applies, followed by an application of

equiv, yielding the normal judgment �; � ` e : NF (�). There are �ve cases to consider:

case fn: D1 ends in �; �] fx:�1g ` e : �2. The normal derivation D0
1 allows us to

conclude that �; �] x:�1 ` e : NF (�2) Applying the fn rule, we can conclude that

�; � ` �x:�1:e : �1 ! NF (�2). Since � ` �2 � NF (�2), � ` �1 ! NF (�2) � � �

NF (�). Hence, following fn with equiv, we can conclude that �; � ` �x:�1:e : NF (�).

case app: D1 ends in �; � ` e1 : �1 ! �2 and D2 ends in �; � ` e2 : �1. The normal

derivation D0
1 ends in �; � ` e1 : NF (�1 ! �2). Now, � ` NF (�1 ! �2) � NF (�1)!

NF (�2). Hence, D0
2 ends in �; � ` e2 : NF (�1), and applying the app rule, we can

conclude that �; � ` e1 e2 : NF (�2). Since � ` NF (�2) � �2, and �2 = �, we can apply

the equiv rule yielding �; � ` e1 e2 : NF (�).

case tfn: D1 ends in �] ft::�g; � ` e1 : �1. The normal derivation D0
1 ends in

�]ft::�g; � ` e1 : NF (�1) Applying the tfn rule, we can conclude that �; � ` �t::�:e1 :

8t::�:NF (�1). Since �] ft::�g ` �1 � NF (�1), � ` 8t::�:�1 � 8t::�:NF (�1) �

NF (8t::�:�1). Thus, applying the equiv rule, we can conclude that �; � ` 8t::�:e1 :

NF (�).

case tapp: D1 ends in �; � ` e1 : 8t::�:�1, whereas the normal derivation D0
1 ends

in �; � ` e1 : NF (8t::�:�1). Now, � ` NF (8t::�:�1) � 8t::�:NF (�1). Applying the

tapp rule, we can conclude that �; � ` e1 [�] : f�=tgNF (�1). By equivalence of types

CHAPTER 4. TYPING PROPERTIES OF �MLI 62

under substitution of a well-formed constructor, we can conclude that � ` f�=tg�1 �

f�=tgNF (�1). Furthermore, � ` f�=tgNF (�1) � NF (f�=tg�1). Thus, � ` � � NF (�)

and by an application of the equiv rule, we can conclude that �; � ` e1 [�] : NF (�).

case trec: D1 ends in �; � ` ei : fInt=tg�1 and D2 ends in �; � ` ea :

8t1; t2::
:ft1=tg�1 ! ft2=tg�1 ! fArrow(t1; t2)=tg�1. By induction, the normal

derivations corresponding to these two derivations are D0
1 which ends in �; � `

ei : NF (fInt=tg�1) and D0
2 which ends in �; � ` ea : NF (8t1; t2::
:ft1=tg�1 !

ft2=tg�1 ! fArrow(t1; t2)=tg�1. Now � ` NF (fInt=tg�1) � ft=�1g and � `

NF (8t1; t2::
:ft1=tg�1 ! ft2=tg�1 ! fArrow(t1; t2)=tg�1) � 8t1; t2::
:ft1=tg�1 !

ft2=tg�1 ! fArrow(t1; t2)=tg�1. So, applying equiv to D0
1 and D

0
2, followed by an appli-

cation of trec, we can conclude that

�; � ` typerec � of [t:�1](ei; ea) : f�=tg�1

Since � ` f�=tg�1 � NF (f�=tg�1), we can apply equiv to this derivation yielding

�; � ` typerec � of [t:�1](ei; ea) : NF (�). 2

Theorem 4.1.30 Given �, �, and e, where � is well-formed with respect to �, there is

an algorithm to determine whether there exists a � such that �;� ` e : �.

Proof: By the previous theorem, the judgment �; � ` e : � is derivable i� there is a

normal derivation D of �; � ` e : NF (�). I proceed by induction on e to calculate such a

derivation if it exists, and to signal an error otherwise. By an examination of the typing

rules, it is clear that for each case, at most one rule other than equiv applies.

case var: If e is a variable x, then the normal derivation is �; � ` x : �(x) followed by

�; � ` x : NF (�(x)). If x does not occur in �, then e is not well-typed.

case int: If e is an integer i, then the normal derivation is �; � ` x : int, followed by a

re
exive use of equivalence (i.e., int � int).

case fn: If e is a function �x:�1:e
0, then the bound variable can always be chosen via

�-conversion so that it does not occur in the domain of �. If the free type variables of

�1 are in �, then �]fx:�1g is well-formed with respect to �, else there is no derivation.

By induction, there is an algorithm to calculate a normal derivation of �; �] fx:�1g `

e0 : NF (�2), if one exists. Given this derivation, by an application of the fn rule and a

re
exive use of equiv, we can construct a normal derivation �; � ` �x:�1:e
0 : NF (�1 !

�2).

case tfn: If e is �t::�:e0, then the bound type variable can always be chosen via �-

conversion so that it does not occur in the domain of �. Hence, the context �]ft::�g; �

is well-formed. By induction, there is an algorithm to calculate a normal derivation of

�] ft::�g; � ` e0 : NF (�), if it exists. If so, applying tfn followed by a re
exive use of

equiv, we can construct a normal derivation of �; � ` �t::�:e0 : NF (8t::�:�).

CHAPTER 4. TYPING PROPERTIES OF �MLI 63

case app: If e is an application e1 e2, then by induction, we can calculate normal deriva-

tions of �; � ` e1 : NF (�a) and �; � ` e2 : NF (�b). If such derivations exist, then either

NF (�a) is of the form �1 ! �2 or else not. If not, then no other rule applies, so the term

is ill-formed. If so, then for app to apply, �1 must be the same as NF (�b). If this holds,

then applying the app rule, yields NF (�2). Applying the equiv rule yields a normal

derivation of �; � ` e1 e2 : NF (�2).

case tapp: If e is e0 [�], then by induction, we can calculate a normal derivation of

�; � ` e0 : NF (8t::�:�) if it exists and signal an error otherwise. If it exists, applying

tapp yields a derivation of �; � ` e0 [�] : f�=tg�. Following this derivation with a use of

equiv yields a normal derivation of �; � ` e0 [�] : NF (f�=tg�).

case trec: If e is typerec � of [t:�](ei; ea) then by induction, we can calculate normal

derivations of �; � ` ei : NF (�i) and �; � ` ea : NF (�a) if such derivations exist. Since

type equivalence is decidable, we can also determine if � ` NF (�i) � fInt=tg� and

�] ft1::
; t2::
g ` NF (�a) � fArrow(t1; t2)=tg�. If so, then we can apply the equiv

rule, followed by the trec rule to yield a derivation of �; � ` typerec � of [t:�](ei; ea) :

f�=tg�. Then, with another application of the equiv rule, we can build a normal deriva-

tion of �; � ` typerec � of [t:�](ei; ea) : NF (f�=tg�). 2

Corollary 4.1.31 (Type Checking Decidable) There is an algorithm to determine

whether there exists a � such that ` e : �.

Proof: The type assignment ; is trivially well-formed with respect to the kind as-

signment ;. Hence, by the previous theorem, we can calculate whether ;; ; ` e : � is

derivable or not. 2

4.2 �
ML
i Type Soundness

In this section I prove that the type system for �MLi is sound. My proof is a syntactic

one in the style of Wright and Felleisen [130]. The basic idea is to show that every well-

formed program e of type � is a value of type �, or else there exists a unique e0 (modulo

�-conversion), such that e steps to e0 and e0 has type �. Consequently, no well-formed

�MLi program ever becomes \stuck". The notion of stuck computations is captured by

the following de�nition.

De�nition 4.2.1 (Stuck Constructors and Expressions) A constructor is stuck if

it is of one of the following forms:

1. u� (u is not a �-constructor).

CHAPTER 4. TYPING PROPERTIES OF �MLI 64

2. Typerec u of (�int;�arrow) (u is not of the form Int or Arrow(u1; u2)).

An expression is stuck if it is of one of the following forms:

1. v1 v2 (v1 is not a �-expression).

2. v [�] (v is not a �-expression).

3. typerec U [�] of [t:�](ui; ua) (� is stuck).

4. typerec u of [t:�](ui; ua) (u is not of the form Int or Arrow(u1; u2)).

Lemma 4.2.2 (Unique Decomposition of Constructors) A closed constructor � is

either a constructor value u, or else � can be decomposed into a unique U and �0 such

that � = U [�0] where �0 is either an instruction or is stuck.

Proof: By induction on the structure of constructors. If � is Int, Arrow(u1; u2), or

�t::�: �0, then � is a value. Hence, there are only two cases to consider.

case: Suppose � is �1 �2. There are three sub-cases to consider. First, if �1 and �2 are

values u1 and u2, then the only decomposition of � is an empty context U = [] �lled with

u1 u2. If u1 is a �-constructor, then � is an instruction, else � is stuck.

Second, if �1 is u1, but �2 is not a value, then by induction, there is a unique U2 and

�02 such that �2 = U2[�
0
2] and �02 is either stuck or else �02 is an instruction. Hence, the

only decomposition of � is u1 U2[�
0
2].

Third, if �1 is not a value, then by induction, there exists a unique U1 and �01 such

that �1 = U1[�
0
1] and �

0
1 is either an instruction or stuck. Hence, the only decomposition

of e is E1[e
0
1] e2.

case: Suppose � is Typerec �1 of (�i;�a). If �1 is a value u, then the only decomposition

of � is an empty context U = [] �lled with �. If u is either Int or Arrow(u1; u2), the u is

an instruction, else u is stuck.

If �1 is not a value, then by induction, there is a unique U1 and �01 such that �1 =

U1[�
0
1] and �01 is either an instruction or stuck. Hence, the only decomposition of e is

Typerec U1[�
0
1] of (�i;�a). 2

Lemma 4.2.3 (Unique Decomposition of Expressions) A closed expression e is

either a value v, or else e can be decomposed into a unique E and e0 such that e = E[e0]

where e0 is either an instruction or is stuck.

Proof: By induction on the structure of expressions. The argument is similar to the

one for constructors. 2

CHAPTER 4. TYPING PROPERTIES OF �MLI 65

Lemma 4.2.4 (Determinacy) For any closed expression e, there is at most one value

v such that e + v.

Proof: By unique decomposition, if e is not a value, there is at most one E and I

such that e = E[e1] where e1 is an instruction. Since each instruction has at most one

rewriting rule, there is at most one e0 such that e 7�! e0. 2

The following lemma allows us to take advantage of some of the properties I proved

about constructor rewriting in the context of constructor evaluation.

Lemma 4.2.5 If � 7�! �0, then � �! �0.

Proof: By the fact that U contexts are a subset of C contexts (see Section 4.1.1),

and the three evaluation rules of constructors correspond precisely to �, t1, and t2,

respectively. 2

Corollary 4.2.6

1. If ` � :: � and � 7�! �0, then ` �0 :: �.

2. If ` � :: � and � 7�! �0, then ` � � �0 :: �.

3. If �] ft::�g ` � and � ` � :: �, then � ` f�=tg�.

4. If �] ft::�g ` � and � ` � � �0 :: �, then � ` f�=tg� � f�0=tg�.

Lemma 4.2.7 (Constructor Substitution) If �] ft::�g; � ` e : �, and � ` � :: �,

then �; f�=tg� ` f�=tge : f�=tg�.

Proof: By induction on the normal derivation of �] ft::�g; � ` e : NF (�). In each

case, we back up the derivation one step to the application of the non-equiv rule.

case var: We have �] ft::�g; � ` x : �(x). Thus, �; f�=tg� ` x : f�=tg(�(x)).

case int: We have �] ft::�g; � ` i : int. Thus, �; f�=tg� ` i : f�=tgint.

case fn: We have �]ft::�g; � ` �x:�1:e : �1 ! �2. By induction, �; f�=tg(�]fx:�1g) `

f�=tge : f�=tg�2. Thus, �; f�=tg�] fx:f�=tg�1g ` f�=tge : f�=tg�2. By the fn rule,

�; f�=tg� ` f�=tg(�x:�1:e) : f�=tg(�1 ! �2).

case tfn: We have �]ft::�g; � ` �t0::�0:e : 8t0::�0:�. By induction, �]ft0::�0g; f�=tg� `

f�=tge : f�=tg�, since t0 can always be chosen distinct from t. By the tfn rule,

�; f�=tg� ` f�=tg�t0::�0:e : f�=tg8t0::�:�.

case app: We have �] ft::�g; � ` e1 e2 : �. By induction, �; f�=tg� ` f�=tge1 :

f�=tg(�1 ! �) and �; f�=tg� ` f�=tge2 : f�=tg�1. By the app rule, �; f�=tg� `

f�=tg(e1 e2) : f�=tg�.

CHAPTER 4. TYPING PROPERTIES OF �MLI 66

case tapp: We have �] ft::�g; � ` e1 [�
0] : f�0=t0g�. By induction, �; f�=tg� `

f�=tge1 : f�=tg(8t0::�0:�), where t0 is chosen distinct from t via �-conversion. By the

tapp rule, �; f�=tg� ` f�=tg(e1 [�
0]) : f�0=t0g(f�=tg�).

case trec: We have

�] ft::�g; � ` typerec �0 of [t0:�](ei; ea) : f�
0=t0g�:

By induction,

�; f�=tg� ` ei : fInt=t
0g(f�=tg�)

and
�; f�=tg� ` ea : 8t1; t2::
:ft1=t

0g(f�=tg�)!

ft2=t
0g(f�=tg�)! fArrow(t1; t2)=t

0g(f�=tg�):

By the trec rule, since t0 and t can always be chosen to be distinct via �-conversion,

�; f�=tg� ` f�=tg(typerec �0 of [t0:�](ei; ea)) : f(f�=tg�
0)=t0g(f�=tg�):

Thus,

�; f�=tg� ` e : f�=tg(f�0=t0g�):

2

Lemma 4.2.8 (Expression Substitution) If �;�]fx:�1g ` e : �, and �;� ` e1 : �1,

then �;� ` fe1=xge : �.

Proof: By induction on the normal derivation of �; �]fx:�1g ` e : NF (�). We simply

replace all derivations of �; � ` x : �1 with a copy of the derivation of �; � ` e1 : �1. The

proof relies upon weakening the context �; � at these points to include the free variables

that are in scope. 2

Lemma 4.2.9 If ` E[e] : �, then there exists a �0 such that ` e : �0, and for all e0 such

that ` e0 : �0, ` E[e0] : �.

Proof: By induction on the normal derivation of ` E[e] : �, In each case, we back up

the derivation one step to the application of the non-equiv rule.

If E is empty, the result holds trivially with � = �0. Otherwise, there are three cases

to consider:

case app1: E[e] is of the form E1[e] e2. By the typing rules, the normal derivation ends

in a use of app. Hence, ` E1[e] : �1 ! � and ` e2 : �1. By induction, there exists a �0

such that ` e : �0 and for all ` e0 : �0, ` E1[e
0] : �1 ! �. Hence, by the app rule, there

are derivations of ` E1[e] e2 : � and ` E1[e
0] e2 : �.

CHAPTER 4. TYPING PROPERTIES OF �MLI 67

case app2: E[e] is of the form v1E2[e]. By the typing rules, the normal derivation ends

in a use of app. Hence, ` v1 : �1 ! � and ` E2[e] : �1. By induction, there exists a �0

such that ` e : �0 and for all ` e0 : �0, ` E2[e
0] : �1. Hence, by the app rule, there are

derivations of ` v E2[e] : � and ` v E2[e
0] : �.

case tapp: E[e] is of the form E1[e] [�]. By the typing rules, the normal derivation ends

in a use of tapp. Hence, ` E1[e] : 8t::�:�1, where � is f�=tg�1. By induction, there

exists a �0 such that ` e : �0 and for all ` e0 : �0, ` E1[e
0] : 8t::�:�1. Hence, by the tapp

rule, there are derivations of ` E1[e] [�] and ` E1[e
0] [�]. 2

Lemma 4.2.10 (Type Preservation) If ` e1 : � and e1 7�! e2, then ` e2 : �.

Proof: By unique decomposition, there is a unique E and I such that e1 = E[I].

Thus, E[I] 7�! E[e0] where e2 = E[e0]. By the previous lemma, there exists a �0 such

that ` I : �0, and it su�ces to show that ` e0 : �0. There are six basic cases to consider,

depending upon I. In each case, we use the normal derivation of ` I : �0, backing up to

the last use of a non-equiv rule.

case: I is (�x:�1:e
00) v and thus e0 is fv=xge00. The only way that ` I : �0 can be

derived is by the app rule. Thus, ` �x:�1:e
00 : �1 ! �0 and ` v : �1. Any normal

derivation of ` �x:�1:e
00 : �1 ! �0 must end with a use of abs followed by an equiv.

Hence, ;; fx:�1g ` e00 : NF (�0). Therefore, by the Expression Substitution Lemma,

` fv=xge00 : NF (�0), and since each type is equivalent to its normal form, ` e0 : �0.

case: I is (�t::�:e00)[U [J]] and e0 is (�t::�:e00)[U [�]], where U [J] 7�! U [�]. Any derivation

of ` I : �0 must end with the tapp rule. Hence, ` �t::�:e00 : 8t::�:�1, ` U [J] :: �,

and �0 = fU [J]=tg�1. By Kind Preservation (lemma 4.1.5), ` U [�] :: �. Thus, by

the tapp rule, ` (�t::�:e00)[U [�]] : fU [�]=tg�1. By equivalence of constructors under

reduction, ` U [J] � U [�]. Therefore, by equivalence of types under substitution of

equivalent constructors, ` fU [J]=tg�1 � fU [�]=tg�1. Thus, by the equiv typing rule,

` (�t::�:e00)[U [�]] : fU [J]=tg�1.

case: I is (�t::�:e00)[u] and e0 is fu=tge00. The last step in the normal derivation of ` I : �0

must be a use of tapp. Thus, ` �t::�:e00 : 8t::�:�1 and �0 = fu=tg�1. Therefore, by the

Constructor Substitution Lemma, ` fu=tge00 : fu=tgNF (�1). By equivalence of types

under substitution of equivalent constructors, ` fu=tgNF (�1) � fu=tg�1 = �. Thus, by

the equiv typing rule, ` fu=tge00 : �.

case: I is typerec U [J] of [t:�1](ei; ea) and e
0 is typerec U [�] of [t:�1](ei; ea). The last

step in the normal derivation of ` I : �0 must be a use of trec. Thus, ` U [J] ::
 and by

kind preservation, ` U [�] ::
. Therefore, by trec, ` typerec U [�] of [t:�1](ei; ea) : �

case: I is typerec Int of [t:�1](ei; ea) and e
0 is ei. The last step in the normal derivation

of ` I : �0 must be a use of trec. Thus, �0 is equivalent to fInt=tg�1. By the ei typing

hypothesis, ` ei : fInt=tg�1. Thus, ` e
0 : �.

CHAPTER 4. TYPING PROPERTIES OF �MLI 68

case: I is typerec Arrow(u1; u2) of [t:�1](ei; ea) and e0 is

ea[u1][u2](typerec u1 of [t:�1](ei; ea))(typerec u2 of [t:�1](ei; ea)):

The last step in the normal derivation of ` I : �0 must be a use of trec. Thus, �0 is

equivalent to fArrow(u1; u2)=tg�1. By the ea typing hypothesis,

` ea : 8t1; t2::
:ft1=tg�1 ! ft2=tg�1 ! fArrow(t1; t2)=tg�1:

Thus,

` ea[u1][u2] : fu1=tg�1 ! fu2=tg�1 ! fArrow(u1; u2)=tg�1:

Therefore, ` e0 : fArrow(u1; u2)=tg�1, and ` e
0 : �0. 2

Lemma 4.2.11 (Canonical Forms) If ` v : � then:

� If ` � � int, then v = i for some integer i.

� If ` � � �1 ! �2, then v is of the form �x:�1:e, for some x and e.

� If ` � � 8t::�:�0, then v is of the form �t::�:e, for some e.

Proof: If ` v : �, then there is a normal derivation of ` v : NF (�). Backing up this

derivation by one rule, it is easy to see by the de�nition of values that only one rule

applies. 2

Lemma 4.2.12 (Constructor Progress) If ` �1 :: �, then either �1 is a constructor

value u or else there exists a �2 such that �1 7�! �2.

Proof: If �1 is not a value, then there is a unique decomposition into U [�] for some

context U and closed constructor �. I argue that � must be an instruction. Since

` U [�] :: �, there exists a �0 such that ` � :: �0.

If � is of the form �1 �2, then �1 and �2 must be values u1 and u2 respectively. Since

` u1 u2 :: �
0, this must be derived using the app rule. Thus, there exists a �1 such that

` u1 :: �1 ! �0, and this must be derived via the fn rule. Therefore, u1 must have the

form �t::�1:�
0 and thus u1 u2 7�! fu2=tgu

0.

If � is of the form Typerec �0 of (�i;�a), then �0 must be a value u. Since ` � ::

�, a derivation of this fact must end in a use of trec. Hence, ` u ::
, and u is

either Int or Arrow(u1; u2). In the former case, � 7�! �i and in the latter case, � 7�!

�a[u1][u2](Typerec u1 of (�i;�a))(Typerec u2 of (�i;�a)). 2

CHAPTER 4. TYPING PROPERTIES OF �MLI 69

Lemma 4.2.13 (Expression Progress) If ` e1 : �, then either e1 is a value or else

there exists an e2 such that e1 7�! e2.

Proof: If e1 is not a value, then by Unique Decomposition, there exists an E and e

such that e1 = E[e] and e is either stuck or else e is an instruction. I argue that e must

be an instruction and thus there exists an e0 such that e 7�! e0 and thus E[e] 7�! e2
where e2 = E[e0]. Since ` E[e] : �, there exists a �0 such that ` e : �0.

case: If e is of the form e1 e2 then both e1 and e2 must be values, v1 and v2. Since

` v1 v2 : �
0, there is a normal derivation of ` v1 v2 : NF (�0) where the second to the last

step uses the app rule. Hence, there is a �1 such that ` v1 : �1 ! �0 and ` v2 : �2. A

normal derivation of ` v1 : �1 ! �0 must have a second to last step that uses the fn rule.

By Canonical Forms, v1 must be of the form �x:�1:e
00. Therefore, v1 v2 7�! fv2=xgv1.

case: If e is of the form e1 [�] then e1 must be a value v1. The second to the last

step of a normal derivation of ` v1 [�] : �
0 must use the tapp rule. Thus, there exists

some � such that ` � :: � and ` v1 : 8t::�:�1 where f�=tg�1 is equivalent to �0. Any

normal derivation of ` v1 : 8t::�:�1 must have a second to last step that uses the tfn

rule. By Canonical Forms, v1 must be of the form �t::�:e00. If � is a constructor value u,

then v1 [u] 7�! fu=tge
00. Otherwise, by constructor progress, there exists a �00 such that

� 7�! �00. Therefore, v1 [�] 7�! v1 [U [�
00]].

case: If e is of the form typerec � of [t:�1](ei; ea), then by constructor progress � is

either a constructor value u or else there exists a �0 such that � 7�! �0 and thus e 7�!

typerec �0 of [t:�1](ei; ea). If � is a constructor value u, then any normal derivation of

` e : �0 must end with the second to last step an application of trec. Hence, ` u ::
.

Therefore, u is either Int or Arrow(u1; u2) for some u1 and u2. In the former case, e 7�! ei
and in the latter case,

e 7�! ea[u1][u2](typerec u1 of [t:�1](ei; ea))(typerec u2 of [t:�1](ei; ea)):

2

Corollary 4.2.14 (Stuck Programs Untypeable) If ` e : �, then e is not stuck.

Proof: If ` e : �, then by progress, either e is a value or else e 7�! e0 for some e0. If

e 7�! e0, then by preservation, ` e0 : �0. 2

Corollary 4.2.15 (Soundness) If ` e : � then e cannot become stuck.

Proof: I argue by induction on n that if e 7�!n e0, then e0 is not stuck. For n = 0, the

result holds by the previous corollary. Suppose e 7�!n e0. By the induction hypothesis,

e0 is not stuck. Hence, e0 is either a value or else e0 7�! e00. By Preservation, ` e00 : �.

Thus, by the previous lemma, e00 is not stuck. 2

Chapter 5

Compiling with Dynamic Type

Dispatch

In this chapter, I show how to compile Mini-ML to a variant of �MLi , called �MLi -Rep.

The primary purpose of the translation is to give a simple, but compelling demonstration

of the power of dynamic type dispatch. A secondary purpose is to demonstrate the

methodology of type-directed compilation and present a proof of translation correctness.

I also address two real implementation issues with the translation: �rst, I show how to

eliminate structural, polymorphic equality by using a combination of primitive equality

operations and dynamic type dispatch. As a result, the target language does not need

specialized support for dispatching on values. This implies that �MLi -Rep does not need

tags on values to support polymorphic equality.

Second, I
atten 1-argument functions into multiple argument functions when pos-

sible. Recall that Mini-ML, like SML, provides only 1-argument functions. We can

simulate multiple arguments by passing a tuple to a function, but it is best to pass multi-

ple arguments directly in registers since access to registers is typically faster than access

to an allocated object. Therefore, if a source function takes a tuple as an argument, I

translate it so that the components of the tuple are passed directly as multiple, unallo-

cated arguments. I use dynamic type dispatch to determine whether to
atten a function

that takes an argument of unknown type.

In practice,
attening function arguments yields a substantial speedup for SML code

and signi�cantly reduces allocation. Much of the improvement claimed by Shao and

Appel for their implementation of Leroy-style representation analysis is due to argument

attening [110]. In particular, they reduced total execution time by 11% on average and

allocation by 30% on average. I found similar performance advantages with argument

attening in the context of the TIL compiler (see Chapter 8).

After demonstrating how multi-argument functions and polymorphic equality may

be implemented in �MLi , I sketch how other language constructs, notably C-style structs,

70

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 71

(kinds) � ::=
 j �1 ! �2

(constructors) � ::= t j Int j Float j Unit j Prod(�1; �2) j Arrow([�1; � � � ; �k]; �) j

�t::�: � j �1 �2 j Typerec � of (�i;�f ;�u;�p;�a)

(types) � ::= T (�) j int j
oat j unit j h�1 � �2i j [�1; � � � ; �k]! �2 j 8t::�:�

(expressions) e ::= x j i j f j hi j he1; e2i j �1 e j �2 e j �[x:�1; � � � ; xk:�k]: e j

e [e1; � � � ; ek] j �t::�:e j e[�] j

eqint(e1; e2) j eqfloat(e1; e2) j if0 e1 then e2 else e3 j

typerec � of [t:�](ei; ef ; eu; ep; ea)

Figure 5.1: Syntax of �MLi -Rep

Haskell-style type classes, and polymorphic communication primitives, can be coded

using dynamic type dispatch. The rest of this chapter proceeds as follows: In Section

5.1, I de�ne the target language, �MLi -Rep. In Section 5.2, I de�ne a type-directed

translation from Mini-ML to �MLi -Rep that eliminates equality and
attens function

arguments. In Section 5.3 I prove the correctness of this translation. Finally, In Section

5.4, I demonstrate how other constructs may be implemented through dynamic type

dispatch.

5.1 The Target Language: �MLi -Rep

The syntactic classes of the target language, �MLi -Rep, are given in Figure 5.1. �MLi -Rep

extends �MLi by adding
oats, products, and k-argument functions (for some �xed, but

arbitrary k.) The constructor level re
ects these changes by the addition of Float, Unit,

Prod(�1; �2), and Arrow([�1; � � � ; �k]; �) constructors, and by the addition of arms within

Typerec and typerec corresponding to these constructors. In addition, �MLi -Rep provides

primitive equality functions for integer and
oating point values (eqint and eqfloat)

as well as an if0 construct. However, �MLi -Rep does not provide a polymorphic equality

operator.

The values, evaluation contexts, and rewriting rules of �MLi -Rep are essentially the

same as for �MLi (see Section 3.3), with the addition of the product operations, the

equality operations, and if0, so I omit these details. The added constructor and term

formation rules for �MLi -Rep are given in Figures 5.2 and 5.3 respectively.

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 72

Technically, all �MLi -Rep functions have k arguments, but I use �[x1:�1; � � � ; xn:�n]: e

where n � k to represent the term:

�[x1:�1; � � � ; xn:�n; xn+1:unit; � � � ; xk:unit]: e

when xn+1; � � � ; xk do not occur free in e. Similarly, I write e [e1; � � � ; en] where n � k

to represent the term e [e1; � � � ; en; hin+1; � � � ; hik]. In the degenerate case where n = 1, I

drop the brackets entirely and simply write �x1:�1: e and e e1. I use similar abbreviations

for arrow constructors and types.

When convenient, I use ML-style pattern matching to de�ne a constructor involving

Typerec or a term involving typerec. For instance, instead of writing

F = �t::�:Typerec t of

(�i;�f ;�u;

�t1::
:�t2::
:�t
0
1::�:t

0
2::�:�p

�t1::
: � � � :�tk:�t::
:�t
0
1::�: � � � :�t

0
k::�; t::�:�a)

I write:
F[Int] = �i

F[Float] = �f
F[Unit] = �u

F[Prod(t1; t2)] = fF[t1]=t
0
1; F[t2]=t

0
2g�p

F[Arrow([t1; � � � ; tk]; t)] = fF[t1]=t
0
1; � � � ; F[tk]=t

0
k; F[t]=t

0g�a

As in SML, I use an underscore (\ ") to represent a wildcard match.

I also use the derived form Typecase for an application of Typerec where the inductive

cases are unused. Hence, the pattern matching constructor

F[Int] = �i
F[Float] = �f
F[Unit] = �u

F[Prod(t1; t2)] = fF[t1]=t
0
1; F[t2]=t

0
2g�p

F[Arrow([t1; � � � ; tk]; t)] = fF[t1]=t
0
1; � � � ; F[tk]=t

0
k; F[t]=t

0g�a

where t01 and t02 do not occur free in �p and t01; � � � ; t
0
k; t

0 do not occur free in �a may be

written using Typecase as follows:

Typecase � of

Int => �i
j Float => �f
j Unit => �u
j Prod(t1; t2) => �p
j Arrow([t1; � � � ; tk]; t2) => �a

Similarly, I use a derived typecase expression form for instances of typerec where the

inductive cases cases are unused.

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 73

(unit) � ` Unit ::
 (prod)
� ` �1 ::
 � ` �2 ::

� ` Prod(�1; �2) ::

(arrow)

� ` �1 ::
 � � � � ` �k ::

� ` � ::

� ` Arrow([�1; � � � ; �k]; �) ::

(trec)

� ` � ::
 � ` �i :: �

� ` �f :: � � ` �u :: �

� ` �p ::
!
! �! �! �

� ` �arrow ::
1 ! � � � !
k !
! �1 ! � � � ! �k ! �! �

� ` Typerec � of (�i;�f ;�u;�p;�a) :: �
(�1; � � � ; �k = �)

Figure 5.2: Added Constructor Formation Rules for �MLi -Rep

5.2 Compiling Mini-ML to �
ML
i -Rep

With the de�nitions of the source and target languages in place, I can de�ne a transla-

tion from Mini-ML to �MLi -Rep. In this section, I carefully develop such a translation,

concentrating �rst on a translation from Mini-ML types to �MLi -Rep constructors. Next,

I develop a term translation and show that it respects the type translation. Finally, I

prove that the translation is correct by establishing a suitable family of simulation rela-

tions and by showing that a well-formed Mini-ML expression is appropriately simulated

by its �MLi -Rep translation.

5.2.1 Translation of Types

I translate Mini-ML monotypes to �MLi -Rep constructors via the function j� j, which is

de�ned by induction on � as follows:

jtj = t

jintj = Int

j
oatj = Float

junitj = Unit

jh�1 � �2ij = hj�1j � j�2ji

j�1 ! �2j = Vararg j�1j j�2j

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 74

(prod)
�; � ` e1 : �1 �;� ` e2

�;� ` he1; e2i : h�1 � �2i

(proj)
�; � ` e : h�1 � �2i

�;� ` �i e : �i
(n = 1; 2)

(eqi)
�; � ` e1 : int �;� ` e2 : int

�;� ` eqint(e1; e2) : int
(eqf)

�; � ` e1 :
oat �;� ` e2 :
oat

�;� ` eqfloat(e1; e2) : int

(if0)
�; � ` e1 : int �;� ` e2 : � �;� ` e3 : �

�;� ` if0 e1 then e2 else e3 : �

(abs)
�; �] fx1:�1; � � � ; xk:�kg ` e : �

�;� ` �[x1:�1; � � � ; xk:�k]: e : [�1; � � � ; �k]! �

(app)

�; � ` e : [�1; � � � ; �k]! �

�;� ` e1 : �1 � � � �;� ` ek : �k

�;� ` e [e1; � � � ; ek] : �k

(trec)

� ` � ::
 �; � ` ei : fInt=tg�

�;� ` ef : fFloat=tg� �;� ` eu : fUnit=tg�

�;� ` ep : 8t1::
:8t2::
:[ft1=tg�]! [ft2=tg�]! fProd(t1; t2)=tg�

�;� ` ea : 8t1::
: � � � :8tk::
:8t
0::
:

[ft1=tg�]! � � � ! [ftk=tg�]! [ft0=tg�]!

fArrow([t1; � � � ; tk]; t
0)=tg�

�;� ` typerec � of [t:�](ei; ef ; eu; ep; ea) : f�=tg�

Figure 5.3: Added Term Formation Rules for �MLi -Rep

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 75

The translation maps each type to its corresponding constructor except for arrow types:

An arrow type whose domain is a tuple is
attened into an arrow constructor with

multiple arguments by the Vararg constructor function. Vararg is de�ned using Typecase

as follows:
Vararg = �t::
:�t0::
:

Typecase t of

Prod(t1; t2) => Arrow([t1; t2]; t
0)

j => Arrow(t; t0);

and has the property that, if � = h�1 � �2i, then

Vararg j� j j� 0j � Arrow([j�1j; j�2j]; j�
0j):

Alternatively, if � is not a product (and not a variable), then Vararg does not
atten the

domain. For instance,

Vararg Int j� 0j � Arrow(Int; j� 0j):

In e�ect, Vararg rei�es the type translation for arrow types as a function at the constructor

level.

The type translation is extended to map source type schemes to target types, source

type assignments to target type assignments, and source kind assignments to target kind

assignments as follows:

j8t1; � � � ; tn:� j = 8t1::
: � � � :8tn::
:T (j� j)

j�j = fx:j�(x)j j x 2 Dom(�)g

j�j = ft::
 j t 2 Dom(�)g

This type translation has the very important property that it commutes with substitu-

tion. This is in stark contrast to any of the coercion-based approaches to polymorphism,

where this property does not hold and a term-level coercion must be used to mitigate

the mismatch. In some sense, my type translation is \self-correcting" when I perform

substitution, because the computation of an arrow type, whose domain is unknown, is

delayed until the type is apparent.

Lemma 5.2.1 jf� 0=tg� j � fj� 0j=tgj� j.

Proof: By induction on � . 2

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 76

5.2.2 Translation of Terms

I specify the translation of Mini-ML expressions as a deductive system using judgments

of the form �; � ` e : �) e0 where �; � ` e : � is a Mini-ML typing judgment and e0 is

the �MLi -Rep translation of e. The axioms and inference rules that allow us to conclude

this judgment are given in Figure 5.4.

Much of the translation is straightforward: The translation of variables, integers, and

oating point values is the identity; the translation of if0 and � expressions is obtained

by simply translating the component expressions. In the following subsections, I present

the translation of equality, functions, application, type abstractions, and type application

in detail.

5.2.3 Translation of Equality

An equality operation is translated according to the following rule:

�; � ` e1 : �) e01 �;� ` e2 : �) e02

�;� ` eq(e1; e2) : int) peq[j� j][e01; e
0
2]

The translation uses an auxiliary function, peq, that can be coded in the target language

using typerec. Here, I use the pattern-matching syntax to de�ne such a function:

peq[Int] = �[x1:int; x2:int]: eqint(x1; x2)

peq[Float] = �[x1:
oat; x2:
oat]: eqfloat(x1; x2)

peq[Unit] = �[x1:unit; x2:unit]: 1

peq[Prod(ta; tb)] = � [x1:T (Prod(ta; tb)); x2:T (Prod(ta; tb))]:

if0 peq[ta][�1 x1; �1 x2] then 0 else peq[tb][�2 x1; �2 x2]

peq[t] = � [x1:T (t); x2:T (t)]: 0

Operationally, peq takes a constructor as an argument and selects the appropriate com-

parison function according to that constructor. For a product Prod(ta; tb), the appropriate

function is constructed by using the inductive arguments peq[ta] and peq[tb] to compare

the components of the product.

Expanding the pattern matching abbreviation to a typerec yields:

�t::
:typerec t of [t:�](ei; ef ; eu; ep; ea)

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 77

(var) �; �] fx:�g ` x : �) x (unit) �; � ` hi : unit) hi

(int) �; � ` i : int) i (
oat) �; � ` f :
oat) f

(eq)
�; � ` e1 : �) e01 �;� ` e2 : �) e02

�;� ` eq(e1; e2) : int) peq[j� j][e01; e
0
2]

(if0)
�; � ` e1 : int) e01 �;� ` e2 : �) e02 �;� ` e3 : �) e03

�;� ` if0 e1 then e2 else e3 : �) if0 e01 then e02 else e03

(pair)
�; � ` e1 : �1) e01 �;� ` e2 : �2) e0n

�;� ` he1; e2i : h�1 � �2i) he
0
1; e

0
2i

(proj)
�; � ` e : h�1 � �2i) e0

�;� ` �i e : �i) �i e
0 (i = 1; 2)

(abs)
�; �] fx:�1g ` e : �2) e0

�;� ` �x:�1: e : �1 ! �2) vararg[j�1j][j�2j](�x:T (j�1j): e
0)

(app)
�; � ` e1 : �1 ! �2) e01 �;� ` e2 : �1) e02

�;� ` e1 e2 : �2) (onearg[j�1j][j�2j] e
0
1) e

0
2

(def)
�; � ` v : �) v0 �;�] fx:�g ` e : �) e0

�;� ` def x:� = v in e : �) let x:j�j = v0 in e0

(tapp)

� ` �1 � � � � ` �n

�;� ` v : 8t1; � � � ; tn:�) v0

�;� ` v[�1; � � � ; �n] : f�1=t1; � � � ; �n=tng�) v0[j�1j] � � � [j�nj]

(tabs)
�] ft1; � � � ; tng; � ` e : �) e0

�;� ` �t1; � � � ; tn:e : 8t1; � � � ; tn:�) �t1::
: � � � :�tn::
:e
0

Figure 5.4: Translation from Mini-ML to �MLi -Rep

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 78

where (eliding some kind and type information)

� = [T (t); T (t)]! int

ei = �[x1:int; x2:int]: eqint(x1; x2)

ef = �[x1:
oat; x2:
oat]: eqfloat(x1; x2)

eu = �[x1:unit; x2:unit]: 1

ep = �ta:�tb:�peqa:�peqb:�[x1:T (Prod(ta; tb)); x2:T (Prod(ta; tb))]:

if0 peqa[�1 x1; �1 x2] then 0 else peqb[�2 x1; �2 x2]

ea = �t1: � � ��tk:�t
0:�peq1: � � ��peq2:�peq

0:

�[x1:T (Arrow([t1; � � � ; tk]; t
0)); x2:T (Arrow([t1; � � � ; tk]; t

0))]:0

From this de�nition, it is easy to verify that

` peq : 8t::
:[T (t); T (t)]! int:

The derivation proceeds as follows: By the tabs rule (see Figure 5.4), it su�ces to show

ft::
g; ; ` typerec t of [t:�](ei; ef ; eu; ep; ea) : �:

This follows if I can derive the preconditions of the trec rule for �MLi -Rep (see Figure 5.3).

For instance, I must show that

ft::
g; ; ` ei : fInt=tg�;

which follows from the derivation below:

ft::
g; fx1:int; x2:intg ` x1 : int ft::
g; fx1:int; x2:intg ` x2 : int

ft::
g; fx1:int; x2:intg ` eqint(x1; x2) : int

ft::
g; ; ` �[x1:int; x2:int]:eqint(x1; x2) : fInt=tg([T (t); T (t)]! int)

The other cases follow in a similar manner.

Intuitively, peq implements the �rst �ve rewriting rules of the dynamic semantics

of Mini-ML (see Figure 2.3), but it does so by dispatching on its constructor argument

instead of the shape of its value arguments.

5.2.4 Translation of Functions

There are three cases to consider when translating a �-expression:

1. the argument type is known to be a tuple;

2. the argument type is int,
oat, unit, or an arrow type;

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 79

3. the argument type is a type variable.

In the �rst case, the argument is a tuple. I need to produce a function that takes

the components of the tuple directly as arguments. I translate the body of the function

under the assumption that the argument was passed as a tuple. Then, I abstract the

arguments appropriately. However, before executing the body of the function, I allocate

a tuple and bind it to the original parameter, x.

�; �] fx:h�1 � �2ig ` e : �
0) e0

�;� ` �x:h�1 � �2i: e : h�1 � �2i ! � 0)

�[x1:T (j�1j); x2:T (j�2j)]: let x:T (jh�1 � �2ij) = hx1; x2i in e0

(x1; x2 62 Dom(�))

It is easy for an optimizer to replace projections �i x within the translated body of the

function with the appropriate argument, xi. When the tuple is used only to simulate

multiple arguments, the variable x will occur only within such projections. Hence, all

occurrences of x will be eliminated by the optimizer, and the binding of the tuple to x

will become \dead" and can be eliminated altogether.

I leave these optimizations out of the translation for two reasons: �rst, such opti-

mizations make reasoning about the underlying translation more di�cult. Second, the

optimizations (projection elimination and dead code elimination) are generally useful and

could be applied after other passes in the compiler. Hence, for the sake of modularity it

is best to leave these transformations as separate passes over the target code.

In the second case, the argument is a non-tuple and a non-variable. No
attening

need occur and the translation is straightforward:

�; �] fx:�g ` e : � 0) e0

� ` �x:�: e : � ! � 0) �x:T (j� j): e0

In the third case, the argument type of the function is a type variable (t). If this

variable is instantiated with a tuple type, then the function should be
attened; otherwise,

the function should not be
attened. I use a term-level typecase to decide which calling

convention to use. To avoid duplicating the function body for each case, I borrow an idea

from the coercion-based approaches: Pick one calling convention, compile the function

using this convention, and for each case, calculate a coercion from the expected to the

actual calling convention. For instance, I might compile the function as if there was one

argument of type t and then use typecase to calculate the proper coercion to multiple

arguments, depending on the instantiation of t. This leads to the following translation:

�; �] fx:tg ` e : �2) e0

�;� ` �x:t: e : t! �2) vararg[t][j�2j](�x:T (t): e
0)

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 80

where the term vararg is de�ned as follows:

vararg = �t::
:t0::
:

typecase t of

Prod(t1; t2) =>

�[x:[T (Prod(t1; t2))]! T (t0)]:�[x1:T (t1); x2:T (t2)]:x [hx1; x2i]

j => �[x:[T (t)]! T (t0)]:x

Expanding the pattern matching typecase to a formal typerec yields

typerec t of [t:�](e0[Int]; e0[Float]; e0[Unit]; ep; ea);

where (eliding some kind and type annotations)

� = [[T (t)]! T (t0)]! T (Vararg t t0)

e0 = �t00::
:�[[x:T (t00)]! T (t0)]:x

ea = �t1: � � � :�tk:�t
00:�[x1]: � � � :�[xk]:�[x

00]:�[x:[T (Arrow([t1; � � � ; tk]; t
00))]! T (t0)]:x

ep = �t1:�t2:�[x
0
1]:�[x

0
2]:�[x:[T (Prod(t1; t2))]! T (t0)]:�[x1:T (t1); x2:T (t2)]:x [hx1; x2i]:

Notice that the inductive arguments for ea (x1; � � � ; xk and x00) and ep (x
0
1 and x02) are

unused. It is straightforward to show that the expansion of vararg yields a well-formed

term with type 8t::
:8t0::
:�.

Lemma 5.2.2 ` vararg : 8t::
:8t0::
:(T (t)! T (t0))! (T (Vararg t t0))

As a direct result, the translation of functions using vararg preserves the type trans-

lation.

Lemma 5.2.3 If

j�j; j�] fx:�1gj ` e
0 : j�2j;

then

j�j; j�j ` vararg[j�1j][j�2j](�x:T (j�1j): e
0) : j�1 ! �2j:

In Chapter 8, I show that for most SML code (and I conjecture code in other similar

languages), it is rarely the case that we do not know enough information about the

argument type at compile time that we must use vararg to choose a calling convention

at link- or even run-time. Therefore, most functions will be translated using one of the

�rst two translation rules.

Furthermore, standard optimizations, such as compile-time �-reduction for construc-

tor abstractions, can eliminate variable types at compile time and hence eliminate the

need for vararg. Indeed, it is entirely reasonable to translate every function using vararg

and allow an optimizer \�x-up" the ine�ciencies. In this fashion, vararg rei�es the

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 81

monomorphic term translation of functions in the same way that Vararg rei�es the type

translation.

Since the source language does not have �rst-class polymorphism and the scope of

a polymorphic value is constrained, we could eliminate all polymorphism at compile

time and thus, all occurrences of vararg. However, I argued earlier that eliminating all

polymorphism at compile time is not reasonable since it duplicates code and does not scale

to languages with �rst-class polymorphism, modules, or separate compilation. I therefore

leave the decision to inline a polymorphic function to an optimizer. If polymorphic

functions tend to be small or the number of uses is relatively small, then a reasonable

strategy is to inline them within their de�ning compilation unit.

While I borrow the idea of a coercion to mitigate the mismatch in calling conventions,

there are still signi�cant di�erences between my approach and the approach suggested by

Leroy (see Section 1.2.3). First, Leroy's coercions can always be calculated at compile-

time without the need to examine types at run-time. In contrast, vararg may need to

examine constructors at run-time. However, I argued that Leroy's approach does not

scale to languages like �MLi that have �rst-class polymorphic values, while clearly, my

approach can. Second, Leroy's S and G coercions recursively pull apart any polymorphic

object to coerce its components and make a \deep" copy of a data structure. For instance,

if we have a vector of polymorphic functions, Leroy's coercions will traverse and create a

new vector when the unknown types are instantiated. In contrast, my \shallow" coercion

only a�ects a closure as it is constructed. In particular, I delay the construction of a

vector of polymorphic functions until the unknown types are apparent, at which point

the appropriate coercion is selected. Hence, no copy is ever generated and there is no

coherency issue when state is involved. Finally, while I use a coercion to mitigate a

mismatch with calling conventions, I do not use coercions to implement all language

features (see for instance Section 5.4). Thus, typerec,Typerec and the ideas of dynamic

type dispatch support coercions, but are a much more general mechanism.

5.2.5 Translation of Applications

As with functions, there are three cases to consider when translating an application: the

argument type is either a tuple, a non-tuple, or a variable.

If the term is e1 e2 and the argument e2 has a tuple type, I need to extract the

components of the tuple and pass them directly to the function. I translate e1 and e2,

binding the resulting expressions to x1 and x2 via let. Then, I project the components

of x2 and pass them to x1.

�; � ` e1 : h�1 � �2i ! �) e01 �;� ` e2 : h�1 � �2i) e02

�;� ` e1 e2 : �)

let x1:T (jh�1 � �2i ! � j) = e01 in let x2:T (jh�1 � �2ij) = e02 in x1 [�1 x2; �2 x2]

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 82

Again, an optimizer should eliminate unnecessary projections. In particular, if e01 is a

tuple hea; ebi that is constructed solely to pass multiple arguments, then optimization

will yield the simple expression e01 [ea; eb].

If the argument has a non-tuple, non-variable type, then the translation is straight-

forward:
�; � ` e1 : �

0 ! �) e01
�;� ` e2 : �

0) e02

�;� ` e1 e2 : �) e01 e
0
2

If the argument type is a type variable (t), then I must decide whether or not to

atten the argument into multiple arguments using typecase. The following onearg

function calculates a coercion for a function, deciding whether or not to pass the argument

attened, based on t:

onearg = �t::
:t0::
:

typecase t of

Prod(t1; t2) =>

�[f :[T (t1); T (t2)]! T (t0)]:�[x:T (Prod(t1; t2))]:f [�1 x; �2 x]

j => �[f :[T (t)]! T (t0)]:f

It is easy to verify that onearg translates functions from their Vararg calling convention

so that they take one argument.

Lemma 5.2.4 ` onearg : 8t::
:8t0::
:[T (Vararg t t0)]! [T (t)]! T (t0)

Hence, a simple translation of application is as follows:

�; � ` e1 : �1 ! �2) e01 �;� ` e2 : �1) e02

�;� ` e1 e2 : �2) (onearg[j�1j][j�2j] e
0
1) e

0
2

The following lemma shows that this translation of application obeys the type translation.

Lemma 5.2.5 If j�j; j�j ` e01 : j�1 ! �2j and j�j; j�j ` e02 : j�1j, then j�j; j�j `

(onearg[j�1j][j�2j] e
0
1) e

0
2 : j�2j.

Again, an optimizer can inline and eliminate the call to onearg when j�1j is known

and can then decide whether or not to
atten e02. Furthermore, the following lemma

shows that onearg is a left-inverse of vararg. This gives an optimizer the opportunity

to replace

onearg[�1][�2] (vararg[�1][�2] v)

with simply v even when the argument type of the function v is unknown. Henglein and

J�orgensen suggest a similar approach to eliminate excessive Leroy-style coercions [65].

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 83

Lemma 5.2.6 If ` v : T (�0)! T (�), ` v0 : T (�0), then

(onearg[�0][�](vararg[�0][�] v)) v0 + v00

i� v v0 + v00.

Proof: By induction on the normal form of �0. 2

5.2.6 Translation of Type Abstraction and Application

When translating a def, I translate the polymorphic value v yielding v0 and bind this

using let. I translate an instantiation v[�1; � � � ; �n] by applying the translation of v to the

constructors generated by j�1j; � � � ; j�nj. I translate polymorphic variables to themselves

and I translate type-abstractions to constructor abstractions.

This part of the term translation may appear innocuous at �rst, but it is signi�cant:

Traditional compilers ignore type applications and type abstractions since they do not

use dynamic type dispatch. Hence, they pass no arguments to polymorphic values when

they are instantiated.

In my translation, I turn a type-abstraction into a function that takes constructors

as arguments and pass the appropriate constructor arguments to the abstraction at run-

time. In some sense, building the constructor arguments and passing them at run-

time is the \overhead" of dynamic type dispatch because I must do this whether or not

the abstraction examines the constructors via typerec. Within a compilation unit, an

optimizer may determine that some constructor arguments are not used by a polymorphic

function and modify local call sites so that they do not build or pass these constructors

at run time. In at least some cases, however, type application will require building and

passing constructors at run time.

5.3 Correctness of the Translation

From the lemmas regarding peq, vararg, and onearg, and the commutivity of type

translation with substitution, it is easy to show by induction on the derivation of �; � `

e : �) e0 that the term translation preserves types modulo the type translation.

Lemma 5.3.1 If �;� ` e : �) e0, then j�j; j�j ` e0 : j�j.

To prove the correctness of the translation, I want to assert that a Mini-ML expression

terminates with a value i� its translation terminates with an \equivalent" value. Equiv-

alence of values is easy to de�ne at base types { syntactic equality will do nicely. But

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 84

what should be the de�nition of equivalence for arrow types? I need a notion of seman-

tic equivalence that captures the idea that functions are equivalent when they compute

equivalent answers, given equivalent arguments.

It seems as though I am stuck: To determine whether a Mini-ML expression and its

translation compute equivalently, I must de�ne what it means for Mini-ML and �MLi -Rep

values to be equivalent. But to de�ne what it means for two values to be equivalent,

in particular what it means for two functions to be equivalent, I need to de�ne what

it means for two expressions to compute equivalently. How can I formulate these two

relations that are de�ned in terms of one another?

The answer to this dilemma is to simultaneously de�ne these simulation relations,

but index the relations by types. I will start by de�ning value equivalence and expression

equivalence at closed, base types and then logically extend the notions of equivalence for

higher types in terms of the equivalence relations indexed by the component types. In

the end, I will generate a family of inductively de�ned relations which will allow us to

argue by induction on the type of an expression that its translation is correct.

I begin by de�ning an auxiliary relation between closed, Mini-ML monotypes and

closed �MLi -Rep constructors that respects constructor equivalence:

9�0:j� j = �0 and ` �0 � � ::

� � �

In Figure 5.5, I give suitable relations between closed Mini-ML and �MLi -Rep terms. The

relations are indexed by closed, Mini-ML type schemes. Two computations are related

if, whenever one evaluates to a value, then the other evaluates to a related value. Two

values are related at base type if they are syntactically equal. Two values are related at

a product type if projecting the corresponding components yields related computations

at the component type. Two values of arrow type are related if, whenever we have

values related at the domain type, applying the functions to the values yields related

computations. In the case of the �MLi -Rep function, we must �rst coerce the function

to take one argument via the onearg function. Finally, values are related at the type

scheme 8t1; � � � ; tn:� , if, whenever applied to closed, related monotypes and constructors,

they yield related computations at the type obtained by substituting the monotypes for

the type variables.

The relations e �� e0, v �� v0, and v �� v0 are well founded even though their

de�nitions refer to one another, because either the size of the type index decreases, or

else the number of quanti�ers in the type index decreases. This is ensured because

Mini-ML is predicative, (i.e., only monotypes can instantiate type variables).

The monotype/constructor relation is extended to substitutions � and �0, indexed by

a set of type variables, �, where � maps type variables to closed, Mini-ML monotypes

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 85

Expression Relations:
e + v i� e0 + v0 and v �� v

0

e �� e
0

Value Relations:

i �int i f �
oat f hi �unit hi

�1 v ��1 �1 v
0 �2 v ��2 �2 v

0

v �h�1��2i v
0

8v1; v
0
1:v1 �� 0 v01 implies v v1 �� (onearg[j�

0j][j� j] v0) (v01)

v �� 0!� v
0

8�1; �1; � � � ; �n; �n:�1 � �1; � � � ; �n � �n implies

v[�1; � � � ; �n] �f�1=t1;���;�n=tng� v
0[�1] � � � [�n]

v �8t1;���;tn:� v
0

Figure 5.5: Relating Mini-ML to �MLi -Rep

and �0 maps type variables to closed, �MLi -Rep constructors as follows:

Dom(�) = Dom(�0) = Dom(�)

8t 2 �:�(t) � �0(t)

� �� �0

The term relation is extended to pairs of substitutions, �;
 and �0;
0, indexed by �; �,

where � and �0 are as above and
 and
0 are substitutions from term variables to values.

I assume that all free type variables occurring in the range of � are in �.

� �� �0 � ` � Dom(
) = Dom(
0) = Dom(�)

8x 2 Dom(�):�(
(x)) ��(x)

0(x)

�;
 ��;� �
0;

With these de�nitions, I can begin to establish the correctness of the term translation.

The �rst step is to show that peq has the appropriate behavior.

Lemma 5.3.2 If v1 �� v
0
1 and v2 �� v

0
2, then eq(v1; v2) �int peq[j� j][v

0
1; v

0
2].

Proof: By induction on � . 2

Next, I argue that, under appropriate circumstances, abstracting related values with

respect to related expressions yields related functions. This follows almost directly from

the de�nitions of the relations and the fact that onearg and vararg are left-inverses.

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 86

Lemma 5.3.3 Suppose �;�] fx:� 0g ` e : �) e0, and for all �;
] fx=vg ��;�]fx:� 0g

�0;
0] fx=v0g, �(
] fx=vg(e)) ��(�) �
0(
0] fx=v0g(e0)). Then for all �;
 ��;� �0;
0,

�(
(�x:� 0:e)) ��(� 0!�) �
0(
0(vararg[j� 0j][j� j](�x:T (j� 0j):e0)))

Proof: Let �;
 ��;� �
0;
0 and let v ��(� 0) v

0. I must show:

(�(
(�x:� 0:e))) v ��(�) (onearg[�
0(j� 0j)][�0(j� j)](�0(
0(vararg[j� 0j][j� j](�x:T (j� 0j):e0))))) v0:

This holds i�:

(�x:�(� 0):�(
(e))) v ��(�) (onearg[�0(j� 0j)][�0(j� j)]

(vararg[�0(j� 0j)][�0(j� j)](�x:T (�0(j� 0j)):�0(
0(e0))))) v0:

Since onearg is a left-inverse of vararg (see lemma 5.2.6), this holds i�:

(�x:�(� 0):�(
(e))) v ��(�) (�x:T (�
0(j� 0j)):�0(
0(e0))) v0

which holds i�:

�(
] fx=vg(e)) ��(�) �
0(
0] fx=v0g(e0))

which follows by assumption. 2

Finally, I establish the correctness of the translation by showing that applying related

substitutions to an expression and its translation yields related computations.

Theorem 5.3.4 If �;� ` e : �) e0 and �;
 ��;� �
0;
0, then �(
(e)) ��(�) �

0(
0(e0)).

Proof: By induction on the derivation of �; � ` e : �) e0. Let �;
 ��;� �0;
0. The

int,
oat, and unit cases follow trivially. The var case follows from the assumptions

regarding �;
 and �0;
0. The equality case follows from lemma 5.3.2. The if0 case

follows since related values at int must be the same integer. The pair case follows from

the inductive assumptions and the proj case follows from the de�nition of the relations

at product types. The abs case follows from lemma 5.3.3 and the app case follows from

the de�nition of the relations at arrow types. The tapp case follows from the de�nition

of the relations at type schemes, and the fact that �(�) � �0(j�ij) by lemma 5.2.1. 2

Corollary 5.3.5 (Translation Correctness) If ` e : �) e0, then e �� e
0.

Proof: Suppose ;; ; ` e : �) e0. Taking � = �0 = ; and
 =
0 = ;, we have

�;
 �;;; �
0;
0. By the previous theorem, then �(
(e)) ��(�) �

0(
0(e0)), thus e �� e
0.

2

To summarize, I have de�ned a translation from Mini-ML to �MLi -Rep that eliminates

polymorphic equality and
attens function arguments. The type translation uses Typerec

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 87

to de�ne Vararg, which determines calling conventions for functions. The term translation

uses typerec to de�ne peq, vararg, and onearg. The vararg term converts a function

from taking one argument so that it has the proper calling convention according to Vararg.

Conversely, the onearg term converts a function from its Vararg calling convention to one

argument.

A real source language like SML provides n-tuples (for arbitrary n) instead of only

binary tuples. Extending the
attening translation so that it
attens argument tuples of

less than k components is straightforward { we simply use k + 1 cases in the de�nitions

of Vararg to determine the proper calling convention:

Vararg = �t::
:�t0::
:

Typecase t of

Prod(t1) => Arrow(t1; t
0)

j Prod(t1; t2) => Arrow([t1; t2]; t
0)

j Prod(t1; t2; t3) => Arrow([t1; t2; t3]; t
0)

� � �

j Prod(t1; � � � ; tk) => Arrow([t1; � � � ; tk]; t
0)

j => Arrow(t; t0)

Similarly, the de�nitions of vararg and onearg will require k + 1 cases.

5.4 Compiling Other Constructs

Dynamic type dispatch can be used to support a variety of language mechanisms in

the presence of unknown types. In this section, I show how the dynamic type dispatch

facilities of �MLi can be used to support
attened data structures (such as C-style structs

and arrays), Haskell-style type classes [53], and polymorphic communication primitives.

5.4.1 C-style Structs

Languages like C provide
attened data structures by default. Programmers explicitly

specify when they want to use pointers. This gives programmers control over both sharing

and data layout. For example, a C struct (i.e., record) with nested struct components

such as

struct f

struct fint x; double y;g a;

int b;

struct fdouble f; double g;g c;

g,

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 88

is typically represented in the same way as a
attened struct made out of the primitive

components (ignoring alignment constraints):

struct f

int x;

double y;

int b;

double f;

double g;

g.

In e�ect, a C compiler performs a type-directed translation that eliminates nested structs.

To perform this
attening, a C compiler relies upon there being no unknown types at

compile time. In this section, I show how to use dynamic type analysis to
atten structs

in the presence of unknown types.

I begin by extending �MLi -Rep to support records with an arbitrary number of prim-

itive components. To this end, I add list kinds (��) with introductory constructors Nil�
and Cons(�1; �2), and an eliminatory constructor Listrec � of (�n;�c). Similar to Typerec,

the Listrec constructor provides a means for folding a computation across a list of con-

structors. I then replace Unit and Prod(�1; �2) with a single constructor Struct(�), where

� is a constructor of kind
� (i.e., a list of monotypes). As before, we can generate the

monotypes by induction; but for Structs, we require a dual induction to generate lists of

monotypes. Therefore, I extend the Typerec constructor to provide a means for folding

a computation across the list of
 components of a Struct constructor. The resulting

grammars for kinds and constructors are as follows:

(kinds) � ::= � � � j ��

(constructors) � ::= � � � j Nil� j Cons(�1; �2) j Struct(�) j

Listrec � of (�n;�c) j

Typerec � of (�i;�f ;�s;�a)(�n;�c)

The formation rules for the constructors are straightforward except for Listrec and Type-

rec. A Listrec is well-formed with kind �, provided its argument is a list, and it maps

an empty list to a constructor of kind �1 and a non-empty list to a constructor of kind

�1, given the head and tail of the list as arguments, as well as the result of folding the

Listcase across the tail of the list.

� ` � :: �1
�

� ` �n :: � � ` �c :: �1 ! �1
� ! �! �

� ` Listrec � of (�n;�c) :: �

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 89

The formation rule for Typerec is as before, but we require extra constructors �n and

�c in order to fold the Typerec across the list components of a Struct. In e�ect, we

simultaneously de�ne a Typerec with a Listrec. Therefore, the formation rule for Typerec

is as follows1:
� ` � ::
 � ` �i :: � � ` �f :: �

� ` �a ::
!
! �! �! � � ` �s :: �
0 ! �

� ` �n � ` �c ::
!
� ! �! �0 ! �0

� ` Typerec � of (�i;�a;�s)(�n;�c) :: �

The �n and �c clauses determine how the Typerec computation is folded across the

components of a Struct, resulting in a constructor of kind �0. The �s clause simply

converts this �0 constructor to a constructor of kind �.

The equivalences that govern Listrec and Typerec are as before: We choose the appro-

priate clause according to the head of the normal form of the argument, and unroll the

computation on the component constructors. For a Struct, we unroll as follows:

Typerec Struct(�) of (�i;�f ;�a;�s)(�n;�c) �

�s (Listrec � of (�n; (�ta::
:�tb::

�:�t0b::�

0:

�c ta tb (Typerec ta of (�i;�f ;�a;�s)(�n;�c)) t
0
b)))

To the types, I add structf�1; � � � ; �ng for n � 0, as well as the following equivalence

relating Struct constructors and struct types:

� ` �1 ::
 � � � � ` �n ::

� ` T (Struct(Cons(�1; � � �Cons(�n;Nil
)))) � structfT (�1); � � � ; T (�n)g

To the terms, I �rst add listrec so that we may fold a term-level computation across

a list of constructors:

(lrec)

� ` � :: �� �;� ` en : fNil�=tg�

�;� ` ec : 8t1::�:8t2::�
�:ft2=tg� ! fCons(t1; t2)=tg�

�;� ` listrec � of [t::��:�](en; ec) : f�=tg�

As I did at the constructor-level, I extend typerec so that we simultaneously de�ne how

to fold a term-level computation across types and across lists of type:

(trec)

� ` � ::
 �; � ` ei : fInt=tg� �;� ` ef : fFloat=tg�

�;� ` ea : 8t1::
:8t2::
:ft1=tg� ! ft2=tg� ! fArrow(t1; t2)=tg�

�;� ` es : 8t1::

�:ft1=t

0g�0 ! fStruct(t1)=tg�

�;� ` typerec � of [t::
:�](ei; ef ; ea; es)[t
0::
�:�0](en; ec) : f�=tg�

1To simplify the presentation, I only consider single argument functions at the term level, and hence

Arrow takes one domain constructor instead of k. It is straightforward to extend Arrow to take and

return an arbitrary number of arguments and results by giving it kind
�
!
�

!
.

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 90

I also add two sorts of intro and elim forms for structs. The �rst sort provides both an

e�cient mechanism for constructing structs (structfe1; � � � ; eng) and an e�cient mech-

anism for projecting a component from a struct (#i e). The typing rules for these terms

are standard:

(struct)
�; � ` e1 : �1 � � � �;� ` en : �n

�;� ` structfe1; � � � ; eng : structf�1; � � � ; �ng
(n � 0)

(select)
�; � ` e : structf�1; � � � ; �ng

�;� ` #i e : �i
(1 � i � n)

However, these terms do not provide a means for constructing or deconstructing a struct

by induction on the list of component types. Consider, for example, extending the

polymorphic equality term of the previous section to compare arbitrary structs:

peq[Int] = �[x1:int; x2:int]: eqint(x1; x2)

peq[Float] = �[x1:
oat; x2:
oat]: eqfloat(x1; x2)

peq[Struct(t)] = �[x1:T (Struct(t)); x2:T (Struct(t))]: ???

I need to project the components of the structure and compare them at their respective

types. I cannot use select since both i and n must be determined at compile time, and

the length of the list of constructors t is unknown. I therefore add a second sort of intro

and elim forms that allows us to construct (cons(e1; e2)) and deconstruct structs (head e

and tail e) by induction on the list of components. These terms have the following

formation rules:

(cons)
�; � ` e1 : T (�1) �; � ` e2 : T (Struct(�2))

�; � ` cons(e1; e2) : T (Struct(Cons(�1; �2)))

(hd)
�; � ` e : T (Struct(Cons(�1; �2)))

�; � ` head e : T (�1)

(tl)
�; � ` e : T (Struct(Cons(�1; �2)))

�; � ` tail e : T (Struct(�2))

Operationally, cons takes values v and structfv1; � � � ; vng, and constructs the

new value structfv; v1; � � � ; vng. Correspondingly, head and tail take a value

structfv1; v2; � � � ; vng and return values v1 and structfv2; � � � ; vng, respectively.

It is possible to e�ectively de�ne the other struct primitives with cons, head, and

tail2. For example, structfe1; e2; � � � ; eng can be de�ned as

structfe1; e2; � � � ; eng = cons(e1; cons(e2; � � �cons(en; structfg) � � �));

2The encoding is not quite complete, because cons, head, and tail only operate on structs of

monotypes, whereas the other operations can operate on structs of polytypes.

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 91

whereas #i e can be de�ned as

#1 e = head e

#i e = #(i-1) (tail e)

However, these encodings generate many intermediate structs that are simply discarded.

Some implementation strategies may avoid creating most if not all of these structs. For

instance, in C, the tail operation can be implemented by returning the address of the

second component of a struct. Unfortunately, many memory management strategies

forbid pointers into the middle of objects. TIL implements tail by returning a logical

pointer or cursor instead of an actual pointer (see Chapter 8). The logical pointer is

implemented as a pair, which consists of a pointer to the beginning of the original struct

and an integer o�set. Adding the o�set to the pointer yields the logical pointer. This

approach is compatible with most memory management strategies and provides an O(1)

tail. Unfortunately, this still makes projecting the ith component an O(i) operation.

Therefore, I use the select operation (#i e) for O(1) access whenever possible, and only

use head and tail when iterating across a struct. Likewise, I use structfe1; � � � ; eng

whenever possible to avoid creating any intermediate structs, and only use cons when

necessary.

With these additions to the target language, I can now de�ne a translation that

maps Mini-ML tuples to
attened structs. Of course,
attening all tuples is not a good

strategy, but the source language can provide two sorts of tuple types | those that should

be
attened and those that should not | and hence leave the choice of representation

to the programmer (as in C). Alternatively, a compiler may perform some analysis to

determine a representation that is likely to be bene�cial. To demonstrate the key ideas,

I will simply assume that all products are to be
attened.

The type translation is as before (see Section 5.2.1), except for unit and products.

The translation of unit is simply an empty structure. In the translation of a tuple type,

I use two auxiliary constructor functions, Flat and Append:

junitj = Struct(Nil
)

jh�1 � �2ij = Struct(Append[Flat[j�1j]][Flat[j�2j]])

These two functions are de�ned using the pattern matching notation for Typecase and

Listrec as follows: Flat takes a monotype and, if it is a Struct, returns the list of com-

ponents of the Struct. Otherwise, Flat conses the given monotype onto nil to create a

singleton list:

Flat ::
!
�

Flat = �t::
:Typecase t of Struct(t) => t

j => Cons(t;Nil
))

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 92

Append takes two lists of monotypes and returns their concatenation:

Append ::
� !
� !
�

Append[Nil
][t] = t

Append[Cons(t1; t2)][t] = Cons(t1;Append[t2][t])

Therefore, the type translation of a product results in a struct where the structs resulting

from nested product components have been
attened and appended together.

The term translation is as before except for tuple creation and projection. Unit simply

maps to an empty struct. Binary tuples are translated according to the following rule:

�; � ` e1 : �1) e01 �;� ` e2 : �1) e02

�;� ` he1; e2i : h�1 � �2i) append[Flatj�1j][Flatj�2j](flat[�1] e1) (flat[�2] e2)

The translation uses auxiliary term functions flat and append, which are de�ned using

typecase and listrec as follows: The flat function takes a constructor t and a value

of type T (t). If the value is a structure, it simply returns that value. If the value is not

a structure, then flat places it in a structure.

flat : 8t::
:T (t)! T (Flat[t])

flat = �t::
:typecase t of

Struct(t)=>�x:T (Struct(t)):x

j =>�x:T (t):structfxg

The append function takes two structs and concatenates their contents, yielding a
at-

tened struct:

append : 8t1::

�:8t2::

�:T (Struct(t1))! T (Struct(t2))! T (Struct(Append[t1][t2]))

append[Nil
][t] = �x:structfg:�y:T (Struct(t)):y

append[Cons(t1; t2)][t] = �x:T (Struct(Cons(t1; t2))):�y:T (Struct(t)):

cons(head x; append[t2][t] (tail x) y)

We can easily verify from the types of flat and append that the term translation for

products respects the type translation.

The term translation of �rst and second tuple projections is given by the following

two inference rules:

�; � ` e : h�1 � �2i) e0

�;� ` �1 e : �1) unflat j�1j(proj1[Flatj�1j] [Flatj�2j] e
0)

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 93

�; � ` e : h�1 � �2i) e0

�;� ` �2 e : �1) unflat j�2j(proj2[Flatj�1j] [Flatj�2j] e
0)

These translations use the auxiliary term functions unflat, proj1 and proj2, which are

de�ned as follows: The unflat function is the inverse of flat. It has type

unflat : 8t::
:T (Flat[t])! T (t);

and is de�ned as:

unflat = �t::
:typecase t of

Struct(t) => �x:T (Struct(t)):x

j => �x:T (Struct(t)):head x

The proj1 function extracts the �rst components of a struct, corresponding to its �rst

argument list of constructors. Similar to append, proj1 is de�ned using the term-level

listrec:

proj1 : 8t1::

�:8t2::

�:T (Struct(Append[t1][t2]))! T (Struct(t1))

proj1[Nil
][t] = �x:T (Struct(t)):structfg

proj1[Cons(t1; t2)][t] = �x:T (Struct(Append[Cons(t1; t2)][t])):

cons(head x; proj1[t2][t](tail x))

The proj2 function extracts the latter components of a struct, corresponding to its

second argument list of constructors.

proj2 : 8t1::

�:8t2::

�:T (Struct(Append[t1][t2]))! T (Struct(t2))

proj2[Nil
][t] = �x:T (Struct(t)):x

proj2[Cons(t1; t2)][t] = �x:T (Struct(Append[Cons(t1; t2)][t])):

proj2[t2][t](tail x)

The crucial step in showing that the term translations of projections respect the type

translation, is showing that

Append[Cons(�1; �2)][�] � Cons(�1;Append[�2][�]);

which follows directly from the de�nition of Append. This allows us to argue that the

inductive cases are well-formed.

One advantage of explicitly
attening structs in the target language is that we can

export a type-safe form of casting to the source level. I call such a case a view. Let

us de�ne two Mini-ML types �1 and �2 to be similar, �1 � �2, i� they have the same

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 94

representations | that is, i� j�1j is de�nitionally equivalent to j�2j. If �1 � �2 in the

source language, then it is possible to safely view any source �1 expression as having

type �2 and vice versa. In particular, given the
attening translation above, any two

source tuple types that are equivalent modulo associativity of the tuple constructor,

have translations that are de�nitionally equivalent. Thus, if v : �1 � (�2 � �3), we can

safely view v as having type (�1 � �2)� �3.

Because I represent equivalent source types using equivalent target types, no coercion

needs to take place when viewing a value with a di�erent, but similar type. Hence, this

approach to views, unlike coercion-based approaches, is compatible with mutable types

(i.e., arrays and refs) in the sense that array[�1] � array[�2] whenever �1 � �2. This means

we may freely intermingle updates with views of complex data structures, capturing some

of the expressiveness of C casts without sacri�cing type-safety.

It is possible to de�ne more sophisticated translations that, for instance, insert

padding to ensure that each element of a struct lies on a multiple-of-eight (i.e., quad-

word) boundary, assuming the struct is allocated on an aligned boundary. For example,

we can modify Append to insert padding (a pointer to an empty struct) between non-Float

components:

Append0[Nil
][�] = �

Append0[Cons(Float; �2)][�] = Cons(Float;Append0[�2][�])

Append0[Cons(t1; t2)][�] = Cons(t1;Cons(Struct(Nil
);Append
0[�2][�]))

Alternatively, we might split the
oat and non-
oat components of a struct to avoid

padding altogether. This yields the following alternative type translation:

jh�1 � �2ij = Struct(Append[Split[Flat[j�1j][Split[Flat[j�2j]]])

where Split is de�ned as

Split[t] = Split0[t][Nil
][Nil
]

Split0[Nil
][tf][t] = Append[Rev[tf]][Rev[t]]

Split0[Cons(Float; t2)][tf][t] = Split0[t2][Cons(Float; tf)][t]

Split0[Cons(t1; t2)][tf][t] = Split0[t2][tf][Cons(t1; t)]

Rev[t] = Rev0[t][Nil
]

Rev0[Nil
][t] = t

Rev0[Cons(t1; t2)][t] = Rev0[t2][Cons(t1; t)]

This translation maps the Mini-ML type

int� (
oat� (int� (
oat� int)))

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 95

to the target type structf
oat;
oat; int; int; intg. Assuming that such values are allocated

on quad-word boundaries, the
oating-point components will always be aligned.

There is, of course, a limit to the transformations that can be coded, since de�nitional

equivalence of constructors must be decidable so that in turn, type-checking remains

decidable. Nevertheless, the range of transformations that �MLi -like languages can support

seems to cover a wide variety of the interesting cases.

5.4.2 Type Classes

The programming language Haskell [68] gives the programmer the ability to de�ne a

class of types with associated operations called methods. The canonical example is the

class of types that admit equality (also known as equality types in SML [90]). The class

of equality types includes primitive types, such as int and
oat, that have a primitive

notion of equality. Equality types also include data structures, such as tuples, when the

component types are equality types. However, equality types exclude arrow types since

determining whether two functions are extensionally equivalent is generally undecidable.

The peq operation of Section 5.2.3 e�ectively de�nes an equality method for equality

types. However, the de�nition includes a case for arrow types, because the type of peq

is:

8t::
:[T (t); T (t)]! int

and t ranges over all monotypes, not just the class of equality types. We would like to

restrict peq so that only equality types can be passed to it.

SML accomplishes such a restriction for its polymorphic equality operation by having

two classes of type variables: Normal type variables (e.g., �) may be instantiated with any

monotype, and equality type variables (e.g., "�) may only be instantiated with equality

types. The polymorphic equality operation is assigned the SML type:

8 "�:"�� "�! bool

Hence, only equality types may instantiate the polymorphic equality primitive. In par-

ticular, an SML type checker will reject the following expression:

fn (x:�! �,y:�! �) => x = y.

Haskell generalizes this sort of restriction by qualifying bound type variables with a

user-de�ned predicate or predicates (e.g., is eqty(�))3. Another approach, suggested

by Duggan [38], is to re�ne the kind of the bound type variable, much as Freeman and

Pfenning suggest re�nements of SML datatypes [44].

3See Jones [72, 71] for a general formulation of quali�ed types.

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 96

However, it is possible to encode type classes to a limited degree using Typerec. In this

section, I demonstrate the encoding by sketching how the equality types of SML can be

simulated in �MLi . The basic idea is to represent the type class as a constructor function

that maps equality types to themselves, and non-equality types to the distinguished

constructor Void. This Void constructor corresponds to the void type, which is empty.

That is, there are no closed values of type void.

As an example, the class of equality types is encoded by the following constructor

function Eq, which is de�ned in terms of an auxiliary function, Eq':

Eq ::
!

Eq[t] = (Eq0[t])[t]

Eq0 ::
! (
!
)

Eq0[Int] = �t::
:t

Eq0[Float] = �t::
:t

Eq0[Unit] = �t::
:t

Eq0[Prod(t1; t2)] = �t::
:Eq0[t2](Eq
0[t1] t)

Eq0[Arrow(t1; � � � ; tk; t
0)] = �t::
:Void

Eq0[Void] = �t::
:Void

The Eq' function returns the identity function on
 if its argument is an equality type.

Otherwise, Eq' returns the function that maps every monotype to Void. Therefore,

(Eq[�])[�] returns � whenever � is an equality type, and Void otherwise. In essence,

Eq' serves as an \if-then-else" construct that checks to see if � is an equality type, and

if so returns �.

Now we can write the polymorphic equality function as follows:

peq[Int] = �[x1:int; x2:int]: eqint(x1; x2)

peq[Float] = �[x1:
oat; x2:
oat]: eqfloat(x1; x2)

peq[Unit] = �[x1:unit; x2:unit]: 1

peq[Prod(ta; tb)] = � [x1:T (Prod(ta; tb)); x2:T (Prod(ta; tb))]:

if0 peq[ta][�1 x1; �1 x2] then 0 else

peq[tb][�2 x1; �2 x2]

peq[Arrow(t1; � � � ; tk; t)] = � [x1:void; x2:void]:0

and the term can be assigned the following type:

8t::
:[T (Eq[t]); T (Eq[t])]! int

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 97

Consequently, peq[�][e1; e2] is well-formed only if e1 and e2 have type T (�) and � is an

equality type. In particular, the expression

peq[Arrow([Int]; Int)][�x:int:x; �x:int]

is ill-typed because peq applied to an Arrow constructor has type [void; void] ! Int and

thus cannot be applied to the two functions of type int! int. The encoding is not entirely

satisfactory because peq can be applied to an Arrow constructor. However, the resulting

expression can only be applied to arguments of type void. Since there are no closed values

of type void, the resulting expression can never be invoked. Thus, an optimizer can safely

replace the Arrow-clause of peq with some polymorphic constant (e.g., error).

This encoding suggests the following type translation for SML: Wrap each occurrence

of an equality type variable with the Eq constructor function.

jtj = t

j"tj = Eq["t]

� � �

j8t1; � � � ; tn; "t1; � � � ; "tm:� j = 8t1; � � � ; tn; "t1; � � � ; "tm:T (j� j)

However, when instantiating a polymorphic function we must use an auxiliary translation

that does not wrap the equality variables with Eq:

jjtjj = t

jj"tjj = "t

� � �

This auxiliary translation is needed because the translation above does not commute with

substitution of equality types for equality type variables (i.e., an extra \Eq" gets wrapped

around each equality type variable). Hence, the translation of polymorphic instantiation

becomes:

(tapp)

� ` �1 � � � � ` �n � ` "�1 � � � � ` "�m
�;� ` v : 8t1; � � � ; tn; "t1; � � � ; "tm:�

�;� `
v[�1; � � � ; �n; "�1; � � � ; "�m] : f�1=t1; � � � ; �n=tn; "�1="t1; � � � ; "�m="tmg)

v : [jj�1jj; � � � ; jj�njj; jj"�1jj; � � � ; jj"�mjj]

It is easy to verify that the type translation commutes with type substitution,

fjj� jj="tgj� 0j � jf� 0="tg� 0j;

and thus the resulting term has the appropriate type.

In this fashion, Typerec can be used to encode equality types and other type classes,

whereas typerec can be used to implement the methods (i.e., peq) of the class. The

information encoded in the type class can be used by a compiler to eliminate unneeded

cases within methods.

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 98

5.4.3 Communication Primitives

Ohori and Kato give an extension of ML with primitives for communication in a dis-

tributed, heterogeneous environment [100]. Their extension has two essential features:

one is a mechanism for generating globally unique names (\handles" or \capabilities")

that are used as proxies for functions provided by servers. The other is a method for rep-

resenting arbitrary values in a form suitable for transmission through a network. Integers

are considered transmissible, as are pairs of transmissible values, but functions cannot be

transmitted (due to the heterogeneous environment) and are thus represented by proxy.

These proxies are associated with their functions by a name server that may be contacted

through a primitive addressing scheme. In this section I sketch how a variant of Ohori

and Kato's representation scheme can be implemented using dynamic type dispatch.

To accommodate Ohori and Kato's primitives, I extend �MLi -Rep with a primitive

constructor Proxy of kind
!
 and a corresponding type constructor proxy(�), linked

by the equation T (Proxy(�)) � proxy(T (�)). The Typerec and typerec primitives are

extended in the obvious way to account for constructors of the form Proxy(�).

Next, I add primitives proxy and rpc with the following types:

proxy : 8t1; t2::
:(T (Tran[t1])! T (Tran[t2]))! T (Tran[Arrow(t1; t2)])

rpc : 8t1; t2::
:(T (Tran[Arrow(t1; t2)]))! T (Tran[t1])! T (Tran[t2])

where Tran is a constructor coded using Typerec as follows:

Tran ::
!

Tran[Int] = Int

Tran[Float] = Float

Tran[Unit] = Unit

Tran[Prod(t1; t2)] = Prod(Tran[t1];Tran[t2])

Tran[Arrow(t1; t2)] = Proxy(Arrow(t1; t2))

Tran[Proxy(t)] = Proxy(t)

The constructor Tran[�] maps � to a constructor where each arrow is wrapped by a Proxy

constructor. Thus, values of type T (Tran[�]) do not contain functions and are therefore

transmissible.

The proxy primitive takes a function between transmissible values, generates a new,

globally unique proxy and tells the name server to associate that proxy with the function.

For example, the proxy might consist of the machine's name paired with the address of

the function. Conversely, the rpc operation takes a proxy of a function and a transmis-

sible argument value. Then, the operation contacts the name sever to �nd the function

corresponding to the proxy. When the function is found, the argument value is sent to

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 99

the appropriate machine. Then, the function associated with the proxy is applied to

the argument, and the result of the function is transmitted back as the result of the

operation. Thus, proxy maps a function on transmissible representations to a transmis-

sible representation of the function, whereas rpc maps a transmissible representation of

a function to a function on transmissible representations.

The goal of Ohori and Kato's compilation was to provide transparent communication.

That is, given any function f of type T (�)! T (�0), their goal was to be able to transmit

a representation of f to a remote site. We cannot obtain a proxy for f directly, because

proxies require functions that take and return transmissible representations. Therefore,

the key to transparent communication is a function marshal that coerces f to take and

return transmissible values. In general, we want marshal to take any value and convert

it to a transmissible representation.

I can write marshal using typerec. The de�nition requires a dual function,

unmarshal, to accommodate function arguments4.

marshal : 8t::
:T (t)! T (Tran[t])

marshal[Int] = �x:int:x

marshal[Float] = �x:
oat:x

marshal[Unit] = �x:unit:x

marshal[Prod(t1; t2)] = �x:T (Prod(t1; t2)):

hmarshal[t1](�1 x); marshal[t2](�2 x)i

marshal[Arrow(t1; t2)] = �f :T (Arrow(t1; t2)):

proxy[t1][t2]

(�x:T (Tran[t1]):marshal[t2](f (unmarshal[t1] x)))

marshal[Proxy(t)] = �x:T (Proxy(t)):x

unmarshal : 8t::
:T (Tran[t])! T (t)

unmarshal[Int] = �x:int:x

unmarshal[Float] = �x:
oat:x

unmarshal[Unit] = �x:unit:x

unmarshal[Prod(t1; t2)] = �x:T (Tran[Prod(t1; t2)]):

hunmarshal[t1](�1 x); unmarshal[t2](�2 x)i

unmarshal[Arrow(t1; t2)] = �f :T (Proxy(Arrow(Tran[t1];Tran[t2]))):�x:T (t1):

unmarshal[t2](rpc[t1][t2] f (marshal[t1] x))

unmarshal[Proxy(t)] = �x:T (Proxy(t)):x

4Technically, I must calculate marshal and unmarshalwith one typerec and return a tuple containing

the two functions.

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 100

At arrow types, marshal converts the given function to one that takes and returns trans-

missible types, and then allocates a new proxy for the resulting function. Conversely,

unmarshal takes a proxy and a marshaled argument, performs an rpc on the proxy, and

then unmarshals the result.

With marshal and unmarshal, I can dynamically convert a value to and from its

transmissible representation. In e�ect, these terms reify the stub compilers of traditional

RPC systems (e.g., the Mach Interface Generator for Mach RPC [70, 123]). Similarly,

we can code general-purpose print and read routines within �MLi , in order to achieve

the easy input/output of languages like Lisp and Scheme.

5.5 Related Work

Peyton Jones and Launchbury suggested an approach to unboxed integers and reals

in the context of a lazy language [75]. However, they restricted unboxed types from

instantiating type variables. A similar idea was recently proposed by Ohori [101] to

compile polymorphic languages such as SML.

Leroy suggested the coercion based approach to allow unrestricted instantiation of

type variables [81], and later, Poulsen extended his work to accommodate unboxed

datatypes that do not \escape" [102]. Henglein and J�rgensen examined techniques for

eliminating coercions at compile-time. Shao and Appel [110, 108] took the ideas of Leroy

and extended them to the full Standard ML language. Thiemann extended the work

of Leroy to keep some values unboxed even within polymorphic functions [118]. None

of these approaches supports unboxed mutable data, or generally unboxed datatypes.

Furthermore, they do not address type classes, marshaling, or garbage collection.

Of a broadly similar nature is the work on \soft" type systems [64, 7, 29, 132].

Here, ML-style type inference or set constraints are used to eliminate type-tag checks in

dynamically typed languages such as Scheme.

Morrison, et al. [97] described an implementation of Napier that passed types at

run time to determine the behavior of polymorphic operations. However, the actual

transformations performed were not described and there was little or no analysis of the

typing properties or performance of the resulting code. The work of Ohori on compiling

record operations [99] is similarly based on a type-passing interpretation and provided

much of the inspiration of this work. Type passing was also used by Aditya and Caro in an

implementation of Id, so that instantiations of polymorphic types could be reconstructed

for debugging purposes [5].

Jones [72, 71] has proposed a general framework for passing data derived from types

to \quali�ed" polymorphic operations, called evidence passing. He shows how evidence

passing can be used to implement Haskell-style type classes, generalizing the earlier work

of Wadler and Blott [122]. He also shows how Ohori-style record calculi can be imple-

CHAPTER 5. COMPILING WITH DYNAMIC TYPE DISPATCH 101

mented with evidence passing. Jones's approach subsumes type passing in that functions

or types or any evidence derived from quali�ed types could, in principle, be passed to

polymorphic operations. However, quali�ed types represent predicates on types, whereas

the type system of �MLi supports computations that transform types. For example, it is

not possible to express the transmissible representation or a
attened representation of

a type in Jones's framework.

Recently, Duggan and Ophel [38] and Thatte [116] have independently suggested

semantics for type classes that are similar in spirit to my proposal. In one sense, these

proposals do a better job of enforcing type classes, since they restrict the kinds of type

variables. However, like Jones's quali�ed types, neither of these approaches can express

transformations on types.

Dubois, Rouaix, and Weis formulated an approach to polymorphism dubbed \ex-

tensional polymorphism" [37]5. The goal was to provide a framework to type check ad

hoc operators like polymorphic equality. As with �MLi , their formulation requires that

some types be passed at runtime and be examined using what amounts to a structural

induction elimination form. Their approach is fairly general since it is not restricted to

primitive recursion over monotypes. However, type checking for the language is in gen-

eral undecidable and type errors can occur at run time. Furthermore, like the approaches

to type classes, there is no facility for transforming types.

Marshalling in languages with abstract or polymorphic types has been the subject

of much research [85, 86, 84, 66, 27, 4, 100, 77]. The solution I propose does not easily

extend to user-de�ned abstract types (as with Herlihy and Liskov [66]). However, none

of these previous approaches are able to express the relationship between a value's type

and its transmissible representation, whereas I am able to express this relationship as a

constructor function (i.e., Tran).

5Originally, Harper and I termed the type analysis of �ML
i

\intensional polymorphism".

Chapter 6

Typed Closure Conversion

In the previous chapters, I argued that types and dynamic type dispatch are important

for compiling programming languages like Mini-ML. I showed that types can be used to

direct compilation in choosing primitive operations, data structure layout, and calling

conventions, and that types can direct a proof that a compiler is correct.

If we are to use types at run time for dynamic type dispatch, we must propagate

type information all the way through the lowest levels of a compiler. This is one reason

why type-preserving transformations, such as the translation from Mini-ML to �MLi -Rep

of Chapter 5, are so important.

In this chapter, I present a particularly important stage of compilation for functional

programming languages known as closure conversion. To my knowledge, no one (besides

Yasuhiko Minamide, Robert Harper and myself [92, 91]) has presented a type-preserving

closure conversion phase, especially for type-passing polymorphic languages. Therefore,

it is important to show that such a translation exists if I am to claim that my type-based

implementation approach is viable. In this chapter, I show how to closure convert �MLi -

Rep using abstract closures. Minamide, Harper, and Morrisett provide further details on

environment representations and how to represent closures [92, 91].

I begin by giving an overview of closure conversion and why it is an important part

of functional language implementation. I then de�ne a target language called �MLi -Close,

which is a variant of �MLi -Rep that provides explicit facilities for constructing closures and

their environments. Next, I give a type-directed and type-preserving closure transform

from �MLi -Rep to �MLi -Close and prove that it is correct using the same methodology I

used to compile Mini-ML to �MLi -Rep.

102

CHAPTER 6. TYPED CLOSURE CONVERSION 103

6.1 An Overview of Closure Conversion

Standard operational models of programming languages based on the �-calculus, such

as the contextual semantics of Mini-ML and �MLi -Rep, compute by substituting terms

for variables in other terms. Substitution is expensive because it requires traversing and

copying a term in order to �nd and replace all occurrences of the given variable. A well-

known technique for mitigating these costs is to delay substitution until the binding of

the variable is required during evaluation [80, 2, 1]. This is accomplished by pairing an

open term with an environment that provides values for the free variables in the term.

The open term may be thought of as immutable code that acts on the environment.

Since the code is immutable, it can be generated once and shared among all instances of

a function.

Closure conversion [105, 111, 33, 78, 76, 9, 124, 54] is a program transformation that

achieves such a separation between code and data. Functions with free variables are re-

placed by code abstracting an extra environment parameter. Free variables in the body

of the function are replaced by references to the environment. The abstracted code is

\partially applied" to an explicitly constructed environment providing the bindings for

these variables. This \partial application" of the code to its environment is, in fact, sus-

pended until the function is actually applied to its argument; the suspended application

is called a \closure", a data structure containing pure code and a representation of its

environment.

The main ideas of closure conversion are illustrated by considering the following

monomorphic ML program:

let val x = 1

val y = 2

val z = 3

val f = �w. x + y + w

in

f 100

end

The function f contains free variables x and y, but not z. We may eliminate the references

to these variables from the body of f by abstracting an environment env, and by replacing

x and y by references to the environment. In compensation, a suitable environment

containing the bindings for x and y must be passed to f before it is applied. This leads

to the following translation:

CHAPTER 6. TYPED CLOSURE CONVERSION 104

let val x = 1

val y = 2

val z = 3

val f = (�env. �w. (�1 env) + (�2 env) + w) hx,yi

in f 100

end

References to x and y in the body of f are replaced by projections (�eld selections) �1
and �2 that access the corresponding component of the environment. Since the code for f

is closed, it may be hoisted out of the enclosing de�nition and de�ned at the top-level. I

ignore this \hoisting" phase and instead concentrate on the process of closure conversion.

In the preceding example, the environment contains bindings only for x and y, and is

thus as small as possible. Since the body of f could contain an occurrence of z, it is also

sensible to include z in the environment, resulting in the following code:

let val x = 1

val y = 2

val z = 3

val f = (�env. �w. (�1 env) + (�2 env) + w) hx,y,zi

in

f 100

end

In the above example I chose a \
at" (FAM-like [26]) representation of the envi-

ronment as a record with one �eld for each variable. Alternatively, I could choose a

\linked" (CAM-like [33]) representation where, for example, each binding is a separate

\frame" attached to the front of the remaining bindings. This idea leads to the following

translation:

let val x = 1

val y = 2

val z = 3

val f = (�env. �w. (�1(�2(�2 env))) + (�1(�2 env)) + w)

hz,hy,hx,hiii

in

f 100

end

The linked representation facilitates sharing of environments, but at the expense of intro-

ducing link traversals proportional to the nesting depth of the variable in the environment.

The linked representation can also support constant-time closure creation, but this re-

quires reusing the current environment and can result in bindings in the environment for

CHAPTER 6. TYPED CLOSURE CONVERSION 105

variables that do not occur free in the function (such as z above), leading to space leaks

[109].

Closure conversion for a language like �MLi where constructors are passed at run time

is complicated by the fact that we must account for free type variables as well as free value

variables within code. Furthermore, both value abstractions (�-terms) and constructor

abstractions (�-terms) induce the creation of closures.

As an example, consider the expression:

�x:t1. (x:t1, y:t2, z:int)

of type t1 ! (t1 � t2 � int) where t1 and t2 are free type variables and y and z are free

value variables of type t2 and int respectively. After closure conversion, this expression

is translated to the partial application

let val code =

�tenv ::
�
.

�venv : T(�1 tenv)�int.

�x : T(�1 tenv).(x, �1 venv, �2 venv)

in

code (t1,t2) hy,zi

end

The code abstracts type environment (tenv) and value environment (venv) arguments.

The actual type environment, (t1,t2), is a constructor tuple with kind
 �
. The

actual value environment, hy,zi, is a tuple with type T(t2)�int. However, to keep the

code closed so that it may be hoisted and shared, all references to free type variables in

the type of venv must come from tenv. Thus, we give venv the type T(�1 tenv)�int.

Similarly, the code's argument x is given the type T(�1 tenv). Consequently, the code

part of the closure is a closed expression of closed type �, where

� = 8tenv::
 �
.

T(�1 tenv)�int!T(�1 tenv)!(T(�1 tenv)�T(�2 tenv)�int)

It is easy to check that the entire expression has type t1 ! (t1 � t2 � int), and thus the

type of the original function is preserved.

6.2 The Target Language: �MLi -Close

The target language of the closure conversion translation is called �MLi -Close. The syntax

of this language is given in Figure 6.1. The constructors of the language are similar to

those of �MLi -Rep, except that I have added unit, products, and projections for building

CHAPTER 6. TYPED CLOSURE CONVERSION 106

constructor environments. To the types, I have added a code type, code(t::�; �1; �2),

corresponding to both value-abstraction code (vcode) and type-abstraction code (tcode),

where t is the abstracted type environment and �1 is the abstracted value environment.

If �2 is an arrow-type, then the code type describes code for a value abstraction, and if

�2 is a 8-type, then the code type describes code for a type abstraction.

The best way to understand these new constructs is to relate them informally to

standard �MLi -Rep constructs as follows:

code(t::�; �; �0) � 8t::�:� ! �0

vcode[t::�; x:�; x1:�1; � � � ; xk:�k]:e � �t::�:�x:�:�[x1:�1; � � � ; xk:�k]:e

tcode[t::�; x:�; t0::�0]:e � �t::�:�x:�:�t0::�0:e

hhe1; �; e2ii � (e1 [�]) e2

Code terms abstract a type environment and a value environment. In the case of value

code, I also abstract a set of k value arguments; for type code, I abstract an additional

type argument. I have added a special closure form to terms, hhe1; �; e2ii, where e1 is the

code of the closure, � is the type environment, and e2 is the value environment. Closure

terms represent the delayed partial application of code to its environments.

Technically, I need to provide code and closure forms at the constructor level as

well as the term level. However, doing so requires rede�ning an appropriate notion of

constructor equivalence and reduction in the presence of constructor code and closures.

This in turn requires reproving properties, such as strong-normalization and con
uence

for reduction of constructors. To avoid this complexity and to simplify the presentation,

I will use standard �-abstractions and partial applications to represent code and closures

at the constructor level.

The constructor formation and equivalence rules are essentially the same as in �ML-

REP (See Figure 5.2) except for the addition of rules pertaining to constructor-level

products. I add formation rules for products as follows:

� ` () :: 1
� ` �1 :: �1 � ` �2 :: �2

� ` h�1; �2i :: �1 � �2

� ` � :: �1 � �2

� ` �i � :: �i

I add both � and �-like rules governing equivalences of products as follows:

� ` � :: 1

� ` � � ()

� ` �1 :: �1 � ` �2 :: �2

� ` �i h�1; �2i � �i :: �i

� ` � :: �1 � �2

� ` h�1 �; �2 �i � � :: �1 � �2

CHAPTER 6. TYPED CLOSURE CONVERSION 107

(kinds) � ::=
 j 1 j �1 � �2 j �1 ! �2

(constructors) � ::= t j Int j Float j Unit j Prod(�1; �2) j Arrow([�1; � � � ; �k]; �) j

() j (�1; �n) j �1 � j �2 � j �t::�: � j �1 �2 j

Typerec � of (�i;�f ;�u;�p;�a)

(types) � ::= T (�) j int j
oat j unit j h�1 � �2i j [�1; � � � ; �k]! � j

8t::�:� j code(t::�; �1; �2)

(expressions) e ::= x j i j f j hi j he1; e2i j �1 e j �2 e j

vcode[t::�; x:�; x1:�1; � � � ; xk:�k]:e j tcode[t1::�; x:�; t2::�2]:e j

hhe1; �; e2ii j e [e1; � � � ; en] j e[�] j

eqint(e1; e2) j eqfloat(e1; e2) j if0 e1 then e2 else e3 j

typerec � of [t:�](ei; ef ; eu; ep; ea)

Figure 6.1: Syntax of �MLi -Close

I also add appropriate congruences for both product and projection formation (not shown

here).

The type formation and equivalence rules are the same as in �MLi -Rep, with the

addition of rules governing code types. The code type formation rule is similar to the

one governing 8:
�] ft::�g ` �1 �] ft::�g ` �2

� ` code(t::�; �1; �2)

The interesting term formation rules pertain to code and closures and are as follows:

�] ft::�g ` �

�] ft::�g ` �1 � � � �] ft::�g ` �k

�] ft::�g; �] fx:�; x1:�1; � � � ; xk:�kg ` e : �
0

�;� ` vcode[t::�; x:�; x1:�1; � � � ; xk:�k]:e : code(t::�; �; [�1; � � � ; �k]! �0)

�] ft::�g ` � �] ft::�; t0::�0g ` �0

�] ft::�; t0::�0g; �] fx:�g ` e : �0

�;� ` tcode[t::�; x:�; t0::�0]:e : code(t::�; �; 8t0::�0:�0)

�; � ` e1 : code(t::�; �; �
0) � ` � :: � �;� ` e2 :: f�=tg�

�;� ` hhe1; �; e2ii :: f�=tg�
0

CHAPTER 6. TYPED CLOSURE CONVERSION 108

The values, contexts, instructions, and rewriting rules for constructors are standard,

except for the addition of products (which is straightforward). If, at the constructor level,

I introduced code and closures instead of �-abstractions, then we would consider these

constructs to be values (assuming the components of the closures are values). Application

of a closure to a constructor value would proceed by substituting both the environment

of the closure and the argument for the abstracted constructor variables in the code.

These issues are demonstrated at the term level.

The values, contexts, and instructions for terms are standard except for the following

changes: �rst, I consider both vcode and tcode terms to be values, as well as closures

containing value components:

(values) v ::= � � � j vcode[t::�; x:�; x1:�1; � � � ; xk:�k]:e j

tcode[t::�; x:�; t0::�0]: j hhv; u; v0ii

I extend evaluation contexts so that closure components are evaluated in a left-to-right

fashion as follows:

(contexts) E ::= � � � j hhE; �; eii j hhv; u; Eii

In the instructions, I replace application of abstractions to values with applications of

closures to values. I also add an instruction to evaluate the constructor component of a

closure. This yields instructions of the form

(instructions) I ::= � � � j hhv; U [J]; eii j hhv0; u; vii [v1; � � � ; vk] j

hhv0; u; vii[u0]

with the restriction that the �rst component of a closure must be an appropriate code

term, according to the application (see below).

Finally, the rewriting rules for both value and constructor application are as follows:

E[hhvcode[t::�; x:�; x1:�1; � � � ; xk:�k]:e; u; vii [v1; � � � ; vk]] 7�!

E[fu=t; v=x; v1=x1; � � � ; vk=xkge]

E[hhtcode[t::�; x:�; t0::�0]:e; u; vii [u0]] 7�! E[fu=t; v=x; u0=t0ge]

In each case, we open the closure and extract the code, type environment, and value envi-

ronment. We then substitute the environments and the argument(s) for the appropriate

variables in the code.

It is straightforward to show that the static semantics of �MLi -Close, as with �MLi

and �MLi -Rep, is sound with respect to the operational semantics and that type-checking

�MLi -Close terms is decidable.

CHAPTER 6. TYPED CLOSURE CONVERSION 109

6.3 The Closure Conversion Translation

The closure conversion translation is broken into a constructor translation, a type trans-

lation, and a term translation. I use the source kind and type judgments to de�ne these

translations, but I augment the judgments with additional structure to determine certain

details in the translation.

Throughout the translation, I use n-tuples at both the constructor and term levels

as abbreviations for right-associated binary products, terminated with a unit. For in-

stance, I use (�1 � �2 � � � � � �n) to abbreviate the kind �1 � (�2 � (� � � � (�n � 1) � � �))

and (�1; �2; � � � ; �n) to abbreviate the constructor (�1; (�2; (� � � (�n; ()) � � �))). Corre-

spondingly, I use #1(�) as an abbreviation for �1 � and #i(�) as an abbreviation for

#(i� 1)(�2 �) when i > 1.

6.3.1 The Constructor and Type Translations

I begin the translation by considering closure conversion of �MLi -Rep constructors. Con-

structor translation judgments are of the form

�env; �arg ` � :: �) �0;

where �env]�arg ` � :: � is derivable from the constructor formation rules of �MLi -Rep,

and �0 is a �MLi -Close constructor. The axioms and inference rules that allow us to derive

this judgment are given in Figure 6.2.

In the constructor translation judgment, I split the kind assignment into two pieces:

�env and �arg. The �arg component contains a kind assignment for the type variable

bound by the nearest enclosing �-abstraction (if any). The �env component contains

a kind assignment for the other type variables in scope. The translation maps a type

variable found in �arg to itself, but maps type variables in �env to a projection from

a type environment data structure. This data structure is assumed to be bound to the

distinguished target variable tenv. Hence, I assume that tenv does not occur in the domain

of �arg. The projections assume that the order of bindings in the kind assignment does

not change, so I consider �env to be an ordered sequence, binding variables to kinds.

The rest of the translation is straightforward with the exception of �-abstractions,

which we must closure-convert. In this case, I generate a piece of code of the form

�tenv::�env: �t::�1: �
0, which abstracts both a type environment (tenv) and an argument

(t). I also generate an environment, �env (discussed below). The code is obtained by

choosing a new kind assignment, �0
env, to replace �env, and by replacing �arg with ft::�1g

in the translation of the body of the abstraction. Choosing the new kind assignment

�0
env corresponds to deciding which variables will be preserved in the environment of the

closure. Therefore, �0
env must be a subset of the bindings contained in �env]�arg, and

�0
env must contain bindings for all of the free type variables in the abstraction.

CHAPTER 6. TYPED CLOSURE CONVERSION 110

(var-arg) �env; ft::�g ` t :: �) t (unit) �env;�arg ` Unit ::
) Unit

(var-env) ft1::�1; � � � ; tn::�ng;�arg ` ti :: �i) #i(tenv)

(int) �env;�arg ` Int ::
) Int (
oat) �env;�arg ` Float ::
) Float

(prod)
�env;�arg ` �1 ::
) �01 �env;�arg ` �2 ::
) �02

�env;�arg ` Prod(�1; �2) ::
) Prod(�01; �
0
2)

(arrow)

�env;�arg ` �1 ::
) �01 � � � �env;�arg ` �k ::
) �0k

�env;�arg ` � ::
) �0

�env;�arg ` Arrow([�1; � � � ; �k]; �) ::
) Arrow([�01; � � � ; �
0
k]; �

0
)

(fn)
�
0
env; ft::�1g ` � :: �2) �0 �env;�arg `env �

0
env) �env

�env;�arg ` �t::�1: � :: �1 ! �2) (�tenv::j�
0
envj: �t::�1: �

0
) �env

(app)
�env;�arg ` �1 :: �1 ! �2) �01 �env;�arg ` �2 :: �1) �02

�env;�arg ` �1 �2 :: �2) �1 �02

(trec)

�env;�arg ` � ::
) �0 �env;�arg ` �i; �f ; �u :: �) �0i; �
0
f ; �

0
u

�env;�arg ` �p ::
!
! �! � ! �) �0p

�env;�arg ` �a ::
1 ! � � � !
k !
! �1 ! � � � ! �k ! � ! �) �0a

�env;�arg ` Typerec � of (�i;�f ;�u;�p;�a) :: �)

Typerec �0 of (�0i;�
0
f ;�

0
u;�

0
p;�

0
a)

(env)
�env;�arg ` t1 :: �1) �1 � � � �env;�arg ` tn :: �n) �n

�env;�arg `env ft1::�1; � � � ; tn::�ng) (�1; � � � ; �n)

Figure 6.2: Closure Conversion of Constructors

CHAPTER 6. TYPED CLOSURE CONVERSION 111

I construct the environment of the closure using the auxiliary judgment

�env; �arg `env �
0
env) �:

With the env rule, I create an environment corresponding to �0
env by extracting the

value corresponding to each variable in the domain of �0
env, and then packing these

values in order into a tuple. If �0
env = ft1::�1; � � � ; tn::�ng, then the kind of the resulting

environment is (�1 � � � � � �n), which I abbreviate as j�0
envj.

To translate types, I use judgments of the form �env; �arg ` �) �0. The translation

maps �MLi -Rep types to the same �MLi -Close types, except that the injected constructors

are converted via the constructor translation:

�env; �arg ` � ::
) �0

�env; �arg ` T (�)) T (�0)

The type translation of a polytype extends the current argument assignment, �arg, with

the bound type variable during the translation of the body of the polytype:

�env; �arg] ft::�g ` �) �0

�env; �arg ` 8t::�:�) 8t::�:�
0

6.3.2 The Term Translation

The term translation for closure conversion mirrors the constructor translation, except

that I must account for both free type variables and free value variables. Judgments in

the translation are of the form

�env; �arg; �env; �arg ` e : �) e0

where �env]�arg; �env] �arg ` e : � is a �MLi -Rep term formation judgment and e0 is a

�MLi -Close expression. The important axioms and inference rules that let us derive this

judgment are given in Figure 6.3. The rest of the rules simply map �MLi -Rep terms to

their corresponding �MLi -Close terms.

Like the constructor translation, the kind assignment and the type assignment are

split into environment and argument components. The argument component assigns

kinds/types to the variables of the nearest enclosing � or �-expression (if any); the

environment component assigns kinds/types to the other free variables in scope. As in

the constructor case, I translate a variable occurring in �arg to itself, whereas I translate

a variable occurring in �env to a projection from a distinguished variable, xenv. Again,

the order of bindings in �env is relevant to the translation.

The abs and tabs rules translate abstractions to closures consisting of code, a con-

structor environment (�env), and a value environment (eenv). The code components are

CHAPTER 6. TYPED CLOSURE CONVERSION 112

(var-arg) �env; �arg; �env; fx1:�1; � � � ; xk:�kg ` xi : �i) xi

(var-env) �env; �arg; fx1:�1; � � � ; xn:�ng; �arg ` xi : �i) #i(xenv)

(tapp)
�env; �arg ` � :: �) �0 �env; �arg; �env; �arg ` e : 8t::�:�) e0

�env; �arg; �env; �arg ` e [�] : f�=tg�) e0 [�0]

(abs)

�env; �arg `env �
0
env) �env �env; �arg; �env; �arg `env �

0
env) eenv

�0
env; ; `env�type �

0
env) �00env

�0
env; ; ` �1) �01 � � � �0

env; ; ` �k) �0k
�0

env; ;; �
0
env; fx1:�1; � � � ; xk:�kg ` e : �) e0

�env; �arg; �env; �arg ` �[x1:�1; � � � ; xk:�k]: e : [�1; � � � ; �k]! �)

hhvcode[tenv :: j�
0
envj; xenv:j�

00
envj; x1:�

0
1; � � � ; xk:�

0
k]:e

0; �env; eenvii

(tabs)

�env; �arg `env �
0
env) �env �env; �arg; �env; �arg `env �

0
env) eenv

�0
env; ; `env�type �

0
env) �00env

�0
env; ft::�g; �

0
env; ; ` e : �) e0

�env; �arg; �env; �arg ` �t::�:e : 8t::�:�)

hhtcode[tenv :: j�
0
envj; xenv:j�

00
envj; t::�]:e

0; �env; eenvii

Figure 6.3: Closure Conversion of Terms

CHAPTER 6. TYPED CLOSURE CONVERSION 113

constructed by choosing new kind and type assignments to cover the free variables of the

abstraction.

The environment components are constructed using the auxiliary judgments

�env; �arg ` �
0
env) �env

and

�env; �arg; �env; �arg `env �
0
env) eenv:

The former judgment is obtained via the env constructor translation rule, whereas the

latter judgment is obtained via the following term translation rule:

(env)

�env; �arg; �env; �arg ` x1:�1) e1
� � �

�env; �arg; �env; �arg ` xn:�n) en

�env; �arg; �env; �arg ` fx1:�1; � � � ; xn:�ng) he1; � � � ; eni

This rule translates a new type assignment, �0env, by extracting the values corresponding

to each variable in the domain of the assignment and placing the resulting values in a

tuple. To obtain the type of the resulting environment data structure, I �rst translate

all of the types in the range of �0env:

(env-type)
�env; �arg ` �1) �01 � � � �env; �arg ` �n) �0n

�env; �arg `env�type fx1:�1; � � � ; xn:�ng) fx1:�
0
1; � � � ; xn:�

0
ng

This process results in a �MLi -Close type assignment �00env = fx1:�
0
1; � � � ; xn:�

0
ng. The tuple

environment data structure has the type h�01 � � � � � �0ni, which I abbreviate as j�00envj.

6.4 Correctness of the Translation

To prove the correctness of the closure conversion translation, I will establish suitable

relations between source and target constructors and terms, and then show that a source

construct is always related to its translation. I �rst examine the correctness of constructor

translation and, then consider term translation.

6.4.1 Correctness of the Constructor Translation

It is clear that if �env; �arg ` � :: �) �0, then �env] �arg ` � :: �. It is also fairly

easy to show that we can always construct some translation of a well-formed constructor.

I only need to show that we can always delay any reordering or strengthening of the

kind assignment until we reach a use of an abs rule. Finally, it is also easy to show via

induction on the translation that constructor closure conversion preserves kinds directly.

CHAPTER 6. TYPED CLOSURE CONVERSION 114

Lemma 6.4.1 (Kind Correctness) If �env; �arg ` � :: �) �0, then ftenv::j�envjg]

�arg ` �
0 :: �.

I want to show that a constructor and its translation are suitably equivalent. I begin

by establishing a set of kind-indexed simulation relations relating closed source and target

constructors. At base-kind, the relation is given as follows:

; ` � � u ::
 ; ` �0 � u ::

� �
 �0

Two closed constructors of kind
 are related if they are de�nitionally equivalent to the

same constructor value. That is, to determine whether a source and target constructor

are related, we simply normalize the constructors and then syntactically compare them.

(Recall that constructors of the source language are a subset of the constructors in the

target language and the two languages coincide at the base kind
.) I logically extend

the base relation to arrow kinds:

�1 ��1 �
0
1 implies ��1 ��2 �

0 �01

� ��1!�2 �
0

Let � and �0 range over substitutions of type variables for closed, source and target con-

structors respectively. I extend the relation to substitutions indexed by kind assignments:

Dom(�) = ft1; � � � ; tng 81 � i � n:�(ti) ��i #i(�)

� �ft1::�1;���;tn::�ng ftenv=�g

Note that the distinguished type variable tenv is used in the target substitution. Finally,

I relate pairs of substitutions �env; �arg and �0env; �
0
arg as follows:

�env ��env �
0
env

Dom(�arg) = Dom(�arg) = Dom(�0arg)

8t 2 Dom(�arg):�arg(t) ��arg(t) �
0
arg(t)

�env; �arg ��env;�arg �
0
env; �

0
arg

The pairs of substitutions are related i� �env and �
0
env are related under �env, and for any

argument variable t, �arg(t) and �0arg(t) are related at �arg(t).

With these de�nitions in place, I can state and prove the correctness of the constructor

translation. The �rst step is to show that constructing new environments from related

constructors yields related environments.

Lemma 6.4.2 If �env; �arg ��env;�arg �0env; �
0
arg, �env; �arg `env �0

env) (�1; � � � ; �n),

where �0
env = ft1::�1; � � � ; tn::�ng, then ft1=�env] �arg(t1); � � � ; tn=�env] �arg(tn)g ��0

env

ftenv=�
0
env] �

0
arg(�1; � � � ; �n)g.

CHAPTER 6. TYPED CLOSURE CONVERSION 115

Proof: I must show that �env] �arg(ti) ��i #i(�
0
env] �

0
arg(�1; � � � ; �n)) for 1 � i � n.

Hence, it su�ces to show �env] �arg(ti) ��i �
0
env] �

0
arg(�i). By an examination of the env

rule, �env; �arg ` ti::�i�i. There are two cases to consider, depending on the rule used to

produce �i: either ti is translated under the var-arg rule or else ti is translated under the

var-env rule. In the former case, �i = ti. By assumption, �env; �arg ��env;�arg �
0
env; �

0
arg,

thus �arg(ti) ��i �
0
arg(ti). In the latter case, we have �i = #j(tenv), ti = t0j, and �env is

of the form ft01::�
0
1; � � � ; t

0
j::�i; � � � ; t

0
m::�

0
mg. By assumption, �env ��env �arg. Therefore, by

the de�nition of the relation, for all 1 � k � m, �envt
0
k ��k �

0
env#k(tenv). In particular,

since t0j = ti, �env(ti) ��i #j(�0env(tenv)). Consequently, in either case we know that

�env] �arg(ti) ��i �
0
env] �

0
arg(�i). 2

Next, by induction on the derivation of a translation, I show that a constructor and its

translation are related when we apply related substitutions. In particular, the translation

of a constructor of base kind yields a constructor that is de�nitionally equivalent to that

constructor.

Theorem 6.4.3 (Constructor Correctness) If �env; �arg ` � :: �) �0 and

�env; �arg ��env;�arg �
0
env; �

0
arg, then �env] �arg(�) �� �

0
env] �

0
arg(�

0).

Proof: By induction on the derivation of �env; �arg ` � :: �) �0. The interesting

cases, var-arg, var-env, fn, and trec are given below.

var-arg: �env; ft::�g ` t :: �) t. By assumption, �arg(t) �� �
0
arg(t).

var-env: ft1::�1; � � � ; tn::�ng ` ti :: �i) #i(tenv). By assumption, �env(ti) ��

#i((�0env(ti))).

fn: �env; �arg ` �t::�1: � :: �1 ! �2) (�tenv::j�
0
envj: �t::�1: �

0)�env. Let �1 ��1 �01.

I must show (�t::�1: �env] �arg(�))�1 ��2 (�0env] �0arg(�tenv::j�
0
envj: �t::�1: �

0) �env) �
0
1.

Since the code of the closure is closed, it su�ces to show (�env] �arg] ft=�1g)(�) ��2

(ftenv=�
0
env] �

0
arg(�env); t=�

0
1g(�

0)). Since �0
env; ft::�1g ` � :: �2, I can drop the bindings

of variables in �env] �arg that do not occur in �0
env. Let �00env = ft=�env] �arg(t) j t 2

Dom(�0
env)g. I must now show (�00env]ft=�1g)(�) ��2 (ftenv=�

0
env]�

0
arg(�env); t=�

0
1g(�

0)).

By the inductive hypothesis, this holds if I can show that �00env] ft=�1g ��env;ft::�1g

ftenv=�
0
env] �

0
arg(�env)g] ft=�

0
1g. By assumption, �1 ��1 �

0
1 so I only need to show that

�00env ��env ftenv=�
0
env] �

0
arg(�env)g:

But, this holds directly from lemma 6.4.2.

CHAPTER 6. TYPED CLOSURE CONVERSION 116

trec: We have

�env; �arg ` Typerec � of (�i;�f ;�u;�p;�a) :: �) Typerec �0 of (�0i;�
0
f ;�

0
u;�

0
p;�

0
a):

By assumption, �env] �arg(�) �
 �0env] �
0
arg(�

0). Therefore, these two constructors have

the same normal forms when their respective substitutions are applied. Let �0 be this

normal form. I argue by induction on the structure of �0 that

�env]�arg(Typerec � of (�i;�f ;�u;�p;�a)) �� �
0
env]�

0
arg(Typerec �

0 of (�0i;�
0
f ;�

0
u;�

0
p;�

0
a)):

If �0 is Int, then

�env] �arg(Typerec � of (�i;�f ;�u;�p;�a)) � �env] �arg(�i)

and

�0env] �
0
arg(Typerec �

0 of (�0i;�
0
f ;�

0
u;�

0
p;�

0
a)) � �env] �arg(�

0
i):

By the outer inductive hypothesis, these two constructors are related at �. Similar

reasoning shows that the result holds for �0 = Float and �0 = Unit.

If �0 is Prod(�1; �2), then

�env] �arg(Typerec � of (�i;�f ;�u;�p;�a)) � �env] �arg(�p �1 �2 �a �b)

where �a = Typerec �1 of (�i;�f ;�u;�p;�a) and �b = Typerec �2 of (�i;�f ;�u;�p;�a).

Likewise,

�0env] �
0
arg(Typerec �

0 of (�0i;�
0
f ;�

0
u;�

0
p;�

0
a)) � �0env] �

0
arg(�

0
p �1 �2 �

0
a �

0
b)

where �0a = Typerec �1 of (�0i;�
0
f ;�

0
u;�

0
p;�

0
a) and �0b = Typerec �2 of (�0i;�

0
f ;�

0
u;�

0
p;�

0
a).

By the inner induction hypothesis, �env] �arg(�a) �� �
0
env] �

0
arg(�

0
a) and �env] �arg(�b) ��

�0env] �
0
arg(�

0
b). By the outer induction hypothesis, �env] �arg(�p) ��0 �0env] �

0
arg(�

0
p) where

�0 =
!
! �! �! �. Hence, by the de�nition of the relations at arrow types, we

know that

�env] �arg(�p �1 �2 �a �b) �� �
0
env] �

0
arg(�

0
p �1 �2 �

0
a �

0
b):

Similar reasoning shows that the result holds for �0 = Arrow([�1; � � � ; �k]; �).

2

6.4.2 Type Correctness of the Term Translation

The next step in proving the correctness of closure conversion is to show that each

translated term has the translated type. I begin by showing that the type translation

commutes with substitution.

CHAPTER 6. TYPED CLOSURE CONVERSION 117

Lemma 6.4.4 If �env; �arg] ft::�g ` �) �0 and �env; �arg ` � :: �) �0, then

�env; �arg ` f�=tg�) f�
0=tg�0.

Proof: By induction on the derivation of �env; �arg] ft::�g ` �) �0. The base case,

T (�) relies upon the correctness of the constructor translation. 2

The following lemma is critical for showing that closures are well-formed. Roughly

speaking, it shows that a type obtained from the \current" constructor context

(�env; �arg) is equivalent to the type obtained from the closure's context, as long as

we substitute the closure's environment for the abstracted environment variable.

Lemma 6.4.5 If �env; �arg ` �) �1 and �env; �arg `env �
0
env) �, then �0

env; ; ` �)

�2 and ftenv::j�envjg]�arg ` �1 � f�=tenvg�2.

Theorem 6.4.6 (Type Correctness) If �env; �arg; �env; �arg ` e : �) e0, then

�env; �arg `env�type �env) �0env, �env; �arg `env�type �arg) �0arg, and �env; �arg `

�) �0, then ftenv::j�envjg]�arg; fxenv:j�
0
envjg] �

0
arg ` e

0 : �0.

Proof: By induction on the derivation of �env; �arg; �env; �arg ` e : �) e0. The

most interesting cases are the translations of variables and �-abstractions (shown below).

The other cases follow in a straightforward fashion. In particular, the treatment of �-

abstractions almost directly follows the treatment of �-abstractions.

var-arg: We have �env; �arg; �env; fx1:�1; � � � ; xn:�ng ` xi : �i) e0. By the type-

env translation rule, �0arg = fx1:�
0
1; � � � ; xn:�

0
ng where �env; �arg ` �i) �0i. Thus,

ftenv::j�envjg; �arg; fxenv:j�
0
envjg; �

0
arg ` xi : �

0
i.

var-env: We have �env; �arg; fx1:�1; � � � ; xn:�ng; �arg ` xi : �i) #i(xenv). By the

type-env translation rule, �0env = fx1:�
0
1; � � � ; xn:�

0
ng where �env; �arg ` �i) �0i. Thus,

j�0envj = h�
0
1 � � � � � �0ni. Hence, ftenv::j�envjg; �arg; fxenv:j�

0
envjg; �

0
arg ` #i(xenv) : �

0
i.

abs: To simplify the proof, I only show the case for 1-argument functions. We have

�env; �arg; �env; �arg ` �x:�a: e : �a ! �b) hhec; �env; eenvii

where ec is vcode[tenv::j�
0
envj; xenv:j�

00
envj; x:�

00
a]:e

0. By the inductive hypothesis, we know

that

ftenv::j�
0
envjg; fxenv:j�

00
envjg] fx:�

00
ag ` e

0 : �00b ;

where �0
env; ; ` �

0
env) �00env, �

0
env; ; ` �a) �00a , and �0

env; ; ` �b) �00b . From this and

the typing rule for vcode, we can conclude that

;; ; ` ec : code(tenv::j�
0
envj; j�

00
envj; �

00
a ! �00b):

CHAPTER 6. TYPED CLOSURE CONVERSION 118

From kind-preservation of the constructor translation, we know that ftenv::j�envjg]

�arg ` �env :: j�0
envj. Thus, the code and the type environment agree on kinds. I only

need to show that the code and the value environment agree on types.

Suppose �0env = fx1:�1; � � � ; xn:�ng. Then eenv = he1; � � � ; eni where

�env; �arg; �env; �arg ` xi : �i) ei

for 1 � i � n. By the induction hypothesis,

ftenv::j�envjg]�arg; fxenv:j�
0jg] �0arg ` ei : �

0
i

where �env; �arg ` �env) �0, �env; �arg ` �arg) �0arg, and �env; �arg ` �i) �0i. From

lemma 6.4.5, we know that ftenv::j�
0
envjg ` �

0
i � f�env=tenvg�

00
env(xi). Therefore,

ftenv::j�
0
envjg ` h�

0
1 � � � � � �0ni � f�env=tenvgj�

00
envj:

Thus, from the formation rule for closures, we can conclude that

ftenv::j�envjg]�arg; fx:j�
0jg] �0arg ` hhec; �env; eenvii : f�env=tenvg(�

0
a ! �0b):

Suppose �env; �arg ` �a) �0a and �env; �arg ` �b) �0b. Then by the type transla-

tion,

�env; �arg ` �a ! �b) �0a ! �0b:

By lemma 6.4.5, we can conclude that

ftenv::j�envjg]�arg ` �
0
a ! �0b � f�env=tenvg(�

00
a ! �00b):

Hence,

ftenv::j�envjg]�arg; fx:j�
0jg] �0arg ` hhec; �env; eenvii : �

0
a ! �0b:

2

6.4.3 Correctness of the Term Translation

Correctness of the term translation follows a similar pattern to that of the constructor

translation. I begin by establishing a set of relations for closed term values, indexed by

closed source types.
;; ; ` e : � ; ` �) �0 ;; ; ` e0 : �0

e + v i� e0 + v0 and v �� v
0

e �� e
0

i �int i f �
oat f hi �unit hi

CHAPTER 6. TYPED CLOSURE CONVERSION 119

�1 v ��1 �1 v
0 �2 v ��2 �1 v

0

v ��1��2 v
0

v1 ��1 v
0
1 � � � vk ��k v

0
k implies v [v1; � � � ; vk] �� v

0 [v01; � � � ; v
0
k]

v �[�1;���;�k]!� v
0

� �� �
0 implies v [�] �f�=tg� v

0 [�0]

v �8t::�:� v
0

Two expressions e and e0 are related at source type � i� e has type �, e0 has a type �0

obtained by translating �, and e evaluates to a value i� e0 evaluates to a related value

at �. Values at base type are related i� they are syntactically equal. Values at product

type are related if projecting their components yields related computations. Values at

arrow types are related when they yield related computations, given related arguments.

Finally, two polymorphic values are related if they yield related computations given

related constructors.

For open expressions, I extend the relations to substitutions
 and
0, mapping vari-

ables to values, where the relations are indexed by a source type assignment � as follows:

v1 ��1 v
0
1 � � � vn ��n v

0
n

fx1=v1; � � � ; xn=vng �fx1:�1;���;xn:�ng fxenv=hv
0
1; � � � ; v

0
nig

I relate pairs of substitutions,
env;
arg and
0env;

0
arg as follows:

env ��env

0
env

Dom(�arg) = Dom(
arg) = Dom(
0arg) 8x 2 Dom(�arg):
arg(x) ��arg(x)

0
arg(x)

env;
arg ��env;�arg

0
env;

0
arg

The following lemma shows that the translation of variables is correct, and thus so is

the translation of environments.

Lemma 6.4.7 Let �env; �arg ��env;�arg �
0
env; �

0
arg and
env;
arg ��env]�arg(�env;�arg)

0
env;

0
arg.

1. If �env; �arg; �env; �arg ` x : �) e, then
env]
arg(x) ��env]�arg(�)

0
env]

0
arg(e).

2. If �env; �arg; �env; �arg `env �
0
env) eenv, then
0env]

0
arg(eenv) + venv for some venv

and, fx=
env]
arg(x) j x 2 Dom(�0env)g ��env]�arg(�0

env)
fxenv=venvg.

With this lemma in hand, I can establish the correctness of the translation by showing

that a �MLi -Rep expression is always related to its �MLi -Close translation, given appropri-

ately related substitutions.

CHAPTER 6. TYPED CLOSURE CONVERSION 120

Theorem 6.4.8 (Correctness) Let �env; �arg ��env;�arg �0env; �
0
arg,

and let
env;
arg ��env]�arg(�env;�arg)

0
env;

0
arg. If �env; �arg; �env; �arg ` e : �) e0, then

�env] �arg(
env]
arg(e)) ��env]�arg(�) �
0
env] �

0
arg(

0
env]

0
arg(e

0)):

Proof: By induction on the derivation of �env; �arg; �env; �arg ` e : �) e0 (see

Figure 6.3). The var-arg and var-env cases follow directly from lemma 6.4.7. The

int,
oat, and unit rules follow trivially. The elimination rules proj, app, and tapp

follow directly from the inductive hypotheses as well as the de�nitions of the relations.

The typerec rule follows directly from constructor translation correctness, the inductive

hypotheses, and the de�nition of the relations. Arguments for the abs and tabs rules

follow.

abs: Let v1 ��env]�arg(�1) v
0
1, � � �, vk ��env]�arg(�k) v

0
k, and let

00
env = fx=
env]
arg(x) j x 2

Dom(�0)g. By lemma 6.4.7,
0env]

0
arg(eenv) + venv for some venv and
00env ��env]�arg(�0

env)

fxenv=venvg.

Let �00env = ft=�env] �arg(t) j t 2 Dom(�0)g and let �0env = �0env] �
0
arg(�env). By lemma

6.4.2, we know that �00env ��0

env
ftenv=�

0
envg. Hence, �

00
env; ; ��0

env;;
ftenv=�

0
envg; ;. By the

induction hypothesis and type preservation, we can conclude that

�00env(

00
env] fx1=v1; � � � ; xk=vkg(e)) ��env]�arg(�)

ftenv=�
0
envg(fxenv=venv; x1=v

0
1; � � � ; xk=v

0
kg(e

0)):

Thus,
�env] �arg(
env]
arg(�[x1:�1; � � � ; xk:�k]: e)) ��env]�arg([�1;���;�k]!�)

�0env] �
0
arg(

0
env]

0
arg(hhec; �env; eenvii))

where ec is vcode[tenv::j�
0
envj; xenv:j�

00
envj; x1:�

0
1; � � � ; xk:�

0
k]:e

0.

tabs: Let � �� �
0 and let
00env = fx=
env]
arg(x) j x 2 Dom(�0)g. By lemma 6.4.7,

0env]

0
arg(eenv) + venv for some venv and
00env ��env]�arg(�0

env)
fxenv=venvg.

Let �00env = ft=�env] �arg(t) j t 2 Dom(�0)g and let �0env = �0env] �
0
arg(�env). By lemma

6.4.2, we know that �00env ��0

env
ftenv=�

0
envg. Hence, by the assumption regarding � and

�0, �00env; ft=�g ��0

env;ft::�g
ftenv=�

0
envg; ft=�

0g. By the induction hypothesis, and type

preservation, we can conclude that

�00env] ft=�g(

00
env(e)) ��env]�arg]ft=�g(�) ftenv=�

0
env; t=�

0g(fxenv=venvg(e
0)):

Thus,

�env] �arg(
env]
arg(�t::�:e)) ��env]�arg(8t::�:�) �
0
env] �

0
arg(

0
env]

0
arg(hhec; �env; eenvii))

where ec is tcode[tenv::j�
0
envj; xenv:j�

00
envj; t::�]:e

0. 2

CHAPTER 6. TYPED CLOSURE CONVERSION 121

6.5 Related Work

Closure conversion is discussed in descriptions of various functional language compil-

ers [111, 78, 11, 9, 109]. It is closely related to �-lifting [69] in that it eliminates free

variables in the bodies of �-abstractions. However, closure conversion di�ers by making

the representation of the environment explicit as a data structure. Making the envi-

ronment explicit is important because it exposes environment construction and variable

lookup to an optimizer. Furthermore, Shao and Appel show that not all environment

representations are \safe for space" [109], and thus choosing a good environment repre-

sentation is an important part of compilation.

Wand and Steckler [124] have considered two optimizations of the basic closure conver-

sion strategy | selective and lightweight closure conversion | and provide a correctness

proof for each of these in an untyped setting. Hannan [54] recasts Wand's work into a

typed setting, and provides correctness proofs for Wand's optimizations. As with my

translation, Hannan's translation is formulated as a deductive system. However, Han-

nan does not consider the important issue of environment representation (preferring an

abstract account), nor does he consider the typing properties of the closure-converted

code.

Minamide, Morrisett, and Harper give a comprehensive treatment of type-directed

closure conversion for the simply-typed �-calculus and a predicative, type-passing poly-

morphic �-calculus [92, 91]. This chapter extends the initial treatment by showing how

to closure convert a language like �MLi with higher-kinds (i.e., functions at both the

constructor and term levels).

Chapter 7

Types and Garbage Collection

In the previous chapters, I argued that one should use types at compile time to direct

the translation of a high-level language to a low-level language. In this chapter, I will

show that types can be used at run time to implement a key facility, namely automatic

storage reclamation or garbage collection. As in the previous chapters, types will guide

us in the process of garbage collection as well as a proof of correctness.

In most accounts of language implementation, garbage collection is either ignored or

at best discussed without regard to the rest of the implementation. Most descriptions of

garbage collectors are extremely low-level and concentrate on manipulating \mark bits",

\forwarding pointers", \tags", \reference counts", and the like. This focus on the low-

level details makes it extremely di�cult to determine what e�ect a garbage collector has

on a program's evaluation. As a result, there are very few proofs that a garbage collector

does not interfere with evaluation and only collects true garbage.

The primary culprit is that traditional models of evaluation based on the �-calculus,

such as the contextual semantics of Mini-ML and �MLi , use substitution as the mechanism

of computation. Unfortunately, substitution hides all memory management issues: during

evaluation we simply �-convert terms so that we can always �nd an unused variable.

Since �-conversion is de�ned in terms of substitution, it is substitution that implicitly

\allocates" fresh variable names for us. Furthermore, when we substitute a value for

a variable, if there are no occurrences of that variable, the value disappears. Thus,

substitution also takes care of \collecting" unneeded terms.

In this chapter, I develop an alternative style of semantics where allocation is explicit.

The basic idea is to represent a program's memory or heap as a global set of syntactic

declarations. The evaluation rules allocate large objects in the global heap and automat-

ically dereference pointers to such objects when needed. Since the heap is explicit, the

process of garbage collection is made explicit as any relation that removes portions of a

program's heap without a�ecting the program's evaluation.

I specify a particular garbage collection strategy which characterizes the family of

122

CHAPTER 7. TYPES AND GARBAGE COLLECTION 123

tracing garbage collectors including mark/sweep and copying collectors. By employing

standard syntactic techniques, I prove that the speci�cation is correct with respect to

the de�nition of garbage.

Next, I develop an algorithm that implements the tracing garbage collection strategy.

Standard tracing collectors use tags on values in the heap to determine their shape |

the size of the object and any pointers contained in the object. Instead of using tags, I

show that for monomorphic languages, if enough type information is recorded on terms

at compile time, types can be used to determine the shape of objects in the heap. Con-

sequently, no tags are required on the values in the heap to support garbage collection.

This approach to tag-free garbage collection is not new [23], but my formulation is at a

su�ciently high level that it is easy to prove its correctness.

I then show how to extend the tag-free collection algorithm to accommodate genera-

tional garbage collection. Generational collection is an important technique that collects

most of the garbage in a program but examines a smaller set of objects than the standard

tracing collection algorithm. Thus, generational collection tends to improve the latency

or response time of garbage collection without sacri�cing too much space.

After showing how a monomorphic language can be garbage collected in a tag-free

fashion, I show how a type-passing, polymorphic language such as �MLi can be garbage

collected. The key idea is to use constructors that are passed dynamically as arguments

to procedures during the garbage collection process. With type information recorded

at compile time, this allows us to reconstruct the shape of all objects. Hence, tag-free

garbage collection is another mechanism that can use dynamic type dispatch to account

for variable types. As for monomorphic languages, this approach to tag-free garbage

collection for polymorphic languages is not new [119, 6, 96, 95], but my formulation is

su�ciently abstract that we can easily prove its correctness.

Tag-free garbage collection is important for two very practical reasons: �rst, a clever

tag-free implementation can avoid manipulating any type information in monomorphic

code at run time, except during garbage collection. In contrast, a tagging implementa-

tion must tag values as they are created and possibly untag the values when they are

examined. The overheads of manipulating these tags during the computation can be

considerable [112] and implementors go to great lengths and use many clever encodings

to minimize these overheads [128]. Second, tag-free garbage collection supports language

and system interoperability. In particular, many ubiquitous languages, such as Fortran,

C, and C++, do not provide automatic memory management and, thus, do not tag values.

A language that uses tags for collection must strip tags o� values before passing them

to library routines written in Fortran or C. Similarly, communicating with the operating

system, windowing system, or hardware requires matching the representations dictated

by these systems. Since tag-free collection places no constraints on the representation of

values, communicating with these systems is easier and more e�cient.

CHAPTER 7. TYPES AND GARBAGE COLLECTION 124

(types) � ::= int j
oat j unit j h�1 � �2i j code(�1; �2) j �1 ! �2

(expressions) e ::= return x j if0 x then e1 else e2 j let x:� = d in e

(declarations) d ::= x j i j f j hi j hx1; x2i j �1 x j �2 x j

vcode[xenv:�env; x:�]:e j hhx1; x2ii j x x
0 j

eqint(x1; x2) j eqfloat(x1; x2)

Figure 7.1: Syntax of Mono-GC Expressions

7.1 Mono-GC

In this Section, I de�ne a language called Mono-GC, which is derived from the monomor-

phic subset of the �MLi -Close language (see Chapter 6). The expressions of the language

are limited in the style of Flanagan et al.[42]. In particular, the language forbids nested

expressions and requires that all values and computations be bound to variables. These

restrictions simplify the presentation of the semantics, but they provide many of the

practical bene�ts of CPS [9].

The syntax of Mono-GC is de�ned in Figure 7.1. Types are monomorphic and include

base types, products, code, and arrow types. To simplify the language, I only consider

functions of one argument. Expressions (e) return a variable, branch on a variable, or

bind a declaration (d) to a variable and continue with some expression. Declarations

can either be immediate constants, a primitive operation (e.g., eqint) applied to some

variables, a tuple whose components are variables, a piece of code, a closure, a projection

from a variable, or an application of a variable to a variable. As in Mono-CLOSE, I

require that code always be closed.

The declaration let x:� = d in e binds the variable x within the scope of the expres-

sion e. Similarly, the declaration vcode[xenv:�env; x:�]:e binds the variables xenv and x in

the scope of the expression e. I consider expressions to be equivalent up to �-conversion

of the bound variables.

From an implementor's perspective, the variables of Mono-GC correspond to abstract

machine registers. In contrast to a semantics based on substitution, I bind values to

registers and then compute with the registers, instead of substituting the contents of a

register within a term. By restricting declarations so that there are no nested expressions,

I greatly simplify the process of breaking an expression into an evaluation context and

instruction. Indeed, the evaluation contexts are explicitly tracked via a program stack

(see below).

CHAPTER 7. TYPES AND GARBAGE COLLECTION 125

The other syntactic classes of Mono-GC are given in Figure 7.2. Mono-GC programs

have four components: a heap (H), a stack (S), a typed environment (�), and an expres-

sion (e). Informally, the heap holds values too large to �t into registers. The stack holds

a list of delayed computations, essentially as closures, that are waiting for a function

invocation to return. The environment serves as the \registers" of the abstract machine

and maps variables to small values. Finally, the expression corresponds to the code that

the machine is currently executing.

Formally, a heap is an unordered set of bindings that maps locations (l) to heap values.

A heap value (h) is a tuple of small values, a piece of code, or a closure. Heap values are

too large to �t into registers and are thus bound to locations in memory. Small values (v)

are values that can �t into registers and consist of integer and
oating point constants,

unit, and locations. A typed environment (�) is an environment that maps variables to

both a type and a small value. I use �(x) and �type(x) to denote the value and type to

which � maps x, respectively. A stack (S) is a list of pairs of the form [�; �x:�: e]. Each

pair represents a delayed computation where � is the environment of the computation

and �x:�: e is the \continuation" of the delayed computation. I require that all the free

variables in �x:�: e be bound in the environment �. The stack could also be represented as

a list of closures, but this approach models a system where stack frames are not allocated

in the heap. Composing the \closures" of the stack results in the \continuation" of the

program. Finally, I distinguish programs with an empty stack and return x expression

as answer programs.

Like the expression level, I consider code-expressions to bind their variable arguments

within the scope of their expression components. For a stack frame [�; �x:�: e], I consider

the domain of � and x to be bound within e. Finally, I consider the domain of the

heap to bind the locations within the scope of the range of the heap, the stack, and the

environment of a program. Thus, I consider programs to be equivalent up to �-conversion

and reordering of the locations bound in the heap.

Considering programs equivalent modulo �-conversion and the treatment of heaps

and environments as sets instead of sequences hides many of the complexities of memory

management. In particular, programs are automatically considered equivalent if the

heap or environment is rearranged and locations or variables are renamed as long as the

\graph" of the program is preserved. This abstraction allows us to focus on the issues of

determining what bindings in the heap are garbage without specifying how such bindings

are represented in a real machine.

7.1.1 Dynamic Semantics of Mono-GC

Figure 7.3 de�nes the rewriting rules for Mono-GC programs. I brie
y describe each rule

below:

CHAPTER 7. TYPES AND GARBAGE COLLECTION 126

(locations) l

(small values) v ::= i j f j l j hi

(heap values) h ::= hv1; v2i j vcode[xenv:�env; x:�]:e j hhvcode; venvii

(heaps) H ::= fl1=h1; � � � ; ln=hng

(environments) � ::= fx1:�1=v1; � � � ; xn:�n=vng

(stacks) S ::= [] j S[�; �x:�: e]

(programs) P ::= (H;S; �; e)

(answers) A ::= (H; []; �; return x)

Figure 7.2: Syntax of Mono-GC Programs

(1,2) An if0 is applied to some variable x. We �nd the value of x in the current envi-

ronment and select the appropriate expression according to whether this value is 0

or some other integer.

(3) A variable x is bound to another variable x0 in a let expression. We lookup the

small value v to which x0 is bound in the current environment, �. We extend � to

map x to v and continue with the body of the let.

(4,5) The integer equality primitive is applied to two variables. We �nd the value of the

variables in the environment and return 1 or 0 as appropriate. This new value is

bound to the let-bound variable in the new environment. The rules for
oating-

point equality (not shown) are similar.

(6) The expression binds a variable to an immediate small value. We add that binding

to the current environment and continue.

(7,8,9) The expression allocates a tuple, code, or a closure binding the result to x. We

�rst replace all of the free variables in the object with their bindings from the

environment. Code objects are always closed, so they are not e�ected. Then, we

allocate a new location on the heap l and bind the heap value to this location.

Next, we map x to l in the current environment and continue.

CHAPTER 7. TYPES AND GARBAGE COLLECTION 127

(10) The expression projects the ith component of y, binding the result to x. We lookup

y in the environment, �nd that it is bound to the location l. We dereference l in

the heap and �nd that it is bound to a heap value hv1; v2i. We bind vi to x in the

environment and continue.

(11) The expression applies x1 to some argument x2, binding the result to x. We lookup

x1 and x2 in the environment, �nding that x1 is bound to some location l and x2
is bound to v. We dereference l in the heap and �nd that it is bound to a closure,

hhlcode; venvii, where lcode is bound to the code vcode[xenv:�env; y:�
0]:e. We form a

new stack frame by pairing the current environment (�0) and the current expression,

abstracting the result of the function �x:�: e0. This frame is pushed on the stack.

Then, we install the environment which maps xenv to venv and y to v. We then

continue with the body of the closure as the current expression.

(12) The current expression is return x0 and the stack is non-empty. We lookup the

value of x0 in the current environment (�0), pop o� a stack frame, install its environ-

ment (�) as the current environment, bind the small value �0(x0) to the argument

of the continuation (x), and continue with the body of the continuation.

In this formulation, each time a let-expression is evaluated, the type ascribed to the

bound variable is entered into the current environment �, as well as the value. In essence,

the environment contains a type assignment � that is constructed on the
y. It is possible

to avoid constructing these type assignments at run time by labelling let-expressions not

only with the type of the bound variable, but also with the types of all variables in scope.

This allows evaluation to simply discard the current type assignment and proceed with

the assignment labelling the expression. Since these assignments can be calculated at

compile time, no assignment construction need occur at run time.

Of course, labelling each expression with the types of all variables in scope could

take a great deal of space. But, as I will show, this type information is only used

during garbage collection. Most language implementations restrict garbage collection

from occuring except at certain points during evaluation. For example, the garbage

collector of SML/NJ is only invoked at the point when a function is called, or at the point

when an array or vector is allocated. Hence, we only need to record type assignments for

those let-expressions that perform a function call or array allocation. This guarantees

that when we invoke garbage collection, enough type information is present to do the

job.

7.1.2 Static Semantics of Mono-GC

The static semantics of Mono-GC is described via a family of judgments. The �rst two

judgments, � `exp e : � and � `dec d : � , give types to expressions and declarations,

CHAPTER 7. TYPES AND GARBAGE COLLECTION 128

1: (H;S; �; if0 x then e1 else e2) 7�! (H;S; �; e1) (�(x) = 0)

2: (H;S; �; if0 x then e1 else e2) 7�! (H;S; �; e2)(�(x) = i and i 6= 0)

3: (H;S; �; let x:� = x0 in e) 7�! (H;S; �] fx:�=�(x0)g; e)

4: (H;S; �; let x:� = eqint(x1; x2) in e) 7�!

(H;S; �] fx:�=1g; e) (�(x1) =int �(x2))

5: (H;S; �; let x:� = eqint(x1; x2) in e) 7�!

(H;S; �] fx:�=0g; e) (�(x1) 6=int �(x2))

6: (H;S; �; let x:� = v in e) 7�! (H;S; �] fx:�=vg; e)

7: (H;S; �; let x:� = hx1; x2i in e) 7�!

(H] fl = h�(x1); �(x2)ig; S; �] fx:�=lg; e)

8: (H;S; �; let x:� = vcode[xenv:�env; x:�
0]:e0 in e) 7�!

(H] fl = vcode[xenv:�env; x:�
0]:e0g; S; �] fx:�=lg; e)

9: (H;S; �; let x:� = hhxcode; xenvii in e) 7�!

(H] fl = hh�(xcode); �(xenv)iig; S; �] fx:�=lg; e)

10: (H;S; �; let x:� = �i y in e) 7�! (H;S; �] fx:�=vig; e)

where �(y) = l and H(l) = hv1; v2i (1 � i � 2)

11: (H;S; �; let x:� = x1 x2 in e0) 7�!

(H;S[�; �x:�: e0]; fxenv:�env=venv; y:�
0=�(x2)g; e)

where �(x1) = l and H(l) = hhlcode; venvii and

H(lcode) = vcode[xenv:�env; y:�
0]:e

12: (H;S[�; �x:�: e]; �0; return x0) 7�! (H;S; �] fx:�=�0(x0)g; e)

Figure 7.3: Rewriting Rules for Mono-GC

CHAPTER 7. TYPES AND GARBAGE COLLECTION 129

respectively, in the context of a variable type assignment �. These judgments are de-

rived via the conventional axioms and inference rules of Figure 7.4, ignoring the equality

primitives.

The static semantics for Mono-GC programs requires six more judgments that are

characterized as follows. I use 	 to range over location type assignments which map

locations to types.

	 `val v : � v is a well-formed small value of type �

	 `hval h : � h is a well-formed heap value of type �

	 `heap H : 	 H is a well-formed heap described by 	

	 `env � : � � is a well-formed environment described by �

	 `stack S : �1 ! �2 S is a well-formed stack of type �1 ! �2
`prog P : � P is a well-formed program of type �

These judgments are de�ned by the inference rules and axioms of Figure 7.5. A program

has type � if the following requirements are met: The program's heap can be described by

	 under no assumptions and is thus closed. The program's stack maps � 0 to � under the

assumptions of 	. The program's environment is described by � under the assumptions

of 	. Finally, the program's expression has the type � 0 under the assumptions of �.

A heap H is described by 	 under the assumptions 	0 if for all locations l in 	,

H(l) has the type 	(l) under the assumptions of both 	 and 	0. This circularity in the

de�nition allows cycles in the heap, in much the same way that a typing rule for fix allows

a circular de�nition of a recursive function. A stack has type �1 ! �2 if the composition

of its closure components yields a function from �1 values to �2 values. A closure has

type � 0 ! � if its environment has type �env and its code has type code(�env; �
0 ! �).

Lemma 7.1.1 (Extension) If (H;S; �; e) 7�! (H 0; S 0; �0; e0), then:

1. H 0 = H]H 00 for some H 00

2. if S = S 0, then �0 = �] �00 for some �00.

Theorem 7.1.2 (Preservation) If `prog P : � and P 7�! P 0, then `prog P
0 : � .

Theorem 7.1.3 (Canonical Forms) Suppose `prog (H; []; �; return x) : � . Then if �

is:

� int, then �(x) = i for some i.

�
oat, then �(x) = f for some f .

� unit, then �(x) = hi.

CHAPTER 7. TYPES AND GARBAGE COLLECTION 130

Expressions:

(var) �] fx:�g `var x : � (var-e)
� `var x : �

� `exp return x : �

(if0-e)
� `var x : int � `exp e1 : � � `exp e2 : �

� `exp if0 x then e1 else e2 : �

(let-e)
� `dec d : �

0 �] fx:� 0g `exp e : �

� `exp let x:�
0 = d in e : �

Declarations:

(var-d) �] fx:�g `dec x : � (int-d) � `dec i : int

(
oat-d) � `dec f :
oat (unit-d) � `dec hi : unit

(tuple-d)
� `var x1 : �1 � `var x2 : �2

� `dec hx2; x2i : h�1 � �2i
(proj-d)

� `var x : h�1 � �2i

� `dec �i x : �i
(1 � i � 2)

(vcode-d)
fxenv:�env; x:�

0g `exp e : �

� `dec vcode[xenv:�env; x:�
0]:e : code(�env; �

0 ! �)

(close-d)
� `var xcode : code(�env; �) � `var xenv : �env

� `dec hhxcode; xenvii : �

(app-d)
� `var x1 : �

0 ! � � `var x2 : �
0

� `dec x1 x2 : �

Figure 7.4: Static Semantics of Mono-GC Expressions

CHAPTER 7. TYPES AND GARBAGE COLLECTION 131

Values:

(loc-v)] fl:�g `val l : � (int-v) 	 `val i : int

(
oat-v) 	 `val f :
oat (unit-v) 	 `val hi : unit

Heap Values:

(tuple-h)
	 `val v1 : �1 	 `val v2 : �2

	 `hval hv1; v2i : h�1 � �2i

(code-h)
`dec vcode[xenv:�env; x:�

0]:e : code(�env; �
0 ! �)

	 `hval vcode[xenv:�env; x:�
0]:e : code(�env; �

0 ! �)

(close-h)
	 `val vcode : code(�env; �) 	 `val venv : �env

	 `hval hhvcode; venvii : �

Heaps:

(heap)
8l 2 Dom():	0] 	 `hval H(l) : 	(l)

	0 `heap H : 	

Environments:

(env)
	 `val v1 : �1 � � � 	 `val vn : �n

	 `env fx1:�1=v1; � � � ; xn:�n=vng : fx1:�1; � � � ; xn:�ng
(x1; � � � ; xn unique)

Stacks:

(empty-stack) 	 `stack [] : � ! �

(push-stack)
	 `stack S : �2 ! �3 	 `env � : � �] fx:�1g ` e : �2

	 `stack S[�; �x:�1: e] : �1 ! �3

Programs:

(prog)

; `heap H : 	 	 ` S : � 0 ! �

	 `env � : � � ` e : � 0

`prog (H;S; �; e) : �

Figure 7.5: Static Semantics of Mono-GC Programs

CHAPTER 7. TYPES AND GARBAGE COLLECTION 132

� h�1 � �2i, then �(x) = l and H(l) = hv1; v2i for some l, v1, and v2.

� code(�env; �1 ! �2), then �(x) = l and H(l) = vcode[xenv:�env; x:�1]:e for some l,

xenv, x, and e.

� �1 ! �2, then �(x) = l, H(l) = hhlcode; lenvii, and

H(lcode) = vcode[xenv:�env; x:�1]:e;

for some l, lcode, lenv, xenv, �env, x, and e.

Theorem 7.1.4 (Progress) If ` P : � , then either P = A for some answer A or else

there exists some P 0 such that P 7�! P 0.

7.2 Abstract Garbage Collection

Since the semantics of Mono-GC makes the allocation of values explicit, I can de�ne

what it means to \garbage collect" a value in the heap. A binding l = h in the heap

of a program is garbage if removing the binding produces an \equivalent" program. To

simplify the presentation, I will focus on programs that return an integer (i.e., are of type

int) and use Kleene equivalence to compare programs.

De�nition 7.2.1 (Kleene Equivalence) P1 ' P1 means P1 + (H1; []; �1; return x1)

i� P2 + (H2; []; �2; return x2) and �1(x1) = �2(x2) = i for some integer i.

De�nition 7.2.2 (Heap Garbage) If P = (H]fl=hg; S; �; e), and `prog P : int, then

the binding l=h is garbage in P i� P ' (H;S; �; e) and `prog (H;S; �; e) : int.

A collection of a well-typed program P is obtained by dropping a (possibly empty)

set of garbage bindings from the heap of P , resulting in a well-typed program P 0. This

de�nition is very weak in that it only allows us to drop bindings in the heap and precludes

other program transformations including modi�cations to the stack, environment, or

current expression. It even precludes changing a heap value to some other heap value. A

garbage collector is a rewriting rule that computes a collection of a program.

Many garbage collectors attempt to collect more garbage than is allowed by this def-

inition by modifying the stack, the environment, or values in the heap in some simple

manner. For example, many collectors drop unneeded bindings in the current environ-

ment or environments on the stack. This technique is known as \black-holing." Some

very few collectors reclaim bindings by remapping locations from one heap value to an

already existing, equivalent heap value. This is known as hash-consing in the garbage

collection literature.

CHAPTER 7. TYPES AND GARBAGE COLLECTION 133

However, the de�nition I have given accurately models what conventional garbage

collectors try to do. In fact, as I will show, the family of tracing garbage collectors,

typi�ed by mark/sweep and copying collectors, have the nice property that they always

collect as much as this de�nition of garbage allows, but no more1. Consequently, tracing

collectors are optimal with respect to this de�nition of garbage.

Abstractly, tracing collectors simply drop bindings in the heap that are not \reach-

able" from the stack or the current environment. I de�ne reachability in terms of the

free locations of program components, denoted FL(�):

FLval(l) = flg

FLval(v) = ; (v = i, f , or hi)

FLhval(hv1; v2i) = FLval(v1) [FLval(v2)

FLhval(vcode[xenv:�env; x:�]:e) = ;

FLhval(hhvcode; venvii) = FLval(vcode) [FLval(venv)

FLheap(fl1 = h1; � � � ; ln = hng) = ([ni=1(FLhval(hi))) n fl1; � � � ; lng

FLenv(fx1=v1; � � � ; xn=vng) = [ni=1FLval(vi)

FLstack([]) = ;

FLstack(S[�; �x:�: e]) = FLstack(S) [FLenv(�)

FLprog(H;S; �; e) = (FLheap(H) [FLstack(S) [FLenv(�)) nDom(H)

A tracing collector is any collector that drops bindings in the heap but does not leave

any free locations. I represent this speci�cation as a new rewriting rule as follows:

De�nition 7.2.3 (Tracing Collector) (H]H 0; S; �; e)
trace
7�! (H;S; �; e) if and only if

FLprog(H;S; �; e) = ;.

I must show that tracing garbage collection is indeed a garbage collector in that, when

given a program, it always produces a Kleene-equivalent program. The keys to a simple,

syntactic proof of correctness are Postponement and Diamond Lemmas. The statements

of these lemmas can be summarized by the diagrams of Figure 7.6, respectively, where

solid arrows denote relations that are assumed to exist and dashed arrows denote relations

that can be derived from the assumed relations.

1In an untyped setting where collections are not required to be closed programs, it is undecidable

whether or not a given binding in an arbitrary program is garbage [96, 95]. This more general notion of

garbage can be recovered in the typed setting by allowing locations to be rebound in the heap.

CHAPTER 7. TYPES AND GARBAGE COLLECTION 134

P1 P2

P 0
2 P3

-
trace

-

trace

?

R

?

R

P1 P2

P 0
2 P3

-
trace

-

trace

?

R

?

R

Figure 7.6: Postponement and Diamond Properties

Lemma 7.2.4 (Postponement) If P1
trace
7�! P2 7�! P3, then there exists a P 0

2 such that

P1 7�! P 0
2
trace
7�! P3.

Lemma 7.2.5 (Diamond) If P1
trace
7�! P2 and P1 7�! P 0

2, then there exists a P3 such

that P2 7�! P3 and P 0
2
trace
7�! P3.

With the Postponement and Diamond Lemmas, it is straightforward to show that

tracing garbage collection does not a�ect evaluation.

Theorem 7.2.6 (Correctness of Tracing Collection) If P
trace
7�! P 0, then P 0 is a

collection of P .

Proof: Let P = (H1] H2; S; �; e) and let P 0 = (H1; S; �; e) such that P
trace
7�! P 0. I

must show P evaluates to an integer answer i� P 0 evaluates to the same integer. Suppose

P 0 + (H; []; �0; return x) and �0(x) = i. By induction on the number of rewriting steps

using the Postponement Lemma, I can show that P + (H] H2; []; �
0; return x), and

clearly �0(x) = i.

Now suppose P + (H; []; �0; x) and �0(x) = i. By induction on the number of rewriting

steps using the Diamond Lemma, we know that there exists a P 00 such that P 0 + P 00 and

and P 00 trace7�! (H; []; �0; return x). Thus, P 00 = (H]H 0; []; �0; return x) and �0(x) = i and

both P and P 0 compute the same answer. 2

This theorem shows that a single application of tracing collection results in a Kleene-

equivalent program. A real implementation interleaves garbage collection with evalua-

tion. Let R stand for the standard set of rewriting rules (see Figure 7.3) and let T stand

for this set with the tracing garbage collection rule. The following theorem shows that

evaluation under R and T is equivalent.

CHAPTER 7. TYPES AND GARBAGE COLLECTION 135

Theorem 7.2.7 For all P , P +R (H; []; �; return x) i� P +T (H 0; []; �; return x).

Proof: Clearly any evaluation under the R rules can be simulated by the T rules

simply by not performing any collection steps. Now suppose P +T (H1; []; �1; return x1)

and �1(x1) = i. Then there exists a �nite rewriting sequence using T as follows:

P
T
7�! P1

T
7�! P2

T
7�! � � �

T
7�! (H1; []; �1; return x1)

I can show by induction on the number of rewriting steps in this sequence, using the

Postponement Lemma, that all garbage collection steps can be performed at the end of

the evaluation sequence. This provides us with an alternative evaluation sequence where

all the R steps are performed at the beginning:

P
R
7�! P 0

1
R
7�! P 0

2
R
7�! � � �

R
7�! P 0

n

trace
7�!

Pn+1
trace
7�! Pn+2

trace
7�! � � �

trace
7�! (H1; []; �1; return x1)

Since collection does not a�ect the expression part of a program and only removes bind-

ings from the heap, P 0
n = (H1]H2; []; �1; return x1) for some H2. Therefore, P +R P 0

n.

Thus, any evaluation under T can be simulated by an evaluation under R. 2

Finally, I can prove that tracing garbage collection is optimal with respect to my

de�nition of garbage in the sense that it can collect as much garbage as any other collector

can.

Theorem 7.2.8 (Tracing Collection Optimal) If P 0 is a collection of a well-typed

program P , then P
trace
7�! P 0.

Proof: Let P = (H]H 0; S; �; e) and suppose P 0 = (H;S; �; e) is a collection of P . By

the de�nition of heap garbage, P 0 is well-typed. Hence, P 0 is closed and FLprog(P
0) = ;.

Thus P
trace
7�! P 0. 2

7.3 Type-Directed Garbage Collection

In the previous section, I gave a speci�cation for tracing garbage collection as a rewriting

rule and showed that this new rewriting rule did not e�ect a program's evaluation. How-

ever, the rewriting rule is simply a speci�cation and not an algorithm for computing a

collection of a program. It assumes some mechanism for partitioning the set of bindings

in the heap into two disjoint pieces, such that one set of bindings is unreachable from the

second set of bindings and the rest of the program. Real garbage collection algorithms

CHAPTER 7. TYPES AND GARBAGE COLLECTION 136

need a deterministic mechanism for generating this partitioning. In this section I formu-

late an abstract version of such a mechanism, the tracing garbage collection algorithm,

by lifting the ideas of mark/sweep and copying collectors to the level of program syntax.

The basic idea behind an algorithm for tracing garbage collectors is to calculate the

set of locations accessible from the current context (i.e., the environment and stack).

These locations must be preserved to keep the program closed. Next, for each location

that has been preserved, we examine the heap value to which this location is bound.

Each location within this heap value must also be preserved. We iterate this process

until all locations in the heap have been classi�ed as accessible or inaccessible.

How do we calculate the set of locations within an environment or stack or heap

value? One approach is to deconstruct the object in question based on its abstract

syntax and simply �nd all of the \l" objects. However, this requires that the distinctions

between syntactic classes remain apparent at runtime. That is, we must be able to tell

l objects from f and i and hi objects and we must be able to break tuples and closures

into their components, determine which components are l objects, etc. Fundamentally,

this is a parsing problem: To deconstruct an object to �nd its location components, we

must leave enough markers or tags in the representation of objects to determine what

the components of the object are.

Tagging objects directly is unattractive because it can cost both space and time dur-

ing computation. For example, if we tag integer and
oating point values so that we

can tell them from locations, then we can no longer directly use the machine's primitive

operations, such as addition, to implement our primitive integer and
oating point op-

erations. Instead, we must strip the tag(s) from the value, apply the machine operation,

and then tag the result.

An alternative approach to tagging values is to use types to guide the process of

�nding the locations in an object. In particular, by the Canonical Forms Lemma, we

know that if we have an answer of the form (H;S; �; return x) of type h�1 � �2i, then x

is bound to some location l in �. Furthermore, we know that H(l) is de�ned and is of

the form hv1; v2i. If �i is a tuple type, code type, or arrow type, then we know that vi
is a location. In this fashion, given the type of an object in the heap, we can extract all

the locations in that object.

Extracting locations from closures requires a bit more cooperation from the imple-

mentation. In particular, we must assume that all closures provide su�cient information

for �nding their environment components and the type of the environment. However,

once this information is in hand, we can use the type of the environment argument of

the code to determine all of the locations that are in the closure's environment.

I formalize the process of extracting locations based on types as follows. First, I de�ne

a subset of types corresponding to heap values:

(pointer types) � ::= h�1 � �2i j code(�env; �) j �1 ! �2

CHAPTER 7. TYPES AND GARBAGE COLLECTION 137

Next, I construct a partial function, TLhval, that maps a location, a pointer type, and a

heap to a location type assignment. I use TL to remind the reader that we are extracting

a set of Typed Locations. Since code heap values never have free locations, the de�nition

of TLhval at code types is simply the empty type assignment:

TLhval[l:code(�env; �); H] = ;

The free locations of a tuple are those components whose types are pointer types.

TLhval[l:h�1 � �2i; H] fl=hv1; v2ig] = fv1:�1g [fv2:�2g

TLhval[l:h�1 � �2i; H] fl=hv1; v2ig] = fv1:�1g

TLhval[l:h�1 � �2i; H] fl=hv1; v2ig] = fv2:�2g

TLhval[l:h�1 � �2i; H] fl=hv1; v2ig] = ;

The free locations of a closure include the location bound to the code and possibly the

environment value. To determine if the environment is a location and to determine its

type, we must look at the type ascribed to the environment argument of the code. If

this type is a pointer type �, then the environment component of the closure must be a

location whose contents are described by �.

TLhval[l:�1 ! �2; H] = flcode:code(�; �1 ! �2); venv:�g

when H(l) = hhlcode; venvii

and H(lcode) = vcode[xenv:�; x:�1]:e:

Otherwise, if the type of the environment argument is not a pointer type, then the

environment of the closure is not a location and thus only the code pointer is in the

resulting type assignment:

TLhval[l:�1 ! �2; H] = flcode:code(�env; �1 ! �2)g

when H(l) = hhlcode; venvii

and H(lcode) = vcode[xenv:�env; x:�1]:e

The following lemma shows that TLhval[l:	(l); H] is always de�ned and consistent

with 	 whenever 	 describes the contents of the heap H. Thus, if we know the type

of some location, then we can always extract the pointers contained in the heap value

bound to that location.

Lemma 7.3.1 (Canonical Heap Values) If `heap H :]fl:�g, then TLhval[l:�;H] =

	h for some 	h and 	h �] fl:�g.

CHAPTER 7. TYPES AND GARBAGE COLLECTION 138

Proof (sketch): By examination of the heap, heap value, and small value typing rules.

2

The TLhval function provides the functionality that we need to keep a garbage collector

running. All that remains is to extract the locations and their types from the stack and

environment of a program.

TLenvfx1:�1=v1; � � � ; xn:�n=vng] = [ni=1fvi:�i j 9�:�i = �g

TLstack([]) = ;

TLstack(S[�; �x:�: e]) = TLstack(S) [TLenv(�)

With these functions in hand, I can now construct an algorithm that �nds all of the

locations that must be preserved in a program. The algorithm is formulated as a rewriting

system between triples consisting of a heap, a location type assignment, and another heap,

(Hf ;	; Ht). In traditional garbage collection terminology, the �rst heap is termed the

\from-heap" or \from-space", the location type assignment is called the \scan-set" or

\frontier", and the second heap is called the \to-heap" or \to-space".

Initially, the from-space contains all of the bindings from the program's heap; when

the algorithm terminates, it contains those bindings that do not need to be preserved.

Correspondingly, the to-space is initially empty; when the algorithm terminates, it con-

tains all of the bindings that must be preserved. During each step of the algorithm,

the scan-set contains the locations and their types that are bound in the from-space but

are immediately reachable from the to-space. The scan-set is initialized by �nding the

locations in the current environment and stack.

The body of the algorithm proceeds as follows: a location l of type � is removed from

	. If l is bound in the from-space to a heap value, then we use TLhval[l:�;H] to extract

the locations contained in H(l), where H is the union of the from- and to-spaces. For

each such location l0, we check to see if l0 has already been forwarded to the to-set Ht.

Only if l0 is not bound in Ht do we add the location and its type to the scan-set 	.

This ensures that a variable moves at most once from the from-space to the scan-set. I

formalize this process via the following rewriting rule:

(Hf] fl=hg;	s] fl:�g; Ht)) (Hf ;	s [
0
s; Ht] fl=hg)

where 	0
s = fl

0:�0 2 TLhval[l:�;Hf] fl=hg]Ht] j l
0 62 Dom(Ht)] flgg

Once the scan-set becomes empty, the algorithm terminates and the to-space is taken as

the new, garbage-collected heap of the program, while the from-space is discarded. The

initialization and �nalization steps are captured by the following inference rule:

(H; TLenv(�) [TLstack(S); ;))
� (Hf ; ;; Ht)

(H;S; �; e)
tr-alg
7�! (Ht; S; �; e)

CHAPTER 7. TYPES AND GARBAGE COLLECTION 139

To prove the correctness of this garbage collection algorithm, it su�ces to show that,

whenever P
tr-alg
7�! P 0, then P

trace
7�! P 0, since I have already shown that the tracing garbage

collection speci�cation is correct. However, to ensure that we have a proper algorithm, I

must also show that there always exists some P 0 such that P
tr-alg
7�! P 0. That is, I must

show that the algorithm does not get stuck.

I begin by establishing a set of invariants, with respect to the original program, that

are to be maintained by the algorithm. I note that if a program P = (H;S; �; e) is well-

typed, then there is a unique location type assignment 	P , variable type assignment �P ,

and unique types �P and � 0P such that: ; `heap H : 	P , 	P `stack �
0
P ! �P , 	P `env � : �P

and �P `exp e : �
0
P . Hence, for a well-typed P , I write 	P , �P , �P , and � 0P to represent

these respective objects.

De�nition 7.3.2 (Well-Formedness) Let P = (H;S; �; e) be a well-typed program.

The tuple (Hf ;	s; Ht) is well-formed with respect to P i�, taking 	t = fl:	P (l) j l 2

Dom(Ht)g and 	f = fl:	P (l) j l 2 Dom(Hf)g:

1. Hf]Ht = H

2. 	s � 	f

3. 	s]	t `stack S : � 0P ! �P

4. 	s]	t `env � : �P

5. 	s `heap Ht : 	t.

Roughly speaking, the invariants ensure that: (1) all of the heap bindings are ac-

counted for in either the from-space or the to-space and these two spaces are disjoint, (2)

the scan-set types some of the locations in the from-space and these types are consistent

with the rest of the program, (3) the scan-set coupled with the types of locations in the

to-space allow us to type the stack appropriately, (4) the scan-set coupled with the types

of locations in the to-space allow us to type the environment appropriately, and (5) the

scan-set allows us to type the to-space appropriately. The following lemma shows that

these invariants are preserved by the algorithm.

Lemma 7.3.3 (Preservation) If `prog P : �P , (Hf ;	s; Ht) is well-formed with respect

to P and (Hf ;	s; Ht)) (H 0
f ;	

0
s; H

0
t), then (H 0

f ;	
0
s; H

0
t) is well-formed with respect to

P .

Proof: Suppose (Hf] fl=hg;	s] fl:�g; Ht) is well-formed with respect to P =

(H;S; �; e) and suppose (Hf] fl=hg;	s] fl:�g; Ht)) (Hf ;	s]	
0
s; Ht] fl=hg) where

	0
s = fl

0:� 0 2 TLhval[l:�;Hf] fl=hg]Ht] j l
0 62 Dom(Ht)g.

CHAPTER 7. TYPES AND GARBAGE COLLECTION 140

By condition (1), H = (Hf] fl=hg)]Ht thus, H = Hf] (Ht] fl=hg).

By condition (2), we know that l:� 2 	P and 	s � 	P . By the Canonical Heap

Values Lemma, TLhval[�](h) � 	P . Hence, 	
0
s � 	s] 	

0
s � 	P .

By conditions (3) and (4), taking 	 = (s] fl:�g)] 	t, we know that 	 `stack S :

� 0P ! �P and 	 `env � : �P . By condition (2) we know that l:� 2 	P . Thus, 	t] fl:�g

is well-formed and taking 	0 = (s [
0
s)] (t] fl:�g), we have 	

0 `stack S : � 0P ! �P
and 	0 `env � : �P .

By condition (5), 	s]fl:�g `heap Ht : 	t. I must show (s[
0
s) `heap Ht]fl=hg : 	

0
t

where 	t]fl:�g. By the Canonical Heap Values Lemma, TLhval[l:�;H] `hval h : � , where

H = Hf] fl=hg]Ht. Hence, (s [
0
s)]	t `hval h : � . Thus, by the heap typing rule,

(s [
0
s) `heap Ht] fl=hg : 	t] fl:�g. 2

The following lemma shows that at each step in the algorithm, either the scan-set is

empty | in which case the algorithm is �nished | or else the algorithm can step to a

new state.

Lemma 7.3.4 (Progress) If `prog P : �P and (Hf ;	s; Ht) is well-formed with respect

to P , then either 	s is empty or else (Hf ;	s; Ht)) (H 0
f ;	

0
s; H

0
t) for some (H 0

f ;	
0
s; H

0
t).

Proof: Suppose 	s contains the binding l:� and let H = Hf]Ht. First, I must show

that l is bound to some heap value in Hf and that heap value has a shape described by

� . By the second requirement of well-formedness and the de�nition of 	f , we know that

	f(l) = 	P (l) = � . Since `heap H : 	P , by the Canonical Heap Values Lemma, we know

that H(l) = h for some h, TLhval[l:�;H] = 	h, and 	h � 	P . By the de�nition of 	f

and the �rst requirement of well-formedness, the binding l=h must be in Hf .

Taking 	00
s = fl

0:� 0 2 	h j l
0 62 Dom(Ht)g, I must now show that (s n fl:�g) [

00
s

is a valid location type assignment. But since 	h � 	P , then 	00
s � 	P . By the second

requirement of well-formedness, 	s � 	f � 	P , so (s n fl:�g) [
00
s is well formed as a

subset of 	P .

Finally, since Hf and Ht are disjoint but cover H, l cannot be bound in Ht and hence

Ht] fl=hg is well-formed. Thus, taking H 0
f = Hf n fl=hg, 	

0
s = 	s n fl:�g [

00
s , and

H 0
t = Ht] fl=hg, we know that (Hf ;	s; Ht)) (H 0

f ;	
0
s; H

0
t). 2

With the Preservation and Progress Lemmas in hand, I can establish the correctness

of the algorithm.

Theorem 7.3.5 (Tracing Algorithm Correctness) If P is well-typed, then there ex-

ists a P 0 such that P
tr-alg
7�! P 0 and P ' P 0.

Proof: Let P = (H;S; �; e). First, I must show that (H; TLenv(�) [TLstack(S); ;)

exists and is well-formed with respect to P . Since the to-space is empty, conditions one

CHAPTER 7. TYPES AND GARBAGE COLLECTION 141

and �ve of well-formedness are trivially satis�ed. By the env typing rule, it is clear that

TLenv(�) exists and is a subset of 	P . By the stack typing rules and the env typing rule,

it is clear that TLstack(S) exists and is a subset of 	P . Hence, TLenv(�) [TLstack(S) is

a well-formed location type assignment that is a subset of 	P . Furthermore, it is clear

that all of the free locations in both the stack and environment are contained in this

location type assignment. Hence, conditions two, three, and four are satis�ed and the

initial tuple is well-formed with respect to P .

Since (H; TLenv(�) [TLstack(S); ;) is well-formed, by progress, the algorithm will

continue to run until the scan-set is empty, at which point the algorithm terminates

in the state (Hf ; ;; Ht). By preservation, we know that this tuple is well-formed with

respect to P . Hence, we know that, taking 	t = fl:� j l 2 	Pg, 	t `stack S : [� 0P]! �P ,

	t `env � : �P , and `heap Ht : 	t. Consequently, the program P 0 = (Ht; S; �; e) is

closed and thus P
trace
7�! P 0. By the correctness of the tracing speci�cation, we know that

P ' P 0. Thus, P 0 is a collection of P . 2

Finally, the tracing algorithm that I have presented is optimal with respect to my

de�nition of garbage.

Theorem 7.3.6 Let P
tr-alg
7�! (H1; S; �; e). If (H2; S; �; e) is a collection of P then H1 �

H2.

Proof: By theorem 7.2.8, it su�ces to show that if P
trace
7�! P 0 where P 0 = (H2; S; �; e),

then H1 � H2. Let l=h be a binding in H1. I must show that this binding is also in

H2. I do so by analyzing how l is placed in the scan set and hence forwarded from the

from-space to the to-space during the execution of the tracing algorithm.

If l is placed in the initial scan-set, then l occurs free in either the range of � or else

the range of the environment of some closure on the stack. Hence, l must be bound in

H2 to keep P 0 closed.

Suppose l is is placed in the scan-set because it is found via TLhval[�
0](h) for some

l0:� 0 already in the scan-set. The binding, l0=h0 is forwarded to the to-space. Therefore,

h0 is in the range of H2. But then FLhval(h
0) contains l. Thus, for P 0 to be closed, H2

must contain the binding for l. 2

7.4 Generational Collection

The tracing garbage collection algorithm I presented in the previous section examines

all of the reachable bindings in the heap to determine that the rest of the bindings may

be removed. By carefully partitioning the heap into smaller heaps, a garbage collector

can scan less than the whole heap and still free signi�cant amounts of memory. A

CHAPTER 7. TYPES AND GARBAGE COLLECTION 142

generational partition of a program's heap is a sequence of sub-heaps ordered in such a

way that \older" generations never have pointers to \younger" generations.

De�nition 7.4.1 (Generational Partition) A generational partition of a heap H is

a sequence of heaps H1; H2; : : : ; Hn such that H = H1]H2] � � �]Hn and for all i such

that 1 � i < n, FLheap(Hi) \ Dom(Hi+1]Hi+2] � � �]Hn) = ;. The Hi are referred to

as generations and Hi is said to be an older generation than Hj if i < j.

Given a generational partition of a program's heap, a tracing garbage collector can

eliminate a set of bindings in younger generations without looking at any older genera-

tions.

Theorem 7.4.2 (Generational Collection) Let H1; : : : ; Hi; : : : ; Hn be a generational

partition of the heap of P = (H;S; �; e). Suppose Hi = (H1
i] H2

i) and Dom(H2
i) \

FLprog(H
1
i]Hi+1] � � �]Hn; S; �:�; e) = ;. Then P

trace
7�! (H nH2

i ; S; �; e).

Proof: I must show that Dom(H2
i)\FLprog(H nH

2
i ; S; �; e) = ;. Since H1; � � � ; Hn is a

generational partition of H, for all j, 1 � j < i, FLheap(Hj)\Dom(Hj+1]� � �]Hn) = ;.

Hence, FLheap(H1] � � �]Hi�1) \ Dom(H2
i) = ;. Now,

FLprog(H nH
2
i ; S; �; e) \Dom(H2

i)

= (FLheap(H nH
2
i) [FLstack(S) [FLenv(�) [FLexp(e)) \ Dom(H2

i)

= (FLheap(H1] � � �]Hi�1) [FLheap(H
1
i] � � �]Hn)[

FLstack(S) [FLenv(�) [FLexp(e)) \Dom(H2
i)

= (FLheap(H1] � � �]Hi�1) \ Dom(H2
i))[

((FLheap(H
1
i] � � �]Hn) [FLstack(S) [FLenv(�) [FLexp(e)) \ Dom(H2

i))

= ; [((FLheap(H
1
i] � � �]Hn) [FLstack(S) [FLenv(�) [FLexp(e)) \ Dom(H2

i))

= FLprog(H
1
i] � � �]Hn; S; �; e) \Dom(H2

i)

= ;

2

Generational collection is important for three practical reasons: �rst, evaluation of

programs makes it easy to maintain generational partitions.

Theorem 7.4.3 (Generational Preservation) Let P = (H;S; �; e) be a well-typed

program. If H1; : : : ; Hn is a generational partition of H and P 7�! (H]H 0; S; �; e), then

H1; : : : ; Hn; H
0 is a generational partition of H]H 0.

Proof: The only evaluation rules that modify the heap are the rules that allocate tuples

and closures. The other rules leave the heap intact and hence preserve the partition

trivially. Since the allocation rules only add a binding to the heap and do not modify the

CHAPTER 7. TYPES AND GARBAGE COLLECTION 143

rest of the heap, all I must show is that there are no references in the older generations to

this new location. But this must be true since a new location is chosen for the allocated

heap value. 2

Clearly, the addition of certain language features such as assignment or memoization

breaks the Generational Preservation Theorem. The problem with these features is that

bindings in the heap can be updated so that a heap value in an older generation contains

a reference to a location in a younger generation. It is possible to maintain a generational

partition for such languages by keeping track of all older bindings that are updated and

by moving them from the older generation to a younger generation. The mechanism that

tracks updates to older generations is called a write barrier. Wilson's overview provides

many examples of techniques used to implement write barriers [128].

The second reason generational collection is important is that, given a generational

partition, we can directly use the tracing collection algorithm to generate a generational

collection of a program.

The following generational collection rule starts simply forwards the entire older gen-

eration at the beginning of the algorithm and then processes the younger generation.

H1;H2 a generational partition

(H2; fl:� 2 TLstack(S) [TLenv(�) j l 62 Dom(H1)g; H1)) (Hf ; ;; H1]H
0
2)

(H1]H2; S; �; e)
gen-alg
7�! (H1]H

0
2; S; �; e)

The rule's soundness follows directly from the Generational Collection Theorem, as well

as the soundness of the tracing collection algorithm.

The third reason generational collection is important is that empirical evidence shows

that \objects tend to die young" [120]. That is, recently allocated bindings are more likely

to become garbage in a small number of evaluation steps. Thus, if we place recently

allocated bindings in younger generations, we can concentrate our collection e�orts on

these generations, ignoring older generations, and still eliminate most of the garbage.

7.5 Polymorphic Tag-Free Garbage Collection

In this section, I show how to apply type-based, tag-free garbage collection to a �MLi -based

language called �MLi -GC. It is possible to give a low-level operational semantics for �MLi

in the style of Mono-GC, where environments and the stack are made explicit. However,

the type structure of �MLi is considerably more complex than for Mono-GC, and as a

result, proving even relatively basic properties, such as type preservation, is considerably

more di�cult than in the simply-typed setting. Consequently, I use a somewhat higher-

level semantics to describe evaluation of �MLi -GC programs. This semantics is a cross

between the contextual rewriting semantics used in earlier chapters and the allocation

CHAPTER 7. TYPES AND GARBAGE COLLECTION 144

(kinds) � ::=
 j �1 ! �2

(con) � ::= (� :: �)

(raw con) � ::= t j u j Arrow(�1; �2) j �t::�:� j �1 �2 j Typerec � of (�i;�a)

(small con) u ::= l j Int

(heap con) q ::= Arrow(u1; u2) j �t::�:�

(con heap) Q ::= fl1=q1; � � � ; ln=qng

(types) � ::= T (�) j int j �1 ! �2 j 8t::�:�

(norm types) & ::= int j �1 ! �2 j 8t::�:�

(exp) e ::= x j (v : &) j (r : �)

(raw exp) r ::= �x:�:e j e1 e2 j �t::�:e j e [�] j typerec � of [t:�](ei; ea)

(small val) v ::= i j l

(heap val) h ::= �x:�:e j �t::�:e

(val heap) H ::= fl1=h1; � � � ; ln=hng

(program) P ::= (Q;H; e)

(answer) P ::= (Q;H; v:&)

Figure 7.7: Syntax of �MLi -GC

semantics of Mono-GC. Heaps are left explicit, but the stack and environments are

implicitly represented by evaluation contexts and meta-level substitution of small values

for variables. The resulting system abstracts enough details that proofs are tractable,

yet exposes the key issues of tag-free collection.

7.5.1 �
ML

i
-GC

The syntax of �MLi -GC is given in Figure 7.7. Programs consist of two heaps and an

expression. The Q heap maps locations to constructor heap values, whereas the H

heap maps locations to expression heap values. In practice, one heap su�ces for both

constructors and expressions, but making a distinction simpli�es the static semantics for

the language. I assume that the constructor heap of a program contains no cycles (this

is re
ected in the static semantics below), but make no such assumption regarding the

expression heap. The expression of the program can refer directly to locations bound in

the heaps, instead of indirecting through an environment. As with Mono-GC, I consider

CHAPTER 7. TYPES AND GARBAGE COLLECTION 145

programs to be equivalent up to reordering and �-conversion of locations bound in the

heap and variables bound in constructors and expressions.

Each raw constructor � is labelled with its kind, and almost all raw expressions

are labelled with types. This information corresponds to the kind or type information

that would be present on bound variables of a let-expression in an A-normal form.

By labelling nested computations with kind or type information at compile time, we

e�ectively assign kinds/types to any intermediate values allocated during computation.

Constructor values and expression values in the heaps are not paired with summary kind

or type information; this information is recovered during garbage collection from the

information labelling computations.

During garbage collection, we need to determine shape information concerning values

found in computations from the kinds and types labelling these values. Unfortunately,

it is not always possible to determine an expression value's shape from its type. In

particular, if the type is of the form T (�) where � is some constructor computation,

then we must \run" the computation to reach at least a head-normal form, either Int or

Arrow(�1; �2), in order to determine the shape of the object
2. But running this construc-

tor computation during garbage collection is problematic because the computation may

need to allocate values. It seems as though to free storage, we must garbage collect, but

to garbage collect, we might need to allocate more storage.

The solution to this problem is to \run" the necessary constructors within types

during evaluation and ensure that all needed types are always in head-normal form when

garbage collection is invoked. This constraint is re
ected in the syntax of �MLi -GC by the

fact that only & types (types in head-normal form) can label small values. The evaluation

rules for �MLi -GC (see below) ensure that this constraint is maintained at all times. In

particular, small values and their normalized type labels are substituted for free variables

during evaluation. In the TIL compiler (see Chapter 8), this constraint is maintained by

explicitly reifying type computations and by labelling variables of unknown shape with

a rei�ed type. If �MLi did not have a phase distinction between types and terms (i.e., if

types were dependent upon terms in some fashion), then we could not guarantee that all

needed types would be computed before garbage collection was invoked.

Figure 7.8 gives the evaluation contexts and instructions for the constructors, types,

and terms of �MLi -GC, and Figures 7.9, and 7.10 give the rewriting rules for the language.

As in Mono-GC, large values are allocated on the heap and replaced with a reference to

the appropriate location. Unlike Mono-GC, I use evaluation contexts to determine the

next instruction instead of relying upon an A-normal form to provide explicit sequencing

and a stack to represent the continuation. Furthermore, I use meta-level substitution

of small values for variables at function application, instead of installing these values in

2Head-normal forms are not always su�cient to determine shape. For example, components of pair

types must also be normalized so that we can determine which components of the pair are locations.

CHAPTER 7. TYPES AND GARBAGE COLLECTION 146

(con ctxt) U ::= [] j (N :: �)

(raw ctxt) N ::= Arrow(U; �) j Arrow(u::�; U) j U � j (u::�)U j

Typerec U of (�i;�a)

(con instr) J ::= Arrow(u1::�1; u2::�2) j �t::�:� j (l::�1) (u2::�2) j

Typerec (u::�) of (�i;�a)

(type instr) K ::= T (u::�) j T (U [J ::�])

(exp ctxt) E ::= [] j (R : �)

(raw ctxt) R ::= E e j (l:&)E j E [�]

(exp instr) I ::= (�x:�:e) : K j (�x:�:e) : & j (�t::�:e) : & j ((l:&) (v:& 0)) : � j

((l:&)U [J ::�]) : � j ((l:&) [u::�]) : � j

(typerec U [J ::�] of [t:�0](ei; ea)) : � j

(typerec (u::�) of [t:�0](ei; ea)) : � j

Figure 7.8: �MLi -GC Evaluation Contexts and Instructions

an environment. This avoids the need to assume closure conversion, greatly simplifying

both the dynamic and static semantics for the language.

Note that evaluation of �-expressions at the term level proceeds in two stages: �rst,

the type labelling the expression is evaluated. Second, the �-expression is bound to a

new location on the heap and is replaced with this location within the expression. There

is no need to evaluate the type labelling a �-expression, since this type must always

begin with 8 and hence is already in head-normal form. The rest of the rewriting rules

are fairly standard and re
ect the left-to-right, call-by-value evaluation strategy of the

language.

It is fairly easy to see that evaluation of �MLi -GC programs preserves the cycle-freedom

of the constructor heap and that, given a cycle-free expression heap, evaluation preserves

cycle-freedom.

7.5.2 Static Semantics of �ML
i

-GC

In the description of the static semantics for �MLi -GC, I use the following meta-variables

to range over various sorts of assignments, mapping variables or locations to kinds and

CHAPTER 7. TYPES AND GARBAGE COLLECTION 147

1: (Q;Arrow(u1::�1; u2::�2) :: �) 7�! (Q] fl=Arrow(u1; u2)g; l::�)

2: (Q; (�t::�1:�) :: �) 7�! (Q] fl=�t::�1:�g; l::�)

3: (Q; (l::�1) (u::�2)) 7�! (Q; fu=tg�) (Q(l) = �t::�:�)

4: (Q; (Typerec (Int::�0) of (�i;�a)) :: �) 7�! (Q; �i)

5: (Q; (Typerec (l::�0) of (�i;�a)) :: �) 7�!

(Q; ((((�a (u1::
) ::
! �! �! �)

(u2::
) :: �! �! �)

(Typerec (u1::
) of (�i;�a) :: �) :: �! �)

(Typerec (u2::
) of (�i;�a) :: �)) :: �) (Q(l) = Arrow(u1; u2))

6:
(Q; J ::�) 7�! (Q0; �)

(Q;U [J ::�]) 7�! (Q0; U [�])

7: (Q; T (Int::�)) 7�! (Q; int)

8: (Q; T (l::
)) 7�! (Q; T (u1::�1)! T (u2::�2)) (Q(l) = Arrow(u1; u2))

9:
(Q; J ::�) 7�! (Q0; �)

(Q; S[T (U [J ::�])]) 7�! (Q0; S[T (U [�])])

Figure 7.9: �MLi -GC Constructor and Type Rewriting Rules

CHAPTER 7. TYPES AND GARBAGE COLLECTION 148

10:
(Q;K) 7�! (Q0; �)

(Q;H; (�x:�0:e) : K) 7�! (Q;H; (�x:�0:e) : �)

11: (Q;H; (�x:�:e) : &) 7�! (Q;H] fl=�x:�:eg; l:&)

12: (Q;H; (�t::�:e) : &) 7�! (Q;H] fl=�t::�:eg; l:&)

13: (Q;H; ((l:&1) (v:&)) : �) 7�! (Q;H; f(v:&)=xge) (H(l) = �x:�0:e)

14:
(Q;U [J ::�]) 7�! (Q0; U [�])

(Q;H; ((l:&)U [J ::�]) : �) 7�! (Q0; H; ((l:&)U [�]) : �)

15: (Q;H; ((l:&1) (u::�)) : �) 7�! (Q;H; fu=tge) (H(l) = �t::�:e)

16:
(Q;U [J ::�]) 7�! (Q0; U [�])

(Q;H; (typerec U [J ::�] of [t:�0](ei; ea)) : �) 7�!

(Q0; H; (typerec U [�] of [t:�0](ei; ea)) : �)

17: (Q;H; (typerec (Int::�] of [t:�0](ei; ea)) : �) 7�! (Q;H; ei)

18: (Q;H; (typerec (l::�) of [t:�0](ei; ea)) : �) 7�!

(Q;H; ((((((ea (u1::
)) : 8t2::
:fu1=tg�
0 ! ft2=tg�

0 ! �)

(u2::
)) : fu1=tg�
0 ! fu2=tg�

0 ! �

((typerec (u1::
) of [t:�0](ei; ea)) : fu1=tg�
0) : fu2=tg�

0 ! �))

((typerec (u2::
) of [t:�0](ei; ea)) : fu2=tg�
0)) : �) (Q(l) = Arrow(u1; u2))

19:
(Q;H; I : �) 7�! (Q0; H 0; e)

(Q;H;E[I : �]) 7�! (Q0; H 0; E[e])

Figure 7.10: �MLi -GC Expression Rewriting Rules

CHAPTER 7. TYPES AND GARBAGE COLLECTION 149

types:
(variable kind assignment) � ::= ft1::�1; � � � ; tn::�ng

(variable type assignment) � ::= fx1:�1; � � � ; xn:�ng

(location kind assignment) � ::= fl1::�1; � � � ; ln::�ng

(location type assignment) 	 ::= fl1:&1; � � � ; ln:&ng

In addition I use � to range over maps from locations to both kinds and heap constructor

values:

� ::= fl1::�1=q1; � � � ; ln::�n=qng

Given an assignment �, I use Q� and �� to represent the heap and location kind assign-

ment implicit in �.

The formation judgments for �MLi -GC are as follows:

1: �;� ` � :: � constructor formation

2: � ` q :: � constructor heap value formation

3: � ` Q :: �0 constructor heap formation

4: � ` � kind and constructor assignment formation

5: �;� ` � type formation

6: � ` 	 location type assignment formation

7: �;� ` � variable type assignment formation

8: �;	;�; � ` e : � expression formation

9: �;	 ` h : � heap value formation

10: �;	0 ` H : 	 heap formation

11: ` (Q;H; e) : � program formation

The axioms and inference rules that allow us to derive these judgments are largely stan-

dard, so I will only provide a high-level overview. For judgments 1{7, � tracks the kind of

all free locations in the given constructor, constructor heap value, constructor heap, type,

or assignment. For constructors and types, � tracks the kind of free type variables. The

lack of � in the judgments 3{4 indicates that there can be no free type variables, only

free locations within constructor heaps. Constructor heap formation consists of an axiom

and an inference rule that allow us to construct heaps inductively, thereby ensuring the

heap has no cycles:

� ` ; : ;
�0 ` Q :: � �0] � ` q :: �

�0 ` Q] fl=qg :: �] fl::�g

A kind and constructor assignment � is well-formed with respect to � if � ` Q� :: ��.

Judgments 8{9 require more information than simply the kinds of free locations. This

is because we must treat constructor locations as transparent type variables in order to

CHAPTER 7. TYPES AND GARBAGE COLLECTION 150

recover the same de�nitional equivalence that we have in a totally substitution-based

semantics. For example, if l1 is bound to Arrow(u1; u2), then we must consider l1 to

be equivalent to Arrow(u1; u2). Therefore, equivalence of both constructors and types is

given with respect to a kind and constructor assignment �:

12: �;� ` � � �0 :: � constructor equivalence

13: �;� ` � � �0 type equivalence

The axioms and inference rules that allow us to conclude two constructors or types are

equivalent are standard (see Chapter 3) with the addition of two axioms governing the

transparency of locations:

�] fl::
=Arrow(u1; u2)g; � ` l::
 � (Arrow(u1::
; u2::
)::
) ::

�] fl::�=�t::�0:�g; � ` l::� � ((�t::�0:�)::�) :: �

I claim that orienting these equivalences to the right yields a reduction system for con-

structors (and hence types) that is both locally con
uent and strongly normalizing if �

has no cycles, which is true when � is well-formed. It should be fairly straightforward to

extend the proofs of Chapter 4 to show that this claim is true.

Judgment 11, program formation, is determined by the following rule:

; ` � �; ; ` H : 	

�;	; ;; ; ` e : �

` (Q�; H; e) : �

The rule requires that the constructor heap be well-formed and described by �, that the

expression heap be well-formed and described by 	 under the assumptions of �, and that

the expression be well-formed with type � under the assumptions � and 	. Note that

all components must be closed with respect to type and value variables.

Given unique normal forms for types, it is straightforward to de�ne a suitable notion of

normal derivation for �MLi -GC programs and hence show that type checking is decidable.

With the normal derivations in hand, it should be fairly straightforward to prove both

preservation and progress, as in Chapter 4.

Proposition 7.5.1 (Preservation) If ` (Q;H; e) : � and (Q;H; e) 7�! (Q0; H 0; e0),

then ` (Q0; H 0; e0) : �.

Proposition 7.5.2 (Progress) If ` P : �, then either P is an answer or else there

exists a P 0 such that P 7�! P 0.

CHAPTER 7. TYPES AND GARBAGE COLLECTION 151

7.5.3 Garbage Collection and �
ML
i

-GC

The de�nitions of garbage and garbage collection for �MLi -GC are essentially the same as

for Mono-GC, except that I want to eliminate garbage bindings in both the constructor

and the expression heaps. Assuming FL calculates all of the free locations of a program,

then the tracing collection speci�cation for �MLi -GC is simply:

FL(Q1; H1; e) = ;

(Q1]Q2; H1]H2; e)
trace
7�! (Q1; H1; e)

It is easy to prove the diamond and postponement lemmas hold with respect to this

trace step and any other rewriting rule of �MLi -GC. From this, we can conclude that the

tracing collection speci�cation is a sound garbage collection rule.

In the rest of this section, I will present a type-based, tag-free collection algorithm

and give a proof sketch that it is sound by showing that any garbage it collects can also

be collected by the tracing speci�cation.

Before giving the collection algorithm, I need to de�ne some auxiliary functions that

extract the range of the constructor and value environments of an abstraction. Since

�MLi -GC uses meta-level substitution, these environments are not immediately apparent.

Therefore, these auxiliary functions must deconstruct terms based on abstract syntax

to �nd these values. In a lower-level model, as with Mono-GC, where environments are

explicit, no such processing of terms is required.

The ConEnv function maps a constructor � to a location kind assignment �, by

extracting all of the locations (and their kinds) within the constructor:

ConEnv(t :: �) = ;

ConEnv(Int :: �) = ;

ConEnv(l :: �) = fl::�g

ConEnv(Arrow(�1; �2) :: �) = ConEnv(�1) [ConEnv(�2)

ConEnv((�t::�1:�) :: �) = ConEnv(�)

ConEnv((Typerec �1 of (�i;�a)) :: �) = ConEnv(�) [ConEnv(�i) [ConEnv(�a)

The TypeEnv function maps a type � to a location kind assignment �:

TypeEnv(T (�)) = ConEnv(�)

TypeEnv(int) = ;

TypeEnv(�1 ! �2) = TypeEnv(�1) [TypeEnv(�2)

TypeEnv(8t::�:�) = TypeEnv(�)

Finally, the ExpEnv function maps an expression e to both a location kind assignment

� and a location type assignment 	. In the de�nition of the function, I use h�1;	1i [

CHAPTER 7. TYPES AND GARBAGE COLLECTION 152

h�2;	2i to abbreviate h�1 [�2;	1 [2i.

ExpEnv(x) = h;; ;i

ExpEnv(v:int) = h;; ;i

ExpEnv(l:�1 ! �2) = hTypeEnv(�1 ! �2); fl:�1 ! �2gi

ExpEnv(l:8t::�:�) = hTypeEnv(�); fl:8t::�:�gi

ExpEnv((�x:�0:e) : �) = hTypeEnv(�) [TypeEnv(�0); ;i [ExpEnv(e)

ExpEnv((e1 e2) : �) = hTypeEnv(�); ;i [ExpEnv(e1) [ExpEnv(e2)

ExpEnv((�t::�:e) : �) = hTypeEnv(�); ;i [ExpEnv(e)

ExpEnv((e1 [�]) : �) = hTypeEnv(�) [ConEnv(�); ;i [ExpEnv(e)

ExpEnv((typerec � of [t:�0](ei; ea)) : �) =

hTypeEnv(�) [TypeEnv(�0) [ConEnv(�); ;i [ExpEnv(ei) [ExpEnv(ea)

Note that, once a small value is reached, we can use type information to determine the

shape of the value. For instance, when processing a small value v labelled with int,

we know that v must be an integer i. Hence, we continue to use type information to

determine the shape of small values and heap values, just as I did in the tag-free collection

of Mono-GC.

The following lemma shows that the ConEnv and TypeEnv functions extract appro-

priate kind assignments from well-formed constructors and types.

Lemma 7.5.3

1. If �;� ` (� :: �), then ConEnv(� :: �) = �0 for some �0 and �0 � � and �0; � `

(� :: �).

2. If �;� ` �, then TypeEnv(�) = �0 for some �0 and �0 � � and �0; � ` �.

Proof (sketch): Simple induction on � and �, using the syntax-directedness of the

formation rules. The fact that �0 � � ensures that the inductive hypotheses can be

unioned to form a consistent kind assignment. 2

The next lemma shows that we can strengthen the assumptions regarding the equiv-

alence of two constructors or two types, as long as the strengthened assumptions are

closed and cover the free locations of the constructors or types.

Lemma 7.5.4

1. If �;� ` �1 � �2 :: �, �0 � �, ; ` �0, ��0; � ` �1, and ��0 ; � ` �2, then

�0; � ` �1 � �2 :: �.

2. If �;� ` �1 � �2, �
0 � �, ; ` �0, ��0 ; � ` �1, and ��0 ; � ` �2, then �0; � ` �1 �

�2 :: �.

CHAPTER 7. TYPES AND GARBAGE COLLECTION 153

Proof (sketch): By induction on the derivation of �;� ` �1 � �2 :: � and �;� ` �1 �

�2. 2

Next, I argue that if e has type � under �;	;�; �, then ExpEnv(e) exists and is some

h�0;	0i \consistent" with � and 	. Here, consistent means that, if we start with a subset

of � containing all of the locations bound in �0, extend this subset so that it is closed

and covers all of the free locations in � and � yielding �0, then �0; 	0; �; � is su�cient

to show that e has type �.

Lemma 7.5.5 If �;	;�; � ` e : �, then ExpEnv(e) = h�0;	0i and:

1. �0 � ��,

2. 	0 � 	,

3. If �0 � �, such that Dom(�0) � Dom(�0), �� ` 	0, ��; � ` �, ��; � ` �, and

` �0, then �0; 	0; �; � ` e : �.

Proof (sketch): The proof proceeds by induction on e and relies upon the fact that each

typing derivation has a normal form that interleaves non-equiv rules with equiv rules.

The preconditions of part 3 coupled with the previous lemma are su�cient to show that,

for every application of the equiv step, the two types in question are equivalent under

the strengthened assumptions. Parts 1 and 2 are needed to show that the union of the

assumptions for the inductive hypotheses are well-formed contexts. 2

Using ConEnv, TypeEnv, and ExpEnv, I can now de�ne functions to extract the loca-

tions and their types or kinds from heap values based on kinds or types. The de�nitions

of these functions are similar to the various TL functions of Mono-GC, given in Section

7.3. The function KL is a partial function that takes a kind � and a constructor heap

value q and returns the set of free locations in q as well as their kinds.

KL[
](Arrow(u1; u2)) = ConEnv(u1::
) [ConEnv(u2::
)

KL[�1 ! �2](�t::�1:�) = ConEnv(�t::�1:�)

Similarly, the function TL is a partial function that takes a head-normal type & and a

heap value h and returns the set of free locations in h as well as their kinds or types.

TL[�1 ! �2](�x:�
0:e) = ExpEnv((�x:�0:e) : �1 ! �2)

TL[8t::�:�](�t::�:e) = ExpEnv((�t::�:e) : 8t::�:�)

As for Mono-GC, I express garbage collection as a set of rewriting rules between tuples.

I begin by de�ning a rewriting system that only operates on constructor heaps. For this

system, tuples are of the form (Qf ;�s; Qt) where Qf is the constructor from-space, �s

CHAPTER 7. TYPES AND GARBAGE COLLECTION 154

is the scan-set describing the kinds of all constructors in the from-space reachable from

the to-space, and Qt is the to-space. The rewriting rule for constructors is simply:

(Qf] fl=qg;�s] fl::�g; Qt)) (Qf ;�s [�
0
s; Qt] fl=qg)

where �0
s = fl

0::�0 2 KL[�](q) j l0 62 Dom(Qt)] flgg

If a location l, described by � is in the scan-set and l is bound to the heap value q in the

from-space, then we forward the binding l=q to the to-space and add any free location

in q and its kind to the scan-set, unless the location has already been forwarded to the

to-space.

The following de�nition gives the essential invariants of the constructor garbage col-

lection rewriting system:

De�nition 7.5.6 (Constructor GC Well-Formedness) (Qf ;�s; Qt) is well-formed

with respect to � i�:

1. ; ` Qf]Qt :: �,

2. �s � ��,

3. Dom(�s) � Dom(Qf),

4. �s ` Qt :: �t, where �t = fl::� 2 �� j l 2 Dom(Qt)g.

It is straightforward to prove that constructor well-formedness is preserved by the rewrit-

ing system and that progress is always possible for well-formed tuples.

Lemma 7.5.7 (Constructor GC Preservation) If T is well-formed with respect to

� and T) T 0, then T 0 is well-formed with respect to �.

Proof (sketch): Follows from the invariants and lemma 7.5.3 (1). The argument is

similar to the preservation argument for Mono-GC (see lemma 7.3.3). 2

Lemma 7.5.8 (Constructor GC Progress) If T = (Qf ;�s; Qt) is well-formed with

respect to �, then either �s is empty or else there exists a T 0 such that T) T 0.

Proof: Suppose �s = �0
s] fl::�g. By the second condition of well-formedness, we

know that ��(l) = �. By the third condition, we know that Qf = Q0
f] fl=qg for

some Q0
f and q. By the �rst condition, we know that �� ` q::�. Hence, KL[�](q)

is de�ned and by lemma 7.5.3, KL[�](q) � ��. Thus, �0
s [�00

s is well-formed where

�00
s = fl

0::�0 2 KL[�](q) j l0 62 Dom(Qt)]flgg. Therefore, T) (Qf ;�
0
s[�

00
s ; Qt]fl=qg).

2

CHAPTER 7. TYPES AND GARBAGE COLLECTION 155

Since the size of the from-space always decreases with each step, it is easy to see that

constructor garbage collection always terminates. The progress lemma tells us that the

collection never gets stuck and the preservation lemma tells us that at every step, the

resulting tuple is well-formed with respect to the given �.

The following lemma shows that constructor garbage collection is locally con
uent.

With the fact that constructor garbage collection always terminates, this implies that

constructor collection is con
uent. This tells us that, no matter what order we process

the constructors, we always get the same to-space at the end of a collection.

Lemma 7.5.9 (Constructor GC Local Con
uence) If T is well-formed with re-

spect to �, T) T1 and T) T2, then there exists a T 0 such that T1) T 0 and T2) T 0.

Proof: Suppose T = (Qf] fl1=q1; l2=q2g;�s] fl1::�1; l2::�2g; Qt), T1 = (Qf]

fl2=q2g;�s]fl2::�2g[�1; Qt]fl2=q2g) where �1 = fl
0::�0 2 KL[�1](q1) j l

0 62 Dom(Qt)]

fl1gg, and T2 = (Qf] fl1=q1g;�s] fl1::�1g [�2; Qt] fl2=q2g) where �2 = fl0::�0 2

KL[�2](q2) j l
0 62 Dom(Qt)] fl2gg. Let T

0 = (Qf ;�s [�
0
1 [�

0
2; Qt] fl1= 1q1; l2=q2g),

where �0
1 = fl

0::�0 2 �1 j l
0 6= l2g and �0

2 = fl
0::�0 2 �2 j l

0 6= l1g. Then it is easy to see

that both T1) T 0 and T2) T 0. 2

Lemma 7.5.10 If (Qf ;�s; Qt) and (Qf ;�s [�
0
s; Qt) are well-formed with respect to �,

then (Qf ;�s; Qt))
� (Q0

f ; ;; Q
0
t), (Qf ;�s [�

0
s; Qt))

� (Q00
f ; ;; Q

00
t), and Q0

t � Q00
t .

For expressions, the garbage collection rewriting rules operate on 6-tuples of the

form (Qf ; Hf ;�s;	s; Qt; Ht), where Qf and Hf are the constructor and expression from-

spaces, �s describes the constructors immediately reachable from Qt, Ht, and 	s, and

	s describes the heap values immediately reachable from Ht. There are two rewriting

rules at this level. The �rst rule simply uses the constructor rewriting rule to process a

constructor binding:

(Qf ;�s; Qt)) (Q0
f ;�

0
s; Q

0
t)

(Qf ; Hf ;�s;	s; Qt; Ht)) (Q0
f ; Hf ;�

0
s;	s; Q

0
t; Ht)

The second rule processes a binding in the expression heap:

(Qf ; Hf] fl=hg;�s;	s] fl:&g; Qt; Ht)) (Qf ; Hf ;�s [�
0
s;	s [

0
s; Qt; Ht] fl=hg)

where h�00
s ;	

00
si = TL[&](h)

�0
s = fl

0::�0 2 �00
s j l

0 62 Dom(Qt)g

	0
s = fl

0:& 0 2 	00
s j l

0 62 Dom(Ht)] flgg

Note that both of the scan sets are updated when an expression heap value is processed.

CHAPTER 7. TYPES AND GARBAGE COLLECTION 156

The initialization and �nalization steps for the full garbage collection are captured

by the following inference rule:

ExpEnv(e) = h�;	i

(Q;H;�;	; ;; ;))� (Qf ; Hf ; ;; ;; Qt; Ht)

(Q;H; e)
tr-alg
7�! (Qt; Ht; e)

We initialize the system by extracting the locations and their kinds or types from the

range of the environment of the current expression. This corresponds to extracting the

root locations from the stack and registers of a real implementation. Then, we continue

choosing locations in one of the scan sets, forward this location from the appropriate

from-space to the appropriate to-space, potentially adding new locations to the scan-

sets. Once the scan-sets become empty, the algorithm is �nished, and the to-spaces are

taken as the new, garbage collected heaps of the program.

To prove the correctness of the algorithm, I must establish a suitable set of invari-

ants that guarantees that (a) the algorithm does not become stuck and (b) the resulting

program is closed. The key di�culty in establishing the invariants is that we must concep-

tually complete the constructor garbage collection to ensure that enough constructors are

present that we can derive all needed equivalences to type-check the heap and expression

of the program.

De�nition 7.5.11 (Well-Formedness) Suppose P = (Q;H; e) where ; ` �, �; ; `

H : 	, and �;	; ;; ; ` e : �. The tuple T = (Qf ; Hf ;�s;	s; Qt; Ht) is well-formed with

respect to P , �, 	, and � i�:

1. (Qf ;�s; Qt) is well-formed with respect to � and thus, for some �0 � �,

(Qf ;�s; Qt))
� (Q0

f ; ;; Q�0),

2. H = Hf]Ht,

3. 	s � 	 and Dom(s) � Dom(Hf),

4. �0; 	s ` Ht : 	t where 	t = fl:& 2 	 j l 2 Dom(Ht)g, and

5. �0; 	s] 	t; ;; ; ` e : �.

Roughly speaking, the invariants guarantee that (1) constructor garbage collection can

proceed to some appropriate �nal state, (2) all of the values in the expression heap are

accounted for, (3) the scan-set is consistent with the global location type assignment

	 and describes a frontier of locations bound in the from-space, (4) after constructor

collection is complete, the resulting constructor to-space and expression scan-set cover

CHAPTER 7. TYPES AND GARBAGE COLLECTION 157

the free locations in the to-space and (5) all of the free locations in e and � are covered

by the to-spaces or scan-sets.

The following lemma shows that the invariants are strong enough to guarantee that,

at the end of rewriting, the resulting program is a collection of the original program.

Lemma 7.5.12 Let P = (Q;H; e) where ; ` �, �; ; ` H : 	, and �;	; ;; ; ` e : �, and

suppose T = (Qf ; Hf ; ;; ;; Qt; Ht) is well-formed with respect to P , �, 	, and �. Then

(Qt; Ht; e) is a collection of P .

Proof: From the correctness of the tracing collection speci�cation, it su�ces to show

that (Qt; Ht; e) is closed. Since T is well-formed, we know from the �rst invariant that

(Qf ; ;; Qt) is well-formed with respect to �. Thus, taking �0 � � such that Dom(�0) =

Dom(Qt), we know that ; ` Qt::��0 and thus ; ` �0. From the fourth invariant, we know

that �0; ; ` Ht:	t where 	t = fl:& 2 	 j l 2 Dom(Ht)g and from the �fth invariant,

�0; 	t; ;; ; ` e : �. Consequently, ` (Qt; Ht; e) : � and (Qt; Ht; e) is closed. Therefore,

P
trace
7�! (Qt; Ht; e) and thus P ' (Qt; Ht; e). 2

Since either the size of the constructor from-space or the expression from-space strictly

decreases at each step, it is clear that the rewriting system either terminates or gets stuck.

Lemma 7.5.13 (Preservation) If T is well-formed with respect to P , �, 	, and �,

and T) T 0, then T 0 is well-formed with respect to P , �, 	, and �.

Proof: In the �rst case, T) T 0 via the constructor garbage collection rule. Well-

formedness of T 0 is guaranteed by preservation of the constructor GC invariants, with

con
uence of constructor GC.

In the second case, T = (Qf ; Hf]fl=hg;�s;	s]fl:&g; Qt; Ht) and T
0 = (Qf ; Hf ;�s[

�0
s;	s [0

s; Qt; Ht] fl=hg), where TL[&](h) = h�00
s ;	

00
si, �

0
s = fl0::�0 2 �00

s j l
0 62

Dom(Qt)g, and 	0
s = fl

0:& 0 2 	00
s j l

0 62 Dom(Ht)] flgg. Lemma 7.5.5 and the de�nition

of TL tells us that �00
s � �s and 	00

s � 	s. Thus �s [�0
s is a well-formed location

kind assignment that is a subset of �. Thus, invariant (1), (Qf ;�s [�
0
s; Qt) is satis�ed.

Invariant (2) is trivially satis�ed, since, by assumption, H = Hf]Ht] fl=hg. Invariant

(3) is satis�ed if 	0
s � 	 and Dom(0) � Dom(Hf). The former condition holds since

	00
s � 	 and the latter condition holds by construction of 	0.

By invariant (1), (Qf ;�s; Qt))
� (Q0

f ; ;; Q
0
t) for some Q0

f and Q0
t, where �0 � �

and Q�0 = Q0
t. Furthermore, (Qf ;�s [�0

s; Qt))
� (Q00

f ; ;; Q
00
t) and taking �00 � �

such that Q�00 = Q00
t , and by lemma 7.5.10, we know that �0 � �00. By invariant (3),

�0; 	s] fl:&g ` Ht : 	t. Since �0 � �00, �00; 	s] fl:&g ` Ht : 	t. By lemma 7.5.5, we

know that �00; (s] 	t) [
0
s; ;; ; ` h : &. Thus, �00; 	s [

0
s ` Ht] fl=hg : 	t] fl:&g

and invariant (4) is satis�ed.

Finally, by invariant (5), �0; 	s]	t] fl:&g; ;; ; ` e : �. Thus, �
00; (s]	t] fl:&g)[

�0
s; ;; ; ` e : � and invariant (5) is satis�ed. 2

CHAPTER 7. TYPES AND GARBAGE COLLECTION 158

Lemma 7.5.14 (Progress) If T = (Qf ; Hf ;�s;	s; Qt; Ht) is well-formed with respect

to P , �, 	, and �, then either �s and 	s are empty or else there exists a T 0 such that

T) T 0.

Proof: If �s is non-empty, then progress is guaranteed by constructor GC progress.

If the expression scan-set is non empty, then it is of the form 	s] fl:&g. By invariant

(3), fl:&g 2 	 and l must be bound in the from space. Thus, assume the from-space is

of the form Hf] fl=hg for some Hf and h. By lemma 7.5.5 and the de�nition of TL,

we know that TL[&](h) is de�ned and is some h�00
s ;	

00
si such that �00

s � � and 	00
s � 	.

Therefore, taking �0
s = fl0::�0 2 �00

s j l
0 62 Dom(Qt)g and 	0

s = fl0:& 0 2 	00
s j l

0 62

Dom(Ht)]flgg, we know that �s [�
0
s is well-formed and 	s [

0
s is well-formed. Thus,

T) (Qf ; Hf ;�s [�
0
s;	s [

0
s; Qt; Ht] fl=hg). 2

Corollary 7.5.15 (Tracing Algorithm Correctness) If P is well-typed, then there

exists a P 0 such that P
tr-alg
7�! P 0 and P ' P 0.

Proof: Follows immediately from lemma 7.5.12, Preservation, and Progress. 2

7.6 Related Work

The literature on garbage collection in sequential programming languages per se contains

few papers that attempt to provide a compact characterization of algorithms or correct-

ness proofs. Demers et al. [34] give a model of memory parameterized by an abstract

notion of a \points-to" relation. As a result, they can characterize reachability-based

algorithms including mark-sweep, copying, generational, \conservative," and other so-

phisticated forms of garbage collection. However, their model is intentionally divorced

from the programming language and cannot take advantage of any semantic properties

of evaluation, such as type preservation. Consequently, their framework cannot model

the type-based collectors I describe here. Nettles [98] provides a concrete speci�cation

of a copying garbage collection algorithm using the Larch speci�cation language. My

speci�cation of the free-variable tracing algorithm is essentially a high-level, one-line

description of his speci�cation.

Hudak gives a denotational model that tracks reference counts for a �rst-order lan-

guage [67]. He presents an abstraction of the model and gives an algorithm for computing

approximations of reference counts statically. Chirimar, Gunter, and Riecke give a frame-

work for proving invariants regarding memory management for a language with a linear

type system [30]. Their low-level semantics speci�es explicit memory management based

on reference counting. Both Hudak and Chirimar et al. assume a weak approximation

of garbage (reference counts). Barendsen and Smetsers give a Curry-like type system for

CHAPTER 7. TYPES AND GARBAGE COLLECTION 159

functional languages extended with uniqueness information that guarantees an object is

only \locally accessible" [16]. This provides a compiler enough information to determine

when certain objects may be garbage collected or over-written.

Tolmach [119] built a type-recovery collector for a variant of SML that passes type

information to polymorphic routines during execution. Aditya and Caro gave a type-

recovery algorithm for an implementation of Id that is equivalent to type passing [5] and

Aditya, Flood, and Hicks extended this work to garbage collection for Id [6]. In both

collectors, bindings for type variables are accumulated in type environments as I propose

here.

However, the type systems of these languages are considerably simpler that �MLi . In

particular, they only support instantiation of polytypes and not general forms of compu-

tation (e.g., function call and Typerec). Furthermore, neither of these implementations

allowed terms to examine types for operations, such as polymorphic equality or dy-

namic argument
attening. Tolmach took advantage of these properties by delaying the

computation of a type instantiation until this instantiation was needed during garbage

collection. In essence, he represented types as closures { a pair consisting of a type

environment and a term with free variables whose bindings could be found in the envi-

ronment. His \lazy" strategy for type instantiation avoided constructing types that are

unneeded outside garbage collection.

In contrast, for languages like �MLi , I propose computing type information eagerly to

ensure that no computation, and thus no allocation occurs during garbage collection. The

TIL compiler uses a hybrid tag-free scheme to avoid constructing types for all values. TIL

also performs various optimizations to share as many type computations as is possible.

These and other \real-world" implementation issues are discussed in Chapter 8.

Over the past few years, a number of papers on inference-based collection in monomor-

phic [22, 129, 23] and polymorphic [8, 49, 50, 43] languages appeared in the literature.

Appel [8] argued informally that \tag-free" collection is possible for polymorphic lan-

guages such as SML by a combination of recording information statically and performing

what amounts to type inference during the collection process, though the connections

between inference and collection were not made clear. Baker [14] recognized that Milner-

style type inference can be used to prove that reachable objects can be safely collected,

but did not give a formal account of this result. Goldberg and Gloger [50] recognized

that it is not possible to reconstruct the concrete types of all reachable values in an im-

plementation of an ML-style language that does not pass types to polymorphic routines.

They gave an informal argument based on traversal of stack frames to show that such

values are semantically garbage. Fradet [43] gave another argument based on Reynolds's

abstraction/parametricity theorem [104].

The style of semantics I use here is closely related to the allocation semantics used in

my previous work on garbage collection [96, 95], but is slightly lower-level. In particular,

I use closures and environments to implement substitution. In this respect, the semantics

CHAPTER 7. TYPES AND GARBAGE COLLECTION 160

is quite similar to the SECD [80] and CEK machines [40]. The primary di�erence between

my approach and these machines is that I make the heap explicit, which enables me to

de�ne a suitable notion of garbage and garbage collection.

Chapter 8

The TIL/ML Compiler

TIL, which stands for Typed Intermediate Languages, is a batch compiler that translates

a subset of Standard ML to DEC Alpha assembly language. Together with David Tarditi,

Perry Cheng, and Chris Stone, I have constructed TIL to explore some of the practical

issues of type-directed translation and dynamic type dispatch. In this chapter, I give an

overview of the design and implementation of TIL, catalog its features and drawbacks,

and compare it to Standard ML of New Jersey | one of the best SML compilers currently

available.

Throughout this chapter, I use the plural (e.g., \we") when referring to Tarditi,

Cheng, Stone, and me. I reserve the singular (e.g., \I") when referring only to myself.

8.1 Design Goals of TIL

In designing TIL, our primary goal was to make the common case fast, possibly at the

expense of a less common case. For example, all functions in SML take one argument;

multiple arguments are simulated by using a tuple as the argument. From previous studies

[81, 110], we determined that most functions do not use the tuple argument except to

extract the components of the tuple. Consequently, we wanted TIL to translate functions

so that they take tuple components in registers as multiple arguments, thereby avoiding

constructing the argument tuple.

Our secondary goal was to use type-directed translation to propagate type information

through as many stages of compilation as was possible. The idea was to try to discover

new ways that types could be used in the lower-levels of a compiler. Some uses of types

came at a surprisingly low level. For instance, we used type information to orient switch

arms to maximize correctly predicted branches for list and tree-processing code. To

support tag-free garbage collection, we knew that it was necessary to hang on to as much

type information for as long as was possible. To accomplish this, we needed a suitably

161

CHAPTER 8. THE TIL/ML COMPILER 162

expressive, typed intermediate form.

Another design goal was to leverage existing tools as much as possible. For instance,

we decided to emit Alpha assembly language and let the native assembler handle instruc-

tion scheduling and opcode emission. We were careful to use standard Unix tools, such

as ld so that we could take advantage of pro�lers, debuggers, and other widely used

tools. Also, to avoid constructing a parser, type-checker, and pattern match compiler,

we decided to use the front end of the ML Kit Compiler [19].

Finally, we wanted TIL to be as interoperable with other languages (notably C, C++,

and Fortran) as possible, without compromising the e�ciency of conventional SML code.

The goal was to support e�cient access to library routines, system calls, and hardware,

which is needed for \systems" programming in SML as proposed by the Fox project [56].

To this end, we decided to use tag-free garbage collection to support untagged, unboxed

integers and pointers, since most arguments to libraries or system calls involve these two

representations. Also, we made the register allocator aware of the standard C calling

convention so that C functions could be directly called from SML code.

We decided not to use a fully tag-free collector, but instead to place tag words before

heap-allocated objects (i.e., records and arrays). For records, we decided to use a bit map

to describe which components are pointers. Arrays are uniform, so we planned to use a

single bit in the length tag to tell whether or not the contents of the array are pointers.

Most allocators for languages like C and C++ also use header words for heap-allocated

objects, so the proposed scheme would not sacri�ce interoperability. Furthermore, we

suspected that most tags could be computed at compile time, so the cost of constructing

these tags would not be prohibitive. We also felt that tagging heap objects would simplify

the garbage collector since we could use standard breadth-�rst copying collection once

the \roots" (i.e., registers and stack) had been scanned. Fully tag-free collectors cannot

use the standard breadth-�rst scan, because there is not always space for a forwarding

pointer in a tag-free object1. Furthermore, we were worried that the sizes of tables

that contain full type information might be excessively large [35]. Taking all of these

factors into account, we felt that leaving integers and pointers untagged, but tagging

heap-allocated objects, had the most virtues.

We decided not to unbox double-precision
oating point values except within functions

and within arrays. We felt that unboxing doubles in arrays would be important for

scienti�c code (e.g., matrix operations). Unboxing double function arguments requires a

more complicated approach to calling conventions and register allocation in the presence

of polymorphism. (I discuss this issue in Section 8.8). Similarly, unboxed
oating point

values in records require a more complicated mechanism for calculating the sizes and tags

of records, as well as the o�sets of �elds within records. We were unsure whether the run

1Yasuhiko Minamide pointed this out to me and showed that Tolmach failed to properly correct for

this in his tag-free collector [119].

CHAPTER 8. THE TIL/ML COMPILER 163

time costs of the more complicated mechanisms would outweigh the bene�ts of unboxed

doubles, especially for conventional SML code which typically manipulates many records

and few doubles.

We did design the compiler so that unboxed doubles could either be passed as function

arguments or placed in records for monomorphic code. We hope to use TIL in the

future to explore the tradeo�s of various mechanisms that support unboxed doubles for

polymorphic code.

8.2 Overview of TIL

Figure 8.1 gives a block-diagram of the stages of the TIL compiler. All of the transfor-

mations are written in Standard ML. In this section, I give a brief overview of each stage

and in the following sections, I provide more detailed information.

The �rst phase of TIL uses the front end of the ML Kit compiler [19] to parse, type

check, and elaborate SML source code. The Kit produces annotated abstract syntax

for the full SML language and then compiles a subset of this abstract syntax to an

explicitly-typed core language called Lambda. The compilation to Lambda eliminates

pattern matching and various derived forms.

I extended Lambda to support signatures, structures (modules), and separate com-

pilation. Each source module is compiled to a Lambda module with an explicit list of

imported modules and their signatures. Imported signatures may include transparent

de�nitions of types de�ned in other modules. Hence, TIL supports a limited form of

translucent [58] or manifest types [83].

I extended the mapping from SML abstract syntax to Lambda so that SML struc-

tures are mapped to Lambda structures with transparent imported types. Currently,

the mapping to Lambda does not handle source-level signatures, nested structures, or

functors. In principle, however, all of these constructs are supported by the intermediate

languages of TIL.

The next phase of TIL uses an intermediate language called Lmli. Lmli is a \real

world" version of �MLi , providing constructs for dynamic type dispatch, e�cient data

representations, recursive functions, arrays, and so forth. In the translation of Lambda

to Lmli, we use these constructs to provide tag-free polymorphic equality, specialized

arrays, e�cient data representations, and multi-argument functions. The argument
at-

tening and implementation of polymorphic equality are based on the formal type-directed

translation of Chapter 5.

Like �MLi , type checking Lmli terms is decidable. I provide a kind checker, constructor

normalizer, and type checker for Lmli. We also provide support for pretty-printing Lmli

terms. Currently, the type checker is quite slow because I normalize all types before

comparing them. A much better approach is to compare types directly and normalize

CHAPTER 8. THE TIL/ML COMPILER 164

SML

Lambda

Lmli

Lmli-Bform

Lmli-Closure

Ubform

Rtl

Alpha

choose data
representations,
flatten arguments

name computations,
linearize control

close code,
calculate environments

choose abstract
machine instructions

allocate registers,
map to Alpha assembly

calculate gc info
for variables

parse, elaborate,
elim. pattern matching

Optimization:

alpha-conversion
elim. dead code
elim. primops
elim. common sub-exps
elim. redundant switches
inline functions used once
loop invariant removal
hoisting

inline switch context
sink expressions
uncurry functions
elim. redundant comparisons
minimize fix
inline small functions

Figure 8.1: Stages in the TIL Compiler

CHAPTER 8. THE TIL/ML COMPILER 165

components only if they do not match.

Lmli-Bform (or simply Bform) is a subset of Lmli similar to A-normal form [42]. It

provides a more regular intermediate language than Lmli to facilitate optimization. Be-

cause Bform is a subset of Lmli, we can use all of the Lmli tools, including the type

checker and pretty printer on the Bform representation2. We perform a wide variety of

optimizations on the Bform representation of a program including dead code elimina-

tion; uncurrying; constant folding; constant typecase and switch elimination; inlining of

constructor functions, term functions, type functions and switch continuations; common

sub-expression elimination; redundant switch elimination; and invariant removal. Be-

cause the optimization phases use Bform for both the source and target language, the

output of each phase can be checked for type correctness.

Most of the design and implementation of the optimizer is not my work, and is

described fully by Tarditi's thesis [115]. It is interesting to note that working with a

typed intermediate form did not constrain the set of optimizations that Tarditi wished

to perform, and that types could be used to perform some optimizations that were not

possible in an untyped setting. However, working with a typed intermediate form did

have some drawbacks. In particular, our typed intermediate form needs more constructs

(e.g., typecase) than a comparable untyped form. This makes the optimizer code bigger

since there are more cases to process. In turn, this increases the likelihood of introducing

bugs in compilation. However, we found that the ability to type-check the output of the

optimizer often mitigated this drawback.

After Bform optimization, we perform closure conversion, mapping the Bform rep-

resentation to a language called Lmli-Close. In fact, all of the constructs of Lmli-Close

are present in Bform but are unused until the closure phase of the compiler. Hence,

Lmli-Close is a re�nement of Lmli-Bform, much the same as Lmli-Bform is a re�nement

of Lmli. The conversion is based on the type-directed closure translation described in

Chapter 6. However, following Kranz [78], we calculate the set of functions that do not

\escape" and avoid constructing closures for such functions. Because Lmli-Close is a

subset of Bform, we can use both the optimizer and the type checker on the closure

converted code.

After closure conversion, we translate the resulting code to an untyped Bform, called

Ubform. Instead of annotating variables with types, Ubform requires that we annotate

variables with representation information. The translation to Ubform erases the distinc-

tion between computations at the constructor and term levels. For example, a constructor

function call looks the same as a term function call.

The next phase of TIL maps Ubform programs to the Rtl intermediate form. Rtl,

2The actual ML datatypes used for Lmli and Bform di�er, but we provide a simple map from Bform

to Lmli. If SML provided re�nement types [44], then we could have de�ned Bform as a re�nement of

Lmli and avoided this extra piece of code.

CHAPTER 8. THE TIL/ML COMPILER 166

which stands for register transfer language, provides an idealized RISC instruction set,

with a few heavy-weight instructions and an in�nite number of registers. After Rtl, we

perform register allocation and map the resulting code to DEC Alpha assembly language.

We use the system assembler to translate Alpha assembly language to binaries and

the system linker to link these binaries with the runtime system. The runtime is written

in C and provides code for initialization, memory management, and multi-threading. The

garbage collector uses table information generated at the Rtl level to determine which

registers and stack slots contain pointer values. The rest of the garbage collector is a

standard, two-space copying collector.

8.3 SML and Lambda

Currently, we do not support the signatures, nested structures, or functors of Standard

ML. There are also some parts of core SML that we do not support. In order to assign

a quanti�ed, polymorphic type to an expression, we require that that expression be

syntactically equivalent to a value. By value, we mean that the expression must be

a constant, a record of values, a data constructor (besides ref) applied to values, or

a function. This so-called \value restriction" is necessary to support a type-passing

interpretation of SML, since polymorphic computations are represented as functions. The

value restriction has been proposed by others [63, 57, 82] as a way to avoid the well-known

problems of polymorphism and refs, exceptions, continuations, and other constructs that

have computational e�ects. Furthermore, according to a study performed by Wright

[131], most SML code naturally obeys the value restriction. The few cases he found that

do not, are easily transformed so that they do meet this restriction.

The other restriction on core SML code involves datatypes. We do not support

recursive datatypes of the form:

datatype � foo = D1 of (� * �) foo -> int

where a type constructor foo abstracts a type argument �, and is de�ned in terms of

itself applied to a di�erent type containing the abstracted variable (e.g., (� * �) foo).

Representing such a datatype as a predicative constructor is impossible because the type

variable � must be abstracted inside the recursion equation governing the de�nition.

Hence, the recursion equation de�nes a �xed-point over polytypes instead of monotypes.

Such datatypes are very rare. A cursory study showed that no datatypes of this form

existed in either the Edinburgh or the SML/NJ library. In many respects, the ability to

de�ne such datatypes violates the type-theoretic \essence of SML" [94], and thus I view

them more as a bug in the De�nition [90] than a feature. In principle, TIL supports

the rest of the Standard ML De�nition, though of course there may be bugs in the

implementation.

CHAPTER 8. THE TIL/ML COMPILER 167

We use the ML Kit Compiler [19] to parse, type-check, and elaborate SML expressions.

The Kit translates SML to annotated abstract syntax. The annotations include position

information for error reporting as well as type information. Next, the annotated abstract

syntax is translated to the Lambda intermediate form. This intermediate form is quite

similar to the language described by Birkedal et. al. [19], but I added support for type

abbreviations, structures, and signatures. Also, we added various primitive operations

to the language to support, for instance, unsigned integer operations, logical operations,

and so forth.

The Kit compiler translates core SML, annotated abstract syntax to Lambda declara-

tions. During the translation, all type de�nitions are hoisted to the top-level and almost

all pattern matching is eliminated. Datatype de�nitions are represented in almost exactly

the same fashion as they are at the source level.

I modi�ed the translation to Lambda to support structures and a standard \prelude"

environment. This environment contains bindings for commonly used functions such as

map and fold, as well as de�nitions of the built in types, including arrays, bools, and

strings. The prelude environment is conceptually prepended onto every structure. This

allows the optimizer to easily inline functions such as map.

Some primitive types, notably strings, are de�ned in terms of other datatypes in the

prelude. For example, the string type is represented as a standard datatype of the form:

datatype string rep =

C000 | C001 | C002 | ... | C255 |

stringrep str of int * (int array)

The data constructors C000|C255 correspond to 8-bit, ASCII characters whereas the

data constructor stringrep str corresponds to strings of length 0 or of length greater

than 1. We found that distinguishing characters from other strings was important since

characters could always be represented unboxed and character comparison could be im-

plemented e�ciently3. Strings of more than one character are represented as integer

arrays. Since integers are untagged, each integer in the array holds 4 characters on a

32-bit machine4. The extra int paired with the integer array indicates the length of

the string in characters. All of the string primitives | including implode, explode, and

append | are implemented by a combination of pattern matching and array operations.

The ability to manipulate strings a word-at-a-time using the standard integer array op-

erations simpli�ed the implementation greatly without sacri�cing performance.

The translation does provide support for separate compilation. In particular, each

SML structure is compiled to a Lambda module containing a list of all imported modules

3Earlier versions of SML/NJ used a similar representation, but newer versions expose the character

datatype to the programmer. Our string representation is compatible with either approach.
4Although the Alpha is a 64-bit processor, we represent integers and pointers as 32-bit values.

CHAPTER 8. THE TIL/ML COMPILER 168

and their Lambda signatures. These signatures can, but need not, contain transparent

or manifest type de�nitions. Since we account for all external references in the list of

imported modules, each module can be compiled separately from other modules in the

program. This scheme relies upon unique module names at link-time to resolve inter-

module references.

8.4 Lmli

The Lmli intermediate form is based on the formal �MLi calculus of Chapter 3, but provides

a suitably rich set of constructs to support e�cient compilation of Lambda datatypes

and terms. In this section, I present various details regarding Lmli, including the SML

datatype used to represent the kinds, constructors, types, and terms of Lmli.

8.4.1 Kinds, Constructors, and Types of Lmli

The SML datatype de�nitions for a subset of the kinds and constructors of Lmli are given

in Figure 8.2. To simplify the presentation, I have eliminated all of the constructs that

are used only for closure conversion. These constructs are discussed in Section 8.7.

All constructors are labelled with a kind. This simpli�es kind checking and construc-

tor manipulation, since we can always determine a constructor's kind with no additional

context. A more sophisticated implementation might elide much of this information and

reconstruct it as needed. The kind Mono k is the ASCII representation of
 and thus

represents all constructors corresponding to monotypes. Kinds include Mono k, n-ary

products (Tuple k), arrow kinds (Arrow k), and list kinds (List k). In TIL, we elide the

distinction between a constructor � of kind Mono k and the type T (�). Instead, we use

the special kind Poly k to distinguish types from constructors5.

Constructors include variables, projections from modules (Dot c), primitive construc-

tors of zero or one argument, tuple intro and elim forms, list intro and elim forms, function

intro and elim forms, recursive constructors (Mu c), and monotype elim forms. I brie
y

discuss each of these constructs here, and then provide more details regarding primitive

constructors.

The list intro forms include Nil c and Cons c. The list elim forms include both a

fold for lists (Fold c) and a simple case mechanism (Listcase c). The formation rule

5TIL actually provides more kind structure than is shown here, in order to check well-formedness of

types.

CHAPTER 8. THE TIL/ML COMPILER 169

datatype kind = Mono k | Tuple k of kind list

| Arrow k of kind * kind | List k of kind | Poly k

datatype primcon = Primcon0 of primcon0 | Primcon1 of primcon1

datatype con = Con of (raw con * kind)

and raw con =

Var c of var

| Dot c of strid * int * label

| Prim0 c of primcon0

| Prim1 c of primcon1 * con

| Tuple c of con list

| Proj c of int * con

| Nil c of kind

| Cons c of con * con

| Listcase c of farg : con, nil c : con, cons c : confng

| Fold c of farg : con, nil c : con, cons c : confng

| Fn c of confn

| App c of con * con

| Mu c of ((var * con) list) * con

| Typecase c of farg : con,

arms : (primcon * confn) list,

default: con,

kind : kindg

| Typerec c of farg : con,

arms : (primcon * confn) list,

default : con,

kind : kindg

| Let c of (var * kind * con * con)

| All c of (var * kind) list * con

and confn = CF of (var * kind * con)

Figure 8.2: Kinds and Constructors of Lmli

CHAPTER 8. THE TIL/ML COMPILER 170

for the fold construct is roughly

� ` � :: List k(�0) � ` �1 :: �

� ` �2 :: Tuple k[�0; List k(�0); �]! �

� ` Fold cfarg=�,nil c=�1,cons c=�2g :: �

The arg component must be of list kind and thus evaluates to either a Nil c or else a

Cons c constructor. The nil c component is selected for the base case and the arg c

component is selected for the inductive case. The head and tail of a Cons c cell are

passed to the cons c component as arguments, with the unrolling of the fold on the tail

of the list. The formation rule for listcase is similar, but the nil c component only takes

the head and tail as arguments.

The monotype elim forms include both Typerec c and Typecase c forms. The clauses

are indexed by a primcon, and each primcon can occur in at most one clause. Clauses

corresponding to primcon1 values are functions that take appropriate arguments of the

appropriate kind, whereas clauses corresponding to primcon0 values are constructor func-

tions that take an empty tuple as an argument. The default case is used to match con-

structors that do not appear in the arms list. Note that although recursive types are

considered to be monotypes, there is no way to deconstruct them in Lmli; the default

clause of a Typecase c or Typerec c is always selected when one of these constructs is

applied to a Mu c constructor.

The function intro (Fn c) and elim (App c) forms are standard. The Let c form

can be abbreviated with these constructs as usual. However, this is not possible in the

restricted Lmli-Bform that is used in the optimizer. We retain Let c here to support

pretty-printing, and both kind and type-checking of Lmli-Bform. The All c constructor

is not really a constructor, but rather a type. It is always labelled with the kind Poly k.

The Mu c constructor is a generalized recursive type constructor. Informally, Mu c

corresponds to a \letrec" at the constructor level, simultaneously binding the variables

to the constructors, within the scope of the exported constructor. Each of the variables

is constrained to have the kind Mono k. We require that the constructors bound to the

variables be expansive. That is, if one of the variables bound in the Mu c occurs in a

constructor bound to a variable, then that variable must occur within an argument to a

primcon1.

The type that a recursive constructor represents is isomorphic to the type obtained by

simultaneously replacing each variable in the exported constructor with the \unrolling" of

the recursive type. For instance, the recursive constructor Mu c([(x1,c1),(x2,c2)],c)

is isomorphic to fc1'/x1,c2'/x2gc where

c1' = Con(Mu c([(x1,c1),(x2,c2)],Var c(x1,Mono k)),Mono k)

and

CHAPTER 8. THE TIL/ML COMPILER 171

c2' = Con(Mu c([(x1,c1),(x2,c2)],Var c(x2,Mono k)),Mono k).

This isomorphism is not implicit as in some calculi. At the term level, we must use

explicit \roll" and \unroll" operations on terms to a�ect the isomorphism.

The addition of recursive types to �MLi is not straightforward since we have destroyed

the key property that the monotypes can be generated by induction. However, the elim

forms that we provide at the constructor level treat recursive types as pseudo-base cases.

In particular, we cannot examine the contents of a Mu c constructor with Typecase c

or Typerec c. I therefore speculate that both con
uence and strong-normalization of

constructor reduction are preserved, though I have yet to prove this.
The primcon0 and primcon1 datatypes are de�ned as follows:

datatype primcon0 = Int c | Real c | String c | Intarray c

| Realarray c | Exn c | Enum c of int

datatype primcon1 = Ptrarray c | Arrow c | Sum c | Sumcursor c

| Record c | Recordcursor c | Excon c | Deexcon c

| Enumorrec c of int | Enumorsum c of int

Most of the primcon0 data constructors are self explanatory. We provide a string con-

structor even though string values are represented in terms of other constructs (integer

arrays). This distinction is necessary to support the proper semantics of polymorphic

equality, since strings are compared by value whereas arrays are compared by reference.

The Exn c constructor is used to type exception packets, and the Enum c constructor is

used in the translation of datatypes. Enum values are used to represent data construc-

tors with no argument (e.g., nil). Enum values are also used to tag variant records.

We assume that enum values are always distinguishable from pointers to heap-allocated

objects. Currently, we represent enum values as small integers between 0 and 255. We

could represent enum values as odd integers, assuming pointers are always evenly aligned.

The primcon1 data constructors are primitive constructors of one argument. Multiple

arguments are simulated by a constructor tuple or a list of constructors. The Ptrarray c

(pointer array) constructor corresponds to arrays that contain any value except for inte-

gers or reals. The Arrow c (arrow) constructor corresponds to functions at the term level.

Functions in Lmli take multiple arguments and yield one result. Therefore, the arrow con-

structor takes two arguments (as a constructor tuple), and these arguments correspond

to the domain types and the range type. The domain types are represented as a list of

constructors. Thus, arrow has the kind Tuple k[List k(Mono k); Mono k]! Mono k.

The Record c (record) constructor corresponds to n-tuples at the term level and has

the kind List k(Mono k)! Mono k. Recordcursor c values are used to iterate over the

components of a Record c value. Roughly speaking, a record cursor is a pair consisting

of a pointer to a record and an integer o�set.

CHAPTER 8. THE TIL/ML COMPILER 172

The Sum c (sum) constructor represents immutable, Pascal-style variant record

types. Sum values are in fact records where the �rst component of the record con-

tains an Enum c value indicating the variant. Thus, the sum constructor has kind

List k(List k(Mono k)) ! Mono k. For instance, values with a type described by the

constructor

Sum c[[Int c,Real c],[String c]]

are either records with a type described by

Record c[Enum c 2,Int c,Real c]

or else records with a type described by

Record c[Enum c 2,String c].

Similar to record cursors, Sumcursor c values provide a means for folding a computation

across a sum.

Values described by Excon c and Deexcon c are used to represent SML exceptions.

In particular, each creation of an SML exception carrying type � is translated to a single

operation that creates a pair consisting of an Excon c(�) value and a Deexcon c(�)

value. A value of type Excon c(�) can be applied to a value of type � to yield a value

of type Exn c, thereby hiding the type � . A value of type Deexcon c(�) can be applied

to a value of type Exn c. The result is essentially a � option: a variant record where the

�rst variant is empty (None) and the second variant contains a value of type � (Some).

Finally, the Enumorrec c and Enumorsum c constructors are special cases of variant

records used to optimize the representation of SML datatypes. In particular, enum-or-rec

values are either an enum value or a record value, whereas enum-or-sum values are either

an enum value or a variant record (i.e., sum) value. Since records and sums are always

allocated (i.e., pointers), we can always distinguish enum values from records and sums.

8.4.2 Terms of Lmli

The terms of Lmli are described by the SML datatype given in Figure 8.3. Similar to

constructors, each term is labelled with its type, where the type is represented as an

Lmli con. Labelling each term with its type simpli�es type checking and type-directed

translation. The space overheads of this fully typed representation are not quite as great

as we might �rst expect. This is because we can bind types to variables (via Let e)

and use the variable in place of the type representation. Then, we can use standard

optimization techniques, such as common sub-expression elimination and hoisting, to

eliminate redundant type de�nitions.

CHAPTER 8. THE TIL/ML COMPILER 173

datatype exp = Exp of (raw exp * con)

and raw exp =

Var e of var

| Dot e of strid * int * label

| Record e of exp list

| Inject e of int * (exp list)

| Int e of word

| Real e of string

| Enum e of int

| String e of string

| Let e of decl * exp

| Fn e of function

| Tfn e of tfunction

| App e of exp * (exp list)

| Tapp e of exp * (con list)

| Coerce e of coerceop * exp

| Op1 e of op1 * exp

| Op2 e of op2 * exp * exp

| Misc e of miscop

| Switch e of switch exp

| Typecase e of typecase exp

| Tlistcase e of tlistcase exp

| Raise e of exp

| Handle e of exp * function

| Export e of

ftypes : (label * con) list, values: (label * exp) listg

and decl =

Var d of (var * con * exp)

| Con d of (var * kind * con)

| Fix d of (var * con * function) list

| Fixtype d of (var * con * tfunction) list

and function = Func of (var * con) list * exp

and tfunction = Tfunc of (var * kind) list * exp

Figure 8.3: Terms of Lmli

CHAPTER 8. THE TIL/ML COMPILER 174

The raw expressions include variables, projections from imported modules, literal

values, various primitive operations, various switch operations, (recursive) value and

constructor abstractions, value and constructor applications, exception primitives, let-

expressions, and a mechanism for exporting type de�nitions and values. In the rest of

this section, I brie
y describe some of these constructs.

The Inject e expression is used to calculate a sum value (i.e., variant record). The

integer component must be an enum value (i.e., between 0 and 255). Operationally,

Inject e just allocates a record of size n + 1, places the enum component in the �rst

position and then places the other values in positions 2 through n + 1.

Let e expressions provide a means of declaring variables within a scope. Variables in

a declaration are either bound to expressions (Var d), constructors (Con d), or mutually

recursive functions. The Fix d declaration provides �xed-points for value abstractions

whereas the Fixtype d declaration provides �xed-points for constructor abstractions.

Both value and constructor abstractions can take multiple arguments.

Coercions are primitive operations that have no operational e�ect, but are needed for

type checking. The set of coercion operations is given by

datatype coerceop =

proll | punroll | penum enumorrec | prec enumorrec

| penum enumorsum | psum enumorsum | penum2int | pfromstring

| ptostring | pchr.

The proll and punroll coercions a�ect the isomorphism between a recursive type and

its unrolling. The penum enumorrec, and penum enumorsum coercions inject an enum

value into an enum-or-record or enum-or-sum type, whereas the prec enumorrec and

psum enumorrec inject a record or sum into an enum-or-record or enum-or-sum type.

The penum2int coercion coerces an enum to an integer value. The pfromstring and

ptostring coerce a string to and from its underlying representation. Finally, the pchr

operation coerces an integer to an enum value6.

The op1 primitive operations are given by the datatype

datatype op1 =

preal i | pnot i | pfloor r | psqrt r | psin r | pcos r

| parctan r | pexp r | pln r | psize a of spclarray

| pselect of int | prec cursor | prec head | prec tail

| psum cursor,

where

6Technically, the pchr operation should ensure that the integer value meets the representation con-

straints of enum values. In practice, the front-end ensures this by checking to see if the integer lies

between 0 and 255.

CHAPTER 8. THE TIL/ML COMPILER 175

datatype spclarray = Intarray | Realarray | Ptrarray.

Most of the rest of the operations perform some computation on real values, such as

calculating the square root (psqrt r) or natural log (pln r). The psize a operation

calculates the size of an array.

The prec cursor operation takes a record of type Record c[c1,...,cn] and pairs

it with the integer 0 to form a record cursor of type Recordcursor c[c1,...,cn]. Simi-

larly, the psum cursor operation takes a sum value of type Sum c[c1,...,cn] and pairs it

with the enum 0 to form a sum cursor of type Sumcursor c[c1,...,cn]. The prec head

operation takes a record cursor of type Recordcursor c[c1,...,cn] and returns a value

of type c1. This value is obtained by taking the current o�set of the record cursor and

selecting this component from the record of the record cursor. The prec tail operation

takes a record cursor of type Recordcursor c[c1,c2,...,cn] and returns a new record

cursor of type Recordcursor c[c2,...,cn]. This new cursor is obtained by taking the

o�set of the old cursor, incrementing it, and then pairing it with the record of the old

cursor to form a new cursor. When combined with the term-level listcase operations on

constructors, record cursors can be used to fold an operation across the components of a

record. We use this facility, for example, to compute polymorphic equality on records of

arbitrary arity.

The op2 primitive operations take two arguments and are de�ned as follows:

datatype op2 =

pdiv i | pmul i | pplus i | pminus i | pmod i

| peq i | plst i | pgtt i | plte i | pgte i

| pdiv ui | pmul ui | pplus ui | pminus ui

| plst ui | pgtt ui | plte ui | pgte ui

| por i | pand i | pxor i | plshift i | prshift i

| pdiv r | pmul r | pplus r | pminus r | peq r

| plst r | pgtt r | plte r | pgte r

| palloc a of spclarray | psub a of spclarray

| pexcon | pde excon | peqptr

Operations ending in \ i" are signed, checked integer operations, whereas operations

ending in \ ui" are unsigned, unchecked operations. (The checks are for over
ow and

divide by zero.) The operations ending in \ r" are double-precision (i.e., 64-bit) IEEE

oating point operations.

The palloc a operations allocate arrays of the appropriate type, where the size is

determined by the �rst argument and the array is initialized with the second argument.

The psub a operation extracts a value from an array (the �rst argument) at the given

o�set (the second argument). The pexcon operation takes a value of type Excon c(�)

and a value of type � and returns a value of type Exn c. The pde excon operation takes a

CHAPTER 8. THE TIL/ML COMPILER 176

value of type Exn c and a value of type Deexcon c(�) and returns a Enumorrec c(1,[�])

value. The resulting value is either an enum or else a record containing a � value.

The miscop operations are given by the following datatype:

datatype miscop =

pupdate a of spclarray * exp * exp * exp

| pextern of string * con

| pnew exn of con

| peq of con

| vararg of con * exp

| onearg of con * exp * exp

The pupdate a operation is used to update an array. The front-end ensures that the index

is within range. The pextern operation is used to reference external labels, exported by

the runtime or a foreign language (e.g., C). The pnew exn operation takes a constructor

� and returns a pair of a Excon c(�) value and a Deexcon c(�) value.

The peq operation corresponds to polymorphic equality at the monotype denoted by

the given constructor. This operation can be coded using various other operations in the

language (see Section 5.2.3). In fact, a later stage in the compiler replaces all occurrences

of peq with a call to such a function de�ned in a separate, globally shared module. We

leave the operation as a primitive so that the optimizer can easily recognize and specially

treat the operation.

The vararg(�,e) and onearg(�,e,e') operations are used to implement dynamic

argument
attening and roughly correspond to the vararg and onearg terms of Chapter

5 (see Sections 5.2.4 and 5.2.5).

The vararg operation takes a constructor � and a function e. The typing rules

constrain e to take a single argument of type � . The operation calculates a coercion,

based on � , that turns e into a multi-argument function. In particular, if � is a record

constructor of the form Record c[c1,...,cn], then the coercion is a function that takes

n arguments of type c1,� � �,cn, respectively. These arguments are placed into a record

and passed to the original function e. If � is not a record, then the coercion is the identity.

The onearg operation takes a constructor � , a function e, and an argument e'.

If � is not a record constructor, then the operation simply applies e to e'. If � is a

record constructor of the form Record c[c1,...,cn], then the e is constrained by the

typing rules to be a multi-argument function that takes arguments of type c1,� � �,cn,

respectively, and e' is constrained to be a record of type � . In this case, onearg extracts

the components of the record e' and passes them directly as arguments to e.

The typing constraints on vararg and onearg are expressed using Typecase c (see

Section 5.2.1). For a �xed number of arguments, both vararg and onearg can be im-

plemented directly in Lmli by a combination of term-level Typecase e and Listcase e

CHAPTER 8. THE TIL/ML COMPILER 177

expressions that deconstruct the argument constructor and calculate the appropriate co-

ercion. Like peq, a later phase in the compiler replaces all occurrences of vararg and

onearg with references to these terms, which are placed in a globally shared module. We

leave both forms as primitive operations to facilitate optimization.

The Switch e expression provides a combination of a control
ow operator and a

primitive deconstructor for integer, enum, sum, enum-or-record, enum-or-sum, and sum

cursor values. The switch exp argument to Switch e is de�ned by the SML type ab-

breviation

type switch exp =

fswitch type : switch type,

arg : exp,

arms : (word * function) list,

default : exp Optiong,

where switch type is given by

datatype switch type =

Int sw | Enum sw | Sum sw | Enumorrec sw | Enumorsum sw

| Sumcursor sw

Each clause or arm of the switch is indexed by a 32-bit word. For integer and enum

switches, the value of the argument is used to select the appropriate arm according to

this index. In these cases, the arms are functions that take no arguments. For sum

switches, the enum in the �rst position of the sum is used to select the appropriate arm.

The arm function must take a record type corresponding to the appropriate variant. For

instance, if e has type Sum c[[Int c,String c],[Int c]], then the 0-arm must be a

function that takes a record of type Record c[Enum c 2,Int c,String c] whereas the

1-arm must be a function that takes a record of type Record c[Enum c 2,Int c]. If the

switch is for an enum-or-record or enum-or-sum value, then the 0-arm corresponds to the

enum case whereas the 1-arm corresponds to either a record or sum. In all cases, if an

arm is missing, then the default expression is chosen. Defaults are required unless the

arms are exhaustive.

Recall that sum cursor values are implemented as pairs consisting of an enum and a

sum value. Switch expressions for sum cursor values are evaluated as follows: if the enum

value of the cursor matches the enum value of the sum value, then the 0-arm is selected

and the sum value is passed as an argument. If the enum value of the cursor does not

match, then the 1-arm is selected and a new cursor value is constructed from the old.

The new cursor has the same sum value, but increases the index by one. If the original

sum cursor has type Sumcursor c[c1,c2,...,cn], then the new sum cursor value has

type Sumcursor c[c2,...,cn]. Therefore, switch on sum cursors provides a means for

eliminating one of the possible cases in a sum.

CHAPTER 8. THE TIL/ML COMPILER 178

The Tlistcase e and Typecase e forms provide a simple eliminatory form for con-

structors at the term level. We do not provide Fold e or Typerec e at the term level,

because these may be simulated with Fixtype d. The argument to a Tlistcase e is

described by

type tlistcase exp =

farg : con,

scheme: var * kind * con,

nil c : exp,

cons c: tfunctiong.

The arg component is the argument constructor, which must be of a list kind. The

scheme component is a type scheme used to describe the type of the clauses as well

as the type of the entire expression. The type of the entire expression is obtained by

substituting arg for the type variables of the scheme within the constructor of the scheme.

The nil c clause must have a type described by substituting Nil c (at the appropriate

kind) for the variable in the constructor. The cons c clause must be a function that

abstracts two constructor arguments, corresponding to the head and tail of the list of

constructors.

The argument to a Typecase e is described by

type typecase exp =

farg : con,

scheme : var * kind * con,

arms : (primcon * tfunction) list,

mu arm : tfunction Option,

default : tfunction Optiong

Here, the arg component must be of kind Mono k. Again, the entire type is obtained

by substituting arg for the variable within the constructor of the scheme. Each arm is

indexed by a primitive constructor. The mu armmatches any Mu c values. The \unrolling"

of the recursive constructor is passed as an argument to this clause when it is selected.

The default component is selected if the argument does not match any of the arms.

Raise e raises an exception packet of type Exn c, whereas Handle e(e,f) evaluates

e and if an exception is raised, the exception packet is passed to the function f. The

function can use a combination of the de excon primitive and a Switch e to determine

what exception was raised and extract a value from the packet.

Finally, the Export e form is not an expression, but rather an anonymous module.

Each compilation unit in TIL is constrained to be an expression consisting of a series of

declarations that terminate with an Export e. This form speci�es a list of constructors

and values that are to be exported by the module. Each module is given a globally unique

strid M . The module is described by a signature

CHAPTER 8. THE TIL/ML COMPILER 179

datatype signat =

Signat of ftypes : (label * kind * (con Option)) list,

values : (label * con) listg

that describes the kinds and types of the constructors and values exported by the module.

Each exported constructor can optionally include the de�nition of the constructor in the

signature. In this respect, Lmli signatures resemble the translucent sums of the Harper

and Lillibridge module calculus [58]. The types of the values can contain references to

the constructors exported by the module | using the Dot c notation | relative to the

module strid M . The module itself is represented with a datatype of the form

datatype module =

Module of fname: strid,

imports : (strid * signat) list,

signat : signat,

body : expg.

The imports component speci�es the set of modules (and their signatures) upon which

this module depends.

8.5 Lambda to Lmli

In the translation from Lambda to Lmli, I eliminate datatype de�nitions and perform

a series of type-directed transformations that specialize arrays and refs,
atten function

arguments, box
oating point values, and
atten certain representations of datatypes.

All of these type-directed translations make use of dynamic type analysis when they en-

counter unknown types. I also provide Lmli terms that implement polymorphic equality,

and the vararg and onearg primitives as suggested in Chapter 5.

In this section, I show how I compile datatypes to Lmli constructors, and discuss the

various type-directed translations. I also contrast my approach to datatype representa-

tions with that of SML/NJ and show that, unlike SML/NJ, I am able to
atten data

constructors without restricting abstraction.

8.5.1 Translating Datatypes

I translate a simple datatype de�nition of the form

datatype (�1,� � �,�n) T = D1 | D2 | � � � | Dm,

to a constructor function that abstracts the type variables (�1 through �n). The body of

the function is a Mu c constructor where T is bound to a representation of its de�nition

(discussed below). For example, the SML datatype

CHAPTER 8. THE TIL/ML COMPILER 180

datatype � tree = Leaf of � | Node of � tree * � tree

is compiled to a constructor function of the form

tree = ��::Mono k.Mu c([(t,Sum c[[�],[[Var c t,Var c t]]])],Var c t).

(I have elided some kind information and used � to represent the constructor function.)

Within the de�nition of the datatype, I replace recursive references with the Mu c-bound

variable. For instance, in the previous tree de�nition, I replaced � tree with the variable

t. This replacement is possible because I always verify that a datatype is applied to the

same type variables that it abstracts (see Section 8.3). The resulting constructor has

kind Mono k ! Mono k.

The translation of a datatype applied to some type argument is straightforward: I

simply apply the constructor function corresponding to the datatype to the translation

of the type arguments.

This approach to datatypes was originally suggested by Harper [59], though he also

suggests the use of an existential to hide the representation of the datatype. Hiding the

representation of the datatype is important at the source level, since this distinguishes

user types that happen to have the same representation. However, within the back-end

of a compiler, there is no advantage to such abstraction. Therefore, I do not abstract the

representations of datatypes.

The general form of an SML datatype de�nition is a series of mutually recursive

de�nitions of the form

datatype (�1;1,� � �,�1;n1) T1 = D1;1 | D1;2 | � � � | D1;m1

and (�2;1,� � �,�2;n2) T2 = D2;1 | D2;2 | � � � | D2;m2

...

and (�p;1,� � �,�p;np) Tp = Dp;1 | Dp;2 | � � � | Dp;mp

In this general case, I generate one constructor function that abstracts all of the unique

type arguments. The function uses a single Mu c constructor to de�ne the constructors

simultaneously. I then export the set of constructors corresponding to the datatype as a

constructor tuple. Individual types are obtained by instantiating the type variables and

projecting the appropriate component from the tuple.

The representation that I choose for a datatype

datatype (�1,� � �,�n) T = D1 | D2 | � � � | Dm

depends on the form of the data constructors, D1, D2, � � �, Dm. In SML, data constructors

can have zero or one argument. I choose the representation of the datatype according to

the following cases:

CHAPTER 8. THE TIL/ML COMPILER 181

� If all of the data constructors take zero arguments, then we use an Enum c as

the translation of the datatype. For example, datatype bool = true | false is

represented as an (Enum c 2) constructor.

� If there is only one data constructor and this data constructor takes an argument

of type � , then we use the translation of � as the representation of the datatype.

� If all of the data constructors take one argument, and there is more than one data

constructor, we use a Sum c (variant record) as the translation of the datatype.

For example, datatype foo = Bar of int | Baz of real is translated to the

constructor Sum c[[Int c],[Real c]].

� If all but one of the data constructors takes zero arguments, then we use an

Enumorrec c to represent the datatype. For example, the datatype � list = nil

| :: of � * (� list) is translated to an Enumorrec c(1,[Record c[�,Var c

t]) constructor (where t is recursively bound to the de�nition). The data con-

structor that takes an argument (e.g., cons) is always represented as a record so

that it can be distinguished from Enum c values. However, this introduces extra

indirection when the argument to the data constructor is already a record (e.g., �

* (� list)). A later phase eliminates this extra indirection when possible (see

Section 8.5.3).

� If there is more than one data constructor that takes an argument and there are data

constructors that take no arguments, the datatype is translated to an Enumorsum c

constructor. Enum c values are used for the data constructors that take no argu-

ments whereas Sum c values are used for the data constructors that take arguments.

A naive representation of datatypes might map each datatype to a variant record. How-

ever, this approach would cause values such as true, false, and nil to be allocated. By

mapping datatypes to the various e�cient representation types, we avoid a great deal of

allocation.

8.5.2 Specializing Arrays and Boxing Floats

During the translation from Lambda to Lmli, I translate polymorphic array operations

such as sub and update to constructor abstractions that perform a typecase on the

unknown type. The typecase selects the appropriate primitive operation (e.g., psub

Realarray, psub Intarray, or psub Ptrarray) according to the instantiation of this

type.

We chose to distinguish integer and
oating point arrays from other kinds of arrays

for a variety of reasons: �rst, in the presence of a generational collector, the update

CHAPTER 8. THE TIL/ML COMPILER 182

operation on these arrays does not require a write barrier, because the value placed in

the array can never point across generational boundaries. Second, by leaving integer

arrays untagged and unboxed, we are able to use them to represent both raw strings

and byte arrays. Third, by distinguishing
oating point arrays, we are able to align

such arrays on 64-bit boundaries, providing e�cient access to the elements of the array.

SML/NJ provides specialized monomorphic strings, bytearrays, and
oating point arrays

for these same reasons. However, any array library function | such as an iterator |

must be coded for each of these array types.

After translating Lambda to Lmli, I perform a series of type-directed translations

on the resulting Lmli code. The �rst translation ensures that all
oat values are boxed

(i.e., placed in a record), except when they are placed in
oating point arrays. The

translation simply boxes
oating point literals, unboxes
oats as they are passed to

primitive operations (e.g., pplus r), and boxes
oat results of primitive operations. Much

of the boxing and unboxing is eliminated within a function by conventional optimization.

8.5.3 Flattening Datatypes

After boxing
oats, I perform a type-directed translation to
atten Enumorrec c values.

Consider the list datatype:

datatype � list = nil | :: of � * (� list)

This datatype is initially translated to the Lmli constructor

list = ��::Mono k.

Mu c([t,Enumorrec c(1,[Record c[�,Var c t]])],Var c t).

At this stage, list values will either be an (Enum c 1) value corresponding to nil or a

Record c[Record c[�,list(�)]] value corresponding to cons. Because the contents

of a cons cell is always a record (Record c[�,list(�)]), we can always determine

such values from nil and thus eliminate the extra Record c[-] in cons cells. After the

constructor
attening phase, the list datatype is represented by the constructor

list = ��::Mono k.Mu c([t,Enumorrec c(1,[�,Var c t])],Var c t).

This optimization eliminates an extra level of indirection in every cons cell, and is thus

very important for typical SML code, which does a fair amount of list-processing.

However, we cannot always determine at compile time whether or not we can
atten

an Enumorrec c constructor. In particular, consider the option datatype:

datatype � option = NONE | SOME of �

The initial translation of this datatype yields the constructor

CHAPTER 8. THE TIL/ML COMPILER 183

option = ��::Mono k.Enumorrec c(1,[�]).

Since the data constructor SOME has an argument of unknown type (�), we cannot deter-

mine whether SOME will always be applied to a record and thus cannot determine whether

we can
atten the representation. In particular, the SML type int option should not

be
attened because we cannot always tell integer values from Enum c values.

Therefore, when we encounter an Enumorrec c(n,�) constructor, we use Typecase c

on � to determine whether or not the constructor should be
attened. Therefore, after

constructor
attening, the option datatype is represented by the constructor

option = ��::Mono k.Typecase c � of

Record c [�1; � � � ; �n] => Enumorrec c(1,[�1; � � � ; �n])

| => Enumorrec c(1,[�])

When constructing an option value or deconstructing an option value, we must use

Typecase e at the term level to determine the proper code sequence.

My approach generalizes the constructor
attening performed in the SML/NJ com-

piler. In SML/NJ, cons cells are
attened but SOME cells are not, precisely because the

compiler cannot determine at compile time whether it can safely
atten option datatypes.

Even to support
attened cons cells, SML/NJ restricts the programmer from writing

certain legal SML programs [10]. In particular, SML/NJ will not let the programmer

abstract the contents of a cons cell in a signature as follows

signature LIST =

sig

type � Abstract Cons

datatype � list = nil | :: of � Abstract Cons

end

structure List : LIST =

struct

datatype � list = nil | :: of � Abstract Cons

withtype � Abstract Cons = � * � list

end.

Typing this code into the SML/NJ (version 1.08) interactive system yields the following

message:

std in:0.0-23.5 Error: The constructor :: of datatype list

has different representations in the signature and the structure.

Change the definition of the types carried by the constructors in

the functor formal parameter and the functor actual parameter so

that they are both abstract, or so that neither is abstract.

CHAPTER 8. THE TIL/ML COMPILER 184

The problem is that a functor parameterized by the LIST signature cannot determine

whether the contents of cons cells can be
attened; any such functor will be compiled

assuming that cons cells are not
at, whereas the structure List will be compiled so that

cons cells are
attened. My approach makes no such restriction because I dynamically

determine the representation of abstract data structures when necessary.

8.5.4 Flattening Arguments

After
attening Enumorrec c values, I
atten function arguments in the same manner as

suggested in Chapter 5. If a function takes a record as an argument and the number of

elements in the record does not exceed a constant k, then the function is transformed to

take the elements of the record as multiple arguments. If a function takes an argument

of known type that is not a record (or else the function takes a record with greater than

k components7), then the function is not transformed. If a function takes an argument of

unknown type, then the function is compiled expecting a single argument. The vararg

primitive is used to calculate a coercion dynamically, based on the instantiation of the

unknown type.

Likewise, an application is transformed so that, if the argument is a record and the

number of elements in the record does not exceed k, then the components of the record

are passed directly as multiple arguments. If the argument has known type, but is either

not a record or else is a record of greater than k components, then the application is not

transformed. If an application has an argument of unknown type, then I use the onearg

primitive to calculate a coercion dynamically, based on the instantiation.

8.6 Bform and Optimization

After the translation to Lmli, and after the series of type-directed transformations, we

translate Lmli to Bform. Bform is a subset of Lmli that makes an explicit distinction be-

tween small values and constructors that �t into registers, large values and constructors

that must be allocated on the heap, and computations that produce values or construc-

tors.

At the term level, small values are either variables, projections from a module, unit

(an empty record), integers,
oats, enums, external labels, or coercions applied to a

small value. Large values include strings, records of small values, and functions. At the

constructor level, small values are either variables, projections from modules, an empty

tuple of constructors, or a 0-ary primitive constructor (e.g., Int c). Large values include

tuples and lists of constructors as well as primitive constructors that take arguments

(e.g., Record c).

7In the current prototype, k is arbitrarily set to eight arguments.

CHAPTER 8. THE TIL/ML COMPILER 185

All large values and all computations are bound to variables in a declaration and

we use the variable in place of the large value or computation. Thus, expressions always

manipulate small values. These constraints ensure that we avoid duplicating large objects

(such as strings) and preserve as much sharing as possible. These constraints also have

the e�ect of linearizing nested computations and naming intermediate results. All of

these constraints simplify standard optimization.

Numerous transformations and optimizations are applied in the Bform phase to pro-

grams. (See Tarditi [115] for a more complete description of these optimizations.) The

optimizations include the following conventional transformations:

� alpha-conversion: We assign unique names to all bound variables.

� minimizing �x: We break functions into minimal sets of mutually recursive func-

tions. This improves inlining, by separating non-recursive and recursive functions.

� dead-code elimination: We eliminate unreferenced, pure expressions, and func-

tions.

� uncurrying: We transform curried functions to multi-argument functions when-

ever all of the call sites of the curried function can be determined.

� constant folding: We reduce arithmetic operations, switches, and typecases on

constant values, as well as projections from known records.

� sinking: We push pure expressions used in only one branch of a switch into that

branch.

� inlining: We always inline functions that are applied only once. We never inline

recursive functions. We inline non-recursive, \small" functions in a bottom-up pass.

� inlining switch continuations: We inline the continuation of a switch, when all

but one clause raises an exception. For example, the expression

let x = if y then e2 else raise e3
in e4
end

is transformed to

if y then let x = e2 in e4 end else raise e3.

This makes expressions in e2 available within e4 for optimizations such as common

sub-expression elimination.

CHAPTER 8. THE TIL/ML COMPILER 186

� common subexpression elimination (CSE): Given an expression

let x = e1
in e2
end

if e1 is pure, then we replace all occurrences of e1 in e2 with x. Pure expres-

sions include operations such as record projection that are guaranteed to terminate

without e�ect, but exclude signed arithmetic (due to the possibility of over
ow and

divide-by-zero exceptions) and function calls.

� eliminating redundant switches: Given an expression

let x = if z then

let val y = if z then e1 else e2
in ...

we replace the nested if statement by e1, since z is always true at that point.

� hoisting invariant computations: Using the call graph, we calculate the nesting

depth of each function. We assign a let-bound variable and the expression it binds

a nesting depth equal to that of the nearest enclosing function. For every pure

expression e, if all free variables of e have a nesting depth less than e, we move the

de�nition of e right after the de�nition of the free variable with the highest lexical

nesting depth.

� eliminating redundant comparisons: We propagate a set of simple arithmetic

relations of the form x < y top-down through the program and a \rule-of-signs"

abstract interpretation is used to determine signs of variables. We use this infor-

mation to eliminate array-bounds checks and other tests.

In addition to these standard optimizations, I perform a set of type-speci�c optimizations:

� eliminating peq: If the polymorphic equality primitive is applied to a known type,

and the number of syntax nodes in the type is smaller than some parameter, then I

generate special equality code for that type. I delay performing this specialization

until after hoisting and common subexpression elimination to avoid duplication.

� eliminating vararg and onearg: As suggested in Section 5.2.5, the onearg and

vararg primitives cancel. I use this to eliminate applications of onearg and vararg.

Also, as types become known, I specialize the onearg and vararg primitives to the

appropriate coercion. As with peq, I delay performing this specialization until after

hoisting and common subexpression elimination to avoid duplication.

CHAPTER 8. THE TIL/ML COMPILER 187

� hoisting type applications: Because we make the restriction at the source level

that all expressions assigned a 8-type must be values (i.e., e�ect-free), we are as-

sured that a type application is e�ect-free. Furthermore, the back-end does not

introduce any polymorphic functions with computational e�ects, and thus all type

applications are e�ect free. Therefore, like other pure operations, we hoist type

applications.

Currently, we apply the optimization as follows. First, we perform a round of reduc-

tion optimizations, including dead-code elimination, constant folding, inlining functions

called once, CSE, eliminating redundant switches, and invariant removal. These opti-

mizations do not increase program size and should always result in better code. We

iterate these optimizations until no further reductions occur. Then we perform switch-

continuation inlining, sinking, uncurrying, comparison elimination, �x minimizing, and

general inlining. The entire optimization process is then iterated for some adjustable

number of times (currently three).

8.7 Closure Conversion

The closure conversion phase of TIL is based on the formal treatment of closure conversion

given in Chapter 6, but following Kranz [78] and Appel [9], I extended the translation to

avoid creating closures and environments unless functions \escape". A function escapes

if it is placed in a data structure, passed as an argument to another function, or is

returned as the result of a function. If a function does not escape, then all of its call sites

can be determined and all of the free variables of the function are available at the call

sites. Therefore, we transform non-escaping functions to code that takes all of their free

variables as additional arguments, but we avoid creating an environment and closure for

the function. Instead, we modify the call sites of each function to pass these extra values

directly to the code.

A transformed call site may mention variables that occur free in the function being

called, but not the original calling function. Therefore, we must take the set of appli-

cations to non-escaping functions into account when calculating the free variables of a

function.

We use a
at constructor tuple to represent constructor environments, and a
at

record to represent value environments. These environments are always allocated on the

heap. To support recursion, we simultaneously de�ne the environments and closures of

a set of mutually recursive function using a Scheme-style \letrec" declaration.

TIL does not close over variables bound at the top level (i.e., outside of any function).

Such variables are mapped to labels (machine addresses) by lower levels of the compiler

and thus can be directly addressed. In practice, this results in a two-level environment,

where a data pointer is used to access top-level values and a closure pointer is used to

CHAPTER 8. THE TIL/ML COMPILER 188

access values de�ned within a function. The advantage of this approach is that heap-

allocated environments can be substantially smaller. The disadvantage is that values

bound at the top-level cannot easily be garbage collected, since these values are bound

to labels.

After closure conversion, we perform another round of optimization in an e�ort to

clean up any ine�ciencies introduced by closure conversion. Some optimizations, notably

invariant removal and inlining, are turned o� since they do not preserve the invariants of

closure conversion.

8.8 Ubform, Rtl, and Alpha

After closure conversion and closure optimization, we translate the resulting code to

Ubform. The Ubform intermediate language is an untyped Bform, but each variable is

labelled with representation information. We erase the distinction between computations

at the constructor and term levels in the translation to Ubform. Hence, constructor vari-

ables become term variables, constructor values become term values, and constructor

computations become term computations. Mono k constructors, such as Int c, are rep-

resented as an enumeration, whereas Mono k constructors that take an argument, such

as Record c are represented as tagged, variant records. Thus, the entire kind of Mono k

constructors is represented in the same fashion as an SML datatype.

The representation information on Ubform variables indicates whether each variable

is an integer,
oat, pointer to a heap-allocated value, or of unknown representation

at compile-time. Enum c, Enumorrec c, and Enumorsum c values are considered to be

pointers since the garbage collector can always determine whether they are in fact pointers

at run time. Variables with unknown representation are annotated with other variables

(corresponding to Bform type variables) that will contain the representation at run-

time. An earlier stage boxes
oating point values, thereby guaranteeing that variables of

unknown representation are never
oats. This invariant allows the register allocator to

always assign a general purpose register to variables of unknown representation. Without

the invariant, the register allocator would have to assign both a general purpose machine

register and a
oating point register to the variable and use dynamic type analysis to

decide which of the two registers to use.

The Ubform representation is quite similar to a direct-style version of the CPS in-

termediate form used by Shao and Appel in the SML/NJ compiler [110]. While Shao

and Appel claim that their compiler is type-based, they only use representation-based,

untyped intermediate forms. Hence, it is not possible, in general, to verify automatically

that any of their intermediate representations are type-safe. In contrast, only the last

stages of TIL are untyped and a type checker can be used to verify automatically the

type integrity of the code, even after optimization and closure conversion. Furthermore,

CHAPTER 8. THE TIL/ML COMPILER 189

the representation information we use at the Ubform level is more general than the rep-

resentation information used by Shao and Appel, since we allow dynamic instantiation

of representation information.

Currently, no optimization or other transformations occur at the Ubform level. We

simply use the translation to Ubform as a convenient way to stage the compilation of the

closure-converted code to the next intermediate form. This next form is called Rtl, which

stands for Register Transfer Language. Rtl is similar to Alpha, MIPS, and other RISC-

style assembly languages. However, it provides heavy-weight function call and return

mechanisms, and a form of interprocedural goto for implementing exceptions. Rtl also

provides an in�nite number of pseudo-registers. In the conversion from Ubform to Rtl,

we decide whether Ubform variables will be represented as constants, labels, or pseudo-

registers. During the conversion, we also eliminate exceptions, insert tagging operations

for records and arrays, and insert garbage collection checks.

The Rtl level would be suitable for a conventional, low-level imperative optimizer,

similar to the ones found in C and Fortran compilers. We perform a few small optimiza-

tions, notably collapsing garbage collection checks and eliminating redundant loads of

small constants.

Finally, the Rtl representation is translated to Alpha. Alpha is DEC Alpha assembly

language, with extensions similar to those for Rtl. In the translation from Rtl to Alpha,

we use conventional graph-coloring register allocation to allocate physical registers for

the Rtl pseudo-registers. We also construct tables describing the layout and garbage

collection information for each stack frame.

8.9 Garbage Collection

The translation from Ubform to Rtl and the translation from Rtl to Alpha, maintain

the representation information that annotates variables. This representation information

is used to construct tables for garbage collection. These tables tell the collector which

registers and which stack slots contain pointers to heap-allocated objects.

Abstractly, we record enough information to determine which registers and which

stack slots are live at every call site, and whether or not to trace these values, based on

the representation information. We use the return address of call sites as an index to

�nd the information and ensure that the return address is always saved in the �rst slot

of a stack frame. In these respects, our collector closely resembles Britton's collector for

Pascal [23] and the formal development of Chapter 7.

However, our collector is complicated by two details: the �rst complication is that

some values have unknown representation at compile time. At the Ubform level, these

values are labelled with another variable (corresponding to a type variable) that, at run

time, indicates the representation of the value. Hence, for values of unknown represen-

CHAPTER 8. THE TIL/ML COMPILER 190

tation, we must record where this other variable can be found so that the collector can

determine whether or not to trace the original value. In this respect, our collector resem-

bles Tolmach's tag-free collector for SML [119]. However, Tolmach calculates unknown

representations lazily during garbage collection, because he does not have a general pro-

gramming language at the type level. In particular, he only supports substitution at the

constructor level and not, for instance, Typerec. In contrast, our constructor computa-

tions can perform type analysis, function call, and allocation. Therefore, we calculate

unknown representations eagerly, during program evaluation so that all representations

are already calculated before garbage collection is invoked.

The second complication is that we split the registers into a set of caller-saves and

a set of callee-saves registers. Callee-saves registers are used to hold values needed after

a procedure call. To use a callee-saves register as a temporary, a procedure must save

the contents of the register on the stack and restore the contents before returning to the

caller.

In e�ect, callee-saves registers are like extra arguments to a procedure that are sim-

ply returned with the result of the procedure. Unfortunately, the types and thus the

representations of these extra arguments are unknown to the called procedure. We solve

this issue by recording when callee-saves registers are saved into stack slots and when

variables are placed into callee-saves registers. During garbage collection, we process the

stack from oldest frame to youngest frame. Initially, the callee-saves registers are not

live. If the �rst procedure places values into the callee-saves registers, then it knows the

representations of these values. We propagate this information to the next stack frame.

If the next procedure spills a callee-saves register to the stack, then we can determine the

representation of the stack slot from the propagated representation information. Oth-

erwise, we simply forward the representation information to the next stack frame, and

so on. This approach to reconstructing type information is similar to the approach sug-

gested by Appel [8] and Goldberg and Gloger [49, 50]. Once we determine which registers

and which stack slots must be traced, we perform a standard copying garbage collection

on the resulting roots. Currently, we use a simple two-generation collector.

8.10 Performance Analysis of TIL

In this section, I compare the performance of code produced by TIL against code produced

by the SML/NJ compiler [12]. I also examine other aspects, including heap allocation,

physical memory requirements, executable size, and compile time. The goal is to show

that, for a reasonable set of benchmarks, TIL produces code that is comparable (or

better) than the code produced by SML/NJ, at least for the subset of SML that TIL

currently supports.

However, I make no attempt to compare TIL and SML/NJ except for these end-to-

CHAPTER 8. THE TIL/ML COMPILER 191

end measurements. There are many di�erences between these two systems, so we cannot

directly compare particular implementation choices (such as whether or not to use tag-

free collection), simply because we cannot �x all of the other variables. By showing that

TIL code is comparable to SML/NJ, I hope to persuade the reader that a type-based

implementation of SML that uses novel technologies, such as dynamic type dispatch and

tag-free collection, can compete with one of the best existing ML compilers.

8.10.1 The Benchmarks

I chose a set of small to medium-sized benchmarks ranging from a few lines up to 2000

lines of code to measure the performance of TIL. Larger programs would be desirable, but

there are few large SML programs that do not use nested modules or functors. Table 8.1

describes these programs. The benchmarks cover a range of application areas including

scienti�c computing, list processing, systems programming, and compilers. Some of these

programs have been used previously for measuring ML performance [9, 36]. Others were

adapted from the Caml-Light distribution [24].

For this set of comparisons, I compiled all of the programs as single closed modules.

For lexgen and simple, which are standard benchmarks [9], I eliminated functors by

hand, since TIL does not yet support functors.

For TIL, I compiled programs with all optimizations enabled. For SML/NJ, I com-

piled programs using the default optimization settings. I used a recent internal release

of SML/NJ (a variant of version 108.3), since it produces code that is about 35% faster

than the standard 0.93 release of SML/NJ [110].

For both compilers, we extended the built-in types with safe 2-dimensional arrays.

The 2-d array operations perform bounds checking on each dimension and then use unsafe

1-d array operations. Arrays are stored in column-major order.

TIL automatically pre�xes a set of operations onto each module that it compiles. This

\inline" prelude is about 280 lines in length. It contains 2-d array operations, commonly-

used list functions, and so forth. By pre�xing the module with these de�nitions, we

ensure that they are exposed to the optimizer. To avoid handicapping SML/NJ, I created

separate copies of the benchmark programs for SML/NJ, and carefully placed equivalent

\prelude" code at the beginning of each program.

Since TIL creates stand-alone executables, I used the exportFn facility of SML/NJ

to create stand-alone programs. The exportFn function of SML/NJ dumps part of the

heap to disk and throws away the interactive system.

8.10.2 Comparison against SML/NJ

I compared the performance of TIL against SML/NJ in several dimensions: execution

time, total heap allocation, physical memory footprint, the size of the executable, and

CHAPTER 8. THE TIL/ML COMPILER 192

Program lines Description

cksum 241 Checksum fragment from the Foxnet [18], doing 5000 checksums

on a 4096-byte array, using a stream interface [17].
dict 166 Insert 10,000 strings, indexed by integers into a balanced bi-

nary tree, lookup each string and replace it with another. The

balanced binary trees are taken from the SML/NJ library.
fft 246 Fast-Fourier transform.

fmult 63 Matrix multiply of two 100x100
oating point matrices.

imult 63 Matrix multiply of two 200x200 integer matrices.

kb 618 The Knuth-Bendix completion algorithm.

lexgen 1123 A lexical-analyzer generator [13], processing the lexical descrip-

tion of SML/NJ.
life 146 A simulation of cells implemented using lists [103].

logic 459 A simple Prolog-like interpreter, with uni�cation and backtrack-

ing.
msort 45 List merge sort of 5,120 integers, 40 times.

pia 2065 A Perspective Inversion Algorithm [125] deciding the location of

an object in a perspective video image.
qsort 141 Integer array quicksort of 50,000 pseudo-random integers, 2

times.
sieve 27 Sieve of Eratosthenes, �ltering primes up to 30000.

simple 870 A spherical
uid-dynamics program [39], run for 4 iterations

with grid size of 100.
soli 131 A solver for a peg-board game.

Table 8.1: Benchmark Programs

CHAPTER 8. THE TIL/ML COMPILER 193

25%

50%

75%

100%

125%

150%

cksum dict �t fmult imult kb lexgen life logic msort pia qsort sieve simple soli

Figure 8.4: TIL Execution Time Relative to SML/NJ

compilation time.

I measured execution time on a DEC Alpha AXP 250-4/266 workstation, running

OSF/1, version V3.2, using the UNIX getrusage function. For SML/NJ, I started

timing after the heap had been reloaded. For TIL, I measured the entire execution time

of the process, including load-time. I made 5 runs of each program on an unloaded

workstation and chose the lowest execution time. The workstation had 96 Mbytes of

physical memory, so paging was not a factor in the measurements.

I measured total heap allocation by instrumenting the TIL runtime to count the bytes

allocated. I used existing instrumentation in the SML/NJ run-time system. I measured

the maximum amount of physical memory during execution using getrusage.

To compare program sizes, I �rst compiled empty programs under TIL and under

SML/NJ. The empty program for TIL generates a stripped executable that is around

250 Kbytes, whereas the empty program for SML/NJ consists of roughly 425 Kbytes

from the runtime, and 170 Kbytes from the heap, for a total of 595 Kbytes. Next, I

stripped all executables produced by TIL, and then subtracted the size of the empty

program (250 Kbytes) from the size of each program. For SML/NJ, I measured the size

of the heap generated by exportFn for each program and subtracted the size of the heap

generated by the empty program (170 Kbytes).

Finally, I measured end-to-end compilation time, including time to assemble �les

produced by TIL and time to export a heap image for SML/NJ.

Figures 8.4 through 8.8 present the measurements. The raw numbers appear in Tables

8.2 through 8.6. For each benchmark, measurements for TIL were normalized to those

for SML/NJ and then graphed. SML/NJ represents the 100% mark on all the graphs,

CHAPTER 8. THE TIL/ML COMPILER 194

25%

50%

75%

100%

125%

cksum dict �t kb lexgen life logic msort pia qsort sieve simple soli

Figure 8.5: TIL Heap Allocation Relative to SML/NJ (excluding fmult and imult)

25%

50%

75%

100%

125%

150%

175%

200%

225%

cksum dict �t fmult imult kb lexgen life logic msort pia qsort sieve simple soli

Figure 8.6: TIL Physical Memory Used Relative to SML/NJ

CHAPTER 8. THE TIL/ML COMPILER 195

25%

50%

75%

100%

125%

150%

175%

200%

cksum dict �t fmult imult kb lexgen life logic msort pia qsort sieve simple soli

Figure 8.7: TIL Executable Size Relative to SML/NJ (without runtimes)

100%

500%

1000%

1500%

2000%

cksum dict �t fmult imult kb lexgen life logic msort pia qsort sieve simple soli

Figure 8.8: Til Compilation Time Relative to SML/NJ

CHAPTER 8. THE TIL/ML COMPILER 196

indicated by a solid horizontal line.

Figure 8.4 presents relative running times. On average, programs compiled by TIL

run about two times faster than programs compiled by SML/NJ. All programs but kb

and msort run faster under TIL than under SML/NJ. Furthermore, the TIL versions

of the largest programs, lexgen, pia, and simple, are more than twice as fast as their

SML/NJ counterparts. Finally, the slowest program, msort, is no more than 50% slower

than the SML/NJ version.

The kb benchmark uses exceptions and exception handlers quite frequently. TIL does

a relatively poor job of register saving and restoring around exception handlers and I

suspect that this is the reason for its poor performance on this benchmark. The poor

performance of msort is most likely due to the di�erence in garbage collectors for the two

systems, since roughly two-thirds of the running time for TIL is spent in the collector. I

speculate that the multi-generational collector of SML/NJ does a better job of memory

management for this benchmark.

Since SML/NJ
attens arguments using Leroy-style coercions, and also
attens some

constructors (see Section 8.5.3), the primary di�erence in performance for most bench-

marks is not due to my type-directed translations. Most likely, the primary di�erence in

performance is due to the conventional optimizations that TIL employs [115]. What is

remarkable is that, even though TIL employs more optimizations than SML/NJ, the use

of types and dynamic type dispatch does not interfere with optimization. Furthermore,

for some benchmarks (notably fft and simple) much, if not all, of the performance im-

provement is due to the type-directed array
attening (see Section 8.10.4). Regardless, a

reasonable conclusion to draw from these measurements is that type-directed compilation

and dynamic type dispatch does not interfere with optimization and, when coupled with

a good optimizer, yields code that competes quite well with existing compilers.

Figure 8.5 compares the relative amounts of heap allocation between TIL and

SML/NJ, except for the fmult and imult benchmarks. The TIL version of fmult al-

locates over 16 Mbytes of data, whereas the SML/NJ version allocates less around 1

Kbyte. This is entirely because TIL does not
atten
oating point values into registers

across function calls. During the dot product loop of the TIL version,
oating point

values are pulled out of the arrays, multiplied, and added to an accumulator, and the

accumulator is boxed as it is passed around the loop. Under SML/NJ, the accumulator

remains unboxed. In contrast, the TIL version of imult does not allocate at all at run

time, whereas the SML/NJ version allocates about 1 Kbyte. Even including fmult but

excluding imult, the geometric mean of the ratios of heap-allocated data shows that TIL

programs allocate about 34% of the amount of data that SML/NJ allocates. This low

percentage is not surprising, because TIL uses a stack for activation records, whereas

SML/NJ allocates activation records on the heap.

Figure 8.6 presents the relative maximum amounts of physical memory used. TIL

CHAPTER 8. THE TIL/ML COMPILER 197

programs tend to use either much less or much more memory than SML/NJ programs.

I speculate that some variability is due to the di�erent strategies used to size the heaps.

SML/NJ uses a multi-generational collector with a heap-size-to-live-data ratio of 3 to 1

for older generations, whereas TIL uses a two-generation collector that has a heap-size-

to-live-data ratio of up to 10 to 1 (the ratio varies). Also, since TIL does not yet properly

implement tail-recursion (tail calls within exception handlers are not implemented prop-

erly) the stack may be larger than it needs to be.

Figure 8.7 compares executable sizes, excluding runtimes and any pervasives. On

average, TIL programs are about 80% of the size of SML/NJ programs, and no program

is more than twice as big as the SML/NJ version. These sizes con�rm that generating

tables for nearly tag-free garbage collection consumes a modest amount of space. The

numbers also establish that the inlining strategy used by TIL produces code of reasonable

size.

Figure 8.8 compares compilation times for TIL and SML/NJ. SML/NJ does quite

a lot better than TIL when it comes to compilation time, compiling about six times

faster. However, we have yet to tune TIL for compilation speed. Most of the compile

time is spent in the optimizer and the register allocator. We assume that much of the

time in the register allocator can be eliminated by using an intelligent form of coalescing

as suggested by George and Appel [45]. We assume that much of the time spent in the

optimizer can be eliminated by simply tuning and inlining key routines.

Another reason the optimizer is slow is that we always fully normalize a type when-

ever we want to determine some property (e.g., the domain or range of an arrow type).

Normalizing is an expensive process that destroys a great deal of sharing. By lazily

normalizing, we hope to improve many optimization phases that depend upon type in-

formation.

Finally, I speculate that a great deal of time and allocation during compilation is

due to our naive approach of maintaining type information. In particular, we label each

bound value variable with its type, and we label each bound type variable with its kind.

In the B-form representation, this means that almost every construct has associated type

information and this type information contains a great deal of kind information. Much

of the type/kind information is unneeded or can easily be recovered. Many primitive

transformations, such as �-conversion, must process this unneeded information and are

thus slowed by the ine�cient representation.

8.10.3 The E�ect of Separate Compilation

In this section, I explore the e�ect that separate compilation has on the performance

of some of the benchmarks. When programs are separately compiled, the optimizer

cannot perform as many reductions and transformations. Hence, the likelihood that

the resulting program will use dynamic dispatch increases when compared to the same

CHAPTER 8. THE TIL/ML COMPILER 198

program compiled all together.

I took two of the larger programs, logic and lexgen, and broke them into modules at

natural boundaries, resulting in the benchmark programs logic s and lexgen s. These

benchmarks should give an indication of how TIL performs with realistic, separately

compiled programs.

I also took the dict, fmult, imult, and msort benchmarks, placed the core routines

into separate modules, and abstracted the types and primitive operations of the routines.

Thus, these modules provide a set of generic library routines and abstract datatypes

(balanced binary trees, matrix multiply, list sort) that can be used at any type. During

development, programmers are likely to use such modules. I wanted to determine what

the costs are of holding the types abstract and separately compiling the modules from

their uses.

Table 8.7 describes the resulting benchmarks. The running times of these benchmarks

relative to SML/NJ are graphed in Figure 8.9, and the raw numbers are given in Table

8.8. On the whole, the TIL programs run roughly as well or better than their SML/NJ

counterparts. Only logic s, msort0 and msort1 are slower, and by no more than 20%.

Figure 8.10 compares the running times of each of the separately compiled programs to

the comparable, globally compiled benchmark of the previous section. For the non-matrix

benchmarks, we see about a 10-20% overhead in separate compilation. For the matrix

benchmarks, we see over a 350% overhead. The di�erence between the fmult0/imult0

and fmult1/imult1 bars is because fmult0 and imult0 must perform dynamic type

dispatch to select an array operation, whereas fmult1 and imult1 do not. Hence, we

see that most of the overhead of separate compilation is not due to type abstraction, but

rather to the fact that the primitive operations (multiplication and addition) are held

abstract.

These �gures indicate that TIL provides a tradeo� between separate compilation

and performance. During development, programmers can use separate compilation and

expect that their code will perform reasonably well. Towards the end of development,

as key routines are identi�ed through pro�ling, programmers can specialize the types of

generic routines and expect a modest gain in performance, without sacri�cing full separate

compilation. Clients of a specialized generic abstraction need only be re-compiled if the

type exported by that abstraction changes. At the very end of development, when the

most important abstractions and routines are identi�ed, programmers can inline these

modules to get the best performance, but at the cost of separate compilation.

8.10.4 The E�ect of Flattening

In this section, I explore the performance e�ect of the various type-directed
attening

translations in TIL. Of course, we cannot easily determine the entire impact of types on

the system. For instance, it is impossible to determine what e�ect the tag-free garbage

CHAPTER 8. THE TIL/ML COMPILER 199

25%

50%

75%

100%

125%

dict0 dict1 fmult0 fmult1 imult0 imult1 lexgen s logic s msort0 msort1

Figure 8.9: TIL Execution Time Relative to SML/NJ for Separately Compiled Programs

50%

100%

150%

200%

250%

300%

350%

dict0 dict1 fmult0 fmult1 imult0 imult1 lexgen s logic s msort0 msort1

Figure 8.10: Execution Time of Separately Compiled Programs Relative to Globally

Compiled Programs

CHAPTER 8. THE TIL/ML COMPILER 200

collector has without building a corresponding tagging collector. Therefore, I have only

examined those uses of types that I can easily turn o� and on.

For each of the benchmarks described in the previous section, I measured the running

time and amount of heap allocation of the program when compiled in the following ways:

� B (Baseline): We do not
atten arguments, constructors, or arrays.

� FC (Flattened Constructors) : We
atten all Enumorrec c constructors that con-

tain records. This e�ectively
attens lists and option datatypes. Dynamic type

dispatch is used when the component type is unknown.

� CAF (Conventional Argument Flattening): In addition to FC, We examine the

call sites of each non-escaping function. If each call-site applies the function to a

known record, then we
atten the function and pass the components of the record

directly as arguments.

� TDAF (Type-Directed Argument Flattening): In addition to FC, we
atten all

functions that take records as arguments, and
atten all applications of functions

to records. We use dynamic type dispatch when the argument type is unknown.

� FRA (Flattened Real-Arrays): In addition to TDAF, we
atten all polymorphic

arrays of
oating point values. We use dynamic type dispatch for array operations,

when the component type is unknown.

Tables 8.9 and 8.10 record the running times (in seconds) and amounts of heap allocation

(in megabytes) for each program compiled in each con�guration. The numbers in paren-

thesis indicate the ratio to the corresponding baseline. Figure 8.10.4 plots the running

times, normalized to the baseline; Figure 8.10.4 plots the allocation, normalized to the

baseline.

From the data, we can conclude that
attening both constructors and arguments is

almost always worthwhile, both in terms of running times and allocation. All together,

the
attening phases provide an average speedup of 42% and decrease allocation by 50%.

The biggest improvements for most benchmarks comes from argument
attening. Fur-

thermore, type-directed argument
attening does as well if not better than conventional

argument
attening in almost all cases, providing an addition speedup of 7% and an

additional decrease in allocation of 9%, on average. This is in part because type-directed

attening is able to
atten higher-order functions, whereas conventional argument
at-

tening cannot.

The increase in running time for imult, when constructors are
attened, appears to

be an anomaly in the measurements. Separate and longer runs (10 times each) indicate

that constructor
attening has no measurable e�ect at all on running times or allocation,

but the original data shows a 19% increase in running times.

CHAPTER 8. THE TIL/ML COMPILER 201

E
ff

ec
ts

 o
f

F
la

tt
en

in
g

 o
n

 R
u

n
n

in
g

 T
im

es

02040608010
0

12
0

14
0

cksum

dict

fft

fmult

imult

kb

lexgen

life

logic

msort

pia

qsort

sieve

simple

soli

P
ro

g
ra

m

Percentage Execution Time Relative to Baseline

F
C

C
A

F

T
D

A
F

F
R

A

CHAPTER 8. THE TIL/ML COMPILER 202

E
ff

ec
ts

 o
f

F
la

tt
en

in
g

 o
n

 A
llo

ca
ti

o
n

010203040506070809010
0

cksum

dict

fft

fmult

imult

kb

lexgen

life

logic

msort

pia

qsort

sieve

simple

soli

P
ro

g
ra

m

Percentage Allocation Relative to Baseline

F
C

C
A

F

T
D

A
F

F
R

A

CHAPTER 8. THE TIL/ML COMPILER 203

Flattening real arrays has mixed results on most benchmarks, causing allocation or

running times to vary up or down slightly. This is not surprising since most of the

benchmarks do not manipulate
oating point arrays; when
oating point arrays are

attened, these benchmarks must perform dynamic type dispatch when working with

other array types. However, some benchmarks that do manipulate
oating point arrays,

notably fft and simple, show dramatic speedups: fft shows an 84% improvement in

running time and an 88% reduction in allocation. Surprisingly, the amount of allocation

for simple increases, but running times decrease. I speculate that, since we box
oating

point values passed to other functions, this accounts for the increased allocation, since

values pulled out of a
attened array must be boxed before being passed to a function. A

similar e�ect happens for fmult. Furthermore, these boxes are short-lived | lasting only

a function call | and are thus not preserved by the garbage collector. In contrast, when

values are boxed before being placed in an array, the boxes may tend to live longer. Also,

as boxed arrays are updated, the generational collector must be informed of any potential

generational con
icts. This may account for the fact that simple allocates more, but runs

faster when
oating point arrays are
attened. Regardless, since
attening real arrays

has a negligible negative e�ect on the other benchmarks, it is a worthwhile optimization.

All of these results are consistent with results seen by Shao and Appel [110]. The

advantages of my approach are that (a) we can
atten data constructors without making

restrictions at the source level, (b) we can
atten arrays, (c) we need not tag values for

garbage collection or polymorphic equality.

CHAPTER 8. THE TIL/ML COMPILER 204

Program Exec. time (s) TIL/NJ

TIL NJ

cksum 2.36 11.68 0.20

dict 0.40 0.57 0.70

fft 1.39 15.67 0.09

fmult 0.33 0.50 0.66

imult 1.46 4.93 0.30

kb 1.93 1.74 1.11

lexgen 0.65 2.76 0.24

life 1.29 1.44 0.90

logic 7.98 9.42 0.85

msort 2.72 1.82 1.49

pia 0.38 1.11 0.34

qsort 0.44 1.31 0.34

sieve 0.39 0.30 1.30

simple 8.51 24.02 0.35

soli 0.31 0.56 0.55

Geo. mean 0.50

Table 8.2: Comparison of TIL Running Times to SML/NJ

CHAPTER 8. THE TIL/ML COMPILER 205

Program Heap alloc. (Kbytes) TIL/NJ

TIL NJ

cksum 143.897 984.775 0.15

dict 12.445 38.495 0.32

fft 9.108 214.853 0.04

fmult 16.000 0.001 16,000.00

imult 0.000 0.001 0.00

kb 36.941 96.761 0.38

lexgen 8.753 113.405 0.08

life 25.447 45.259 0.56

logic 253.053 525.997 0.48

msort 114.052 121.738 0.94

pia 5.238 55.142 0.09

qsort 1.035 35.332 0.03

sieve 2.525 7.282 0.35

simple 323.394 826.504 0.39

soli 0.328 15.606 0.02

Geo. mean (excluding imult) 0.39

Table 8.3: Comparison of TIL Heap Allocation to SML/NJ

CHAPTER 8. THE TIL/ML COMPILER 206

Program Phys. mem. (Kbytes) TIL/NJ

TIL NJ

cksum 672 1472 0.46

dict 1152 1872 0.62

fft 2672 17592 0.15

fmult 816 936 0.87

imult 504 1208 0.42

kb 2712 3480 0.78

lexgen 1672 2992 0.56

life 816 1208 0.68

logic 6576 4096 1.61

msort 10032 4896 2.05

pia 1376 1592 0.86

qsort 1096 1536 0.71

sieve 2256 2576 0.88

simple 9088 17784 0.51

soli 1000 1120 0.89

Geo. mean 0.69

Table 8.4: Comparison of TIL Maximum Physical Memory Used to SML/NJ

CHAPTER 8. THE TIL/ML COMPILER 207

Program Exec. size (Kbytes) TIL/NJ

TIL NJ

cksum 32.768 73.840 0.44

dict 24.576 30.720 0.80

fft 40.960 85.128 0.48

fmult 163.840 196.632 0.83

imult 327.680 196.632 1.67

kb 90.112 74.880 1.20

lexgen 271.336 153.824 1.76

life 40.960 20.480 2.00

logic 98.304 51.272 1.92

msort 8.192 18.432 0.44

pia 237.568 149.728 1.59

qsort 16.384 38.936 0.42

sieve 8.192 17.408 0.47

simple 188.416 325.808 0.58

soli 16.384 58.424 0.28

Geo. mean 0.81

Table 8.5: Comparison of TIL Stand-Alone Executable Sizes to SML/NJ (excluding

runtimes)

CHAPTER 8. THE TIL/ML COMPILER 208

Program Comp. time (s) TIL/NJ

TIL NJ

cksum 12.89 1.62 7.96

dict 11.44 1.57 7.29

fft 11.24 2.13 5.28

fmult 3.88 0.77 5.04

imult 3.88 0.78 4.97

kb 59.42 7.19 8.26

lexgen 262.52 13.60 19.3

life 21.15 2.48 8.53

logic 85.40 7.01 12.18

msort 3.79 0.73 5.19

pia 205.16 15.93 12.89

qsort 7.27 1.25 5.82

sieve 2.52 0.57 4.42

simple 206.46 18.27 11.30

soli 10.52 1.35 7.79

Geo. mean 5.8

Table 8.6: Comparison of TIL Compilation Times to SML/NJ

CHAPTER 8. THE TIL/ML COMPILER 209

Program Description

dict0 Generic dictionary structure, with key and value types held ab-

stract as well as key comparison function. Instantiated with

integer keys and string values as in the dict benchmark.
dict1 Same as dict0, but with types known. Only the key comparison

is held abstract.
fmult0 Generic matrix multiply routine, with element type held ab-

stract as well as primitive multiplication, addition, and zero val-

ues. Instantiated with
oating point type and values as in the

fmult benchmark.
fmult0 Same as fmult0, but with the element type known (real). Only

the primitive multiplication, addition, and zero values are held

abstract.
imult0 Generic matrix multiply routine, with element type held ab-

stract as well as primitive multiplication, addition, and zero val-

ues. Instantiated with integer type and values as in the imult

benchmark.
imult1 Same as imult0, but with the element type known (int). Only

the primitive multiplication, addition, and zero values are held

abstract.
lexgen s Same as lexgen benchmark, but broken into separately com-

piled modules.
logic s Same as logic benchmark, but broken into separately compiled

modules.
msort0 Generic list merge sort, with element type held abstract as well

as comparison operator. Instantiated with integer type and com-

parison as in the msort benchmark.
msort1 Same as msort0, but with the element type known (int). Only

the comparison operator is held abstract.

Table 8.7: Separately Compiled Benchmark Programs

CHAPTER 8. THE TIL/ML COMPILER 210

Program Comp. time (s) TIL/NJ

TIL NJ

dict0 0.47 0.58 0.81

dict1 0.38 0.57 0.67

fmult0 1.19 1.20 0.99

fmult1 1.01 1.15 0.88

imult0 5.19 7.57 0.67

imult1 3.58 7.57 0.47

lexgen s 0.72 2.49 0.29

logic s 9.99 8.74 1.14

msort0 3.24 2.73 1.19

msort1 2.93 2.73 1.07

Table 8.8: Comparison of TIL Execution Times Relative to SML/NJ for Separately

Compiled Programs

Program Execution time in seconds (ratio to baseline)

B FC CAF TDAF FRA

cksum 3.92 3.65 (0.93) 3.15 (0.80) 2.29 (0.58) 2.36 (0.60)

dict 0.68 0.64 (0.94) 0.45 (0.66) 0.41 (0.60) 0.40 (0.59)

fft 12.26 11.41 (0.93) 11.20 (0.91) 11.60 (0.95) 1.39 (0.11)

fmult 0.47 0.46 (0.98) 0.37 (0.79) 0.35 (0.74) 0.33 (0.70)

imult 2.80 3.32 (1.19) 1.54 (0.55) 1.47 (0.53) 1.46 (0.52)

kb 2.58 2.49 (0.97) 2.45 (0.95) 2.01 (0.78) 1.93 (0.75)

lexgen 1.23 0.94 (0.76) 0.80 (0.65) 0.71 (0.58) 0.65 (0.53)

life 1.77 1.37 (0.77) 1.33 (0.75) 1.28 (0.72) 1.29 (0.73)

logic 10.45 10.07 (0.96) 8.87 (0.85) 7.92 (0.76) 7.98 (0.76)

msort 6.45 4.37 (0.68) 2.80 (0.43) 2.75 (0.43) 2.72 (0.42)

pia 0.46 0.41 (0.89) 0.37 (0.80) 0.37 (0.80) 0.38 (0.83)

qsort 0.50 0.50 (1.00) 0.44 (0.88) 0.44 (0.88) 0.44 (0.88)

sieve 0.58 0.43 (0.74) 0.43 (0.74) 0.39 (0.67) 0.39 (0.67)

simple 18.99 17.94 (0.94) 15.75 (0.83) 13.40 (0.71) 8.52 (0.45)

soli 0.32 0.31 (0.97) 0.39 (1.22) 0.31 (0.97) 0.31 (0.97)

Geom. mean (0.90) (0.77) (0.70) (0.58)

Table 8.9: E�ects of Flattening on Running Times

CHAPTER 8. THE TIL/ML COMPILER 211

Program Allocation in Mbytes (ratio to baseline)

B FC CAF TDAF FRA

cksum 307.99 267.02 (0.87) 205.35 (0.77) 143.90 (0.47) 143.90 (0.47)

dict 35.66 31.73 (0.89) 17.02 (0.48) 12.45 (0.35) 12.45 (0.35)

fft 51.48 51.48 (1.00) 51.00 (0.99) 51.00 (0.99) 9.11 (0.18)

fmult 24.00 24.00 (1.00) 16.00 (0.67) 16.00 (0.67) 16.00 (0.67)

imult 96.00 96.00 (1.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

kb 54.96 53.52 (0.97) 53.24 (0.97) 36.94 (0.67) 36.94 (0.67)

lexgen 22.77 20.13 (0.88) 17.87 (0.78) 8.75 (0.38) 8.75 (0.38)

life 37.80 26.98 (0.71) 20.51 (0.54) 25.45 (0.67) 25.45 (0.67)

logic 384.37 345.49 (0.90) 292.07 (0.76) 253.05 (0.66) 253.05 (0.66)

msort 270.93 215.70 (0.80) 114.05 (0.42) 114.05 (0.42) 114.05 (0.42)

pia 7.64 6.80 (0.89) 5.33 (0.70) 5.24 (0.69) 5.24 (0.69)

qsort 6.06 6.06 (1.00) 1.04 (0.17) 1.04 (0.17) 1.04 (0.17)

sieve 4.21 2.53 (0.60) 2.53 (0.60) 2.53 (0.60) 2.53 (0.60)

simple 717.65 627.65 (0.87) 469.02 (0.65) 316.41 (0.44) 323.39 (0.45)

soli 0.33 0.33 (1.00) 0.33 (1.00) 0.33 (1.00) 0.33 (1.00)

Geom. mean

(excluding imult) (0.88) (0.65) (0.56) (0.50)

Table 8.10: E�ects of Flattening on Allocation

Chapter 9

Summary, Future Work, and

Conclusions

In this thesis, I have demonstrated that compiler writers can take advantage of types for

everything from enhancing performance to proving correctness. The fundamental idea

behind my approach is to use a combination of type-directed translation and dynamic

type dispatch to build a language implementation. Type-directed translation provides a

formal framework for specifying and proving the correctness of compiler transformations,

whereas dynamic type dispatch provides a means for applying type-directed translation

to languages with unknown or variable types.

9.1 Summary of Contributions

I have presented a core calculus, called �MLi , that provides dynamic type dispatch at both

the term and the constructor levels. I have shown that type-checking �MLi is decidable

and that the type system is sound with respect to the operational semantics.

I gave examples of type-directed translations for SML-like languages to �MLi -like lan-

guages. These translations demonstrated how function arguments and data structures

could be
attened, how tag-free ad-hoc operations such as polymorphic equality could

be implemented, how the constraints of Haskell-style type classes could be encoded, and

how communication primitives could be strongly typed, yet dynamically instantiated. I

also demonstrated how to prove correctness of these translations using logical relations.

I showed how a key transformation in functional language implementation, closure

conversion, could be implemented as a type-directed and type-preserving translation,

even for languages like �MLi . I also proved the correctness of this translation.

I developed a formal, yet intuitive framework for expressing program evaluation that

makes the heap, stack, and registers explicit. This model of evaluation allowed me

212

CHAPTER 9. SUMMARY, FUTURE WORK, AND CONCLUSIONS 213

to address memory management issues that higher-level models leave implicit. I gave a

general de�nition of garbage and a general speci�cation of trace-based garbage collectors.

I proved that such collectors do not interfere with evaluation. I then showed how types

could be used to derive shape information during garbage collection, thereby obviating

the need to place tags on values at run time. I proved the correctness of this tag-free

collection algorithm for monomorphic languages and showed how to extend the technique

to �MLi -like languages. My formulation was at a su�ciently abstract level that the proofs

were tractable, yet the formulation was not so abstract that important details were lost.

Together with others, I constructed a compiler for SML called TIL to explore the

practical issues of type-directed translation and dynamic type dispatch. This compiler

uses typed intermediate languages based on �MLi for almost all optimizations and trans-

formations. TIL uses type-directed translation and dynamic type dispatch to
atten

arguments, to generate e�cient representations of datatypes, and to specialize arrays.

TIL also uses dynamic type dispatch to support partially tag-free garbage collection and

tag-free polymorphic equality. Finally, for a wide range of programs, the code emitted

by TIL is as good or better than code produced by Standard ML of New Jersey.

9.2 Future Work

Because this thesis explores so many aspects of types and language implementation, from

proving compiler correctness to implementing tag-free garbage collection, there are many

unresolved issues among each of the topics. In this section, I discuss those issues that I

feel are the most important.

9.2.1 Theory

From both a type-theoretic standpoint, one of the most interesting open issue for �MLi

is extending the language to support dynamic type dispatch on recursive types at the

constructor level. This would allow us to reify a much wider class of type translations

as constructor terms. For instance, the datatype
attening used in TIL can only be

expressed at the meta-level (i.e., in the TIL compiler) and not as a constructor within

the intermediate language Lmli. However, a straightforward extension of Typerec to

generally recursive types is di�cult, as this is likely to break constructor normalization,

and hence decidability of type checking.

Of a related nature, the restriction to predicative polymorphism is suitable for in-

terpreting ML-like languages. However, this restriction prevents us from compiling lan-

guages based on the original Girard-Reynolds impredicative calculus. Girard has shown

that adding Typerec-like operators to such calculi breaks strong normalization [47], so it

is unlikely that there is a simple calculus that provides both decidable type checking and

CHAPTER 9. SUMMARY, FUTURE WORK, AND CONCLUSIONS 214

impredicative polymorphism. In an impredicative calculus, recursive types (�), 8-types,

and 9-types can all be viewed as primitive constructors of kind (
!
)!
, so to some

degree, the ability to analyze recursive and polymorphic types requires some intensional

elimination form for functions.

Whereas �MLi provides a convenient intermediate form within a compiler, its use as

a source language is somewhat problematic. The issue is that dynamic type analysis

makes no distinction between user-level abstract types that happen to have the same

representation. From a compiler perspective, the whole purpose of dynamic type dispatch

is to violate the very abstraction that a programmer establishes. There are a variety

of approaches that could be taken to solve this problem. The work of Duggan and

Ophel [38] and Thatte [116] on kind-based de�nitions of type-classes seems promising

to me. The basic idea is to allow users to de�ne new inductively generated kinds that

could be re�nements or extensions of the kind of monotypes and, using a combination of

type dispatch and methods corresponding to the new constructors, allow users to de�ne

appropriate elim forms at both the constructor and term levels.

In our previous work on closure conversion [92], we showed how closures could be

represented using a combination of translucent types and existentials. Using this rep-

resentation in TIL would allow us to hoist code and environment projections out of

loops, but would greatly complicate the type system. In particular, the target language

of closure conversion would need to be impredicative, and as mentioned earlier, this is

problematic when combined with dynamic type analysis. However, I suspect that there

is a simpler formulation that o�ers the same performance bene�ts without requiring full

translucent sums and existentials.

Finally, all of these extensions make the underlying proof theory much more di�-

cult. For instance, in an impredicative setting, we must use some technique like Girard's

method of candidates | instead of simple, set-based logical relations | to prove trans-

lation correctness. Providing simple formulations of these techniques is imperative.

9.2.2 Practice

From a practical standpoint, we now know that we can generate good code for polymor-

phic languages if types are readily available at compile time. Furthermore, we know that

for at least the applications studied here, types are either known for the most part, or can

be made to be known. However, I expect that the degree of polymorphism in programs

will only increase as more programmers start to use advanced languages. Hence, the next

logical step is to explore techniques to make polymorphism fast without constraining the

performance of monomorphic code. For example, it would be very pro�table in terms of

execution time to hoist typecase expressions out of loops, in an e�ort to get good code

within the loops. However, hoisting typecase out of a loop requires that we duplicate

the body of the loop for each arm of the typecase. This may be entirely reasonable for

CHAPTER 9. SUMMARY, FUTURE WORK, AND CONCLUSIONS 215

small loops, such as the dot product of matrix multiply, where we have a small number

of cases in the typecase. However, in general, I feel that some sort of pro�le-driven

feedback mechanism is needed to determine which typecases should be hoisted.

Another practical point that needs to be addressed is the issue of unboxing
oating

point values as function arguments and within data structures other than arrays. Un-

boxing
oating point values in function arguments using the vararg/onearg approach is

problematic when there are a large number of argument registers and the underlying ma-

chine has split integer and
oating point registers. The problem is that for k arguments,

vararg must be able to generate 2k coercions to deal with all of the possible calling

conventions. This approach is impractical if k is greater than a fairly small constant (i.e.,

5 or 6).

Fortunately, there is an alternative approach. When vararg is applied to a function

f that is expecting one argument, we generate a closure that contains a runtime routine

that works as follows: when the routine is called, it spills all of the possible argument

registers to the stack. Then, using the type of f , the routine determines which registers

actually contained arguments. Next, the routine allocates a record on the heap and copies

the argument values into the record. Finally, the routine calls f passing this record to

the function. A primitive corresponding to onearg would have the opposite functionality.

These primitives are likely to be more expensive than the tailored conversions that TIL

currently uses, and for conventional SML code | which rarely manipulates
oating point

values | it is not clear that the overheads would justify the costs.

There are enough tradeo�s in data representations that it is not clear that, for in-

stance,
attening
oating point values in records would be worth the cost. Certainly,

attening
oating point values in arrays has mixed bene�ts. There are other issues

that should be addressed as well, including alignment, bit �elds, \endian-ness", word

size, and so forth. Fortunately, TIL provides an excellent framework to explore these

representation tradeo�s.

Clearly, the compile times of TIL are a current problem, and we have yet to address

this issue. Initial tests con�rm that the size of the type information on intermediate

terms is quite large. However, most optimizations, including common sub-expression

elimination, do not optimize types that decorate terms. Rather, the optimizer only

processes constructors that are bound via a let-construct at the term level. By extending

the optimizations to process types, it may be possible to reduce the size signi�cantly, and

hence the compile times of terms. Alternatively, we could use a representation where as

little type and kind information as is possible remains on terms, and reconstruct this

information as needed.

There are a wealth of issues to explore with respect to tag-free garbage collection.

For example, it would be good to implement a fully tagging and fully tag-free implemen-

tation of TIL to explore the costs and bene�ts of our current approach. Fortunately, we

abstracted many details of the garbage collection implementation in the higher levels of

CHAPTER 9. SUMMARY, FUTURE WORK, AND CONCLUSIONS 216

the compiler so that these experiments would someday be possible.

9.3 Conclusions

For compiler writers, types provide a means of encapsulating complex invariants and

analysis information. Type-directed translation shows how we can take this analysis

information from the source-level and transform it, with the program, so that interme-

diate levels can take advantage of this information. In this respect, the type system of

�MLi is far more powerful than conventional polymorphic calculi because it encapsulates

control-
ow information (i.e., Typerec). However, unlike a fully re
ective language, �MLi

is su�ciently restricted that we can automatically normalize types and compare them.

These restrictions make proofs of compiler correctness tractable, and tools like the type

checker for TIL's intermediate forms possible.

A key advantage that type-directed translation has over traditional compiler trans-

formations is that, for languages like SML, type information is readily available. Pro-

grammers must specify the types of imported values and often these types do not involve

variables. I took advantage of this property in TIL to perform argument, constructor, and

array
attening. These type-based transformations are in no way inhibited by higher-

order functions or modules. In contrast, transformations based on data-
ow, control-
ow,

or set-based analyses often fail to optimize terms due to a lack of information. For ex-

ample, the conventional argument
attener of TIL fails to
atten many functions that

the type-directed
attener does
atten. Even without programmer-supplied type infor-

mation, the advances in soft typing [64, 7, 29, 132] provide a means for compiler writers

to take advantage of types.

In general, compilers and other kinds of system software have real issues and problems

that can serve as the clients and driving force behind the development of advanced type

systems. Changing an intermediate language in a compiler to take advantage of recent

advances is much more tractable than changing a ubiquitous source language. As type

systems become more advanced, more information will be available to compilers, enabling

more aggressive transformations. Thus, the real future for both type theory and compilers

is in their marriage.

Bibliography

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J.L�evy. Explicit substitutions. In Sixteenth

ACM Symposium on Principles of Programming Languages, pages 31{46, San Francisco,

Jan. 1990.

[2] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J.L�evy. Explicit substitutions. Journal of

Functional Programming, 1(4):375{416, Oct. 1991.

[3] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-typed

language. In Sixteenth ACM Symposium on Principles of Programming Languages, pages

213{227, San Francisco, Jan. 1990.

[4] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-typed

language. ACM Transactions on Progamming Languages and Systems, 13(2):237{268,

Apr. 1991. Revised version of [3].

[5] S. Aditya and A. Caro. Compiler-directed type reconstruction for polymorphic languages.

In ACM Conference on Functional Programming and Computer Architecture, pages 74{

82, Copenhagen, June 1993.

[6] S. Aditya, C. Flood, and J. Hicks. Garbage collection for strongly-typed languages using

run-time type reconstruction. In ACM Conference on Lisp and Functional Programming,

pages 12{23, Orlando, June 1994.

[7] A. Aiken, E. L. Wimmers, and T. Lakshman. Soft typing with conditional types. In

Twenty-First ACM Symposium on Principles of Programming Languages, pages 163{173,

Portland, Jan. 1994.

[8] A. W. Appel. Runtime tags aren't necessary. LISP and Symbolic Computation, 2:153{162,

1989.

[9] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[10] A. W. Appel. A critique of Standard ML. Journal of Functional Programming, 3(4):391{

429, Oct. 1993.

[11] A. W. Appel and T. Jim. Continuation-passing, closure-passing style. In Sixteenth ACM

Symposium on Principles of Programming Languages, pages 293{302, Austin, Jan. 1989.

217

BIBLIOGRAPHY 218

[12] A. W. Appel and D. B. MacQueen. Standard ML of New Jersey. In M. Wirsing, editor,

Third International Symposium on Programming Language Implementation and Logic

Programming, pages 1{13, New York, Aug. 1991. Springer-Verlag. Volume 528 of Lecture

Notes in Computer Science.

[13] A. W. Appel, J. S. Mattson, and D. Tarditi. A lexical analyzer generator for Standard

ML. Distributed with Standard ML of New Jersey, 1989.

[14] H. Baker. Unify and conquer (garbage, updating, aliasing ...) in functional languages. In

ACM Conference on Lisp and Functional Programming, pages 218{226, Nice, 1990.

[15] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies

in Logic and the Foundations of Mathematics. North-Holland, revised edition, 1984.

[16] E. Barendsen and S. Smetsers. Conventional and uniqueness typing in graph rewrite

systems. In Proceedings of the 13th Conference on the Foundations of Software Technol-

ogy and Theoretical Computer Science 1993, Bombay, New York, 1993. Springer-Verlag.

Extended abstract.

[17] E. Biagioni. Sequence types for functional languages. Technical Report CMU-CS-95-180,

School of Computer Science, Carnegie Mellon University, Aug. 1995. Also published as

Fox Memorandum CMU-CS-FOX-95-06.

[18] E. Biagioni, R. Harper, P. Lee, and B. Milnes. Signatures for a network protocol stack:

A systems application of Standard ML. In ACM Conference on Lisp and Functional

Programming, pages 55{64, Orlando, June 1994.

[19] L. Birkedal, N. Rothwell, M. Tofte, and D. N. Turner. The ML Kit, Version 1. Technical

Report 93/14, Department of Computer Science (DIKU), University of Copenhagen, 1993.

[20] G. E. Blelloch. NESL: A nested data-parallel language (version 2.6). Technical Report

CMU-CS-93-129, School of Computer Science, Carnegie Mellon University, Apr. 1993.

[21] H.-J. Boehm. Space-e�cient conservative garbage collection. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, pages 197{206, Albu-

querque, June 1993.

[22] P. Branquart and J. Lewi. A scheme for storage allocation and garbage collection for

Algol-68. In Algol-68 Implementation. North-Holland Publishing Company, Amsterdam,

1970.

[23] D. E. Britton. Heap storage management for the programming language Pascal. Master's

thesis, University of Arizona, 1975.

[24] Caml light. http://pauillac.inria.fr:80/caml/.

[25] L. Cardelli. Phase distinctions in type theory. Unpublished manuscript.

BIBLIOGRAPHY 219

[26] L. Cardelli. The functional abstract machine. Polymorphism, 1(1), 1983.

[27] L. Cardelli. A language with distributed scope. Computing Systems, 8(1):27{59, Jan.

1995.

[28] L. Cardelli. A language with distributed scope. In Twenty-Second ACM Symposium on

Principles of Programming Languages, pages 286{297, San Francisco, Jan. 1995.

[29] R. Cartwright and M. Fagan. Soft typing. InACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 278{292, Toronto, June 1991.

[30] J. Chirimar, C. A. Gunter, and J. G. Riecke. Proving memory management invariants for a

language based on linear logic. In ACM Conference on Lisp and Functional Programming,

pages 139{150, San Francisco, June 1992.

[31] D. Cl�ement, J. Despeyroux, T. Despeyroux, and G. Kahn. A simple applicative language:

Mini-ML. In ACM Conference on Lisp and Functional Programming, pages 13{27, 1986.

[32] R. L. Constable, et. al. Implementing Mathematics with the NuPRL Proof Development

System. Prentice-Hall, 1986.

[33] C. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine. In ACM

Conference on Functional Programming and Computer Architecture, volume 201 of Lec-

ture Notes in Computer Science, pages 50{64, Nancy, Sept. 1985. Springer-Verlag.

[34] A. Demers, M. Weiser, B. Hayes, H. Boehm, D. Bobrow, and S. Shenker. Combining

generational and conservative garbage collection: Framework and implementations. In

Seventeenth ACM Symposium on Principles of Programming Languages, pages 261{269,

San Francisco, Jan. 1990.

[35] A. Diwan, E. Moss, and R. Hudson. Compiler support for garbage collection in a statically

typed language. In ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 273{282, San Francisco, June 1992.

[36] A. Diwan, D. Tarditi, and E. Moss. Memory-system performance of programs with

intensive heap allocation. Transactions on Computer Systems, Aug. 1995.

[37] C. Dubois, F. Rouaix, and P. Weis. Extensional polymorphism. In Twenty-Second ACM

Symposium on Principles of Programming Languages, pages 118{129, San Francisco, Jan.

1995.

[38] D. Duggan and J. Ophel. Kinded parametric overloading. Technical Report CS-94-35,

University of Waterloo, Department of Computer Science, September 1994. Supersedes

CS-94-15 and CS-94-16, March 1994, and CS-93-32, August 1993.

BIBLIOGRAPHY 220

[39] K. Ekanadham and Arvind. SIMPLE: An exercise in future scienti�c programming.

Technical Report Computation Structures Group Memo 273, MIT, Cambridge, MA, July

1987. Simultaneously published as IBM/T. J. Watson Research Center Research Report

12686, Yorktown Heights, NY.

[40] M. Felleisen and D. P. Friedman. Control operators, the SECD-machine, and the lambda-

calculus. In Third Working Conference on the Formal Description of Programming Con-

cepts, pages 193{219, Aug. 1986.

[41] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control

and state. Theoretical Computer Science, 103:235{271, 1992.

[42] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with

continuations. In ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 237{247, Albuquerque, June 1993.

[43] P. Fradet. Collecting more garbage. In ACM Conference on Functional Programming

and Computer Architecture, pages 24{33, Orlando, June 1994.

[44] T. Freeman and F. Pfenning. Re�nement types for ML. In ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 268{277, Toronto, June

1991. ACM.

[45] L. George and A. W. Appel. Iterated register coalescing. In Twenty-Third ACM Sympo-

sium on Principles of Programming Languages, Jan. 1996. To appear.

[46] J.-Y. Girard. Une extension de l'interpretation de G�odel �a l'analyse, et son application a

l'elimination des coupures dans l'analyse et la th�eorie des types. In Proceedings of the Sec-

ond Scandinavian Logic Symposium, edited by J.E. Fenstad. North-Holland, Amsterdam,

pages 63{92, 1971.

[47] J.-Y. Girard. Interpr�etation Fonctionnelle et Elimination des Coupures dans

l'Arithm�etique d'Ordre Sup�erieur. PhD thesis, Universit�e Paris VII, 1972.

[48] K. G�odel. �Uber eine bisher noch nicht ben�utzte Erweiterung des �niten Standpunktes.

Dialectica, 12:280{287, 1958.

[49] B. Goldberg. Tag-free garbage collection for strongly typed programming languages.

In ACM SIGPLAN Conference on Programming Language Design and Implementation,

pages 165{176, Toronto, June 1991.

[50] B. Goldberg and M. Gloger. Polymorphic type reconstruction for garbage collection

without tags. In ACM Conference on Lisp and Functional Programming, pages 53{65,

San Francisco, June 1992.

[51] J. Gosling. Java intermediate bytecodes. In ACM SIGPLAN Workshop on Intermediate

Representations (IR'95), Jan. 1995.

BIBLIOGRAPHY 221

[52] C. A. Gunter, E. L. Gunter, and D. B. MacQueen. Computing ML equality kinds using

abstract interpretation. Information and Computation, 107(2):303{323, Dec. 1993.

[53] C. Hall, K. Hammond, S. Peyton-Jones, and P. Wadler. Type classes in Haskell. In

Fifth European Symposium on Programming, volume 788 of Lecture Notes in Computer

Science, pages 241{256. Springer-Verlag, 1994.

[54] J. Hannan. A type system for closure conversion. In The Workshop on Types for Program

Analysis, Aarhus University, May 1995.

[55] R. Harper. Strong normalization and con
uence for predicative, higher-order intensional

polymorphism. Unpublished note.

[56] R. Harper and P. Lee. Advanced languages for systems software: The Fox project in

1994. Technical Report CMU-CS-94-104, School of Computer Science, Carnegie Mellon

University, Jan. 1994.

[57] R. Harper and M. Lillibridge. Explicit polymorphism and CPS conversion. In Twentieth

ACM Symposium on Principles of Programming Languages, pages 206{219, Charleston,

Jan. 1993.

[58] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules with

sharing. In Twenty-First ACM Symposium on Principles of Programming Languages,

pages 123{137, Portland, Jan. 1994.

[59] R. Harper and J. C. Mitchell. On the type structure of Standard ML. ACM Transactions

on Progamming Languages and Systems, 15(2):211{252, April 1993. (See also [93].).

[60] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and the phase distinction.

In Seventeenth ACM Symposium on Principles of Programming Languages, pages 341{

354, San Francisco, Jan. 1990.

[61] R. Harper and G. Morrisett. Compiling with non-parametric polymorphism (preliminary

report). Technical Report CMU-CS-94-122, School of Computer Science, Carnegie Mellon

University, Mar. 1994. Also published as Fox Memorandum CMU-CS-FOX-94-03.

[62] R. Harper and G. Morrisett. Compiling polymorphism using intensional type analysis. In

Twenty-Second ACM Symposium on Principles of Programming Languages, pages 130{

141, San Francisco, Jan. 1995.

[63] R. W. Harper and M. Lillibridge. Polymorphic type assignment and CPS conversion.

Lisp and Symbolic Computation, 6:361{379, 1993.

[64] F. Henglein. Global tagging optimization by type inference. In ACM Conference on Lisp

and Functional Programming, pages 205{215, San Francisco, June 1992.

BIBLIOGRAPHY 222

[65] F. Henglein and J. J�rgensen. Formally optimal boxing. In Twenty-First ACM Symposium

on Principles of Programming Languages, pages 213{226, Portland, Jan. 1994. ACM.

[66] M. Herlihy and B. Liskov. A value transmission method for abstract data types. ACM

Transactions on Progamming Languages and Systems, 4(4):527{551, Oct. 1982.

[67] P. Hudak. A semantic model of reference counting and its abstraction. InACM Conference

on Lisp and Functional Programming, pages 351{363, Aug. 1986.

[68] P. Hudak, S. L. P. Jones, and P. Wadler. Report on the programming language Haskell,

version 1.2. ACM SIGPLAN Notices, 27(5), May 1992.

[69] T. Johnsson. Lambda lifting: Transforming programs to recursive equations. In ACM

Conference on Functional Programming and Computer Architecture, volume 201 of Lec-

ture Notes in Computer Science, pages 190{203, Nancy, Sept. 1985. Springer-Verlag.

[70] M. B. Jones, R. F. Rashid, and M. R. Thompson. Matchmaker: An interface speci�ca-

tion language for distributed processing. In Twelfth ACM Symposium on Principles of

Programming Languages, pages 225{235, New Orleans, Jan. 1985.

[71] M. P. Jones. Quali�ed Types: Theory and Practice. PhD thesis, Programming Research

Group, Oxford University Computing Laboratory, July 1992. Currently available as

Technical Monograph PRG-106, Oxford University Computing Laboratory, Programming

Research Group, 11 Keble Road, Oxford OX1 3QD, U.K. email: library@comlab.ox.ac.uk.

[72] M. P. Jones. A theory of quali�ed types. In ESOP '92: European Symposium on Pro-

gramming, Rennes, France, New York, February 1992. Springer-Verlag. Lecture Notes in

Computer Science, 582.

[73] M. P. Jones. Partial evaluation for dictionary-free overloading. Research Report

YALEU/DCS/RR-959, Yale University, New Haven, April 1993.

[74] M. P. Jones. The implementation of the Gofer functional programming system. Research

Report YALEU/DCS/RR-1030, Yale University, New Haven, May 1994.

[75] S. P. Jones and J. Launchbury. Unboxed values as �rst-class citizens. In ACM Conference

on Functional Programming and Computer Architecture, volume 523 of Lecture Notes in

Computer Science, pages 636{666, Cambridge, Sept. 1991. ACM, Springer-Verlag.

[76] R. Kelsey and P. Hudak. Realistic compilation by program translation { detailed summary

{. In Sixteenth ACM Symposium on Principles of Programming Languages, pages 281{

292, Austin, Jan. 1989.

[77] F. Knabe. Language Support for Mobile Agents. PhD thesis, School of Computer Science,

Carnegie Mellon University, 1995.

BIBLIOGRAPHY 223

[78] D. Kranz et al. Orbit: An optimizing compiler for Scheme. In Proceedings of the ACM

SIGPLAN '86 Symposium on Compiler Construction, 1986.

[79] J. Lambek and P. Scott. Introduction to Higher Order Categorical Logic. Cambridge

University Press, 1986.

[80] P. J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6:308{

320, 1966.

[81] X. Leroy. Unboxed objects and polymorphic typing. In Nineteenth ACM Symposium on

Principles of Programming Languages, pages 177{188, Albuquerque, Jan. 1992.

[82] X. Leroy. Polymorphism by name. In Twentieth ACM Symposium on Principles of

Programming Languages, pages 220{231, Charleston, Jan. 1993.

[83] X. Leroy. Manifest types, modules, and separate compilation. In Twenty-First ACM

Symposium on Principles of Programming Languages, pages 109{122, Portland, Jan. 1994.

[84] B. Liskov. Overview of the Argus language and system. Programming Methodology

Group Memo 40, MIT Laboratory for Computer Science, Feb. 1984.

[85] B. Liskov. Distributed Programming in Argus. Communications of the ACM, 31(3):300{

312, Mar. 1988.

[86] B. Liskov, D. Curtis, P. Johnson, and R. Schei
er. Implementation of Argus. In Pro-

ceedings of the 11th ACM Symposium on Operating Systems Principles, pages 111{122,

Austin, Nov. 1987. ACM.

[87] P. Martin-L�of. About models for intuitionistic type theories and the notion of de�nitional

equality. In S. Kanger, editor, Proceedings of the Third Scandinavian Logic Symposium,

Studies in Logic and the Foundations of Mathematics, pages 81{109. North-Holland, 1975.

[88] D. Matthews. Poly manual. ACM SIGPLAN Notices, 20(9):42{76, 1985.

[89] R. Milner. A theory of type polymorphism in programming languages. Journal of Com-

puter and System Sciences, 17:348{375, 1978.

[90] R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press, 1990.

[91] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. Technical Report

CMU-CS-95-171, School of Computer Science, Carnegie Mellon University, July 1995.

Also published as Fox Memorandum CMU-CS-FOX-95-05.

[92] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. In Twenty-Third

ACM Symposium on Principles of Programming Languages. ACM, Jan. 1996. To appear.

[93] J. Mitchell and R. Harper. The essence of ML. In Fifteenth ACM Symposium on Principles

of Programming Languages, pages 28{46, San Diego, Jan. 1988.

BIBLIOGRAPHY 224

[94] J. C. Mitchell and R. Harper. The essence of ML. In Conference Record of the 15th

Annual ACM Symposium on Principles of Programming Languages, pages 28{46, Jan.

1988.

[95] G. Morrisett, M. Felleisen, and R. Harper. Abstract models of memory management.

Technical Report CMU-CS-95-110, School of Computer Science, Carnegie Mellon Univer-

sity, Jan. 1994. Also published as Fox Memorandum CMU-CS-FOX-95-01.

[96] G. Morrisett, M. Felleisen, and R. Harper. Abstract models of memory management. In

ACM Conference on Functional Programming and Computer Architecture, pages 66{77,

La Jolla, June 1995.

[97] R. Morrison, A. Dearle, R. C. H. Connor, and A. L. Brown. An ad hoc approach to the

implementation of polymorphism. ACM Transactions on Progamming Languages and

Systems, 13(3):342{371, July 1991.

[98] S. Nettles. A Larch speci�cation of copying garbage collection. Technical Report CMU{

CS{92{219, School of Computer Science, Carnegie Mellon University, Dec. 1992.

[99] A. Ohori. A compilation method for ML-style polymorphic record calculi. In Nineteenth

ACM Symposium on Principles of Programming Languages, pages 154{165, Albuquerque,

Jan. 1992.

[100] A. Ohori and K. Kato. Semantics for communication primitives in a polymorphic lan-

guage. In Twentieth ACM Symposium on Principles of Programming Languages, pages

99{112, Charleston, Jan. 1993.

[101] A. Ohori and T. Takamizawa. A polymorphic unboxed calculus as an abstract machine

for polymorphic languages. Technical Report RIMS-1032, RIMS, Kyoto University, May

1995.

[102] E. R. Poulsen. Representation analysis for e�cient implementation of polymorphism.

Technical report, Department of Computer Science (DIKU), University of Copenhagen,

Apr. 1993. Master Dissertation.

[103] C. Reade. Elements of Functional Programming. Addison-Wesley, Reading, 1989.

[104] J. Reynolds. Types, abstraction, and parametric polymorphism. In Proceedings of Infor-

mation Processing '83, pages 513{523, 1983.

[105] J. C. Reynolds. De�nitional interpreters for higher-order programming languages. In

Proceedings of the Annual ACM Conference, pages 717{740, 1972.

[106] J. C. Reynolds. Towards a theory of type structure. In Proceedings, Colloque sur la

Programmation. Lecture Notes in Computer Science, volume 19, pages 408{425. Springer-

Verlag, Berlin, 1974.

BIBLIOGRAPHY 225

[107] M. Serrano and P. Weis. 1+1 = 1: an optimizing Caml compiler. In Record of the 1994

ACM SIGPLAN Workshop on ML and its Applications, pages 101{111, Orlando, June

1994. INRIA RR 2265.

[108] Z. Shao. Compiling Standard ML for E�cient Execution on Modern Machines. PhD

thesis, Princeton University, 1994.

[109] Z. Shao and A. W. Appel. Space-e�cient closure representations. In ACM Conference

on Lisp and Functional Programming, pages 150{161, Orlando, June 1994.

[110] Z. Shao and A. W. Appel. A type-based compiler for Standard ML. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 116{129, La

Jolla, June 1995.

[111] G. L. Steele Jr. Rabbit: A compiler for Scheme. Master's thesis, MIT, 1978.

[112] P. Steenkiste and J. Hennessey. Tags and type checking in LISP: Hardware and soft-

ware approaches. In Proceedings of the Second International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS-II), pages 50{59,

Oct. 1987.

[113] S. Stenlund. Combinators, �-terms and Proof Theory. D. Reidel, 1972.

[114] B. Stroustrup. The C++ Programming Language, Second Edition. Addison-Wesley, 1991.

[115] D. R. Tarditi. Optimizing ML. PhD thesis, School of Computer Science, Carnegie Mellon

University, 1996. Forthcoming.

[116] S. R. Thatte. Semantics of type classes revisited. In ACM Conference on Lisp and

Functional Programming, pages 208{219, Orlando, June 1994.

[117] M.-F. Thibault. Repr�esentations des Fonctions R�ecursives Dans les Cate�gories. PhD

thesis, McGill University, Montreal, 1977.

[118] P. J. Thiemann. Unboxed values and polymorphic typing revisited. In ACM Conference

on Functional Programming and Computer Architecture, pages 24{35, La Jolla, 1995.

[119] A. Tolmach. Tag-free garbage collection using explicit type parameters. In ACM Confer-

ence on Lisp and Functional Programming, pages 1{11, Orlando, June 1994.

[120] D. Ungar. Generational scavenging: A non-disruptive high performance storage manage-

ment reclamation algorithm. In ACM SIGPLAN Software Engineering Symposium on

Practical Software Development Environments, pages 15{167, Pittsburgh, Apr. 1984.

[121] United States Department of Defense. Reference Manual for the Ada Programming Lan-

guage, Feb. 1983. U.S. Government Printing O�ce, ANSI/MIL-STD-1815A-1983.

BIBLIOGRAPHY 226

[122] P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc. In Sixteenth

ACM Symposium on Principles of Programming Languages, pages 60{76, Austin, 1989.

[123] L. R. Walmer and M. R. Thompson. A programmer's guide to the Mach user environment.

School of Computer Science, Carnegie Mellon University, Feb. 1988.

[124] M. Wand and P. Steckler. Selective and lightweight closure conversion. In Twenty-First

ACM Symposium on Principles of Programming Languages, pages 435{445, Portland,

Jan. 1994.

[125] K. G. Waugh, P. McAndrew, and G. Michaelson. Parallel implementations from func-

tion prototypes: a case study. Technical Report Computer Science 90/4, Heriot-Watt

University, Edinburgh, Aug. 1990.

[126] P. Weis, M.-V. Aponte, A. Laville, M. Mauny, and A. Su�arez. The CAML reference

manual, Version 2.6. Technical report, Projet Formel, INRIA-ENS, 1989.

[127] P. R. Wilson. Uniprocessor garbage collection techniques. In Y. Bekkers and J. Cohen,

editors, International Workshop on Memory Management, number 637 in Lecture Notes

in Computer Science, pages 1{42, St. Malo, Sept. 1992. Springer-Verlag.

[128] P. R. Wilson. Garbage collection. Computing Surveys, 1995. Expanded ver-

sion of [127]. Draft available via anonymous internet FTP from cs.utexas.edu as

pub/garbage/bigsurv.ps. In revision, to appear.

[129] P. Wodon. Methods of garbage collection for Algol-68. In Algol-68 Implementation.

North-Holland Publishing Company, Amsterdam, 1970.

[130] A. Wright and M. Felleisen. A syntactic approach to type soundness. Technical Report

TR91-160, Department of Computer Science, Rice University, Apr. 1991.

[131] A. K. Wright. Polymorphism for imperative languages without imperative types. Tech-

nical Report TR93-200, Department of Computer Science, Rice University, Feb. 1993.

[132] A. K. Wright and R. Cartwright. A practical soft type system for Scheme. In ACM

Conference on Lisp and Functional Programming, pages 250{262, Orlando, June 1994.

