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Abstract

Modern cognitive neuroscience has focused on mapping what information is pro-
cessed both where and when in the brain as an initial step towards understanding how
information is processed by the brain. Brain mapping is most commonly performed
using the linear encoding model - a computational tool that can be used to align brain
measurements with numerical stimulus representations that can be informative of the
underlying neural processes. But as we move towards more naturalistic experimen-
tal settings and start to work with increasingly complex stimulus representations, it
becomes important to test the boundaries of what we are able to learn using existing
computational tools so we can adjust them accordingly. In this work, we examine
two potential limitations of the linear encoding model. First, we look at a specific
problem setting that shows that the existing framework does not always allow us to
disentangle where specific stimulus-related information is processed in the brain. As
an initial step towards addressing this issue, we propose a new framework that can be
used to group together areas of the brain that are responsible for processing similar
information. Second, we explore whether using a more expressive, nonlinear encod-
ing model can allow us to better align the internal representational spaces of artificial
neural networks, from which we can derive more complex and potentially more in-
formative stimulus representations, with those of the brain. Overall, our proposed
extensions to conventional encoding approaches can help neuroscientists unlock a
richer and more complete space of brain mappings.
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Chapter 1

Introduction

Encoding models have emerged as the computational tool of choice for researchers interesting
in mapping where specific information is processed in the brain. Recent work has shown that
the linear encoding model, which predicts brain activity as a linear combination of a numerical
stimulus representation, can be used to reveal important properties of information processing in
the brain, such as that the representation of concepts is distributed across the cortex but consistent
across people [33, 34, 39, 43, 46, 65]. In these cases, researchers used interpretable represen-
tations of the stimuli to link specific information with the location where this information is
processed in the brain (i.e. a concrete noun stimulus was represented as its co-occurrence with a
set of verbs in a large text corpora [43]).

But with the advent of machine learning in recent years, researchers have started to use lin-
ear encoding models in conjunction with more complex representations derived from artificial
neural networks (ANNs) as a way to understand where the brain may be representing high level
semantic information about the stimulus. Since concerted efforts have succeeded at building
ANNs that can match human-level performance on specific tasks like language comprehension
and image understanding, these networks and the representations within seem to capture use-
ful semantic information about their inputs. For example, language models have been shown
to contain information about part of speech [42] and semantic roles [59]. While these com-
plex stimuli representations are able to predict brain measurements to an unprecedented extent
[6, 7, 25, 37, 54, 60, 64, 67, 72], their complexity also makes it more difficult to make scientific
inferences about what specific information is processed where in the brain. This inference be-
comes even more difficult in experimental settings where participants observe naturalistic stim-
uli (e.g. watching movies, reading books, listening to stories), which are becoming increasingly
more popular in neuroscience [28, 45, 57]. Although this naturalistic setting enables studying
processing that is more easily generalizable to the everyday world, it can further complicate
brain mapping because there is less control over what information the brain is actually process-
ing about the stimulus.

In this thesis, we delve into two potential shortcomings of the current encoding model frame-
work that may be holding it back from aligning information from complex representations of
naturalistic stimuli with brain activity. First, we investigate a specific naturalistic problem set-
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ting that highlights why existing computational approaches may fail to disentangle where spe-
cific stimulus-related information is processed in the brain. As an initial step towards overcoming
these challenges, we put forth a promising new tool that can help us identify groups of regions in
the brain where similar stimulus-related information is processed. Second, we show that adding
complexity beyond the commonly used linear encoding model might allow us to deal with the
added complexity in modern stimulus representations.

Understanding what information is processed both where and when in the brain helps us get
closer to answering how it is processed by the brain. In this thesis, we mainly focus on the what
and where questions. Since we rely mostly on fMRI data, which has high spatial resolution and
low temporal resolution, for all experiments that are part of this work, we do not address the
when question here. Also, the works included primarily focus on language processing in the
brain but the ideas we introduce are general and can be applied to a wide variety of stimulus
representations.

1.1 Overview of Methods

fMRI data: Hidden Figures. The experiments we perform in Sections 2 and 3 use fMRI
recordings of 6 healthy participants presented with the movie Hidden Figures in English, made
available by the Courtois Neuromod group (data release cneuromod-2020). The movie was
split up into roughly 10 minute segments that were presented to participants in separate runs.
A total of approximately 120 minutes of data were recorded for each participant, at a repetition
time (TR) of 1.49 seconds. Apart from brain data, this dataset also provides word-level times-
tamp estimates for every movie segment. Since words are presented at an uneven rate in this
setting, these timestamps play a crucial role in allowing us to group words based on the TR in-
terval they appear in. This data is available upon request at https://docs.cneuromod.ca/
en/latest/ACCESS.html#downloading-the-dataset

fMRI data: HCP short movies. We use publicly available data from the Human Connec-
tome Project (HCP) 7T dataset, with healthy participants between 22-36 years old [63]. HCP
fMRI data comes minimally pre-processed as FIX-Denoised data [24, 27, 53]. We focus our
analysis on only 90 participants for now, and are not using the remaining due to another project.
Each participant watched naturalistic audio-visual video clips in English during 4 scans. Each
scan was just over 15 minutes long, 60 minutes and 55 seconds of data were recorded. The fMRI
sampling rate (TR) was 1 second.

fMRI data: Harry Potter and the Sorcerer’s Stone. We use fMRI recordings of 8 healthy
participants reading chapter 9 of Harry Potter and the Sorcerer’s Stone [52]. This data was made
available by Wehbe et. al [66]. Each word was presented for 0.5 seconds and approximately 45
minutes of data were recorded for each participant, at a repetition time (TR) of 2 seconds.

Training encoding models. Given TR-level stimulus representations [z0, z1, . . . zT ] (where T is
the total number of TR intervals), we train encoding models to predict voxel activities at the j-th
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TR interval using a concatenated vector of stimulus representations corresponding to previous
intervals [zj−1, zj−2, zj−3, zj−4]. This lets us account for the lag in the hemodynamic response
that is characteristic of fMRI recordings. Similar to previous work [34, 46, 58, 60, 65, 67], we
use ridge-regression and k-fold cross-validation (we specify k separately for each study) during
training. We use nested 10-fold cross-validation to choose regularization parameters indepen-
dently for each voxel.
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Chapter 2

Case study: encoding models in movie
watching

2.1 Introduction
In this chapter, we look at an exemplar problem setting that helps shed light on some of the chal-
lenges of working with complex representations of naturalistic stimuli. We are specifically in-
terested in disambiguating where in the brain high-level semantic information is processed from
where potential confounders like speaker identity and word rate are represented when watching
a movie. Our approach uses linear encoding models to examine how well a variable or represen-
tation that captures specific stimulus-related information can significantly predict brain activity
in different regions. Here, we use internal representations from a bidirectional language model
called ELMo [49] as proxies for some of the high-level semantic information that is also repre-
sented in the brain. Like its contemporaries, ELMo can be optimized to perform well on a variety
of downstream linguistic tasks so these representations seem to capture something generic about
the given language input.

2.2 Methods
fMRI data. We use fMRI recordings of 6 healthy participants presented with the movie Hidden
Figures in English, made available by the Courtois Neuromod group. For more details, refer to
fMRI data: Courtois Neuromod in Section 1.1.

Stimulus representations. We extract three types of representations as proxies for semantic,
speaker-specific and word rate information from the stimulus. For high-level semantic infor-
mation, we use word-level representations from the first hidden layer of a pretrained version of
ELMo [23] (a bidirectional language model), obtained by passing the previous 25 words to the
network. Prior work has shown that ELMo representations collected at this context length and
layer depth can be significantly predictive of fMRI recordings of participants comprehending
language [60, 61]. We also extract our own word-level speaker labels by aligning the word-by-
word speech transcriptions provided by the dataset with subtitles that map between speakers and
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their dialogues. The collected speaker labels span 10 of the movie’s characters that have the
most dialogues. The remaining characters are grouped under the OTHER label. From a total of
approx. 11000 words, 2 speakers are mapped to approx. 2000 words each, another 2 to approx.
1000 words each and the remaining 6 to approx. 200-700 words each. The rest of the words
(approx. 2500) are annotated with the OTHER label. Using these labels, we construct word-level
one-hot speaker representations. We use timestamp estimates from the dataset to transform the
word-level ELMo and speaker representations to TR-level representations by averaging those
that appear together in the same TR interval. Finally, we also generate our own TR-level word
rate labels that indicate the number of words presented in each interval.

Encoding models. First, we estimate encoding models which predict brain activity from each
stimulus representation directly. For details about model training, refer to Section 1.1. All en-
coding models here are trained using 12-fold cross-validation. What we find is that ELMo,
word rate and speaker identity predict similar areas of the brain similarly well so in an effort
to disambiguate the unique underlying neural processes related to each of them, we further es-
timate encoding models which predict brain activity after specific stimulus-related information
has been regressed out from an existing representation. To regress out information Y from a
stimulus representation X , we generate predictions X̂ from Y and collect residual representa-
tions, X−Y = X − X̂ . This should allow us to compare how encoding performance is affected
when information Y is no longer present in the encoding model’s input space. More information
about model evaluation and these experiments can be found in section 2.3.

2.3 Results

ELMo, word rate and speaker identity predict the brain similarly well. We train separate
encoding models to predict brain activity from each stimulus representation. We then evaluate
encoding performance by computing voxel-level Pearson correlations [17] between the models’
predictions and the true activities from held-out data. Using voxel-level permutation tests (sig-
nificance level 0.05, FDR controlled for multiple comparisons [2]), we determine the statistical
significance of each model’s performance independently for each subject. Lastly, we use pycor-
tex [21] to visualize the number of subjects where each voxel is significantly predicted, which
we show in Fig. 2.1. Here, white voxels are predicted significantly from the input stimulus rep-
resentation for most subjects. On the other hand, darker (blue) voxels could not be predicted
significantly well from the same representation by our encoding model. What we find is that all
three stimulus representations are able to consistently predict similar clusters of voxels, mainly
from the temporal and parietal lobes, similarly well.

Effect of regressing out word rate. Next, we investigate whether word rate might be a con-
found in trying to understand how semantic information captured by ELMo and speaker-specific
information are represented in the brain. We first verify that ELMo representations and speaker
identity can significantly predict word rate (permutation test, significance level 0.05) to confirm
that both of them indeed interact with word rate. After confirming this, we regress out word
rate information from each of the two representations and estimate separate encoding models
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A. ELMo

0 6
no. of subjects where voxel 

predicted significantly

B. Word rate C. Speaker identity

Figure 2.1: Plotting number of subjects where each voxel is predicted significantly by ELMo,
word rate and speaker identity.

to predict brain activity using the resulting residual representations. We compute the difference
between the voxel-level Pearson correlations collected before and after word rate is regressed
out and perform permutation tests (significance level 0.05, FDR controlled for multiple compar-
isons) to determine whether this difference is significant for each voxel. Again, we use pycortex
to plot the number of subjects where a significant difference is found, but restrict our visualiza-
tion to only those voxels that were predicted significantly by the original representation (ELMo
or speaker identity) for 3 or more of the 6 participants. The mass of white voxels we see across
the temporal lobe in Fig. 2.2 shows that there is a significant difference in encoding performance
in this region across a majority of participants when word rate information is regressed out from
both ELMo and speaker identity. This seems to suggest that the alignment we found earlier in
these clusters may largely be attributed to the processing of low-level information related to word
rate here.

Effect of regressing out speaker identity. We use a similar approach to also investigate whether
speaker identity might be a confound in trying to understand how other information captured by
ELMo is represented in the brain. Again, we verify that ELMo representations can significantly
predict speaker identity (permutation test, significance level 0.05, FDR controlled for multiple
comparisons). We find that 4 out of 5 speakers with over 1000 words over the whole movie and 4
out of the remaining 6 speaker labels can be predicted significantly from ELMo, which confirms
that they both interact with each other. We then perform voxel-level permutation tests (signifi-
cance level 0.05, FDR controlled for multiple comparisons) to determine whether regressing out
speaker information leads to a significant difference in encoding performance. Fig. 2.3A shows
a significant difference in encoding performance, again in the temporal lobe, across a majority of
participants when speaker information is regressed out from both ELMo. However, our results
from the previous section already indicated that word rate might be a potential confounder in
understanding how the brain processes both ELMo- and speaker-related information. So we also
regress out speaker information from the residual representation that is obtained by first regress-
ing out word rate from ELMo. The dark blue clusters we observe in Fig. 2.3B suggests that there
are few significant differences in encoding performance after word rate is accounted for.
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A. Regressing word rate from ELMo B. Regressing word rate from speaker identity

0 6
no. of subjects where 

significant difference observed

Figure 2.2: Number of subjects where we find a significant difference in encoding performance
after word rate information is regressed out from ELMo and speaker identity.

A. Regressing speaker from ELMo B. Regressing speaker from ELMo after  
    regressing word rate from ELMo

0 6
no. of subjects where 

significant difference observed

Figure 2.3: Number of subjects where we find a significant difference in encoding performance
after (A) speaker information is regressed out from ELMo and (B) speaker information is re-
gressed out from ELMo after first regressing out word rate information.
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2.4 Discussion
We examine what linear encoding models can tell us about where the brain processes specific
information when presented with a complex naturalistic stimulus - here, the movie Hidden Fig-
ures. We observe that word rate, speaker identity and ELMo representations can predict brain
activity in similar regions similarly well. Our findings suggest that word rate acts as a confound
in trying to understand where the brain processes ELMo- and speaker-specific information. We
specifically find that parts of the temporal lobe seem to respond to low-level word rate-related
information by regressing out word rate from ELMo and from speaker identity. However, a sim-
ilar approach does not allow us to separate where the brain processes speaker information from
where it processes all other information captured within ELMo representations. This suggests
that regressing out a potential confound from a stimulus representation of interest may not always
allow us to identify where specific information is processed. To harness the wealth of stimulus-
related information that ANN representations seem to capture about naturalistic stimuli, we need
a more reliable way to map out what information is processed where in the brain. In the next
chapter, we start to fill this gap by introducing two new metrics and an analysis framework that,
when used together, can allow us to infer a more specific relationship among brain regions with
respect to the stimulus.
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Chapter 3

Improved scientific inference for encoding
models of complex stimuli

This is joint work with Mariya Toneva, Jennifer Williams, Christoph Dann and Leila Wehbe. My
main contribution was to lead the simulations component of this project - I used simulated data
with known ground truth relationships between brain measurements, an observed stimulus and
a stimulus representation to highlight the limitations of the current encoding model framework
that we rely on for inferring these relationships (section 3.4 and appendix section A.4).

3.1 Introduction
As we move towards more complex stimuli representations and more complex experimental set-
tings, we need to reexamine what inferences we’re able to make from our existing computational
tools and adjust our toolbox accordingly. Here, we present a detailed analysis of what scientific
inferences we’re able to make using the linear encoding model and propose two new tools that,
when used together, can allow us to recognize areas of the brain that are involved in processing
similar information.

low

low

high

high

source generalization

source 
residual

unique
info

shared 
info

limited stim. 
represent.

D. inferences enabled by proposed metricsB. shared information w.r.t. stimulus C. limited stimulus representation

brain source 1 brain source 2 stimulus stimulus representation

A. unique information w.r.t. stimulus

Figure 3.1: Venn diagrams representing different cases for the underlying relationships between
two brain measurements, the presented stimulus, and the stimulus representation (A-C), and
how our proposed metrics enable us to infer these relationships (D). In contrast, in each case an
encoding model will predict a similar proportion of variance in both brain measurement sources,
making it difficult to disambiguate the three cases.
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Motivating example A simple conceptual example illustrated in Fig. 3.1 (A-C) motivates the
need to reexamine the interpretation of encoding model performance when using complex stim-
uli representations. We present three different cases for the underlying relationships between
two brain measurements shown in yellow and in blue, the stimulus corresponding to these mea-
surements, and the stimulus representation that is used to train an encoding model. In the first
case (Fig. 3.1A) the two brain measurement sources process unique stimulus information. For
instance, the blue source may capture the part of speech of a stimulus word and the yellow source
may capture some of its semantic properties (e.g. manipulability and size). The stimulus rep-
resentation also captures these multiple types of information (e.g. the stimulus representation
may be derived from a language model, such as ELMo [49]), so an encoding model using this
stimulus representation would predict a proportion of the variance in both sources. In this case,
the encoding model performance would mislead us to think that the two brain sources process
the same information about the word stimulus.

In the second and third cases (Fig. 3.1B-C) the two brain sources share information with re-
spect to the stimulus, as indicated by the common overlap between the yellow and blue brain
sources and the large stimulus rectangle. However, in Fig. 3.1B each brain source captures little
unique stimulus information, while in Fig. 3.1C each source captures a lot of unique informa-
tion. In both of these cases, using the same stimulus representation as input to an encoding model
would predict both brain sources to a similar degree, which limits our ability to disentangle the
two possible cases. This limitation is due to the limited stimulus representation in case C, which
only captures aspects of the shared information. This is an issue because we can only make the
claim that a set of regions is processing the same stimulus information in the case that we are able
to disentangle Case B from the rest. To address these limitations, we propose two new metrics
that, when used together, can disambiguate each of the three cases, as discussed more in depth
in Section 3.3.

Real-world example of inference problem. One case study of this inference problem from the
neuroscience literature is a set of findings using encoding models during naturalistic language
comprehension. Several researchers have found that the activity in a wide set of bilateral regions
in the temporal and prefrontal cortices deemed as the language network [15] can be significantly
predicted as a function of various features of the presented language stimuli [5, 50, 65], without
distinguishing between these regions in terms of the information map. [10, 34] do show that the
set regions predicted by word meaning are tuned to different aspects of meaning, however, the
set of regions in the language network are shown to be tuned to the same aspects of meaning.
A big outstanding question from these works is whether these language regions are all indeed
processing the same information about the stimulus, or whether the tools we are using (e.g. stim-
ulus representations, encoding models) and the way we are using them (e.g. by interpreting the
encoding model performance) is preventing us from differentiating between them.

In this work, we first highlight limitations of existing computational approaches for this scien-
tific inference using simulated data with known ground truth relationships. We then propose two
new metrics and an analysis framework that, when used together, can allow us to make stronger
scientific inferences that can disambiguate all three cases. We term these metrics source gen-
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eralization and source residuals. We next use our proposed tools to analyze two fMRI datasets
obtained using naturalistic stimuli. Our main contributions are as follows. We conceptually
breakdown the possible underlying relationships between two brain sources and the presented
stimuli when both sources are predicted by the same feature space and present two metrics that
can distinguish them. We present simulations that show limitations of commonly used methods
for disambiguating these different relationships. Finally, we showcase the use of these metrics
in two fMRI datasets with naturalistic stimuli showing when we can disambiguate and when the
feature set is the limitation. Our results generalize across these two datasets that capture dif-
ferent populations and are acquired by different labs in different countries with very different
experimental setups and scanning parameters.

3.2 Related Work

Encoding models are becoming popular as datasets with complex stimuli become more common
and stimulus representations from neural networks are employed as a tool to study the brain.
Several works have investigated the expressivity of encoding models. Wu et al. [71] frames brain
mapping as system identification, where the neuroscientist is attempting to discover the features
that different parts of the system are sensitive to. Wu et al. [71] also describes a methodology for
building encoding models and measuring the performance ceiling.

Some work has described the utility of encoding models as opposed to decoding models, in
making precise inferences about representations [44, 70] or have proposed ways to make decod-
ing models more interpretable [30]. Some work has used some version of variance partitioning
to differentiate between feature spaces [5, 9, 41, 50, 61]. However, here we focus on encoding
models with the same feature space at different sources (e.g. different voxels, different neurons,
different regions, or different sensors). Some work has relied on the correlation between voxels
to enforce priors on the learned models [48, 68]. Other than pooling information across voxels to
regularize encoding models, most work in relating the information in different voxels has been
in the functional connectivity literature [62]. In that large body of work, there is not usually a
relationship drawn between the stimulus and the brain activity. Instead, the activity between dif-
ferent sources is correlated, often during rest, and the correlation used as a metric for functional
connectivity. Some work has used inter-subject correlation to identify which regions are related
to a stimulus [29, 56]. However, we focus on understanding the relationship between regions and
the stimulus.

Because of the high temporal resolution of certain recording tools like magnetoencephalography
(MEG), it is possible to compare the representations across time points. A powerful method
called temporal generalization has been proposed by King and Dehaene [40]. It allows re-
searchers to see if the representation at a given point in time is similar to another point in time,
and have been subsequently used in multiple works [4, 19, 20, 31]. The generalization idea was
recently adapted by [61] into spatial generalization, in which the representation at different vox-
els are compared. This is done by using the predictions at one voxel to predict the activity in
another voxel. These methods can be seen as specific instantiations of the source generalization
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metric that we describe. We further propose a new way to normalize this source generalization
metric which improves its interpretability.

Another approach is to compare encoding model weights, which has typically been done after
reducing the dimensionality across the brain and plotting the resulting low dimensional projec-
tions on the brain [10, 33, 34]. In Çukur et al. [8], different encoding models are estimated for
the same participant under different attention conditions, and the tuning change due to attention
is estimated from the weights of the different models.

3.3 Definitions

In this section, we define our two proposed metrics and other existing metrics that we commonly
reference throughout this work. To ground these definitions, we relate each metric to an under-
lying setting for how a brain measurement is assumed to be generated. We introduce three such
settings that are increasingly more specific about the dependence between one brain source and
other sources in the same participant and other participants. Each setting introduces an additional
set of assumptions, which enable us to relate the metrics to the unique and shared information in
each brain source.

3.3.1 Single brain source, single participant

In the first setting, the activity in a single brain source that is recorded from one participant is
assumed to be generated as a function of a specific representation of the presented stimulus.
More concretely,

Y = g(X) + ε (3.1)

where Y ∈ corresponds to the observation at a single brain source (e.g. fMRI voxel, EEG/MEG
sensor-timepoint, electrode), X ∈d to the d-dimensional numerical representation of the corre-
sponding stimulus (e.g. a word embedding obtained from inputting a word stimulus in a language
model), and ε ∈ to a noise term that is independent from the stimulus representations.

Encoding model. The first setting is the one that commonly underlies encoding models. In
this setting, an encoding model estimates the function g(·) for a specific stimulus representation
X . Most commonly, this function is parameterized as a linear function (i.e. g(X) = 〈X, θ〉,
where θ ∈ Rd), and is estimated using a set of training observations for each brain source in a
cross-validated fashion. For a set of predictions Y on heldout data, the encoding model perfor-
mance is defined as follows:

encoding model performance(Y, Y ) = (Y, Y ) ,

where (·) signifies Pearson correlation.
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3.3.2 Multiple brain sources, single participant

In the second setting, we explicitly allow for a noise term reflecting shared information between
two brain sources Y1 and Y2 that is not captured by the stimulus representation. In our modified
setting,

Yi = gi(X)︸ ︷︷ ︸
signal

+ εi︸︷︷︸
individual noise

+ ε12︸︷︷︸
shared noise

(3.2)

for i ∈ {1, 2} where gi(X) = 〈X, θi〉 are linear functions of stimulus representations X ∈ Rd

with parameters θi ∈ Rd and ε1, ε2, ε12 are noise terms. All noise terms are independent of each
other and X and have zero mean and variances σ2

1, σ
2
2 and σ2

12, respectively.

Functional Connectivity. Functional connectivity measures the correlation of two brain sources
Y1 and Y2 through time. In the setting above, this evaluates to

(Y1, Y2) =
cov(Y1, Y2)√

(Y1)(Y2)
=

cov(g1(X), g2(X)) + σ2
12√

(Y1)(Y2)
,

where (Yi) = (gi(X)) + σ2
i + σ2

12 is the variance of each observation. Note that (Y1, Y2) does
not distinguish between stimulus-related and stimulus-independent components of Yi. That is, a
correlation of Y1 and Y2 can be high if either cov(g1(X), g2(X)) or σ2

12 is large. We support this
observation using simulated brain source data in Section 3.4.

First proposed metric: source generalization. Disambiguating the three possible cases pre-
sented in Fig. 3.1A-C is key to conclusively inferring whether two sources process the same
information about a stimulus. As outlined in Section 1, encoding performance is not able to
disambiguate any of these three cases. To address some of these limitations, we propose our
first metric source generalization. Intuitively, source generalization captures the amount of in-
formation shared by two sources and the stimulus representation used in an encoding model.
Concretely, we define source generalization as:

source generalization(Y1, Y2) = (Y1, Y2) , (3.3)

where Y1 is a prediction on heldout data obtained by an encoding model as defined in Section
3.3.1.

Source generalization helps to disentangle the case shown in Fig. 3.1A from the cases in B
and C. The source generalization will be low in case A because there is no shared information
between the two brain sources and the stimulus representation, so training an encoding model
on brain source 1 will not generalize to brain source 2, and vice versa. In contrast, the source
generalization will be high in cases B and C because there is shared information between the
two brain sources and the stimulus representation. However, source generalization is not able to
disambiguate case B from case C.
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3.3.3 Multiple brain sources, multiple participants

To disambiguate case B from case C, we consider our third setting which allows for multiple
participants P ∈ {A,B} and for each quantity in Equation (3.2) to differ in each subject P :

Yi,P = gi,P (X)︸ ︷︷ ︸
signal of stimulus representation

+ hi(Z)︸ ︷︷ ︸
signal of Z

+ εi,P︸︷︷︸
individual noise

+ ε12,P︸︷︷︸
joint noise

. (3.4)

We additionally allow for the presence of an additive component hi(Z) which makes explicit a
dependence on features Z that are part of the stimulus, but are not captured by the stimulus rep-
resentation X . This enables us to express the likely common occurrence that a specific stimulus
representation does not perfectly reflect all brian-relevant stimulus information.

Second proposed metric: source residuals. While source generalization is able to disentan-
gle case A in Fig.3.1 from cases B and C, it is unable to disentangle case B from case C. To
address this limitation, we introduce the second metric–source residuals. Here, we build on the
intuition behind intersubject correlation to estimate how much of the information that is shared
between two brain sources and the stimulus is not shared between the two brain sources. More
concretely,

source residual(Y1, Y2) = (R1−2,A, R1−2,B), (3.5)

where R1−2,P = Y1,P − (Y1,P , Y2,P )Y2,P is the residual of regressing Y2,P from Y1,P . Source
residuals disentangle case B from case A and C. Thus, we argue that using both proposed metrics
together can help disentangle each case from the others.

3.4 Simulations

Using simulated data, we look at what encoding model performance, functional connectivity,
source generalization and source residuals can tell us about the underlying relationships between
two sources.

Simulating stimulus information. We generate two components that together make up all avail-
able stimulus information: X ∈ Rd, which is the stimulus representation, and Z ∈ Rd, which
contains the remaining stimulus information not in X . A key simplifying assumption we make
when generating X and Z data is that both components can be decomposed into four disjoint in-
dependent subsets of stimulus information: unique information captured by the individual brain
sources (X1, X2, Z1, Z2), joint information captured by both brain sources (X12, Z12) and infor-
mation not captured by either brain source (X3, Z3). Each Xi, Zi, of length d

4
, is independently

sampled from a multivariate normal with mean 0 and a symmetric toeplitz covariance matrix
with diagonal elements equal to 1, and X and Z are constructed by concatenating their four cor-
responding sub-components.
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Simulating brain source data. We simulate observations at two brain sources from two dis-
tinct participants using the following data generation model (motivated by Eq. 3.4):

Yi,P = α× g12,P (X)︸ ︷︷ ︸
joint signal

+ (1− α)× gi,P (X)︸ ︷︷ ︸
unique signal

+ α× Ni,P︸︷︷︸
unique noise

+ (1− α)× N12,P︸ ︷︷ ︸
joint noise

(3.6)

where Ni,P = δ × hi,P (Z) + (1− δ)× εi,P and N12,P = δ × h12,P (Z) + (1− δ)× ε12,P .

Here, each gi,P (X) = 〈θi,P , Xi〉 is a linear function of the stimulus representation that only looks
at the corresponding Xi in X . In order to generate the necessary participant-specific parameters
θi,P ∈ R

d
4 , we first generate θi ∈ R

d
4 by independently sampling each of its components from a

uniform distribution over [0, 1). Each θi,P is then sampled from N (θi, 0.25I) to allow for vari-
ation between participants. The same approach is used to generate each hi,P (Z) = 〈φi,P , Zi〉
term. ε1, ε2, ε12 ∈ R are terms that represent the information captured that is not related to the
stimulus. Each εi is independently sampled from a standard normal distribution. See appendix
for more details.

We introduce two adjustable parameters to simulate a wide range of scenarios. α ∈ [0, 1] controls
how much of the stimulus representation related information captured by both brain sources is
shared between them and how much of it is unique to each one. δ ∈ [0, 1] controls how much of
the information captured by both brain sources that is unrelated to the stimulus representation is
still related to the stimulus itself. It is important to note that the simulation results we present and
analyze in this section are representative of an over-constrained setting. Their main purpose is
to provide intuition for how the metrics discussed in Section 3.2 vary under different controlled
scenarios.

Case A vs. Cases B & C. A key property that separates Case A from Cases B and C from
Fig. 3.1 is the amount of unique stimulus information captured by each source that is also cap-
tured in the stimulus representation. We control this setting by keeping δ constant and varying α
in Eq. 3.6. We use δ = 1.0 here, but similar trends can be observed for any δ ∈ [0, 1]. A low α
simulates Case A as each brain source mostly captures unique stimulus information also present
in the stimulus representation. A high α brings us closer to Cases B and C as this information is
mostly shared between both brain sources for a given subject. We show the results in fig. 3.2 A.
All metrics are collected and averaged across 1000 repetitions at each α. The encoding model
performance, functional connectivity and source residuals remain relatively unchanged across
the board. On the other hand, source generalization increases as we increase α. This suggests
that looking at source generalization can allow us to recognize whether our data most resembles
Case A or one of Cases B & C.

Case B vs. Case C. Cases B and C from Fig. 3.1 are similar in that the two sources share
information with respect to the stimulus representation in both cases. However, they differ in the
amount of unique information that each source captures about the stimulus. By setting α = 1.0
and varying δ in Eq. 3.6, we can vary the amount of unique stimulus information that each
source captures while preserving the amount of information that both sources share with respect
to the stimulus representation. We show the results in fig. 3.2 B. At each value of δ, all met-
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Figure 3.2: Plotting how each metric varies under simulations that separate (A) Case A from
Cases B & C and (B) Case B from Case C.

rics are again collected and averaged across 1000 repetitions. The encoding model performance,
functional connectivity and source generalization do not vary with respect to the δ used in our
simulations. However, we observe that the source residuals increase with δ. These results sug-
gest that once we identify that we are in either Case B or Case C, looking at the source residuals
can help us recognize which of these cases our data most resembles.

3.5 Empirical Results on Two Naturalistic fMRI Datasets

We compute the quantities of interest for two fMRI datasets obtained when participants viewed
naturalistic stimuli. We specifically chose these two datasets because they present a trade-off
between the number of participants and the number of data recorded for each participant, which
enables us to observe how the quantities of interest vary in real datasets with different numbers
of samples.

fMRI data The first dataset we use contains fMRI recordings of healthy participants presented
with naturalistic audio-visual clips from the Human Connectome Project (HCP) 7T dataset. The
second fMRI dataset we use contains recordings of 6 healthy participants viewing the movie
Hidden Figures in English, provided by the Courtois Neuromod group. For more details, refer to
fMRI data: HCP short movies and fMRI data: Courtois Neuromod in Section 1.1.

Other data processing details. For each participant we downsample the fMRI data by av-
eraging the voxel activities within the 268 functionally defined regions of interest (ROIs) from
the Shen atlas per time frame [16, 55], similarly to previous work [12, 22, 26, 51]. For each
participant this results in a dataset of dimensions - number of TRs by 268 ROIs. These ROIs
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Figure 3.3: Encoding performance at 33 significantly predicted ROIs (corrected at level 0.05).

are entirely independent of our data as the Shen atlas was previously constructed from a separate
group of healthy participants. The approach we propose apply to any brain regions. Because we
are interested in studying naturalistic language comprehension, we chose to identify Shen atlas
ROIs involved with processing language-relevant information. Regions of the brain involved
with processing language-relevant information have previously been identified by [3, 15] and are
also entirely independent of our data. We consider a Shen atlas ROI to be a language ROI if ¿
15% of its voxels are within a region that processes language-relevant information. This proce-
dure results in 55 Shen atlas ROIs that are language ROIs.

Stimulus representation. The approach we propose in this paper is general and can be applied
to a wide variety of stimulus representations. Because we are specifically interested in studying
the processing of language-relevant information, we use stimulus representations that capture
the linguistic meaning of the stimuli. We follow previous work in neurolinguistics and obtain
representations of the words observed by participants by feeding transcripts word-by-word into
a pre-trained natural language processing model. We specifically choose ELMo [49], a bidirec-
tional language model that incorporates multiple LSTM layers, for this purpose. Word repre-
sentations obtained from the first hidden layer of ELMo, and contextualized with the previous
25 words, have been previously shown to significantly predict fMRI recordings of participants
comprehending language [60, 61]. We focus our analyses on representations similarly collected
from the first hidden layer of ELMo when provided with chunks of 25 consecutive words, using
the pretrained ELMo provided by [23].

Encoding model performance. We first investigate what we can learn about how language re-
gions process audio-visual stimuli by interpreting encoding model performance. We estimate
encoding models which predict the brain activity associated with matching video clips from an
ELMo embedding of the speech in the video clip. One encoding model is estimated indepen-
dently for each participant’s ROI. We provide details about model training in section 1.1. We
use 4-fold cross-validation for HCP and 12-fold cross-validation for Courtois NeuroMod, which
reflects the number of segments in which each dataset was originally collected. We evaluate the
encoding model performance on heldout data for each fold.

In Figure 3.3, we present encoding model performances for the 33 language ROIs that were
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Figure 3.4: Source Generalization. ROI pairs with high norm. source generalization (red) process
information captured by the stimulus representations in a similar way. Pairs with high norm.
source generalization are consistent at the group and individual level in both datasets.

predicted significantly across participants in both fMRI datasets (one-sample t-test, FDR cor-
rected for multiple comparisons across ROI at alpha level 0.05 [2]). The encoding model perfor-
mances are normalized by the Intersubject Correlation (ISC), an estimate of the ”noise ceiling”
or the amount of variance in the ROI that is consistently related to the stimulus and therefore
explainable (see Section 3.3.3 for a definition). We present the average normalized encoding
performance across all participants in the datasets, as well as for two representative individ-
ual participants (see Appendix for additional individual-level performances). We observe that a
set of bilateral language ROIs can be significantly predicted by the ELMo embedding for both
datasets, at a group and individual participant level. These results replicate previous findings
that the language ROI are well predicted by representations from ELMo [60, 61]. We also ob-
serve similarly to prior work that these regions are predicted significantly by the encoding model,
thereby making it difficult to distinguish between them [5, 34, 50].

Functional connectivity. Next we investigate whether functional connectivity can disambiguate
the regions that were found to be significantly predicted by ELMo representations. We present
the pairwise functional connectivity for the 33 language ROIs in both fMRI datasets in Appendix
Figure 1. We only plot the pairwise correlation values found to be significant for each individual
dataset (one-sample t-test, FDR corrected for multiple comparisons across ROI pairs at alpha
level 0.05 [2]). For both datasets, at the group and participant level we find that the amount of
functional connectivity between language ROIs varies but the vast majority of ROI pairs have
significant correlations. As observed in Figure 3.2 from the simulations, both high functional
connectivity and high encoding model performance can be caused by multiple settings of the un-
derlying shared information between the brain sources, stimulus, and stimulus representations.
Since the overwhelming majority of ROI pairs have significant correlations and the individual
ROI have significant encoding model performance, it is still not possible to disentangle the dif-
ferent cases even when combining these two metrics.

Source generalization. We further investigate the source generalization to understand if the
differences in the amount of shared information between language ROIs are due to process-
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Figure 3.5: Source Residuals. ROI pairs with high norm. source residuals (dark green) are
processing unique information related to the stimulus representations. These ROI pairs with
high norm. source residuals are consistent at the group and individual level in both datasets.

ing shared information related to the stimulus representations. We present the pairwise source
generalization for the 33 language ROIs in both fMRI datasets in Figure 3.4. The source general-
izations are normalized by the ISC, as an estimate of the ”noise ceiling” (see Appendix for more
details and suggestions for other types of normalization when investigating different scientific
questions). In both datasets, at the group and participant level we find that there are differences
in pairwise language ROI source generalizations. However, it is unclear if these differences are
due to true differences among language ROIs in the amount of shared information related to the
stimulus or to a limitation of using an ELMo embedding as our stimulus representation. Source
generalization alone cannot distinguish if the relationship between two ROI is case B or C from
Figure 3.1 with respect to the stimulus.

Source residuals. Next we investigate the second proposed metric, source residuals to un-
derstand the amount of unique stimulus-related information processed by language ROIs. We
present the pairwise source residuals for the 33 language ROIs in both fMRI datasets in Figure
3.5. The source residuals are normalized by the ISC, an estimate of the ”noise ceiling”. In both
datasets, we find differences in the source residuals at the group and participant level. The high
source residuals reveal that the majority of regions process some unique information about the
stimulus that cannot be fully accounted for by any of the other considered regions. However, this
does not mean that the regions do not also process some shared information about the stimulus,
which would have been removed during the residual computation (i.e. there will be high source
residuals in both cases A and C in Fig. 3.1.

Source generalization and source residuals. We reexamine the case study presented in Sec-
tion 1. As we are interested in answering whether language ROIs are indeed processing the same
information about the stimulus or whether we cannot differentiate among the ROI due to method-
ological limitations, we focus on six bilateral language ROIs that have been previously shown
to be difficult to disentangle [5, 50]. We present an example using the proposed framework to
infer each of the three relationship cases (e.g. A, B, or C) within the six ROIs in Figure 3.6.
These relationships are consistent across both datasets. The relationships between ROI pairs can
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Figure 3.6: Source Generalization and Source Residuals. We use the proposed framework to
infer an example of each of the three relationships between two brain sources, stimuli and stimuli
representations.

be asymmetric (ie. ROI A could better generalize to ROI B than ROI B to ROI A), therefore
we depict the relationships as a directed edges from the source ROI to the target ROI. The in-
ferred relationship, case A, between ROI 1 and ROI 5 suggests that it is possible to differentiate
the information processed between two ROI with significant encoding model performance. The
inferred relationship, case B, between ROI 1 and ROI 2 support previous findings that bilateral
language ROIs process shared information with respect to the stimulus. The inferred relation-
ship, case C, between ROI 1 and ROI 3 shows that two ROI can process both shared and unique
information. In this case the stimulus representation can limit our understanding of the amount
of shared versus unique information processed between the two ROI.

3.6 Discussion
In this work, we conceptually breakdown the possible underlying relationships between two
brain sources and the presented stimuli where both sources are predicted by the same feature
space and present two metrics to distinguish them. We next present simulations that show limi-
tations of commonly used methods for disambiguating these relationships. Finally, we showcase
the use of these metrics in two fMRI datasets with naturalistic stimuli showing when we can
disambiguate and when we are limited by the stimulus representation. Our results generalize
across these two datasets which capture different populations and are acquired by different labs
in different countries with very different experimental setups and scanning parameters.

In contrast to the encoding model performance, our proposed metrics disentangle the three cases
outlined in Fig.3.1 A-C. Note that in case C both source residuals and source generalization are
high which indicates that the two brain sources process shared and unique information about the
stimulus. We expect that a fully descriptive stimulus representation will capture this unique in-
formation that is shared between the stimulus and each individual brain source, so if both metrics
are high we conclude that the stimulus representation used in the encoding model is not infor-
mative enough to disentangle the information processed in the two brain sources. This allows us
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to infer that we in fact need better stimulus representations rather than that the two brain sources
are processing identical information about the stimulus. This interpretation suggests that Region
1 (middle superior temporal gyrus) in Fig. 3.6 and Region 3 (left inferior frontal gyrus) may be
more easily distinguishable in the future using an encoding model if we have new stimulus repre-
sentations that capture unique information that either region is processing about the stimuli. Our
framework can be used as a test for future representations–if these future representations lead to
a high encoding model performance and the source residuals between Region 1 and Region 3
continue to be high in the investigated stimulus set, but the source generalization using the new
feature space decreases, then the new stimulus representation better captures some of the unique
information processed by at least one of the regions.

One limitation of our proposed source residual metric is that the residuals contain information
about the unique information in both regions that were used to compute the residuals. Isolating
the residual information in an individual region may further improve our ability to disambiguate
the information processed by different regions. We hope that our approach can serve as basis for
such future work. Overall, our proposed framework is a promising new tool for computational
neuroscientists who are interested in mapping information processing in the brain.
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Chapter 4

Augmenting encoding models with
nonlinearity

4.1 Introduction
So far, we have focused our analysis on the most frequently used computational tool for brain
mapping - the linear encoding model. Most studies have relied on linear encoding models be-
cause they are seen as being more interpretable and data-efficient compared to their nonlinear
counterparts. However, as discussed in Section 2.1, there is a growing interest in aligning brain
activity with complex representations derived from deep learning models that seem to capture
something generic about the stimulus. Because we do not know exactly what kinds of stimulus-
related information is captured by these network-derived representations, it is difficult for any
encoding approach we can come up with, whether linear or nonlinear, to be accompanied by
the promise of interpretability that we enjoyed when dealing with simpler, hand-crafted stimulus
representations. In addition, some of the practical difficulties previously associated with training
a nonlinear encoding model have now become surmountable with access to larger-scale datasets
and more powerful computational resources.

Nonlinear encoding models can allow us to align stimulus-related information that may be non-
linearly encoded within the NLP and fMRI representations. If at all present, we would not be
able to access and align such information by restricting ourselves to linear encoding models.
Nonlinear models also lend themselves well to situations where the same pockets of information
may be relevant to predicting a large group of voxels. In this chapter, we look at how model com-
plexity can affect encoding performance by comparing the widely used linear encoding model
with a multi-layer nonlinear encoding model.

4.2 Related Work
Prior work has revealed a great deal of overlap between what state-of-the-art NLP models and
brain activity recordings capture about the same language input. Most of this work has relied on
studying linear mappings from the NLP representations to brain activity [61], [37], [54], [60].
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More recently, we have started to see more work showing the potential benefits nonlinearity can
bring to brain mapping efforts. Recent work has shown that we can model nonlinear interactions
between fMRI responses from different brain regions to achieve better performance than con-
temporary linear approaches [1]. Researchers in neuroscience have started to delve deeper into
the debate we address here by providing a thorough examination of for and against why future
research efforts should focus more on exploiting linear encoding models rather than exploring
nonlinear ones [36].

4.3 Methods

We align fMRI recordings of participants reading naturalistic text word-by-word with interme-
diate representations from BERT [11], a state-of-the-art NLP model, generated by passing in the
same text.

fMRI data We use fMRI recordings of 8 healthy participants reading chapter 9 of Harry Potter
and the Sorcerer’s Stone [52], provided by Wehbe et. al [66]. For more details, refer to fMRI
data: Harry Potter and the Sorcerer’s Stone in Section 1.1.

BERT data Let n denote the total number of words presented and t denote the total number of TR
intervals that span the presentation of this text. We generate the corresponding BERT represen-
tation xi for word wi, where i ∈ [0, n), by passing the 10 most recent words (wi, wi−1, . . . , wi−9)
to BERT and collecting the layer 8 representations from the network. Each xi is then reduced
from a 768-dimensional vector to 10 dimensions via Principal Components Analysis (PCA) [18]
that has been fit on the training data. This specific configuration of context length and layer
depth was chosen as it has previously been shown to align well with the same brain data [60]. At
each time point, we compute a single representation zj , where j ∈ [0, t), by averaging the xi’s
corresponding to the words that appear in that interval.

Encoding models We estimate 3 distinct encoding models that take the preprocessed BERT rep-
resentations as input and predict the fMRI voxel activities associated with reading the same set
of words:

• Linear-Analytical: a linear model with weights estimated using a closed-form solution
• Linear-GD: a linear model trained using gradient descent
• MLP-GD: a 1-hidden layer multi-layer perceptron (MLP) trained using gradient descent

As mentioned earlier, previous studies have primarily relied on using the Linear-Analytical ap-
proach to align NLP representations with brain activity. We provide details on model training
under this approach in section 1.1. Figure 4.1 depicts the two types of architectures we use in this
study. Adding a shared hidden layer between the inputs and outputs allows us to benefit from two
key features that separate the multi-layer architecture from the single-layer linear architecture:
(i) the introduction of nonlinearity in the form of a ReLU activation function at this interme-
diate layer and (ii) the ability to predict all voxel activities jointly using a shared hidden layer.
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Input:
NLP Representation
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Voxel Activities

A. Linear Architecture B. MLP Architecture

Figure 4.1: A side-by-side comparison of the single-layer linear architecture used in Linear-
Analytical and Linear-GD with the multi-layer nonlinear architecture used in MLP-GD.

However, the introduction of nonlinearity in our encoding model comes at a price as we can no
longer use a closed-form solution to estimate its weights. We instead use gradient descent, an
iterative optimization algorithm, when modeling fMRI-BERT alignment as a nonlinear function.
As mentioned earlier, we call this approach MLP-GD. Note that this added difference in how
the weights of Linear-Analytical and MLP-GD are estimated can make it difficult to distinguish
performance differences related to the training method from performance differences that may
be attributed to nonlinearity and a shared hidden layer. We therefore include Linear-GD as an
intermediate point of comparison between the two approaches to make this distinction recogniz-
able in the experiments that follow.

Evaluation We evaluate encoding performance by computing the mean Pearson correlations
between the models’ predictions and the true voxel activities in held-out data for regions of inter-
est (ROI) known to be consistently activated during language processing [15]. We also compare
these correlations against a noise ceiling estimated using a method put forth by [54]. We compute
pairwise correlations between participants’ fMRI recordings and use them to obtain a conserva-
tive estimate of the ceiling value at each voxel. This allows us to estimate an upper bound on
the amount of brain signal that the best encoding model can hope to explain. We perform paired
sample t-tests, where each pair corresponds to an individual participant, to test for significant dif-
ferences between our models’ performances and to compare each of them to the computed noise
ceiling. We report one-sided p-values on each ROI after using false discovery rate to control for
multiple comparisons [2] (significance level 0.05). We also use pycortex [21] to visualize voxel
correlations on a 3D brain surface.
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Figure 4.2: We compare Linear-Analytical with Linear-GD. The plot on the left shows mean
correlations recorded across 8 participants at the ROI-level. n.s. indicates that the difference
between the two models’ encoding performances was not found to be significant in that ROI. On
the right, we present a cortical visualization of this comparison on an individual subject (subject
J). Here, white indicates that both models predict the specified voxels well.

4.4 Results

Linear-Analytical and Linear-GD have similar performance We first investigate whether the
shift in training method from a closed-form solution to gradient descent leads to a difference in
performance by comparing Linear-Analytical with Linear-GD. We do not observe a significant
difference on the whole ROI level here (p > 0.5 for all ROI). Figure 4.2 shows the per-ROI mean
correlations across subjects from both models and a voxel-level visualization of the comparison
between the two normalized correlations for an individual participant. We find that it is possible
to replace the analytical approach with gradient descent in this setting without sacrificing encod-
ing performance. All cortical visualizations we present here are on an individual subject J. We
show the same comparison for the remaining 7 participants in section A.7 of the appendix.

Room for improvement in Linear-GD We further investigate how the linear encoding model’s
performance compares with our noise ceiling estimates. In Figure 4.3, we again present our re-
sults from significance testing on whole ROI and visualize normalized correlations at the voxel-
level for the same participant as before. We observe that Linear-GD performs on par with the
noise ceiling in 5 ROI (p > 0.2). Differences in the remaining 3 ROI - the dorsomedial prefrontal
cortex (dmPFC, p = 0.009), inferior frontal gyrus pars orbitalis (IFGorb, p = 0.05) and poste-
rior cingulate (pCingulate, p = 0.06) - approach significance levels. The corresponding cortical
visualizations of differences between Linear-GD and the noise ceiling seem to further confirm
that there is room for improvement in encoding performance at these ROI.

MLP-GD shows promising results in some of these improvement areas Next, we compare the
encoding performance of Linear-GD and MLP-GD. In Figure 4.4, we present the per-ROI mean
correlations across subjects from both models along with our qualitative results from this com-
parison. Differences between Linear-GD and MLP-GD evaluated based on the whole ROI are
not found to be significant (p > 0.05). However, our voxel-level visualization of this comparison
shows that for a majority subsample of the participants, MLP-GD seems to be outperforming
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Figure 4.3: We compare the encoding performance of Linear-GD with the noise ceiling. The
plot on the left shows mean correlations recorded across 8 participants for selected ROI where
we observe the most difference. * (p ≤ 0.05) and ** (p ≤ 0.01) indicate where our paired t-tests
show a significant difference between the two quantities and n.s. indicates where a significant
difference was not found. On the right, we present a cortical visualization of this comparison on
the same subject as before (subject J). Here, blue indicates voxels where Linear-GD is unable to
match the noise ceiling and white indicates where the two are relatively similar. We expand on
the significance of red voxels in Figure 4.5.

Linear-GD in specific clusters of voxels in the dmPFC, IFGorb and pCingulate. However, we
also observe that our version of MLP-GD is sub-optimal given that its performance was sur-
passed by the less expressive Linear-GD. Although the same training method is used for both
models, optimizing a nonlinear model can pose difficulties as it requires solving a non-convex
problem and we have no reference point in hand (like a closed-form solution) to identify whether
the setting of weights we settle at is still far from the true optimum.

Room for improvement in noise ceiling Figure 4.5 helps bring attention to another qualita-
tive observation that suggests that the noise ceiling estimates we compute for our data are sub-
optimal. We find that the performance of Linear-GD is sometimes able to exceed the estimated
noise ceiling, particularly for clusters of voxels within the posterior temporal lobe (PostTemp),
angular gyrus (AngularG) and middle frontal gyrus (MFG).

4.5 Discussion

This study aimed to investigate how varying the complexity of an encoding model can affect
its ability to predict fMRI data of participants reading naturalistic text. We compared different
approaches to encoding within this setting based on linear and nonlinear, multi-layer network
architectures. We began by verifying that using gradient descent over a closed-form solution
does not significantly alter the resulting encoding performance. We then used noise ceiling es-
timates at the voxel-level, computed based on pairwise correlations between participants’ fMRI
recordings, to show that there is room for improvement in the predictions we obtain from a linear
encoding model, particularly in 3 ROI - dmPFC, IFGorb and pCingulate. Interestingly, our qual-
itative analysis revealed clusters within these ROI that were consistently better predicted by a
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Figure 4.4: We compare the encoding performance of Linear-GD with that of MLP-GD. The
plot on the left shows mean correlations recorded across 8 participants for selected ROI where
we observe the most difference. * (p ≤ 0.05) indicates where our paired t-tests show a significant
difference between the two quantities and n.s. indicates where a significant difference was not
found. On the right, we present a cortical visualization of this comparison on the same subject
as before (subject J). Here, green indicates voxels where Linear-GD is unable to match MLP-
GD, red indicates where Linear-GD outperforms MLP-GD and white indicates where the two
are relatively similar.
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Figure 4.5: Similar to Figure 4.3, we again compare the encoding performance of Linear-GD
with the noise ceiling but emphasize a different phenomenon here. The plot on the left shows
mean correlations recorded across 8 participants for selected ROI where we find that Linear-GD
seems to be performing better the upper bound established by our ceiling estimates. Although a
significant difference was not found in these ROI, we find clusters of voxels (colored red) within
them where our noise ceiling is suboptimal.
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nonlinear model that we trained on the same data. One interpretation of this finding is that these
clusters may process different information from the rest of the region – information that only a
nonlinear alignment can reveal – but further investigation is necessary.

Future work Although we observe clusters in specific brain regions where the linear encod-
ing model seems to surpass the noise ceiling, this work shows that there might be gaps in the
linear architecture that we can fill with better ceiling estimates. A better noise ceiling may pro-
vide stronger evidence for our observations and highlight other areas where the encoding model
can be improved upon as a guide to future research. We also found clusters where our nonlinear
encoding model was unable to match its linear counterpart’s performance, despite its greater ex-
pressive power. It is possible that the limited availability of brain recordings made it difficult to
effectively optimize our nonlinear encoding model. Performing experiments with larger datasets,
more nonlinear model architectures and more hyperparameters during training is therefore an-
other avenue for further exploration. This can help bring us closer to the globally optimal setting
of model weights so we may fully harness the superior expressive power that a larger model can
offer.
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Chapter 5

Conclusion

Encoding models have allowed us to study language processing in the human brain by leveraging
specific stimulus-related information. In this thesis, we revisit the encoding model framework to
see how it can better support complex representations of natural stimuli. We start by showing
that the existing framework does not always let us disentangle where specific stimulus-related
information is processed in the brain, especially when working with naturalistic stimuli like
movies. As an initial step towards overcoming this limitation, we propose a promising new
encoding model framework that can allow us to recognize groups of brain regions where similar
stimulus-related information is processed. Finally, we show a proof of concept that derestricting
the encoding model by allowing it to learn nonlinear brain mappings might let us align more
stimulus-related information with brain measurements than a linear model. Overall, this work
puts forth preliminary evidence for two promising ways in which the current encoding model
framework can be modified so we may better adapt to increasingly complex representations of
naturalistic stimuli.
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Appendix

A.1 Functional Connectivity Results
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Figure 1: Functional Connectivity. Significant pairwise correlations of the 33 language ROIs
(corrected at level 0.05). The overwhelming majority of ROI pairs have significant correlations.

A.2 Relationship of Special Cases A-C in Figure 1 to Most
General Case

In Figure 2, we present a Venn diagram that captures all possible relationships among two brain
measurements, the presented stimulus, and the stimulus representation. All possible cases can be
obtained by varying the amount of information that makes up each of the regions annotated with
a red number, as well as the analogous regions in the blue brain source 1. In the main paper, we
focus on three specific cases, presented in Figure 1 and replicated at the bottom of Figure 2 for
ease of visualization. These cases were selected because they are all possible candidates for the
underlying relationships that lead to the real-world example of the inference problem described
in Section 1, because an encoding model would perform equally well at predicting both sources
in each of these 3 cases.
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Case B: shared information w.r.t. stimulus Case C: limited stimulus representation
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Figure 2: (Top) Most general Venn diagram that captures all possible underlying relationships
between two brain measurements, the presented stimulus, and the stimulus representation. (Mid-
dle) Annotated data generation model in Eq. 7. (Bottom) Special cases considered in the main
paper, that we argue cannot be disambiguated solely through encoding model performance.

A.3 Metric Normalizations

The main metrics of interest defined in Section 3 are encoding model performance, source gener-
alization, and source residuals. In the simple setting where all annotated regions in Figure 2 are
independent of each other, the encoding model performance is proportional to annotated regions
1 + 2, source generalization to 1, and source residuals to 2 + 3 (and to the analogous 2 + 3 re-
gions on the blue brain source side). For some scientific questions, it may be more informative to
normalize these metrics in different ways. For example, one may normalize the source general-
ization by the encoding model performance to compute the proportion of 1

1+2 (i.e. the proportion
of information shared between a brain source and the stimulus representation that is also shared
by a second brain source). This metric is identical to the one proposed by Toneva et al. [61].
Another type of normalization that we find informative in the current work is the intersubject
correlation (ISC), which is proportional to 1 + 2 + 3 + 4 (i.e. the information shared between
a brain source and the stimulus). This metric can be thought of as an estimate of the maximum
possible performance (i.e. the noise ceiling). A similar metric was used as an estimate of the
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noise ceiling by Wehbe et al. [69], though the authors did not make the connection to ISC explic-
itly. Note that the ISC across a dataset of more than two subjects is computed as the average of
the pairwise ISC (i.e. the ISC for 1 of 6 subjects is the average across the ISC computed between
that subject and the remaining 5 subjects). Following previous work [32, 41], we normalize all
of our metrics by the square-root of the noise-ceiling, yielding normalized correlation values.

We hope that the conceptual breakdown of the different possible relations that we present in
Figure 1 and Figure 2 will help other researchers choose the most relevant normalization for
their questions of interest.

A.4 Additional Simulation Results
We present how encoding model performance, functional connectivity, source generalization and
source residuals vary as we allow α, δ ∈ [0, 1] to vary with respect to each other in Eq. 3.6. Re-
call that α lets us control how much of the information in both brain sources that is related to the
stimulus representation is shared between the two brain sources. Since Case A is characterized
by unique information that is related to the stimulus representation and Cases B & C are charac-
terized by shared information related to the stimulus representation, increasing α from 0.0 to 1.0
means the simulated data departs from Case A and more closely resembles Cases B & C. Also
recall that given a high value of α, varying δ lets us control the amount of information captured
by both brain sources that is related to the stimulus but absent in the stimulus representation. So
as δ is increased from 0.0 to 1.0 at high α, the simulated data more closely resembles Case C
than Case B.

Fig. 3 shows that source generalization is the only metric of the four we consider that can be
used to separate Case A from Cases B & C - i.e., distinguish between brain source data simulated
using low and high values of α respectively at any fixed δ choice. This aligns with our observa-
tions from Fig. 3.2A, where we concluded that looking at source generalization can help with
disentangling Case A from Cases B & C in our simulations. If we identify that we are not in Case
A, we may further narrow down which case we are in using any metric that lets us distinguish
between brain source data simulated at different values of δ when α is high. Fig. 3 shows that
at high α, source residual increases with δ, and therefore, can be useful when separating Case B
from Case C. This also aligns with our observations from Fig. 3.2B.

A.4.1 Varying signal-to-noise ratio in simulated brain source data
To test the boundaries of what each metric can tell us about the information captured by a pair
of brain sources, we further extend Eq. 3.6 to allow for variation in the amount of stimulus
representation related information that each simulated brain source captures as follows:

Yi,P = βi[α× g12,P (X) + (1− α)× gi,P (X)]︸ ︷︷ ︸
signal

+ (1− βi)[α×Ni,P + (1− α)×N12,P ]︸ ︷︷ ︸
noise

(1)

where Ni,P = δ × hi,P (Z) + (1− δ)× εi,P and N12,P = δ × h12,P (Z) + (1− δ)× ε12,P .
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Figure 3: Plotting how each metric varies under simulations performed at different settings of
α, δ.

0.0 0.5 1.0

0.5

1.0
= 0.0

Functional
connectivity

0.0 0.5 1.0

0.5

1.0
= 0.25

0.0 0.5 1.0

0.5

1.0
= 0.5

0.0 0.5 1.0

0.5

1.0
= 0.75

0.0 0.5 1.0

0.5

1.0
= 1.0

0.0 0.5 1.0

0.5

1.0

Encoding model
performance

0.0 0.5 1.0

0.5

1.0

0.0 0.5 1.0

0.5

1.0

0.0 0.5 1.0

0.5

1.0

0.0 0.5 1.0

0.5

1.0

0.0 0.5 1.0

0.5

1.0

Source
generalization

0.0 0.5 1.0

0.5

1.0

0.0 0.5 1.0

0.5

1.0

0.0 0.5 1.0

0.5

1.0

0.0 0.5 1.0

0.5

1.0

0.0 0.5 1.0

0.5

1.0

Source
residual

0.0 0.5 1.0

0.5

1.0

0.0 0.5 1.0

0.5

1.0

0.0 0.5 1.0

0.5

1.0

0.0 0.5 1.0

0.5

1.0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

metric value

Cases B & CCase A

Figure 4: Extending on Fig. 3.2A, this figure shows how each metric varies under simulations
performed at different signal-to-noise ratios as we vary α, β1, β2 when δ = 1.0 is fixed.
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Here, we introduce an additional type of parameter βi ∈ [0, 1], that is used to adjust the amount
of stimulus representation related information that is captured by the ith brain source. In this
context, the stimulus representation related information can be viewed as the signal that is re-
trievable by an encoding model. The remaining information, whether related to the stimulus or
not, can be viewed as the noise that an encoding model that only has access to the stimulus rep-
resentation cannot explain.

First, we focus on the separation between Case A and Cases B & C by varying α. In Fig. 4,
we show how each metric varies as we control the signal-to-noise ratio in both simulated brain
sources by varying β1 and β2 for each setting of α. We fix δ = 1.0 here, but similar trends can
be observed for other choices of fixed δ ∈ [0, 1] as well. We observe that encoding model per-
formance and source residuals cannot allow us to distinguish between different α values. Note
also that from looking at functional connectivity, one cannot separate when both brain sources
mostly capture shared noise (low βi’s, low α) from when they mostly capture shared signal (high
βi’s, high α). We observe that given sufficient signal in both brain sources (β1, β2 � 0), source
generalization increases as α increases. However, under conditions of little to no signal, source
generalization cannot be used to distinguish between different α values. These results suggest
that source generalization is a useful metric to separate Case A (low α) from Cases B & C (high
α) only when the encoding models that output the predictions used to compute this metric are
able to perform relatively well on the brain sources they are trained on.

Next, we consider the separation between Case B and Case C by maintaining a high α and
varying δ. In Fig. 5, we show how each metric varies as we control the signal-to-noise ratio in
each brain source by varying β1 and β2 for each setting of δ. We fix α = 1.0 here as we’ve seen
that a low value for αwould generate brain data that more closely resembles Case A. We find that
encoding model performance, functional connectivity and source generalization are not useful to
distinguish between different values of δ in our simulations. We observe that given sufficient
noise in brain source 1 (β1 � 1), the source residual increases as δ increases. However, when
most or all of the information captured by brain source 1 is related to the stimulus representation,
the source residual for this brain source cannot be used to distinguish between different δ values.
These results suggest that the source residual can help us separate Case B (low δ) from Case C
(high δ) only when there is some information captured by the source that cannot be explained by
an encoding model.

A.5 Data Preprocessing

A.5.1 HCP

Our analyses are performed with the 3105 TRs (51 minutes and 45 seconds) suggested for analy-
sis in the HCP documentation. These exclude rest periods and the first 6 TRs of each movie clip
within a movie run. Individual-level results are presented for the six participants with the highest
encoding model performance averaged over the 55 Shen atlas language ROIs.
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Figure 5: Extending on Fig. 3.2B, this figure shows how each metric varies under simulations
performed at different signal-to-noise ratios as we vary δ, β1, β2 when α = 1.0 is fixed.
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A.5.2 Courtois NeuroMod
Results included in this manuscript come from preprocessing performed using fMRIPrep 20.1.0
[13, 14]. Three participants are native French speakers and three are native English speakers. All
participants are fluent in English and report regularly watching movies in English.

A.5.3 Other Pre-processing
The fMRI datasets and Shen atlas were provided in different template spaces and voxel sizes.
We resample and register the Shen atlas (MNI27 template space, voxel size = 1 mm isotropic)
to both the HCP template space (MNI152NLin6Asym, voxel size = 1.6 mm isotropic) and the
Courtois NeuroMod template space (ICBM2009cNlinAsym, voxel size = 2 mm isotropic) using
FSL FMRIB Linear Image Registration Tool (FLIRT) [38]. We perform all analyses for the two
datasets in their respective template space.

We further process the ELMo embeddings before we use them as the input features to our encod-
ing models. First, we use a Lanczos filter with the same parameters as Huth et al. to downsample
the embeddings into a feature matrix where each row corresponds to a feature vector for a TR
[35]. Then, to reduce the dimensionality of our feature space we use principle component analy-
sis (PCA) to select the first 10 principle components. The first 10 principle components explain
50.5% of the variance in the Courtois NeuroMod dataset and 49.9% of the variance in the HCP
dataset. Next, to account for the lag in the hemodynamic response in fMRI data, we delay the
feature matrix in accordance with previous work [35, 47, 65].

A.6 Additional Individual-Level Empirical Results Using Our
Proposed Framework

We present the individual-level results for the remaining four participants in the Courtois Neu-
roMod dataset and four additional participants for the HCP dataset. We observe that these ad-
ditional participants appear similar to the average and two representative individual participants
presented in the main text.
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Figure 6: (Related to Fig. 3.3) Encoding Model Performance. Similar to Fig. 3.3 in the main
text, this figure shows the normalized encoding model performance at 33 significantly predicted
ROIs (corrected at level 0.05) for participants C-F in both the Courtois NeuroMod and Human
Connectome Project datasets. Plots were created using the Pycortex software [21].
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Figure 7: (Related to Fig. 1) Functional Connectivity. Similar to Fig. 1 in the appendix, this fig-
ure shows the significant pairwise correlations of the 33 language ROIs (corrected at level 0.05)
for participants C-F in both the Courtois NeuroMod and Human Connectome Project datasets.
The overwhelming majority of ROI pairs have significant correlations. This is consistent with
the group level and individual participants presented in Fig. 1.
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Figure 8: (Related to Fig. 3.4) Source Generalization. Similar to Fig. 3.4 in the main text,
this figure shows the normalized source generalization for participants C-F in both the Courtois
NeuroMod and Human Connectome Project datasets. ROI pairs with high normalized source
generalization (red) are consistent across participants C-F in both datasets. They are also consis-
tent with the group level and individual participants presented in the main text.
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Figure 9: (Related to Fig. 3.5) Source Residuals. Similar to Fig. 3.5 in the main text, this figure
shows the normalized source residuals for participants C-F in both the Courtois NeuroMod and
Human Connectome Project datasets. ROI pairs with high normalized source residuals (green)
are consistent across participants C-F in both datasets. They are also consistent with the group
level and individual participants presented in the main text.
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Figure 10: (Related to Fig. 3.6) Proposed Framework Example Individual Level Source Gen-
eralization. Similar to Fig. 3.6 in the main text, this figure shows the normalized source gen-
eralization for the six ROIs in the example using the proposed framework for participants A-F
in both datasets. The ROI pairs with high normalized source generalization (red) are consistent
across participants A-F in both datasets. They are also consistent with the group level presented
in the main text.
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Figure 11: (Related to Fig. 3.6) Proposed Framework Example Individual Level Source Resid-
uals. Similar to Fig. 3.6 in the main text, this figure shows the normalized source residuals for
the six ROIs in the example using the proposed framework for participants A-F in both datasets.
The ROI pairs with high normalized source residuals (green) are consistent across participants
A-F in both datasets. They are also consistent with the group level presented in the main text.
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A.7 Additional Individual-Level Comparisons between Linear-
Analytical, Linear-GD, MLP-GD and the Noise Ceiling
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Subject L Subject M Subject N
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1
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Figure 12: Extending on Fig. 4.2, which visualizes the encoding performance comparison
between Linear-Analytical and Linear-GD for a sample subject (subject J), this figure shows the
same comparison on each of the remaining participants from this study.
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Figure 13: Extending on Fig. 4.3 and Fig. 4.5, which visualize the comparison of Linear-GD’s
encoding performance with an estimated noise ceiling for a sample subject (subject J), this figure
shows the same comparison for the remaining participants from this study.
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Figure 14: Extending on Fig. 4.4, which visualizes the encoding performance comparison
between Linear-GD and MLP-GD for a sample subject (subject J), this figure shows the same
comparison on each of the remaining participants from this study.
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