
Data Driven Resource Allocation for
Distributed Machine Learning

Venkata Krishna Pillutla

CMU-CS-15-145

December 2015

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Maria-Florina Balcan, Chair

Alexander J Smola
Christos Faloutsos

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright c© 2015 Venkata Krishna Pillutla

This research was sponsored in part by the National Science Foundation under grant numbers CCF-1451177 and
CCF-1422910.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.



Keywords: Machine Learning, Distributed ML, Fault-Tolerance, Clustering, Balanced Clus-
tering, Sample Complexity, CTR



For my mother, father and sister.



iv



Abstract



In distributed machine learning, data is dispatched to multiple machines for pro-
cessing. Traditional distributed Machine Learning systems dealing with high volume
of data randomly distribute the data among workers and either learn a linear model
for each partition of data or in tandem where the workers contribute updates to one
synchronized global model. Motivated by the fact that similar data points are often
belonging to the same or similar classes, and more generally, classification rules of
high accuracy tend to be “locally simple but globally complex” [68], we propose
data dependent dispatching that takes advantage of such structure. In particular, we
propose to use balanced clustering to this end.

In practice, it is crucial for such a system to have redundancy, for fault tolerance
since the machines are not assumed to be reliable, and load-balancing for good
utilization and throughput. Since the model served in each machine is not going to
be the same, queries should be served to the appropriate server during deployment.
Moreover, since queries are to be responded in real-time, reponse time shuold be
fast.

Since clustering large datasets in their entirety is time consuming, we propse to
cluster an initial sample in a balanced and fault-tolerant manner, and ‘extend’ the
clustering to the rest of the dataset. Our main technical contribution is to provide al-
gorithms with provable guarantees for data-dependent dispatching, that partition the
data in a way that satisfies important conditions for effective distributed learning, in-
cluding fault tolerance and load-balancing. For clustering, we present approximation
algorithms with provable guarantees for the NP-hard problem of balanced clustering
with fault tolerance. For dispatch, we use ideas from Nearest Neighbor Classifica-
tion to show that our dispatcher respects locality and load balancing properties of the
clustering.

In particular, we provide bicriteria approximation algorithms that use LP round-
ing techniques for balanced clustering with fault-tolerance that achieve constant fac-
tor approximations (5, 11, 95 respectively) to the k-center, k-median, and k-means
objectives, and violate cluster size constraints by a small constant multiplicative
factor. Moreover, we show a more complicated true approximation algorithm that
achieves a 6-approximation for the balanced k-center problem with fault tolerance
and this does not violate any of the constraints.

To extend the clustering to the rest of the training set, we propose Nearest Neigh-
bor Extension (also knows as Nearest Neighbor Dispatch). It is an online, effi-
cient and provably correct procedure that returns a balanced clustering of the entire
dataset. During deployment, we use the same algorithm for dispatching points to
appropriate machines, and we show that it is load-balancing.

After data-dependent partitioning, learning can be performed independently with
no communication, or with complete communication, with each machine storing a
local correction. We discuss how to efficiently implement our method approximately
and show its effectiveness over the widely used random partitioning scheme with the
same communication budget on several real world image and advertising datasets.
For example, we obtain around 14% improvement over a single global model on the
MNIST-8M dataset using the communication free model.

vi



vii



viii



Acknowledgments
First and foremost, I’d like to thank my awesome advisor Nina Balcan, for the

firm belief, constant encouragement, mentoring and guidance. I have truly learnt a
whole lot in the short span of one year. She took me in, gave me an amazing research
project to work on and a great office to work in (not common for Masters students).
The discussions and technical insights have had a profound impact on me and only
increased my interest in Machine Learning. I’ve had the freedom to explore but the
guidance was always there when I needed it. I shall always strive to match Nina’s
energy, enthusiasm and dedication, but it is a daunting task. Nina also ensured that
all her students worked on their soft skills - speaking, writing and presenting - and
the improvement, in my case, is quite substantial. I’m looking forward to work
closely with and continue to learn from Nina in the coming years.

I would like to whole-heartedly thank my committee members Alex Smola and
Christos Faloutsos. Alex has always been a source of great technical insight and am
thankful for his time and willingness to share some wisdom with me. It has been a
tremendous pleasure to work with Christos, albeit not so much on this thesis. I am
thankful to him for one of the most fun classes I have taken and for guiding me on
an extremely interesting and related research topic. I am also very grateful to Dave
and Tracy for making things easy so I could focus on the research, and for being
extremely patient in answering my possibly inane queries.

It has been my greatest pleasure to work with wonderful collaborators and co-
authors. Travis Dick and Colin White have been ever-present and have made many
a summer afternoon fun and exciting. Our long and fruitful discussions have left me
wanting for more. We do make a great team. Thanks are in order to Mu Li for his
tremendous insights and constant guidance on the experimental side of things.

I would like to thank all my great friends, bandmates and music buddies, gym
buddies and basketball mates. Life wouldn’t even have been half as much fun with-
out you guys.

Finally, to my two greatest role models ever - my mom and dad, and my favorite
person in the whole world - my sister. You guys are the best. A shout out also to
my awesome grandparents, cousins, aunts and uncles- I am truly lucky to have such
marvellous people in my family.



x



Contents

1 Introduction 1

2 Literature Review 7
2.1 Distributed Learning Paradigms. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Locally Simple but Globally Complex Models . . . . . . . . . . . . . . . . . . . 8
2.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Dispatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Approximation Algorithms for Balanced Clustering 11
3.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Bicriteria Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Linear Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Monarch Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.5 Rounding the Assignments . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Constant Factor Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Linear Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Rounding Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.4 Rounding Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Nearest Neighbor Dispatch 33
4.1 Nearest Neighbor Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Sample Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Size of the Second Sample . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Bounding the Extension Cost . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Bounding the bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Experiments 45
5.1 Learning Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xi



6 Conclusion 55

Bibliography 57

xii



List of Figures

3.1 Flow network for rounding the x’s: Term in brackets indicates the supply:
the flow generated at a point (negative supply indicates demand). Recall that
L′ = L.p+2

p
. The y-rounded solution gives a feasible flow in this network. By

the Integral Flow Theorem, there exists a minimum cost flow which is integral
and we can find it in polynomial time. . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Minimum cost flow network to round x’s. Quantities in parentheses indicate
supply at a node, and negative supply indicates demand. . . . . . . . . . . . . . . 32

5.1 Parameter studies on the number k of clusters for MNIST-8M, CIFAR-10 (with
two different feature representations), CTRc and Criteo-Kaggle dataset. The
s.d. over different runs is ∼ 10−3 and therefore omitted. . . . . . . . . . . . . . . 50

5.2 Linear speedup for communication-free learning: When the number of workers
is doubled, the time for dispatch, learning and testing (averaged over 5 runs)
drops by a constant factor. k was set to 128 for CIFAR-10 (both), CTR and 512
for MNIST-8M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Classification Accuracy for different values of k for the CTRa dataset. For partial
and complete communication model, the 10K most frequently occurring features
were chosen as local. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Plot for Accuracy vs Number of local features for the partial communication
scheme on CTRa. Note that having zero local features is the same as learning a
single global model over the entire dataset whereas having all features as global
(≥ 105 in the plots) is the same as learning without communication. . . . . . . . 52

xiii



xiv



List of Tables

3.1 Parameters of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Notation for Bicriteria Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Parameters of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xv



xvi



Chapter 1

Introduction

With the advent of big data has, the last few decades have seen an explosion in distributed ma-
chine learning techniques, with work in designing new algorithms [2, 28, 53], proving better
guarantees [70, 71], and desgning more efficient systems [41, 44, 48], all while pushing bound-
aries of scale and speed. The effect has been further enhanced by ubiquity of clusters of several
low cost, commodity machines.

On the algorithms side, amount of communication has emerged as a key resource [6] with
network bandwidth often being the bottleneck. Algorithms that minimize the delays caused
by communication and synchronization and hence increasing CPU utilization have seen a rise
in popularity and relevance, as have designing new algorithms with provable guarantees and
analyzing statistical performance of the proposed techniques. On the systems side, work has gone
into creating abstractions that hide low-level details from the user enabling faster development
of big machine learning algorithms [25, 44, 48, 52].

Data collection in ML tends to take two high-level forms. The first is when the data it-
self is collected in a distributed manner, whether from geographically-distributed experiments,
distributed sensors, distributed click data, etc., and the goal is to design an intelligent learning
algorithm that can take advantage of all this data without incurring the substantial overhead of
first communicating it all to some central location. The Yahoo! PNUTS database [23] is an
example - this database is geographically distributed. The second high-level form, is where mas-
sive amounts of data are collected centrally, and for space and efficiency reasons, this data must
be dispatched to distributed machines in order to perform the processing needed [48, 71]. It is
this latter form that this thesis addresses, and the core objective is to provide algorithms with the
best possible guarantees given the available data by most efficiently using the given resources
available.

For instance, consider the multi-billion dollar online advertising industry. Predicting Click
Through Rate (CTR) of advertisements [2, 16] is of paramount importance. Given petabytes of
past data and some information about a new user, the problem is to predict whether the user will
click on a particular advertisement. Each time a user opens a web-page, the query is passed to the
central server, dispatched to the appropriate machine, and the based on the result, an appropriate
advertisement is displayed. Speed is of essence in this application, and this requirement is a
driving factor in design decisions.

When data is dispatched to distributed machines, the simplest approach and what past theo-

1



retical work has focused on is to perform the dispatching randomly [70, 71]. Random dispatching
has the advantage that dispatching is easy, and also, because each machine receives data from
the same distribution, it is rather clean to think about theoretically. However, when learning with
no communication, this method is statistically sub-optimal, since the model on each machine
needs to be essentially identical. As an example, one-hot encoding is a popular scheme for CTR
data [42]. The dimensionality of the generated representation can be very large, in the order of
many millions. Feature occurence approximately follows a power law [22, 56], and parameters
corresponding to the rare keys (features in long tail) cannot be learnt reliably in this manner.

Motivated by the fact that in practice, similar data points tend to have the same or simi-
lar class, and more generally, classification rules of high accuracy tend to be “locally simple
but globally complex” [68], this thesis investigates a new paradigm for doing data dependent
dispatching that takes advantages of such structure. Indeed, Jacobs and Jordan have proposed
mixtures of experts in the 90’s [34, 36] to learn a (data-dependent) soft-partitioning along with
the experts. We take an alternate route and explore clustering as a means of data dependent
partitioning. We first cluster a small sample and an efficient dispatcher to cluster the rest of the
dataset. The outline of our algorithm is given in algorithm 1.

Clustering: Cluster a small segment of the data with some balanced clustering algorithm
Assign clusters to machines to balance load
Dispatcher: Dispatch incoming points to clusters efficiently
Learning: Use your favorite learning algorithm on each machine independently or in
tandem

Algorithm 1: High level overview of the proposed paradigm

In distributed systems, load-balancing and fault-tolerance are of prime importance, and are
the central requirements of several web scale distributed systems such as Amazon Dynamo [27],
Yahoo! PNUTS [23] and others [19]. For instance, Dynamo and PNUTS have high redundancy
for fault-tolerance. For this reason, we require our clustering and dispatch to have these prop-
erties. Further, ensuring varying degrees of read and write consistency is of great importance in
these systems, but for this thesis, we shall assume that our data is static. That is, we work under
the simplifying assumption that no writes are made to existing data in our system. This is rea-
sonable assumption in our setting. For example, in the CTR example, new data can be collected
over a period of time (say, for a day) and all updates can be applied at the end of that period but
existing data is not modified.

Incremental scalability is another requirement - given O(1) new machines, the system must
be able to scale efficiently by moving the minimum amount of data possible. Dynamo, for
instance, achieves this by using Consistent Hashing [37, 38].

Once the data is distributed to various machines, learning algorithms with or without any
communication can be used. For instance, one could train an independent model “local” on
each cluster, and this would be embarrassingly parallel, that is, free of communication and syn-
chronization. This gives the freedom to use sophisticated training algorithms on each cluster,
including ones that are difficult to perform in the distributed setting. As we shall see, this ap-
proach works best for low dimensional data such as the image data. On the other hand, one can

2



synchronize the local models on parameters corresponding to infrequent features in sparse high-
dimensional data such as the CTR data. The communication cost of this model depends on how
many parameters are being synchronized. At the other end of the spectrum of communication
complexity is the model that maintains a local correction to a fully synchronized global model
for each cluster. This approach works best when there is insufficient data in each cluster even for
the head features, as is the case for the CTR data.

Intuitively, this can be explained by the bias-variance trade off. If we restrict ourselves to
linear models for tractability, our scheme gives rise to a piecewise linear model, with each piece
defined over a cluster. This gives us a more expressive class of functions, over having a single
global linear model. In other words, the bias is reduced. For the no communication scheme,
for low dimensional data, given enough datapoints per cluster (e.g. MNIST-8M), we expect
the variance to be low as well, and our method can outperform a single global linear model.
However, for high dimensional datasets, of datasets where clusters do not have enough data, the
variance will be quite high, and so the performance will not match the performance of having
a single global model, as in the CTR datasets. On the brighter side, the reduced bias means
performance will be better than random partitioning. Moreover, in these scenarios, some amount
of synchronization on features in the long power law tail will increase the bias but reduce the
variance to a larger extent and performance is expected to improve.

Throughout the thesis, we use machines as an abstraction. By a machine, we refer to a virtual
machine that can be physically be implemented by a CPU, a computer, a rack in a data-center or
even an entire data-center.

Problem Statement and Objectives
Formally, we are given a big dataset of N points in Rq and k machines. The problem we solve
is to efficiently divide the big dataset into k parts, one for each machine and then learn a linear
model over each part either independently or jointly with the final goal of maximizing classifica-
tion accuracy. Further, we must be able to efficiently dispatch test points to appropriate machines
and answer queries in real time with the learnt models. The approach we use is balanced cluster-
ing coupled with an appropriate dispatch procedure.

As motivated earlier, we require load-balancing and fault-tolerance in addition to efficiency.
For load-balancing in our application, we require clusters to be of roughly the same size. In other
words, we should be able to enforce upper and lower bounds on the cluster sizes. This is called
balanced clustering and is not very well understood. In past literature, clustering with upper
bounds on cluster sizes, also known as capacitated clustering is well studied [3, 17, 40, 49]. On
the other hand, clustering with lower bounds on cluster sizes [29] is much less studied. Recent
work showed that having lower bounds on cluster sizes can make the problem much harder [7].
Further, in many real distributed systems, low cost machines are used. A given machine can fail
at any time. For this reason, we would like some amount of replication in the clustering for fault-
tolerance. Replication also has the benefit that boundary points are replicated across multiple
clusters, thereby improving predictive properties. To sum up, the first concerete problem we
tackle is of balanced clustering with fault-tolerance. Given parameters k, `, L, p, the number of
clusters, lower and upper bounds on cluster sizes and the replication factor respectively, we wish
to find the best k-clustering according to some objective function (e.g. k-median) where each

3



cluster has between ` and L fraction of the data and each point is replicated across p different
clusters.

In our setting, the dataset is very large and is stored in a distributed manner. Clustering the
entire dataset is too expensive. Hence, the clustering is only performed on an initial sample, and
the clustering has to be “extended” to the rest of the dataset by some dispatch procedure. Further,
unseen query points during deployment should also dispatched. For these reasons, we should
have an efficient dispatch procedure that maintains the favorable qualities of load balancing and
fault tolerance of the clustering while still preserving locality. Moreover, because of the cluster
size constraints, the cluster to which a point belongs to may no longer be the nearest cluster,
as in center based clustering. This requires a more sophisticated dispatch rule, that maintains
correctness and is also efficient during deployment. For instance, in the aforementioned online
advertising application, the request has to be correctly dispatched and served, crucially within a
tenth of a second. Specifically, given a balanced clustering on a sample, and given a new point,
we wish to assign the new point to p different nearby clusters so that each cluster gets assigned
the new point with probability approximately between ` and L. By Hoeffding’s inequality, this
gives load balancing during deployment.

Lastly and most importantly, we wish to obtain maximum performance. Data driven resource
allocation is just a tool that helps achieve locality, but obtaining best possible performance is the
ultimate objective.

Contributions and Outline
Chapter 2 surverys relevant literature.

Clustering is NP-hard. Adding balancing contraints only makes it harder. Given the er-
ratic behavior of balanced clustering [7], it is not clear whether this can even be approximated.
In chapter 3, we answer this question positively, showing provably correct polynomial time
constant-factor and bicriteria approximation algorithms. In particular, we provide an algorithm
that returns a constant factor approximation (11, 95, 5 respectively) for balanced k-median, k-
means, k-center while violating the upper bound on cluster sizes and fault tolerance by a factor
of at most 2 each. Moreover, we provite a true 6-approximation algorithm for balanced k-center
with fault tolerance that does not violate any constraints. Both of these algorithms solve the LP
relaxation of the natural LPs of these problems and round the fractional variables into integers
in a controlled manner that leads to a provable approximation factor. While we do not explicity
design our system for incremental scalability, one can achieve it by playing the doubling trick. If
k machines are available, one can start off with 2k clusters, with each machine serving 2 clusters.
Each time we get a new machine, it can pick up one cluster from machines that serves two. This
requires re-clustering, an expensive operation, only when the number of machines have been
doubled and the cost of re-clustering is amortized over the k machines added.

For the dispatcher, in Chapter 4 we propose the provably correct Nearest Neighbor Dispatch,
an efficient online procedure based on ideas from Nearest Neighbor Classification. Since bal-
anced clustering is not center based, we assign a new point to the same clusters as its nearest
neighbor from the sample. Much work goes into proving correctness - that NN dispatch returns
a load-balanced clustering with good locality, where the objective function is a proxy for local-
ity. We analyze the size of the initial sample required for good dispatch, under mild regularity

4



conditions. This step is potentially much more expensive over existing distributed systems, espe-
cially in applications that require real time responses. To efficiently implement nearest neighbor
search, one could use effective approximate NN search techniques such as Locality Sensitive
Hashing (LSH) [4, 63] and Random Partition Trees [26]. Hashing, in particular, is amenable to
efficient hardware implementations, and this can make our proposed system a viable alternative,
especially in the light of improved performance obtained in our experiments.

For the learning part, we try out various settings in Chapter 5 - ranging from totally communi-
cation free to full communication and provide a recipe for when to use each setting. We compare
favourably against the popular random partitioning with no communication and full communi-
cation (equivalent to running on a single machine) on large, real life image and CTR data. In
particular, we observed a 14% increase in classification accuracy on the MNIST-8M dataset, and
a very significant 1% increase on some CTR data. This section is more a proof of concept of the
novel idea of data driven partitioning rather than a full blown implementation of a real system.
Further performance boosts can be obtained by caching results of previous queries. Yahoo!’s
Content Delivery System, for example, uses an intelligent distributed cachcing scheme [19] that
is designed to balance load.

This theis is join work with Maria-Florina Balcan, Travis Dick, Mu Li, Alex Smola and Colin
White [7].

5



6



Chapter 2

Literature Review

In this chapter, we shall first review various distributed computing paradigms, survey the litera-
ture on balanced clustering and dispatch methods.

2.1 Distributed Learning Paradigms.

The most commonly used paradigm is when the data is randomly partitioned among the worker
machines [55, 70, 71]. Each independently learnt model can be used to answer queries or the
learnt models can be averaged to give a single model [70]. Averaging is quite popular, and
various weighted averaging schemes have emerged, e.g. [2]. Another approach is to to take a
majority vote of all the learnt models for each query point [55]. While it has better predictive
properties, majority vote is much slower than the previous approaches.

Massively Distributed Systems. Dynamo [27], Amazon’s highly available distributed key-
value store, has moved away from traditional distributed databases in order to improve avail-
ability. They trade-off consistency (and the typical ACID properties) for availability by settling
for a much weaker guarantee of eventually consistency. Dynamo has redundancy and replica-
tion for fault-tolerance, partition-aware client library for load-balancing, object versioning for
consistency and consistent hashing [37, 38] for incremental scalability. It is fully decentralized
too.

Consistent Hashing [37, 38] is a key component of Dynamo and other distributed systems. It
is a hashing scheme that is relatively robust to small changes in the number of buckets. Tradi-
tional hashing schemes requires re-hashing even for ±1 buckets, and this means a lot of the data
has to be moved around in the context of distributed systems. Consistent hashing is designed to
minimize this movement.

Yahoo!’s PNUTS [23] is a centrally-managed, geographically distributed database. Each
record has multiple replica for fault tolerance. PNUTS has a stronger consistency guarantee
than Dynamo: per-record timeline consistency. Degree of read consistency can be specified
too. Load-balancing happens is automated. Records are grouped in to blocks called tablets
(size∼ 1G), and assigment of tablets to servers is flexible - this allows for load-balancing.

7



Yahoo!’s Content Delivery system (e.g. for videos) uses some interesting ideas in caching.
Requests for content are served by multiple servers, and these servers cache the most recent re-
quests. The problem becomes difficult because most content is unpopular where some content
is extremely popular (typically, power law behavior is exhibited). Static indexing is not incre-
mentally scalable. The solution here is to use consistent hashing again. If there is no machine
serving the hashed value, it hashed repeatedly until it can be served. Similarly, to balance load, if
some content is extremely popular and multiple requests are received in quick succession for the
same content, the request is passed on (by hashing the hased value again). This simple scheme
achieves load balancing, while still retaining good properties of hashing.

The massively popular Hadoop Distributed File System [41] has replication and fault-tolerance,
although the partitioning is not data aware. In its default setting, HDFS stores three copies of
each file, two of which are on the same rack at the data center.

Distributed ML platforms With the rising popularity of distributed machine learning, several
platforms have emerged. The Parameter Server [48] is an abstraction that uses servers to store
parameters and workers to pull the values of the parameters, perform computations and push
updates. Petuum [25], MLBase [44], GraphLab [52] are other such systems.

Distributed Optimization Orthogonal to our work, there has been a lot of work about op-
timization schemes in a distributed setting. Primal-dual distributed optimization schemes are
particularly well studied: Alternating Direction Method of Multipliers [13], COCOA [35] and
its follow up COCOA+ [53] are popular. It is common for these methods to work with the dual
problem because this often gives a natural method of combining solutions from different work-
ers. These methods and their convergence guarantees are agnostic of how the data is distributed
across various machines because a single global model is learnt over the entire dataset. However,
the rate of convergence may depend indirectly on the distribution, e.g. eigenvalues of the data
matrix [35, 53]. Stochastic gradient methods, particular asynchronous methods [28, 59, 65, 72]
are also immemsely popular in the distributed setting. Asynchronous methods can perform more
computation without the overhead of synchronization but primal-dual methods enjoy faster con-
vergence.

2.2 Locally Simple but Globally Complex Models
Jacobs and Jordan [34, 36], explored the mixtures of experts, where each expert would specialize
in a particular region of the space, as decided by a gating network. The gating network and the
expert would be trained together. Diving the data reduces the bias but increases the variance.
The authors use soft assignments as a means to reduce variance. Further, the gating network
was hierarchical with experts at the leaves. The generative model can be described as follows.
Suppose x is the input and y is the output. For a simple two-level network (level i being the first
layer, and j|i being the second layer),

P (y|x, parameters) =
∑
i

gi(x, vi)
∑
j

gj|i(x, vij)P (y|x, θij)

8



Given x, the posterior hi at the first layer can be written as:

hi(y|x, parameters) ∝ gi(x, vi)
∑
j

gj|i(x, vij)P (y|x, θij).

Similar expressions can be derived for the intermediate and final posteriors. Training the experts
and the gating network together is non-convex, and is performed by an Expectation-Maximization
algorithm. Different parametric forms for P (y|x, θ) gives various types of classification or re-
gression.

There has been some past work on Local SVMs [20, 21, 60, 61] and some of these touch upon
clustering befor learning on each cluster separately using different notions of clustering. How-
ever, most of these are heuristic in nature and there is no analysis of theory involved. Moreover,
none of them are aimed at the distributed setting.

2.3 Clustering

Balanced Clustering. Clustering with upper bounds on cluster sizes is known in literature as
Capacitated Clustering. There has been a whole line of work for approximation algorithms for
this problem (since the problem is NP-hard) for various clustering objectives such as k-center
[3, 9, 24, 40] and k-median [1, 15, 17, 49]. On the other hand, clustering with lower bounds has
been shown to be much harder [7] and there is not much work on it [29]. Chapter 3 gives a more
detailed review about balanced clustering.

Large-scale Clustering. Two approaches have been taken to cluster large-datasets. The first
is use tailor-made approaches for Map-Reduce and make the problem tractable by sub-sampling
the data. For instance, Bateni et al [10] use Mapping Coresets in a multi-stage approach to find
a capacitated clustering of a large dataset on Map-Reduce. On the other hand, BOW [31] uses
random sampling, takes into account the distribution of data across various machines to try and
minimize IO costs and network traffic. The second is to treat the large dataset as a stream and
use existing streaming approaches [18, 57].

2.4 Dispatch

Clustering the entire distribution on the basis of a sample was first considered by von Luxburg
and Ben-David [69]. They study when clustering a finite sample can generalize well to a large
population for center based clusterings. The dispatch rule in this case is straight forward. Clus-
ters are Voronoi partitions about the centers in center based clustering schemes. Bubeck and
von Luxburg [14] analyze the statistical consistency of clustering a small sample optimally and
then extending the clustering to the rest of the dataset using Nearest Neighbor Clustering. The
dispatch rule for a new point is to find the nearest neighbor of this point from the initial sample
and assign it to the same cluster. Since they look at samples that are logarithmic in the size of
the dataset, the initial clustering can be bruteforced.

9



An orthogonal approach is taken by Banerjee and Ghosh [8]. They cluster a small sample
and try to find the best assignment respecting cluster size lower bounds using an extension of the
bipartite marriage. While it is interesting in its own right, it does not apply in our setting. We
require our dispatcher to be online and efficient for the applications studied here.

10



Chapter 3

Approximation Algorithms for Balanced
Clustering

We have previously motivated the need for balanced clustering- that is, clustering with both
lower and upper bounds on cluster size, and the need for fault tolerance. In this chapter, we shall
present a bicriteria approximation algorithm for fault-tolerant balanced k-median, k-means and
k-center on a given set of points. This algorithm violates the upper bound size constraint on a
cluster by a fixed amout. Further, for k-center, we give a more involved algorithm that outputs a
6-approximation and respects all size constraints. Both algorithms are LP rounding algorithms.

Preliminaries
A clustering instance consists of a set V of n0 points, and a distance metric d. Given two points
i and j in V , denote the distance between i and j by d(i, j). The task is to find a set of k centers
C = {c1, . . . , ck} and assignments of each point to p of the centers f : V →

(
C
p

)
, where

(
C
p

)
represents the subset of Cp with no duplicates. Each objectives tries to the minimize following
quantities.
• k-center: maxi∈V maxj∈f(i) d(i, j)

• k-median:
∑

i∈V
∑

j∈f(i) d(i, j)

• k-means:
∑

i∈V
∑

j∈f(i) d(i, j)2

The k-center, k-median, and k-means objectives can be thought of as minimizing the L∞,
L1, and L2 norms, respectively. If we add size constraints l and L, then each cluster must have
between ` and L fraction of points. For fault-tolerance, each point must be assigned to exactly p
centers instead of just one. Further, assume that each point i has an integer weight wi. This may
represent, for instance the multiplicity of the point or its importance.

The parameters are summarized in table 3.1.

3.1 Prior Work
Clustering with upper bounds is known in literature as Capacitated Clustering.

11



Symbol Description
k Number of clusters
` Minimum fractional size of a cluster
L Maximum fractional size of a cluster
p Replication factor, for fault-tolerance
V Set of points to cluster
wj Weight of point j
n

∑
j∈V wj , the total weight of all points

Table 3.1: Parameters of the problem

Capacitated k-center

The (uniform) capacitated k-center problem is to minimize the maximum distance between a
cluster center and any point in its cluster subject to the constraint that the maximum size of a
cluster is L. It is NP-Hard, so research has focused on finding approximation algorithms. Bar-
Ilan et al [9] introduced the problem and presented the first constant factor polynomial time
algorithm achieving a factor of 10, which was subsequently improved by Khuller et al [40]. It
was a combinatorial algorithm that first guessed the optimal objective and a graph,G of all points
with an edge between two points iff they are separated by less than the guess. They construct a
set of monarchs: a maximal independent set in G2, assign points close to the monarchs as their
“empires”, move points around empires and open new centers are required to satisfy the capacity
constraints, while increasing the objective in a bounded manner. This essentially means that a
point cannot be assigned to a cluster arbitrarily far away from it.

In [24], the capacitated k-center problem with non-uniform capacities is written as a feasible
point of an integer linear program, and a procedure to round fractional solutions obtained from
the LP relaxation is described. They construct a path-like tree structure with nearby vertices close
in the original graph, and all vertices with fractional opening values at the leaves (which they call
a “caterpillar” structure), transfer “openings” between distant vertices by transferring a limited
number of clients to neighboring facilities through a chain (so as to increase the objective only
in a bounded manner), and end up with all integral openings in polynomial time. Assignments
are then made via a bipartite matching between points and enters as Hall’s marriage theorem can
now be applied. The appoximation factor is not explicitly computed, although it is mentioned to
be “in the order of hundreds”.

An et al [3] follows a similar procedure. They describe “tree instances” as generalizations
of caterpillar structures of [24], and use a rounding procedure that is somewhat similar to the
previous approach to get an approximation factor of 8. Further, for the special case of uniform
capacities, they show a 6-approximation.

k-center with lower bounds

Ene et al [29] describe a 4-approximation to k-center with lower bounds by constructing r-nets.
They describe an efficient algorithm to this end. The reduction is specific to this objective and
does not work with upper bounds on cluster sizes.

12



Capacitated k-median

k-median with capacities is a notoriously difficult problem in clustering. It is much less un-
derstood than k-center with capacities, and uncapacitated k-median, both of which have constant
factor approximations. Despite numerous attempts by various researchers, still there is no known
constant factor approximation for capacitated k-median (even though there is no better lower
bound for the problem than the one for uncapacitated k-median). As stated earlier, there is a
well-known unbounded integrality gap for the standard LP even when violating the capacity or
center constraints by a factor of 2− ε [1]. Recent work has emerged to break this integrality gap,
but with a different LP [50].

Charikar et al. gave a 16-approximation when constraints are violated by a factor of 3 [17].
Byrka et al. improved this violation to 2 + ε, while maintaining an O( 1

ε2
) approximation [15].

Recently, Li improved the latter to O(1
ε
), specifically, when constraints are violated by 2 + 2

α
for

α ≥ 4, they give a 6 + 10α approximation [49]. These results are all for the hard capacitated
k-median problem. In the soft capacities variant, we can open a point more than once to achieve
more capacity, although each extra opening counts toward the budget of k centers. In hard
capacities, each center can only be opened once. The hard capacitated version is more general,
as each center can be replicated enough times so that the soft capacitated case reduces to the hard
capacitated case. Therefore, we will only discuss the hard capacitated case.

All of the algorithms for capacitated k-median mentioned above share the same high-level
idea but with different refinements in the algorithm and analysis. They are all LP rounding algo-
rithms. They work by first using a monarch procedure to aggregate fractional center openings,
where each demand is only moved a constant factor away. Each cluster must have at least 1

2

(or α−1
α

) total opening after this step. Then we must partition the fractional openings into star
structures, and round the openings within each star.

Universal and load balanced facility location

In the facility location problem, we are given a set of demands and a set of possible locations for
facilities. We should open facilities at some of these locations, and connect each demand point to
an open facility so as to minimize the total cost of opening facilities and connecting demands to
facilities. Capacitated facility location is a variant where each facility can supply only a limited
amount of the commodity. This and other special cases are captured by the Universal Facility
Location problem where the facility costs are general concave functions. Local search techniques
[54] have been proposed and applied successfully. Also, LP rounding techniques suffer from
unbounded integrality gap for capacitated facility location [54].

Load-balanced facility location [39], [33], is yet another variant where every open facility
must cater to a minimum amount of demand. An unconstrained facility location problem with
modified costs is constructed and solved. Every open facility that does not satisfy the capacity
constraint is closed and the demand is rerouted to nearby centers. The modified problem is
constructed so as to keep this increase in cost bounded.

13



3.2 Bicriteria Algorithm

The bicriteria algorithm presented here is inspired by previous work on capacitated k-median
[49]. However, we consider a different problem in that we have lower bounds on cluster sizes
and fault tolerance. It turns out that fault tolerance makes the problem easier to solve, provided
we are ready to lose a factor of 2 on fault-tolerance. Intuitively, it is because it is easier to find
a nearby center with remaining capacity since with greater fault-tolerance, each center has more
capacity.

3.2.1 Linear Program
Each problem can be framed as an Integer Linear Program. For each i, let yi be an indicator for
whether i is a center. For i, j, let xij be an indicator for whether point j is assigned to center i.
In literature, yi is called the opening at point i and xij is called the assignment of j to i.

The algorithm is an LP rounding algorithm where we consider the LP relaxation of the IP
(which has the constraints that x, y are 0 or 1). Now, yi represents the fraction to which a center
is opened, and xij represents the fractional assignment of j to i. For a center i and point j, let
their contribution to the objective be denoted by cij . That is, for k-median, cij = d(i, j) and for
k-means cij = d(i, j)2. The notation for this section is summarized in table 3.2. Here is the LP

Symbol Description k-median k-means k-center
yi Fractional opening at center i -
xij Fractional assignment of point j to center i -
cij Cost of assigning j to center i d(i, j) d(i, j)2 t
Cj Avg cost of assignment of point j to all its centers

∑
i cijxij/p = t

CLP Cost of LP
∑

j pCj
ρ parameter for monarch procedure 2 4 1

Table 3.2: Notation for Bicriteria Algorithm

for the k-median and k-means.

min
∑
i,j∈V

wjcijxij (3.1a)

subject to:
∑
i∈V

xij = p, ∀j ∈ V (3.1b)

nlyi ≤
∑
j∈V

wjxij ≤ nLyi, ∀i ∈ V (3.1c)∑
i∈V

yi ≤ k; (3.1d)

0 ≤ xij ≤ yi, ∀i, j ∈ V. (3.1e)

14



The k-center LP is a little different. As in prior work [40] [24] [3], we guess the optimal
radius, t. Since there are a polynomial number of possibilities, we can try all of them to find
the minimum possible t for which program 3.2 is feasible. Note that k-center can be reduced to
k-median by setting all distances ≤ t to t, and all distances > t to +∞.

∑
i∈V

xij = p, ∀j ∈ V (3.2a)

nlyi ≤
∑
j∈V

wjxij ≤ nLyi, ∀i ∈ V (3.2b)∑
i∈V

yi ≤ k; (3.2c)

0 ≤ xij ≤ yi, ∀i, j ∈ V (3.2d)
xij = 0 if d(i, j) > t. (3.2e)

In the size constraints, by n` and nL, we refer to dn`e and bnLc repectively. This leaves the
solution to the original integer program remains unchanged.

The very first step of the algorithm is to solve the LP. For k-center, solving the LP refers
to guessing t by finding the smallest t for which the LP is feasible. This will give a fractional
solution, and the rest of the algorithm seeks to round this solution such that the objective does
not increase too much, while still trying to maintain feasibility.

Let (x, y) denote an optimal solution to the LP relaxation. Let CLP denote the objective
value for k-median and k-means. For k-center, we require CLP to be the smallest threshold t at
which the LP is feasible, up to constants. For consistency with the other objectives, we scale it
as CLP = tnp.

For all j ∈ V , define the connection cost Cj as the average contribution of a point to the
objective. For k-median and k-means, it is Cj =

wj

p

∑
i∈V cijxij . That is, for k-median, it is the

average distance of a point to its fractional centers while for k-means, it is the average squared
distance of a point to its fractional centers. For k-center, it is simply the threshold times the
weight Cj = twj . Therefore, CLP =

∑
j∈V pCj in all cases.

Integrality gap It is well known that the LP’s given above have unbounded integrality gap
in general for all three objectives. For k-median, [1] and references therein show an example
for this. The same example also applies for k-means. Hence, we have to resort to bicriteria
algorithms. For k-center, Cygan et al [24] show that the LP has unbounded integrality gap.
However, if we only look at connected components of the threshold graph, the problem vanishes,
and we can have a more involved approximation algorithm, that does not violate capacities, as
described in the section 3.3.

3.2.2 The Algorithm
First we provide an outline of the algorithm and then describe each step in detail. In

1. Sovle the LP to get a fractional solution.

15



2. Partition all points into coarse clusters (called “empires”) around monarchs (heads of em-
pires). The empires actually are the Voronoi partitions induced by the monarchs. The
construction also ensures that any two monarchs are far apart. We show that each empire
Eu has total opening (i.e.

∑
i∈Eu yi) at least p

2
for k-median, k-means and p for k-center.

That is, for p ≥ 2, we have at least a full center inside each empire.
3. For each empire Eu, if the total opening is Yu ,

∑
i∈Eu yi, open bYuc many centers in

the empire. The monarch u and bYuc − 1 other points closest to the monarch are chosen
towards this end.

4. Round the xij’s by constructing a bipartite graph and finding an integral min cost flow that
corresponds to finding the best assignment for the chosen centers.

3.2.3 Monarch Procedure
Intuition. In this step, we partition all points into coarse clusters such that points with the
coarse clusters are close and two coarse clusters are far apart. Following the convention of [40],
we call these coarse clusters as “empires”, by defining one point as the “monarch”, the ruler and
the empire as the Voronoi partition around the monarch. This procedure is similar in spirit to
the monarch procedure described by Khuller et al [40] with a cutoff distance weighted by each
point’s contribution. In fact, for k-center, it turns out to be very similar, except that Khuller et al
[40] can give stronger guarantees. Note that this step does not change any of the (x, y) variables.
It only group points into coarse clusters to make the rounding easy.

In subsequent steps, monarchs are always opened as centers. Hence, it would be beneficial
to make points with higher connection cost Cj as monarchs since they contribute more to the
objective. This intuition gives rise to the following greedy procedure.

Formal description. Let M be the set of monarchs, and for each u ∈ M, denote Eu as the
empire of monarch u. We also define a parameter ρ = 1 for k-center, ρ = 2 for k-median, and
ρ = 4 for k-means, for convenience.

For the coarse clustering, sort the points in non-decreasing order of the connection cost Cj
and consider points in this sorted order. Pick the first monarch as the point j with the highest Cj
and pick subsequent monarchs greedily if they are too far away from an existing monarch. Assign
empires greedily as Voronoi partitions about the monarchs. See algorithm 2 for a complete
description.

Properties. As formalized by lemma 1, we obtain the following desirable properties from the
coarse clustering:
• The empires partition the point set V (Property 3.3a).
• Each point in the empire is close to the monarch (Property 3.3b).
• Any two monarchs are far apart (Property 3.3c).
• Each monarch has a minimum amount of opening (Property 3.3d). An important implica-

tion is that each empire has at least a full center’s worth of opening for p ≥ 2 for k-median
and k-means and any p for k-center.

16



Input: V , set of points
Output: Set of monarchs,M, and empire Ej for each monarch j ∈M

1 M← ∅
2 Order all points in non-decreasing order of Ci
3 // Identify Monarchs
4 foreach i ∈ V do
5 if @j ∈M such that wicij ≤ 2ρCi then
6 M←M∪ {i}

7 // Assign Empires as Voronoi partitions around monarchs
8 foreach j ∈ V do
9 Let u ∈M be the closest monarch to j

10 Eu ← Eu ∪ {j}

Algorithm 2: Monarch procedure for coarse clustering: Greedy algorithm to create
monarchs and assign empires

It is the last property above that makes it easier than the case for p = 1 (no replication), since we
are ready to give up a factor of two on fault-tolerance.
Lemma 1. The output of Algorithm 2 satisfies the following properties:

•
⋃
u∈M

Eu = V ; and ∀u, u′ ∈M s.t. u 6= u′, Eu ∩ Eu′ = ∅; (3.3a)

• ∀j ∈ Eu, u ∈M, wjcuj ≤ 2ρCj; (3.3b)
• ∀u, u′ ∈M s.t. u 6= u′, cuu′ > 2ρmax{Cu/wu, Cu′/wu′}; (3.3c)

• ∀u ∈M,
∑
j∈Eu

yj ≥
p

2
(or for the case of k-center,

∑
j∈Eu

yj ≥ p). (3.3d)

Proof. The first two properties follow easily from construction (for the third property, recall we
ordered the points at the start of the monarch procedure). Here is the proof of the third property,
depending on the objective function.

For k-center and k-median, it is clear that for some u ∈ M, if wud(i, u) ≤ ρCu, then i ∈ Eu
(from the triangle inequality and Property 3.3c). For k-means, however: if wud(i, u)2 ≤ 2Cu,
then i ∈ Eu. Note that the factor is ρ/2 for k-means. This is because of the triangle inequality is
a little different for squared distances.

To see why this is true for k-means, assume towards contradiction that ∃i ∈ V , u, u′ ∈ M,
u 6= u′ such that u ∈ Eu′ and d(i, u)2 ≤ 2Cu/wu. Then d(i, u′) ≤ d(i, u) by construction.
Therefore, d(u, u′)2 ≤ (d(u, i) + d(i, u′))2 ≤ 4d(i, u)2 ≤ 8Cu/wu, and we have reached a
contradiction by Property 3.3c.

Now, to prove property 3.3d:

k-center. From the LP constraints, for every u,
∑

j∈V xju = p. But xju is non-zero only they
are separated by at most t, the threshold. Combining this with the fact that if d(j, u) ≤ Cu/wu =

17



t, then j ∈ Eu, we get, for each u ∈M:∑
j∈Eu

yj ≥
∑
j∈Eu

xju = p

k-median and k-means. Note thatC ′u = Cu/wu is a weighted average of costs ciu with weights
xiu/p, i.e., C ′u = Cu/wu =

∑
i ciu

xiu/p. By Markov’s inequality,∑
j:cju>2C′u/wu

xju
p

<
C ′u
2C ′u

=
1

2

Combining this with the fact that if cju ≤ 2C ′u, then j ∈ Eu for both k-median and k-means , we
get, for each u ∈M: ∑

j∈Eu

yj ≥
∑

j:cju≤2C′u

yj ≥
∑

j:cju≤2C′u

xju ≥
p

2
.

3.2.4 Aggregation
Intuition. The coarse clusters that we get at the end of the previous step are self-contained
(each empire has opening at least one) and are well separated (the monarchs are far apart). At
the end of the aggregation step, we open the monarch and possibly more points for each empire,
and end up with at most k open centers. While making these movements, we try to maintain the
feasibility, possibly violating the upper bound on the size by a small factor. Note that at the end
of this step, the assignments may still be fractional. These are rounded in the next step.

Preliminaries. In this step, we aggregate all openings to the monarchs and then round the yi’s,
violating the size constraints by a factor of p+2

p
.

The procedure relies on a suboperation called Move, which is the standard way to transfer
openings between points (both in k-median and k-center arguments [24, 49]) to maintain all LP
constraints. Performing a Move between i and j means increasing yi by some δ, decreasing yj
by the same δ, and changing all xil and xjl so that the fractional demand switches from j to i.
Definition 1 (Operation “Move”). The operation “Move” moves a certain opening δ from a to
b. Let (x′, y′) be the updated (x, y) after a movement of δ ≤ ya from a to b. Define

y′a = ya − δ (3.4a)
y′b = yb + δ (3.4b)

∀u ∈ V, x′au = xau(1− δ/ya) (3.4c)
∀u ∈ V, x′bu = xbu + xau · δ/ya (3.4d)

Now, we show that this operation does not violate any of the LP constraints except the con-
straint that yi ≤ 1. Should we require δ ≤ min(ya, 1 − yb), the constraint yi ≤ 1 would not be
violated. But to get a bicriteria approximation, we allow this violation. The amount by which
the objective gets worse can then be bounded by the triangle inequality.

18



Lemma 2. The operation Move does not violate any of the LP constraints except possibly the
constraint yi ≤ 1 and the threshold constraint 3.2e of k-center.

Proof. To show that Equation 3.4 satisfies all the LP constraints, first note that the only quantities
that change are ya, yb, xau, xbu, ∀u ∈ V . Further, x, y satisfy all the constraints of the LP. Using
this,

• Constraint 3.1a: For every u,
∑

i x
′
iu =

∑
i xiu = p.

• Constraint 3.1b (1):∑
u

wux
′
au =

∑
u

wuxau(1− δ/ya) ≤ nLya(1− δ/ya) = nLy′a∑
u

x′bu =
∑
u

wuxbu +
∑
u

wuxau · δ/ya ≤ nLyb + nLya · δ/ya = nLy′b

• Constraint 3.1b (2):∑
u

wux
′
au =

∑
u

wuxau(1− δ/ya) ≥ n`ya(1− δ/ya) = n`y′a∑
u

wux
′
bu =

∑
u

wuxbu +
∑
u

xau · δ/ya ≥ n`yb + n`ya · δ/ya = n`y′b

• Constraint 3.1c:
∑

i y
′
i =

∑
i yi ≤ k

• Constraint 3.1d (1):

x′au = xau(1− δ/ya) ≤ ya(1− δ/ya) = y′a
x′bu = xbu + xau · δ/ya ≤ yb + ya · δ/ya = y′b.

• Non-negative constraint: this is true since δ ≤ ya.

More intuition. This procedure uses a sequence of Move’s to aggregate all openings near each
monarch greedily. Suppose we have a total opening of 3.4 in an empire. We shall open 3
full cluster centers, and distribute the total opening among them. This may be interpreted as a
violation of the upper limit on the size of the clusters instead, by a factor that turns out to be
p+2/p. For this reason, each xij may be as high as p+2/p. As we shall see, in order to make all
variables integral, any xij may have to be rounded up to 2 in the procedure that rounds the x’s.
As the constraint

∑
j xij = p is not violated, this may lead to a possible loss in fault tolerance by

a factor of 2.

Formal Description. For an empire Eu, let Yu =
∑

i∈Eu yi and zu = Yu
bYuc . We will give opening

zu to the bYuc closest points to the monarch. Note that by Property 3.3d, we have Yu ≥ 1 (always
for k-center and whenever p ≥ 2 for k-median and k-means). Then by construction, zu ≥ 1.

The procedure is simple. In each empire Eu, start with the point i with nonzero yi that is
farthest away from the monarch u. Move its opening to the monarch u. Continue this process
until u has opening exactly zu, and then start moving the farthest openings to the point j nearest
to the monarch u. Continue this until the bYuc closest points to u all have opening zu.

Call the new variables (x′, y′).

19



Properties. (x′, y′) have the following properties, stated formally in lemmas 3 and 4.
• All LP constraints are satisfied by (x′, y′) except yi ≤ 1, xij ≤ 1 and the threshold con-

straint of k-center (Properties 3.5a and 3.5d of lemma 3).
• The cost of aggregation is bounded.

Lemma 3. The aggregated solutions (x′, y′) satisfy the following constraints:

∀i ∈ V, 1 ≤ y′i <
p+ 2

p
or y′i = 0; (3.5a)

∀i ∈ V, n`y′i ≤
∑
j∈V

x′ij ≤ nLy′i; (3.5b)∑
i∈V

y′i = k (3.5c)

∀i, j ∈ V, x′ij ≤ y′i; (3.5d)

∀i ∈ V,
∑
j

x′ji = p; (3.5e)

|{i | y′i > 0}| ≤ k. (3.5f)

Proof. For the first property, recall that each cluster Eu has total opening≥ p
2
, so by construction,

all i with nonzero y′i has y′i ≥ 1. We also have Yu
bYuc ≤

bYuc+1
bYuc ≤

p
2

+1
p
2

= p+2
p

, which gives the
desired bound.

The next four properties are checking that the LP constraints are still satisfied (except for
y′i ≤ 1). These follow from 2 because Move does not violate the constraints. The last property is
a direct result of Properties 3.5a and 3.5c.

Now we prove a lemma which bounds how far away a center moved from the points it serves
by repeated applications of the triangle inequality.
Lemma 4. ∀j ∈ V whose opening moved from i′ to i,
• k-center: d(i, j) ≤ 5t,
• k-median: d(i, j) ≤ 3d(i′, j) + 8 · Cj/wj,
• k-means: d(i, j)2 ≤ 15d(i′, j)2 + 80 · Cj/wj.

Proof. k-center. Use the fact that all Cj = wjt, and xij > 0 =⇒ d(i, j) ≤ t with property 3.3b
to get:

d(i, j) ≤ d(i, u) + d(u, i′) + d(i′, j) ≤ 2 · Ci/wi + 2 · Ci′/wi′ + d(i′, j) ≤ 5t.

k-median. By construction, if the demand of point j moved from i′ to i, then ∃u ∈ M s.t.
i, i′ ∈ Eu and d(u, i) ≤ d(u, i′). Denote u′ as the closest point inM to j. Then d(u, i′) ≤ d(u′, i′)

20



because i′ ∈ Eu. Then,

d(i, j) ≤ d(i, u) + d(u, i′) + d(i′, j)

≤ 2d(u, i′) + d(i′, j)

≤ 2d(u′, i′) + d(i′, j)

≤ 2(d(u′, j) + d(j, i′)) + d(i′, j)

≤ 8Cj + 3d(i′, j).

k-means. The argument is similar to k-median. We shall repeatedly use the following iden-
tity instead of the triangle inequality: (αx+y)2 ≤ (αx+y)2 +(x−αy)2 = (α+1)x2+(α+1)y2.

d(i, j)2 ≤ (d(i, u) + d(u, i′) + d(i′, j))2

≤ (2d(u, i′) + d(i′, j))2 ≤ 5d(u, i′)2 + 5d(i′, j)2

≤ 5d(u′, i′)2 + 5d(i′, j)2

≤ 5(d(u′, j) + d(j, i′))2 + 5d(i′, j)2 ≤ 10d(u′, j)2 + 15d(i′, j)2

≤ 80Cj/wj + 15d(i′, j)2.

Since we have ≤ k points with nonzero opening, we can set them all to 1 to round the y’s.
Now all that is left is to round the x’s.

3.2.5 Rounding the Assignments
Intuition. We round the x’s by setting up a min cost flow problem, where a solution corre-
sponds to an assignment of points to centers. We set the problem up so that each unit of flow
corresponds to one assignment, and cost of the flow equals the clustering objective for the assign-
ment defined by the flow. The Integral Flow Theorem guarantees integral xij’s at the optimal.
We can actually find these by using algorithms for min cost flow and this corresponds to the
best possible assignments with the chosen centers without incurring any additional cost. Since
each xij can now be up to p+2/p, these get rounded to 2. In other words, some points may have
replication p/2 instead of p. Strictly speaking, the algorithm is actually a tricriteria algorithm
(two constraints are violated to get a constant factor approximation).

Formal description. Set {i | yi 6= 0} = Y . We show details of the min cost flow network in
the proof of the following lemma.
Lemma 5. There exists an integral assignment of the x′ij’s such that ∀i, j ∈ V , x′ij ≤ 2 and it
can be found in polynomial time.

Proof. We construct a flow graph as in figure 3.1 so that a flow in this graph is equivalent to a
clustering of V with centers from Y .

• Each j ∈ V is a vertex with supply pwj . This is to ensure replication.

21



1(+pw1)

2(+pw2)

3(+pw3)

4(+pw4)

5(+pw5)

1(−n`)

3(−n`)

4(−n`)

v(−np+ kn`)

V

Y
cost:cij
capacity:2wj

cost:0
capacity:
(dnL′e − nl)

Figure 3.1: Flow network for rounding the x’s: Term in brackets indicates the supply: the
flow generated at a point (negative supply indicates demand). Recall that L′ = L.p+2

p
. The

y-rounded solution gives a feasible flow in this network. By the Integral Flow Theorem, there
exists a minimum cost flow which is integral and we can find it in polynomial time.

• For each i ∈ Y , add an additional vertex with demand n` (or, by convention, supply −n`).
This ensures that clusters are at least n` in size.

• Given j ∈ V and i ∈ Y , add a directed edge from j to i with capacity 2wj and cost cij
for k-median and k-means. For k-center, the cost is the new threshold 5t if d(i, j) < 5t
and +∞ otherwise. The capacity ensures that we get a replication of at least p/2 for each
point.

• We also add a sink vertex, v, with demand np− kn` to complete the network.
• Given i ∈ Y , add a directed edge from i to v with cost 0 and capacity dp+2

p
Le − l. This

ensures that clusters are no bigger than dp+2
p
Le.

In this graph, there exists a feasible flow: ∀i, j ∈ V , send x′ij units of flow along the edge
from i to j, and send

∑
j∈V xij units of flow along the edge from i to v. Therefore, by the

integral flow theorem, there exists a maximal integral flow which we can find in polynomial
time. Also, by construction, this flow corresponds to an integral assignment of the x′ij’s such that
x′ij ≤ 2.

To put all if these together we have results with all thee objectives.
Theorem 6. There exists a polynomial time 5-approximation algorithm to solve the balanced
k-center with p-replication problem for p ≥ 1, where the upper size constraints are violated by
at most a factor of p+2

p
, and each point can be assigned to each center at most twice.

Proof. Recall that we defined CLP = tnp, where t is the threshold for the k-center LP. From
Lemma 4, when we reassign the demand of point j from i′ to i, d(i, j) ≤ 5t. In other words, the

22



y-rounded solution is feasible at threshold 5t. Then the k-center cost of the new y’s is np(5t) =
5CLP . From Lemma 5, we can also round the x’s at no additional cost.

Theorem 7. There exists a polynomial time 11-approximation algorithm to solve the balanced
k-median with p-replication problem for p ≥ 2, where the upper size constraints are violated by
at most a factor of p+2

p
, and each point can be assigned to each center at most twice.

Proof. From Property 4, when we reassign the demand of point j from i′ to i, d(i, j) ≤ 3d(i′, j)+
8Cj . Then we can bound the cost of the new assignments with respect to the original LP solution
as follows. ∑

i∈V

∑
j∈V

wjd(i, j)x′ij ≤
∑
i∈V

∑
j∈V

(8Cj + 3wjd(i, j))xij

≤ 8
∑
j∈V

Cj
∑
i∈V

xij + 3
∑
i∈V

∑
j∈V

wjd(i, j)xij

= 8
∑
j∈V

pCj + 3CLP = 11CLP .

Then from Lemma 5, we get a solution of cost at most 11CLP , which also has integral x’s.

Theorem 8. There exists a polynomial time 95-approximation algorithm to solve the balanced
k-means with p-replication problem for p ≥ 2, where the upper size constraints are violated by
at most a factor of p+2

p
, and each point can be assigned to each center at most twice.

Proof. The proof is similar to the k-median proof. From lemma 4, when we reassign the demand
of point j from i′ to i, d(i, j)2 ≤ 15d(i′, j)2 + 80Cj/wj . Then we can bound the cost of the new
assignments with respect to the original LP solution as follows.∑

i∈V

∑
j∈V

wjd(i, j)2x′ij ≤
∑
i∈V

∑
j∈V

(80Cj + 15wjd(i′, j)2)xij

≤ 80
∑
j∈V

Cj
∑
i∈V

xij + 15
∑
i∈V

∑
j∈V

wjd(i, j)2xij

= 80
∑
j∈V

pCj + 15CLP = 95CLP .

Then from Lemma 5, we get a solution of cost at most 95CLP , which also has integral x’s.

3.3 Constant Factor Approximation Algorithm

In this section, we present a more complicated algorithm that is specific to k-center, which
achieves a true approximation algorithm - the capacities are no longer violated. The algorithm is
again an LP rounding algorithm.

23



3.3.1 Approach

As in the previous section and in prior work [40] [24] [3], we start off by guessing the optimal
distance t. Since there are a polynomial number of possibilities, it is still only polynomially
expensive. We then construct the threshold graph Gt = (V,Et), with j being the set of all points,
and (x, y) ∈ Et iff d(x, y) ≤ t.

A high-level overview of the rounding algorithm that follows is given in algorithm 3.

Connection to the previous section. The algorithm here is similar to the bicriteria algorithm
presented previously. There are, however, two differences. Firstly, we work only with connected
components of the threshold graph. This is necessary to circumvent the unbounded integrality
gap of the LP [24]. Secondly, the rounding procedure of the y’s can now move opening across
different empires. Since the threshold graph is connected, the distance between any two adjacent
monarchs is bounded and turns out to exactly be thrice the threshold. This enables us to get a
constant factor approximation without violating any constraints.

Intuition

The approach is to guess the optimal threshold, construct the threshold graph at this threshold,
write and round several LPs for each connected component of this graph for different values
of k. The intuition behind why this works is that at the optimal threshold, each cluster is fully
contained within a connected component (by definition of the threshold graph).

We the round the opening variables, but this time, open exactly k centers. Most of the work
goes into rounding the openings, and showing that it is correct. Then, we simply round the
assignments using a minimum cost flow again.

3.3.2 Linear Program

As earlier, let yi be an indicator variable to denote whether vertex i is a center, and xij be indica-
tors for whether j belongs to the cluster centered at i. By convention, i is called a facility and j
is called a client.

Consider the following LP relaxation for the IP for each connected component of G. Note
that it is exactly the same as the one from the previous section, except it is described in terms of
the threshold graph G. Let us call it LP-k-center(G):

24



Input: V : the set of points, k: the number of clusters, (`, L): min and max allowed cluster
size

Output: A k-clustering of V respecting cluster size constraints, p: replication factor
Procedure balanced-k-center(V , k, p, `, L)

foreach threshold t do
Construct the threshold graph Gt

foreach connected component G(c) of Gt do
foreach k′ in 1, ...k do

// Solve balanced k′-clustering on G(c)

Solve LPRound(G(c), k′, p, `, L)

Find a solution for each G(c) with kc centers such that
∑

c kc = k by linear search;
call is s
if no such a solution exists then return “No Solution Found”
else return solution s

Procedure LPRound(G, k, p, `, L)
(x, y)← relaxed solution of LP in equation 3.6
(x′, y′)← yRound(G, x, y)
Round x′ to get x′′ from theorem 15
return (x′′, y′)

Procedure yRound(G, x, y)
Construct coarse clustering to get a tree of clusters from algorithm 4
Round clusters in a bottom up manner in the tree, moving mass around to nodes within
a distance of 5 away (algorithm 5)
return rounded solution with integral y

Algorithm 3: Overview of approximation algorithm for balanced k-center.

25



∑
i∈V

yi = k (3.6a)

xij ≤ yi ∀i, j ∈ V (3.6b)∑
j:ij∈E

wjxij ≤ nLyi ∀i ∈ V (3.6c)∑
j:ij∈E

wjxij ≥ n`yi ∀i ∈ V (3.6d)∑
i:ij∈E

xij = p ∀j ∈ V (3.6e)

xij = 0 ∀ij /∈ E (3.6f)
0 ≤ x, y ≤ 1 (3.6g)

Once we have the threshold graph, for the purpose of k-center, all distances can now be
measured in terms of the length of the shortest path in the threshold graph. Let dG(i, j) represent
the distance between i and j measured by the length of the shortest path between i and j in G.

Connected Components

It is well known [24] that even without lower bounds and replication, the LP has unbounded
integrality gap for general graphs. However, for connected components of the threshold graph,
this is not the case.

To begin with, we show that it suffices to be able to do the LP rounding procedure for only
connected threshold graphs, even in our generalization. The following theorem reduces the gen-
eral balanced k-center problem at a given threshold to the balanced k-center at the same threshold
on a connected threshold graph.
Theorem 9. If there exists an algorithm that takes as input a connected graph G, sizes `, L,
replication p, and k for which LP-k-center(Gt) is feasible, and computes a set of k centers
to open and an assignment of every vertex j to p centers i such that dG(i, j) ≤ r satisfying
the size constraints, then we can obtain a r-approximation algorithm to the balanced k-centers
problem with p-replication.

Proof. Let connected component i have ki clusters. For each connected component, do a linear
search on the range [1, ...k] to find values of ki for which the problem is feasible. These feasible
values will form a range, if size constraints are to be satisfied. To see why this is the case, note
that if (x1, y1) and (x2, y2) are fractional solutions for k = k1 and k = k2 respectively, then
((x1 + x2)/2, (y1 + y2)/2) is a valid fractional soluion for k = (k1 + k2)/2.

Suppose the feasible values of ki are mi ≤ ki ≤ Mi. If
∑

imi > k or
∑

iMi < k, return
NO (at this threshold t). Otherwise, start with each ki equal to mi. Increase them one by one up
to Mi until

∑
i ki = k. This process takes polynomial time.

From now on, the focus is entirely on a single connected component.

26



3.3.3 Rounding Openings
Given an integer feasible point to the IP for each connected component, we can obtain the desired
clustering. Hence, we must find a way to obtain an integer feasible point from any feasible point
of LP-k-center.

To round the opening y, we follow the approach of An et al[3]. The basic idea is to create a
coarse clustering of vertices, and have the cluster centers form a tree. The radius of each cluster
will be at most 2, and the length of any edge in the tree will exactly be three, by construction.

Now, to round the y, we first start from the leaves of the tree, moving opening around in
each coarse cluster such that at most one node (which we pick to be the center, also called the
monarch). In subsequent steps, this fractional opening is passed to the parent cluster, where
the same process happens. The key to getting a constant factor approximation is to ensure that
fractional openings that transferred from a child cluster to a parent cluster are not propagated
further. Note that the bicriteria algorithm did not move opening from one coarse cluster (empire)
to another because we didn’t have an upper bound of the cost incurred by making this shift.

Preliminaries. We start with some definitions.
Definition 2 (δ-feasible solution [24]). A solution (x, y) feasible on Gδ, the graph obtained by
connecting all nodes within δ hops away from each other.

Next, we introduce the notion of a distance-r shift. Intuitively, a distance-r shift is a series of
movements of openings, none of which traverses a distance more than r in the threshold graph.
Note that the definition is similar to what is used in An et al[3].
Definition 3 (Distance-r shift ). Given a graph G = (V,E) and y, y′ ∈ R|V |∗ , y′ is a distance-r
shift of y if y′ can be obtained from y via a series of disjoint movements of the form “Move δ
from i to i′” where δ ≤ min(yi, 1− yi′) and every i and i′ are at most a distance r apart in the
threshold graph G. Further, if all y′ are zero or one, it is called an integral distance-r shift.

Note that, by the definition of a distance-r shift, each unit of y moves only once and if it
moves more than once, all the movements are put together as a single, big movement, and this
distance still does not exceed r.
Lemma 10 (Realizing distance-r shift). For every distance-r shift y′ of y such that 0 ≤ y′i ≤
1∀i ∈ V , we can find x′ in polynomial time such that (x′, y′) is (r + 1)-feasible.

Proof. We can use the Move operation described earlier and in Cygan et al [24] to change the
corresponding x for each such a movement to ensure that the resulting (x′, y′) are (r+1)-feasible.

Let (x′, y′) be the updated (x, y) after a movement of δ ≤ min(ya, 1 − yb) from a to b. To
show that the Move operation (equation 3.4) satisfies all the LP constraints, first note that the only
quantities that can change are ya, yb, xau, xbu∀u ∈ V . Constraints 3.6a to 3.6e can be seen to hold
from the proof of Lemma 2. The additional restriction that δ ≤ 1− yb ensures the following:

• Constraint 3.6f: If xau > 0, we have dG(a, u) ≤ 1. Now, we transfer from a to b such that
dG(a, b) ≤ r. By the triangle inequality, dG(b, u) ≤ r + 1, and the edge bu exists in Gr+1.

• Constraint 3.6g: this is true since δ ≤ min(ya, 1− yb).

Since each unit of y moves only once, all the movements put together will also lead a solution
feasible in Gr+1, i.e. we get a (r + 1)-feasible solution.

27



From here on, we assume that xij, xi′j are adjusted as described above for every move-
ment between i and i′.

The algorithm to round y [3] proceeds in two phases. In the first phase, we cluster points into
a tree of coarse clusters (monarchs) such that nearby clusters are connected using the monarch
procedure of Khuller et al [40]. In the second phase, fractional opening are aggregated to get an
integral distance-5 shift.

Monarch Procedure. The monarch procedure presented a little differently but is very similar
to the monarch procedure presented earlier. Since the threshold graph is connected, we can get
guarantees on how big the distance between two monarchs is.

Algorithm 4 describes the first phase where we construct a tree of monarchs and assign
empires to each monarch. LetM be the set of all monarchs. For some monarch, u ∈ M, let Eu
denote its empire. For each vertex i, let m(i) denote the the monarch u to whose empire Eu, i
belongs.

Input: G = (V,E)
Output: Tree of monarchs, T = (M, E ′), and empires for each monarch

1 Marked← ∅
2 foreach j ∈ V do
3 initialize ChildMonarchs(j) and Dependents(j) to ∅
4 Pick any vertex u and make it a monarch
5 Eu ← N+(u); Initialize T to be a singleton node u
6 Marked← Marked ∪ Eu
7 while ∃w ∈ (V \ Marked) such that dG(w,Marked) ≥ 2 do
8 Let u ∈ (V \ Marked) and v ∈ Marked such that dG(u, v) = 2
9 Make u a monarch and assign its empire to be Eu ← N+(u)

10 Marked← Marked ∪ Eu
11 Make u a child of m(v) in T
12 ChildMonarchs(v)← ChildMonarchs(v) ∪ {u}
13 foreach v ∈ (V \ Marked) do
14 Let u ∈ Marked be such that dG(u, v) = 1
15 Dependents(u)← Dependents(u) ∪ {v}
16 Em(u) ← Em(u) ∪ {v}

Algorithm 4: Monarch Procedure: Algorithm to construct tree of monarchs and assign
empires

The guarantees now translate to the following (Lemma 11):
• Empires partition the point set.
• The empire includes all immediate neighbors of a monarch and additionally, some other

nodes of distance two (called dependents).

28



• Adjacent monarchs are exactly distance 3 from each other.
Lemma 11. Algorithm 4, the monarch procedure is well-defined and its output satisfies the fol-
lowing:
• Eu ∩ Eu′ = ∅.
• ∀u ∈M : Eu = N+(u) ∪ (

⋃
j∈N+(u) Dependents(j)).

• The distance between a monarch and any node in its empire is at most 2.
• Distance between any two monarchs adjacent in T is exactly 3.
• If ChildMonarchs(j) 6= ∅ or Dependents(j) 6= ∅, then j is at distance one from

some monarch.

Proof. Note that the whole graph is connected and V 6= ∅. For the while loop, if there exists w
such that dG(w,Marked) ≥ 2, there exists u such that dG(u,Marked) = 2 because the graph
is connected. By the end of the while loop, there are no vertices at a distance 2 or more from
Marked. Hence, vertices not in Marked, if any, should be at a distance 1 from Marked. Thus,
the algorithm is well defined.

Each time a new monarch u is created, N+(u) is added to its empire. This shows the first
statement. The only other vertices added to any empire are the dependents in the foreach loop.
Each dependent j is directly connected to i, a marked vertex. Hence, i has to be a neighbor of a
monarch. If iwere a monarch, j would have been marked in the while loop. Thus, dG(j,m(i)) =
2.

If the first statement of the while loop, v is a marked vertex, and has to be a neighbor of some
monarch m(v). New monarch u is chosen such that dG(u, v) = 2. The parent monarch of u is
m(v) and dG(u,m(v)) = dG(u, v) + dG(v,m(v)) = 3.

Initial Aggregation. Now, we shall turn to the rounding algorithm of An et al [3]. The algo-
rithm begins with changing yu of every monarch u ∈ M to 1. Call this the initial aggregation.
It requires transfer of at most distance one because the neighbors of the monarchs has enough
opening.
Lemma 12. The initial aggregation can be implemented by a distance-1 shift.

Proof. For every vertex u ∈ V , we have
∑

j∈N(u) yj ≥
∑

j∈N(u) xuj = p ≥ 1. Hence, there
is enough y-mass within a distance of one from u. The actual transfer can happen by letting
δ = min(1 − yu, yj) for some neighbor j of u and then transferring δ from j to u. That is,
yj = yj − δ and yu = yu + δ.

Rounding. The rounding procedure now proceeds in a bottom-up manner on the tree of monar-
chs, rounding all y using movements of distance 5 or smaller. After rounding the leaf empires, all
fractional opening, if any is at the monarch. For internal empires, the centers of child monarch
(remnants of previous rounding steps) and dependents are first rounded. Then the neighbors of
the monarch are rounded to leave the entire cluster integral except the monarch. The two step
procedure is adopted so that the opening propagated from this monarch to its parent originates
entirely from the 1-neighborhood of the monarch.

29



Formally, at the end of each run of round on u ∈M, all the vertices of the set Iu are integral,
where Iu := (Eu \ u) ∪ (

⋃
j∈N(u) ChildMonarchs(j)).

Input: Tree of monarchs, T , and empires for each monarch after the initial aggregation
Output: y′, an integral distance-5 shift of y

1 Procedure Round(Monarch u)
2 //Recursive call
3 foreach child w of u in T do Round(w)
4 //Phase 1
5 foreach j ∈ N(u) do
6 Xj ← {j} ∪ ChildMonarchs(j) ∪ Dependents(j)
7 Wj ← {by(Xj)c nodes from Xj}; (Avoid picking j if possible)
8 LocalRound(Wj, Xj, ∅)
9 LocalRound({j}, Xj \Wj, ∅)

10 //Phase 2
11 F = {j|j ∈ N(u) and 0 < yj < 1}
12 WF ← { any by(F )c nodes from F}
13 LocalRound(WF , F, ∅)
14 //Residual
15 if y(F \WF ) > 0 then
16 Choose w∗ ∈ F \WF

17 LocalRound({w∗}, F \WF , u)

18 Procedure LocalRound(V1, V2, V3)
19 while ∃i ∈ V1 such that yi < 1 do
20 Choose a vertex w with non-zero opening from V2 \ V1

21 if there exists none, choose j from V3 \ V1

22 δ ← min(1− yi, yj)
23 Move δ from j to i

Algorithm 5: Algorithm to round y

The rounding procedure is described in detail in Algorithm 5. The following lemma states
and proves that algorithm 5 rounds all points and doesn’t move opening very far.
Lemma 13 (Adaptation of Lemma 19 of An et al [3]). Let Iu := (Eu\u)∪(

⋃
j∈N(u) ChildMonarchs(j)).

• Round(u) makes the vertices of Iu integral with a set of opening movements within Iu ∪
{u}.

• This happens with no incoming movements to the monarch u after the initial aggregation.
• The maximum distance of these movements is five, taking the initial aggregation into ac-

count.

Proof. Integrality. From lemma 11, it can be seen that Xj, j ∈ N(u) above form a partition of
Iu. Hence, it suffices to verify that each node of every Xj is integral.

30



At the end of line 8, the total non-integral opening in Xj is y(Xj) − by(Xj)c, and is hence
smaller than one. Line 9 moves all these fractional openings to j. By now, all openings of
Xj \ {j} are integral.

Now, F is the set of all non-integral j ∈ N(u). So, by the end of line 13, the total non-integral
opening in N(u) (and hence in all of Iu) is y(F \WF ) = y(F ) − by(F )c, and is again smaller
than one. If this is zero, we are done.

Otherwise, we choose a node w∗, shift this amount to w∗ in line 17. To make this integral,
this operations also transfers the remaining amount, i.e. 1− y(F \WF ) from the monarch u.
If this happens, the monarch u’s opening is no longer integral, but Iu’s is.

This shows the first bullet. For the second one, notice that after the initial aggregation, this
last operation is the only one involving the monarch u and hence, there are no other incoming
movements into u.

Distance. In the first set of transfers in line 8 the distance of the transfer is at most 4. This
is because dependents are a distance one away from j and child monarchs are at a distance two
away. The maximum distance is when the transfer happens from one child monarch to another,
and this distance is 4 (recall that there are no incoming movements into monarchs).

The transfers in line 9 moves openings from a child monarch or a dependent to j. The
distances are 2 and 1 respectively. Accounting for the initial aggregation, this is at most 3.

The rounding on line 13 moves openings between neighbors of the monarch, i.e. from some
j to j′ where j, j′ ∈ N(u). So, the distance between j and j′ is at most 2. From the preceding
transfers, the openings at j moved a distance of at most three to get there, and thus, we conclude
that openings have moved at most a distance of 5 so far.

The first step of rounding on line 17 moves openings from some j tow∗, where j, w∗ ∈ N(u).
As above, the maximum distance in this case is 5. The second step of rounding on line 17 moves
opening from the monarch u to its neighbor w∗. This distance is one, and after accounting for
the initial aggregation, is 2.

From this, we see that the maximum distance any opening has to move is 5.

The algorithms, their properties in conjunction with lemma 10 leads to the following theorem,
which also summarizes this subsection.
Theorem 14. There exists a polynomial time algorithm to find a 6-feasible solution with all y
integral.

3.3.4 Rounding Assignments
Once we have integral y, rounding the x is fairly straight-forward, without making the approx-
imation factor any worse. Exactly the same procedure used in bicriteria algorithms works here
too. But, we can have an easier construction since for k-center since we can use distances in the
threshold graph instead.

If there were no lower bounds on cluster sizes and no replication, this phase can be done
by computing the a matching between points and centers to fix the cluster assignments (x) [3].
Once we introduce replication, the assignments can be fixed by using maximum flows, which
are generalization of matchings. Further generalizations are needed when we introduce lower
bounds. Minimum cost flows are general enough to handle this extension.

31



s(+np)

1(0)

2(0)

3(0)

4(0)

5(0)

1(−n`)

3(−n`)

4(−n`)

t(−np+ kn`)

S

T

cost:-1
capacity:p

cost:0
capacity:wj

cost:0
capacity:n(L− `)

Figure 3.2: Minimum cost flow network to round x’s. Quantities in parentheses indicate supply
at a node, and negative supply indicates demand.

Theorem 15. There exists a polynomial time algorithm that given a δ-feasible solution (x, y)
with all y integral, finds a δ-feasible solution (x′, y) with all x′ integral.

Proof. We shall use a minimum cost flow network to this. Consider a directed bipartite graph
(S, T,E ′), where S = V and T = {i : yi = 1} and j → i ∈ E ′ iff xij > 0. Add a dummy vertex
s, with edges to every vertex in S, and t with edges from every vertex in T . In this network, let
edge j → i of the bipartite graph have capacity wj . Further, all the s → S edges have capacity
p. s supplies a flow of np units, while each u ∈ T has a demand of n` units. To ensure no excess
demand or supply, t has a demand of np−kn`. All the t→ T edges have a capacity of n(L− `).

All the s → S edges have a cost of −1 and every other edge has a cost of zero. See figure
3.2.

Clearly, a feasible assignment (x, y) to LP-k-center(Gδ) with integral y is a feasible flow
in this network. In fact, it is a minimum-cost flow in this network. This can be verified by the
absence of negative cost cycles in the residual graph (because all negative cost edges are at full
capacities).

Since, the edge capacities are all integers, there exists a minimum cost integral flow by the
Integral Flow Theorem. This flow can be used to fix the cluster assignments.

Piecing together theorems 14 and 15, we have the following theorem:
Theorem 16. Given an instance of the k-centers problem with p-replication and for a connected
graph G, and a fractional feasible solution to LP-k-center(G), there exists a polynomial
time algorithm to obtain a 6-feasible integral solution. That is, for every i, j such that xij 6= 0,
we have dG(i, j) ≤ 6.

32



Chapter 4

Nearest Neighbor Dispatch

In the previous chapter, we developed provably good algorithms for the balanced clustering on
a sample S drawn iid from some unknown probability distribution µ over some metric space
(X , d()). The next step is to cluster the rest of the large dataset for training, and on previously
unseen query points during deployment- all of which are assumed to be iid draws from the same
unknown distribution µ.

During deployment, each query point should be dispatched to a nearby cluster. Load balanc-
ing requires that each cluster sees approximately the same number of query points. That is, no
machine is over-utilized or under-utilized.

The goal of this chapter is to output a clustering of the entire spaceX that does well according
to the k-median objective defined over the distribution µ. For load balancing, we are interested in
finding clusterings of X that satisfy cluster size constraints, also known as capacity constraints,
in that every cluster has total probability mass at least ` and at most L for two numbers 0 ≤ ` ≤
L ≤ 1.

Our basic strategy will be to extend clustering of S to the entire space X using a simple rule.
Each point x ∈ X will be assigned to the same p clusters as the nearest data point in S.

Previous work by von Luxburg and Ben-David [69] was for center based clustering. The
introduction of size constraints in our case means that these techniques cannot be used. Further,
we require the dispatch procedure to be fast and online, ruling out [8]. We use, instead, ideas
similar to Bubeck et al [14] to extend the clustering to the population. Further, the goal in our
case, and hence the analysis is very different.

For the remainder of this chapter, assume that we have a set S = {x1, . . . , xn} drawn iid
from µ and that we know how to obtain a balanced clustering of S. While this chapter focuses
primarily on k-median, similar techniques can be applied to k-means as well. Symbols used are
informally described in table 4.1.

Preliminaries

Before stating the algorithm, we introduce some notation. A k-clustering of X with p replication
is an assignment of each point x ∈ X to exactly p cluster indices in [k] and a collection of k
centers. We encode the cluster assignments as a function f : X →

(
k
p

)
and the centers as a

33



Symbol Description
k Number of clusters
` Minimum size of a cluster
L Maximum size of a cluster
p Replication factor, for fault-tolerance

f, g, gn Cluster assignments. Adopted convention is f for distribution and g for sample
c, cn Centers
f, c Clustering of the distribution
gn, cn Clustering of a sample of size n
Q(f, c) Cost of a clustering f, c of the distribution

Qn(gn, cn) Cost of a clustering gn, cn of a sample of size n with true weights
Q̂n(gn, cn) Cost of a clustering gn, cn of a sample of size n with estimated weights

ḡn Nearest neighbor extension of clustering gn
F (`, L) Set of all clustering of the distribution that satisfy size constraints `, L
Gn(`, L) Set of all clusterings of a sample of size n that satisfy true size constraints `, L
Ĝn(`, L) Set of all clusterings of a sample of size n that satisfy estimated size constraints `, L

Table 4.1: Parameters of the problem

vector c ∈ X k where the ith entry, denote by c(i), is the center for cluster i. The population-level
k-median objective [69] is the expected total distance from a point x sampled from µ to its p
assigned centers:

Q(f, c) = E
x∼µ

[ ∑
i∈f(x)

d(x, c(i))

]
.

For any lower bound ` and upper bound L on the cluster capacities, we denote the set of cluster
assignments that satisfy the capacity constraints by

F (`, L) =

{
f : X →

(
k

p

)
: P
x∼µ

(i ∈ f(x)) ∈ [`, L] for all i = 1, . . . , k
}
.

Similarly, a k-clustering of the data set S with p replication is a function g : S →
(
k
p

)
and a

vector of centers c ∈ X k. The weighted k-median objective on S is

Qn(g, c) =
n∑
j=1

wj
∑
i∈g(xj)

d(xj, c(i))

where NNS(x) = argminx′∈S d(x, x′) is the nearest neighbor in the set S to the point x and

wi = P
x∼µ

(NNS(x) = xi).

Intuitively, each xi ∈ S acts as a representative for all points of X that it is closest to.

34



For any lower bound ` and upper bound L on the cluster capacities, we denote the set of
cluster assignments on S that satisfy the weighted capacity constraints by

Gn(`, L) =

{
g : S →

(
k

p

)
:
∑

j:i∈g(x)

wj ∈ [`, L] for all i = 1, . . . , k
}
.

Finally, Given estimates ŵi of the true weights wi, we also define

Q̂n(g, c) =
n∑
j=1

ŵj
∑
i∈g(xj)

d(xj, c(i))

and

Ĝn(`, L) =

{
g : S →

(
k

p

)
:
∑

j:i∈g(x)

ŵj ∈ [`, L] for all i = 1, . . . , k
}

to be the corresponding estimates of the weighted objective and set of assignments that satisfy
the weighted capacity constraints.

4.1 Nearest Neighbor Extension
Independently of how we cluster the set S, when we extend the clustering to the entire space X
using the nearest neighbor extension, each data point xi ∈ S acts as a representative for some
subset of X . In particular, the point xi represents the set of points closer to it than any other data
point, denoted by Vi = {x ∈ X : NNS(x) = xi}. For instance, when X is a subset of the
Euclidean space Rq, the set Vi is the tile corresponding to xi in a Voronoi partition of the space
induced by the set S.

When we assign the point xi to some cluster, we are implicitly also assigning all the points
in Vi to that cluster. Since the probability mass of the Vi sets might not be equal, some of the
data points will have a larger influence on the objective value of the extended clustering and
on the probability masses of the clusters. Therefore, when we cluster the set S, we consider a
weighted version of the clustering objective function and capacity constraints where each point
xi is weighted by the probability mass of Vi. Since the probability distribution µ is unknown, we
estimate these weights using a second sample S ′ drawn randomly from µ.

Every cluster assignment g ∈ Gn(`, L) has a nearest neighbor extension defined by ḡ(x) =
g(NNS(x)). Define

Ḡn(`, L) = {ḡ : g ∈ Gn(`, L)}

to be the set of cluster assignment functions on X that are nearest neighbor extensions of some
clustering g ∈ Gn(`, L). Notice that every assignment in Ḡn(`, L) satisfies the population-level
capacity constraints, i.e. Ḡn(`, L) ⊂ F (`, L).

Algorithm 6 gives pseudocode for our algorithm. As described above, it first draws a second
sample S ′ from the data distribution µ which is used to estimate each of the weights w1, . . . , wn.
Then we apply any approximation algorithm to the estimated weighted k-median objective over
S subject to the estimated weighted capacity constraints. Finally, we output the nearest neighbor
extension of the resulting clustering.

35



Parameters: Clustering parameters k, p, `, L, second sample size n′.
procedure NNEXTENSION(S = {x1, . . . , xn})

Let S ′ be an iid sample drawn from µ of size n′.
Let ŵi = |S ′ ∩ Vi|/n′ be the estimated mass of Vi for each i = 1, . . . , n.
Let (gn, cn) be an approximation to ming,c Q̂n(g, c) subject to g ∈ Ĝn(`, L).
Define ḡn(x) = gn(NNS(x)) and output clustering (ḡn, cn).

end procedure
Algorithm 6: Nearest Neighbor Clustering Extension

4.2 Sample Complexity

4.2.1 Size of the Second Sample

We bound the sub-optimality of any clustering (ḡn, cn) returned by Algorithm 6 with respect to
any clustering (f ∗, c∗) of the population and the violation of the size constraints. The bound will
depend on

1. the quality of the finite-data algorithm,
2. the extension cost or the “average radius” of the Voronoi cells

α(S) := E
x∼µ

[
d(x,NNS(x))

]
(4.1)

and
3. the unavoidable bias from returning clusterings that are constant over Vi,

β(S, `′, L′) := min
h∈Gn(`′,L′),c

(
Q(h̄, c)−Q(f ∗, c∗)

)
(4.2)

where (f ∗, c∗) is the optimal clustering that satisfies size constraints `, L.
When `′, L′ are clear from the context, we just write it as β(S). All proofs from this section are
presented in the next section.
Theorem 17. For any ε > 0, δ > 0, let (ḡn, cn) be the output of Algorithm 6 with parameters
k, p, `, L and second sample size n′ = O

(
(n + log 1/δ)/ε2

)
. Let (f ∗, c∗) be any clustering of X

with size constraints (`′, L′) and (g∗n, c
∗
n) be an optimal clustering of S under Q̂n satisfying the

estimated weighted capacity constraints (`, L). Suppose the finite data algorithm used satisfies
Q̂(gn, cn) ≤ r · Q(g∗n, c

∗
n) + s. Then w.p ≥ 1 − δ over the second sample the output (ḡn, cn)

belongs to Ḡn(`′, L′) where `′ = `− ε and L′ = L+ ε and we have

Q(ḡn, cn) ≤ r·Q(f ∗, c∗) + s+ 2(r + 1)pDε+ p(r + 1)α(S) + rβ(S, `+ ε, L− ε),

where D is the diameter of S.
When S is drawn randomly from µ, we can bound the terms α(S), β(S).

36



4.2.2 Bounding the Extension Cost

We bound the sample size required to make α(S) small when X ⊆ Rq and S is drawn ran-
domly from an arbitrary µ. However, in the worst case, the curse of dimensionality results in an
exponential dependence on dimension (eg. [11]).

Additionally, when the distribution has a lower intrinsic dimension, we can do better. The
doubling condition is one such a condition. Let B(x, r) be a ball of radius r around x with
respect to the metric d().
Definition 4 (Doubling measure). A measure µ with support X is said to be a doubling measure
of dimension d0 if for all points x ∈ X and all radiuses r > 0 we have

µ(B(x, 2r)) ≤ 2d0µ(B(x, r)).

We have the following lemma bounding α(S) for randomly drawn S.
Lemma 18. For any ε, δ > 0, and X ⊆ Rq, if a randomly drawn S from µ is of size
• O(qq/2ε−(q+1)(q log

√
q

ε
+ log 1

δ
)) in the general case, or

• O(ε−d0(d0 log 1
ε

+ log 1
δ
)) if µ is doubling with dimension d0,

then w.p ≥ 1− δ, α(S) ≤ εD

4.2.3 Bounding the bias

Nearest neighbor dispatch may be interpretted as applying nearest neighbor classification with
the initial sample serving the role of the training set, and the clustering assignment function
serving the role of the label function. With this in mind, we shall make use of the rich literature
on nearest neighbor classification to bound β(S). At the outset, from the work of Bubeck and
von Luxburg [14], inspired by Fritz [32] before them, it can be seen that the probability (over S)
that β(S) is large goes exponentially quickly to zero as S gets bigger. However, their analysis
has some unknown constants, and hence cannot be used to get a sample complexity statement.

A first attempt: Lipschitz Continuity. Lipschitz continuity is a common assumption in near-
est neighbor classification. But if the label function f is deterministic (i.e. the Bayes error is
zero), as it is in our case, L-Lipschitzness implies a margin of 1/L between regions of different
labels.

In particular, if we assume that the optimal population clustering is L-Lipschitz, it means
that the optimal clusters have a 1/L margin of probability mass zero between them. In lemma
25, if we choose r < 1/L, nearest neighbor dispatch will not misclassify any region of the
space (with high probability). Further, the capacity constraints will be satisfied for the optimal
clustering projected on the sample for any sample because the nearest neighbor is always in the
same optimal cluster. In this case, β(S) is zero w.h.p, given that we set the size of the first sample
to be large enough to guarantee that r < 1/L. However, Lipschitz continuity is a very strong
assumption which is seldom realistic. This motivates the need for a weaker condition that allows
the probability mass to taper off near the boundaries, rather than have a hard margin.

37



Probabilistic Lipschitzness. The Probabilistic Lipschitzness (PL) condition was introduced
by Urner et al [66, 67] as a relaxation of the Lipschitz condition that is both realistic and mathe-
matically neat. A deterministic labeling function f is φ-PL if the probability mass of points that
have non-zero mass of differently labeled points in a λ-ball around them is atmost φ(λ).
Definition 5 (Probabilistic Lipschitzness). Let (X , d()) be some metric space of diameter D and
let φ : [0, 1] → [0, 1]. f : X →

(
k
p

)
is φ-Lipschitz with respect to some distribution µ over X , if

∀λ ∈ [0, 1]:

P
x∼µ

[
∃y : I(f(x) 6= f(y)) and d(x, y) ≤ λD

]
≤ φ(λ)

Note that for the clustering, we have made two modifications to the original definition. Since
f maps each point to a set in

(
k
p

)
, we overload notation to let f(x) = f(y) iff the sets f(x) and

f(y) are equal i.e. i ∈ f(x) ⇐⇒ i ∈ f(y). Secondly, to achieve scale invariance and since
we consider bounded sets here, we have introduced the diameter of the set X in the definition.
Further, since φ is non-decreasing, define φ−1(x) = inf{λ : φ(λ) ≥ x}.

The main assumption we make in this section is that the optimal clustering f ∗ is φ-PL. This
is, in some sense, a roundness assumption on the clusters- that the probability mass “close to”
the boundaries of the clusters is small.

Bound on β(S). The main sample complexity result is that for any confidence parameter δ
and accuracy parameter ε, what should be the size of S to ensure that β(S) is small with high
probability?

If a clustering function f is PL, it means the clusters are, in some sense, “round”- that the
probability mass “close to” the boundaries of the clusters is small, akin to the roundness in [12].
Under this condition, we have the following sample complexity result for β. We can compare to
a clustering with slightly tighter capacity constraints:
Lemma 19. Let µ be a measure on Rq with support X of diameter D. Let f ∗, some clustering of
µ that satisfies capacities (`+ ε, L− ε), be φ-PL. If we see a sample S drawn iid from µ of size at
least O

(
1
ε

(
1

φ−1(ε/2)

)q(
q log

√
q

φ−1(ε/2)
+log 1

δ

))
in the general case or O

((
1

φ−1(ε)

)d0(d0 log 4
φ−1(ε)

+

log 1
δ

))
when µ is a doubling measure of dimension d0 then, w.p. at least 1− δ over the draw of

S, we have that β(S, `, L) ≤ pDε.

Putting everything together
We have the following theorem that captures the sample size required for Algorithm 6 to output
a good enough clustering that satisfies the capacity constraints approximately.
Theorem 20. For any ε > 0, any confidence parameter δ > 0 and clustering parameters
k, p, `, L, define:

(f ∗, c∗) = argmin
f∈F (`−2ε,L+2ε),c

Q(f, c)

(g∗n, c
∗
n) = argmin

g∈Ĝn(`,L),c

Q̂n(g, c)

38



to be the best clustering of µ with constraints relaxed by 2ε, and the best clustering of S using
weights estimated from S ′ respectively. Further, assume that µ has a diameter D and that f ∗ is
φ-PL. Suppose the finite-data algorithm used within Algorithm 6 outputs an (gn, cn) such that
Q̂n(gn, cn) ≤ rQ̂n(g∗n, c

∗
n) + s when run with parameters k, p, `, L on sample S . Let ε′ =

min{ε, φ−1(ε)}. If we have samples of sizes:

• n = O

(
1
ε

(√q
ε′

)q
(q log

√
q

ε′
+ log 1

δ
)

)
in the general case

• n = O

(
d0 log(1/ε′)+log(1/δ)

(ε′)d0

)
when µ is a doubling measure of dimension d0

• and n′ = O

(
n+log(1/δ)

ε2

)
then, with probability 1− δ over the draw of S, S ′, the output (ḡn, cn) of Algorithm 6 has the

following desirable properties:
• ḡn satisfies capacity constraints (`− ε, L+ ε). In other words, ḡn ∈ F (`− ε, L+ ε).
• ḡn, cn is a good approximation to (f ∗, c∗):

Q(ḡn, cn)− rQ(f ∗, c∗) ≤ s+ (4r + 3)pDε

4.3 Proofs

Size of Second Sample
Before proving the Theorem 17, we shall need the following lemmas.

Our first results are regarding the size of the second sample, n′. As a function of the data set
size n = |S|, how large does n′ need to be so that Q̂n is a faithful estimate of the true weighted
objective Qn and the set Ĝn(`, L) closely approximates Gn(`, L)?
Lemma 21. For any ε > 0 and any δ > 0, if we set n′ = O

(
1
ε2

(n + log 1
δ
)
)

in Algorithm 6 then
with probability at least 1− δ we have

∣∣∑
i∈I(wi− ŵi)

∣∣ ≤ ε uniformly for all index sets I ⊂ [n].
Whenever this happens:
• For any clustering (g, c) of the set S, we have |Q̂n(g, c) − Qn(g, c)| ≤ 2pDε where D =

maxx,x′∈S d(x, x′) is the diameter of the set S, and
• Ĝn(`, L) is close to Gn(`, L) in the sense that Gn(` + ε, L − ε) ⊆ Ĝn(`, L) ⊆ Gn(` −
ε, L+ ε).

Proof. For any index set I ⊂ [n], let VI denote the union
⋃
i∈I Vi. The key insight is that,

since the sets V1, . . . , Vn are disjoint, for any index set I , we have that
∑

i∈I wi = µ(VI) and∑
i∈I ŵi = µ̂(VI), where µ̂ is the empirical measure induced by the set S ′. Therefore, it is

sufficient to show that µ̂ accurately estimates the probability mass of all 2n unions of the sets V1,
. . . , Vn. Applying the union bound over the 2n unions and Hoeffding’s inequality, we have

P
(

supI⊂[n]

∣∣∣∣∑i∈I wi − ŵi
∣∣∣∣ > ε

)
= P

(
supI⊂[n] |µ(VI) − µ̂(VI)| > ε

)
≤
∑

I⊂[n] P(|µ(VI) −

µ̂(VI)| > ε) ≤ 2n · 2e−2n′ε2 . Setting n′ = 1
2ε2

((n+ 1) log 2 + log 1/δ) = O
(

1
ε2

(n+ log 1
δ
)
)

results
in the upper bound being equal to δ.

39



The second implication is obvious. For the first implication, let I ⊂ [n] be the indices of the
estimated weights for which ŵi ≥ wi and let Ic = [n]− I . Since the error in any sum of weights
is at most ε, we have

|Q̂n(g, c)−Qn(g, c)| ≤
∣∣∣∣∑
j∈I

(ŵj − wj)
∑
i∈g(xj)

d(xj, c(i))

∣∣∣∣
+

∣∣∣∣∑
j∈Ic

(wj − ŵj)
∑
i∈g(xj)

d(xj, c(i))

∣∣∣∣
≤ pD

(∣∣∣∣∑
j∈I

(ŵj − wj)
∣∣∣∣+

∣∣∣∣∑
j∈Ic

(wj − ŵj)
∣∣∣∣) ≤ 2pDε.

While this bound is still loose when we sum up almost all of the weights (or very few of
them) it achieves the optimal worst-case dependence on n. If n′ is sub-linear in n, some of the
weights are estimated as zero.

Next we relate the objective value of any clustering (g, c) over the sample S to the population-
level objective of the extension (ḡ, c) over the entire space X . In particular, the cost increases
by at most p times the expected distance from a point sampled from µ to the nearest point in S.
Intuitively, this quantity bounds the difference in the distance from a data point xj and a point
x ∈ Vj to any center c(i).
Lemma 22. For any clustering (g, c) of S with extension (ḡ, c), the cost of the extension is
bounded as |Qn(g, c)−Q(ḡ, c)| ≤ pEx∼µ[d(x,NNS(x))].

Proof. Rewrite the objective as Qn(g, c) = Ex∼µ
[∑

i∈ḡ(x) d(NNS(x), c(i))

]
. The triangle in-

equality gives

Q(ḡ, c) ≤ E
x∼µ

[ ∑
i∈ḡ(x)

d(x,NNS(x))

]
+ E

x∼µ

[ ∑
i∈ḡ(x)

d(NNS(x), c(i))

]
= p E

x∼µ
[d(x,NNS(x))] +Qn(g, c).

Similarly, we have that Qn(g, c) ≤ pEx∼µ[d(x,NNS(x))] +Q(ḡ, c), which concludes the proof.

We are now ready to prove Theorem 17.

Proof of Theorem 17. For our choice of n′, the good event from Lemma 21 holds with proba-
bility at least 1 − δ over the second sample S ′. Since, gn satisfies capacity constraints (`, L)
with estimated weights, whenever the good event above holds, ḡn satisfies capacity constraints
(`− ε, L+ ε). Let (hn, cn) = argminh∈Gn(`+ε,L−ε),cQ(h̄, c) be the clustering of S, subject to the

40



tighter capacity constraints (`+ ε, L− ε), whose extension has the best objective value. Then we
have

Q(ḡn, cn) ≤ Qn(gn, cn) + pα(S)

≤ Q̂n(gn, cn) + 2pDε+ pα(S)

= Q̂n(gn, cn)− r · Q̂n(g∗n, c
∗
n) + r̂ ·Qn(g∗n, c

∗
n) + 2pDε+ pα(S)

≤ s+ 2(r + 1)pDε+ pα(S) + r ·Qn(g∗n, c
∗
n)

≤ s+ 2(r + 1)pDε+ pα(S) + r ·Qn(hn, cn)

≤ s+ 2(r + 1)pDε+ p(r + 1)α(S) + r ·Q(h̄n, cn)

≤ s+ 2(r + 1)pDε+ p(r + 1)α(S) + rβ(S) + r ·Q(f ∗, c∗)

Extension Cost
We shall first prove the statement for Rq.
Lemma 23. For any r > 0 and any ε > 0, there exists a subset Y of X containing at least
1 − ε of the probability mass of µ such that, for any δ > 0, if we see an iid sample S of size
n = O(1

ε
(
D
√
q

r
)q(q log

D
√
q

r
+ log 1

δ
)) drawn from µ, then with probability at least 1− δ we have

supx∈Y d(x,NNS(x)) ≤ r.

Proof. Let C be the smallest cube containing the support X . Since the diameter of X is D, the
side length of C is at most D. Let s = r/

√
q be the side-length of a cube in Rq that has diameter

r. Then it takes at most m = dD/seq cubes of side-length s to cover the set C. Let C1, . . . , Cm
be such a covering of C, where each Ci has side length s.

LetCi be any cube in the cover that has probability mass at least ε/m under the distribution µ.
The probability that a sample of size S drawn from µ does not contain a sample in Ci is at most
(1−ε/m)n. Let I denote the index set of all those cubes with probability mass at least ε/m under
µ. Applying the union bound over the cubes indexed by I , the probability that there exists a cube
Ci with i ∈ I that does not contain any sample from S is at most m(1 − ε/m)n ≤ me−nε/m.
Setting n = m

ε
(lnm+log 1

δ
) = O(1

ε
(
D
√
q

r
)q(q log

D
√
q

r
+log 1

δ
)) results in this upper bound being

δ. For the remainder of the proof, suppose that this high probability event occurs.
Define Y =

⋃
i∈I Ci. Each cube from our cover not used in the construction of Y has

probability mass at most ε/m and, since there are at most m such cubes, their total mass is
at most ε. It follows that Px∼µ(x ∈ Y) ≥ 1− ε. Moreover, every point x in Y belongs to one of
the cubes, and every cube Ci with i ∈ I contains at least one sample point. Since the diameter of
the cubes is r, it follows that the nearest sample to x is at most r away.

Setting r = Dε, we obtain the bound on α(S).
For the remainder of this subsection, suppose that µ is a doubling measure of dimension d0

with supportX and that the diameter ofX isD > 0. First, the following lemma is quite standard.
See, for example, [43, 45]
Lemma 24. For any radius r, X can be covered using no more than (2D/r)d0 balls of radius r.

41



The next lemma tells us that we need a sample of size O
(
(D
r

)d0(d0 log D
r

+ log 1
δ
)
)

in order
to ensure that there is a neighbor from the sample no more than r away from any point in the
support with high probability.
Lemma 25. For any r > 0 and any δ > 0, if we draw an iid sample S of size n = (2D

r
)d0(d0 log(4D

r
)+

log(1
δ
)), then with probability at least 1− δ we have supx∈X d(x,NNS(x)) ≤ r

Proof. By Lemma 24 there is a covering of X with balls of radius r/2 of size (4D/r)d0 . For
each ball B in the cover, the probability that no sample point lands in B is (1 − µ(B))n ≤
(1 − (r/2D)d0)n ≤ exp(−n(r/2D)d0). Let E be the event that there exists at least one ball
B in our cover that does not contain one of the n sample points. Applying the union bound
over the balls in the cover, we have that P(E) ≤ (4D/r)d0 exp(−n(r/2D)d0). Setting n =
(2D/r)d0(d0 log(4D/r) + log(1/δ)) = O

(
(D
r

)d0(d0 log D
r

+ log 1
δ
)
)
, we have that P(E) < δ.

When the bad event E does not occur, every ball in our covering contains at least one sample
point. Since every point x ∈ X belongs to at least one ball in our covering and each ball has
diameter r, we have supx∈X d(x,NNS(x)) ≤ r.

Lemmas 25 and 23 complete the proof of Lemma 18 since the expectation is no larger than
the supremum.

Bounding the bias
We shall now prove Lemma 19.

Proof of Lemma 19. Suppose Px∼µ(f ∗(NNS(x)) 6= f ∗(x)) ≤ ε.
Define the restriction fS : S →

(
k
p

)
of f ∈ F (`, L) to be fS(x) = f(x) for x ∈ S. Firstly,

we shall show that the cluster sizes of f ∗S can be bounded. Recall that the sizes of cluster i
in a clustering f of X and a clustering g of the sample S are respectively is Px∼µ(i ∈ f(x))
and Px∼µ(i ∈ ḡ(x)). By the triangle inequality, |Px∼µ(i ∈ f̄ ∗S(x)) − Px∼µ(i ∈ f ∗(x))| ≤
Px∼µ(f̄ ∗S(x) 6= f ∗(x)) = Px∼µ(f ∗(NNS(x)) 6= f ∗(x)) and this is at most ε, by our assumption.

Consider β(S). Since f ∗ ∈ F (`+ 2ε, L− 2ε), we have that f ∗S ∈ Gn(`− ε, L+ ε), we have

β(S) ≤ Q(f̄ ∗S, c
∗)−Q(f ∗, c∗) = E

x∼µ

[ ∑
i∈f∗(NNS(x))

‖x− c(i)‖ −
∑

i′∈f∗(x)

‖x− c(i′)‖
]

By the triangle inequality, ‖x−c(i)‖−‖x−c(i′)‖ ≤ ‖c(i)−c(i′)‖. Since f ∗(x) and f ∗S(NNS(x))
can differ on at most p assignments, and since any two centers are most a distance D apart, we
have that β(S) ≤ Ex∼µ(pD · I f ∗(NNS(x) 6= f ∗(x))) = pD · Px∼µ(f ∗(NNS(x)) 6= f ∗(x)) ≤
pDε.

All that remains is to show that Px∼µ(f ∗(NNS(x)) 6= f ∗(x)) ≤ ε for big enough n. Lemma
26 lists the conditions when this is true.

We require the following lemma for nearest neighbor classification, similar in spirit to that of
Urner and Ben-David. Note that since f is a set of p elements, this lemma holds for multi-label
nearest neighbor classification.

42



Lemma 26. Let µ be a measure on Rq with support X of diameter D. Let the labeling function,
f be φ-PL. For any accuracy parameter ε and confidence parameter δ, if we see a sample S of
size at least
• 2

ε

⌈ √
q

φ−1(ε/2))

⌉q(
q logd

√
q

φ−1(ε/2)
e+ log 1

δ

)
in the general case

•
(

2
φ−1(ε)

)d0(
d0 log 4

φ−1(ε)
+ log 1

δ

)
when µ is a doubling measure of dimension d0

then nearest neighbor classification generalizes well. That is, with probability at least 1− δ over
the draw of S, the error on a randomly drawn test point, Px∼µ(f(x) 6= f(NNS(x))) ≤ ε.

Proof. Let λ = φ−1(ε). We know that most of X can be covered using hypercubes in the general
case, as in Lemma 23 or entirely covered using balls in the case when µ is a doubling measure, as
in Lemma 24, both of diameter λD. In case we have cubes in the cover, we shall use a ball of the
same diameter instead. This does not change the sample complexity, since a cube is completely
contained in a ball of the same diameter.

Formally, let C be the covering obtained from Lemma 23 or Lemma 24, depending on whether
or not the measure is a doubling measure. Define B(x) to be the set of all the balls from C that
contain the point x. A point will only be labeled wrongly if it falls into a ball with no point from
S, or a ball that contains points of other labels. Hence,

P
x∼µ

(f(NNS(x)) 6= f(x)) ≤ P
x∼µ

(∀C ∈ B(x) : S ∩ C = ∅) + P
x∼µ

(∃y ∈
⋃

C∈B(x)

C : f(y) 6= f(x))

Since each ball is of diameter λD, the second term is at most Px∼µ(∃y ∈ B(x, λD) : f(y) 6=
f(x)). By the PL assumption, this is at most φ(λ) = ε, independent of the covering used.

For the first term, our analysis will depend on which covering we use:

• From Lemma 23, we know that all but 1−ε fraction of the space is covered by the covering
C. When the sample is of size O(1

ε
(
√
q

λ
)q(q log(

√
q

λ
) + log 1

δ
)), each C ∈ C sees a sample

point. For a sample this large, the first term is ≤ ε. Substituting ε with ε/2 completes this
part of the proof.

• When µ is a doubling measure, we can do better.If every ball of the cover sees a sample
point, the first term is necessarily zero. From the proof of Lemma 25, we know that if we
draw a sample of size n = (2/λ)d0(d0 log(4/λ)+ log(1/δ)) samples, then every ball of the
cover sees a sample point with probability at least 1−δ over the draw of S. This completes
the proof.

43



44



Chapter 5

Experiments

In this chapter, we discuss various approaches to learning depending on the communication
budget, compare the performance against common alternative schemes.

First, we discuss various learning schemes depending on the communication budget. Next,
we describe the datasets used in the comparison. Finally, we present the experimental results and
discuss when each method would be best used.

Preliminaries

Suppose we have training data D = {(yi,xi)}Ni=1 where each xi ∈ Rq is the datapoint and yi is
the label. Further, let l(.) denote a loss function such as the logistic loss or the squared hinge
loss.

Suppose we cluster an initial sample and partition the rest of the dataset using techniques
from the previous chapters. Refer to the partitions as D1, ...,Dk. During deployment, suppose
we receive a point x. Denote by i(x) the partitions to which the dispatcher assigns point x. If the
model is w for binary classification, the prediction for x would be sign(w · x). For multi-class
classification, we use the popular one-vs-all technique.

Thoughout this chapter, we use linear models for reasons of scalability. For learning in
the distributed setting, we use the setting of the Parameter Server [48]- asynchronous stochastic
gradient descent (SGD) is used. That is, all the parameters are held by servers. Each worker reads
a mini-batch of data, pulls the values of the necessary parameters from the servers, computes
gradients and pushes updates to the servers. Further, all workers work asynchronously.

5.1 Learning Schemes

This section discusses alternatives for for the learning stage of Algorithm 1, having performed
the data dependent partitioning. These schemes differ on the amount of communication required.
The appropriate scheme for a situtation depends on the communication budget, and the nature
of the data- whether it is dense and low-dimensional like image data, or sparse and very high
dimensional like the CTR data that uses one-hot encoding.

45



Communication Free Scheme
The simplest learning scheme is to train an independent model on each partition of the data. This
method has the advantage that learning is local and communication free. In other words, it is
embarrassingly parallel. Further, for this reason, complicated learning algorithms that are not
amenable to the distributed setting can be used. To be concrete, partition i solves:

wi = argmin
w

∑
(y,x)∈Di

l(yw · x)

and the linear model used for prediction for a new point x is

f(x) = wi(x) · x.

As we shall see, this method gives tremendous improvements for image data, even over the
global model with full synchronization.

Partial Communication Scheme
In sparse high-dimensional data, the communication free scheme has the disadvantage that there
isn’t enough data to learn parameters corresponding to the rare, tail features. For this reason, it
is beneficial to to synchronize the tail features.

Let x = (xh;xt) where xh ∈ Rq′ are the frequently occuring features in the head whereas
xt ∈ Rq−q′ is the data from the power-law tail. Similarly, let w = (wh;wt). The learning
procedure tries to learn w1, ...wk ∈ Rq′ and wt ∈ Rq−q′ where

wt,w1, ...,wk = argmin
wt,w1,...,wk

k∑
i=1

∑
(y,x)∈Di

l(y(wi · xh + wt · xt))

and the linear model used for a new point x = (xh;xt) is

f(x) = wi(x) · xh + wt · xt.

The communication complexity of this scheme depends on the size of the head q′. If q′ = q,
this reduces to the previous case of communication free learning. If q′ = 0, it reduces to having
a single global synchronized model. Since the feature occurences approximately follow a power
law, the communication required will be very small for moderate q′.

Complete Communication Scheme
As q′ → 0, the importance given to locality decreases. One can do better for frequently occuring
features in the head. The idea here is to have global weights for all features and store a local
“correction” to the global weights for features in the head. The intuition behind this is that
different clusters can also share information about the head.

46



In particular, each cluster has a local model wi ∈ Rq′ corresponding to the frequently occur-
ing features in the head and the system also maintains a synchronized model wg ∈ Rq where

wg,w1, ...,wk = argmin
wg ,w1,...,wk

k∑
i=1

∑
(y,x)∈Di

l(y(wi · xh + wg · x))

and the linear model used for a new point x = (xh;xt) is

f(x) = wi(x) · xh + wg · x.

Note that the features in the head are determined by both the global weights and the local correc-
tions, whereas the local weights are only determined the global weights.

In this case, the communication complexity is exactly equal to the communication complexity
of training a single synchronized global model, but as we shall see, the performance turns out to
be better.

5.2 Experimental Evaluation

Algorithm
This section reports empirical performance of Algorithm 1. We used an approximate implemen-
tation of our algorithm. An intial sample was drawn uniformly at random from the dataset. The
sample was then clustered using k-means++ [5], with heuristics for balancing. The dispatcher
was implemented efficiently by approximate nearest neighbor search. One of the three afore-
mentioned methods approaches were used for learning.

For clustering, we use k-means++ because it is efficient and scalable, as an approximation to
LP rounding algorithms that are not as scalable, despite being theoretically well supported. We
expect that using better clustering will lead to better classification accuarcy. For fault tolerance,
we modified Lloyd’s iterations to maintain p assignments for each data point. To satisfy the
balance constraints, we use two simple heuristics: while the smallest cluster violates the lower
size constraint, the smallest cluster is merged with the cluster whose center is closest to its own,
and the center is updated as in Lloyd’s algorithm. After this step, there are possibly fewer than k
clusters, but they all satisfy the lower size constraint. Any cluster that violates the upper size con-
straints is randomly partitioned into evenly-sized clusters that satisfy the upper size constraint.
This clustering approach may produce fewer or more than k clusters. In all experiments, we use
the balance constraints ` = p/(2k) and L = 2p/k. It can be seen that for these values of `, L,
after one round of merging and splitting, clusters now satisfy the balance constraints.

Finally, rather than implementing exact nearest neighbor dispatch as in Algorithm 6, we use
the random partition tree (RPT) algorithm of Dasgupta and Sinha [26] to dispatch based on
approximate nearest neighbors to achieve huge speed-ups. This algorithm is similar to a ran-
domized KD-Tree algorithm, that uses random split directions, instead of choosing a coordinate
direction. Further, we approximate wi’s, the weights of Voronoi partitions, by their expected
values, 1/n.

47



For classification of image data, we used the linear one-vs-all multi-class SVM provided by
Liblinear [30]. Liblinear is known to scale linearly with both the number of points and dimen-
sionality. The regularization parameter is chosen by 5-fold cross validation. On the other hand,
for sparse high-dimensional data, we use Asynchronous Stochastic Gradient Descent, as imple-
mented in the Parameter Server [48]. Our implementation was of asynchronous SGD was only
meant for proof of concept and was not suitable for measuring running time.

The clustering and dispatcher procedures scale as O(q) where q is the dimensionality of the
data. Specifically, centroids computed by k-means++ and split directions generated by RPTs are
dense. To make this step feasible in the high dimensional datasets, we use the popular trick of
feature hashing without random signs [62]using the hash function h(i) = i mod q′, for some
q′ < q. It is common to use this trick for CTR data [16].

The julia code is available online.

Setup
We run two versions of the experiment, both of which produce the same output. The first ver-
sion is a simulation that runs sequentially on a single machine with simulated parallelism. The
dispatcher writes each cluster to disk and the learner reads the clusters from disk. The second
version is a truly distributed implementation. We start one worker process on each of the avail-
able processing cores. First, a single worker subsamples the data, clusters the subsample into k
clusters, and then builds a random partition tree for fast nearest neighbor lookup. The subsample,
clustering, and random partition tree describe a dispatching rule, which is then copied to every
worker. Training the system has two steps: first, the training data is dispatched to the appropriate
workers, and then each worker learns a model for the clusters they are responsible for. During
the deployment phase, the workers load the training data in parallel and send each example to the
appropriate workers (as dictated by the dispatch rule). To minimize network overhead examples
are only sent over the network in batches of 5000. During the training phase, each worker runs
the appropriate algorithm in tandem or independently, for each cluster they were responsible
for. If multiple clusters were allotted to a worker, the worker would go over them sequentially,
much like the previous simulation. For testing, each worker is allotted a portion of the testing
data. As it reads through the data, it dispatches the point to and queries the appropriate cluster
and receives the prediction. This process is performed in mini-batches to amortize the network
overhead to sending data across the network. The experiments were performed on cluster of 15
machines, each with 8 Intel(R) Xeon(R) cores of clock rate 2.40 GHz and 32GB shared memory
per machine. This implementation used Remote Procedure Call and Remote Reference primi-
tives provided by Julia to communicate between machines.

Competing Algorithms
We compare the performance of our algorithm against the random partitioning approach with no
communication or full communication.
Random Data is randomly partitioned to workers, where each worker learns independently from

the given subset of the data. This is the random partitioning scheme with no communica-
tion.

48



Global Data is randomly partitioned to workers, and the workers update a shared model with
complete communication. Equivalently, the same performance may be acheived by having
all the data on a single machine.

Datasets
We used the following public datasets ranging from images to CTR to evaluate these methods.
All the CTR datasets used contain ad impressions from commercial search engines or advertising
companies and the label is whether or not the ad was clicked clicked by a user.

MNIST-8M: We used the raw pixels of this handwritten image dataset [51]. It has 8 million
examples and 784 features.

CIFAR-10: The CIFAR-10 dataset [46] is an image classification task with 10 classes. Follow-
ing Krizhevsky et al [47] we include 50 copies of each training, example each randomly
rotated and cropped to get a training set of 2.5 million examples. We extracted the features
from the Google Inception1 [64] by using the output of an early layer (layer in3c) and a
later layer (layer in4d).

CTRc: This CTR dataset with 860K examples with 232 continuous-valued features. Negative
examples were subsampled to have 2.5 negative examples for every positive example.

CTRa: This CTR dataset is very sparse and high-dimensional with 0.3 million examples and
13 million binary features. Negative examples were subsampled to have a nearly balanced
dataset.

Criteo-Kaggle: This CTR dataset, released by online advertising company Criteo has 45 million
examples and 34 million features. This dataset is extrememly sparse, with just 40 non-zero
entries per example, and has about 4 negative examples for every positive example. The
size of the dataset is about 15GB in libsvm format.

Results
The standard deviation over multiple runs of our experiments was very small (of the order of
10−3 − 10−4), and hence we omit error bars from all plots. This also implies that the results are
statistically significant.

Dense data

For dense data, we use the communicate free learning procedure. The results are shown in Figure
5.1. As can be seen, our method always performs better than random partitioning. The perfor-
mance gap varies over datasets. For the simplest MNIST-8M, our method achieves tremendous
improvements in performance (about 14%) compared to the random partitioning scheme. But
the improvements are not as pronounced when the clustering structure is less obvious.

Also note that there is an optimal number of clusters, k∗ for each dataset, where the classifi-
cation accuracy obtained is the highest. It is large for simple datasets (k∗ ≥ 1024 for MNIST-8M

1For the specific network structure, refer to https://github.com/dmlc/mxnet/blob/master/example
/notebooks/cifar-recipe.ipynb.

49



4 8 16 32 64 128 256 5121024
0.75

0.8

0.85

0.9

0.95

1

# of clusters (k)

A
c
c
u

ra
c
y

 

 

global

random

ours

(a) MNIST-8M

4 8 16 32 64 128 256

0.57

0.58

0.59

0.6

0.61

0.62

0.63

# of clusters (k)

A
c
c
u

ra
c
y

 

 

global

random

ours

(b) CIFAR-10 Early Features

4 8 16 32 64 128 256

0.775

0.78

0.785

0.79

0.795

0.8

# of clusters (k)

A
c
c
u

ra
c
y

 

 

global

random

ours

(c) CIFAR-10 Late Features

4 8 16 32 64 128 256 5121024
0.55

0.6

0.65

0.7

0.75

# of clusters (k)

A
c
c
u

ra
c
y

 

 

global

random

ours

ours (p=2)

ours (p=4)

(d) CTRc Dataset

4 8 16 32 64 128
0.772

0.774

0.776

0.778

0.78

0.782

0.784

0.786

0.788

0.79

# clusters (k)

A
c
c
u

ra
c
y

 

 

Ours

Global

Random

(e) Criteo-Kaggle Dataset

Figure 5.1: Parameter studies on the number k of clusters for MNIST-8M, CIFAR-10 (with two
different feature representations), CTRc and Criteo-Kaggle dataset. The s.d. over different runs
is ∼ 10−3 and therefore omitted. 50



Number of Workers
8 16 32 64S

pe
ed

up
 F

ac
to

r 
ov

er
 8

 W
or

ke
rs

1

2

4 Mnist8m
Cifar10 in3c
Cifar10 in4d
CTR1S

Figure 5.2: Linear speedup for communication-free learning: When the number of workers is
doubled, the time for dispatch, learning and testing (averaged over 5 runs) drops by a constant
factor. k was set to 128 for CIFAR-10 (both), CTR and 512 for MNIST-8M

but k∗ ≤ 16 for CTR). Further, there seems to be a “safe” number of clusters where the per-
formance of our paradigm is at least as good as the global linear model. This value is larger
than 16 for all dense datasets. That is, the proposed method can enjoy the communication-free,
embarassingly parallel training without any loss of accuracy.

It is also interesting to note that the performance improves with increasing p. This suggests
that we ought to replicate points not just for fault-tolerance, but also for better performance.

Our system exhibits the desirable property of Strong Scaling, as demonstrated by Figure 5.2.
That is, for a fixed workload, if we have twice as much processing power, the time for dispatch,
training and deployment roughly drops by a constant factor, until the number of worker processes
equals the number of clusters, k. We get no further benefit after this point because each cluster is
only served by a single worker. In principle, one could have multiple workers catering to a single
cluster. Note that we do not include the clustering time because the clustering is a preprocessing
step on a small sample.

Sparse Data

The results for sparse data are given in Figure 5.3. In the realm of sparse data, communication
free learning cannot compete with the global model. Learning with partial communication does
better than learning without communication but still cannot match global model in classification
accuracy. It is interesting to note that learning with complete communication performs better
than the global model. This shows that data dependent resource allocation is beneficial even for
sparse CTR data.

Figure 5.4 shows the effect of varying the number of local features for the partial communica-
tion scheme. Moderate gains in performance can be obtained by sychronizing only on relatively
rare features.

A possible explanation for the drop in classification accuracy as k increases is the dearth of
data. Because of the high degree of sparsity, each cluster does not have enough data to learn
its model reliably. Increasing the number of clusters reduces the amount of data in each cluster,
making it harder to learn a reliable model. Partial communication overcomes this problem to

51



0.
56

0.
58

0.
60

0.
62

#clusters(k)

ac
cu

ra
cy

2 4 8 16 32 64

Accuracy for CTRa

●

●

●

●

●

●

●
●

●

●

●

●

●
● ● ● ● ●

●

●

●

Random
ours, no comm
ours, partial comm
ours, full comm
global

Figure 5.3: Classification Accuracy for different values of k for the CTRa dataset. For partial
and complete communication model, the 10K most frequently occurring features were chosen
as local.

10
1

10
2

10
3

10
4

10
5

0.61

0.612

0.614

0.616

0.618

0.62

0.622

0.624

0.626

Number of Local Features

A
c
c
u

ra
c
y

CTRa, partial communication, k=2

 

 

Partial comm

Global

No comm

(a) k = 2

10
1

10
2

10
3

10
4

10
5

0.61

0.612

0.614

0.616

0.618

0.62

0.622

0.624

0.626

Number of Local Features

A
c
c
u

ra
c
y

CTRa, partial communication, k=4

 

 

Partial comm

Global

No comm

(b) k = 4

10
1

10
2

10
3

10
4

10
5

0.608

0.61

0.612

0.614

0.616

0.618

0.62

0.622

0.624

0.626

Number of Local Features

A
c
c
u

ra
c
y

CTRa, partial communication, k=8

 

 

Partial comm

Global

No comm

(c) k = 8

10
1

10
2

10
3

10
4

10
5

0.61

0.615

0.62

0.625

Number of Local Features

A
c
c
u

ra
c
y

CTRa, partial communication, k=16

 

 

Partial comm

Global

No comm

(d) k = 16

10
1

10
2

10
3

10
4

10
5

0.6

0.605

0.61

0.615

0.62

0.625

Number of Local Features

A
c
c
u

ra
c
y

CTRa, partial communication, k=32

 

 

Partial comm

Global

No comm

(e) k = 32

10
1

10
2

10
3

10
4

10
5

0.595

0.6

0.605

0.61

0.615

0.62

0.625

Number of Local Features

A
c
c
u

ra
c
y

CTRa, partial communication, k=64

 

 

Partial comm

Global

No comm

(f) k = 64

Figure 5.4: Plot for Accuracy vs Number of local features for the partial communication scheme
on CTRa. Note that having zero local features is the same as learning a single global model over
the entire dataset whereas having all features as global (≥ 105 in the plots) is the same as learning
without communication.

52



some extent by facilitating sharing of information about rarer tail features between clusters. The
complete communication model also shares information about the frequently occurring features
in the head. It outperforms the global model because it can also take advantage of the locality
induced by clustering.

Further, the performace is directly correlated to the quality of clustering obtained. In the
image datasets, k-means++ gives a good clustering, and the piece-wise linear model induced
by the communication-free learning can better the global model, possibly by a large extent as
in MNIST. On the other hand, for the sparse CTR data, Euclidean distance is probably not an
appropriate metric because the data is generated by one-hot encoding. However, k-means seems
to be able to capture enough locality for the complete communication model.

Overall, the results support our claim that our data dependent resource allocation scheme is
good in both theory and practice.

53



54



Chapter 6

Conclusion

This thesis explores methods of data dependent resource allocation for distributed ML. In partic-
ular, we explore balanced clustering as a means to this end.

Clustering is NP-Hard. Adding balancing contraints only makes it harder. Given the er-
ratic behavior of balanced clustering [7], it is not clear whether this can even be approximated.
In chapter 3, we answered this question positively, showing provably correct polynomial time
constant-factor and bicriteria approximation algorithms. In particular, we provided an LP Round-
ing algorithm that returns a constant factor approximation for balanced k-median, k-means, k-
center while violating the upper bound on cluster sizes and fault tolerance by a factor of at most
2 each. Moreover, we provite a true 6-approximation algorithm for balanced k-center with fault
tolerance that does not violate any constraints.

In Chapter 4, we proposed the provably correct Nearest Neighbor Dispatch, an efficient online
procedure based on ideas from Nearest Neighbor Classification. We analyzed the size of the
initial sample required for good dispatch.

In Chapter 5, we describe three learning schemes: with no communication, partial commu-
nication and full communication. The first approach is embarassingly parallel and works well on
dense data such as images. For sparse data, the second and third approaches improve over the
first, and show that in a variety of scenarios, one benefits from using data dependent resource al-
location for distributed ML. In particular, we observed a 14% increase in classification accuracy
on the MNIST-8M dataset, and a very significant 1% increase on some CTR data.

Open Questions

There are several concrete, open questions related to this thesis.
• In distributed ML, commodity machines can fail at any time. If O(1) machines fail, our

method has built in fault tolerance. One can start off with two clusters on a single phys-
ical machine, and migrate some clusters in the event of obtaining O(1) new machines.
However, if there is a major change planned such as gaining or losing O(k) machines,
how does one minimize the transfer of data across clusters? In particular, one can explore
heirarchical clustering approaches to this end.

• The sparse CTR datasets were generated by one-hot encoding. Evidently, Euclidean dis-

55



tance is not an appropriate distance metric on this data as the Euclidean distance does not
accurately measure the distance between two real examples. In fact, one-hot encoding is
good for making categorical variables amenable to linear boundaries. Can one come up
with a clustering scheme that separates clusters via linear boundaries?

• To obtain better performance, data-dependent partitioning should to be performed to max-
imize learning performance. One way to do it would be by optimizing over the paritioning
and learning jointly [36, 58], but the problem would be non-convex. It would be interesting
to come up with similar methods that also scale well.

• The LP Rounding algorithms are not very scalable. In this thesis, k-means++ was used in
practice. Can one devise more practicable approximation algorithms with provable guar-
antees?

• Provably correct dispatch for k-center.
• Proving guarantees about the final classification accuracy.

56



Bibliography

[1] Karen Aardal, Pieter L van den Berg, Dion Gijswijt, and Shanfei Li. Approximation algo-
rithms for hard capacitated k-facility location problems. European Journal of Operational
Research, (2):358–368, 2015. 2.3, 3.1, 3.2.1

[2] Alekh Agarwal, Olivier Chapelle, Miroslav Dudík, and John Langford. A reliable effective
terascale linear learning system. The Journal of Machine Learning Research, 15(1):1111–
1133, 2014. 1, 2.1

[3] Hyung-Chan An, Aditya Bhaskara, Chandra Chekuri, Shalmoli Gupta, Vivek Madan, and
Ola Svensson. Centrality of trees for capacitated k-center. In Integer Programming and
Combinatorial Optimization, pages 52–63. Springer, 2014. 1, 2.3, 3.1, 3.2.1, 3.3.1, 3.3.3,
3.3.3, 3.3.3, 16, 13, 3.3.4

[4] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate near-
est neighbor in high dimensions. In Foundations of Computer Science, 2006. FOCS’06.
47th Annual IEEE Symposium on, pages 459–468. IEEE, 2006. 1

[5] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1027–1035. Society for Industrial and Applied Mathematics, 2007. 5.2

[6] Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Mansour. Distributed learning,
communication complexity, and privacy. In Conference on Learning Theory, 2012. 1

[7] Maria-Florina Balcan, Travis Dick, Mu Li, Venkata Krishna Pillutla, Alexander Smola, and
Colin White. Data Driven Partitioning for Machine Learning. 1, 2.3, 6

[8] Arindam Banerjee and Joydeep Ghosh. On scaling up balanced clustering algorithms. In
SDM, pages 333–349, 2002. 2.4, 4

[9] J. Barilan, G. Kortsarz, and D. Peleg. How to allocate network centers. Journal of Algo-
rithms, 15(3):385 – 415, 1993. 2.3, 3.1

[10] Mohammadhossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and Vahab Mirrokni. Dis-
tributed balanced clustering via mapping coresets. In Z. Ghahramani, M. Welling,
C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 2591–2599. Curran Associates, Inc., 2014. 2.3

[11] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When is nearest
neighbor meaningful? In Database TheoryICDT99, pages 217–235. Springer, 1999. 4.2.2

[12] Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using graph

57



mincuts. 2001. 4.2.3

[13] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R© in Machine Learning, 3(1):1–122, 2011. 2.1

[14] Sébastien Bubeck and Ulrike von Luxburg. Nearest neighbor clustering: A baseline method
for consistent clustering with arbitrary objective functions. The Journal of Machine Learn-
ing Research, 10:657–698, 2009. 2.4, 4, 4.2.3

[15] Jarosław Byrka, Krzysztof Fleszar, Bartosz Rybicki, and Joachim Spoerhase. Bi-factor
approximation algorithms for hard capacitated k-median problems. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 722–736.
SIAM, 2015. 2.3, 3.1

[16] Olivier Chapelle, Eren Manavoglu, and Romer Rosales. Simple and scalable response pre-
diction for display advertising. ACM Transactions on Intelligent Systems and Technology
(TIST), 5(4):61, 2014. 1, 5.2

[17] Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. A constant-factor ap-
proximation algorithm for the k-median problem. In Proceedings of the thirty-first annual
ACM symposium on Theory of computing, pages 1–10. ACM, 1999. 1, 2.3, 3.1

[18] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better straming algorithms for
clustering problems. In Proceedings of the thirty-fifth annual ACM symposium of Theory
of computing, pages 30–39. ACM, 2003. 2.3

[19] Ashish Chawla, Benjamin Reed, Karl Juhnke, and Ghousuddin Syed. Semantics of caching
with spoca: a stateless, proportional, optimally-consistent addressing algorithm. In Pro-
ceedings of the 2011 USENIX conference on USENIX annual technical conference, pages
33–33. USENIX Association, 2011. 1

[20] Benhui Chen, Feiran Sun, and Jinglu Hu. Local linear multi-svm method for gene function
classification. In Nature and Biologically Inspired Computing (NaBIC), 2010 Second World
Congress on, pages 183–188. IEEE, 2010. 2.2

[21] Haibin Cheng, Pang-Ning Tan, and Rong Jin. Localized support vector machine and its
efficient algorithm. In SDM, pages 461–466. SIAM, 2007. 2.2

[22] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in
empirical data. SIAM review, 51(4):661–703, 2009. 1

[23] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bo-
hannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. Pnuts:
Yahoo!’s hosted data serving platform. Proceedings of the VLDB Endowment, 1(2):1277–
1288, 2008. 1, 1, 2.1

[24] Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. Lp rounding for k-centers
with non-uniform hard capacities. In Foundations of Computer Science (FOCS), 2012 IEEE
53rd Annual Symposium on, pages 273–282. IEEE, 2012. 2.3, 3.1, 3.2.1, 3.2.1, 3.2.4, 3.3.1,
3.3.2, 2, 3.3.3

[25] Wei Dai, Jinliang Wei, Xun Zheng, Jin Kyu Kim, Seunghak Lee, Junming Yin, Qirong

58



Ho, and Eric P Xing. Petuum: A framework for iterative-convergent distributed ml. arXiv
preprint arXiv:1312.7651, 2013. 1, 2.1

[26] Sanjoy Dasgupta and Kaushik Sinha. Randomized partition trees for exact nearest neighbor
search. Algorithmica, 72(1):237–263, 2015. 1, 5.2

[27] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-
gels. Dynamo: amazon’s highly available key-value store. In ACM SIGOPS Operating
Systems Review, volume 41, pages 205–220. ACM, 2007. 1, 2.1

[28] John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for distributed
optimization: convergence analysis and network scaling. Automatic control, IEEE Trans-
actions on, 57(3):592–606, 2012. 1, 2.1

[29] Alina Ene, Sariel Har-Peled, and Benjamin Raichel. Fast clustering with lower bounds: No
customer too far, no shop too small. CoRR, abs/1304.7318, 2013. 1, 2.3, 3.1

[30] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblin-
ear: A library for large linear classification. The Journal of Machine Learning Research,
9:1871–1874, 2008. 5.2

[31] Robson Leonardo Ferreira Cordeiro, Caitano Traina Junior, Agma Juci Machodo Traina,
Julio López, U Kang, and Christos Faloutsos. Clustering very large multi-dimensional
datasets with mapreduce. In Proceedings of the 17th ACM SIGKDD international confer-
ence on Knowledge Discovery and data mining, pages 690–698, 2011. 2.3

[32] Jozsef Fritz. Distribution-free exponential error bound for nearest neighbor pattern classi-
fication. Information Theory, IEEE Transactions on, 21(5):552–557, 1975. 4.2.3

[33] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Hierarchical placement and net-
work design problems. In FOCS, pages 603–612. IEEE Computer Society, 2000. 3.1

[34] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive
mixtures of local experts. Neural computation, 3(1):79–87, 1991. 1, 2.2

[35] Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas
Hofmann, and Michael I Jordan. Communication-efficient distributed dual coordinate as-
cent. In Advances in Neural Information Processing Systems, pages 3068–3076, 2014. 2.1

[36] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algo-
rithm. Neural computation, 6(2):181–214, 1994. 1, 2.2, 6

[37] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin. Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the world wide web. In Proceedings of the twenty-ninth annual ACM sympo-
sium on Theory of computing, pages 654–663. ACM, 1997. 1, 2.1

[38] David Karger, Alex Sherman, Andy Berkheimer, Bill Bogstad, Rizwan Dhanidina, Ken
Iwamoto, Brian Kim, Luke Matkins, and Yoav Yerushalmi. Web caching with consistent
hashing. Computer Networks, 31(11):1203–1213, 1999. 1, 2.1

[39] David R. Karger and Maria Minkoff. Building steiner trees with incomplete global knowl-
edge. In FOCS, pages 613–623. IEEE Computer Society, 2000. 3.1

59



[40] Samir Khuller and Yoram J. Sussmann. The capacitated k-center problem. In In Proceed-
ings of the 4th Annual European Symposium on Algorithms, Lecture Notes in Computer
Science 1136, pages 152–166. Springer, 1996. 1, 2.3, 3.1, 3.2.1, 3.2.3, 3.3.1, 3.3.3

[41] Thomas Kiencke. Hadoop distributed file system (hdfs), 2013. 1, 2.1

[42] Gouthami Kondakindi, Satakshi Rana, Aswin Rajkumar, Sai Kaushik Ponnekanti, and Vinit
Parakh. A logistic regression approach to ad click prediction. 1

[43] Samory Kpotufe. The curse of dimension in nonparametric regression. 2010. 4.3

[44] Tim Kraska, Ameet Talwalkar, John C Duchi, Rean Griffith, Michael J Franklin, and
Michael I Jordan. Mlbase: A distributed machine-learning system. In CIDR, 2013. 1,
2.1

[45] Robert Krauthgamer and James R Lee. Navigating nets: simple algorithms for proximity
search. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 798–807. Society for Industrial and Applied Mathematics, 2004. 4.3

[46] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009. 5.2

[47] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012. 5.2

[48] Mu Li, David G Andersen, Alex J Smola, and Kai Yu. Communication efficient distributed
machine learning with the parameter server. In Advances in Neural Information Processing
Systems, pages 19–27, 2014. 1, 2.1, 5, 5.2

[49] Shanfei Li. An improved approximation algorithm for the hard uniform capacitated k-
median problem. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona,
Spain, pages 325–338, 2014. 1, 2.3, 3.1, 3.2, 3.2.4

[50] Shi Li. Approximating capacitated k-median with (1 + ε)k open facilities. arXiv preprint
arXiv:1411.5630, 2014. 3.1

[51] Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training invariant support vector machines
using selective sampling. Large scale kernel machines, pages 301–320, 2007. 5.2

[52] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M Hellerstein. Distributed graphlab: a framework for machine learning and data
mining in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012. 1, 2.1

[53] Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I Jordan, Peter Richtárik, and Mar-
tin Takáč. Adding vs. averaging in distributed primal-dual optimization. arXiv preprint
arXiv:1502.03508, 2015. 1, 2.1

[54] Mohammad Mahdian and Martin Pál. Universal facility location. In Algorithms-ESA 2003,
pages 409–421. Springer, 2003. 3.1

[55] Ryan Mcdonald, Mehryar Mohri, Nathan Silberman, Dan Walker, and Gideon S Mann.
Efficient large-scale distributed training of conditional maximum entropy models. In Ad-

60



vances in Neural Information Processing Systems, pages 1231–1239, 2009. 2.1

[56] Mark EJ Newman. Power laws, pareto distributions and zipf’s law. Contemporary physics,
46(5):323–351, 2005. 1

[57] Claire Monteleoni Nir Ailon, Ragesh Jaiswal. Streaming k-means approximation. In NIPS,
2009. 2.3

[58] Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-classifier
for extreme multi-label learning. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 263–272. ACM, 2014. 6

[59] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In J. Shawe-Taylor, R.S. Zemel, P.L.
Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Process-
ing Systems 24, pages 693–701. Curran Associates, Inc., 2011. 2.1

[60] Christian Schüldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: a local
svm approach. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th Interna-
tional Conference on, volume 3, pages 32–36. IEEE, 2004. 2.2

[61] Nicola Segata and Enrico Blanzieri. Fast local support vector machines for large datasets.
In Machine Learning and Data Mining in Pattern Recognition, pages 295–310. Springer,
2009. 2.2

[62] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alexander L Strehl, Alex J
Smola, and SVN Vishwanathan. Hash kernels. In International Conference on Artificial
Intelligence and Statistics, pages 496–503, 2009. 5.2

[63] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum
inner product search. In Advances in Neural Information Processing Systems, 2014. 1

[64] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015. 5.2

[65] John N Tsitsiklis, Dimitri P Bertsekas, Michael Athans, et al. Distributed asynchronous
deterministic and stochastic gradient optimization algorithms. IEEE transactions on auto-
matic control, 31(9):803–812, 1986. 2.1

[66] Ruth Urner, Shai Shalev-Shwartz, and Shai Ben-David. Access to unlabeled data can speed
up prediction time. In Proceedings of the 28th International Conference on Machine Learn-
ing (ICML-11), pages 641–648, 2011. 4.2.3

[67] Ruth Urner, Sharon Wulff, and Shai Ben-David. Plal: Cluster-based active learning. In
Conference on Learning Theory, pages 376–397, 2013. 4.2.3

[68] Vladimir N. Vapnik and Lon Bottou. Local algorithms for pattern recognition and depen-
dencies estimation. Neural Computation, 1993. (document), 1

[69] Ulrike Von Luxburg and Shai Ben-David. Towards a statistical theory of clustering. In
Pascal workshop on statistics and optimization of clustering, pages 20–26, 2005. 2.4, 4, 4

61



[70] Yuchen Zhang, John Duchi, Michael Jordan, and Martin Wainwright. Information-theoretic
lower bounds for distributed statistical estimation with communication constraints. In Neu-
ral Information Processing Systems, 2013. 1, 2.1

[71] Yuchen Zhang, John C. Duchi, and Martin Wainwright. Communication-efficient algo-
rithms for statistical optimization. In Neural Information Processing Systems, 2012. 1,
2.1

[72] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J. Smola. Parallelized stochastic
gradient descent. In J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Cu-
lotta, editors, Advances in Neural Information Processing Systems 23, pages 2595–2603.
Curran Associates, Inc., 2010. 2.1

62


	1 Introduction
	2 Literature Review
	2.1 Distributed Learning Paradigms.
	2.2 Locally Simple but Globally Complex Models
	2.3 Clustering
	2.4 Dispatch

	3 Approximation Algorithms for Balanced Clustering
	3.1 Prior Work
	3.2 Bicriteria Algorithm
	3.2.1 Linear Program
	3.2.2 The Algorithm
	3.2.3 Monarch Procedure
	3.2.4 Aggregation
	3.2.5 Rounding the Assignments

	3.3 Constant Factor Approximation Algorithm
	3.3.1 Approach
	3.3.2 Linear Program
	3.3.3 Rounding Openings
	3.3.4 Rounding Assignments


	4 Nearest Neighbor Dispatch
	4.1 Nearest Neighbor Extension
	4.2 Sample Complexity
	4.2.1 Size of the Second Sample
	4.2.2  Bounding the Extension Cost
	4.2.3 Bounding the bias

	4.3 Proofs

	5 Experiments
	5.1 Learning Schemes
	5.2 Experimental Evaluation

	6 Conclusion
	Bibliography

