
Mining and Learning With
Graphs and Tensors

Namyong Park

CMU-CS-22-103
May 2022

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Christos Faloutsos (Chair)

Tom Mitchell
Leman Akoglu

Xin Luna Dong (Meta)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Namyong Park

This work was sponsored by the Bloomberg Data Science Ph.D. Fellowship, the ILJU Foundation Ph.D. Fellowship, and by Carnegie
Mellon University CyLab, with generous support from Microsoft. This work was also supported by the National Science Founda-
tion under Grants No. IIS-1247489 and IIS-1408924; by the Army Research Laboratory under Cooperative Agreement Number
W911NF-09-2-00S3; by the Pennsylvania Infrastructure Technology Alliance; and by gifts from Innovu and the PNC Center. Ad-
ditional support was provided by the project AIDA - Adaptive, Intelligent and Distributed Assurance Platform (reference POCI-
01-0247-FEDER-045907). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the National Science Foundation, or other funding parties.

Keywords: graphs, tensors, dynamic networks, multi-aspect networks, unsupervised
learning, semi-supervised learning, knowledge graphs, graph neural networks, graph
representation learning, node importance estimation, explainable recommendation, rec-
ommendation justification, tensor factorization, distributed algorithms, model selection,
algorithm selection, meta-learning, dynamic system modeling, model revision, prior
knowledge incorporation, evolutionary algorithms, temporal knowledge graphs, reason-
ing over temporal knowledge graphs, temporal point processes, deep graph clustering,
temporal graph clustering, contrastive learning, community detection and tracking

To my family.

iv

Abstract
Data generated in diverse contexts can be modeled as graphs. Examples are

numerous, from citation and social networks to the World Wide Web. Many real-
world networks are multi-aspect, where multiple types of entities interact with
each other via various relations. Also, many of them are dynamic, modeling
relationships among entities and their features that evolve over time. These real-
world networks with rich side information (e.g., node and edge types, and edge
timestamps) are naturally modeled as tensors (i.e., multi-dimensional arrays).

Given graphs and tensors, how can we understand them, and utilize them
for downstream tasks? Specifically, how can we analyze and model large real-
world networks, and gain a better understanding of how they form and evolve?
Also, how can we design algorithms that leverage graphs and tensors for impor-
tant applications such as recommendation and ranking? This thesis focuses on
these fundamental problems by developing effective and efficient methods for
mining and learning with graphs and tensors.

In the first part of the thesis, we focus on addressing important mining
and learning tasks for static graphs and tensors. We first propose novel graph-
regularized semi-supervised algorithms for estimating node importance in a
knowledge graph, which achieve up to 25% higher accuracy than the best base-
line. Then we develop distributed frameworks for large-scale tensor factoriza-
tion, which decompose and summarize large tensors up to 180× faster than exist-
ing methods, with near-linear scalability. We also design a meta-learning based
approach for automatic graph learning model selection, which is up to 15×more
accurate than using popular methods consistently. In addition, we develop a
method that explains product recommendations, up to 21% more accurately than
the best baseline, by performing personalized inference over a product graph.

In the second part of the thesis, we focus on modeling and reasoning with
dynamic graphs and tensors, which represent various types of time-evolving
networks and dynamic real-world phenomena. We propose a framework to
learn differential equations (DEs) that model the observed phenomena (such as
weather and water quality), which produces interpretable and physically plausi-
ble DEs that achieve up to 34% higher forecasting accuracy than related baselines.
We then tackle the task of finding communities in networks and tracking their
evolution by designing a contrastive graph clustering framework, which shows
up to 27% higher clustering accuracy than existing methods. Further, we develop
a method for reasoning over temporal knowledge graphs (TKGs), which infers
new knowledge from the given TKG, up to 116% more accurately than the best
baseline, while being 30× faster in model training.

Throughout the thesis, a strong emphasis is placed on developing effective,
accurate, and scalable tools. To this end, we use mathematical techniques (e.g.,
approximation), exploit the characteristics of real-world networks, incorporate
prior knowledge and experience, and employ powerful theoretical and practical
frameworks, including graph neural networks, latent variable modeling, tem-
poral point processes, and distributed computing. We successfully apply these
tools to a large array of real-world datasets and applications, establishing new
state-of-the-art results.

vi

Acknowledgments
First of all, I would like to sincerely thank my advisor, Christos Faloutsos,

for his support and guidance. Throughout my time in graduate school, I
really appreciated his encouragement, insightful comments, patience, and
enthusiasm in research, which made my graduate study truly enjoyable and
fruitful.

I would also like to thank my other thesis committee members, Tom
Mitchell, Leman Akoglu, and Xin Luna Dong, for their constructive feedback
and invaluable advice in putting together and improving my thesis.

One of the most exciting parts of my time in graduate school has been my
summer internships at Amazon, Microsoft Research, and Adobe Research.
I am grateful to my mentors for providing wonderful environments and
opportunities to work on exciting problems, and also for their advice and
stimulating discussions: Xin Luna Dong, Yuxiao Dong, Andrey Kan, Eunyee
Koh, and Ryan Rossi.

I was fortunate to have worked with amazing collaborators and coauthors,
who deserve my gratitude: Nesreen Ahmed, Seojin Bang, Iftikhar Ahamath
Burhanuddin, Duen Horng Chau, Dana Cristofor, Jun-Gi Jang, Byungsoo
Jeon, Cara Jones, Jinhong Jung, U Kang, MinHyeok Kim, Dong-Kyun Kim,
Sungchul Kim, Aayushi Kulshrestha, Sael Lee, Meng-Chieh Lee, Sacha Levy,
Yifei Li, Fuchen Liu, Bob McKay, Purvanshi Mehta, Pratheeksha Nair, Xuan
Hoai Nguyen, Sejoon Oh, Andreas Olligschlaeger, Ha-Myung Park, Reihaneh
Rabbany, Catalina Vajiac, and Tong Zhao. I would especially like to thank
U Kang for introducing me to data mining research, and for his mentorship,
and Bob McKay for guiding me in my early pursuits as a researcher, and for
his thoughtfulness.

I am thankful to the CMU Data Mining group members and visitors for the
interesting discussions and conversations, including Dhivya Eswaran, Brian
Hooi, Meng-Chieh Lee, Reihaneh Rabbany, Shubhranshu Shekhar, Kijung
Shin, Hyun Ah Song, Catalina Vajiac, and Saranya Vijayakumar. I would also
like to thank Deborah Cavlovich, Tony Mareino, and Ann Stetser for their
administrative support and helping my studies at CMU run smoothly.

Finally, and most of all, I would like to thank my family, especially my
parents, for their endless love, support, and belief in me throughout all stages
of my life and career.

viii

Contents

1 Introduction 1
1.1 Overview and Contributions . 2

1.1.1 Part I: Static Graphs and Tensors . 3
1.1.2 Part II: Dynamic Graphs and Tensors 9

I Static Graphs and Tensors 15

2 Estimating Node Importance in Knowledge Graphs Using Graph Neural Net-
works 17
2.1 Introduction . 17
2.2 Preliminaries . 20

2.2.1 Problem Definition . 20
2.2.2 Desiderata for Modeling Node Importance in KGs 21
2.2.3 Graph Neural Networks . 22

2.3 Method . 22
2.3.1 Score Aggregation . 24
2.3.2 Predicate-Aware Attention Mechanism 25
2.3.3 Centrality Adjustment . 26
2.3.4 Model Architecture . 26
2.3.5 Model Training . 28

2.4 Experiments . 28
2.4.1 Datasets . 28
2.4.2 Baselines . 29
2.4.3 Performance Evaluation . 30
2.4.4 Importance Estimation on Real-World Data 31
2.4.5 Analysis of GENI . 32

2.5 Related Work . 34
2.6 Conclusion . 35
2.7 Appendix . 36

2.7.1 Datasets . 37
2.7.2 Experimental Settings . 38
2.7.3 Additional Evaluation . 39

ix

3 Inferring Node Importance in a Knowledge Graph from Multiple Input Sig-
nals 41
3.1 Introduction . 42
3.2 Background . 44
3.3 Task Description . 44
3.4 Methods . 45

3.4.1 Learning Objective . 46
3.4.2 Handling Rebel Input Signals . 49
3.4.3 Graph Neural Networks for Node Importance Estimation 50

3.5 Experiments . 52
3.5.1 Dataset Description . 52
3.5.2 Performance Evaluation . 53
3.5.3 Baselines . 56
3.5.4 Q1. Accuracy . 56
3.5.5 Q2. Use in Downstream Tasks . 56
3.5.6 Q3. Handling Rebel Signals . 58

3.6 Related Work . 59
3.7 Conclusion . 60
3.8 Appendix . 60

3.8.1 Experimental Settings . 60

4 Principled and Scalable Recommendation Justification 63
4.1 Introduction . 63
4.2 Justifying Recommendations . 65

4.2.1 Problem Statement . 65
4.2.2 Product Graph and Justifications . 66
4.2.3 Quantifying the Quality of Justifications 68
4.2.4 Justification Discovery . 71

4.3 Evaluation Using Axioms . 74
4.3.1 Axioms . 74
4.3.2 Baselines . 76
4.3.3 Results . 77

4.4 Evaluation Using Real-World Data . 78
4.4.1 Datasets . 78
4.4.2 Baselines . 79
4.4.3 Q1. Justification Quality . 79
4.4.4 Q2. Scalability . 81
4.4.5 Q3. Relevance-Diversity Trade-Off 81

4.5 Related Work . 82
4.6 Conclusion . 83
4.7 Appendix . 83

4.7.1 Experimental Settings . 83

5 Fast and Scalable Distributed Boolean Tensor Factorization 87

x

5.1 Introduction . 87
5.2 Preliminaries . 90

5.2.1 Boolean Arithmetic . 90
5.2.2 Notation . 90
5.2.3 Tensor Rank and Tensor Decompositions 92

5.3 Related Works . 97
5.3.1 Boolean Tensor Decomposition . 97
5.3.2 Normal Tensor Decomposition . 97
5.3.3 Partitioning of Sparse Tensors . 98
5.3.4 Distributed Computing Frameworks 98

5.4 Proposed Method . 99
5.4.1 Updating a Factor Matrix . 101
5.4.2 Updating a Core Tensor . 102
5.4.3 Distributed Generation and Minimal Transfer of Intermediate Data 103
5.4.4 Exploiting the Characteristics of Boolean Operation and Boolean

Tensor Factorization . 104
5.4.5 Careful Partitioning of the Workload 108
5.4.6 Putting Things Together . 111
5.4.7 Implementation . 113
5.4.8 Analysis . 115

5.5 Experiments . 117
5.5.1 Experimental Settings . 118
5.5.2 Data Scalability . 122
5.5.3 Machine Scalability . 124
5.5.4 Reconstruction Error . 125

5.6 Conclusion . 128
5.7 Appendix . 129

5.7.1 Proof of Lemma 5.4 . 129
5.7.2 Proof of Lemma 5.5 . 130
5.7.3 Proof of Lemma 5.6 . 130
5.7.4 Proof of Lemma 5.7 . 131
5.7.5 Proof of Lemma 5.8 . 131
5.7.6 Proof of Lemma 5.9 . 132
5.7.7 Proof of Lemma 5.10 . 132
5.7.8 Proof of Lemma 5.11 . 132

6 Fast Automatic Model Selection for Graph Representation Learning 135
6.1 Introduction . 136
6.2 Problem Formulation . 138
6.3 Framework . 139

6.3.1 Offline Meta-Training . 139
6.3.2 Online Model Prediction . 142
6.3.3 Structural Meta-Graph Features . 142
6.3.4 Embedding Models and Graphs . 144

xi

6.4 Experiments . 145
6.4.1 Experimental Settings . 145
6.4.2 Model Selection Accuracy (RQ1) . 147
6.4.3 Model Selection Efficiency (RQ2) . 149
6.4.4 Effects of Meta-Graph Features (RQ3) 150

6.5 Related Work . 151
6.5.1 Model Selection in Machine Learning 151
6.5.2 Model Selection in Graph Learning 152

6.6 Conclusion . 153
6.7 Appendix . 153

6.7.1 Model Set . 153
6.7.2 Graph Domains . 153
6.7.3 Runtime . 153
6.7.4 AUTOGRL Algorithm . 155
6.7.5 Experimental settings . 155
6.7.6 Meta-Graph Features . 155

II Dynamic Graphs and Tensors 159

7 Knowledge-Guided Dynamic Systems Modeling 161
7.1 Introduction . 161
7.2 River Water Quality Modeling . 164
7.3 Methods . 166

7.3.1 Representing Dynamic Processes Using TAG 167
7.3.2 Knowledge-Guided Genetic Model Revision 169
7.3.3 Applying GMR to Real-World Problems 174
7.3.4 Improving the Efficiency and Effectiveness 175

7.4 Experiments . 176
7.4.1 Dataset and Modeling Task Description 177
7.4.2 Comparators . 178
7.4.3 Performance Evaluation . 179
7.4.4 Q1. Prediction Accuracy . 179
7.4.5 Q2. Ecological Analysis . 180
7.4.6 Q3. Analysis of Speedup Techniques 182

7.5 Related Work . 183
7.6 Conclusion . 184
7.7 Appendix . 185

7.7.1 Further Details of River Modeling 185
7.7.2 Experimental Settings . 186

8 Jointly Modeling Event Time and Network Structure for Reasoning over Tem-
poral Knowledge Graphs 187
8.1 Introduction . 187

xii

8.2 Problem Formulation . 189
8.3 Modeling a Temporal Knowledge Graph 191

8.3.1 Modeling Event Time . 191
8.3.2 Modeling Evolving Network Structure 194
8.3.3 Parameter Learning . 196

8.4 Experiments . 196
8.4.1 Temporal Knowledge Graph Data 196
8.4.2 Event Time Prediction (RQ1) . 198
8.4.3 Temporal Link Prediction (RQ2) . 199
8.4.4 Efficiency (RQ3) . 201
8.4.5 Ablation Study (RQ4) . 201

8.5 Related Work . 203
8.6 Conclusion . 205
8.7 Appendix . 205

8.7.1 Experimental Settings . 205

9 Contrastive Graph Clustering for Community Detection and Tracking 207
9.1 Introduction . 208
9.2 Problem Formulation . 210

9.2.1 Graph Clustering . 210
9.2.2 Temporal Graph Clustering . 211

9.3 Preliminaries . 211
9.4 Proposed Framework . 212

9.4.1 CGC: Contrastive Graph Clustering 212
9.4.2 CGC for Temporal Graph Clustering 216

9.5 Experiments . 218
9.5.1 Datasets . 218
9.5.2 Baselines . 219
9.5.3 Node Clustering Quality (RQ1) . 222
9.5.4 Temporal Link Prediction Accuracy (RQ2) 223
9.5.5 Ablation Study (RQ3) . 223

9.6 Related Work . 225
9.7 Conclusion . 227
9.8 Appendix . 227

9.8.1 Mining Case Studies . 227
9.8.2 Clustering Performance over Time 229
9.8.3 Experimental Settings . 231
9.8.4 Graph Stream Segmentation . 233

III Conclusions and Future Directions 235

10 Conclusions 237
10.1 Summary of Contributions . 237

xiii

10.1.1 Part I: Static Graphs and Tensors . 237
10.1.2 Part II: Dynamic Graphs and Tensors 238

11 Future Directions 241
11.1 Complex Anomaly Detection . 241
11.2 Modeling Dynamic Networks . 242
11.3 Knowledge Reasoning . 243

Bibliography 245

xiv

List of Figures

1.1 Examples of static and dynamic multi-aspect networks. 1
1.2 MULTIIMPORT and GENI accurately estimate node importance 4
1.3 J-RECS is effective and scales up near-linearly 5
1.4 DBTF-CP is fast and scalable . 6
1.5 DBTF-TK is fast and scalable . 7
1.6 AUTOGRL efficiently infers the best graph learning model 8
1.7 GMR is accurate and fast . 11
1.8 EVOKG accurately predicts temporal links and event time 12
1.9 CGC achieves high node clustering accuracy 14

2.1 An example knowledge graph on movies and related entities 18
2.2 GENI estimates node importance accurately 19
2.3 Description of node importance estimation by GENI 24
2.4 Parameter sensitivity of GENI . 34

3.1 An example knowledge graph, problem setup, and the superior perfor-
mance of MULTIIMPORT in estimating node importance 43

3.2 MULTIIMPORT estimates the latent node importance 46
3.3 MULTIIMPORT infers node importance by identifying similar signals . . . 51
3.4 In- and out-of-domain evaluation . 55
3.5 MULTIIMPORT effectively handles rebel signals 59

4.1 J-RECS generates effective justifications . 65
4.2 A movie product graph . 67
4.3 Recommendations are enriched by justifications 67
4.4 Axioms and expected relevance scores of product attributes 74
4.5 J-RECS exhibits near-linear scalability . 81
4.6 Relevance-diversity trade-off . 81

5.1 Rank-R Boolean CP decomposition . 94
5.2 Rank-R Boolean Tucker decomposition . 95
5.3 Updating a factor matrix for Boolean CP and Tucker factorization 100
5.4 DBTF-CP reduces intermediate operations by exploiting the characteristics

of Boolean CP factorization . 105

xv

5.5 DBTF-TK reduces intermediate operations by exploiting the characteristics
of Boolean CP factorization . 106

5.6 An overview of partitioning in DBTF . 109
5.7 Scalability of DBTF-CP and other methods on synthetic datasets 121
5.8 Scalability of DBTF-TK and other methods on synthetic datasets 122
5.9 Scalability of DBTF-CP and other methods on real-world datasets 124
5.10 Scalability of DBTF-TK and other methods on real-world datasets 125
5.11 Scalability of DBTF-CP and DBTF-TK with respect to the number of machines125
5.12 Reconstruction error of DBTF-CP and other methods 126
5.13 Reconstruction error of DBTF-TK and other methods 127

6.1 Overview of AUTOGRL compared to existing naive approach 136
6.2 AUTOGRL infers the best model by applying a meta-learned model to

meta-graph features . 140
6.3 An overview of meta-graph feature construction in AUTOGRL 143
6.4 AUTOGRL is fast, and incurs negligible overhead 150

7.1 GMR produces an accurate forecasting model, guided by domain knowledge164
7.2 Tree composition operations used by tree-adjoining grammar 167
7.3 Representation and revision of dynamic processes in GMR 168
7.4 TAG derivation tree encoding a revised differential equation 168
7.5 An overview of the model revision framework 170
7.6 Genetic operators in TAG3P . 170
7.7 Incorporating knowledge on plausible revisions in GMR 173
7.8 Nakdong River basin in South Korea . 178
7.9 Selectivity of variables . 181
7.10 Mean runtime by speedup techniques . 182
7.11 Effect of evaluation short-circuiting . 183
7.12 An example river system . 185

8.1 An example temporal knowledge graph . 188
8.2 EvoKG achieves the best link and time prediction results 191
8.3 EvoKG achieves the best event time prediction results 198
8.4 EvoKG efficiently performs model training and inference 201
8.5 Parameter sensitivity analysis of the prediction accuracy 202
8.6 Modeling event time improves temporal link prediction accuracy 203

9.1 CGC achieves the best node clustering performance 209
9.2 Node clustering results obtained with different contrastive objectives . . . 225
9.3 Case study 1: two groups with traveling members 228
9.4 Case study 2: two groups reorganizing into three 228
9.5 Node clusters based on their transition patterns 229
9.6 Performance of CGC over time . 230

xvi

List of Tables

1.1 Organization of the thesis . 2
1.2 MULTIIMPORT and GENI satisfy the desiderata for estimating node im-

portance . 3
1.3 Knowledge-guided model revision satisfies the desiderata for modeling

dynamic systems . 10
1.4 CGC wins on features . 13

2.1 Comparison of methods for estimating node importance 21
2.2 Table of symbols . 23
2.3 Real-world knowledge graphs used in experiments 28
2.4 GENI performs in-domain prediction most accurately 31
2.5 GENI performs out-of-domain prediction most accurately 32
2.6 Performance of GENI obtained with shared and distinct embeddings . . . 33
2.7 Performance with fixed and flexible centrality adjustment 33
2.8 Top-10 movies and directors predicted by different methods 36
2.9 RMSE of in-domain prediction obtained by supervised methods 40

3.1 MULTIIMPORT considers all available signals to measure node importance
in a knowledge graph . 42

3.2 Table of symbols . 48
3.3 Real-world knowledge graphs used in our evaluation 53
3.4 Input signals in real-world knowledge graphs 54
3.5 MULTIIMPORT estimates node importance more accurately than all baselines 54
3.6 MULTIIMPORT achieves the best signal prediction results 57
3.7 MULTIIMPORT outperforms all baselines in forecasting signals 58

4.1 Table of symbols . 69
4.2 J-RECS satisfies all axioms . 75
4.3 Statistics of real-world product graphs . 78
4.4 First qualitative analysis of the justifications learned by J-RECS and MP-AND 84
4.5 Second qualitative analysis of the justifications learned by J-RECS and

MP-AND . 85

5.1 Comparison of DBTF and existing Boolean tensor factorization methods . 88
5.2 Table of symbols . 91

xvii

5.3 Real-world and synthetic tensors used for experiments 120

6.1 Summary of notations . 141
6.2 AUTOGRL is the most accurate in the search-within-a-model testbed 148
6.3 AUTOGRL is the most accurate in the search-across-all-models testbed . . . 148
6.4 Our proposed meta-graph features enable effective automatic model se-

lection . 151
6.5 Graph representation learning models and their hyperparameter settings 154
6.6 Distribution of the graphs in the testbed . 154
6.7 Runtime comparison between AUTOGRL and naive model selection . . . 155
6.8 Global statistical functions for deriving meta-graph features 156

7.1 Model revision satisfies all properties for interpretable knowledge-guided
modeling of complex dynamic systems . 163

7.2 Variables, connectors, and extenders used by extensions 174
7.3 Constant parameters that capture the knowledge on model parameters . . 175
7.4 Temporal variable parameters in the river process 176
7.5 GMR achieves the best forecasting accuracy 180

8.1 EvoKG deals with two major tasks for reasoning over temporal knowledge
graphs (TKGs), while possessing desirable features for modeling TKGs . . 190

8.2 Table of symbols . 193
8.3 Statistics of real-world temporal knowledge graphs 197
8.4 EvoKG achieves the best temporal link prediction results 200

9.1 CGC wins on features . 208
9.2 Table of symbols . 213
9.3 CGC achieves the best node clustering results on static graphs 220
9.4 CGC achieves the highest node clustering accuracy on the temporal graph 221
9.5 CGC achieves the best temporal link prediction performance 224
9.6 Summary of temporal real-world datasets 231
9.7 Summary of static real-world datasets . 231

xviii

Chapter 1

Introduction

Graphs provide a powerful framework to model real-world entities and their relation-
ships. Thus, data generated in diverse contexts has been modeled as graphs. Many
real-world graphs are multi-aspect, where multiple types of entities interact with each
other via various relations. Also, many of them are dynamic, modeling how the rela-
tions among entities and their features evolve over time. Thus, graphs with such side
information (e.g., node and edge types, and edge timestamps) are naturally modeled
as tensors (i.e., multi-dimensional arrays). Using graphs and tensors, we can model a
large array of real-world networks, including product graphs (Figure 1.1a), knowledge
graphs (Figure 1.1b), sensor networks (Figure 1.1c), social networks, and citation graphs,
to name a few.

Given graphs and tensors, how can we understand them, and effectively use them for
downstream tasks? Specifically, how can we analyze and model large-scale real-world
networks, and obtain a better understanding of the formation and dynamics of real-world
networks? Also, how can we design algorithms that effectively leverage graphs and

(visit,
1/1/2014)

(in
ve

st
ig

at
e,

1/

29
/2

01
4)

(criticize,

3/1/2014)(co
nsu

lt,
2/16/2014)

(in
sp

ec
t,

3-
13

-2
01

4)

(visit, 1
0/3/2014)

(criti
cize, 8/1/2014)

4/1/2014 11/1/20141/1/2014

Time (b) Dynamic Knowledge Graph

(veto, 5/14/2014)(sign
agreement,
10/12/14)

3/31/2014

Measuring
Stations

5/1/21

Measurements

5/2/21

5/3/21

5/4/21

(c) Dynamic Sensor Network
Products Attributes

⋮

(a) Static Product Graph

Figure 1.1: Examples of static and dynamic multi-aspect networks.

1

tensors for important applications such as explainable recommendation, ranking, and
knowledge reasoning? This thesis focuses on these fundamental problems by developing
effective and scalable methods for mining and learning with graphs and tensors.

Since real-world graphs and tensors are complex (complex connectivity patterns with
multiple types of nodes and edges), incomplete (with many missing edges), huge (often
containing billions of edges or more), and continuously changing, it is challenging or often
impossible to analyze and utilize such real-world networks using conventional tools
designed for simple and small networks. To develop effective, accurate, and scalable tools,
we employ mathematical techniques (e.g., approximation), exploit the characteristics
of real-world networks, incorporate prior knowledge, and utilize powerful theoretical
and practical frameworks, including graph neural networks, latent variable modeling,
temporal point processes, evolutionary computation, and distributed computing. With
these advancements, we apply our methods to a wide variety of large real-world datasets
and applications, and establish new state-of-the-art results.

1.1 Overview and Contributions
This thesis is organized in two parts. In the first part, we focus on addressing important
mining and learning tasks for static graphs and tensors, such as estimating node impor-
tance, justifying recommendations using a product graph, and selecting graph learning
models automatically. In the second part, we focus on modeling and reasoning with
dynamic graphs and tensors, such as reasoning over temporal knowledge graphs, and
community detection and tracking. Table 1.1 shows an organization of this thesis, along
with research problems that each chapter tackles. Below, we provide an overview of the

Table 1.1: Organization of the thesis.

Research Problem

Part I:
Static

Graphs
and

Tensors

• Node Importance Estimation (Chapters 2 and 3): How can we accurately
estimate the importance of nodes in a multi-aspect graph?

• Recommendation Justification (Chapter 4): How can we provide
personalized explanations of recommendations using a product graph?

• Distributed Tensor Factorization (Chapter 5): How can we factorize
large-scale tensors and summarize them using a cluster of machines?

• Automatic Graph Learning Model Selection: (Chapter 6): How can we
automatically select the best graph learning algorithm for an input graph?

Part II:
Dynamic
Graphs

and
Tensors

• Dynamic Systems Modeling (Chapter 7): How can we find mathematical
expressions that model the dynamics of real-world phenomena?

• Reasoning Over Temporal Knowledge Graphs (Chapter 8): How to infer
new knowledge by reasoning over knowledge graphs that evolve over time?

• Community Detection and Tracking (Chapter 9): How to find communities
in networks and track their evolution in an unsupervised manner?

2

goals and contributions of each of our proposed methods.

1.1.1 Part I: Static Graphs and Tensors
Part I addresses important mining and learning tasks for static graphs and tensors,
namely, node importance estimation (Section 1.1.1.1), reasoning over graph-structured
data for explainable recommendation (Section 1.1.1.2), large-scale tensor factorization
(Section 1.1.1.3), and automatic graph learning model selection (Section 1.1.1.4).

1.1.1.1 Estimating Node Importance in Knowledge Graphs (Chapters 2
and 3)

“How can we estimate node importance in a knowledge graph (KG), given signals on node
importance for some nodes in the KG?”

A knowledge graph (KG) is a multi-relational graph where nodes are connected via
multiple types of relations. KGs such as Freebase [BEP+08], YAGO [SKW07], and DB-
pedia [LIJ+15] have proven highly valuable for many applications including question
answering [DWZX15], recommendation [ZYL+16], and semantic search [BWY13]. Given
input signals on node importance, i.e., values representing the significance or popularity
of a node, such as the number of pageviews, how can we estimate node importance by
making use of input signals known for some nodes along with auxiliary information in
KGs such as connectivity patterns and edge types (predicates)? So far, existing techniques
have approached this problem in a non-trainable framework, which is based on a fixed
model structure determined by their prior assumptions on node importance and its
relation to the graph structure. Also, a majority of methods are not designed for KGs,
failing to utilize multi-relational information in capturing node importance.

In Chapter 2, we explore a new family of solutions for estimating node importance in KGs,
namely, graph-regularized semi-supervised machine learning algorithms, and develop
an effective method called GENI, based on the graph neural networks (GNNs), which

Table 1.2: [Chapters 2 and 3] Proposed MULTIIMPORT and GENI satisfy more desider-
ata for estimating node importance than existing methods. Neighborhood: Neighborhood
awareness. Predicate: Making use of predicates. Centrality: Centrality awareness. Input
Signal: Utilizing input signal on node importance. Flexibility: Flexible adaptation.

MULTIIMPORT

(Chapter 3)
GENI

(Chapter 2)
HAR

[LNY12]
PPR

[Hav02]
PR

[PBMW99]

Neighborhood XXX XXX X X X
Predicate XXX XXX X
Centrality XXX XXX X X X
Flexibility XXX XXX

Single Input Signal XXX XXX X X
Multiple Input Signals XXX

3

0.2

0.4

0.6

0.8

1

Artist
Familiarity
MUSIC10K

Artist
Hotttnesss
MUSIC10K

Director
Total Gross

IMDB
N
D
C
G
@
10
0

MultiImport
GENI
HAR
PPR
PR

Be
tte
r 5.6% 11.7%

23.7%

Figure 1.2: [Chapters 2 and 3] Our proposed MULTIIMPORT and GENI win. The
two proposed semi-supervised methods outperform previous non-trainable approaches.
MULTIIMPORT further improves upon GENI by learning from multiple input signals,
estimating node importance even up to 23.7% more accurately.

is designed to satisfy the desiderata for an effective semi-supervised node importance
estimation, e.g., centrality and predicate awareness, as summarized in Table 1.2.

In Chapter 3, we extend the problem of node importance estimation to an even more
general setup (Table 1.2), where we are given multiple types of input signals, which
may have been partially observed and partially overlapping with each other. We tackle
this problem by designing a latent variable model and deriving an effective learning
objective to infer node importance by learning to represent multiple signals in an effective
graph-based estimator.

Contributions:

• Novel Problem Formulation. We explore graph-regularized semi-supervised machine
learning algorithms for estimating node importance in KGs from heterogeneous infor-
mation reflecting node importance, as opposed to previous non-trainable approaches.

• Algorithms. We present two algorithms, GENI and MULTIIMPORT, novel semi-
supervised GNN-based methods that infer node importance by fusing heterogeneous
information from multiple sources (e.g., input signals, graph structure, edge types).

• Effectiveness. The proposed algorithms estimate node importance up to 24% more
accurately than the best existing method.

1.1.1.2 Principled and Scalable Recommendation Justification (Chap-
ter 4)

“How can we explain product recommendations to a user?”

Online recommendation is an essential functionality across a variety of services, includ-
ing e-commerce and video streaming, where items to buy, watch, or read are suggested
to users. Justifying recommendations, i.e., explaining why a user might like the rec-
ommended item [BC17], has been shown to improve user satisfaction [HKR00] and

4

 0

 0.1

 0.2

 0.3

CITATION-PG

M
e
a
n

 R
e
c
ip
ro
c
a
l
R
a
n
k

B
e
tt
e
r

16.9%

 0

 0.05

 0.1

 0.15

MOVIE-PG

J-Recs
MP-AND

MP-OR
PR

ExpLOD

20.7%

N/A

B
e
tt
e
r

(a) Preference Retrieval.

10-1
100
101
102
103
104

104 105 106 107 108

Slope=1

R
u
n
n
in
g

 T
im
e

 (
s
e
c
s
)

Number of edges

(b) Scalability.

Figure 1.3: [Chapter 4] (a) Our proposed J-RECS wins. J-RECS generates justifications
that match user preferences up to 20.7% better than the best baseline. (b) J-RECS exhibits
near-linear scalability.

persuasiveness of the recommendation [TM07, TM15]. In this work, our goal is to de-
velop a method for generating post-hoc justifications, in which recommendations and
justifications are decoupled from each other. Since justifications are generated after the
recommendation has been given, post-hoc justification methods can flexibly be applied
to different types of recommendation algorithms (thus model-agnostic) [VSR09]. While
several post-hoc methods have been developed, they are limited in providing diverse
justifications, as they either use only one of many available types of input data, or rely
on the predefined templates.

In Chapter 4, we develop a method called J-RECS, which produces concise yet diverse
justifications. Given heterogeneous data on the user and products (e.g., user purchase
history and product attributes), J-RECS uses a graph-based representation to leverage
heterogeneous data and their relations for justifications. The graph-based representation
allows J-RECS to generate justifications personalized with respect to both the user and
the recommended item. In this product graph, J-RECS finds a set of relevant product
attributes and use them to produce justifications, where we model the relevance score of
product attributes based on the entity proximity in a graph. Also, to provide informative
and engaging justifications to the user, J-RECS takes the diversity of chosen product
attributes into account. Importantly, by using the submodularity of the objective function,
J-RECS can efficiently infer justifications from a large product graph.

Contributions:

• Problem Formulation. We present a graph-based formulation of the problem of gen-
erating concise and diverse justifications given various types of user and product data.

• Principled Approach. We develop J-RECS, a principled post-hoc framework to in-
fer justifications. J-RECS is guided by a set of principles characterizing desirable
justifications, and does not require manually labeled data.

• Effectiveness and Scalability. We demonstrate that J-RECS satisfies desirable proper-

5

10
0

10
1

10
2

10
3

10
4

10
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

82×

16
3
×

180×

32
3
×

R
u
n
n
in
g

tim

e

(s
e
c
s
)

DBTF-CP
Walk'n'Merge
BCP_ALS

O.O.T. O.O.T.

(a) Dimensionality.

10
1

10
2

10
3

10
4

10
5

 0.01 0.05 0.1 0.15 0.2 0.25 0.3

343×

43×

R
u
n
n
in
g

tim

e

(s
e
c
s
)

DBTF-CP
Walk'n'Merge
BCP_ALS

O.O.T.

(b) Density.

10
2

10
3

10
4

10
5

 60 120 180 240

21×

R
u
n
n
in
g

tim

e

(s
e
c
s
)

DBTF-CP
BCP_ALS

(c) Rank.

Figure 1.4: [Chapter 5] Our proposed DBTF-CP wins. Scalability of DBTF-CP and
baselines with respect to the dimensionality and density of a tensor, and the rank of
CP decomposition. Baselines often run out of time (O.O.T.) as the dimensionality and
density of a tensor increase.

ties of justifications. Justifications generated by J-RECS match user preference up to
21% more accurately than the best baseline (Figure 1.3a). We also show that J-RECS is
scalable, running in time linear in the size of input data (Figure 1.3b).

1.1.1.3 Fast and Scalable Distributed Boolean Tensor Factorization
(Chapter 5)

“How can we analyze tensors that are composed of 0’s and 1’s? How can we efficiently analyze
such Boolean tensors that have millions or even billions of entries?”

Boolean tensors often represent relationship, membership, or occurrences of events such
as subject-relation-object tuples in knowledge base data (e.g., ‘Seoul’-‘is the capital of’-
‘South Korea’). Boolean tensor factorization (BTF) is a useful tool for analyzing binary
tensors, which can be used for applications such as latent concept discovery, clustering,
recommendation, link prediction, and synonym finding. BTF requires that the input
tensor, all factor matrices, and a core tensor are binary. Furthermore, BTF uses Boolean
sum instead of normal addition. When the data is inherently binary, BTF is an appealing
choice as it can reveal the structures and relationships underlying the binary tensor that
are hard to be found by other factorizations. However, while several BTF algorithms
exist, they fail to efficiently process, and scale up for large-scale Boolean tensors.

In Chapter 5, we develop a fast and scalable algorithm for large-scale BTF. Specifically, we
develop a distributed method called DBTF for Boolean CP (DBTF-CP) and Tucker (DBTF-
TK) factorizations running on the Apache Spark framework. First, DBTF performs
distributed data generation and minimizes the transfer of intermediate data, Second,
DBTF minimizes the number of operations for factorizing Boolean tensors by exploiting
the characteristics of Boolean operation and Boolean tensor factorization, and caching
intermediate results; this significantly decreases the number of operations required to
update factor matrices. Third, DBTF carefully partitions the workload, which facilitates

6

10
0

10
1

10
2

10
3

10
4

10
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

129×
86×

8
3
×

16
3
×

R
u
n
n
in
g

tim

e

(s
e
c
s
)

DBTF-TK
Walk'n'Merge
BTucker_ALS

O.O.T. O.O.T.

(a) Dimensionality.

10
1

10
2

10
3

10
4

10
5

 0.01 0.05 0.1 0.15 0.2 0.25 0.3

234×

35×

R
u
n
n
in
g

tim

e

(s
e
c
s
)

DBTF-TK
Walk'n'Merge
BTucker_ALS

O.O.T.

(b) Density.

10
1

10
2

10
3

10
4

10
5

 4 8 12 16 20 24 28 32 36 40

7×

R
u
n
n
in
g

tim

e

(s
e
c
s
)

DBTF-TK
BTucker_ALS

O.O.T.

(c) Core Size R1 = R2 = R3.

Figure 1.5: [Chapter 5] Our proposed DBTF-TK wins. Scalability of DBTF-TK and
baselines with respect to the dimensionality and density of a tensor, and the core size
of Tucker decomposition. Baselines often run out of time (O.O.T.) as the dimensionality
and density of a tensor, and core size increase.

the reuse of intermediate results and minimizes data shuffling.

Contributions:

• Fast and Scalable Algorithms. We develop two distributed algorithms, DBTF-CP and
DBTF-TK, for distributed Boolean CP and Tucker factorizations, which are carefully de-
signed to achieve high speed and scalability. These algorithms are the first distributed
algorithms for large-scale BTF.

• Theoretical Analysis. We provide an analysis of the proposed DBTF-CP and DBTF-TK
in terms of time complexity, memory requirement, and the amount of shuffled data.

• Effectiveness. DBTF-CP decomposes up to 163–323× larger tensors than existing meth-
ods in 82–180× less time (Figure 1.4a). Overall, DBTF-CP achieves 21–343× speedup
and exhibits near-linear scalability with regard to all data aspects (Figure 1.4). DBTF-
TK decomposes up to 83–163× larger tensors than existing methods in 86–129× less
time (Figure 1.5a). Overall, DBTF-TK achieves 7–234× speedup and exhibits near-linear
scalability with regard to all data aspects (Figure 1.5).

1.1.1.4 Fast and Automatic Model Selection for Graph Representation
Learning (Chapter 6)

“Given a graph learning task such as link prediction on a new graph dataset, how can we auto-
matically select the best model without performing any model training or evaluations on the new
graph?”

Graph learning (i.e., machine learning on graphs) has been receiving increasing attention
in recent years [XSY+21, ZCZ22], and has shown successes across a large array of appli-
cations, including traffic forecasting [JL21], ranking [PKD+19], bioinformatics [STZ+20],
drug discovery [LCH17], and anomaly detection [CCL+21]. However, as more graph

7

inferred	model
performances

best
model

𝐌∗

AutoGRL
Model

new	graph

𝐆
𝐆

(a) AUTOGRL is a meta-learned GRL model selection approach.

𝑀!

...

𝑀"

𝑀#

train	all
models

evaluate
models

model	performances

best
model

𝐌∗
𝐸!

𝐸"

𝐸#
Validation
Graph	𝑮!

...
......

new	graph

(b) Costly naive approach for selection of the best GRL model.

Figure 1.6: [Chapter 6] Our proposed AUTOGRL wins. Overview of AUTOGRL com-
pared to existing naive approach. (a) Given an unseen graph G and a large space of
modelsM to search over, AUTOGRL efficiently infers the best model M∗ ∈M without
ever having to train a single model fromM on the new graph G. (b) This is in contrast
to first training each model M ∈M, evaluating each one on a hold-out dataset, and then
selecting the best model.

learning methods are developed for various tasks, it gets increasingly difficult to deter-
mine which method, and also which hyperparameter settings to use for a given graph.
Selecting a method and its hyperparameters (i.e., model selection) for graph learning
has been largely ad hoc to date. A typical approach is to simply apply popular graph
learning models to new graphs. However, it is well known that there is no universal
learning algorithm that performs the best on all problem instances [WM97], and such
consistent model selection is often suboptimal. At the other extreme lies “naive model
selection” (Figure 1.6b), where all candidate models are trained on the new graph, and
evaluated on a hold-out validation graph, and finally, the best performing model for this
new graph is selected. This approach quickly becomes too costly, or even impractical for
real-world settings where model selection needs to be done nearly instantaneously as
new data continuously arrive.

In this chapter, we develop the first meta-learning approach for automatic graph representation
learning, called AUTOGRL, which automatically infers a good model for the new graph

8

without requiring any model training or evaluations, as depicted in Figure 1.6a. AUTOGRL
capitalizes on the prior performances of a large body of existing methods on benchmark
graph datasets, and carries over this prior experience to automatically select the best
model to use for the new graph. To capture the similarity across graphs from differ-
ent domains, we devise specialized structural meta-graph features that quantify the
structural characteristics of a graph. Then we design a meta-graph that represents the
relations among models and graphs, and develop a graph meta-learner operating on the
meta-graph, which estimates the relevance of each model to different graphs.

Contributions:

• Problem Formulation. We formulate the problem of training and evaluation-free model
selection for graph learning, where model space encompasses a large array of graph
learning algorithms and their hyperparameter configurations.

• Framework for Automatic Graph Learning. We propose AUTOGRL, the first ap-
proach to automatic graph learning to the best of our knowledge, which infers the best
graph learning model for a new unseen graph in near real-time, without ever having
to run different models as done in traditional model selection.

• Specialized Meta-Graph Features. We design specialized meta-graph features for
meta-learning on graphs. Meta-graph features effectively capture structural character-
istics of a graph, enabling an effective and efficient quantification of graph similarity.

• Effectiveness and Efficiency. Through extensive experiments on the benchmark en-
vironment that we have built, we show that using AUTOGRL for model selection
achieves up to 15× higher mean average precision (MAP) than consistently applying a
popular method like node2vec, as well as obtaining 10% higher MAP than the best
baseline meta-learner. Furthermore, AUTOGRL is highly efficient, incurring negligible
runtime overhead (<1 second) at inference time.

1.1.2 Part II: Dynamic Graphs and Tensors
Part II focuses on modeling and reasoning with dynamic graphs and tensors, which
represent various types of time-evolving networks and dynamic real-world phenomena
(such as weather and water quality), namely, knowledge-guided dynamic systems
modeling (Section 1.1.2.1), reasoning over temporal knowledge graphs (Section 1.1.2.2),
and contrastive graph clustering (Section 1.1.2.3).

1.1.2.1 Knowledge-Guided Dynamic Systems Modeling (Chapter 7)
“How can we model dynamic real-world systems and processes (e.g., weather, water quality, and
fluid dynamics)? In particular, how can we discover mathematical expressions that underlie those
dynamic processes, guided by prior knowledge?”

Modeling real-world phenomena is the goal of numerous science and engineering en-
deavors, such as ecological modeling [KMS+10], financial forecasting [LLC09], user
modeling [WPB01], and disease prediction [PKP+18], to name a few. Building an accu-
rate model for complex and dynamic systems improves understanding of underlying

9

Table 1.3: [Chapter 7] Knowledge-guided model revision satisfies all properties for inter-
pretable and effective modeling of complex dynamic systems. Other approaches miss
one or more of the properties. “?” means that it depends on the specific method used.

Property
Approach

Knowledge-
Driven

Modeling

Data-
Driven

Modeling

Model
Calibration

Model
Revision

Knowledge-
Guided

Model Revision
Learning models consistent with
prior knowledge

X ? X

Knowledge-based model specification X X X X

Structural model update ? X X

Automatic tuning of model parameters X X X X

Capacity to model complex systems X X X

Interpretable X ? X X X

processes and leads to an efficient use of resources. Towards this goal, knowledge-driven
modeling builds a model based on human expertise, yet it is often suboptimal. At the
opposite extreme, data-driven modeling aims to learn a model directly from data, without
relying on human expertise. However, to model complex system, it requires extensive
data and potentially generates overfitting.

In Chapter 7, we investigate an intermediate approach, called model revision, in which
prior knowledge and data are combined to achieve the best of both worlds. In model
revision, prior knowledge specifies the initial model structure and parameter values, and
both are updated iteratively to obtain a better fit to the data. In particular, Chapter 7
proposes knowledge-guided model revision, which further improves plain model revision
by letting model revision be guided by prior knowledge and producing a revised model
consistent with domain knowledge. We achieve effective and efficient knowledge-guided
model revision by developing genetic model revision (GMR) framework, which can
represent and incorporate prior knowledge of the dynamic systems, while employing
several speedup techniques. Table 1.3 summarizes how different approaches satisfy
desirable properties for knowledge-guided modeling of complex dynamic systems.

Contributions:

• Framework. We present GMR framework for dynamic systems modeling, which im-
proves a knowledge-based model in a data-driven manner, guided by prior knowledge.

• Knowledge Incorporation. We design novel mechanisms to represent prior knowl-
edge and perform knowledge-guided optimizations in the GMR framework.

• River Modeling. This is the first work to apply model revision to modeling a river
system. Previous work on river modeling used model calibration alone.

• Effectiveness and Efficiency. GMR framework achieves the best forecasting accuracy
in river modeling among a variety of methods, with up to 34% lower error than the
best parameter fitting approach, while producing models consistent with domain knowl-
edge (Figure 1.7a). Also, the proposed speedup techniques effectively cut down the

10

 10

 12

 14

 16

 18

 20

G
M
R

G
G
G
P

D
E
-M
C Z

S
C
E
-U
A
S
A

M
C
M
C

LH
S
G
A

A
R
IM
A
X

R
N
N

M
A
N
U
A
L

R
M
S
E

Model Revision
Model Calibration

Data-Driven Modeling
Knowledge-Driven Modeling

B
e
tt
e
r

−7%

 6

 8

 10

 12

 14

 16

G
M
R

G
G
G
P

D
E
-M
C Z

S
C
E
-U
A
S
A

M
C
M
C

LH
S
G
A

A
R
IM
A
X

R
N
N

M
A
N
U
A
L

M
A
E

B
e
tt
e
r

−13%

(a) Forecasting accuracy.

 0.1

 1

 10

 100

None TC ES RC TC
+ES

TC
+RC

ES
+RC

TC+RC
+ESM
e
a
n

 r
u
n
tim

e
 (
s
e
cs
)
p
e
r
in
d
iv
id
u
a
l

Speedup methods

1.5× 4.0× 146× 8.8× 215× 360× 607×

(b) Mean runtime by speedup methods.

Figure 1.7: [Chapter 7] (a) Our proposed GMR wins. Among a variety of methods,
GMR achieves the best forecasting accuracy in the river modeling task, while produc-
ing revised models consistent with domain knowledge. (b) The proposed speedup
techniques lead to 607× speedup.

computational cost, achieving 607× speedup (Figure 1.7b).

1.1.2.2 Reasoning over Temporal Knowledge Graphs (Chapter 8)
“How can we perform knowledge reasoning over temporal knowledge graphs (TKGs) that continu-
ously evolve over time?”

TKGs organize and represent facts about entities and their relations, where each fact is
associated with a timestamp. Reasoning over TKGs, i.e., inferring new facts from time-
evolving KGs, is crucial for many applications to provide intelligent services, including
question answering, recommendation, and search. However, despite the prevalence
of real-world data that can be represented as TKGs, most methods focus on reasoning
over static knowledge graphs, and lack the ability to employ rich temporal dynamics in
TKGs.

11

(a) An example TKG.

Evo
KG

RE-
Net

Kno
w-E

volv
e

Evo
lveG

CN

TA-
Dist

Mul
t

tNod
eEm

bed Con
vE
Dist

Mul
t0

20

40

M
A

E
(T

im
e)

B
et
te
r

−77%

× × × × × ×

ICEWS-500

0.25

0.50

M
R

R
 (L

in
k)

B
et
te
r

+116%
WIKI ICEWS14

(b) Link prediction (top) and time prediction (bottom) accuracy.

Figure 1.8: [Chapter 8] (a) An example TKG, where we aim to predict temporal links and
event time. (b) Our proposed EVOKG wins. EVOKG achieves the best link prediction
(top) and time prediction (bottom) results. × indicates that the corresponding method
cannot predict event time.

In Chapter 8, we first present a problem formulation that unifies the two major problems
that need to be addressed for an effective reasoning over TKGs, namely, modeling
the event time and the evolving network structure. Then we develop EVOKG, an
effective framework that jointly models both tasks. EVOKG captures the ever-changing
structural and temporal dynamics in TKGs via recurrent event modeling, and models
the interactions between entities based on the temporal neighborhood aggregation
framework. Further, EVOKG achieves an accurate modeling of event time, using flexible
and efficient mechanisms based on neural density estimation.

Contributions:

• Problem Formulation. We present a problem formulation that unifies the two major
tasks for TKG reasoning—modeling the event time and evolving network structure.

• Framework. We propose EVOKG, an effective and efficient method for reasoning over
TKGs that jointly addresses the two proposed core problems.

• Effectiveness and Efficiency. Experiments show that EVOKG achieves up to 116%
and 77% better link and event time prediction accuracy, respectively, than existing KG
reasoning methods (Figure 1.8b). Also, EVOKG performs training and inference up to
30× and 291× times faster, respectively, than the best existing method.

12

Table 1.4: [Chapter 9] Our proposed CGC wins on features. Comparison of the proposed
CGC with deep learning approaches for graph clustering. [A]: Aware of/Utilizing. CL:
Clustering, RP: Representation.

Desiderata
Methods AE

[HS06]
GAE

[KW16]
DAERNN
[GCC20]

DAEGC
[WPH+19]

SDCN
[BWS+20]

AGCN
[PLJH21]

CGC
(Ours)

Jointly optimizing CL and RP X X X !

[A] Input node features X X X X X !

[A] Network homophily X X X X X !

[A] Hierarchical communities !

Temporal graph clustering X !

Learning Objective
Contrastive learning-based �

Reconstruction-based � � � � � �

1.1.2.3 Contrastive Graph Clustering for Community Detection and
Tracking (Chapter 9)

“Given events between two entities, how can we effectively find communities of entities in an
unsupervised manner? Also, when the events are associated with time, how can we detect
communities and track their evolution?”

In this chapter, we approach this important task from graph clustering perspective. Re-
cently, state-of-the-art clustering performance in various domains has been achieved by
deep clustering methods [XGF16, GGLY17, YFSH17, YZZ+17, YLY+19, MSFK18, LDZ19].
Especially, deep graph clustering (DGC) methods [WPH+19, BWS+20, PHF+20, PLJH21,
TGC+14] have successfully extended deep clustering to graph-structured data by learn-
ing node representations and cluster assignments in a joint optimization framework.
Despite some differences in modeling choices (e.g., encoder architectures), existing DGC
methods are mainly based on autoencoders, minimizing reconstruction loss, and use the
same clustering objective with relatively minor changes. Also, while many real-world
graphs are dynamic in nature, previous DGC methods work only for static graphs.

In this work, we develop CGC, a novel end-to-end framework for graph clustering,
which fundamentally differs from existing methods. CGC learns node embeddings
and cluster assignments in a contrastive graph learning framework, where positive and
negative samples are carefully selected in a multi-level scheme such that they reflect the
hierarchical community structures and network homophily. Also, we extend CGC for
time-evolving data, where temporal graph clustering is performed in an incremental
learning fashion, with the ability to detect change points.

Contributions:

• Novel Framework. We propose CGC, a new contrastive graph clustering framework.
As discussed above and summarized in Table 1.4, CGC is a significant departure from

13

0.2 0.4 0.6 0.8
ACC of CGC

0.2

0.4

0.6

0.8

A
C

C
 o

f B
as

el
in

e

CGC
wins

Citeseer
DBLP-S
DBLP-T

ACM
MAG-CS

0.0 0.2 0.4 0.6 0.8
NMI of CGC

0.0

0.2

0.4

0.6

0.8

N
M

I o
f B

as
el

in
e

CGC
wins

0.0 0.2 0.4 0.6 0.8
F1 of CGC

0.0

0.2

0.4

0.6

0.8

F1
 o

f B
as

el
in

e

CGC
wins

0.0 0.2 0.4 0.6 0.8
AUC of CGC

0.0

0.2

0.4

0.6

0.8

A
U

C
 o

f B
as

el
in

e

CGC
wins

0.4 0.6 0.8
AP of CGC

0.4

0.6

0.8

A
P

of
 B

as
el

in
e

CGC
wins

(a) Node Clustering for Static and Temporal Datasets (b) Temporal Link Prediction

Yahoo-Msg
Foursquare-NYC
Foursquare-TKY

K-means
AE

DEC
IDEC

DAEGC
SVD

DGI
GAE

VGAE
ARGA

ARGVA
SDCN

AGCN
CTDNE

TIMERS
DynGEM

DynAERNN
EvolveGCN

CTGCN

Figure 1.9: [Chapter 9] Our proposed CGC outperforms competitors: most points are
below the diagonals for all baselines and graphs. CGC achieves more accurate (a) node
clustering on static and temporal data, and (b) link prediction based on the time-evolving
cluster membership.

previous deep graph clustering methods.
• Temporal Graph Clustering. We extend our CGC framework for temporal data. CGC

is the first deep graph clustering method for clustering time-evolving networks.
• Effectiveness. We demonstrate the effectiveness of CGC via extensive evaluation

of clustering quality on both static and temporal real-world datasets, where CGC
consistently outperforms various existing methods, achieving up to 14% higher node
clustering accuracy, and 29% higher temporal link prediction accuracy than the best baseline
(Figure 1.9).

14

Part I

Static Graphs and Tensors

15

Chapter 2

Estimating Node Importance in
Knowledge Graphs Using Graph
Neural Networks

Chapter based on work published in KDD 2019 [PKD+19].

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is
a multi-relational graph that has proven valuable for many tasks including question
answering and semantic search. In this chapter, we present GENI, a method for
tackling the problem of estimating node importance in KGs, which enables several
downstream applications such as item recommendation and resource allocation.
While a number of approaches have been developed to address this problem for gen-
eral graphs, they do not fully utilize information available in KGs, or lack flexibility
needed to model complex relationship between entities and their importance. To
address these limitations, we explore supervised machine learning algorithms. In
particular, building upon recent advancement of graph neural networks (GNNs),
we develop GENI, a GNN-based method designed to deal with distinctive chal-
lenges involved with predicting node importance in KGs. Our method performs
an aggregation of importance scores instead of aggregating node embeddings via
predicate-aware attention mechanism and flexible centrality adjustment. In our eval-
uation of GENI and existing methods on predicting node importance in real-world
KGs with different characteristics, GENI achieves 5–17% higher NDCG@100 than
the state of the art.

2.1 Introduction
Knowledge graphs (KGs) such as Freebase [BEP+08], YAGO [SKW07], and DBpedia [LIJ+15]
have proven highly valuable resources for many applications including question answer-
ing [DWZX15], recommendation [ZYL+16], semantic search [BWY13], and knowledge

17

Frank
Darabont

Tim
Robbins

Morgan
Freeman

Thomas
Newman

Bob
Roberts

The Shawshank
Redemption

Green Mile
Movie

Person

is-a

sta
rre
d-i
n

starred-in

star
red-

in

is-a

is-a

is-a is-a

is-
a

is-
a

dire
cte
d

mus
ic-b
y

directed
known-for

kno
wn-
for

directe
d

$28.3M

$4.5M

Figure 2.1: An example knowledge graph on movies and related entities. Different
edge types represent different types of relations (e.g., “directed” and “starred-in”), and
different shapes denote different entity types. Rounded rectangles are importance scores
known in advance for some movies.

completion [WGM+14]. A KG is a multi-relational graph where nodes correspond to
entities, and edges correspond to relations between the two connected entities. An edge
in a KG represents a fact stored in the form of “<subject> <predicate> <object>”, (e.g.,
“<Tim Robbins><starred-in><The Shawshank Redemption>”). KGs are different from
traditional graphs that have only a single relation; KGs normally consist of multiple,
different relations that encode heterogeneous information as illustrated by an example
movie KG in Figure 2.1.

Given a KG, estimating the importance of each node is a crucial task that enables a
number of applications such as recommendation, query disambiguation, and resource
allocation optimization. For example, consider a situation where a customer issues a
voice query “Tell me what Genie is” to a voice assistant backed by a KG. If the KG contains
several entities with such a name, the assistant could use their estimated importance
to figure out which one to describe. Furthermore, many KGs are large-scale, often
containing millions to billions of entities for which the knowledge needs to be enriched
or updated to reflect the current state. As validating information in KGs requires a lot of
resources due to their size and complexity, node importance can be used to guide the
system to allocate limited resources for entities of high importance.

How can we estimate the importance of nodes in a KG? In this chapter, we focus on the
setting where we are given importance scores of some nodes in a KG. An importance
score is a value that represents the significance or popularity of a node in the KG. For
example, the number of pageviews of a Wikipedia page can be used as an importance
score of the corresponding entity in a KG since important nodes tend to attract a lot of
attention and search traffic. Then given a KG, how can we predict node importance by

18

0.4

0.5

0.6

0.7

0.8

0.9

1

FB15K MUSIC10K TMDB5K IMDB

+12%

+6%

+5% +17%

N
D
C
G
@
10
0

Dataset

GENI HAR PPR PR

Figure 2.2: Our method GENI outperforms existing methods in predicting importance
of nodes in real-world KGs. Higher values are better. See Section 2.4.4 and Table 2.4 for
details.

making use of importance scores known for some nodes along with auxiliary information
in KGs such as edge types (predicates)?

In the past, several approaches have been developed for node importance estimation.
PageRank (PR) [PBMW99] is an early work on this problem that revolutionized the field
of Web search. However, PR scores are based only on the graph structure, and unaware
of importance scores available for some nodes. Personalized PageRank (PPR) [Hav02]
dealt with this limitation by letting users provide their own notion of node importance
in a graph. PPR, however, does not take edge types into account. HAR [LNY12] extends
ideas used by PR and PPR to distinguish between different predicates in KGs while
being aware of importance scores and graph topology. Still, we observe that there is
much room for improvement, as evidenced by the performance of existing methods on
real-world KGs in Figure 2.2. So far, existing techniques have approached this problem in
a non-trainable framework that is based on a fixed model structure determined by their
prior assumptions on the propagation of node importance, and involve no learnable
parameters that are optimized based on the ground truth.

In this chapter, we explore a new family of solutions for the task of predicting node impor-
tance in KGs, namely, regularized supervised machine learning algorithms. Our goal is
to develop a more flexible supervised approach that learns from ground truth, and makes
use of additional information in KGs. Among several supervised algorithms we explore,
we focus on graph neural networks (GNNs). Recently, GNNs have received increasing in-
terests, and achieved state-of-the-art performance on node and graph classification tasks
across data drawn from several domains [KW17, DBV16, HYL17, YHC+18, VCC+18].
Designed to learn from graph-structured data, and based on neighborhood aggrega-

19

tion framework, GNNs have the potential to make further improvements over earlier
approaches. However, existing GNNs have focused on graph representation learning
via embedding aggregation, and have not been designed to tackle challenges that arise
with supervised estimation of node importance in KGs. Challenges include modeling
the relationship between the importance of neighboring nodes, accurate estimation that
generalizes across different types of entities, and incorporating prior assumptions on
node importance that aid model prediction, which are not addressed at the same time by
existing supervised techniques.

We present GENI, a GNN for Estimating Node Importance in KGs. GENI applies an
attentive GNN for predicate-aware score aggregation to capture relations between the
importance of nodes and their neighbors. GENI also allows flexible score adjustment
according to node centrality, which captures connectivity of a node in terms of graph
topology. Our main contributions are as follows.

• We explore regularized supervised machine learning algorithms for estimating
node importance in KGs, as opposed to non-trainable solutions where existing
approaches belong.

• We present GENI, a GNN-based method designed to address the challenges in-
volved with supervised estimation of node importance in KGs.

• We provide empirical evidence and an analysis of GENI using real-world KGs.
Figure 2.2 shows that GENI outperforms the state of the art by 5%-17% percentage
points on real KGs.

The rest of this chapter is organized as follows. We present preliminaries in Section 2.2,
and describe our method in Section 2.3. After providing experimental results on real KGs
in Section 2.4, we review related works in Section 2.5, and conclude in Section 2.6.

2.2 Preliminaries
2.2.1 Problem Definition
A knowledge graph (KG) is a graph G = (V,E = {E1, E2, . . . , EP}) that represents multi-
relational data where nodes V and edges E correspond to entities and their relationships,
respectively; P is the number of types of edges (predicates); and Ep denotes a set of edges
of type p ∈ {1, . . . , P}. In KGs, there are often many types of predicates (i.e., P � 1)
between nodes of possibly different types (e.g., movie, actor, and director nodes), whereas
in traditional graphs, nodes are connected by just one type of edges (i.e., P = 1).

An importance score s ∈ R≥0 is a non-negative real number that represents the significance
or popularity of a node. For example, the total gross of a movie can be used as an
importance score for a movie KG, and the number of pageviews of an entity can be used
in a more generic KG such as Freebase [BEP+08]. We assume a single set of importance
scores, so the scores can compare with each other to reflect importance.

We now define the node importance estimation problem.

20

Table 2.1: Comparison of methods for estimating node importance. Neighborhood: Neigh-
borhood awareness. Predicate: Making use of predicates. Centrality: Centrality awareness.
Input Score: Utilizing input importance scores. Flexibility: Flexible adaptation.

GENI HAR [LNY12] PPR [Hav02] PR [PBMW99]

Neighborhood XXX X X X
Predicate XXX X
Centrality XXX X X X

Input Score XXX X X
Flexibility XXX

Definition 1. Node Importance Estimation: Given a KG G = (V,E = {E1, E2, . . . , EP})
and importance scores {s} for a subset Vs ⊆ V of nodes, learn a function S : V → [0,∞)
that estimates the importance score of every node in KG.

Figure 2.1 shows an example KG on movies and related entities with importance scores
given in advance for some movies. We approach the importance estimation problem by
developing a supervised framework learning a function that maps any node in KG to its
score, such that the estimation reflects its true importance as closely as possible.

Note that even when importance scores are provided for only one type of nodes (e.g.,
movies), we aim to do estimation for all types of nodes (e.g,. directors, actors, etc.).

Definition 2. In-Domain and Out-Of-Domain Estimation: Given importance scores for
some nodes Vs ⊆ V of type T (e.g., movies), predicting the importance of nodes of type
T is called an “in-domain” estimation, and importance estimation for those nodes whose
type is not T (e.g., actors) is called an “out-of-domain” estimation.

As available importance scores are often limited in terms of numbers and types, de-
veloping a method that generalizes well for both classes of estimation is an important
challenge for supervised node importance estimation.

2.2.2 Desiderata for Modeling Node Importance in KGs
Based on our discussion on prior approaches (PR, PPR, and HAR), we present the
desiderata that have guided the development of our method for tackling node importance
estimation problem. Table 2.1 summarizes GENI and existing methods in terms of these
desiderata.

Neighborhood Awareness. In a graph, a node is connected to other nodes, except for the
special case of isolated nodes. As neighboring entities interact with each other, and they
tend to share common characteristics (network homophily), neighborhoods should be
taken into account when node importance is modeled.

Making Use of Predicates. KGs consist of multiple types of predicates. Under the
assumption that different predicates could play a different role in determining node

21

importance, models should make predictions using information from predicates.

Centrality Awareness. Without any other information, it is reasonable to assume that
highly central nodes are more important than less central ones. Therefore, scores need to
be estimated in consideration of node centrality, capturing connectivity of a node.

Utilizing Input Importance Scores. In addition to graph topology, input importance
scores provide valuable information to infer relationships between nodes and their
importance. Thus, models should tap into both the graph structure and input scores for
more accurate prediction.

Flexible Adaptation. Our assumption regarding node importance such as the one on
centrality may not conform to the real distribution of input scores over KGs. Also, we
do not limit models to a specific type of input scores. On the other hand, models can be
provided with input scores that possess different characteristics. It is thus critical that a
model can flexibly adapt to the importance that input scores reflect.

2.2.3 Graph Neural Networks
In this section, we present a generic definition of graph neural networks (GNNs). GNNs
are mainly based on neighborhood aggregation architecture [KW17, HYL17, GSR+17,
YHC+18, VCC+18]. In a GNN with L layers, its `-th layer (` = 1, . . . , L) receives a feature
vector ~h`−1

i for each node i from the (`− 1)-th layer (where ~h0
i is an input node feature

~zi), and updates it by aggregating feature vectors from the neighborhood N (i) of node
i, possibly using a different weight w`i,j for neighbor j. As updated feature vectors
become the input to the (` + 1)-th layer, repeated aggregation procedure through L
layers in principle captures L-th order neighbors in learning a node’s representation.
This process of learning representation ~h`i of node i by `-th layer is commonly expressed
as [HYL17, YHC+18, XLT+18]:

~h`N (i) ← TRANSFORM`
(

AGGREGATE
({(

~h`−1
j , w`i,j

) ∣∣ j ∈ N (i)
}))

(2.1)

~h`i ← COMBINE
(
~h`−1
i , ~h`N (i)

)
(2.2)

where AGGREGATE is an aggregation function defined by the model (e.g., averaging
or max-pooling operation); TRANSFORM is a model-specific function that performs a
(non-linear) transformation of node embeddings via parameters in `-th layer shared
by all nodes (e.g., multiplication with a shared weight matrix W` followed by some
non-linearity σ(·)); COMBINE is a function that merges the aggregated neighborhood
representation with the node’s representation (e.g., concatenation).

2.3 Method
Effective estimation of node importance in KGs involves addressing the requirements
presented in Section 2.2.2. As a supervised learning method, the GNN framework
naturally allows us to utilize input importance scores to train a model with flexible adaptation.

22

Table 2.2: Table of symbols.

Symbol Definition

Vs set of nodes with known importance scores
~zi real-valued feature vector of node i
N (i) neighbors of node i
L total number of score aggregation (SA) layers
` index for an SA layer
H` number of SA heads in `-th layer
pmij predicate of m-th edge between nodes i and j
φ(e) learnable embedding of predicate e
σa, σs non-linearities for attention computation and score estimation
s`h(i) estimated score of node i by h-th SA head in `-th layer
s∗(i) centrality-adjusted score estimation of node i
|| concatenation operator
d(i) in-degree of node i
c(i) centrality score of node i
c∗h(i) centrality score of node i scaled and shifted by h-th SA head
γh, βh learnable scale and shift parameters used by h-th SA head
~ah,` learnable parameter vector to compute αh,`ij by h-th SA head in `-th layer
αh,`ij node i’s attention on node j computed with h-th SA head in `-th layer
g(i) known importance score of node i

Its propagation mechanism also allows us to be neighborhood aware. In this section, we
present GENI, which further enhances the model in three ways.

• Neighborhood Importance Awareness: GNN normally propagates information between
neighbors through node embedding. This is to model the assumption that an entity
and its neighbors affect each other, and thus the representation of an entity can be
better represented in terms of the representation of its neighbors. In the context of
node importance estimation, neighboring importance scores play a major role on
the importance of a node, whereas other neighboring features may have little effect,
if any. We thus directly aggregate importance scores from neighbors (Section 2.3.1),
and show empirically that it outperforms embedding propagation (Section 2.4.4).

• Making Use of Predicates: We design predicate-aware attention mechanism that
models how predicates affect the importance of connected entities (Section 2.3.2).

• Centrality Awareness: We apply centrality adjustment to incorporate node centrality
into the estimation (Section 2.3.3).

An overview of GENI is provided in Figure 2.3. In Sections 2.3.1 to 2.3.3, we describe the
three main enhancements using the basic building blocks of GENI shown in Figure 2.3a.
Then we discuss an extension to a general architecture in Section 2.3.4. Table 2.2 provides
the definition of symbols used in this chapter.

23

Score Aggregation (SA) Head

𝑧#$
𝑧%

𝑧#&

𝛼%#$

𝑧#(

𝑠* 𝑗,

𝑧#-

𝑠* 𝑗. 𝑠* 𝑖 𝑠* 𝑗0 𝑠* 𝑗1

𝛼%#(𝛼%% 𝛼%#& 𝛼%#-

𝑠, 𝑖

Centrality Adjustment

𝑠∗ 𝑖

Scoring Network

Score Aggregation

(a)

Aggregated scores

SA Head 1-1 SA Head 1-2

SA Head 2-1 SA Head 2-2

Layer 1

Layer 2

Centrality
Adjustment

Centrality
Adjustment

Scoring
Network

Scoring
Network

Initial estimation of importance scores by scoring network

Estimation of importance scores by layer 1

Estimation of importance scores by layer 2

Final estimation of importance scores

Intermediate Aggregation

Final Aggregation

𝑧#$ 𝑧% 𝑧#&𝑧#' 𝑧#(

(b)

Figure 2.3: Description of node importance estimation by GENI. a: Estimation of the
importance of node i based on the embeddings of node i and its neighbors j1, . . . , j4

(connected by blue edges). The final estimation s∗(i) is produced via three components
of GENI shown in colored boxes, which are described in Sections 2.3.1 to 2.3.3. b: An
illustration of the proposed model that consists of two layers, each of which contains
two score aggregation heads. Note that the model can consist of different numbers of
layers, and each layer can also have different numbers of score aggregation heads. A
discussion on the extension of the basic model in a to a more comprehensive architecture
in b is given in Section 2.3.4.

2.3.1 Score Aggregation
To directly model the relationship between the importance of neighboring nodes, we
propose a score aggregation framework, rather than embedding aggregation. Specifically,
in Equations (2.1) and (2.2), we replace the hidden embedding ~h`−1

j of node j with its
score estimation s`−1(j) and combine them as follows:

s`(i) =
∑

j∈N (i)∪{i}

α`ij s
`−1(j) (2.3)

where N (i) denotes the neighbors of node i, which will be a set of the first-order neigh-
bors of node i in our experiments. Here, α`ij is a learnable weight between nodes i and j
for the `-th layer (` = 1, . . . , L). We train it via a shared attention mechanism which is
computed by a pre-defined model with shared parameters and predicate embeddings, as
we explain soon. In other words, GENI computes the aggregated score s`(i) by perform-
ing a weighted aggregation of intermediate scores from node i and its neighbors. Note
that GENI does not apply TRANSFORM` function after aggregation as in Equation (2.1),

24

since GENI aggregates scores. Propagating scores instead of node embeddings has the
additional benefit of reducing the number of model parameters.

To compute the initial estimation s0(i), GENI uses input node features. In the simplest
case, they can be one-hot vectors that represent each node. More generally, they are
real-valued vectors representing the nodes, which are extracted manually based on
domain knowledge, or generated with methods for learning node embeddings. Let ~zi be
the input feature vector of node i. Then GENI computes the initial score of i as

s0(i) = SCORINGNETWORK(~zi) (2.4)

where SCORINGNETWORK can be any neural network that takes in a node feature vector
and returns an estimation of its importance. We used a simple fully-connected neural
network for our experiments.

2.3.2 Predicate-Aware Attention Mechanism
Inspired by recent work that showcased successful application of attention mechanism,
we employ a predicate-aware attention mechanism that attends over the neighbor’s
intermediate scores.

Our attention considers two factors. First, we consider the predicate between the nodes
because different predicates can play different roles for score propagation. For example,
even though a movie may be released in a popular (i.e., important) country, the movie it-
self may not be popular; on the other hand, a movie directed by a famous (i.e., important)
director is more likely to be popular. Second, we consider the neighboring score itself in
deciding the attention. A director who directed a few famous (i.e., important) movies is
likely to be important; the fact that he also directed some not-so-famous movies in his
life is less likely to make him unimportant.

GENI incorporates predicates into attention computation by using shared predicate
embeddings; i.e., each predicate is represented by a feature vector of predefined length,
and this representation is shared by nodes across all layers. Further, predicate embed-
dings are learned so as to maximize the predictive performance of the model in a flexible
fashion. Note that in KGs, there could be multiple edges of different types between two
nodes (e.g., see Figure 2.1). We use pmij to denote the predicate of m-th edge between
nodes i and j, and φ(·) to denote a mapping from a predicate to its embedding.

In GENI, we use a simple, shared self-attention mechanism, which is a single layer
feedforward neural network parameterized by the weight vector ~a. Relation between
the intermediate scores of two nodes i and j, and the role an in-between predicate
plays are captured by the attentional layer that takes in the concatenation of all relevant
information. Outputs from the attentional layer are first transformed by non-linearity
σ(·), and then normalized via the softmax function. Formally, GENI computes the
attention α`ij of node i on node j for `-th layer as:

α`ij =
exp

(
σa
(∑

m~a
>
` [s`−1(i)||φ(pmij)||s`−1(j)]

))∑
k∈N (i)∪{i} exp

(
σa
(∑

m~a
>
` [s`−1(i)||φ(pmik)||s`−1(k)]

)) (2.5)

25

where σa is a non-linearity, ~a` is a weight vector for `-th layer, and || is a concatenation
operator.

2.3.3 Centrality Adjustment
Existing methods such as PR, PPR, and HAR make a common assumption that the
importance of a node positively correlates with its centrality in the graph. In the context
of KGs, it is also natural to assume that more central nodes would be more important
than less central ones, unless the given importance scores present contradictory evidence.
Making use of this prior knowledge becomes especially beneficial in cases where we are
given a small number of importance scores compared to the total number of entities, and
in cases where the importance scores are given for entities of a specific type out of the
many types in KG.

Given that the in-degree d(i) of node i is a common proxy for its centrality and popularity,
we define the initial centrality c(i) of node i to be

c(i) = log(d(i) + ε) (2.6)

where ε is a small positive constant.

While node centrality provides useful information on the importance of a node, strictly
adhering to the node centrality could have a detrimental effect on model prediction. We
need flexibility to account for the possible discrepancy between the node’s centrality in a
given KG and the provided input importance score of the node. To this end, we use a
scaled and shifted centrality c∗(i) as our notion of node centrality:

c∗(i) = γ · c(i) + β (2.7)

where γ and β are learnable parameters for scaling and shifting. As we show in Sec-
tion 2.4.5, this flexibility allows better performance when in-degree is not the best proxy
of centrality.

To compute the final score, we apply centrality adjustment to the score estimation sL(i)
from the last layer, and apply a non-linearity σs as follows:

s∗(i) = σs
(
c∗(i) · sL(i)

)
(2.8)

2.3.4 Model Architecture
The simple architecture depicted in Figure 2.3a consists of a scoring network and a
single score aggregation (SA) layer (i.e., L = 1), followed by a centrality adjustment
component. Figure 2.3b extends it to a more general architecture in two ways. First,
we extend the framework to contain multiple SA layers; that is, L > 1. As a single
SA layer aggregates the scores of direct neighbors, stacking multiple SA layers enables
aggregating scores from a larger neighborhood. Second, we design each SA layer to
contain a variable number of SA heads, which perform score aggregation and attention

26

computation independently of each other. Empirically, we find using multiple SA heads
to be helpful for the model performance and the stability of optimization procedure
(Section 2.4.5).

Let h be an index of an SA head, and H` be the number of SA heads in `-th layer. We
define s′`−1

h (i) to be node i’s score that is estimated by (`− 1)-th layer, and fed into h-th
SA head in `-th (i.e., the next) layer, which in turn produces an aggregation s`h(i) of these
scores:

s`h(i) =
∑

j∈N (i)∪{i}

αh,`ij s′`−1
h (j) (2.9)

where αh,`ij is the attention coefficient between nodes i and j computed by SA head h in
layer `.

In the first SA layer, each SA head h receives input scores from a separate scoring network
SCORINGNETWORKh, which provides the initial estimation s0

h(i) of node importance. For
the following layers, output from the previous SA layer becomes the input estimation.
Since in `-th (` ≥ 1) SA layer, H` SA heads independently produce H` score estimations
in total, we perform an aggregation of these scores by averaging, which is provided to
the next layer. That is,

s′`h (i) =

{
SCORINGNETWORKh(~zi) if ` = 0

AVERAGE
({
s`h(i)

∣∣ h = 1, . . . , H`
})

if ` ≥ 1
(2.10)

where ~zi denotes the input feature vector of node i.

Multiple SA heads in `-th layer compute attention between neighboring nodes in the
same way as in Equation (2.5), yet independently of each other using its own parameters
~ah,`:

αh,`ij =
exp

(
σa
(∑

m~a
>
h,`[s

′`−1
h (i)||φ(pmij)||s′`−1

h (j)]
))∑

k∈N (i)∪{i} exp
(
σa
(∑

m~a
>
h,`[s

′`−1
h (i)||φ(pmik)||s

′`−1
h (k)]

)) (2.11)

Centrality adjustment is applied to the output from the final SA layer. In order to enable
independent scaling and shifting by each SA head, separate parameters γh and βh are
used for each head h. Then centrality adjustment by h-th SA head in the final layer
is:

c∗h(i) = γh · c(i) + βh (2.12)

With HL SA heads in the final L-th layer, we perform additional aggregation of centrality-
adjusted scores by averaging, and apply a non-linearity σs, obtaining the final estimation
s∗(i):

s∗(i) = σs
(
AVERAGE

({
c∗h(i) · sLh (i)

∣∣ h = 1, . . . , HL
}))

(2.13)

27

Table 2.3: Real-world KGs. See Section 2.4.1 and Section 2.7.1 for details. SCC: Strongly
connected component. OOD: Out-of-domain.

Name # Nodes # Edges # Predicates # SCCs. Input Score Type # Nodes w/ Scores Data for OOD Evaluation

FB15K 14,951 592,213 1,345 9 # Pageviews 14,108 (94%) N/A
MUSIC10K 24,830 71,846 10 130 Song hotttnesss 4,214 (17%) Artist hotttnesss

TMDB5K 123,906 532,058 22 15 Movie popularity 4,803 (4%) Director ranking
IMDB 1,567,045 14,067,776 28 1 # Votes for movies 215,769 (14%) Director ranking

2.3.5 Model Training
In order to predict node importance with input importance scores known for a subset of
nodes Vs ⊆ V , we train GENI using mean squared error between the given importance
score g(i) and the model estimation s∗(i) for node i ∈ Vs; thus, the loss function is

1

|Vs|
∑
i∈Vs

(s∗(i)− g(i))2 (2.14)

Note that SCORINGNETWORK is trained jointly with the rest of GENI. To avoid over-
fitting, we apply weight decay with an early stopping criterion based on the model
performance on validation entities.

2.4 Experiments
In this section, we aim to answer the following questions.

• How do GENI and baselines perform on real-world KGs with different charac-
teristics? In particular, how well do methods perform in- and out-of-domain
estimation (Definition 2)?

• How do the components of GENI, such as centrality adjustment, and different
parameter values affect its estimation?

We describe datasets, baselines, and evaluation plans in Sections 2.4.1 to 2.4.3, and answer
the above questions in Sections 2.4.4 and 2.4.5.

2.4.1 Datasets
In our experiments, we use four real-world KGs with different characteristics. Here we
introduce these KGs along with the importance scores used for in- and out-of-domain
(OOD) evaluations (see Definition 2). Summaries of the datasets (such as the number of
nodes, edges, and predicates) are given in Table 2.3. More details such as data sources
and how they are constructed can be found in Section 2.7.1.

FB15K is a subset of Freebase, which is a large collaborative knowledge base containing
general facts, and has been widely used for research and practical applications [BUG+13,
BEP+08]. FB15K has a much larger number of predicates and a higher density than
other KGs we evaluated. For each entity, we use the number of pageviews for the

28

corresponding Wikipedia page as its score. Note that we do not perform OOD evaluation
for FB15K since importance scores for FB15K apply to all types of entities.

MUSIC10K is a music KG sampled from the Million Song Dataset1, which includes
information about songs such as the primary artist and the album the song belongs
to. The dataset provides two types of popularity scores called “song hotttnesss” and
“artist hotttnesss” computed by the Echo Nest platform by considering data from many
sources such as mentions on the web, play counts, etc2. We use “song hotttnesss” as
input importance scores, and “artist hotttnesss” for OOD performance evaluation.

TMDB5K is a movie KG derived from the TMDb 5000 movie dataset3. It contains movies
and related entities such as movie genres, companies, countries, crews, and casts. We
use the “popularity” information for movies as importance scores, which is provided by
the original dataset. For OOD evaluation, we use a ranking of top-200 highest grossing
directors4. Worldwide box office grosses given in the ranking are used as importance
scores for directors.

IMDB is a movie KG created from the public IMDb dataset, which includes information
such as movies, genres, directors, casts, and crews. IMDB is the largest KG among those
we evaluate, with 12.6× as many nodes as TMDB5K. IMDb dataset provides the number
of votes a movie received, which we use as importance scores. For OOD evaluation, we
use the same director ranking used for TMDB5K.

2.4.2 Baselines
Methods for node importance estimation in KGs can be classified into two families of
algorithms.

Non-Trainable Approaches. Previously developed methods mostly belong to this cate-
gory. We evaluate the following methods:

• PageRank (PR) [PBMW99]
• Personalized PageRank (PPR) [Hav02]
• HAR [LNY12]

Supervised Approaches. We explore the performance of representative supervised
algorithms on node importance estimation:

• Linear regression (LR): an ordinary least squares algorithm.
• Random forests (RF): a random forest regression model.
• Neural networks (NN): a fully-connected neural network.
• Graph attention networks (GAT) [VCC+18]: This is a GNN model reviewed in Sec-

tion 2.2.3. We add a final layer that takes the node embedding and outputs the

1https://labrosa.ee.columbia.edu/millionsong/
2https://musicmachinery.com/tag/hotttnesss/
3https://www.kaggle.com/tmdb/tmdb-movie-metadata
4https://www.the-numbers.com/box-office-star-records/worldwide/

lifetime-specific-technical-role/director

29

https://labrosa.ee.columbia.edu/millionsong/
https://musicmachinery.com/tag/hotttnesss/
https://www.kaggle.com/tmdb/tmdb-movie-metadata
https://www.the-numbers.com/box-office-star-records/worldwide/lifetime-specific-technical-role/director
https://www.the-numbers.com/box-office-star-records/worldwide/lifetime-specific-technical-role/director

importance score of a node.

All these methods and GENI use the same data (node features and input importance
scores). In our experiments, node features are generated using node2vec [GL16]. Depend-
ing on the type of KGs, other types of node features, such as bag-of-words representation,
can also be used. Note that the graph structure is explicitly used only by GAT, although
other supervised baselines make an implicit use of it when node features encode graph
structural information.

We will denote each method by the name in parentheses. Experimental settings for
baselines and GENI are provided in Section 2.7.2.

2.4.3 Performance Evaluation
We evaluate methods based on their in- and out-of-domain (OOD) performance. We
performed 5-fold cross validation, and report the average and standard deviation of the
following metrics on ranking quality and correlation: normalized discounted cumulative
gain and Spearman correlation coefficient. Higher values are better for all metrics. We
now provide their formal definitions.

Normalized discounted cumulative gain (NDCG) is a measure of ranking quality.
Given a list of nodes ranked by predicted scores, and their graded relevance values
(which are non-negative, real-valued ground truth scores in our setting), discounted
cumulative gain at position k (DCG@k) is defined as:

DCG@k =
k∑
i=1

ri
log2(i+ 1)

(2.15)

where ri denotes the graded relevance of the node at position i. Note that due to
the logarithmic reduction factor, the gain ri of each node is penalized at lower ranks.
Consider an ideal DCG at rank position k (IDCG@k) which is obtained by an ideal
ordering of nodes based on their relevance scores. Normalized DCG at position k
(NDCG@k) is then computed as:

NDCG@k =
DCG@k

IDCG@k
(2.16)

Our motivation for using NDCG@k is to test the quality of ranking for the top k enti-
ties.

Spearman correlation coefficient (SPEARMAN) measures the rank correlation between
the ground truth scores ~g and predicted scores ~s; that is, the strength and direction of
the monotonic relationship between the rank values of ~g and ~s. Converting ~g and ~s into
ranks ~gr and ~sr, respectively, Spearman correlation coefficient is computed as:

Spearman =

∑
i(gri − gr)(sri − sr)√∑

i(gri − gr)2
√∑

i(sri − sr)2
(2.17)

30

Table 2.4: In-domain prediction results on real-world datasets. GENI consistently
outperforms all baselines. Numbers after ± symbol are standard deviation from 5-fold
cross validation. Best results are in bold, and second best results are underlined.

Method
FB15K MUSIC10K TMDB5K IMDB

NDCG@100 SPEARMAN NDCG@100 SPEARMAN NDCG@100 SPEARMAN NDCG@100 SPEARMAN

PR 0.8354± 0.016 0.3515± 0.015 0.5510± 0.021 −0.0926± 0.034 0.8293± 0.026 0.5901± 0.011 0.7847± 0.048 0.0881± 0.004

PPR 0.8377± 0.015 0.3667± 0.015 0.7768± 0.009 0.3524± 0.046 0.8584± 0.013 0.7385± 0.010 0.7847± 0.048 0.0881± 0.004

HAR 0.8261± 0.005 0.2020± 0.012 0.5727± 0.017 0.0324± 0.044 0.8141± 0.021 0.4976± 0.014 0.7952± 0.036 0.1318± 0.005

LR 0.8750± 0.005 0.4626± 0.019 0.7301± 0.023 0.3069± 0.032 0.8743± 0.015 0.6881± 0.013 0.7365± 0.009 0.5013± 0.002

RF 0.8734± 0.005 0.5122± 0.019 0.8129± 0.012 0.4577± 0.012 0.8503± 0.016 0.5959± 0.022 0.7651± 0.010 0.4753± 0.005

NN 0.9003± 0.005 0.6031± 0.012 0.8015± 0.017 0.4491± 0.027 0.8715± 0.006 0.7009± 0.009 0.8850± 0.016 0.5120± 0.008

GAT 0.9205± 0.009 0.7054± 0.013 0.7666± 0.016 0.4276± 0.023 0.8865± 0.011 0.7180± 0.010 0.9110± 0.011 0.7060± 0.007

GENI 0.9385± 0.004 0.7772± 0.006 0.8224± 0.018 0.4783± 0.009 0.9051± 0.005 0.7796± 0.009 0.9318± 0.005 0.7387± 0.002

where gr and sr are the mean of ~gr and ~sr.

For in-domain evaluation, we use NDCG@100 and SPEARMAN as they complement
each other: NDCG@100 looks at the top-100 predictions, and SPEARMAN considers the
ranking of all entities with known scores. For NDCG, we also tried different cut-off
thresholds and observed similar results. Note that we often have a small volume of data
for OOD evaluation. For example, for TMDB5K and IMDB, we used a ranking of 200
directors with known scores, while TMDB5K and IMDB have 2,578 and 287,739 directors,
respectively. Thus SPEARMAN is not suitable for OOD evaluation as it considers only
those small number of entities in the ranking, and ignores all others, even if they are
predicted to be highly important; thus, for OOD evaluation, we report NDCG@100 and
NDCG@2000.

Additionally, we report regression performance in Section 2.7.3.2.

2.4.4 Importance Estimation on Real-World Data
We evaluate GENI and baselines in terms of in- and out-of-domain (OOD) predictive
performance.

2.4.4.1 In-Domain Prediction
Table 2.4 summarizes in-domain prediction performance. GENI outperforms all base-
lines on four datasets in terms of both NDCG@100 and SPEARMAN. It is noteworthy that
supervised approaches generally perform better in-domain prediction than non-trainable
ones, especially on FB15K and IMDB, which are more complex and larger than the other
two. It demonstrates the applicability of supervised models to our problem. On all KGs
except MUSIC10K, GAT outperforms other supervised baselines, which use the same
node features but do not explicitly take the graph network structure into account. This
shows the benefit of directly utilizing network connectivity. By modeling the relation be-
tween scores of neighboring entities, GENI achieves further performance improvement

31

Table 2.5: Out-of-domain prediction results on real-world datasets. GENI consistently
outperforms all baselines. Numbers after ± symbol are standard deviation from 5-fold
cross validation. Best results are in bold, and second best results are underlined.

Method
MUSIC10K TMDB5K IMDB

NDCG@100 NDCG@2000 NDCG@100 NDCG@2000 NDCG@100 NDCG@2000

PR 0.6520± 0.000 0.8779± 0.000 0.8337± 0.000 0.8079± 0.000 0.0000± 0.000 0.1599± 0.000
PPR 0.7324± 0.006 0.9118± 0.002 0.8060± 0.041 0.7819± 0.022 0.0000± 0.000 0.1599± 0.000
HAR 0.7113± 0.004 0.8982± 0.001 0.8913± 0.010 0.8563± 0.007 0.2551± 0.019 0.3272± 0.005

LR 0.6644± 0.006 0.8667± 0.001 0.4990± 0.013 0.5984± 0.002 0.3064± 0.007 0.2755± 0.003
RF 0.6898± 0.022 0.8796± 0.003 0.5993± 0.040 0.6236± 0.005 0.4066± 0.145 0.3719± 0.040
NN 0.6981± 0.017 0.8836± 0.005 0.5675± 0.023 0.6172± 0.009 0.2158± 0.035 0.3105± 0.019
GAT 0.6909± 0.009 0.8834± 0.003 0.5349± 0.016 0.5999± 0.007 0.3858± 0.065 0.4209± 0.016

GENI 0.7964± 0.007 0.9121± 0.002 0.9078± 0.004 0.8776± 0.002 0.4519± 0.051 0.4962± 0.025

over GAT. Among non-trainable baselines, HAR often performs worse than PR and
PPR, which suggests that considering predicates could hurt performance if predicate
weight adjustment is not done properly.

2.4.4.2 Out-Of-Domain Prediction
Table 2.5 summarizes OOD prediction results. GENI achieves the best results for all KGs
in terms of both NDCG@100 and NDCG@2000. In contrast to in-domain prediction
where supervised baselines generally outperform non-trainable ones, we observe that
non-trainable methods achieve higher OOD results than supervised baselines on MU-
SIC10K and TMDB5K. In these KGs, only about 4,000 entities have known scores. Given
scarce ground truth, non-trainable baselines could perform better by relying on a prior
assumption on the propagation of node importance. Further, note that the difference
between non-trainable and supervised baselines is more drastic on TMDB5K where the
proportion of nodes with scores is the smallest (4%). On the other hand, on IMDB, which
is our largest KG with the greatest number of ground truth, supervised baselines mostly
outperform non-trainable methods. In particular, none of the top-100 directors in IMDB
predicted by PR and PPR belong to the ground truth director ranking. With 14% of nodes
in IMDB associated with known scores, supervised methods learn to generalize better for
OOD prediction. Although neighborhood aware, GAT is not better than other supervised
baselines. By applying centrality adjustment, GENI achieves superior performance to
both classes of baselines regardless of the number of available known scores.

2.4.5 Analysis of GENI
2.4.5.1 Effect of Considering Predicates
To see how the consideration of predicates affects model performance, we run GENI
on FB15K, which has the largest number of predicates, and report NDCG@100 and
SPEARMAN when a single embedding is used for all predicates (denoted by “shared
embedding”) vs. when each predicate uses its own embedding (denoted by “distinct

32

Table 2.6: Performance of GENI on FB15K when a single embedding is used for all
predicates (shared embedding) vs. when each predicate uses its own embedding (distinct
embedding).

Metric Shared Embedding Distinct Embedding

NDCG@100 0.9062± 0.008 0.9385± 0.004
SPEARMAN 0.6894± 0.007 0.7772± 0.006

Table 2.7: Performance of PR, log in-degree baseline, and GENI with fixed and flexible
centrality adjustment (CA) on FB15K and TMDB5K.

Method
FB15K TMDB5K

NDCG@100 SPEARMAN NDCG@100 SPEARMAN

PR 0.835± 0.02 0.352± 0.02 0.829± 0.03 0.590± 0.01
Log In-Degree 0.810± 0.02 0.300± 0.03 0.852± 0.02 0.685± 0.02

GENI-Fixed CA 0.868± 0.01 0.613± 0.01 0.899± 0.01 0.771± 0.01
GENI-Flexible CA 0.938± 0.00 0.777± 0.01 0.905± 0.01 0.780± 0.01

embedding”). Note that using “shared embedding”, GENI loses the ability to distin-
guish between different predicates. In the results given in Table 2.6, we observe that
NDCG@100 and SPEARMAN are increased by 3.6% and 12.7%, respectively, when a
dedicated embedding is used for each predicate. This shows that GENI successfully
makes use of predicates for modeling the relation between node importance; this is
especially crucial in KGs such as FB15K that consist of a large number of predicates.

2.4.5.2 Flexibility for Centrality Adjustment.
In Equation (2.7), we perform scaling and shifting of c(i) for flexible centrality adjustment
(CA). Here we evaluate the model with fixed CA without scaling and shifting where the
final estimation s∗(i) = σs(c(i) · sL(i)). In Table 2.7, we report the performance of GENI
on FB15K and TMDB5K obtained with fixed and flexible CA while all other parameters
were identical. When node centrality strongly correlates with input scores, fixed CA
obtains similar results to flexible CA. This is reflected on the result of TMDB5K dataset,
where PR and log in-degree baseline (LID), which estimates node importance as the log
of its in-degree, both estimate node importance close to the input scores. On the other
hand, when node centrality is not in good agreement with input scores, as demonstrated
by the poor performance of PR and LID as on FB15K, flexible CA performs much better
than fixed CA (8% higher NDCG@100, and 27% higher SPEARMAN on FB15K).

2.4.5.3 Parameter Sensitivity
We evaluate the parameter sensitivity of GENI by measuring performance on FB15K
varying one of the following parameters while fixing others to their default values
(shown in parentheses): number of score aggregation (SA) layers (1), number of SA

33

0.7

0.8

0.9

1

1 2 3 4 5
Score Aggregation Layers

NDCG@100 Spearman

0.7

0.8

0.9

1

1 2 3 4 5
Score Aggregation Heads

NDCG@100 Spearman

0.6

0.7

0.8

0.9

1

10 20 30 40 50
Dim. of Predicate Embedding

NDCG@100 Spearman

0.7

0.8

0.9

1

1 2 3 4 5
Hidden Layers in Scoring Networks

NDCG@100 Spearman

Figure 2.4: Parameter sensitivity of GENI on FB15K. We report results varying one
parameter on x-axis, while fixing all others.

heads in each SA layer (1), dimension of predicate embedding (10), and number of
hidden layers in scoring networks (1 layer with 48 units). Results presented in Figure 2.4
shows that the model performance tends to improve as we use a greater number of
SA layers and SA heads. For example, SPEARMAN increases from 0.72 to 0.77 as the
number of SA heads is increased from 1 to 5. Using more hidden layers for scoring
networks also tends to boost performance, although exceptions are observed. Increasing
the dimension of predicate embedding beyond an appropriate value negatively affects
the model performance, although GENI still achieves high SPEARMAN compared to
baselines.

2.5 Related Work
In this section, we review previous works on node importance estimation and graph
neural networks.

Node Importance Estimation. Many approaches have been developed for node impor-
tance estimation [PBMW99, Hav02, TFP08, JPSK17, LNY12, Kle99]. PageRank (PR) [PBMW99]
is based on the random surfer model where an imaginary surfer randomly moves to
a neighboring node with probability d, or teleports to any other node randomly with
probability 1 − d. PR predicts the node importance to be the limiting probability of

34

the random surfer being at each node. Accordingly, PR scores are determined only by
the graph structure, and unaware of input importance scores. Personalized PageRank
(PPR) [Hav02] deals with this limitation by biasing the random walk to teleport to a set
of nodes relevant to some specific topic, or alternatively, nodes with known importance
scores. Random walk with restart (RWR) [TFP08, JPSK17] is a closely related method
that addresses a special case of PPR where teleporting is restricted to a single node.
PPR and RWR, however, are not well suited for KGs since they do not consider edge
types. To make a better use of rich information in KGs, HAR [LNY12] extends the idea
of random walk used by PR and PPR to solve limiting probabilities arising from multi-
relational data, and distinguishes between different predicates in KGs while being aware
of importance scores. Previous methods can be categorized as non-trainable approaches
with a fixed model structure that do not involve model parameter optimization. In
this chapter, we explore supervised machine learning algorithms with a focus on graph
neural networks.

Graph Neural Networks (GNNs). GNNs are a class of neural networks that learn from
arbitrarily structured graph data. Many GNN formulations have been based on the
notion of graph convolutions. The pioneering work of Bruna et al. [BZSL14] defined the
convolution operator in the Fourier domain, which involved performing the eigende-
composition of the graph Laplacian; as a result, its filters were not spatially localized, and
computationally costly. A number of works followed to address these limitations. Henaff
et al. [HBL15] introduced a localization of spectral filters via the spline parameterization.
Defferrard et al. [DBV16] designed more efficient, strictly localized convolutional filters.
Kipf and Welling [KW17] further simplified localized spectral convolutions via a first-
order approximation. To reduce the computational footprint and improve performance,
recent works explored different ways of neighborhood aggregation. One direction has
been to restrict neighborhoods via sampling techniques such as uniform neighbor sam-
pling [HYL17], vertex importance sampling [CMX18], and random walk-based neighbor
importance sampling [YHC+18]. Graph attention networks (GAT) [VCC+18], which
is most closely related to our method, explores an orthogonal direction of assigning
different importance to different neighbors by employing self-attention over neigh-
bors [VSP+17]. While GAT exhibited state-of-the-art results, it was applied only to node
classifications, and is unaware of predicates. Building upon recent developments in
GNNs, GENI tackles the challenges for node importance estimation in KGs, which have
not been addressed by existing GNNs.

2.6 Conclusion
Estimating node importance in KGs is an important problem with many applications
such as item recommendation and resource allocation. In this chapter, we present a
method GENI that addresses this problem by utilizing rich information available in
KGs in a flexible manner which is required to model complex relation between entities
and their importance. Our main ideas can be summarized as score aggregation via
predicate-aware attention mechanism and flexible centrality adjustment. Experimental
results on predicting node importance in real-world KGs show that GENI outperforms

35

existing approaches, achieving 5–17% higher NDCG@100 than the state of the art.

2.7 Appendix
In the appendix, we provide details on datasets, experimental settings, and additional
experimental results, such as a case study on TMDB5K and regression performance
evaluation for in-domain predictions.

Table 2.8: Top-10 movies and directors with highest predicted importance scores by
GENI, HAR, and GAT on TMDB5K. “ground truth rank”−“estimated rank” is shown for
each prediction.

(a) Top-10 movies (in-domain estimation). A ground truth rank is computed
from known importance scores of movies used for testing.

GENI HAR GAT

1 The Dark Knight Rises 11 Jason Bourne 63 The Dark Knight Rises 11
2 The Lego Movie 70 The Wolf of Wall Street 21 Clash of the Titans 103
3 Spectre 10 Rock of Ages 278 Ant-Man 4
4 Les Misérables 94 Les Misérables 94 The Lego Movie 68

5
The Amazing
Spider-Man

22 The Dark Knight Rises 7 Jack the Giant Slayer 126

6 Toy Story 2 39 V for Vendetta 27 Spectre 7
7 V for Vendetta 26 Now You See Me 2 81 The Wolf of Wall Street 16
8 Clash of the Titans 97 Spectre 5 The 5th Wave 67

9 Ant-Man -2
Austin Powers in

Goldmember
140

The Hunger Games:
Mockingjay - Part 2

-4

10 Iron Man 2 29 Alexander 141 X-Men: First Class 767

(b) Top-10 directors (out-of-domain estimation). A ground truth rank corre-
sponds to the rank in a director ranking (N/A indicates that the director is
not in the director ranking).

GENI HAR GAT

1 Steven Spielberg 0 Steven Spielberg 0 Noam Murro N/A
2 Tim Burton 9 Martin Scorsese 44 J Blakeson N/A
3 Ridley Scott 6 Ridley Scott 6 Pitof N/A
4 Martin Scorsese 42 Clint Eastwood 19 Paul Tibbitt N/A
5 Francis Ford Coppola 158 Woody Allen 112 Rupert Sanders N/A
6 Peter Jackson -4 Robert Zemeckis 1 Alan Taylor 145
7 Robert Rodriguez 127 Tim Burton 4 Peter Landesman N/A
8 Gore Verbinski 8 David Fincher 40 Hideo Nakata N/A
9 Joel Schumacher 63 Oliver Stone 105 Drew Goddard N/A

10 Robert Zemeckis -3 Ron Howard -2 Tim Miller N/A

36

2.7.1 Datasets
We perform evaluation using four real-world KGs that have different characteristics.
All KGs were constructed from public data sources, which we specify in the footnote.
Summaries of these datasets (such as the number of nodes, edges, and predicates) are
given in Table 2.3. Below, we provide details on the construction of each KG.

FB15K. We used a sample of Freebase5 used by [BUG+13]. The original dataset is divided
into training, validation, and test sets. We combined them into a single dataset, and later
divided them randomly into three sets based on our proportion for training, validation,
and test data. In order to find the number of pageviews of a Wikipedia page, which is the
importance score used for FB15K, we used Freebase/Wikidata mapping6. Most entities
in FB15K can be mapped to the corresponding Wikidata page, from which we found the
link to the item’s English Wikipedia page, which provides several information including
the number of pageviews in the past 30 days.

MUSIC10K. We built MUSIC10K from the sample7 of the Million Song Dataset8. This
dataset is a collection of audio features and metadata for one million popular songs.
Among others, this dataset includes information about songs such as the primary artist
and the album the song belongs to. We constructed MUSIC10K by adding nodes for
these three entities (i.e., songs, artists, and albums), and edges of corresponding types
between them as appropriate. Note that MUSIC10K is much more fragmented than other
datasets.

TMDB5K. We constructed TMDB5K from the TMDb 5000 movie dataset9. This dataset
contains movies and relevant information such as movie genres, companies, countries,
crews, and casts in a tabular form. We added nodes for each of these entities, and added
edges between two related entities with appropriate types. For instance, given that
“Steven Spielberg” directed “Schindler’s List”, we added two corresponding director and
movie nodes, and added an edge of type “directed” between them.

IMDB. We created IMDB from public IMDb datasets10. IMDb datasets consist of several
tables, which contain information such as titles, genres, directors, writers, principal casts
and crews. As for TMDB5K, we added nodes for these entities, and connected them
with edges of corresponding types. In creating IMDB, we focused on entities related to
movies, and excluded other entities that have no relation with movies. In addition, IMDb
datasets include titles each person is known for; we added edges between a person and
these titles to represent this special relationship.

Scores. For FB15K, TMDB5K, IMDB, we added 1 to the importance scores as an offset, and
log-transformed them as the scores were highly skewed. For MUSIC10K, two types of

5https://everest.hds.utc.fr/doku.php?id=en:smemlj12
6https://developers.google.com/freebase/
7https://think.cs.vt.edu/corgis/csv/music/music.html
8https://labrosa.ee.columbia.edu/millionsong/
9https://www.kaggle.com/tmdb/tmdb-movie-metadata

10https://www.imdb.com/interfaces/

37

https://everest.hds.utc.fr/doku.php?id=en:smemlj12
https://developers.google.com/freebase/
https://think.cs.vt.edu/corgis/csv/music/music.html
https://labrosa.ee.columbia.edu/millionsong/
https://www.kaggle.com/tmdb/tmdb-movie-metadata
https://www.imdb.com/interfaces/

provided scores were all between 0 and 1, and we used them without log transforma-
tion.

2.7.2 Experimental Settings

2.7.2.1 Cross Validation and Early Stopping
We performed 5-fold cross validation; i.e., for each fold, 80% of the ground truth scores
were used for training, and the other 20% were used for testing. For methods based on
neural networks, we applied early stopping by using 15% of the original training data
for validation and the remaining 85% for training, with a patience of 50. That is, the
training was stopped if the validation loss did not decrease for 50 consecutive epochs,
and the model with the best validation performance was used for testing.

2.7.2.2 Software
We used several open source libraries, and used Python 3.6 for our implementation.

Graph Library. We used NetworkX 2.1 for graphs and graph algorithms: MultiDiGraph
class was used for all KGs as there can be multiple edges of different types between two
entities; NetworkX’s pagerank_scipy function was used for PR and PPR.

Machine Learning Library. We chose TensorFlow 1.12 as our deep learning framework.
We used scikit-learn 0.20.0 for other machine learning algorithms such as random forest
and linear regression.

Other Libraries and Algorithms. For GAT, we used the reference TensorFlow imple-
mentation provided by the authors11. We implemented HAR in Python 3.6 based on the
algorithm description presented in [LNY12]. For node2vec, we used the implementa-
tion available from the project page12. NumPy 1.15 and SciPy 1.1.0 were used for data
manipulation.

2.7.2.3 Hyperparameters and Configurations
PageRank (PR) and Personalized PageRank (PPR) We used the default values for
NetworkX’s pagerank_scipy function with 0.85 as a damping factor.

HAR [LNY12]. As in PPR, normalized input scores were used as probabilities for entities;
equal probability was assigned to all relations. We set α = 0.15, β = 0.15, γ = 0. The
maximum number of iterations was set to 30. Note that HAR is designed to compute
two types of importance scores, hub and authority. For MUSIC10K, TMDB5K, and IMDB
KGs, these scores are identical since each edge in these graphs has a matching edge with
an inverse predicate going in the opposite direction. Thus for these KGs, we only report
authority scores. For FB15K, we compute both types of scores, and report authority
scores as hub scores are slightly worse overall.

11https://github.com/PetarV-/GAT
12https://snap.stanford.edu/node2vec/

38

https://github.com/PetarV-/GAT
https://snap.stanford.edu/node2vec/

Linear Regression (LR) and Random Forests (RF). For both methods, we used default
parameter values defined by scikit-learn.

Neural Networks (NN). Let [n1, n2, n3, n4] denote a 3-layer neural network where n1, n2, n3

and n4 are the number of neurons in the input, first hidden, second hidden, and output
layers, respectively. For NN, we used an architecture of [NF , 0.5 × NF , 0.25 × NF , 1]
where NF is the dimension of node features. We applied a rectified linear unit (ReLU)
non-linearity at each layer, and used Adam optimizer with a learning rate α = 0.001,
β1 = 0.9, β2 = 0.999, and a weight decay of 0.0005.

Graph Attention Networks (GAT) [VCC+18]. We used a GAT model with two atten-
tional layers, each of which consists of four attention heads, which is followed by a fully
connected NN (FCNN). Following the settings in [VCC+18], we used a Leaky ReLU
with a negative slope of 0.2 for attention coefficient computation, and applied an expo-
nential linear unit (ELU) non-linearity to the output of each attention head. The output
dimension of an attention head in all layers except the last was set to max(0.25×NF , 20).
For FCNN after the attentional layers, we used an architecture of [0.75 × NF , 1] with
ReLU as non-linearity. Adam optimizer was applied with a learning rate α = 0.005,
β1 = 0.9, β2 = 0.999, and a weight decay of 0.0005.

GENI. We used an architecture where each score aggregation (SA) layer contains four
SA heads. For FB15K, we used a model with three SA layers, and for other KGs, we
used a model with one SA layer. For SCORINGNETWORK, a two-layer FCNN with an
architecture of [NF , 0.75 × NF , 1] was used. GENI was trained with Adam optimizer
using a learning rate α = 0.005, β1 = 0.9, β2 = 0.999, and a weight decay of 0.0005. The
dimension of predicate embedding was set to 10 for all KGs. We used a Leaky ReLU with
a negative slope of 0.2 for attention coefficient computation (σa), and a RELU for the final
score estimation (σs). We defined N (i) as outgoing neighbors of node i. Similar results
were observed when we defined N (i) to include both outgoing and incoming neighbors
of node i. Since the initial values for γ and β (parameters for centrality adjustment) affect
model performance, we determined these initial values for each dataset based on the
validation performance.

node2vec [GL16]. We set the number of output dimensions to 64 for FB15K, MUSIC10K,
and TMDB5K, and 128 for IMDB. Other parameters were left to their default values. Note
that node2vec was used in our experiments to generate node features for supervised
methods.

2.7.3 Additional Evaluation

2.7.3.1 Case Study
We take a look at the predictions made by GENI, HAR, and GAT on TMDB5K. Given
popularity scores for some movies, methods estimate the importance score of all other
entities in TMDB5K. Among them, Table 2.8 reports the top-10 movies and directors that
are estimated to have the highest importance scores by each method with “ground truth
rank”−“estimated rank” shown for each entity.

39

Table 2.9: RMSE (root-mean-squared error) of in-domain prediction obtained by super-
vised methods. Lower RMSE is better. GENI consistently outperforms all baselines.
Numbers after ± symbol are standard deviation from 5-fold cross validation. Best results
are in bold, and second best results are underlined.

Method FB15K MUSIC10K TMDB5K IMDB

LR 1.3536± 0.017 0.1599± 0.002 0.8431± 0.028 1.7534± 0.005
RF 1.2999± 0.024 0.1494± 0.002 0.9223± 0.015 1.8181± 0.011
NN 1.2463± 0.015 0.1622± 0.009 0.8496± 0.012 2.0279± 0.033
GAT 1.0798± 0.031 0.1635± 0.007 0.8020± 0.010 1.2972± 0.018

GENI 0.9471± 0.017 0.1491± 0.002 0.7150± 0.003 1.2079± 0.011

In-domain estimation is presented in Table 2.8a. A ground truth rank is computed
from the known importance scores of movies reserved for testing. The top-10 movies
predicted by GENI is qualitatively better than the two others. For example, among
the ten predictions of GAT and HAR, the difference between ground truth rank and
predicted rank is greater than 100 for three movies. On the other hand, the rank difference
for GENI is less than 100 for all predictions.

Out-of-domain estimation is presented in Table 2.8b. As importance scores for directors
are unknown, we use the director ranking introduced in Section 2.4.1. A ground truth
rank denotes the rank in the director ranking, and “N/A” indicates that the director is not
included in the director ranking. The quality of the top-10 directors estimated by GENI
and HAR is similar to each other with five directors appearing in both rankings (e.g.,
Steven Spielberg). Although GAT is not considerably worse than GENI for in-domain
estimation, its out-of-domain estimation is significantly worse than others: nine out of
ten predictions are not even included in the list of top-200 highest earning directors. By
respecting node centrality, GENI yields a much better ranking consistent with ground
truth.

2.7.3.2 Regression Performance Evaluation for In-Domain Predictions
In order to see how accurately supervised approaches recover the importance of nodes,
we measure the regression performance of their in-domain predictions. In particular,
we report RMSE (root-mean-squared error) of supervised methods in Table 2.9. Non-
trainable methods are excluded since their output is not in the same scale as the input
scores. GENI performs better than other supervised methods on all four real-world
datasets. Overall, the regression performance of supervised approaches follows a similar
trend to their performance in terms of ranking measures reported in Table 2.4.

40

Chapter 3

Inferring Node Importance in a
Knowledge Graph from Multiple
Input Signals

Chapter based on work published in KDD 2020 [PKD+20].

Given multiple input signals, how can we infer node importance in a knowledge
graph (KG)? Node importance estimation is a crucial and challenging task that can
benefit a lot of applications including recommendation, search, and query disam-
biguation. A key challenge towards this goal is how to effectively use input from
different sources. On the one hand, a KG is a rich source of information, with multiple
types of nodes and edges. On the other hand, there are external input signals, such
as the number of votes or pageviews, which can directly tell us about the importance
of entities in a KG. While several methods have been developed to tackle this prob-
lem, their use of these external signals has been limited as they are not designed to
consider multiple signals simultaneously. In this chapter, we develop an end-to-end
model MULTIIMPORT, which infers latent node importance from multiple, potentially
overlapping, input signals. MULTIIMPORT is a latent variable model that captures
the relation between node importance and input signals, and effectively learns from
multiple signals with potential conflicts. Also, MULTIIMPORT provides an effective
estimator based on attentive graph neural networks. We ran experiments on real-
world KGs to show that MULTIIMPORT handles several challenges involved with
inferring node importance from multiple input signals, and consistently outperforms
existing methods, achieving up to 23.7% higher NDCG@100 than the state-of-the-art
method.

41

3.1 Introduction
Real-world networks consist of several types of entities, interacting with each other via
multiple types of relations. These complex and rich interactions between entities from di-
verse domains are abstracted by a knowledge graph (KG), which is a multi-relational graph
where nodes are real-world entities or concepts, and edges denote the corresponding
relation (also called predicate) between nodes. Given a KG, estimating node importance is
a crucial task that has been studied extensively [PBMW99, Hav02, Kle99, TFP08, LNY12,
JPSK17, PKD+19], as it enables a large number of applications such as recommendation,
search, and ranking, to name a few.

A key challenge to achieve this goal lies in effectively using input from different sources.
On the one hand, KGs represent how entities are related to each other. In particular,
compared to the conventional graphs that make no distinction between edges, KGs
provide abundant information as they comprise heterogeneous entities and predicates.
For instance, consider the cross-domain KG on the movie “Harry Potter and the Sorcerer’s
Stone” and related entities (Figure 3.1a), which consists of entities from various domains
(e.g., “actor”, “composer”, and “movie”) and multiple relations (e.g., “directed” and
“wrote”).

On the other hand, we can often obtain relevant data on the entities in a KG from
external sources such as the World Wide Web. Among them, some are direct indicators
of the importance or popularity of an entity as they capture how much time, money, or
attention people have spent on it. The number of votes and pageviews are examples of
such signals. We call this data that captures node importance input signal. A number of
input signals are usually available for a KG, such as the total gross of movies in a movie
KG, although they are often sparse and some are applicable to only specific types of
entities, as illustrated in Figure 3.1a.

Existing approaches for measuring node importance include random walk-based meth-
ods, such as PageRank (PR) [PBMW99], Personalized PageRank (PPR) [Hav02], and
HAR [LNY12], and more recent supervised techniques, such as GENI [PKD+19], which
learn to estimate node importance. In the context of measuring entity importance in a
multi-relational graph, these methods can be compared in terms of what type of input

Table 3.1: Comparison of MULTIIMPORT and baselines in terms of what type of input
each method considers to measure node importance in a knowledge graph. Only MULTI-
IMPORT can consider multiple input signals.

Input
MULTI

IMPORT

GENI
[PKD+19]

HAR
[LNY12]

PPR
[Hav02]

PR
[PBMW99]

Graph Structure X X X X X
Multiple Predicates X X X
Single Input Signal X X X X

Multiple Input Signals X

42

Daniel
Radcliffe

starred-in

Chris
Columbus

J.K.
Rowling

wrote

John
Williams

Rupert
Grint

starred-in

music-by

kn
ow
n-
fo
r directed

Harry Potter
and the

Sorcerer's Stone
$1B

Total Gross

20M
Upvotes

0.1M
Pageviews

$2B
Total Gross

30K
Pageviews

Director Writer MovieComposer Actor

(a) A movie knowledge graph.

Node Importance 𝒛

N
od

es
 𝑉

Predicates 𝑃

Nodes 𝑉

Total Gross

⋱

⋱

⋱

UpvotesPageviews

MultiImport

“starred-in”
“wrote”
“directed”

A Knowledge
Graph 𝑮

Input Signals

30K

$2B $1B

20M

0.1M

? ? ? ? ? ?

(b) Problem setup.

0.2

0.4

0.6

0.8

1

Artist
Familiarity
MUSIC10K

Artist
Hotttnesss
MUSIC10K

Director
Total Gross

IMDB

N
D
C
G
@
10
0

MultiImport
GENI
HAR
PPR
PR

Be
tte
r 5.6% 11.7%

23.7%

(c) Accuracy of estimated node impor-
tance on two KGs.

0.6
0.65
0.7
0.75
0.8
0.85

Song
Hotttnesss
MUSIC10K

N
D
C
G
@
10
0

Be
tte
r 4.5%

0.85

0.9

0.95

1

Movie
Popularity
TMDB5K

Movie
Vote Count
TMDB5K

MultiImport
GENI

HAR
PPR

PR

Be
tte
r

2.8%

2.0%

(d) Input signal forecasting performance
on two KGs.

Figure 3.1: (a) A knowledge graph (KG) on a movie and related entities. Node color
denotes an entity type and an edge type denotes the type of relation between entities.
Rectangles represent input signals (e.g., total gross). Note that a single entity can have a
variable number of input signals. (b) Given a KG and input signals, MULTIIMPORT infers
the importance of all nodes. (c) MULTIIMPORT infers up to 23.7% more accurate node
importance than the state-of-the-art method (GENI). (d) MULTIIMPORT achieves up to
4.5% higher forecasting results than baselines, with an NDCG@100 of 0.98 on TMDB5K.
See Section 3.5 for details.

they can use, as Table 3.1 summarizes. While PR can consider only the graph structure,
the development of more advanced random walk-based techniques enabled considering
additional input. State-of-the-art results on this task have been achieved by GENI, which
is built upon a supervised framework optimized to use both the KG and an external
input signal.

However, all existing approaches can only consider up to one input signal, even though
several signals are typically available from diverse sources. Also, while it is left to the
users to decide which signal to use, no guideline has been provided. Importantly, by
ignoring all other signals except for one, they lose information that can complement each
other and provide more reliable and accurate evidence for node importance when used
together.

In this chapter, we present MULTIIMPORT, a supervised approach that makes an effective
use of multiple input signals towards learning accurate and trustworthy node importance
in a KG. Note that among different types of input listed in Table 3.1, input signals are
the most direct and strongest indicator of node popularity. However, utilizing multiple
signals raises several challenges that require careful design choices. First, given sparse,
potentially overlapping, multiple input signals, it is not clear how unknown node
importance can be inferred. Also, using all available signals may lead to worse results,

43

when there exist conflicts among signals. Developing an effective graph-based estimator
is another challenge to model the relation between node importance, input signals, and
the KG.

To address these challenges, we model the task using a latent variable model and derive
an effective learning objective. By adopting an iterative clustering-based training scheme,
we handle those signals that may deteriorate the estimation quality. Also, we use
predicate-aware, attentive graph neural networks (GNNs) to model the interactions
among input signals and the KG. Our contributions are summarized as follows:

• Problem Formulation. We formulate the problem of inferring node importance in
a KG from multiple input signals.

• Algorithm. We present MULTIIMPORT, a novel supervised method that effectively
learns from multiple input signals by handling the aforementioned challenges.

• Effectiveness. We show the superiority of MULTIIMPORT using experiments on
real-world KGs . Figures 3.1c and 3.1d show that MULTIIMPORT outperforms
existing methods across multiple signals and KGs, achieving up to 23.7% higher
NDCG@100 than the state of the art.

3.2 Background
Graph Neural Networks (GNNs) [GSR+17, YHC+18, VCC+18] are deep learning archi-
tectures for graph-structured data. GNNs consist of multiple layers, where each one
updates the embeddings of each node by aggregating the embeddings from the neigh-
borhood, and combining it with the current embeddings. How the `-th layer in GNNs
computes the embeddings h`i of node i can be summarized as follows:

h`i ← COMBINE`
(
h`−1
i , AGGREGATE`

({
h`−1
j

∣∣ j ∈ N (i)
}))

where N (i) denotes the neighbors of node i, AGGREGATE` is an operator that aggregates
(e.g., averaging) the embeddings of neighbors, potentially after applying some form
of transformation to them, and COMBINE` is an operator that merges the aggregated
embeddings with the embeddings h`−1

i of node i. Different GNNs may use different
definitions of N (i), AGGREGATE`(·), and COMBINE`(·).

3.3 Task Description
In this section, we present key concepts and the task description.

Knowledge Graph. A knowledge graph (KG) is a heterogeneous network with multiple
types of entities and relations. As shown in Figure 3.1b, a KG can be represented by
a third-order tensor G ∈ R|V |×|P |×|V |, in which a non-zero at (s, ρ, o) indicates that a
subject s ∈ V is related to an object o ∈ V via a predicate ρ ∈ P where V and P are
the sets of indices for entities and predicates, respectively. Real-world KGs, such as
Freebase [BEP+08] and DBpedia [LIJ+15], usually contain a large number of predicates.
Also, two entities can be related via multiple predicates as in Figure 3.1a.

44

Node Feature. Node-specific information is often available, and can be encoded in a vec-
tor of fixed length F . Examples include document embedding for the entity description,
and more domain-specific features like motif gene sets from the Molecular Signatures
Database [STM+05]. We useX ∈ R|V |×F to denote all node features.

Node Importance. A node importance z ∈ R≥0 is a non-negative real number that repre-
sents the importance of an entity in a KG, with a higher value denoting a higher node
importance. Node importance is a latent quantity, and thus not directly observable.

Input Signal. An input signal S : V ′ → R≥0 (V ′ ⊆ V) is a partial map between a node and
a non-negative real number that represents the significance or popularity of the node. For
entities in a KG, there are often several external data that could serve as an input signal.
Examples of those signals include the number of copies sold (e.g., of books), the total
gross of movies and directors, and the number of votes, reviews, and pageviews given
for products. Note that they may highlight node popularity from different perspectives:
e.g., number of clicks in the last one month (higher for trending movies) vs. total number
of clicks so far (higher for classic movies). Also, some signals may be available only for
some type of nodes (e.g., the number of tickets sold for movies).

In this work, we consider a set of M input signals {Si : V ′i → R≥0 | V ′i ⊆ V, i = 1, . . . ,M}
where the signal domain V ′i might or might not overlap with each other. We note the
following facts.

• Input signals can be in different scales. For example, while signal A ranges from 1 to 5,
signal B could range from 0 to 100.

• Input signals often have high correlation as important nodes tend to have high values
across different signals. However, signals may have a varying degree of correlation
when signals capture different aspects of node importance or some involve more noise.

Task Description. Based on these concepts, our task of estimating node importance in a
KG is summarized as follows (Figure 3.1b presents a pictorial overview):

Definition 3. Node Importance Estimation: Given a KGG ∈ R|V |×|P |×|V |, node features
X ∈ R|V |×F , and a set of M input signals {Si : V ′i → R≥0 | V ′i ⊆ V, i = 1, . . . ,M}, where
V and P denote the sets of indices of entities and predicates inG, respectively, estimate
the latent importance z ∈ R≥0 of every node in V .

3.4 Methods
Inferring node importance in a KG from multiple input signals requires addressing three
major challenges.

1. Formulating learning objective. Given a KG and potentially overlapping signals,
how can we infer latent node importance?

2. Handling rebel input signals. Given input signals that may possess different
characteristics or involve more noise, how can we deal with potential conflicts and
infer the node importance?

45

Input
Signal 1
(𝐬 $)

Input
Signal 𝑀
(𝐬 ')

⋮

Proxy for

Represents

Represents Unknown

Node
Importance

Learned
Node

Importance
(𝒛)

Estimates

Generates

Generates

Proxy for

Figure 3.2: MULTIIMPORT estimates the latent node importance by learning to represent
input signals, which are proxies for the unknown node importance.

3. Effective graph-based estimation. How can we effectively model the relations
between node importance, input signals, and the KG?

In this section, we present MULTIIMPORT that addresses the above challenges with the
following ideas.

1. Modeling the task using a latent variable model enables capturing relations be-
tween node importance and input signals, and provides an optimization framework
(Section 3.4.1).

2. Iterative clustering-based training handles rebel input signals, effectively infer-
ring the node importance (Section 3.4.2).

3. Predicate-aware, attentive GNNs provide a powerful node importance estimator
to infer graph-regularized node importance (Section 3.4.3).

The definition of symbols used in this chapter is provided in Table 3.2.

3.4.1 Learning Objective
Given our task to infer node importance, one may consider using input signals directly
as node features in supervised methods, as they provide useful cues on the significance
of a node. However, since signals are partially observed, we will first need to fill in the
missing values to use them as a node feature. Further, even if input signals are available
for all nodes, with all signals treated as node features, it is not obvious how to infer node
importance from them, as node importance is a latent value.

Given that node importance is unknown and cannot be directly observed, we assume
that there is an underlying variable governing node importance, and observed input
signals are generated by this variable with noise and possibly via non-linear transfor-
mations. Accordingly, we consider an input signal to be a partial indicator of latent
node importance, and at the same time, to be a reasonably good proxy for the unknown
node importance. Based on these assumptions, we approach our goal of estimating
unknown node importance by learning to represent input signals. Figure 3.2 illustrates
our assumptions on the relationship among the learned node importance, input signals,
and node importance.

Notations. To formally define the learning objective, we introduce a few symbols. Let G

46

collectively denote the third-order tensorG representing the KG and the node features
X . We denote the number of dimensions of vector v by dim(v). Given M observed input
signals, let s(i) denote a vector corresponding to the i-th signal, and S denote a set of M
signal vectors, i.e., S = {s(1), s(2), . . . , s(M)}. Let z ∈ R|V | denote a vector of estimated
importance for all nodes. We use z(i) to refer to the vector of estimated importance
of those nodes for which signal i is available. Thus, dim(z(i)) equals dim(s(i)). Since
signals are partially observable, we have that dim(s(i)) = dim(z(i)) ≤ |V | = dim(z). To
denote the j-th value of a signal or estimated importance, we use a subscript, e.g., s(i)

j

and z
(i)
j .

Maximum a Posteriori Learning. Our goal can be summarized as learning an estimator
f(·) that produces estimated importance z for all nodes in the KG. Specifically, as we
consider a graph-based estimator with learnable parameters, the estimation by f(·) is
determined by the given KG G and its learnable parameters θ. In other words, we
have:

z = f(G,θ). (3.1)

In order to optimize f(·), we aim to maximize the posterior probability of model parame-
ters θ given that we have observed the KG G and input signals S:

max p(θ|G,S). (3.2)

By the Bayes’ theorem, this is equivalent to maximizing:

p(θ|G,S) =
p(G,S|θ) p(θ)

p(G,S)
∝ p(θ) p(G|θ) p(S|G,θ). (3.3)

The first term p(θ) in Equation (3.3) represents the prior probability of the model param-
eters θ, which we assume to be a Gaussian distribution with zero mean and an isotropic
covariance:

p(θ) = N (θ|0, λ−1I). (3.4)

The second term p(G|θ) in Equation (3.3) is the likelihood of the observed KG G given
θ. As we later discuss in Section 3.4.3, given features xi of node i, MULTIIMPORT
embeds node i in an intermediate low-dimensional space by projecting xi using a learn-
able function g(·). Let (s, ρ, o) denote a subject-predicate-object triple in the KG. Using
factorization-based KG embeddings [WMWG17], we model the observed triple (s, ρ, o) as
a diagonal bilinear interaction between node embeddings g(xs), g(xo) and the learnable
predicate embedding wρ with normally distributed errors. Specifically,

p(G|θ) =
∏

(s,ρ,o)∈G

p((s, ρ, o)|θ) (3.5)

=
∏

(s,ρ,o)∈G

N
(
g(xs)

ᵀ diag(wρ) g(xo)
∣∣∣1, ν−1

)
(3.6)

47

Table 3.2: Table of symbols.

Symbol Definition

G knowledge graph with node features
V, P set of indices of nodes and predicates in a KG
xi,X feature vector of node i, and a matrix of all node features
θ learnable parameters of the node importance estimator f(·)
M number of input signals
s(i) a vector of i-th observed input signal
S a set of M input signals, i.e., S = {s(1), s(2), . . . , s(M)}
z a vector of estimated importance of all nodes
z(i) a vector of estimated importance of those nodes with signal i

dim(z) number of dimensions of vector z
diag(w) a diagonal matrix whose diagonal entries are given by vector w
N (i) neighboring edges of node i
h`i importance of node i estimated by the `-th layer in the GNN
h∗i final estimated importance of node i by the GNN (i.e., zi = h∗i)
ω`ij node i’s attention on the m-th edge from node j in layer `

π(ρmij) learnable predicate embedding of m-th edge between nodes i and j

where diag(wρ) denotes a diagonal matrix where the diagonal entries are given by wρ.
This term can also be seen as an assumption on the homophily between neighboring
nodes in the space represented by node embedding g(·) and predicate ρ.

The third term p(S|G,θ) of Equation (3.3) is the likelihood of observed input signals S
given the KG G and model parameters θ. Given M signals, we assume that they are
conditionally independent. Accordingly, we have that:

p(S|G,θ) = p(s(1)|G,θ) · . . . · p(s(M)|G,θ). (3.7)

Recall that z is a function of G and θ, or in other words, G and θ fully determine
z, and input signals can be partially observed (i.e., dim(s(i)) may not equal dim(z)).
Equation (3.7) can be expressed in terms of input signals and the corresponding estimated
importance:

p(S|G,θ) ∝ p(s(1)|z(1)) · . . . · p(s(M)|z(M)) (3.8)

in which the log-likelihood log p(s(i)|z(i)) of observing signal s(i) given z(i) is proportional
to:

log p(s(i)|z(i)) ∝ log

dim(s(i))∏
j=1

p(z
(i)
j)

p(s
(i)
j)

=

dim(s(i))∑
j=1

p(s
(i)
j) log p(z

(i)
j). (3.9)

Note that taking a negative of Equation (3.9) leads to the cross entropy.

48

With respect to the probability p(s(i)) of observing signal s(i), we consider two things.
First, input signals can be in different scales. Since signals are obtained from diverse
sources, their values could be in different scales and units, and thus may not be directly
comparable (e.g., # clicks vs. dwell time vs. the total revenue in dollars). Second, for
most downstream applications of node importance, the rank of each entity’s importance
matters much more than the raw value itself. In light of these observations, we consider
the probability of observing a signal vector in terms of ranking.

To do so, once we obtain a list of entity rankings from the signal vector, we need a
probability model that measures the likelihood of the ranked list. Permutation probabil-
ity [CQL+07] is one such model, in which the likelihood of a ranked list is defined with
respect to a given permutation of the list, such that the permutation which corresponds
to sorting entities according to their ranking is most likely to be observed. In our setting,
however, this model is not feasible since there are O(|V |!) permutations to be considered.
Instead, we use a tractable approximation of it called top one probability. Given signal
s(i), the top one probability p(s(i)

j) of j-th entity in s(i) represents the probability of that
entity to be ranked at the top of the list given the signal values of other entities, and is
defined as:

p(s
(i)
j) =

φ(s
(i)
j)∑dim(s(i))

k=1 φ(s
(i)
k)

=
exp(s

(i)
j)∑dim(s(i))

k=1 exp(s
(i)
k)

. (3.10)

Here, φ(·) is a strictly increasing positive function, which we define to be an exponential
function. Similarly, given model estimation z(i), the top one probability p(z(i)

j) of j-th
entity in z(i) is computed as:

p(z
(i)
j) =

exp(z
(i)
j)∑dim(z(i))

k=1 exp(z
(i)
k)

. (3.11)

Taking a negative logarithm of our posterior in Equation (3.3) and plugging in Equa-
tions (3.4), (3.6), (3.8) and (3.9), we get the following loss:

L =− log (p(θ) p(G|θ) p(S|G,θ))

=

− M∑
i=1

dim(s(i))∑
j=1

p(s
(i)
j) log p(z

(i)
j)


+
ν

2

 ∑
(s,ρ,o)∈G

(g(xs)
ᵀ diag(wρ) g(xo)− 1)2

+
λ

2
‖θ‖2

2

(3.12)

where p(s(i)
j) and p(z

(i)
j) are given by Equations (3.10) and (3.11).

3.4.2 Handling Rebel Input Signals
In Section 3.4.1, MULTIIMPORT infers node importance from all M input signals. This
is based on the assumption that the given signals have been generated by a common
hidden variable as depicted in Figure 3.2, that is, input signals are homogeneous and a

49

high correlation exists among them. However, some signals (which we call rebel signals)
may exhibit a low correlation with the others when they possess different characteristics
from others, or involve more noise. As a result, when given multiple signals where some
are weakly correlated with others, learning from all of them leads to a worse estimator
due to the violation of our modeling assumption.

To effectively infer node importance from multiple signals while handling rebel signals,
we adopt an iterative clustering-based training, where closely related input signals are
put into the same cluster and our estimator is trained using not all the given signals, but
only those in the same cluster. To do so, we need to be able to measure the relatedness
of input signals. Again, considering that signals can be in different scales and ranks are
important for downstream applications, we compare a pair of signals in terms of the
Spearman correlation coefficient, a well-known rank correlation measure.

However, comparing input signals is not always possible, since they can be disjoint as
signals are partially observable. To handle this, MULTIIMPORT (a) initially assigns M
signals to their own cluster, (b) separately infers node importance from each one, (c) do
a pairwise comparison between observed and inferred values, and (d) merges clusters
by applying existing clustering algorithms, such as DBSCAN [EKSX96], on the pairwise
signal similarity. With the resulting clusters, we repeat the same process again until there
is no change in the clustering. This is because learning from an enlarged cluster can lead
to a higher modeling accuracy, as we show in Section 3.5.4. If there is enough overlap
between signals’ observed values, we may omit step (b), and compute their similarity
directly from observed values in step (c). These steps are illustrated in Figure 3.3, and
Algorithm 3.1 gives our learning algorithm.

Given multiple signals, our focus is to infer a single number for each node, which
represents the major aspect of node importance, as supported by the signals and relevant
to downstream applications. This requires sorting the final clusters based on their priority.
Examples of such priority policy π include: (1) cluster size (prefer a cluster with a larger
number of signals); (2) cluster quality (prefer a cluster with a higher reconstruction
accuracy); (3) signal preference (prefer a cluster with signals that are important for the
given application). In experiments, we use cluster size as our priority.

Incremental Learning. Our approach naturally lends itself to incremental learning
settings where new signals are added after the model training. As in the initial training
phase, new signals are first put into their own cluster, and MULTIIMPORT merges them
with existing clusters based on the similarity of inferred importance.

3.4.3 Graph Neural Networks for Node Importance Estimation
Given this optimization framework, we now present a supervised estimator f(·) that
can model complex relations among input signals and the information of the KG. In
MULTIIMPORT, we utilize GNNs, which have been shown to be a powerful model for
learning on a graph. We adopt and improve upon the recent development of GNNs,
such as the dynamic neighborhood aggregation via an attention mechanism, by making

50

Signal 2Signal 1

Signal 3 Signal 4

Signal 1

Signal 3

Signal 2

Signal 4

Signal 3

Signal 2
Signal 1

Signal 4

Signal 2 Signal 3

Signal 1

Signal 4

(a) (b) (c) (d)

Figure 3.3: MULTIIMPORT identifies similar signals (those in the green cluster), and infers
node importance from them. See text for details of steps (a) to (d).

Algorithm 3.1: Learning algorithm
Input: knowledge graph G, input signals S, merge threshold t, priority policy π.
Output: estimated node importance.

1 repeat
2 Assign input signals without cluster membership (e.g., newly added signals) to their

own cluster, if any
3 foreach cluster c do
4 Infer node importance by training an estimator fc(·) with the loss function in

Equation (3.12)

5 Merge those clusters whose similarity is greater than threshold t
6 until there is no change in the clustering;
7 return node importance inferred from the cluster that has the highest priority according

to the policy π

extensions and simplifications.

MULTIIMPORT first projects features xi of node i to a low-dimensional space using a
learnable function g(·). Let x′i = g(xi). As discussed in Section 3.4.1, MULTIIMPORT
allows assuming homophily among neighboring nodes in this embedding space. Given
these intermediate node embeddings, our estimator further transforms them into one
dimensional embedding to directly represent nodes by their importance. To do so,
MULTIIMPORT uses another learnable function g′(·). In other words, MULTIIMPORT
represents node i as h0

i ∈ R in the space of node importance such that h0
i = g′(x′i). Note

that both g(·) and g′(·) are learnable functions, and can be a simple linear transformation
or multi-layer neural networks.

Then, given h0
i for all i, we apply attentive GNNs to it on the given KG to obtain graph-

regularized node importance such that the estimated importance smoothly changes with
respect to the KG in a predicate-aware manner. MULTIIMPORT is a multi-layer GNN
with L layers. The `-th layer performs a weighted aggregation of the node importance
estimated by the (`−1)-th layer from the neighborhoodN (i) to produce a new estimation
h`i for node i:

h`i =
∑

(j,m)∈N (i)

ω`(i,j,m) h
`−1
j (3.13)

51

Although attentive GNNs usually compute the attention weight for neighboring nodes
assuming simple graphs, KGs are directed graphs with parallel edges. Therefore, instead
of node-level attention, we compute edge-level attention weights, which enables making
a distinction among edges between two nodes. We define N (i) to be a set of neighboring
edges of node i such that (j,m) ∈ N (i) if there exists an m-th edge between nodes i
and j (under some edge ordering). The weight ω`(i,j,m) of the edge (j,m) ∈ N (i) is then
computed using a predicate-aware attention parameterized by a weight vector a`:

ω`(i,j,m) =
exp

(
LeakyReLU

(
aᵀ`
[
h`−1
i

∣∣∣∣π(ρmij)
∣∣∣∣h`−1

j

]))∑
(k,n)∈N (i) exp

(
LeakyReLU

(
aᵀ`
[
h`−1
i

∣∣∣∣π(ρnik)
∣∣∣∣h`−1

k

])) (3.14)

where ρmij denotes the predicate type of m-th edge between nodes i and j, π(·) is a learn-
able function that maps a predicate type to its embedding (i.e., π(ρmij) is the embedding
of the predicate of the m-th edge between nodes i and j), and || is a concatenation op-
erator. Motivated by GENI, we generate the final estimation h∗i for node i by making
a centrality-based adjustment to the estimation hLi made by the final layer L, where
in-degree di of node i is used to define its centrality ci:

ci = α · log(di + ε) + β

h∗i = ReLU
(
ci · hLi

) (3.15)

where α and β are learnable parameters and ε is a small positive value. In summary, the
final estimated node importance z is produced as follows:

z = f(G,θ) = [h∗1, . . . , h
∗
|V |]
ᵀ. (3.16)

3.5 Experiments
In this section, we address the following questions.

Q1. Accuracy. How consistent is estimated node importance with input signals? In
particular, how does the estimation performance change when multiple input signals
are considered?

Q2. Use in downstream tasks. How useful is the estimated importance for downstream
tasks?

Q3. Handling rebel signals. How does a rebel signal affect the performance, and how
well does our method handle it?

After describing datasets, evaluation plans, and baselines in Sections 3.5.1 to 3.5.3, we
address the above questions in Sections 3.5.4 to 3.5.6. Experimental settings are presented
in Section 3.8.

3.5.1 Dataset Description
We used four publicly available real-world KGs that have different characteristics, and
were used in a previous study on node importance estimation [PKD+19]. We constructed

52

Table 3.3: Real-world KGs used in our evaluation. These KGs vary in different aspects,
such as the size and number of predicates. SCC: Strongly connected component.

Name # Nodes # Edges # Predicates # SCCs

FB15K 14,951 592,213 1,345 9
MUSIC10K 24,830 71,846 10 130

TMDB5K 123,906 532,058 22 15
IMDB 1,567,045 14,067,776 28 1

these datasets following the description in [PKD+19]. Below we give a brief description
of these KGs. Statistics of these data are given in Table 3.3, and the list of available input
signals in each KG is provided in Table 3.4.

FB15K [BUG+13] is a KG sampled from the Freebase knowledge base [BEP+08], which
consists of general knowledge harvested from many sources, and compiled by collabora-
tive efforts. FB15K is much denser and contains a much larger number of predicates than
other KGs.

MUSIC10K is a music KG representing the relation between songs, artists, and albums.
MUSIC10K is constructed from a subset of the Million Song Dataset1, and it provides three
input signals called “song hotttnesss”, “artist hotttnesss”, and “artist familiarity”, which
are popularity scores computed by considering several relevant data such as playback
count.

TMDB5K is a movie KG representing relations among movie-related entities such as
movies, actors, directors, crews, casts, and companies. TMDB5K is constructed from
the TMDb 5000 datasets2, and contains several signals including the “popularity” score
computed by considering relevant statistics like the number of votes3.

IMDB is a movie KG constructed from the daily snapshot of the IMDb dataset4 on movies
and related entities, e.g., genres, directors, casts, and crews. IMDB is the largest KG
among the four KGs. As IMDb dataset provides only one input signal (# votes), we
collected popularity signal from TMDb for 5% of the movies in IMDB.

3.5.2 Performance Evaluation
For evaluation, we use normalized discounted cumulative gain (NDCG), which is a
widely used metric for relevance ranking problems. Given a list of nodes for which
we have the estimated importance and the ground truth scores, we sort the list by the
estimated importance, and consider the ground truth signal value at position i (denoted

1http://millionsongdataset.com/
2https://www.kaggle.com/tmdb/tmdb-movie-metadata
3https://developers.themoviedb.org/3/getting-started/popularity
4https://www.imdb.com/interfaces/

53

Table 3.4: Input signals in real-world KGs. The percentage of nodes covered by each
signal is given in the parentheses.

Name Type Input Signals

FB15K Generic
Pageviews, # total edits, and # page watchers
on Wikipedia (all 94%)

MUSIC10K
Artist Artist hotttnesss (14%) and artist familiarity (16%)
Song Song hotttnesss (17%)

TMDB5K
Movie Popularity, revenue, budget, and vote count (all 4%)

Director Box office grosses for top 200 directors

IMDB
Movie # Votes (14%) and popularity (from TMDb, 5%)

Director Box office grosses for top 200 directors

Table 3.5: MULTIIMPORT estimates node importance more accurately than baselines,
and using additional signals improves the accuracy. MULTIIMPORT-1 is the same as
MULTIIMPORT except that it used only one signal denoted with an asterisk (*). Methods
that can use only one input signal also used the one marked with an asterisk (*). The best
result is in bold and in dark gray. The second best result is underlined and in light gray.
TR: Training. ID: In-Domain. OOD: Out-Of-Domain.

FB15K MUSIC10K

Method
Page Watchers*
(Generic, TR, ID)

Total Edits
(Generic, TR, ID)

Pageviews
(Generic, ID)

Familiarity*
(Artist, TR, ID)

Hotttnesss
(Artist, TR, ID)

Hotttnesss
(Song, OOD)

PR 0.7747 ± 0.02 0.8579 ± 0.00 0.8441 ± 0.00 0.7788 ± 0.01 0.6520 ± 0.00 0.4846 ± 0.00
PPR 0.7810 ± 0.02 0.8604 ± 0.00 0.8450 ± 0.00 0.8090 ± 0.01 0.7823 ± 0.01 0.6422 ± 0.02
HAR 0.7625 ± 0.01 0.9080 ± 0.00 0.8732 ± 0.00 0.7905 ± 0.01 0.7751 ± 0.01 0.6377 ± 0.01
GENI 0.8548 ± 0.02 0.8787 ± 0.04 0.8464 ± 0.03 0.8603 ± 0.01 0.7727 ± 0.02 0.6804 ± 0.01

MULTIIMPORT-1 0.8879 ± 0.02 0.9250 ± 0.03 0.8863 ± 0.03 0.8839 ± 0.01 0.8046 ± 0.02 0.7109 ± 0.02
MULTIIMPORT 0.9150 ± 0.01 0.9498 ± 0.01 0.9066 ± 0.01 0.9083 ± 0.00 0.8633 ± 0.02 0.7173 ± 0.01

TMDB5K IMDB

Method
Popularity*

(Movie, TR, ID)
Vote Count

(Movie, TR, ID)
Revenue

(Movie, ID)
Total Gross

(Director, OOD)
Votes*

(Movie, TR, ID)
Popularity

(Movie, TR, ID)
Total Gross

(Director, OOD)

PR 0.8294 ± 0.02 0.8482 ± 0.00 0.9009 ± 0.00 0.8829 ± 0.00 0.7927 ± 0.02 0.7019 ± 0.00 0.0000 ± 0.00
PPR 0.8585 ± 0.01 0.9133 ± 0.01 0.9535 ± 0.00 0.8691 ± 0.02 0.7927 ± 0.02 0.7169 ± 0.01 0.0000 ± 0.00
HAR 0.8131 ± 0.02 0.9350 ± 0.00 0.9537 ± 0.00 0.9298 ± 0.01 0.7976 ± 0.02 0.7671 ± 0.00 0.2735 ± 0.03
GENI 0.9055 ± 0.02 0.9367 ± 0.00 0.9646 ± 0.00 0.9398 ± 0.00 0.9367 ± 0.00 0.7079 ± 0.01 0.4703 ± 0.02

MULTIIMPORT-1 0.9075 ± 0.02 0.9555 ± 0.00 0.9650 ± 0.00 0.9497 ± 0.00 0.9493 ± 0.00 0.7581 ± 0.01 0.5607 ± 0.01
MULTIIMPORT 0.9302 ± 0.01 0.9536 ± 0.00 0.9716 ± 0.00 0.9558 ± 0.00 0.9542 ± 0.01 0.8444 ± 0.02 0.5819 ± 0.03

by ri) to compute the discounted cumulative gain at position k (DCG@k) as follows:

DCG@k =
k∑
i=1

ri
log2(i+ 1)

.

54

Movies Artists Directors

Input
Signals

Estimated
Node

Importance

ID

In-Domain

Testing Testing

In-Domain Out-Of-Domain

TestingTraining Training

Figure 3.4: In- and out-of-domain evaluation where three input signals are given and
two are used for training.

The gain is accumulated from the top to the bottom of the list, and gets reduced at
lower positions due to the logarithmic reduction factor. An ideal DCG at rank position k
(IDCG@k) can be obtained by sorting nodes by their ground truth values, and computing
DCG@k for this ordered list. Normalized DCG at position k (NDCG@k) ranges from 0
to 1, and is defined as:

NDCG@k =
DCG@k

IDCG@k

with higher values indicating a better ranking quality.

In computing NDCG, we consider all entities if the input signal is generic and applies
to all entity types as in FB15K. Otherwise, we consider only those entities of the type
for which the ground truth signal applies. For instance, to compute NDCG with respect
to movie popularity, we only consider movies. In general, we compute NDCG over
those entities that have ground truth values. An exception is the director signal, which
is limited to the top 200 directors based on their worldwide box office grosses. When
computing NDCG for the director signal, we consider all director entities, and assume
the ground truth of the directors to be 0 if they are outside the top 200 list. In our
experiments, we report NDCG@100; using different values for the threshold k yielded
similar results.

Generalization. In order to evaluate the generalization ability of each method, we
perform 5-fold cross validation where 80% of the input signals are used for training,
while the remaining 20% are used for testing. Similar results were observed with different
number of folds. Also, since input signals often apply to a specific type of nodes (e.g.,
directors), we also consider how well a method generalizes to the nodes of unseen types.
Consider Figure 3.4 for an example. Given input signals on movies, artists, and directors,
movie and artist signals are used for both training and testing, while the director signal
is used for testing alone. Here we call an evaluation on movies and artists in-domain as
training involved input signals on these types of nodes, and an evaluation on directors
out-of-domain since training used no input signal on this type. It is desirable to achieve a
higher accuracy in both criteria.

55

3.5.3 Baselines
We use the following baselines: PageRank (PR) [PBMW99], Personalized PageRank
(PPR) [Hav02], HAR [LNY12], and GENI [PKD+19]. PR, PPR, and HAR are repre-
sentative random walk-based algorithms for measuring node importance. GENI is a
supervised method that achieved the state-of-the-art result. We omitted results from
other supervised algorithms, including linear regression, random forests, dense neural
networks, and other GNNs, such as GAT [VCC+18] and GCN [KW17], as GENI has
been shown to outperform them in our experiments.

3.5.4 Q1. Accuracy
The quality of estimated node importance can be measured by how well it correlates with
the observed signals. That is, accurately estimated node importance z should strongly
correlate with input signals. We measure the degree of correlation between the estimation
z and input signals using NDCG. In Table 3.5, we report NDCG@100 of estimated node
importance with respect to each signal in our four KGs.

In the table, only those signals marked with TR were used for training. For baselines that
can accept at most one input signal (PPR, HAR, and GENI), we used the signal marked
with an asterisk (*) as the training signal. MULTIIMPORT-1 is identical to MULTIIMPORT
except that only one signal (marked with *) is used for training.

Overall, MULTIIMPORT consistently outperformed baselines across all signals on four
datasets, in terms of both in-domain (ID) and out-of-domain (OOD) evaluation. Note
that MULTIIMPORT inferred node importance by learning from the given multiple sig-
nals. A comparison between MULTIIMPORT and MULTIIMPORT-1 shows that learning
from multiple input signals led to a performance improvement of up to 11%. Even if
the training signals were given for the same type of entities (e.g., artists or movies),
considering multiple signals also improved the performance on OOD entities (e.g., songs
or directors). While GENI performed better than random walk-based methods in most
cases, it was outperformed by MULTIIMPORT due to its inability to consider multiple
signals.

3.5.5 Q2. Use in Downstream Tasks
Estimated importance z can be viewed as a summary of KG nodes in terms of input
signals. This summary can be used as a feature in downstream applications. In this
section, we evaluate how useful MULTIIMPORT’s estimation z is in downstream signal
prediction and forecasting tasks, as opposed to the estimation learned by baselines.

Signal Prediction. The signal prediction task is to predict some input signal s(i) us-
ing a machine learning model (M) that uses other input signals s(1), . . . , s(i−1) and the
estimated node importance z as input features. Here z can be generated by different
methods. Each method uses only s(1), . . . , s(i−1), and no other input signals (i.e., s(i) is
not available during generation of z). Once z is obtained, we compare the performance
of M when the input features consist of only s(1), . . . , s(i−1) vs. when they are composed

56

Table 3.6: MULTIIMPORT achieves the best signal prediction results (marked in bold
and in dark gray), where we use input signals and estimated node importance as input
features to predict another input signal. In only one exception, MULTIIMPORT achieves
the second best result (underlined and in light gray). zm denotes node importance
estimated by method m.

(a) Predicting “budget” on TMDB5K by us-
ing popularity (p), vote count (v) and esti-
mated node importance (z) as features.

Input Features NDCG@10 NDCG@100
p,v 0.8296 ± 0.09 0.8176 ± 0.00

p,v, zPR 0.8700 ± 0.06 0.8260 ± 0.00
p,v, zPPR 0.8602 ± 0.07 0.8312 ± 0.01
p,v, zHAR 0.8341 ± 0.08 0.8062 ± 0.02
p,v, zGENI 0.8791 ± 0.06 0.8740 ± 0.01

p,v, zMULTIIMPORT 0.8930 ± 0.07 0.8757 ± 0.00

(b) Predicting “artist hotttnesss” on MU-
SIC10K by using artist familiarity (f) and
estimated node importance (z) as features.
Input Features NDCG@10 NDCG@100

f 0.3727 ± 0.12 0.5751 ± 0.05
f , zPR 0.4092 ± 0.03 0.5839 ± 0.01
f , zPPR 0.3685 ± 0.12 0.5727 ± 0.05
f , zHAR 0.3727 ± 0.12 0.5751 ± 0.05
f , zGENI 0.3484 ± 0.15 0.5650 ± 0.06

f , zMULTIIMPORT 0.4186 ± 0.06 0.5886 ± 0.00

(c) Predicting “# page watchers” on FB15K

by using # num pageviews (p), # num total
edits (e) and estimated node importance (z)
as features.

Input Features NDCG@10 NDCG@100
p, e 0.8681 ± 0.01 0.8859 ± 0.02

p, e, zPR 0.9010 ± 0.01 0.8975 ± 0.02
p, e, zPPR 0.9010 ± 0.01 0.8975 ± 0.02
p, e, zHAR 0.9052 ± 0.00 0.8945 ± 0.02
p, e, zGENI 0.8884 ± 0.00 0.9076 ± 0.02

p, e, zMULTIIMPORT 0.9084 ± 0.00 0.9062 ± 0.02

of both s(1), . . . , s(i−1) and z. Also, we compare the prediction performance of M as
we use z obtained with different methods. The motivation for this signal prediction
test is that estimated importance can be considered as de-noising compression of input
signals. Thus a high-quality estimate of importance should be a useful input feature for
downstream signal prediction model. We used a linear regression model as our M and
optimized it using the loss shown in Equation (3.12) (without the second term), using
input signals from TMDB5K, MUSIC10K, and FB15K as input features. Table 3.6 shows
the performance in terms of NDCG. MULTIIMPORT achieved the best results across all
datasets, except for one case where it achieved the second best result, still obtaining up
to 12% better result compared to when z was not used as input features. This shows that
the estimation obtained by MULTIIMPORT captures useful information contained in the
input signals.

Forecasting. The forecasting task is concerned with predicting scores for newly added

57

Table 3.7: MULTIIMPORT outperforms all baselines in forecasting signals. TR denotes the
signals used for training MULTIIMPORT; baselines were trained with the one marked
with an asterisk (*). The bottom table shows how data was split.

TMDB5K MUSIC10K

Method
Popularity*
(Movie, TR)
NDCG@100

Vote Count
(Movie, TR)
NDCG@100

Budget
(Movie)

NDCG@100

Hotttnesss*
(Song, TR)

NDCG@100
PR 0.8726 0.9215 0.9294 0.6266

PPR 0.9116 0.9492 0.9640 0.7480
HAR 0.8567 0.9090 0.9265 0.6306
GENI 0.9051 0.9472 0.9647 0.7792

MULTIIMPORT 0.9303 0.9660 0.9829 0.8145

Dataset Training (# Entities) Testing (# Entities)
TMDB5K Movies released until 2013 (4243) Movies released from 2014 (559)

MUSIC10K Songs released until 2005 (1961) Songs released from 2006 (751)

KG entities. Consider movie KGs such as TMDB5K or IMDB as an example. Given input
signals for movies released until some time point t, the task is to accurately estimate
the input signals of those movies released after time t. In this setting, high forecasting
accuracy would be an indication of the usefulness of MULTIIMPORT. Table 3.7 shows
the forecasting performance of MULTIIMPORT and baselines on TMDB5K and MUSIC10K,
and how movies and songs were split into training and testing sets. We set the split
point such that it is close to the end of the range of release dates, while the testing set
contains enough number of entities. For this test, we excluded those movies and songs
without the release date. On TMDB5K, baselines were trained using the signal marked
with an asterisk (*), while MULTIIMPORT used both signals denoted with TR. Across all
signals, MULTIIMPORT consistently outperformed baselines, achieving up to 4.5% higher
NDCG@100.

3.5.6 Q3. Handling Rebel Signals

To see the effect of handling rebel signals, we report in Figure 3.5 how the modeling
accuracy changes on MUSIC10K (left) and TMDB5K (right) as rebel signals are handled
or not. For each KG, we trained MULTIIMPORT using the two signals shown on the x-
and y-axis, first time handling rebel signals and second time ignoring to handle rebel
signals, and report the NDCG@100 for both signals. For MUSIC10K, we used PR scores,
which turn out to be a weak estimator of node importance in this KG, and randomly
generated values as rebel signals; for TMDB5K, we included vote average as a rebel signal.
In both KGs, by identifying and dropping rebel signals, MULTIIMPORT can achieve up to
14.7% higher NDCG@100 in modeling the input signals in comparison to when failing
to handling rebel signals.

58

0.75

0.8

0.85

0.8 0.85 0.9

Ar
tis
tH

ot
ttn
es
ss

N
D
C
G
@
10
0

Artist Familiarity NDCG@100

Rebel handled
Rebel not handled

Be
tte
r

Better

0.85

0.9

0.95

0.84 0.88 0.92

Vo
te
C
ou
nt
N
D
C
G
@
10
0

Popularity NDCG@100

Rebel handled
Rebel not handled

Be
tte
r

Better

Figure 3.5: Rebel signals can hurt. MULTIIMPORT effectively handles them, achieving a
higher accuracy.

3.6 Related Work
In this section, we review existing works on node importance estimation (NIE), data
fusion and reconstruction, and graph neural networks (GNNs). Some of the discussion
of NIE and GNNs are repeated from Section 2.5 for the reader’s convenience.

Estimating Node Importance is a major graph mining problem, and importance scores
have been used in many real world applications, including search and recommendation.
PageRank (PR) [PBMW99] is a random walk model that propagates the importance of
each node by either traversing the graph structure or teleporting to a random node with
a fixed probability. PR outputs universal node importance for all nodes but these scores
do not directly capture proximity between nodes. Personalized PageRank (PPR) [Hav02]
and Random Walk with Restart (RWR) [TFP08] were then proposed to address this
limitation by introducing a random jump biased to a particular set of target nodes.
However, all these methods were designed for homogeneous graphs and thus do not
take into account different types of edges in a KG. To leverage edge type information
for node importance estimation, HAR [LNY12] employs a signal propagation schema
that is sensitive to edge types. Earlier in this thesis, we develop GENI (Chapter 2), a
graph neural network-based model for estimating node importance. By using graph
attention mechanism, GENI adaptively fuses information from different edge types, and
achieved the state-of-the-art results for node importance estimation. Despite its success,
GENI can use only one signal, while multiple signals may come from different sources.
In this chapter, we propose a new method MULTIIMPORT that can harmonize signals
from multiple sources.

Data Fusion and Reconstruction are related to estimating node importance from input
signals. Data fusion approaches [YHY08, DBS09, DBHS10] integrate potentially conflict-
ing information about entities from multiple data sources (e.g., websites) by considering
the trustworthiness of data sources and the dependence between them. Among several
values of an object, these methods aim to identify the true value of the object. Our
problem setup is related to, but different from data fusion in that our goal is to learn
latent node importance which is broadly consistent with input signals, while focusing
on a subset of signals which correlate well with each other, instead of identifying which

59

signal value is more accurate than others.

Data reconstruction methods aim to complete missing values in the partially observed
data. Matrix and tensor decomposition [KB09, PJLK16, POK17, POK19, OPJ+19] are
representative approaches to this task, which reconstruct observed data using a relatively
small number of latent factors. While a rank-1 decomposition of input signals is anal-
ogous to our problem, MULTIIMPORT simultaneously considers various data sources,
such as the KG and input signals, while handling rebel signals and employing GNNs for
effective inference over a KG.

Graph Neural Networks apply deep learning ideas to arbitrary graph structured data.
These methods have attracted extensive research interest in recent years [KW17, GSR+17,
YHC+18, XLT+18, VCC+18]. Kipf and Welling [KW17] proposed a spectral approach,
called GCN, which employs a localized first-order approximation of graph convolutions.
More recently, Veličkovič et al. [VCC+18] proposed graph attention networks (GATs) to
aggregate localized neighbor information based on attention mechanism. GAT provides
an efficient framework to integrate deep learning into graph mining, and has been
adopted to recommender systems [WZG+19], knowledge graph reasoning [ZPW+19],
and graph classification [LRK18]. While our work is also based on a graph attention
architecture, we additionally consider predicates in attention computation, and extend
this architecture in a multi-task setting for learning node importance in a KG using
multiple signals.

3.7 Conclusion
Estimating node importance in a KG is a crucial task that has received a lot of interest. A
major challenge in successfully achieving this goal is in utilizing multiple types of input
effectively. In particular, input signals provide strong evidence for the popularity of
entities in a KG. In this chapter, we develop an end-to-end framework MULTIIMPORT that
draws on information from both the KG and external signals, while dealing with chal-
lenges arising from the simultaneous use of multiple input signals, such as inferring node
importance from sparse signals, and potential conflicts among them. We ran experiments
on real-world KGs to show that MULTIIMPORT successfully handles these challenges,
and consistently outperforms existing approaches. For future work, we plan to develop
a method for modeling the temporal evolution of node importance in a KG.

3.8 Appendix
In the appendix, we present experimental settings.

3.8.1 Experimental Settings
PageRank (PR) and Personalized PageRank (PPR). We used NetworkX 2.3’s pager-
ank_scipy function to run PR and PPR. We used the default parameter values set by
NetworkX, including the damping factor of 0.85 for both algorithms.

60

HAR. We implemented HAR in Python 3.7. In experiments, we set α and β to 0.15 and
γ to 0. We ran the algorithm for 30 iterations. Normalized input signal values were used
as the probability of entities (as in PPR). All relations were assigned an equal probability.
Among hub and authority scores HAR computes for each entity, we used the maximum
of the two values as HAR’s estimation, and we observed similar results when reporting
only one type of scores.

node2vec. We used the reference node2vec implementation5 to generate node features.
For MUSIC10K, FB15K, and TMDB5K, we set the number of dimensions to 64, and for
IMDB, we set it to 128. For other parameters, we used the default values used by the
reference implementation.

GENI. We implemented GENI using the Deep Graph Library 0.3.1. We used GENI with
two layers, each consisting of four attention heads. For the scoring network, we used
a two-layer fully-connected neural network, where the number of hidden neurons in
the first hidden layer was 75% of the input feature dimension. We set the dimensions
of predicate embedding to 10. GENI was trained using Adam optimizer with β1 = 0.9,
β2 = 0.999, a learning rate of 0.005, and a weight decay of 0.0005. We applied ReLU to
estimated node importance, ELU to node centrality, and Leaky ReLU to unnormalized
attention coefficients.

MULTIIMPORT. We implemented MULTIIMPORT using the Deep Graph Library 0.3.1.
For a fair comparison with GENI, we used two layers for MULTIIMPORT, and each layer
contained four attention heads. The output from each attention head was averaged,
and fed into the next layer. For g(·), we used a linear transformation with bias, which
projects input features to 75% of the input feature dimension. For g′(·), we used another
linear transformation with bias. We set the dimension of predicate embedding to 10.
For training, we used the Adam optimizer with β1 = 0.9, β2 = 0.999, and a learning
rate of 0.005. We set λ to 0.001. We set ν to 0.0002 on FB15K and IMDB, applying the
corresponding loss term in Equation (3.12) to 20% and 5% of randomly sampled edges,
respectively; ν was set 0.0 on MUSIC10K and TMDB5K. ELU was applied for node
centrality.

Early Stopping. For MULTIIMPORT and GENI, we applied early stopping based on
the performance on the validation data set (15% of training data) with a patience of 30,
and set the maximum number of iterations to 3000. For testing, we used the model that
achieved the best validation performance.

Input Signal Preprocessing. We applied log transformation for all signals as their
distribution is highly skewed, except for those signals available on MUSIC10K as they are
normalized scores.

5https://snap.stanford.edu/node2vec/

61

62

Chapter 4

Principled and Scalable
Recommendation Justification

Chapter based on work published in ICDM 2020 [PKFD20].

Online recommendation is an essential functionality across a variety of services,
including e-commerce and video streaming, where items to buy, watch, or read
are suggested to users. Justifying recommendations, i.e., explaining why a user
might like the recommended item, has been shown to improve user satisfaction
and persuasiveness of the recommendation. In this chapter, we develop a method
for generating post-hoc justifications that can be applied to the output of any rec-
ommendation algorithm. Existing post-hoc methods are often limited in providing
diverse justifications, as they either use only one of many available types of input
data, or rely on the predefined templates. We address these limitations of earlier
approaches by developing J-RECS, a method for producing concise and diverse
justifications. J-RECS is a recommendation model-agnostic method that generates
diverse justifications based on various types of product and user data (e.g., purchase
history and product attributes). The challenge of jointly processing multiple types of
data is addressed by designing a principled graph-based approach for justification
generation. In addition to theoretical analysis, we present an extensive evaluation
on synthetic and real-world data. Our results show that J-RECS satisfies desirable
properties of justifications, and efficiently produces effective justifications, matching
user preferences up to 20% more accurately than baselines.

4.1 Introduction
Recommender systems have a profound and ever increasing impact on how online users
make purchase decisions, consume various types of content, and engage with the service.
While recommender systems have seen significant progress in terms of recommendation
accuracy, algorithms widely used in practice are mostly black boxes. This includes
recommenders based on the latent factor models such as matrix factorization [KBV09,

63

ZWFM06], as well as some deep learning-based recommenders [WWY15, FML+19].
Such systems can be limited in their ability to justify recommendations.

Justification refers to explaining why a user might like the recommended item [BC17]. In
other words, while recommendations suggest users what they might like, justifications
reveal why the recommended item might match their preferences. For instance, a list of
recommended products can be supplemented with a justification that “these items are
similar to what you recently purchased.” Several studies have shown that justifications
can improve user satisfaction [HKR00], increase the persuasiveness and reliability of
recommendations [TM07, TM15], and help users make more accurate and efficient
decisions [BM05].

In this chapter, we focus on post-hoc justification of recommendations. In post-hoc
approaches, recommendations and justifications are decoupled from each other; that
is, justifications are generated after the recommendation has been given. The main
advantage of generating justifications post-hoc is that post-hoc methods can be easily
applied to different types of recommendation algorithms (thus recommendation model-
agnostic), which allows a greater freedom in the design of explanations [VSR09].

Existing post-hoc methods typically select justifications from predefined templates [ZC20],
such as “your neighbors’ rating for this item is ...” [HKR00], or they provide justifications
based on only one type of data, such as keywords [BM05], although many types of
data are often available. While these methods have been shown to produce concise
justifications, they are limited in their ability to provide diverse justifications. Moreover,
some of these methods generate justifications in a non-personalized manner [DHW+17],
while other post-hoc methods require labeled ground truth data to train a justification
model [NLM19], thus posing an additional hurdle.

In summary, major challenges of generating post-hoc justifications are in handling het-
erogeneous data (e.g., user purchase history, product attributes and reviews) to generate
flexible and diversified justifications without the need for manually labeled data, while
enabling that the justification diversity can be increased without changing the underlying
algorithm. We address these challenges by proposing a novel principled graph-based
method called J-RECS. We use the graph to represent heterogeneous data that can be
leveraged for justifications. Moreover, the graph-based representation allows us to gener-
ate justifications personalized with respect to both the user and the recommended item.
Finally, we derive an objective function that agrees with intuition and leads to concise
and diverse justifications. This chapter makes the following contributions.

• Problem Formulation. We present a graph-based formulation of the problem of
generating concise and diverse justifications given various types of user and product
data.

• Principled Approach. We develop J-RECS, a principled post-hoc framework to infer
justifications. J-RECS is guided by a set of principles characterizing desired justifica-
tions, and does not require manually labeled data.

• Effectiveness. We demonstrate that J-RECS satisfies desirable properties of justifi-

64

 0

 0.1

 0.2

 0.3

CITATION-PG

M
e
a
n

 R
e
c
ip
ro
c
a
l
R
a
n
k

B
e
tt
e
r

16.9%

 0

 0.05

 0.1

 0.15

MOVIE-PG

J-Recs
MP-AND

MP-OR
PR

ExpLOD

20.7%

N/A

B
e
tt
e
r

Figure 4.1: J-RECS generates justifications that match user preferences better than existing
methods. Higher values are better. See Section 4.4.3 for details.

cations, and show the effectiveness of J-RECS in experiments on real-world data
(Figure 4.1).

• Scalability. Our proposed J-RECS is scalable, and runs in time linear in the size of
input data (Figure 4.5).

The rest of the chapter is organized as follows. We formulate the problem of graph-based
recommendation justification and present our framework in Section 4.2. Then we provide
evaluation results using axioms and real-world data in Sections 4.3 and 4.4, respectively.
After discussing related work in Section 4.5, we conclude in Section 4.6.

4.2 Justifying Recommendations
In this section, we first provide the problem statement and define the product graph and
justifications. We then describe how J-RECS identifies good justifications efficiently. The
symbols used in this chapter is given in Table 4.1.

4.2.1 Problem Statement
Products can be any item, such as movies, audio tracks, and papers, which can be
suggested by recommender systems. Let P = {p1, p2, . . . , pL} denote the set of all
products. We are given a product ru ∈ P , which is recommended to user u by an external
recommendation algorithm. We also have a setQu ⊆ P of products, to which user u gave
positive feedback. For instance, Qu can be the products user u purchased or rated highly.
Let qui denote the i-th product in Qu. For simplicity, we may omit subscript u, and use
Q, r, and qi. Now consider various types of product information, which we collectively
denote by D. Examples of product data include the followings.

• Product details: e.g., flavor, category, color of a product; actors, directors, and genres
of a movie

• Product keywords: e.g., movie keywords submitted by users
• Product reviews; sentences in the product reviews
• Product co-purchase and co-view records

65

Given these input data, our problem is stated as follows:

Given products P , product data D, recommended product ru ∈ P , and products
Qu ⊆ P that received positive feedback by user u, efficiently infer justifications
relevant to the recommendation ru in a way that best reflects the user’s preference
expressed by Qu.

In the following sections, we further formalize this problem by defining the notion of
justification, justification score, and the optimization objective.

4.2.2 Product Graph and Justifications
A good justification needs to capture the user’s preference, while being relevant to
the recommended item. Product data provide useful information that can help with
identifying good justifications. A major challenge in effectively employing product data
lies in how to jointly take into account various sources of information in the product
data.

To address this challenge, we need to be able to measure the relevance and similarity
between products and product data. We note that each type of product data provides
a signal that lets us identify a set of products that are similar in some specific respect.
For instance, products with the “chocolate flavor” are likely to have a similar taste, and
movies that share several keywords tend to have a lot of similarity. Also, knowledge
of similar products can enable us to see the relatedness of seemingly different product
attributes. To make the most of this mutually influential relationship, we combine
all available information into a graph, which we call a product graph, and find good
justifications in terms of it.

Product Graph. We refer to an instance of specific product data as “attribute entity” (or
“attribute” in short) and use the term “attribute type” to denote a specific type of product
data. For instance, each one of the examples given for the product data (e.g., movie genre,
product color, review) represents one attribute type, and science fiction is an attribute
of the movie genre type. We denote the set of all product attributes by A. Products
P and their attributes A are nodes in a product graph G. A product graph can also
have non-attribute entities as nodes, which are entities not directly connected to products.
Instead, they connect similar product attributes, enabling us to identify similar products
that do not share the same attributes. Examples include facts common to actors, and
common review keywords. Figure 4.2 shows an example product graph.

Justification. We aim to find a set of relevant product attributes, such as “red color”
and “high efficiency”, and produce justifications in a format determined by the type of
selected attributes. More precisely, given a product graph G and the recommended item
ru, justifications for ru are a subset A′ ⊆ A of attributes selected among those that are
connected to ru in G. In Figure 4.2, boxes with a bold red outline denote the attributes
that are chosen to form justifications.

66

Movies Actors Directors⋯

⋮

⋮

Reviews Keywords

Product Entities Attribute Entities Non-Attribute
Entities

𝑎""

𝑎#"

𝑎$"

𝑎"#

𝑟

𝑝#

𝑝$

𝑥"

𝑥#

𝑥$

𝑥%

𝑎"$

𝑎#$

𝑎$$

𝑎%$

𝑎&$

⋯

𝑝"

𝑝'

𝑎##

𝒬(

Figure 4.2: A movie product graph. Qu denotes the set of products that received positive
feedback from user u, and r denotes the recommended product. Boxes with a bold red
outline denote the attribute entities that are selected to form justifications.

(A) Recommendation only

Related to movies
you’ve watched

Intruder of

the Galaxy

(B) Recommendation with justifications

Related to movies
you’ve watched

This movie has the same director
as another movie

that you watched recently

Check out this user review
on the recommended movie:

[(excerpts from) customer review]

……

Intruder of

the Galaxy

Figure 4.3: Product graph-based justifications enrich the recommendation with relevant
and diverse information on why the user might like the recommended item.

A product attribute, appropriately chosen in light of user preferences, naturally lends
itself to an intuitive and concise justification. For instance, when the director James
Cameron is chosen for a movie recommendation, this translates to the justification that

“We recommend this movie directed by James Cameron, who made movies that are similar to other
movies you watched.” When the user watched some of James Cameron’s movies, we can
further enrich this justification with that information. Similarly, when a review gets se-
lected, this translates to the justification like “Check out this user review, which closely reflects
your preference, and explains why you should consider buying this item.” Figure 4.3 illustrates
how such justifications enrich a movie recommendation, making the recommendation
more persuasive. As in these examples, the final justifications can be generated based
on custom rules that consider the attribute type and previous user actions. Note that,
since our justifications are based on the product graph, the diversity of justifications

67

increases as we add more product data to it, without needing to make changes to the
framework.

4.2.3 Quantifying the Quality of Justifications
To select good justifications tailored to the user and the recommendation, we need to
be able to measure the goodness of product attributes. Towards this goal, we design
justification scores, such that higher scores indicate better justifications in consideration
of the product graph G, products Qu, and the recommended item r. We quantify the
justification score by considering two aspects, namely, relevance and diversity.

4.2.3.1 Relevance Score
Intuitively, a good justification should be highly relevant to the recommended product r.
To measure the relevance of a product attribute, we consider how probable attribute a is
given the recommended product r, that is,

Pr(A = a|R = r) (4.1)

where R and A are random variables denoting a recommended product, and an attribute
of the recommended product, respectively. Consider a random variable U , which denotes
the product that matches the preference of user u. Given L products p1, p2, . . . , pL in P ,
applying the sum rule of probability, the likelihood (4.1) can be expressed as:

Pr(A = a|R = r) =
L∑
i=1

Pr(A = a, U = pi|R = r). (4.2)

Among the L terms in (4.2), we know the user’s preferences on the products in Qu, and
have no information for other products. So, we assume that the products to which user
u gave no feedback are equally likely given the recommended item. Specifically, we
assume that P (A= a, U = pi|R= r) = P (A= a, U = pj|R= r) for all pi, pj /∈ Qu and any
attribute a ∈ A. In other words, in measuring the relevance score, our focus is on the
sum of likelihood terms of products in Qu:

|Qu|∑
i=1

Pr(A = a, U = qi|R = r). (4.3)

We observe that, by the product rule of probability, the following holds for each of the
|Qu| terms in (4.3):

Pr(a, qi|r) = Pr(a|qi, r)︸ ︷︷ ︸
Attribute
relevane

·Pr(qi|r)︸ ︷︷ ︸
Feedback
relevance

(4.4)

where we have omitted random variables to simplify notations. In (4.4), the first term
Pr(a|qi, r) denotes the likelihood of attribute a given product qi and recommended

68

Table 4.1: Table of symbols.

Symbol Definition

P Set of L products (P = {p1, p2, . . . , pL})
ru(r) Product recommended to user u
Qu(Q) Set of products to which user u gave positive feedback
qui (qi) i-th product in Qu (i.e., qi ∈ Qu)
a Product attribute entity
A Set of all attribute entities
A(r) Attribute entities of product r
A′ Set of selected attribute entities
ρ Relative weight of ru in comparison to qi

λ1, λ2 Non-negative weights for the justification diversity
B Budget (maximum number of justifications to select)

item r, which closely matches our goal of finding a justification relevant to both the
recommendation and the user’s preference. The second term Pr(qi|r) represents how
probable product qi is, given recommendation r. This term measures the relevance of
feedback qi ∈ Qu with respect to r, which enables considering the fact that some of the
products in Qu may not be relevant to the current recommendation. In other words,
Pr(qi|r) acts as a weight for the attribute relevance term.

Let Rr(a) denote the relevance score of attribute a as a justification of the recommenda-
tion r, which we define to be

Rr(a) =

|Qu|∑
i=1

Pr(a|qi, r) · Pr(qi|r). (4.5)

Modeling Attribute and Feedback Relevance. We model the two relevance terms in
(4.4) in terms of the product graph G, as it provides rich information on how products
and attributes are related to each other. Specifically, we consider a random walk us-
ing personalized PageRank (PPR) [Hav02] over G, and model the attribute relevance,
Pr(a|qi, r), by the proximity of a with respect to qi and r in terms of PPR on G. Intuitively,
given a random walker who travels over G and returns to qi and r with a fixed probability,
an attribute which gets visited more times than others is deemed more likely than other
attributes, in terms of G given qi and r. We use the following notation

PPR(a|qi = 1− ρ, r = ρ) (4.6)

to denote the PPR score of attribute a with respect to qi and r, in which qi and r are given
the probability mass of 1 − ρ and ρ in the personalization vector, respectively, and ρ
controls the relative importance of r in comparison to qi.

Note that PPR scores are computed for all nodes in G, while we are concerned about the
attributes of the recommended item. So we normalize PPR scores such that the scores

69

of recommended item’s attributes sum to one, denoting the normalized score by nPPR.
Then, Pr(a|qi, r) is computed as

Pr(a|qi, r) , nPPR(a|qi = 1− ρ, r = ρ). (4.7)

Similarly, we model the feedback relevance, Pr(qi|r), using PPR with respect to r over G,
this time normalizing PPR scores over products in Q. Thus, Pr(qi|r) is compute as

Pr(qi|r) , nPPR(qi|r = 1). (4.8)

By (4.5), and our choice given by (4.7) and (4.8) to use nPPR on G to model the relevance
terms, we define Rr(a) as follows:

Rr(a),
|Qu|∑
i=1

nPPR(qi|r=1)·nPPR(a|qi=1−ρ, r=ρ). (4.9)

Finally, based on the above definition of attribute relevance (4.9), we define the relevance
score Rr(A′) of a set A′ ⊆ A of attributes with respect to recommended product r to
be:

Rr(A′) ,
∑
a∈A′

Rr(a). (4.10)

We show in Sections 4.3 and 4.4 that our proposed approach yields more accurate
relevance scores, which agree with our intuition, than other choices to model the attribute
relevance.

4.2.3.2 Diversity Score
To provide informative and engaging justifications to the user, we want the justifications
to consist of diverse product attributes. For example, users would find it more interesting
to see a combination of relevant reviews, product features, and purchasing history than
seeing only reviews. Diversity has multiple aspects to it, and some aspects may be
application dependent. Below we introduce two diversity aspects. Note that our method
can easily be extended to incorporate different aspects of justification diversity.

We first consider the diversity in terms of attribute types. Let at denote the type of
attribute a. We capture this diversity using the number of attribute types covered by the
selected attributes A′:

CType(A′) = |{at : a ∈ A′}|. (4.11)

Secondly, for textual product data such as customer reviews, we may consider the
diversity of their topics and sentiments, which can be extracted by existing methods, e.g.,

70

by applying the latent Dirichlet allocation to product reviews with a decision threshold.
Let T denote the set of such topics of the textual data, and T (a) ⊆ T be the set of topics
attribute a represents. We capture this second diversity aspect using the number of topics
attributes A′ represent, defined by:

CTopic(A′) =
∣∣∣⋃

a∈A′
T (a)

∣∣∣ . (4.12)

4.2.3.3 Justification Score
Our goal is multi-objective as we aim to produce justifications with high relevance and
diversity. We cast this into a single-objective optimization problem using a weighted
sum scalarization. Since relevance and diversity terms can have different magnitude, we
adopt the normalization scheme given in [GR06] such that each term is to be bounded
between 0 and 1. For example, we define the first diversity term DType to be:

DType(A′) =
CType(A′)− CMin

Type

CMax
Type − CMin

Type
, (4.13)

where CMax
Type = max

AB
{CType(AB)|AB ⊆A, 0 < |AB| ≤B} and CMin

Type = min
AB
{CType(AB)|AB ⊆

A, 0 < |AB| ≤ B}, with B denoting the maximum number of attributes to be selected.
Note that 0 ≤ DType(A′) ≤ 1. In the event that CMax

Type and CMin
Type are equivalent, we define

DType(A′) = 1.

Applying the same normalization, we define the normalized relevance score and the
topical diversity term as follows:

nRr(A′) =
(
Rr(A′)−RMin

r

)
/
(
RMax
r −RMin

r

)
(4.14)

DTopic(A′) =
(
CTopic(A′)− CMin

Topic

)
/
(
CMax

Topic − CMin
Topic

)
(4.15)

where RMax
r , RMin

r , CMax
Topic, C

Min
Topic are defined in the same way as in the first term, using

Rr(A′) and CTopic(A′) instead of CType(A′). In sum, given a recommended item r, we
define the justification score Jr(A′) of a set A′ ⊆ A of attributes as:

Jr(A′) = nRr(A′) + λ1 ·DType(A′) + λ2 ·DTopic(A′) (4.16)

where λ1 and λ2 are non-negative weights for diversity terms.

4.2.4 Justification Discovery
Based on the above definition of relevance, diversity, and justification scores, we formally
define the justification discovery problem as follows.

71

Problem 4.1. Justification Discovery:
Given a product graph G, a recommended item r ∈ P , products Q ⊆ P that received
positive feedback, and a budget B, find a set A∗ ⊆ A of product attributes that
maximizes the justification score, i.e.,

A∗ = arg max
A′⊆A

Jr(A′) such that |A′| ≤ B. (4.17)

Due to the combinatorial nature of this optimization problem, solving it exactly is
computationally intractable. Instead, we show that the objective (4.17) is submodular,
which allows us to efficiently obtain near-optimal justifications.

Theorem 4.1.:
The justification score Jr(A′) given by (4.16) is a non-negative, monotone, submodular
function.

Proof. (a) Jr(A′) is non-negative since it is a weighted sum of three non-negative scores
with non-negative weights.

(b) A set function f is monotone if for every A1 ⊆ A2, we have that f(A1) ≤ f(A2).
Given that

Rr(A1) =
∑

a∈A1

Rr(a) ≤
∑

a∈A2

Rr(a) = Rr(A2),

CType(A1) =|{at :a ∈ A1}| ≤ |{at :a ∈ A2}| = CType(A2),

CTopic(A1) =
∣∣∣⋃

a∈A1

T (a)
∣∣∣ ≤ ∣∣∣⋃

a∈A2

T (a)
∣∣∣ = CTopic(A2),

Jr(A′) is monotone as it is a non-negative weighted sum of these monotone scores.

(c) Given a set function f of attributesA′, and attribute a, let ∆f(a|A′)=f(A′∪{a})−f(A′)
be the marginal gain of adding a to A′. Then f is submodular if for every A1,A2 ⊆ A
with A1⊆A2 and every a ∈ A\A2, it holds that ∆f(a|A1) ≥ ∆f(a|A2).

As every a∈A \ A2 results in the same marginal gain Rr(a) to both Rr(A1) and Rr(A2),
∆Rr(a|A1) = ∆Rr(a|A2).

Let T (A′) =
⋃
a∈A′ T (a). The topics T (a) covered by a can be classified into three cases.

The first case is the set T1 ⊆ T (a) of topics that belong to T (A1). Since A1 ⊆ A2,
T1 ⊆ T (A2); thus, these topics make no additional contributions to both DTopic(A1)
and DTopic(A2). The second case is the set T2 ⊆ T (a) of topics that do not belong to
T (A1), but belong to T (A2). Since these topics already belong to T (A2), they make
positive contributions to DTopic(A1), while making no contributions to DTopic(A2). The
third case is the set T3 ⊆ T (a) of topics that do not belong to both T (A1) and T (A2). In
this case, the topics in T3 make equal contributions to DTopic(A1) and DTopic(A2). Thus,
in all cases, ∆DTopic(a|A1) ≥ ∆DTopic(a|A2). The same argument applies to show that
∆DType(a|A1) ≥ ∆DType(a|A2).

72

Algorithm 4.1: J-RECS algorithm.
Input: Product graph G, recommended product r, products Qwith positive

feedback, budget B.
Output: Justifications A∗ s.t. |A∗| ≤ B.

1 Compute the relevance score Rr(a) given by (4.9).
2 A∗ ← ∅
3 while |A∗| ≤ B do
4 a∗ ← arg maxa∈A(r)\A∗ (Jr(A∗ ∪ {a})− Jr(A∗))
5 A∗ ← A∗ ∪ {a∗}
6 return A∗

Therefore, since three functions Rr(A′), DType(A′), and DTopic(A′) are all submodular, the
justification score Jr(A′), which is a weighted sum of these submodular functions with
non-negative weights, is also submodular. �

Theorem 4.2.:
Problem 4.1 admits a (1− 1

e
)-approximation.

Proof. Maximizing a non-negative, monotone, submodular function subject to a cardinal-
ity constraint admits a (1− 1

e
) approximation under a greedy approach in which the item

with the largest marginal gain is selected at each step [NW78]. This theorem follows
since our maximization objective Jr(A′) is non-negative, monotone, and submodular by
Theorem 4.1. �

J-RECS algorithm. Theorem 4.2 leads to the J-RECS algorithm in Algorithm 4.1, which
finds a (1− 1

e
)-approximation of the optimal justifications. In Algorithm 4.1, we first

compute the relevance score of all attributes based on (4.9). Then, we repeatedly find the
product attribute from A(r) with the greatest marginal gain, where A(r) is the attributes
of product r, and add it to A∗ until we exhaust the given budget B.

Theorem 4.3.:
Algorithm 4.1 runs in O(|E|) time with O(|Q|) processors, taking O(|E||Q|) steps in total,
assuming that BM < |V |, where M = max(N1, N2) with N1 and N2 denoting the number
of attribute types and topics, respectively.

Proof. Computing the relevance score in (4.9) for all attributes involves computing the
PPR scores with respect to |Q| + 1 personalization vectors. Using a power iteration
with sparse matrix multiplications, PPR can be computed in O(|E|) time. Since PPR
computations are independent of each other, they can be completed in O(|E|) time using
O(|Q|) processors.

Computing CMax
Topic corresponds to the maximum coverage problem. As this is NP-hard,

we use a greedy approximation algorithm [KT06], which takes O(BM) time. Other terms
for score normalization (e.g., CMax

Type) can also be computed in O(BM) time. Then we

73

select up to B justifications: Selecting one justification requires evaluating the marginal
gain Jr(A∗ ∪ {a}) − Jr(A∗) for all a ∈ A(r) \ A∗. As evaluating the marginal gain with
respect to each term in (4.16) takes O(M), greedy selection takes O(BM |A(r)|) steps in
total. Given that |A(r)| < |V | and assuming BM < |V |, which is true in most cases, the
running time for the greedy selection is O(|E|). �

4.3 Evaluation Using Axioms
In this section, we evaluate different approaches to measure attribute relevance, using
what we call axioms, which are a set of product graphs with an intuitive expected outcome.
After describing axioms, we introduce other approaches to compute attribute relevance,
and discuss how well axioms are satisfied by different approaches. Experimental settings
used for this evaluation are given in Section 4.7.1.

𝑟

𝑝

𝑞

𝑎! 𝑎"

𝑎#

𝑟 𝑞

𝑎#

𝑝#

𝑎!

𝑝! 𝑝"

1. Proximity: 𝑎# > 𝑎!, 𝑎"

3. Popularity: 𝑎# > 𝑎!

𝑟 𝑞

𝑎#

𝑎!

4. Edge Weight Awareness: 𝑎# > 𝑎!

𝑟

𝑎#

𝑎!

𝑞#

𝑞!

𝑞"

2. Feedback Relevance: 𝑎# > 𝑎!

𝑟# 𝑞#𝑎#

𝑟! 𝑞!

𝑎!

𝑎"

𝑎$

5. Product Data Scarcity: 𝑎# > 𝑎! = 𝑎" = 𝑎$

𝑟

𝑎#

𝑎"

𝑞#

𝑞!

𝑎! 𝑎$
𝑝#

6. Community Awareness: 𝑎# > 𝑎!

𝑟
𝑎#

𝑎!

𝑎"

𝑎$

𝑞

𝑥#

𝑥"

𝑥!

7. Long Path Connectivity: 𝑎# > 𝑎!

Figure 4.4: Axioms and expected relevance scores (4.9) of product attributes (see Sec-
tion 4.3.1 for details).

4.3.1 Axioms
An axiom is a small product graph with expected relevance scores (4.9) for some product
attributes. We use the axioms shown in Figure 4.4 to evaluate different methods for
measuring attribute relevance. In Figure 4.4, squares denote product attributes, and
circles denote products, where r is the recommended product, q is the product with
positive user feedback, and p is a product the user had no interaction with.

1. Proximity. Attributes that are closer to products r and q should receive a higher
relevance score. Given that a1 is directly connected to r and q (i.e., a1 is a shared attribute
of r and q), while other attributes are three hops away from either r or q, we expect
Rr(a1) > Rr(a2), Rr(a3).

2. Feedback Relevance. Attributes that receive more support from the products in Q
should receive a higher relevance score. While both a1 and a2 are directly connected

74

Table 4.2: Our proposed J-RECS satisfies all axioms in Figure 4.4, while other alternatives
fail at least one of them.

Method
Axioms 1. Proxi-

mity

2. Feed-
back

Relevance
3. Popularity

4. Edge
Weight

Awareness

5. Product
Data

Scarcity

6. Community
Awareness

7. Long
Path

Connectivity

J-RECS X X X X X X X

ExpLOD [MNL+16] X X
MP-AND [TF06] X X X X X X
MP-OR [TF06] X X X X X X

BASink
q→r [TPF+10] X X X X X

BADel
q→r [TPF+10] X X X

BASink
r→q [TPF+10] X X X X X

BADel
r→q [TPF+10] X X X X

MP-AND

w
/

H
A

R
[L

N
Y

12
]

au
th

or
it

y
sc

or
e X X X X X

MP-OR X X X X
BASink

q→r X X X
BADel

q→r X X
BASink

r→q X X X X X
BADel

r→q X X X

to r, a1 is covered by a greater number of products in Q. Thus, we expect Rr(a1) >
Rr(a2).

3. Popularity. More widely used attributes should receive a higher relevance score (e.g.,
consider explaining a movie recommendation with a popular actor vs. an actor who
appeared only in that movie). Thus, we require that Rr(a1) > Rr(a2).

4. Edge Weight Awareness. Attributes that are connected via edges of higher weight
should receive a higher relevance score, as edge weight indicates the importance of each
connection in the product graph. Thus, we expect Rr(a1) > Rr(a2). Note that satisfying
this axiom is important to reflect the relative importance among different attribute types.
For instance, while country attributes would be one of the most popular ones in the
movie product graph, it may not be a very interesting justification to the user. Based on
this prior knowledge, we can downplay the country type if our method satisfies this
axiom.

5. Product Data Scarcity. Attributes of the product that contain scarcer information
should receive a higher relevance score. This axiom consists of two product graphs, in
which each attribute is directly connected to r and q. While each graph contains only one
product in Q, the positive feedback expressed by Q is attributed to multiple attributes
in the larger graph, leading to each one of them being a weaker evidence of user’s
preference than the other product’s unique attribute. Thus, we expect Rr(a1) > Rr(ai)
for i 6= 1.

75

6. Community Awareness. When the recommended item belongs to one community
(e.g., a group of shoes), it is desirable to put more weight on attributes belonging to the
same community than on others (e.g., a group of electronic devices), as similar products
tend to share more attributes (e.g., product details, keywords) with each other than with
different products. In this axiom, there are two small communities of products and
attributes, where r and a2 act as a bridge between communities. Also, each community
has only one product with positive feedback. Therefore, we expect Rr(a1) > Rr(a2).

7. Long Path Connectivity. Even when attributes are not directly connected to r and q,
attributes more strongly connected to r and q should receive a higher relevance score.
Here, a1 is more strongly linked to q via x1 and x3 than a2, which is linked to q only via
x2. Thus, we expect Rr(a1) > Rr(a2).

4.3.2 Baselines
Below we use the same notation as in (4.6) to specify the query nodes. Table 4.1 provides
the definition of symbols.

4.3.2.1 Relevance Models
We consider three approaches that measure the relevance of attribute a, given recommen-
dation r and products q1, . . . , q|Qu|.

ExpLOD [MNL+16] assigns a high score to those attributes that are highly connected to
the products in Qu ∪ {r}, using the following formula:

ExpLOD(a) =

(
α · na,Qu
|Qu|

+ β · na,r
)
· IDFa (4.18)

where na,Qu is the number of edges between product attribute a and the products in Qu,
na,r is the number of edges between a and r, and IDFa is the reciprocal of the number of
products that are described by attribute a.

Meeting Probability (MP) [TF06] assigns a high relevance score to an attribute that is
close to the recommended item r and products |Qu|. MP has been successfully used
in identifying nodes that have strong connections to the query nodes. We consider the
following two MP scores.

MP-AND(a) ,
∏

p∈Qu∪{r}

PPR(a|p=1) (4.19)

MP-OR(a) , 1−
∏

p∈Qu∪{r}

(1− PPR(a|p=1)) (4.20)

BASSET (BA) [TPF+10] aims to identify a small number of good gateway nodes between
a source node s and a target node t in the given graph. Let PPRSink

I (t|s = 1) denote the
PPR score from source s to target t, after setting the nodes denoted by I as sinks (i.e.,
nodes with no outgoing edges). We also consider a related model, PPRDel

I (t|s = 1), in

76

which we delete the nodes denoted by I, instead of making them sinks. Note that, in
out setting, given a recommendation r and a product q, we can consider two directions
of q → r and r → q. For instance, BA score of attribute a between source q and target r
using PPRSink

I is defined as:

BASink
q→r(a) ,

|Qu|∑
i=1

PPR(r|qi=1)− PPRSink
{a} (r|qi=1). (4.21)

Three other options, BADel
q→r(a), BASink

r→q(a), and BADel
r→q(a) are defined analogously.

4.3.2.2 Proximity Measure
A proximity measure provides a way to compute node proximity with respect to a query
node. As we discuss in Sections 2.5 and 3.6, PPR and HAR are two important proximity
measures.

PPR (Personalized PageRank) [Hav02] measures node-to-node proximity by the limiting
probability distribution of a random walker biased towards a set of query nodes.

HAR [LNY12] is a generalization of SALSA [LM01] to handle multi-relational data,
which enables users to specify the relative importance of relations. HAR has been
shown to outperform SALSA [LM01] and HITS [Kle99] in identifying relevant results
to the query input. HAR computes hub score and authority score with respect to a
query entity. While we considered both scores as a proximity measure, due to space
constraints, we report only the result obtained with authority score as hub score was
mostly outperformed by authority score.

Among the relevance models introduced above, MP and BA internally use PPR. We
evaluate variants of these baselines using HAR as their proximity measure (except for
ExpLOD, which is not a random walk-based method).

4.3.3 Results
Table 4.2 summarizes which axioms are satisfied by different approaches to measure
attribute relevance. A checkmark indicates that the expected outcome of the axiom has
been achieved by the corresponding method. J-RECS is the only one that satisfies all
axioms. Other alternatives fail at least one of the axioms; among them, MP is the next
best one, failing only (6) Community Awareness axiom. In Section 4.4, we show that
J-RECS also leads to more accurate justifications than MP in experiments using real-world
product graphs.

ExpLOD does not satisfy most of the axioms, mainly due to the fact that it can only
consider direct edges between products and attributes, failing to propagate information
over the graph.

In general, BASSET (BA) led to worse results than J-RECS and MP, failing (1) Popularity,
(6) Community Awareness, and (7) Long Path Connectivity axioms in many cases,

77

Table 4.3: Statistics of real-world product graphs.

Name Product # Products # Nodes # Edges

MOVIE-PG Movie 4,803 308,304 1,329,428
CITATION-PG Paper 11,941 111,007 724,962

CITATION-100M-PG Paper 2,094,396 7,426,773 100,000,000

indicating that good gateway nodes may not serve well as a justification. Also, while
HAR achieved a reasonably good result (for instance, with MP-AND), relevance models
could satisfy more axioms using PPR as a proximity measure.

4.4 Evaluation Using Real-World Data
In this section, we address the following questions.

Q1. Justification Quality. How well does J-RECS justify recommendations?
Q2. Scalability. How does J-RECS scale up with the increase of the input size?
Q3. Relevance-Diversity Trade-Off. How does increasing the weight for diversity

affect the relevance of justifications?

Experimental settings are given in Section 4.7.1.

4.4.1 Datasets
We construct product graphs from public datasets on movies and publications. Table 4.3
shows the statistics of our datasets.

MOVIE-PG consists of movies and movie-related attributes, such as actors, directors,
crews, casts, and movie keywords, extracted from the TMDb 5000 movie dataset1. We also
added positive reviews to MOVIE-PG, which gave 10/10 rating to the movies. Reviews
were retrieved from the IMDb website2, instead of TMDb, since more reviews were
available on IMDb. We extracted keywords from each review, by filtering out those
words whose tf-idf score is below a threshold, and connected them with the reviews.

CITATION-PG is a product graph of papers and related attributes, such as authors, ci-
tations, publication venues, and fields of study, constructed from the citation network
dataset v12 [TZY+08]3. In CITATION-PG, we included papers published at KDD, SIG-
MOD, and ICML, and their attributes, while excluding papers that were cited less than 5
times. We also created CITATION-100M-PG that contains 108 edges for scalability evalua-
tion, which is also constructed from the same citation network dataset, and includes all
venues and papers.

1https://www.kaggle.com/tmdb/tmdb-movie-metadata
2https://www.imdb.com/
3https://www.aminer.org/citation

78

4.4.2 Baselines
Among the baselines used in Section 4.3, we use MP-AND and MP-OR [TF06], which
satisfied most axioms among baselines, and ExpLOD [MNL+16], which is a represen-
tative non-random walk based method for justifying recommendations. Among them,
we exclude BA and HAR (which was used as a proximity measure) as they were mostly
outperformed by other alternatives. We also include PR [PBMW99], which estimates
attribute relevance by its PageRank score in the product graph.

4.4.3 Q1. Justification Quality
We evaluate the quality of justifications in two ways: automatic evaluation and qualitative
analysis.

4.4.3.1 Automatic Evaluation
For an automatic and objective evaluation, we consider the task of user preference
retrieval.

User Preference Retrieval. Among several attributes of the recommended product r, we
want those that reflect the user’s preference better than others to receive higher relevance
scores and be used as a justification. In our two datasets, the review and the paper
written by a user clearly reflect the user’s preference. Thus, among the reviews and
papers associated with recommended product r, it is desirable for the review and paper
written by the user to get higher scores than others.

For MOVIE-PG, we select a positive review written by the user who wrote at least 10 posi-
tive reviews. Note that the movies for which user u wrote positive reviews correspond to
Qu. Similarly, for CITATION-PG, we select a reference written by the user who published
at least 15 papers. In total, we randomly select 50 reviews and 50 citations.

Performance Evaluation. We evaluate preference retrieval results using the mean recip-
rocal rank (MRR). Let AR denote the chosen attributes of a specific type (e.g., reviews
or cited papers), written by different users. Let pi refer to the product of i-th attribute
in AR (e.g., the product for which the i-th review was written), and ranki be the rank
position of the i-th attribute among the corresponding attributes of product pi, where
ranks are determined by the estimated relevance score computed with respect to r and
the products Qu that received positive feedback by user u who created the i-th attribute
(e.g., movies that received positive reviews by user u). MRR is defined by

MRR =
1

|AR|

|AR|∑
i=1

1

ranki
, (4.22)

and higher values are better.

Results. Figure 4.1 shows the MMR on two datasets. J-RECS achieved the best MMR,
which is up to 20.7% higher than the second best result achieved by MP-AND. While
MP-OR outperformed MP-AND on CITATION-PG by a small margin, results show that

79

MP-OR’s performance is more sensitive to the dataset than MP-AND. PR’s performance
is worse than J-RECS as it does not consider Qu and r in measuring attribute relevance.
Since each review applies to only one product, ExpLOD ends up assigning identical
scores to all reviews, making it inapplicable to be used to retrieve user preferences on
MOVIE-PG. On CITATION-PG, ExpLOD obtains even lower MMR than PR, which is due
to the fact that ExpLOD computes relevance score based only on the direct connection
between products and attributes, failing to propagate user preference over a graph.

Note that since we ignore the relevance of other reviews and citations, which is unknown
to us, these results are a lower bound of the true MMR. As MMR considers the rank of
the first relevant entity, the true MMR would be higher than the current result if there is
another relevant attribute, ranked higher than the user’s review and paper.

4.4.3.2 Qualitative Analysis
We present two case studies where we compare the results obtained with J-RECS and
MP-AND on CITATION-PG. To see how the parameter ρ in (4.9) affects J-RECS, we report
two results for J-RECS using ρ = 0.5 and ρ = 0.9.

Case 1. J-RECS and MP-AND are given the paper entitled “Rubik: Knowledge Guided
Tensor Factorization and Completion for Health Data Analytics” [WCG+15] as a rec-
ommended item r, and the set Qu with ten papers on matrix and tensor factorizations.
Table 4.4 shows top-15 papers cited by the recommended paper, ordered by the relevance
computed with J-RECS (4.9) and MP-AND (4.19). The papers in blue font deal with
electronic health record (EHR) analysis, and those highlighted in cyan background color
are two highly relevant papers that employ tensor factorization for EHR analysis. Among
the citations, these highlighted papers are particularly relevant justifications, since they
cut across two topics central to the recommended paper and the papers in Qu, namely,
EHR analysis and tensor factorization. In Table 4.4, these two highly relevant papers
belong to the top-5 citations in both results of J-RECS, while they are ranked at 6th and
11th places in the result of MP-AND. Further, since EHR analysis is a major topic of the
recommended paper, with ρ = 0.9, J-RECS gives more weight to EHR analysis than with
ρ = 0.5, which boosts the ranking of the papers on EHR analysis.

Case 2. J-RECS and MP-AND are given the paper entitled “Towards Parameter-Free Data
Mining” [KLR04] as a recommended item r, and the set Qu with ten papers on time
series analysis. Table 4.5 shows top-15 papers cited by the recommended paper, ordered
by the relevance computed with J-RECS (4.9) and MP-AND (4.19). The citations in blue
font are the papers relevant to the MDL principle. Among the cited publications, those
on MDL are highly relevant justifications as MDL principle is central to the main idea
of the recommended paper. At the same time, since Qu contains papers on time series
analysis, references on time series are relevant. In Table 4.5, J-RECS retrieves four papers
on MDL (ranked at 2nd, 7th, 11th, and 13th places with ρ = 0.9), and eleven papers on
time series. On the other hand, MP-AND retrieves only two papers on MDL (ranked at
7th and 14th places). Also, in this case, increasing ρ to 0.9 led to a more drastic change
than in the previous case, boosting the ranking of the papers on MDL.

80

10-1
100
101
102
103
104

104 105 106 107 108R
u
n
n
in
g

 T
im
e

 (
s
e
c
s
)

Number of edges

Figure 4.5: J-RECS exhibits near-linear scalability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6
 0

 0.2

 0.4

 0.6

 0.8

 1

R
e
le
v
a
n
c
e

 S
c
o
re

D
iv
e
rs
ity

 S
c
o
re

λ1

Relevance Rr(A')
Diversity DType(A')

Figure 4.6: Relevance-diversity trade-off on MOVIE-PG. Varying λ1 affects Rr(A′) and
DType(A′) of the selected attributes A′.
Overall, in these case studies, J-RECS produces qualitatively better results than MP-
AND, which are more balanced in terms of the relevance to the recommendation, user
preferences, and the diversity of paper topics.

4.4.4 Q2. Scalability
To evaluate the scalability of J-RECS, we created increasingly larger subgraphs of
CITATION-100M-PG, with each subgraph being 10× larger than the previous one. Fig-
ure 4.5 reports the running time of J-RECS on these product graphs of varying sizes,
where the running time was averaged over three simulated users with at least ten prod-
ucts in his Qu. The results show that J-RECS achieves near-linear scalability, successfully
scaling up to the largest graph with 108 edges.

4.4.5 Q3. Relevance-Diversity Trade-Off
We measure how varying λ1, the weight for the attribute type diversity, affects the
relevance score Rr(A′) and the diversity score DType(A′) of the selected attributes A′.
Specifically, we randomly selected 50 users from MOVIE-PG, who rated at least 10 movies,
and generated 30 justifications varying λ1 from 0 to 0.6. In Figure 4.6, we report relevance
and diversity scores averaged over all users. Figure 4.6 shows that while there is a
trade-off between relevance and diversity, it is possible to attain high relevance and
diversity. As λ1 is increased from 0 to 0.3, DType(A′) increases by 148%, while Rr(A′)

81

decreases by 7%. Results indicate that setting λ1 to an appropriate value can be beneficial
in providing diverse and relevant justifications to the users.

4.5 Related Work
Explainable Recommendation. Methods for explainable recommendation can be grouped
into embedded and post-hoc approaches. Embedded approaches [WHF+18, CZH+17,
DQW+14, CCX+19, ZLZ+14] aim to develop interpretable models, such that explana-
tions for the model decision can be naturally provided. While embedded methods have
high model explainability, different explanation techniques need to be developed for
different types of recommendation methods. Our framework is model-agnostic and
can be applied to different recommenders flexibly. We refer the reader to [ZC20] for an
in-depth review of embedded methods.

In post-hoc approaches, explanations and recommendations are generated from separate
models. Post-hoc explanations are often item-based (e.g., “Customers who bought this
item also bought” [TM15]), neighbor-based (e.g., “Your neighbors’ rating for this item
is” [HKR00]), and content-based (e.g., keywords [BM05], features [Tin07], tags [VSR09],
or reviews [DLZ18, WCY+18]). Since these methods typically select an explanation based
on one of manually defined templates or generate explanations using one type of data,
the diversity of their explanations are limited by the form of such templates or the type of
input data. On the other hand, J-RECS is a unified framework that can work with multiple
types of data, and its diversity increases as we provide more data to the framework.
ExpLOD [MNL+16] provides more diverse explanations than earlier methods by using
linked open data cloud in a graph-based framework. However, ExpLOD and others such
as [VSR09] produce justifications only using the items in the user profile, ignoring other
items and their attributes relevant to the recommendation and the user profile. By using
random walk-based node proximity, J-RECS utilizes both the user profile and other data
relevant to it.

Node Importance. As we discuss in Sections 2.5 and 3.6, PageRank (PR) [PBMW99]
measures node importance by considering the limiting probability of a random surfer that
travels over a graph following any out-going edge with uniform probability. The original
PR does not depend on the query, and personalized PR (PPR) [Hav02] followed PR to
estimate query-dependent node importance. Random walk with restart (RWR) [TFP08,
JPSK17] can be seen as a special case of PPR that considers one query node. HITS [Kle99]
first retrieves a focused subgraph with respect to the search query, and computes hub
and authority scores for each node in the focused subgraph. SALSA [LM01] can be
considered as an improvement of HITS, which also computes hub and authority scores
like HITS, while less susceptible to the tightly knit community (TKC) effect than HITS.
HAR [LNY12] is a generalization of SALSA that deals with multi-relation data, and
computes hub and authority scores for objects and relevance scores for relations, with
respect to a query input. GENI (Chapter 2) and MultiImport (Chapter 3) are semi-
supervised techniques to estimate node importance by considering both the graph
structure and real-world signals of node popularity. Among the above methods, query-

82

sensitive ones can be used to measure node-to-node proximity, which have also been
used to identify a subset of nodes or a subgraph, which have strong connections to
the query nodes [FMT04, TF06] and are important in connecting source and target
nodes [TPF+10, TPF+12]. In this work, we consider the effectiveness of these approaches
for the task of recommendation justification, and use the most effective ones to define
the relevance score, which best satisfy the axioms of good justifications.

4.6 Conclusion
In this chapter, we present a graph-based formulation of the problem of recommenda-
tion justification, and develop J-RECS, a unified model-agnostic framework which can
produce concise, diverse, and personalized justifications in a principled manner, based
on various types of product and user data. We show the effectiveness and efficiency
of J-RECS in an evaluation using axioms and real-world data. In this chapter, we pro-
pose preference retrieval as one way of evaluating the justification quality. Developing
additional automatic and objective evaluation metrics that can measure the quality of
justifications from different perspectives will also be an important direction for future
research on explainable recommendations.

4.7 Appendix
4.7.1 Experimental Settings
Machine. We ran experiments on a machine with 32 Intel Xeon CPU E7-8837 cores at
2.67GHz, and 1 TB of memory.

Parameters. For PPR [Hav02], we set the damping factor to 0.85. For HAR [LNY12], we
set the weighting parameters α, β, and γ to 0.15. For J-RECS, we set ρ = 0.5 and budget B
to 15, unless otherwise stated. For ExpLOD [MNL+16], we followed the settings used
in [MNL+16], where the two weighting factors α and β were set to 0.5.

83

Table 4.4: J-RECS works: J-RECS produces qualitatively better results than MP-AND.
The table shows the top-15 references cited by the paper “Rubik: Knowledge Guided
Tensor Factorization and Completion for Health Data Analytics” [WCG+15], ordered by
the relevance computed with J-RECS (with ρ set to 0.5 and 0.9) and MP-AND. Papers on
electronic health record analysis are highlighted in blue font, and the two highly relevant
papers that employ tensor factorization for electronic health record analysis are further
highlighted in cyan background color.

J-RECS (ρ = 0.5) J-RECS (ρ = 0.9) MP-AND [TF06]
Positive tensor factorization Tensor decompositions and applica-

tions
Tensor decompositions and applica-
tions

Tensor decompositions and applica-
tions

Positive tensor factorization Distributed optimization and statisti-
cal learning via the alternating direc-
tion method of multipliers

Marble: high-throughput phenotyp-
ing from electronic health records via
sparse nonnegative tensor factoriza-
tion

Marble: high-throughput phenotyp-
ing from electronic health records via
sparse nonnegative tensor factoriza-
tion

Positive tensor factorization

On tensors, sparsity, and nonnegative
factorizations

Limestone: high-throughput candi-
date phenotype generation via tensor
factorization

Scalable tensor factorizations for in-
complete data

Limestone: high-throughput candi-
date phenotype generation via tensor
factorization

On tensors, sparsity, and nonnegative
factorizations

Learning with tensors: a framework
based on convex optimization and
spectral regularization

Distributed optimization and statisti-
cal learning via the alternating direc-
tion method of multipliers

Scalable tensor factorizations for in-
complete data

Marble: high-throughput phenotyp-
ing from electronic health records via
sparse nonnegative tensor factoriza-
tion

Scalable tensor factorizations for in-
complete data

Distributed optimization and statisti-
cal learning via the alternating direc-
tion method of multipliers

A block coordinate descent method
for regularized multiconvex optimiza-
tion with applications to nonnegative
tensor factorization and completion

Tensor completion for estimating
missing values in visual data

Tensor completion for estimating
missing values in visual data

On tensors, sparsity, and nonnegative
factorizations

Network discovery via constrained
tensor analysis of fMRI data

Network discovery via constrained
tensor analysis of fMRI data

Tensor completion for estimating
missing values in visual data

Learning with tensors: a framework
based on convex optimization and
spectral regularization

Next-generation phenotyping of elec-
tronic health records

Network discovery via constrained
tensor analysis of fMRI data

Next-generation phenotyping of elec-
tronic health records

Learning with tensors: a framework
based on convex optimization and
spectral regularization

Limestone: high-throughput candi-
date phenotype generation via tensor
factorization

Square deal: lower bounds and im-
proved relaxations for tensor recov-
ery

Square deal: lower bounds and im-
proved relaxations for tensor recov-
ery

Next-generation phenotyping of elec-
tronic health records

FlexiFaCT: scalable flexible factoriza-
tion of coupled tensors on Hadoop

FlexiFaCT: scalable flexible factoriza-
tion of coupled tensors on Hadoop

Square deal: lower bounds and im-
proved relaxations for tensor recov-
ery

All-at-once optimization for coupled
matrix and tensor factorizations

All-at-once optimization for coupled
matrix and tensor factorizations

Convex tensor decomposition via
structured Schatten norm regulariza-
tion

A block coordinate descent method
for regularized multiconvex optimiza-
tion with applications to nonnegative
tensor factorization and completion

Convex tensor decomposition via
structured Schatten norm regulariza-
tion

A new convex relaxation for tensor
completion

84

Table 4.5: J-RECS works: J-RECS produces qualitatively better results than MP-AND.
The table shows the top-15 references cited by the paper “Towards Parameter-Free Data
Mining” [KLR04], ordered by the relevance computed with J-RECS (with ρ set to 0.5 and
0.9) and MP-AND. Papers on the minimum description length principle are highlighted
in blue font.

J-RECS (ρ = 0.5) J-RECS (ρ = 0.9) MP-AND [TF06]
On the need for time series data min-
ing benchmarks: a survey and empir-
ical demonstration

On the need for time series data min-
ing benchmarks: a survey and empir-
ical demonstration

On the need for time series data min-
ing benchmarks: a survey and empir-
ical demonstration

Making time-series classification
more accurate using learned con-
straints

An introduction to Kolmogorov com-
plexity and its applications

Clustering of time series subse-
quences is meaningless: implications
for previous and future research

Distance measures for effective clus-
tering of ARIMA time-series

Making time-series classification
more accurate using learned con-
straints

A symbolic representation of time se-
ries, with implications for streaming
algorithms

Deformable Markov model templates
for time-series pattern matching

Distance measures for effective clus-
tering of ARIMA time-series

Making time-series classification
more accurate using learned con-
straints

TSA-tree: a wavelet-based approach
to improve the efficiency of multi-
level surprise and trend queries on
time-series data

Deformable Markov model templates
for time-series pattern matching

Distance measures for effective clus-
tering of ARIMA time-series

Mining the stock market: which mea-
sure is best?

TSA-tree: a wavelet-based approach
to improve the efficiency of multi-
level surprise and trend queries on
time-series data

Mining the stock market: which mea-
sure is best?

Supporting content-based searches on
time series via approximation

Modeling by shortest data description Modeling by shortest data description

Clustering of time series subse-
quences is meaningless: implications
for previous and future research

Mining the stock market: which mea-
sure is best?

Deformable Markov model templates
for time-series pattern matching

An introduction to Kolmogorov com-
plexity and its applications

A symbolic representation of time se-
ries, with implications for streaming
algorithms

Indexing multi-dimensional time-
series with support for multiple dis-
tance measures

A symbolic representation of time se-
ries, with implications for streaming
algorithms

Clustering of time series subse-
quences is meaningless: implications
for previous and future research

FastMap: a fast algorithm for index-
ing, data-mining and visualization of
traditional and multimedia datasets

Indexing multi-dimensional time-
series with support for multiple dis-
tance measures

Inferring decision trees using the min-
imum description length principle

TSA-tree: a wavelet-based approach
to improve the efficiency of multi-
level surprise and trend queries on
time-series data

Modeling by shortest data description Supporting content-based searches on
time series via approximation

Online novelty detection on temporal
sequences

Inferring decision trees using the min-
imum description length principle

The similarity metric Supporting content-based searches on
time series via approximation

The similarity metric Indexing multi-dimensional time-
series with support for multiple dis-
tance measures

Inferring decision trees using the min-
imum description length principle

Online novelty detection on temporal
sequences

Online novelty detection on temporal
sequences

Graph-based anomaly detection

85

86

Chapter 5

Fast and Scalable Distributed
Boolean Tensor Factorization

Chapter based on work published in ICDE 2017 [POK17] and the VLDB Journal [POK19].

How can we analyze tensors that are composed of 0’s and 1’s? How can we efficiently
analyze such Boolean tensors with millions or even billions of entries? Boolean ten-
sors often represent relationship, membership, or occurrences of events such as
subject-relation-object tuples in knowledge base data (e.g., ‘Seoul’-‘is the capital of’-
‘South Korea’). Boolean tensor factorization (BTF) is a useful tool for analyzing binary
tensors to discover latent factors from them. Furthermore, BTF is known to produce
more interpretable and sparser results than normal factorization methods. Although
several BTF algorithms exist, they do not scale up for large-scale Boolean tensors. In
this chapter, we propose DBTF, a distributed method for Boolean CP (DBTF-CP) and
Tucker (DBTF-TK) factorizations running on the Apache Spark framework. By dis-
tributed data generation with minimal network transfer, exploiting the characteristics
of Boolean operations, and with careful partitioning, DBTF successfully tackles the
high computational costs and minimizes the intermediate data. Experimental results
show that DBTF-CP decomposes up to 163–323× larger tensors than existing methods
in 82–180× less time, and DBTF-TK decomposes up to 83–163× larger tensors than
existing methods in 86–129× less time. Furthermore, both DBTF-CP and DBTF-TK
exhibit near-linear scalability in terms of tensor dimensionality, density, rank, and
machines.

5.1 Introduction
How can we analyze tensors that are composed of 0’s and 1’s? How can we efficiently
analyze such Boolean tensors that have millions or even billions of entries? Many real-
world data can be represented as tensors, or multi-dimensional arrays. Among them,
many are composed of only 0’s and 1’s. Those tensors often represent relationship,
membership, or occurrences of events. Examples of such data include subject-relation-

87

object tuples in knowledge base data (e.g., ‘Seoul’-‘is the capital of’-‘South Korea’),
source IP-destination IP-port number-timestamp in network intrusion logs, and user1
ID-user2 ID-timestamp in friendship network data. Tensor factorizations are widely-
used tools for analyzing tensors. CANDECOMP/PARAFAC (CP) and Tucker are two
major tensor factorization methods [KB09]. These methods decompose a tensor into a
sum of rank-1 tensors, from which we can find the latent structure of the data. Tensor
factorization methods can be classified according to the constraint placed on the resulting
rank-1 tensors [EM13b]. The unconstrained form allows entries in the rank-1 tensors
to be arbitrary real numbers, where we find linear relationships between latent factors;
when a non-negativity constraint is imposed on the entries, the resulting factors reveal
parts-of-whole relationships.

What we focus on in this chapter is yet another approach with Boolean constraints,
named Boolean tensor factorization (BTF) [Mie11], that has many interesting applications
including latent concept discovery, clustering, recommendation, link prediction, and
synonym finding. For example, low-rank BTF yields factor matrices whose columns
correspond to latent concepts underlying the data, and applying a Boolean Tucker
factorization to subject-predicate-object triples can find synonyms and uncover facts
from the data [EM13a]. BTF requires that the input tensor, all factor matrices, and a
core tensor are binary. Furthermore, BTF uses Boolean sum instead of normal addition,
which means 1 + 1 = 1 in BTF. When the data is inherently binary, BTF is an appealing
choice as it can reveal Boolean structures and relationships underlying the binary tensor
that are hard to be found by other factorizations. Also, BTF is known to produce
more interpretable and sparser results than the unconstrained and the non-negativity
constrained counterparts, though at the expense of increased computational complexity
[Mie11, MM15].

While several algorithms have been developed for BTF [Mie11, EM13b, BGV13, LVMDBR99],
they are not fast and scalable enough for large-scale tensors that have become widespread.
For example, consider DBLP and NELL datasets, which are two different types of real-
world tensors consisting of 1.3M to 77M non-zeros. In our experiments on these tensors,
all of the state-of-the-art BTF methods get terminated due to out-of-memory errors, or

Table 5.1: Comparison of our proposed DBTF and existing methods for Boolean (a)
CP and (b) Tucker factorizations in terms of whether a method is parallel (Par.) and
distributed (Dist.). DBTF is the only approach that is parallel and distributed.

(a) Boolean CP Factorization

Method Par. Dist.

Walk’n’Merge [EM13b] Yes No
BCP_ALS [Mie11] No No

DBTF-CP Yes Yes

(b) Boolean Tucker Factorization

Method Par. Dist.

Walk’n’Merge [EM13b] Yes No
BTucker_ALS [Mie11] No No

DBTF-TK Yes Yes

88

failed at processing them within a reasonable amount of time. Even in the case where
existing approaches could be applied, their performance is not enough for many practical
applications. In order for BTF to be used for the analysis of large-scale tensors in practical
settings, it is of great importance to overcome these limitations. In summary, the major
challenges that need to be tackled for fast and scalable BTF are (1) how to minimize
the computational costs involved with updating Boolean factor matrices, and (2) how
to minimize the intermediate data that are generated in the process of factorization.
Existing methods fail to solve both of these challenges.

In this chapter, we propose DBTF (Distributed Boolean Tensor Factorization), a dis-
tributed method for Boolean CP and Tucker factorizations running on the Apache Spark
framework [ZCD+12]. DBTF tackles the high computational cost by reducing the op-
erations involved with BTF in an efficient greedy algorithm, while minimizing the
generation and shuffling of intermediate data. Also, DBTF exploits the characteristics of
Boolean operations in solving both of the above problems. Due to the effective algorithm
designed carefully with these ideas, DBTF achieves higher efficiency and scalability
compared to existing methods. Table 5.1 shows a comparison of DBTF and existing
methods in terms of whether a method is parallel and distributed. Note that DBTF is the
only approach that is parallel and distributed.

The main contributions of this chapter are as follows:

• Algorithm. We propose DBTF, a distributed method for Boolean CP (DBTF-CP) and
Tucker (DBTF-TK) factorizations, which is designed to scale up to large tensors by
minimizing intermediate data and the number of operations for BTF, and carefully
partitioning the workload.

• Theory. We provide an analysis of the proposed DBTF-CP and DBTF-TK in terms
of time complexity, memory requirement, and the amount of shuffled data.

• Experiment. We present extensive empirical evidences for the scalability and
performance of DBTF. We show that the proposed Boolean CP factorization method
decomposes up to 163–323× larger tensors than existing methods in 82–180× less
time, and the proposed Boolean Tucker factorization method decomposes up to
83–163× larger tensors than existing methods in 86–129× less time. We also show
that DBTF successfully decomposes real-world tensors, such as DBLP and NELL,
that cannot be processed with the state-of-the-art BTF methods.

The code of our method and the datasets used in this chapter are available at https:
//www.cs.cmu.edu/~namyongp/dbtf/.

The rest of this chapter is organized as follows. We present the preliminaries of CP and
Tucker factorizations in normal and Boolean settings in Section 5.2. Then, we discuss
related works in Section 5.3, and describe our proposed method for fast and scalable
Boolean CP and Tucker factorization in Section 5.4. After presenting experimental results
in Section 5.5, we conclude in Section 5.6.

89

https://www.cs.cmu.edu/~namyongp/dbtf/
https://www.cs.cmu.edu/~namyongp/dbtf/

5.2 Preliminaries
In this section, we provide the definition of Boolean arithmetic and present the notations
and operations used for tensor decomposition. Next, we give the definitions of normal CP
and Tucker decompositions, and those of Boolean CP and Tucker decompositions. After
that, we introduce approaches for computing Boolean CP and Tucker decompositions.
Symbols used in this chapter are summarized in Table 5.2.

5.2.1 Boolean Arithmetic
Given binary data, all operations involved with Boolean tensor factorization operate
with Boolean arithmetic in which addition (Boolean OR which is denoted by ∨) and
multiplication (Boolean AND which is denoted by ∧) between two variables are defined
as:

x y x ∧ y x ∨ y

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

5.2.2 Notation
We denote tensors by boldface Euler script letters (e.g., X), matrices by boldface capitals
(e.g., A), vectors by boldface lowercase letters (e.g., a), and scalars by lowercase letters
(e.g., a).

Tensors and Matrices. Tensor is a multi-dimensional array. The dimension of a tensor is
also referred to as mode, order, or way. A matrix A ∈ RI1×I2 is a tensor of order two. A
tensor X ∈ RI1×I2×···×IN is an N -mode or N -way tensor. The (i1, i2, . . . , iN)-th entry of a
tensor X is denoted by xi1i2...iN . A colon in the subscript indicates taking all elements of
that mode. For example, given a matrix A, a:j denotes the j-th column, and ai: denotes
the i-th row. The j-th column of A, a:j , is also denoted more concisely as aj . A colon
between two numbers in the subscript denotes taking all such elements whose indices
in that mode lie between the given numbers. For instance, A(1:5)j indicates the first five
elements of aj . For a three-way tensor X, x:jk, xi:k, and xij: are called column (mode-1),
row (mode-2), and tube (mode-3) fibers, respectively. |X| denotes the number of non-zero
elements in a tensor X; ‖X‖ denotes the Frobenius norm of a tensor X and is defined as√∑

i,j,k x
2
ijk.

Tensor Matricization/Unfolding. The mode-n matricization (or unfolding) of a tensor
X ∈ RI1×I2×···×IN , denoted by X(n), is the process of unfolding X into a matrix by re-
arranging its mode-n fibers to be the columns of the resulting matrix. For instance, a

90

Table 5.2: Table of symbols.

Symbol Definition

X tensor (Euler script, bold letter)
A matrix (in uppercase, bold letter)
a column vector (lowercase, bold letter)
a scalar (lowercase, italic letter)
R rank (number of components)
G core tensor (∈ RR1×R2×R3)

X(n) mode-n matricization of a tensor X
|X| number of non-zeros in the tensor X
‖X‖ Frobenius norm of the tensor X
A> transpose of matrix A
◦ outer product
⊗ Kronecker product
� Khatri-Rao product
B set of binary numbers, i.e., {0, 1}
∨ Boolean sum of two binary tensors∨

Boolean summation of a sequence of binary tensors
� Boolean matrix product

I , J , K dimensions of each mode of an input tensor X
R1, R2, R3 dimensions of each mode of a core tensor G

three-way tensor X ∈ RI×J×K and its matricizations are mapped as follows:

xijk → [X(1)]ic where c = j + (k − 1)J

xijk → [X(2)]jc where c = i+ (k − 1)I

xijk → [X(3)]kc where c = i+ (j − 1)I.

(5.1)

Outer Product and Rank-1 Tensor. We use ◦ to denote the vector outer product. The
three-way outer product of vectors a ∈ RI ,b ∈ RJ , and c ∈ RK is a tensor X = a ◦b ◦ c ∈
RI×J×K whose element (i, j, k) is defined as (a ◦ b ◦ c)ijk = aibjck. A three-way tensor X
is rank-1 if it can be expressed as an outer product of three vectors.

Kronecker Product. The Kronecker product of matrices A ∈ RI1×J1 and B ∈ RI2×J2

produces a matrix of size I1I2-by-J1J2, which is defined as:

A⊗B =


a11B a12B · · · a1J1B
a21B a22B · · · a2J1B

...
...

aI11B aI12B · · · aI1J1B

 . (5.2)

91

The Kronecker product of matrices A ∈ RI1×J1 and B ∈ RI2×J2 can also be expressed by
vector-matrix Kronecker products as follows:

A⊗B =


a1: ⊗B
a2: ⊗B

...
aI1: ⊗B

 . (5.3)

Khatri-Rao Product. The Khatri-Rao product (or column-wise Kronecker product) of
matrices A ∈ RI×R and B ∈ RJ×R produces a matrix of size IJ-by-R, and is defined
as:

A�B = [a:1 ⊗ b:1 a:2 ⊗ b:2 . . . a:R ⊗ b:R]. (5.4)

Given matrices A ∈ RI×R and B ∈ RJ×R, the Khatri-Rao product A � B can also be
expressed by vector-matrix Khatri-Rao products as follows:

A�B =


a1: �B
a2: �B

...
aI1: �B

 . (5.5)

Set of Binary Numbers. We use B to denote the set of binary numbers, that is, {0, 1}.

Boolean Summation. We use
∨

to denote the Boolean summation, in which a sequence
of Boolean tensors or matrices is summed. The Boolean sum (∨) of two binary tensors
X ∈ BI×J×K and Y ∈ BI×J×K is defined by:

(X ∨ Y)ijk = xijk ∨ yijk. (5.6)

The Boolean sum of two binary matrices is defined analogously.

Boolean Matrix Product. The Boolean product of two binary matrices A ∈ BI×R and
B ∈ BR×J is defined as:

(A�B)ij =
R∨
k=1

aikbkj. (5.7)

5.2.3 Tensor Rank and Tensor Decompositions
5.2.3.1 Normal Tensor Rank and Tensor Decompositions
With the above notations, we first give the definitions of normal tensor rank, and normal
CP and Tucker decompositions.

Definition 4.: (Tensor rank) The rank of a three-way tensor X is the smallest integer R
such that there exist R rank-1 tensors whose sum is equal to the tensor X, i.e.,

X =
R∑
r=1

ar ◦ br ◦ cr. (5.8)

92

Definition 5.: (CP decomposition) Given a tensor X ∈ RI×J×K and a rank R, find factor
matrices A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R such that they minimize∥∥∥∥∥X−

R∑
r=1

ar ◦ br ◦ cr

∥∥∥∥∥ . (5.9)

CP decomposition can be expressed in a matricized form as follows [KB09]:

X(1) ≈ A(C�B)>

X(2) ≈ B(C�A)>

X(3) ≈ C(B�A)>.

(5.10)

Definition 6.: (Tucker decomposition) Given a tensor X ∈ RI×J×K and the dimensions
of a core tensor R1, R2, and R3, find factor matrices A ∈ RI×R1 , B ∈ RJ×R2 , C ∈ RK×R3 ,
and a core tensor G ∈ RR1×R2×R3 such that they minimize∥∥∥∥∥X−

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

gr1r2r3ar1 ◦ br2 ◦ cr3

∥∥∥∥∥ . (5.11)

Tucker decomposition can be expressed in a matricized form as follows [KB09]:

X(1) ≈ AG(1)(C⊗B)>

X(2) ≈ BG(2)(C⊗A)>

X(3) ≈ CG(3)(B⊗A)>.

(5.12)

5.2.3.2 Boolean Tensor Rank and Tensor Decompositions
We now give the definitions of Boolean tensor rank, and Boolean CP and Tucker decom-
positions. The definitions of Boolean tensor rank and Boolean tensor decompositions
differ from their normal counterparts in the following two respects: 1) the tensor and
factor matrices are binary; 2) Boolean sum is used where 1 + 1 is defined to be 1.

Definition 7.: (Boolean tensor rank) The Boolean rank of a three-way binary tensor X
is the smallest integer R such that there exist R rank-1 binary tensors whose Boolean
summation is equal to the tensor X, i.e.,

X =
R∨
r=1

ar ◦ br ◦ cr. (5.13)

Definition 8.: (Boolean CP decomposition) Given a binary tensor X ∈ BI×J×K and a
rank R, find binary factor matrices A ∈ BI×R, B ∈ BJ×R, and C ∈ BK×R such that they
minimize ∣∣∣∣∣X−

R∨
r=1

ar ◦ br ◦ cr

∣∣∣∣∣ . (5.14)

93

By replacing the normal matrix product in Equation (5.10) with the Boolean matrix prod-
uct, Boolean CP decomposition can be expressed in a matricized form as follows:

X(1) ≈ A� (C�B)>

X(2) ≈ B� (C�A)>

X(3) ≈ C� (B�A)>.

(5.15)

Figure 5.1 illustrates the rank-R Boolean CP decomposition of a three-way tensor X.

Definition 9.: (Boolean Tucker decomposition) Given a binary tensor X ∈ BI×J×K and
the dimensions of a core tensor R1, R2, and R3, find binary factor matrices A ∈ BI×R1 ,
B ∈ BJ×R2 , C ∈ BK×R3 , and a binary core tensor G ∈ BR1×R2×R3 such that they minimize∣∣∣∣∣X−

R1∨
r1=1

R2∨
r2=1

R3∨
r3=1

gr1r2r3ar1 ◦ br2 ◦ cr3

∣∣∣∣∣ . (5.16)

By using Boolean matrix product in place of the normal matrix product in Equation (5.12),
Boolean Tucker decomposition can be expressed in a matricized form as follows:

X(1) ≈ A�G(1) � (C⊗B)>

X(2) ≈ B�G(2) � (C⊗A)>

X(3) ≈ C�G(3) � (B⊗A)>.

(5.17)

Figure 5.2 illustrates the rank-R Boolean Tucker decomposition of a three-way tensor
X.

A

C

≈
B1111 11 11

=

a(

b(

c(

a+

b+

c+

a,

b,

c,
∨ ∨ ⋯ ∨∘ ∘ ∘

Figure 5.1: Rank-R Boolean CP decomposition of a three-way tensor X. X is decomposed
into three binary factor matrices A, B, and C.

94

A

C

≈
B

Figure 5.2: Rank-R Boolean Tucker decomposition of a three-way tensor X. X is decom-
posed into a binary core tensor G, and three binary factor matrices A, B, and C.

Algorithm 5.1: Boolean CP Decomposition Framework
Input: A three-way binary tensor X ∈ BI×J×K , rank R, and the maximum number of

iterations T .
Output: Binary factor matrices A ∈ BI×R, B ∈ BJ×R, and C ∈ BK×R.

1 initialize factor matrices A, B, and C
2 for t← 1..T do
3 update A such that |X(1) −A� (C�B)>| is minimized
4 update B such that |X(2) −B� (C�A)>| is minimized
5 update C such that |X(3) −C� (B�A)>| is minimized
6 if converged then
7 break out of for loop

8 return A, B, and C

Computing the Boolean CP and Tucker Decompositions. The alternating least squares
(ALS) algorithm is the “workhorse" approach for normal CP and Tucker decomposi-
tions [KB09]. With a few changes, ALS projection heuristic provides frameworks for
computing the Boolean CP and Tucker decompositions as shown in Algorithms 5.1 and
5.2.

The framework for Boolean CP decomposition (Algorithm 5.1) is composed of two parts:
first, the initialization of factor matrices (line 1), and second, the iterative update of each
factor matrix in turn (lines 3–5). At each step of the iterative update phase, the n-th factor
matrix is updated given the mode-n matricization of the input tensor X with the goal of
minimizing the difference between the input tensor X and the approximate tensor recon-
structed from the factor matrices using Equation (5.15), while the other factor matrices
are fixed. The framework for Boolean Tucker decomposition (Algorithm 5.2) is similar to
that for Boolean CP decomposition, except for (1) the additional initialization and update
of the core tensor in lines 2 and 7, respectively, and (2) the tensor reconstruction in lines
4–6 that involves the core tensor and the Kronecker product between factor matrices
(Equation (5.17)) The convergence criterion for Algorithms 5.1 and 5.2 is either one of the
following: (1) the number of iterations exceeds the maximum value T , or (2) the sum of

95

Algorithm 5.2: Boolean Tucker Decomposition Framework
Input: A three-way binary tensor X ∈ BI×J×K , dimensions of a core tensor R1, R2, and

R3, and the maximum number of iterations T .
Output: Binary factor matrices A ∈ BI×R1 , B ∈ BJ×R2 , and C ∈ BK×R3 , and a core

tensor G ∈ BR1×R2×R3 .
1 initialize factor matrices A, B, and C

2 initialize the core tensor G such that
∣∣∣X−∨R1

r1=1

∨R2
r2=1

∨R3
r3=1 gr1r2r3ar1 ◦ br2 ◦ cr3

∣∣∣ is
minimized

3 for t← 1..T do
4 update A such that |X(1) −A�G(1) � (C⊗B)>| is minimized
5 update B such that |X(2) −B�G(2) � (C⊗A)>| is minimized
6 update C such that |X(3) −C�G(3) � (B⊗A)>| is minimized

7 update G such that
∣∣∣X−∨R1

r1=1

∨R2
r2=1

∨R3
r3=1 gr1r2r3ar1 ◦ br2 ◦ cr3

∣∣∣ is minimized

8 if converged then
9 break out of for loop

10 return A, B, C, and G

absolute differences between the input tensor and the reconstructed one does not change
significantly for two consecutive iterations (i.e., the difference between the two errors is
within a small threshold).

Using the above frameworks, Miettinen [Mie11] proposed Boolean CP and Tucker de-
composition algorithms named BCP_ALS and BTucker_ALS, respectively. However,
since both methods are designed to run on a single machine, their scalability and perfor-
mance are limited by the computing and memory capacity of a single machine. Also,
the initialization scheme used in the two methods has high space and time requirements
which are proportional to the squares of the number of columns of each unfolded tensor.
Due to these limitations, BCP_ALS and BTucker_ALS cannot scale up to large-scale
tensors.

Walk’n’Merge [EM13b] is a different approach for Boolean CP and Tucker factorizations.
Representing the tensor as a graph, Walk’n’Merge performs random walks on it to
identify dense blocks (which correspond to rank-1 tensors) and merge these blocks to get
larger, yet dense blocks; Walk’n’Merge orders and selects blocks based on the Minimum
Description Length (MDL) principle for the CP decomposition, and obtains the Tucker
decomposition from the returned blocks by merging factors and adjusting the core tensor
accordingly again using the MDL principle. As a result, the dimension of a core tensor
cannot be controlled with Walk’n’Merge. While Walk’n’Merge is a parallel algorithm,
its scalability is still limited for large-scale tensors. Since it is not a distributed method,
Walk’n’Merge suffers from the same limitations of a single machine. Also, as the size
of tensor increases, the running time of Walk’n’Merge rapidly increases as we show in
Section 5.5.2.

96

5.3 Related Works
In this section, we review previous approaches for computing Boolean and normal tensor
decompositions, and present related works on the partitioning of sparse tensors, and
distributed computing frameworks.

5.3.1 Boolean Tensor Decomposition
Leenen et al. [LVMDBR99] proposed the first Boolean CP decomposition algorithm.
Miettinen [Mie11] presented Boolean CP and Tucker decomposition methods along with
a theoretical study of Boolean tensor rank and decomposition. In [BGV13], Belohlávek
et al. presented a greedy algorithm for Boolean CP decomposition of three-way binary
data. In the preliminary work of this chapter [POK17], Park et al. proposed a distributed
method for Boolean CP factorization running on the Apache Spark framework. Erdős
et al. [EM13b] proposed a parallel algorithm called Walk’n’Merge for scalable Boolean
CP and Tucker decompositions, which performs random walks to find dense blocks
(rank-1 tensors) and obtains final CP and Tucker decompositions from the returned
blocks by employing the MDL principle. In [EM13a], Erdős et al. applied the Boolean
Tucker decomposition method proposed in [EM13b] to discover synonyms and find
facts from the subject-predicate-object triples. Finding closed itemsets in N -way binary
tensor [CBRB09, JTT06] is a restricted form of Boolean CP decomposition, in which
an error of representing 0’s as 1’s is not allowed. Metzler et al. [MM15] presented an
algorithm for Boolean tensor clustering, which is another form of restricted Boolean CP
decomposition where one of the factor matrices has exactly one non-zero per row.

5.3.2 Normal Tensor Decomposition
Many algorithms have been developed for normal CP and Tucker decompositions.

CP Decomposition. GigaTensor [KPHF12] is the first work for large-scale CP decom-
position running on MapReduce. In [JJSK16], Jeon et al. proposed SCouT for scalable
coupled matrix-tensor factorization. Recently, tensor decomposition methods proposed
in [KPHF12, JPF+16, JJSK16, SJK15] have been integrated into a multi-purpose tensor
mining library, BIGtensor [PJLK16]. Beutel et al. [BTK+14] proposed FlexiFaCT, a scal-
able MapReduce algorithm to decompose matrix, tensor, and coupled matrix-tensor
using stochastic gradient descent. ParCube [PFS12] is a fast and parallelizable CP decom-
position method that produces sparse factors by leveraging random sampling techniques.
In [LCP+17], Li et al. proposed AdaTM, which adaptively chooses parameters in a
model-driven framework for an optimal memoization strategy so as to accelerate the
factorization process. Smith et al. [SPK16] and Karlsson et al. [KKU16] both developed
alternating least squares (ALS) and coordinate descent (CCD++) methods for parallel CP
factorizations; [SPK16] also explored parallel stochastic gradient descent (SGD) method.
CDTF [SSK17] provides a scalable tensor factorization method that focuses on non-zero
elements of a tensor.

Tucker Decomposition. De Lathauwer et al. [LMV00] proposed foundational work on
N-dimensional Tucker-ALS algorithm. As conventional Tucker-ALS methods suffer

97

from limited scalability, many scalable Tucker methods have been developed. Kolda et
al. [KS08] proposed MET (Memory Efficient Tucker), which avoids explicitly construct-
ing intermediate data and maximizes performance while optimally using the available
memory. S-HOT [OSP+17] further improved the scalability of MET [KS08] by employing
on-the-fly computation and streaming non-zeros of a tensor from the disk. Smith et
al. [SK17] accelerated the factorization process by removing computational redundancies
with a compressed data structure. Jeon et al. [JPF+16] provided a scalable Tucker decom-
position method running on the MapReduce framework. Kaya et al. [KU16] and Oh et
al. [OPSK18] designed efficient Tucker algorithms for sparse tensors. Chakaravarthy et
al. [CCJ+17] proposed optimized distributed Tucker decomposition method for dense
input tensors.

5.3.3 Partitioning of Sparse Tensors
For distributed tensor factorization, it is essential to use efficient partitioning methods so
as to maximize parallelism and minimize communication costs between machines. There
are various partitioning approaches for decomposing sparse tensors on distributed plat-
forms. DFacTo [CV14] and CDTF [SSK17] are two systems that perform a coarse-grained
partitioning of the input tensor where independent, one-dimensional block partitionings
are performed for each tensor mode. With a coarse-grained partitioning, each process
has all the non-zeros required for computing its output; thus, the only necessary com-
munication is to exchange updated factor rows at each iteration. However, it has the
disadvantage that dense factor matrices need to be sent to all processes in their entirety.
Hypergraph partitioning methods [KU15, KU16] reduce communication volume via a
fine-grained partitioning of the input tensor, in which non-zeros are assigned to pro-
cesses individually. However, hypergraph partitioning involves expensive preprocessing
step, which often takes more time than the actual factorization. Recently, Cartesian (or
medium-grained) partitioning methods [ABK16, SK16, ATA18] have gained interests due
to reduced memory and communication costs, which divide an input tensor into a 3D
grid, and factor matrices into corresponding groups of rows. All of the above partitioning
methods have been developed for normal tensor factorization, where factor matrices are
highly dense and, accordingly, incur a high memory usage and communication overhead.
On the other hand, factor matrices in BTF are usually much sparser than the normal
factor matrices due to Boolean constraint, and BTF methods can usually process smaller
tensors than normal decomposition techniques due to high computational complexity.
Considering these characteristics of BTF, DBTF adopts a coarse-grained, vertical parti-
tioning for the unfolded tensor and performs a Cartesian partitioning of the input tensor,
which we discuss in Section 5.4.5.

5.3.4 Distributed Computing Frameworks
MapReduce [DG04] is a distributed programming model for processing large datasets in
a massively parallel manner. The advantages of MapReduce include massive scalability,
fault tolerance, and automatic data distribution and replication. Hadoop [had] is an open-
source implementation of MapReduce. Due to the advantages of MapReduce, many data

98

mining tasks [KPHF12, KTF09, PPMK16, PMK16, KTS+] have used Hadoop. However,
due to intensive disk I/O, Hadoop is inefficient at executing iterative algorithms [KV13].
Apache Spark [ZCD+12, ZCF+10] is a distributed data processing framework that pro-
vides capabilities for in-memory computation and data storage. These capabilities enable
Spark to perform iterative computations efficiently, which are common across many
machine learning and data mining algorithms, and support interactive data analytics.
Spark also supports various operations other than map and reduce, such as join, filter,
and groupBy. Thanks to these advantages, Spark has been used in several domains
recently [LRC+15, WMP+14, GTW+15, ZMU+16, KPJY16].

5.4 Proposed Method
In this section, we describe DBTF, our proposed method for distributed Boolean CP
(DBTF-CP) and Tucker (DBTF-TK) factorizations. There are several challenges to effi-
ciently perform Boolean tensor factorization in a distributed environment.

1. Minimize intermediate data. The amount of intermediate data that are generated
and shuffled across machines affects the performance of a distributed algorithm
significantly. How can we minimize the intermediate data?

2. Minimize the number of operations. Boolean tensor factorization is an NP-hard
problem [Mie11] with a high computational cost. How can we minimize the number
of operations for factorizing Boolean tensors?

3. Identify the characteristics of Boolean tensor factorization. In contrast to the
normal tensor factorization, Boolean tensor factorization applies Boolean operations
to binary data. How can we utilize the characteristics of Boolean operations to
design an efficient and scalable algorithm?

We address the above challenges with the following main ideas, which we describe in
later subsections.

1. Distributed generation and minimal transfer of intermediate data remove redun-
dant data generation and reduce the amount of data transfer (Section 5.4.3).

2. Exploiting the characteristics of Boolean operation and Boolean tensor factoriza-
tion decreases the number of operations to update factor matrices (Section 5.4.4).

3. Careful partitioning of the workload facilitates reuse of intermediate results and
minimizes data shuffling (Section 5.4.5).

We give an overview of how DBTF updates factor matrices (Section 5.4.1) and a core
tensor (Section 5.4.2), and then describe how we address the aforementioned scalability
challenges in detail (Sections 5.4.3 to 5.4.6). After that, we discuss implementation issues
(Section 5.4.7) and provide a theoretical analysis of DBTF (Section 5.4.8). While DBTF-CP
and DBTF-TK have a lot in common, DBTF-TK deals with some additional challenges.
Accordingly, we organize this section such that Sections 5.4.1 to 5.4.5 describe ideas that
apply to both DBTF-CP and DBTF-TK, and Sections 5.4.2 and 5.4.5.2 are dedicated to
ideas that apply to DBTF-TK.

99

Partition1 Partition2 Partition3

Partition3Partition1 Partition2

0 1 0 1

⊠

𝑨 ∈ 𝔹%×'

𝑿(*) ∈ 𝔹%×,-

(𝑪⊙ 𝑩)1∈ 𝔹'×,-

𝑖

𝑖

(a) Updating a factor matrix for Boolean CP factorization by DBTF-CP.

Partition1 Partition2 Partition3

Partition3Partition1 Partition20 1 0 1

⊠

𝑨 ∈ 𝔹%×'(
𝑿(+) ∈ 𝔹%×-.

(𝑪⊗ 𝑩)2∈ 𝔹'3'4×-.

𝑖

𝑖

⊠

𝑮(𝟏) ∈ 𝔹'(×'3'4

0 1 0 0 0 1 0 1

𝑨⊠𝑮(𝟏) ∈ 𝔹%×'3'4

𝑖

(b) Updating a factor matrix for Boolean Tucker factorization by DBTF-TK.

Figure 5.3: An overview of updating a factor matrix for (a) Boolean CP factorization by
DBTF-CP, and (b) Boolean Tucker factorization by DBTF-TK. DBTF performs a column-
wise update row by row. DBTF iterates over the rows of factor matrix for R (DBTF-CP) or
R1 (DBTF-TK) column (outer)-iterations in total, updating entries of each row in column
c at column-iteration c (1 ≤ c ≤ R for DBTF-CP, or 1 ≤ c ≤ R1 for DBTF-TK) to the
values that result in a smaller reconstruction error. The red rectangle in A indicates the
column c currently being updated; the gray rectangle in A refers to the row DBTF is
visiting in row (inner)-iteration i; blue rectangles in (C�B)> or (C⊗B)> are the rows
that are Boolean summed to be compared against the i-th row of X(1) (gray rectangle in
X(1)). Vertical blocks in (C � B)>, (C ⊗ B)>, and X(1) represent partitions of the data
(see Section 5.4.5 for details on partitioning).

100

5.4.1 Updating a Factor Matrix
DBTF is a distributed method for Boolean CP (DBTF-CP) and Tucker (DBTF-TK) fac-
torizations based on the framework described in Algorithms 5.1 and 5.2, respectively.
The core operation of DBTF-CP and DBTF-TK is updating factor matrices (lines 3–5 in
Algorithm 5.1, and lines 4–6 in Algorithm 5.2). Since the update steps are similar, we
focus on updating the factor matrix A.

DBTF performs a column-wise update row by row. This is done with doubly nested
loops, where the outer loop selects a column to update, and the inner loop iterates over
the rows of a factor matrix, updating only those entries in the column selected by the
outer loop. In other words, DBTF iterates over the rows of factor matrix for R (DBTF-CP)
or R1 (DBTF-TK) column (outer)-iterations in total, updating entries of each row in
column c at column-iteration c (1 ≤ c ≤ R for DBTF-CP, or 1 ≤ c ≤ R1 for DBTF-TK) to
the values that result in a smaller reconstruction error. This is a greedy approach that
updates each entry to the value that yields a better accuracy while all other entries in the
same row are fixed; as a result, it does not consider all combinations of values for factor
matrix elements. We also considered an exact approach that explores every possible
value assignment, but preliminary tests showed that the greedy heuristic performs very
closely to the exact search while being much faster than the exact search which takes
exponential time with respect to R or R1. Figure 5.3 shows an overview of how DBTF
updates a factor matrix. In Figure 5.3, the red rectangle indicates the column c currently
being updated, and the gray rectangle in A refers to the row DBTF is visiting in row
(inner)-iteration i.

Updating a Factor Matrix in DBTF-CP. The objective of updating the factor matrix in
DBTF-CP is to minimize the difference between the unfolded input tensor X(1) and
the approximate tensor A � (C �B)>. Let c refer to the column to be updated. Then,
DBTF-CP computes |X(1) −A� (C�B)>| for each of the possible values for the entries
in column c (i.e., ~a:c), and updates the column c to the set of values that yield the
smallest difference. In order to calculate the difference at row-iteration i, [X(1)]i: (gray
rectangle in X(1) of Figure 5.3) is compared against [A � (C � B)>]i: = ai: � (C�B)>

(Figure 5.3a). Then, an entry in aic is updated to the value that gives a smaller difference,
i.e.,

∣∣[X(1)]i:−ai:�(C�B)>
∣∣.

Updating a Factor Matrix in DBTF-TK. DBTF-TK updates the factor matrix such that
the difference between X(1) and A�G(1) � (C⊗B)> is minimized. DBTF-TK calculates
the difference at row-iteration i by comparing [X(1)]i: against [A�G(1) � (C⊗B)>]i: =
[A�G(1)]i: � (C⊗B)> (Figure 5.3b), and updates an entry in aic to the value resulting in
a smaller difference, i.e.,

∣∣[X(1)]i:−[A�G(1)]i:�(C⊗B)>
∣∣.

Lemma 5.1. Boolean Multiplication:
ai: �B is the same as selecting rows of B that correspond to the indices of non-zeros of
ai:, and performing a Boolean summation of those rows.

Proof. This follows directly from the definition of Boolean matrix product � (Equa-

101

tion (5.7)). �

Consider Figure 5.3a as an example: Since ai: is 0101 (gray rectangle in A), ai:� (C�B)>

is identical to the Boolean summation of the second and fourth rows of (C�B)> (blue
rectangles). Similarly, in Figure 5.3b, [A�G(1)]i:�(C⊗B)> is the same as the Boolean
summation of the second, sixth, and eighth rows of (C⊗B)> (blue rectangles) as [A�G(1)]i:
is 01000101.

Note that an update of the i-th row of A does not depend on those of its other rows
since ai: � (C�B)> or [A�G(1)]i: � (C⊗B)> needs to be compared only with [X(1)]i:.
Therefore, the determination of whether to update an entry of some row in ~a:c to 0 or 1
can be made independently of the decisions for entries in other rows. Also, notice in
Figure 5.3b that while it is factor matrix A that DBTF-TK tries to update, it is not the
rows in A that determine which rows in (C⊗B)> are to be summed as in Figure 5.3a,
but those in the intermediate matrix A�G(1).

Depending on the distribution of non-zeros in the input tensor, and how factor matrices
and a core tensor have been initialized and updated, the factor matrix currently being
updated may be updated to contain only zeros. When this happens, the intermediate
matrix constructed with a Khatri-Rao (e.g., (C � B)>) or a Kronecker product (e.g.,
(C ⊗ B)>) at the following iteration will consist of only zeros, and as a result, the
difference between the approximate tensor and the input tensor will be always the same,
regardless of how the factor matrix is updated. We handle this issue by providing the
ability to upper bound the maximum percentage of zeros in the column being updated.
When the percentage of zeros in the current column exceeds the given threshold, DBTF
finds values different from the current assignments for a subset of rows, which will make
the sparsity of the current column become less than the upper bound with the smallest
increase in error, and updates those rows accordingly.

5.4.2 Updating a Core Tensor
Boolean Tucker factorization involves an additional task of updating a core tensor G.
How DBTF-TK updates a core tensor is based on BTucker_ALS [Mie11]. Below we
describe the main observations used by DBTF-TK and BTucker_ALS for updating G and
explain how DBTF-TK further reduces the amount of computation.

Given the definition of Boolean Tucker decomposition (Equation (5.16)), an (i, j, k)-th
element of an approximate tensor X̃ is computed as follows:

x̃ijk =

R1∨
r1=1

R2∨
r2=1

R3∨
r3=1

gr1r2r3air1bjr2ckr3 . (5.18)

That is, every element of G is involved with the computation of x̃ijk, and thus, flipping an
element in G can affect the entire X̃. However, we observe that the value of gr1r2r3 does
not affect the product gr1r2r3air1bjr2ckr3 if air1bjr2ckr3 is 0. Therefore, only those (i, j, k)s for
which air1bjr2ckr3 6= 0 are considered in DBTF-TK and BTucker_ALS. We also notice that,

102

as a result of Boolean sum, if there exists some (r1, r2, r3) such that gr1r2r3air1bjr2ckr3 = 1,
then x̃ijk = 1 regardless of values of other elements in G.

Based on these observations, both methods compute the partial gain of flipping the
(r1, r2, r3)-th element for which there exists some (i, j, k) such that air1bjr2ckr3 = 1, and
update those elements having a positive gain.

• If gr1r2r3 and x̃ijk are both 0, then there exists no (α, β, γ) 6= (r1, r2, r3) such that
gαβγaiαbjβckγ = 1. If xijk = 1 in this case, setting gr1r2r3 to 1 results in a partial gain,
since gr1r2r3air1bjr2ckr3 becomes 1, and x̃ijk = xijk = 1.

• If gr1r2r3 is 1, x̃ijk is guaranteed to be 1. However, flipping gr1r2r3 back to 0 does not
necessarily lead to a partial gain since there might be other (α, β, γ) 6= (r1, r2, r3)
such that gαβγaiαbjβckγ = 1. So in this case, under the condition that no such (α, β, γ)
exists and xijk is 0, setting gr1r2r3 to 0 leads to a partial gain.

We further reduce the amount of computation by utilizing vectors sI , sJ , and sK , which
contain the rowwise sum of entries in factor matrices A,B, and C that are in those
columns selected by entries in G. Let us assume that air1bjr2ckr3 = 1 for some (i, j, k)
and (r1, r2, r3). First, when gr1r2r3 = 0 and xijk = 1, we need to know whether x̃ijk is
0 or not in order to compute the partial gain. We observe that x̃ijk = 0 if at least one
of sI(i), sJ(j), and sK(k) is zero, since when this condition is satisfied, aiαbjβckγ = 0 for
any (α, β, γ) in G. Second, if gr1r2r3 = 1, x̃ijk is equal to 1. When xijk = 1 in this case, in
order to compute the partial gain, we need to know whether there exists some (α, β, γ) 6=
(r1, r2, r3) that also contributes to x̃ijk = 1. We note that if all of sI(i), sJ(j), and sK(k)
are equal to one, then gr1r2r3 is the only element in G that turns on x̃ijk, since otherwise,
there exists at least one other element in G also contributing to x̃ijk, which is impossible
given that sI(i) = sJ(j) = sK(k) = 1. In both cases, vectors sI , sJ , and sK help us avoid
visiting elements in G repeatedly, and enable DBTF-TK to skip the current (i, j, k) and
the following ones for which no partial gain can be obtained.

While the above ideas allow the update of a core tensor G, updating G in a distributed
environment poses a challenge of how to distribute the workload among machines,
which we describe in Section 5.4.5.2.

5.4.3 Distributed Generation and Minimal Transfer of Intermediate
Data

The first challenge for performing Boolean tensor factorization in a distributed manner is
how to generate and distribute the intermediate data efficiently. In particular, updating a
factor matrix involves the following types of intermediate data: (1) a Khatri-Rao product
of two factor matrices (e.g., (C�B)>), (2) a Kronecker product of two factor matrices
(e.g., (C⊗B)>), and (3) an unfolded tensor (e.g., X(1)).

Khatri-Rao and Kronecker Products. A naive method for processing the Khatri-Rao
and Kronecker products is to construct the entire product first, and then distribute its
partitions across machines. While Boolean factors are known to be sparser than the

103

normal counterparts with real-valued entries [MM15], performing the entire Khatri-
Rao or Kronecker product is still an expensive operation. Also, since one of the two
matrices involved in the product is always updated in the previous update procedure
(Algorithms 5.1 and 5.2), prior Khatri-Rao or Kronecker products cannot be reused. Our
idea is to distribute only the factor matrices, and then let each machine generate the
part of the product it needs, which is possible according to the definition of Khatri-Rao
product,

A�B =


a11b:1 a12b:2 · · · a1Rb:R

a21b:1 a22b:2 · · · a2Rb:R
...

...
aI1b:1 aI2b:2 · · · aIRb:R

 , (5.19)

and that of Kronecker product (Equation (5.2)). We notice from Equations (5.2) and (5.19)
that a specific range of rows of Khatri-Rao or Kronecker product can be constructed if
we have the two factor matrices and the corresponding range of row indices. With this
change, we only need to broadcast relatively small factor matrices A, B, and C along
with the index ranges assigned for each machine without having to materialize the entire
product.

Unfolded Tensor. While the Khatri-Rao or Kronecker products are computed iteratively,
matricizations of an input tensor need to be performed only once. However, in contrast
to the Khatri-Rao and Kronecker products, we cannot avoid shuffling the entire unfolded
tensor as we have no characteristics to exploit as in the case of Khatri-Rao or Kronecker
product. Furthermore, unfolded tensors take up the largest space during the execution of
DBTF. In particular, its row dimension quickly becomes very large as the sizes of factor
matrices increase. Therefore, we partition the unfolded tensors in the beginning and do
not shuffle them afterwards. We do vertical partitioning of the Khatri-Rao and Kronecker
products and unfolded tensors as shown in Figure 5.3 (see Section 5.4.5 for more details
on the partitioning of unfolded tensors).

5.4.4 Exploiting the Characteristics of Boolean Operation and Boolean
Tensor Factorization

The second and the most important challenge for efficient and scalable Boolean tensor
factorization is how to minimize the number of operations for updating factor matrices.
In this subsection, we describe the problem in detail and present our solution.

5.4.4.1 Problem
Given our procedure to update factor matrices (Section 5.4.1), the two most frequently
performed tasks are (1) computing the Boolean sums of selected rows of (C�B)> (CP
factorization) or (C⊗B)> (Tucker factorization), and (2) comparing the resulting row
with the corresponding row of X(1). Assuming that all factor matrices are of the same
size, I-by-R, the first task takesO(RI2) orO(R2I2) time (for CP and Tucker factorizations,
respectively), and the second task takes O(I2) time. Since we compute the errors for both
cases of when each factor matrix entry is set to 0 and 1, each task needs to be performed

104

⊠

" ∈ $%×'

()⊙+)-∈ $'×./
0

1

(c3: ⊙ +)- (c5: ⊙ +)- (c.: ⊙ +)-

(c6: ⊙ +)-

⋯

863
865

86'
⋮

:;3 ∧
:;5 ∧

:;' ∧
⋮

∧
∧

∧

b:3-
b:5-

b:'-
⋮

⋯

Cache
separately
for large 1

Combinations of row summations
from +- are cached in a table

a;: ∧ c6: determines
the rows for
Boolean summation

Computing Boolean summations of the rows in (c6: ⊙ +)- selected by ?;:
Figure 5.4: DBTF-CP reduces intermediate operations by exploiting the characteristics of
Boolean CP factorization. Blue rectangles in (C �B)> correspond to K vector-matrix
Khatri-Rao products, among which (cj:�B)> is shown in detail. B> is the target for row
summation. A Boolean vector ai: ∧ cj: determines which rows in B> are to be summed
to compute the row summation of (cj: �B)>. Combinations of the row summations of
B> are cached. For large R, rows of B> are split into multiple, smaller groups, each of
which is cached separately.

2RI times to update a factor matrix of size I-by-R; then, updating all three factor matrices
for T iterations performs each task 6TRI times in total. Due to high computational costs
and a large number of repetitions, it is crucial to minimize the number of intermediate
operations involved with these tasks.

5.4.4.2 Our Solution
Overview. We start with the following observations:

• By Lemma 5.1, DBTF computes the Boolean sum of selected rows of (C � B)>

(DBTF-CP), or (C⊗B)> (DBTF-TK). This amounts to performing a specific set of
operations repeatedly, which we describe below.

• Khatri-Rao and Kronecker products can be expressed by vector-matrix (VM) Khatri-
Rao and Kronecker products, respectively (Equations (5.3) and (5.5)).

• Given factor matrices of size I-by-R, there are 2R and 2R
2 combinations of selecting

rows from (C�B)> ∈ BR×I2 and (C⊗B)> ∈ BR2×I2 , respectively.

Our main idea is to exploit the characteristics of Boolean operation and Boolean ten-
sor factorization as summarized in the above observations to reduce the number of

105

(c#: ⊗ &)((c): ⊗ &)(⊠

+ ∈ -.×01

(2⊗ &)(∈ -0304×56

7

⊠

8(9) ∈ -
01×0304

+⊠ 8(9) ∈ -
.×0304

7

(c5: ⊗ &)(⋯ ⋯

[+⊠ 8 9]=#

[+⊠ 8 9]=04

⋮ c?# ∧

c?) ∧

⋮

c?03 ∧

&(

&(

&(

⋮

∧

∧

[+⊠ 8 9]=()04)

[+⊠ 8 9]=((03A#)04)
[+⊠ 8 9]=((03A#)04B#) ∧

[+⊠ 8 9]=(0304) ∧
⋮

[+⊠ 8 9]=()04B#)

[+⊠ 8 9]=(04B#)
⋮

⋮

∧

∧

∧

∧

=
b:)

(
b:#

(

⋮⋮

k ∈ -04 determines the rows for Boolean
summation where
k = ⋁GH#

0I J?G ∧ [+⊠ 8 9]=(GA# 04B#:G04)

K# ∧

K) ∧

K04 ∧

Cache
separately
for large L)

Combinations of row summations
from &(are cached in a table

b:04
(

(c?: ⊗ &)(

⋮

⋮

⋮

⋮

Computing Boolean summations of the rows in (c?: ⊗ &)(selected by [+⊠ 8 9]=:

Figure 5.5: DBTF-TK reduces intermediate operations by exploiting the characteristics of
Boolean Tucker factorization. Blue rectangles in (C⊗B)> correspond to K vector-matrix
Kronecker products, among which (cj: ⊗B)> is shown in detail. B> is the target for row
summation. A Boolean vector k =

∨R3

m=1 cjm∧ [A�G(1)]i((m−1)R2+1:mR2) determines which
rows in B> are to be summed to compute the row summation of (cj:⊗B)>. Combinations
of the row summations of B> are cached. For large R2, rows of B> are split into multiple,
smaller groups, each of which is cached separately.

intermediate steps to perform Boolean row summations. Figures 5.4 and 5.5 present an
overview of our idea for Boolean CP and Tucker factorizations. We note that according
to Equation (5.4),

(C�B)> = [(c1: �B)> (c2: �B)> · · · (cK: �B)>].

Similarly, we notice that by Equation (5.2),

(C⊗B)> = [(c1: ⊗B)> (c2: ⊗B)> · · · (cK: ⊗B)>].

Blue rectangles in (C � B)> and (C ⊗ B)> (Figures 5.4 and 5.5) correspond to K VM
Khatri-Rao products, [(c1:�B)>, . . . , (cK:�B)>], and K VM Kronecker products, [(c1:⊗
B)>, . . . , (cK: ⊗ B)>], respectively. Since a row of (C � B)> or (C ⊗ B)> is made up
of a sequence of K corresponding rows of VM Khatri-Rao or VM Kronecker products,
the Boolean sum of the selected rows of (C � B)> or (C ⊗ B)> can be constructed by
summing up the same set of rows in each VM Khatri-Rao or VM Kronecker product, and
concatenating the resulting rows into a single row.

106

Selecting Rows of B> in DBTF-CP. Assuming that the row ai: is being updated as in
Figure 5.4, we observe that computing Boolean row summations of each (cj: � B)>

amounts to summing up the rows in B> that are selected by the next two conditions.
First, we choose all those rows of B> whose corresponding entries in cj: are 1. Since all
other rows are empty vectors by the definition of Khatri-Rao product (Equation (5.4)),
they can be ignored in computing Boolean row summations. Second, we pick the set
of rows from each (cj: �B)> selected by the value of row ai: as they are the targets of
Boolean summation. Therefore, the value of Boolean AND (∧) between the rows ai: and
cj: determines which rows are to be used for the row summation of (cj: �B)>.

Selecting Rows of B> in DBTF-TK. Assuming that the row ai: is being updated, we
can compute Boolean row summations of each (cj: ⊗ B)> by employing an approach
similar to that used for Boolean CP factorization, which is to sum up those rows in
[B B . . . B]> ∈ BR3R2×J that are selected by the non-zeros of [A �G(1)]i: and cj:, as
depicted in Figure 5.5. While straightforward, this approach is not efficient as in Boolean
CP factorization as the number of rows of the intermediate (cj: ⊗B)> is R3 times that
of (cj: �B)>. Furthermore, we observe in Figure 5.5 that B> is repeatedly involved in
constructing (cj: ⊗ B)>; therefore, if we know which rows of B> are to be selected by
[A �G(1)]i: and cj:, we can obtain the Boolean row summation immediately from B>,
without going over B> R3 times. Among the rows of the m-th B> in Figure 5.5, which
rows are to be summed is determined by the value of Boolean AND (∧) between cjm and
[A�G(1)]i((m−1)R2+1:mR2). Thus, the Boolean OR (∨) of all these Boolean ANDs determines
which rows need to be summed together to obtain the Boolean row summation for
(cj: ⊗B)>.

Caching. In computing a row summation of (C�B)> or (C⊗B)>, we repeatedly sum a
subset of rows in B> selected by the aforementioned conditions for each VM Khatri-Rao
or Kronecker product. Then, if we can reuse row summation results, we can avoid
summing up the same set of rows again and again. DBTF precalculates combinations of
row summations of B> and caches the results in a table in memory. This table maps a
specific subset of selected rows in B> to its Boolean summation result. In summary, we
use the followings as a key to this cache table:

• ai: ∧ cj: for Boolean CP factorization
•
∨R3

m=1 cjm ∧ [A�G(1)]i((m−1)R2+1:mR2) for Boolean Tucker factorization

An issue related to this approach is that the space required for the table increases expo-
nentially with the rank size. Thus, when R becomes larger than a threshold value V , we
divide rows evenly into dR/V e smaller groups, construct smaller tables for each group,
and then perform additional Boolean summation of rows that we obtain from the smaller
tables.

Lemma 5.2. Number of Cache Tables:
Given R and V , the number of required cache tables is dR/V e, and each table is of size
2dR/dR/V ee.

107

For instance, when the rank R is 18 and V is set to 10, we create two tables of size 29, the
first one storing possible summations of b:1

>, . . . ,b>:9, and the second one storing those of
b:10

>, . . . ,b>:18. This provides a good trade-off between space and time: While it requires
additional computations for row summations, it reduces the amount of memory used for
the tables, and also the time to construct them, which also increases exponentially with
R.

In addition to the cache table containing the row summation results of B>, we build
another cache table for Boolean Tucker factorization, which maps a set of rows of an
unfolded core tensor (e.g., G(1)) to its Boolean summation result. Note that, in contrast
to the case of Boolean CP factorization, the row ai: is not directly used for computing
a cache key in Boolean Tucker factorization. Instead, ai: determines the set of rows of
G(1) that are to be summed, and the resulting row summation, ai: �G(1), is then used for
constructing the cache key. In order to avoid summing up the same set of rows in G(1)

repeatedly, DBTF-TK also precomputes the combinations of row summations of G(1) and
stores them in an in-memory table. For large R, this additional table is also split into
smaller ones in the same way as discussed above.

Note that the benefit of caching depends on a few factors such as the density of factors and
a core tensor, the threshold value V , and the upper bound on the maximum percentage
of zeros in columns of a factor matrix (Section 5.4.1). When factors and a core tensor
are updated to be sparse, it is advisable to limit V to some small values such that we
calculate combinations in a small amount of time, while avoiding computing too many
combinations that are less likely to be used. When factorizing a dense tensor, it is
recommended to try a higher value for V to benefit more from caching.

5.4.5 Careful Partitioning of the Workload
The third challenge is how to partition the workload effectively. A partition is a unit
of workload distributed across machines. Partitioning is important since it determines
the level of parallelism and the amount of shuffled data. Our goal is to fully utilize the
available computing resources, while minimizing the amount of network traffic. In the
following subsections, we describe how DBTF-CP and DBTF-TK partition unfolded ten-
sors (Section 5.4.5.1), and how DBTF-TK partitions an input tensor (Section 5.4.5.2).

5.4.5.1 Unfolded Tensors
As introduced in Section 5.4.3, DBTF partitions the unfolded tensor vertically: A single
partition covers a range of consecutive columns. The main reason for choosing vertical
partitioning instead of horizontal one is because with vertical partitioning, each partition
can perform Boolean summations of the rows assigned to it and compute their errors
independently, with no need of communications between partitions. On the other hand,
with horizontal partitioning, each partition needs to communicate with others to be
able to compute the Boolean row summations. Furthermore, horizontal partitioning
splits the dimensionality I , which is usually smaller than the product of dimensionalities
KJ . Thus, the maximum number of partitions supported by horizontal partitioning

108

𝒑𝟏 𝒑𝟐 𝒑𝑵

𝑿(') ∈ 𝔹+×-.

(𝟏)⋯ ⋯(𝟐) (𝟑) (𝟒)

(c(34'): ⊙ 𝑩)8 (c3: ⊙ 𝑩)8 (c(39'): ⊙ 𝑩)8

⋯ ⋯

𝒑𝒍

(c(34'): ⊗ 𝑩)8 (c3: ⊗ 𝑩)8 (c(39'): ⊗ 𝑩)8

(CP)

(Tucker)
or

Figure 5.6: An overview of partitioning. DBTF partitions the unfolded input tensor
vertically into a total of N partitions p1, p2, . . . , pN , among which the l-th partition pl is
shown in detail. A partition is further divided into “blocks” (rectangles in dashed lines)
by the vertical boundaries between the underlying vector-matrix (VM) Khatri-Rao (CP
factorization) or VM Kronecker (Tucker factorization) products, which correspond to
blue rectangles. Numbers in pl refer to the types of blocks a partition can be split into.

is normally smaller than that by vertical partitioning, which could lower the level of
parallelism.

Since the workloads are vertically partitioned, each partition computes an error only for
the vertically split part of the row distributed to it. Therefore, errors from all partitions
should be considered together to make the decision of whether to update an entry to 0 or
1. DBTF collects from all partitions the errors for the entries in the column being updated
and sets each one to the value with the smallest error.

DBTF further splits the vertical partitions of an unfolded tensor in a computation-
friendly manner. By “computation-friendly,” we mean structuring the partitions in such
a way that facilitates an efficient computation of row summation results as discussed in
Section 5.4.4. This is crucial since the number of operations performed directly affects
the performance of DBTF. The target for row summation in DBTF is B> as shown in
Figures 5.4 and 5.5. However, the horizontal length of each partition is not always the
same as or a multiple of that of B>. Depending on the number of partitions, and the
size of C and B, a partition may cross the vertical boundaries of multiple VM Khatri-
Rao or Kronecker products, or may be shorter than one VM Khatri-Rao or Kronecker
product.

Figure 5.6 presents an overview of our idea for computation-friendly partitioning in
DBTF. DBTF partitions the unfolded input tensor into a total of N partitions p1, p2,

109

..., pN , among which the l-th partition pl is shown in detail. A partition is further
divided into “blocks” (rectangles in dashed lines) by the vertical boundaries between the
underlying Khatri-Rao (CP factorization) or Kronecker (Tucker factorization) products,
which correspond to blue rectangles. Numbers in pl refer to the types of blocks a partition
can be split into. Since the target for row summation is B>, with this organization, each
block of a partition can efficiently obtain its row summation results.

Lemma 5.3. Block Types of a Partition:
A partition can have at most three types of blocks.

Proof. There are four different types of blocks—(1), (2), (3), and (4)—as shown in Fig-
ure 5.6. If the horizontal length of a partition is smaller than or equal to that of a single
Khatri-Rao or Kronecker product, it can consist of up to two blocks. When the partition
does not cross the vertical boundary between Khatri-Rao or Kronecker products, it con-
sists of a single block, which corresponds to one of the four types (1), (2), (3), and (4). On
the other hand, when the partition crosses the vertical boundary between products, it
consists of two blocks of types (2) and (4).

If the horizontal length of a partition is larger than that of a single Khatri-Rao or Kro-
necker product, multiple blocks comprise the partition: Possible combinations of blocks
are (2)+(3)*+(4), (3)++(4)?, and (2)?+(3)+ where the star (*) superscript denotes that the
preceding type is repeated zero or more times, the plus (+) superscript denotes that the
preceding type is repeated one or more times, and the question mark (?) superscript
denotes that the preceding type is repeated zero or one time. Thus, in all cases, a partition
can have at most three types of blocks. �

An issue with respect to the use of caching is that the horizontal length of blocks of types
(1), (2), and (4) is smaller than that of a single Khatri-Rao or Kronecker product. If a
partition has such blocks, we compute additional cache tables for the smaller blocks from
the full-size one so that these blocks can also exploit caching. By Lemma 5.3, at most
two smaller tables need to be computed for each partition, and each one can be built
efficiently as constructing it requires only a single pass over the full-size cache.

Partitioning is a one-off task in DBTF. DBTF constructs these partitions in the beginning
and caches the entire partitions for efficiency.

5.4.5.2 Input Tensor
DBTF-TK updates a core tensor G at each iteration (Algorithm 5.2). In DBTF-TK, an input
tensor X is necessary for updating G: As described in Section 5.4.2, the way DBTF-TK
updates an element gr1r2r3 of a core tensor requires accessing an input tensor element xijk
for all i, j, and k for which air1bjr2ckr3 = 1.

For distributed computation, the workload of updating a core tensor G needs to be
partitioned across the cluster. Considering that G is updated entry by entry in DBTF-TK,
and updating each element of G requires accessing an input tensor X entry by entry,

110

we take into account two different workload partitioning approaches: (1) partitioning
the core tensor G and (2) partitioning the input tensor X. Partitioning the core tensor
indicates that entries in different partitions of G are updated concurrently. However,
in DBTF-TK, updating an entry (α, β, γ) in G involves accessing (α′, β′, γ′) 6= (α, β, γ).
As each partition updates a different part of G, different partitions may have different
views of G, which would result in an incorrect update. Thus, it is not possible to update
different entries in G concurrently. By partitioning the input tensor, on the other hand,
only one entry of G is updated at a time, while entries in different partitions of an input
tensor X are processed in parallel. In this way, all partitions share the global view of the
core tensor, and each partition computes the partial gain that can be obtained by flipping
an entry (α, β, γ) in G with regard to the entries of an input tensor assigned to it.

DBTF-TK partitions the input tensor X into a total of N non-overlapping subtensors
pX1, pX1, . . . , pXN such that they satisfy the following conditions:

1. pXt is associated with three ranges, It, Jt, and Kt, such that |Ii| × |Ji| × |Ki| ≈
|Ij| × |Jj| × |Kj| for all i, j ∈ [1 .. N].

2. pXt contains all xijk ∈ X for i ∈ It, j ∈ Jt, and k ∈ Kt.
3.
⋃N
t=1 pXt = X, and pXi ∩ pXj = ∅ for all i, j ∈ [1 .. N] (i 6= j).

With the input tensor partitioned as above, the parallel updates of a core tensor G in N
partitions are synchronized on the update of each entry in G.

5.4.6 Putting Things Together
In this section, we present algorithms for DBTF and provide a brief description of their
relationships: DBTF-CP is given in Algorithms 5.3 to 5.7, and DBTF-TK is presented in
Algorithms 5.4 and 5.6 to 5.11. The “distributed” keyword in the algorithm indicates
that the marked section is performed in a fully distributed manner. We also briefly
summarize what data are transferred across the network.

5.4.6.1 Partitioning
DBTF-CP and DBTF-TK first partition the unfolded input tensors (lines 1–3 in Algo-
rithms 5.3 and 5.8): Each unfolded tensor is vertically partitioned and then cached
across machines (Algorithm 5.4). In addition to the unfolded input tensor, DBTF-TK also
partitions and caches the input tensor (Algorithm 5.9).

5.4.6.2 Updating Factor Matrices and a Core Tensor
DBTF-CP and DBTF-TK initialize L sets of factor matrices (line 6 in Algorithm 5.3 and
line 7 in Algorithm 5.8, respectively). Instead of initializing a single set of factor matrices,
DBTF allows initializing multiple sets as better initial factor matrices could lead to more
accurate factorization. DBTF-CP updates all of them in the first iteration and runs the
following iterations with the factor matrices that obtained the smallest error (lines 7–8 in
Algorithm 5.3). After initializing factor matrices, DBTF-TK also prepares core tensors for
each set of factor matrices (line 9 in Algorithm 5.8) and finds the set of factor matrices

111

Algorithm 5.3: DBTF-CP Algorithm
Input: a three-way binary tensor X ∈ BI×J×K , rank R, the maximum number of

iterations T , the number of sets of initial factor matrices L, the number of
partitions N , and a threshold value V to limit the size of a single cache table.

Output: binary factor matrices A ∈ BI×R, B ∈ BJ×R, and C ∈ BK×R.
1 pX(1) ← PartitionUnfoldedTensor(X(1), N)

2 pX(2) ← PartitionUnfoldedTensor(X(2), N)

3 pX(3) ← PartitionUnfoldedTensor(X(3), N)

4 for t← 1, . . . , T do
5 if t = 1 then
6 initialize L sets of factor matrices (A1,B1,C1), . . . , (AL,BL,CL) randomly

where Ai ∈ BI×R,Bi ∈ BJ×R, and Ci ∈ BK×R for i = 1, 2, . . . , L
7 apply UpdateFactors to each set, and find the set smin with the smallest error
8 (A,B,C)← smin
9 else

10 (A,B,C)← UpdateFactors(A,B,C)

11 if converged then
12 break out of for loop

13 return A, B, C

14 Function UpdateFactors(A,B,C)
/* minimize

∣∣X(1) −A� (C�B)>
∣∣ */

15 A← UpdateFactorCP(pX(1),A,C,B, V)

/* minimize
∣∣X(2) −B� (C�A)>

∣∣ */

16 B← UpdateFactorCP(pX(2),B,C,A, V)

/* minimize
∣∣X(3) −C� (B�A)>

∣∣ */

17 C← UpdateFactorCP(pX(3),C,B,A, V)

18 return A,B,C

Algorithm 5.4: PartitionUnfoldedTensor
Input: an unfolded binary tensor X ∈ BP×Q, and the number of partitions N .
Output: a partitioned unfolded tensor pX ∈ BP×Q.

1 distributed (D): split X into non-overlapping partitions p1, p2, . . . , pN such that

[p1 p2 . . . pN] ∈ BP×Q, and ∀i ∈ {1, ..., N}, pi ∈ BP×H where
⌊
Q
N

⌋
≤ H ≤

⌈
Q
N

⌉
2 pX← [p1 p2 . . . pN]
3 D: foreach p′ ∈ pX do
4 further split p′ into a set of blocks divided by the boundaries of underlying pointwise

vector-matrix products as depicted in Figure 5.6 (see Section 5.4.5)

5 D: cache pX across machines
6 return pX

112

and a core tensor with the smallest error (lines 10–11 in Algorithm 5.8). In each iteration,
factor matrices are updated one at a time, while the other two are fixed (lines 15–17 in
Algorithm 5.3 and lines 19–21 in Algorithm 5.8). In DBTF-TK, the core tensor is also
updated before factor matrices are updated (line 13 in Algorithm 5.8).

Updating a Factor Matrix. The procedures for updating a factor matrix are shown in Al-
gorithm 5.5 (DBTF-CP) and Algorithm 5.10 (DBTF-TK). Note that their core operations—
computing a Boolean row summation and its error—are performed in a fully distributed
manner (lines 7–9 in Algorithm 5.5, and lines 7–11 in Algorithm 5.10). DBTF caches
combinations of Boolean row summations of a factor matrix (Algorithm 5.6) at the be-
ginning of UpdateFactorCP and UpdateFactorTK to avoid repeatedly computing
them. DBTF-TK additionally caches the combinations of row summation results of an
unfolded core tensor (line 2 in Algorithm 5.10). DBTF-CP and DBTF-TK fetch the cached
Boolean summation results in an almost identical manner, except that they use different
cache keys (line 7 in Algorithm 5.5, and line 9 in Algorithm 5.10). DBTF collects errors
computed across machines and updates the current column DBTF is visiting (lines 10–14
in Algorithm 5.5, and lines 12–16 in Algorithm 5.10). Boolean factors are repeatedly
updated until convergence, that is, until the reconstruction error does not decrease
significantly, or a maximum number of iterations has been reached.

Updating a Core Tensor. The procedure for updating a core tensor is given in Algo-
rithm 5.11. DBTF-TK computes the partial gain of flipping an element of a core tensor
G in a fully distributed fashion (lines 4–25 in Algorithm 5.11) and determines its value
using the sum of collected gains (lines 26–27 in Algorithm 5.11).

5.4.6.3 Network Transfer
In DBTF-CP and DBTF-TK, the following data are sent to each machine: Partitions
of unfolded tensors are distributed across machines once in the beginning, and factor
matrices A,B, and C are broadcast to each machine at each iteration. DBTF-TK sends
out further data: Partitions of an input tensor are distributed once in the beginning, a
core tensor is transferred when factor matrices are updated, and the rowwise sum of
entries in factor matrices is distributed when a core tensor is updated.

In both DBTF-CP and DBTF-TK, machines send intermediate errors back to the driver
node for the update of columns of a factor matrix. In DBTF-TK, each machine additionally
sends the partial gain back to the driver node in order to update a core tensor.

5.4.7 Implementation
In this section, we discuss practical issues pertaining to the implementation of DBTF
on Spark. We use sparse representation for tensors and matrices, storing only non-zero
elements, except for those factor matrices to which we apply Boolean AND operation
to compute a cache key, which we represent as an array of BitSet. An input tensor is
loaded as an RDD (Resilient Distributed Datasets) [ZCD+12], and unfolded using RDD’s
map function. We apply map and combineByKey operations to unfolded tensors for
partitioning: map transforms an unfolded tensor into a pair RDD whose key is a partition

113

Algorithm 5.5: UpdateFactorCP
Input: a partitioned unfolded tensor pX ∈ BP×QS , factor matrices A ∈ BP×R (factor

matrix to update), Mf ∈ BQ×R (first matrix for the Khatri-Rao product), and
Ms ∈ BS×R (second matrix for the Khatri-Rao product), a threshold value V to
limit the size of a single cache table, and the maximum percentage Z of zeros in
the column being updated.

Output: an updated factor matrix A.
1 AugmentPartitionWithRowSummations(pX, Ms, V)
/* iterate over columns and rows of A */

2 for column iter c← 1 . . . R do
3 for row r ← 1 . . . P do
4 for arc ← 0, 1 do
5 distributed: foreach partition p′ ∈ pX do
6 foreach block b ∈ p′ do
7 compute the cache key k← ar: ∧ [Mf]i: where i is the row index of

Mf such that block b is within the vertical boundaries of underlying
([Mf]i: �Ms)

>

8 v← using k, fetch the cached Boolean row summation that
corresponds to ar: � ([Mf]i: �Ms)

>

9 compute the error between the fetched row v and the corresponding
part of pxr:

10 collect errors for the entries of column a:c from all blocks (for both cases of when each
entry is set to 0 and 1)

11 for row r ← 1 . . . P do /* update a:c */
12 update arc to the value that yields a smaller error (i.e.,

∣∣xr: − ar: � (Mf �Ms)
>∣∣)

13 if the percentage of zeros in a:c > Z then
14 find new values for a subset of rows which will make a:c to obey Z with the

smallest increase in error, and update those rows accordingly.

15 return A

Algorithm 5.6: AugmentPartitionWithRowSummations
Input: a partitioned unfolded tensor pX ∈ BP×QS , a matrix for caching Mc ∈ BS×R, and

a threshold value V to limit the size of a single cache table.
1 distributed: foreach partition p′ ∈ pX do
2 Ti ← GenerateRowSummations(Mc, V)
3 foreach block b ∈ p′ do
4 if block b is of the type (1), (2), or (4) as shown in Figure 5.6, vertically slice Ti

such that the sliced one corresponds to block b
5 cache (the sliced) Ti if not cached, and augment partition p′ with it

114

Algorithm 5.7: GenerateRowSummations
Input: a matrix for caching Mc ∈ BS×R, and a threshold value V to limit the size of a

single cache table.
Output: a table Tm that contains mappings from a set of rows in Mc to its summation

result
1 Tm ← all combinations of row summations of Mc (if S > V , divide the rows of Mc

evenly into smaller groups of rows, and generate combinations of row summations from
each one separately)

2 return Tm

ID; combineByKey groups non-zeros by partition ID and organizes them into blocks. In
Tucker factorization, we similarly use map and groupByKey operations, to divide the input
tensor RDD into partitions, in which non-zeros are organized as a set, since DBTF-TK
queries the existence of tensor entries in updating the core tensor. Partitioned unfolded
tensor RDDs and the input tensor RDD are then persisted in memory. We create a pair
RDD containing combinations of row summations, which is keyed by partition ID and
joined with the partitioned unfolded tensor RDD. This joined RDD is processed in a
distributed manner using mapPartitions operation. In obtaining the key to the table for
row summations, we use bitwise AND operation for efficiency. At the end of column-
wise iteration, a driver node collects errors computed from each partition to update
columns. DBTF-TK updates the core tensor entry by entry. In each iteration, executors
process the partitioned input tensor in parallel using foreachPartition operation, computes
the partial gains of flipping the current core tensor entry, and aggregates them using an
accumulator. In order to upper bound the maximum percentage of zeros in the columns
of the factor matrix being updated, we use a priority queue in which an inverse of the
error of each candidate value (binary values assigned to the entries in each row which
belong to the column being updated) is used as a priority. While the percentage of zeros
is greater than the threshold, an element with the highest priority is popped off the
priority queue and replaces the corresponding, current value provided that it decreases
the percentage of zeros.

5.4.8 Analysis

We analyze the proposed method in terms of time complexity, memory requirement,
and the amount of shuffled data. We use the following symbols in the analysis: R (rank
or the dimension of each mode of a core tensor), M (number of machines), T (number
of maximum iterations), N (number of partitions), V (maximum number of rows for
caching, and Z (maximum percentage of zeros in the columns being updated). For the
sake of simplicity, we assume an input tensor X ∈ BI×I×I and a core tensor G ∈ BR×R×R,
and that DBTF initializes a single set of factor matrices and a core tensor. Also, based
on symbol definitions, we make simplifying assumptions that N � I , R � I , and
R2 ≤ I .

115

Algorithm 5.8: DBTF-TK Algorithm
Input: a three-way binary tensor X ∈ BI×J×K , dimensions of a core tensor R1, R2, and

R3, the maximum number of iterations T , the number of sets of initial factor
matrices L, the number of partitions N , and a threshold value V to limit the size of
a single cache table.

Output: binary factor matrices A ∈ BI×R1 , B ∈ BJ×R2 , and C ∈ BK×R3 , and a core
tensor G ∈ BR1×R2×R3 .

1 pX(1) ← PartitionUnfoldedTensor(X(1), N)

2 pX(2) ← PartitionUnfoldedTensor(X(2), N)

3 pX(3) ← PartitionUnfoldedTensor(X(3), N)

4 pX← PartitionInputTensor(X, N)
5 for t← 1, . . . , T do
6 if t = 1 then
7 initialize L sets of factor matrices (A1,B1,C1), . . . , (AL,BL,CL) randomly

where Ai ∈ BI×R1 ,Bi ∈ BJ×R2 , and Ci ∈ BK×R3 for i = 1, 2, . . . , L
8 initialize L sets of core tensors G1, . . . ,GL randomly
9 Gi ← UpdateCore(pX,Gi,Ai,Bi,Ci) for i = 1, 2, . . . , L

10 apply UpdateFactors to each set (Ai,Bi,Ci,Gi) for i = 1, 2, . . . , L, and find the
set smin with the smallest error

11 (A,B,C,G)← smin
12 else
13 G← UpdateCore(pX,G,A,B,C)
14 (A,B,C)← UpdateFactors(A,B,C,G)

15 if converged then
16 break out of for loop

17 return A,B,C,G

18 Function UpdateFactors(A,B,C,G)
/* minimize

∣∣X(1) −A�G(1) � (C⊗B)>
∣∣ */

19 A← UpdateFactorTucker(pX(1),A,C,B,G(1), V)

/* minimize
∣∣X(2) −B�G(2) � (C⊗A)>

∣∣ */

20 B← UpdateFactorTucker(pX(2),B,C,A,G(2), V)

/* minimize
∣∣X(3) −C�G(3) � (B⊗A)>

∣∣ */

21 C← UpdateFactorTucker(pX(3),C,B,A,G(3), V)

22 return A,B,C

5.4.8.1 Analysis of DBTF-CP
All proofs of the following lemmas appear in Section 5.7.

Lemma 5.4. Time Complexity of DBTF-CP:
The time complexity of DBTF-CP is O

(
TI3R

⌈
R
V

⌉
+ TN

⌈
R
V

⌉
2dR/dR/V eeI

)
.

Lemma 5.5. Memory Requirement of DBTF-CP:
The memory requirement of DBTF-CP is O(|X|+NI

⌈
R
V

⌉
2dR/dR/V ee +MRI).

116

Algorithm 5.9: PartitionInputTensor
Input: a three-way binary tensor X ∈ BI×J×K , and the number of partitions N .
Output: a partitioned input tensor pX ∈ BI×J×K .

1 distributed (D): split X into pX, which consists of non-overlapping subtensors
pX1, pX1, . . . , pXN where (1) pXt is associated with three ranges, It, Jt, and Kt, such that
|Ii| × |Ji| × |Ki| ≈ |Ij | × |Jj | × |Kj | for all i, j ∈ [1 .. N]; (2) pXt contains all xijk ∈ X for
i ∈ It, j ∈ Jt, and k ∈ Kt; and (3)

⋃N
t=1 pXt = X and pXi ∩ pXj = ∅ for all i, j ∈ [1 .. N]

(i 6= j)
2 D: cache pX across machines
3 return pX

Lemma 5.6. Shuffled Data for Partitioning in DBTF-CP:
The amount of shuffled data for partitioning an input tensor X is O(|X|).

Lemma 5.7. Shuffled Data After Partitioning in DBTF-CP:
The amount of shuffled data after the partitioning of an input tensor X isO(TRI(M+N)).

5.4.8.2 Analysis of DBTF-TK
All proofs of the following lemmas appear in Section 5.7.

Lemma 5.8. Time Complexity of DBTF-TK:
The time complexity of DBTF-TK is O

(
TI3R3 + TN

⌈
R
V

⌉
2dR/dR/V eeI

)
.

Lemma 5.9. Memory Requirement of DBTF-TK:
The memory requirement of DBTF-TK is O(|X|+ (N +M)I

⌈
R
V

⌉
2dR/dR/V ee).

Lemma 5.10. Shuffled Data for Partitioning in DBTF-TK:
The amount of shuffled data for partitioning an input tensor X is O(|X|).

Lemma 5.11. Shuffled Data After Partitioning in DBTF-TK:
The amount of shuffled data after the partitioning of an input tensor X is O(TRI(M +
N) + TR3(MI +N) + TMR2

⌈
R
V

⌉
2dR/dR/V ee).

5.5 Experiments
In this section, we experimentally evaluate our proposed method DBTF. We aim to
answer the following questions.

Q1 Data Scalability (Section 5.5.2). How well do DBTF and other methods scale up
with respect to the following aspects of an input tensor: number of non-zeros,
dimensionality, density, and rank?

Q2 Machine Scalability (Section 5.5.3). How well does DBTF scale up with respect to
the number of machines?

Q3 Reconstruction Error (Section 5.5.4). How accurately do DBTF and other methods
factorize the given tensor?

117

Algorithm 5.10: UpdateFactorTucker
Input: a partitioned unfolded tensor pX ∈ BP×QS , factor matrices A ∈ BP×R (factor

matrix to update), Mf ∈ BQ×Rf (first matrix for the Kronecker product), and
Ms ∈ BS×Rs (second matrix for the Kronecker product), an unfolded core tensor
G, a threshold value V to limit the size of a single cache table, and the maximum
percentage Z of zeros in the column being updated.

Output: an updated factor matrix A.
1 AugmentPartitionWithRowSummations(pX, Ms, V)
2 Tg ← GenerateRowSummations(G, V)
/* iterate over columns and rows of A */

3 for column iter c← 1 . . . R do
4 for row r ← 1 . . . P do
5 for arc ← 0, 1 do
6 distributed: foreach partition p′ ∈ pX do
7 g← using ar:, fetch the cached Boolean row summation from Tg that

corresponds to ar: �G
8 foreach block b ∈ p′ do
9 compute the cache key k←

∨Rf
m=1[Mf]im ∧ g((m−1)Rs+1:mRs) where i is

the row index of Mf such that block b is within the vertical
boundaries of underlying ([Mf]i: ⊗Ms)

>

10 v← using k, fetch the cached Boolean row summation that
corresponds to [ar: �G]� ([Mf]i: ⊗Ms)

>

11 compute the error between the fetched row v and the corresponding
part of pxr:

12 collect errors for the entries of columns a:c from all blocks (for both cases of when
each entry is set to 0 and 1)

13 for row r ← 1 . . . P do /* update a:c */
14 update arc to the value that yields a smaller error (i.e.,∣∣xr: − ar: �G� (Mf ⊗Ms)

>∣∣)
15 if the percentage of zeros in a:c > Z then
16 find new values for a subset of rows which will make a:c to obey Z with the

smallest increase in error, and update those rows accordingly.

17 return A

We introduce the datasets, baselines, and experimental environment in Section 5.5.1.
After that, we answer the above questions in Sections 5.5.2 to 5.5.4.

5.5.1 Experimental Settings

5.5.1.1 Datasets
We use both real-world and synthetic tensors to evaluate the proposed method. The
tensors used in experiments are listed in Table 5.3. For real-world tensors, we use

118

Algorithm 5.11: UpdateCore
Input: a partitioned input tensor pX ∈ BI×J×K , a core tensor G ∈ BR1×R2×R3 , and factor

matrices A ∈ BI×R1 , B ∈ BJ×R2 , and C ∈ BK×R3 .
Output: an updated core tensor G.

1 for (r1, r2, r3) ∈ [1 .. R1]× [1 .. R2]× [1 .. R3] do
2 gain← 0
3 sI , sJ , sK ← rowwise sum of entries in A,B, and C

that are in those columns selected by entries in G

4 distributed: foreach subtensor pXt ∈ pX do
5 It, Jt,Kt ← three ranges associated with pXt

6 if gr1r2r3 = 0 then
7 foreach i ∈ It such that air1 = 1 do
8 cI ← sI(i) = 0
9 foreach j ∈ Jt such that bjr2 = 1 do

10 cIJ ← cI or sJ(j) = 0
11 foreach k ∈ Kt such that ckr3 = 1 do
12 cIJK ← cIJ or sK(k) = 0
13 if cIJK and pxijk = 1 then
14 gain← gain+ 1
15 break out of all foreach loops

16 else
17 foreach i ∈ It such that air1 = 1 do
18 if sI(i) 6= 1 then continue
19 foreach j ∈ Jt such that bjr2 = 1 do
20 if sJ(j) 6= 1 then continue
21 foreach k ∈ Kt such that ckr3 = 1 do
22 if sK(k) 6= 1 then continue
23 if pxijk = 0 then
24 gain← gain+ 1
25 break out of all foreach loops

26 if gain > 0 then
27 gr1r2r3 ← 1− gr1r2r3

28 return G

Facebook, DBLP, CAIDA-DDoS-S, CAIDA-DDoS-L, NELL-S, and NELL-L. Facebook1

is temporal relationship data between users. DBLP2 is a record of DBLP publications.
CAIDA-DDoS3 datasets are traces of network attack traffic. NELL datasets are knowledge

1http://socialnetworks.mpi-sws.org/data-wosn2009.html
2http://www.informatik.uni-trier.de/~ley/db/
3http://www.caida.org/data/passive/ddos-20070804_dataset.xml

119

http://socialnetworks.mpi-sws.org/data-wosn2009.html
http://www.informatik.uni-trier.de/~ley/db/
http://www.caida.org/data/passive/ddos-20070804_dataset.xml

Table 5.3: Summary of real-world and synthetic tensors used for experiments. B: billion,
M: million, K: thousand.

Name I J K Non-Zeros

Facebook 64K 64K 870 1.5M
DBLP 418K 3.5K 50 1.3M

CAIDA-DDoS-S 9K 9K 4K 22M
CAIDA-DDoS-L 9K 9K 393K 331M

NELL-S 15K 15K 29K 77M
NELL-L 112K 112K 213K 18M

Synthetic-scalability 26∼213 26∼213 26∼213 26K∼5.5B
Synthetic-CP-error 100 100 100 6.5K∼240K
Synthetic-TK-error 100 100 100 1.5K∼45K

base tensors. S (small) and L (large) suffixes indicate the relative size of the dataset.

We prepare two different sets of synthetic tensors, one for scalability tests and another
for reconstruction error tests. For scalability tests, we generate random tensors, varying
the following aspects: (1) dimensionality and (2) density. We vary one aspect while
fixing others to see how scalable DBTF and other methods are with respect to a particular
aspect. For reconstruction error tests, we generate three random factor matrices, construct
a noise-free tensor from them, and then add noise to this tensor, while varying the
following aspects: (1) factor matrix density, (2) rank, (3) additive noise level, and (4)
destructive noise level. When we vary one aspect, others are fixed. The amount of noise
is determined by the number of 1’s in the noise-free tensor. For example, 10% additive
noise indicates that we add 10% more 1’s to the noise-free tensor, and 5% destructive
noise means that we delete 5% of the 1’s from the noise-free tensor.

5.5.1.2 Baselines
In experiments for Boolean CP factorization, we compare DBTF-CP with Walk’n’Merge [EM13b]
and BCP_ALS [Mie11]. We also implemented an algorithm for Boolean CP decompo-
sition of three-way binary data presented in [BGV13], but found its results to be much
worse than Walk’n’Merge and BCP_ALS (e.g., it takes three orders of magnitude more
time than BCP_ALS and Walk’n’Merge for a tensor of size I=J=K=27). So we omit re-
porting its results for the sake of clarity. In experiments for Boolean Tucker factorization,
we compare DBTF-TK with Walk’n’Merge [EM13b] and BTucker_ALS [Mie11].

5.5.1.3 Environment
DBTF is implemented on the Apache Spark framework. We run experiments on a cluster
with 17 machines, each of which is equipped with an Intel Xeon E3-1240v5 CPU (quad-
core with hyper-threading at 3.50GHz) and 32GB RAM. The cluster runs Apache Spark
v2.2.0, and consists of a driver node and 16 worker nodes. In the experiments for DBTF,
we use 16 executors, and each executor uses 8 cores. The amount of memory for the

120

10
0

10
1

10
2

10
3

10
4

10
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

82×

16
3
×

180×

32
3
×

R
u
n
n
in
g

tim

e

(s
e
c
s
)

DBTF-CP
Walk'n'Merge
BCP_ALS

O.O.T. O.O.T.

(a) Dimensionality.

10
1

10
2

10
3

10
4

10
5

 0.01 0.05 0.1 0.15 0.2 0.25 0.3

343×

43×

R
u
n
n
in
g

tim

e

(s
e
c
s
)

DBTF-CP
Walk'n'Merge
BCP_ALS

O.O.T.

(b) Density.

10
2

10
3

10
4

10
5

 60 120 180 240

21×

R
u
n
n
in
g

tim

e

(s
e
c
s
)

DBTF-CP
BCP_ALS

(c) Rank.

Figure 5.7: The scalability of DBTF-CP and other methods with respect to the dimension-
ality and density of a tensor, and the rank of CP decomposition. O.O.T.: Out Of Time
(takes more than 6 hours). DBTF-CP decomposes up to 163–323× larger tensors than
existing methods in 82–180× less time (Figure 5.7a). Overall, DBTF-CP achieves 21–343×
speedup and exhibits near-linear scalability with regard to all data aspects.

driver and each executor process is set to 16GB and 25GB, respectively. DBTF parameters
L, V , and Z are set to 1, 15, and 0.95, respectively, and T is set to 10 for scalability
tests and 20 for reconstruction error tests (see Algorithms 5.3, 5.5 to 5.8 and 5.10 for
details on these parameters). We run Walk’n’Merge, BCP_ALS, and BTucker_ALS on one
machine in the cluster. For the CP factorization by Walk’n’Merge, we use the original
implementation4 provided by the authors. However, the open-source implementation
of Walk’n’Merge does not contain code for the Tucker factorization, which is obtained
based on the CP factorization output of Walk’n’Merge. We implement the missing
part, which is to merge the factor matrices returned from Walk’n’Merge and adjust the
core tensor accordingly. We run Walk’n’Merge with the same parameter settings as
described in [EM13b]. The minimum size of blocks is set to 4-by-4-by-4. The length of
random walks is set to 5. In reconstruction error tests, the merging threshold t is set to
1− (nd + 0.05) for CP factorization, and it is set to 1− (nd + 0.5) for Tucker factorization
where nd is the destructive noise level of an input tensor. Since Walk’n’Merge did not
find blocks when it performs Tucker factorization with the threshold value used for CP
factorization, we used smaller values for Tucker factorization. For scalability tests, t is set
to 0.2 for both types of factorizations. Other parameters are set to the default values. We
implement BCP_ALS and BTucker_ALS using the open-source code of ASSO5[MMG+08].
For ASSO, the threshold value for discretization is set to 0.7; default values are used for
other parameters.

4http://people.mpi-inf.mpg.de/~pmiettin/src/walknmerge.zip
5http://people.mpi-inf.mpg.de/~pmiettin/src/DBP-progs/

121

http://people.mpi-inf.mpg.de/~pmiettin/src/walknmerge.zip
http://people.mpi-inf.mpg.de/~pmiettin/src/DBP-progs/

10
0

10
1

10
2

10
3

10
4

10
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

129×
86×

8
3
×

16
3
×

R
u
n
n
in
g

tim

e

(s
e
c
s
)

DBTF-TK
Walk'n'Merge
BTucker_ALS

O.O.T. O.O.T.

(a) Dimensionality.

10
1

10
2

10
3

10
4

10
5

 0.01 0.05 0.1 0.15 0.2 0.25 0.3

234×

35×

R
u
n
n
in
g

tim

e

(s
e
c
s
)

DBTF-TK
Walk'n'Merge
BTucker_ALS

O.O.T.

(b) Density.

10
1

10
2

10
3

10
4

10
5

 4 8 12 16 20 24 28 32 36 40

7×

R
u
n
n
in
g

tim

e

(s
e
c
s
)

DBTF-TK
BTucker_ALS

O.O.T.

(c) Core Size R1 = R2 = R3.

Figure 5.8: The scalability of DBTF-TK and other methods with respect to the dimension-
ality and density of a tensor, and the core size of Tucker decomposition. O.O.T.: Out Of
Time (takes more than 12 hours). DBTF-TK decomposes up to 83–163× larger tensors
than existing methods in 86–129× less time (Figure 5.8a). Overall, DBTF-TK achieves
7–234× speedup and exhibits near-linear scalability with regard to all data aspects.

5.5.2 Data Scalability
We evaluate the data scalability of DBTF and other methods for Boolean CP and Tucker
factorizations using both synthetic random tensors (Sections 5.5.2.1 and 5.5.2.2) and
real-world tensors (Sections 5.5.2.3 and 5.5.2.4).

5.5.2.1 Boolean CP Factorization on Synthetic Data
We evaluate the data scalability of DBTF-CP, Walk’n’Merge, and BCP_ALS on synthetic
tensors with respect to the dimensionality, density, and rank of a tensor. Experiments
are allowed to run for up to 6 hours, and those running longer than that are marked as
O.O.T. (Out Of Time).

Dimensionality. We increase the dimensionality I=J=K of each mode from 26 to 213,
while setting the tensor density to 0.01 and the rank R to 10. As shown in Figure 5.7a,
DBTF-CP successfully decomposes tensors of size I=J=K=213, while Walk’n’Merge and
BCP_ALS run out of time when I=J=K ≥ 29 and ≥ 210, respectively. Notice that the
running time of Walk’n’Merge and BCP_ALS increases rapidly with the dimensionality:
DBTF-CP decomposes the largest tensors Walk’n’Merge and BCP_ALS can process 180×
and 82× faster than each method. DBTF-CP is slower than other methods for small
tensors of 26 and 27 scale, because the overhead of running a distributed algorithm on
Spark (e.g., code and data distribution, network I/O latency, etc) dominates the running
time in these cases.

Density. We increase the tensor density from 0.01 to 0.3, while fixing I=J=K to 28

and the rank R to 10. As shown in Figure 5.7b, DBTF-CP decomposes tensors of all
densities and exhibits near constant performance regardless of the density. BCP_ALS
also scales up to 0.3 density. On the other hand, Walk’n’Merge runs out of time when

122

the density increases over 0.1. In terms of running time, DBTF-CP runs 343× faster
than Walk’n’Merge, and 43× faster than BCP_ALS. Also, the performance gap between
DBTF-CP and BCP_ALS grows wider for tensors with greater density.

Rank. We increase the rank R of a tensor from 60 to 240, while fixing I=J=K to 28 and
the tensor density to 0.01. V is set to 15 in all experiments. Walk’n’Merge is excluded
from this experiment since its running time is constant across different ranks. As shown
in Figure 5.7c, both methods scale up to rank 240, and the running time increases
almost linearly as the rank increases. When the rank is 240, DBTF-CP is 21× faster than
BCP_ALS.

5.5.2.2 Boolean Tucker Factorization on Synthetic Data
We evaluate the data scalability of DBTF-TK, Walk’n’Merge, and BTucker_ALS. Experi-
ments that run longer than 12 hours are marked as O.O.T. (Out Of Time).

Dimensionality. We increase the dimensionality I=J=K of each mode from 26 to 212

while setting the tensor density to 0.01 and the core size R1=R2=R3=4 (Figure 5.8a).
While DBTF-TK is slower than BTucker_ALS and Walk’n’Merge for small tensors of 26

and 27 scale due to the overhead associated with a distributed system, the running time
of BTucker_ALS and Walk’n’Merge increases much more rapidly than that of DBTF-
TK. As a result, DBTF-TK is the only method that successfully decomposes tensors of
I=J=K=212, while Walk’n’Merge and BTucker_ALS run out of time when I=J=K ≥ 29

and ≥ 210, respectively. Furthermore, DBTF-TK decomposes the largest tensors that
Walk’n’Merge and BTucker_ALS can handle 129× and 86× faster than each method.

Density. We increase the tensor density from 0.01 to 0.3, while fixing I=J=K to 28 and
the core size R1=R2=R3 to 4. Figure 5.8b shows that DBTF-TK decomposes tensors of
all densities, and its running time remains almost the same as the density increases.
BTucker_ALS also scales up to the tensor with 0.3 density. However, Walk’n’Merge
runs out of time when the density becomes greater than 0.1, and even when it is 0.05.
In terms of running time, DBTF-TK runs 234× and 35× faster than Walk’n’Merge and
BTucker_ALS, respectively.

Rank. We increase the core size R1=R2=R3 from 4 to 40, while fixing I=J=K to 28 and
the tensor density to 0.01. V is set to 15 in all experiments. As shown in Figure 5.8c,
DBTF-TK scales up to the largest core size, while BTucker_ALS fails to scale up to core
size greater than 20. Note that Walk’n’Merge is not shown in the figure since it does
not allow users to specify the core size; instead, it automatically determines the core
size according to the MDL principle. In terms of running time, DBTF-TK is faster than
BTucker_ALS for all core sizes, with DBTF-TK being 7× faster than BTucker_ALS when
core size R1=R2=R3 is 20.

While DBTF-TK outperforms all baselines, the largest core size R1=R2=R3 = 40 for
Tucker factorization is much smaller than the largest rank size R = 240 used for CP
factorization. This is because Tucker factorization is much more expensive than CP
factorization as it involves all steps of CP factorization, and also performs steps to update

123

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Facebook DBLP DDoS-S DDoS-L NELL-S NELL-L

17×

R
u
n
n
in
g

tim

e

(s
e
c
s
)

Dataset

DBTF-CP
Walk'n'Merge

BCP_ALS

Figure 5.9: The scalability of DBTF-CP and other methods on the real-world datasets.
Notice that only DBTF-CP scales up to all datasets, while Walk’n’Merge processes only
Facebook, and BCP_ALS fails to process all datasets. DBTF-CP runs 17× faster than
Walk’n’Merge on Facebook. An empty bar denotes that the corresponding method runs
out of time (> 12 hours) or memory while decomposing the dataset.

a core tensor, which is the most costly operation that takes time proportional to the cube
of core size R1=R2=R3 (see Lemma 5.8).

5.5.2.3 Boolean CP Factorization on Real-World Data
Figure 5.9 shows the running time of DBTF-CP, Walk’n’Merge, and BCP_ALS on real-
world datasets. We set the maximum running time to 12 hours, and R to 10 for DBTF-CP
and BCP_ALS. Among three methods, DBTF-CP is the only one that scales up for all
datasets. Walk’n’Merge decomposes only Facebook and runs out of time for all other
datasets; BCP_ALS fails to handle real-world tensors as it causes out-of-memory errors
for all datasets, except for DBLP for which BCP_ALS runs out of time. Also, DBTF-CP
runs 17× faster than Walk’n’Merge on Facebook.

5.5.2.4 Boolean Tucker Factorization on Real-World Data
Figure 5.10 reports the running time of DBTF-TK, Walk’n’Merge, and BTucker_ALS on
real-world tensors. We run each experiment for at most 12 hours with R1=R2=R3 = 4. In
Figure 5.10, only DBTF-TK is shown as it is the only method that scales up to all datasets.
While Walk’n’Merge finds blocks within the time limit for Facebook data, it runs out of
time while merging factors and adjusting the core tensor. BTucker_ALS runs out of time
for DBLP and causes out-of-memory errors for all other datasets.

5.5.3 Machine Scalability
We measure the machine scalability of DBTF-CP and DBTF-TK by increasing the number
of machines from 4 to 16 and report T4/TM where TM is the running time using M
machines.

Boolean CP Factorization. We use the synthetic tensor of size I=J=K=212 and of

124

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Facebook DBLP DDoS-S DDoS-L NELL-S NELL-L

R
u
n
n
in
g

tim

e

(s
e
c
s
)

Dataset

DBTF-TK
Walk'n'Merge
BTucker_ALS

Figure 5.10: The scalability of DBTF-TK and other methods on the real-world datasets.
Notice that only DBTF-TK scales up to all datasets, while Walk’n’Merge and BTucker_ALS
fail to process all datasets as they run out of time (> 12 hours) or memory while decom-
posing the dataset.

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 4 8 12 16

'S
c
a
le

U
p
':T

4
/T
M

Number of Machines

DBTF-CP

(a) CP Factorization.

 1

 1.2

 1.4

 1.6

 1.8

 2

 4 8 12 16

'S
c
a
le

U
p
':T

4
/T
M

Number of Machines

DBTF-TK

(b) Tucker Factorization.

Figure 5.11: The scalability of DBTF-CP and DBTF-TK with respect to the number of
machines. TM means the running time using M machines. Notice that the running time
scales up near linearly.

density 0.01; we set the rank R to 10. Figure 5.11a shows that DBTF-CP scales up near
linearly. Overall, DBTF-CP achieves 2.69× speedup, as the number of machines increases
fourfold.

Boolean Tucker Factorization. We use the synthetic tensor of size I=J=K=211 and of
density 0.01; we set the core size R1=R2=R3 to 4. Figure 5.11b shows that DBTF-TK
shows near-linear scalability, achieving 1.87× speedup when the number of machines is
increased from 4 to 16.

5.5.4 Reconstruction Error
We evaluate the accuracy of DBTF in terms of reconstruction error, which is defined as
|X − X′| where X is an input tensor and X′ is a reconstructed tensor. Tensors of size

125

 0

 5

 10

 15

 20

 25

 0.1 0.15 0.2 0.25 0.3

R
e
c
o
n
s
tr
u
c
tio
n

e
rr
o
r/
1
0
4

DBTF-CP
Walk'n'Merge

(a) Factor Matrix Density.

 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60

R
e
c
o
n
s
tr
u
c
tio
n

e
rr
o
r/
1
0
4

DBTF-CP
Walk'n'Merge

(b) Rank.

 5

 6

 7

 8

 9

 10

 11

 12

 0.1 0.2 0.3 0.4

R
e
c
o
n
s
tr
u
c
tio
n

e
rr
o
r/
1
0
3

DBTF-CP
Walk'n'Merge

(c) Additive Noise Level.

10
2

10
3

10
4

10
5

10
6

 0.1 0.2 0.3 0.4
R
e
c
o
n
s
tr
u
c
tio
n

e
rr
o
r

DBTF-CP
Walk'n'Merge*
Walk'n'Merge

(d) Destructive Noise Level.

Figure 5.12: The reconstruction error of DBTF-CP and other methods with respect to fac-
tor matrix density, rank, additive noise level, and destructive noise level. Walk’n’Merge*

in d refers to the version of Walk’n’Merge which executes the merging phase. Notice
that the reconstruction errors of DBTF-CP are smaller than those of Walk’n’Merge for all
aspects.

I=J=K=100 are used in experiments. We run each configuration three times and report
the average of the results. We compare DBTF with Walk’n’Merge as they take different
approaches for Boolean CP and Tucker decompositions, and exclude BCP_ALS and
BTucker_ALS as DBTF, BCP_ALS, and BTucker_ALS are based on the same Boolean
decomposition frameworks.

5.5.4.1 Boolean CP Factorization
We measure reconstruction errors, varying one of the four different data aspects—factor
matrix density (0.1), rank (10), additive noise level (0.1), and destructive noise level
(0.1)—while fixing the others to the default values. The values in the parentheses are the
default settings for each aspect. For Walk’n’Merge, we report the reconstruction error
computed from the blocks obtained before the second part of the merging phase [EM13b],
since the subsequent merging procedure significantly increased the reconstruction error
when applied to our synthetic tensors. Figure 5.12d shows the difference between the
version of Walk’n’Merge with the second part of merging procedure (Walk’n’Merge*)

126

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.05 0.075 0.1 0.125 0.15

R
e
c
o
n
s
tr
u
c
tio
n

e
rr
o
r/
1
0
4

DBTF-TK
Walk'n'Merge

(a) Factor Matrix Density.

 0

 1

 2

 3

 4

 5

 4 8 12 16 20 24

R
e
c
o
n
s
tr
u
c
tio
n

e
rr
o
r/
1
0
4

DBTF-TK
Walk'n'Merge

(b) Core Size R1 = R2 = R3.

 0

 2

 4

 6

 8

 10

 12

 14

 0.1 0.2 0.3 0.4

R
e
c
o
n
s
tr
u
c
tio
n

e
rr
o
r/
1
0
4

DBTF-TK
Walk'n'Merge

(c) Additive Noise Level.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.1 0.2 0.3 0.4
R
e
c
o
n
s
tr
u
c
tio
n

e
rr
o
r/
1
0
4

DBTF-TK
Walk'n'Merge

(d) Destructive Noise Level.

Figure 5.13: The reconstruction error of DBTF-TK and other methods with respect to
factor matrix density, core size, additive noise level, and destructive noise level. Across
all aspects, the reconstruction errors of DBTF-TK are smaller than or close to those of
Walk’n’Merge. Note that, in contrast to DBTF-TK, Walk’n’Merge shows performance
fluctuations in a few cases.

and the one without it (Walk’n’Merge).

Factor Matrix Density. We increase the density of factor matrices from 0.1 to 0.3. As
shown in Figure 5.12a, the reconstruction error of DBTF-CP is smaller than that of
Walk’n’Merge for all densities. In particular, as the density increases, the gap between
DBTF-CP and Walk’n’Merge widens.

Rank. We increase the rank of a tensor from 10 to 60. As shown in Figure 5.12b, the
reconstruction errors of both methods increase in proportion to the rank. This is an
expected result since, given a fixed density, the increase in the rank of factor matrices
leads to increased number of non-zeros in the input tensor. Notice that the reconstruction
error of DBTF-CP is smaller than that of Walk’n’Merge for all ranks.

Additive Noise Level. We increase the additive noise level from 0.1 to 0.4. As shown
in Figure 5.12c, the reconstruction errors of both methods increase in proportion to the
additive noise level. While the relative accuracy improvement obtained with DBTF-CP
tends to decrease as the noise level increases, the reconstruction error of DBTF-CP is

127

smaller than that of Walk’n’Merge for all additive noise levels.

Destructive Noise Level. We increase the destructive noise level from 0.1 to 0.4. Fig-
ure 5.12d shows that DBTF-CP produces more accurate results than Walk’n’Merge across
all destructive noise levels. As the destructive noise level increases, the reconstruction
error of DBTF-CP slightly increases, while that of Walk’n’Merge decreases; as a result, the
gap between two methods becomes smaller. Destructive noise makes the factorization
harder by sparsifying tensors and introducing noises at the same time.

5.5.4.2 Boolean Tucker Factorization
We measure reconstruction errors, varying one of the following data aspects—factor
matrix density (0.1), core size (R1=R2=R3=8), additive noise level (0.2), and destructive
noise level (0.2)—while fixing the others to their default values. The values in the
parentheses are the default settings for each aspect.

Factor Matrix Density. We increase the density of factor matrices from 0.05 to 0.15. As
shown in Figure 5.13a, the reconstruction error of DBTF-TK is smaller than or close to that
of Walk’n’Merge across all densities. Note that, in contrast to DBTF-TK, Walk’n’Merge
shows performance fluctuation when the density is 0.075.

Rank. We increase the core size R1 = R2 = R3 from 4 to 24. As shown in Figure 5.13b,
the reconstruction errors of both methods increase in proportion to the core size, and
DBTF-TK and Walk’n’Merge exhibit similar performance.

Additive Noise Level. We increase the additive noise level from 0.1 to 0.4. Figure 5.13c
shows that both methods perform similarly as the noise level increases, except when
the additive noise level is 0.1, in which case the reconstruction error of Walk’n’Merge is
approximately 10× greater than that of DBTF-TK.

Destructive Noise Level. We increase the destructive noise level from 0.1 to 0.4. Fig-
ure 5.13d shows that the reconstruction errors of both methods decrease as the noise
level is increased, and DBTF-TK is consistently more accurate than Walk’n’Merge for all
destructive noise levels.

5.6 Conclusion
In this chapter, we propose DBTF, a distributed method for Boolean CP (DBTF-CP)
and Tucker (DBTF-TK) factorizations running on the Apache Spark framework. By
distributed data generation with minimal network transfer, exploiting the characteristics
of Boolean operations, and with careful partitioning, DBTF successfully tackles the high
computational costs and minimizes the intermediate data. Experimental results show
that DBTF-CP decomposes up to 163–323× larger tensors than existing methods in 82–
180× less time, and DBTF-TK decomposes up to 83–163× larger tensors than existing
methods in 86–129× less time. Furthermore, both DBTF-CP and DBTF-TK exhibit near-
linear scalability in terms of tensor dimensionality, density, rank, and the number of
machines.

128

5.7 Appendix
5.7.1 Proof of Lemma 5.4
Proof. Algorithm 5.3 is composed of three operations: (1) partitioning (lines 1–3), (2)
initialization (line 6), and (3) updating factor matrices (lines 7 and 10).

(1) After unfolding an input tensor X into X, DBTF-CP splits X into N partitions,
and further divides each partition into a set of blocks (Algorithm 5.4). Unfolding
takes O(|X|) time as each entry can be mapped in constant time (Equation (5.1)),
and partitioning takes O(|X|) time since determining which partition and block an
entry of X belongs to is also a constant-time operation. It takes O(|X|) time in total.

(2) Random initialization of factor matrices takes O(IR) time.
(3) The update of a factor matrix (Algorithm 5.5) consists of the following steps (i, ii,

iii, and iv):

i. Caching row summations of a factor matrix (line 1). By Lemma 5.2, the number of
cache tables is dR/V e, and the maximum size of a single cache table is 2dR/dR/V ee. Each
row summation can be obtained in O(I) time via incremental computations that use
prior row summation results. Hence, caching row summations for N partitions takes
O(N

⌈
R
V

⌉
2dR/dR/V eeI).

ii. Fetching cached row summations (lines 7–8). The number of constructing row summa-
tions and computing errors to update a factor matrix is 2IR. An entire row summation
is constructed by fetching row summations from the cache tables O(max(I,N)) times
across N partitions. If R≤V , a row summation can be constructed by a single access
to the cache. If R>V , multiple accesses are required to fetch row summations from⌈
R
V

⌉
tables. Also, constructing a cache key requires O(min(V,R)) time. Thus, fetching

a cached row summation takes O(
⌈
R
V

⌉
min(V,R) max(I,N)) time. When R>V , there

is an additional cost to sum up
⌈
R
V

⌉
row summations, which is O((

⌈
R
V

⌉
−1)I2). In total,

the time complexity for this step is O(IR
[⌈

R
V

⌉
min(V,R) max(I,N) + (

⌈
R
V

⌉
− 1)I2

]
).

Simplifying terms, we get O(I3R
⌈
R
V

⌉
).

iii. Computing the error for the fetched row summation (line 9). It takes O(I2) time to
calculate an error of one row summation with regard to the corresponding row of
the unfolded tensor. For each column entry, DBTF-CP constructs row summations
(ar: � (Mf �Ms)

> in Algorithm 5.5) twice (for arc=0 and 1). Therefore, given a rank
R, this step takes O(I3R) time.

iv. Updating a factor matrix (lines 10–14). Updating an entry in a factor matrix requires
summing up errors for each value collected from N partitions, which takes O(N) time.
Updating all entries takes O(NIR) time. In case the percentage of zeros in the column
being updated is greater than Z, an additional step is performed to make the sparsity
of the column less than Z, which takes O(I log(I)) time as all 2I values may need to
be fetched in the order of increasing error in the worst case. Since we have R columns,
this additional step takes O(RI log(I)) in total. Thus, step iv takes O(NIR+RI log(I))
time.

After simplifying terms, DBTF-CP’s time complexity isO
(
TI3R

⌈
R
V

⌉
+TN

⌈
R
V

⌉
2dR/dR/V eeI

)
.

129

At each iteration, the dominating term is O(I3R) that comes from fetching row sum-
mation and calculating its error (steps ii and iii), which is an O(I2) operation that is
performed 2IR times. Note that the worst-case time complexity for this error calculation
is O(I2) even when the input tensor is sparse because the time for this operation depends
not only on the non-zeros in the row of an input tensor, but also on the non-zeros in
the corresponding row of the intermediate matrix product (e.g., (C�B)>), which could
be full of non-zeros in the worst case. However, given sparse tensors in practice, factor
matrices are updated to be sparse such that the reconstructed tensor gets closer to the
sparse input tensor, which makes the time required for the dominating operation much
less than O(I2).

�

5.7.2 Proof of Lemma 5.5

Proof. For the decomposition of an input tensor X ∈ BI×I×I , DBTF-CP stores the follow-
ing four types of data in memory at each iteration: (1) partitioned unfolded input tensors
pX(1), pX(2), and pX(3), (2) row summation results, (3) factor matrices A,B, and C, and
(4) errors for the entries of a column being updated.

(1) While partitioning of an unfolded tensor by DBTF-CP structures it differently from
the original one, the total number of elements does not change after partitioning.
Thus, pX(1), pX(2), and pX(3) require O(|X|) memory.

(2) By Lemma 5.2, the total number of row summations of a factor matrix isO(
⌈
R
V

⌉
2dR/dR/V ee).

By Lemma 5.3, each partition has at most three types of blocks. Since an entry in the
cache table uses O(I) space, the total amount of memory used for row summation
results is O(NI

⌈
R
V

⌉
2dR/dR/V ee). Note that since Boolean factor matrices are normally

sparse, many cached row summations are not normally dense. Therefore, the actual
amount of memory used is usually smaller than the stated upper bound.

(3) Since A,B, and C are broadcast to each machine, they require O(MRI) memory in
total.

(4) Each partition stores two errors for the entries of the column being updated, which
takes O(NI) memory.

�

5.7.3 Proof of Lemma 5.6

Proof. DBTF-CP unfolds an input tensor X into three different modes, X(1), X(2), and
X(3), and then partitions each one: unfolded tensors are shuffled across machines so that
each machine has a specific range of consecutive columns of unfolded tensors. In the
process, the entire data can be shuffled, depending on the initial distribution of the data.
Thus, the amount of data shuffled for partitioning X is O(|X|). �

130

5.7.4 Proof of Lemma 5.7
Proof. Once the three unfolded input tensors X(1), X(2), and X(3) are partitioned, they
are cached across machines, and are not shuffled. In each iteration, DBTF-CP broadcasts
three factor matrices A, B, and C to each machine, which takes O(MRI) space in sum.
With only these three matrices, each machine generates the part of row summation it
needs to process. Also, in updating a factor matrix of size I-by-R, DBTF-CP collects from
all partitions the errors for both cases of when each entry of the factor matrix is set to 0
and 1. This process involves transmitting 2IR errors from each partition to the driver
node, which takes O(NIR) space in total. Accordingly, the total amount of data shuffled
for T iterations after partitioning X is O(TRI(M +N)). �

5.7.5 Proof of Lemma 5.8
Proof. Algorithm 5.8 is composed of four operations: (1) partitioning (lines 1–4), (2)
initialization (lines 7–8), (3) updating factor matrices (lines 10 and 14), and (4) updating a
core tensor (lines 9 and 13).

(1) Partitioning of an input tensor X into pX(1), pX(2), and pX(3) (lines 1–3) takes O(|X|)
time as in DBTF-CP. Similarly, partitioning of X into pX (line 4) takes O(|X|) time
since determining which partition an entry of X belongs to can be done in constant
time.

(2) Randomly initializing factor matrices and a core tensor takes O(IR) and O(R3)
time, respectively.

(3) The update of a factor matrix (Algorithm 5.10) consists of the following steps (i, ii,
iii, and iv):

i. Caching row summations (lines 1–2). Caching row summations of a factor matrix
takes O(N

⌈
R
V

⌉
2dR/dR/V eeI) as in DBTF-CP. Caching row summations of an unfolded

core tensor requires O(
⌈
R
V

⌉
2dR/dR/V eeR2) as a single row summation can be com-

puted in O(R2) time. Assuming R2 ≤ I , this step requires O(N
⌈
R
V

⌉
2dR/dR/V eeI)

time.
ii. Fetching cached row summations (lines 9–10). (a) Row summations of an unfolded

core tensor are fetched O(IR) times in each partition. If R≤V , a row summation
can be obtained with one access to the cache. IfR>V , multiple accesses are required
to fetch row summations from

⌈
R
V

⌉
tables, and there is an additional cost to sum up⌈

R
V

⌉
row summations. In sum, this operation takes O(NIR

[⌈
R
V

⌉
+ (
⌈
R
V

⌉
− 1)R2

]
)

time. (b) Fetching a cached row summation of a factor matrix is identical to that
in DBTF-CP, except for the computation of cache key, which takes O(R2) time.
Therefore, this operation takes O(IR

[⌈
R
V

⌉
R2 max(I,N) + (

⌈
R
V

⌉
− 1)I2

]
) in total.

Simplifying (a) and (b) under the assumption that R2 ≤ I and max(I,N) = I , the
time complexity for this step reduces to O(I3R

⌈
R
V

⌉
).

iii. Computing the error for the fetched row summation (line 11). This step takes the
same time as in DBTF-CP, which is O(I3R).

iv. Updating a factor matrix (lines 12–16). This step takes the same time as in DBTF-CP,
which is O(NIR +RI log(I)).

131

(4) For the update of a core tensor (Algorithm 5.11), two operations are repeatedly
performed for each core tensor entry. First, rowwise sum of entries in factor matrices
are computed (line 3), which takes O(IR) time. Second, DBTF-TK determines
whether flipping the core tensor entry would improve accuracy (lines 4–25). This
step takesO(I3) time in the worst case when the factor matrices are full of non-zeros.
In sum, it takes O(I3R3) to update a core tensor.

In sum, DBTF-TK takes O
(
TI3R3 + TN

⌈
R
V

⌉
2dR/dR/V eeI

)
time. �

5.7.6 Proof of Lemma 5.9
Proof. In order to decompose an input tensor X ∈ BI×I×I , DBTF-TK stores the following
five types of data in memory at each iteration: (1) partitioned input tensors pX(1), pX(2),
pX(3), and pX, (2) row summation results, (3) a core tensor G, (4) factor matrices A,B,
and C, and (5) errors for the entries of a column being updated.

(1) Since partitioning does not change the total number of elements, pX(1), pX(2), pX(3),
and pX require O(|X|) memory.

(2) Two types of row summation results are maintained in DBTF-TK: the first for the
factor matrix (e.g., B>), and the second for the unfolded core tensors (e.g., G(1)).
Note that, given R number of rows, the total number of row summations to be
cached is O(

⌈
R
V

⌉
2dR/dR/V ee) by Lemma 5.2. First, the cache tables for the factor

matrix are the same as those used in DBTF-CP; thus, they use O(NI
⌈
R
V

⌉
2dR/dR/V ee)

memory. Second, across M machines, the cache tables for the unfolded core tensor
requireO(MR2

⌈
R
V

⌉
2dR/dR/V ee) as a single entry usesO(R2) space. AssumingR2 ≤ I ,

O((N +M)I
⌈
R
V

⌉
2dR/dR/V ee) memory is required in total for row summation results.

(3) Since the core tensor G is broadcast to each machine, O(MR3) is required.
(4) Factor matrices require O(MRI) memory as in DBTF-CP.
(5) O(NI) memory is required since each partition stores two errors for each entry of

the column being updated as in DBTF-CP.

�

5.7.7 Proof of Lemma 5.10
Proof. In DBTF-TK, an input tensor X is partitioned in four different ways, where the
first three are pX(1), pX(2), and pX(3) that are used for updating factor matrices, and the
last one is pX that is used for updating a core tensor. Each machine is assigned non-
overlapping partitions of the input tensor. The entire data can be shuffled in the worst
case, depending on the data distribution. Thus, the total amount of data shuffled for
partitioning X is O(|X|). �

5.7.8 Proof of Lemma 5.11
Proof. As in DBTF-CP, partitioned input tensors pX(1), pX(2), pX(3), and pX are shuffled
only once in the beginning. After that, DBTF-TK performs data shuffling at each iteration
in order to update (1) factor matrices A, B, and C, and (2) a core tensor G.

132

(1) In updating factor matrices, DBTF-TK uses all data used in DBTF-CP, which is
O(TRI(M + N)). Also, DBTF-TK broadcasts the tables containing the combina-
tions of row summations of three unfolded core tensors (G(1),G(2), and G(3)) to
each machine at every iteration. Since, given R, the total number of row summa-
tions to be cached is O(

⌈
R
V

⌉
2dR/dR/V ee), and each row summation uses O(R2) space,

broadcasting these tables overall requires O(TMR2
⌈
R
V

⌉
2dR/dR/V ee).

(2) DBTF-TK broadcasts the rowwise sum of entries in factor matrices to each machine
when a core tensor G is updated, which takes O(MIR3) space in each iteration.
Also, in updating an element of G, DBTF-TK aggregates partial gains computed
from each partition, which requires O(NR3) for each iteration.

Accordingly, the total amount of data shuffled for T iterations after partitioning X is
O(TRI(M +N) + TR3(MI +N) + TMR2

⌈
R
V

⌉
2dR/dR/V ee). �

133

134

Chapter 6

Fast Automatic Model Selection
for Graph Representation
Learning

Given a graph learning task such as link prediction (LP) on a new graph dataset,
how can we automatically select the best LP method as well as its hyperparameters
(collectively called a model)? Model selection for graph learning has been largely
ad hoc. A typical approach has been to apply popular methods to new datasets, but
this is often suboptimal. Also, systematically comparing models on the new graph
quickly becomes too costly, or even impractical. In this chapter, we develop the first
meta-learning approach for automatic graph representation learning, called AUTOGRL,
which automatically infers a good model for the new graph without requiring any
model training or evaluations. AUTOGRL capitalizes on the prior performances of a
large body of existing methods on benchmark graph datasets, and carries over this
prior experience to automatically select the best model to use for the new graph. To
capture the similarity across graphs from different domains, we introduce specialized
structural meta-graph features that quantify the structural characteristics of a graph.
Then we design a meta-graph that represents the relations among models and graphs,
and develop a graph meta-learner operating on the meta-graph, which estimates
the relevance of each model to different graphs. Through extensive experiments,
we show that using AUTOGRL to select a method for the new graph significantly
outperforms consistently applying popular LP methods as well as several existing
meta-learners, while being extremely fast at test time compared to the model selection
based on exhaustive evaluation. While we use LP as the task of interest, AUTOGRL
is naturally applicable to other graph learning tasks, e.g., node classification and edge
regression, among many others.

135

inferred	model
performances

best
model

𝐌∗

AutoGRL
Model

new	graph

𝐆
𝐆

(a) AUTOGRL is a meta-learned GRL model selection approach.

𝑀!

...

𝑀"

𝑀#

train	all
models

evaluate
models

model	performances

best
model

𝐌∗
𝐸!

𝐸"

𝐸#
Validation
Graph	𝑮!

...
......

new	graph

(b) Costly naive approach for selection of the best GRL model.

Figure 6.1: Overview of AUTOGRL compared to existing naive approach. Given an
unseen graph G and a large space of modelsM to search over, AUTOGRL efficiently
infers the best model M∗ ∈Mwithout ever having to train a single model fromM on
the new graph G. This is in contrast to first training each model M ∈M, evaluating
each one on a hold-out dataset, and then selecting the best model. Notably, in practical
settings where time and budget is limited and thus costly naive approach cannot be used,
AUTOGRL is extremely effective as it infers the best model nearly instantaneously.

6.1 Introduction
Given a graph learning task such as link prediction on a new graph dataset, how can
we automatically select the best method as well as its hyperparameters (collectively
called a model), in particular, without performing model training or evaluations on the new
graph? Graph learning (i.e., machine learning on graphs) has been receiving increasing
attention in recent years [XSY+21, ZCZ22], and has shown successes across a large
array of applications, including traffic forecasting [JL21], recommendation [FML+19],
ranking [PKD+19], bioinformatics [STZ+20], drug discovery [LCH17], and anomaly
detection [CCL+21]. However, as more graph learning methods are developed for
various tasks, it becomes increasingly difficult to determine which method, and also
which hyperparameter settings to use for a given graph.

Selecting a method and its hyperparameters (i.e., model selection) for graph learning
has been largely ad hoc to date. A typical approach is to simply apply popular graph

136

learning models to new graphs, often with the default hyperparameter values. However,
it is well known that there is no universal learning algorithm that performs the best on all
problem instances [WM97], and such consistent model selection is often suboptimal. At
the other extreme lies “naive model selection” (Figure 6.1b), where all candidate models
are trained on the new graph data, and then evaluated on a hold-out validation graph,
and finally, the best performing model for this new graph is selected. This approach
is very costly in terms of the runtime and computational cost associated with training
all possible models whenever a new graph arrives. Thus, it is highly impractical for
use in the real-world where model selection needs to be done nearly instantaneously as
new data continuously arrive. There exist smarter strategies, such as Bayesian hyper-
parameter optimization [SLA12, WCZ+19], to enable a more efficient model selection
by carefully evaluating a relatively small number of hyperparameter configurations.
However, these methods mainly focus on finding the best hyperparameter setting of a
single learning algorithm, while our model spaceM includes a wide variety of learning
algorithms and their hyperparameters in general. Also, evaluating even just a few hy-
perparameter settings of each method inM on a real-world graph easily takes several
orders of magnitude more time and resources than “training and evaluation-free” model
selection.

In this chapter, we tackle the model selection problem for graph learning systematically,
focusing on link prediction, which is a representative graph learning task. To that
end, we develop AUTOGRL, the first automatic graph learning framework to the best of
our knowledge that selects an effective model to employ for the new graph without
requiring any model training or evaluation, as depicted in Figure 6.1a. AUTOGRL is a
meta-learning based approach that stands on the prior performances of a large body of
existing graph learning methods on extensive benchmark graph datasets. The high-level
idea of AUTOGRL is to estimate a candidate model’s performance on the new graph
based on its performances on similar existing graphs. Once AUTOGRL is trained, we can
infer the best model for any unseen graph at a very low computational cost.

Our meta-learning problem for graphs requires learning similarities between graphs
based on characteristic dataset features (namely meta-features). Note that this step is
often not needed for traditional meta-learning problems that deal with non-graph data,
as features for those non-graph objects (e.g., features such as age, gender, location, etc for
users) may often be readily available. Even when no input features are available, the task
is much more challenging for graph data as graphs not only have different number of
nodes and edges, but also have widely varying connectivity patterns. Moreover, the high
complexity and irregularity of graphs make the construction of meta-features for graphs
computationally more costly than for non-graph (e.g., i.i.d., tabular) datasets. To handle
these challenges, we design specialized meta-graph features that effectively characterize
major structural properties of real-world graphs, and can be computed efficiently.

To estimate the model performance, AUTOGRL learns to embed models and graphs in
the shared latent space such that their embeddings reflect the graph-to-model affinity.
Specifically, we design a multi-relational graph called meta-graph, which represents the

137

relations among models and graphs, and develop a graph meta-learner operating on
this meta-graph, which is optimized to leverage meta-graph features and prior model
performances into producing model and graph embeddings that can be effectively used
to estimate the best performing model for the given graph.

In summary, the key contributions are as follows.

• Problem Formulation. We formulate the problem of training and evaluation-free model
selection for graph learning, where model space encompasses a large array of graph
learning algorithms and their hyperparameter configurations.

• Framework for Automatic Graph Learning. We propose AUTOGRL, the first ap-
proach to automatic graph learning to the best of our knowledge, which infers the best
graph learning model for a new unseen graph in near real-time, without ever having to
run different models as done in traditional model selection. AUTOGRL draws on the
prior performances of various existing models on benchmark graph datasets, and can
be used for different graph learning tasks, e.g., link prediction and node classification.

• Specialized Meta-Graph Features. We design specialized meta-graph features for
meta-learning on graphs. The meta-graph features effectively capture structural
characteristics of a graph, enabling an effective and efficient quantification of graph
similarity.

• Effectiveness and Efficiency. Through extensive experiments on the benchmark en-
vironment that we have built, we show that using AUTOGRL to select a model for
various new graphs performs significantly better than always employing popular state-
of-the-art models, as well as several existing meta-learning techniques tailored for
our problem setting. Furthermore, AUTOGRL is highly efficient, incurring negligible
runtime overhead (<1 second) at inference time.

6.2 Problem Formulation
In this work, we consider the problem of fast automatic model selection for a new unseen
graph from a set of heterogeneous graph learning models, without requiring model
evaluations and user intervention—hence fast and automatic. In comparison to traditional
meta-learning problems where a model denotes a single method and its associated
hyperparameters, a model in the graph meta-learning problem is more broadly defined
to be

model M = {(graph embedding method,hyperparameters),

(predictor,hyperparameters)}

as graph learning tasks normally involve two steps: (1) the graph is first flattened
by embedding it into a lower-dimensional space using a graph representation learn-
ing (embedding) method, and (2) the node embeddings are then used as input into
the predictor for the downstream application like link prediction. Both steps require
learning a method with specific hyperparameters. Hence, there can be many models
that use the same embedding method (and also the same predictor), but have different
hyperparameters.

138

Given a training meta-corpus of n graph datasets G = {G1, . . . , Gn}, m modelsM =
{M1, . . . ,Mm} for graph learning tasks, and ground truth labels Y in the case of super-
vised tasks, we derive performance matrix P ∈ Rn×m where Pij is the performance (e.g.,
accuracy, average precision1) of model j on graph i. Our graph meta-learning problem
for fast automatic model selection is defined as follows.

Problem 6.1. Fast Automatic Selection of Graph Learning Models:
Given (i) an unseen test graph Gtest /∈ G, and (ii) a performance matrix P ∈ Rn×m of
m models M = {M1, . . . ,Mm} on n graphs G = {G1, . . . , Gn}, infer the best model
M∗ ∈M to employ on Gtest without training or evaluating any model in the model set
M and requiring user intervention.

6.3 Framework
In this section, we present AUTOGRL, our meta-learning based framework that solves
Problem 6.1. AUTOGRL operates by leveraging prior performances of a large body of
existing methods on benchmark graphs to efficiently and automatically select the best
model for a new graph. AUTOGRL consists of the following two phases: (1) offline
meta-training phase (Section 6.3.1) that trains a meta-learner using observed graphs G
and model performances P, and (2) online model prediction phase (Section 6.3.2), which
selects the model with the highest estimated performance on the new graph. A summary
of notations used in this work is provided in Table 6.1.

6.3.1 Offline Meta-Training
Meta-learning leverages prior experience from related learning tasks to do a better job
on the new task. When the new task is similar to some historical learning tasks, then
the knowledge from those similar tasks can be transferred and applied to the new task.
Thus effectively capturing the similarity between an input task and observed ones is
a fundamentally important problem to be addressed for successful meta-learning. In
meta-learning, the similarity between learning tasks is modeled using meta-features,
i.e., characteristic features of the learning task that can be used to quantify the task
similarity.

Meta-Graph Features. Given the graph learning model selection problem (where new
graphs correspond to new learning tasks), AUTOGRL captures the graph similarity by
extracting meta-graph features such that they reflect the structural properties of the graph.
Notably, since graphs have irregular structure, with different number of nodes and edges,
AUTOGRL designs meta-graph features to be of the same size for any arbitrary graph
such that they can be easily compared using meta-graph features. We use the symbol
m ∈ Rd to denote the fixed-size meta-graph feature vector for graph G, and defer the
details of how AUTOGRL computes m to Section 6.3.3.

1The evaluation metric used to obtain the performance matrix P is completely interchangeable, and
can be replaced with another metric of interest.

139

Meta-Graph
Features

AutoGRL	
Model	f

inferred
performances

meta-graph
features

new	graph

𝐆
𝐆

best
model

𝐌∗

Figure 6.2: Given a new graph G, AUTOGRL extracts meta-graph features that capture
the structural characteristics of graph G, and applies a meta-learned model to them,
which efficiently infers the best model M∗ ∈M for G, with no model evaluation.

Model Performance Estimation. To estimate how well a model would perform on a
given graph, AUTOGRL represent models and graphs in the latent k-dimensional space,
and captures the graph-to-model affinity using the dot product similarity between the
two representations hGi and hMj

of the i-th graph Gi and j-th model Mj , respectively,
such that pij ≈ 〈hGi ,hMj

〉where pij is the performance of model Mj on graph Gi. Then
to obtain the latent representation h, we design a learnable function f(·) that takes
in relevant information on models and graphs from the meta-graph features m and
the prior knowledge (i.e., model performances P and observed graphs G). Below in
this section, we focus on the inputs to the function f(·), and defer the details of f(·)
to Section 6.3.4.

We first factorize performance matrix P into latent graph factors U ∈ Rn×k and model
factors V ∈ Rm×k, and take the model factor Vj ∈ Rk (the j-th row of V) as the input
representation of model Mj . Then, AUTOGRL obtains the latent embedding hMj

of
model Mj by hMj

= f(Vj). For graphs, more information is available since we have both
meta-graph features m and meta-train graph factors U. However, while we have the
same number of models during training and inference, we observe new graphs during
inference, and thus cannot obtain the graph factor Utest for the test graph as for the
train graphs since matrix factorization (MF) is transductive by construction (i.e., existing
models’ performance on the test graph is needed to get latent factors for the test graph
directly via MF). We handle this issue by learning an estimator φ : Rd 7→ Rk that maps
the meta-graph features m into the latent factors of meta-train graphs obtained via MF
above, i.e., for graphGi with m, φ(m) = Ûi ≈ Ui, and use this estimated graph factor. We
then combine both inputs ([m;φ(m)] ∈ Rd+k), and apply linear transformation to make
the input representation of graph Gi to be of the same size as that of model Mj , obtaining
the latent embedding of graph Gi to be hGi = f(W[m;φ(m)]) where W ∈ Rk×(d+k) is a
weight matrix. Thus in AUTOGRL, the performance pij of model Mj on graph Gi with
meta-graph features m is estimated as

pij ≈ p̂ij = 〈f(W[m;φ(m)]), f(Vj)〉. (6.1)

Meta-Learning Objective. For tasks where the goal is to estimate real values, such as
accuracy, the mean squared error (MSE) is a typical choice for the loss function. While

140

Table 6.1: Summary of notations.

G set of graphs {G1, . . . , Gn} in the training set
n number of graphs in training set n = |G|
Gtest new unseen test graph Gtest 6∈ G
M model set {M1, . . . ,Mm} to search over
m number of models to search over m = |M|

Ψ set of structural meta-node/edge feature extractors
Σ set of meta-graph feature extractors
M meta-graph feature matrix where M ∈ Rn×d

d number of meta-graph features
mtest meta-graph feature vector for the new unseen test graph Gtest

k embedding size
P performance matrix of m models on n graphs
U latent graph factors obtained by factorizing P (P ≈ UVᵀ)

V latent model factors obtained by factorizing P (P ≈ UVᵀ)

f(·) learnable embedding function for models and graphs

MSE is easy to optimize and effective for regression, it does not directly concern with
the ranking quality. On the other hand, in our problem setup, the goal is to accurately
rank models for each graph, rather than estimating the performance itself, which makes
MSE a suboptimal choice. In particular, model selection problem focuses on finding the
model with the highest performance on the given graph. Therefore, among rank-based
learning objectives, we choose to apply the top-1 probability [CQL+07] to our problem.
Let P̂i ∈ Rm be the i-th row of P̂ (i.e., estimated performance of all m models on graph
Gi’s). Given P̂i, the top-1 probability pP̂itop1(j) of j-th model Mj in the model setM
represents the probability of Mj to be ranked at the top of the list, i.e., all models inM,
given model performance P̂i, and is defined as

pP̂itop1 (j) =
π(p̂ij)∑m
k=1 π(p̂ik)

=
exp(p̂ij)∑m
k=1 exp(p̂ik)

. (6.2)

Here π(·) is a strictly increasing positive function, which we define to be an exponential
function. Given that the top-1 probability pP̂itop1 (j) for all j = 1, . . . ,m forms a probability
distribution over all m models, we obtain two probability distributions by applying top-1
probability to the true performance Pi and estimated performance P̂i of m models, and
optimize AUTOGRL such that the distance between the two resulting distributions gets
decreased. Using the cross entropy as the distance metric, we minimize the following
loss over all n meta-train graphs G:

L(P, P̂) = −
n∑
i=1

m∑
j=1

pPitop1 (j) log
(
pP̂itop1 (j)

)
(6.3)

141

6.3.2 Online Model Prediction
In the meta-training phase, AUTOGRL learns estimators f(·) and φ(·), as well as weight
matrix W and latent model factors V. Given a new graphGtest, AUTOGRL first computes
the meta-graph features mtest ∈ Rd as we discuss in Section 6.3.3. Then mtest is regressed
to obtain the (approximate) latent graph factors Ûtest = φ(mtest) ∈Rk. Recall that the
model factors V learned in the meta-training stage can be directly used for model
prediction. Then model Mj’s performance on test graph Gtest can be estimated by
applying Equation (6.1) with mtest. Finally, the model that has the highest estimated
performance is selected by AUTOGRL as the best model M∗, i.e.,

M∗ ← arg max
Mj∈M

〈
f(W[mtest;φ(mtest)]), f(Vj)

〉
(6.4)

Note that model selection using Equation (6.4) depends only on the meta-graph features
mtest of the test graph and other pretrained estimators and latent factors that AUTOGRL
learned in the meta-training phase. As no model training or evaluation is involved,
model prediction by AUTOGRL is fast, taking negligible runtime compared to the time
to train the selected model as our experiments show in Section 6.4.3. Further, model
prediction process is fully automatic it does not require users to choose or fine-tune
any values at test time. Figure 6.2 shows an overview of model prediction process, and
Algorithm 6.1 lists steps for offline meta-training and online model prediction.

6.3.3 Structural Meta-Graph Features
Meta-graph features are a crucial component of our meta-learning approach AUTOGRL
since they capture the important structural characteristics of an arbitrary graph dataset.
Such meta-graph features enables AUTOGRL to quantify and leverage the similarity
between meta-train graphs during training. It is important that a sufficient and represen-
tative set of graph meta-features are used to capture the important structural properties
of graphs from a wide variety of different domains, including biological, technological,
information, and social networks to name a few [RA15].

In this work, we are unable to leverage the commonly used and simple statistical meta-
features used by previous work on model selection-based meta-learning, as these statis-
tical functions cannot be used directly over irregular and complex graph datasets. To
address this problem, we introduce the notion of meta-graph features and develop a
general framework for computing them on any arbitrary unseen graph.

Meta-graph features in AUTOGRL are derived in two steps, which is shown in Figure 6.3.
First, we apply a set of structural meta-feature extractors Ψ = {ψ1, . . . , ψq} to the input
graph G, obtaining Ψ(G) = {ψ1(G), . . . , ψq(G)}. Applying ψ ∈ Ψ to G yields a vector or
a distribution of values for the nodes (or edges) in the graph, such as degree distribution
and PageRank scores. That is, in the example given in Figure 6.3, ψ1 can be a degree
distribution, ψ2 can be PageRank scores of all nodes, and so on. Specifically, we use both
local and global structural feature extractors. To capture the local structural properties
around a node or an edge, we compute node degree, number of wedges, triangles

142

𝜓! 𝜓" 𝜓#

...

...

ΣΣΣ

...

(ψ)

Input Graph

][𝒎

Meta-Graph
Features

Figure 6.3: Meta-graph features in AUTOGRL are derived in two main steps:
(1) Structural meta-feature extractors Ψ = {ψ1, . . . , ψq} produce a set of Ψ(G) =
{ψ1(G), . . . , ψq(G)} structural feature matrices. (2) The set Σ of global statistical meta-
graph extractors summarize Ψ(G) into a fixed-size meta-graph feature vector m. See
Section 6.3.3 for more details.

centered at each node, and also frequency of triangles for every edge. To capture the
global structural properties of a node, we derive the PageRank score, eccentricity, and
k-core number of each node in the graph. We present more details of different sets of
meta-feature extractors used in experiments in Sections 6.4.1.4 and 6.4.4.

Let ψ denote the local structural extractors for nodes. Given a graph Gi = (Vi, Ei) and ψ,
we obtain an |Vi|-dimensional node vector xi = ψ(Gi). Since any two graphs Gi and Gj

are likely to have a different number of nodes and edges, the resulting structural feature
matrices ψ(Gi) and ψ(Gj) for these graphs are also likely to be of different sizes as the
rows of these matrices correspond to nodes or edges. Thus, in general, these structural
feature-based representations of the graphs cannot be used directly to derive similarity
between graphs.

Now, to address this issue, we apply the set Σ of global statistical meta-graph extractors
to every ψi(G), ∀i = 1, . . . , q, which summarizes each ψi(G) to a vector. Specifically,
Σ(ψi(G)) applies each of the statistical functions in Σ (e.g., mean, kurtosis, etc) to the
distribution ψi(G), which computes a real number that summarizes the given feature
distribution ψi(G) from different statistical point of view, producing a vector Σ(ψi(G)) ∈
R|Σ|. Then we obtain the meta-graph feature vector m of graph G by concatenating the

143

resulting meta-graph feature vectors:

m = [Σ(ψ1(G)) · · · Σ(ψq(G))] ∈ Rd. (6.5)

Table 6.8 lists the global statistical functions Σ used in this work to derive meta-graph
features. Further, in addition to the node- and edge-level structural features, we also
compute global graph statistics (scalars directly derived from the graph, e.g., we use
density and degree assortativity coefficient in this work), and append them to m, i.e., the
node- or edge-level structural features obtained above.

Most importantly, given any arbitrary graph G′, the proposed approach is guaranteed
to output a fixed d-dimensional meta-graph feature vector characterizing it. Hence, the
structural similarity of any two graphs G and G′ can be quantified using a similarity
function over m and m′, respectively.

6.3.4 Embedding Models and Graphs
Given the informative context (i.e., input features) of models and graphs that AUTOGRL
learns from model performances P and meta-graph features M (Section 6.3.1), how can
we use it to effectively learn model and graph embeddings that capture graph-to-model
affinity? We note that similar entities can make each other’s context more accurate and
informative. For instance, in our problem setup, similar models tend to have similar
performance distributions over graphs, and likewise similar graphs are likely to exhibit
similar affinity to different models. With this consideration, we model the task as a
graph representation learning problem, where we construct a graph called meta-graph
that connects similar models and graphs, and learn the model and graph embeddings
over it.

Meta-Graph. We define meta-graph to be a multi-relational graph with two types of
nodes (i.e., models and graphs) where edges connect similar model nodes and graph
nodes. To measure similarity among graphs and models, we utilize the latent graph
and model factors (U and V, respectively) obtained by factorizing P, as well as the
meta-graph features M. More precisely, we use the estimated graph factor Û instead of
U to let the same graph construction process work for new graphs. Note that this gives
us two types of features for graph nodes (i.e., Û and M), and one type of features for
model nodes (i.e., V). To let different features influence the embedding step differently
when needed, we connect graph nodes and model nodes using five type of edges: M-g2g,
P-g2g, P-m2m, P-g2m, P-m2g where g and m denote the type of nodes that an edge
connects (graph and model, respectively), and M and P denote that the edge is based
on meta-graph features and model performance, respectively. For example, M-g2g and
P-g2g edges connect two graph nodes that are similar in terms of M and Û, respectively.
Then for each edge type, we construct a k-NN graph by connecting nodes to their top-k
similar nodes, where node-to-node similarity is defined as the cosine similarity between
the corresponding node features. For instance, for P-g2m edge type, graph nodes and
model nodes are linked based on the similarity between Û and V.

144

Learning Over Meta-Graph. Given the meta-graph Gtrain that contains meta-train graphs
and models, graph neural networks (GNNs) provide an effective framework to embed
models and graphs via (weighted) neighborhood aggregation. However, since the
graph structure of meta-graph is induced by simple k-NN search, some of the neighbors
may not provide the same amount of information as others, or may even provide noisy
information. We found it helpful to perform attentive neighborhood aggregation, so more
informative neighbors can be given more weights. To this end, we choose to use attentive
GNNs designed for multi-relational networks, and specifically use HGT [HDWS20]
in experiments. Then the embedding function f(·) in Section 6.3.1 is defined to be
f(h) = HGT(h,Gtrain) during training, which transforms the input node feature h into
an embedding via attentive neighborhood aggregation over Gtrain.

Inference Over Meta-Graph. For inference at test time, we extend Gtrain to be a larger
meta-graph Gtest that additionally contains test graph nodes and edges between test
graph nodes, and existing graphs and models in Gtrain. The extension is done in the same
way as for the training phase, by finding top-k similar nodes. Then the embedding for
the inference can be done by f(h) = HGT(h,Gtest).

6.4 Experiments
The experiments are designed to answer the following questions:

• RQ1 (Model Selection Accuracy): How accurately do AUTOGRL and baselines select
the best model for the new graph?

• RQ2 (Model Selection Efficiency): In comparison to the current practice of model
selection, how efficient is AUTOGRL?

• RQ3 (Effects of Meta-Graph Features): How do different sets of meta graph-features
affect the model selection performance?

6.4.1 Experimental Settings

6.4.1.1 Models and Evaluation
Recall that a model in our automatic graph representation learning (GRL) problem for
downstream applications like link prediction typically includes a combination of two
components. The first component learns the graph representation, and the other compo-
nent leverages the embeddings learned by the first component for the downstream task
of interest. In this work, we evaluate our framework for automatically selecting a link
prediction model for the new graph without performing any evaluations.

Specifically, for the first component of link prediction model, we use 12 popular GRL
methods with distinct hyperparameters, and for the second component for link scoring,
we use a simple estimator that uses the cosine similarity between the two node embed-
dings as the link score. This setup results in a model setMwith 423 unique models. The
complete list of GRL methods and their hyperparameter settings used to construct the
model set is provided in Table 6.5 in Section 6.7.1.

145

For evaluation, we create a testbed consisting of benchmark graphs, meta-graph features,
and a performance matrix P. We construct the performance matrix P by evaluating each
link prediction model inM on the datasets in the testbed, in terms of the MAP (Mean
Average Precision) score. Then we evaluate AUTOGRL and baselines in the testbed
via 5-fold cross validation where the benchmark graphs are split into meta-train and
meta-test datasets for each fold, and the performance of meta-learners trained over the
meta-train data is evaluated using the meta-test dataset.

Since the goal of model selection problem is to accurately predict the best model for
the new graph, we evaluate the top-1 prediction performance of meta-learners in terms
of AUC (Area Under the ROC Curve), MAP, and NDCG (Normalized Discounted
Cumulative Gain). To apply AUC and MAP, we treat the task as a binary classification
problem, where only the top-1 model (i.e., the model with the highest performance for
the given graph) is labeled as 1, while all others are labeled as 0. For NDCG, we report
NDCG@1, which concerns only the top-1 predicted model’s performance. All metrics
range from 0 to 1, with larger values indicating higher accuracy.

6.4.1.2 Testbed Setup.
To evaluate meta-learners’ performance in different usage scenarios, we construct two
testbeds.

• Search-within-a-model testbed evaluates how well meta-learners perform in finding
the best hyperparameter configuration (HC) of a specific method. Thus performance
matrix P contains only the performances obtained with different HCs of a single
method.

• Search-across-all-models testbed evaluates how accurately meta-learners select the
best model from the heterogeneous model set composed by pairing each model with
its distinct HCs. This is the most general and challenging setup, where performance
matrix P consists of all models’ performance on all graphs.

Both testbeds use a graph corpus consisting of 301 graphs from 21 domains, which have
fundamentally different structural characteristics. Table 6.6 shows the distribution of
graphs per data domain.

6.4.1.3 Baselines
Being the first work for automatic model selection in graph learning, we do not have
immediate baselines for comparison. Therefore, we adapt some existing approaches for
our problem setting, and also devise baselines based on simple ideas frequently used in
practice. Baselines can be organized into three categories.

(a) No model selection employs the same popular model for link prediction.

• node2vec [GL16] is a popular graph representation learning method.
• GCN [KW17] denotes graph convolutional network.

146

(b) Simple meta-learners select a model that performs generally well, either globally or
locally.

• Global Best (GB)-Avg selects the model with the largest mean performance across all
meta-train graphs.

• Global Best (GB)-Rank selects the model that was the best performing most frequently
for all meta-train graphs.

• ISAC [KMST10] first clusters meta-train datasets using meta-graph features, and at
test time, finds the cluster closest to the test graph, and selects the model with the
largest average performance over all graphs in that cluster.

• ARGOSMART (AS) [NMJ13] finds the meta-train graph closest to the test graph (i.e.,
1NN) in terms of meta-graph feature similarity, and selects the model with the best
result on the 1NN graph.

GB-Avg and GB-Rank do not use meta-features for model selection.

(c) Optimization-based meta-learners learn to estimate the model performance by mod-
eling the relation between meta-graph features and model performances.

• Supervised Surrogates (SS) [XHS+12] learns a surrogate model (a regressor) that
maps meta-graph features to model performances.

• ALORS [MS17] factorizes the performance matrix into latent factors on graphs and
models, and estimates the performance to be the dot product between the two factors,
where a non-linear regressor maps meta-graph features into the latent graph factors.

• NCF [HLZ+17] improves upon ALORS by replacing dot product with a more general
neural architecture that estimates performance by combining the linearity of MF and
non-linearity of DNNs.

In addition, we also include Random Selection (RS) as a baseline to see how these
methods compare to randomly scoring models. Note that except the simplest meta-
learner GB, all of the above baseline meta-learners rely on the proposed meta-graph
features to be able to estimate model performances on an unseen test graph.

6.4.1.4 Meta-Graph Features

In experiments, we used density of A and AAT , and also the degree assortativity coeffi-
cient r. Also, we derived the distribution of degrees, k-core numbers, PageRank scores,
wedges, and triangles. For each of these structural property distributions (degree, k-core
numbers, and so on), we apply the set Σ of statistical functions (Table 6.8) over it to obtain
a vector representation for the per-node/edge structural feature/distribution. Finally,
we concatenate all of the meta-graph features together to obtain the final meta-graph
feature vector m for the graph.

6.4.2 Model Selection Accuracy (RQ1)
We evaluate model selection accuracy using both testbed setups.

147

Table 6.2: AUTOGRL achieves higher model selection accuracy than several baselines
in most cases on the search-within-a-model testbed. Results are obtained via 5-fold cross
validation. The best results are in bold, and the second best results are underlined.

Search-within-a-model
testbed

DeepGL [RZA20] node2vec [GL16] HONE [RAK18] GraphSage [HYL17] role2vec [ARL+18]

AUC MAP NDCG@1 AUC MAP NDCG@1 AUC MAP NDCG@1 AUC MAP NDCG@1 AUC MAP NDCG@1

Random Selection 0.495 0.036 0.867 0.485 0.303 0.972 0.503 0.127 0.826 0.516 0.195 0.822 0.514 0.030 0.792

Global Best-Avg. 0.691 0.164 0.938 0.502 0.331 0.974 0.779 0.448 0.931 0.783 0.433 0.947 0.846 0.146 0.955
Global Best-Rank 0.698 0.192 0.938 0.581 0.377 0.975 0.778 0.440 0.931 0.784 0.407 0.943 0.808 0.119 0.954
ALGOSMART 0.770 0.210 0.935 0.615 0.400 0.982 0.786 0.422 0.939 0.777 0.409 0.947 0.812 0.124 0.951
ISAC 0.713 0.170 0.940 0.611 0.413 0.982 0.777 0.424 0.930 0.785 0.430 0.945 0.852 0.144 0.954

ALORS 0.670 0.079 0.925 0.566 0.382 0.981 0.746 0.300 0.924 0.797 0.426 0.945 0.818 0.113 0.950
NCF 0.695 0.144 0.934 0.545 0.358 0.978 0.767 0.392 0.929 0.785 0.420 0.945 0.844 0.126 0.951
Supervised Surrogate 0.610 0.051 0.918 0.586 0.390 0.979 0.752 0.324 0.927 0.766 0.367 0.935 0.809 0.112 0.951

AUTOGRL (Ours) 0.791 0.237 0.947 0.632 0.427 0.982 0.801 0.456 0.939 0.814 0.440 0.948 0.852 0.139 0.961

Table 6.3: AUTOGRL consistently outperforms existing model selection methods on
the search-across-all-models testbed that involves 423 models and 301 graphs. Results are
obtained via 5-fold cross validation. The best results are in bold, and the second best
results are underlined.

Search-across-all-models testbed

AUC MAP NDCG@1

Random Selection 0.490 0.011 0.745

GCN 0.499 0.002 0.755
node2vec 0.505 0.016 0.931

Global Best-Avg. 0.877 0.163 0.932
Global Best-Rank 0.834 0.205 0.933
ALGOSMART 0.905 0.222 0.947
ISAC 0.891 0.215 0.941

ALORS 0.868 0.120 0.921
NCF 0.875 0.132 0.931
Supervised Surrogate 0.861 0.128 0.933

AUTOGRL (Ours) 0.936 0.243 0.962

148

Search-within-a-model testbed. In this setup, the goal is to select the best model from
among the HCs of a single method. In Table 6.2, we show how effective AUTOGRL
and baselines are in finding the best HC of five chosen methods, averaged over 301
graphs. Results show that AUTOGRL nearly consistently achieves the highest model
selection accuracy in terms of three evaluation metrics. Among baselines, ALGOSMART
achieves better performance than other baselines. However, there is no consistent winner
among baselines. Notably, optimization-based meta-learners, such as ALORS and SS, are
mostly outperformed by simpler meta-learners like ISAC and ALGOSMART, which first
find similar meta-train graphs and use their observed performance directly for model
selection. On the other hand, optimization-based meta-learners try to reconstruct the
performance matrix via matrix factorization or regression, which is a much harder task.
As an optimization-based technique, AUTOGRL outperforms these baselines by more
effectively capturing graph-to-model affinity via learning over meta-graph.

Search-across-all-models testbed This setup aims to identify the best model among all
existing methods and their HCs. Thus, most methods that focus on finding an optimal
HC for a single method can not be used. Table 6.3 shows the results. Always using
popular methods, such as GCN and node2vec, does not perform well. Although these
methods perform reasonably well in comparison to other methods in the testbed, they
are not often the best model. Note that these models are associated with a specific
hyperparameter setting (HS), and thus are treated differently from the same method with
a different HS. Again, simple meta-learners, especially ALGOSMART, often outperform
optimization-based meta-learners. Our previous discussion on this observation equally
applies here. At the same time, this result shows the effectiveness of our meta-graph
features, since the performance of ALGOSMART and ISAC heavily relies on the quality
of meat-graph features for effective model selection. In this challenging setup, AUTOGRL
consistently outperforms baselines in all three categories.

6.4.3 Model Selection Efficiency (RQ2)
To evaluate how efficient AUTOGRL’s model selection is, we measure AUTOGRL’s
runtime (i.e., time to create meta-graph features for new graph at test time, plus the
time to make a prediction), and compare it with the time taken for systematic search
corresponding to the two testbed settings. Figure 6.4 shows the results in box plots,
where orange and dotted green lines denote the median and mean.

First, Figure 6.4a shows that AUTOGRL runs fast. On average over all graphs in the
testbed, it takes less than 1 second to run. Next, Figure 6.4b shows the ratio of time taken
for searching within a model (i.e., evaluating different hyperparameter configurations
(HC) of a single method) to AUTOGRL’s runtime. Since it takes too much time to try
out all HCs for all GRL methods in our testbed, we selected eight methods and graphs
(Table 6.7), and used them as representative cases. On average, search-within-a-model
type of evaluation takes 250× longer time than AUTOGRL. Figure 6.4c shows the ratio of
time taken for searching across all models to AUTOGRL’s runtime. On average, search-
across-all-models evaluation takes 2006× longer than AUTOGRL. As an aside, these

149

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

(a) AUTOGRL’s runtime (seconds) at test time.

0 500 1000 1500 2000 2500

(b) Ratio of time to search within a model to AUTOGRL’s runtime.

500 1000 1500 2000 2500 3000 3500 4000

(c) Ratio of time to search across all models to AUTOGRL’s runtime.

0 1 2 3 4 5

(d) Ratio of time to create meta-graph features to time to make a
prediction (both by AUTOGRL).

Figure 6.4: AUTOGRL’s runtime (i.e., time to generate meta-graph features and make
a prediction) at test time and comparison to time taken for systematic search. Orange
and dotted green lines denote the median and mean, respectively. AUTOGRL is fast (<1
second), and incurs negligible overhead.

results are on small graphs, and hence, the runtime of naive search would become even
larger as graph size gets larger, and also as the testbed gets bigger. Finally, Figure 6.4d
shows the ratio of time taken for AUTOGRL to create meta-graph features to the inference
time. On average, meta graph-feature generation takes ∼20% longer time than inference,
while both of them in aggregate take <1 second. Results show that AUTOGRL is fast,
and incurs negligible overhead.

6.4.4 Effects of Meta-Graph Features (RQ3)
In this section, we investigate using a different set of meta-graph features. We useM to
denote the default set with ∼300 meta-graph features described in Section 6.4.1.4. Then
we construct another setMsmall (∼60 features), which is smaller thanM, and consists of
simple structural features such as degree and k-core. We createMextended (∼1000 features)
by extendingMwith features related to edge-centric graphlet frequency. In particular,
we counted all 3 and 4 node graphlets (network motifs) for every edge in the graph. For
each of the graphlet frequency distributions (3-stars, 4-cycles, 4-cliques, etc), we apply
the functions in Table 6.8 over it, and obtain a vector representation for the edge graphlet
frequency distribution. Then we obtainMextended by concatenating these meta-graph
features withM.

Table 6.4 shows the performance achieved by different methods in search-across-all-

150

Table 6.4: By effectively capturing the structural characteristics of graphs, our proposed
meta-graph features enable effective automatic model selection by AUTOGRL as well as
other methods that rely on meta-features. Using different sets of meta-graph features
(Msmall,M, andMextended), AUTOGRL consistently outperforms all baselines.

Search-across-all-models
testbed

Msmall M Mextended

AUC MAP NDCG@1 AUC MAP NDCG@1 AUC MAP NDCG@1

Random Selection 0.513 0.022 0.742 0.490 0.011 0.745 0.490 0.011 0.745

GCN 0.499 0.002 0.755 0.499 0.002 0.755 0.499 0.002 0.755
node2vec 0.505 0.016 0.931 0.505 0.016 0.931 0.505 0.016 0.931

Global Best-Avg. 0.877 0.163 0.932 0.877 0.163 0.932 0.877 0.163 0.932
Global Best-Rank 0.834 0.205 0.933 0.834 0.205 0.933 0.834 0.205 0.933
ALGOSMART 0.889 0.206 0.946 0.905 0.222 0.947 0.911 0.224 0.952
ISAC 0.886 0.220 0.944 0.891 0.215 0.941 0.881 0.196 0.942

ALORS 0.869 0.159 0.935 0.868 0.120 0.921 0.851 0.096 0.918
NCF 0.873 0.176 0.932 0.875 0.132 0.931 0.877 0.148 0.935
Supervised Surrogate 0.871 0.132 0.928 0.861 0.128 0.933 0.854 0.087 0.920

AUTOGRL (Ours) 0.928 0.237 0.955 0.936 0.243 0.962 0.936 0.246 0.958

models testbed using those three sets of meta-graph features. Results show that AU-
TOGRL consistently achieves the best performance as different meta-graph features
are used. Even a relatively small set of meta-featuresMsmall can be effectively used by
different methods for model selection. Using a larger setM of meta-graph features
improves the performance of AUTOGRL and a few baselines. On the other hand, a
much larger feature setMextended does not lead to much improvement for most methods,
except for ALGOSMART. However, we hypothesize that additional information that
edge graphlets frequency in Mextended brings may become useful as the testbed gets
expanded with more diverse graphs, and also applied to other tasks than link prediction.
We release all three sets of meta-graph features to the community.

6.5 Related Work
In this section, we review previous works on model selection (i.e., selecting an algo-
rithm and its hyperparameter settings) in the areas of machine learning and graph
learning.

6.5.1 Model Selection in Machine Learning
As increasingly complex machine learning models (e.g., deep neural networks) are widely
used, manual model selection, which highly relies on human expertise, is becoming too
expensive or even impractical [YZ20]. Thus, a lot of research has focused on automating
model selection in ML [HZC21], which can be organized into two categories.

151

6.5.1.1 Evaluation-Based Model Selection
A majority of model selection methods belong to this category. Representative techniques
used by these methods include grid search [LL19], random search [BB12], early stopping-
based [GSM+17] and bandit-based [LJD+17] approaches, and Bayesian optimization
(BO) [SLA12, WCZ+19, FKH18]. Among them, BO methods are more efficient than grid
or random search, requiring fewer evaluations of hyperparameter configurations (HCs),
as they determine which HC to try next in a guided manner using prior experience from
previous trials. Note that these methods perform model training and/or evaluation
multiple times using different HCs, and have much limited efficiency compared to the
next group of methods.

6.5.1.2 Evaluation-Free Model Selection
Methods in this category require no model evaluation for model selection at inference
time. A simple approach [ABvRV18] identifies the best model by considering the algo-
rithm’s rankings observed on prior datasets. Instead of finding the globally best model,
ISAC [KMST10] and ARGOSMART [NMJ13] select a model that performed well on simi-
lar datasets, where the dataset similarity is taken into account in the meta-feature space
by using clustering [KMST10] or k-nearest neighbor search [NMJ13]. A different group
of methods perform optimization-based model selection, where the model performance
is estimated by modeling the relation between meta-features and model performances.
For instance, Supervised Surrogates [XHS+12] learns a (non-linear) surrogate model that
maps meta-features to model performance, and ALORS [MS17] models the performance
as a dot product between latent factors of models and datasets obtained via matrix
factorization. Notably, all of these methods, except the first one, rely on meta-features,
while focusing on non-graph datasets. By applying our proposed meta-graph features,
we make them applicable to the graph model selection task.

6.5.2 Model Selection in Graph Learning
A majority of graph learning works focus on developing new, effective graph learning
algorithms for certain graph learning tasks and applications [XSY+21, ZCZ22]. In com-
parison, there exist relatively few recent works [TMC+19, GYZB21, YWCP21, BLL21,
ZTLL21], which aim to address the graph learning model selection problem. These
studies mainly focus on neural architecture search and hyperparameter optimization
(HPO) for graph learning models, especially for graph neural networks (GNNs). To
achieve more efficient model selection than the naive exhaustive approach (Figure 6.1b),
these studies investigated several techniques for efficient HPO, including subgraph
sampling [TMC+19], graph coarsening [GYZB21], hierarchical evaluation [YWCP21], hy-
pernets [ZTLL21], and evolutionary algorithms [BLL21]. However, in order to select the
best model for a new graph, they still need to perform model training and/or evaluations
on the new graph, which is significantly more costly than evaluation-free model selection.
Also, these works are mostly limited to finding the best HC of a specific graph learning
model, e.g., GCN [KW17], and cannot be used to select a model from a heterogeneous
model setM consisting of various graph learning models (which are typically a com-

152

bination of graph representation learning methods, downstream task-specific methods
such as link predictor, and their hyperparameters). Previous work on network similarity
[BKEF12] is somewhat relevant to graph model selection. Yet, it solely focuses on ex-
tracting seven node-level features, and does not concern model selection. In comparison,
AUTOGRL provides a much richer set of 300+ meta-graph features on node, edge, and
graph level. To the best of our knowledge, there exists no prior work that can infer the best
graph learning model without incurring model training or evaluations. Our proposed
AUTOGRL is the first approach for selecting the best model in an evaluation-free manner,
from among any heterogeneous set of graph learning models.

6.6 Conclusion
In this chapter, we tackle fast automatic model selection problem for graph representation
learning by making the following contributions.

• Problem Formulation. We formulate the problem of training and evaluation-free
model selection for graph learning,

• Framework for Automatic Graph Learning. We propose AUTOGRL, the first ap-
proach to automatic graph learning that infers the best model for a new unseen graph
in near real-time, while requiring supervision for model training or evaluation.

• Specialized Meta-Graph Features. We design specialized meta-graph features that
capture the structural characteristics of graphs.

• Effectiveness and Efficiency. Comprehensive experiments show that model selecting
by AUTOGRL significantly outperforms always using popular models, as well as other
meta-learners adapted for our problem, while incurring negligible overhead.

6.7 Appendix
6.7.1 Model Set
A model in the model setM refers to a graph representation learning (GRL) method
along with its hyperparameters settings, and a link predictor that scores a given link
based on the two nodes’ embeddings. Table 6.5 shows the complete list of 12 popular
GRL methods and their specific hyperparameter settings, which compose 412 unique
models in the model set M. Note that the link predictor is omitted from Table 6.5
since we employ the same link predictor based on cosine similarity scoring to all GRL
methods.

6.7.2 Graph Domains
The testbed used in this work contains 301 graphs taken from 21 domains, which have
widely different structural properties. Table 6.6 show the distribution of testbed graphs
across graph domains.

6.7.3 Runtime
Table 6.7 shows results comparing the runtime (in seconds) for naive model selection to
the runtime of AUTOGRL. Results show that AUTOGRL is fast, and incurs negligible

153

Table 6.5: Graph representation learning (GRL) models and their hyperparameter settings,
which collectively comprise the model setMwith 423 unique GRL models. For more
details of the hyperparameters, please refer to the cited paper.

Methods Hyperparameter Settings Count

SGC [WJZ+19] # (number of) hops k ∈ {1, 2, 3} 3
GCN [KW17] # layers L ∈ {1, 2, 3}, # epochs N ∈ {1, 10} 6
GraphSAGE [HYL17] # layers L ∈ {1, 2, 3}, # epochs N ∈ {1, 10}, aggregation functions f ∈ {mean, gcn, lstm} 18
node2vec [GL16] p, q ∈ {1, 2, 4} 9
role2vec [ARL+18] α ∈ {0.01, 0.1, 0.5, 0.9, 0.99}, motif combinationsH ∈ {{H1}, {H2, H3}, {H2, H3, H4, H6, H8}, {H1, H2, . . . , H8}},

p, q ∈ {0.25, 1, 4}
180

GraRep [CLX15] k ∈ {1, 2} 2
DeepWalk [PAS14] p = 1, q = 1 1
HONE [RAK18] k ∈ {1, 2}, Dlocal ∈ {4, 8, 16}, variant v = {1, 2, 3, 4, 5} 30
node2bits [JHRK19] walk num wn ∈ {5, 10, 20}, walk len wl ∈ {5, 10, 20}, log base b ∈ {2, 4, 8, 10}, feats f ∈ {16} 36
DeepGL [RZA20] α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, motif size ∈ {4}, eps tolerance t ∈ {0.01, 0.05, 0.1}, relational aggr. ∈

{{m}, {p}, {s}, {v}, {m, p}, {m, v}, {s,m}, {s, p}, {s, v}}where m, p, s, v denote mean, product, sum, var
135

LINE [TQW+15] # hops/order k ∈ {1, 2} 2
Spectral Emb. [LWH03] tolerance t ∈ {0.001} 1

Total Count 423

Table 6.6: Domains of the graph datasets in the testbed, and the number of graphs for
each domain. In sum, our testbed contains 301 graphs drawn from 21 domains, which
have fundamentally different structural characteristics.

Graph Data Domain Number of Graphs

Protein Networks 50
Cheminformatics Network 50
Retweet Network 27
Synthetic-KPGM 25
Biological Network 23
Synthetic-BA 18
Facebook Network 17
Synthetic-CL 15
Web Graph 10
Collaboration Network 10
Social Network 10
Brain Network 9
Synthetic-ER 6
Ecology Network 6
Road Network 6
Email Network 6
Power Networks 6
Recommendation Network 2
Technological Network 2
Infrastructure Network 2
Scientific Computing Network 1
Total Count 301

154

Table 6.7: Results comparing the runtime (in seconds) for naive model selection (i.e.,
training and evaluating each method using every hyperparameter configuration in the
model setM) to the runtime of AUTOGRL (the penultimate row refers to the time
to generate meta-graph features, and the last row is the average time taken for model
prediction).

biogrid-
plant

web-pol
blogs

soc-wiki-
Vote

eco-mang
wet

ia-reality
tech-

routers-
rf

web-
EPA

socfb-
Caltech

line 6.22 6.40 5.45 6.37 5.85 5.40 7.28 8.19
node2vec 36.48 52.34 65.28 18.40 504.38 154.54 317.55 184.09
deepwalk 3.84 5.44 7.03 1.84 55.01 16.89 33.09 18.24
HONE 19.24 169.22 203.71 11.20 53.15 552.31 882.35 737.49
node2bits 44.33 55.12 64.85 43.35 113.06 92.22 117.55 106.66
deepGL 72.81 106.95 145.93 71.08 633.44 331.87 880.03 445.89
GraphSage 108.20 301.22 272.97 339.73 1451.87 513.18 1020.30 2586.93
GCN 15.04 22.00 26.30 17.12 57.10 45.64 66.12 94.65

AUTOGRL
0.10 0.14 0.16 0.06 0.97 0.36 0.78 0.61

0.39

computational overhead.

6.7.4 AUTOGRL Algorithm
Algorithm 6.1 provides detailed steps of AUTOGRL, for both offline meta-training (top)
and online model selection (bottom).

6.7.5 Experimental settings
We set the embedding size k to 32 for AUTOGRL and other meta-learners that learn
embeddings of models and graphs. For AUTOGRL, we created the meta-graph by
connecting nodes to their top-10 similar nodes. As an the embedding function f(·) in
AUTOGRL, we used HGT [HDWS20] with 2 layers and 4 heads per layer. We used Adam
optimizer for training.

6.7.6 Meta-Graph Features
Table 6.8 provides a summary of the global statistical functions Σ to derive a set of
meta-graph features from a vector of graph structural features (e.g., node degrees, k-core
numbers, etc).

155

Table 6.8: Summary of the global statistical functions Σ for deriving a set of meta-graph
features from a graph invariant (e.g., k-core numbers, node degrees, and so on). Let x
denote an arbitrary graph invariant vector for some graph Gi = (Vi, Ei) and π(x) is the
sorted vector of x. Note x can be any representation, e.g., node degree vector (value for
each node in Gi) or a degree distribution vector.

Name Equation

Num. unique values card(x)
Density nnz(x)/|x|

Q1, Q3 median of the |x| /2 smallest (largest) values
IQR Q3 −Q1

Outlier LB α ∈ {1.5, 3}
∑

i I(xi < Q1 − αIQR)
Outlier UB α ∈ {1.5, 3}

∑
i I(xi > Q3 + αIQR)

Total outliers α ∈ {1.5, 3}
∑

i I(xi<Q1−αIQR) +
∑

i I(xi>Q3 + αIQR)
(α-std) outliers α ∈ {2, 3} µx ± ασx
Spearman (ρ, p-val) spearman(x, π(x))
Kendall (τ , p-val) kendall(x, π(x))
Pearson (r, p-val) pearson(x, π(x))

Min, max min(x), max(x)
Range max(x)−min(x)
Median med(x)

Geometric Mean |x|−1∏
i xi

Harmonic Mean |x| /
∑

i
1
xi

Mean, Stdev, Variance µx, σx, σ2
x

Skewness E(x−µx)3/σ3
x

Kurtosis E(x−µx)4/σ4
x

Quartile Dispersion Coeff. Q3−Q1

Q3+Q1

Median Absolute Deviation med(|x−med(x)|)
Avg. Absolute Deviation 1

|x|e
T |x− µx|

Coeff. of Variation σx/µx
Efficiency ratio σ2

x/µ2x
Variance-to-mean ratio σ2

x/µx

Signal-to-noise ratio (SNR) µ2x/σ2
x

Entropy H(x) = −
∑

i xi log xi
Norm. entropy H(x)/log2|x|
Gini coefficient −

Quartile max gap max(Qi+1 −Qi)
Centroid max gap maxij |ci − cj |

Histogram prob. dist. ph = h
hT e

(with fixed # of bins)

156

Algorithm 6.1: AUTOGRL: Offline Meta-Training (Top) and Online Model Selec-
tion (Bottom)

Input: Meta-train graph database G, model setM, embedding dimension k
Output: Meta-learner for model selection
/* (Offline) Meta-Learner Training */

1 Train & evaluate models inM on graphs in G to get performance matrix P
2 Extract meta-graph features M for each graph Gi in G (Sec. 6.3.3)
3 Factorize P to obtain latent graph factors U and model factors V, i.e., P ≈ UVᵀ

4 Learn an estimator φ(·) such that φ(m) = Ûi ≈ Ui

5 Create meta-train graph Gtrain (Sec. 6.3.4)
6 while not converged
7 for i = 1, . . . , n do
8 Get embeddings f(W[m;φ(m)]) of train graph Gi on Gtrain

9 for j = 1, . . . ,m do
10 Get embeddings f(Vj) of each model Mj on Gtrain

11 Estimate p̂ij = 〈f(W[m;φ(m)]), f(Vj)〉 (Eqn. 6.1)
12 end
13 end
14 Compute meta-training loss L(P, P̂) (Eqn. 6.3) and optimize parameters
15 end

Input: new graph Gtest

Output: selected model M∗ for Gtest

/* (Online) Model Selection (Section 6.3.2) */
16 Extract graph meta-features mtest = ψ(Gtest)

17 Estimate latent factor Ûtest = φ(mtest) for test graph Gtest

18 Create meta-test graph Gtest by extending Gtrain with new edges between test graph node
and existing nodes in Gtrain (Sec. 6.3.4)

19 Get embeddings f(W[mtest; Ûtest]) of test graph on Gtest

20 Get embeddings f(Vj) of each model Mj on Gtest

21 Return the best model M∗ ← arg maxMj∈M
〈
f(W[mtest; Ûtest]), f(Vj)

〉

157

158

Part II

Dynamic Graphs and Tensors

159

Chapter 7

Knowledge-Guided Dynamic
Systems Modeling

Chapter based on work published in ICDE 2021 [PKH+21].

Modeling real-world phenomena is a focus of many science and engineering efforts,
such as ecological modeling and financial forecasting, to name a few. Building
an accurate model for complex and dynamic systems improves understanding of
underlying processes and leads to resource efficiency. Towards this goal, knowledge-
driven modeling builds a model based on human expertise, yet is often suboptimal.
At the opposite extreme, data-driven modeling learns a model directly from data,
requiring extensive data and potentially generating overfitting. We focus on an
intermediate approach, model revision, in which prior knowledge and data are
combined to achieve the best of both worlds. In this chapter, we propose a genetic
model revision framework based on tree-adjoining grammar (TAG) guided genetic
programming (GP), using the TAG formalism and GP operators in an effective
mechanism to incorporate prior knowledge and make data-driven revisions in a
way that complies with prior knowledge. Our framework is designed to address the
high computational cost of evolutionary modeling of complex systems. Via a case
study on the challenging problem of river water quality modeling, we show that the
framework efficiently learns an interpretable model, with higher modeling accuracy
than existing methods.

7.1 Introduction
Modeling real-world phenomena is the goal of numerous science and engineering en-
deavors, such as ecological modeling [KMS+10], financial forecasting [LLC09], user mod-
eling [WPB01], disease prediction [PKP+18], popularity estimation [PKD+19, PKD+20],
student dropout prediction [JPB20], and drug discovery [BSMN03]. An accurate model
of these systems can enable better understanding of underlying mechanisms and more
effective use of resources. Real-world systems are typically dynamic and complex, with

161

multiple observed and latent variables that change over time, and affect each other in
complex and often nonlinear ways. As an example, consider the task of forecasting river
water quality. Addressing this problem requires an understanding of processes such as
plankton dynamics and hydrological mechanisms, and modeling how they influence the
system dynamics as a whole.

Existing approaches for modeling dynamical systems can be grouped into three classes.
The first is knowledge-driven modeling. The structure of knowledge-driven models and
their parameters are determined by domain experts, based on their prior knowledge
and using observational data to calibrate the model parameters. In knowledge-driven
modeling, the state of dynamic systems can be modeled by differential equations. While
knowledge-driven models perform reasonably well when the modelled system is simple,
they take time to construct, and generally perform less well with increasing system
complexity.

The second is data-driven modeling: learning a model purely from data, with no need
for prior knowledge. Highly accurate models can often be obtained by these meth-
ods. Modeling complex systems requires plentiful data, but the high cost of measure-
ment [KAF+17] means this is often unavailable. Sadly, learning a model from limited
data often leads to overfitting. Importantly, data-driven modeling might learn models
that are not consistent with prior knowledge. Also, some of the popular methods in this
class (e.g., neural networks) generate black box models, lacking explanatory power.

The third class combines knowledge- and data-driven modeling to gain the best of both
worlds. Model calibration is one widely used approach: the initial model structure is
specified by domain knowledge, and then model parameters are optimized using data.
However, model calibration updates only the model parameters, not the model structure.
If this is oversimplified, the accuracy of the optimized model will be compromised, and
the calibrated parameter values will be unrealistic. Model revision is a more interesting
and effective approach: prior knowledge specifies the initial model structure and pa-
rameter values, but both are updated iteratively to obtain a better fit to the data. This
approach of revising and improving existing models closely resembles traditional scien-
tific discovery process [DLT07]. Knowledge-guided model revision further improves plain
model revision by letting model revision be guided by prior knowledge and producing a
revised model consistent with domain knowledge. Table 7.1 summarizes how different
approaches satisfy desirable properties for knowledge-guided modeling of complex
dynamic systems.

As a powerful technique for evolving programs, genetic programming (GP) [Koz93]
provides an effective framework for model revision. GP has been successfully applied
to real-world problems in various fields [VGT15, AWWB09, DNM+12], and has the
theoretical advantage that the output is interpretable, unlike blackbox models. Among
GP’s methods, symbolic regression (SR), which aims to discover a function that fits
the training data, is the most relevant to process modeling. Standard SR is a form of
data-driven modeling, as it sets no restrictions on the model structure. It thus suffers
from a lack of guidance in the optimization process, and may produce models that violate

162

Table 7.1: Model revision satisfies all properties for interpretable knowledge-guided
modeling of complex dynamic systems. Other approaches miss one or more of the
properties. “?” means that it depends on the specific method used.

Property
Approach

Knowledge-
Driven

Modeling

Data-
Driven

Modeling

Model
Calibration

Model
Revision

Knowledge-
Guided
Model

Revision

Learning models
consistent with
prior knowledge

X ? X

Knowledge-based
model specification

X X X X

Structural
model update

? X X

Automatic tuning of
model parameters

X X X X

Capacity to model
complex systems

X X X

Interpretable X ? X X X

domain knowledge.

A number of newer GP methodologies, such as grammar guided GP (GGGP) [Whi96]
and tree-adjoining grammar (TAG) guided GP (TAG3P) [Ngu04], support constraining
or biasing the structure of learnt models [Mon95, OR01]. We base our framework on
TAG3P, which is a powerful tool for incorporating domain knowledge while exploring
the complex search spaces required for modeling real-world processes.

In this chapter, we propose TAG3P-based genetic model revision (GMR), in which the
TAG formalism and GP operators provide an effective mechanism to perform data-
driven model revisions based on prior knowledge. We show how to represent dynamic
processes in TAG, and how to extend the TAG3P framework to incorporate different
types of prior knowledge into the optimization process. An important challenge in
applying GP to complex systems is the high computational cost of the search and fitness
evaluation in GP systems. Our framework achieves efficient and effective optimization
by reducing redundancy and enabling evaluation short-circuiting. In our case study,
GMR allows us to accurately model water quality in a river ecosystem, a complex
dynamic system with extensive geographic coverage, which has previously been much
less studied than relatively simple lake ecosystems due to its far higher complexity.

In summary, our contributions are as follows:

163

 10

 12

 14

 16

 18

 20

G
M
R

G
G
G
P

D
E
-M
C Z

S
C
E
-U
A
S
A

M
C
M
C

LH
S
G
A

A
R
IM
A
X

R
N
N

M
A
N
U
A
L

R
M
S
E

Model Revision
Model Calibration

Data-Driven Modeling
Knowledge-Driven Modeling

B
e
tt
e
r

−7%

 6

 8

 10

 12

 14

 16

G
M
R

G
G
G
P

D
E
-M
C Z

S
C
E
-U
A
S
A

M
C
M
C

LH
S
G
A

A
R
IM
A
X

R
N
N

M
A
N
U
A
L

M
A
E

B
e
tt
e
r

−13%

Figure 7.1: GMR achieves the best forecasting accuracy in the river modeling task,
obtaining 7% and 13% lower RMSE (left) and MAE (right), respectively, than the second
best method, while producing revised models guided by domain knowledge.

• Framework. We present a GMR framework for dynamic systems modeling, which
improves a knowledge-based model in a data-driven manner, guided by prior knowl-
edge.

• Knowledge Incorporation. We design novel mechanisms to represent prior knowledge
and perform knowledge-guided optimizations in the GMR framework.

• River Modeling. This is the first work to apply model revision to modeling a river
system. Previous work on river modeling used model calibration alone.

• Effectiveness. Our framework achieves the best forecasting accuracy in river model-
ing among a variety of methods, while producing models consistent with domain
knowledge.

• Efficiency. We present techniques to cut down the computational cost of GP systems,
achieving 607× speedup.

Reproducibility: Code and data are available at https://www.cs.cmu.edu/~namyongp/
gmr.

The rest of the chapter is organized as follows. We describe the river modeling problem
in Section 7.2, and present the GMR framework and how to apply it to river modeling
in Section 7.3. After presenting experimental results in Section 7.4, we review related
works in Section 7.5, and conclude in Section 7.6.

7.2 River Water Quality Modeling
Rivers are precious freshwater resources for households, farming, and industry. Due to
intensive use and increasing development, the eutrophication (over-enrichment with
nutrients) of rivers has become a serious global problem. Algal blooms are one of the most
problematic and widespread consequences that deteriorate river water quality [Mos09].
For improved river management, it is crucial to have an accurate model of the water

164

https://www.cs.cmu.edu/~namyongp/gmr
https://www.cs.cmu.edu/~namyongp/gmr

quality.

River water quality modeling aims to predict phytoplankton biomass, a proxy for eu-
trophication. Based on the knowledge of a freshwater ecologist, we designed the follow-
ing biological processes, modeling the change of phytoplankton biomass over time by
capturing the interplay between phytoplankton (BPhy) and zooplankton (BZoo).

dBPhy

dt
= BPhy · (µPhy − γPhy)−BZoo · ϕ (7.1)

µPhy = CUA · f(Vlgt) · g(Vn, Vp, Vsi) · h(Vtmp)

γPhy = CBRA

ϕ = CMFR · λPhy
λPhy = (BPhy − CFmin)/(CFS +BPhy − CFmin)

f(Vlgt) = (Vlgt/CBL) · e1−(Vlgt/CBL)

g(Vn, Vp, Vsi) = min (Vn/(CN + Vn), Vp/(CP + Vp), Vsi/(CSI + Vsi))

h(Vtmp) = max(e−CPT (Vtmp−CBTP1)2 , e−CPT (Vtmp−CBTP2)2)

dBZoo

dt
= BZoo · (µZoo − γZoo − δZoo) (7.2)

µZoo = CUZ · λPhy
γZoo = CBRZ + CBMT · ϕ
δZoo = CDZ

The phytoplankton dynamics model (dBPhy/dt) incorporates the photosynthetic pro-
ductivity (µPhy), metabolic degradation (γPhy), and grazing pressure of zooplankton (ϕ).
The photosynthetic productivity depends on multiplicative influences from variables
such as light intensity (Vlgt), nutrient (nitrogen, phosphorus, and silica) concentrations
(Vn, Vp, Vsi), and water temperature (Vtmp). These functions build on earlier studies on
modeling algal dynamics including [CS98, HJ02]. Further, considering the effect of sum-
mer cyanobacteria and winter diatom blooms, we extend the process with two additional
parameters reflecting optimal temperatures (CBTP1, CBTP2). The zooplankton dynamics
model (dBZoo/dt), adapted from [HJ02], incorporates the growth (µZoo), respiration (γZoo),
and death (δZoo) rates of zooplankton.

The parameters of these biological processes fall into two classes: constant parameters
(starting with C) have constant values representing physiological rates (e.g., growth or
feeding rate), while variable parameters (starting with V) correspond to external conditions
and forces, changing over time. In evaluating (7.1) and (7.2), variable parameters are
imported from the observed data at the evaluation time t. More details on these constant
and variable parameters are given in Tables 7.3 and 7.4.

The goal of model revision for our task is summarised as:

165

Given biological processes (7.1) and (7.2), make relevant changes to the structure and
constant parameter values of (7.1) and (7.2) guided by prior knowledge such that
the estimated phytoplankton biomass (BPhy) is close to the observed values, and the
revised process is consistent with prior knowledge.

River modeling is a challenging task. Although carefully built with domain knowledge,
manually-designed processes (7.1) and (7.2) (MANUAL) exhibit poor predictive perfor-
mance, as shown in Figure 7.1. While the results of model calibration methods show
that parameter tuning greatly improves modeling accuracy, it is not enough to be able to
update only the model parameters. By improving the process itself via model revision,
our method obtains the best result, with 13% and 34% smaller MAE than is obtained
with the second best method and the best model calibration result, respectively, while
producing revised processes guided by prior knowledge.

7.3 Methods
In this section, we present our genetic model revision (GMR) framework. There are three
major challenges in applying model revision to the modeling of dynamical systems.

1) Representation of dynamic processes. Given differential equations that model
dynamic processes, such as the one underlying river water quality ((7.1) and (7.2)),
how can we represent them for successful model revision?

2) Mechanism for knowledge-guided model revision. Model revision requires defin-
ing specific steps for making revisions to obtain a better model. How can we
effectively perform model revision guided by prior knowledge?

3) Efficient and effective model revision. Real-world systems are complex, often
incurring high computational cost. How can we perform efficient and effective
model revision?

In the GMR framework, we address these challenges with the following ideas.

1) Using tree-adjoining grammar (TAG) for representing dynamic processes pro-
vides a powerful framework to succinctly express dynamic processes and their
revision, while facilitating controlled incorporation of prior knowledge.

2) Making revision via TAG-guided GP and expressing prior knowledge using the
TAG formalism leads to an accurate model consistent with prior knowledge.

3) Removing redundancy, speeding up operations, and local search enable fast and
effective model revision.

We describe how to represent dynamic processes using TAG in Section 7.3.1, and present
the GMR framework in Section 7.3.2. Then we demonstrate how to apply GMR to
real-world problems, such as river modeling, in Section 7.3.3, and present techniques to
improve efficiency and effectiveness in Section 7.3.4.

166

M

N

An elementary or
a derived tree 𝜏 An auxiliary tree 𝛽

M

N
N

N*
N

(a) Adjoining

𝜏#

𝜏#

N

N↓
N

(b) Substitution

An elementary tree 𝜏 An initial tree 𝛼

Figure 7.2: Illustrations of tree composition operations used by tree-adjoining grammar
(TAG): (a) adjoining and (b) substitution.

7.3.1 Representing Dynamic Processes Using TAG

7.3.1.1 Preliminaries on TAG (Tree-Adjoining Grammar)
A TAG is a tree generating system [JS97], consisting of a quintuple (T , N , I , A, S)
where

• T is a finite set of terminal symbols;
• N is a finite set of non-terminal symbols (N ∩ T = ∅);
• S ∈ N is a non-terminal symbol called the start symbol;
• I is a set of finite trees called initial trees or α-trees;
• A is a set of finite trees called auxiliary trees or β-trees.

Figures 7.2 and 7.3 provide illustrations of α- and β-trees. The trees in I ∪ A (i.e., α- and
β-trees) are referred to as elementary trees. In an elementary tree, the labels of all interior
nodes are non-terminal symbols, while the labels of the nodes on the frontier can be
either terminal or non-terminal symbols. The frontier nodes of an elementary tree with
non-terminal symbols are marked as ↓ for substitution, except for one special node in an
auxiliary tree, which is called the foot node and marked with an asterisk (∗) by convention.
The foot node must have the same non-terminal symbol as that of the corresponding
tree’s root node (e.g., see Figure 7.3(b)).

Adjoining and substitution are the two composition operations TAG uses to construct a
derived tree (Figure 7.2). Adjoining builds a new tree given an auxiliary tree β and a
tree τ (which can be either an elementary or a derived tree). Assume that the root of β
is labeled as N , and that the tree τ has an interior node n labeled as N . The steps for
adjoining β into τ are as follows (see Figure 7.2(a) for an illustration):

1) The sub-tree τ1 rooted at node n is disconnected from τ ;
2) The tree β is attached at the place where the node n was;
3) τ1 is attached to the foot node (marked with ∗) of the tree β.

Substitution creates a derived tree from an elementary tree τ and a tree α which is
(derived from) an initial tree. As in Figure 7.2(b), substitution selects a non-terminal on
the frontier of the tree τ (marked as ↓) matching the root of α, and replaces it with α.

167

Exp
Exp Op

Var

Var𝐵"#$
Mul.

𝜇"#$

Exp

ExpOp

VarMinus

Exp

Exp
Exp ExpOp

Var Var
𝐵"#$

Mul.
𝜇"#$

(a) 𝛼-tree1: 𝐵"#$ ⋅ 𝜇"#$

R

1.5

(c) 𝛼-tree2

Exp
ExpOp

VarMinus

R↓

Exp*

(b) 𝛽-tree

Exp
Exp Op

Var

Var𝐵"#$
Mul.

𝜇"#$

Exp

ExpOp

VarMinus

R

Exp

1.5(d) After adjoining: 𝐵"#$ ⋅ (𝜇"#$ − 𝑅)
(e) After substitution: 𝐵"#$ ⋅ (𝜇"#$ − 1.5)

①Adjoining ② Substitution

R↓

Figure 7.3: (a)–(c): Example α- and β- trees representing a dynamic process and potential
revisions. (d), (e): Resulting trees after adjoining and substitution (see text for details).

𝛼2, 𝛼3
1 3

𝛼4

𝛼1

𝛽1 𝛽2

Figure 7.4: TAG derivation tree which encodes a revised differential equation. Two nodes
(labeled by β1 and β2) are β-trees that are adjoined into the specified address (the number
on the link) of the root. Rectangles contain α-trees (lexemes), which are substituted into
the open nodes in the linked tree.

A tree derived from an initial tree, and lacking frontier non-terminals, is a completed
tree.

An in-depth description of TAG appears in [JS97, Ngu04].

7.3.1.2 TAG-Based Dynamic Process Representation
Consider this equation, a simplified form of (7.1), to see how TAG can represent dynamic
processes and potential revisions:

dBPhy

dt
= BPhy · µPhy (7.3)

168

(7.3) can be represented by an α-tree shown in Figure 7.3(a) where “Mul.” denotes
multiplication. Figure 7.3(b) shows a β-tree representing one potential extension where
an expression (denoted by “Exp”) is extended by deducting a random variable (denoted
by “R”) from it. Then adjoining the β-tree in Figure 7.3(b) into the rightmost “Exp” node
of the α-tree in Figure 7.3(a) yields the tree shown in Figure 7.3(d), which corresponds to
BPhy · (µPhy −R). Another α-tree in Figure 7.3(c) encodes a potential value for variable R.
By substituting it into the frontier node R (marked with ↓) shown in Figure 7.3(d), we
obtain a revised process:

dBPhy

dt
= BPhy · (µPhy − 1.5). (7.4)

A completed tree (e.g., Figure 7.3(e)) corresponds to a revised process. The history
of adjunctions and substitutions is encoded as an object tree called the derivation tree.
In other words, we encode successive model revisions and the revised process as a
derivation tree in TAG. Among several proposed definitions of TAG derivation tree, we
use the formulation with restricted substitution [Ngu04]:

1) The root node is labeled with an α-tree (i.e., input process) whose root node is
labeled by the start symbol S.

2) All other nodes are labeled with β-trees (adjunction nodes). An adjunction node is
associated with an address of the node at which the adjunction took place.

3) An α-tree that is substituted is restricted to have no children, which allows us to
regard substitution as an in-node operation, and also simplifies the derivation tree
greatly.

With this definition, the TAG derivation tree in GMR (Figure 7.4) is a tree of objects
where links between objects indicate adjunction at the specified address, and each node
has a list of α-trees (called lexemes) to be substituted into the open nodes (called lexicons)
in the elementary tree labeled by the node.

Note that while the above discussion describes how TAG provides a mechanism for
representing and revising dynamic processes, we need a more careful design of α- and
β-trees than is shown in Figure 7.3, to be able to make controlled changes. For example,
in order to reflect prior knowledge, we may want to adjoin the β-tree in Figure 7.3(b)
into only one of the Exp nodes in Figure 7.3(a). However, with the β-tree in Figure 7.3(b),
adjoining can happen at any of them.

7.3.2 Knowledge-Guided Genetic Model Revision
In this section, we describe how genetic model revision is performed in our framework,
and discuss how we incorporate the prior domain knowledge on (1) plausible processes,
(2) plausible revisions, and (3) the model parameters.

7.3.2.1 Framework Overview
Figure 7.5 shows an overview of the genetic model revision (GMR) framework. It builds
upon the tree-adjoining grammar guided genetic programming (TAG3P) [NMA03].

169

Best Model
(Output)

Prior Knowledge (Input)

Plausible
Processes
(𝛼-trees)

Plausible
Revisions

(𝛼- and 𝛽-trees)

Plausible
Parameter Range

(Gaussian mutation)

Yes

𝑖 = 𝑖 + 1

Applying
Genetic

Operators

Fitness
Evaluation

(w/ Local
Search)

Initial
Population

Revised
Population

𝑖 = MAXGEN

Selection

No

Figure 7.5: An overview of the model revision framework. Red loop denotes one
generation. Prior knowledge shown in rounded boxes guides the entire model revision
process.

(a) Before
crossover

(b) After
crossover

(c) Before
subtree

mutation

(d) After
subtree

mutation

(e) Before
point

insertion

(f) After
point

insertion

(g) Before
point

deletion

(h) After
point

deletion

Figure 7.6: An illustration of genetic operators in TAG3P.

TAG3P is a population-based optimization algorithm that evolves a population of ran-
dom (often unfit) initial programs (which are differential equations in our setting) into
fitter ones for a given task, over multiple generations. TAG3P differs from standard GP in
that it is a grammar-guided GP system where search space exploration is guided by TAG.
In Figure 7.5, the loop marked in red corresponds to one generation. At each generation,
genetic model revision is performed on the current population by applying genetic
operators to produce a revised population of potentially fitter individuals. Note that
three types of prior knowledge (shown in rounded boxes) given to the framework govern
the entire search process, from population initialization to iterative model revision, until
a final model is obtained.

7.3.2.2 Framework Components
Here we detail components of our TAG3P-based framework. A detailed review of the
TAG3P system can be found in [NMA03, Ngu04].

Representation for a program (called an individual). In our setting, a program denotes
differential equations that are to be revised (e.g., biological process in (7.1) and (7.2)). In
TAG3P, each program is represented as a derivation tree (Figure 7.4).

170

α- and β-trees. In GMR, one α-tree is used to encode manually-designed minimal process
as in Figure 7.3(a), while other α-trees define model revision via substitution as in
Figure 7.3(c). β-trees are defined to represent potential revisions as in Figure 7.3(b). We
provide more discussion on how to design these trees in Section 7.3.2.3.

Parameters. Parameters include population size (POPSIZE), maximum number of genera-
tions (MAXGEN), minimum size (MINSIZE) and maximum size (MAXSIZE) of individuals,
and the probability of genetic operators.

Population Initialization. Individuals are created repeatedly until the population size
reaches POPSIZE: TAG3P selects an individual size between MINSIZE and MAXSIZE,
chooses an initial derivation tree randomly from α-trees, picks up β-trees and their
adjoining addresses at random, and performs adjoining to generate an individual for the
first generation.

Fitness Evaluation. An individual (a derivation tree) is transformed into a derived tree,
and evaluated as in standard GP. In dynamic systems modeling, this involves evaluating
revised differential equations (e.g., Figure 7.3(e)) for each time step, and comparing it
with observed values. More accurate individuals are given higher fitness.

Genetic Operators. Genetic operators make revisions to the current population to obtain
others. Among several operators in TAG3P, we introduce two representative ones
(Figure 7.6 illustrates these operations).

(i) Crossover. Two individuals are chosen by a selection mechanism, and their subtrees
are randomly selected and checked whether they are compatible. Subtrees are
compatible if each subtree can be adjoined into the node where the other subtree is
attached to. If so, the two subtrees are swapped. Otherwise, the previous process is
retried unless the retry count has reached some predefined limit.

(ii) Subtree Mutation. A subtree x is randomly selected, and is replaced with a new
subtree, which is of similar size to x, and compatible with x (to produce a valid
individual).

7.3.2.3 Incorporating Prior Knowledge
By exploring the search space of both the structure and parameters of dynamic processes,
complex real-world systems can be modeled more accurately than can be achieved with
parameter optimization alone. However, the resulting process might be physically im-
plausible and violate domain knowledge. Our framework learns an accurate model that
complies with prior knowledge by incorporating three types of prior knowledge.

Prior Knowledge of Plausible Processes. In an effort to explain real-world phenomena,
experts develop models based on domain knowledge and experience. We harness this
prior knowledge of dynamic processes, specifically what variables are known to be
involved and how they interact with each other. For example, the temporal dynamics
of phytoplankton (dBPhy/dt) in (7.1) is expressed as a function of zooplankton biomass
(BZoo) (and other related parameters) since zooplankton grazing pressure is known to

171

be a major regulator of phytoplankton in a river ecosystem. In our framework, this first
type of knowledge, expressed as a differential equation, is encoded as an α-tree as shown
in Figure 7.3(a). Note that these input processes act as a significant knowledge transfer
at the starting point of model revision. With classic GP systems, by contrast, we need to
start from random models.

Prior Knowledge of Plausible Revisions. Real-world dynamic systems are complex,
often consisting of multiple intertwined processes (e.g., dBPhy/dt and dBZoo/dt), each of
which can be further decomposed into multiple subprocesses in a nested manner (e.g.,
µPhy in (7.1), which represents photosynthetic growth). Domain experts often have an
understanding of these subprocesses, such as the functionality of the subprocess, and
plausible variables that may play a role for the subprocess. For instance, variables that
are known to affect photosynthetic growth include water alkalinity and the amount
of dissolved oxygen. Note that this subprocess corresponds to a subtree in the α-tree
representing the input process.

Our framework allows specifying variables and operations applicable for revising a
specific subprocess. This type of constraint is expressed in both α- and β-trees. In an
α-tree, extensible subtrees are placed under a special node, whose name starts with “Ext”,
denoting a revision that can be made to the corresponding subtree via tree-adjoining. In
an equation form, we denote a subprocess f(·) extensible via “Ext” by {f(·)}�Ext. We
then generate a list of β-trees for each combination of variables and operators, which
have the corresponding “Ext” as the root node, and a foot node of the same type to define
allowable operations for the given subtree.

Importantly, we distinguish between the operators that are applied directly to the initial
process (called connectors), and those that are applied to the subprocesses, which extend
the initial process, but do not belong to the initial process (called extenders). This is to
preserve the initial process by applying a limited set of operations to it, while giving a
greater freedom for extenders to make improvements to the initial process.

As an example, consider again this simplified process dBPhy/dt = {BPhy · µPhy} � Ext,
extensible via Ext. This can be encoded as an α-tree in Figure 7.7(a). Note that Extc

(denoting connectors) is used for the root node. We assume that we have two variables
BZoo and R, deduction (Minus) as a connector and multiplication (Mul.) as an extender.
Figure 7.7(b) and (c) show two β-trees that can be generated (Extc and ExtE denoting a
connector and an extender). Adjoining Figure 7.7(a) and (b) produces BPhy · µPhy −BZoo

in Figure 7.7(e); subsequently adjoining Figure 7.7(c) and substituting Figure 7.7(d) into
Figure 7.7(e) yields a revised process BPhy · µPhy −BZoo · 1.5 in Figure 7.7(f) (extensions
removed for brevity). Note that since connectors and extenders use different symbols
(Extc and Exte), connector β-trees cannot adjoin into α-tree nodes with extender symbols,
and vice versa.

Prior Knowledge about Model Parameters. From previous research and experience
on dynamical systems, domain experts often have the information on the plausible
distributions of the model parameters. Even if we obtain a highly accurate model, if

172

(a) 𝛼-tree1:𝐵#$% ⋅ 𝜇#$%

Exp
Exp ExpOp

Var Var
𝐵#$%

Mul.
𝜇#$%

ExtC

(b) 𝛽-tree1 (connector)

Exp
ExtEOp

VarMinus

𝐵)**

ExtC*

ExtC

(c) 𝛽-tree2 (extender)

Exp
ExtEOp

VarMul.

ExtE*

ExtE

R↓

R

1.5

(d) 𝛼-tree2

Exp

Op

Var

Minus

𝐵#$%

Exp

ExpOp

VarMul.

Exp

𝜇#$%

ExtC ExtE

ExtC

Exp

ExtEOp

VarMul.

ExtE
Var

R

1.5

𝐵)**

(f) After adjoining 𝛽-tree2 (extender) and
substituting 𝛼-tree2: 𝐵#$% ⋅ 𝜇#$% − 𝐵)** ⋅ 1.5

(e) After adjoining 𝛽-tree1 (connector)
into 𝛼-tree1: 𝐵#$% ⋅ 𝜇#$% − 𝐵)**

Exp

Op

Var

MinusExp

ExpOp

VarMul.

Exp

𝜇#$%

ExtC ExtE
Var
𝐵)**

ExtC

𝐵#$%

①Adjoining ②Adjoining ③ Substitution

Figure 7.7: (a)–(d): α- and β-trees for (a) the initial process, revision via adjoining with
(b) a connector and (c) an extender, and (d) substitution. (e), (f): Resulting trees after
revision via a connector and an extender (see text for details).

its parameters are not within a realistic range, that model is not considered a good
representation of underlying processes. In GMR, the domain knowledge of model
parameters is summarized as the expected value and allowed range of parameter values.
For effective search, ranges need to be chosen to cover most practically feasible values.
We assume that naturally occurring values follow a truncated Gaussian distribution
centered around the expected value.

To optimize model parameters, we apply a genetic operator, Gaussian mutation, which lo-
cates all constant parameters in an individual, and updates them to new values sampled
from their associated Gaussian distribution. In the beginning, parameters are set to the
expected value. When Gaussian mutation is applied to a parameter, a new value is gener-
ated, and it becomes the new mean of the Gaussian distribution for that parameter. If the
sampled value lies outside of the given range, the boundary value is used instead.

For river water quality modeling, we initially set the standard deviation to 1/4 of the
parameter mean, as that covers the range of most observable parameter values. We then
ramp down the standard deviation linearly in the final k generations so that it becomes

173

Table 7.2: Variables, connectors, and extenders used by extensions. R denotes a random
variable between 0 and 1.

Extension Variables Extension Variables Extension Variables

Ext1 Vcd, Vph, Valk, R Ext5 Vtmp, R Ext8 Vtmp, R
Ext2 Vsd, R Ext6 Vtmp, R Ext9 Vtmp, R
Ext3 Vdo, Vph, Valk, R Ext7 Vtmp, R

Connectors + for extensions 1–3, × for extensions 5–9
Extenders +,−,×,÷, log, exp for all extensions

smaller in later generations.

7.3.3 Applying GMR to Real-World Problems
River Water Quality Modeling. We show how the proposed framework can be applied
to the modeling of river water quality introduced in Section 7.2, in which the goal is to
make an accurate temporal prediction of the phytoplankton biomass (BPhy). We capture
the expert knowledge on the dynamics of phytoplankton (dBPhy/dt) and zooplankton
(dBZoo/dt), and plausible revisions as follows.

dBPhy

dt
= {BPhy · (µPhy − γPhy)−BZoo · ϕ}�Ext1 (7.5)

µPhy = {CUA · f(Vlgt) · g(Vn, Vp, Vsi) · h(Vtmp)}�Ext3
γPhy = {CBRA}�Ext5
ϕ = {CMFR · λPhy}�Ext6

λPhy = (BPhy − CFmin)/(CFS +BPhy − CFmin)

f(Vlgt) = (Vlgt/CBL) · e1−(Vlgt/CBL)

g(Vn, Vp, Vsi) = min (Vn/(CN + Vn), Vp/(CP + Vp), Vsi/(CSI + Vsi))

h(Vtmp) = max(e−CPT (Vtmp−CBTP1)2 , e−CPT (Vtmp−CBTP2)2)

dBZoo

dt
= {BZoo · (µZoo − γZoo − δZoo)}�Ext2 (7.6)

µZoo = {CUZ · λPhy}�Ext7
γZoo = {CBRZ }�Ext8 + CBMT · ϕ
δZoo = {CDZ }�Ext9

Table 7.2 presents the list of variables, connectors, and extenders applicable to each
extension. R denotes a variable that is randomly initialized. Constant parameters (those
starting with C) are initialized and updated via Gaussian mutation, based on their mean
and exploration range given in Table 7.3.

These extensions are defined based on an extensive river modeling experience of a fresh-
water ecologist, denoting different types of extensions plausible for specific subprocesses.

174

Table 7.3: Constant parameters that are updated via Gaussian mutation. Prior knowledge
is captured as the mean and exploration bounds (minimum and maximum values).

Description Mean Min Max Unit
CUA Max growth rate of phytoplankton 1.89 0.1 4.0 day−1

CUZ Max growth rate of zooplankton 0.15 0.0 0.3 day−1

CBRA Breath rate of phytoplankton 0.021 0.0 0.17 day−1

CBRZ Breath rate of zooplankton 0.05 0.0 0.2 day−1

CMFR Maximum feeding rate 0.19 0.01 0.8 day−1

CDZ Death rate of zooplankton 0.04 0.01 0.1 day−1

CFS Half-saturation constant of food 5.0 4.0 6.0 µg L−1

CBTP1 Blue-green optimal temperature 27.0 20.0 34.0 ◦C
CBTP2 Diatom optimal temperature 5.0 1.0 20 ◦C
CFmin Minimum food concentration 1.0 0.1 1.9 µg L−1

CBL Best light for phytoplankton 26.78 24.0 30.0
MJ

m−2 d−1

CN Half-saturation constant of nitrogen 0.0351 0.02 0.05 mg L−1

CP Half-saturation constant of phosphorus 0.00167 0.001 0.02 mg L−1

CSI Half-saturation constant of silica 0.00467 0.001 0.2 mg L−1

CBMT Breath multiplier on grazing 0.04 0.01 0.07 N/A

CPT
Temperature coefficient for
phytoplankton growth

0.005 0.003 0.2 ◦C−2

ϕ Grazing rate of zooplankton N/A N/A N/A d−1

For example, electric conductivity (Vcd) applies to the dynamics of phytoplankton via
Ext1, but not to that of zooplankton.

Revising Multiple Processes. While input processes are to be represented using one
α-tree, here we have two differential equations (7.5) and (7.6). Multiple equations can be
encoded as a single α-tree by first representing each equation in separate trees, and then
combining them into one α-tree under a new, common root node. Then this combined
α-tree can be evolved in the same manner as in simpler cases, and decomposed into
multiple equations when performing fitness evaluation.

Application to Other Problems. GMR provides general mechanisms to represent and
revise process equations guided by prior knowledge, so is readily applicable to diverse
problem settings. The only problem-dependent component is representing domain-
specific knowledge as discussed in Section 7.3.2.3; this itself is a general technique
applicable to various problems.

7.3.4 Improving the Efficiency and Effectiveness
For efficient and effective optimization, we apply three orthogonal speedup techniques,
together with local search.

Evaluation Short-Circuiting. Modeling temporal processes involves incremental fitness
evaluation over a period of time, in which case intermediate fitness may provide a

175

Table 7.4: Temporal variable parameters in the river process.

Parameter Description Parameter Description
Vlgt Irradiance (light intensity) Vdo Dissolved oxygen
Vn Nitrogen concentration Vcd Electric conductivity
Vp Phosphorus concentration Vph pH
Vsi Silica concentration Valk Alkalinity
Vtmp Water temperature Vsd Water transparency

reasonable estimate of the final fitness. Also, GP is known to be robust to noisy eval-
uation. Based on these observations, fitness evaluation can be short-circuited, using
the estimate as a surrogate of the final fitness. Early termination is such an approach
where fitness evaluation is stopped when the intermediate fitness gets worse than the
previous best fitness obtained from full evaluations. In GMR, we design a generalized
evaluation short-circuiting technique (Algorithm 7.1), which allows controlling the eager-
ness of early termination (via the threshold parameter) and use of different extrapolation
methods.

Runtime Compilation. A tree representing temporal processes needs to be evaluated
multiple times over some time period, and each such evaluation can be done by recur-
sively evaluating subtrees, providing the model parameter values appropriately at each
step. Instead, we use runtime compilation, which enables more efficient evaluation than
repeated tree parsing: a program encoded in the tree is converted into the correspond-
ing source code, compiled at runtime, and dynamically loaded to be used for fitness
evaluation.

Tree Caching. We cache the results of tree evaluation, and reuse them when we need to
reevaluate the same trees. By using additional memory to store evaluation results, we
avoid redundant computations. Note that the effectiveness of caching depends on the
hit rate. GMR improves the hit rate by algebraically simplifying the trees before they are
evaluated. We show the benefits of speedup techniques in Section 7.4.6.

Local Search. Local search aims to improve the search effectiveness by making incremen-
tal, local revisions to an individual. We apply two local search operators, insertion and
deletion. Insertion randomly chooses an open adjoining address of a TAG derivation tree,
and adds a randomly selected compatible auxiliary tree to the chosen location. Deletion
removes a random node from the derivation tree. Figure 7.6 illustrates these operations.
Specifically, we perform stochastic hill-climbing local search, where a tree resulting from
crossover and mutation goes through a series of local search, applying insertion and
deletion with equal probability, and adopting the change if it improves the fitness.

7.4 Experiments
In this section, we evaluate our GMR framework via a case study on river modeling. We
address the following questions.

176

Algorithm 7.1: Evaluation Short-Circuiting
Input: ind (an individual to be evaluated), threshold (a non-negative value that determines

when to check for evaluation short-circuiting), numFitcases (number of fitness
cases), EXTRAPOLATE (a function to extrapolate intermediate fitness).

Output: fitness (evaluated fitness of the given individual ind).
1 Function FITNESSEVALUATION(ind, threshold, numFitcases):
2 bestPrevFull←∞
3 fitness← 0
4 i← 0
5 while i < numFitcases
6 Update fitness of ind using fitness case i
7 if fitness > bestPrevFull× threshold then
8 estFitness← EXTRAPOLATE(fitness, i, numFitcases)
9 if estFitness > bestPrevFull then

10 return estFitness . Short Circuiting

11 i← i + 1

12 if fitness < bestPrevFull then
13 bestPrevFull← fitness

14 return fitness . Full Evaluation

Q1. Prediction Accuracy: How accurately does the GMR framework forecast river
water quality?

Q2. Ecological Analysis: How does GMR revise the input process, and does the revi-
sion make sense from an ecological standpoint? Which variables are important in
the revision?

Q3. Speedup Techniques: How much do the speedup techniques improve efficiency?

7.4.1 Dataset and Modeling Task Description
The Nakdong River catchment in South Korea is one of the largest water-quality moni-
toring networks supporting long-term ecological research. Our dataset is a collection
of measurements for 13 years (1996–2008) at nine stations located in the catchment;
(Figure 7.8): six (S1–S6) are sited on the main channel, while three (T1–T3) are on major
tributaries. The dataset contains five types of variables: geographical (e.g., catchment
area), hydrological (e.g., flow rate), meteorological (e.g., irradiance), physicochemical
(e.g., water temperature), and biological (e.g., chlorophyll a). Most were measured daily,
except for nutrient concentrations and chlorophyll a, which were measured weekly (at
S1) or bi-weekly (at others). For those variables measured with a longer interval, we
performed linear interpolation to obtain values between measurements. Note that these
measurements provide values for the temporal variables in the river process (i.e., those
starting with V in (7.1), (7.2) and Table 7.2). Table 7.4 gives a description of the temporal
variables. Given these measurements, our goal is to forecast the algal biomass at the
lowest station (S1) due to its geographical importance (around ten million people live

177

S4
(S4-S3:
28.5km)

S1

S6
(S6-S5:
27.5km)

T3
(To joint:
3km)

S2
(S2-S1:
32.8km)

S3
(S3-S2:
22.3km)

T1
(To joint:
5.5km)

T2
(To joint:
7.1km)

S5
(S5-S4:
42km)

Busan

Figure 7.8: The Nakdong River basin in South Korea. Circles denote measuring stations.
Red circles (S1–S6) are on the main channel, while blue ones (T1–T3) are on the major
tributaries.

near S1). Specifically, we make knowledge-guided revisions to the biological process (7.1)
and (7.2) to closely estimate observed algal biomass at S1.

In addition to the biological process, river modeling involves modeling the flow of
water bodies in the river (called the hydrological process). What this hydrological process
models includes how water bodies are discharged from stations, how the rainfall is
absorbed into the river, etc. As our focus is on improving the biological process, we use a
known hydrological process Section 7.7.1 gives details of the hydrological process, and
how a river system with multiple stations is implemented.

7.4.2 Comparators
For evaluation, we use representative comparators in the four classes of methods for
modeling dynamic systems.

7.4.2.1 Knowledge-Driven Modeling
(a) MANUAL. This is the biological process in (7.1) and (7.2), designed by domain
experts.

7.4.2.2 Data-Driven Modeling
(a) RNN (Recurrent Neural Network). We use long short-term memory (LSTM), predict-
ing the phytoplankton biomass at S1 at the next time step from observed variables at
the current time. We experiment with two variants: RNN-S1 uses variables observed at
station S1 alone; RNN-ALL uses variables observed at all nine stations. (b) ARIMAX is
widely used for time series forecasting. As with RNN, we consider two variants differing
in variables used (denoted as ARIMAX-S1 and ARIMAX-ALL).

178

7.4.2.3 Model Calibration
Given the biological process in (7.1) and (7.2), model calibration methods optimize the
values of process parameters without revising the form of equations. We use the fol-
lowing widely-used approaches: (a) GA (genetic algorithm) (b) MC (Monte Carlo) (c)
LHS (Latin hypercube sampling) (d) MLE (maximum likelihood estimation) (e) MCMC
(Markov chain Monte Carlo) (f) SA (simulated annealing) (g) DREAM (differential evo-
lution adaptive metropolis [Vru16]) (h) SCE-UA (shuffled complex evolution [DSG94])
(i) DE-MCZ (differential evolution Markov chain [VTBC+08]).

7.4.2.4 Model Revision
(a) GGGP (grammar guided GP). We perform model revision using GGGP; that is,
GGGP receives the biological process in (7.1) and (7.2) as input, and updates both the
model structure and parameter values.

Section 7.7.2 provides experimental settings of all methods.

7.4.3 Performance Evaluation
We use RMSE (root mean square error) and MAE (mean absolute error). Let yt and ŷt
denote the observed and predicted values at time t, respectively. Given observations for
T time steps, we have y = (y1, . . . , yT) and ŷ = (ŷ1, . . . , ŷT). RMSE is a quadratic score
which measures the average magnitude of prediction errors, giving a relatively large

weight to large errors. RMSE is defined by
√

1
T

∑T
t=1(ŷt−yt)2. MAE is a linear scoring

rule for measuring the average magnitude of prediction errors, giving equal weights to
individual differences. MAE is defined by 1

T

∑T
t=1 |ŷt−yt|. Both RMSE and MAE range

from zero to∞, and lower values indicate a better prediction.

Fitness Function. RMSE is used as a fitness function.

7.4.4 Q1. Prediction Accuracy
We split the data into two periods, 1996–2005 for training and 2006–2008 for testing, and
report the forecasting accuracy in Table 7.5, in terms of the best RMSE and MAE where
best models denote those with the smallest test RMSE.

MANUAL performed significantly worse than other approaches, although it is designed
with domain knowledge of the biological process and a careful selection of parameter
values. Model calibration approaches, such as GA, LHS, and SA, obtained a much better
result than MANUAL, indicating the benefits of tuning model parameters. However,
model calibration methods were outperformed by model revision methods (with GMR
obtaining 32% and 34% smaller RMSE and MAE than the best model calibration results)
as they can update only the model parameters, but not the model structure. In both
criteria, GMR achieved the best testing performance, with 7% and 13% smaller RMSE
and MAE, respectively, than the second best method GGGP.

179

Table 7.5: GMR achieves the best forecasting accuracy (7% and 13% more accurate than
the second best method in terms of RMSE and MAE, respectively), among a variety of
methods. Best results are underlined.

Method
Class

Method
Training (96–05) Test (06–08)
RMSE MAE RMSE MAE

Knowledge-
driven

MANUAL 2.79e+9 2.15e+8 2.23e+6 7.93e+5

Data-
driven

RNN-S1 19.605 11.533 23.057 16.833
RNN-ALL 21.326 13.166 23.009 16.276

ARIMAX-S1 12.710 5.012 37.770 25.504
ARIMAX-ALL 12.365 5.775 260.468 71.471

Model
calibration

GA 26.329 14.693 20.308 13.291
MC 26.581 14.426 19.259 12.675
LHS 26.812 14.536 18.287 12.064
MLE 26.033 14.408 19.513 13.242

MCMC 26.514 14.554 18.661 12.480
SA 26.463 14.585 18.740 12.532

DREAM 26.825 14.853 19.281 12.581
SCE-UA 25.995 14.353 19.876 13.275
DE-MCZ 26.227 14.432 18.904 12.869

Model
revision

GGGP 20.741 11.316 13.248 9.158
GMR 21.427 11.966 12.356 7.936

For data driven models, we used two types of input variables. Both variants of RNN and
ARIMAX (denoted by S1 and ALL) performed worse than model calibration and model
revision methods. While RNN’s best test performance was worse than GMR, RNN
could achieve much smaller training RMSE (∼6.7) than others as training continued.
However, it suffered from overfitting and its test RMSE increased to ∼44.0. Note that for
both RNN and ARIMAX, using additional input variables observed at stations other
than S1 did not help improve the performance. In fact, for predicting phytoplankton
at S1, ARIMAX-ALL performed worse than ARIMAX-S1. As measuring stations are
located over a wide area (see Figure 7.8), using measurements from distant stations
simply as additional input features was not helpful for predicting at S1. Also, as is
typically the case with ecological data, the dataset is not large enough (2,435 data points
for training) for learning complex processes in a purely data-driven manner. On the
other hand, by using prior knowledge, GMR can learn an effective model from a small
dataset, which is also consistent with domain knowledge.

7.4.5 Q2. Ecological Analysis
From the perspective of ecosystem management, it is critical to understand newly
added mechanisms (i.e., extensions). However, many machine learning applications to

180

0

20

40

60

80

100

Vlgt Vtmp Vph Valk Vcd Vdo

Va
ria
bl
e
Se
le
ct
iv
ity

(%
)

Correlated
Inversely Correlated
Uncorrelated

Figure 7.9: Selectivity of variables among the 50 best models.

environmental research employ uninterpretable, black-box models. In this section, we
strive to understand to what extent the extensions reinforce meaningful information and
variables, and enhance the predictive power of the initial process model.

Case Study. We examined the best models and found that several common variables
were added to specific processes. First, the addition of temperature dependence was
frequently observed, particularly in zooplankton, which is an algal grazer. (7.7) shows
an example where a revision is highlighted.

δZoo = {CDZ}× (4Vtmp + 253.4) (7.7)

This shows that the temperature is related to the metabolic rate of zooplankton and its
mortality, and plays a key role on the prediction of algal blooms.

Second, pH was often connected with algal growth process, as in the following exam-
ple:

dBPhy

dt
={BPhy ·(µPhy−γPhy)−BZoo ·ϕ}+

Valk
Vph−Vcd+848.4

(7.8)

In modeling algal process in rivers, pH has not been often used in knowledge-based
modeling as it is not known to be a limiting factor. Although pH is closely associated with
aquatic carbon complex (which is also an essential component of photosynthesis, along
with nitrogen and phosphorus), it has been neglected in modeling due to a plethora of
carbon availability. However, it is remarkable to observe the improvement of predictive
power when pH is considered as an input variable. In fact, recent machine learning
models have illuminated pH as a crucial factor to predict algal blooms. This is one of
the major discoveries by GMR in the context of river modeling, which corroborates the
importance of pH in environmental research. Also, note that Valk is determined by CO2−

3 ,
which is in turn related to pH, and Vcd is a reasonable selection as it is considered a proxy
of pollutant concentration in freshwaters.

Relative Importance Analysis. To assess the relative importance of input variables, we

181

 0.1

 1

 10

 100

None TC ES RC TC
+ES

TC
+RC

ES
+RC

TC+RC
+ESM

e
a
n

 r
u
n
tim

e
 (
s
e
cs
)
p
e
r
in
d
iv
id
u
a
l

Speedup methods

1.5× 4.0× 146× 8.8× 215× 360× 607×

Figure 7.10: Mean runtime (seconds) per individual by speedup techniques. TC: Tree
Caching, ES: Evaluation Short-Circuiting, RC: Runtime Compilation. Applying all leads
to 607× speedup.

explored the selectivity (%) of variables among the 50 best models, and the correlation of
each variable with phytoplankton (BPhy) growth via variable perturbation (Figure 7.9).
Among them, light (Vlgt) and water temperature (Vtmp) were selected most often; this
agrees with the fact that they are limiting factors for phytoplankton growth. Note that
while Vlgt was consistently correlated with BPhy, Vtmp was not. As water temperature has
multiple optimal points for the best growth of BPhy, Vtmp can affect BPhy either positively
or negatively depending on the dominance of ambient phytoplankton functional group.
The third important factor, Vph, is closely related to photosynthesis and oxygen release.
Alkalinity (Valk) and electric conductivity (Vcd) were selected similarly often: Vcd’s high
correlation is plausible as conductivity can be a proxy of nutrient levels in freshwater.
Dissolved oxygen (Vdo) was negatively correlated with BPhy, implying that phytoplank-
ton biomass is lower in higher Vdo concentrations. Overall, while a few exceptions exist,
most selected ones were ecologically plausible and interpretable.

7.4.6 Q3. Analysis of Speedup Techniques
We apply three orthogonal methods for speedup, i.e., tree caching (TC), evaluation
short-circuiting (ES), and runtime compilation (RC). Figure 7.10 shows the mean runtime
(seconds) per individual obtained with different speedup methods, which indicates that
these techniques effectively reduce computational costs, achieving 607× speedup when
all methods are applied together, compared to when no speedup techniques were used.
We also measured how ES affects the performance when we use different thresholds (0.7,
1.0, and 1.3). Figure 7.11 shows relative values w.r.t. ES with a threshold of 1.0. Results
indicate that ES generally cut down evaluation cost without sacrifice in accuracy, and
nearly 100% of the best models were fully evaluated. While the overall RMSE increased
by 5% as ES got eager (with a threshold of 0.7), the number of evaluated time steps
dropped by 19%.

182

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Evaluated
Time Steps

RMSE
(Train)

RMSE
(Test)

% Fully Eval.
Among BestR

e
l.
v
a
lu
e

 w
.r
.t
.
E
S

 T
H
-1
.0

No ES ES TH-1.0 ES TH-0.7 ES TH-1.3

Figure 7.11: Effect of evaluation short-circuiting (ES) as thresholds (TH) are varied.
Relative values w.r.t. ES TH-1.0 are reported.

7.5 Related Work
Scientific Discovery from Data. Interest in computational methods for making scientific
discoveries from data is growing. Among data-driven approaches, symbolic regression
(SR) using GP [SL09] aims to discover scientific laws from data without relying on
prior knowledge. While SR searches for the form of equations and their parameters
simultaneously as in genetic model revision (GMR), SR may learn models that are
inconsistent with domain knowledge due to the lack of guidance in the optimization
process.

Combining prior knowledge and data science [KAF+17] is an emerging paradigm
with promising results, which can address this challenge. One approach along this
line is to guide the learning algorithm, e.g., via theory-guided constrained optimiza-
tion [KWRK17, KAF+17]. GMR also falls in this category, using TAG formalism for
knowledge-guided navigation of the search space. Model calibration [KAF+17] is another
such approach: data are used to optimize the parameters of a knowledge-based model.
GMR outperforms various model calibration approaches, while learning knowledge-
consistent processes.

Modeling River Water Quality. QUAL2E [BB87] is the most well-known model for
river ecosystems. Despite its wide use, QUAL2E’s accuracy was limited due to their
assumption on steady-state flow. Neural network (NN) and genetic algorithm (GA) have
recently been used for river modeling. NN-based methods perform data-driven mod-
eling using multilayer perceptron [SBMJ09] and recurrent neural networks [KKNK18].
By performing model calibration, GA-based methods [KMS+10, KPM+14] successfully
improved the accuracy of a knowledge-based river model. However, existing evolution-
ary methods do not have mechanisms to jointly optimize the structure and parameters
of a model, in particular, guided by domain knowledge. To fill this gap, we design
novel mechanisms to represent prior knowledge and perform knowledge-guided model
revision in TAG3P. As the first work on modeling river water quality using knowledge-
guided model revision, our work improves upon earlier works that made limited or no

183

use of prior knowledge.

7.6 Conclusion
Model revision is an effective approach for modeling real-world phenomena where
domain expertise and data are used simultaneously to model complex dynamical systems.
Our genetic model revision (GMR) framework performs model revision guided by
prior knowledge. The case study of river modeling shows its effectiveness. In future
work, we will explore new mechanisms to incorporate domain knowledge (new search
operators and language biases), and apply GMR to other domains, such as financial
forecasting.

Reproducibility: Code and data are available at https://www.cs.cmu.edu/~namyongp/
gmr.

Extensibility: How readily can the ideas behind this work be extended to other domains?
The degree of effort required depends on the similarity to the present problem. At one
extreme, the underlying ideas are applicable to most model identification problems
where expert knowledge is available but incomplete. TAG grammars are particularly
suited to this, because they readily match the common situation where experts have
a simple model that they believe to be generally correct, but potentially to require
modification because potentially important processes have been omitted for simplicity.
The adjunction operation of TAG3P is particularly suited to recording the way experts
think about such problems. Similarly, it will frequently be the case that experts can define
feasibility bounds on model parameters. In real world problems, it is frequently the
case that evolving models need to be repeatedly evaluated to estimate their fitness. In
such cases, the speedup techniques we have described here may well be applicable. In
all these circumstances, portions of the code we have made available may be useful for
implementation.

At the other extreme, the system can be directly applied to other river systems under the
assumption of conservative, non-branching flow, provided that the corresponding data
is available. The system also relies specifically on the G++ compiler suite to provide run-
time compilation. Similar capabilities are available in other C++ compilers, or run-time
compilation can be sacrificed at a substantial cost in speed.

Where the data differs in the water properties collected, revisions in the search limiting
grammar will be required, and prior knowledge of the feasible values of any new
parameters will need to be specified.

Extensions to river systems with substantial water loss through evaporation or leakage,
or to braided streams or delta, require significant re-programming of the flow model,
and additional data inputs for those components.

Moving beyond rivers, much of the structure of the system is determined by the need to
model variables that change as a fluid flows through a network. It is not hard to find
other problems that fit that bill: flow of blood through an organism; flow of feedstocks

184

https://www.cs.cmu.edu/~namyongp/gmr
https://www.cs.cmu.edu/~namyongp/gmr

MS#

MS$

MS%VS#

Figure 7.12: An example river system with measuring stations (MS) and a virtual station
(VS). VS is placed at a confluence.

through a chemical plant; municipal water or sewage systems. In all these cases, the
existing code would form a useful starting point.

7.7 Appendix
7.7.1 Further Details of River Modeling
Modeling A River System. To monitor the ecological status of a river, sample measure-
ment is performed, often on a regular basis, at multiple measuring stations located in
geographically important places. Based on this data collection scheme, we model a river
system as a directed acyclic graph as shown in Figure 7.12, where a node corresponds to
a measuring station and an edge denotes a segment of a river between the two adjacent
stations. To model the confluence, we add a virtual station where two or more water
bodies meet together as depicted in Figure 7.12 (VS1). We model our study site shown in
Figure 7.8 by adding six stations (S1–S6) at the main channel of the river, three stations
(T1–T3) at the major tributaries of the river, and three virtual stations at the confluence of
a tributary with the main stream (S6 · T3, S4 · T2, and S3 · T1).

Hydrological Process. Modeling a river system involves modeling two contemporane-
ous processes, the biological and hydrological processes. The biological process shown
in (7.1) and (7.2) models the evolution of phytoplankton and zooplankton and their
interaction. The hydrological process models the flow of water bodies, and provides
information of flow at specific time to the biological process. We use the hydrological
process first introduced in [KMS+10], which is based on a flow mass balance between
stations. Specifically, given that water flows from station A to station B, flow into B
consists of three components, (i) inflow from upper station A, (ii) water retained at B
(e.g., due to water trapped in side pools or non-laminar flow), and (iii) runoff into B from
precipitation:

FB,t+∆ = rB · FB,t + (1− rA) · FA,t +RB,t+∆ (7.9)
where FS,t denotes the flow at station S at time t, rS is the ratio of the water retained at
station S, ∆ is the time taken for water bodies from A to arrive at B, and RS,t denotes
the amount of inflow into station B at time t that arises from rain fall. Our hydrological
process also models how water bodies are merged at a confluence (e.g., VS1 in Figure 7.12),
in which case the attributes (e.g., nutrient level) of each water body are updated based
on (7.9) as they are moving to the confluence, and the water bodies are aggregated as a
flow-weighted average.

185

Thus, the hydrological process determines the attributes of a water body at a specific
location and time by modeling how water bodies are merged, how the rainfall is absorbed
into the river, etc. As the attributes of a water body are used by the biological process,
the hydrological process affects the biological process. As we focus on modeling the
biological process, we use a static hydrological process in this work.

Biological Process. We evolve a population of individuals (Figure 7.5), where each one
is a revised biological process. Each individual receives values for the temporal variables
(Table 7.4) from the water body that the hydrological process provides, and updates
the phytoplankton (BPhy) and zooplankton (BZoo) according to its process equation.
Tables 7.3 and 7.4 list the variables used in our biological process.

7.7.2 Experimental Settings
Environment. We used an Ubuntu server with 80 Intel Xeon E7-4850 processors at
2.00GHz and 252GB RAM.

GMR, GGGP, and GA. We implemented GMR, GGGP, and GA frameworks in C++.
For GMR, we used the following configurations: number of generations (100), popula-
tion size (200), number of runs (60), minimization objective (RMSE), elite size (2), number
of local search steps (5), selection mechanism (tournament selection), tournament size
(5), minimum chromosome size (2), maximum chromosome size (50). We applied the
following genetic operators (the number in the parentheses denotes the operator proba-
bility): crossover (0.3), subtree mutation (0.3), Gaussian mutation (0.3), and replication
(0.1). For GGGP and GA, we used the same configurations used for GMR. Since local
search incurs additional fitness evaluation in GMR, GGGP and GA used a population
of 1200 individuals to use the same number of fitness evaluation for both methods.

RNN. We used a two-layer LSTM implemented in PyTorch, whose hidden size was
equal to the number of input features. The output was transformed into an estimated
phytoplankton value via dense neural networks with two layers. The input features were
standardized. We used Adam optimizer with α = 0.01, β1 = 0.9, β2 = 0.999, and weight
decay of 0.0005. The model was trained for up to 1000 epochs with MSE loss.

ARIMAX. We used the pmdarima library and its Auto-ARIMA functionality with the
default parameter settings.

Others. For other model calibration methods, we used the SPOTPY framework [HKCCB15]
using RMSE as the objective function. We set method parameters to their default val-
ues.

186

Chapter 8

Jointly Modeling Event Time and
Network Structure for Reasoning
over Temporal Knowledge
Graphs

Chapter based on work published in WSDM 2022 [PLM+22].

How can we perform knowledge reasoning over temporal knowledge graphs (TKGs)?
TKGs represent facts about entities and their relations, where each fact is associated
with a timestamp. Reasoning over TKGs, i.e., inferring new facts from time-evolving
KGs, is crucial for many applications to provide intelligent services. However,
despite the prevalence of real-world data that can be represented as TKGs, most
methods focus on reasoning over static knowledge graphs, or cannot predict future
events. In this chapter, we present a problem formulation that unifies the two major
problems that need to be addressed for an effective reasoning over TKGs, namely,
modeling the event time and the evolving network structure. Our proposed method
EvoKG jointly models both tasks in an effective framework, which captures the ever-
changing structural and temporal dynamics in TKGs via recurrent event modeling,
and models the interactions between entities based on the temporal neighborhood
aggregation framework. Further, EvoKG achieves an accurate modeling of event
time, using flexible and efficient mechanisms based on neural density estimation. Ex-
periments show that EvoKG outperforms existing methods in terms of effectiveness
(up to 77% and 116% more accurate time and link prediction) and efficiency.

8.1 Introduction
How can we perform knowledge reasoning over knowledge graphs (KGs) that contin-
uously evolve over time? KGs [JPC+20] organize and represent facts on various types

187

Figure 8.1: An example TKG, where we aim to predict temporal links and event time.

of entities and their relations. By facilitating an effective use of prior knowledge repre-
sented as a multi-relational graph, KGs power many important applications, including
question answering, recommender systems, search engines, and natural language pro-
cessing. Knowledge reasoning over KGs [CJX20], the process of inferring new knowledge
from existing facts in KGs, lies at the heart of these applications, as KGs are typically
incomplete, with many facts missing.

Importantly, real-world events and facts are often associated with time (i.e., occurring at
a specific time or valid in limited time), exhibiting complex dynamics among entities and
their relations that evolve over time. Such real-world data (e.g., ICEWS [BLO+15] and
GDELT [LS13]) can be modeled as temporal knowledge graphs (TKGs), where entities
are connected via timestamped edges, and two entities can have multiple interactions
at different time steps, as illustrated in Figure 8.1. Despite the prevalence of real-world
data that can be represented as TKGs, existing methods [YYH+15, SKB+18, DMSR18,
SDNT19] have mainly focused on reasoning over static KGs, and lack the ability to
employ rich temporal dynamics available in TKGs.

Recently, a few methods have been developed for reasoning over TKGs. They mainly
address two problem setups, i.e., interpolation and extrapolation. Given a TKG ranging
from time 0 to time T , methods for the interpolation setup [DRT18, GDN18, LC18] infer
missing facts for time t (0 ≤ t ≤ T); on the other hand, those for the extrapolation
setup [TDWS17, TFBZ19, JQJR20] predict new facts for time t > T . In this chapter, we

188

focus on the extrapolation setting, which is more challenging and interesting than the
other setting, as forecasting emerging events are of great importance to many applications
of TKG reasoning.

In this chapter, we approach the problem of TKG modeling by defining the joint probabil-
ity distribution of a TKG as a product of conditionals, from which we present a problem
formulation that unifies the two problem settings of existing methods, namely, modeling
the event time and evolving network structure. While addressing both problems leads to
learning rich, complementary information useful for an effective reasoning over TKGs,
most methods deal with only either of the two, as summarized in Table 8.1.

Therefore, in this chapter, we develop EvoKG, a method that jointly addresses these
two core tasks for reasoning over TKGs. We design an effective framework that can
be effectively applied to each task, with only minor adaptations. Our framework per-
forms neighborhood aggregation in a relation- and time-aware manner, and carries out
recurrent event modeling in an autoregressive architecture to capture the ever-changing
structural and temporal dynamics over time (F1-F3 in Table 8.1). Importantly, EvoKG
tackles the challenging task of event time modeling, using flexible and efficient mecha-
nisms based on neural density estimation (T2-1 and T2-2 in Table 8.1), which avoids the
limitations of existing methods that the learned distributions are not expressive, and that
the log-likelihood and expectation of event time cannot be obtained in closed form, but
instead require an approximation. In summary, our contributions are as follows.

• Problem Formulation (Section 8.2). We present a problem formulation that unifies
the two major tasks for TKG reasoning—modeling the timing of events and evolving
network structure.

• Framework (Section 8.3). We propose EvoKG, an effective and efficient method for
reasoning over TKGs that jointly addresses the two core problems (T1 and T2 in
Table 8.1).

• Effectiveness (Section 8.4). Experiments show that EvoKG achieves up to 116% and
77% better link and event time prediction accuracy, respectively, than existing KG
reasoning methods (Figure 8.2).

• Efficiency (Section 8.4). EvoKG efficiently processes concurrent events, achieving up
to 30× and 291× speedup in training and inference, respectively, compared to the best
existing method.

Reproducibility. The code and data used in this chapter are available at https://
namyongpark.github.io/evokg.

8.2 Problem Formulation
Notations. A temporal knowledge graph (TKG) G is a multi-relational, directed graph
with timestamped edges. We denote a timestamped edge in TKG by a quadruple
(s, r, o, t); it represents an event between subject entity s and object entity o, occurring at
time t, where edge type (also called relation) r denotes the corresponding event type. In
a TKG, we assume no duplicate edges, but there can be multiple edges of the same type

189

https://namyongpark.github.io/evokg
https://namyongpark.github.io/evokg

Table 8.1: EvoKG wins. EvoKG deals with both tasks (T1-T2) for reasoning over TKGs,
while representative baselines fail to address both. EvoKG also possesses desirable fea-
tures (F1-F3) for modeling TKGs. TD: TA-DistMult [GDN18]. EG: EvolveGCN [PDC+20].
KE: Know-Evolve [TDWS17]. RN: RE-Net [JQJR20].

TD EG KE RN EvoKG

T1. Modeling evolving network structure X X X X

T2. Modeling event time t X X
• T2-1. Closed-form likelihood & expectation X X
• T2-2. Flexible approximation of p(t) X

F1. Relation-awareness X X X X
F2. Neighborhood aggregation X X X
F3. Recurrent event modeling X X X X X

between two entities, if they have different timestamps. For example, a TKG may have
both (‘u1’, ‘emailed’, ‘u2’ ‘10 am’) and (‘u1’, ‘emailed’, ‘u2’ ‘12 am’).

Let (sn, rn, on, tn) denote an n-th edge among a set of ordered edges. Given a TKG G with
N edges sorted in non-decreasing order of time, we denote it by G = {(sn, rn, on, tn)}Nn=1

where 0 ≤ t1 ≤ t2 ≤ . . . ≤ tN . We use Gt to denote a TKG consisting of events observed
at time t, and G<t to refer to a TKG with all events observed before time t. We use e to
refer to the event triple (s, r, o). We denote vectors by boldface lowercase letters (e.g., c),
and matrices by boldface capitals (e.g., W).

Problem: Modeling a TKG. Given a TKG G with a sequence of observed events
{(sn, rn, on, tn)}Nn=1, our goal is to model the probability distribution p(G). We assume
that events at time t depend on events that occurred prior to time t, and events that
happen at the same time are independent of each other, given preceding events. Based
on these assumptions, the joint distribution of TKG G can be written as:

p(G) =
∏
t

p(Gt|G<t) =
∏
t

∏
(s,r,o,t)∈Gt

p(s, r, o, t|G<t). (8.1)

We further decompose the joint conditional probability p(s, r, o, t|G<t) in Equation (8.1)
as follows.

p(s, r, o, t|G<t) = p(t|s, r, o, G<t) · p(s, r, o|G<t) (8.2)

Note that by modeling the two terms in Equation (8.2), we model the event time
p(t|s, r, o, G<t) and the evolving network structure p(s, r, o|G<t). Based on this decompo-
sition, we propose to model a TKG by estimating these two probability terms.

Surprisingly, existing methods for TKGs have focused on modeling either of the two
terms, but not both at the same time, as summarized in Table 8.1. Methods that solve

190

Evo
KG

RE-
Net

Kno
w-E

volv
e

Evo
lveG

CN

TA-
Dist

Mul
t

tNod
eEm

bed Con
vE
Dist

Mul
t0

20

40
M

A
E

(T
im

e)

B
et
te
r

−77%

× × × × × ×

ICEWS-500

0.25

0.50

M
R

R
 (L

in
k)

B
et
te
r

+116%
WIKI ICEWS14

Figure 8.2: EvoKG wins. EvoKG achieves the best link prediction (top) and time predic-
tion (bottom) results. × indicates that the corresponding method cannot predict event
time.

only one of the tasks fail to utilize rich information that can be learned by addressing the
other task: e.g., methods that do not model the event time (e.g., those marked with × in
Figure 8.2) cannot predict when events will occur, and those that only model the event
time cannot take the likelihood of an event triple (s, r, o) into account when estimating
the likelihood of a timestamped event. By unifying these two modeling tasks, we can
enable a more accurate reasoning over TKGs.

8.3 Modeling a Temporal Knowledge Graph
We describe how EvoKG models a TKG by addressing the two problems—modeling
event time and evolving network structure. The symbols used in this chapter are listed
in Table 8.2.

8.3.1 Modeling Event Time
The temporal patterns of events occurring between various types of entities in a TKG
depend on the context of their past interactions. To capture intricate temporal depen-
dencies present in real-world TKGs, we treat the event time t as a random variable, and
model the occurrence of triple (s, r, o) at time t using temporal point processes (TPPs),
which are the dominant paradigm for modeling events that occur at irregular intervals.
Given increasing event times {. . . , tn−1, tn, . . . }, representations in terms of time tn and
the corresponding inter-event time τn = tn − tn−1 are isomorphic, and we use them
interchangeably.

Conditional Density Estimation of Event Time. To model the event time, we estimate
the conditional probability density p∗e(t)=p(t|s, r, o, G<t) of event time t, given an event
of type r between entities s and o, and the history G<t of all past interactions. Note

191

that the star symbol ∗ as in p∗e(t) in this chapter denotes the dependency on the history
G<t.

More concretely, in order to define p∗e(t), we consider the conditional density of two types
of inter-event times τeo and τmin. Let p∗,eEO (t) = p(τeo|s, r, o, G<t) be the conditional density
of τeo, which is the time that has elapsed since entities s and o interacted with each other
in their latest event. Also, let p∗,eMIN(t) = p(τmin|s, r, o, G<t) be the conditional density of
τmin, which is defined to be min(τ(s), τ(o)), where τ(s) and τ(o) refer to the time that has
elapsed since s and o interacted with any other entity in their latest event. In other words,
τeo considers how recent the two entities’ interaction was, while τmin considers when
the most recent event happened in either entity’s history. In experiments where we set
p∗e(t) to be either of these two probabilities, we find p∗,eMIN(t) and p∗,eEO (t) to be most effective
for predicting event time (Section 8.4.2) and temporal links (Section 8.4.3), respectively.
Note that p∗e(t) can be more generally defined in terms of both conditional densities to be
p∗e(t) = α ·p∗,eEO (t)+(1−α) ·p∗,eMIN(t), where α (0 ≤ α ≤ 1) weights each term, and it can also
be extended with further conditional densities to model different types of inter-event
times.

Importantly, our choice to model event time directly via conditional density estimation
differs from existing TPP-based approaches for modeling TKGs [TDWS17, HMW+20],
where event times are modeled using the conditional intensity function λ∗e(t)=λ(t|s, r, o, G<t),
which represents the rate of events happening, given the history. In these intensity-based
approaches, computing p∗e(t) requires integrating λ∗e(t), and thus a major challenge lies
in selecting a good parametric form for λ∗e(t). Simple intensity functions (e.g., constant
and exponential intensity) have a closed-form log-likelihood, but they usually have
limited expressiveness (e.g., they have a unimodal distribution); even if they use RNNs
to capture rich temporal information, the resulting distribution p∗e(t) still has limited
flexibility. More sophisticated ones using neural networks can better capture complex
distributions, but their log-likelihood and expectation cannot be obtained in closed form,
requiring Monte Carlo approximation. Mixture distributions, on the other hand, are an
expressive model for conditional density estimation, with the potential to approximate
any density, and with closed-form likelihood and expectation.

Specifically, we use a mixture of log-normal distributions since inter-event times are
positive. Log-normal mixture distributions are defined in terms of mixture weights
w, means µ, and standard deviations σ. An important consideration in employing
a log-normal mixture is that the timing of an event in a TKG is affected by what has
happened before (i.e., G<t) and what comprises the event triple e= (s, r, o). In light of
this, we obtain the three groups of mixture parameters w∗e , µ∗e, and σ∗e ∈ RK , where
the symbols e and ∗ signify these parameters’ dependency on the event triple e and the
history G<t, and K denotes the number of mixture components.

To obtain mixture parameters, we learn entity and relation embeddings such that they
reflect their temporal status (which we describe in the next paragraph), as they are
influenced by events that occurred over time. Let t∗s, t∗o, and t∗r denote such temporal
embeddings of subject s, object o, and relation r, respectively, after processing events prior

192

Table 8.2: Table of symbols.

Symbol Definition

(s, r, o, t) directed edge from subject s to object o, with edge type (relation) r and timestamp t
e event triple (s, r, o)
τ inter-event time (i.e., τn = tn − tn−1)
τeo elapsed time since entities s and o last interacted with each other
τmin elapsed time since entities s and o last interacted with any other entity
∗ symbol that signifies that an associated symbol (e.g., p∗(τ) and t∗i) depends on the

past events
p∗e(τ) conditional probability density function p(τ |s, r, o,G<t)
w,µ,σ weights, means, and standard deviations of a log-normal mixture

ti, si, t∗i , s
∗
i temporal (structural) embeddings of entity i, with ∗ reflecting its state after process-

ing events until time t
tr, sr, t∗r , s

∗
r temporal (structural) embeddings of relation r, with ∗ reflecting its state after pro-

cessing events until time t
t
(`,t)
i , s

(`,t)
i temporal (structural) embeddings of entity i learned by `-th GNN layer at time t

t
(∗,t)
i , s

(∗,t)
i temporal (structural) embeddings of entity i updated after events until time t are

processed

to time t. We model the conditional dependence of p(τ |s, r, o, G<t) on e=(s, r, o) and G<t

by concatenating the embeddings of s, r, and o into a context vector c∗e = [t∗s‖t∗r‖t∗o], and
transforming it into the parameters of the log-normal mixture representing p(τ |s, r, o, G<t)
using a multilayer perceptron (MLP) as follows:

w∗e = softmax(MLP(c∗e)),µ
∗
e = MLP(c∗e),σ

∗
e = exp(MLP(c∗e)) (8.3)

where softmax ensures that mixture weights sum to 1, and exp makes standard deviations
positive. With these parameters, EvoKG defines p(τ |s, r, o, G<t) to be

p(τ |s, r, o, G<t) = p(τ |w∗e ,µ∗e,σ∗e)

=
K∑
k=1

(w∗e)k

τ(σ∗e)k
√

2π
exp

(
−(log τ − (µ∗e)k)

2

2(σ∗e)k
2

)
,

(8.4)

which is a valid probability density function as it is nonnegative and integrates to one
for τ ∈ R+.

Time-Evolving Temporal Representations. Informative context for estimating inter-
event time can be constructed by summarizing different types of interactions each entity
had with others into temporal entity embeddings. Further, how much time elapsed
since the latest event gives useful information for learning such temporal representations.
To this end, we utilize the neighborhood aggregation framework of relation-aware
graph neural networks (GNNs). Specifically, we extend R-GCN [SKB+18] such that
the aggregation can take inter-event time τi,j between entities i and j into account.

193

Given concurrent events Gt, we summarize entity i’s interaction with others in Gt as
follows:

t(`+1,t)
i = σ

(∑
r∈R

∑
j∈N (i,r)

t

1

νi,j
·W`

rt
(`,t)
j + W`

0t
(`,t)
i

)
(8.5)

where t(`,t)
i denotes the temporal embeddings of entity i learned by `-th layer of the

extended R-GCN by aggregating events in Gt; νi,j is a factor to consider the inter-event
time, which we define to be νi,j = log τi,j ; R is the set of relations; N (i,r)

t is entity i’s
concurrent neighbors at time t, connected via an edge of type r; W`

r and W`
0 are the

weight matrices in the `-th layer for relation r and self-loop, respectively. Then with L
layers in total, tLi summarizes entity i’s temporal interactions in the L-hop neighborhood.
The initial temporal embeddings t(0,t)

i are set to the static representation ti that EvoKG
learns to capture the temporal characteristics of entities, i.e., t(0,t)

i = ti for any time t.

To model the dynamics of temporal updates, the context for modeling inter-event time
should reflect the changes made by new events. Given t(L,t)

i which summarizes the
temporal interaction patterns from concurrent events at time t, EvoKG learns time-
evolving dynamics from the evolution of t(L,t)

i over time, by using recurrent neural
networks RNNte for temporal entity representation learning:

t(∗,t)
i = RNNte

(
t(L,t)
i , t(∗,t−1)

i

)
(8.6)

where t(L,t)
i is the input to RNNs at each time; t(∗,0)

i is zero-initialized; and t(∗,t)
i is the

temporal embedding of entity i updated after events until time t are processed. In this
framework, as aggregating incoming and outgoing neighbors captures sending and
receiving patterns between entities, EvoKG aggregates neighborhood in both directions
to learn embeddings that reflect different interaction patterns, which are then processed
by RNNte to be used in the context c∗e.

Next, EvoKG considers the concurrent events Gr
t that have relation r, and takes the

average of the temporal embeddings of the entities in Gr
t to provide it as the context ttr to

RNNtr, which learns the temporal embedding t(∗,t)
r of relation r at time t:

t(∗,t)
r = RNNtr

(
ttr, t

(∗,t−1)
r

)
. (8.7)

For brevity, we use the notation t∗i = t(∗,t)
i and t∗r = t(∗,t)

r .

8.3.2 Modeling Evolving Network Structure
As new events occur, TKGs evolve structurally and the dynamics between entities also
change over time. For instance, companies that did not work together may start to
collaborate at some point to work on the same project, and this change may influence the
communication patterns between them and related entities in the TKG. We capture this

194

intricate structural dynamics by modeling the conditional probability p(s, r, o|G<t) of an
event triple (s, r, o).

Conditional Density Estimation of Event Triple. To model p(s, r, o|G<t), we learn the
embeddings of entities and relations (which we discuss in the next paragraph), which
capture their time-evolving structural dynamics. For flexibility, we learn these embed-
dings separately from temporal embeddings discussed in Section 8.3.1. Let si and sr
denote the static structural embeddings of entity i and relation r, and let s∗i and s∗r be the
structural embeddings of entity i and relation r obtained by processing events until time
t. We concatenate static and dynamic embeddings and denote them using s∗i = [s∗i ‖si]
and s∗r = [s∗r‖sr]. Then EvoKG summarizes the past events G<t, which p(s, r, o|G<t)
is conditioned on, by the graph-level representation g∗, which EvoKG obtains via an
element-wise max pooling over the structural embeddings of all entities, i.e.,

g∗=max({s∗i | i ∈ entities(G<t)}). (8.8)

Based on these representations, we decompose p(s, r, o|G<t) to be

p(s, r, o|G<t) = p(o|s, r, G<t) · p(r|s,G<t) · p(s|G<t) (8.9)

and parameterize each term separately, as follows:

p(o|s, r, G<t) = softmax (MLP ([s∗s‖s∗r‖g∗])) , (8.10)
p(r|s,G<t) = softmax (MLP ([s∗s‖g∗])) , (8.11)
p(s|G<t) = softmax (MLP ([g∗])) . (8.12)

Time-Evolving Structural Representations. An effective modeling of p(s, r, o|G<t) based
on the above parameterization depends on learning informative context that reflects how
structural dynamics between entities have changed over time. As with learning temporal
embeddings, neighborhood aggregation of GNNs and recurrent event modeling using
RNNs provide an effective framework to capture this complex structural evolution.
Thus, we adapt the framework used for event time modeling in Section 8.3.1 for learning
time-evolving structural embeddings.

Let s(`,t)
i denote the structural embeddings of entity i learned by `-th R-GCN layer by

aggregating concurrent events Gt. As before, we set the initial structural embeddings
s(0,t)
i to si for each time t. Given embeddings s(`,t)

i for all entities, s(`+1,t)
i is learned using

Equation (8.5), where t(`,t)
i is replaced by s(`,t)

i , and νi,j is set to the neighborhood size
|N (i,r)

t |. The structural relation embedding str at time t is constructed using concurrent
events in the same way as in the temporal case. Then EvoKG learns the time-evolving
structural embeddings s(∗,t)

i and s(∗,t)
r using RNNse and RNNsr as follows.

s(∗,t)
i = RNNse

(
s(L,t)
i , s(∗,t−1)

i

)
, s(∗,t)

r = RNNsr
(
str, s

(∗,t−1)
r

)
(8.13)

For brevity, we use the notation s∗i = s(∗,t)
i and s∗r = s(∗,t)

r .

195

8.3.3 Parameter Learning
Loss Function. Let Liet and Ltriple denote the negative log-likelihood (NLL) of the inter-
event time and an event triple, respectively. Based on our problem formulation and
modeling choices, the two NLLs of a quadruple q=(s, r, o, t) (i.e., a timestamped event
in a TKG) are obtained as follows.

Liet(q) = − log p(t|s, r, o, G<t) = − log p(τ |w∗e ,µ∗e,σ∗e) (8.14)

Ltriple(q) = − log p(s, r, o|G<t)

= − log p(o|s, r, G<t)− log p(r|s,G<t)− log p(s|G<t)
(8.15)

We optimize EvoKG by minimizing the loss L containing both NLLs for all events in the
training set:

L =
∑
t

∑
q=(s,r,o,t)∈Gt

λ1 Liet(q) + λ2 Ltriple(q) (8.16)

where λ1 and λ2 control the importance of each loss term.

Learning Algorithm. Since there exist intricate relational and temporal dependencies
among events in TKGs, it is not optimal to decompose events into independent sequences
for an efficient training, as we lose relational information. At the same time, since a TKG
may cover a long period of time, keeping track of the entire history for each entity can
incur prohibitively high computation and memory cost, especially when learning graph-
contextualized representations for entities and relations. To address these challenges, we
organize events by their timestamps and process concurrent events in parallel, while
truncating backpropagation every b time steps (Algorithm 8.1). As experimental results
show, this enables an accurate and efficient parameter learning, which outperforms the
best baseline in terms of both prediction accuracy and efficiency.

8.4 Experiments
In experiments, we answer the following research questions.

• [RQ1] How accurately can EvoKG estimate the event time?
• [RQ2] How accurately can EvoKG predict temporal links?
• [RQ3] How efficient is EvoKG in terms of training and inference?
• [RQ4] How do different parameter settings and event time modeling affect EvoKG’s

performance?

After describing the datasets (Section 8.4.1), we present results for the above research
questions (Sections 8.4.2 to 8.4.5). Experimental settings are provided in Section 8.7.1.

8.4.1 Temporal Knowledge Graph Data
We use five real-world TKGs that have been widely used in previous studies: ICEWS18 [BLO+15],
ICEWS14 [TDWS17], GDELT [LS13], WIKI [LC18], and YAGO [MBS15]. ICEWS (Inte-
grated Crisis Early Warning System) and GDELT (Global Database of Events, Language,

196

Algorithm 8.1: Parameter Learning
Input: TKG G with training data, TKG G′ with validation data, maximum

number of epochs max_epochs, number L of R-GCN layers, patience p,
number of time steps b for truncated backpropagation.

1 epoch← 1
2 repeat
3 foreach t ∈ Timestamps(G) do
4 if t > 0 then
5 Compute the loss Lt for concurrent events in Gt based on

Equation (8.16)
6 Optimize model parameters and truncate backpropagation every b

time steps

7 foreach i∈Entities (Gt) do /* executed in parallel */

8 Compute t(L,t)
i and t∗i using eqs. (8.5) and (8.6)

9 Compute s(L,t)
i and s∗i using a modified version of eq. (8.5) and eq. (8.13)

10 foreach r ∈ Rels (Gt) do /* executed in parallel */

11 Compute t∗r and s∗r using eqs. (8.7) and (8.13)

12 Evaluate the validation performance for events in G′

13 epoch← epoch+ 1

14 until epoch = max_epochs or no improvement in validation performance for p
consecutive times;

Table 8.3: Statistics of real-world TKGs. Time interval denotes the minimum duration between
two temporally adjacent events.

Dataset
Train
Edges

Valid
Edges

Test
Edges

Entities
Rel-
ations

Time
Interval

ICEWS18 373,018 45,995 49,545 23,033 256 24 hours
ICEWS14 275,367 48,528 341,409 12,498 260 24 hours

ICEWS-500 184,725 32,292 228,648 500 256 24 hours
GDELT 1,734,399 238,765 305,241 7,691 240 15 minutes
WIKI 539,286 67,538 63,110 12,554 24 1 year

YAGO 161,540 19,523 20,026 10,623 10 1 year

and Tone) are event-based TKGs; WIKI and YAGO are knowledge bases with temporally
associated facts. Statistics of these TKGs are presented in Table 8.3. We order these
datasets by timestamps, and split each one into training, validation, and test sets, as
shown in Table 8.3. We also use ICEWS-500 [TDWS17] for experiments on event time
prediction, which is a TKG constructed from ICEWS data, containing a smaller number
of nodes than ICEWS18, since some previous studies reported results only on ICEWS-500
without releasing code.

197

Evo
KG

Kn
ow-
Evo
lve
GH
NN
LiT
SEE MH

P
RT
PP
RE
-Ne
t

Evo
lveG

CN

tNo
deE
mb
ed
HyT

E

TA
-Di
stM
ult

0

20

40

M
A

E
(h

ou
rs

)

9.65 42.82 146.4 2592 1349 2727

B
et
te
r

−77%

× × × × ×

ICEWS-500

0

5

10

M
A

E
(h

ou
rs

)
2.89 478.3 7.18 303.8 N/A N/A × × × × ×

B
et
te
r

−60%
GDELT

Figure 8.3: EvoKG is accurate. EvoKG achieves the best event time prediction results,
with up to 77% less MAE than the second best method; all improvements are statistically
significant with p-value < 0.05. Note that many methods for TKGs (marked by×) cannot
predict event time. N/A denotes results are unavailable.

8.4.2 Event Time Prediction (RQ1)
Task Description. Given an event triple e = (s, r, o) and the history G<t, the goal is
to predict when the event e will happen. Specifically, the time of an event triple e is
estimated to be the expected value of the time that event e occurs, given the history.
Thanks to the use of a mixture distribution, in EvoKG, this expectation is obtained in a
closed form by

Eτ∼p∗e(τ)(τ) =
∑

k
(w∗e)k exp ((µ∗e)k + ((s∗e)k)2/2) . (8.17)

On the other hand, other approaches, such as GHNN [HMW+20], need to approximate
the integral to compute the expected value by using Monte Carlo, as they do not have a
close-form solution. We report MAE (mean absolute error), which is the average of the
absolute difference between the predicted and true time in hours. Lower MAE indicates
higher prediction accuracy.

Baselines. We compare EvoKG against three existing methods for modeling TKGs with
the ability to predict event time: Know-Evolve [TDWS17], GHNN [HMW+20], and
LiTSEE [XNA+19]. Know-Evolve and GHNN model event time based on temporal point
process (TPP) framework. While there exist several other methods for modeling TKGs,
they are unable to forecast event time, thus they cannot be used for this evaluation. We
also report the result of two other baselines used in [TDWS17], MHP (Multi-dimensional
Hawkes Process) and RTPP (Recurrent Temporal Point Process). MHP models dyadic
entity interactions as multi-dimensional Hawkes process: an entity pair constitutes an
event, and MHP learns when each event occurs, without taking relations (event types)
into account. RTPP is a simplified version of RMTPP [DDT+16], which estimates the

198

conditional intensity function of an event by using a global RNN. Relations are also
considered in RTPP.

Results. Figure 8.3 reports the event time prediction accuracy on ICEWS-500 and GDELT.
Results of Know-Evolve, RTPP, and MHP are obtained from [TDWS17] (except that we
obtained Know-Evolve’s result on GDELT using the reference implementation), and
those of LiTSEE and GHNN are taken from [HMW+20]. Notably, most TKG methods
in Figure 8.3 are marked with × due to their inability to estimate event time. Also, the
results of RTPP and MHP are not available (marked with ‘N/A’) as their implementation
is not publicly available. In EvoKG, we used τmin to model the inter-event time. In
experiments, methods are updated using the observed graph snapshot at each time step
to make future predictions.

Results show that EvoKG consistently outperforms all existing approaches, with up
to 77% less MAE than the second-best method. We conduct one-sample t-tests and
verify that all improvements over baselines are statistically significant with p-value
< 0.05. Graph-based methods (EvoKG, Know-Evolve, and GHNN), which learn the
temporal patterns of events by utilizing information from the neighborhood, perform
much better than simpler baselines (RTPP and MHP), which model event time based
only on direct interactions between entities. Also, TPP-based Know-Evolve and GHNN
outperform LiTSEE, a non-TPP approach which incorporates time information by adding
a temporal component into entity embeddings. EvoKG achieves the best event time
prediction results by modeling event time using mixture distributions, which are much
more flexible and expressive than those used by existing methods.

8.4.3 Temporal Link Prediction (RQ2)
Task Description. Given a test quadruple q=(s, r, o, t) and the history G<t, we create a
perturbed quadruple q′=(s, r, o′, t) by replacing o with every other entity o′ in the graph,
and compute the score of q′. We then sort all perturbed quadruples in descending order
of the score and report the rank of the ground truth quadruple q. We report MRR (mean
reciprocal rank), which is the average of the reciprocal of the ground truth q’s rank, and
Hits@{3,10}, which is the percentage of correct entities in the top 3 and 10 predictions.
For both metrics, higher values indicate better link prediction results.

Baselines. We compare EvoKG against the following baselines for both static and tem-
poral KG reasoning. (1) DistMult [YYH+15], R-GCN [SKB+18], ConvE [DMSR18], and
RotatE [SDNT19] are methods for static KG reasoning. They are applied to a static, cu-
mulative graph constructed from events in the training data, where edge timestamps are
ignored. (2) TA-DistMult [GDN18] and HyTE [DRT18] are methods for temporal KG rea-
soning in an interpolation setting. (3) dyngraph2vecAE [GCC20], tNodeEmbed [SGR19],
EvolveGCN [PDC+20], and GCRN [SDVB18] are methods for reasoning over homoge-
neous graphs in an extrapolation setting. (4) Know-Evolve [TDWS17], DyRep [TFBZ19],
and RE-Net [JQJR20] are methods for temporal KG reasoning in an extrapolation setting.
GHNN [HMW+20] is not included as the implementation is not available. Also, results
reported in [HMW+20] were obtained after applying its own filtering criteria, where

199

Table 8.4: EvoKG wins. EvoKG outperforms existing methods in terms of temporal link
prediction in most cases, achieving up to 116% higher MRR (mean reciprocal rank) on
real-world TKGs. Best results are in bold, and second best results are underlined.

Method
ICEWS14 ICEWS18 WIKI YAGO GDELT

MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@10

St
at

ic

DistMult 9.72 10.09 22.53 13.86 15.22 31.26 27.96 32.45 39.51 44.05 49.70 59.94 8.61 8.27 17.04
R-GCN 15.03 16.12 31.47 15.05 16.49 29.00 13.96 15.75 22.05 27.43 31.24 44.75 12.17 12.37 20.63
ConvE 21.64 23.16 38.37 22.56 25.41 41.67 26.41 30.36 39.41 41.31 47.10 59.67 18.43 19.57 32.25
RotateE 9.79 9.37 22.24 11.63 12.31 28.03 26.08 31.63 38.51 42.08 46.77 59.39 3.62 2.26 8.37

Te
m

po
ra

l

TA-DistMult 11.29 11.60 23.71 15.62 17.09 32.21 26.44 31.36 38.97 44.98 50.64 61.11 10.34 10.44 21.63
HyTE 7.72 7.94 20.16 7.41 7.33 16.01 25.40 29.16 37.54 14.42 39.73 46.98 6.69 7.57 19.06
dyngraph2vecAE 6.95 8.17 12.18 1.36 1.54 1.61 2.67 2.75 3.00 0.81 0.74 0.76 4.53 1.87 1.87
tNodeEmbed 13.36 13.13 24.31 7.21 7.64 15.75 8.86 10.11 16.36 3.82 3.88 8.07 12.97 12.61 21.22
EvolveGCN 8.32 7.64 18.81 10.31 10.52 23.65 27.19 31.35 38.13 40.50 45.78 55.29 6.54 5.64 15.22
Know-Evolve 0.05 0.00 0.10 0.11 0.00 0.47 0.03 0.00 0.04 0.02 0.00 0.01 0.11 0.02 0.10
Know-Evolve+MLP 16.81 18.63 29.20 7.41 7.87 14.76 10.54 13.08 20.21 5.23 5.63 10.23 15.88 15.69 22.28
DyRep+MLP 17.54 19.87 30.34 7.82 7.73 16.33 10.41 12.06 20.93 4.98 5.54 10.19 16.25 16.45 23.86
R-GCRN+MLP 21.39 23.60 38.96 23.46 26.62 41.96 28.68 31.44 38.58 43.71 48.53 56.98 18.63 19.80 32.42
RE-Net 23.91 26.63 42.70 26.81 30.58 45.92 31.55 34.45 42.26 46.37 51.95 61.59 19.44 20.73 33.81

EvoKG 27.18
±0.001

30.84
±0.001

47.67
±0.001

29.28
±0.002

33.94
±0.004

50.09
±0.002

68.03
±0.031

79.60
±0.036

85.91
±0.063

68.59
±0.003

81.13
±0.005

92.73
±0.009

19.28
±0.001

20.55
±0.001

34.44
±0.002

GHNN achieved similar results to RE-Net.

Results. Table 8.4 provides link prediction results on five TKGs. Results of baselines
are obtained from [JQJR20]. In EvoKG, we used τeo to model the inter-event time. In
experiments, after making predictions at each time step, methods are updated using the
observed graph snapshot. EvoKG outperforms all existing approaches across different
datasets, achieving up to 116% higher MRR than the best baseline, except on GDELT,
where EvoKG achieves similar performance to the best baseline. It is noteworthy that an
improvement over baselines is the most significant on WIKI and YAGO, which contains
much more events occurring at relatively regular intervals. By modeling event time,
EvoKG can predict such temporal patterns accurately. Among baselines, static methods
in the first four rows perform worse than the best temporal baseline, RE-Net, as they
do not consider temporal factors. At the same time, some temporal methods, such
as dyngraph2vecAE and EvolveGCN, often perform worse than static methods, even
though they are designed to take temporal evolution of dynamic networks into account.
This indicates that incorporating temporal factors needs to be done carefully to avoid
introducing additional noise. Know-Evolve and DyRep are the two existing methods
based on temporal point processes. While they can be used for temporal link prediction,
they are not effective for predicting links, even after applying an MLP decoder to their
embeddings, as they focus on modeling just p(t|s, r, o, G<t), and thus do not explicitly
learn the evolving network structure by modeling p(s, r, o|G<t) as in EvoKG. By modeling
event time and network structure simultaneously, EvoKG outperforms various existing
methods in predicting temporal links and event times.

200

101 102 103 104 105

Runtime (seconds)

GDELT

ICEWS18

WIKI

YAGO

Inference
 49×

 139×
 232×

 291× EvoKG
RE-Net

102 103 104
GDELT

ICEWS18

WIKI

YAGO

Training
 30×

 19×
 28×

 15× EvoKG
RE-Net

Figure 8.4: EvoKG is fast. EvoKG performs training (top) and inference (bottom) up to
30× and 291× faster than RE-Net.

8.4.4 Efficiency (RQ3)
Setup. We compare EvoKG against RE-Net, the best performing baseline method for
temporal link prediction, in terms of model training and inference speed. We evaluate the
training speed by measuring the time taken to train one epoch, and the inference speed
by measuring the time taken to evaluate the entire test data in terms of p(s, r, o|G<t).

Results. Figure 8.4 shows the time taken for training (top) and inference (bottom) over
four TKGs. The training speed for EvoKG is 23× on average, and up to 30×, faster
than RE-Net. In making inferences, EvoKG is 177× on average, and up to 291×, faster
than RE-Net. This is because RE-Net’s design for handling events results in a lot of
repeated computations for neighborhood aggregation and processing event history.
The difference in runtime is even more pronounced in making inferences since RE-Net
processes event quadruples individually during inference. On the other hand, EvoKG
processes concurrent events simultaneously, effectively reducing redundant operations.
As a result, EvoKG performs both tasks much more efficiently than RE-Net.

8.4.5 Ablation Study (RQ4)

8.4.5.1 Parameter Sensitivity
We evaluate how the performance of EvoKG changes, as we vary (a) the embedding
size, (b) the number of R-GCN layers, (c) the number of mixture components, and (d)
truncation length (the number of time steps between backpropagation truncation in
RNNs). Figure 8.5 shows the link prediction result on ICEWS18 (top), and event time
prediction result on ICEWS-500 (bottom); reported values denote the ratio of the result
obtained with the parameter setting on the x-axis to the best result.

201

100 200 400
(1) Embedding Size

0.96

0.98

1.00

B
et

te
r

1 2 3
(2) # Layers in R-GCN

0.985

0.990

0.995

1.000

16 64 128 256
(3) # Mixture Components

0.990

0.995

1.000

5 10 20 40
(4) Truncation Length

0.96

0.98

1.00
H@3 / Highest H@3 MRR / Highest MRR

(a) Temporal link prediction performance of EvoKG on ICEWS18.

100 200 400
(1) Embedding Size

0.99

1.00

1.01

1.02

M
A

E
/ L

ow
es

t M
A

E

B
et
te
r

1 2 3
(2) # Layers in R-GCN

1.0

1.1

1.2

M
A

E
/ L

ow
es

t M
A

E

16 64 128 256
(3) # Mixture Components

1.00

1.02

1.04

1.06

M
A

E
/ L

ow
es

t M
A

E

5 10 20 40
(4) Truncation Length

1.0

1.1

1.2

M
A

E
/ L

ow
es

t M
A

E

(b) Event time prediction performance of EvoKG on ICEWS-500.

Figure 8.5: Link prediction and event time prediction performance as we vary (1) em-
bedding size, (2) number of R-GCN layers, (3) number of mixture components, and (4)
truncation length.

Embedding Size. We set the embedding size (both temporal and structural embeddings)
to 100, 200, and 400. As Figures 8.5a and 8.5b show, the best accuracy on the two datasets
is achieved by an embedding size of 100, while using a much larger embedding size of
400 hurts the performance, as this leads to overfitting.

Number of R-GCN Layers. EvoKG extends R-GCNs for learning temporal and struc-
tural representations. The number of R-GCN layers determines the size of the neigh-
borhood from which a node aggregates information. For predicting both temporal link
and event time, using two layers leads to a better result than using a single layer, indi-
cating that an increased neighborhood brings useful information for modeling a TKG.
However, using more layers can incur over-smoothing issues, decreasing time prediction
accuracy.

Number of Mixture Components. EvoKG uses a mixture distribution to model the
event time. The number of mixture components affects the flexibility of the mixture
distribution. Figures 8.5a and 8.5b report the performance of EvoKG as the number of
mixtures is set to 16, 64, 128, and 256. EvoKG achieves the best link and event time
prediction results, with 16 and 64 mixture components, respectively. While using a
larger number of mixture components decreases performance, EvoKG still achieves high
accuracy, and is not very sensitive to these parameter settings.

Truncation Length. For efficient and scalable training, EvoKG truncates backpropagation

202

ICEWS14 ICEWS18 WIKI YAGO GDELT
Datasets

0

20

40

60

Im
pr

ov
em

en
t (

%
) b

y
ev

en
t t

im
e

m
od

el
in

g

B
et
te
rH@3

H@10
MRR

Figure 8.6: Modeling event time improves temporal link prediction accuracy on all TKGs,
by up to 61%.

every b time steps (Algorithm 8.1). We set b to 5, 10, 20, and 40, and measure the
performance. On the two datasets, the best result is achieved with b = 40 (link prediction)
and b = 10 (event time prediction), and using a smaller time steps tends to decrease the
accuracy, as this restricts the model’s ability to keep track of the history. Results also
show that if the truncation length is longer than appropriate, it may hurt the predictive
accuracy.

8.4.5.2 Effects of Event Time Modeling
To evaluate the importance of modeling event time in the overall quality of TKG model-
ing, we report in Figure 8.6 the improvement made by event time modeling in terms of
link prediction accuracy on all TKGs. Specifically, let Acc1,2 and Acc2 be the link predic-
tion performance obtained with both terms and only the second term in Equation (8.2),
respectively. The improvement in Figure 8.6 is defined to be ((Acc1,2−Acc2)/Acc2)× 100.
Results show that modeling event time consistently improves the prediction accuracy on
all datasets, by up to 61%.

8.5 Related Work
In this section, we review previous works on reasoning over graphs.

Reasoning over Static Graphs. Inspired by the success of the Skip-gram model [MSC+13]
in NLP, several methods [GL16, PAS14, TQW+15] learn node embeddings that maximize
the likelihood of preserving neighborhoods of nodes in a network via random walks.
More recently, many graph neural networks (GNNs) have been developed for represen-
tation learning in homogeneous graphs for semi-supervised and self-supervised settings,
including GCN [KW17] and GAT [VCC+18].

To learn the representations of entities and relations in heterogeneous KGs, tensor fac-
torization (TF) [KB09] has been widely used. There exist several types of TF meth-
ods [PJLK16, POK19, OPJ+19, JJSK16, GPP20], such as CP and Tucker decomposition,
which make different assumptions on the underlying data generating process. Yet, most
TF methods are not well suited for temporal data (e.g., they do not take inter arrival

203

times into account). In recent years, various relational learning techniques have been
proposed for heterogeneous KGs, using different scoring functions to evaluate the triples
in KGs, including models with distance-based scoring functions (e.g., TransE [BUG+13],
RotatE [SDNT19]) and models based on semantic matching (e.g., RESCAL [NTK11],
DistMult [YYH+15], NTN [SCMN13], ConvE [DMSR18]). GNNs have also been ex-
tended for relation-aware representation learning on KGs, such as R-GCN [SKB+18] and
HAN [WJS+19]. Overall, these methods are developed for static graphs and lack the
ability to model temporally evolving dynamics.

Reasoning over Dynamic Homogeneous Graphs. To capture temporal dynamics in
time-evolving graphs, RNNs have been used to summarize and maintain evolving en-
tity states in many methods [SDVB18, RCF+20, PDC+20, KZL19, SGR19]. Often, GNNs
have been combined with RNNs to capture both structural and temporal dependen-
cies [SDVB18, RCF+20, PDC+20]. Another line of work [XRK+20, SWG+20] employed
graph attention mechanisms to make the model aware of the temporal order and the time
span between entities when computing the attention weights. Some other approaches
applied deep autoencoders to dynamic graph snapshots [GKHL18, GCC20], enforced
temporal smoothness on entity embeddings [ZGY+16, ZYR+18], and performed tem-
poral random walks [NLR+18]. As these methods are designed for single-relational
dynamic graphs, they lack mechanisms to capture the multi-relational nature of TKGs,
which we focus on in this work.

Reasoning over Dynamic Heterogeneous Graphs. Static KG embedding methods have
been extended to take temporal information into account, including TA-DistMult [GDN18],
TTransE [LC18], HyTE [DRT18], and diachronic embedding [GKBP20]. These temporal
KG embedding techniques address an interpolation problem where the goal is to infer
missing facts at some point in the past, and cannot predict future events. Recently, several
methods have been developed to tackle the extrapolation problem setting, where the goal
is to predict new facts at future time steps. TensorCast [dARF17] uses exponential smooth-
ing to forecast latent entity representations, obtained with TF. RE-Net [JQJR20] learns
dynamic entity embeddings by summarizing concurrent events in an autoregressive
architecture; yet, it has no components to model the event time. Know-Evolve [TDWS17],
DyRep [TFBZ19], and GHNN [HMW+20] model the occurrences of events over time by
using temporal point processes (e.g., Rayleigh and Hawkes processes) that estimate the
conditional intensity function. Inspired by [SBG20], EvoKG models the event time by
directly estimating its conditional density in a flexible and efficient framework.

In summary, most existing methods for both homogeneous and heterogeneous dynamic
graphs model just the second term on the evolving network structure in Equation (8.2),
and thus cannot predict when events will occur. On the other hand, a few methods
like [TDWS17, TFBZ19] that model the first term on the evolving temporal patterns
in Equation (8.2) do not model the other term, which greatly limits their reasoning
capacity. In this work, we present a problem formulation that unifies these two ma-
jor tasks (Section 8.2), and develop an effective framework EvoKG that tackles them
simultaneously.

204

8.6 Conclusion
Temporal knowledge graphs (TKGs) represent facts about entities and their relations,
which occurred at a specific time, or are valid for a specific duration of time. Reasoning
over TKGs, i.e., inferring new facts from TKGs, is crucial to many applications, including
question answering and recommender systems. Towards an effective reasoning over
TKGs, this chapter makes the following contributions.

• Problem Formulation. We present a problem formulation that unifies the two core
problems for TKG reasoning—modeling the timing of events and the evolving network
structure.

• Framework. We develop EvoKG, an effective framework for modeling TKGs that
jointly addresses the two core problems.

• Effectiveness & Efficiency. Experiments show that EvoKG outperforms existing
methods in terms of effectiveness (link and time prediction accuracy improved by up
to 116%) and efficiency (training speed improved by up to 30× over the best baseline).

Reproducibility. The code and data are available at https://namyongpark.github.
io/evokg.

8.7 Appendix
8.7.1 Experimental Settings
Data Split. We split datasets into training, validation, and test sets in chronological order,
as shown in Table 8.3. For training EvoKG, we applied early stopping, checking the
validation performance with a patience of five. Then the model with the best validation
performance was used for testing.

Hyperparameters. We used a two-layer R-GCN [SKB+18] with block diagonal decom-
position (BDD), which reduces the number of parameters and alleviates overfitting,
and set the size of entity and relation embeddings in EvoKG to 200 (except for WIKI,
where it was set to 192 to meet the constraint of using R-GCN with BDD). Static entity
embeddings were initialized using the Glorot initialization, while the initial dynamic
embeddings were zero-initialized. We used a single-layer Elman RNN with tanh non-
linearity, but different RNNs, such as GRU, can easily be used. We trained the model
using the AdamW optimizer with a learning rate of 0.001, a weight decay of 0.00001,
β1 = 0.9, and β2 = 0.999, and applied dropout with p = 0.2. As training the module for
modeling network structure usually takes longer than training the module for modeling
event time, we first trained the model with λ1 =0 and λ2 =1, and then trained the entire
model with λ1 =λ2 = 1 until convergence. We truncated the backpropagation for RNNs
every 40 time steps for GDELT, and every 20 time steps for other datasets. We set the
number K of mixture components to 128.

For the details of baselines used in this chapter, please refer to [TDWS17] for Know-
Evolve, RTPP, and MHP; [HMW+20] for GHNN and LiTSEE; and [JQJR20] for other
baselines including RE-Net.

205

https://namyongpark.github.io/evokg
https://namyongpark.github.io/evokg

Compute Resources. We ran experiments on a Linux machine with 8 CPUs (Intel(R)
Xeon(R) CPU E5-2623 v4 @ 2.60GHz), 30GB RAM, and an NVIDIA Quadro P6000
GPU.

Software. To implement EvoKG and the evaluation pipeline, we used the following
software (software version is specified in the parentheses): python (3.8.3), Deep Graph
Library (0.53), PyTorch (1.7.1), NumPy (1.18.5), and pandas (1.0.5). We used PyTorch’s
RNN implementation, and Deep Graph Library’s R-GCN implementation.

206

Chapter 9

Contrastive Graph Clustering for
Community Detection and
Tracking

Chapter based on work published in WWW 2022 [PRK+22].

Given entities and their interactions in the web data, which may have occurred
at different time, how can we effectively find communities of entities and track
their evolution in an unsupervised manner? In this chapter, we approach this
important task from graph clustering perspective. Recently, state-of-the-art clustering
performance in various domains has been achieved by deep clustering methods.
Especially, deep graph clustering (DGC) methods have successfully extended deep
clustering to graph-structured data by learning node representations and cluster
assignments in a joint optimization framework. Despite some differences in modeling
choices (e.g., encoder architectures), existing DGC methods are mainly based on
autoencoders, minimizing reconstruction loss, and use the same clustering objective
with relatively minor adaptations. Also, while many real-world graphs are dynamic
in nature, previous studies have designed DGC methods only for static graphs. In
this work, we develop CGC, a novel end-to-end framework for graph clustering,
which fundamentally differs from existing methods. CGC learns node embeddings
and cluster assignments in a contrastive graph learning framework, where positive
and negative samples are carefully selected in a multi-level scheme such that they
reflect the hierarchical community structures and network homophily. Also, we
extend CGC for time-evolving data, where temporal graph clustering is performed
in an incremental learning fashion, with the ability to detect change points. Extensive
evaluation on static and temporal real-world graphs demonstrates that the proposed
CGC consistently outperforms existing methods.

207

Table 9.1: CGC wins on features. Comparison of the proposed CGC with deep learning
approaches for graph clustering. [A]: Aware of/Utilizing. CL: Clustering, RP: Represen-
tation.

Desiderata
Methods AE

[HS06]
GAE

[KW16]
DAERNN
[GCC20]

DAEGC
[WPH+19]

SDCN
[BWS+20]

AGCN
[PLJH21]

CGC
(Ours)

Jointly optimizing CL and RP X X X !

[A] Input node features X X X X X !

[A] Network homophily X X X X X !

[A] Hierarchical communities !

Temporal graph clustering X !

Learning Objective
Contrastive learning-based �

Reconstruction-based � � � � � �

9.1 Introduction
Given events between two entities, how can we effectively find communities of entities
in an unsupervised manner? Also, when the events are associated with time, how can we
detect communities and track their evolution? Various web platforms, including social
networks, generate data that represent events between entities, occurring at a certain
time, e.g., check-in records and user interaction logs. Finding communities from such
dyadic temporal events can be formulated as a graph clustering problem, in which the
goal is to find node clusters from a graph, where the two entities of an event are nodes,
and the event forms a temporal edge between them.

In recent years, state-of-the-art clustering performance has been achieved by deep cluster-
ing methods in several application domains [XGF16, GGLY17, YFSH17, YZZ+17, YLY+19,
MSFK18, LDZ19]. Following this success, deep graph clustering (DGC) [WPH+19,
BWS+20, PHF+20, PLJH21, TGC+14] has been receiving increasing attention recently,
which aims to learn cluster-friendly representations using deep neural networks for
graph clustering. Early DGC methods [TGC+14, KW16] have taken a two-stage ap-
proach, where representation learning and clustering are done in isolation; e.g., node
embeddings are learned by graph autoencoders (GAEs) [KW16], to which a clustering
method is applied. More accurate clustering results have been obtained by another
group of DGC methods [WPH+19, BWS+20, PLJH21] that adopt a joint optimization
framework, where a clustering objective is combined with the representation learning
objective, and both are optimized simultaneously in an end-to-end manner.

In DGC methods, a major challenge lies in how to effectively utilize node features and
graph structure. Graph neural networks provide an effective framework to this end,
which propagate and aggregate node features over the graph, thus learning node em-
beddings that reflect network homophily. Further, to make the most of graph structure
and node features, existing methods tried different modeling choices, e.g., in terms of
encoder architectures (GAEs, attentional GAEs, GAEs with autoencoders (AEs)) and

208

0.2 0.4 0.6 0.8
ACC of CGC

0.2

0.4

0.6

0.8

A
C

C
 o

f B
as

el
in

e

CGC
wins

Citeseer
DBLP-S
DBLP-T

ACM
MAG-CS

0.0 0.2 0.4 0.6 0.8
NMI of CGC

0.0

0.2

0.4

0.6

0.8

N
M

I o
f B

as
el

in
e

CGC
wins

0.0 0.2 0.4 0.6 0.8
F1 of CGC

0.0

0.2

0.4

0.6

0.8

F1
 o

f B
as

el
in

e

CGC
wins

0.0 0.2 0.4 0.6 0.8
AUC of CGC

0.0

0.2

0.4

0.6

0.8

A
U

C
 o

f B
as

el
in

e

CGC
wins

0.4 0.6 0.8
AP of CGC

0.4

0.6

0.8

A
P

of
 B

as
el

in
e

CGC
wins

(a) Node Clustering for Static and Temporal Datasets (b) Temporal Link Prediction

Yahoo-Msg
Foursquare-NYC
Foursquare-TKY

K-means
AE

DEC
IDEC

DAEGC
SVD

DGI
GAE

VGAE
ARGA

ARGVA
SDCN

AGCN
CTDNE

TIMERS
DynGEM

DynAERNN
EvolveGCN

CTGCN

Figure 9.1: CGC outperforms competition: All points are below the diagonals for all
baselines and graphs. CGC achieves more accurate (a) node clustering on static and
temporal data, and (b) link prediction based on the time-evolving cluster membership.

how graph structural features and node attributes are combined. Still, differences among
them are relative small: They mainly (1) perform reconstruction loss minimization for un-
supervised representation learning (reconstructing the adjacency matrix, node attribute
matrix, or both) in an AE-based framework, and (2) employ the clustering objective first
proposed in DEC [XGF16], which optimizes cluster assignments by learning from the
model’s high confidence predictions.

In addition, while many real-world networks are dynamic in nature, no DGC methods are
designed for clustering time-evolving graphs to our knowledge. Although we can apply
existing methods to cluster temporal graphs (e.g., by ignoring time and applying them
to the cumulative graph anew at each time step), practical solutions for temporal graph
clustering should be able to model the changing community structures and detect major
change points in the network, which cannot be addressed effectively by a straightforward
application of existing methods.

In this chapter, we develop CGC, a new graph clustering framework based on contrastive
learning, which significantly differs from existing DGC methods as shown in Table 9.1.
The main idea of contrastive learning [vdOLV18, CKNH20, KTW+20] is to pull an entity
(called an anchor) and its positive sample closer to each other in the embedding space,
while pushing the anchor away from its negative sample. When no labels are available,
the choice of positive and negative samples plays a crucial role in contrastive learning.
In such cases, positive samples are often obtained by taking different views of the data
(e.g., via data augmentations such as rotation and color distortion for images [CKNH20]),
while negative samples are randomly selected from the entire pool of samples. In
CGC, based on our understanding of real-world networks and their characteristics (e.g.,
homophily and hierarchical community structures), we design a multi-level scheme to
choose positive and negative samples such that they reflect the underlying hierarchical
communities and their semantics. Also, from information theoretic perspective, our
contrastive learning objective is designed to maximize the mutual information between

209

an entity and the hierarchical communities it belongs to in the latent space. Then guided
by this multi-level contrastive objective, cluster memberships and entity embeddings are
iteratively optimized in an end-to-end framework.

Furthermore, to find communities from time-evolving data, we extend CGC frame-
work to the temporal graph clustering setting. Upon the arrival of new events, entity
representations and cluster memberships are updated to reflect the new information,
and at the same time, temporal smoothness assumption is incorporated into the GNN
encoder, and also into the contrastive learning objective, which enables CGC to adapt to
changing community structures in a controlled manner. We also show how CGC can
be applied to detect major changes occurring in the network, and thereby adaptively
choose homogeneous historical events to find communities from.

In summary, the key contributions of this work are as follows.

• Novel Framework. We propose CGC, a new contrastive graph clustering framework.
As discussed above and summarized in Table 9.1, CGC is a significant departure from
previous DGC methods.

• Temporal Graph Clustering. We extend our CGC framework for temporal data. CGC
is the first deep graph clustering method for clustering time-evolving networks.

• Effectiveness. We demonstrate the effectiveness of CGC via extensive evaluation of
clustering quality on several real-world datasets. Figure 9.1 shows that CGC consis-
tently outperforms various existing methods on both static and temporal datasets.

9.2 Problem Formulation
In this section, we introduce notations and definitions, and present the problem formula-
tion. Table 9.2 lists the symbols used in this work.

9.2.1 Graph Clustering
Let G = (V,E) be a graph with nodes V = {1, . . . , n} and edges E = {(ui, vi) | ui, vi ∈
V }mi=1. Let F ∈ Rn×d be an input node feature matrix. Let k denote the number of
node clusters. We define cluster membership as follows to represent node-to-cluster
assignment.

Definition 1. Cluster Membership:
A cluster membership φu∈Rk

≥0 of node u is a stochastic vector that adds up to one, where
the i-th entry is the probability of node u belonging to i-th cluster.

According to Definition 1, a node belongs to at least one cluster, and can belong to multi-
ple clusters. Note that this soft cluster membership includes hard cluster assignments as
a special case, in which one node belongs to exactly one cluster. Based on this definition,
graph clustering problem is formally defined as follows.

Problem 1. Graph Clustering:
Given a graph G = (V,E) and input node features F ∈ Rn×d, learn a cluster membership
matrix Φ ∈ Rn×k

≥0 for all n nodes in G.

210

After graph clustering, we want the nodes to be grouped such that nodes are more
similar to those in the same cluster (e.g., in terms of external node labels if available,
or connectivity patterns, node features, and structural roles) than nodes in different
clusters.

9.2.2 Temporal Graph Clustering
Let Gτ = (V,Eτ) be a temporal graph snapshot with nodes V = {1, . . . , n} and temporal
edges Eτ = {(u, v, t) | u, v ∈ V, t ∈ τ}, where t is time (e.g., a timestamp at the level of
milliseconds), and τ denotes some time span (e.g., one minute, one hour).

Definition 2. Temporal Graph Stream:
A temporal graph stream G is a sequence of graph snapshots G = {Gτi}Ti=1 where T is the
number of graph snapshots thus far in the stream. Graph snapshots {Gτi} are assumed
to be non-overlapping and ordered in increasing order of time.

Problem 2. Temporal Graph Clustering:
Given a temporal graph stream G = {Gτi}Ti=1 and input node features F ∈ Rn×d, learn a
cluster membership matrix Φi ∈ Rn×k

≥0 for each time span τi.

9.3 Preliminaries
Mutual Information (MI) and Contrastive Learning. The MI between two random
variables (RVs) measures the amount of information obtained about one RV by observing
the other RV. Formally, the MI between two RVs X and Y , denoted I(X;Y), is defined
as

I(X;Y) = Ep(x,y) [log(p(x,y)/p(x)p(y))] (9.1)

where p(x, y) is the joint density of X and Y , and p(x) and p(y) denote the marginal
densities of X and Y , respectively. Several recent studies [VFH+19, vdOLV18, CKNH20,
BBR+18, HFL+19] have seen successful results in representation learning by maximizing
the MI between a learned representation and different aspects of the data.

Since it is difficult to directly estimate MI [POvdO+19], MI maximization is normally
done by deriving a lower bound on MI and maximizing it instead. Intuitively, several
lower bounds on MI are based on the idea that RVs X and Y have a high MI if samples
drawn from their joint density p(x, y) and those drawn from the product of marginals
p(x)p(y) can be distinguished accurately. InfoNCE [vdOLV18] is one such lower bound
of MI in the form of a noise contrastive estimator [GH10]:

I(X;Y) ≥ E

[
1

K

K∑
i=1

log
exp(f(xi, yi))

1
K

∑K
j=1 exp(f(xi, yj))

]
, INCE(X;Y) (9.2)

where the expectation is over K independent samples {xi, yi}Ki=1 from the joint den-
sity p(x, y). Given a set of K independent samples, the critic function f(·) aims to

211

predict for each xi which one of the K samples xi was drawn together with, i.e., by
assigning a large score to the positive pair (xi, yi), and small scores to other negative
pairs {(xi, yj)}Kj 6=i.

Graph Neural Networks (GNNs). GNNs are a class of deep learning architectures for
graphs that produce node embeddings by repeatedly aggregating local node neighbor-
hoods. In general, a GNN encoder E maps a graph G and input node features F ∈ Rn×d

into node embeddings H ∈ Rn×d′ , that is, E(G,F) = H.

9.4 Proposed Framework
In this section, we present the CGC framework. We describe how CGC performs
graph clustering in a multi-level contrastive learning framework (Section 9.4.1), and
discuss how we extend CGC for temporal graph clustering and address its challenges
(Section 9.4.2).

9.4.1 CGC: Contrastive Graph Clustering
The proposed framework CGC performs contrastive graph clustering by carrying out
the following two steps in an alternating fashion: (1) refining cluster memberships based
on the current node embeddings, and (2) optimizing node embeddings such that nodes
from the same cluster are closer to each other, while those from different clusters are
pushed further away from each other.

9.4.1.1 Multi-Level Contrastive Learning Objective
In CGC, contrastive learning happens in the second step above, where positive samples
of a node are assumed to have been generated by the same cluster as the node of interest,
whereas negative samples are assumed to belong to different clusters. While no cluster
membership labels are available, there exist several signals at different levels of the
input data that we can utilize to effectively construct positive and negative samples for
contrastive graph clustering, namely, input node features and the characteristics of real-
world networks, such as network homophily and hierarchical community structure.

Signal: Input Node Features. Entities in the same community tend to have similar
attributes. Thus informative node features can be used to distinguish nodes in the same
class from those in different classes. Node features are especially helpful for sparse
graphs, since they can complement the scarce relational information.

Therefore, for node u, we take its input features fu as its positive sample, and randomly
select another node v to take its input features fv as a negative sample; these positive
and negative samples are then contrasted with node embedding hu. Let SFu = {f ′iu}ri=0

be the set of one positive (i = 0) and r negative (1 ≤ i ≤ r) samples (i.e., input features)
for node u, where ′ indicates that sampling was involved. Since input features and
latent embeddings can have different dimensionality, we define a node feature-based
contrastive loss LF using a bilinear critic function (see Section 9.3 for more details of the

212

Table 9.2: Table of symbols.

Symbol Definition

u, v node indices
n number of nodes
k number of clusters
t timestamp of an edge, t ≥ 0
τ time span

G = (V,E) static graph with nodes V and edges E
φu ∈ Rk≥0 cluster membership vector of node u for graph G

Gτ = (V,Eτ)
temporal graph snapshot with nodes V and
temporal edges for time span τ

G = {Gτi} temporal graph stream
Φi ∈ Rn×k≥0 cluster membership matrix for time span τi
F ∈ Rn×d input node feature matrix
H ∈ Rn×d′ node embedding matrix
N (u) (N∆(u)) neighbors of node u (participating in triangles with u)
K={k`}L`=1 number of clusters for the contrastive learning

critic function) parameterized by WF ∈ Rd′×d:

LF =
n∑
u=1

− log
exp((hᵀu WF f ′0u)/τ)∑r
v=0 exp((hᵀu WF f ′vu)/τ)

(9.3)

where τ > 0 is a temperature hyper-parameter.

Signal: Network Homophily. In real-world graphs, similar nodes are more likely to
attach to each other than dissimilar ones, and accordingly, a node is more likely to belong
to the same cluster as its neighbors than randomly chosen nodes. In particular, many
real-world networks demonstrate the phenomenon of higher-order label homogeneity,
i.e., the tendency of nodes participating in higher-order structures (e.g., triangles) to share
the same label, which is a stronger signal than being connected by an edge alone. Thus,
we use edges and triangles in constructing positive samples. Further, CGC encodes
nodes using GNNs, whose neighborhood aggregation scheme also enforces an inductive
bias for network homophily that neighboring nodes have similar representations.

LetN (u) denote the neighbors of node u. LetN∆(u) be node u’s neighbors that participate
in the same triangle as node u; thus,N∆(u) ⊆ N (u). A positive sample for node u is then
chosen from amongN (u), with a probability of δ/|N∆(u)| for the neighbor inN∆(u), and
a probability of (1− δ)/|N (u) \ N∆(u)| for its other neighbors, where δ ≥ 0 determines
the weight for nodes in N∆(u). Then the positive sample’s embeddings are taken from
H=E(G,F).

To construct negative samples, we design a network corruption function C(G,F), which
constructs a negative network from the original graph G and input node features F.

213

Specifically, we define C(·) to return corrupted node features F̃, via row-wise shuffling
of F, while preserving the graph G, i.e., C(G,F) = (G, F̃), which can be considered as
randomly relocating nodes over the graph while maintaining the graph structure. Then
negative node embeddings H̃ ∈ Rn×d′ are obtained by applying the GNN encoder to G
and F̃, and r negative samples and their embeddings are randomly chosen.

Let SHu = {h′iu}ri=0 be the set containing the embeddings of one positive (i = 0) and r
negative (1 ≤ i ≤ r) samples for node u. In CGC, a homophily-based contrastive loss LH
is defined as:

LH =
n∑
u=1

− log
exp(hu · h′0u /τ)∑r
v=0 exp(hu · h′vu /τ)

(9.4)

where we use an inner product critic function with a temperature hyper-parameter τ > 0,
and ′ denoting that sampling was involved.

Signal: Hierarchical Community Structure. The above loss terms contrast an entity
with other individual entities and their input features, thereby learning community
structure at a relatively low level. Here, we consider communities at a higher level than
before by directly contrasting entities with communities.

CGC represents communities as a cluster centroid vector c ∈ Rd′ in the same latent
space as entities, so that the distance between an entity and cluster centroids reflects
the entity’s degree of participation in different communities. To effectively optimize an
entity embedding by contrasting it with communities, cluster centroids need to have
been embedded such that they reflect the underlying community structures and the
semantics of input node features. While the model’s initial embeddings of entities and
clusters may not capture such community and semantic structures well, the above two
objectives and the use of GNN encoders in CGC effectively guide the optimization
process towards identifying meaningful cluster centroids, especially in the early stage of
model training.

Importantly, real-world networks have been shown to exhibit hierarchical community
structures. To model this phenomenon, we design CGC to group nodes into a varying
number of clusters. For example, when we aim to group nodes into three clusters, we
may also group the same set of nodes into ten and thirty clusters; then all clustering
results taken together reveal hierarchical community structures in different levels of
granularities.

Let K = {k`}L`=1 be the set of the number of clusters, and C` ∈ Rk`×d′ be the cluster
centroid matrix for each `. Given the current node embeddings H and cluster centroids
{C`}L`=1, positive samples for node u are chosen to be the L cluster centroids that node u
most strongly belongs to, while its negative samples are randomly selected from among
the other k` − 1 cluster centroids for each `. Let SCu,` = {c′iu,`}

r`
i=0 be the set with the

embeddings of one positive (i = 0) and r` negative (1 ≤ i ≤ r`) samples (i.e., centroids)
for node u chosen among k` centroids. Using an inner product critic, CGC defines a

214

Algorithm 9.1: ContrastiveGraphClustering
Input: graph G, input node features F ∈ Rn×d, clustering algorithm Π, number of

clusters K = {k`}L`=1

Output: cluster membership matrix Φ ∈ Rn×k1
≥0 , node embedding matrix

H ∈ Rn×d′ , cluster centroid matrix C ∈ Rk1×d′

1 while not max epoch and not converged
2 H = E(G,F) /* Equation (9.7) */

3 for ` = 1 to L do
4 C`,Φ` = Π(H, k`) /* refine clusters and cluster memberships */

5 Calculate loss L using H,F, {C`} /* Equations (9.3) to (9.6) */

6 Backpropagate and optimize model parameters

7 H = E(G,F)
8 C,Φ = Π(H, k1)
9 return Φ,H,C

hierarchical community-based contrastive loss LC to be:

LC =
n∑
u=1

−

(
1

L

L∑
`=1

log
exp(hu · c′0u,`/τ)∑r`
v=0 exp(hu · c′vu,`/τ)

)
. (9.5)

Multi-Level Contrastive Learning Objective. The above loss terms capture signals
on the community structure at multiple levels, i.e., individual node attributes (LF),
neighboring nodes (LH), and hierarchically structured communities (LC). CGC jointly
optimizes

L = λFLF + λHLH + λCLC (9.6)

where λF , λH , and λC are weights for the loss terms. Via multi-level noise contrastive
estimation, CGC maximizes the MI between nodes and the communities they belong to
in the learned latent space.

9.4.1.2 Encoder Architecture
As our node encoder E , we use a GNN with a mean aggregator,

hlv = ReLU(WG ·MEAN({hl−1
v } ∪ {hl−1

u | ∀u ∈ N (v)})) (9.7)

where node v’s embedding hlv from the l-th layer of E is obtained by averaging the
embeddings of node v and its neighbors from the (l−1)-th layer, followed by a lin-
ear transformation and the ReLU non-linearity; h0

v is initialized to be the input node
features fv.

215

9.4.1.3 Algorithm
Algorithm 9.1 shows how (1) cluster memberships and (2) node embeddings are alter-
nately optimized in CGC. (1) Given the current node embeddings H produced by E
(line 2), a clustering algorithm Π (e.g., k-means) refines cluster centroids {C`} and mem-
berships {Φ`} (lines 3-4). (2) Based on the updated cluster centroids and memberships,
CGC computes the loss and optimizes model parameters (lines 5-6). In {k`}, we assume
that k1 is the number of clusters that we ultimately want to identify in the network.

9.4.2 CGC for Temporal Graph Clustering
As a new graph snapshot Gτi arrives in a temporal graph stream G = {Gτ1 , . . . , Gτi−1

},
node embeddings Hi−1 and cluster memberships Φi−1 that CGC learned from the snap-
shots until (i−1)-th time span are incrementally updated to reflect the new information
in Gτi . Specifically, given a sequence of graph snapshots, CGC merges them into a
temporal graph and performs contrastive graph clustering, taking the temporal informa-
tion into account. We use the notation Gi:j to denote a temporal graph that merges the
snapshots {Gτi , . . . , Gτj}, i.e., Gi:j = (V,Ei:j) where Ei:j =

⋃j
o=iEτo . Below we describe

how we extend CGC for temporal graph clustering.

9.4.2.1 Temporal Contrastive Learning Objective
As entities interact with each other, their characteristics may change over time, and such
temporal changes normally occur smoothly. Thus, edges of a node observed across a
range of time spans provide similar and related temporal views of the node in terms of its
connectivity pattern. Accordingly, given node u for time span j, we take its embedding
hu,j−1 obtained in the previous, (j−1)-th time span as its positive sample. To obtain
negative samples, we use the same network corruption function used in Section 9.4.1.1,
obtaining corrupted node features F̃, and take node u’s embedding from the corrupted
node embeddings E(Gi:j−1, F̃) as the negative sample; multiple negative samples can
be obtained by using multiple sets of corrupted node features. Let STu,j = {h′iu,j−1}ri=0 be
the set with the embeddings of one positive (i = 0) and r negative (1 ≤ i ≤ r) samples
of node u for the j-th time span, again ′ denoting the involvement of sampling. CGC
defines a time-based contrastive loss LT for time span j to be:

LT =
n∑
u=1

− log
exp(hu,j · h′0u,j−1/τ)∑r
v=0 exp(hu,j · h′vu,j−1/τ)

(9.8)

Note that Equation (9.8) is combined with the objectives discussed in Section 9.4.1.1 with
a weight of λT , augmenting the loss L to be

L = λFLF + λHLH + λCLC + λTLT . (9.9)

9.4.2.2 Encoder Architecture
We extend the GNN encoder such that when it aggregates the neighborhood of a node,
more weight is given to the neighbors that interacted with the node more recently. To

216

this end, we adjust the weight of a neighbor based on the elapsed time since its latest
interaction. Let t(u,v) denote the timestamp of an edge between nodes u and v, and let
tmax
v = maxu∈N (v){t(u,v)}, i.e., the most recent timestamp when node v interacted with its

neighbors. With ψ denoting a time decay factor between 0 and 1, we apply time decay to
the embedding hu of neighbor u as follows:

td(hu) = ψt
max
v −t(u,v) hu. (9.10)

Then for time-aware neighborhood aggregation, hu in Equation (9.7) is replaced with its
time decayed version td(hu).

9.4.2.3 Graph Stream Segmentation
Given a new graph snapshot, CGC merges it with the previous ones, and refines cluster
memberships on the resulting temporal graph. This process is based on the assumption
that new events are similar to earlier ones. However, the new snapshot may differ
greatly from the previous ones, when significant changes have occurred in the network.
Detecting such changes is important, as it lets CGC find clusters from snapshots with
similar patterns, and such events also correspond to important milestones or anomalies
in the network.

Let Gseg = {Gτi , . . . , Gτj} be the current graph stream segment for some i and j (i < j).
Given a new snapshot Gτj+1

, we expand the current segment Gseg with Gτj+1
if Gτj+1

is
similar to Gseg; if not, we start a new graph stream segment consisting only of Gτj+1

. This
is basically a binary decision problem on whether to segment the graph stream or not.
Our idea to solve this problem is to compare the embeddings of the nodes appearing in
both Gseg and Gτj+1

. Note that the GNN encoder in this step was trained with the graphs
in the current segment, and no further training has been performed on the new snapshot.
Since embeddings from GNNs reflect the characteristics of nodes that CGC learned from
the existing segment, the embeddings of the nodes in the new graph Gτj+1

will be similar
to their embeddings in the existing segment Gseg if Gτj+1

is similar to Gseg. By the same
token, a major change in the new snapshot will lead to a large difference between the
embeddings of a node in Gτj+1

and Gseg. Let V ∗ be the nodes appearing in both Gseg

and Gτj+1
. Let H

seg
V ∗ , Hj+1

V ∗ ∈ R|V ∗|×d′ be the two sets of embeddings of the nodes in V ∗,
computed for Gseg and Gτj+1

, respectively, as discussed above. Using a distance metric
d(·, ·) (e.g., cosine distance), we define the distance Dist(·, ·) between H

seg
V ∗ and Hj+1

V ∗ to
be

Dist(Hseg
V ∗ ,H

t+1
V ∗) = MEAN{d((H

seg
V ∗)i, (H

t+1
V ∗)i) | i ∈ V ∗} (9.11)

and segment the stream if the distance is beyond a threshold (Algorithm 9.3).

9.4.2.4 Putting Things Together
CGC tracks changing cluster memberships in an incremental end-to-end framework
(Algorithm 9.2). As a new graph snapshot arrives, CGC adaptively determines a se-
quence of graph snapshots to find clusters from, using Algorithm 9.3 (line 3), and updates
clustering results and node embeddings, using Algorithm 9.1 (line 4).

217

Algorithm 9.2: CGC Framework
Input: graph stream G, input node feature matrix F ∈ Rn×d′

Output:
{

cluster memberships Φi ∈ Rn×k, node embeddings Hi ∈ Rn×d′ , graph
stream segment Gseg

i

}
for each time span i

1 Gseg
0 = {}

2 foreach Gτi ∈ G do
3 Gseg

i =GraphStreamSegmentation(Gτi ,G
seg
i−1,F) /* Algorithm 9.3 */

4 Φi,Hi,Ci=ContrastiveGraphClustering(Gseg
i ,F) /* Algorithm 9.1 */

5 return {Φi,Hi,Gseg
i }i

9.5 Experiments
The experiments are designed to answer the following questions:

• RQ1 (Node Clustering): Given static and temporal graphs, how accurately can the
proposed CGC cluster nodes? (Section 9.5.3)

• RQ2 (Temporal Link Prediction): How informative is the learned cluster membership
in predicting temporal links? (Section 9.5.4)

• RQ3 (Ablation Study): How do different variants of the proposed framework affect
the clustering performance? (Section 9.5.5)

Further results are in Appendix, e.g., mining case studies (Section 9.8.1).

9.5.1 Datasets
9.5.1.1 Static Datasets.
Table 9.7 presents the statistics of static datasets. These datasets have labels and input
features for all nodes.

ACM is a paper network from the ACM digital library [Libne], where two papers are
linked by an edge if they are written by the same author. Papers in this dataset are
published in KDD, SIGMOD, SIGCOMM, and MobiCom, and belong to one of the
following three classes: database, wireless communication, and data mining. Node
features are the bag-of-words of the paper keywords.

DBLP-S is an author network from the DBLP computer science bibliography [DBLne],
where an edge connects two authors (i.e., nodes) if they have a coauthor relationship.
Authors are divided into the following four areas, according to the conferences of their
publications: database, data mining, machine learning, and information retrieval. Node
features are the bag-of-words of their keywords.

Citeseer is a citation network from the CiteSeer digital library [Citne], where an edge
represents a citation between two documents. Documents are assigned to one of the
six areas: agents, AI, database, information retrieval, machine language, and human-
computer interaction. Node features are the bag-of-words of the documents.

218

MAG-CS is a network of authors in CS from the Microsoft Academic Graph. An edge
connects two authors (i.e., nodes) if they co-authored a paper. Node features are key-
words of the author’s papers, and node labels denote most active field of study of
each author.

9.5.1.2 Temporal Datasets.
Table 9.6 presents the statistics of temporal datasets. These datasets do not contain input
node features, and dynamic node labels are available only for DBLP-T.

DBLP-T is an author network from DBLP [DBLne], where edges denote coauthorship
from 2004 to 2018. Node labels represent the authors’ research areas (computer networks
and machine learning), and may change over time as authors switch their research
focus.

Yahoo-Msg is a communication network among Yahoo! Messenger users [Prone], where
two users are linked by an edge if a user sent a message to another user.

Foursquare-NYC and Foursquare-TKY are user check-in records, collected by Foursquare [Foune]
between April 2012 and February 2013 from New York City and Tokyo, respectively. An
edge links a user and a venue if a user checked in to the venue.

9.5.2 Baselines
Static Baselines. K-means [HW79] is a classic clustering method applied to the raw input
features. AE [HS06] produces node embeddings by using autoencoders. DEC [XGF16]
is a deep clustering method that optimizes node embeddings and performs clustering
simultaneously. IDEC [GGLY17] extends DEC by adding a reconstruction loss.

A group of methods also take graph structures into account for node representation
learning and graph clustering. SVD [GR71] applies singular value decomposition to the
adjacency matrix. GAE [KW16] and VGAE [KW16] employ a graph autoencoder and a
variational variant. ARGA [PHF+20] and ARGVA [PHF+20] are an adversarially regu-
larized graph autoencoder and its variational version. DGI [VFH+19] learns node em-
beddings by maximizing their MI with the graph. DAEGC [WPH+19], SDCN [BWS+20],
and AGCN [PLJH21] are deep graph clustering methods that jointly optimize node
embeddings and graph clustering.

Temporal Baselines. CTDNE [NLR+18] learns node embeddings based on temporal
random walks. TIMERS [ZCP+18] is an incremental SVD method that employs error-
bounded SVD restart on dynamic networks. DynGEM [GKHL18] leverages AEs to
incrementally generate node embeddings at time t by using the graph snapshot at time
t− 1. DynAERNN [GCC20] uses historical adjacency matrices to reconstruct the current
one by using an encoder-decoder architecture with RNNs. EvolveGCN [PDC+20] models
how the parameters of GCNs [KW17] evolve over time. CTGCN [LXY+20] is a k-core
based temporal GCN.

For methods that produce only node embeddings (e.g., AE, SVD, GAE, CTDNE), we

219

Table 9.3: CGC achieves the best node clustering results on static graphs. Best results are
in bold, and second best results are underlined.

Method
DBLP-S ACM

ACC NMI ARI F1 ACC NMI ARI F1

K-means [HW79] 38.7±0.7 11.5±0.4 7.0±0.4 31.9±0.3 67.3±0.7 32.4±0.5 30.6±0.7 67.6±0.7
AE [HS06] 51.4±0.4 25.4±0.2 12.2±0.4 52.5±0.4 81.8±0.1 49.3±0.2 54.6±0.2 82.0±0.1
DEC [XGF16] 58.2±0.6 29.5±0.3 23.9±0.4 59.4±0.5 84.3±0.8 54.5±1.5 60.6±1.9 84.5±0.7
IDEC [GGLY17] 60.3±0.6 31.2±0.5 25.4±0.6 61.3±0.6 85.1±0.5 56.6±1.2 62.2±1.5 85.1±0.5
SVD [GR71] 29.3±0.4 0.1±0.0 0.0±0.1 13.3±2.2 39.9±5.8 3.8±4.3 3.1±4.2 30.1±8.2
DGI [VFH+19] 32.5±2.4 3.7±1.8 1.7±0.9 29.3±3.3 88.0±1.1 63.0±1.9 67.7±2.5 88.0±1.0
GAE [KW16] 61.2±1.2 30.8±0.9 22.0±1.4 61.4±2.2 84.5±1.4 55.4±1.9 59.5±3.1 84.7±1.3
VGAE [KW16] 58.6±0.1 26.9±0.1 17.9±0.1 58.7±0.1 84.1±0.2 53.2±0.5 57.7±0.7 84.2±0.2
ARGA [PHF+20] 61.6±1.0 26.8±1.0 22.7±0.3 61.8±0.9 86.1±1.2 55.7±1.4 62.9±2.1 86.1±1.2
DAEGC [WPH+19] 62.1±0.5 32.5±0.5 21.0±0.5 61.8±0.7 86.9±2.8 56.2±4.2 59.4±3.9 87.1±2.8
SDCN [BWS+20] 68.1±1.8 39.5±1.3 39.2±2.0 67.7±1.5 90.5±0.2 68.3±0.3 73.9±0.4 90.4±0.2
AGCN [PLJH21] 73.3±0.4 39.7±0.4 42.5±0.3 72.8±0.6 90.6±0.2 68.4±0.5 74.2±0.4 90.6±0.2

CGC (Ours) 77.6±0.5 46.1±0.6 49.7±1.1 77.2±0.4 92.3±0.3 72.9±0.7 78.4±0.6 92.3±0.3

Method
Citeseer MAG-CS

ACC NMI ARI F1 ACC NMI ARI F1

K-means [HW79] 39.3±3.2 16.9±3.2 13.4±3.0 36.1±3.5 34.2±2.2 33.0±1.5 4.5±1.3 19.4±0.4
AE [HS06] 57.1±0.1 27.6±0.1 29.3±0.1 53.8±0.1 32.5±1.9 35.9±2.3 12.9±1.5 14.0±1.1
DEC [XGF16] 55.9±0.2 28.3±0.3 28.1±0.4 52.6±0.2 44.4±3.4 53.5±2.8 33.6±4.0 28.4±3.1
IDEC [GGLY17] 60.5±1.4 27.2±2.4 25.7±2.7 61.6±1.4 45.7±1.8 55.3±2.6 33.5±3.4 30.8±2.3
SVD [GR71] 24.1±1.2 5.7±1.5 0.1±0.3 11.4±1.7 25.7±4.4 13.6±7.3 1.3±2.2 9.7±4.6
DGI [VFH+19] 64.1±1.3 38.8±1.2 38.1±1.9 60.4±0.9 60.0±0.6 65.9±0.4 50.3±0.9 47.3±0.4
GAE [KW16] 61.4±0.8 34.6±0.7 33.6±1.2 57.4±0.8 63.2±2.6 69.9±0.6 52.8±1.5 58.1±4.1
VGAE [KW16] 61.0±0.4 32.7±0.3 33.1±0.5 57.7±0.5 60.4±2.9 65.3±1.4 50.0±2.1 53.8±4.0
ARGA [PHF+20] 56.9±0.7 34.5±0.8 33.4±1.5 54.8±0.8 47.9±6.0 48.7±3.0 23.6±9.0 40.3±5.0
DAEGC [WPH+19] 64.5±1.4 36.4±0.9 37.8±1.2 62.2±1.3 48.1±3.8 60.3±0.8 47.4±4.2 32.2±3.2
SDCN [BWS+20] 66.0±0.3 38.7±0.3 40.2±0.4 63.6±0.2 51.6±5.5 58.0±1.9 46.9±8.1 30.2±4.3
AGCN [PLJH21] 68.8±0.2 41.5±0.3 43.8±0.3 62.4±0.2 54.2±5.2 59.4±2.1 49.2±6.5 36.3±4.4

CGC (Ours) 69.6±0.6 44.6±0.6 46.0±0.6 65.5±0.7 69.3±4.0 79.3±1.2 64.4±3.7 62.1±4.5

apply k-means to the node embeddings to obtain cluster memberships. As the temporal
link prediction task in Section 9.5.4 involves dot product scores, we apply Gaussian
mixture models to node embeddings to obtain soft cluster memberships. Section 9.8.3
presents experimental settings of baselines and CGC.

220

Table 9.4: CGC achieves the highest node clustering accuracy on the temporal DBLP-T
graph. Best results are in bold, and second best results are underlined.

Method
DBLP-T

ACC NMI ARI F1

SVD [GR71] 61.60±0.01 0.16±0.02 -0.06±0.01 38.13±0.02
SVD-latest 61.62±0.02 0.16±0.02 -0.04±0.02 38.17±0.04
DGI [VFH+19] 61.64±0.02 0.06±0.01 0.08±0.01 38.77±0.07
DGI-latest 61.66±0.02 0.06±0.02 0.03±0.02 38.44±0.06
GAE [KW16] 63.76±0.18 4.40±0.16 7.28±0.25 59.75±0.20
GAE-latest 60.17±0.04 0.72±0.02 2.47±0.05 52.36±0.11
VGAE [KW16] 60.06±0.18 1.63±0.06 3.44±0.11 55.66±0.11
VGAE-latest 60.67±0.03 0.77±0.02 2.61±0.03 51.90±0.06
ARGA [PHF+20] 58.46±0.25 0.16±0.04 0.86±0.16 48.95±0.27
ARGA-latest 60.54±0.13 0.19±0.05 0.81±0.15 45.37±0.30
SDCN [BWS+20] 56.70±0.60 2.18±0.72 2.88±0.51 55.66±0.87
SDCN-latest 51.51±0.26 0.13±0.03 0.11±0.04 50.79±0.30
AGCN [PLJH21] 56.04±0.86 0.88±0.38 1.11±0.40 50.34±1.13
AGCN-latest 54.52±0.91 0.09±0.03 0.14±0.12 48.67±0.85

CTDNE [NLR+18] 51.58±0.07 1.98±0.06 -0.99±0.03 48.19±0.27
CTDNE-latest 50.57±0.10 0.02±0.01 0.01±0.01 49.85±0.10
TIMERS [ZCP+18] 61.70±0.00 0.09±0.01 0.02±0.00 38.21±0.01
DynGEM [GKHL18] 60.73±0.12 0.27±0.04 1.26±0.12 46.52±0.22
DynAERNN [GCC20] 62.34±0.09 0.69±0.08 1.66±0.13 44.83±0.22
EvolveGCN [PDC+20] 61.02±0.00 0.79±0.00 2.64±0.00 51.16±0.02
CTGCN [LXY+20] 59.07±0.47 1.06±0.12 2.88±0.27 55.14±0.23

CGC (Ours) 71.82±0.99 21.87±1.85 27.28±2.93 71.12±0.86

221

9.5.3 Node Clustering Quality (RQ1)
We evaluate the clustering quality using static and temporal graphs with node labels
(Citeseer, DBLP-S, ACM, MAG-CS, and DBLP-T). Given cluster assignments, the best
match between clusters and node labels is obtained by the Munkres algorithm [Kuh55],
and clustering performance is measured using four metrics, which range from 0 to 1
(higher values are better): ACC (Accuracy), NMI (Normalized Mutual Information), ARI
(Adjusted Rand Index), and F1 score.

9.5.3.1 Static Datasets
Table 9.3 shows the results on static graphs. The proposed method CGC consistently
outperforms existing methods on all datasets in four metrics. Our novel multi-level
contrastive graph learning objectives enable CGC to accurately identify node clusters
by effectively leveraging the characteristics of real-world networks. We summarize our
observations on the results below.

(1) Deep clustering methods (DEC, IDEC) outperform AE, which performs dimension-
ality reduction of the input features without clustering objectives. (2) Comparing AE
against GAE and ARGA, we can see that utilizing graph structures improves the cluster-
ing quality; in some cases, the performance of GAE and ARGA is even better than DEC
and IDEC, although they do not have clustering objectives. (3) Deep graph clustering
methods (DAEGC, SDCN, AGCN) further improve upon deep clustering methods and
those that learn from input features or the graph structure without clustering objectives,
which shows the benefit of combining deep clustering with graph structural information.
(4) A comparison with DGI is also noteworthy, as DGI learns node embeddings via MI
maximization over a graph. Despite some similarity, DGI cannot effectively identify
community structures, as it maximizes the MI between nodes and the entire graph,
without regard to communities therein.

9.5.3.2 Temporal Datasets
Results on the temporal graph DBLP-T are in Table 9.4, which reports the average of the
clustering performance over multiple temporal snapshots. Since static baselines have no
notion of graph stream segmentation, it is up to the user to decide which data to provide
as input. We evaluate static baselines in two widely used settings, representative of the
way existing temporal graph clustering methods operate: The default setting is to use all
observed snapshots at each time step, and the other setting is to use only the latest graph
snapshot (marked with “-latest” suffix).

CGC outperforms all baselines, achieving up to 13% and 397% higher ACC and NMI,
respectively, than the best performing baseline. Notably, nearly all baselines do not
perform well, obtaining close to zero NMI and ARI, which demonstrates the difficult
of finding clusters over time-evolving networks. Especially, no input features are avail-
able for DBLP-T, which poses an additional challenge to methods that heavily rely on
them. For static baselines, using all snapshots often led to similar or better results in
comparison to using the last snapshot. Results also show that temporal baselines fail

222

to identify changing community structure. While they are designed to keep track of
time-evolving node embeddings, their representation learning mechanism does not
take clustering objective into account, which makes them less effective for community
detection. Figure 9.6a in Section 9.8.2 shows how ACC and NMI of CGC and four
select baselines change over time. While baselines’ performance shows an upward trend,
their improvement is not significant. On the other hand, CGC’s performance improves
remarkably over time, successfully identifying changing communities.

9.5.4 Temporal Link Prediction Accuracy (RQ2)
The task is to predict the graph Gt+1 = (V,Et+1) at time t+1, where Et+1 are the temporal
positive (i.e., observed) edges. We uniformly randomly sample the same amount of
temporal negative edgesE−t+1 such thatE−t+1 = {(u, v) |u, v ∼ Uniform(1, . . . , n)∧(u, v) 6∈
Et+1}. Given an edge (u, v) ∈ Et+1∪E−t+1 at time t+1 to predict, we estimate the likelihood
of such an edge existing as A(t+1)

uv = φTuφv, where φu and φv are cluster memberships
for nodes u and v. We can use link prediction task for evaluating clustering quality,
since nodes in the same cluster are more likely to form a link between them than nodes
belonging to different clusters. Also, since temporal link prediction is based on the
time-evolving membership vector φ, it summarizes how accurately the learned cluster
memberships capture temporally-evolving community structure. Table 9.5 reports the
link prediction accuracy in terms of the area under the receiver operating characteristic
curve (AUC) and the average precision (AP). Both metrics range from 0 to 1, and higher
values are better. As the number of test edges (i.e., Et ∪ E−t) changes over time, we
average the performance weighted by the size of Et ∪ E−t over multiple snapshots.
Results show that CGC consistently outperforms baselines on all datasets, achieving up
to 29% higher temporal link prediction performance. The best results among baselines
were mainly obtained by CTGCN, which is a temporal method that models the network
evolution. Among static baselines, AGCN mostly outperforms other statc methods, and
even most dynamic baselines, except CTGCN. This can be explained by the fact that
these dynamic baselines are trained using cluster agnostic objectives, which again shows
that incorporating the clustering objective can be helpful for detecting communities.
As in Section 9.5.3.2, we report results obtained in the two settings (i.e., all vs. latest)
for static baselines. There is no clear winner between them. Figure 9.6b shows how the
performance of CGC and four baselines changes over time.

9.5.5 Ablation Study (RQ3)
We investigate how contrastive learning objectives affects CGC. Figure 9.2 shows node
clustering results where CGC was trained with different combinations of contrastive
objectives; F, H, and C denote the loss terms on node features (λF), network homophily
(λH), and hierarchical communities (λC) in Equation (9.6), respectively, and only the
specified terms were included with a weight of 1. We report relative scores, i.e., scores
divided by the best score for each metric. Results show that the proposed contrastive
objectives are complementary, i.e., jointly optimizing these objectives improves the
performance, e.g., F to F+H on ACM and H to H+C on DBLP-S. Especially, the best

223

Table 9.5: CGC consistently outperforms baselines, achieving up to 29% higher temporal
link prediction performance than the best baseline. Best results are in bold, and second
best results are underlined.

Method
Foursquare-NYC Foursquare-TKY Yahoo-Msg

ROC AUC Avg. Prec. ROC AUC Avg. Prec. ROC AUC Avg. Prec.

SVD [GR71] 9.68±0.3 33.28±0.2 4.18±0.0 37.84±0.0 59.51±0.5 64.88±0.4
SVD-latest 17.67±0.6 37.93±0.6 7.20±0.2 35.08±0.1 49.26±0.2 53.21±0.2
DGI [VFH+19] 14.37±0.7 33.02±0.1 13.79±1.0 33.17±0.3 50.60±0.5 51.83±0.3
DGI-latest 18.55±1.2 34.16±0.3 20.01±0.7 34.69±0.3 41.92±0.2 45.00±0.2
GAE [KW16] 13.55±1.1 33.16±0.3 17.44±0.5 35.01±0.3 46.40±0.5 48.41±0.2
GAE-latest 19.80±0.4 35.13±0.3 21.67±0.7 37.44±0.5 42.45±0.5 44.87±0.2
VGAE [KW16] 6.63±0.1 32.34±0.1 10.06±0.3 34.90±0.4 39.97±0.0 47.99±0.1
VGAE-latest 12.02±0.2 33.18±0.0 12.91±0.2 34.93±0.2 44.21±0.1 49.61±0.0
ARGA [PHF+20] 6.96±0.0 31.63±0.0 11.45±0.1 33.00±0.3 38.79±0.1 44.17±0.1
ARGA-latest 11.89±1.1 32.38±0.2 13.17±0.2 32.61±0.0 39.84±0.1 43.78±0.0
ARGVA [PHF+20] 13.56±0.4 34.95±0.2 22.30±0.4 43.11±0.3 46.99±0.1 50.44±0.1
ARGVA-latest 26.01±0.7 39.11±0.3 32.01±0.5 45.14±0.1 50.54±0.1 51.25±0.1
SDCN [BWS+20] 47.86±0.7 46.31±0.6 37.32±0.8 40.73±0.6 55.76±1.5 55.78±1.3
SDCN-latest 25.24±0.3 36.47±0.3 19.01±1.3 35.05±0.9 54.51±0.6 55.35±0.5
AGCN [PLJH21] 56.13±1.0 52.24±1.5 42.43±2.7 44.24±2.2 54.23±2.2 54.43±1.5
AGCN-latest 41.24±3.2 49.01±2.5 41.44±5.8 51.27±4.0 51.81±1.1 52.87±0.4

CTDNE [NLR+18] 7.06±0.0 31.55±0.0 16.97±0.3 33.59±0.1 54.73±0.1 54.16±0.1
CTDNE-latest 7.27±0.0 32.28±0.0 7.36±0.1 31.98±0.0 50.11±0.0 52.70±0.1
TIMERS [ZCP+18] 23.84±0.2 37.02±0.1 15.09±0.1 33.72±0.0 48.87±0.1 49.65±0.1
DynGEM [GKHL18] 26.65±0.8 36.61±0.3 25.52±2.8 36.24±0.9 47.46±0.5 46.69±0.4
DynAERNN [GCC20] 26.17±2.1 41.39±1.6 18.23±1.1 40.15±0.7 44.81±2.0 50.44±2.1
EvolveGCN [PDC+20] 23.79±1.0 47.45±0.1 24.67±0.6 46.45±0.2 47.00±0.9 47.08±0.4
CTGCN [LXY+20] 50.58±2.4 54.54±1.5 51.61±4.5 57.56±2.8 75.51±0.9 76.82±0.7

CGC (Ours) 64.60±0.6 70.34±0.5 66.26±0.8 70.22±0.6 84.30±0.1 86.88±0.1

224

C H H+C F F+C F+H F+H+C
0.6

0.8

1.0

Sc
or

e
/ M

ax
 S

co
re

DBLP-S

ACC
NMI
ARI
F1

0.9

1.0
Sc

or
e

/ M
ax

 S
co

re

Citeseer

ACC
NMI
ARI
F1

0.9

1.0

Sc
or

e
/ M

ax
 S

co
re

ACM

ACC
NMI
ARI
F1

Figure 9.2: Node clustering performance of CGC, obtained with different contrastive
objectives. F: Node features. H: Network homophily. C: Hierarchical Communities.

result on ACM and DBLP-S are obtained when all objectives are used together (F+H+C).
However, DBLP-S shows a different pattern, where the best result was obtained with
F+C. Notably, in DBLP-S, the objective on network homophily was not useful whether it
is used alone (H) or with others (F vs. F+H). In DBLP-S, 36% of the nodes are isolated,
making it hard to learn from graph structure. Still, joint optimization improved the
results (e.g., H vs. H+C).

9.6 Related Work
In this section, we review previous works on deep clustering, graph clustering, as well
as temporal graph clustering.

Deep Clustering (DC). PARTY [PXF+16] is a two-stage DC method that uses autoen-
coders (AEs) with sparsity prior. Single-stage DC methods aim to achieve an effective
clustering in an end-to-end framework. To achieve more effective clustering in an end-
to-end framework, several single-stage methods have been developed. DEC [XGF16]
is a single-stage AE-based method that jointly learns latent embeddings and cluster
assignments by minimizing the KL divergence between the model’s soft assignment and
an auxiliary target distribution. IDEC [GGLY17] further improves DEC by integrating
DEC’s clustering loss and AE’s reconstruction loss. DCN [YFSH17] adopts the K-means
objective to help AEs learn K-means-friendly representations. In [JZT+17], variational
AEs are used to model the data generative procedure for DC. Recently, adversarial
fairness has also been incorporated for deep fair clustering [LZL20]. However, all these
methods focus only on data samples, and do not consider relational information between
them, which can provide valuable guidance for clustering.

225

Graph Clustering. Several approaches have been developed or adapted for graph
clustering and community detection, including modularity-based methods [GN02],
METIS [KK98], spectral methods [BS93], methods based on SVD [GR71], connected
components [PPMK16, PPMK20], tensor factorization [GPP20, POK19, POK17, OPSK18]
and MDL (Minimum Description Length) [ATMF12, SFPY07]. However, these methods
all miss one or more of the desiderata of Table 9.1, as they mostly focus on utilizing the
graph structure alone, with no support for input node features or the time evolution of
graphs, and without learning node representations, which can be useful for downstream
applications. Our comparison with SVD [GR71], one of the representative methods for
community detection, shows the benefits of satisfying the desiderata in Table 9.1.

In this work, we focus on another group of methods for graph clustering, namely, deep
graph clustering (DGC). Methods for DGC can be grouped into two categories: (1) two-
stage methods that perform clustering after learning representations, and (2) single-stage
methods that jointly perform clustering and representation learning (RL). Unsupervised
graph RL methods are used for two-stage deep graph clustering (DGC). In [TGC+14], for
instance, AEs are used to learn non-linear node embeddings, and then K-means is applied
to get clustering assignments. GNN-based encoders are adopted in more recent methods.
GAE [KW16] and VGAE [KW16] learn node embeddings using a graph autoencoder and
a variational variant. ARGA [PHF+20] and ARGVA [PHF+20] employ an adversarially
regularized graph autoencoder and its variational version. A few recent studies [VFH+19,
YCWS20, WLHS21, SLZ20] investigated self-supervised learning techniques for graph
RL, e.g., DGI [VFH+19] optimizes GCN encoder by contrasting node embeddings with
the embedding of the graph.

DMoN [TPPM20] is a single-stage method that performs clustering via spectral modular-
ity maximization. DAEGC [WPH+19] simultaneously optimizes embedding learning
and graph clustering by combining the clustering loss of DEC with the graph reconstruc-
tion loss of graph attentional AEs. SDCN [BWS+20] improves DAEGC by integrating a
GCN encoder and AEs via a delivery operator. AGCN [PLJH21] further improves upon
SDCN by developing two attention-based fusion modules, which aggregate features
from GCNs and AEs, and multi-scale features from different layers. Despite some dif-
ferences (e.g., encoder architectures), existing DGC methods are mainly based on AEs,
involve reconstruction loss minimization, and use the same clustering objective [XGF16]
with small adjustments. The proposed CGC performs deep graph clustering in a novel
contrastive graph learning framework with multi-level contrastive objectives.

Temporal Graph Clustering (TGC). Existing methods mainly perform TGC based on
the graph structure and its temporal change, without considering node features and
their semantics in the clustering objective. Existing TGC methods can be grouped
into two classes: snapshot clustering [CSZ+07, BS06, GDC10] and consensus cluster-
ing [LF12, RB08, RB11, AG11, CM18]. Given graph snapshots, each snapshot is clustered
separately in snapshot clustering, thereby ignoring inter-snapshot information. Con-
sensus clustering instead finds a single partitioning for the entire graph snapshots.
Consensus and snapshot clustering correspond to two fixed choices (i.e., the entire snap-

226

shots vs. the last one), which is not always optimal. CGC instead adaptively determines
a subset of snapshots to find clusters from.

For two-stage deep TGC, unsupervised dynamic graph representation learning meth-
ods can also be employed, which learn dynamic embeddings using temporal random
walk [NLR+18], incremental SVD [ZCP+18], AEs [GKHL18, GCC20], and RNNs com-
bined with GCNs [PDC+20, LXY+20, PLM+22]. Yet no single-stage DGC methods have
been designed for TGC. This work presents the first such method for temporal network
analysis.

9.7 Conclusion
This work presented CGC, a new deep graph clustering framework for community
detection and tracking in the web data.

• Novel Framework. CGC jointly learns node embeddings and cluster memberships in
a novel contrastive graph learning framework. CGC effectively finds clusters by using
information along multiple dimensions, e.g., node features, hierarchical communities.

• Temporal Graph Clustering. CGC is designed to find clusters from time-evolving
graphs, improving upon existing deep graph clustering methods, which are designed
for static graphs.

• Effectiveness. We show the effectiveness of CGC via extensive evaluation on several
static and temporal real-world graphs.

9.8 Appendix
9.8.1 Mining Case Studies

9.8.1.1 Case Studies on Synthetic Graphs
In this section, we show how effectively CGC performs community detection and
tracking, using synthetic graphs that consist of a small number of groups; each group
corresponds to a tightly knit community, which experiences significant changes over
time.

Case 1: Two Groups With Traveling Members (Figure 9.3). We have groups 1 and 2
for time 0-2. At time 3, half of the nodes in group 1 move to group 2, stay there until
time 5, and then at time 6, move back to group 1, where they originally belonged. Thus
there are two change points (CPs), i.e., time 3 and 6 (Figure 9.3d). Figure 9.3a shows
the segment prior to the first CP. Figures 9.3b and 9.3c show the segment at the first CP
when the graph stream was properly segmented or not; Figure 9.3c does not clearly show
the change in the size of two groups. By performing segmentation in the presence of a
significant change, CGC captures a clearer community structure.

Case 2: Two Groups Reorganizing Into Three (Figure 9.4). This network initially con-
sists of two communities, which are regrouped into three communities due to a major
reorganization at time 3. Figure 9.4a shows the two communities captured by CGC

227

(a) Segment before
the change point
(time 3)

(b) Segment after
segmentation at the
change point

(c) Segment with
no segmentation at
change point

(d) Distance between Gt
and the existing segment
over time

Figure 9.3: Two groups with traveling members (Case 1). Segmentation reveals a clearer
community structure across time.

(a) Segment before
the change point
(time 3)

(b) Segment after
segmentation at the
change point

(c) Segment with
no segmentation at
change point

(d) Distance between Gt
and the existing segment
over time

Figure 9.4: Two groups reorganizing into three (Case 2). CGC identifies reorganizing
communities and detects the change point.

before the CP at time 3. Figure 9.4b shows that CGC successfully detects the CP (Fig-
ure 9.4d), and discovers restructured communities. Again, when the CP is ignored, it
gets harder to see a clear structure of three communities from the resulting graph stream
segment (Figure 9.4c).

9.8.1.2 Case Studies on Real-World Graphs
To see how the cluster membership found by CGC evolves over time, we cluster nodes
based on the transition pattern (TP) of their membership vectors (Figure 9.5 (top)).
Specifically, we concatenate the cluster membership vectors of each node obtained at
different time steps, apply t-SNE to embed nodes in a two-dimensional space, and
perform k-means clustering on the resulting two-dimensional node embeddings to
obtain TP clusters. Then for each TP, we consider how cluster distribution changed over
time (Figure 9.5 (bottom)). For each time step, we take the average of the membership
vectors of the nodes belonging to a specific TP, and display the cluster distribution at each
time as a column; clusters are associated with distinct colors, and the cluster distribution

228

Figure 9.5: Node clusters (top) based on their transition patterns (bottom) in the Yahoo-
Msg dataset.

in the averaged membership vector at different time is shown by the proportion of the
corresponding colors.

Yahoo-Msg (Figure 9.5). Nodes are clustered into 10 TPs. Among them, TP 0 shows a
different pattern than others, where a major cluster changes frequently over time (e.g.,
switches between orange and green). In the scatter plot above, TP 0 is the cluster at the
center, located close to a few surrounding clusters. Over time, the cluster assignments of
nearby clusters have had a varying impact on how the nodes in TP 0 are clustered. Also,
note that a segmentation occurred at the second time step, as can be seen in the TP plots.
The color distribution of the first column in the four TPs greatly differs from those of the
second and subsequent columns. Via segmentation, CGC discovers a clearer community
structure.

9.8.2 Clustering Performance over Time
Figure 9.6 shows how the performance of CGC and four select baselines changes over
time. For static baselines, we report the results obtained by clustering all observed graph
snapshots at each time step.

Node Clustering (Figure 9.6a). While all methods do not perform well for the first few

229

5 10
Year

DBLP-T

0.5

0.6

0.7

0.8

A
C

C

5 10
Year

DBLP-T

0.0
0.1
0.2
0.3
0.4

N
M

I

CGC (Ours) GAE AGCN EvolveGCN CTGCN

(a) Temporal Node Clustering

2 4 6 8 10
Month

Foursquare-NYC

0.2

0.4

0.6

R
O

C
 A

U
C

2 4 6 8 10
Month

Foursquare-TKY

0.2

0.4

0.6

R
O

C
 A

U
C

2 4 6 8 10 12
Half-Day

Yahoo-Msg

0.4

0.6

0.8
R

O
C

 A
U

C
CGC (Ours) GAE AGCN EvolveGCN CTGCN

(b) Temporal Link Prediction

Figure 9.6: CGC achieves the best clustering performance nearly consistently on temporal
graphs over the entire time period.

230

Table 9.6: Summary of temporal real-world datasets. N/A denotes that the corresponding
datasets do not have node labels.

Dataset
Edge Type

(node i, node j, time t)
Nodes # Edges

Yahoo-Msg (user, user, time-second) 82,309 (82,309 users) 786,911
Foursquare-NYC (user, venue, time-second) 39,416 (1,083 users, 38,333 venues) 454,856
Foursquare-TKY (user, venue, time-second) 64,151 (2,293 users, 61,858 venues) 1,147,406
DBLP-T (author, author, time-year) 6,942 (6,942 authors) 168,124

Dataset
Time Range
(Inclusive)

Time
Steps

Snapshot
Interval

Dynamic
Node Classes

Yahoo-Msg 0-6 (days) 14 12 hours N/A

Foursquare-NYC 0-318 (days) 11 30 days N/A

Foursquare-TKY 0-318 (days) 11 30 days N/A

DBLP-T 0-13 (years) 14 1 year 2

Table 9.7: Summary of static real-world datasets used in experiments. In all datasets,
nodes have labels and input features.

Dataset
Edge Type

(node i, node j)
Nodes # Edges

Node
Classes

Feature
Dimension

ACM (paper, paper) 3,025 26,256 3 1,870
DBLP-S (author, author) 4,057 7,056 4 334
Citeseer (document, document) 3,327 9,104 6 3,703
MAG-CS (author, author) 18,333 163,788 15 6,805

time steps, CGC’s performance continuously improves over time, reaching an ACC of
∼0.89 and an NMI of ∼0.48 in the end. Although baselines’ performance also improves
with time, their improvement is much smaller than that of CGC, failing to effectively
track the evolution of communities in the network.

Link Prediction (Figure 9.6b). CGC significantly outperforms baselines throughout most
of the time span. Dynamic methods are not effective at capturing community structure,
while deep clustering baselines like AGCN fail to track the evolution of clusters.

9.8.3 Experimental Settings
Experiments for Static Data. For ACM, DBLP-S, and Citeseer, we cite the results of all
baselines (except SVD, DGI and AGCN) from [BWS+20]. For AGCN, we take its result
from [PLJH21]. Settings of these baselines are given in [BWS+20, PLJH21]. We directly
evaluate SVD and DGI on these datasets. On MAG-CS, we evaluate all baselines using
the settings in [BWS+20, PLJH21]. For methods we evaluate, we report results averaged
over 5 runs. We set node embedding size to 200 for SVD [sl21] and DGI [Lib21]. We use

231

a single-layer GCN in DGI as in the open source code [Lib21]. For CGC, we set node
embedding size to 200, and used Adam optimizer with a weight decay of 0.0001. We
set the learning rate to 0.0005 (Citeseer), 0.001 (ACM, MAG-CS), and 0.005 (DBLP-S).
We used a single layer GNN in CGC. We set the temperature τ to 0.65 and δ to 0.7. Let
rF , rH , and r`C be the number of negative samples per positive sample for the contrastive
loss LF , LH , and LC , where ` in r`C refers to the `-th level clusters. We set rF to 180
(MAG-CS), 50 (DBLP-S), and 30 (ACM, Citeseer); rH to 60 (MAG-CS) and 10 (others); r`C
to 60 (MAG-CS) and 30 (others) for each `. Let k denote the number of clusters to find
(i.e., # node classes). We set K= {k, 5k, 25k}. For DBLP-S, we set λF = 4, λH = 0, λC = 1.
For ACM, Citeseer, and MAG-CS, we set λF =1, λH =1, λC =1.

Experiments for Temporal Data. Since the temporal graphs used in experiments have
no input node features F, we used learnable node embeddings as the input node features,
which were initialized by applying SVD to the row normalized adjacency matrix.

For both node clustering (Table 9.4) and link prediction (Table 9.5) evaluation, baselines
used mostly the same settings. We set the size of initial node features and latent node
embeddings to 128 and 32, respectively, and used the Adam optimizer with a learning rate
of 0.001. Since the datasets used for temporal link prediction (Yahoo-Msg, Foursquare-
NYC, Foursquare-TKY) do not have ground truth clusters, we set the size of cluster
membership to 64 for all baselines and CGC. Tables 9.4 and 9.5 report results averaged
over five runs.

For SVD and DGI, we used the same setting used for static graphs. For GAE, VGAE,
ARGA, and ARGVA, we used the implementation of the PyTorch Geometric [Geo21]
with two-layer GCN encoders. For SDCN and AGCN, we used the default settings used
in [BWS+20, PLJH21], while setting the size of node embeddings to 32. For CTDNE,
we used the default settings of the open source implementation [Sin21]. We set θ in
TIMERS to 0.17. In DynGEM, we set α to 10−5, β to 10, and both ν1 and ν2 to 10−4. For
DynAERNN, we set β to 5, the look back parameter to 3, and both ν1 and ν2 to 10−6. In
EvolveGCN, we used a two-layer GCRN; specifically, we used EvolveGCN-H, which
incorporates node embeddings in RNNs. For CTGCN, we used the CTGCN-C version
with the settings used in [LXY+20]. In CGC, we set λH =1, λC = λT =0.2, λF =0; ψ=0.99,
θ= 0.3. Let rT be the number of negatives per positive sample for the loss LT . For all
temporal datasets, we set rF = rH = rT = 10. We set r`C to 60 (link prediction datasets)
and 30 (DBLP-T) for each `. We set K= {5k, 25k} for DBLP-T, and K= {k, 5k, 25k} for
all others. For CGC, we set the learning rate to 0.005, and the node embedding size to
32.

232

9.8.4 Graph Stream Segmentation
Algorithm 9.3 shows how CGC adaptively decides whether to segment the graph stream
or not. A description of Algorithm 9.3 is given in Section 9.4.2.3.

Algorithm 9.3: GraphStreamSegmentation
Input: graph stream segment Gseg, new graph Gτj+1

for time span j+1, input
node features F ∈ Rn×d, segmentation threshold θ

Output: graph stream segment Gseg

1 if Gseg 6= ∅ then
2 Gseg = Merge(Gseg)
3 V ∗ = Nodes(Gseg) ∩ Nodes(Gτj+1

)
4 Hseg = GNN(Gseg,F)

5 Hj+1 = GNN(Gτj+1
,F)

6 if Gseg = ∅ or Dist(Hseg
V ∗ ,H

j+1
V ∗) > θ then

7 Gseg = {Gτj+1
} /* Start a new graph stream segment. */

8 else
9 Gseg = Gseg ∪ {Gτj+1

} /* Add Gτj+1 to the current segment. */

10 return Gseg

233

234

Part III

Conclusions and Future
Directions

235

Chapter 10

Conclusions

Graphs and tensors provide a powerful framework to model real-world entities and their
relationships, and their evolution over time. Mining and learning with graph and tensors
plays a pivotal role in understanding how real-world networks form and evolve, and in
utilizing them for various downstream tasks. To this end, this thesis addresses important
mining and learning tasks for both static and dynamic graphs and tensors by developing
a suite of effective and efficient tools for

(1) analyzing and modeling large dynamic real-world networks (e.g., deep graph
clustering, temporal evolution modeling, computational scientific discovery, node
importance estimation, and tensor factorization), and

(2) designing algorithms that leverage graphs and tensors for knowledge inference
and reasoning applicable for several application domains (e.g., reasoning over
knowledge graphs, and explainable recommendation).

Below, we summarize the contributions of this thesis, organized into two parts on static
and dynamic graphs and tensors.

10.1 Summary of Contributions
10.1.1 Part I: Static Graphs and Tensors
In Part I, we develop effective and scalable algorithms for mining and modeling static
graphs and tensors, namely, node importance estimation, recommendation justification,
distributed tensor decomposition, and automatic selection of graph learning models.

• Estimating Node Importance in Knowledge Graphs (Chapters 2 and 3). We explore
graph-regularized semi-supervised machine learning algorithms for node importance
estimation (NIE) in KGs from heterogeneous information reflecting node importance,
which completely differ from previous non-trainable NIE methods. Specifically, we
develop two algorithms, GENI and MULTIIMPORT, novel semi-supervised GNN-
based methods that infer node importance by learning to combine heterogeneous

237

information from multiple sources (e.g., input signals on node popularity, graph
structure, and edge types). The proposed algorithms estimate node importance up to
24% more accurately than the best existing method.

• Principled and Scalable Recommendation Justification (Chapter 4). We develop
J-RECS, a principled graph-based post-hoc framework to infer personalized recom-
mendation justification. J-RECS is guided by a set of principles characterizing desirable
justifications, and does not require manually labeled data. Justifications generated by
J-RECS match user preference up to 21% more accurately than the best baseline. Also,
J-RECS is scalable, running in time linear in the size of input data.

• Fast and Scalable Distributed Boolean Tensor Factorization (Chapter 5). We develop
two distributed algorithms, DBTF-CP and DBTF-TK, for distributed Boolean CP and
Tucker factorizations, respectively, which are carefully designed to achieve high speed
and scalability. These algorithms are the first distributed algorithms for large-scale
Boolean tensor factorization. DBTF-CP decomposes up to 163–323× larger tensors than
existing methods in 82–180× less time. DBTF-TK decomposes up to 83–163× larger
tensors than existing methods in 86–129× less time.

• Fast and Automatic Model Selection for Graph Representation Learning (Chap-
ter 6). We develop the first meta-learning approach for automatic graph representation
learning, called AUTOGRL, which automatically infers the best model for the new
graph without requiring model training or evaluations, by capitalizing on the prior per-
formances of a large body of existing methods. Using AUTOGRL for model selection
achieves up to 15× higher mean average precision (MAP) than consistently applying a
popular method like node2vec, as well as obtaining 10% higher MAP than the best
existing meta-learner, while incurring negligible overhead (<1 sec) at inference time.

10.1.2 Part II: Dynamic Graphs and Tensors
In Part II, we develop effective and efficient algorithms for the mining, inference, and
learning with dynamic graphs and tensors, namely, finding mathematical expressions
that model dynamic real-world processes, reasoning over temporal knowledge graphs,
and detecting communities in graph data and tracking their evolution.

• Knowledge-Guided Dynamic Systems Modeling (Chapter 7). Towards an accurate
and interpretable modeling of dynamic systems, we propose knowledge-guided model
revision, which optimizes both the parameters and the structure of the model (e.g., dif-
ferential equations describing real-world phenomena) guided by both prior knowledge
and data, such that the revised model accurately estimates the underlying process,
while being consistent with domain knowledge. In experiments on forecasting the
river water quality, the proposed GMR framework achieves the best forecasting ac-
curacy, with up to 34% lower error than the best parameter fitting approach, while
achieving 607× speedup by employing the proposed orthogonal speedup techniques.

• Reasoning over Temporal Knowledge Graphs (TKGs) (Chapter 8). We identify the
two major tasks that need to be addressed for an effective reasoning over TKGs,

238

i.e., modeling the event time and evolving network structure, and develop EVOKG,
an effective framework that jointly models both tasks by capturing structural and
temporal dynamics in TKGs via recurrent event modeling, temporal neighborhood
aggregation, and modeling event time using neural density estimation. In comparison
to the best existing method, EVOKG achieves up to 116% and 77% better link and event
time prediction accuracy, while being up to 30× and 291× times faster in performing
model training and inference, respectively.

• Contrastive Graph Clustering for Community Detection and Tracking (Chapter 9).
We develop CGC, a novel end-to-end framework for graph clustering, which funda-
mentally differs from existing deep graph clustering (DGC) methods. CGC learns
node embeddings and cluster assignments in a contrastive graph learning framework,
where positive and negative samples are carefully selected in a multi-level scheme
such that they reflect the hierarchical community structures and network homophily.
Also, we extend CGC for time-evolving data, where temporal graph clustering is
performed in an incremental learning fashion. In extensive evaluation of clustering
quality on both static and temporal real-world datasets, CGC consistently outperforms
various existing methods, achieving up to 27% higher node clustering accuracy and 29%
higher temporal link prediction accuracy than the previous best DGC method.

239

240

Chapter 11

Future Directions

The explosive growth of online platforms and Internet of Things presents rich and
ever-increasing information to understand how real-world networks form and evolve,
and to develop novel applications and intelligent services operating on graphs and
tensors. Building on the contributions of this thesis, there are three major directions
going forward to make mining and learning with graphs and tensors more effective and
broadly useful:

(1) designing approaches for detecting more general and complex anomalies occurring
in real-world networks (e.g., anomalous motifs, and anomalies from multimodal
data sources, such as graphs, text, and images)

(2) developing novel learning algorithms and frameworks for modeling the dynamics
of real-world networks in light of co-evolving signals (e.g., graph structural changes,
temporal patterns, and trajectories of movement), and

(3) developing mechanisms for knowledge reasoning and inference over graphs, ap-
plicable for time-evolving graphs, and for providing explainability capabilities.

By tackling these interrelated problems, we can develop new insights and holistic so-
lutions to maximize real-world impact. We discuss the research opportunities and
challenges for each of these directions below.

11.1 Complex Anomaly Detection
Identifying patterns and building models for real-world networks enable us to detect
anomalies in the network, such as abusive behaviors, fraudulent users, and compromised
accounts. So far, existing methods for detecting anomalies in networks have mainly
focused on relatively simple cases. For instance, many of them look for anomalous edges
or dense subgraphs in plain static graphs. Accordingly, they miss more interesting and
sophisticated anomalies, which might be hidden until we consider more complex and
diverse aspects simultaneously, e.g., graph substructures different from edges or cliques,
and deviation from the norm in terms of both temporal and structural aspects, not just

241

from the structural point of view. Our goal is to develop holistic methods for complex
anomaly detection, including the followings.

Anomalous Motif Detection. A motif refers to a specific graph substructure, such as
a triangle or a star. One proposed direction is to detect anomalous occurrences of
motifs from a large time-evolving network. This requires answering several challenging
questions, including how to quantify the anomalousness of different types of motifs, and
how to efficiently detect abnormal occurrences of motifs in near real-time.

Multimodal Anomaly Detection. In contrast to existing methods that can deal with
just a single data source, we aim to detect anomalies in multimodal data drawn from
heterogeneous sources (e.g., graphs, text, and images). One of the major challenges lies in
modeling the characteristics of real-world multimodal data, which may violate the usual,
textbook assumptions, e.g., on the independent and identically distributed data. To ad-
dress this challenge, we plan to investigate the characteristics of multimodal anomalies in
real-world networks, what assumptions we need to make to capture them accurately, and
based on those assumptions, how to score the anomalousness of multimodal anomalies
effectively and efficiently.

11.2 Modeling Dynamic Networks
Building upon our work on dynamic graphs and tensors, we will further improve our
understanding of dynamic networks by developing effective computational tools for
automatic scientific discovery and temporal evolution modeling.

Computational Scientific Discovery. Given longitudinal measurements on multi-aspect
networks, such as sensor measurement data, how can we automatically extract scientific
knowledge that can describe the observed phenomena? In Chapter 7, we presented one
answer to this question by developing GMR, an evolutionary framework for knowledge-
guided model revision. Our experience of applying GMR for ecological modeling shows
that different science and engineering domains may present distinct challenges and con-
straints that need to be addressed for an effective modeling of the domain. Thus, we plan
to devise versatile and expressive mechanisms to represent and improve knowledge in
different domains (e.g., designing new language biases and search operators to influence
the search, as well as to represent new types of knowledge and constraints). Further,
we plan to expand the toolbox for scientific discovery with different machine learning
methods, such as deep learning models; research topics include incorporating physical
constraints and prior knowledge into the architecture and learning objective of the model,
which involves addressing problems such as how to parameterize theoretical physical
laws, and how to design specialized architectures for important science domains.

Temporal Evolution Modeling. One of the crucial tasks for temporal evolution mod-
eling is to detect communities in the network and track their evolution. While many
community detection methods exist, they are mostly designed for static networks, and a
few dynamic methods mainly focus on structural changes. By considering a wider range
of signals altogether (e.g., temporal patterns like periodicity and seasonality, spatial

242

distributions, graph structural changes, along with node and edge attributes), more
interesting types of communities can be discovered. To achieve this goal requires novel
methods that can jointly model heterogeneous signals in a self-supervised manner. Our
research shows that contrastive learning presents a promising framework to this end,
where our understanding of real-world networks and their characteristics (e.g., network
homophily and hierarchical community structures) are used to find communities in
light of multiple signals. Building upon this success, we will develop self-supervised
techniques that will enable more interesting and novel community discovery.

Identifying important nodes in a graph and how their importance changes over time is
another important task for modeling dynamic networks, which can be used to provide
more accurate and temporally relevant recommendation and search services, among
many other applications. To this end, we will develop a framework that infers dynami-
cally changing node importance by learning to fuse multiple types of signals that capture
certain aspects of node importance, and model their evolution over time.

11.3 Knowledge Reasoning
Multi-aspect networks, such as knowledge graphs (KGs), are a rich source of information
for intelligent services and applications. I plan to develop techniques that employ KGs
for knowledge reasoning and explainability.

Reasoning over Temporal Knowledge Graphs. In addition to modeling various rela-
tions among entities, temporal knowledge graphs (TKGs) provide rich information to
capture the temporal patterns of real-world events. While modeling TKGs has been
receiving increasing attention recently, knowledge reasoning over TKGs largely remains
limited to a single-hop reasoning, i.e., predicting a missing link that directly connects
two nodes in a TKG. A more effective reasoning over TKGs would need to infer new
knowledge by considering multiple connected links, i.e., multi-hop reasoning; this is
a challenging problem, especially for TKGs, as the temporal evolution and temporal
constraints of TKGs need to be taken into account for multi-hop reasoning.

Explainability. Capabilities to reason over complex networks can provide explainability
for a wide variety of tasks. Towards this goal, we plan to develop (1) graph machine
learning algorithms with explainable and interpretable mechanisms, and design (2) effec-
tive techniques that utilize KGs to provide explanations for different machine learning
tasks, including recommendation, entity classification, and anomaly detection.

243

244

Bibliography

[ABK16] W. Austin, G. Ballard, and T. G. Kolda. Parallel tensor compression for
large-scale scientific data. In IPDPS, 2016. 98

[ABvRV18] Salisu Mamman Abdulrahman, Pavel Brazdil, Jan N. van Rijn, and Joaquin
Vanschoren. Speeding up algorithm selection using average ranking and
active testing by introducing runtime. Mach. Learn., 107(1):79–108, 2018.
152

[AG11] Thomas Aynaud and Jean-Loup Guillaume. Multi-step community de-
tection and hierarchical time segmentation in evolving networks. In
Proceedings of the 5th SNA-KDD workshop, volume 11, 2011. 226

[ARL+18] Nesreen K. Ahmed, Ryan A. Rossi, John Boaz Lee, Xiangnan Kong,
Theodore L. Willke, Rong Zhou, and Hoda Eldardiry. Learning role-based
graph embeddings. CoRR, abs/1802.02896, 2018. 148, 154

[ATA18] S. Acer, T. Torun, and C. Aykanat. Improving medium-grain partitioning
for scalable sparse tensor decomposition. IEEE Transactions on Parallel and
Distributed Systems, pages 1–1, 2018. 98

[ATMF12] Leman Akoglu, Hanghang Tong, Brendan Meeder, and Christos Falout-
sos. PICS: parameter-free identification of cohesive subgroups in large
attributed graphs. In SDM, pages 439–450. SIAM / Omnipress, 2012. 226

[AWWB09] Michael Affenzeller, Stephan M. Winkler, Stefan Wagner, and Andreas
Beham. Genetic Algorithms and Genetic Programming - Modern Concepts and
Practical Applications. CRC Press, 2009. 162

[BB87] Linfield C Brown and Thomas O Barnwell. The enhanced stream water quality
models QUAL2E and QUAL2E-UNCAS: Documentation and user manual. US
Environmental Protection Agency. Office of Research and Development,
Environmental Research Laboratory., 1987. 183

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. J. Mach. Learn. Res., 13:281–305, 2012. 152

245

[BBR+18] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair,
Yoshua Bengio, R. Devon Hjelm, and Aaron C. Courville. Mutual infor-
mation neural estimation. In ICML, volume 80 of Proceedings of Machine
Learning Research, pages 530–539. PMLR, 2018. 211

[BC17] Or Biran and Courtenay Cotton. Explanation and justification in machine
learning: A survey. In IJCAI-17 workshop on explainable AI (XAI), volume 8,
2017. 4, 64

[BEP+08] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: a collaboratively created graph database for structuring
human knowledge. In SIGMOD, pages 1247–1250, 2008. 3, 17, 20, 28, 44,
53

[BGV13] Radim Belohlávek, Cynthia Vera Glodeanu, and Vilém Vychodil. Opti-
mal factorization of three-way binary data using triadic concepts. Order,
30(2):437–454, 2013. 88, 97, 120

[BKEF12] Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Falout-
sos. Netsimile: A scalable approach to size-independent network similar-
ity. CoRR, abs/1209.2684, 2012. 153

[BLL21] Chenyang Bu, Yi Lu, and Fei Liu. Automatic graph learning with evolu-
tionary algorithms: An experimental study. In PRICAI (1), volume 13031
of Lecture Notes in Computer Science, pages 513–526. Springer, 2021. 152

[BLO+15] Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman,
James Starz, and Michael Ward. Icews coded event data. Harvard Dataverse,
12, 2015. 188, 196

[BM05] Mustafa Bilgic and Raymond J Mooney. Explaining recommendations: Sat-
isfaction vs. promotion. In Beyond Personalization Workshop, IUI, volume 5,
2005. 64, 82

[BS93] Stephen T. Barnard and Horst D. Simon. A fast multilevel implementation
of recursive spectral bisection for partitioning unstructured problems. In
PPSC, pages 711–718. SIAM, 1993. 226

[BS06] Tanya Y. Berger-Wolf and Jared Saia. A framework for analysis of dynamic
social networks. In KDD, pages 523–528. ACM, 2006. 226

[BSMN03] OM Becker, S Shacham, Y Marantz, and S Noiman. Modeling the 3d
structure of gpcrs: advances and application to drug discovery. Current
opinion in drug discovery & development, 6(3), 2003. 161

[BTK+14] Alex Beutel, Partha Pratim Talukdar, Abhimanu Kumar, Christos Falout-
sos, Evangelos E. Papalexakis, and Eric P. Xing. Flexifact: Scalable flexible
factorization of coupled tensors on hadoop. In SDM, pages 109–117, 2014.
97

246

[BUG+13] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston,
and Oksana Yakhnenko. Translating embeddings for modeling multi-
relational data. In NIPS, pages 2787–2795, 2013. 28, 37, 53, 204

[BWS+20] Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui.
Structural deep clustering network. In WWW, pages 1400–1410. ACM /
IW3C2, 2020. 13, 208, 219, 220, 221, 224, 226, 231, 232

[BWY13] Denilson Barbosa, Haixun Wang, and Cong Yu. Shallow information
extraction for the knowledge web. In ICDE, pages 1264–1267, 2013. 3, 17

[BZSL14] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral
networks and locally connected networks on graphs. In ICLR, 2014. 35

[CBRB09] Loïc Cerf, Jérémy Besson, Céline Robardet, and Jean-Franccois Boulicaut.
Closed patterns meet n-ary relations. TKDD, 3(1), 2009. 97

[CCJ+17] Venkatesan T. Chakaravarthy, Jee W. Choi, Douglas J. Joseph, Xing Liu,
Prakash Murali, Yogish Sabharwal, and Dheeraj Sreedhar. On optimizing
distributed tucker decomposition for dense tensors. CoRR, abs/1707.05594,
2017. 98

[CCL+21] Lei Cai, Zhengzhang Chen, Chen Luo, Jiaping Gui, Jingchao Ni, Ding
Li, and Haifeng Chen. Structural temporal graph neural networks for
anomaly detection in dynamic graphs. In CIKM, pages 3747–3756. ACM,
2021. 7, 136

[CCX+19] Xu Chen, Hanxiong Chen, Hongteng Xu, Yongfeng Zhang, Yixin Cao,
Zheng Qin, and Hongyuan Zha. Personalized fashion recommendation
with visual explanations based on multimodal attention network: Towards
visually explainable recommendation. In SIGIR, pages 765–774, 2019. 82

[Citne] CiteSeer. https://citeseerx.ist.psu.edu, 2021 [Online]. Ac-
cessed: 2021-10-01. 218

[CJX20] Xiaojun Chen, Shengbin Jia, and Yang Xiang. A review: Knowledge
reasoning over knowledge graph. Expert Syst. Appl., 141, 2020. 188

[CKNH20] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hin-
ton. A simple framework for contrastive learning of visual representations.
In ICML, volume 119 of Proceedings of Machine Learning Research, pages
1597–1607. PMLR, 2020. 209, 211

[CLX15] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph
representations with global structural information. In CIKM, pages 891–
900. ACM, 2015. 154

[CM18] Joseph Crawford and Tijana Milenković. Cluenet: Clustering a temporal
network based on topological similarity rather than denseness. PLOS
ONE, 13(5):1–25, 05 2018. 226

247

https://citeseerx.ist.psu.edu

[CMX18] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with graph
convolutional networks via importance sampling. In ICLR, 2018. 35

[CQL+07] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning
to rank: from pairwise approach to listwise approach. In ICML, pages
129–136, 2007. 49, 141

[CS98] Kyung-Je Cho and Jae-Ki Shin. Growth and nutrient kinetics of some algal
species iso-lated from the naktong river. Algae, 13(2), 1998. 165

[CSZ+07] Yun Chi, Xiaodan Song, Dengyong Zhou, Koji Hino, and Belle L. Tseng.
Evolutionary spectral clustering by incorporating temporal smoothness.
In KDD, pages 153–162. ACM, 2007. 226

[CV14] Joon Hee Choi and S Vishwanathan. Dfacto: Distributed factorization of
tensors. In NIPS, 2014. 98

[CZH+17] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and
Tat-Seng Chua. Attentive collaborative filtering: Multimedia recommen-
dation with item- and component-level attention. In SIGIR, pages 335–344,
2017. 82

[dARF17] Miguel Ramos de Araujo, Pedro Manuel Pinto Ribeiro, and Christos
Faloutsos. TensorCast: Forecasting with context using coupled tensors
(best paper award). In ICDM, pages 71–80. IEEE Computer Society, 2017.
204

[DBHS10] Xin Dong, Laure Berti-Équille, Yifan Hu, and Divesh Srivastava. Global
detection of complex copying relationships between sources. Proc. VLDB
Endow., 3(1):1358–1369, 2010. 59

[DBLne] DBLP. https://dblp.org, 2021 [Online]. Accessed: 2021-10-01. 218,
219

[DBS09] Xin Luna Dong, Laure Berti-Équille, and Divesh Srivastava. Integrating
conflicting data: The role of source dependence. Proc. VLDB Endow., 2(1),
2009. 59

[DBV16] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In
NIPS, pages 3837–3845, 2016. 19, 35

[DDT+16] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-
Rodriguez, and Le Song. Recurrent marked temporal point processes:
Embedding event history to vector. In KDD, pages 1555–1564. ACM, 2016.
198

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data process-
ing on large clusters. In OSDI, pages 137–150, 2004. 98

248

https://dblp.org

[DHW+17] Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata, Ming Zhou, and
Ke Xu. Learning to generate product reviews from attributes. In EACL,
2017. 64

[DLT07] Sašo Džeroski, Pat Langley, and Ljupčo Todorovski. Computational dis-
covery of scientific knowledge. pages 1–14. Springer, 2007. 162

[DLZ18] Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. Explaining recommen-
dations by means of user reviews. In IUI Workshops, volume 2068 of CEUR
Workshop Proceedings. CEUR-WS.org, 2018. 82

[DMSR18] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel.
Convolutional 2d knowledge graph embeddings. In AAAI, pages 1811–
1818. AAAI Press, 2018. 188, 199, 204

[DNM+12] Ngoc Phong Dao, Xuan Hoai Nguyen, Robert Ian (Bob) McKay, Constantin
Siriteanu, Quang Uy Nguyen, and Namyong Park. Evolving the best
known approximation to the Q function. In GECCO, pages 807–814, 2012.
162

[DQW+14] Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J. Smola, Jing
Jiang, and Chong Wang. Jointly modeling aspects, ratings and sentiments
for movie recommendation (JMARS). In KDD, pages 193–202, 2014. 82

[DRT18] Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha P. Talukdar.
HyTE: Hyperplane-based temporally aware knowledge graph embedding.
In EMNLP, pages 2001–2011. Association for Computational Linguistics,
2018. 188, 199, 204

[DSG94] Qingyun Duan, Soroosh Sorooshian, and Vijai K Gupta. Optimal use of
the sce-ua global optimization method for calibrating watershed models.
Journal of hydrology, 158(3-4):265–284, 1994. 179

[DWZX15] Li Dong, Furu Wei, Ming Zhou, and Ke Xu. Question answering over
freebase with multi-column convolutional neural networks. In ACL, pages
260–269, 2015. 3, 17

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with
noise. In KDD, pages 226–231, 1996. 50

[EM13a] Dóra Erdős and Pauli Miettinen. Discovering facts with boolean tensor
tucker decomposition. In CIKM, pages 1569–1572, 2013. 88, 97

[EM13b] Dóra Erdős and Pauli Miettinen. Walk ’n’ merge: A scalable algorithm for
boolean tensor factorization. In ICDM, pages 1037–1042, 2013. 88, 96, 97,
120, 121, 126

249

[FKH18] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: robust and efficient
hyperparameter optimization at scale. In ICML, volume 80 of Proceedings
of Machine Learning Research, pages 1436–1445. PMLR, 2018. 152

[FML+19] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang,
and Dawei Yin. Graph neural networks for social recommendation. In
WWW, 2019. 64, 136

[FMT04] Christos Faloutsos, Kevin S. McCurley, and Andrew Tomkins. Fast dis-
covery of connection subgraphs. In KDD, pages 118–127, 2004. 83

[Foune] Foursquare. https://foursquare.com, 2021 [Online]. Accessed: 2021-
10-01. 219

[GCC20] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyn-
graph2vec: Capturing network dynamics using dynamic graph repre-
sentation learning. Knowl. Based Syst., 187, 2020. 13, 199, 204, 208, 219, 221,
224, 227

[GDC10] Derek Greene, Dónal Doyle, and Padraig Cunningham. Tracking the
evolution of communities in dynamic social networks. In ASONAM,
pages 176–183. IEEE Computer Society, 2010. 226

[GDN18] Alberto García-Durán, Sebastijan Dumancic, and Mathias Niepert. Learn-
ing sequence encoders for temporal knowledge graph completion. In
EMNLP, pages 4816–4821. Association for Computational Linguistics,
2018. 188, 190, 199, 204

[Geo21] PyTorch Geometric. Pyg. https://github.com/pyg-team/
pytorch_geometric, 2021. Accessed: 2021-10-20. 232

[GGLY17] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep
embedded clustering with local structure preservation. In IJCAI, pages
1753–1759. ijcai.org, 2017. 13, 208, 219, 220, 225

[GH10] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A
new estimation principle for unnormalized statistical models. In AISTATS,
volume 9 of JMLR Proceedings, pages 297–304. JMLR.org, 2010. 211

[GKBP20] Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart.
Diachronic embedding for temporal knowledge graph completion. In
AAAI, pages 3988–3995. AAAI Press, 2020. 204

[GKHL18] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. DynGEM: Deep
embedding method for dynamic graphs. CoRR, abs/1805.11273, 2018. 204,
219, 221, 224, 227

[GL16] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. In KDD, pages 855–864, 2016. 30, 39, 146, 148, 154, 203

250

https://foursquare.com
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric

[GN02] Michelle Girvan and Mark EJ Newman. Community structure in social
and biological networks. Proceedings of the national academy of sciences,
99(12):7821–7826, 2002. 226

[GPP20] Ekta Gujral, Ravdeep Pasricha, and Evangelos E. Papalexakis. Beyond
rank-1: Discovering rich community structure in multi-aspect graphs. In
WWW, pages 452–462. ACM / IW3C2, 2020. 203, 226

[GR71] Gene H Golub and Christian Reinsch. Singular value decomposition and
least squares solutions. In Linear algebra, pages 134–151. Springer, 1971.
219, 220, 221, 224, 226

[GR06] Oleg Grodzevich and Oleksandr Romanko. Normalization and other
topics in multi-objective optimization. 2006. 71

[GSM+17] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski,
John Karro, and D. Sculley. Google vizier: A service for black-box opti-
mization. In KDD, pages 1487–1495. ACM, 2017. 152

[GSR+17] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural message passing for quantum chemistry. In ICML,
pages 1263–1272, 2017. 22, 44, 60

[GTW+15] Rong Gu, Yun Tang, Zhaokang Wang, Shuai Wang, Xusen Yin, Chun-
feng Yuan, and Yihua Huang. Efficient large scale distributed matrix
computation with spark. In IEEE BigData, pages 2327–2336, 2015. 99

[GYZB21] Mengying Guo, Tao Yi, Yuqing Zhu, and Yungang Bao. Jitune: Just-in-
time hyperparameter tuning for network embedding algorithms. CoRR,
abs/2101.06427, 2021. 152

[had] Apache hadoop. http://hadoop.apache.org/. 98

[Hav02] Taher H. Haveliwala. Topic-sensitive pagerank. In WWW, pages 517–526,
2002. 3, 19, 21, 29, 34, 35, 42, 56, 59, 69, 77, 82, 83

[HBL15] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional net-
works on graph-structured data. CoRR, abs/1506.05163, 2015. 35

[HDWS20] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous
graph transformer. In WWW, pages 2704–2710. ACM / IW3C2, 2020. 145,
155

[HFL+19] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal,
Philip Bachman, Adam Trischler, and Yoshua Bengio. Learning deep
representations by mutual information estimation and maximization. In
ICLR. OpenReview.net, 2019. 211

[HJ02] Pei Hongping and Ma Jianyi. Study on the algal dynamic model for west
lake, hangzhou. Ecological Modelling, 148(1):67–77, 2002. 165

251

http://hadoop.apache.org/

[HKCCB15] Tobias Houska, Philipp Kraft, Alejandro Chamorro-Chavez, and Lutz
Breuer. Spotting model parameters using a ready-made python package.
PloS one, 10(12):e0145180, 2015. 186

[HKR00] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining
collaborative filtering recommendations. In CSCW, pages 241–250. ACM,
2000. 4, 64, 82

[HLZ+17] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-
Seng Chua. Neural collaborative filtering. In WWW, pages 173–182. ACM,
2017. 147

[HMW+20] Zhen Han, Yunpu Ma, Yuyi Wang, Stephan Günnemann, and Volker Tresp.
Graph hawkes neural network for forecasting on temporal knowledge
graphs. In AKBC, 2020. 192, 198, 199, 204, 205

[HS06] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimension-
ality of data with neural networks. science, 313(5786):504–507, 2006. 13,
208, 219, 220

[HW79] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. Journal of the royal statistical society. series c (applied
statistics), 28(1):100–108, 1979. 219, 220

[HYL17] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive represen-
tation learning on large graphs. In NIPS, pages 1025–1035, 2017. 19, 22,
35, 148, 154

[HZC21] Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the
state-of-the-art. Knowl. Based Syst., 212:106622, 2021. 151

[JHRK19] Di Jin, Mark Heimann, Ryan A. Rossi, and Danai Koutra. node2bits:
Compact time- and attribute-aware node representations for user stitching.
In ECML/PKDD (1), volume 11906 of Lecture Notes in Computer Science,
pages 483–506. Springer, 2019. 154

[JJSK16] ByungSoo Jeon, Inah Jeon, Lee Sael, and U. Kang. Scout: Scalable coupled
matrix-tensor factorization - algorithm and discoveries. In ICDE, pages
811–822, 2016. 97, 203

[JL21] Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting:
A survey. CoRR, abs/2101.11174, 2021. 7, 136

[JPB20] ByungSoo Jeon, Namyong Park, and Seojin Bang. Dropout prediction
over weeks in moocs via interpretable multi-layer representation learning.
CoRR, abs/2002.01598, 2020. 161

[JPC+20] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S.
Yu. A survey on knowledge graphs: Representation, acquisition and
applications. CoRR, abs/2002.00388, 2020. 187

252

[JPF+16] Inah Jeon, Evangelos E. Papalexakis, Christos Faloutsos, Lee Sael, and
U. Kang. Mining billion-scale tensors: algorithms and discoveries. VLDB
J., 25(4):519–544, 2016. 97, 98

[JPSK17] Jinhong Jung, Namyong Park, Lee Sael, and U. Kang. Bepi: Fast and
memory-efficient method for billion-scale random walk with restart. In
SIGMOD, 2017. 34, 35, 42, 82

[JQJR20] Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. Recurrent event
network: Autoregressive structure inferenceover temporal knowledge
graphs. In EMNLP (1), pages 6669–6683. Association for Computational
Linguistics, 2020. 188, 190, 199, 200, 204, 205

[JS97] Aravind K Joshi and Yves Schabes. Tree-adjoining grammars. In Handbook
of formal languages, pages 69–123. Springer, 1997. 167, 168

[JTT06] Liping Ji, Kian-Lee Tan, and Anthony K. H. Tung. Mining frequent closed
cubes in 3d datasets. In VLDB, pages 811–822, 2006. 97

[JZT+17] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning
Zhou. Variational deep embedding: An unsupervised and generative
approach to clustering. In IJCAI, pages 1965–1972. ijcai.org, 2017. 225

[KAF+17] Anuj Karpatne, Gowtham Atluri, James H. Faghmous, Michael S. Stein-
bach, Arindam Banerjee, Auroop R. Ganguly, Shashi Shekhar, Nag-
iza F. Samatova, and Vipin Kumar. Theory-guided data science: A new
paradigm for scientific discovery from data. TKDE, 29(10):2318–2331, 2017.
162, 183

[KB09] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applica-
tions. SIAM Review, 51(3):455–500, 2009. 60, 88, 93, 95, 203

[KBV09] Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization
techniques for recommender systems. IEEE Computer, 42(8), 2009. 64

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–
392, 1998. 226

[KKNK18] Kangil Kim, Dong-Kyun Kim, Junhyug Noh, and Minhyeok Kim. Stable
forecasting of environmental time series via long short term memory
recurrent neural network. IEEE Access, 6:75216–75228, 2018. 183

[KKU16] Lars Karlsson, Daniel Kressner, and Andre Uschmajew. Parallel algorithms
for tensor completion in the cp format. Parallel Computing, 57:222 – 234,
2016. 97

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J.
ACM, 46(5):604–632, 1999. 34, 42, 77, 82

253

[KLR04] Eamonn J. Keogh, Stefano Lonardi, and Chotirat (Ann) Ratanamahatana.
Towards parameter-free data mining. In KDD, pages 206–215, 2004. 80, 85

[KMS+10] Dong-Kyun Kim, Bob McKay, Haisoo Shin, Yun-Geun Lee, and Xuan Hoai
Nguyen. Ecological application of evolutionary computation: Improving
water quality forecasts for the nakdong river, korea. In CEC, pages 1–8,
2010. 9, 161, 183, 185

[KMST10] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney.
ISAC - instance-specific algorithm configuration. In ECAI, volume 215 of
Frontiers in Artificial Intelligence and Applications, pages 751–756. IOS Press,
2010. 147, 152

[Koz93] John R. Koza. Genetic programming - on the programming of computers by
means of natural selection. Complex adaptive systems. MIT Press, 1993. 162

[KPHF12] U. Kang, Evangelos E. Papalexakis, Abhay Harpale, and Christos Falout-
sos. Gigatensor: scaling tensor analysis up by 100 times - algorithms and
discoveries. In KDD, pages 316–324, 2012. 97, 99

[KPJY16] Hanjoo Kim, Jaehong Park, Jaehee Jang, and Sungroh Yoon. Deepspark:
Spark-based deep learning supporting asynchronous updates and caffe
compatibility. CoRR, abs/1602.08191, 2016. 99

[KPM+14] MinHyeok Kim, Namyong Park, RI Bob McKay, Haisoo Shin, Yun-Geun
Lee, Kwang-Seuk Jeong, and Dong-Kyun Kim. Improvement of complex
and refractory ecological models: Riverine water quality modelling using
evolutionary computation. Ecological Modelling, 291:205–217, 2014. 183

[KS08] Tamara G. Kolda and Jimeng Sun. Scalable tensor decompositions for
multi-aspect data mining. In ICDM, pages 363–372, 2008. 98

[KT06] Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education, 2006.
73

[KTF09] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. PEGASUS:
A peta-scale graph mining system. In ICDM, pages 229–238, 2009. 99

[KTS+] U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos
Faloutsos. GBASE: a scalable and general graph management system. In
KDD. 99

[KTW+20] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised
contrastive learning. CoRR, abs/2004.11362, 2020. 209

[KU15] Oguz Kaya and Bora Uccar. Scalable sparse tensor decompositions in
distributed memory systems. In SC, pages 1–11, 2015. 98

254

[KU16] Oguz Kaya and Bora Uccar. High performance parallel algorithms for the
tucker decomposition of sparse tensors. In ICPP, 2016. 98

[Kuh55] Harold W Kuhn. The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97, 1955. 222

[KV13] Vasiliki Kalavri and Vladimir Vlassov. Mapreduce: Limitations, optimiza-
tions and open issues. In TrustCom, pages 1031–1038, 2013. 99

[KW16] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. CoRR,
abs/1611.07308, 2016. 13, 208, 219, 220, 221, 224, 226

[KW17] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In ICLR (Poster). OpenReview.net, 2017.
19, 22, 35, 56, 60, 146, 152, 154, 203, 219

[KWRK17] Anuj Karpatne, William Watkins, Jordan S. Read, and Vipin Kumar.
Physics-guided neural networks (PGNN): an application in lake tem-
perature modeling. CoRR, abs/1710.11431, 2017. 183

[KZL19] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic
embedding trajectory in temporal interaction networks. In KDD, pages
1269–1278. ACM, 2019. 204

[LC18] Julien Leblay and Melisachew Wudage Chekol. Deriving validity time in
knowledge graph. In WWW (Companion Volume), pages 1771–1776. ACM,
2018. 188, 196, 204

[LCH17] Junying Li, Deng Cai, and Xiaofei He. Learning graph-level representation
for drug discovery. CoRR, abs/1709.03741, 2017. 7, 136

[LCP+17] Jiajia Li, Jee Choi, Ioakeim Perros, Jimeng Sun, and Richard Vuduc. Model-
driven sparse cp decomposition for higher-order tensors. In IPDPS, 2017.
97

[LDZ19] Rui Lu, Zhiyao Duan, and Changshui Zhang. Audio-visual deep cluster-
ing for speech separation. IEEE ACM Trans. Audio Speech Lang. Process.,
27(11):1697–1712, 2019. 13, 208

[LF12] Andrea Lancichinetti and Santo Fortunato. Consensus clustering in com-
plex networks. Scientific reports, 2(1):1–7, 2012. 226

[Lib21] Deep Graph Library. Dgi. https://github.com/dmlc/dgl/tree/
master/examples/pytorch/dgi, 2021. Accessed: 2021-10-20. 231,
232

[Libne] ACM Digital Library. https://dl.acm.org, 2021 [Online]. Accessed:
2021-10-01. 218

[LIJ+15] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-
tokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey,

255

https://github.com/dmlc/dgl/tree/master/examples/pytorch/dgi
https://github.com/dmlc/dgl/tree/master/examples/pytorch/dgi
https://dl.acm.org

Patrick van Kleef, Sören Auer, and Christian Bizer. Dbpedia - A large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web,
6(2):167–195, 2015. 3, 17, 44

[LJD+17] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. Hyperband: A novel bandit-based approach to hy-
perparameter optimization. J. Mach. Learn. Res., 18:185:1–185:52, 2017.
152

[LL19] Petro Liashchynskyi and Pavlo Liashchynskyi. Grid search, ran-
dom search, genetic algorithm: A big comparison for NAS. CoRR,
abs/1912.06059, 2019. 152

[LLC09] Chi-Jie Lu, Tian-Shyug Lee, and Chih-Chou Chiu. Financial time series
forecasting using independent component analysis and support vector
regression. Decision Support Systems, 47(2):115–125, 2009. 9, 161

[LM01] Ronny Lempel and Shlomo Moran. SALSA: the stochastic approach for
link-structure analysis. ACM Trans. Inf. Syst., 19(2), 2001. 77, 82

[LMV00] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best
rank-1 and rank-(R1 , R2, ... , RN) approximation of higher-order tensors.
SIMAX, 21(4):1324–1342, 2000. 97

[LNY12] Xutao Li, Michael K. Ng, and Yunming Ye. HAR: hub, authority and
relevance scores in multi-relational data for query search. In SDM, pages
141–152, 2012. 3, 19, 21, 29, 34, 35, 38, 42, 56, 59, 75, 77, 82, 83

[LRC+15] Alessandro Lulli, Laura Ricci, Emanuele Carlini, Patrizio Dazzi, and Clau-
dio Lucchese. Cracker: Crumbling large graphs into connected compo-
nents. In ISCC, pages 574–581, 2015. 99

[LRK18] John Boaz Lee, Ryan A. Rossi, and Xiangnan Kong. Graph classification
using structural attention. In KDD, pages 1666–1674, 2018. 60

[LS13] Kalev Leetaru and Philip A Schrodt. Gdelt: Global data on events, location,
and tone, 1979–2012. In ISA annual convention, volume 2, pages 1–49.
Citeseer, 2013. 188, 196

[LVMDBR99] Iwin Leenen, Iven Van Mechelen, Paul De Boeck, and Seymour Rosenberg.
Indclas: A three-way hierarchical classes model. Psychometrika, 64(1):9–24,
1999. 88, 97

[LWH03] Bin Luo, Richard C. Wilson, and Edwin R. Hancock. Spectral embedding
of graphs. Pattern Recognit., 36(10):2213–2230, 2003. 154

[LXY+20] J. Liu, C. Xu, C. Yin, W. Wu, and Y. Song. K-core based temporal graph
convolutional network for dynamic graphs. IEEE Transactions on Knowledge
and Data Engineering, pages 1–1, 2020. 219, 221, 224, 227, 232

256

[LZL20] Peizhao Li, Han Zhao, and Hongfu Liu. Deep fair clustering for visual
learning. In CVPR, pages 9067–9076. Computer Vision Foundation / IEEE,
2020. 225

[MBS15] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. YAGO3: A
knowledge base from multilingual wikipedias. In CIDR. www.cidrdb.org,
2015. 196

[Mie11] Pauli Miettinen. Boolean tensor factorizations. In ICDM, 2011. 88, 96, 97,
99, 102, 120

[MM15] Saskia Metzler and Pauli Miettinen. Clustering boolean tensors. DMKD,
29(5):1343–1373, 2015. 88, 97, 104

[MMG+08] Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and
Heikki Mannila. The discrete basis problem. TKDE, 20(10), 2008. 121

[MNL+16] Cataldo Musto, Fedelucio Narducci, Pasquale Lops, Marco de Gemmis,
and Giovanni Semeraro. Explod: A framework for explaining recommen-
dations based on the linked open data cloud. In RecSys, pages 151–154,
2016. 75, 76, 79, 82, 83

[Mon95] David J. Montana. Strongly typed genetic programming. Evolutionary
Computation, 3(2):199–230, 1995. 163

[Mos09] Brian R Moss. Ecology of fresh waters: man and medium, past to future. John
Wiley & Sons, 2009. 164

[MS17] Mustafa Misir and Michèle Sebag. Alors: An algorithm recommender
system. Artif. Intell., 244:291–314, 2017. 147, 152

[MSC+13] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jef-
frey Dean. Distributed representations of words and phrases and their
compositionality. In NIPS, pages 3111–3119, 2013. 203

[MSFK18] Naveen Sai Madiraju, Seid M. Sadat, Dimitry Fisher, and Homa
Karimabadi. Deep temporal clustering : Fully unsupervised learning
of time-domain features. CoRR, abs/1802.01059, 2018. 13, 208

[Ngu04] Xuan Hoai Nguyen. A flexible representation for genetic programming: lessons
from natural language processing. PhD thesis, University of New South
Wales, Australian Defence Force Academy, 2004. 163, 168, 169, 170

[NLM19] Jianmo Ni, Jiacheng Li, and Julian J. McAuley. Justifying recommendations
using distantly-labeled reviews and fine-grained aspects. In EMNLP-
IJCNLP, pages 188–197, 2019. 64

[NLR+18] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed,
Eunyee Koh, and Sungchul Kim. Continuous-time dynamic network

257

embeddings. In WWW (Companion Volume), pages 969–976. ACM, 2018.
204, 219, 221, 224, 227

[NMA03] Xuan Hoai Nguyen, Robert I. McKay, and Hussein A. Abbass. Tree
adjoining grammars, language bias, and genetic programming. In EuroGP,
2003. 169, 170

[NMJ13] Mladen Nikolić, Filip Marić, and Predrag Janičić. Simple algorithm port-
folio for sat. Artificial Intelligence Review, 40(4):457–465, 2013. 147, 152

[NTK11] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way
model for collective learning on multi-relational data. In ICML, pages
809–816. Omnipress, 2011. 204

[NW78] George L. Nemhauser and Laurence A. Wolsey. Best algorithms for ap-
proximating the maximum of a submodular set function. Math. Oper. Res.,
3(3):177–188, 1978. 73

[OPJ+19] Sejoon Oh, Namyong Park, Jun-Gi Jang, Lee Sael, and U Kang. High-
performance tucker factorization on heterogeneous platforms. IEEE TPDS.,
30(10):2237–2248, 2019. 60, 203

[OPSK18] Sejoon Oh, Namyong Park, Lee Sael, and U Kang. Scalable tucker factor-
ization for sparse tensors - algorithms and discoveries. In ICDE, pages
1120–1131. IEEE Computer Society, 2018. 98, 226

[OR01] Michael O’Neill and Conor Ryan. Grammatical evolution. IEEE Transac-
tions on Evolutionary Computation, 5(4):349–358, 2001. 163

[OSP+17] Jinoh Oh, Kijung Shin, Evangelos E. Papalexakis, Christos Faloutsos, and
Hwanjo Yu. S-hot: Scalable high-order tucker decomposition. In WSDM,
2017. 98

[PAS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online
learning of social representations. In KDD, pages 701–710. ACM, 2014.
154, 203

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999. 3, 19, 21, 29, 34, 42, 56, 59, 79, 82

[PDC+20] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzu-
mura, Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiser-
son. EvolveGCN: Evolving graph convolutional networks for dynamic
graphs. In AAAI, pages 5363–5370. AAAI Press, 2020. 190, 199, 204, 219,
221, 224, 227

[PFS12] Evangelos E. Papalexakis, Christos Faloutsos, and Nicholas D. Sidiropou-
los. Parcube: Sparse parallelizable tensor decompositions. In ECML
PKDD, pages 521–536, 2012. 97

258

[PHF+20] Shirui Pan, Ruiqi Hu, Sai-Fu Fung, Guodong Long, Jing Jiang, and
Chengqi Zhang. Learning graph embedding with adversarial training
methods. IEEE Trans. Cybern., 50(6):2475–2487, 2020. 13, 208, 219, 220, 221,
224, 226

[PJLK16] Namyong Park, Byungsoo Jeon, Jungwoo Lee, and U Kang. Bigtensor:
Mining billion-scale tensor made easy. In CIKM, pages 2457–2460. ACM,
2016. doi:10.1145/2983323.2983332 60, 97, 203

[PKD+19] Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, and Christos
Faloutsos. Estimating node importance in knowledge graphs using graph
neural networks. In KDD, pages 596–606. ACM, 2019. doi:10.1145/
3292500.3330855 7, 17, 42, 52, 53, 56, 136, 161

[PKD+20] Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, and Christos
Faloutsos. MultiImport: Inferring node importance in a knowledge graph
from multiple input signals. In KDD, pages 503–512. ACM, 2020. doi:10.
1145/3394486.3403093 41, 161

[PKFD20] Namyong Park, Andrey Kan, Christos Faloutsos, and Xin Luna Dong.
J-Recs: Principled and scalable recommendation justification. In ICDM,
pages 1208–1213. IEEE, 2020. doi:10.1109/ICDM50108.2020.00151
63

[PKH+21] Namyong Park, Minhyeok Kim, Nguyen Xuan Hoai, Robert I. McKay,
and Dong-Kyun Kim. Knowledge-based dynamic systems modeling: A
case study on modeling river water quality. In ICDE, pages 2231–2236.
IEEE, 2021. doi:10.1109/ICDE51399.2021.00229 161

[PKP+18] Namyong Park, Eunjeong Kang, Minsu Park, Hajeong Lee, Hee-Gyung
Kang, Hyung-Jin Yoon, and U. Kang. Predicting acute kidney injury in
cancer patients using heterogeneous and irregular data. PLOS ONE, 13,
07 2018. 9, 161

[PLJH21] Zhihao Peng, Hui Liu, Yuheng Jia, and Junhui Hou. Attention-driven
graph clustering network. In ACM Multimedia, pages 935–943. ACM, 2021.
13, 208, 219, 220, 221, 224, 226, 231, 232

[PLM+22] Namyong Park, Fuchen Liu, Purvanshi Mehta, Dana Cristofor, Christos
Faloutsos, and Yuxiao Dong. EvoKG: Jointly modeling event time and
network structure for reasoning over temporal knowledge graphs. In
WSDM, pages 794–803. ACM, 2022. doi:10.1145/3488560.3498451
187, 227

[PMK16] Ha-Myung Park, Sung-Hyon Myaeng, and U. Kang. Pte: Enumerating
trillion triangles on distributed systems. In KDD, pages 1115–1124, 2016.
99

259

10.1145/2983323.2983332
10.1145/3292500.3330855
10.1145/3292500.3330855
10.1145/3394486.3403093
10.1145/3394486.3403093
10.1109/ICDM50108.2020.00151
10.1109/ICDE51399.2021.00229
10.1145/3488560.3498451

[POK17] Namyong Park, Sejoon Oh, and U Kang. Fast and scalable distributed
boolean tensor factorization. In ICDE, pages 1071–1082. IEEE Computer
Society, 2017. doi:10.1109/ICDE.2017.152 60, 87, 97, 226

[POK19] Namyong Park, Sejoon Oh, and U Kang. Fast and scalable method for
distributed boolean tensor factorization. VLDB J., 28(4):549–574, 2019.
doi:10.1007/s00778-019-00538-z 60, 87, 203, 226

[POvdO+19] Ben Poole, Sherjil Ozair, Aäron van den Oord, Alex Alemi, and George
Tucker. On variational bounds of mutual information. In ICML, volume 97
of Proceedings of Machine Learning Research, pages 5171–5180. PMLR, 2019.
211

[PPMK16] Ha-Myung Park, Namyong Park, Sung-Hyon Myaeng, and U Kang. Parti-
tion aware connected component computation in distributed systems. In
ICDM, pages 420–429. IEEE Computer Society, 2016. doi:10.1109/ICDM.
2016.0053 99, 226

[PPMK20] Ha-Myung Park, Namyong Park, Sung-Hyon Myaeng, and U Kang.
PACC: Large scale connected component computation on hadoop and
spark. PLOS ONE, 15(3):1–25, 03 2020. 226

[PRK+22] Namyong Park, Ryan Rossi, Eunyee Koh, Iftikhar Ahamath Burhanuddin,
Sungchul Kim, Fan Du, Nesreen Ahmed, and Christos Faloutsos. CGC:
Contrastive graph clustering for community detection and tracking. In
WWW. ACM / IW3C2, 2022. doi:10.1145/3485447.3512160 207

[Prone] Yahoo Webscope Program. https://webscope.sandbox.yahoo.
com, 2021 [Online]. Accessed: 2021-10-01. 219

[PXF+16] Xi Peng, Shijie Xiao, Jiashi Feng, Wei-Yun Yau, and Zhang Yi. Deep
subspace clustering with sparsity prior. In IJCAI, pages 1925–1931. IJ-
CAI/AAAI Press, 2016. 225

[RA15] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with
interactive graph analytics and visualization. In AAAI, 2015. 142

[RAK18] Ryan A. Rossi, Nesreen K. Ahmed, and Eunyee Koh. Higher-order net-
work representation learning. In WWW (Companion Volume), pages 3–4.
ACM, 2018. 148, 154

[RB08] Martin Rosvall and Carl T Bergstrom. Maps of random walks on complex
networks reveal community structure. Proceedings of the National Academy
of Sciences, 105(4):1118–1123, 2008. 226

[RB11] Martin Rosvall and Carl T Bergstrom. Multilevel compression of random
walks on networks reveals hierarchical organization in large integrated
systems. PloS one, 6(4):e18209, 2011. 226

260

10.1109/ICDE.2017.152
10.1007/s00778-019-00538-z
10.1109/ICDM.2016.0053
10.1109/ICDM.2016.0053
10.1145/3485447.3512160
https://webscope.sandbox.yahoo.com
https://webscope.sandbox.yahoo.com

[RCF+20] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Fed-
erico Monti, and Michael M. Bronstein. Temporal graph networks for
deep learning on dynamic graphs. CoRR, abs/2006.10637, 2020. 204

[RZA20] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. Deep inductive graph
representation learning. IEEE Trans. Knowl. Data Eng., 32(3):438–452, 2020.
148, 154

[SBG20] Oleksandr Shchur, Marin Bilos, and Stephan Günnemann. Intensity-free
learning of temporal point processes. In ICLR. OpenReview.net, 2020. 204

[SBMJ09] Kunwar P Singh, Ankita Basant, Amrita Malik, and Gunja Jain. Artificial
neural network modeling of the river water quality–a case study. Ecological
Modelling, 220(6):888–895, 2009. 183

[SCMN13] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng.
Reasoning with neural tensor networks for knowledge base completion.
In NIPS, pages 926–934, 2013. 204

[SDNT19] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowl-
edge graph embedding by relational rotation in complex space. In ICLR
(Poster). OpenReview.net, 2019. 188, 199, 204

[SDVB18] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bres-
son. Structured sequence modeling with graph convolutional recurrent
networks. In ICONIP (1), volume 11301 of Lecture Notes in Computer Science,
pages 362–373. Springer, 2018. 199, 204

[SFPY07] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu.
Graphscope: parameter-free mining of large time-evolving graphs. In
KDD, pages 687–696. ACM, 2007. 226

[SGR19] Uriel Singer, Ido Guy, and Kira Radinsky. Node embedding over temporal
graphs. In IJCAI, pages 4605–4612. ijcai.org, 2019. 199, 204

[Sin21] Uriel Singer. Ctdne. https://github.com/urielsinger/CTDNE,
2021. 232

[SJK15] Lee Sael, Inah Jeon, and U Kang. Scalable tensor mining. Big Data Research,
2(2):82 – 86, 2015. Visions on Big Data. 97

[SK16] Shaden Smith and George Karypis. A medium-grained algorithm for
distributed sparse tensor factorization. In IPDPS, 2016. 98

[SK17] Shaden Smith and George Karypis. Accelerating the tucker decomposition
with compressed sparse tensors. In Europar, 2017. 98

[SKB+18] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den
Berg, Ivan Titov, and Max Welling. Modeling relational data with graph

261

https://github.com/urielsinger/CTDNE

convolutional networks. In ESWC, volume 10843 of Lecture Notes in Com-
puter Science, pages 593–607. Springer, 2018. 188, 193, 199, 204, 205

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core
of semantic knowledge. In WWW, pages 697–706, 2007. 3, 17

[SL09] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from
experimental data. science, 324(5923):81–85, 2009. 183

[sl21] scikit learn. scikit-learn. https://github.com/scikit-learn/
scikit-learn, 2021. Accessed: 2021-10-20. 231

[SLA12] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian
optimization of machine learning algorithms. In NIPS, pages 2960–2968,
2012. 137, 152

[SLZ20] Ke Sun, Zhouchen Lin, and Zhanxing Zhu. Multi-stage self-supervised
learning for graph convolutional networks on graphs with few labeled
nodes. In AAAI, pages 5892–5899. AAAI Press, 2020. 226

[SPK16] Shaden Smith, Jongsoo Park, and George Karypis. An exploration of
optimization algorithms for high performance tensor completion. SC,
2016. 97

[SSK17] Kijung Shin, Lee Sael, and U. Kang. Fully scalable methods for distributed
tensor factorization. TKDE, 29(1), 2017. 97, 98

[STM+05] Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukher-
jee, Benjamin L Ebert, Michael A Gillette, Amanda Paulovich, Scott L
Pomeroy, Todd R Golub, Eric S Lander, et al. Gene set enrichment analysis:
a knowledge-based approach for interpreting genome-wide expression
profiles. Proceedings of the National Academy of Sciences, 102(43):15545–15550,
2005. 45

[STZ+20] Chang Su, Jie Tong, Yongjun Zhu, Peng Cui, and Fei Wang. Network
embedding in biomedical data science. Briefings Bioinform., 21(1):182–197,
2020. 7, 136

[SWG+20] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang.
DySAT: Deep neural representation learning on dynamic graphs via self-
attention networks. In WSDM, pages 519–527. ACM, 2020. 204

[TDWS17] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-Evolve:
Deep temporal reasoning for dynamic knowledge graphs. In ICML, vol-
ume 70 of Proceedings of Machine Learning Research, pages 3462–3471. PMLR,
2017. 188, 190, 192, 196, 197, 198, 199, 204, 205

[TF06] Hanghang Tong and Christos Faloutsos. Center-piece subgraphs: problem
definition and fast solutions. In KDD, pages 404–413, 2006. 75, 76, 79, 83,
84, 85

262

https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn

[TFBZ19] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan
Zha. DyRep: Learning representations over dynamic graphs. In ICLR
(Poster). OpenReview.net, 2019. 188, 199, 204

[TFP08] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Random walk with
restart: fast solutions and applications. Knowl. Inf. Syst., 14(3):327–346,
2008. 34, 35, 42, 59, 82

[TGC+14] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning
deep representations for graph clustering. In AAAI, pages 1293–1299.
AAAI Press, 2014. 13, 208, 226

[Tin07] Nava Tintarev. Explanations of recommendations. In RecSys, pages 203–
206. ACM, 2007. 82

[TM07] Nava Tintarev and Judith Masthoff. A survey of explanations in recom-
mender systems. In ICDE, pages 801–810, 2007. 5, 64

[TM15] Nava Tintarev and Judith Masthoff. Explaining recommendations: Design
and evaluation. In Recommender Systems Handbook, pages 353–382. 2015. 5,
64, 82

[TMC+19] Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, and Wenwu Zhu. Autone: Hyper-
parameter optimization for massive network embedding. In KDD, pages
216–225. ACM, 2019. 152

[TPF+10] Hanghang Tong, Spiros Papadimitriou, Christos Faloutsos, Philip S. Yu,
and Tina Eliassi-Rad. BASSET: scalable gateway finder in large graphs. In
PAKDD, 2010. 75, 76, 83

[TPF+12] Hanghang Tong, Spiros Papadimitriou, Christos Faloutsos, Philip S. Yu,
and Tina Eliassi-Rad. Gateway finder in large graphs: problem definitions
and fast solutions. Inf. Retr., 15(3-4):391–411, 2012. 83

[TPPM20] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel
Müller. Graph clustering with graph neural networks. arXiv preprint
arXiv:2006.16904, 2020. 226

[TQW+15] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu
Mei. LINE: large-scale information network embedding. In WWW, pages
1067–1077. ACM, 2015. 154, 203

[TZY+08] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.
Arnetminer: extraction and mining of academic social networks. In KDD,
2008. 78

[VCC+18] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. In ICLR (Poster).
OpenReview.net, 2018. 19, 22, 29, 35, 39, 44, 56, 60, 203

263

[vdOLV18] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning
with contrastive predictive coding. CoRR, abs/1807.03748, 2018. 209, 211

[VFH+19] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua
Bengio, and R. Devon Hjelm. Deep graph infomax. In ICLR (Poster).
OpenReview.net, 2019. 211, 219, 220, 221, 224, 226

[VGT15] Renu Vyas, Purva Goel, and Sanjeev S. Tambe. Genetic programming
applications in chemical sciences and engineering. In Handbook of Genetic
Programming Applications, pages 99–140. 2015. 162

[Vru16] Jasper A Vrugt. Markov chain monte carlo simulation using the dream
software package: Theory, concepts, and matlab implementation. Environ-
mental Modelling & Software, 75:273–316, 2016. 179

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NIPS, pages 6000–6010, 2017. 35

[VSR09] Jesse Vig, Shilad Sen, and John Riedl. Tagsplanations: explaining recom-
mendations using tags. In IUI, pages 47–56, 2009. 5, 64, 82

[VTBC+08] Jasper A Vrugt, Cajo JF Ter Braak, Martyn P Clark, James M Hyman, and
Bruce A Robinson. Treatment of input uncertainty in hydrologic modeling:
Doing hydrology backward with markov chain monte carlo simulation.
Water Resources Research, 44(12), 2008. 179

[WCG+15] Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C. Denny, Abel N.
Kho, You Chen, Bradley A. Malin, and Jimeng Sun. Rubik: Knowledge
guided tensor factorization and completion for health data analytics. In
KDD, pages 1265–1274, 2015. 80, 84

[WCY+18] Xiting Wang, Yiru Chen, Jie Yang, Le Wu, Zhengtao Wu, and Xing Xie. A
reinforcement learning framework for explainable recommendation. In
ICDM, 2018. 82

[WCZ+19] Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-
Hao Deng. Hyperparameter optimization for machine learning models
based on bayesian optimization. Journal of Electronic Science and Technology,
17(1):26–40, 2019. 137, 152

[WGM+14] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul
Gupta, and Dekang Lin. Knowledge base completion via search-based
question answering. In WWW, pages 515–526, 2014. 18

[WHF+18] Xiang Wang, Xiangnan He, Fuli Feng, Liqiang Nie, and Tat-Seng Chua.
TEM: tree-enhanced embedding model for explainable recommendation.
In WWW, 2018. 82

264

[Whi96] Peter Alexander Whigham. Grammatical Bias for Evolutionary Learning.
PhD thesis, New South Wales, Australia, Australia, 1996. AAI0597571.
163

[WJS+19] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and
Philip S. Yu. Heterogeneous graph attention network. In WWW, pages
2022–2032. ACM, 2019. 204

[WJZ+19] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu,
and Kilian Q. Weinberger. Simplifying graph convolutional networks.
In ICML, volume 97 of Proceedings of Machine Learning Research, pages
6861–6871. PMLR, 2019. 154

[WLHS21] Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. Self-supervised heteroge-
neous graph neural network with co-contrastive learning. In KDD, pages
1726–1736. ACM, 2021. 226

[WM97] David H. Wolpert and William G. Macready. No free lunch theorems for
optimization. IEEE Trans. Evol. Comput., 1(1):67–82, 1997. 8, 137

[WMP+14] Marek S. Wiewiórka, Antonio Messina, Alicja Pacholewska, Sergio Maffio-
letti, Piotr Gawrysiak, and Michal J. Okoniewski. Sparkseq: fast, scalable
and cloud-ready tool for the interactive genomic data analysis with nu-
cleotide precision. Bioinformatics, 30(18), 2014. 99

[WMWG17] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph
embedding: A survey of approaches and applications. IEEE TKDE, 29(12),
2017. 47

[WPB01] Geoffrey I. Webb, Michael J. Pazzani, and Daniel Billsus. Machine learning
for user modeling. User Model. User-Adapt. Interact., 11(1-2), 2001. 9, 161

[WPH+19] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and
Chengqi Zhang. Attributed graph clustering: A deep attentional em-
bedding approach. In IJCAI, pages 3670–3676. ijcai.org, 2019. 13, 208, 219,
220, 226

[WWY15] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning
for recommender systems. In KDD, pages 1235–1244, 2015. 64

[WZG+19] Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han
Gao, and Guihai Chen. Dual graph attention networks for deep latent
representation of multifaceted social effects in recommender systems. In
WWW, 2019. 60

[XGF16] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. Unsupervised deep
embedding for clustering analysis. In ICML, volume 48 of JMLR Workshop
and Conference Proceedings, pages 478–487. JMLR.org, 2016. 13, 208, 209,
219, 220, 225, 226

265

[XHS+12] Lin Xu, Frank Hutter, Jonathan Shen, Holger H Hoos, and Kevin Leyton-
Brown. Satzilla2012: Improved algorithm selection based on cost-sensitive
classification models. Proceedings of SAT Challenge, pages 57–58, 2012. 147,
152

[XLT+18] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs
with jumping knowledge networks. In ICML, pages 5449–5458, 2018. 22,
60

[XNA+19] Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Jens Lehmann, and
Hamed Shariat Yazdi. Temporal knowledge graph embedding model
based on additive time series decomposition. CoRR, abs/1911.07893, 2019.
198

[XRK+20] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan
Achan. Inductive representation learning on temporal graphs. In ICLR.
OpenReview.net, 2020. 204

[XSY+21] Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and
Huan Liu. Graph learning: A survey. IEEE Trans. Artif. Intell., 2(2):109–127,
2021. 7, 136, 152

[YCWS20] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does
self-supervision help graph convolutional networks? In ICML, volume
119 of Proceedings of Machine Learning Research, pages 10871–10880. PMLR,
2020. 226

[YFSH17] Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, and Mingyi Hong. Towards
k-means-friendly spaces: Simultaneous deep learning and clustering. In
ICML, volume 70 of Proceedings of Machine Learning Research, pages 3861–
3870. PMLR, 2017. 13, 208, 225

[YHC+18] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L.
Hamilton, and Jure Leskovec. Graph convolutional neural networks for
web-scale recommender systems. In KDD, pages 974–983, 2018. 19, 22, 35,
44, 60

[YHY08] Xiaoxin Yin, Jiawei Han, and Philip S. Yu. Truth discovery with multiple
conflicting information providers on the web. IEEE TKDE, 20(6):796–808,
2008. 59

[YLY+19] Mingxuan Yue, Yaguang Li, Haoze Yang, Ritesh Ahuja, Yao-Yi Chiang, and
Cyrus Shahabi. DETECT: deep trajectory clustering for mobility-behavior
analysis. In IEEE BigData, pages 988–997. IEEE, 2019. 13, 208

[YWCP21] Yingfang Yuan, Wenjun Wang, George M. Coghill, and Wei Pang. A novel
genetic algorithm with hierarchical evaluation strategy for hyperparame-

266

ter optimisation of graph neural networks. CoRR, abs/2101.09300, 2021.
152

[YYH+15] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng.
Embedding entities and relations for learning and inference in knowledge
bases. In ICLR, 2015. 188, 199, 204

[YZ20] Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of
algorithms and applications. CoRR, abs/2003.05689, 2020. 151

[YZZ+17] Di Yao, Chao Zhang, Zhihua Zhu, Jian-Hui Huang, and Jingping Bi. Tra-
jectory clustering via deep representation learning. In IJCNN, pages
3880–3887. IEEE, 2017. 13, 208

[ZC20] Yongfeng Zhang and Xu Chen. Explainable recommendation: A survey
and new perspectives. Found. Trends Inf. Retr., 14(1), 2020. 64, 82

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In NSDI, pages 15–28, 2012. 89, 99, 113

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. In HotCloud,
2010. 99

[ZCP+18] Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, and Wenwu Zhu. TIMERS:
error-bounded SVD restart on dynamic networks. In AAAI, pages 224–231.
AAAI Press, 2018. 219, 221, 224, 227

[ZCZ22] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A
survey. IEEE Trans. Knowl. Data Eng., 34(1):249–270, 2022. 7, 136, 152

[ZGY+16] Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Gal-
styan. Scalable temporal latent space inference for link prediction in
dynamic social networks. IEEE Trans. Knowl. Data Eng., 28(10):2765–2777,
2016. 204

[ZLZ+14] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and
Shaoping Ma. Explicit factor models for explainable recommendation
based on phrase-level sentiment analysis. In SIGIR, pages 83–92, 2014. 82

[ZMU+16] Reza Bosagh Zadeh, Xiangrui Meng, Alexander Ulanov, Burak Yavuz,
Li Pu, Shivaram Venkataraman, Evan R. Sparks, Aaron Staple, and Matei
Zaharia. Matrix computations and optimization in apache spark. In KDD,
pages 31–38, 2016. 99

[ZPW+19] Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai Zhu, Wei
Zhang, Abraham Bernstein, and Huajun Chen. Iteratively learning em-

267

beddings and rules for knowledge graph reasoning. In WWW, pages
2366–2377, 2019. 60

[ZTLL21] Ronghang Zhu, Zhiqiang Tao, Yaliang Li, and Sheng Li. Automated graph
learning via population based self-tuning GCN. In SIGIR, pages 2096–2100.
ACM, 2021. 152

[ZWFM06] Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. Learning
from incomplete ratings using non-negative matrix factorization. In SDM,
2006. 64

[ZYL+16] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying
Ma. Collaborative knowledge base embedding for recommender systems.
In KDD, 2016. 3, 17

[ZYR+18] Le-kui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dy-
namic network embedding by modeling triadic closure process. In AAAI,
pages 571–578. AAAI Press, 2018. 204

268

	1 Introduction
	1.1 Overview and Contributions
	1.1.1 part:static: Static Graphs and Tensors
	1.1.2 part:dynamic: Dynamic Graphs and Tensors

	I Static Graphs and Tensors
	2 Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Problem Definition
	2.2.2 Desiderata for Modeling Node Importance in KGs
	2.2.3 Graph Neural Networks

	2.3 Method
	2.3.1 Score Aggregation
	2.3.2 Predicate-Aware Attention Mechanism
	2.3.3 Centrality Adjustment
	2.3.4 Model Architecture
	2.3.5 Model Training

	2.4 Experiments
	2.4.1 Datasets
	2.4.2 Baselines
	2.4.3 Performance Evaluation
	2.4.4 Importance Estimation on Real-World Data
	2.4.5 Analysis of GENI

	2.5 Related Work
	2.6 Conclusion
	2.7 Appendix
	2.7.1 Datasets
	2.7.2 Experimental Settings
	2.7.3 Additional Evaluation

	3 Inferring Node Importance in a Knowledge Graph from Multiple Input Signals
	3.1 Introduction
	3.2 Background
	3.3 Task Description
	3.4 Methods
	3.4.1 Learning Objective
	3.4.2 Handling Rebel Input Signals
	3.4.3 Graph Neural Networks for Node Importance Estimation

	3.5 Experiments
	3.5.1 Dataset Description
	3.5.2 Performance Evaluation
	3.5.3 Baselines
	3.5.4 Q1. Accuracy
	3.5.5 Q2. Use in Downstream Tasks
	3.5.6 Q3. Handling Rebel Signals

	3.6 Related Work
	3.7 Conclusion
	3.8 Appendix
	3.8.1 Experimental Settings

	4 Principled and Scalable Recommendation Justification
	4.1 Introduction
	4.2 Justifying Recommendations
	4.2.1 Problem Statement
	4.2.2 Product Graph and Justifications
	4.2.3 Quantifying the Quality of Justifications
	4.2.4 Justification Discovery

	4.3 Evaluation Using Axioms
	4.3.1 Axioms
	4.3.2 Baselines
	4.3.3 Results

	4.4 Evaluation Using Real-World Data
	4.4.1 Datasets
	4.4.2 Baselines
	4.4.3 Q1. Justification Quality
	4.4.4 Q2. Scalability
	4.4.5 Q3. Relevance-Diversity Trade-Off

	4.5 Related Work
	4.6 Conclusion
	4.7 Appendix
	4.7.1 Experimental Settings

	5 Fast and Scalable Distributed Boolean Tensor Factorization
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Boolean Arithmetic
	5.2.2 Notation
	5.2.3 Tensor Rank and Tensor Decompositions

	5.3 Related Works
	5.3.1 Boolean Tensor Decomposition
	5.3.2 Normal Tensor Decomposition
	5.3.3 Partitioning of Sparse Tensors
	5.3.4 Distributed Computing Frameworks

	5.4 Proposed Method
	5.4.1 Updating a Factor Matrix
	5.4.2 Updating a Core Tensor
	5.4.3 Distributed Generation and Minimal Transfer of Intermediate Data
	5.4.4 Exploiting the Characteristics of Boolean Operation and Boolean Tensor Factorization
	5.4.5 Careful Partitioning of the Workload
	5.4.6 Putting Things Together
	5.4.7 Implementation
	5.4.8 Analysis

	5.5 Experiments
	5.5.1 Experimental Settings
	5.5.2 Data Scalability
	5.5.3 Machine Scalability
	5.5.4 Reconstruction Error

	5.6 Conclusion
	5.7 Appendix
	5.7.1 Proof of Lemma 5.4
	5.7.2 Proof of Lemma 5.5
	5.7.3 Proof of Lemma 5.6
	5.7.4 Proof of Lemma 5.7
	5.7.5 Proof of Lemma 5.8
	5.7.6 Proof of Lemma 5.9
	5.7.7 Proof of Lemma 5.10
	5.7.8 Proof of Lemma 5.11

	6 Fast Automatic Model Selection for Graph Representation Learning
	6.1 Introduction
	6.2 Problem Formulation
	6.3 Framework
	6.3.1 Offline Meta-Training
	6.3.2 Online Model Prediction
	6.3.3 Structural Meta-Graph Features
	6.3.4 Embedding Models and Graphs

	6.4 Experiments
	6.4.1 Experimental Settings
	6.4.2 Model Selection Accuracy (RQ1)
	6.4.3 Model Selection Efficiency (RQ2)
	6.4.4 Effects of Meta-Graph Features (RQ3)

	6.5 Related Work
	6.5.1 Model Selection in Machine Learning
	6.5.2 Model Selection in Graph Learning

	6.6 Conclusion
	6.7 Appendix
	6.7.1 Model Set
	6.7.2 Graph Domains
	6.7.3 Runtime
	6.7.4 AutoGRL Algorithm
	6.7.5 Experimental settings
	6.7.6 Meta-Graph Features

	II Dynamic Graphs and Tensors
	7 Knowledge-Guided Dynamic Systems Modeling
	7.1 Introduction
	7.2 River Water Quality Modeling
	7.3 Methods
	7.3.1 Representing Dynamic Processes Using TAG
	7.3.2 Knowledge-Guided Genetic Model Revision
	7.3.3 Applying GMR to Real-World Problems
	7.3.4 Improving the Efficiency and Effectiveness

	7.4 Experiments
	7.4.1 Dataset and Modeling Task Description
	7.4.2 Comparators
	7.4.3 Performance Evaluation
	7.4.4 Q1. Prediction Accuracy
	7.4.5 Q2. Ecological Analysis
	7.4.6 Q3. Analysis of Speedup Techniques

	7.5 Related Work
	7.6 Conclusion
	7.7 Appendix
	7.7.1 Further Details of River Modeling
	7.7.2 Experimental Settings

	8 Jointly Modeling Event Time and Network Structure for Reasoning over Temporal Knowledge Graphs
	8.1 Introduction
	8.2 Problem Formulation
	8.3 Modeling a Temporal Knowledge Graph
	8.3.1 Modeling Event Time
	8.3.2 Modeling Evolving Network Structure
	8.3.3 Parameter Learning

	8.4 Experiments
	8.4.1 Temporal Knowledge Graph Data
	8.4.2 Event Time Prediction (RQ1)
	8.4.3 Temporal Link Prediction (RQ2)
	8.4.4 Efficiency (RQ3)
	8.4.5 Ablation Study (RQ4)

	8.5 Related Work
	8.6 Conclusion
	8.7 Appendix
	8.7.1 Experimental Settings

	9 Contrastive Graph Clustering for Community Detection and Tracking
	9.1 Introduction
	9.2 Problem Formulation
	9.2.1 Graph Clustering
	9.2.2 Temporal Graph Clustering

	9.3 Preliminaries
	9.4 Proposed Framework
	9.4.1 CGC: Contrastive Graph Clustering
	9.4.2 CGC for Temporal Graph Clustering

	9.5 Experiments
	9.5.1 Datasets
	9.5.2 Baselines
	9.5.3 Node Clustering Quality (RQ1)
	9.5.4 Temporal Link Prediction Accuracy (RQ2)
	9.5.5 Ablation Study (RQ3)

	9.6 Related Work
	9.7 Conclusion
	9.8 Appendix
	9.8.1 Mining Case Studies
	9.8.2 Clustering Performance over Time
	9.8.3 Experimental Settings
	9.8.4 Graph Stream Segmentation

	III Conclusions and Future Directions
	10 Conclusions
	10.1 Summary of Contributions
	10.1.1 part:static: Static Graphs and Tensors
	10.1.2 part:dynamic: Dynamic Graphs and Tensors

	11 Future Directions
	11.1 Complex Anomaly Detection
	11.2 Modeling Dynamic Networks
	11.3 Knowledge Reasoning

	Bibliography

