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Abstract

We present experimental results from Wi-Fi and 4G LTE networks to validate the intuition
that low end-to-end latency of cloud services improves application response time and reduces
energy consumption on mobile devices. We focus specifically on computational offloading
as a cloud service. Using a wide range of applications, and exploring both pre-partitioned
and dynamically partitioned approaches, we demonstrate the importance of low latency for
cloud offload services. We show the best performance is achieved by offloading to cloudlets,
which are small-scale edge-located data centers. Our results show that cloudlets can im-
prove response times 51% and reduce energy consumption in a mobile device by up to 42%
compared to cloud offload.
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1 Introduction

It is widely believed that reducing the end-to-end latency between a mobile device and its
cloud services can improve user experience and extend battery life. One approach to reducing
latency is to leverage small-scale edge-located data centers variously known as cloudlets [12],
micro data centers [6], fog [1], or mobile edge cloud [3]. For ease of exposition we use the
term “cloudlet” for this concept in the rest of this paper. Although this idea of “moving
the cloud closer” is gaining momentum and industry investment, nagging questions remain
about how much improvement is likely. In other words, how much benefit do cloudlets really
provide, relative to just using the cloud?

In this paper, we focus on the use of cloudlets and the cloud for offloading computations
from a mobile device over Wi-Fi and 4G LTE networks. On a wide range of applications, some
pre-partitioned by a developer and others dynamically partitioned by a runtime system, we
explore response time and energy consumption characteristics. Through these experimental
results, we establish the importance of offloading as well as the importance of low latency
for offload services. Finally, we report on the sensitivity of offloading performance to the
interactivity level of an application.

2 Experimental Approach

The results of cloud offloading experiments are notoriously difficult to interpret because they
depend on both the quality of the partitioning of the application as well as the performance
characteristics of the software and hardware infrastructure. It is relatively easy to vary in-
frastructure characteristics such as network bandwidth in a controlled experimental setting.
However, ensuring that an application partitioning is optimal for current infrastructure con-
ditions is much more difficult. In this paper, we use an existing cloud offload tool called
COMET [5], which represents the state-of-the-art in offloading off-the-shelf Android applica-
tions. We have made no modification to the tool, so its performance in creating optimal
partitions for current conditions represents an unbiased external factor in our results.

In addition to applications that are dynamically partitioned by COMET, we also study
applications that have been statically pre-partitioned by a developer. In these applications,
the mobile client component performs sensing and user interaction, but offloads compute-
intensive functionality to the server component.

Any result-based insights that are stable across this wide range of dynamically partitioned
and manually pre-partitioned applications are likely to be robust and significant. We address
the following questions:

• How does the location of the offloading site affect the performance of pre-partitioned
mobile applications?

• Is COMET able to use cloudlets to consistently deliver better results relative to using the
cloud?

• How does the choice of wireless network (Wi-Fi versus 4G LTE) affect offloading re-
sults?

• How does the interactivity level of an application affect performance relative to the
choice of an offloading site?
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Application Request size (avg) Response size (avg)
FACE 62 KB < 60 bytes
MAR 26 KB < 20 bytes

FLUID 16 bytes 25 KB

Figure 1: Characteristics of Pre-partitioned Apps

• For both dynamically and statically partitioned applications, how does the energy
consumption of a mobile device vary with the location of the offloading site?

2.1 Applications

We study three statically pre-partitioned applications:

• FACE is a face recognition application that first detects faces in an image, and then
attempts to identify the face from a pre-populated database. This implements the
Eigenfaces method [15] using OpenCV [2], and runs on a Microsoft Windows envi-
ronment. Training the classifiers and populating the database are done offline, so our
experiments only consider the execution time of the recognition task on a pre-trained
system.

• MAR is an augmented reality application that labels buildings and landmarks in a
scene [14]. The prototype application uses a dataset of 1005 labeled images of 200
buildings. MAR runs on Microsoft Windows, and makes significant use of OpenCV li-
brary [2], Intel Performance Primitives (IPP) library, and multiple processing threads.

• FLUID is an example of physics-based computer graphics [13]. It models an imaginary
fluid with which the user can interact. The FLUID server is Linux-based and is mul-
tithreaded. It runs a physics simulation for each new set of accelerometer readings
from the client. For good interactive experience, the total end-to-end delay has to be
below 100 ms. In our experiments, FLUID simulates a 2218-particle system with 20 ms
timesteps, generating up to 50 frames per second.

Each of these applications is split into a front-end mobile app and a back-end server. For
example, in FACE, an image is shipped from the mobile device to the back-end; there, a face
recognition algorithm is executed and a text string of the name of the person is returned.
Figure 1 shows network transfer size for both request and response for each application. For
FACE and MAR, request data size is much larger than the response size because the mobile
device sends an image and receives a text string as the result. In contrast, response size is
larger for FLUID because it continuously receives location and pressure information for many
particles.

In addition to these, we also investigate offloading standalone mobile apps designed to
run on Android devices. These are the off-the-shelf applications that anyone can download
at Google’s Play store. We use the COMET framework to offload portions of these unmodified
applications to a remote server: application threads and necessary data are migrated to the
server when performing significant computation, and migrated back on any I/O operations
or other interactions. We test three such applications:
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Application Total Transfer Size # of Data Transfers
Linpack ≈ 10 MB 1

CPU Benchmark ≈ 80 KB 1
PI Benchmark ≈ 10 MB 15

Figure 2: Characteristics of COMET Apps (# of data transfers indicates the frequency of
thread migration for each run)

Smartphone Netbook
(Samsung Galaxy Nexus) (Dell Latitude 2120)

ARMR© Cortex-A9 IntelR© AtomTM N550
1.2 GHz 2 core 1.5 GHz, 2 cores

1 GB RAM 2 GB RAM
32 GB Flash 250 GB HDD

802.11a/b/g/n Wi-Fi 802.11a/g/n Wi-Fi
Figure 3: Hardware configuration for mobile devices

• Linpack for Android [10] performs numerical linear algebra computations to solve a
dense N-by-N system of linear equations. This benchmark is also used in the original
COMET paper [5].

• CPU benchmark [16] is a simple benchmarking tool designed for testing and comparing
phone processing speeds and effects of overclocking modifications.

• PI Benchmark [11] measures CPU and memory speed by calculating π up to 2 million
digits of precision.

All of these applications are very compute-intensive, and should benefit greatly from
offloading. However, as shown in Figure 2, they differ in the amount and frequency of data
transfers on COMET.

2.2 Experimental Setup

Figure 3 and 4 show the mobile devices, cloudlet, and cloud we use for the experiments. In
the cloud (Amazon EC2), we use the most powerful VM instance available to us in terms
of CPU clock speed. The instance has 8 cores (VCPUs), each with the fastest available
clock rate (2.8 GHz); its memory size is more than enough for all of the tested applications
(15 GB). The cloudlet is a Dell Optiplex 9010 desktop machine with 4 cores (VCPUs), whose
clock is limited to 2.7 GHz. The VM instance on it has a memory size of 4 GB. By comparing
a relatively weak cloudlet against more powerful EC2 cloud instances, we have deliberately
stacked the deck against cloudlets. Hence, any cloudlet wins in our experiments should be
considered quite meaningful.

We use two different mobile devices in our experiments. For COMET applications, we are
limited by the fact that Android 4.1.X is the latest Android version on which COMET runs.
For these experiments, we use a Samsung Galaxy Nexus phone that runs Android 4.1.1. For
pre-partitioned applications, our choice of hardware is limited by the fact that some of our
applications only run on x86 hardware. Hence, we use a Dell Latitude 2120 netbook to run
all the pre-partitioned applications. Its computational power is comparable to the latest
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Cloudlet Cloud (Amazon AWS)
VM on Dell Optiplex 9010 c3.2xlarge instance

IntelR© CoreR© i7-3770 IntelR© Xeon E5-2680 v2
2.7 GHz†, 4 VCPUs 2.8 GHz, 8 VCPUs

4 GB RAM 15 GB RAM
8 GB Virtual disk 160 GB SSD
1 Gbps Ethernet Amazon Enhanced Network

†We limit the CPU clock to 2.7 GHz and disable Turbo boost.

Figure 4: Hardware configuration for offloading sites
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Figure 5: Network Setup for the Experiments

smartphones.
All our experiments are conducted on the CMU campus, located in Pittsburgh, PA. We

note that our campus usually has good connectivity to Amazon EC2-East. We can often
measure over 200 Mbps bandwidth, and under 8 ms RTT to this site. This is atypical for
cloud access from a mobile device. Li et al. [8] report that average round trip time (RTT)
from 260 global vantage points to their optimal Amazon EC2 instances is 74 ms, which is
similar to EC2-West in our experimental setting. Thus, in interpreting the results presented
in this paper, EC2-West should be regarded as typical of user experience with cloud offload.

Figure 5 illustrates the networking used in our experiments. There are four configurations,
as described below.

Cloud-WiFi: The mobile device uses 802.11n to connect to a private Wi-Fi access
point that is connected to the campus network via Ethernet, and thence via the Internet to
an Amazon AWS site.

Cloudlet-WiFi: This is similar to the Cloud-WiFi configuration, except that network
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Figure 6: Example CDF plot. Best case is just under 0.5 s, median is 1.0 s, and worst case
around 1.7 s. The shaded area indicates the range of the distributions measured on multiple
trials. Here, median response ranges from 0.9 to 1.3 s.

traffic only needs to go as far as to the cloudlet, which is on the same Ethernet segment as
the access point.

Cloudlet-LTE: Under a license for experimental use from the FCC, we have set up an in-
lab 4G LTE network. This in-lab cellular network uses a Nokia eNodeB whose transmission
strength is attenuated to 10 mW. Network traffic via the eNodeB is directed through a Nokia
RACS gateway and local Ethernet segment to the cloudlet. Tethering on a Google Nexus
6 smartphone is used to connect the mobile devices to this cellular network. We use USB
tethering for the netbook and Wi-Fi tethering for the smartphone.

Cloud-LTE: We use cellular data service on the T-Mobile 4G LTE network to reach
the Internet, and thence an Amazon AWS site. Tethering on a Google Nexus 6 smartphone
is used to connect the mobile devices to the T-Mobile service. We use USB tethering for the
netbook and Wi-Fi tethering for the smartphone.

2.3 Visualizing the Results

In our experiments, we perform many measurements at each of our operating conditions.
Because we are interested in the end-to-end response times of our applications, many different
phenomena, including WiFi congestion, routing instability, WAN bandwidth limitations,
and inherent data-dependent variability of application computations can affect our results.
Therefore, we can expect a wide-ranging distribution of results. To fully capture these rich
distributions, we present our results as a Cumulative Distribution Function (CDF) for each
experimental condition as shown in Figure 6.

CDF plots provide much richer and more complete information than just reporting means
and standard deviations. They make it easy to see the best-case, worst-case, median, and
arbitrary percentile of response times for each experiment. In addition, our CDF plots show
the observed range of variability in results over multiple runs of an experiment. As Figure 6
illustrates, the overall CDF is shown along with a shaded region that encapsulates all the
observations across multiple runs. For example, the left and right edges of the shaded area
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at y=0.5 indicate the best and worst median response times observed. Unless indicated
otherwise, we use this visualization method for all of the experimental results with three sets
of experiments.

3 Experimental Results

3.1 Offloading Over WiFi

Figure 7 compares response times when offloading pre-partitioned applications to different
Amazon AWS sites, or to a cloudlet. Also shown is the application response time without any
offload, which is labeled as No Offload. This corresponds to running the server component
locally on the netbook, thereby avoiding all network transmission.

Response time clearly degrades with increasing latency to the offload site. This is clearest
for MAR and FLUID, where the CDF curves shift right due to higher network latency and lower
effective bandwidth to the farther offload sites. The CDFs also rise less sharply, indicating the
variations in response times increase, as offloading to more remote sites is subject to greater
uncertainty of WAN network conditions. These effects are also present in the FACE plots,
but are less apparent because the application itself has a large, data-dependent variation
in performance. As a result of this response time degradation, No Offload often provides
faster response times than offloading to distant clouds. The cloudlet, on the other hand,
consistently provides the fastest response times.

Figure 8 presents the results for COMET-based applications. These results also show the
impact of offload location on response time. EC2-West, EC2-Europe, and EC2-Asia are
clearly worse than EC2-East. However, these longer running applications (seconds to tens
of seconds, rather than tens to hundreds of milliseconds) change the performance trade-offs
between EC2-East and the cloudlet. As mentioned in Section 2.2, latency to EC2-East is on
the order of 8 ms, which is not much larger than WiFi latency. As a result, the cloudlet’s
win over EC2-East is lost. The greater computational power of the cloud instances over the
cloudlet now becomes significant, thus yielding the advantage to EC2-East.

The results also show the impact of application characteristics. CPU Benchmark transfers
very little data, so the various EC2 curves look very similar, mainly shifted by the difference
in RTT to the different sites. Linpack transfers significantly more data, and the differences
in response times between EC2 sites is much more apparent. The PI Benchmark transfers
a similar amount of data in total, but in multiple transfers, as the processing thread is
transferred back and forth between the mobile device and backend. As a result, for PI

Benchmark, the network effects of distant clouds is magnified.

3.2 Offloading Over LTE

Our initial experiments with LTE showed that network latencies tend to jump between
discrete values. Figure 9 shows the CDF of the observed response times over LTE from
a simple echo server that gradually increases the delay before sending a reply. We would
expect a straight line, indicating uniform distribution of response times, but the results
show a distinct “stair-step” pattern (in-lab cell tower in Figure 9). We believe this is because
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Figure 7: CDF of response times for client-server apps, using WiFi
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Figure 8: CDF of execution times for COMET apps, using WiFi
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Figure 9: “Stair-steps” for LTE cases

medium access in LTE, unlike in WiFi, is carefully controlled, and latencies can be quantized
into discrete buckets based on the next transmission slot granted for the device. We note that
the commercial LTE network shows an even more complex pattern, switching from a short to
a long interval if more than a second or so has elapsed since the last transmission (commercial
cell tower in Figure 9). Our experiments also show that if the mobile device performs
frequent data transmissions (periodic background pings), this effect disappears. To avoid the
confounding effects of latency discretization, all our LTE experiments were run concurrently
with background pings at intervals of 1 ms.

Figure 10 shows the response times for three pre-partitioned applications. Overall, these
results are quite similar to those from the WiFi experiments. As the LTE latencies are
slightly higher, the curves are shifted to the right compared to the WiFi results. Additionally,
the commercial LTE network does not have the unusually good connectivity to EC2-East
datacenter that our campus network has. So, although the EC2-East response times are still
the best among the cloud scenarios, they are not quite as low as in our WiFi experiments.
In all cases, offloading to the cloudlet provides the best response times.

Figure 11 presents our results for COMET-partitioned applications. Now, the cloudlet gives
the best results, followed by EC2-East, and progressively worse results for the farther offload
sites. Because the PI Benchmark requires multiple movements of computation between the
mobile device and offload site (as shown earlier in Figure 2), it is affected more by the
network distance than Linpack even though the total data transfered is roughly the same
in both cases.

3.3 Effects of Interactivity

COMET is effective at offloading CPU-intensive portions of unmodified Android applications
to the cloud or cloudlet. However, on any interaction with device hardware (e.g., sensor I/O,
screen update, or file operation), the application threads need to migrate back to the mobile
device. This can cause many thread migrations over the course of the program execution,
magnifying the effects of network latency on performance, as we saw in the PI Benchmark

results.
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Figure 10: CDF of response times for client-server apps, using LTE
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Figure 11: CDF of execution times for COMET apps, using LTE
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Figure 12: Effect of Interactivity on COMET offload

To study this effect of interactivity further, we create a custom CPU-intensive application
that factors large integers. Our app saves intermediate results to a file after a configurable
number of iterations, allowing us to vary how often migrations are triggered with COMET.
Figure 12 shows how the app performance changes as the number of file operations (in-
teractivity level) increases. The execution time without offloading remains nearly constant
because the application is CPU bound on the mobile device, even with a few hundred file op-
erations. However, cloud offloading performance is highly affected, and becomes slower than
just running on the mobile device once we exceed 75 I/O operations during the execution. In
contrast, offloading to a WiFi cloudlet is much less sensitive to the interactivity changes than
the cloud. Until 240 file writes, it performs better than the no-offloading case. Cloudlets can
greatly benefit offloading frameworks like COMET, allowing them to apply more broadly by
relaxing restrictions on application interactivity. Recent research, Tango [4], corroborates
that interactivity of an application is critical in code offloading; this effort tried to improve
offloading performance for interactive apps by deterministically replaying a replica at the
offloading site. In contrast, we suggest using cloudlet offload to avoid high-latency costs for
migrations altogether.

3.4 Energy

In addition to improving performance, offloading computation can reduce the energy con-
sumption on mobile devices. To see how choice of offloading site affects energy consumption,
we rerun our offload scenarios while measuring the power consumption of the mobile devices.
For the netbook, we remove the battery and use a WattsUp power meter [17] to log the total
power draw of at the AC power cord. On the smartphone, we interpose a Monsoon Power
Monitor [9] meter at the battery contacts, logging voltage and current draw during execution
of our benchmarks.

The energy measurements are shown in Figure 13, along with standard deviations in
parentheses. We measure average energy consumption per each offloading request. Note
that these are for the WiFi experiments. Offload of any kind greatly reduces power on the
mobile devices, since they no longer need to perform heavy computations. The choice of
offload site does not affect power, which is about the same for cloudlet and cloud cases.
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Offload None Cloudlet East West EU Asia

Face† (J/query)
12.4 2.6 4.4 6.1 9.2 9.2
(0.5) (0.3) (0.0) (0.2) (4.1) (0.2)

Fluid† (J/frame)
0.8 0.3 0.3 0.9 1.0 2.2
(0.0) (0.0) (0.0) (0.0) (0.0) (0.1)

MAR† (J/query)
5.4 0.6 3.0 4.3 5.1 7.9
(0.1) (0.1) (0.8) (0.1) (0.1) (0.1)

Linpack (J/run)
40.3 13.0 13.3 16.9 18.2 38.1
(2.6) (0.7) (2.3) (1.8) (1.9) (4.1)

CPU (J/run)
9.6 5.7 5.9 5.8 5.9 6.0
(1.4) (0.3) (0.3) (0.3) (0.2) (0.2)

PI (J/run)
129.7 53.9 57.6 107.6 162.8 203.4
(2.9) (2.1) (1.8) (8.6) (18.0) (16.7)

† The display is turned off during energy measurement. Figures in parentheses are standard
deviations.

Figure 13: Energy consumption on mobile devices

However, execution duration does vary, so the actual energy consumed per query/frame/run
is greatly affected by offload site. In all cases, cloudlet offload results in the least energy
consumed per execution, while further offload sites incur increasing energy costs. In fact,
in many cases, offloading to EC2-asia or EC2-Europe results in higher energy cost than
no-offload case. Overall, offloading to cloudlets reduces energy consumption by 41% to 89%
over running on the mobile device, and around 42% lower than offload to EC2-West, which
we consider representative of the average cloud site.

4 Conclusion

Our study has shown that the choice of offloading site is important for both pre-partitioned
applications and dynamic offloading frameworks like COMET. In comparison to the average
cloud (EC2-west), we demonstrate that cloudlets can improve the response time by 51%
and mobile energy consumption by 42%. These advantages are not limited to low-latency,
one-hop WiFi networks. Even when offloading over LTE, cloudlet offloading continues to
provide superior results to that of cloud.

Our results also show that offloading computation blindly to the cloud will be a losing
strategy. Offloading to a distant cloud can result in even lower performance and higher energy
costs than running locally on the mobile device. For interactive applications, even offloading
to nearby clouds can be detrimental to performance. Such applications demonstrate most
clearly that cloudlets are necessary to achieve performance and energy improvement through
offloading.

With increasing interest in mobile augmented reality and cognitive assistance applica-
tions [7], which are interactive and compute-intensive, we expect cloudlets will play a greater
role in mobile systems.
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