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Abstract
Existing research has demonstrated functional selectivity in the brain for high

level categories of faces, places, bodies, and sensory and motor processes. Food, de-
spite its abundance and importance, has not been considered as a category for which
there is a visual selective region, perhaps because of its lack of visual coherence. In
this paper, we investigate responsiveness to food in a large scale natural setting via
several statistical methods performed on high-resolution fMRI response dataset to
natural scenes. We identify two regions consistent across all participants in the high
level visual cortex that appear to be functionally selective for food.
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2.1 The 1000 images viewed by all 8 subjects in NSD were manually relabeled in
order to investigate responsiveness to natural food images. The top half of this
figure shows example images that were labeled as well as their corresponding
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labeling a given image. Each of the images were given at least one label within
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food object weights for all 8 subjects. The middle image shows classification
accuracy for voxel-wise searchlight decoding for 4 subjects, with darker blue
voxels signifying higher accuracy. The bottom image shows significant voxels
from a 1-sided t-test comparing food weights against face weights (red) as well
as the results for a 1-sided t test comparing face weights against food weights
(blue) for 4 subjects. It is notable here to compare significant ’food’ voxels to
’face’ voxels because the of the high number of face images in our dataset, as
well as the robust reliability of the FFA. The food-related regions resulting from
both methods overall align with each other, suggesting that these regions are
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Chapter 1

Introduction

The representation of high-level visual information in the human brain has been marked by the
phenomenon of selectivity for visual categories of high ecological importance. There are multi-
ple brain regions that show preferential neural responses to such categories: faces, bodies, and
places [1, 2, 3, 4]. Independent of any particular theory on the origins and specificity of these
functional brain regions [5, 6], we can agree that they exist because they instantiate processes
and representations for categories that are highly relevant for day-to-day behavior. In a similar
vein, food is a category that is evolutionarily relevant – finding nourishment being more ancient
than social interaction and, arguably, more fundamental to survival. It is surprising that food
has not been identified as a visual category for which localized preferential neural responses are
observed. Why is visual selectivity for food not low hanging fruit?

While it is known that the visual presentation of food images prompts a range of brain re-
sponses, including both cognitive and emotional effects, the concurrence between studies using
food images has been quite low [7]. Only 41% of the studies in a meta analysis contributed to
food-related clusters in the fusiform gyrus (bilaterally) and orbitalfrontal cortex (left) [7]. And
in cases where food-related responses have been observed, they typically have been attributed
to increased attention to food images because of participants’ mental states and/or physiological
factors [7, 8]. As such, there have been no clear tests as to whether food elicits preferential re-
sponses in the human visual system.

An important factor that may influence prior studies of food-elicited neural responses is con-
text. One of the characteristics of category-selective neural responses is that they are elicited
automatically by the category in question [9]. In contrast, as already mentioned, in many of
the extant studies using food images, food-selective responses appear to be elicited only under
certain affective states or physiological conditions [7]. We posit that this apparent inconsistency
in detecting food-preferential neural responses is, in part, a result of relying on isolated food
and non-food “posed” visual stimuli, and that many studies have failed to consider food in en-
vironmentally relevant contexts. Decontextualized food images – which vary widely in visual
appearance – may not be sufficiently salient or realistic enough so as to elicit food-related pro-
cessing by default (although such images may do so with task-driven attention). In contrast,
both faces and bodies exhibit very little visual variation within category, while places are typ-
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ically tested using natural scene images. In a nutshell, the extreme within-category variability
in food appearance may contribute in several ways that may render identifying food-preferential
brain regions more challenging than other ecologically important categories. First, without con-
text, images of food may not present as food qua food to the visual system. That is, category
membership for images of food may be ambiguous absent the presence of associated semantic
information that helps, possibly in a top-down manner, constrain and narrow the categorical con-
tent of the image. Second, because of the high visual variability for food as a category, detecting
significant food-driven responses may require more sensitive designs than provided by standard
neuroimaging designs (which typically rely on small numbers of images and trials per condition
and therefore depend on high within-condition similarity).

Our study addresses these issues in two ways. First, real-world images, drawn from the the
COCO dataset [10], were used for both the food and non-food conditions. Second, functional
MRI (fMRI) data in response to viewing these images was collected on a massive scale [11],
thereby improving our ability to detect effects across conditions. To preview our most important
result, we reliably identify two distinct regions in high-level visual cortex that are preferentially
responsive to food images. As with other robust category preferences, we take our results to
indicate that the human visual system instantiates (through unknown mechanisms) processes and
representations that support perceiving and reasoning about food. In that food is incontrovertibly
an ecologically critical category, we view this finding as highly consistent with earlier findings
of preferential mechanisms for the perception of faces, bodies, and places.
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Chapter 2

Methods

2.1 Dataset

To investigate responsiveness to food in a large scale natural setting, we take advantage of the
Natural Scenes Dataset (NSD), a dataset of high-resolution fMRI responses to natural scenes
via a recognition task [11]. These natural scene images are pulled from the annotated Microsoft
Common Objects in Context (COCO) dataset [10]. NSD has brain response data from 8 screened
subjects that each see on average 9500 natural scene images over the course of a year. These
viewings were administered during 30-40 scan sessions. Of the 70,566 total unique images
viewed across participants, 1000 are viewed by all 8 participants. We took special interest in
these 1000 images’ response data when conducting analysis in order to ensure consistency in
results.

2.2 Labeling

To extract more unlabeled information and ensure full reliability of the 1000 shared images that
are viewed by all subjects, we methodologically relabel them based on 3 main categories. We use
a categorical hierarchical structure as shown in Figure 2.1 to label these images with their location
classification, object classification (including the binary existence of food), and perspective clas-
sification of the image. Image perspective is discretized into zoom, reach or large-scale. Zoom
signifies an apparent focusing by the camera lens, thereby likely concentrated on one object and
excluding surrounding information. Reach images demonstrate affordances by displaying ob-
jects at a human-reachable distance [12]. Large-scale images encompass the remaining images,
which include an image of a general scene as opposed to one or more close up objects. The
image perspective category’s vague nature leaves it vulnerable to variation in labeling. To avoid
this variation and ensure consistency, we undergo several rounds of labeling and verification.
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Figure 2.1: The 1000 images viewed by all 8 subjects in NSD were manually relabeled in order
to investigate responsiveness to natural food images. The top half of this figure shows example
images that were labeled as well as their corresponding labels, while the bottom half demon-
strates the organizational structure used when labeling a given image. Each of the images were
given at least one label within each of the three categories of location, content, and image per-
spective. Multiple content labels could be and often were used for a given image
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2.3 Encoding and Decoding models
Using these hand-labeled images, we can reliably perform statistical methods to identify vox-
els especially responsive to given categories. Encoding all 16 labels into a single binary vector
per image, we utilize voxel-wise ordinary least squares (OLS) encoding models to predict each
individual voxel response to a given stimuli. Identifying voxels more responsive to category A
over category B then involves a 1 sided t-test between the respective learnt model coefficients
for each of the two categories. We use these methods to identify voxels that are more responsive
to food than other categories.

While an encoding model is able to provide some insight into single-voxel selectivity through
response predictions, a decoding model can uncover distributed pattern-level representations of
visual features. Taking advantage of this characteristic of decoding models, we run voxel-wise
searchlight classifiers for the existence of food and further inspect high-performing regions. Re-
gions emerging from this method thus present processing information via a pattern that our model
is able to exploit.

2.4 Investigating Intra-Region Patterns
Encoding and decoding models help identify proposed regions especially responsive to food, but
are unable to provide further insight regarding the structure of these ’food regions’. We run a
principal component analysis to better understand possible structure and/or correspondence in
these food regions.

At this point, our methods have mostly focused on identifying apparent regions through anal-
ysis of responses to the 1000 shared images. Using rich, specific COCO annotations (including
specific types of food), we can further investigate the remaining non-hand labeled images to
verify proposed food-selective regions. We use a ridge regression model on COCO labels and
observe the resulting voxel-wise weights for a specific label. This method allows us to identify
regions that appear to have higher correlations to a given label.

2.5 Embedding-based Image Clustering
In addition to investigating the food category at a fine grained level via label-related activa-
tion, we perform image-level response analysis via image clustering. Using the proposed food-
selective region as a voxel mask, we extract each image’s corresponding food-voxel activity. We
then perform K-means clustering on this activity and investigate the resulting groups for possible
image-level patterns.

To better investigate visual and semantic patterns in these voxel-based clusters and discuss
potential response impact from top-down cortical influences, we also cluster visual and semantic
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embeddings without using brain activity of these images and compare the image clustering results
to voxel clustering results. To obtain these visual and semantic embeddings we use two deep
learning models, CLIP and ResNet-50 [13, 14]. CLIP, trained on both images and text, allows
us to extract features with semantic and visual meaning. ResNet-50, training on solely images,
results in purely visual feature-based embeddings. Similar clustering results would lead us to
believe that responses may significantly weigh similar features as these models, while varying
clustering results provide further evidence that deeper processing may be involved than purely
low level or semantic features.
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Chapter 3

Results

3.1 Encoding Models
We find two main areas in the visual cortex that appear consistently selective across all subjects
for food when compared to other non-food categories via significance tests on OLS encoding
model weights, as shown in the top of Figure 3.1. This finding persists across all 8 subjects after
performing 1 sided significance tests when comparing food weights to weighted non-food object
weights. These two regions appear to respond to food more significantly than other non-food
categories. When considering a one sided significance test between 2 labels, for example, food
and face, the significant voxels that achieve a p-value lower than 0.05 are identified as more re-
sponsive to food than faces. As in the top portion of Figure 3.1, the food-significant voxels are
often extremely close to 0, and thus highly significant, when compared against other categories.
We also note that this spatial ’food’ pattern persists even when compared against the reach label.
These voxels highlighted in Figure 3.1 thus seem to be most activated by the existence of food
in the stimuli as opposed to other categories, pointing towards an apparent functional selectivity.

As a sanity check of this method, we verify that performing a similar significance test for
faces reveals the fusiform face area (FFA), as shown in blue in the bottom portion of Figure
3.1 [2]. We choose the FFA here for our sanity check due to the high occurrence of faces in
the dataset and reliability of this region. We notice that the identified food region (red) and
face region (blue) via this method appear to have completely independent selections, further
highlighting an apparent selectivity for food. Nonetheless, it is clear that these proposed ’food-
significant’ voxels appear consistently more responsive to food stimuli than other stimuli.

3.2 Decoding Models
The high-accuracy voxels from the searchlight decoding model overall align spatially with the
significant voxels from the encoding model, as is clear in Figure 3.1. We note that high-accuracy
voxels do not necessarily positively correspond to food-selective regions, but rather to any region
which helps identify whether or not the given stimuli contains food. So, high-accuracy voxels
can signify both a food-selective region and an anti-food selective region that especially helps
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Figure 3.1: This figure shows voxels that are determined to be food-related based off of two
differing methods. The top image shows significant voxels (white) from a 1-sided t-test compar-
ing food weights from a trained OLS model against all other non-food object weights for all 8
subjects. The middle image shows classification accuracy for voxel-wise searchlight decoding
for 4 subjects, with darker blue voxels signifying higher accuracy. The bottom image shows
significant voxels from a 1-sided t-test comparing food weights against face weights (red) as
well as the results for a 1-sided t test comparing face weights against food weights (blue) for 4
subjects. It is notable here to compare significant ’food’ voxels to ’face’ voxels because the of
the high number of face images in our dataset, as well as the robust reliability of the FFA. The
food-related regions resulting from both methods overall align with each other, suggesting that
these regions are reliably more responsive to food stimuli than other categories.
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determine that the stimuli is not food-related. The high performing regions from this searchlight
model are generally consistent across all subjects. Similar regions as those found in the encoding
model are also observed to be highly correlated with the stimuli food classification accuracy. The
decoding model’s inclusion of the encoding model’s resulting food-selective region once again
emphasizes our finding of this food-selective region.

Both the encoding and decoding models confirm that these regions seem to be consistently
more responsive to food than other categories. However, these models provide little insight into
the more fine grained semantic and spatial structure of the responses within this food region. To
discover these intra-region patterns, we run a principled component analysis (PCA) on the matrix
of all subjects’ voxels in the selected visual cortex by all shared food images. We then observe
each of the principal components’ corresponding voxel values as well as the top contributing
images to each component.

3.3 Apparent Intra-Region Semantic Axes
Running PCA on the hypothesized food region leads to a further spatial breakdown of various
’food’ areas, as is shown in Figure 3.2. These breakdowns via principal components are able to
account for a significant portion of the variance of this region’s responses. The top components
explain 34.31, 12.68, and 11.16 percent of the variability, respectively. Each of the uncovered
components’ axes also seems to correspond to a general semantic pattern of image content. The
first component appears to represent the surface area of food, distinguishing images with few
pixels corresponding to food from those with mostly food pixels. The second principal com-
ponent distinguishes images with a focus on food from zoomed out images of places related to
food. The third principal component distinguishes images with a focus on food from zoomed
out images of people eating food, with social settings being at the end of the spectrum. These
results highlight the importance of food as a category that is easily disentangled from the other
categories that are important in the fusiform cortex, namely faces and places.

3.4 Generalizing Patterns to All Food-related Stimuli
To further consider potential intra-region semantic breakdowns beyond our PCA results, we also
directly inspect voxel response correlations with fine-grained food categories. To increase the
size of our dataset and therefore reliability, we observe how voxels react to specific food cate-
gories from images not yet inspected when proposing the food region. In order to use images
not yet inspected, we consider the remaining images that were not viewed by all 8 subjects. We
run a voxel-wise ridge regression on the provided fine-grained COCO labels for these images
to predict voxel activity. Then, we visualize the resulting weights per label on each voxel, as
shown in Figure 3.3. In order to observe the which voxels’ prediction accuracies benefit most
from the addition of food labels, we perform the ridge regression on all labels, as well as all
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Figure 3.2: Applying PCA on the proposed food region’s responses provides more insight into
the structure of these responses. Above, we can see the different regions corresponding to dif-
ferent components, as well as the top images for each component averaged across all subjects.
The top images display each components projection onto the brain, demonstrating the generally
positively (green) and negatively (brown) contributing voxels. On the top right, we see in red
an example of the region that we have identified as the relevant food region for a given subject,
generated based off of the intersection of the food vs face encoding model test and manually
identified visual cortex regions. In the graphs, we see stimuli that most contribute to various
components, as well as their placement. We see that each component overall highlights different
semantic characteristics of the visual stimuli. The first component appears captures the surface
area of food in the image, the second distinguishes places, and the third seems to capture a com-
bination of spatial frequency and people. These semantic categories are able to explain a large
component of the variance resulting from these food regions.
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Figure 3.3: Analysis on predicting voxel activity from unseen images points to the same food-
selective regions as previously proposed. We observe 4 COCO label weights corresponding to
each voxel following a voxel-wise ridge regression on COCO labels (left). We also observe
the voxel-wise improved R2 values from including food labels when predicting voxel activity
(right). Both the weights corresponding to individual food labels as well as the overall impact
of the aggregate food labels highlight our proposed food regions. These results also point to the
conclusion that this region appears food selective.

but food labels. We then compare the R2 values voxel-wise between results from including all
labels during training, and results from including all but food labels in training. We observe one
general pattern of voxels whos’ prediction performance improved due to the inclusion of food-
related labels, and the same underlying pattern for high valued voxel-wise weights for individual
fine grained food labels (i.e. cake, sandwich). These activations across the fine grained food
labels appear consistent within the food category as well as across subjects. This pattern also
corresponds strongly with our previously proposed food region. Both the R2 improvement and
the fine-grained labels’ corresponding weights suggest that voxels in these regions consistently
appear more responsive to food than other cortical areas. The responses re-emphasize our iden-
tification of a food-selective region.
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Figure 3.4: We observe the highest voxel-activity inducing images in each cluster. This helps
us identify how our proposed food region reacts to different images. On the left we see in red
the voxels identified as the proposed food region, and thus used here to cluster the images. In
the middle we see top images corresponding to our first cluster, and on the right we see the
top images corresponding to the second cluster. We observe that this region appears to respond
differently to food than to other images.

3.5 Voxel Embedding Clusters vs Image Feature Embedding
Clusters

In addition to observing potential intra-region patterns in the proposed food region, we also use a
larger subset of COCO images to perform image clustering via their respective voxel embeddings
in efforts to understand emerging image-level patterns. In this test, our new subset of images
also includes an even split of non-food and food images from images that were not used to
determine the originally proposed food region. Using the previously proposed mask of voxels
identified as food-selective, we create a subset of corresponding voxel responses for each image.
We then use K-means to cluster the voxel embeddings corresponding to these images to reveal
patterns of responsiveness in this region. 2 clusters emerge, each containing a group of voxel
response vectors corresponding to images. We now consider the images corresponding to this
voxel activity, and thus the 2 clusters of images. We notice that 1011 of the 1638 food images
gather in one cluster, and observe the images with the highest voxel activity in each cluster
(Figure 3.4). The top images in each cluster have significant semantic differences, with one
cluster clearly corresponding highly with food. These top cluster images further confirm our
proposal of this region as selective to food.

We use voxel responses to further cluster food images and observe the resulting clusters.
Especially when considering the visual cortex, it is important to isolate causes for variations in
brain responses from solely image feature variation. To help understand the extent to which
variations in food responses are due to visual characteristics, we use CLIP and ResNet to cluster
food-related images and observe resulting patterns. We then observe whether these patterns are
consistent with the clusters emerging from voxel-based image clustering. CLIP considers both
visual and semantic features when training, while ResNet-50 only considers visual features. In
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both outputs, we notice semantic clusters that do not have clear correspondence with our result-
ing food clusters (Figure 3.5), suggesting likely top down processing that goes further than raw
visual features. We also note the possibility of these voxels responding to the composition of
visual features. Overall, this lack of consistency in our two clustering results demonstrates that
the voxel embeddings do not appear to represent information in the same way as our raw image-
feature embeddings.

Finally, it is unlikely that our finding of food selectivity can be solely attributed to greater
attention or higher intrinsic visual saliency for food relative to non-food. First, both human faces
and bodies would seem to be subject to the same kinds of effects. However, attentional/saliency
differences are not the preferred explanation for the basic finding of face or body selectivity [15].
Moreover, within our study, faces and bodies comprised a reasonable proportion of the non-food
contrast images, yet food selectivity was robust across these comparison categories. Second,
the images used in the fMRI data collection, drawn from the COCO image dataset, all depict
complex natural scenes containing consistently high saliency objects and actions. It is therefore
doubtful that the non-food images drew less attention or appeared less salient than the food
images. If anything, real-world images lead to better control in across-category comparisons
because of diminished differences in attention and saliency.
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Figure 3.5: We observe image clusters based on voxel-response embeddings (top). We then
compare this to image clusters based on CLIP embeddings (bottom). Two clusters emerge from
voxel-response embeddings, while 4 main clusters emerge from CLIP. The two clustering pat-
terns show little to no correlation with each other, demonstrating that this proposed food region
involves more complex, top down processing rather than solely low level visual and semantic
features.
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Chapter 4

Discussion

How are knowledge representations organized in the human brain? Within the visual system, one
of the hallmarks of the past several decades has been category selectivity for faces, bodies, and
places [1, 2, 3, 4]. Consistent with the ecological importance of these categories, we predicted
and found selectivity within the visual system for food. However, in contrast to other domains
that show selectivity, food responses are much less localized, suggesting a complex network of
brain regions underlying food preference. One explanation for this pattern of results may be that,
relative to faces, bodies, and places, food appearances are quite variable. As such, it is unlikely
that there is a set of lower-level visual features or high-level shape structures that consistently
correspond to food (in contrast, see [16, 17]).

How then, do food preferential mechanisms and representations arise in the human brain?
Similar to human language, domain-relevant perceptual inputs can vary widely depending on the
cultural and physical environment. Consequently, it is high-level semantic and structural biases
(and not low-level features) that are critical for learning the domain. Under this view, learned
representations are only loosely constrained at the surface level, but still reflect common under-
lying mechanisms that have emerged over the course of evolution due to selection for general
learning abilities (the “Baldwin Effect” [18, 19]). That is, because the mechanisms supporting
domain acquisition are able to flexibly respond to variations in inputs, these learning capacities
are preserved across evolution. In this light, as a consistent property of knowledge organiza-
tion, food selectivity is likely to have emerged as neural preference shaped heavily by top-down
knowledge and semantic associations rather than low-level properties of the inputs themselves.
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