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Abstract

Compositional reasoning is an approach for scaling model checking to complex com-
puter systems, where a given property of a system is decomposed into properties
of small parts of the system. The key difficulty with compositional reasoning is in
automatically coming up with sufficient decompositions of global properties into lo-
cal properties. This thesis develops efficient compositional algorithms for safety of
(a) sequential recursive programs, using solvers for SAT and SAT modulo theories
(SMT), and (b) parallel, finite-state probabilistic systems. These algorithms result
in significant improvements over the state-of-the-art, both in theory and in practice.

For SAT-based verification of sequential programs, monolithic techniques based
on Bounded Model Checking (BMC) iteratively check satisfiability of formulas whose
size can grow exponentially in the input size of the program. While safety can be
decided in time polynomial in the number of states, existing SAT-based algorithms
do not have such guarantees. We develop a compositional SAT-based algorithm
that maintains and utilizes under- and over-approximations of the behavior of pro-
cedures. While addressing the above complexity problem, the algorithm also extends
to realistic programs that involve arithmetic operations using oracles for SMT.

In order to improve practical convegence of the iterative approach for SMT-based
verification, we also develop a new mechanism for automatic abstraction refinement
of the input program. This combines ideas from Proof Based Abstraction (PBA) and
CounterExample Guided Abstraction Refinement (CEGAR) in the literature.

We describe Spacer (Software Proof-based Abstraction with CounterExample-
based Refinement), a tool that implements the above algorithms, using which we
show significant advantages on realistic benchmarks.

For probabilistic transition systems with multiple parallel components, the num-
ber of states of a system can grow exponentially in the number of components (the
well-known state-space explosion problem). For these systems, we develop the first
compositional algorithms for checking simulation conformance. We follow an assume-
guarantee style reasoning and establish theoretical bounds on the learnability of an
intermediate assumption of the least number of states from positive and negative
examples. We also develop a practical algorithm based on abstraction refinement.
Using a Java implementation of the latter, we show practical advantage over mono-
lithic verification.
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Chapter 1

Introduction

Model checking [39] is an automatic technique for verifying correctness properties

of computer systems. Since its invention in the 1980’s, numerous approaches have

been proposed for scaling model checking to complex and real-world systems. We

are interested in the approach of compositional reasoning, where the basic idea is to

decompose a given property of a system into properties of small parts of the system.

If the local properties together imply the overall property of the system, it suffices to

check each of the local properties. Such an approach can be very efficient in practice

as the whole system can be exponentially more complex than the individual parts

combined. For example, the size of the state-space of a reactive system composed

of multiple components running in parallel can grow exponentially in the number of

components and this phenomenon is well-known as the state-space explosion. Sev-

eral frameworks have been developed for compositional reasoning of such reactive

systems (e.g., [35, 98]). In the context of program verification, Hoare logic [73], in

1



particular the Rule of Composition and the Rule of Recursion, can also be seen as

a compositional framework for checking partial correctness triples. Here, a local

property corresponds to a Hoare triple for an individual statement or a procedure.

With Hoare logic, it suffices to find one generic local property per procedure that

can be adapted to analyze every call to the procedure [37], despite the possibility of

exponentially many such calls in an execution of the program it is part of. However,

the main challenge in compositional reasoning is to automatically come up with a

sufficient decomposition of an overall property of the system into local properties. In

this thesis, we develop several efficient algorithms for automatically discovering such

decompositions to check safety of recursive programs and probabilistic systems with

multiple, parallel components.

1.1 SMT-Based Software Model Checking

The first step in software model checking is to identify the logical systems used to

model the various program operations and express predicates describing the pro-

gram’s behavior. In this thesis, we use first-order languages for these purposes. In

particular, we are interested in model checking techniques that are based on checking

satisfiability of logical formulas in the languages.

The introduction of Boolean satisfiability (SAT) solvers in model checking has

revolutionized the field and SAT-based algorithms are some of the best we have

today. The idea of using a SAT solver for model checking was first introduced by

Biere et al. [22] using a technique called Bounded Model Checking (BMC). BMC was

2



proposed for the verification of a (symbolically represented) Kripke structure against

temporal logic specifications for a given bound on the length of a counterexample.

In order to extend SAT-based methods to software model checking, one needs an

oracle for satisfiability of formulas in the underlying first-order language. However, as

allowing arbitrary interpretations of the various program operations is undesirable,

one typically utilizes a first-order theory of sentences to characterize the intended

interpretation of the operations. For example, Presburger Arithmetic characterizes

linear arithmetic over integers. Thus, we need an oracle for satisfiability modulo theo-

ries (SMT). Then, to obtain a BMC procedure for safety in sequential programs, the

bound is typically on the number of loop iterations (e.g., see [40]) and on the depth of

recursion1 (e.g., see [7, 92]), which implicitly bounds the length of a counterexample.

In other words, the bound b corresponds to all executions that make at most b nested

calls and that use at most b iterations of any given loop. We use the term bounded

safety to refer to the problem of checking safety for a given bound (in the above

sense; see Chapters 2, 3 for details). To prove safety, we use Hoare triples for partial

correctness specifications. Here, given assertions ϕ, ψ in the underlying first-order

language and a statement τ , a Hoare triple {ϕ} τ {ψ} specifies that whenever τ is

executed from a state satisfying ϕ, it will either fail to terminate or end in a state

satisfying ψ. There exist sound and complete (in the sense of Cook [41]) Hoare proof

systems for while programs [73] and procedural programs [36, 37].

1In general, a procedure can call other procedures, perhaps in a mutually recursive way, in which
case bounding the call-stack leads to a more systematic approach. See Chapter 2 for details.
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Main () {

bool b := nd();

Level<1> (b);

Level<1> (b);

assert (b);

}

Level<i> (bool b) {

if (!b) {

Level<i+1> (b);

Level<i+1> (b);

}

b := !b;

}

Main

Level<1> Level<1>

Level<n>

.

.

.

.

.

.

Level<n>. . .

Figure 1.1: A Boolean program with exponential unwinding size.

1.1.1 Efficient Bounded Safety

Existing BMC algorithms for bounded safety create SMT problems that may grow

exponentially with the bound on the recursion depth due to the tree-like unrolling

of the call-graph. For example, Fig. 1.1 shows a program with Boolean variables

(adapted from [19]) and finitely many Level<i> procedures. Here, nd is a routine

that returns an unknown Boolean value.2 For a bound n on the number of such

procedures, assuming that procedure calls in the body of Level<n> are replaced by

noops, the figure also shows its tree-like unrolling which grows exponentially in n.

With one Boolean parameter per procedure, note that the number of program states

is linear in n, where a state corresponds to a valuation of the program counter and

the variables in scope. Therefore, many of present-day BMC-based model checking

algorithms, e.g., Whale [7], HSF [63], Ultimate Automizer [68, 69], Duality [92],

are at least worst-case exponential in the number of states for Boolean programs.

However, note that the operational semantics of a Boolean program (with the crucial

assumption that procedures are disallowed as parameters [36]) can be defined in terms

of a pushdown automaton where the push and pop operations on the stack correspond

2In other words, assume that the behavior of nd is unknown. So, for the purpose of verification,
nd effectively returns either true or false non-deterministically.

4



to procedure calls and returns, and the accepting states denote the safe program

states. This reduces safety in Boolean programs to state-reachability in pushdown

automata and there exist polynomial-time (cubic) algorithms for the latter that are

not SAT-based [11, 19, 101].

On the other hand, the algorithm GPDR [74] follows the approach of IC3 [25]

by solving BMC incrementally without unrolling the call-graph. For some configu-

rations (e.g., explicit-state reasoning), GPDR is worst-case polynomial for Boolean

Programs. However, it gets more challenging when the program operations and for-

mulas are in a first-order language. In this case, GPDR might even fail to find a

counterexample despite the presence of an SMT oracle, unlike the guarantee given by

other BMC-based algorithms mentioned above (see Appendix 2.A for an example).

To address the aforementioned problems, we present a new SMT-based algorithm

for analyzing the program compositionally. That is, we iteratively check safety prop-

erties of individual procedures and infer approximations about their input-output

behavior, by making use of the previously inferred approximations of the procedures

being called. Our main insight is to utilize not only over-approximations of procedure

behaviors, as in existing algorithms, but also their under-approximations.

For Boolean Programs, this results in a terminating algorithm for safety, without

any bound, and has a polynomial time complexity (see Chapter 2). Moreover, in

general, assuming an SMT oracle for the first-order language of the assertions and

the program operations, we show that our compositional algorithm terminates for

bounded safety. To the best of our knowledge, this is the first SMT-based algorithm

which such guarantees. Details are discussed in Chapter 2.
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1.1.2 Better Proofs of Bounded Safety

While bounded safety of programs is reducible to SMT (via BMC), unbounded safety

of programs is undecidable in general.3 Many of present-day algorithms for SMT-

based model checking follow an iterative approach by checking bounded safety for

increasing values of the bound on the loop iterations and the recursion depth. Each

iteration of these algorithms corresponds to checking whether there is a counterex-

ample to safety for the given bound on the executions by means of an SMT solver

(using BMC). If the SMT solver returns sat, a counterexample to safety is obtained

using a satisfying assignment. On the other hand, if the SMT solver returns unsat,

the algorithms utilize techniques for Craig Interpolation [43] to obtain assertions

that over-approximate the reachable states at various program locations, sufficient

to show bounded safety (e.g., see [89]). These assertions constitute a Hoare-style

proof of bounded safety. Now, if these assertions are also invariant for the program,

i.e., hold for every execution of the program,4 the algorithms terminate. However,

it can be very challenging in practice for the assertions obtained from the proofs of

bounded safety to be invariant, given the undecidability of safety.

To obtain better proofs of bounded safety, we describe an algorithm for automatic

abstraction refinement of the input program, i.e., the algorithm tries to infer con-

servative over-approximations of the transition relation sufficient to obtain program

invariants. The key intuition is that conservative abstractions help us infer better

approximations of reachable states when proving bounded safety, that are easier to

3This follows from the undecidability of safety in a two-counter machine.
4This can be checked using an inductive argument.
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generalize to program invariants. Moreover, as proofs, in general, do not depend on

all the details of a program, we can also obtain abstractions by hiding the details

irrelevant for proofs of bounded safety (via Proof-based Abstraction [66, 91]). Such an

abstraction is used to obtain a proof of bounded safety for a bigger bound in the next

iteration. Thus, our algorithm has a tight connection between proofs and abstrac-

tions. When the abstractions are too coarse, we use spurious abstract counterexam-

ples to refine them (via CounterExample-Guided Abstraction Refinement [38]). This

approach is also compositional as it tries to obtain an abstraction of the transition

relation, i.e., the data component of the program, sufficient to show safety instead of

considering all the details present in the original program. Details of our algorithm

are discussed in Chapter 3.

1.2 Safety of Probabilistic Transition Systems

Probabilistic systems are increasingly used for the formal modeling and analysis

of a wide variety of systems ranging from randomized communication and security

protocols to nanoscale computers and biological processes. There exist algorithms

for model checking probabilistic systems against temporal logic specifications [18].

However, when the systems are comprised of multiple parallel components, model

checking suffers from the state-space explosion problem [39], where the state space

of a concurrent system grows exponentially in the number of its components.

The assume-guarantee paradigm for compositional reasoning [98] addresses this

problem by separately verifying parts of the system using assumptions about the
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environment, without verifying the whole system directly. For a system of two com-

ponents, such reasoning is captured by the following simple assume-guarantee rule.

1 : 〈A〉 L1 〈P 〉 2 : 〈true〉 L2 〈A〉

〈true〉 L1 ‖ L2 〈P 〉

(ASym-Gen)

Here L1 and L2 are system components, P is a specification to be satisfied by

the composite system (L1 ‖ L2) and A is an assumption on L1’s environment, to be

discharged on L2. The challenge in using such an assume-guarantee rule is in coming

up with a suitable intermediate assumption A automatically. Several other such rules

have been proposed, some of them involving symmetric [99] or circular [9, 83, 99]

reasoning. Despite its simplicity, rule ASym-Gen has been studied extensively in

the context of non-probabilistic reasoning and is shown to be effective in inferring a

suitable assumption automatically [31, 52, 99].

When the components L1 and L2 and the specification P are non-probabilistic and

finite-state, there exist two different kinds of algorithms for inferring A. In the first

kind, the algorithms adapt known automata learning techniques (e.g., [99]) and use

positive and negative examples from both the premises. These are based on the active

learning framework [14] where a learner tries to learn an unknown system/automaton

based on the feedback given by a teacher in terms of positive and negative examples.

In the assume-guarantee setting, the teacher is typically implemented by an algorithm

that checks the premises of the rule and returns feedback correspondingly. In the

second kind, the algorithms adapt the well-known CEGAR-loop [38] to the assume-
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guarantee setting (e.g., [59]). These algorithms only utilize negative examples (i.e.,

counterexamples).

However, when the components L1 and L2 and the specification P are proba-

bilistic, efficient algorithms are lacking for automating such an assume-guarantee

framework. Existing techniques target probabilistic reachability properties and use

algorithms based on automata learning [51, 52]. However, even when the problem

is decidable monolithically, these algorithms are not guaranteed to terminate due to

incompleteness of the inference rules [52] or due to the undecidability of checking the

premises and of the learning algorithms used [51].

Given our primary interest in safety properties, we describe algorithms for check-

ing strong simulation [102] between Labeled Probabilistic Transition Systems (LPT-

Ses). Strong simulation is known to preserve the weak safety fragment of probabilis-

tic CTL (PCTL), where the bound on the required probability of satisfaction of a

CTL formula uses a non-strict inequality [29]. The corresponding instantiation of

ASym-Gen is shown below, where � denotes the simulation conformance relation

(see Chapter 4 for details) and the components L1, L2 and the specification P are

all LPTSes.

1 : L1 ‖ A � P 2 : L2 � A

L1 ‖ L2 � P

(ASym)
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1.2.1 Counterexamples to Strong Simulation

One fundamental ingredient of an automatic framework for compositional verifi-

cation is the use of counterexamples (from failed simulation checks) to iteratively

refine inferred assumptions. However, to the best of our knowledge, the notion of

a counterexample has not been previously formalized for strong simulation between

LPTSes. We present a characterization of counterexamples to strong simulation as

tree-shaped LPTSes and describe an algorithm to compute them.

1.2.2 Active Learning Based Approach

Our first set of algorithms is based on a framework for active learning to infer the

unknown intermediate assumptions. We develop the first active learning framework

for inferring an unknown LPTS (of minimal size) up to simulation equivalence (2-way

simulation). We also discuss decidability results for inferring intermediate assump-

tions in ASym using the learning framework. Details are discussed in Chapter 5.

1.2.3 Abstraction-Refinement Based Approach

We also propose an Assume-Guarantee Abstraction-Refinement (AGAR) algorithm

to automatically build the assumptions used in compositional reasoning. We first

describe a CEGAR [38] based algorithm for strong simulation between LPTSes,

which is then adapted to the compositional setting to obtain AGAR. Details are

discussed in Chapter 6.
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1.3 Experimental Results

We have implemented the model checking algorithms described in this thesis and

analyzed the practical performance on realistic benchmarks. The implementations

and benchmarks are available online.5

The algorithms for software model checking are implemented as part of the tool

Spacer (which stands for Software Proof-based Abstraction with CounterExample-

based Refinement) for verifying C programs. The back-end is based on the tool

Z3 [45] which is used for SMT-solving and interpolation. It supports propositional

logic, linear rational arithmetic, Presburger arithmetic, and bit-vectors (currently,

via bit-blasting). The front-end is based on an existing tool called UFO [8] which

converts C programs to the Horn-SMT format of Z3, corresponding to our logical

program model.

We have a Java implementation of the algorithm AGAR for probabilistic systems.

We also use the SMT solver Yices [46] for counterexample generation and checking

strong simulation, and show experimentally that AGAR can achieve significantly

better performance than monolithic verification.

5http://www.cs.cmu.edu/~akomurav/projects.
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Chapter 2

SMT-Based Model Checking for

Recursive Programs

2.1 Introduction

As mentioned in Chapter 1, several SMT-based algorithms exist for verifying safety

of recursive programs. Notable examples are Whale [7], HSF [63], GPDR1 [74],

Ultimate Automizer [68, 69] and Duality [92]. All of the algorithms are based on

BMC for checking bounded safety for increasing values of the bound on the call-

stack depth.2 The use of BMC ensures that the algorithms are guaranteed to find a

counterexample if the program fails to satisfy a safety property. However, with the

exception of GPDR, the SMT problems created by these algorithms are monolithic,

i.e., for the entire program, and the size of the problems can grow quite large. In par-

1GPDR stands for Generalized Property Directed Reachability.
2In this chapter, we assume that all loops have been turned into tail recursive procedures.
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ticular, when the SMT problems correspond to a bounded call-stack depth, the size

grows exponentially with the bound in the worst-case, due to the tree-like unrolling

of the call-graph. Therefore, for the class of Boolean Programs, these algorithms

are at least worst-case exponential in the number of states. However, as mentioned

in Chapter 1, there exist model checking algorithms for safety of Boolean Programs

that are polynomial (cubic) in the number of states [101]. The general observation

behind these algorithms is that one can summarize the input-output behavior of a

procedure, where a summary of a procedure is an input-output relation describing

what is currently known about its behavior. Thus, if a summary has enough details,

it can be used to analyze a procedure call without inlining [37, 103]. For a Boolean

Program, the number of states is finite and hence, a summary can only be updated

finitely many times. This observation led to a number of efficient algorithms that are

polynomial in the number of states, e.g., the analysis framework by Reps, Horwitz,

and Sagiv (RHS) [101], recursive state machines [10], Bebop [19] and Moped [49].

The SMT-based algorithms mentioned above also utilize summaries. If the mono-

lithic SMT problems created are unsatisfiable, the current unwinding of the program

is insufficient to find a counterexample. In this case, the algorithms use techniques

based on Craig Interpolation [43] to obtain over-approximating summaries of pro-

cedures sufficient to show safety for the current unwinding. This is repeated with

further unwindings of the program until a counterexample is found or the approxi-

mate summaries of the procedures are also invariant. However, as noted above, the

size of the SMT problems created by these algorithms can grow exponentially.

On the other hand, the algorithm GPDR [74] follows the approach of IC3 [25]
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by solving BMC incrementally without unrolling the call-graph. In GPDR, interpo-

lation is used to obtain over-approximating summaries and partial models denoting

undesirable reachable states are cached for future. For some configurations (e.g.,

explicit-state reasoning), GPDR is worst-case polynomial for Boolean Programs.

However, it gets more challenging when the program operations and formulas are

in a first-order language. In this case, GPDR might even fail to find a counterex-

ample despite the presence of an SMT oracle, unlike the guarantee given by other

BMC-based algorithms mentioned above (see Appendix 2.A for an example).

To address the aforementioned problems, we propose a new SMT-based algo-

rithm RecMC for analyzing the program compositionally. That is, RecMC iter-

atively checks safety properties of individual procedures by inferring and utilizing

approximating summaries of procedures. Our main insight is to maintain not only

over-approximating summaries but also under-approximating summaries of the pro-

cedures. Syntactically, our approximations are assertions over the parameters of

a procedure and auxiliary variables denoting the initial values of the parameters.

Clarke showed that such assertions are sufficient to obtain a relatively complete

Hoare proof system by making use of a Rule of Adaptation [37].

We use the terms may-summary and must-summary, respectively, to refer to such

an over- and under-approximation. While may-summaries are used to block spuri-

ous counterexamples, must-summaries are used to analyze a procedure call without

inlining the body of the callee. Thus, if the under-approximations given by the must-

summaries can be reused at call-sites, they help avoid redundant explorations of the

state-space. However, the must-summaries can be too strong to show falsification
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and the may-summaries can be too weak to show satisfaction of a bounded safety

property. In this case, our compositional algorithm creates and checks new bounded

safety properties of the callee procedures and updates the approximations.

For Boolean Programs, as mentioned previously, the number of states is finite

and hence, the approximations can only be updated finitely many times. As the

approximations are reused at call-sites in a compositional manner, RecMC has a

polynomial time complexity for Boolean Programs, by using an argument similar to

that of RHS [101]. Moreover, assuming an SMT oracle for the first-order language

of the assertions and the program operations, we show that RecMC terminates for

bounded safety. To the best of our knowledge, ours is the first SMT-based algorithm

with such guarantees.

Almost every step of RecMC introduces existential quantifiers in the assertions.

RecMC tries to eliminate these quantified variables as, otherwise, they would accu-

mulate exponentially in the value of the bound corresponding to the bounded safety

problem. This is because, if no quantified variable is eliminated, the compositional

algorithm essentially breaks down into an algorithm that unrolls the call-graph into a

tree where, as we mentioned earlier, the size of the SMT problems created may grow

exponentially in the bound on the call-stack. A naïve solution is to use quantifier

elimination (QE), which results in an equivalent quantifier-free formula, but which is

also expensive in practice. Instead, we develop an alternative approach that under-

approximates QE, i.e., obtains a quantifier-free formula stronger than the original

formula. However, obtaining arbitrary under-approximations can lead to divergence

of the algorithm. We introduce the concept of Model Based Projection (MBP), for
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M |=n ϕsafe ?
(update σu and σo) σo invariant?

UNSAFE SAFE

Y

N
Y

cex σu

proof
σo

n := n+ 1

n := 0
σu := ∅
σo := ∅

N
A B

Figure 2.1: Flow of the algorithm RecMC to check if M |= ϕsafe . σo and σu denote the may and
must-summary maps.

covering ∃x ·ϕ(x, y) by finitely-many quantifier-free under-approximations obtained

using satisfying models of ϕ(x, y) (see Section 2.5). We developed efficient MBPs for

Linear Rational Arithmetic (LRA) and Presburger Arithmetic (also known as Linear

Integer Arithmetic (LIA)) based on the QE methods by Loos-Weispfenning [86] for

LRA and Cooper [42] for LIA. We use MBP to under-approximate existential quan-

tification in RecMC. In the best case, a partial under-approximation suffices and a

complete quantifier elimination can be avoided.

In summary, we present: (a) an efficient, compositional SMT-based algorithm

for model checking recursive programs, that uses under- and over-approximate sum-

maries of procedure behavior (Section 2.4), (b) MBP functions for obtaining quantifier-

free under-approximations of existential quantification for LRA and LIA (Section 2.5),

(c) a new, complete algorithm for Boolean Programs, with complexity polynomial in

the number of states, similar to the best known method [19] (see Section 2.4), and

(d) an implementation and an empirical evaluation of the approach (Section 2.6).
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2.2 Overview

In this section, we give an overview of RecMC and illustrate it on an example.

Let P be a recursive program. We assume that there are no internal procedures

and that procedures cannot be passed as parameters. Furthermore, for simplicity of

presentation, assume no loops, no global variables and that arguments are passed

by reference. Let P (v) ∈ P be a procedure with parameters v, and let v0 be fresh

variables not appearing in P with |v0| = |v|, denoting the initial values of v. A

safety property for P is an assertion ϕ(v0, v) in a given assertion language with v0

and v as free variables. We say that P satisfies ϕ, denoted P (v) |= ϕ(v0, v), iff the

Hoare-triple {v = v0} call P (v) {ϕ(v0, v)} is valid. Note that every Hoare-triple

corresponds to a safety property in this sense, as shown by Clarke [37] using a Rule

of Adaptation.

An execution of a procedure P (v) is a sequence of valuations to the variables in

scope, according to a given underlying semantics, beginning with an entry location

of P and terminating with an exit location of P . We say that an execution satisfies

an assertion ϕ(v0, v) if assigning the initial and the final valuations of the execution

to v0 and v, respectively, makes ϕ true. For a natural number n ≥ 0, we say that

an execution uses a call-stack bounded by n if at no point during the execution there

are more than n outstanding procedure calls that are not returned. We say that ϕ is

a bounded safety property for P and n, denoted P (v) |=n ϕ(v0, v), iff all executions

of P using a call-stack bounded by n satisfy ϕ.

The key steps of RecMC are shown in Fig. 2.1. RecMC decides safety for the

main procedure M of P . RecMC maintains two assertion maps σu and σo. The
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falsified using update σu and σo

Y Y

N NP |=b ϕ ?

update σu for (P, b) update σo for (P, b)

1 2 3

False True

for bounds < bmust-summaries?
(σu)?

satisfied using
may-summaries?

(σo)?

Figure 2.2: Flow of the algorithm BndSafety to check P |=b ϕ.

must-summary map σu maps each procedure P (v) ∈ P to a set of assertions over

v0 ∪ v that under-approximate its behavior. Similarly, the may-summary map σo

maps a procedure P to a set of assertions that over-approximate its behavior. Given

P , the maps are partitioned according to the bound on the call-stack. Therefore, if

σu(P, n), for some n ≥ 0, contains an assertion δ(v0, v) with free variables v0 ∪ v,

then δ under-approximates the combined behavior of all executions of P that use a

call-stack of depth at most n. In other words, for every model m of δ, there is an

execution of P that begins in m(v0), the value of v0 under m, and ends in m(v), the

value of v under m, using a call-stack bounded by n. Similarly, if δ(v0, v) ∈ σo(P, n),

then δ over-approximates the behavior of all executions of P using a call-stack of

depth at most n, i.e., P (v) |=n δ(v0, v).

RecMC alternates between two steps: (A) deciding bounded safety (that also

updates σu and σo maps) and (B) checking whether the current proof of bounded

safety also proves unbounded safety. It terminates when a counterexample or a proof

is found.

Bounded safety, i.e., whether P |=b ϕ, is decided using the algorithm BndSafety

shown in Fig. 2.2. Step 1 checks whether ϕ is falsified using the current must-
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M (m) {

T (m);

D (m);

D (m);

}

T (t) {

if (t>0) {

t := t-2;

T (t);

t := t+1;

}

}

D (d) {

d := d-1;

}

Figure 2.3: A recursive program with 3 procedures.

summaries (σu) of the callees of P at bound b−1. If so, it infers a new must-summary

for P at bound b witnessing the falsification of ϕ. Step 2 checks whether ϕ is satisfied

using the current may-summaries (σo) of the callees at bound b − 1. If so, it infers

a new may-summary for P at bound b witnessing the satisfaction of ϕ. If the prior

two steps fail, there is a potential counterexample π in P where the must-summaries

of the callees are too strong to witness π but the may-summaries are too weak to

block it. Step 3 checks the feasibility of such a path π by creating new bounded

safety properties for the callees of P at bound b − 1, recursively checking the new

properties, and updating the assertion maps.

We conclude this section with an illustration of RecMC on the program in

Fig. 2.3 (adapted from [37]). The program has 3 procedures: the main procedure M,

and procedures T and D. The procedure M calls T and D. The procedure T modifies its

argument t and calls itself recursively. The procedure D decrements its argument d.

Suppose that we want to check if the (main procedure of the) program satisfies the

safety property ϕ ≡ m0 ≥ 2m+4. The assertion maps σu and σo are initially empty.

In the first iteration of RecMC, the bound n on the call-stack is 0, i.e., the

bounded safety problem is to check whether all executions that do not have any

procedure calls are safe. Given that the only path in M has procedure calls, no
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M(m) |=1 m0 ≥ 2m+ 4?

iteration 1
check new property: D(d) |=0 ⊥?
iteration 1 False; update σu(D, 0) with (d = d0 − 1)

iteration 2
check new property: T (t) |=0 t0 ≥ 2t?
iteration 1 True; update σo(T, 0) with (t0 ≥ 2t)

iteration 3
check new property: D(d) |=0 d ≤ d0 − 1?
iteration 1 True; update σo(D, 0) with (d ≤ d0 − 1)

iteration 4 True; update σo(M, 1) with (m0 ≥ 2m+ 4)

Figure 2.4: A run of BndSafety for the program in Fig. 2.3 and the bounded safety property
M(m) |=1 m0 ≥ 2m+ 4.

such executions exist and safety trivially holds for bound 0. Fig. 2.4 shows the

four iterations of BndSafety for the next bound n = 1, i.e., for checking whether

M(m) |=1 ϕ holds or not. In the first iteration of BndSafety, the current may

and must-summaries of the callees are insufficient to satisfy or falsify the property,

and there is a potential counterexample along the only path in M. Next, we create

a new property for a callee, by performing a backward analysis along the potential

counterexample path beginning with the negation of the safety property, and making

use of the current summaries of the callees. In practice, one need not be restricted

to a backward analysis; see Sections 2.4 and 2.6 for details. As shown in Fig. 2.4,

assume that a new bounded safety property is created for D and σu(D, 0), the must-

summary map of D at bound 0, is updated with a new must-summary that witnesses

the falsification of the property. In the second iteration of BndSafety, the current

summaries are still insufficient and assume that a new property is created for T and

σo(T, 0) is updated with a new may-summary that witnesses the satisfaction of the

property. To create the new property for T, we make use of the must-summary of

D computed in the previous iteration for both the calls to D in M. This is where the

compositionality of the algorithm helps avoid the potential re-computation of the
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must-summary of D. Similarly, in the third iteration of BndSafety, let σo(D, 0) be

updated with a new may-summary. At this point, the may-summaries for T and D

at bound 0 are sufficient to establish bounded safety at n = 1 in the fourth iteration

of BndSafety, resulting in an update of σo(M, 1).

Now, the may-summary map σo is:

σo(M, 1) = {m0 ≥ 2m+ 4}, σo(T, 0) = {t0 ≥ 2t}, σo(D, 0) = {d ≤ d0 − 1}

Ignoring the bounds, the may-summaries are invariant. For example, we can prove

that the body of T satisfies t0 ≥ 2t, assuming that the calls do, i.e.,

{t = t0} T(t) {t0 ≥ 2t} ⊢ {t = t0} Body(T) {t0 ≥ 2t},

where Body denotes the body of a procedure. Thus, step B of RecMC succeeds and

the algorithm terminates declaring the program SAFE.

In summary, RecMC checks safety of a recursive program in a compositional

manner by inferring under- and over-approximations of the behavior of procedures.

We use an SMT-solver for automating the steps of RecMC and BndSafety.

2.3 Preliminaries

Consider a first-order language with equality and let S be its signature, i.e., the set

of non-logical function and predicate symbols (including equality). An S-structure

I consists of a domain of interpretation, denoted |I|, and assigns elements of |I| to
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variables, and functions and predicates on |I| to the symbols of S. Let ϕ be a formula

in the first-order language. We assume the usual definition of satisfaction of ϕ by I,

denoted I |= ϕ. I is called a model of ϕ iff I |= ϕ and this can be extended to a set

of formulas. A first-order S-theory Th is a set of S-sentences. I satisfies ϕ modulo

Th, denoted I |=Th ϕ, iff I |= Th ∪ {ϕ}. ϕ is valid modulo Th, denoted |=Th ϕ, iff

every model of Th is also a model of ϕ.

Let I be an S-structure and w be a list of fresh function/predicate symbols not

in S. A (S ∪w)-structure J is called an expansion of I to w iff |J | = |I| and J agrees

with I on the assignments to all variables and the symbols of S. We use the notation

I{w 7→ u} to denote the expansion of I to w that assigns the function/predicate

ui to the symbol wi. For an S-sentence ϕ, we write I(ϕ) to denote the truth value

of ϕ under I. For a formula ϕ(x) with a fixed ordering of the free variables x, we

overload the notation I(ϕ) to mean {a ∈ |I||x| | I{x 7→ a} |= ϕ}. For simplicity of

presentation, we sometimes identify the truth value true with |I| and false with ∅.

We assume that programs do not have internal procedures and that procedures

cannot be passed as parameters. Furthermore, without loss of generality, we assume

that programs do not have loops or global variables. In the following, we define

programs using a logical representation, as opposed to giving a concrete syntax.

Definition 1 (Programs and Procedures). A program P is a finite list of procedures

with a designated main procedure M where the program begins. A procedure P is a

tuple 〈ιP , oP ,ΣP , ℓP , βP 〉, where

1. ιP , oP , and ℓP are disjoint finite lists of variables denoting the input values

of the parameters, the output values of the parameters, and the local variables,
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respectively,

2. ΣP is a fresh predicate symbol of arity |ιP |+ |oP |,

3. βP is a quantifier-free sentence over the signature (S∪{ΣQ | Q ∈ P}∪ιP ∪oP ∪

ℓP ) denoting the body of the procedure, where a predicate symbol ΣQ appears

only positively, i.e., under even number of negations.

We use vP to denote ιP ∪ oP .

Intuitively, for a procedure P , ΣP is used to denote its semantics and βP encodes

its body using the predicate symbol ΣQ for a call to the procedure Q. We require

that a predicate symbol ΣQ appears only positively in βP to ensure a fixed-point

characterization of the semantics as shown later on. For example, for the signature

S = 〈0, Succ,−,+,≤, >,=〉, the program in Fig. 2.3 is represented as 〈M,T,D〉 with

the main procedure M = 〈m0,m,ΣM , 〈ℓ0, ℓ1〉, βM〉, T = 〈t0, t,ΣT , 〈ℓ0, ℓ1〉, βT 〉, and

D = 〈d0, d,ΣD, ∅, βD〉, where

βM = ΣT (m0, ℓ0) ∧ ΣD(ℓ0, ℓ1) ∧ ΣD(ℓ1,m) βD = (d = d0 − 1)

βT = (t0 ≤ 0 ∧ t0 = t) ∨ (t0 > 0 ∧ ℓ0 = t0 − 2 ∧ ΣT (ℓ0, ℓ1) ∧ t = ℓ1 + 1)

(2.1)

Here, we abbreviate Succi(0) by i and (m0, t0, d0) and (m, t, d) denote the input

and the output values of the parameters of the original program, respectively. For a

procedure P , let Paths(P ) denote the set of all prime-implicants of βP . Intuitively,

each element of Paths(P ) encodes a path in the procedure.

Let P = 〈P0, . . . , Pn〉 be a program and I be an S-structure. Let X be a list

of length n such that each Xi is either (i) a truth value if Pi has no parameters,

i.e., |vPi
| = 0, or (ii) a subset of tuples from |I||vPi

| if |vPi
| ≥ 1. Let J(I,X) denote
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the expansion I{ΣP0
7→ X0} . . .{ΣPn

7→ Xn}. The semantics of a procedure Pi given

I, denoted JPiKI , characterizes all the terminating executions of Pi and is defined

as follows. 〈JP0KI , . . . , JPnKI〉 is the (point-wise) least X such that for all Q ∈ P ,

J(I,X) |= ∀vQ ∪ ℓQ · (βQ =⇒ ΣQ(vQ)). This has a well-known least fixed-point

characterization [37].

For a natural number b ≥ 0, denoting a bound on the call-stack, the bounded

semantics of a procedure Pi given I, denoted JPiK
b
I , characterizes all the executions

using a stack of depth bounded by b and is defined by induction on b:

JPiK
0
I = J(I, 〈∅, . . . , ∅〉)(∃ℓPi

· βPi
),

JPiK
b
I = J(I, 〈JP0K

b−1
I , . . . , JPnK

b−1
I 〉)(∃ℓPi

· βPi
), b > 0

Intuitively, JPiK
0
I consists of all input-output values of the parameters of Pi reach-

able along paths that do not make any procedure calls, i.e., by interpreting every

predicate symbol ΣQ in the body βPi
as ∅. Similarly, JPiK

b
I , for b > 0, consists of

all input-output values of the parameters reachable along paths that use a stack of

depth bounded by b.

An environment is a function that maps a predicate symbol ΣP to a formula over

vP . Given a formula τ and an environment E, we abuse the notation J·K and write

JτKE for the formula obtained by instantiating every predicate symbol ΣP by E(ΣP )

in τ .

Let Th be an S-theory. A safety property for a procedure P ∈ P is a formula

over vP . We only consider safety properties that are quantifier-free or have one block
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of existential quantifiers. P satisfies a safety property ϕ w.r.t Th, denoted P |=Th ϕ,

iff for all models I of Th, JP KI ⊆ I(ϕ). A safety property ψ of the main procedure

M of a program P is also called a safety property of the program itself. Given a

safety property ψ(vM), a safety proof for ψ is an environment Π that is both safe

and invariant:

|=Th J∀x · ΣM(x) =⇒ ψ(x)KΠ (safety) (2.2)

∀P ∈ P· |=Th J∀vP ∪ ℓP · (βP =⇒ ΣP (vP ))KΠ (invariance) (2.3)

Given a safety property ϕ(vP ) and a natural number b ≥ 0, denoting a bound on

the call-stack, a procedure P satisfies bounded safety w.r.t Th, denoted P |=b,Th ϕ,

iff for all models I of Th, JP KbI ⊆ I(ϕ). In this case, we also call ϕ a may-summary

for 〈P, b〉. We call ϕ a must-summary for 〈P, b〉 iff I(ϕ) ⊆ JP KbI , for all models I of

Th. Intuitively, may-summaries and must-summaries for 〈P, b〉, respectively, over-

and under-approximate JP KbI for every model I of Th.

A bounded assertion map maps a procedure P and a natural number b ≥ 0 to a

set of formulas over vP . Given a bounded assertion map m and b ≥ 0, we define two

special environments U b
m and Ob

m as follows.

U b
m : ΣP 7→

∨

{δ ∈ m(P, b′) | b′ ≤ b} Ob
m : ΣP 7→

∧

{δ ∈ m(P, b′) | b′ ≥ b}

We use U b
m and Ob

m to under- and over-approximate the bounded semantics. For

convenience, let U−1
m and O−1

m be environments that map every symbol to ⊥.
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RecMC(P, ϕsafe)
1 n← 0 ; σu ← ∅ ; σo ← ∅
2 while true do

3 res , σu, σo ← BndSafety(P, ϕsafe , n, σu, σo)
4 if res is UNSAFE then

5 return UNSAFE, σu

6 else

7 ind , σo ← CheckInvariance(P, σo, n)
8 if ind then

9 return SAFE, σo

10 n← n+ 1

CheckInvariance(P, σo, n)
11 ind ← true

12 foreach P ∈ P do

13 foreach δ ∈ σo(P, n) do

14 if |= JβP Kno =⇒ δ then

15 σo ← σo ∪ (〈P, n+ 1〉 7→ δ)

16 else

17 ind ← false

18 return (ind , σo)

Figure 2.5: Pseudo-code of RecMC.

2.4 Model Checking Recursive Programs

In this section, we present our algorithm RecMC(P , ϕsafe) for determining whether

a program P satisfies a safety property ϕsafe . Let S be the signature of the first-order

language under consideration and assume a fixed S-theory Th. To avoid clutter, we

drop the subscript Th from the notation |=Th and |=b,Th . We also show the sound-

ness of RecMC and discuss its complexity guarantees. An efficient instantiation of

RecMC to Linear Arithmetic is presented in Section 2.5.
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Top-level Loop. RecMC maintains two bounded assertion maps σu and σo for

must and may-summaries, respectively. For brevity, for a first-order formula τ , we

write JτKbu and JτKbo to denote JτKUb
σu

and JτKOb
σo

, respectively, where the environments

U b
m and Ob

m, for a bounded assertion map m, are as defined in Section 2.3. Intuitively,

JτKbu and JτKbo, respectively, under- and over-approximate τ using σu and σo.

The pseudo-code of the main loop of RecMC (corresponding to the flow diagram

in Fig. 2.1) is shown in Fig. 2.5. RecMC follows an iterative deepening strategy.

In each iteration, BndSafety (described below) checks whether all executions of P

satisfy ϕsafe for a bound n ≥ 0 on the call-stack, i.e., if M |=n ϕsafe . BndSafety

also updates the maps σu and σo. Whenever BndSafety returns UNSAFE , the

must-summaries in σu are sufficient to construct a counterexample to safety and

the loop terminates. Whenever BndSafety returns SAFE , the may-summaries in

σo are sufficient to prove the absence of a counterexample for the current bound n

on the call-stack. In this case, if σo is also invariant (see (2.3)), as determined by

CheckInvariance, On
σo

is a safety proof and the loop terminates. Otherwise, the

bound on the call-stack is incremented and a new iteration of the loop begins. Note

that, as a side-effect of CheckInvariance, some may-summaries are propagated

to the bound n + 1. This is similar to the push generalization phase in the IC3

algorithm [25].

Bounded Safety. We describe the routine BndSafety(P , ϕsafe , n, σ
Init
u , σInit

o ) as

an abstract transition system [94] defined by the inference rules shown in Fig. 2.6.

Here, n is the current bound on the call-stack, and σInit
u and σInit

o are the maps of
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Init
{〈M,¬ϕsafe , n〉} ‖ σ

Init
u ‖ σInit

o

May
Q ‖ σu ‖ σo 〈P,ϕ, b〉 ∈ Q |= JβP Kb−1

o =⇒ ¬ϕ

Q \ {〈P, η, c〉 | c ≤ b, |= JΣP Kco ∧ ψ =⇒ ¬η} ‖ σu ‖ σo ∪ {〈P, b〉 7→ ψ}

where ψ = Itp(JβP Kb−1
o ,¬ϕ)

Must
Q ‖ σu ‖ σo 〈P,ϕ, b〉 ∈ Q π ∈ Paths(P ) 6|= JπKb−1

u =⇒ ¬ϕ

Q \ {〈P, η, c〉 | c ≥ b, 6|= ψ =⇒ ¬η} ‖ σu ∪ {〈P, b〉 7→ ψ} ‖ σo

where ψ = ∃ℓP · JπKb−1
u

Query

Q ‖ σu ‖ σo 〈P,ϕ, b〉 ∈ Q |= JβP Kb−1
u =⇒ ¬ϕ π ∈ Paths(P )

π = πpre ∧ ΣR(a) ∧ πsuf |= JπpreK
b−1
o ∧ JΣR(a)K

b−1
u ∧ Jπsuf K

b−1
u =⇒ ¬ϕ

6|= JπpreK
b−1
o ∧ JΣR(a)K

b−1
o ∧ Jπsuf K

b−1
u =⇒ ¬ϕ

Q ∪ {〈R,ψ, b− 1〉} ‖ σu ‖ σo

where

{

ψ =
(

∃
(

vP ∪ ℓP
)

\ a · JπpreKb−1
o ∧ Jπsuf K

b−1
u ∧ ϕ

)

[a← vR]

for all 〈R, η, b− 1〉 ∈ Q, |= ψ =⇒ ¬η

Unsafe
∅ ‖ σu ‖ σo 6|= JΣM Knu =⇒ ϕsafe

UNSAFE
Safe

∅ ‖ σu ‖ σo |= JΣM Kno =⇒ ϕsafe

SAFE

Figure 2.6: Rules defining BndSafety(P, ϕsafe , n, σ
Init
u , σInit

o ).

must and may-summaries input to the routine. A state of BndSafety is a triple

Q ‖ σu ‖ σo, where σu and σo are the current maps and Q is a set of triples 〈P, ϕ, b〉

for a procedure P , a formula ϕ over vP , and a number b ≥ 0. A triple 〈P, ϕ, b〉 ∈ Q

is called a bounded reachability query and asks whether P 6|=b ¬ϕ, i.e., whether there

is an execution in P using a call-stack bounded by b where the values of vP satisfy ϕ.

BndSafety starts with a single query 〈M,¬ϕsafe , n〉 and initializes the maps of

must and may-summaries (rule Init). It checks whether M |=n ϕsafe by generating

new queries as necessary (rule Query) and answering existing queries using existing

summaries (rules May and Must), the latter resulting in new summaries. When
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there are no queries left to answer, i.e., Q is empty, BndSafety terminates with a

result of either UNSAFE or SAFE (rules Unsafe and Safe). We explain the rules

May, Must and Query below.

May infers a new may-summary when a query 〈P, ϕ, b〉 can be answered negatively.

In this case, there is an over-approximation of the bounded semantics of P at bound

b, obtained using the may-summaries of callees at bound b− 1, that is unsatisfiable

with ϕ. That is, |= JβP Kb−1
o =⇒ ¬ϕ. The inference of the new summary is by inter-

polation [43] (denoted by Itp in the side-condition of the rule). Thus, the new may-

summary ψ is a formula over vP such that |=
(

JβP Kb−1
o =⇒ ψ(vP )

)

∧ (ψ(vP ) =⇒

¬ϕ). Note that ψ over-approximates the bounded semantics of P at b. Every query

〈P, η, c〉 ∈ Q such that η is unsatisfiable with the updated environment Oc
σo
(ΣP ) is

immediately answered and removed.

Must infers a new must-summary when a query 〈P, ϕ, b〉 can be answered positively.

In this case, there is an under-approximation of the bounded semantics of P at b,

obtained using the must-summaries of callees at bound b− 1, that is satisfiable with

ϕ. That is, 6|= JβP Kb−1
u =⇒ ¬ϕ. In particular, there exists a path π in Paths(P ) such

that 6|= JπKb−1
u =⇒ ¬ϕ. The new must-summary ψ is obtained by choosing such

a path π non-deterministically and existentially quantifying all local variables from

JπKb−1
u . Note that ψ under-approximates the bounded semantics of P at b. Every

query 〈P, η, c〉 ∈ Q such that η is satisfiable with the updated environment U c
σu
(ΣP )

is immediately answered and removed.

Query creates a new query when an existing query 〈P, ϕ, b〉 cannot be answered us-

ing current summary maps σu and σo. In this case, the current over-approximation
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of the bounded semantics of P at b is satisfiable with ϕ while its current under-

approximation is unsatisfiable with ϕ. That is, 6|= JβP Kb−1
o =⇒ ¬ϕ and |=

JβP Kb−1
u =⇒ ¬ϕ. In particular, there exists a path π in Paths(P ) such that

6|= JπKb−1
o =⇒ ¬ϕ and |= JπKb−1

u =⇒ ¬ϕ. Intuitively, π is a potential coun-

terexample path that needs to be checked for feasibility. Such a path π is chosen

non-deterministically. π is guaranteed to have a conjunct ΣR(a), corresponding to

a call to some procedure R, such that the under-approximation JΣR(a)K
b−1
u is too

strong to witness an execution along π that satisfies ϕ but the over-approximation

JΣR(a)K
b−1
o is too weak to block such an execution. That is, π can be partitioned

into a prefix πpre , a conjunct ΣR(a) corresponding to a call to R, and a suffix πsuf

such that the following hold:

|= JΣR(a)K
b−1
u =⇒

(

(JπpreK
b−1
o ∧ Jπsuf K

b−1
u ) =⇒ ¬ϕ

)

(2.4)

6|= JΣR(a)K
b−1
o =⇒

(

(JπpreK
b−1
o ∧ Jπsuf K

b−1
u ) =⇒ ¬ϕ

)

(2.5)

Note that the prefix πpre and the suffix πsuf are over- and under-approximated, re-

spectively. A new query 〈R,ψ, b− 1〉 is created where ψ is obtained by existentially

quantifying all variables from JπpreK
b−1
o ∧ Jπsuf K

b−1
u ∧ϕ except the arguments a of the

call, and renaming appropriately. If the new query is answered negatively (using

May), all executions along π where the values of vP ∪ ℓP satisfy Jπsuf K
b−1
u are spuri-

ous counterexamples. An additional side-condition requires that ψ “does not overlap”

with η for any other query 〈R, η, b − 1〉 in Q. This is necessary for termination of

BndSafety (Theorem 2). In practice, the side-condition is trivially satisfied by
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πi JπiK
0
u JπiK

0
o

i = 1 ΣT (m0, ℓ0) ⊥ ⊤
i = 2 ΣD(ℓ0, ℓ1) ℓ1 = ℓ0 − 1 ⊤
i = 3 ΣD(ℓ1,m) m = ℓ1 − 1 ⊤

Figure 2.7: Approximations of the only path π of the procedure M in Fig. 2.3.

always applying the rule to 〈P, ϕ, b〉 with the smallest b.

For example, consider the program in Fig. 2.3 represented by (2.1) and the query

〈M,ϕ, 1〉 where ϕ ≡ m0 < 2m + 4. Let σo = ∅, σu(D, 0) = {d = d0 − 1} and

σu(T, 0) = ∅. Let π = (ΣT (m0, ℓ0) ∧ ΣD(ℓ0, ℓ1) ∧ ΣD(ℓ1,m)) denote the only path in

the procedure M . Fig. 2.7 shows JπiK
0
u and JπiK

0
o for each conjunct πi of π. As the

figure shows, JπK0o is satisfiable with ϕ, witnessed by the execution e ≡ 〈m0 = 3, ℓ0 =

3, ℓ1 = 2,m = 1〉. Note that this execution also satisfies Jπ2 ∧ π3K
0
u. But, Jπ1K

0
u is

too strong to witness it, where π1 is the call ΣT (m0, ℓ0). To create a new query for

T , we first existentially quantify all variables other than the arguments m0 and ℓ0

from π2∧π3∧ϕ, obtaining m0 < 2ℓ0. Renaming the arguments by the parameters of

T results in the new query 〈T, t0 < 2t, 0〉. Further iterations of BndSafety would

answer this query negatively making the execution e spurious. Note that this would

also make all other executions where the values to 〈m0, ℓ0, ℓ1,m〉 satisfy Jπ2 ∧ π3K
0
u

spurious.

Remark. Note that 2.4 above can be equivalently written as:

|=
(

JπpreK
b−1
o ∧ Jπsuf K

b−1
u ∧ ϕ

)

=⇒ ¬JΣR(a)K
b−1
u

Let A =
(

JπpreK
b−1
o ∧ Jπsuf K

b−1
u ∧ ϕ

)

and B = ¬JΣR(a)K
b−1
u . So, the query created
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by the rule Query is essentially the strongest interpolant for A =⇒ B. One can

alternatively consider other interpolants as candidates for new queries. For example,

the weakest interpolant B is another candidate for the new query. However, B is

independent of A and is not property-driven. We leave these considerations for future

exploration.

2.4.1 Soundness of BndSafety and RecMC

Soundness of RecMC follows from that of BndSafety, which can be shown by a

case analysis on the inference rules.

Theorem 1. BndSafety and RecMC are sound.

Proof. We only show the soundness of BndSafety; the soundness of RecMC easily

follows. In particular, for BndSafety(M,ϕsafe , n, ∅, ∅) we show the following:

1. if the premises of Unsafe hold, then M 6|=n ϕsafe , and

2. if the premises of Safe hold, then M |=n ϕsafe .

It suffices to show that the environments U b
σu

and Ob
σo

, respectively, under- and

over-approximate the bounded semantics of the procedures, for every 0 ≤ b ≤ n.

In particular, we show that the following is an invariant of BndSafety: for every

model I of the background theory Th, for every procedure Q ∈ P and b ∈ [0, n],

I(U b
σu
(ΣQ)) ⊆ JQKbI ⊆ I(Ob

σo
(ΣQ)). (2.6)

Initially, σu and σo are empty and the invariant holds trivially. BndSafety
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updates σo and σu in the rules May and Must, respectively. We show that these

rules preserve (2.6). We only show the case of May. The case of Must is similar.

Let 〈P, ϕ, b〉 ∈ Q be such that May is applicable, i.e., |= JβP Kb−1
o =⇒ ¬ϕ. Let

ψ = Itp(JβP Kb−1
o ,¬ϕ). Note that ϕ, and hence ψ, does not depend on the local

variables ℓP . Hence, we know that

|=
(

∃ℓP · JβP Kb−1
o

)

=⇒ ψ. (2.7)

The case of b = 0 is easy and we will skip it. Let I be an arbitrary model of Th.

Assume that (2.6) holds at b−1 before applying the rule. In particular, assume that

for all Q ∈ P , JQKb−1
I ⊆ I(Ob−1

σo
(ΣQ)).

We will first show that the new may-summary ψ over-approximates JP KbI . Let

J(I,X) be an expansion of I as defined in Section 2.3.

JP KbI = J(I, 〈JP0K
b−1
I , . . . , JPnK

b−1
I 〉)(∃ℓPi

· βPi
)

⊆ J(I, 〈I(Ob−1
σo

(ΣP0
)), . . . , I(Ob−1

σo
(ΣPn

))〉)(∃ℓPi
· βPi

) (hypothesis)

= I(J∃ℓP · βP KOb−1
σo

) (Ob−1
σo

is FO-definable)

= I(∃ℓP · JβP KOb−1
σo

) (logic)

= I(∃ℓP · JβP Kb−1
o ) (notation)

⊆ I(ψ) (from (2.7))

Next, we show that the invariant continues to hold. The map of may-summaries is
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updated to σ′
o = σo ∪ {〈P, b〉 7→ ψ}. Now, σ′

o differs from σo only for the procedure

P and for bounds in [0, b]. Let b′ ∈ [0, b] be arbitrary. Since (2.6) was true before

applying May, we know that JP Kb
′

I ⊆ I(Ob′

σo
(ΣP )). As JP Kb

′

I ⊆ JP KbI ⊆ I(ψ), it

follows that JP Kb
′

I ⊆ I(Ob′

σo
(ΣP )) ∩ I(ψ) ⊆ I(Ob′

σo
(ΣP ) ∧ ψ) = I(Ob′

σ′
o
(ΣP )).

2.4.2 Termination and Complexity of BndSafety

We will now show that BndSafety is complete relative to an oracle for satisfiability

of existentially quantified formulas (i.e., formulas that are quantifier-free or have one

block of existential quantifiers) modulo Th. Throughout the following, we assume

that such an oracle exists. Intuitively, a must-summary inferred by BndSafety

corresponds to a path in a procedure and given a bound on the call-stack, the number

of such formulas is finite. This bounds the number of may/must-summaries inferred

by BndSafety, guaranteeing termination.

The following lemma shows that when a query is removed from Q, it is actually

answered. The proof is immediate from the definitions of Ob
σo

and U b
σu

given in

Section 2.3.

Lemma 1 (Answered Queries). Whenever BndSafety removes a query from Q,

it is answered using the known must and may-summaries. In particular, for every

query 〈P, η, b〉 ∈ Q removed from Q by BndSafety,

1. if the query is removed by May, then |= JΣP Kbo =⇒ ¬η, and

2. if the query is removed by Must, then 6|= JΣP Kbu =⇒ ¬η.

Next, we show that current summaries are insufficient to answer existing queries

in Q.
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Lemma 2 (Pending Queries). Q only has the queries which cannot be immediately

answered by σu or σo, i.e., as long as 〈P, η, ℓ〉 is in Q, the following are invariants

of BndSafety.

1. 6|= JΣP Kℓo =⇒ ¬η, and

2. |= JΣP Kℓu =⇒ ¬η.

Proof. We first show that the invariants hold when a query is newly created by

Query. Let P , η and ℓ be, respectively, R, ψ[a← vR] and b−1, as in the conclusion

of the rule. The last-but-one premise of Query is

|= JπpreK
b−1
o ∧ JΣR(a)K

b−1
u ∧ Jπsuf K

b−1
u =⇒ ¬ϕ

which implies that

|= JΣR(a)K
b−1
u =⇒ ¬

(

JπpreK
b−1
o ∧ Jπsuf K

b−1
u ∧ ϕ

)

.

The variables not in common, viz., (vP ∪ ℓP ) \ a, can be universally quantified from

the right hand side resulting in |= JΣRKb−1
u =⇒ ¬η. Similarly, 6|= JΣRKb−1

o =⇒ ¬η

follows from the last premise of the rule. Next, we show that May and Must

preserve the invariants.

Let May answer a query 〈P, ϕ, ℓ〉 with a new may-summary ψ and let the updated

map of may-summaries be σ′
o = σo∪{〈P, ℓ〉 7→ ψ}. Now, consider 〈P, η, ℓ′〉 ∈ Q after

the application of the rule. If ℓ′ > ℓ, Oℓ′

σ′
o
= Oℓ′

σo
and the invariant continues to hold.

So, assume ℓ′ ≤ ℓ. From the conclusion of May, we have 6|= JΣP Kℓ
′

o ∧ ψ =⇒ ¬η.
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Now, Oℓ′

σ′
o
(ΣP ) = Oℓ′

σo
(ΣP ) ∧ ψ. So, the invariant continues to hold.

Similarly, let Must answer a query 〈P, ϕ, ℓ〉 with a new must-summary ψ and

let the updated map of must-summaries be σ′
u = σu ∪ {ψ 7→ 〈P, ℓ〉}. Now, consider

〈P, η, ℓ′〉 ∈ Q after the application of the rule. If ℓ′ < ℓ, U ℓ′

σ′
u
= U ℓ′

σu
and the invariant

continues to hold. So, assume ℓ′ ≥ ℓ. From the conclusion of Must, we have

|= ψ =⇒ ¬η. Assuming the invariant holds before the rule application, we also

have |= JΣP Kℓ
′

u =⇒ ¬η. Therefore, we have |= JΣP Kℓ
′

u ∨ ψ =⇒ ¬η. Now,

U ℓ′

σ′
u
(ΣP ) = U ℓ′

σu
(ΣP ) ∨ ψ. So, the invariant continues to hold.

The next few lemmas show that the rules of the algorithm cannot be applied

indefinitely, leading to a termination argument. Let N be the number of procedures

in the program P , p be the maximum number of paths in a procedure, and c be the

maximum number of procedure calls along any path in P .

Lemma 3 (Finitely-many Must Summaries). Given a predicate symbol ΣP and a

bound b, the environment U b
σu

is updated only O(N b · pb+1)-many times.

Proof. The environment U b
σu

can be updated for ΣP and b whenever a must-summary

is inferred for P at a bound b′ ≤ b. Now, a must-summary is obtained per path

(after eliminating the local variables) of a procedure, using the currently known

must-summaries about the callees. Moreover, Lemmas 1 and 2 imply that no must-

summary is inferred twice. This is because whenever a query is answered using Must,

the query could not have been answered using already existing must-summaries and

a new must-summary is inferred.

This gives the following recurrence Must(b) for the number of updates to U b
σu

for
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a given ΣP :

Must(b) =















p, b = 0

(p ·N + 1) ·Must(b− 1), b > 0.

In words, for b = 0, the number of updates is given by the number of must-summaries

that can be inferred, which is bounded by the number of paths p in the procedure

P . For b > 0, the environment U b
σu

is updated when a must-summary is learnt for

the procedure at a bound smaller than or equal to b. For the former, the number of

updates is simply Must(b − 1). For the latter, a new must-summary is inferred at

bound b along a path whenever U b−1
σu

changes for a callee. For N procedures and p

paths, this is given by (p ·N ·Must(b− 1)).

This gives us Must(b) = O(N b · pb+1).

Lemma 4 (Finitely-many Queries). For 〈P, ϕ, b〉 ∈ Q, Query is applicable only

O(c ·N b · pb+1)-many times.

Proof. First, assume that the environments U b−1
σu

and Ob−1
σo

are fixed. The number of

possible queries that can be created for a given path of P is bounded by the number

of ways the path can be divided into a prefix, a procedure call, and a suffix. This

is bounded by c, the maximum number of calls along the path. For p paths, this is

bounded by c · p.

Consider a path π and its division, and let a query be created for a callee R along

π. Now, while the query is still in Q, updates to the environments Ob−1
σo

and U b−1
σu

do

not result in a new query for R for the same division along π. This is because, the

new query would overlap with the existing one and this is disallowed by the second
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side-condition of Query.

Suppose that the new query is answered by May. With the updated map of may-

summary, the last premise of Query can be shown to fail for the current division

of π. If Ob−1
σo

is updated, the last premise continues to fail. So, a new query can be

created for the same prefix and suffix along π only if U b−1
σu

is updated for some callee

along π. The other possibility is that the query is answered by Must which updates

U b−1
σu

as well.

Thus, for a given path, and a given division of it into prefix and suffix, the number

of queries that can be created is bounded by the number of updates to U b−1
σu

which is

(N ·Must(b− 1)). Here, Must is as in Lemma 3. So, the number of times Query is

applicable for a given query 〈P, ϕ, b〉 is O(p·c·N ·Must(b−1)). As Must(b) = N b ·pb+1,

we obtain the bound O(c ·N b · pb+1).

Lemma 5 (Progress). As long as Q is non-empty, either May, Must or Query

is always applicable.

Proof. First, we show that for every query inQ, either of the three rules is applicable,

without the second side-condition in Query. Let 〈P, ϕ, b〉 ∈ Q. If |= JβP Kb−1
o =⇒

¬ϕ, then May is applicable. Otherwise, there exists a path π ∈ Paths(P ) such that

JπKb−1
o is satisfiable with ϕ, i.e., 6|= JπKb−1

o =⇒ ¬ϕ. Now, if JπKb−1
u is also satisfiable

with ϕ, i.e., 6|= JπKb−1
u =⇒ ¬ϕ, Must is applicable. Otherwise, |= JπKb−1

u =⇒ ¬ϕ.

Note that this can only happen if b > 0, as otherwise, there will not be any procedure

calls along π and JπKb−1
o and JπKb−1

u would be equivalent.

Let π = π0 ∧ π1 ∧ . . . πl for some finite l. Then, JπKb−1
o is obtained by taking the
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conjunction of the formulas

〈Jπ0K
b−1
o , Jπ1K

b−1
o , . . . 〉.

Similarly, JπKb−1
u is obtained by taking the conjunction of the formulas

〈Jπ0K
b−1
u , Jπ1K

b−1
u , . . . 〉.

From Theorem 1, we can think of obtaining the latter sequence of formulas by con-

joining JπiK
b−1
u to JπiK

b−1
o for every i. When this is done backwards for decreasing

values of i, an intermediate sequence looks like

〈Jπ0K
b−1
o , . . . , Jπj−1K

b−1
o , JπjK

b−1
u . . . 〉.

As JπKb−1
u is unsatisfiable with ϕ, there exists a maximal j such that the conjunction

of constraints in such an intermediate sequence are unsatisfiable with ϕ. Moreover,

πj must be a literal of the form ΣR(a) as otherwise, JπjK
b−1
o = JπjK

b−1
u violating

the maximality condition on j. Thus, all premises of Query hold and the rule is

applicable.

Now, the second side-condition in Query can be trivially satisfied by always

choosing a query in Q with the smallest bound for the next rule to apply. This is

because, if 〈R, η, b− 1〉 is the newly created query, there is no other query in Q for

R and b− 1.

Lemmas 4 and 5 imply that every query in Q is eventually answered by May or
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Must, as shown below.

Lemma 6 (Eventual Answer). Every 〈P, ϕ, b〉 ∈ Q is eventually answered by May

or Must, in O(b · cb · (Np)O(b2)) applications of the rules.

Proof. Firstly, to answer any given query in Q, Lemma 4 guarantees that the algo-

rithm can only create finitely many queries. Lemma 5 guarantees that some rule is

always applicable, as long as Q is non-empty. Thus, when Query cannot be applied

for any query in Q, either May or Must must be applicable for some query. Thus,

eventually, all queries are answered.

The total number of rule applications to answer 〈P, ϕ, b〉 is then linear in the

cumulative number of applications of Query, which has the following recurrence:

T (b) =















Q(0), b = 0

Q(b)(1 + T (b− 1)), b > 0.

where Q(b) denotes the number of applications of Query for a fixed query in Q at

bound b. From Lemma 4, Q(b) = O(c · N b · pb+1). This gives us T (b) = O(b · cb ·

(Np)O(b2)).

The main termination theorem is an immediate consequence of the above lemma:

Theorem 2. Given an oracle for satisfiability of existentially quantified formulas

modulo Th, BndSafety(P , ϕ, n, ∅, ∅) decides bounded safety in finitely many itera-

tions and terminates.

As an immediate corollary, RecMC is guaranteed to find a counterexample if

one exists.
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Corollary 1. RecMC(P , ϕ) is guaranteed to return UNSAFE with a counterexam-

ple if P 6|= ϕ.

In contrast, the closest related algorithm GPDR [74], mentioned briefly in Sec-

tion 2.1, does not have such guarantees. Finally, for Boolean Programs RecMC is a

complete decision procedure. Unlike the general case, the number of reachable states

of a Boolean Program, and hence the number of summaries, is finite. Boolean pro-

grams are obtained when the signature S is assumed to be empty, i.e., there are no

non-logical function or predicate symbols. Let N denote the number of procedures

of a program P and k = max{|vP | | P (vP ) ∈ P}.

Theorem 3. Let P be a Boolean Program. Then RecMC(P , ϕ) terminates in O(N2·

22k)-many applications of the rules in Fig. 2.6.

Proof. First, assume a bound n on the call-stack. The number of queries that can

be created for a procedure at any given bound is O(2k), the number of possible

valuations of the parameters (note that Query disallows overlapping queries to be

present simultaneously in Q). For N procedures and n possible values of the bound,

the complexity of BndSafety(P , ϕ, n, ∅, ∅), for a Boolean Program, is O(N · 2k ·n).

Now, the total number of may-summaries that can be inferred for a procedure

is also bounded by O(2k). As Ob
σo

is monotonic in b, the number of iterations of

RecMC is bounded by O(N ·2k), the cumulative number of states of all procedures.

Thus, we obtain the bound O(N2 · 22k) on the number of applications of the rules in

Fig. 2.6.

Note that the number of states of a Boolean Program is O(N · 2k), so the above
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bound is polynomial in the number of states. Moreover, assuming that we always

eliminate Boolean existential quantifiers using quantifier elimination, the total com-

plexity of RecMC is also polynomial in the number of states. In contrast, other

SMT-based algorithms, such as Whale [7], are worst-case exponential in the num-

ber of states of a Boolean Program. Also, note that the complexity is quadratic in

the number of procedures as opposed to the known upper-bound which has a lin-

ear dependency [19]. This is a manifestation of the iterative deepening strategy of

RecMC and in particular, the may-summaries computed by the algorithm, which

is necessary for handling programs over first-order theories. In contrast, the known

optimal algorithms for Boolean programs do not compute may-summaries.

In summary, RecMC checks safety of a recursive program by inferring the nec-

essary under- and over-approximations of procedure semantics and using them to

analyze procedures individually.

2.5 Model Based Projection

The algorithm RecMC described in the previous section works for an arbitrary first-

order signature S and a S-theory Th as long as there is an oracle for satisfiability

(of existentially quantified formulas) modulo Th. One can also use RecMC as-is for

many-sorted signatures and a corresponding combination of theories, as long as there

is an SMT oracle for existentially quantified formulas modulo the theory combination.

In this section, we restrict ourselves to the two combinations of Propositional Logic

with the theories of Linear Rational Arithmetic (LRA) and Linear Integer Arithmetic
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(LIA) (also well known as Presburger Arithmetic), and let the corresponding sorts

be Bool, Rat, and Int, respectively.

Even though RecMC can be used as-is for LRA and LIA, recall that BndSafety

introduces quantifiers in the formulas maintained by the algorithm. This is because

the may and must-summaries are formulas over the parameters of a procedure and

auxiliary variables denoting their initial values, and when creating a new summary,

all other variables will be quantified away. Same is the case with creating new

bounded safety properties. If these quantifiers are not eliminated, every use of a

summary at a call-site will introduce a different copy of the quantified variables

which, in the worst-case, can end up accumulating exponentially in the bounded

safety properties created by the algorithm. In essence, the compositional algorithm

will break down into a non-compositional one, similar to unrolling the call-graph

into a tree where, as we mentioned earlier, the size of the SMT problems created

can grow exponentially in the bound on the call-stack. On the other hand, it is

expensive to use quantifier elimination (QE) to obtain an equivalent quantifier-free

formula. Instead, we propose an alternative approach that approximates QE with

quantifier-free formulas lazily and efficiently.

In particular, we (a) introduce a model-based under-approximation of QE for

existentially quantified formulas, called Model Based Projection (MBP), (b) give

efficient (linear in the size of formulas involved) MBP procedures for Propositional

Logic, LRA, and LIA, and (c) present a modified version of BndSafety that uses

MBP to under-approximate the existential quantification of variables out of scope,

and show that it remains sound and terminating. Our MBP procedures for LRA and
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LIA are based on the QE algorithms by Loos and Weispfenning [86] and Cooper [42],

respectively.

Definition 2 (Model Based Projection). Let η(y) = ∃x · ηm(x, y) be an existentially

quantified formula where ηm is quantifier free. A function Proj η from models of ηm

to quantifier-free formulas over y is a Model Based Projection (for η) iff

1. Proj η has a finite image,

2. η ≡
∨

M |=ηm
Proj η(M), and

3. for every model M of ηm, M |= Proj η(M).

In other words, Proj η covers the space of all models of ηm(x, y) by a finite set of

quantifier-free formulas over y. Note that there is a trivial MBP that maps every

model of ηm to a quantifier-free formula equivalent to η. However, when QE is

expensive, it is not the most efficient MBP and our objective is to obtain an MBP

that maps models to quantifier-free under-approximations of η. In the following, we

describe MBP procedures whose computation is linear in time and space given a

model.

2.5.1 MBP for Propositional Logic

Let η(y) = ∃x · ηm(x, y) be an existentially quantified formula where the quantified

variables in x are all of sort Bool. Without loss of generality, assume that x is

singleton. Our MBP procedure is based on the following equivalence:

∃x · ηm(x, y) ≡ ηm[⊥] ∨ ηm[⊤] (2.8)
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where [·] denotes a substitution for x.

We now define an MBP BoolProj η for Propositional Logic as a map from models

of ηm to one of the disjuncts above depending on the assignment to x in the given

model M :

BoolProj η(M) =















ηm[⊥], M |= x = ⊥

ηm[⊤], M |= x = ⊤

This procedure is also used in the GPDR model checking algorithm [74] imple-

mented in the tool Z3 [45] and a similar approach is used in SAT-based iterative

quantifier elimination in hardware verification [55]. The following is now immediate.

Theorem 4. BoolProj η is a Model Based Projection.

2.5.2 MBP for Linear Rational Arithmetic (LRA)

We begin with a brief overview of Loos-Weispfenning (LW) method [86] for quantifier

elimination in LRA. We borrow our presentation from Nipkow [95] to which we refer

the reader for more details. Let η(y) = ∃x · ηm(x, y) as above, where the variables

in x are of sort Rat. Let Th be LRA, or its combination with Propositional Logic.

Without loss of generality, assume that x is singleton, ηm is in Negation Normal

Form, and x only appears in the literals of the form ℓ < x, x < u, and x = e, where

ℓ, u, and e are x-free. Let lits(η) denote the literals of η. The LW-method states

that

∃x · ηm(x, y) ≡





∨

(x=e)∈lits(η)

ηm[e] ∨
∨

(ℓ<x)∈lits(η)

ηm[ℓ+ ǫ] ∨ ηm[−∞]



 (2.9)
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where ηm[·] denotes a virtual substitution for the literals containing x. Intuitively,

ηm[e] covers the case when a literal (x = e) is true, ηm[ℓ + ǫ] covers the case where

ℓ is the largest lower bound satisfied by x, and ηm[−∞] covers the remaining cases.

We omit the details of the substitution and instead illustrate it on an example. Let

ηm be (x = e ∧ φ1) ∨ (ℓ < x ∧ x < u) ∨ (x < u ∧ φ2), where ℓ, e, u, φ1, φ2 are x-free.

Then,

∃x · ηm ≡ ηm[e] ∨ ηm[ℓ+ ǫ] ∨ ηm[−∞]

≡
(

φ1 ∨ (ℓ < e ∧ e < u) ∨ (e < u ∧ φ2)
)

∨
(

ℓ < u ∨ (ℓ < u ∧ φ2)
)

∨ φ2

≡ φ1 ∨ (ℓ < u) ∨ φ2

We now define an MBP LRAProj η for LRA as a map from models of ηm to

disjuncts in (2.9). Given M |= ηm, LRAProj η picks a disjunct that covers M based

on values of the literals of the form x = e and ℓ < x in M . Ties are broken by a

syntactic ordering on terms (e.g., when M |= ℓ′ = ℓ for two literals ℓ < x and ℓ′ < x).

LRAProj η(M) =















































ηm[e], if (x = e) ∈ lits(η) ∧M |= x = e

ηm[ℓ+ ǫ], else if (ℓ < x) ∈ lits(η) ∧M |= ℓ < x ∧

∀(ℓ′ < x) ∈ lits(η) ·M |= ((ℓ′ < x) =⇒ (ℓ′ ≤ ℓ))

ηm[−∞], otherwise

Theorem 5. LRAProj η is a Model Based Projection.

Proof. By definition, LRAProj η has a finite image, as there are only finitely many dis-
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juncts in (2.9). Thus, it suffices to show that for everyM |= ηm, M |= LRAProj η(M).

Each disjunct in the LW decomposition (2.9) is obtained by a virtual substitution

of the literals in ηm containing x. As mentioned in the beginning of the section, we

assume that ηm is in NNF with the only literals containing x of the form (x = e),

(ℓ < x) or (x < u) for x-free terms e, ℓ and u. Let Subt denote the virtual substitution

map of literals when t is either e, ℓ+ ǫ or −∞. The LW method [86] defines:

Sube(x = e) = ⊤, Sube(ℓ < x) = (ℓ < e), Sube(x < u) = (e < u) (2.10)

Subℓ+ǫ(x = e) = ⊥, Subℓ+ǫ(ℓ
′ < x) = (ℓ′ ≤ ℓ), Subℓ+ǫ(x < u) = (ℓ < u) (2.11)

Sub−∞(x = e) = ⊥, Sub−∞(ℓ < x) = ⊥, Sub−∞(x < u) = ⊤ (2.12)

Let M |= ηm and LRAProj η(M) = ηm[t] where t is either e or ℓ + ǫ or −∞.

As ηm is in NNF, it suffices to show that for every literal µ of ηm containing x, the

following holds:

M |= (µ =⇒ Subt(µ)) (2.13)

We consider the different possibilities of t below. For a term v, let M [v] denote

the value of v in M .

Case t = e. In this case, we know that M |= x = e. Now, for a literal ℓ < x,

M [ℓ < x] =⇒ M [ℓ] < M [x]

=M [ℓ] < M [e]

=M [ℓ < e]
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=M [Subt(ℓ < x)] {Subt(ℓ < x) = (ℓ < e)}.

Similarly, literals of the form x < u and x = e′ can be considered.

Case t = ℓ + ǫ. In this case, we know that M [ℓ < x] is true, i.e., M [ℓ] < M [x] and

whenever M [ℓ′ < x] is true, M [ℓ′ ≤ ℓ] is also true. Now, for a literal ℓ′ < x,

M [ℓ′ < x] =⇒ M [ℓ′ ≤ ℓ]

=M [Subt(ℓ
′ < x)] {Subt(ℓ

′ < x) = (ℓ′ ≤ ℓ)}.

For a literal x < u,

M [x < u] =⇒ M [x] < M [u]

=⇒ M [ℓ] < M [u] {M [ℓ] < M [x]}

=⇒ M [ℓ < u]

=M [Subt(x < u)] {Subt(x < u) = (ℓ < u)}

For a literal x = e, (2.13) vacuously holds as M [x = e] is false.

Case t = −∞. In this case, we know that M [x = e] and M [ℓ < x] are false for

every literal of the form x = e and ℓ < x. So, for such literals (2.13) vacuously

holds. For a literal x < u, Subt(x < u) = ⊤ and hence, (2.13) holds again.
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2.5.3 MBP for Linear Integer Arithmetic (LIA)

We will now present our MBP LIAProj η for LIA. It is based on Cooper’s method

for Quantifier Elimination procedure for LIA [42]. Let η(y) = ∃x · ηm(x, y), where

ηm is quantifier free and in negation normal form. Assume that x is of sort Int

and that Th is LIA, or its combination with Propositional Logic. Without loss of

generality, let the only literals containing x be the form ℓ < x, x < u, x = e or

(d | ±x+w), where a | b denotes that a divides b, the terms ℓ, u, e and w are x-free,

and d ∈ Z \ {0}. Let E = {e | (x = e) ∈ lits(ηm)} be the set of equality terms of x

and L = {ℓ | (ℓ < x) ∈ lits(ηm)} be the set of lower-bounds of x. Then, by Cooper’s

method,

∃x ·ηm(x, y) ≡
∨

(x=e)∈lits(η)

ηm[e]∨
∨

(ℓ<x)∈lits(η)

(

D−1
∨

i=0

ηm[ℓ+ 1 + i]

)

∨
D−1
∨

i=0

η−∞
m [i]. (2.14)

where D is the least common multiple of all the divisors in the divisibility literals of

ηm, [·] denotes a substitution for x and η−∞
m is obtained from ηm by substituting all

non-divisibility literals as follows:

(ℓ < x) 7→ ⊥ (x < u) 7→ ⊤ (x = e) 7→ ⊥ (2.15)

Intuitively, the disjunction partitions the space of the possible values of x. A

disjunct for (x = e) covers the case when x is equal to an equality term. The

remaining disjuncts cover the cases where ℓ is the maximal lower bound of x and

where x satisfies no lower bound. The disjunction over the possible values of i covers
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the different ways in which the divisibility literals can be satisfied.

Model based projection LIAProj η is defined as follows, conflicts are resolved by

some arbitrary, but fixed, syntactic ordering on terms:

LIAProj η(M) =















































ηm[e], if x = e ∈ lits(η) ∧M |= (x = e)

ηm[ℓ+ 1 + iℓ], else if (ℓ < x) ∈ lits(η) ∧M |= (ℓ < x) ∧

∀(ℓ′ < x) ∈ lits(η) ·M |= ((ℓ′ < x) =⇒ (ℓ′ ≤ ℓ))

η−∞
m [i−∞], otherwise

(2.16)

where iℓ =M [x− (ℓ+1)] mod D, i−∞ =M [x] mod D, and M [x] is the value of x in

M .

The following theorem shows that LIAProj η is indeed a model based projection.

The proof is similar to that of Theorem 5.

Theorem 6. LIAProj η is a Model Based Projection.

2.5.4 Bounded Safety with MBP

Given an MBP Proj η for an existentially quantified formula η, we have seen above

that each quantifier-free formula in the image of Proj η under-approximates η. As

above, we use ηm for the quantifier-free matrix of η. We can now modify the side-

condition ψ = η of Must and Query in the algorithm BndSafety to use quantifier-

free under-approximations as follows: (i) for Must, the new side-condition is ψ =

Proj η(M) where M |= ηm ∧ ϕ, and (ii) for Query, the new side-condition is ψ =

Proj η(M) where M |= ηm∧JΣR(a)K
b−1
o . Note that to avoid redundant applications of
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the rules, we require M to satisfy a formula stronger than ηm. Intuitively, (i) ensures

that the newly inferred reachability fact answers the current query and (ii) ensures

that the new query cannot be immediately answered by known facts. In both cases,

the required model M can be obtained as a side-effect of discharging the premises of

the rules. Soundness of BndSafety is unaffected and termination of BndSafety

follows from the image-finiteness of Proj η.

Theorem 7. Assuming an oracle and an MBP for Th, BndSafety is sound and

terminating after modifying the rules as described above.

Proof. Here, we show that BndSafety with MBP is sound and terminating.

First of all, in presence of MBP, May is unaffected and a reachability fact inferred

by Must is only strengthened. Thus, soundness of BndSafety (Theorem 1) is

preserved.

Then, it is easy to show that the modified side-conditions to Must and Query

preserve Lemmas 1 and 2 and we skip the proof.

Then, we will show that the finite-image property of an MBP preserves the

finiteness of the number of reachability facts inferred and the number of queries

generated by the algorithm. Let d be the size of the image of an MBP. In the proof

of Lemma 3, the recurrence relation will now have an extra factor of d. The rest of

the proof of finiteness of the number of reachability facts remains the same. Similarly,

in the proof of Lemma 4, the number of times Query can be applied along a path

for a fixed division and fixed environments Ob−1
σ and U b−1

ρ will increase by a factor

of d. Again, the rest of the proof of finiteness of the number of queries generated

remains the same. That is, Lemmas 3 and 4, and hence, Lemma 6, are preserved
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with scaled up complexity bounds.

Note that Theorem 5 is unaffected by under-approximations.

Together, we have that Theorem 2 is preserved, with a scaled up complexity

bound.

Thus, BndSafety with a linear-time MBP (such as LRAProj η) keeps the size of

the formulas small by efficiently inferring only the necessary under-approximations

of the quantified formulas.

2.6 Implementation and Experiments

We have implemented RecMC for analyzing C programs as part of our tool Spacer.

The back-end is based on Z3 [45] which is used for SMT-solving and interpolation.

It supports propositional logic, linear arithmetic, and bit-vectors (via bit-blasting).

The front-end is based on the tool UFO [8]. It encodes safety of a C program

by converting it to the Horn-SMT format of Z3, which corresponds to the logical

program representation described in Section 2.3. Loops are handled by creating

fresh predicate symbols denoting the loop invariants and encoding the corresponding

verification conditions. The implementation and benchmarks are available online3.

We evaluated Spacer on three sets of benchmarks:

(a) 2,908 Boolean programs obtained from the SLAM toolkit, 4

(b) 1,535 procedural programs from Microsoft’s SDV project, 5 and

3http://www.cs.cmu.edu/~akomurav/projects/spacer/home.html.
4https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/BOOL/slam.zip
5https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/ALIA/sdv
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(c) 797 C programs from the Software Verification Competition (SV-COMP) 2014 [4]

The numbers of programs mentioned for the second and third sets of benchmarks

above exclude programs with memory-related properties as Spacer cannot handle

them yet. The 797 programs in the third set of benchmarks also exclude programs

that can be easily verified by our front-end (which converts a C program to the

Horn-SMT format) using common compiler optimizations. Note that the programs

in the last set are not recursive and our current front-end inlines all procedure calls.

We call the resulting set of encodings Svcomp-1. Note that Svcomp-1 essentially

corresponds to while-programs. We introduced procedural modularity in Svcomp-1

by two distinct means: (a) factoring out maximal loop-free fragments into new loop-

free, recursion-free procedures (the main procedure may still have loops) to obtain

Svcomp-2, and (b) factoring out loops into tail-recursive procedures (in an inside-

out fashion for nested loops) to obtain Svcomp-3. Our simple outlining procedure

could not handle some large programs and Svcomp-3 has 45 fewer programs.

Fig. 2.8 shows some characteristics of the Horn-SMT encodings for the bench-

marks, when viewed according to the logical program representation described in

Section 2.3. In particular, for Svcomp-1, we consider a tail-recursive view of the

inlined encodings. The number of calls along a path roughly identifies the procedu-

ral modularity of the encodings. The number of calls of a procedure (in the entire

program) identifies the potential number of times a summary (may or must) of the

procedure can be reused for a given bound on the call-stack. Note that summaries

can also be reused across different bounds on the call-stack. Despite the fact that the

average number of procedure calls is low from the figure, we can show the practical
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#calls along a path #calls of a procedure
max avg max avg

(over all paths) (over all paths) (over all procedures) (over all procedures)
Slam 2 1 95.1 1.4
Sdv 11.9 1.18 21.6 1.7
Svcomp-1 1 0.7 4.1 1.4
Svcomp-2 2 0.8 3.9 1.1
Svcomp-3 1.5 0.8 8.4 3.2

Figure 2.8: Some characteristics of the Horn-SMT encodings of the benchmarks, averaged over all
programs in the corresponding set.

advantage of RecMC using these benchmarks, as we show below.

We compared Spacer against the implementation of GPDR in Z3 [74]. GPDR is

inspired by the IC3 hardware model checking algorithm [25] and avoids unrolling the

call-graph. Thus, it creates and checks reachability queries for individual procedures

similar to RecMC. However, it only computes may summaries and because of the

lack of must summaries, its query creation mechanism is quite different from the rule

Query. Moreover, it does not use MBP.

In our experiments, the resource limits were set to 30 minutes of time and 16GB

of memory, on an Ubuntu machine with a 2.2 GHz AMD Opteron(TM) Processor

6174 and 516GB RAM. Fig. 2.9 and 2.10 show a high level summary of the results

in terms of the number of programs verified by Spacer and Z3. Since there are

some programs verified by only one of the tools, the figures also report the number

of programs verified by at least one tool in the third row. We provide a more detailed

discussion of the experimental results in the following. In the scatter plots that are

shown below, a diamond indicates a time-out and a star indicates a mem-out.

Boolean Program Benchmarks. Fig. 2.11(a) shows the scatter plot of runtimes

for Spacer and Z3 for the SLAM benchmarks. The runtimes of both the tools are

within ±5 minutes for over 98% of the benchmarks. Of the remaining, Spacer is
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Slam Sdv

SAFE UNSAFE SAFE UNSAFE
Spacer 1,721 985 1,303 232
Z3 1,727 992 1,302 232
Spacer or Z3 1,727 992 1,303 232

Figure 2.9: Number of programs verified for Slam and Sdv benchmarks.

Svcomp-1 Svcomp-2 Svcomp-3

SAFE UNSAFE SAFE UNSAFE SAFE UNSAFE
Spacer 249 509 213 497 234 482
Z3 245 509 208 493 234 477
Spacer or Z3 252 509 225 500 240 482

Figure 2.10: Number of programs verified for SVCOMP benchmarks.

better on 1 benchmark, Z3 is better on 42 benchmarks which includes 13 bench-

marks where Spacer runs out of time. Recall that Z3 utilizes may summaries

which heuristically avoid the possible exponential blow-up associated with unwind-

ing the call-graph and as the plot shows, such a heuristic approach can be better

than Spacer in some cases. However, when we compared the tools on the parametric

Boolean program from Fig. 1.1, in which the size of the unrolled call-tree necessarily

grows exponentially in the number of procedures, Spacer handles the increasing

complexity significantly better than Z3, as shown in Fig. 2.11(b).

SDV Benchmarks. Fig. 2.12 shows the scatter plot of runtimes for Spacer and

Z3 for the SDV benchmarks. Spacer clearly outperforms Z3 including a benchmark

where Z3 runs out of time.

SVCOMP 2014 Benchmarks. We begin with the scatter plot in Fig. 2.13(a) for

Svcomp-1 benchmarks. As mentioned above, Svcomp-1 benchmarks correspond

to while-programs and therefore, do not require must summaries. As the GPDR

algorithm also computes may summaries, the plot in Fig. 2.13(a) essentially shows

the advantage of using MBP in creating a new query as opposed to Z3’s variable
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Figure 2.11: Spacer vs. Z3 for (a) the Slam benchmarks (with ±5 minute boundaries), and (b)
the Boolean program in Fig. 1.1 which is parametric in the number of procedures.
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Figure 2.12: Spacer vs. Z3 for the Sdv benchmarks.

substitution based on a given model.6

To understand the effect of must summaries, we also created a version of Spacer

that only infers and utilizes may summaries. We obtained this by modifying Z3 to

use MBP in creating new queries. As shown in Fig. 2.13(b), the advantage of using

must summaries is quite significant on Svcomp-2 benchmarks.

So, a combination of MBP and must summaries is expected to result in significant

improvements over using may summaries alone. This is shown experimentally in

Fig. 2.14(a) and 2.14(b) for the Svcomp-2 and Svcomp-3 benchmarks which show

6Z3 first tries to eliminate existential quantifiers by using equalities with ground terms present
in the input formula and resorts to model substitution otherwise.
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Figure 2.13: The advantage of (a) MBP, over Svcomp-1, and (b) must summaries, over Svcomp-2,
in Spacer. For Svcomp-1, must summaries are not required and MBP is the only key difference
between Spacer and Z3.
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Figure 2.14: Spacer vs. Z3 for the benchmarks (a) Svcomp-2 and (b) Svcomp-3.

that Spacer is significantly better than Z3 on most of the programs.

Recall that the rule Query checks the feasibility of a potential counterexample

path π by recursively creating a new reachability query for a procedure R called along

π. Due to our logical representation of a program, one can consider an arbitrary

permutation of the conjuncts of π when applying the rule and the choice of the

procedure R is not deterministic. Our current implementation in Spacer can order

the conjuncts either in the given order or in the reversed order and for lack of good

heuristics, we do not consider other permutations. These two orderings correspond
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Figure 2.15: Effect of the order of query creation in Query in Spacer and the corresponding order
of query handling in Z3, on Svcomp-2 benchmarks.

to top-down and bottom-up feasibility analyses. In particular, the plot shown in

Fig. 2.14(a) corresponds to a bottom-up analysis.

As mentioned in the beginning, the Svcomp-2 benchmarks are obtained by tak-

ing the while-program encodings in Svcomp-1 and factoring out maximal loop-

free fragments into new loop-free, recursion-free procedures. Furthermore, as also

mentioned in the beginning, loops are encoded in Svcomp-1 by introducing new

predicate symbols that denote loop invariants and by encoding the corresponding

verification conditions. So, a path in a procedure in the resulting logical encoding

(see Section 2.3) contains at most two calls, one corresponding to an invariant at

a control location and the other corresponding to a newly introduced procedure for

a loop-free fragment. Thus, a top-down analysis refines the may summaries of the

new procedures only when necessary, similar to a CEGAR-style reasoning where the

may summaries of the new procedures abstract the loop-free fragments. We call

this a lazy refinement strategy. In contrast, a bottom-up analysis on these bench-

marks corresponds to an eager refinement strategy which is shown in Fig. 2.14(a).

59



0 200 400 600 800 1000 1200 1400 1600 1800

Svcomp-1 (secs)

0

200

400

600

800

1000

1200

1400

1600

1800
S
v
c
o
m
p
-
2
(s
ec
s
)

(a)

0 200 400 600 800 1000 1200 1400 1600 1800

Svcomp-1 (secs)

0

200

400

600

800

1000

1200

1400

1600

1800

S
v
c
o
m
p
-3

(s
ec
s
)

(b)

Figure 2.16: Comparison of Spacer’s behavior on the various encodings of SVCOMP benchmarks.
For the plot in (a), we use Spacer in the lazy mode for Svcomp-2.

Fig. 2.15(a) shows a scatter plot of runtimes on Svcomp-2 comparing the behavior

of Spacer for the two orderings. While it is unclear from the figure which ordering

is better, Spacer continues to outperform Z3 even with the lazy strategy, as shown

in Fig. 2.15(b).

Finally, as an interesting exercise, we compared the behavior of Spacer on var-

ious encodings of the SVCOMP benchmarks. For the comparison of runtimes be-

tween Svcomp-2 and Svcomp-1, we considered the lazy mode of Spacer for the

Svcomp-2 encodings, which essentially corresponds to abstract reasoning by infer-

ring sufficient summaries of the loop-free fragments. Fig. 2.16(a) shows the runtime

comparison for the benchmarks. While the Svcomp-2 encodings seem to be worse

overall, the difference in performance between the encodings is less clear when we

restrict ourselves to the harder benchmarks, e.g., where the Svcomp-1 encodings

need more than 5 minutes of runtime. However, as we will see in Chapter 3, abstrac-

tion can be quite powerful and we plan to incorporate the ideas from that chapter

into the framework of RecMC in the future. Then, Fig. 2.16(b) shows the runtime
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comparison for the encoding Svcomp-3 against Svcomp-1. Recall that Svcomp-3

encodings are obtained by factoring out loops into tail-recursive procedures. In other

words, we are replacing the inference of loop invariants by that of summaries of the

corresponding tail-recursive procedures. Whereas a loop invariant depends on the

variables in scope, the signature of the corresponding tail-recursive procedure, and

hence its summary, depends on two copies of the variables in scope which denote

their values before and after a loop iteration. As the plot shows, this can negatively

affect the performance of verification.

Overall, we have shown significant practical benefits of the core ideas behind

RecMC using our implementation in Spacer and various realistic benchmarks.

2.7 Related Work

There is a large body of work on interprocedural program analysis. It was pointed out

early on that safety verification of recursive programs is reducible to the computation

of a fixed-point over relations representing the input-output behavior of each proce-

dure [37]. The term summary is used for such a relation in the functional approach of

Sharir and Pnueli [103]. Reps, Horwitz, and Sagiv [101] showed that for a large class

of finite, interprocedural dataflow problems, the summaries can be computed in time

polynomial in the number of dataflow facts and procedures. Ball and Rajamani [19]

adapted the RHS algorithm to the verification of Boolean Programs as part of the

SLAM project for software model checking using a CEGAR-style loop with predicate

abstraction [62]. Following SLAM, other software model checkers, e.g., blast [71]
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and magic [30], also implemented predicate abstraction based algorithms. While

predicate abstraction is used to obtain over-approximations of procedure semantics,

these approaches do not use under-approximations as we do.

In the context of predicate abstraction, the algorithm Smash also combines over-

and under-approximations for analyzing procedural programs [60]. However, the

summaries in Smash can have auxiliary variables which differ from one calling con-

text to another, restricting the reusability of the summaries. Smash also under-

approximates existential quantification in computing the results of the post and pre

operations, but unlike RecMC, the under-approximations are obtained using con-

crete values encountered during testing of the program.

As mentioned earlier in the paper, several SMT-based algorithms have been pro-

posed for safety verification of recursive programs, including Whale [7], HSF [63],

Duality [92], Ultimate Automizer [68, 69], and Corral [84]. These algorithms share

a similar structure – they use SMT-solvers to look for counterexamples and interpo-

lation to compute over-approximating procedure summaries. The algorithms differ

in the SMT encoding and the heuristics used. However, in the worst-case, they

completely unroll the call graph into a tree.

The work closest to ours is GPDR [74], which extends the hardware model check-

ing algorithm IC3 of Bradley [25] to SMT-supported theories and recursive pro-

grams. Unlike RecMC, GPDR does not maintain must-summaries. In the context

of Fig. 2.6, this means that σu is always empty and there is no Must rule. Instead,

the Query rule is modified to use a model M that satisfies the premises (instead

of our use of the entire path π when creating a query). Furthermore, undesirable
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reachable states are cached. While the algorithm terminates for Boolean programs,

a formula can have infinitely many models in the general case of first-order languages

and GPDR might end up applying the Query rule indefinitely (see Appendix 2.A).

In contrast, RecMC creates only finitely many queries for a given bound on the

call-stack depth and is guaranteed to find a counterexample if one exists.

In the context of Boolean programs, there also exists a SAT-based summarization

technique that allows extra choice variables in the formulas and thereby requires a

Quantified Boolean Formulas (QBF) solver to check for convergence [20].

2.8 Conclusion

We presented RecMC, a new SMT-based algorithm for model checking safety prop-

erties of recursive programs. For programs and properties over decidable theories,

RecMC is guaranteed to find a counterexample if one exists. To our knowledge,

this is the first SMT-based algorithm with such a guarantee while being polyno-

mial for Boolean Programs. The key idea is to use a combination of under- and

over-approximations of the semantics of procedures, avoiding re-exploration of parts

of the state-space. We described an efficient instantiation of RecMC for Linear

Arithmetic (over rationals and integers) by introducing Model Based Projection to

under-approximate the expensive quantifier elimination. We have implemented it in

our tool Spacer and shown empirical evidence that it significantly improves on the

state-of-the-art.

In the future, we would like to explore extensions to other theories. Of particular
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interest are the theory EUF of uninterpreted functions with equality and the theory

of arrays. The challenge is to deal with the lack of quantifier elimination. Another

direction of interest is to combine RecMC with Proof-based Abstraction [66, 80, 91],

which also forms the basis of the next chapter, to explore a combination of the

approximations of procedure semantics with transition-relation abstraction.

The algorithm RecMC and the results presented in this chapter are published

as part of the proceedings of CAV 2014 [81].
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2.A Divergence of GPDR for Bounded Call-Stack

Consider the program 〈〈M,L,G〉,M〉 with procedures M = 〈y0, y,ΣM , 〈x, n〉, βM〉,

L = 〈n, 〈x, y, i〉,ΣL, 〈x0, y0, i0〉, βL〉, and G = 〈x0, x1,ΣG, ∅, βG〉 where:

βM = ΣL(x, y0, n, n) ∧ ΣG(x, y) ∧ n > 0

βL = (i = 0 ∧ x = 0 ∧ y = 0)∨

(ΣL(x0, y0, i0, n) ∧ x = x0 + 1 ∧ y = y0 + 1 ∧ i = i0 + 1 ∧ i > 0)

βG = (x = x0 + 1)

The GPDR [74] algorithm can be shown to diverge when checking the bounded

safety problem M |=2 y0 ≤ y, for e.g., by inferring the diverging sequence of over-

approximations of JLK1: (x < 2 =⇒ y ≤ 1), (x < 3 =⇒ y ≤ 2), . . . .

We also observed this behavior experimentally (Z3 revision d548c51 at

http://z3.codeplex.com).7

7Horn-SMT file: http://www.cs.cmu.edu/~akomurav/projects/spacer/gpdr_diverging.smt2.
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Chapter 3

Abstraction in SMT-Based

Model Checking

3.1 Introduction

As described in Chapter 1, SMT-based model checkers work by deciding bounded

safety for increasing values of the bound on the length of an execution. When the

safety property holds, the termination of such algorithms in practice depends on

whether a proof of bounded safety can be found that also proves (unbounded) safety.

Not surprisingly, given the undecidability of safety, this can be quite challenging

to achieve in practice. In this chapter, we present Spacer1, an algorithm that

incorporates automatic abstraction refinement into SMT-based model checking.

Consider the safe program Pg (adapted from [65]) shown in Fig. 3.1. Here,

1Software Proof-based Abstraction with CounterExample-based Refinement.
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0: x=0; y=0; z=0; w=0;

1: while (nd_bool()) {

2: if (nd_bool()) {x++; y=y+100;}

3: else if (nd_bool())

4: if (x>=4) {x++; y++;}

5: else if (y>10*w && z>=100*x) {y=-y;}

6: t=1;

7: w=w+t; z=z+(10*t);

}

8: assert(!(x>=4 && y<=2));

Figure 3.1: A program Pg adapted from an example by Gulavani et al. [65].

nd_bool is a routine that returns a Boolean value.2 Pg is hard for existing SMT-

based algorithms. For example, the implementation of the algorithm GPDR3 [74] in

Z3 [45] (v4.3.1) cannot verify the program in an hour. However, an abstraction of the

program, P̂g, obtained by replacing line 6 with a non-deterministic assignment to t

is verified by the same tool in under a second. Our implementation of Spacer finds

a safe abstraction of Pg in under a minute (the transition relation of the abstraction

we automatically computed is a non-trivial generalization of that of Pg and does not

correspond to P̂g).

The key intuition behind Spacer is that a good abstraction of the program can

lead to a good proof of bounded safety. That is, the assertions in a proof of bounded

safety that over-approximate the reachable states at the top of a loop or the behavior

of a procedure can be less dependent on the bound, because of the abstraction. This

can, in turn, help in faster convergence to inferring invariants in a fewer number

of iterations of bounded safety. As a proof does not utilize all the details of the

program, in general, Spacer obtains a program abstraction by hiding the details of

2In other words, assume that the behavior of nd_bool is unknown. So, for the purpose of
verification, nd_bool effectively returns either true or false non-deterministically.

3GPDR stands for Generalized Property Directed Reachability.
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Figure 3.2: An overview of Spacer.

the transition relation irrelevant for a proof of bounded safety (called Proof-Based

Abstraction [66, 91] (PBA)). However, an abstraction can be too coarse in which case

we utilize spurious abstract counterexamples for refinement (called CounterExample

Guided Abstraction Refinement [38] (CEGAR)).

Fig. 3.2 shows the high level flow of our algorithm Spacer. We assume that the

input program P is annotated with the given safety property (e.g., using assert

statements). Spacer begins with an initial abstraction A of P (which can be P

itself). Each iteration of Spacer starts by obtaining an under-approximation U of A

and checking safety of U (steps 1 and 2). The under-approximations we will consider

in this chapter are obtained by bounding the length of an execution. If U is safe,

we obtain a proof πU (as invariants), and otherwise, we obtain a counterexample

to safety CU . In practice, the safety check is implemented using an interpolating

SMT-solver (e.g., [45, 64, 77]) or a generalized Horn-Clause solver (e.g., [63, 74, 92],

including the algorithm RecMC described in Chapter 2). If U is proved safe, it is
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first checked whether the formulas in πU are also invariant for the original program

P , in which case Spacer outputs SAFE (step 3); otherwise, a new abstraction of P

is obtained using the proof πU (step 4; see below for details) and the next iteration

begins. On the other hand, if U is proved unsafe, CU is an abstract counterexample

and needs to be checked for feasibility in P (step 5; this is based on the well-known

CEGAR approach [38]). If CU is feasible, Spacer outputs UNSAFE; otherwise, the

abstraction A is refined to eliminate the spurious counterexample (step 6) and the

next iteration begins. Spacer is described in Section 3.4 and a detailed run of the

algorithm on an example is given in Section 3.2.

Note that the left iteration of Spacer (steps 1–4) is PBA: in each iteration, an

under-approximation is verified, a new abstraction based on the proof is computed

and a new under-approximation is constructed. To the best of our knowledge, this is

the first application of PBA to Software Model Checking. The right iteration (steps

1, 2, 5, 6) is CEGAR: in each iteration, (an under-approximation of) an abstraction

is verified and refined by eliminating spurious counterexamples. Spacer exploits the

natural duality between the two.

We have implemented Spacer using the GPDR engine inside the tool Z3 [74]

as Solve (see Section 3.5) and evaluated it on many benchmarks from the 2nd

Software Verification Competition4 (SV-COMP’13). Our experimental results (see

Section 3.6) show that abstraction significantly improves the performance of SMT-

based model checking on hard benchmarks.

In summary, we present: (a) a new algorithm Spacer that combines abstraction

4http://sv-comp.sosy-lab.org
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with SMT-based model checking and tightly connects proof- and counterexample-

based abstraction-refinement, (b) an implementation of Spacer using Z3, and (c)

experimental results showing the effectiveness of Spacer.

3.2 Overview

In this chapter, we restrict ourselves to programs that can be represented by tran-

sition systems.5 Let P be a program represented by the transition system 〈v, ι(v),

τ(v, v′), err(v)〉, where v is the list of state variables and ι, τ , and err denote the ini-

tial condition, the transition relation, and the error condition, respectively. Note that

we use primed variables to denote the next-state values. Below, we give a brief expla-

nation of our abstraction mechanism based on the proofs (of under-approximations)

obtained in an iteration of Spacer.

Proof-Based Abstraction. Given P and a proof π of a property of P (for e.g.,

π is a proof of bounded safety of P for some bound on the possible executions), the

goal of Proof-Based Abstraction (PBA) is to obtain a program P̂ such that

1. P̂ is an abstraction of P , i.e., P � P̂ , and

2. π proves the property for P̂ .

Here, � denotes the usual simulation conformance between transition systems. Intu-

itively, when π proves safety of P for a given bound b on the length of an execution,

such a proof preserving abstraction mechanism ensures that π continues to prove

5In particular, this disallows procedure calls. In principle, the ideas presented here can be
combined with those in Chapter 2 to handle procedural programs as well, but we leave it for future
exploration.
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bounded safety for P̂ . Thus, for the future iterations of Spacer, we can use P̂ ,

instead of P , with the hope of getting proofs of bounded safety that depend less on

the bound and can lead to faster convergence to inferring invariants. When the ab-

straction is too coarse, we use the well-known CEGAR approach [38] for refinement.

Our notion of proof in PBA is slightly different from a refutation proof given

by a SAT solver used in the context of hardware verification [91]. As we will see

in Section 3.2.1, each iteration of Spacer checks safety of a different program and

hence, our proofs correspond to program invariants.

In particular, for a bound b ≥ 0 on the length of an execution (i.e., number of

transitions) and a fresh program variable c denoting a down-counter for the number

of transitions, a formula π(v, c) is a proof of bounded safety of P for b iff the following

are valid:

ι(v) =⇒ π(v, c)

π(v, c) ∧ 0 < c ≤ b ∧ τ(v, v′) ∧ c′ = c− 1 =⇒ π(v′, c′)

π(v, c) ∧ c = 0 ∧ err(v) =⇒ ⊥

In words, π holds initially and for all states reachable in at most b-many transitions

such that it proves safety. Intuitively, π is a bounded invariant for the bound b.

Given b and π, one possibility for PBA is to obtain a new program P̂ = 〈v, ι̂(v),

τ̂(v, v′), ˆerr(v)〉 such that

1. ι =⇒ ι̂, τ =⇒ τ̂ , and err =⇒ ˆerr are valid, and

2. π proves bounded safety of P̂ for b.
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In words, the initial condition, the transition relation and the error condition are

weakened such that P � P̂ and moreover, the proof π of bounded safety is preserved.

However, to obtain more precise abstractions, we perform PBA relative to known

invariants of P . An invariant is a formula inv such that the following are valid:

ι(v) =⇒ inv(v) (3.1)

inv(v) ∧ τ(v, v′) =⇒ inv(v′). (3.2)

In other words, inv holds of every reachable state of P . Note that an invariant need

not be safe, i.e., inv(v) ∧ err(v) may be satisfiable.

Given an invariant inv(v) of P , the goal of PBA relative to inv is to obtain

P̂ = 〈v, ι̂(v) ∧ inv(v), τ̂(v, v′) ∧ inv(v) ∧ inv(v′), ˆerr(v) ∧ inv(v)〉, where, as before,

1. ι =⇒ ι̂, τ =⇒ τ̂ , and err =⇒ ˆerr are valid, and

2. π proves bounded safety of P̂ for b.

In words, we combine the weakening of ι, τ , and err with the invariants on the current

and the next-state variables. One can easily show that P � P̂ . Using invariants of

P in PBA yields a more precise abstraction because the reachable states of the

abstraction are confined to the known invariants.

3.2.1 Example

Consider the example transition system in Fig. 3.3. As described above, the variables

b and c in the figure denote the bound on the length of an execution and a fresh

variable denoting a down-counter for the number of transitions along an execution,
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v = 〈x, y, z, w〉
ι(v) ≡ (x = y = z = w = 0)

τ(v, v′) ≡ [(x′ = x+ 1 ∧ y′ = y + 100) ∨
(x ≥ 4 ∧ x′ = x+ 1 ∧ y′ = y + 1) ∨
(y > 10w ∧ z ≥ 100x ∧
y′ = −y ∧ x′ = x)] ∧

w′ = w + 1 ∧ z′ = z + 10 ∧
0 < c ≤ b ∧ c′ = c− 1

err(v) ≡ c = 0 ∧ x ≥ 4 ∧ y ≤ 2

Figure 3.3: An example program P represented as a transition system.

respectively. Fixing a value of b results in an under-approximation of the program.

For example, adding the constraint b = 0 to τ in the figure corresponds to the

under-approximation that allows no transitions. On the other hand, adding the

constraint b = 1 instead corresponds to the under-approximation that allows at

most one transition. While in this example the variables b and c are part of P , we

synthesize such variables automatically in practice (see Section 3.5). In the following,

we illustrate Spacer using this example.

Bound and Solve. For b = 2, one possible proof of bounded safety, say π2, is

obtained as the conjunction of the set of clauses shown in Fig. 3.5(a).

Extract Invariants. The next step of Spacer is to check if π2 also proves un-

bounded safety of P . For this purpose, we first obtain a maximal subset I2 of the

set of clauses of π2 that are invariant for P , i.e., inv =
∧

I2 makes the two formulas

(3.1) and (3.2) valid. We call such a subset I2 a Maximal Inductive Subset (MIS)

of π2. Fig. 3.5(b) shows one such subset I2. In this case, I2 does not prove safety,

i.e.,
∧

I2 is satisfiable with err . Nevertheless, as a by-product of this step, we have

obtained non-trivial invariants I2 of P .
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v = 〈x, y, z, w〉
ι̂1(v) ≡ (x = y = z = w = 0) ∧

inv(x, y, z, w)
τ̂1(v, v′) ≡ [(x′ = x+ 1) ∨

(x ≥ 4 ∧ x′ = x+ 1) ∨
(y > 10w ∧ z ≥ 100x)] ∧
0 < c ≤ b ∧ c′ = c− 1 ∧
inv(x, y, z, w, c) ∧ inv(x′, y′, z′, w′, c′)

ˆerr1(v) ≡ c = 0 ∧ x ≥ 4 ∧
inv(x, y, z, w, c)

(a) P̂1

v = 〈x, y, z, w〉
ι̂2(v) ≡ (x = y = z = w = 0) ∧

inv(x, y, z, w)
τ̂2(v, v′) ≡ [(x′ = x+ 1 ∧ y′ = y + 100) ∨

(x ≥ 4 ∧ x′ = x+ 1 ∧ y′ = y + 1) ∨
(y > 10w ∧ z ≥ 100x)] ∧
0 < c ≤ b ∧ c′ = c− 1 ∧
inv(x, y, z, w, c) ∧ inv(x′, y′, z′, w′, c′)

ˆerr2(v) ≡ c = 0 ∧ x ≥ 4 ∧ y ≤ 2 ∧
inv(x, y, z, w, c)

(b) P̂2

Figure 3.4: Abstractions P̂1 and P̂2 of P in Fig. 3.3. inv denotes
∧

I2 for I2 in Fig. 3.5(b).

PBA. The next step of Spacer is to perform PBA relative to known invariants I2.

P̂1 in Fig. 3.4(a) is one such abstraction where π2 continues to be a proof of bounded

safety of P̂1 for b = 2. In practice, we obtain the abstractions using an unsatisfiability

core of the SMT problem used to validate the proof of bounded safety. Note that

τ̂1 no longer has the constraints on the next-state values of z, y, and w present in τ

as they are captured by the invariant obtained in the previous step. In other words,

while τ̂1 is obtained using a structural (or syntactic) abstraction [16], the use of

invariants makes it a more expressive, semantic, abstraction mechanism.

Bound and Solve. Spacer now modifies the bound constraint to b = 4 which

results in a counterexample using P̂1. One possible counterexample execution C4 is

shown below which corresponds to incrementing x from 0 to 4:

〈(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 4, 4), (1, 0, 0, 0, 3, 4), (2, 0, 0, 0, 2, 4),

(3, 0, 0, 0, 1, 4), (4, 3, 0, 0, 0, 4), (4, 3, 0, 0, 0, 4)〉

(3.3)

where each tuple denotes a valuation of the state variables 〈x, y, z, w, c, b〉.

Feasibility Check and Refinement. C4 can be shown to be infeasible in P and
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{(z ≤ 100x− 90 ∨ y ≤ 10w),
z ≤ 100x, x ≤ 2,
(x ≤ 0 ∨ c ≤ 1),
(x ≤ 1 ∨ c ≤ 0)}

(a) π2

{(z ≤ 100x− 90 ∨ y ≤ 10w),
z ≤ 100x}

(b) I2

{(z ≤ 100x− 90 ∨ y ≤ 10w),
z ≤ 100x, y ≥ 0,
(x ≤ 0 ∨ y ≥ 100)}

(c) π4

Figure 3.5: Proofs and invariants found by Spacer for the program P in Fig. 3.3.

Spacer refines the current abstraction P̂1 to P̂2, shown in Fig. 3.4(b), using CEGAR.

Bound and Solve. Spacer checks bounded safety for b = 4 with the new abstrac-

tion P̂2 and Fig. 3.5(c) shows one possible proof π4 as a set of clauses.

Proof-of-Safety Check. One can show that π4 is MIS of itself, i.e.,
∧

π4 is also an

invariant of P and hence, a safety proof of P . At this point, Spacer terminates and

outputs SAFE.

While we have carefully chosen the values of the bound to save space, the abstrac-

tions, proofs, and invariants shown above were all computed automatically by our

implementation starting with the initial bound b = 0 and incrementing the bound

by 1, each iteration. Even on this small example, abstraction improves the runtime

by five times.

3.3 Preliminaries

The transition systems we have seen in Section 3.2 are simplistic and hide the control

structure of the input program. In this section, we consider a more general graph

representation of a program that explicates the control structure. As mentioned

earlier, we restrict ourselves to while-programs. As in Section 2.3, consider a first-
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en lp er
ι

τ

err

v = 〈x, y, z, w〉
ι(v) ≡ (x = y = z = w = 0)

τ(v, v′) ≡ [(x′ = x+ 1 ∧ y′ = y + 100) ∨
(x ≥ 4 ∧ x′ = x+ 1 ∧ y′ = y + 1) ∨
(y > 10w ∧ z ≥ 100x ∧

y′ = −y ∧ x′ = x)] ∧
w′ = w + 1 ∧ z′ = z + 10 ∧
0 < c ≤ b ∧ c′ = c− 1

err(v) ≡ c = 0 ∧ x ≥ 4 ∧ y ≤ 2

Figure 3.6: A graph representation of the transition system in Fig. 3.3.

order language with signature S and let Th be an S-theory.

Definition 3 (Program). A program P is a tuple 〈L, ℓo, ℓe, V , τ〉 where

1. L is a finite set denoting the control locations,

2. ℓo ∈ L and ℓe ∈ L are the unique initial and error locations,

3. V is a finite set of program variables disjoint from S, and

4. τ is a map from pairs of locations in L×L to quantifier-free sentences over the

signature (S ∪ V ∪ V ′), where V ′ is obtained from V by priming each variable

in V and denotes the next-state values of the variables in V .

Intuitively, τ(ℓi, ℓj) is the relation between the current values of V at ℓi and the

next values of V at ℓj on a transition from ℓi to ℓj. We refer to τ as the transition

relation. Without loss of generality, we assume that there is no incoming transition

to the initial location ℓo and no outgoing transition from the error location ℓe, i.e.,

for all ℓ ∈ L, τ(ℓ, ℓo) = ⊥ and τ(ℓe, ℓ) = ⊥. We refer to the components of a program

P by a subscript, e.g., LP denotes the set of locations of P .
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For example, Fig. 3.6 shows a program 〈L, ℓo, ℓe, V, τ〉 corresponding to the transi-

tion system in Fig. 3.3, where L = {en, lp, er}, ℓo = en, ℓe = er, V = {x, y, z, w, c, b},

τ(en, lp) = I, τ(lp, lp) = T , τ(lp, er) = E.

Let P =〈L, ℓo, ℓe, V , τ〉 be a program. A control path of P is a finite6 sequence

of control locations 〈ℓo = ℓ0, ℓ1, . . . , ℓk〉, beginning with the initial location ℓo, such

that τ(ℓi, ℓi+1) 6= ⊥ for 0 ≤ i < k. A state of P is an assignment to the variables in

V . A control path 〈ℓo = ℓ0, ℓ1, . . . , ℓk〉 is called feasible iff there is an S-structure I

with I |= Th and a sequence of states 〈s0, s1, . . . , sk〉 such that

I{V 7→ si}{V
′ 7→ si+1} |= τ(ℓi, ℓi+1), for all 0 ≤ i < k (3.4)

i.e., the sequence of states is an execution along the control path (the reader is

referred to Section 2.3 for the notation used above).

For example, 〈en, lp, lp, lp〉 is a feasible control path of the program in Fig. 3.6 as,

under the standard interpretation of the arithmetic symbols, the sequence of states

〈(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 2, 2), (1, 100, 1, 10, 1, 2), (2, 200, 2, 20, 0, 2)〉 satisfies (3.4).

A location ℓ is reachable iff there exists a feasible control path ending with ℓ.

P is safe iff ℓe is not reachable. For example, the program in Fig. 3.6 is safe, as

shown in the previous section. P is said to be decidable iff the safety problem of P

is decidable. For example, the program U obtained from P in Fig. 3.6 by replacing

b with 5 is decidable because (a) U has finitely many feasible control paths, each of

finite length, and (b) the formulas only use linear arithmetic (integers or rationals)

which is decidable.

6This suffices as we only deal with safety properties.
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We will now define invariance and proof of safety.

Definition 4 (Invariant Map). An invariant map for P is a map I from locations

to sets of sentences over the signature S ∪ V such that the following hold:

1. |=Th ⊤ =⇒
∧

π(ℓo), and

2. for every ℓi, ℓj ∈ L, |=Th (
∧

π(ℓi) ∧ τ(ℓi, ℓj)) =⇒
∧

π(ℓj)
′.

One can show, using a least fixed-point characterization, that given an invariant

map I, I(ℓ) over-approximates the reachable states at a location ℓ.

Definition 5 (Safety Proof). A safety proof for P is an invariant map π that is also

safe, i.e., |=Th

∧

π(ℓe) =⇒ ⊥.

For example, Fig. 3.5(c) shows a safety proof for the program in Fig. 3.6, as also

discussed in the previous section. As the formulas given by an invariant map over-

approximate the reachable states, safety of the map implies safety of the program.

A counterexample to safety is a triple 〈ℓ̄, I, s̄〉 where ℓ̄ is a feasible control path in

P ending with ℓe, I is an S-structure with I |= Th, and s̄ is a sequence of states that

satisfy (3.4). For example, 〈〈en, lp, lp, lp, lp, lp, er〉, I,C4〉, where I is the S-structure

that interprets the arithmetic symbols in the standard way and C4 is as shown in

(3.3) is a counterexample to safety for the program P̂1 in Fig. 3.4(b).

Definition 6 (Abstraction Relation). Given two programs, P1 = 〈L1, ℓ
o
1, ℓ

e
1, V1, τ1〉

and P2 = 〈L2, ℓ
o
2, ℓ

e
2, V2, τ2〉, P2 is an abstraction (i.e., an over-approximation) of

P1 via a total function σ : L1 → L2, denoted P1 �σ P2, iff

1. V1 = V2,

2. σ(ℓo1) = ℓo2 and σ(ℓe1) = ℓe2, and

3. for every ℓi, ℓj ∈ L1, |=Th τ1(ℓi, ℓj) =⇒ τ2(σ(ℓi), σ(ℓj)).
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In this case, we also say that P1 is an under-approximation (i.e., a refinement) of

P2 and call σ an abstraction function. We say that P2 strictly abstracts P1 via σ,

denoted P1 ≺σ P2, iff P1 �σ P2 and there is no function ν : L2 → L1 such that

P2 �ν P1. When σ is clear from the context or unnecessary, we drop the subscript.

That is, P2 abstracts P1 iff there is a total map σ from L1 to L2 such that

every feasible transition of P1 corresponds (via σ) to a feasible transition of P2. For

example, if P1 is a finite unrolling of P2, then σ maps the locations of P1 to the

corresponding ones in P2. For an example of strict abstraction, it can be shown that

P ≺id P̂1, where P is in Fig. 3.6, P̂1 is in Fig. 3.4(a), and id denotes the identity

relation.

One can easily show that the above notion of abstraction is proof-preserving, i.e.,

if P1 � P2, then a safety proof π of P2 is also a safety proof of P1.

For two transition relations τ1 and τ2 over a set of locations L, we write τ1 =⇒ τ2

to denote that for every ℓ1, ℓ2 ∈ L, |=Th τ1(ℓ1, ℓ2) =⇒ τ2(ℓ1, ℓ2). We also write τ1∧τ2

to denote the point-wise conjunction of the two transition relations.

We extend σ : L1 → L2 from locations to control paths in the straightforward

manner. For a counterexample C = 〈ℓ̄, I, s̄〉, we define σ(C ) ≡ 〈σ(ℓ̄), I, s̄〉. For a

transition relation τ on L2, we write σ(τ) to denote an embedding of τ into L1 via

σ, defined as follows: for locations ℓ1, ℓ2 ∈ L1, σ(τ)(ℓ1, ℓ2) = τ(σ(ℓ1), σ(ℓ2)). For

example, in the definition above, if P1 �σ P2, then τ1 =⇒ σ(τ2).

In the following, to avoid clutter, we assume a fixed S-theory Th and we write

|= to mean |=Th . Also, every (S ∪X)-structure we consider, for an arbitrary set of

new symbols X, is assumed to be a model of Th.
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3.4 The Algorithm

In this section, we describe our algorithm Spacer at a high-level, where the de-

scription of several routines is confined only to their interfaces. Our specific imple-

mentation choices are described in Section 3.5. Figs. 3.7 and 3.8 show the pseudo-

code of the algorithm. The routine Spacer checks safety of a given program P =

〈LP , ℓ
o
P , ℓ

e
P , VP , τP 〉. The algorithm maintains (a) an invariant map I (see Defini-

tion 4), (b) an abstraction A of P , (c) a decidable under-approximation U of A, and

(d) a function σ such that U �σ A. The abstraction A has the same set of control

locations as P and satisfies P �id A, i.e., A differs from P only in its transition re-

lation. We write AI to denote the restriction of A to the invariant map I, obtained

by strengthening τA to λℓ1, ℓ2 · I(ℓ1)∧ τA(ℓ1, ℓ2)∧ I(ℓ2)′. Similarly, we write UI,A to

denote the restriction of U to the invariant map I of A, obtained by strengthening

τU to λℓ1, ℓ2 · I(σ(ℓ1)) ∧ τU(ℓ1, ℓ2) ∧ I(σ(ℓ2))
′. When A is clear, we simply write

UI . Spacer assumes the existence of an oracle, Solve, that decides whether UI is

safe and returns either a safety proof or a counterexample (see Section 3.5 for an

implementation of Solve).

Spacer initializes the abstraction A of P and an under-approximation U of

A, using InitAbs and InitUnder, respectively (lines 1–2). It then initializes the

invariant map I to the empty map (line 3). Each iteration of the main loop (at

line 4) checks whether UI is safe, for the current values of U and I, using Solve

(line 5). If UI is safe with a proof π, it is then checked whether a safety proof of

the original program P can be obtained using π, as follows. First, π is mined for

new invariants of P using ExtractInvs (line 7). Then, if the invariants at the
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error location ℓeP are unsatisfiable, it means that the error location is shown to be

unreachable and Spacer returns Safe (lines 8–9). Otherwise, the abstraction A is

updated to a new Proof Based Abstraction via Pba, and a new under-approximation

is constructed using NextUnder (lines 10–11). If, on the other hand, UI is unsafe

at line 4, the obtained counterexample C is validated using Cegar (line 13). If C

is feasible in P , Spacer returns Unsafe (line 15); otherwise, both A and U are

refined (see the description of Cegar below).

In the following, we give a brief description of the routines. Let U = 〈LU , ℓ
o
U , ℓ

e
U , VU ,

τU〉, U �σ A, and A = 〈LA, ℓ
o
A, ℓ

e
A, VA, τA〉. Note that LA = LP as mentioned above.

ExtractInvs has two high level steps: (a) use the proof π of U to obtain a con-

junction of formulas at each location of P , and (b) compute the maximal subset

of those conjuncts at each location that are together invariant (according to Def-

inition 4). To obtain the conjunctions at a given location in LP , we collect the

formulas given by the proof π of U at all corresponding locations (w.r.t. σ) in LU

(lines 17–18), take their disjunction, and convert to conjunctive form (not necessarily

conjunctive normal form; see lines 19–20). The intuition behind taking a disjunction

is that the various locations ℓu ∈ LU with σ(ℓu) = ℓ ∈ LP represent different subsets

(not necessarily exhaustive) of the reachable states at ℓ. In our implementation, we

only have one such corresponding location (see Section 3.5). To obtain the maximal

subsets that are invariant, we use a straightforward greatest fixed-point computation

(lines 21–22), similar to the Houdini approach [54].
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global(program P )
global(invariant map I of P )

Spacer()
1 A← InitAbs(P )
2 (U, σ)← InitUnder(A)
3 I ← empty map
4 while true do

5 (result , π,C )← Solve(UI)
6 if result is Safe then

7 I ← I ∪ ExtractInvs(A,U, σ, π)
8 if

∧

I(ℓeP ) is unsatisfiable then

9 return Safe

10 (A,U)← Pba(A,U, σ, π)
11 (U, σ)← NextUnder(A,U, σ)

12 else

13 (feas , A, U)← Cegar(A,U, σ,C )
14 if feas then

15 return Unsafe

ExtractInvs(A,U, σ, π)
16 R, C ← empty maps from locations in LP to sets of sentences over S ∪ VP
17 for ℓ ∈ LU do

18 add
∧

π(ℓ) to C(σ(ℓ))

19 for ℓ ∈ LP do

20 R(ℓ)← conjuncts(
∨

C(ℓ))

21 while exist ℓi, ℓj ∈ LP , ϕ ∈ R(ℓj) s.t. 6|= (R(ℓi) ∧ I(ℓi) ∧ τP (ℓi, ℓj)⇒ ϕ(V ′
P )) do

22 R(ℓj) := R(ℓj) \ {ϕ}

23 return R

NextUnder(A,U, σ)

24 return Û s.t. U ≺σ1
Û �σ2

A, σ = σ2 ◦ σ1 and

Strengthen(U, σ(τP )) ≺ Strengthen(Û , σ2(τP ))

Figure 3.7: Pseudo-code of Spacer, except the routines for Pba and Cegar which are given in
Fig. 3.8.
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Pba updates the abstraction A of P by using the safety proof π of U as follows.

As U �σ A, τU =⇒ σ(τA) holds and assume without loss of generality that τU

is of the form σ(τA) ∧ ρ, for some ρ (i.e., one can always equivalently rewrite τU to

this form). Let W be obtained from U by strengthening the transition relation with

σ(τP ) (using Strengthen on line 26). Clearly, τW ≡ σ(τP ) ∧ ρ. It is easy to see

that π is also a proof of W . An abstraction Ŵ of W is then obtained such that

(a) τŴ = σ(τ̂P ) ∧ ρ̂ where τ̂P and ρ̂ respectively abstract τP and ρ, (b) for the new

abstraction Â obtained by replacing the transition relation of A with τ̂P , π is a safety

proof of ŴI,Â (line 27). That is, Â is obtained as a proof-based abstraction of P

using the proof π of U and the currently known invariants I.

NextUnder returns the next under-approximation Û of A to be checked for safety.

We require that the abstraction functions between U , Û , and A compose so that the

corresponding transitions in U and Û map to the same transition of the common

abstraction A. To ensure progress, we require U ≺ Û . Moreover, to ensure progress

in checking safety of P , we also require the last condition on line 24. Intuitively, we

require Û to also have more concrete behaviors than U . If this were not possible,

safety of U would have implied safety of P and Spacer would have terminated.

Cegar checks if the counterexample C exhibits a feasible behavior in P , using

IsFeasible (line 29). If C is feasible, Cegar returns saying so (line 34). Otherwise,

C is spurious and the abstraction Â is refined to A by eliminating C (and possibly

more spurious behaviors) (line 31). This is obtained by strengthening the transition

relation, i.e., A ≺id Â holds. Finally, the under-approximation Û is strengthened

with the refined transition relation of A (using Strengthen on line 32), such that

84



Pba(A,U, σ, π)
25 let ρ be s.t. τU ≡ σ(τA) ∧ ρ
26 W ← Strengthen(U, σ(τP ))

27 choose Ŵ s.t. W � Ŵ and τŴ = σ(τ̂P ) ∧ ρ̂ with τP =⇒ τ̂P , ρ =⇒ ρ̂, π is a safety

proof of Ŵ
I,Â, where Â = A[τA ← τ̂P ]

28 return (Â, Ŵ )

Cegar(Â, Û , σ,C )
29 feas ← IsFeasible(σ(C ), P )
30 if not feas then

31 let A ≺id Â s.t. ¬IsFeasible(σ(C ), AI)

32 U ← Strengthen(Û , σ(τA))
33 return (false, A, U)

34 return (true, None, None)

Figure 3.8: Routines for Proof based Abstraction and CEGAR.

the resulting U satisfies U �σ A for the same abstraction function σ.

In the following, we show the soundness and progress guarantees of Spacer.

Lemma 7 (Invariant Maps). I is always an invariant map for P .

Proof. Initially, I is empty and I(ℓ) = ⊤ for every location ℓ ∈ LP . Clearly, I is an

invariant map. When ExtractInvs returns on line 23, the guard of the while loop

at line 21 fails to hold which implies that the map R is also an invariant map. It

follows that when I is updated on line 7, it remains an invariant map.

Soundness is now immediate:

Theorem 8 (Soundness). P is safe (unsafe) if Spacer returns Safe (Unsafe).

To show progress, we start with a useful lemma. In the following, we some-

times refer to the components of a program P by application, in addition to using

subscripts, e.g., L(P ) denotes the locations of P .
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Lemma 8. Let U1 �σ1
A and let ρ1 be such that τ(U1) ≡ σ1(τA) ∧ ρ1. If U1 �µ

U2 �σ2
A with σ1 = σ2 ◦ µ, then there exists ρ2 such that τ(U2) ≡ σ2(τA) ∧ ρ2 and

ρ1 =⇒ µ(ρ2).

Proof. As U2 �σ2
A, we know that τ(U2) =⇒ σ2(τA) (Definition 6). So, there exists

ρ such that τ(U2) ≡ σ2(τA)∧ρ. As U1 �µ U2, we also know that τ(U1) =⇒ µ(τ(U2)).

Together with σ1 = σ2 ◦ µ, we obtain

σ1(τA) ∧ ρ1 =⇒ σ1(τA) ∧ µ(ρ). (3.5)

Consider

ρ2 = ρ ∨ λℓ2i , ℓ
2
j ∈ L(U2) ·





∨

ℓ1i ,ℓ
1
j∈L(U1)

µ(ℓ1i ) = ℓ2i ∧ µ(ℓ
1
j) = ℓ2j ∧ ρ1(ℓ

1
i , ℓ

1
j)



 .

Intuitively, ρ2 captures all the transitions that must be feasible in U2 as guaranteed

by the relationship U1 �µ U2.

It can be easily shown that ρ1 =⇒ µ(ρ2).

It remains to show that σ2(τA) ∧ ρ2 is equivalent to τ(U2) ≡ σ2(τA) ∧ ρ. That is,

we need to show that, for all ℓ2i , ℓ
2
j ∈ L(U2),

|= (σ2(τA) ∧ ρ) (ℓ
2
i , ℓ

2
j) ⇐⇒ (σ2(τA) ∧ ρ2) (ℓ

2
i , ℓ

2
j).

The left to right direction is obvious as |= ρ =⇒ ρ2 from the definition of ρ2.

For the other direction, assume for the sake of contradiction that there exist

ℓ2i , ℓ
2
j ∈ L(U2) and an S ∪ V ∪ V ′-structure I (with I |= Th) such that I |=
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Ui Ai�σi

(ρi)

Ûi Ui+1 Ai+1≺µ �σi+1

(ρ̂i) (ρi+1)

Pba(Ai, Ui, π)

NextUnder

(Ai+1, Ûi)

(a) Ui is safe.

Ui Ai�σi

(ρi)

Ui+1 Ai+1�σi+1

(ρi+1)

Cegar(Ai, Ui,Ci)

(b) Ui is unsafe.

Figure 3.9: Relation between two successive under-approximations Ui and Ui+1.

(σ2(τA) ∧ ρ2) (ℓ
2
i , ℓ

2
j) and I 6|= ρ(ℓ2i , ℓ

2
j). From the definition of ρ2, it follows that

there exist ℓ1i , ℓ
1
j ∈ L(U1) such that I |= ρ1(ℓ

1
i , ℓ

1
j), and µ(ℓ1i ) = ℓ2i and µ(ℓ1j) =

ℓ2j . Moreover, we know that I |= τA(σ2(ℓ
2
i ), σ2(ℓ

2
j)). As, σ1 = σ2 ◦ µ, it follows

that I |= τA(σ1(ℓ
1
i ), σ1(ℓ

1
j)). So, we have found ℓ1i , ℓ

1
j ∈ L(U1) such that I |=

(σ1(τA) ∧ ρ1) (ℓ
1
i , ℓ

1
j). From (3.5), it follows that I |= µ(ρ)(ℓ1i , ℓ

1
j), i.e., I |= ρ(ℓ2i , ℓ

2
j)

which contradicts our assumption.

Theorem 9 (Progress). Let Ai, Ui, and Ci be the values of A, U , and C in the ith

iteration of Spacer with Ui �σi
Ai and let U̇i denote the concretization of Ui, i.e.,

U̇i = Strengthen(Ui, σi(τP )). Then, if Ui+1 exists,

1. if Ui is safe, then Ui+1 has strictly more concrete behaviors, i.e., U̇i ≺ U̇i+1,

2. if Ui is unsafe, Ui+1 has the same concrete behaviors, i.e., U̇i �id U̇i+1 and

U̇i+1 �id U̇i, and

3. if Ui is unsafe, Ci does not repeat in future, i.e., for every j > i, σj(Cj) 6= σi(Ci).

Proof. 1. Ui+1 is obtained from Ui after a call to Pba followed by NextUnder,

as shown in Fig. 3.9(a). For Uj, the figure also shows ρj in brackets such that
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τ(Uj) ≡ σj(τ(Aj)) ∧ ρj (this is always possible as τ(Uj) =⇒ σj(τ(Aj))).

Pba ensures that ρi =⇒ ρ̂i and Lemma 8 guarantees the existence of a ρi+1

with ρ̂i =⇒ µ(ρi+1). Together, we have ρi =⇒ µ(ρi+1). Furthermore,

NextUnder requires σi = σi+1 ◦ µ. Then, U̇i �µ U̇i+1, as shown below.

τ(U̇i) ≡ σi(τP ) ∧ ρi

=⇒ (σi+1 ◦ µ)(τP ) ∧ µ(ρi+1)

=⇒ µ(σi+1(τP )) ∧ µ(ρi+1)

=⇒ µ(τ(U̇i+1))

To show that U̇i ≺ U̇i+1, assume for the sake of contradiction that U̇i+1 �ω U̇i.

Then, as ρi =⇒ ρ̂i,

τ(U̇i+1) ≡ σi+1(τP ) ∧ ρi+1

=⇒ ω(σi(τP ) ∧ ρi)

=⇒ ω(σi(τP ) ∧ ρ̂i)

≡ ω(τ(
˙̂
Ui))

giving us U̇i+1 �ω
˙̂
Ui. This contradicts ˙̂

Ui ≺ U̇i+1 on line 24 of Fig. 3.7.

2. Ui+1 is obtained from Ui after a call to Cegar as shown in Fig. 3.9(b). Again,

for Uj, the figure shows ρj in brackets such that τ(Uj) ≡ σj(τ(Aj))∧ρj. Cegar
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ensures that ρi = ρi+1 and σi = σi+1. These imply that τ(U̇i) ⇐⇒ τ(U̇i+1).

3. Let Ci = 〈ℓ̄i, I, s̄〉. We prove the stronger statement that for every j > i, there

exist a control path ℓ̄j in Uj and a ρj such that τ(Uj) ≡ σj(τ(Aj)) ∧ ρj, and

the following hold:

(a) σj(ℓ̄j) = σi(ℓ̄i),

(b) 〈ℓ̄j, I, s̄〉 is a counterexample for Uj when the transition relation is re-

stricted to ρj but not when restricted to σj(τ(Aj)).

In words, we show that the control path of Ci corresponds to a control path in

every future Uj (via σj) and the state sequence s̄ is feasible when restricted to

ρj but not when restricted to σj(τ(Aj)). The latter is sufficient to show that

Uj does not admit Ci.

We prove this by induction on j. If j = i + 1, Fig. 3.9(b) shows the relation

between Ui and Ui+1. Again, Cegar ensures that ρi = ρi+1 and σi = σi+1.

The required control path ℓ̄j in (a) is the same as ℓ̄i. Also, Cegar ensures

that τ(Aj) does not admit Ci, satisfying (b).

Now, assume that Uj satisfies (a) and (b), for an arbitrary j. We show that Uj+1

also satisfies (a) and (b). If Uj+1 is obtained from Uj after a call to Cegar,

the argument is the same as for the base case above. The other possibility is as

shown in Fig. 3.9(a) where Uj is safe and Uj+1 is obtained after a call to Pba,

followed by a call to NextUnder. Consider ρj, ρ̂j and ρj+1, similar to ρi, ρ̂i

and ρi+1 in the figure. Note that Pba ensures that ρj =⇒ ρ̂j.

To see that (a) is satisfied, consider the control path µ(ℓ̄j) and note that σj =

σj+1 ◦ µ (line 24 of Fig. 3.7).
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To see that (b) is satisfied, Lemma 8 ensures the existence of ρj+1 with ρ̂j =⇒

µ(ρj+1). As s̄ is feasible along ℓ̄j when the transition relation is restricted to

ρj and hence, for ρ̂j, it is also feasible along µ(ℓ̄j) when the transition relation

is restricted to µ(ρj+1). Moreover, s̄ is infeasible along ℓ̄j for the restriction

σj(τ(Aj+1)), as Ûj is safe. Hence, it remains infeasible along µ(ℓ̄j) for the

restriction σj+1(τ(Aj+1)) (follows from σj+1 ◦ µ = σj).

In this section, we presented the high-level structure of Spacer. As we have seen

above, we only presented an interface for the routines InitUnder, ExtractInvs,

Pba, NextUnder, Cegar, IsFeasible. In the next section, we complete the

picture by describing the implementation used in our prototype.

3.5 Implementation

Let P =〈L, ℓo, ℓe, V , τ〉 be the input program. First, we transform P to P̃ by

creating new counter variables for the loops of P and adding extra constraints to

the transition relation in order to count the number of loop iterations, as described

below.

As the first step, we construct a Weak Topological Order (WTO) [24] of P , which

is a well-parenthesized total order of its locations L without two consecutive open

brackets, denoted <, satisfying the following condition. Let the locations within a

matching open-close bracket pair constitute a component and let the smallest location

w.r.t < in a component be its head. Let hds(ℓ) be the outside-in list of the heads of

90



ℓ
o

ℓ2

ℓ1 ℓ3

ℓ
e

E1

E2

R1

R2

X1

X2

τB(E2)≡(c′
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c
′
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τB(X1)≡(c′
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=c1 ∧

c2=0) τB(R2)≡(0<c1≤b1 ∧

c
′

1
=c1−1)

τB(X2)≡(c1=0 ∧

c2=0)

τB(E1)≡⊤

Figure 3.10: Program with a nested loop and its corresponding bounded transition constraints.

components containing ℓ. Let ℓ1 ≤ ℓ2 be defined as (ℓ1 = ℓ2 ∨ ℓ1 < ℓ2). Then,

∀ℓi, ℓj ∈ L · τ(ℓi, ℓj) ∧ ℓj ≤ ℓi =⇒ ℓj ∈ hds(ℓi) (3.6)

Intuitively, < is a total order of L such that each component identifies a loop

in P , the head of a component identifies the entry location of the loop and hds(ℓ)

identifies the outside-in list of nested loops containing ℓ. Condition (3.6) says that

a back-edge, w.r.t <, leads to the head of a component containing the source of the

edge, denoting the start of a new iteration of the corresponding loop. For example,

Fig. 3.10 shows a program with two loops, an outer loop 〈ℓ1, ℓ2, ℓ3〉 and an inner

loop 〈ℓ2〉. One possible WTO for this program is “ℓo(ℓ1(ℓ2)ℓ3)ℓe” with ℓ1 and ℓ2 as

the heads of the two components.

Note that the above definition of WTO is non-deterministic and there are multiple

ways of implementing such an ordering. Without loss of generality, assume that ℓo

is always the smallest and ℓe is always the largest location of a WTO.

Bound Variables. Next, we introduce a set C of rational variables, one per head of

a component, and the corresponding partial mapping ctr : L ⇀ C. Intuitively, ctr(ℓ)

is the number of iterations (completed or remaining, depending on whether we are
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counting up or down, respectively) of the component whose head is ℓ. Also, let B be

another set of rational variables and let bound : C → B be a bijection (i.e., |B| = |C|).

Informally, bound(c) denotes the upper bound of c. For example, in Fig. 3.10 we

have C = {c1, c2}, c1 = ctr(ℓ1), c2 = ctr(ℓ2), B = {b1, b2}, bound(c1) = b1, and

bound(c2) = b2. We construct a bounded program P̃ = 〈L, ℓo, ℓe, V ∪C∪B, τ̃〉, where

∀ℓi, ℓj ∈ L · τ̃(ℓi, ℓj) = τ(ℓi, ℓj)∧ τB(ℓi, ℓj) and τB(ℓi, ℓj) is a set of constraints defined

as follows. Let cj = ctr(ℓj) and bj = bound(cj). We only describe the constraints for

counting down the number of iterations from an initial value, respecting the bounded

given by the bounding variables.

Entry: ℓi < ℓj and ℓj is a head, i.e., entering a new component (e.g., E1 and E2 in

Fig. 3.10). Then, τB(ℓi, ℓj) contains a constraint corresponding to cj being assigned

non-deterministically.

Re-entry: ℓj ≤ ℓi, i.e., re-entering a component via a back-edge (e.g., R1 and R2

in Fig. 3.10). Then, τB(ℓi, ℓj) contains the constraint (0 ≤ c′j ∧ c
′
j = cj − 1 ∧ cj ≤ bj,

i.e., it decrements cj as long as it is not zero.

Exit: ℓi < ℓj∧hds(ℓi) ⊃ hds(ℓj), i.e., exiting (one or more) components containing

ℓi (e.g., X1 and X2 in Fig. 3.10). Then, for each h ∈ hds(ℓi) \ hds(ℓj), τB(ℓi, ℓj)

contains the constraint ctr(h) = 0.

Pass-on. For each h ∈ hds(ℓj) \ {ℓj}, τB(ℓi, ℓj) contains the constraint ctr(h) =

ctr(h)′. Thus, when the transition is inside a component the current value of its

counter is remembered. See τB for the transitions E2, R1 and X1 in Fig. 3.10.

In other words, a counter is assigned a non-deterministic initial value when en-

tering its component, and decremented until zero before exiting. Since the bound
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variables (i.e., B) are unconstrained, P̃ and P are equivalent w.r.t. safety, as shown

below.

Lemma 9. P is safe iff P̃ is safe.

Proof. To show that safety of P implies safety of P̃ , we prove its contrapositive.

Assume P̃ is unsafe. So, there exists a counterexample to safety 〈ℓ̄, I, s̄〉. As τP̃ = τ∧

τB, it is obvious that projecting the state sequence onto V gives us a counterexample

to safety for P . So, P is unsafe as well.

Now suppose that P is unsafe with a counterexample C = 〈ℓ̄, I, s̄〉. Then, we can

extend C to a counterexample C̃ of P̃ as follows: (a) for each loop of P and for each

time the loop is entered and exited along C , count the number of iterations, say n,

(b) assign values to the corresponding counter variables along the control path to

simulate a count-down from n to 0, and (c) for the bound variable corresponding to

the loop, assign a value greater than or equal to the maximum number of iterations

of the loop along C . So, C̃ is also unsafe.

Now, given a safety proof of P̃ , one can transform it to a proof of P by universally

quantifying all the bound and counter variables. See Appendix 3.A for a proof. We

can thus check safety of P̃ in order to decide safety of P .

In the rest of this section, we describe our abstractions and under-approximations

of P̃ , followed by our implementation of the various routines in Fig. 3.7.

Abstractions. Recall that τP̃ = τ ∧ τB. Let Σ be a set of fresh Boolean variables

not appearing in τ or τB. For every pair of locations ℓ1, ℓ2 ∈ L, we will now trans-

form τ(ℓ1, ℓ2) to the equivalent ∃Σ · (τΣ(ℓ1, ℓ2) ∧
∧

Σ) such that the variables in Σ
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only appear negatively in τΣ. We refer to Σ as assumptions following SAT termi-

nology [47]. Note that dropping some assumptions from the conjunction
∧

Σ results

in an abstract transition relation, i.e., |= τ(ℓ1, ℓ2) =⇒ ∃Σ ·
(

τΣ(ℓ1, ℓ2) ∧
∧

Σ̂
)

for

Σ̂ ⊆ Σ. We write τ̂(Σ̂) to denote the resulting abstract transition relation. So, we

have τ =⇒ τ̂(Σ̂).

Note that τ̂(Σ̂) can be obtained from τΣ by substituting the assumptions in Σ̂ by

⊤ and the rest of the assumptions by ⊥, i.e., τ̂(Σ̂) = τΣ[Σ̂← ⊤,Σ\Σ̂← ⊥]. The only

abstractions of P̃ we consider are the ones which abstract τ and keep τB unchanged.

That is, every abstraction P̂ of P̃ is such that P̃ �id P̂ with τP̂ = τ̂(Σ̂)∧ τB for some

Σ̂ ⊆ Σ. Given Σ̂ ⊆ Σ, we denote the corresponding abstraction as P̃ (Σ̂).

Under-approximations. Given an abstraction P̃ (Σ̂) for a subset of assumptions

Σ̂ ⊆ Σ, an under-approximation is obtained by constraining the bound variables in

B. In particular, an under-approximation U(Σ̂, bvals) for a total map bvals : B → N

from B to natural numbers is obtained by strengthening τB with the constraints
∧

b∈B b ≤ bvals(b), for every pair of locations. We denote the strengthening of τB by

τB(bvals). So, the under-approximation U(Σ̂, bvals) satisfies U(Σ̂, bvals) �id P̃ (Σ̂),

with the transition relation τ̂(Σ̂) ∧ τB(bvals).

Solve. To implement Solve (see Fig. 3.7) we first transform UI , the restriction

of the current under-approximation U to the invariants I, to Horn-SMT [74], which

essentially encodes the verification conditions of the program by using predicate

variables to denote the unknown invariants. The Horn-SMT problem is then passed

to the tool Z3 [45]. While Z3 is primarily an SMT solver, it also has the capability

of solving Horn-SMT [74]. Note that, in presence of an oracle for the S-theory Th
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Global

Trans
Ei,j =⇒ τΣ(ℓi, ℓj) ∧ τB(ℓi, ℓj), ℓi, ℓj ∈ L (1)
Ni =⇒

∨

j Ej,i, ℓi ∈ L (2)

Invars

(

∨

j Ei,j

)

=⇒ ϕ, ℓi ∈ L, ϕ ∈ I(ℓi) (3)

Ni =⇒ ϕ′, ℓi ∈ L, ϕ ∈ I(ℓi) (4)

Local

Lemmas

∧

ℓi∈L,ϕ∈π(ℓi)

(

Aℓi,ϕ =⇒
((

∨

j Ei,j

)

=⇒ ϕ
))

(5)

¬
∧

ℓi∈L,ϕ∈π(ℓi)
(Bℓi,ϕ =⇒ (Ni =⇒ ϕ′)) (6)

Assump. Lits
Aℓ,ϕ, ℓ ∈ L, ϕ ∈ π(ℓ) (7)
¬Bℓ,ϕ, ℓ ∈ L, ϕ ∈ π(ℓ) (8)

Concrete Σ (9)

Bound Vals b ≤ bvals(b), b ∈ B (10)

Figure 3.11: Constraints used in our implementation of Spacer.

(e.g., linear arithmetic), U is decidable as the length of a feasible path is bounded.

However, Z3 also has heuristics for solving undecidable problems. See Section 3.6 for

a comparison between Spacer and Z3. Note that one can replace Z3 with any other

tool that solves Horn-SMT problems (for e.g., our implementation of the algorithm

described in Chapter 2).

Finally, we describe how to implement Spacer efficiently using an incremental

SMT solver where constraints can be dynamically added or retracted for checking

satisfiability of multiple instances. We implement the routines of Spacer in Fig. 3.7

by maintaining a set of constraints C. At a high level, there are two types of con-

straints, as shown in Fig. 3.11. The Global constraints are global to all the routines

and C is updated whenever a new global constraint is inferred by a routine. The

Local constraints are local to a routine which are added to or retracted from C as

needed. We will explain the various constraints below.
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The global constraints labeled Trans encode the transition relation of P̃ using

fresh Boolean variables Ei,j and Ni for transitions and locations, respectively. The

intended meaning of the Boolean variables Ei,j and Ni is as follows: (a) setting Ei,j to

true enables the transition from the location ℓi to the location ℓj, also implying that

the current location is ℓi, and (b) setting Ni to true means that the next location is ℓi.

The constraints in (1) (see the figure) encode τP̃ while leaving out the assumptions

in Σ. So, choosing an abstraction of P̃ amounts to adding a subset of the Boolean

variables in Σ as additional constraints. The constraints in (2) enforce that a location

is reachable only via one of its incoming edges.

The global constraints labeled Invars encode the currently known invariants. In

order to specify that the invariants hold before and after a transition, we encode

the invariants in terms of both current-state variables (3) and next-state variables

(4). To identify that the current location is ℓi, the antecedent in (3) specifies that at

least one outgoing transition from ℓi is enabled. Similarly, to identify that the next

location is ℓi, Ni is used as the antecedent in (4).

For a set of Boolean literals A, let Sat(C,A) be a function that checks whether

C∪A is satisfiable, and returns either a satisfying assignment or an unsat core Â ⊆ A

such that C∪Â is unsatisfiable. Modern SAT and SMT solvers, including Z3, support

this functionality and the Boolean literals in A are called assumption literals [47].

The local constraints are explained along with the implementations of the various

routines below.

InitAbs. is implemented by choosing P̃ as the initial abstraction, i.e., the initial

subset Σ̂ of Σ is Σ itself.
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InitUnder. is implemented by first initializing bvals to λb ∈ B · 0 and then

choosing U(Σ, bvals) as the initial under-approximation.

ExtractInvs is implemented by ExtractInvsImpl shown in Fig. 3.12. Let π

be a safety proof of the current under-approximation. ExtractInvImpl extracts

a Maximal Inductive Subset (MIS) of the formulas given by π w.r.t. the concrete

transition relation τ ∧ τB of P̃ , which we explained intuitively in Section 3.2. To

concretize the transition relation, we first add the constraints under Concrete in

Fig. 3.11 to C, i.e., we add all the assumptions in Σ. Then, we add the constraints

under Lemmas to C which encode the formulas given by π over current and next-state

variables guarded by fresh Boolean variables Aℓ,ϕ and Bℓ,ϕ for every location ℓ and

formula ϕ ∈ π(ℓ). The negation in (6) is used to encode the negation of invariance

(Definition 4) so that we can use SAT solving to check validity. We simulate the

greatest fixed-point computation shown on lines 21–22 in Fig. 3.7 by iteratively

enabling and disabling these Boolean variables as follows.

The MIS of π corresponds to the maximal subset I ⊆ {Aℓ,ϕ}ℓ,ϕ such that C ∪ I ∪

{¬Bℓ,ϕ | Aℓ,ϕ 6∈ I} is unsatisfiable. Intuitively, I selects a subset of the formulas from

π(ℓ) over the current-state variables, for every location ℓ, that are together invariant

(Definition 4). Now, in order to disable every other formula over the next-state

variables, we also need to assert ¬Bℓ,ϕ where ϕ is a formula that is not invariant. I is

computed by ExtractInvsImpl in Fig. 3.12. Each iteration of ExtractInvsImpl

refines the set of formulas by eliminating the ones that fail the invariance check when

the current set of formulas is assumed to hold of the current-state variables (according

to Definition 4). This can be accomplished by computing the least subset of the
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Bℓ,ϕ variables to disable, given the current subset of the Aℓ,ϕ variables, where the

minimality ensures that only the formulas that fail the invariance check are removed.

We use Minimal Unsatisfiable Subset (MUS) to denote such a subset.

Suppose we are interested in computing the minimal subset of a set V of literals

such that, together with another fixed set T of literals, the constraints in C are

unsatisfiable. There are several choices for implementing such a MUS computation.

A naïve approach is to simply call Sat(C, T ∪ V ) and hope that the unsat core

returned by the SAT/SMT solver is minimal. However, in our particular case, this

is guaranteed to fail for the following reason. The set V corresponds to {¬Bℓ,ϕ}ℓ,ϕ

and the DPLL-style search strategy employed by present day SAT/SMT solvers

works by first setting all the assumption literals to true. Given that setting all

these assumption literals to true makes the constraint in (6) unsatisfiable, the solver

immediately deduces ⊥ and returns the entire set as the unsat core. For this reason,

we use an alternative MUS computation using the routine Mus in Fig. 3.12, which

employs a bottom-up iterative strategy. However, note that the minimality of the

output of this routine depends on the minimality of the SAT assignments obtained

on line 10 in the figure. That is, it is possible that a literal from V assigned to false

by the model on line 10 is actually a dont-care.

Going back to the routine ExtractInvsImpl, M on line 4 corresponds to the

cumulative set of formulas that fail the invariance check andX, on line 5, corresponds

to all the other formulas.

Pba finds a subset of assumptions Σ̂1 ⊆ Σ such that
(

U(Σ̂1, bvals)
)

I
is safe with

the same proof π of the current under-approximation. As above, we first add the
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ExtractInvsImpl(C, {Aℓ,ϕ}ℓ,ϕ, {Bℓ,ϕ}ℓ,ϕ)
1 M := ∅, X := {Aℓ,ϕ}ℓ,ϕ, Y := {¬Bℓ,ϕ}ℓ,ϕ
2 T := X
3 while (S := Mus(C, T, Y )) 6= ∅ do

4 M := M ∪ S, Y := Y \M
5 X := {Aℓ,ϕ | ¬Bℓ,ϕ ∈ Y }
6 T := X ∪M

7 return X

Mus(C, T, V )
8 R := ∅
9 while Sat(C, T ∪R) do

10 m := GetModel(C, T ∪R)
11 R := R ∪ {v ∈ V | m[v] = false}

12 return R

Figure 3.12: Our implementation of ExtractInvs of Fig. 3.7.

constraints under Lemmas in Fig. 3.11 to C which encodes the formulas given by

π over current and next-state variables guarded by fresh Boolean variables. Then,

the constraints under Bound Vals in Fig. 3.11 are added to C to encode the under-

approximation. This reduces the check for whether the map π is a safety proof

to that of unsatisfiability of a formula. Finally, Sat(C,Σ ∪ {Aℓ,ϕ}ℓ,ϕ ∪ {Bℓ,ϕ}ℓ,ϕ) is

invoked. As π is a safety proof of the under-approximation, this must result in an

unsat core. Projecting the core onto Σ gives us the desired Σ̂1 ⊆ Σ which identifies

the new abstraction and, together with the current bvals, the corresponding new

under-approximation. The minimality of Σ̂1 depends on the algorithm for extracting

an unsat core, which is part of the SMT engine of Z3 in our case. In practice,

we make iterative SAT calls with the current subset of Σ in place of Σ, until the

returned unsat core is the same as the previous subset of assumptions. Note that, as

we treat {Aℓ,ϕ}ℓ,ϕ and {Bℓ,ϕ}ℓ,ϕ as assumption literals as well, the SAT/SMT solver
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can ignore any redundant formulas in the proof π and such redundancy is quite

possible in practice.

NextUnder. Given the current valuation bvals and the new abstraction Σ̂, this

routine returns U(Σ̂, λb ∈ B · bvals(b) + 1).

Cegar and IsFeasible. Let
(

U(Σ̂, bvals)
)

I
be unsafe with a counterexample

C . We create a new set of constraints CC corresponding to the unrolling of τΣ ∧ τB

along the control path of C and check Sat(CC ,Σ). If this returns a satisfiable

assignment, the counterexample is feasible in P̃ and the assignment is used to find

a counterexample to safety in P̃ . Otherwise, we obtain an unsat core Σ̂1 ⊆ Σ and

refine the abstraction to Σ̂ ∪ Σ̂1.

We conclude the section with a discussion of the implementation choices. The

above implementation of NextUnder increments all bounding variables uniformly.

An alternative is to increment the bounds only for the loops for which the formu-

las in the current proof π fail to be invariant (e.g., [5, 89]). However, we leave the

exploration of such strategies for future. Our use of Z3 is sub-optimal as each call

to Solve requires constructing a new Horn-SMT problem. This incurs an unnec-

essary pre-processing overhead that can be eliminated by a tighter integration with

Z3. For Pba and ExtractInvs, we use a single SMT-context with a single copy of

the transition relation of the program (without unrolling it) by means of the Global

constraints mentioned above. This SMT-context is preserved across iterations of

Spacer. Constraints specific to a routine are added and retracted using the in-

cremental solving API of Z3. This is vital for good performance in practice. For

Cegar and IsFeasible, we unroll the transition relation of the program along the
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control path of the counterexample trace returned by Z3. We experimented with an

alternative implementation that instead validates each individual step of the (sym-

bolic) counterexample using the same global context as Pba. While this made each

refinement step faster, it increased the number of refinements, becoming inefficient

overall.

3.6 Experimental Results

We have a prototype implementation of Spacer using the SMT solver Z3 [45]. The

implementation and complete experimental results are available online.7

Benchmarks. We used the C program benchmarks of the Software Verification

Competition 2013 [3]. As our tool does not yet handle memory related properties,

we confined ourselves to the categories of systemc, product-lines, device-drivers-64

and control-flow-integers. All the benchmarks are available on the competition web-

site [3]. We give a brief description of the 4 categories below (and refer the reader to

the competition website for more details):

systemc: these are derived from SystemC programs in the literature, which have

been transformed to pure C programs by incorporating the scheduler into the

C code.

product-lines : these are derived from a research project for integration verification

of software product lines.

device-drivers-64 : these are derived from the Linux Driver Verification [2] project

7http://www.cs.cmu.edu/~akomurav/projects/spacer/home.html
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and correspond to the actual Linux kernel code.

control-flow-integers: this contains programs whose safety properties depend mostly

on the control-flow structure and integer variables, taken from the repositories

of the tools BLAST [70] and CPAchecker [1].

As mentioned in the previous section, we used the implementation of the al-

gorithm GPDR [74] in Z3 for the Solve step in each iteration of Spacer. The

front-end, which translates a C program to the Horn-SMT format of Z3, is based

on the tool UFO [8]. The encoding in Horn-SMT only uses the theory of Linear

Rational Arithmetic. All experiments were carried out on an Intel R© CoreTM2 Quad

CPU of 2.83GHz and 4GB of RAM. The resource limits were set to 15 minutes of

time and 2GB of memory.

Overall, there are 1,990 benchmarks (1,591 marked SAFE, and 399 marked UN-

SAFE); 1,382 are decided by the front-end of UFO that uses common compiler

optimizations. This left 608 benchmarks (231 SAFE, and 377 UNSAFE). To evalu-

ate the advantage of abstractions, we also ran (the implementation of GPDR in) Z3

by itself on the benchmarks and compared with Spacer.

For the UNSAFE benchmarks, Fig. 3.13 shows a scatter plot for the 369 bench-

marks verified in both settings, with and without abstraction; of the remaining 8

benchmarks, 6 are unverified, and 2 are verified without abstraction but not by

Spacer. Note that, even though abstraction did not help for these benchmarks, the

properties are easy, with Spacer needing at most 3 minutes each. We will show

later in the section that a traditional CEGAR approach (without PBA) can be even

worse.
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Figure 3.13: Advantage of abstractions (Spacer vs. Z3) for UNSAFE benchmarks.
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Figure 3.14: Advantage of abstractions (Spacer vs. Z3) for SAFE benchmarks.
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Figure 3.15: The best of the three variants of Spacer against Z3 for SAFE benchmarks.
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For the SAFE benchmarks, see Fig. 3.14 for a scatter plot comparing model

checking with and without abstraction (i.e., Spacer and Z3, respectively). 176

benchmarks are verified in under a minute in both settings (see the dense set of

triangles in the lower left corner of the figure). For these benchmarks, the difference

in runtime is not significant enough to be meaningful. We analyze the rest of the

results below.

Detailed Results. Table 3.1 shows the experimental results on the 42 safe bench-

marks verified by either tool and needing more than a minute of running time. The t

columns under Z3 and Spacer show the running times in seconds with ‘TO’ indi-

cating a time-out and a ‘MO’ indicating a mem-out. The best times are highlighted

in bold. The corresponding scatter plot in Fig. 3.14 shows that the results are mixed

for a time bound of 300 seconds (5 minutes). But beyond 5 minutes, abstraction

really helps with many benchmarks verified by Spacer when Z3 runs out of time

(time-outs are indicated by diamonds and mem-outs are indicated by stars). The

couple of benchmarks where Spacer runs out of time become better than Z3 using a

different setting, as discussed later. Overall, abstraction helps for hard benchmarks.

Furthermore, in elev_13_22, elev_13_29 and elev_13_30, Spacer is successful

even though Z3 runs out of memory, showing a clear advantage of abstraction (this

corresponds to the stars in the far right of Fig. 3.14). Note that the gcnr example

in the table under misc is from Fig. 3.1.

The B column in the table shows the final values of the loop bounding variables

under the mapping bvals, i.e., the maximum number of loop iterations (of any loop)
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that was necessary for the final safety proof. Surprisingly, they are very small in

many of the hard instances in systemc and product-lines categories.

Columns af and am show the sizes of the final and maximal abstractions, re-

spectively, measured in terms of the number of the original constraints used. Note

that this only corresponds to the syntactic abstraction (see Section 3.4). The final

abstraction computed by Spacer is very aggressive. Many constraints are irrelevant

(given the computed invariants) with often, more than 50% of the original constraints

abstracted away. Finally, the difference between af and am is insignificant in all of

the benchmarks.

An alternative approach to Pba is to restrict the abstraction to state-variables by

allowing some of the variables to take next-state values non-deterministically without

any constraints, similar to the work by Vizel et al. [105] in the context of hardware

verification. This was especially effective for ssh and ssh-simplified categories – see

the entries marked with ‘*’ under column t.

An alternative implementation of Cegar is to concretize the under-approximation

(by refining Σ̂ to Σ) whenever a spurious counterexample is found. This is analogous

to Proof-Based Abstraction (PBA) [91] in hardware verification. Run-time for PBA

and the corresponding final values of the bounding variables are shown in columns

tp and Bp of Table 3.1, respectively. While this results in more time-outs, it is sig-

nificantly better in 14 cases (see the entries marked with ‘†’ under column tp), with

6 of them comparable to Z3 and 2 (viz., toy and elev_1_31) significantly better

than Z3.
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Benchmark Z3 Spacer

t t B af am tp Bp

(sec) (sec) (%) (%) (sec)
systemc

pipeline 224 120 4 33 33 249 4
tk_ring_06 64 48 2 59 59 65 2
tk_ring_07 69 120 2 59 59 †67 2
tk_ring_08 232 158 2 57 57 358 2
tk_ring_09 817 241 2 59 59 266 2
mem_slave_1 536 430 3 24 34 483 2
toy TO 822 4 32 44 †460 4
pc_sfifo_2 73 137 2 41 41 TO −

product-lines

elev_13_21 TO 174 2 7 7 TO −
elev_13_22 MO 336 2 9 9 624 4
elev_13_23 TO 309 4 6 14 TO −
elev_13_24 TO 591 4 9 9 TO −
elev_13_29 MO 190 2 6 10 TO −
elev_13_30 MO 484 3 11 13 TO −
elev_13_31 TO 349 4 8 17 TO −
elev_13_32 TO 700 4 9 9 TO −
elev_1_21 102 136 11 61 61 161 11
elev_1_23 101 276 11 61 61 †140 11
elev_1_29 92 199 11 61 62 †77 11
elev_1_31 127 135 11 62 62 †92 11
elev_2_29 18 112 11 56 56 †26 11
elev_2_31 16 91 11 57 57 †22 11

ssh

s3_clnt_3 109 ∗90 12 13 13 73 12
s3_srvr_1 187 43 9 18 18 661 25
s3_srvr_2 587 ∗207 14 3 7 446 15
s3_srvr_8 99 49 13 18 18 TO −
s3_srvr_10 83 24 9 17 17 412 21
s3_srvr_13 355 ∗298 15 8 8 461 15
s3_clnt_2 34 ∗124 13 13 13 †95 13
s3_srvr_12 21 ∗64 13 8 8 54 13
s3_srvr_14 37 ∗141 17 8 8 †91 17
s3_srvr_6 98 TO − − − †300 25
s3_srvr_11 270 896 15 14 18 831 13
s3_srvr_15 309 TO − − − TO −
s3_srvr_16 156 ∗263 21 8 8 †159 21

ssh-simplified

s3_srvr_3 171 130 11 21 21 116 12
s3_clnt_3 50 ∗139 12 17 22 †104 13
s3_clnt_4 15 ∗76 12 22 22 56 13
s3_clnt_2 138 509 13 26 26 †145 13
s3_srvr_2 148 232 12 16 23 222 15
s3_srvr_6 91 TO − − − †272 25
s3_srvr_7 253 398 10 20 26 764 10

misc

gcnr TO 56 26 81 95 50 25

Table 3.1: Comparison of Z3 and Spacer. t and tp are running times in seconds; B and Bp are the
final values of the bounding variables; af and am are the fractions of assumption variables in the
final and maximal abstractions, respectively.
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See Fig. 3.15 for a scatter plot using the best running times for Spacer of all the

three variants described above.

Advantage of PBA. To better understand the effect of Proof-Based Abstraction

(PBA), we ran Spacer with PBA disabled and choosing the coarsest abstraction as

our initial abstraction. Note that this is the traditional CEGAR approach. Fig. 3.16

and 3.17 show the scatter plots for the same benchmarks as above comparing CEGAR

with and without PBA (PBA + CEGAR is essentially Spacer as described until

now). These plots show that, in many cases, PBA results in quite a significant

improvement over traditional CEGAR-based abstraction refinement. We believe

that this is because PBA results in abstractions that are relevant (proof-based) and

precise (due to invariants). The runtimes shown in the plot correspond to the best

of the abstraction mechanisms with and without restricting to the state-variables as

mentioned above.

Table 3.2 also shows the number of abstraction refinement iterations and the

final abstraction size with and without PBA on the 8 safe examples for which both

approaches terminate and CEGAR takes more than 5 minutes. Despite the fact that

adding PBA results in seemingly more amount of work (for invariant extraction, re-

abstraction after each iteration of Spacer, etc.) to maintain coarser abstractions

(compare columns am and a), the number of abstraction refinement iterations is

increased only in a couple of examples. Interestingly, the value of the bounding

variables for which both approaches terminate is the same for all the examples.

We conclude this section by comparing our results with UFO [8] — the win-
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Figure 3.16: Advantage of PBA for SAFE benchmarks.
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Figure 3.17: Advantage of PBA for UNSAFE benchmarks.

ner of the 4 benchmark categories at SV-COMP’13. The competition version of

UFO runs several engines in parallel, including engines based on Abstract Interpre-

tation, Predicate Abstraction, and SMT-based model checking with Interpolation.

UFO outperforms Spacer and Z3 in ssh and product-lines categories by an order

of magnitude. These benchmarks seem to be easier for Abstract Interpretation and

Predicate Abstraction used in UFO but this needs more investigation. Even so, note

that Spacer finds really small abstractions for these categories upon termination.
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Benchmark PBA + CEGAR CEGAR
t B #iters af am t B #iters a

(sec) (%) (%) (sec) (%)
systemc

tk_ring_09 242 2 11 59 59 457 2 12 59
mem_slave_1 430 3 59 24 34 549 3 55 36

product-lines

elev_13_30 484 3 60 11 13 472 3 65 14
elev_1_21 136 11 17 61 61 525 11 18 64
elev_1_23 276 11 16 61 61 772 11 17 63
elev_1_29 199 11 17 61 62 759 11 17 62
elev_1_31 134 11 17 62 62 353 11 17 63

ssh-simplified

s3_srvr_2 232 12 22 12 16 *592 12 17 22

Table 3.2: Analyzing the effect of PBA on some hard examples. t denotes the running time; B
is the final value of the bounding variables; #iters denotes the number of abstraction refinement
iterations; af and am are the fractions of assumption variables in the final and maximal abstractions
with PBA; a is the fraction of the assumption variables in the final abstraction (which is also the
maximal) without PBA.

However, in the systemc category both Spacer and Z3 perform better than UFO

by verifying hard instances (e.g., tk_ring_08 and tk_ring_09) that are not verified

by any tool in the competition. Moreover, Spacer is faster than Z3, in general, as

shown above. Thus, while Spacer itself is not the best tool for all benchmarks, it

is a valuable addition to the state-of-the-art.

3.7 Related work

The most prominent approach for iteratively checking bounded safety is to combine

BMC with Craig Interpolation [5, 88, 89]. Recently, algorithms for incremental BMC,

together with interpolation, have also been proposed [25, 34, 48, 74]. Although our

implementation uses Z3 (for Solve), which is based on an incremental algorithm, it

can be implemented on top of any interpolation-based solver.

Proof-based Abstraction (PBA) was first introduced in hardware verification to
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leverage the power of SAT-solvers to focus on relevant facts [66, 91]. Over the years,

it has been combined with CEGAR [12, 13], interpolation [13, 85], and PDR8 [75], all

in the context of hardware model checking. To the best of our knowledge, Spacer is

the first application of PBA for automatic abstraction refinement in software model

checking.

Our extraction of maximal invariant subsets from candidate proofs (of bounded

safety, in our case) is similar to Houdini [54] and is used in several other algorithms

(e.g., [90]). As in Spacer, Jain et al. have also used program invariants to obtain

precise abstractions in the context of predicate abstraction [76].

The work of Vizel et al. [105], in hardware verification, that extends PDR with

abstraction is the closest to ours. However, Spacer is not tightly coupled with PDR.

Moreover, Spacer allows for a rich space of abstractions, whereas Vizel et al. limit

themselves to state variable abstraction.

Finally, the tool UFO [5, 6] also uses abstraction, but in an orthogonal way.

UFO uses abstraction to guess the depth of unrolling (plus useful invariants), BMC

to detect counterexamples, and interpolation to synthesize safe invariants.

3.8 Conclusion

In this chapter, we presented the Spacer algorithm that combines Proof-Based Ab-

straction (PBA) with CounterExample Guided Abstraction Refinement (CEGAR)

for verifying safety properties of sequential programs. To our knowledge, this is the

first application of PBA to software verification. Our abstraction technique com-

8PDR stands for Property Directed Reachability.
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bines localization with invariants about the program. It is interesting to explore

alternatives for such a semantic abstraction.

While our presentation is restricted to non-recursive sequential programs, the

technique can be adapted to solving the more general Horn Clause Satisfiability

problem and extended to verifying recursive and concurrent programs [63].

We have implemented Spacer using Z3 and, in particular, its GPDR engine.

Our implementation is only an early prototype and is not heavily optimized nor it is

tightly integrated with Z3. Nonetheless, the experimental results on 4 categories of

the 2nd Software Verification Competition show that Spacer improves on both Z3

and the state-of-the-art.

The results presented in this chapter are published as part of the proceedings of

CAV 2013 [80].
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3.A Transforming a Safety Proof of P̃ to that of P

Let P =〈L, ℓo, ℓe, V , τ〉 be the input program and let P̃ be obtained by the trans-

formation described in Section 3.5 which adds code to count the number of loop

iterations. The following lemma shows how to translate a safety proof of P̃ to that

of P . Given a sentence ϕ over the signature S∪V ∪C∪B, we write ∀B ≥ 0, C ≥ 0 ·ϕ

to mean ∀B ∪ C ·
((
∧

x∈B∪C x ≥ 0
)

=⇒ ϕ
)

.

Lemma 10. If π̃ is a safety proof of P̃ , then π = λℓ · {∀B ≥ 0, C ≥ 0 ·ϕ | ϕ ∈ π̃(ℓ)}

is a safety proof of P .

Proof. We will first show that π is safe. We have

∧

π(ℓe) ≡
∧

ϕ∈π̃(ℓe)

∀B ≥ 0, C ≥ 0 · ϕ ≡ ∀B ≥ 0, C ≥ 0 ·
∧

ϕ∈π̃(ℓe)

ϕ.

Given that π̃ is safe,
∧

ϕ∈π̃(ℓe) ϕ =⇒ ⊥ and hence,
∧

π(ℓe) =⇒ ⊥.

We will next show that π is an invariant map. As ⊤ =⇒
∧

π̃(ℓo), ⊤ =⇒ ϕ for

every ϕ ∈ π̃(ℓo) and hence, ⊤ =⇒ ∀B ≥ 0, C ≥ 0 · ϕ. So, ⊤ =⇒
∧

π(ℓo).

Assume an arbitrary S-structure (that is also a model of Th). Let s, s′ be a

pair of current and next states satisfying
∧

π(ℓi) ∧ τ(ℓi, ℓj) for some ℓi, ℓj ∈ L. We

need to prove that ∀B ≥ 0, C ≥ 0 · ϕ is true for s′, for every ϕ ∈ π̃(ℓj). Let b′, c′

be arbitrary non-negative values for B,C, respectively. One can easily show that

τB(ℓi, ℓj) is invertible for non-negative values of the post-variables and let b, c be the

values of the corresponding pre-variables. Now, for b, c and s, we know that
∧

π̃(ℓi)

is true. Given that π̃ is a proof of P̃ , it follows that ϕ is true for b′, c′ and s′.
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Chapter 4

Probabilistic Systems and Simulation

4.1 Introduction

We will now consider safety of systems with probabilistic behavior. As mentioned in

Chapter 1, such systems are increasingly used for a variety of applications and it is

important to be able to efficiently verify their correctness. In particular, we consider

the problem of checking strong simulation conformance between two probabilistic

transition systems, an implementation and a specification. In this chapter, we will

describe the basic definitions and algorithms which are used in later chapters.

We start with defining our notion of a probabilistic transition system in Sec-

tion 4.2. We will then define the conformance relation we are interested in, along

with several key properties of the relation, in Section 4.3. Following that, we will

describe several algorithms for monolithic verification of the conformance relation

in Section 4.4, which include a new reduction to SMT and a specialized algorithm
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for tree-shaped transition systems. As noted in Chapter 1, when the conformance

fails to hold between two probabilistic transition systems, there is no existing notion

of a diagnostic counterexample which explains the failure. However, this turns out

be an essential ingredient for automating compositional reasoning as we will see in

Chapters 5 and 6. Section 4.5 describes our characterization of a counterexample

to simulation conformance, including several key properties and an algorithm for

obtaining a counterexample. Finally, we will define the notion of parallel composi-

tion between transition systems and show the soundness and completeness of the

assume-guarantee inference rule ASym, also mentioned in Chapter 1.

4.2 Probabilistic Transition Systems

In the probabilistic transition systems we consider, a transition from a state leads

to a discrete probability distribution over states.1 Thus, given a finite, non-empty

set S of states, a state s ∈ S, and a label a, a transition is a triple (s, a, µ) for a

discrete probability distribution µ over S. We use s a
−→ µ to denote such a transition

and Fig. 4.1 shows an example. We use Dist(S) to denote the set of all discrete

probability distributions over S. For µ ∈ Dist(S), the support of µ, denoted Supp(µ),

is defined to be the subset of S where each state has a non-zero probability under

µ, i.e., Supp(µ) = {s ∈ S | µ(s) > 0}. For X ⊆ S, µ(X) stands for
∑

s∈X µ(s).

We use δs to denote the special Dirac distribution on s ∈ S where δs(s) = 1 and

δs(S \ {s}) = 0.

1To emphasize, one can perhaps use the term probabilistic transition but we avoid the adjective
for brevity.
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Figure 4.1: An example transition from a state s on an action a to a discrete probability distribution
µ over the states u and v.
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Figure 4.2: Two Labeled Probabilistic Transition Systems L1 and L2.

We use the following definition of a transition system to represent probabilistic

systems.

Definition 7. A Labeled Probabilistic Transition System (LPTS) is a tuple 〈S, s0, α,

τ〉 for a finite set of states S with a designated start state s0, a finite set of actions

α, and a finite set of transitions τ ⊆ S × α×Dist(S).

An LPTS is called reactive if τ is a partial function from S × α to Dist(S), i.e.,

τ allows at most one transition on a given action from a given state. An LPTS is

called fully-probabilistic if τ is a partial function from S to α×Dist(S), i.e., τ allows

at most one transition from a given state.

For example, Fig. 4.2 shows two example LPTSes L1 and L2 where the start states

are denoted by filled circles. As the example shows, we allow multiple, possibly non-
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Figure 4.3: An example of a stochastic tree.

deterministic, transitions outgoing from a given state.2 Note that L1 is reactive

while L2 is not reactive because of the non-determinism on action a from state q.

The figure also shows Dirac distributions on actions b and c.

In the literature, an LPTS is also called a simple probabilistic automaton [102].

Similarly, a reactive (fully-probabilistic) LPTS is also called a (Labeled) Markov De-

cision Process (Markov Chain). Also, note that an LPTS with all the distributions

restricted to Dirac distributions is the classical (non-probabilistic) Labeled Transi-

tion System (LTS); thus a reactive LTS corresponds to the standard notion of a

deterministic LTS.

We are also interested in LPTSes with a tree structure, i.e., the start state is not

in the support of any transition’s distribution and every other state is in the support

of exactly one transition’s distribution. We call such LPTSes stochastic trees or

simply trees. For example, Fig. 4.3 shows a stochastic tree.

2This is useful for high level modeling where multiple probabilistic behaviors are allowed. More-
over, the nature of counterexamples to strong simulation (see Section 4.5) and the algorithms for
compositional reasoning (see Chapters 5 and 6) do not simplify if non-determinism is disallowed.
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Figure 4.4: Two discrete probability distributions, µ over S = {s1, s2} and ν over T = {t1, t2, t3},
and a binary relation R between S and T , shown using dotted arrows, such that µ ⊑R ν. The
labeling along the R-edges shows a weight function used to establish the relationship ⊑R.

4.3 Strong Simulation

To specify correctness of a probabilistic system represented by an LPTS, we use the

notion of strong simulation conformance with respect to a specification LPTS. This

is based on the standard definition of simulation conformance between transition

systems (a la Milner [93]). Intuitively, we say that a transition system A is simulated

by another transition system B if one can exhibit a binary relation between the

states of A and B such that from every related state pair, there exist transitions in

A and B to states that are also related, whenever the transition in A is feasible. For

probabilistic systems, however, a transition leads to a distribution of states and we

need an appropriate notion for a related distribution. For this, we use the following

definition by Segala and Lynch [102]:

Definition 8 ([102]). Let S and T be two non-empty finite sets, R ⊆ S × T , and

consider distributions µ ∈ Dist(S) and ν ∈ Dist(T ). We say that ν is a related

distribution of µ with respect to R, denoted µ ⊑R ν, iff there is a weight function
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w : S × T → [0, 1] such that

1. for every s ∈ S, µ(s) =
∑

t∈T w(s, t),

2. for every t ∈ T , ν(t) =
∑

s∈S w(s, t),

3. for every s ∈ S, t ∈ T , w(s, t) > 0 implies sRt.

Intuitively, µ ⊑R ν if the probabilities of states in S under µ can be distributed to

related states in T under R (as suggested by a suitable weight function) to obtain ν.

See Fig. 4.4 for an illustration. Here, S = {s1, s2}, T = {t1, t2, t3}, µ and ν are the

uniform distributions over S and T , and R relates the states connected by dotted

arrows. The figure also shows a weight function w by means of a labeling of the

R-edges by numbers (all other state pairs are mapped to 0 under w). It is easy to

check that w satisfies the conditions in the above definition which shows that µ ⊑R ν.

Effectively, w distributes the probability µ(s1) = 1/2 as 1/3 to t1 and 1/6 to t2, and

the probability µ(s2) = 1/2 as 1/6 to t2 and 1/3 to t3, resulting in the distribution

ν. Checking ⊑R reduces to checking whether the maximum flow in an appropriate

network is equal to 1.0 [17]. Note that ⊑R is a binary relation between distributions,

given R. Using ⊑R, we can define a Milner-style simulation conformance between

LPTSes as follows.

Definition 9 (Strong Simulation [102]). Let L1 = 〈S1, s
0
1, α1, τ1〉 and L2 = 〈S2, s

0
2, α2,

τ2〉 be two LPTSes. R ⊆ S1 × S2 is a strong simulation iff for every s1 ∈ S1 and

s2 ∈ S2, if s1Rs2 then the following holds: for every a ∈ α1 and s1
a
−→ µ1 there is a

µ2 ∈ Dist(S2) with the property that s2
a
−→ µ2 and µ1 ⊑R µ2.

For s1 ∈ S1 and s2 ∈ S2, we say that s2 strongly simulates s1, denoted s1 � s2,

iff there is a strong simulation T such that s1Ts2. L2 strongly simulates L1, also
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Figure 4.5: Showing µ ⊑R ν for distributions µ and ν of Fig. 4.2, and a binary relation R shown
using dotted arrows. The labeling on the R-edges denotes the weight function used to show ⊑R.

denoted L1 � L2, iff the start state of L2 strongly simulates the start state of L1, i.e.,

s01 � s02.

For example, in Fig. 4.2, L1 � L2 can be shown using the strong simulation

R = {(p, q), (s, u), (s, v), (t, u)}. In particular, the start states p and q are related by

R because the outgoing transition p
a
−→ µ is simulated by the transition q

a
−→ ν, i.e.,

µ ⊑R ν. As shown in Fig. 4.5, the latter can be shown using the weight function

w : S1 × S2 → [0, 1] where w(s, u) = 1/6, w(s, v) = 1/2, w(t, u) = 1/3 (s, t, u, and

v are as shown in the figure) and w maps every other state pair to 0. Note that q

has non-determinism on action a, however, µ 6⊑R δq as neither s nor t is related to q

and hence, there is no corresponding weight function that satisfies the conditions in

Definition 8.

Note that � in the above definition can also be seen as a binary relation as follows.

When considered between two sets of states S1 and S2, �= {(s1, s2) ∈ S1×S2 | ∃R ⊆

S1 × S2 · R is a strong simulation and s1Rs2}. When considered between LPTSes,

�= {(L1, L2) | L2 strongly simulates L1}. When L1 � L2, intuitively, L1 is an

implementation of the specification L2. The verification problem we are interested

in is to check whether the relationship � holds between two LPTSes.
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4.3.1 Properties of Strong Simulation

The relations ⊑ and � have some interesting and useful properties which we will

describe here.

Let S and T be two non-empty finite sets, µ ∈ Dist(S), ν ∈ Dist(T ), and R ⊆

S × T such that µ ⊑R ν. Viewing S and T as the two partite sets of a bipartite

graph where edges correspond to R, we obtain the following weighted analog of Hall’s

Marriage Theorem.

Lemma 11 ([106]). µ ⊑R ν iff for every X ⊆ Supp(µ), µ(X) ≤ ν(R(X)).

Analogous to strong simulation between non-probabilistic labeled transition sys-

tems [93], we have the following properties of �.

Lemma 12. Let L1 and L2 be two LPTSes with S1 and S2 as the sets of states,

respectively. Then, �⊆ S1× S2 is the coarsest strong simulation between L1 and L2,

i.e., � is a strong simulation and contains every strong simulation.

Proof. By Definition 9, � is the union of all strong simulations and hence, contains

every strong simulation. To show that � is a strong simulation, it suffices to show

that the union of two strong simulations is a strong simulation. The latter is easy to

show and we skip the proof.

Lemma 13 ([102]). The relation � between LPTSes is a preorder, i.e., reflexive and

transitive.

Proof. Reflexivity, i.e., L � L for an arbitrary LPTS L, can be easily proved by show-

ing that the identity relation is a strong simulation. So, we only consider transitivity

here.
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Let L1 = 〈S1, s
0
1, α1, τ1〉, L2 = 〈S2, s

0
2, α2, τ2〉, and L3 = 〈S3, s

0
3, α3, τ3〉 be 3 LPT-

Ses with L1 � L2 and L2 � L3. Thus, there exist strong simulations R12 ⊆ S1 × S2

and R23 ⊆ S2×S3. We show that the relation R = R23◦R12 is a strong simulation be-

tween L1 and L3. Let s1Rs3 and s1
a
−→ µ1. So, there exists s2 ∈ S2 such that s1R12s2

and s2R23s3. As R12 is a strong simulation, there exists s2
a
−→ µ2 with µ1 ⊑R12

µ2.

Similarly, as R23 is a strong simulation, there exists s3
a
−→ µ3 with µ2 ⊑R23

µ3. It

suffices to show that µ1 ⊑R µ3.

Let S ⊆ Supp(µ1) be arbitrary. By Lemma 11, we have µ1(S) ≤ µ2(R12(S)) ≤

µ3(R23(R12(S))) = µ3(R(S)). Thus, µ1 ⊑R µ3 and hence, R is a strong simulation.

As s01Rs
0
3, we conclude that L1 � L3.

Finally, we find the following characterization of � useful in the algorithms we

will discuss later on.

Lemma 14. Let L1 = 〈S1, s
0
1, α1, τ1〉 be a tree and L2 = 〈S2, s

0
2, α2, τ2〉 be an arbitrary

LPTS. Let R ⊆ S1 × S2 be such that for every s1 ∈ S1 and s2 ∈ S2, s1Rs2 iff the

following holds: for every a ∈ α1 and s1
a
−→ µ1, there is a µ2 ∈ Dist(S2) with the

property that s2
a
−→ µ2 and µ1 ⊑R µ2. Then, R =�, i.e., s1Rs2 iff s1 � s2.

Proof. It suffices to show that R ⊆� and �⊆ R. The first direction easily follows

from Lemma 12 as R is clearly a strong simulation.

To prove the other direction, we first define the height of a state s ∈ S1 recursively

as follows: the height of a leaf state is defined to be 0 and the height of any other

state is defined to be one more than the maximum height of any state in the support

of any outgoing distribution from that state.
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Figure 4.6: An example showing that Lemma 14 does not hold, in general, if L1 is not a tree. R =
{(s1, t1), (s2, t2)} satisfies the definition in the lemma, but R (� as �= {(s1, t1), (s2, t2), (s2, t3)}.

Now, let s1 � s2. We show that s1Rs2 by induction on the height of s1.

For the base case, let s1 be any leaf state. As s1 has no outgoing transitions,

s1Rs2 trivially holds by the definition of R.

For the inductive case, let the height of s1 be non-zero and let s1
a
−→ µ1. Then,

as � is a strong simulation (Lemma 12), there exists µ2 with s2
a
−→ µ2 such that

µ1 ⊑� µ2. Let S ⊆ Supp(µ1). Then, by Lemma 11, we have µ1(S) ≤ µ2(� (S)).

As every state in Supp(µ1), and hence in S, has a smaller height than that of s1,

by induction hypothesis, � (S) ⊆ R(S) and therefore, µ1(S) ≤ µ2(R(S)). As S

is arbitrary, we conclude by Lemma 11 that µ1 ⊑R µ2. By the definition of R, we

obtain that s1Rs2.

Thus, by induction, we have shown that �⊆ R.

Note that the condition on R in the lemma is stronger than the one to make it

a strong simulation (Definition 9). Also, in general, if L1 is not a tree, we can only

conclude that R ⊆�. See Fig. 4.6 for an example where R (�.
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Figure 4.7: The flow network, along with a maximum flow from a to b, to show µ ⊑R ν where
µ ∈ Dist(S1), ν ∈ Dist(S2), and the binary relation R ⊆ S1 × S2 are as in Fig. 4.5.

4.4 Algorithms for Strong Simulation

Strong simulation is efficiently decidable in polynomial time and we will describe

several algorithms for the problem for several settings.

Checking ⊑. Let S and T be non-empty finite sets and let µ ∈ Dist(S) and

ν ∈ Dist(T ). Given R ⊆ S × T , one can check whether µ ⊑R ν holds by reducing

it to a maximum flow computation problem as follows. Consider the graph Fµ,R,ν =

(S∪T ∪{a, b}, R∪ ({a}×S)∪ (T ×{b})) denoting a flow network with a and b as the

source and the sink nodes. The edges in Fµ,R,ν are assigned weights according to the

function δ as follows: δ(a, s) = µ(s) for s ∈ S, δ(s, t) = 1 for sRt, and δ(t, b) = ν(t)

for t ∈ T . It can then be shown that Fµ,R,ν has a maximum flow of 1 from a to b iff

µ ⊑R ν [17] which also gives an algorithm for checking ⊑R.

For example, Fig. 4.7 shows the flow network for distributions µ and ν from

Fig. 4.5 as well as a maximum flow function.

Checking �. Given two LPTSes L1 = 〈S1, s
0
1, α1, τ1〉 and L2 = 〈S2, s

0
2, α2, τ2〉, one

can check whether L1 � L2 holds with a greatest fixed point algorithm that computes

the coarsest strong simulation between the LPTSes [17]. Fig. 4.8 shows the pseudo-
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code of the algorithm. The algorithm maintains a candidate relation R ⊆ S1 × S2,

where S1 and S2 are the sets of states of the two LPTSes, and iteratively removes

pairs from R that violate the condition in Definition 9. The algorithm terminates

when a fixed point is reached and returns the coarsest strong simulation between L1

and L2. One can then check L1 � L2 by simply examining if the pair of start states

(s01, s
0
2) belongs to the relation returned by the algorithm. If n = max(|S1|, |S2|) and

m = max(|τ1|, |τ2|), this algorithm takes O((mn6+m2n3)/ log n) time and O(mn+n2)

space in the worst-case when the candidate relation R is implemented as a queue [17].

There exist several optimizations to this basic algorithm in the literature [106].

Reducing � to SMT. When all the probabilities involved are rational, we can also

reduce simulation conformance to satisfiability modulo linear rational arithmetic (i.e.,

SMT for the theory of linear rational arithmetic) as follows, to take advantage of the

efficient SMT solvers that exist today. Given L1 and L2 as above, EncodeSim in

Fig. 4.9 shows the top-level constraints for encoding L1 � L2, where we introduce the

Boolean variables Rs1,s2 to denote s1Rs2 for some strong simulation R and relµ1,µ2

to denote µ1 ⊑R µ2. Here, AddCons simply adds the argument to the pool of

constraints, initialized to the empty set. The constraints added on lines 4 and 7

essentially encode the conditions for L1 � L2 from Definition 9. We encode the

constraints on the relµ1,µ2
variables on line 6 using EncodeDistRel in Fig. 4.10,

where we introduce rational variables wt1,t2,µ1,µ2
’s to denote the weight function in

Definition 8 and the variable Sµ1,µ2
to denote the subset of Supp(µ1) witnessing

µ1 6⊑R µ2 according to Lemma 11. The constraints added on lines 3–5 encode the

necessary conditions for µ1 ⊑R µ2 from Definition 8 and the last constraint encodes
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ComputeSim(L1 = 〈S1, s
0
1, α1, τ1〉, L2 = 〈S2, s

0
2, α2, τ2〉)

R← S1 × S2 // initialize with all pairs of states

while true do

converged ← true

for (s1, s2) ∈ R do

sim ← true

for every s1
a
−→ µ1 do

sim ← false

for every s2
a
−→ µ2 do

if µ1 ⊑R µ2 then

sim ← true

break

if sim = false then
break

if sim = false then

// s1 6� s2
R← R \ {(s1, s2)}
converged ← false

break

if converged then

// fixed-point reached

return R

Figure 4.8: Greatest fixed-point algorithm for computing the coarsest strong simulation relation
between two LPTSes L1 and L2.

the (contrapositive of the) sufficient condition from Lemma 11. The set Sµ1,µ2
and

its image under R can, in turn, be encoded using auxiliary Boolean variables for the

states in S1 and S2, but we leave the details to the reader.

The following is immediate.

Lemma 15. L1 � L2 iff the constraints resulting from EncodeSim(L1, L2) are

satisfiable.

Checking conformance for trees. We also consider a specialization of the greatest

fixed-point algorithm when L1 is a tree, which is used during abstraction refinement
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EncodeSim(L1 = 〈S1, s
0
1, α1, τ1〉, L2 = 〈S2, s

0
2, α2, τ2〉)

1 introduce Boolean variables Rs1,s2 to denote (s1, s2) ∈ R ⊆ S1 × S2
2 introduce Boolean variables relµ1,µ2

to denote µ1 ⊑R µ2
3 for every (s1, s2) ∈ S1 × S2 do

4 AddCons(Rs1,s2 =⇒
∧

{(a,µ1)|s1
a
−→µ1}

∨

{µ2|s2
a
−→µ2}

relµ1,µ2
)

5 for every (µ1, µ2) ∈ Dist(S1)×Dist(S2) do

// only the distributions appearing in the transitions

6 EncodeDistRel(µ1, µ2, R, relµ1,µ2
)

7 AddCons(Rs0
1
,s0

2
)

Figure 4.9: SMT encoding for L1 � L2.

EncodeDistRel(µ1 ∈ Dist(S1), µ2 ∈ Dist(S2), R, b)
1 introduce rational variables wt1,t2 for (t1, t2) ∈ S1 × S2
2 let S denote a variable denoting a subset of S1
3 AddCons(b =⇒

∧

t1∈S1
µ1(t1) =

∑

t2∈S2
wt1,t2)

4 AddCons(b =⇒
∧

t2∈S2
µ2(t2) =

∑

t1∈S1
wt1,t2)

5 AddCons(b =⇒
∧

t1∈S1,t2∈S2
wt1,t2 > 0 =⇒ Rt1,t2)

6 AddCons(¬b =⇒ µ1(S) > µ2(R(S)))
// S and R(S) can further be encoded with Boolean variables

Figure 4.10: SMT encoding for µ1 ⊑R µ2. Here, b is a Boolean variable denoting the truth value of
µ1 ⊑R µ2.

(Sections 6.2 and 6.3). Fig. 4.11 shows the pseudo-code of the algorithm which is

based on a bottom-up traversal of L1. It maintains a candidate relation R, initialized

to S1 × S2. For every non-leaf state s1 ∈ S1 in a bottom-up traversal of L1, the

algorithm iteratively checks if a transition s1
a
−→ µ1 can be simulated by L2 and for

every s2 ∈ S2 that does not have a simulating transition on a, removes the pair

(s1, s2) from R. Correctness can be shown by induction on the height of a state in

S1 and we leave the details to the reader.
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ComputeSimTree(L1 = 〈S1, s
0
1, α1, τ1〉, L2 = 〈S2, s

0
2, α2, τ2〉)

R← S1 × S2 // initialize with all pairs of states

for every non-leaf s1 ∈ S1 in a bottom-up traversal of L1 do

for every s1
a
−→ µ1 do

for every s2 ∈ R(s1) do

sim ← false

for every s2
a
−→ µ2 do

if µ1 ⊑R µ2 then

sim ← true

break

if sim = false then
R← R \ {(s1, s2)}

return R

Figure 4.11: Specialized fixed-point algorithm for computing the coarsest strong simulation between
L1 and L2 when L1 is a tree.

4.5 Counterexamples to Strong Simulation

We have seen several efficient algorithms in the previous section for deciding strong

simulation between two LPTSes. However, our techniques for automatic composi-

tional reasoning are iterative and in order to recover from the cases where strong

simulation fails to hold, we also need to characterize the notion of a counterexample

to the conformance relation. We first define a counterexample using a language-

theoretic formulation of strong simulation and then characterize counterexamples as

stochastic trees.

Definition 10 (Language of an LPTS). Given an LPTS L, we define its language,

denoted L(L), as the set of all LPTSes simulated by it, i.e., {L′ | L′ is an LPTS and

L′ � L}.

We immediately have the following result.

Lemma 16. For LPTSes L1 and L2, L1 � L2 iff L(L1) ⊆ L(L2).
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Proof. We know from Lemma 13 that � is transitive and reflexive. In the above

statement, necessity follows from the transitivity of � and sufficiency follows from

the reflexivity of � which implies L1 ∈ L(L1).

So, a counterexample to strong simulation can be defined as follows.

Definition 11 (Counterexample). Given LPTSes L1 and L2 with L1 6� L2, a coun-

terexample is an LPTS C such that C ∈ L(L1) \ L(L2), i.e. C � L1 but C 6� L2.

Now, L1 itself is a trivial choice for C but it does not give any more informa-

tion than what we had before checking the simulation conformance. So, we are

interested in counterexamples with simpler structure which retain the relevant infor-

mation to witness the failure of the conformance relationship. When the probability

distributions are all restricted to Dirac distributions, i.e., when we consider LTSes,

a tree-shaped LTS is known to be sufficient as a counterexample [32]. Based on a

similar intuition, we show that a stochastic tree is sufficient as a counterexample for

simulation conformance between arbitrary LPTSes.

Theorem 10. Given LPTSes L1 = 〈S1, s
0
1, α1, τ1〉 and L2 = 〈S2, s

0
2, α2, τ2〉 with

L1 6� L2, there exists a tree counterexample.

Proof. For i ∈ {1, 2}, let (Li, s) denote the LPTS which is the same as Li except

that the start state is s instead of s0i , i.e., (Li, s) = 〈Si, s, αi, τi〉.

Consider the greatest fixed point algorithm ComputeSim in Fig. 4.8 for com-

puting the coarsest strong simulation between two LPTSes. Let R ⊆ S1 × S2 be the

relation maintained by ComputeSim(L1, L2). We show that whenever a pair (s1, s2)

is removed from R, there is a tree T12 which is a counterexample to (L1, s1) � (L2, s2).
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As L1 6� L2, the pair (s01, s
0
2) is eventually removed from R and it will follow that

a tree counterexample to L1 � L2 exists. We proceed by strong induction on the

number of iterations of the outermost while loop of ComputeSim.

In the base case, R = S1 × S2 and µ1 ⊑R µ2 holds for every µ1 ∈ Dist(S1)

and µ2 ∈ Dist(S2). So, when (s1, s2) is removed from R, it must be the case that

there is a transition s1
a
−→ µ1 such that no transition exists from s2 on action a.

Now, let T12 be the tree representing the transition s1
a
−→ µ1 by creating a new

state t1 for s1 and a new state ts for every s ∈ Supp(µ1), i.e., T12 = 〈{t1} ∪ {ts |

s ∈ Supp(µ1)}, t1, {a}, {(t1, a, µ
t
1)}〉, where µt

1(t1) = 0 and µt
1(ts) = µ1(s) for s ∈

Supp(µ1). It can be easily shown that T12 is a counterexample to (L1, s1) � (L2, s2),

i.e., T12 � (L1, s1) but T12 6� (L2, s2).

We will now consider the inductive case and let a new pair (s1, s2) be removed

from the current R. So, there is a transition s1
a
−→ µ1 which is simulated by no

transition on a from s2. Let ∆ = {ν ∈ Dist(S2) | s2
a
−→ ν}. So, we know that

µ1 6⊑R ν for every ν ∈ ∆. The case of ∆ = ∅ is the same as the base case above. So,

we assume that ∆ is non-empty below.

Let ν ∈ ∆. Because µ1 6⊑R ν, there exists a set Sν
1 ⊆ Supp(µ1) such that

µ1(S
ν
1 ) > ν(R(Sν

1 )) by Lemma 11. Let Sν
2 = Supp(ν) \ R(Sν

1 ). Now, for every pair

(u, v) ∈ Sν
1 × S

ν
2 , it follows that (u, v) 6∈ R and by inductive hypothesis, there exists

a tree counterexample Tu,v for (L1, u) � (L2, v).

We build a tree T12 as follows. We describe the construction at a high level and

leave the details to the reader. As in the base case, we start with representing the

transition s1
a
−→ µ1 as a tree, say T0, by creating a new state t1 for s1 and a new state
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CexDistRel(µ ∈ Dist(S1), ν ∈ Dist(S2), R ⊆ S1 × S2)
f := a maximum-flow function for the flow network Fµ,R,ν (see Section 4.4)
find s1 ∈ S1 with µ(s1) >

∑

s2∈S2
f(s1, s2)

Sν
1 = {s1}

while µ(Sν
1 ) ≤ ν(R(S

ν
1 )) do

Sν
1 := {s1 ∈ S1 | exists s2 ∈ R(S

ν
1 ) with f(s1, s2) > 0}

return Sν
1

Figure 4.12: Finding Sν
1 ⊆ S1 such that µ(Sν

1 ) > ν(R(Sν
1 )), given µ 6⊑R ν.

ts for every s ∈ Supp(µ1), i.e., T0 = 〈{t1} ∪ {ts | s ∈ Supp(µ1)}, t1, {a}, {(t1, a, µ
t
1)}〉,

where µt
1(t1) = 0 and µt

1(ts) = µ1(s) for s ∈ Supp(µ1). Then, for every (u, v) ∈
⋃

ν∈∆ (Sν
1 × S

ν
2 ), we attach the tree Tu,v to the state tu in T0, i.e., we merge the

start state of Tu,v with tu. We claim that T12 so obtained is a counterexample to

(L1, s1) � (L2, s2) which we show below.

First of all, it can be easily shown that T12 � (L1, s1) as T12 is essentially a finite

unwinding of (L1, s1). So, we will only show that T12 6� (L2, s2). Let ν ∈ ∆ and

let R12 be the coarsest strong simulation between T12 and (L2, s2). Consider the set

S = {tu | u ∈ S
ν
1}. Now, by construction, we know that for every (u, v) ∈ Sν

1 × S
ν
2 ,

(T12, tu) is a counterexample to (L1, u) � (L2, v) and in particular, we know that

(T12, tu) 6� (L2, v). This implies that (tu, v) 6∈ R12 for every such (u, v). In other

words, R12(S) ⊆ R(Sν
1 ). Therefore, µt

1(S) = µ1(S
ν
1 ) > ν(R(Sν

1 )) ≥ ν(R12(S)) and

by Lemma 11, we conclude that µt
1 6⊑R12

ν. As ν ∈ ∆ is arbitrary, this implies that

(t1, s2) 6∈ R12 and hence, T12 6� (L2, s2).

See Fig. 4.13 for an illustration of a counterexample. Now, in order to obtain an

algorithm for computing a tree counterexample from the proof of Theorem 10 above,

it remains to show how to compute a subset Sν
1 ⊆ Supp(µ) that acts as a witness for
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Figure 4.13: C is a counterexample to L1 � L2.

µ 6⊑R ν for distributions µ ∈ Dist(S1), ν ∈ Dist(S2) and R ⊆ S1 × S2. See Fig. 4.12

for an algorithm to compute such a witness subset which is analogous to finding a

subset failing Hall’s condition in Graph Theory and can easily be proved correct.

We have the following complexity result for computing counterexamples.

Theorem 11. Given LPTSes L1 and L2, deciding L1 � L2 and obtaining a tree coun-

terexample when conformance fails to hold takes O(mn6+m2n3) time and O(mn+n2)

space where n = max(|SL1
|, |SL2

|) and m = max(|τ1|, |τ2|).

Proof. It can be easily be seen that Algorithm 4.12 takes O(n3) time and O(n)

space which increases the complexity of checking µ1 ⊑R µ2 to O(n3) time and O(n2)

space (see Section 4.4 for an algorithm to decide ⊑R). The rest of the argument

is similar to that of the greatest fixed-point algorithm for computing the coarsest

strong simulation [17].

Note that the tree counterexample C to L1 � L2 constructed by the algorithm

in the proof of Theorem 10 is essentially a finite tree execution of L1. That is, one

can readily obtain a total mapping M : SC → S1, where SC is the set of states

of C, with the following property: for every transition c
a
−→ µc of C, there exists
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M(c)
a
−→ µ1 such that M is an injection when restricted to Supp(µc) and for every

c′ ∈ Supp(µc), µc(c
′) = µ1(M(c′)). One can easily show that M is also a strong

simulation. We call such a mapping an execution mapping from C to L1. Fig. 4.13

shows an execution mapping in brackets beside the states of C. Note also that,

in the inductive case of the proof of the above theorem, attaching trees to a state

s of C, using the inductive hypothesis, can result in multiple copies of the same

transition of L1 outgoing from s. This can, however, be avoided with additional

bookkeeping. This gives us the following corollary, which essentially says that we

can always obtain a counterexample without non-determinism as long as L1 does not

have non-determinism.

Corollary 2. If L1 is reactive and L1 6� L2, there exists a reactive counterexample.

While Theorem 10 shows that a tree counterexample always exists when simula-

tion conformance fails to hold, it is not immediately clear whether the tree structure

(multiple outgoing transitions from a state) is really necessary. The following lemma

shows that it is indeed necessary, in general.

Lemma 17. There exist reactive LPTSes R1 and R2 such that R1 6� R2 and no

counterexample is fully-probabilistic.

Proof. Consider the two reactive LPTSes R1 and R2 in Fig. 4.14. The states, actions,

and distributions of the LPTSes are labeled as in the figure. It is easy to see that

r11 6� r21, r11 6� r23, and r11 � r22. It follows that µ10({r11}) =
1
2
> µ20(� ({r11}) =

µ20({r22}) =
1
3

and hence, µ10 6⊑� µ20 (Lemma 11). Therefore, r10 6� r20 and hence,

R1 6� R2.

Let us assume, for the sake of contradiction, that there is a fully-probabilistic
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Figure 4.14: An example where there is no fully-probabilistic counterexample.

counterexample C and let its initial state be c0. Thus, C � R1 but C 6� R2. By

Definition 9 there exists a strong simulation U such that (c0, r10) ∈ U . Given that C

is a counterexample and is full-probabilistic, c0 has exactly one outgoing transition,

say c0
x
−→ µ0. Note that this transition must be labeled by x for it to be simulated

by R1. Let c1 be an arbitrary state in Supp(µ0). If c1 has any outgoing transitions,

it implies that (c1, r12) 6∈ U . Moreover, in that case, as µ0 ⊑U µ10, U must include

(c1, r11) and hence, the (only) transition from c1 must be labeled either y or z. So,

let c1
y
−→ µ1. Now, the only transition on y from r11 leads to the distribution µ110

and in order to have µ1 ⊑U µ110, every state in Supp(µ1) must be related to r13 by U

and hence, have no outgoing transitions. One can reach a similar conclusion if the

outgoing transition from c1 is on the action z instead.

To summarize our inferences about C, it must be a tree with exactly one transition

from the initial state c0, say c0
x
−→ µ0, such that for every state in Supp(µ0), there

can at most one transition, which can only be labeled either y or z and there are no

other transitions. Let Sy and Sz be the sets of states in Supp(µ0) with an outgoing

transition labeled by y and z, respectively. As µ0 ⊑U µ10, we have µ0(Sy ∪ Sz) ≤
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µ10(U(Sy ∪ Sz)) = µ10({r11}) =
1
2
, i.e., µ0(Sy ∪ Sz) ≤

1
2
.

Let V be the smallest binary relation between the states of C and R2 that satisfies

the following conditions. V relates the initial states c0 and r20. Let c be an arbitrary

state of C other than the initial state. If c has no outgoing transitions, V relates c

to every state of R2. If c has its transition labeled by y, V relates it to r21 and r22.

If c its transition labeled by z, V relates it to r22 and r23.

We show that µ0 ⊑V µ20. Let X ⊆ Supp(µ0) be arbitrary. If X includes a

state with no transitions, V (X) = S2, the set of all states of R2 and hence µ0(X) ≤

µ20(V (X)) = 1. Otherwise, X only has states with transitions labeled by either

y or z, i.e., X ⊆ Sy ∪ Sz, and by the observation made in the above paragraph,

µ0(X) ≤ 1
2

whereas µ20(V (X)) ≥ 2
3
. Thus, µ0(X) ≤ µ20(V (X)). This implies that

C � R2 which contradicts the assumption that C is a counterexample.

Thus, even if L1 does not have non-determinism, i.e., L1 is reactive, the above

theorem shows that a counterexample must have the tree structure (multiple transi-

tions outgoing from a state), in general. This is surprising, as the non-probabilistic

counterpart of a fully-probabilistic LPTS is a trace of actions and it is known that

trace inclusion coincides with simulation conformance between reactive (i.e., deter-

ministic) LTSes. On a related note, if L1 is allowed to have non-determinism, one

may ask if a reactive LPTS suffices as a counterexample to L1 � L2. That is not the

case either, as the following lemma shows.

Lemma 18. There exist an LPTS L and a reactive LPTS R such that L 6� R and

no counterexample is reactive.
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Figure 4.15: There is no reactive counterexample to L � R.

Proof. Consider the LPTS L and the reactive LPTS R in Fig. 4.15. The states,

actions, and distributions are labeled as in the figure. It is easy to see that µ110 6⊑�

µ23 and µ111 6⊑� µ21 whereas µ110 ⊑� µ21, µ22 and µ111 ⊑� µ22, µ23. It follows that

µ10({l11}) =
1
2
> µ20(� ({l11})) = µ20({r22}) =

1
3

and hence, µ10 6⊑� µ20. Therefore,

l10 6� r20 and hence, L 6� R.

Let us assume, for the sake of contradiction, that there is a reactive counterex-

ample C and let its initial state be c0. Similar to the arguments made in the proof

of Lemma 17, one can show that C must be a tree with exactly one transition from

the initial state, say c0
x
−→ µ0, such that for every state in Supp(µ0), there can be

at most one transition, which can only be labeled y (because l11 has transitions

only on y). Let c1 ∈ Supp(µ0) be such that c1
y
−→ µ1. It is also the case that all

transitions (if any) from a state in Supp(µ1) must be labeled by the same action,

which can only be either z or w. Let Sy denote the subset of states in Supp(µ0) with

outgoing transitions (which can only be labeled y). Then, one can also show that
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µ0(Sy) ≤ µ10({l11}) =
1
2
.

Let V be the smallest binary relation between the states of C and R that satisfies

the following conditions. V relates the initial states c0 and r20. Let c be an arbitrary

state of C other than the initial state. If c has no outgoing transitions, V relates c

to every state of R. If c has a transition labeled by either z or w, V relates it to all

states of R that have transitions labeled z or w, respectively. On the other hand, if c

has a transition labeled by y, say c
y
−→ µ, depending on whether the states in Supp(µ)

have transitions on z, w, or none, V relates c to r21 and r22, or r22 and r23, or to

all three of r21, r22 and r23. One can show that V is a strong simulation implying

C � R. This contradicts the assumption that C is a counterexample.

4.6 Composition of LPTSes

Parallel composition between LPTSes is defined in the usual way by means of syn-

chronization on common actions. As the transitions in LPTSes are probabilistic, we

need the notion of a product of two distributions that multiplies the probabilities

point-wise, defined as follows. Given two finite sets S and T , and two distributions

µ ∈ Dist(S) and ν ∈ Dist(T ), the product of µ and ν, denoted µ⊗ν, is a distribution

over S × T such that (µ⊗ ν)(s, t) = µ(s)× ν(t) for every s ∈ S and t ∈ T .

Definition 12 (Composition [102]). Let L1 = 〈S1, s
0
1, α1, τ1〉 and L2 = 〈S2, s

0
2, α2, τ2〉

be two LPTSes. The parallel composition of L1 and L2, denoted L1 ‖ L2, is defined

as the LPTS 〈S, s0, α, τ〉, where S = S1 × S2, s
0 = (s01, s

0
2), α = α1 ∪ α2, and

((s1, s2), a, µ) ∈ τ iff one of the following holds:
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1. µ = µ1 ⊗ µ2 for some transitions s1
a
−→ µ1 and s2

a
−→ µ2 (a is common)

2. a 6∈ α2 and µ = µ1 ⊗ δs2 for some transition s1
a
−→ µ1 (a is local to L1)

3. a 6∈ α1 and µ = δs1 ⊗ µ2 for some transition s2
a
−→ µ2 (a is local to L2)

For example, in Fig. 4.16, L = L1 ‖ L2. We have the following useful property.

Lemma 19 ([102]). � is compositional. That is, let L1 = 〈S1, s
0
1, α1, τ1〉 and L2 =

〈S2, s
0
2, α2, τ2〉 be two LPTSes such that L1 � L2 and α2 ⊆ α1. Then, for every LPTS

L, L1 ‖ L � L2 ‖ L.

Proof. Let L1, L2 and L be as in the statement and let L = 〈SL, s
0
L, αL, τL〉. So,

by Definition 9, there exists a strong simulation R12 ⊆ S1 × S2 such that (s01, s
0
2) ∈

R12. Consider the relation R = {((s1, s), (s2, s)) | s1R12s2 and s ∈ SL}. Clearly,

(s01, s
0
L)R(s

0
2, s

0
L). It suffices to show that R is a strong simulation between L1 ‖ L

and L2 ‖ L.

Let (s1, s)R(s2, s) and (s1, s)
a
−→ µa be arbitrary for some action a ∈ α1 ∪ αL. By

definition of R, s1R12s2. By Definition 12, there are three cases to analyze.

s1
a
−→ µ1, s

a
−→ µ and µa = µ1⊗ µ : As s1R12s2 and R12 is a strong simulation, there

exists a transition s2
a
−→ µ2 with µ1 ⊑R12

µ2. By Definition 12, (s2, s)
a
−→ µ′

a
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where µ′
a = µ2 ⊗ µ. Let X ⊆ Supp(µa). For each s ∈ SL, define X1

s = {t1 |

(t1, s) ∈ X}. We have

µa(X) =
∑

s∈SL

µa(X
1
s × {s})

=
∑

s∈SL

µ1(X
1
s ) · µ(s) {definition of µa}

≤
∑

s∈SL

µ2(R12(X
1
s )) · µ(s) {R12 is a strong simulation}

=
∑

s∈SL

µ′
a(R12(X

1
s )× {s}) {definition of µ′

a}

=
∑

s∈SL

µ′
a(R(X

1
s × {s})) {definition of R}

= µ′
a(
⋃

s∈SL

R(X1
s × {s})) {the sets R(X1

s × {s}) are disjoint}

= µ′
a(R(

⋃

s∈SL

X1
s × {s}))

= µ′
a(R(X)).

As X is arbitrary, it follows from Lemma 11 that µa ⊑R µ
′
a.

a 6∈ α1, s
a
−→ µ and µa = δs1⊗µ : As α2 ⊆ α1, a 6∈ α2 and by Definition 12, (s2, s)

a
−→

µ′
a with µ′

a = δs2 ⊗ µ. Now, let X ⊆ Supp(µa) and let X2 = {t | (s1, t) ∈ X}.

We have µa(X) = µ(X2) = µ′
a({s2} ×X2) = µ′

a(R(X)) and hence, µa ⊑R µ
′
a.

s1
a
−→ µ1, a 6∈ αL and µa = µ1 ⊗ δs : As s1R12s2 and R12 is a strong simulation,

there exists s2
a
−→ µ2 with µ1 ⊑R12

µ2. Now, let X ⊆ Supp(µa) and let X1 =

{t1 | (t1, s) ∈ X}. We have µa(X) = µ1(X1) ≤ µ2(R12(X1)) = µ′
a(R(X)) and
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hence, µa ⊑R µ
′
a.

Hence, R is a strong simulation. Therefore, L1 ‖ L � L2 ‖ L.

Finally, we show the soundness and completeness of the assume-guarantee infer-

ence rule ASym mentioned in Chapter 1, reproduced below. Here, L1, L2, A, and P

are all LPTSes.

1 : L1 ‖ A � P 2 : L2 � A

L1 ‖ L2 � P

(ASym)

The rule is sound if the conclusion holds whenever the premises hold for some

assumption LPTS A, and the rule is complete if there is an assumption A satisfying

the premises whenever the conclusion holds.

Theorem 12. If αA ⊆ α2, the rule ASym is sound and complete.

Proof. Soundness follows from Lemma 19. Completeness follows trivially by replac-

ing A with L2.
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Chapter 5

Active Learning for

Simulation Conformance

5.1 Introduction

We have seen in Chapter 4 that strong simulation conformance between two Labeled

Probabilistic Transition Systems (LPTSes) is decidable in polynomial time. How-

ever, as mentioned in Chapter 1, when an LPTS L is the parallel composition of

multiple components, we encounter the state-space explosion problem for checking

conformance with a specification LPTS P . To address this problem, we follow the

assume-guarantee paradigm [98] for compositional reasoning. In particular, we focus

on the following assume-guarantee inference rule, which we have shown to be sound

and complete (see Chapter 4):
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1 : L1 ‖ A � P 2 : L2 � A

L1 ‖ L2 � P

(ASym)

In other words, in order to show that a probabilistic system composed of two par-

allel components L1 and L2 conforms to a specification P , it suffices to come up with

a (preferably small) assumption A about L2 which can be used in its place to show

the conformance together with L1. In this chapter, we study iterative algorithms for

learning a small assumption A, given L1, L2, and P , from counterexamples to the

premises.

In the context of non-probabilistic systems, several algorithms exist for compo-

sitional verification that are based on learning the intermediate assumptions from

samples generated dynamically. In particular, algorithms for compositional verifica-

tion of trace inclusion [33, 99] and simulation conformance [31] have been studied

that are based on learning from traces [14, 96] and trees [31], respectively. These

algorithms are essentially adaptations of active learning [14] algorithms for inferring

an unknown target system from samples, to the compositional setting. An active

learning framework typically has two entities – a learner which tries to learn the

unknown target and a teacher which guides the learner by giving new information in

terms of samples. The teacher, typically, can answer two types of queries – member-

ship (of a sample in the unknown target) and equivalence (between the conjectured

model and the unknown target) [14]. The learner terminates when an equivalence

query is answered positively by the teacher. In the context of assume-guarantee style
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compositional reasoning, the unknown target corresponds to a sufficient assumption

in the inference rule and the teacher answers the queries by checking the premises of

the rule [99].

However, compositional reasoning for probabilistic systems has not been studied

well in the literature. In particular, no algorithms are known (based on learning

or otherwise) for compositional verification of simulation conformance. For non-

probabilistic systems, simulation conformance between two labeled transition sys-

tems (LTSes) reduces to tree language inclusion and there exists an adaptation of

an active learning algorithm for deterministic tree automata to the compositional

setting [31]. Now, in the probabilistic setting, we have seen in Chapter 4 that a

counterexample to strong simulation between LPTSes is a stochastic tree. So, we

can similarly define a stochastic tree language such that strong simulation reduces to

inclusion between stochastic tree languages. However, while there exist techniques

for learning from samples consisting of (non-stochastic) trees with information re-

garding the probability of acceptance [28], we are not aware of any prior algorithms

for learning from stochastic trees. Moreover, we are also not aware of a probabilistic

variant of a tree automaton to recognize stochastic tree languages. This motivated

us to consider learning an LPTS directly from stochastic tree samples, as opposed to

inventing stochastic tree automata and casting the verification problem in automata-

theoretic terms.

In our context of active learning, an equivalence query corresponds to asking

whether a conjecture C is strong simulation equivalent to T , i.e., whether C � T

and T � C. So, when the equivalence check fails for a conjecture C, a counterexample
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LearnLPTS()
P := ∅, N := ∅ // initialize positive and negative tree samples

while true do

L := FindConsistent(P,N ) // see Section 5.2

(res , cex ) := CheckConjecture(L) // ask teacher

if res is yes then

// L is equivalent to target

return L

else if res is positive then

// L does not simulate target, witnessed by cex

P := P ∪ {cex}

else if res is negative then

// target does not simulate L, witnessed by cex

N := N ∪ {cex}

Figure 5.1: Active learning loop for inferring an LPTS using only equivalence queries.

can be of two kinds. If T 6� C, then a counterexample tree t satisfies t � T but

t 6� C and we call it a positive sample. On the other hand, if C 6� T , then a

counterexample tree t satisfies t � C but t 6� T and we call it a negative sample.

Now, a membership query would correspond to asking whether a stochastic tree t

is simulated by the unknown target LPTS T , i.e., whether t � T . However, we

observe that such a membership query is challenging to create as the learner would

need to guess not only the tree structure but also the transition probabilities. For

this reason, we restrict the learning framework such that a teacher can only answer

equivalence queries.

Fig. 5.1 shows the pseudo-code of our active learning framework LearnLPTS.

The learner maintains a set of positive and negative tree samples. In each iteration,

it infers an LPTS L consistent with all the samples, i.e., L simulates all the positive

samples and none of the negative samples, and conjectures L to the teacher. If the
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teacher finds L to be equivalent to the target, it returns yes, and otherwise, it returns

a new positive or a new negative sample.

We first describe algorithms for FindConsistent, i.e., for inferring an LPTS

consistent with a given set of positive and negative samples, in Section 5.2. Given

the ultimate objective of inferring a small assumption in the rule ASym, our main

interest is in learning consistent LPTSes of small size. To this end, our algorithms

employ two different ways of partitioning the state-space of the counterexamples.

We then describe the convergence guarantees of LearnLPTS in Section 5.3. In

particular, we show that there is no converging learning algorithm in the presence

of an adversarial teacher, but there exists a converging algorithm under a natural

assumption on the teacher. We also discuss how convergence is affected when the

consistent LPTS in each iteration is required to have the minimal number of states.

Finally, in Section 5.4, we describe how active learning is adapted for compositional

reasoning and discuss the complexity guarantees.

5.2 Learning a Consistent LPTS

Assume that we are given a finite set of positive stochastic tree samples, say P , and

another finite set of negative stochastic tree samples, say N . We are interested in

learning an LPTS L such that P � L for every P ∈ P and N 6� L for every N ∈ N .

Such an L is said to be consistent with the given tree samples. Note that the LPTS

obtained by merging the start states of all trees in P , denoted LP , can be easily

shown to satisfy P � LP for every P ∈ P . If P = ∅, we let LP to be the single-state
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LPTS with no transitions. Now, if L is an arbitrary consistent LPTS, one can also

show that LP � L and hence, by Lemma 13, LP will also be consistent. Thus, one

can check, in polynomial time, whether there exists a consistent LPTS by checking

N � LP for every N ∈ N . However, the size of LP is equal to the combined size

of all trees in P . So, the question we want to address is whether we can find small

consistent LPTSes.

As mentioned earlier, given our ultimate objective of learning small assumptions

for compositional reasoning, we are interested in learning a consistent LPTS of a

small size, preferably the smallest. To that effect, we describe algorithms that ob-

tain a folding of the tree-shaped LP into a consistent LPTS. The algorithms we

propose draw inspiration from state-space partitioning techniques for obtaining con-

sistent automata from counterexample traces [27, 58, 67, 97]. Let SP =
⋃

P∈P SP

and SN =
⋃

N∈N SN where SL denotes the set of states of an LPTS L. First, we

consider an algorithm based on traditional state-space partitioning of SP . While this

approach does reduce the number of states in the inferred consistent LPTS, it does

not guarantee minimality in terms of the number of states. Nevertheless, as we will

see in Section 5.3, we find it useful for the learning loop in LearnLPTS (Fig. 5.1)

to converge. We will then introduce a new stochastic state-space partitioning which

enables us to obtain a minimal consistent LPTS.

5.2.1 Using State-Space Partitioning

We first describe an algorithm based on traditional state-space partitioning of SP . A

partition of a set X is a set of non-empty subsets of X such that every element of X
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is in exactly one of the subsets. A partition Π of X induces an equivalence relation

which relates two elements iff they are in the same subset, i.e., the equivalence

classes under the equivalence relation are nothing but the subsets in the partition.

For a partition Π of SP and a state s ∈ SP , we let [s]Π denote the equivalence

class of s. Throughout this section, we assume that the start states of all positive

samples (P) are in the same equivalence class, i.e., [s0P ]Π = [s0Q]Π for every P,Q ∈ P .

Given a partition Π, one can obtain a quotient LPTS where the states correspond

to the equivalence classes and the distributions of the transitions of P are lifted to

distributions over equivalence classes:

Definition 13 (Quotient LPTS). Given a partition Π of SP , the quotient of P,

denoted P/Π, is the LPTS 〈Π, e0, α, τ〉 where e0 = [s0P ]Π for every P ∈ P, α =

⋃

P∈P αP and (e, a, µ) ∈ τ iff there exists (s, a, µp) ∈ τP for some P ∈ P with

[s]Π = e and µp is lifted to Π to obtain µ, i.e., µ(e′) =
∑

s′∈e′ µp(s
′) for all e′ ∈ Π.

We use liftΠ(µp) to denote the lifting of µp to the partition Π.

It is straightforward to show that a quotient is a well-defined LPTS, i.e., the

liftings of the distributions of P are well-defined distributions over equivalence classes.

The following lemma shows that a quotient simulates every positive sample.

Lemma 20. Let Π be a partition of SP . Then, P � P/Π for every P ∈ P.

Proof. Let P ∈ P and let P = 〈SP , s
0
P , αP , τP 〉. To show that P � P/Π, consider

the binary relation R = {(s, [s]Π) | s ∈ SP}. Note that the start state of P/Π is

[s0P ]Π and hence, the start states of P and P/Π are related by R. It suffices to show

that R is a strong simulation.

Let s ∈ SP and s
a
−→ µp be arbitrary. By definition, there exists a transition
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Figure 5.2: Example stochastic trees, divided into a positive sample (P ) and 3 negative samples
(Na, Nb, N

β,γ
c ), for active learning.

[s]Π
a
−→ µ in P/Π where µ(e) = µp(e) for all e ∈ Π. It suffices to show that µp ⊑R µ.

Let S ⊆ Supp(µp). We have,

µp(S) =
∑

e∈Π

µp(S ∩ e) {Π is a partition}

≤
∑

e∈Π,S∩e 6=∅

µp(e)

=
∑

e∈R(S)

µp(e) {definition of R}

=
∑

e∈R(S)

µ(e) {definition of µ}

= µ(R(S)).

As S is arbitrary, it follows from Lemma 11 that µp ⊑R µ. We conclude that R

is a strong simulation.
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1 − λ
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H1 Hλ

t1
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Figure 5.3: Quotients for least size partition (H1) and stochastic partition (Hλ) of P in Fig. 5.2.

If the quotient LPTS is also consistent, i.e., does not simulate any negative sam-

ple, we call the partition a consistent partition. For example, Fig. 5.2 shows a positive

sample P and 3 negative samples Na, Nb, and Nβ,γ for some β, γ ∈ (0, 1]. For these

samples, H1 in Fig. 5.3 is a consistent quotient LPTS obtained from the partition

{{s1}, {s2}, {s3, s4}} of SP . The following lemma shows that one can bound the

number of states of a consistent LPTS obtained using the partitioning approach.

Lemma 21. If L is an LPTS of k states that simulates all samples in P, then there

exists a partition Π of SP of size at most 2k such that P/Π � L.

Proof. Let P ∈ P . Let P = 〈SP , s
0
P , αP , τP 〉 and L = 〈SL, s

0
L, αL, τL〉. We know

that P � L. That is, there exists a strong simulation RP ⊆ SP × SL with s0PRP s
0
L.

As P is a tree, s0P is not in the support of any distribution and hence, RP (s
0
P ) does

not affect whether RP is a strong simulation or not. So, without loss of generality,

assume that RP (s
0
P ) is the singleton {s0L}. Let R =

⋃

P∈P RP . Now, R induces an

equivalence relation E over SP such that s1Es2 iff R(s1) = R(s2). Let Π be the

partition corresponding to E. Note that [s0P ]Π = [s0Q]Π for P,Q ∈ P , satisfying our
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assumption on a partition that the start states of all samples in P are in the same

equivalence class. The size of Π is clearly bounded by 2k.

In order to show P/Π � L, consider the binary relation R′ = {([sp]Π, sl) |

spRsl, sp ∈ SP , sl ∈ SL} between the states of P/Π and L. Clearly, R′ relates

the start state of P/Π, say s0P/Π, with s0L, as s0PRs
0
L for every P ∈ P . It suffices to

show that R′ is a strong simulation.

Let eR′sl and e
a
−→ µ be arbitrary. By Definition 13, there exists sp ∈ SP and

µp ∈ Dist(SP) with [sp]Π = e, sp
a
−→ µp and µ(e′) = µp(e

′) for all e′ ∈ E. Furthermore,

by the definitions of R′ and Π, spRsl. As R is a strong simulation, there exists

µl ∈ Dist(SL) such that sl
a
−→ µl and µp ⊑R µl. Let E ′ ⊆ Supp(µ). Now,

µ(E ′) =
∑

e′∈E′

µ(e′)

=
∑

e′∈E′

µp(e
′)

=
∑

e′∈E′

µp({s ∈ SP | [s]Π = e′})

=µp({s ∈ SP | [s]Π ∈ E
′})

≤µl(R({s ∈ SP | [s]Π ∈ E
′})) {µp ⊑R µl}

=µl(
⋃

e′∈E′

R({s ∈ SP | [s]Π = e′}))

=µl(
⋃

e′∈E′

R′(e′)) {Def. of R′}

=µl(R
′(E ′)).
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As E ′ is arbitrary, it follows from Lemma 11 that µ ⊑R′ µl. We conclude that R′

is a strong simulation.

Note that, if L and every P ∈ P is non-probabilistic (i.e., an LTS), then one

can always choose the strong simulation RP in the above proof to be a function and

the bound in the above lemma goes down to k. The following is immediate, using

Lemmas 13 and 20.

Corollary 3. For every consistent LPTS of k states, there is a consistent partition

of size at most 2k.

In other words, the state-space partitioning approach for learning a consistent

LPTS can be at most exponentially worse, in terms of the number of states. While

this is only an upper bound, we can also show that this approach cannot guarantee

minimality in general. To see this, Hλ in Fig. 5.3, for any λ ∈ (0, 1), is also a

consistent LPTS for the samples in Fig. 5.2 with one less state when compared to

H1, the smallest LPTS one can obtain using state-space partitions. This is surprising

at first, as it is well known for non-probabilistic systems and trace counterexamples

that there always exists a consistent partition of the least number of states [67, 96].

Algorithm

A naïve algorithm for finding a least-sized consistent partition is to enumerate all the

partitions of SP for increasing values of the size, and for each of them, check if the

corresponding quotient simulates any tree in N . Alternatively, in the case where all

the probabilities involved are rational, we can utilize the efficient solvers that exist

today for satisfiability modulo theories (SMT), and in particular, for the theory of
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EncodeConsisPartition(P,N , k)
1 introduce Boolean variables Πs,i to denote [s]Π = eΠi for (s, i) ∈ SP × {1, . . . , k}
2 for s ∈ SP do

3 AddCons(xor(Πs,1, . . . ,Πs,k))

4 for P ∈ P do

5 AddCons(Πs0
P
,1)

6 for N ∈ N do

// encode N 6� P/Π
7 EncodeNotSim(N,P,Π, k)

Figure 5.4: SMT encoding for a consistent partition of size k for samples P and N .

linear rational arithmetic, as shown below. We expect this to be more efficient than

an exhaustive search, in practice. Moreover, this prepares the ground for an optimal

algorithm we discuss in the next subsection.

As mentioned at the beginning of the section, we can easily check if there exists

a consistent LPTS by merging the start states of all positive samples to obtain LP

and checking if LP is consistent. If there exists a consistent LPTS, we can search for

the smallest consistent partition by iteratively checking if there exists a consistent

partition of size k, for increasing values of k. For a given k, we encode the existence

of a consistent partition of size k as an SMT problem using EncodeConsisPar-

tition(P ,N , k) in Fig 5.4. Here, we introduce Boolean variables Πs,i to denote

[s]Π = eΠi for some partition Π = {eΠ1 , . . . , e
Π
k } of size k. The constraints added on

lines 3 and 5 essentially encode that the partition Π is well-defined, i.e., each state

s ∈ SP belongs to exactly one element of the partition and the start states of all

samples in P belong to the same equivalence class eΠ1 , respectively.

For Π to be consistent, we need to encode that no sample in N is simulated by
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EncodeNotSim(N,P,Π, k)
1 introduce Boolean variables Rsn,i to denote (sn, e

Π
i ) ∈ R ⊆ SN ×Π

2 introduce Boolean variables relµn,µp to denote µn ⊑R liftΠ(µp)
3 for every (s, i) ∈ SN × {1, . . . , k} do

4 AddCons(Rsn,i ⇐⇒
∧

{(a,µn)|sn
a
−→µn}

∨

{(sp,µp)|sp∈SP ,sp
a
−→µp}

(

Πsp,i ∧ relµn,µp

)

)

5 for every relµn,µp do

6 EncodeDistRel(µn, liftΠ(µp), R, relµn,µp)

7 AddCons(¬Rs0
N
,1)

Figure 5.5: SMT encoding for N 6� P/Π.

the quotient P/Π (line 7). A naïve encoding introduces a universal quantification

over all possible strong simulations to say that no strong simulation relates the start

states of a sample in N and P/Π. We can avoid this by using the characterization of

� in Lemma 14 for trees, as shown in Fig. 5.5. Here, we introduce Boolean variables

Rsn,i to denote snReΠi for the coarsest strong simulation R between the tree N and

P/Π and relµn,µp
to denote µn ⊑R liftΠ(µp) for distributions µn ∈ Dist(SN) and µp ∈

Dist(SP). The constraints added on line 4 essentially encode the characterization

of � in Lemma 14. In words, snReΠi holds iff for every transition sn
a
−→ µn, there

exists some transition sp
a
−→ µp in P on the same action a such that sp belongs to

the equivalence class eΠi and the lifting of µp is related to µn. The constraint on

line 7 encodes that the coarsest strong simulation does not relate the start states of

N and P/Π. Finally, we encode the constraints on the variables relµn,µp
as described

in Chapter 4 (See Fig. 4.10). This needs us to encode the lifting liftΠ(µp) of a

distribution µp to Π, which we do as follows.

Given µp ∈ Dist(SP) and an equivalence class eΠi , liftΠ(µp)(e
Π
i ) can be encoded
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as
∑

s∈Supp(µp)
ℓµp,i,s where ℓµp,i,s is a rational variable denoting the contribution of

s towards the probability of the equivalence class eΠi in the lifted distribution, for

which we add the constraints:

(Πs,i =⇒ ℓµp,i,s = µp(s)) ∧ (¬Πs,i =⇒ ℓµp,i,s = 0).

The following is immediate.

Lemma 22. There exists a consistent partition of size k for samples P and N iff

the constraints resulting from EncodeConsisPartition(P ,N , k) are satisfiable.

5.2.2 Using Stochastic State-Space Partitioning

Consider again the positive and negative tree samples in Fig. 5.2. As mentioned in

the previous subsection, H1 in Fig. 5.3 is the smallest (w.r.t. the number of states)

consistent LPTS that can be obtained using the state-space partitioning approach,

but Hλ in the figure is also consistent with one less state. We can also show that

there is no consistent LPTS with fewer states than Hλ – in order to simulate the

positive sample, an LPTS with a single state should have self loops on all 3 actions

which would then simulate all the negative samples as well. To be able to fold the

positive sample P into Hλ, we need a way to group the states of P such that there is

a one-to-one correspondence between the states and the transitions of the folding and

Hλ. As we have seen with the above example, the state-space partitioning approach

does not guarantee that and Lemma 21 shows an exponential upper bound on the

number of states of the resulting folding. In this subsection, we will describe an
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λ

Figure 5.6: LPTS obtained by splitting s2 of P in Fig. 5.2 into s21 and s22.

alternative approach for folding the states to obtain consistent LPTSes of the least

number of states.

We start with a high level description of the approach using the above mentioned

example. Let R be a strong simulation between the positive sample P (Fig. 5.2) and

Hλ (Fig. 5.3). Let the states of the LPTSes be labeled as shown in the figures. It is

not hard to show that R must relate s2 to both t1 and t2 in order for the transition

on a in P to be simulated by Hλ. Now, consider the LPTS P ′ in Fig. 5.6 obtained

from P by splitting s2 into two states s21 and s22 such that the transition from s1

on action a leads to s21 with probability 1 − λ and s22 with probability λ. We can

easily show that P is simulation equivalent to P ′ (i.e., P � P ′ and P ′ � P ) and

so, we can consider P ′ as the positive sample, instead of P . But, more importantly,

we can now obtain a partition Π′ = {{s1, s21}, {s22, s3, s4}} of the state-space of P ′

whose quotient is exactly Hλ.

Alternatively, the above state splitting can be understood in the following way, in

terms of the state-space of P . For each state of P , we assign a probability distribution
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over a finite set, whose elements we call groups, as opposed to assigning a unique

equivalence class in the case of a partition. For example, corresponding to the state

splitting mentioned above, we have two groups, say g1 and g2, where s2 is assigned the

distribution which has probability 1−λ for g1 and probability λ for g2, s1 is assigned

the distribution δg1 , and s3 and s4 are assigned the distribution δg2 . In general, the

distribution associated with a state (in other words, the splitting of a state) in the

positive sample depends on the current group (in other words, the current split) of

its parent. We formalize these ideas as a stochastic partition of SP , defined below.

For s ∈ SP , we write par(s) to denote the unique parent of s.

Definition 14 (Stochastic Partition). A stochastic partition Π of SP is a tuple

〈G, g0, D〉 where G is a finite set whose elements are called groups, g0 ∈ G, and

D : S → (G ⇀ Dist(G)), such that the following hold. Let s ∈ SP and g ∈ G be

arbitrary.

1. if s is a start state, D(s)(g) = δg0, and

2. if s is a not a start state, D(s)(g) is defined iff g ∈ Supp(D(par(s))(h)) for

some h ∈ G.

We write [s]Π to denote the distribution map D(s). When Π is clear from the context,

we drop the subscript. For convenience, we write s ∈ g to denote g ∈ Supp(D(s)(h))

for some h ∈ G and we sometimes confuse g with the set of all states s such that

s ∈ g.

Intuitively, a distribution assigned to a state s by a stochastic partition specifies

how s and its incoming transitions are split which depends on how its parent was

split. To see how to fold the positive samples, given a stochastic partition, we need
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to define its quotient, analogous to the quotient of a partition. Note that, for a

state s and a group g, [s]Π(g) is not always defined. For convenience, we extend [s]Π

into a total function by letting [s]Π(g)(h) = 0 for every group h, whenever [s]Π(g) is

undefined.

Definition 15 (Quotient LPTS). Given a stochastic partition Π = 〈G, g0, D〉 of SP ,

the quotient of Π, denoted P/Π, is the LPTS 〈G, g0, α, τ〉 where α =
⋃

P∈P αP and

(g, a, µ) ∈ τ iff there exists (s, a, µp) ∈ τP for some P ∈ P with s ∈ g and µp is lifted

to Π to obtain µ as follows: for every g′ ∈ G,

µ(g′) =
∑

s′∈g′

([s′]Π(g)(g
′) · µp(s

′)) .

We write liftΠ,g(µp) to denote the lifting of µp to Π.

In other words, given s a
−→ µp, the lifting of µp assigns a probability to a group g′

that is equal to the sum of the probabilities of all states under µp weighted by the

probabilities of them being assigned to g′ under Π. Moreover, this is in the context

of the parent s being assigned to a group g. For instance, consider the transition

s1
a
−→ δs2 of the positive sample P in the above example. Note that g1 = {s1, s2} and

moreover, g1 is the only group containing s1. The probability of g1 under the lifting

of the distribution of this transition is obtained as

∑

s∈g1

([s](g1)(g1) · δs2(s)) = [s1](g1)(g1) · δs2(s1) + [s2](g1)(g1) · δs2(s2)

= 0 + (1− λ) · 1

= 1− λ
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Similarly, one can obtain the probability of g2 under the lifting as λ. After lifting

all the transitions of P in this way, one can see that the quotient is essentially Hλ

where t1 and t2 in Fig. 5.3 correspond to g1 and g2, respectively.

Before moving on, we show that the quotient is a well-defined LPTS, i.e., the

lifting of a distribution to a stochastic partition is a well-defined distribution over its

groups.

Lemma 23. Let Π be a stochastic partition of SP . Then, P/Π is a well-defined

LPTS.

Proof. Let G be the set of groups of Π and let g a
−→ µ be a transition of P/Π. It

suffices to show that µ ∈ Dist(G). From Definition 15, there exists s a
−→ µp for s ∈ SP

such that s ∈ g and µ = liftΠ,g(µp). Now,

∑

g′∈G

µ(g′) =
∑

g′∈G

∑

s′∈g′

([s′](g)(g′) · µp(s
′))

=
∑

s′∈SP



µp(s
′) ·

∑

{g′|s′∈g′}

[s′](g)(g′)





=
∑

s′∈SP



µp(s
′) ·

∑

g′∈Supp([s′](g))

[s′](g)(g′)



 {Definition 14}

=
∑

s′∈SP

µp(s
′) {[s′](g) ∈ Dist(G)}

= 1 {µp ∈ Dist(SP)}

We have the following lemma analogous to state partitions.
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Lemma 24. Let Π be a stochastic partition of SP . Then, P � P/Π for every P ∈ P.

Proof. Let Π = 〈G, g0, D〉 and let P = 〈SP , s
0
P , αP , τP 〉 be a sample in P . Consider

the relation R = {(s, g) | g ∈ G, s ∈ SP ∩ g}. By Definition 14, s0PRg
0. To show

P � P/Π, it suffices to show that R is a strong simulation.

Let sRg and s
a
−→ µp. As s ∈ g, by Definition 15, g a

−→ µ where µ = liftΠ,g(µp).

We will now show that µp ⊑R µ. Let S ⊆ Supp(µp). We have

µp(S) =
∑

s′∈S

µp(s
′)

=
∑

s′∈S

∑

{g′|s′∈g′}

([s′](g)(g′) · µp(s
′)) {[s′](g) ∈ Dist(G)}

=
∑

g′∈G

∑

s′∈S∩g′

([s′](g)(g′) · µp(s
′))

=
∑

g′∈R(S)

∑

s′∈S∩g′

([s′](g)(g′) · µp(s
′)) {Definition of R}

≤
∑

g′∈R(S)

∑

s′∈g′

([s′](g)(g′) · µp(s
′))

=
∑

g′∈R(S)

µ(g′) {Definition 15}

= µ(R(S))

So, by Lemma 11, µp ⊑R µ. As s a
−→ µp is arbitrary, we conclude that R is a

strong simulation.
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We will now show that stochastic partitioning results in consistent LPTSes of the

least number of states.

Lemma 25. If L is an LPTS of k states that simulates all samples in P, then there

exists a stochastic partition Π of SP of k groups with P/Π � L.

Proof. Let P ∈ P . Let P = 〈SP , s
0
P , αP , τP 〉 and L = 〈SL, s

0
L, αL, τL〉. We know that

P � L. That is, there exists a strong simulation RP ⊆ SP × SL with s0PRP s
0
L. Now,

let R =
⋃

P∈P RP . Let sp ∈ SP and sl ∈ SL. We assume a choice function Witness

that given a pair (sp
a
−→ µp, sl) with spRsl, outputs (µl, w) such that sl

a
−→ µl and w

is a weight function witnessing µp ⊑R µl according to Definition 8. Such a choice

function always exists given that R is a strong simulation.

Let sp ∈ SP for some P ∈ P . We define the depth of sp as its distance from

the start state s0P . We define a stochastic partition Π = 〈G, g0, D〉 where there is

a one-to-one correspondence γ between SL and G such that γ(s0L) = g0 and D is

defined as follows by induction on the depth of a state sp ∈ SP . Using the same

induction, we also show the following properties. Let sl ∈ SL and g ∈ G.

1. sp ∈ γ(sl) iff spRsl holds,

2. there exists an h ∈ G such that sp ∈ h,

3. if sp is a start state, D(sp)(g) = δs0
L
, and

4. if sp is not a start state, D(sp)(g) is defined iff par(sp) ∈ g.

In the base case, sp is a start state and we define D(sp)(g) to be the Dirac

distribution δs0
L

for every g ∈ G. It is easy to see that the 4 properties mentioned

above are satisfied for sp.
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In the inductive case, there is a unique transition par(sp)
a
−→ µp such that sp ∈

Supp(µp). Let g ∈ G be arbitrary such that par(sp) ∈ g and let g = γ(tl). Such

a group g is guaranteed to exist by inductive hypothesis. We now define D(sp)(g)

for every such group g. Note also that, by inductive hypothesis, par(sp)Rtl. Let

Witness(par(sp)
a
−→ µp, tl) = (µl, w). Then, we know that tl

a
−→ µl and the weight

function w witnesses µp ⊑R µl. We then define D(sp)(g) to be a distribution µ ∈

Dist(G) such that µ(γ(sl)) = w(sp, sl)/µp(sp) for every sl ∈ SL. It follows from

Definition 8 that
∑

sl∈SL
µ(γ(sl)) =

∑

sl∈SL
(w(sp, sl)/µp(sp)) = 1 and hence, µ is

well-defined. It is also easy to see that the 4 properties mentioned above are satisfied

for sp.

The 4 properties mentioned above immediately imply that Π is a well-defined

stochastic partition, i.e., Π satisfies all the requirements of Definition 14.

We will now show that P/Π � L. Consider the binary relation R′ = {(g, sl) |

g = γ(sl)}. Clearly, (g0, s0L) ∈ R
′ by construction of Π. It suffices to show that R′ is

a strong simulation between P/Π and L.

Let (g, sl) ∈ R′ and g
a
−→ µ. Then, there exists sp ∈ g such that sp

a
−→ µp and

µ = liftΠ,g(µp). By construction of Π, we know that spRsl. Let Witness(sp
a
−→ µp, sl)

output (µl, w) such that sl
a
−→ µl and w is a weight function witnessing µp ⊑R µl. We

will show that µ ⊑R′ µl. Let g′ ∈ Supp(µ) and g′ = γ(s′l). We have,

µ(g′) =
∑

s′∈g′

([s′](g)(g′) · µp(s
′))

=
∑

s′∈γ(s′
l
)

(D(s′)(g)(γ(s′l)) · µp(s
′)) {notation}
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=
∑

s′∈γ(s′
l
)

w(s′, s′l) {construction of Π}

=
∑

s′Rs′
l

w(s′, s′l) {property 1 above}

= µl(s
′
l) {Definition 8}

= µl(R
′(g′))

As g′ is arbitrary, it follows from Lemma 11 that µ ⊑R′ µl. We conclude that R′ is

a strong simulation.

The basic intuition behind the above lemma is that one can associate a group

with each state in SL and the weight/flow function that witnesses µp ⊑R µl for

µp ∈ Dist(SP ) and µl ∈ Dist(SL) identifies a splitting of the probabilities under

µp to the states in Supp(µl) ⊆ SL. This splitting can then be used to define the

distributions of a stochastic partition whose quotient is also consistent.

Our main result is immediate, using Lemmas 13 and 24. As in the case of parti-

tions, we say that a stochastic partition Π is consistent iff P/Π is consistent.

Corollary 4. For every consistent LPTS of k states, there is a consistent stochastic

partition of k groups.

Algorithm

As in the previous subsection, we can search for a consistent stochastic partition

of the least size by iteratively checking if there exists a consistent stochastic parti-

tion of size k, for increasing values of k. Assuming that all probabilities involved
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EncodeConsisStochPartition(P,N , k)
1 introduce non-negative rational variables Πs,i,j to denote [s]Π(g

Π
i )(g

Π
j ) for

(s, i, j) ∈ SP × {1, . . . , k} × {1, . . . , k}
2 for s ∈ SP and 1 ≤ i ≤ k do

// [s]Π(gi) is either well-defined or undefined

3 AddCons(
(

∑

1≤j≤k Πs,i,j = 1
)

∨
(

∑

1≤j≤k Πs,i,j = 0
)

)

4 for P ∈ P and 1 ≤ i ≤ k do

// Condition 1 of Definition 14

5 AddCons(Πs0
P
,i,1 = 1)

6 for every non-start state s ∈ SP and 1 ≤ i ≤ k do

// Condition 2 of Definition 14

7 AddCons(
∑

1≤j≤k Πs,i,j = 1 ⇐⇒
∑

1≤j≤k Πpar(s),j,i > 0)

8 for N ∈ N do

// encode N 6� P/Π
9 EncodeNotSim(N,P,Π, k)

Figure 5.7: SMT encoding for a consistent stochastic partition of size k for samples P and N .

are rational, we can again encode each iteration as an SMT problem using Encode-

ConsisStochPartition(P ,N , k) in Fig. 5.7. Here, we introduce rational variables

Πs,i,j to denote [s]Π(g
Π
i , g

Π
j ) for some stochastic partition Π = 〈{gΠ1 , . . . , g

Π
k }, g

Π
1 , D〉.

The constraints on lines 3, 5, and 7 essentially encode that the stochastic partition

Π is well-defined.

Encoding consistency, i.e., that no sample in N is simulated by the quotient

P/Π, is similar to EncodeNotSim in Fig. 5.5 except that the equivalence classes

are replaced by the groups of Π and Πs,i on line 4 is replaced by
∑

1≤j≤k Πs,j,i > 0.

Moreover, given µp ∈ Dist(SP) and groups gΠi and gΠj , liftΠ,gΠi
(µp)(g

Π
j ) is encoded as

∑

s∈Supp(µp)
(Πs,i,j · µp(s)).

The following is immediate.
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Theorem 13. There exists a consistent stochastic partition of size k for samples P

and N iff the constraints resulting from EncodeConsisStochPartition(P ,N , k)

are satisfiable.

5.3 Convergence in Active Learning

Now that we have discussed algorithms for inferring an LPTS consistent with a given

set of positive and negative samples (FindConsistent), we turn our attention to

the convergence of the active learning framework LearnLPTS (see Fig. 5.1). As we

have seen in Section 5.1, each iteration of LearnLPTS infers a consistent LPTS for

the tree samples returned by the teacher so far with the ultimate goal of converging

to an LPTS that is (simulation) equivalent to the unknown target. We start with

a negative result which shows that under no assumptions about the samples the

teacher can return, there is no converging solution to the learning problem.

Theorem 14. There is no converging learning algorithm in the active learning frame-

work LearnLPTS.

Proof. Consider the LPTS Uλ in Fig. 5.9, parametric in a rational number λ ∈ (0, 1).

As shown in the figure, Uλ has one transition from the start state on a leading to a

distribution µλ. Fig. 5.8 shows an adversarial teacher that manipulates the value of

λ dynamically, as necessary, to ensure that a counterexample always exists no matter

what LPTS the learner conjectures on line 4. Moreover, λ is updated in such a way

that the new Uλ remains consistent with all the previously generated samples. This

will ensure that the learner never converges. We describe the teacher below.
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AdversarialTeacher()
1 λ← arbitrary rational in (0, 1)
2 N ← ∅
3 while true do

4 H ← GetNextConjecture()
5 if H 6� Uλ then

6 obtain a tree counterexample N and add to N
7 return N as a negative sample

8 else if Uλ 6� H then

9 obtain a tree counterexample P
10 return P as a positive sample

11 else

12 λ+ = min ({pνb | p
ν
b > λ, ν ∈ Dist [a,N ]} ∪ {1})

// see text for description

13 λ← (λ+ + λ)/2
14 obtain a tree counterexample P to Uλ � H
15 return P as a positive sample

Figure 5.8: An adversarial teacher in the proof of Theorem 14.

For every new conjecture made by the learner, the teacher first checks if there

is a counterexample w.r.t. Uλ, for the current value of λ, and returns a positive or

negative sample, as appropriate (lines 4–10). When the conjecture H results in no

counterexamples, it increases the value of λ as follows. Let Dist [a,N ] = {ν | s0N
a
−→

ν for some N ∈ N} be the set of all distributions of the transitions on action a

a

b

1 − λµλ

Uλ

λ

λ ∈ (0, 1)

Figure 5.9: A target in the active learning framework where an adversarial teacher can dynamically
modify the probability λ leading to the divergence of a learner.
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outgoing from a start state in N . Given ν ∈ Dist [a,N ], let pνb be the cumulative

probability under ν of all states in Supp(ν) that have at least one outgoing transition

on action b. The idea is to consider the smallest of all such pνb ’s that are larger than

λ and to increase λ to a value in between, say the average (lines 12–13). If there is

no pνb that is greater than λ, we take the average between λ and 1. As λ is rational,

this is always possible and the new value of λ remains in (0, 1). It remains to show

that Uλ, for the new value of λ, remains consistent with all the previously generated

samples.

Let λ′ be the new value of λ. By construction, λ′ > λ and hence, Uλ � Uλ′ . It

follows from Lemma 13 that Uλ′ simulates every positive sample in P .

Let N be a negative sample in N . Assume, for the sake of contradiction, that

N � Uλ′ . As the only outgoing transition from the start state of Uλ′ is on action

a, every outgoing transition from the start state s0N of N must also be labeled by

a. Let s0N
a
−→ ν. Given our assumption that N � Uλ′ , we have that ν ⊑� µλ′ . We

can similarly reason that no state in Supp(ν) has a transition labeled by an action

other than b. Moreover, every other transition in the tree N must also be labeled

by b for N � Uλ′ to hold. Consider pνb , the cumulative probability under ν of all the

states in Supp(ν) that have an outgoing transition on b. It follows from Lemma 11

that pνb ≤ λ′. Given that N is a negative sample, N 6� Uλ and hence, pνb > λ. But

then, from the above construction, λ′ < pνb holds which leads to a contradiction. We

conclude that N 6� Uλ′ .

At a high level, the above theorem holds because it is not necessary for the

positive tree samples returned by the teacher to have an execution mapping to the
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target U (see Section 4.5). As we have seen in the proof of the above theorem, this

allows the possibility of adversarial behavior by deliberately choosing the probability

values in the samples such that the learner is guaranteed not to converge. But,

in practice, to be able to apply the learning framework in a given setting, we also

need to implement the teacher and we are not aware of any algorithm to generate

counterexamples other than the one discussed in Section 4.5. As mentioned before,

this algorithm does have the property that the generated counterexample to L1 � L2

has an execution mapping to L1. This suggests us to impose the following friendliness

condition on a teacher.

Condition 1 (Friendly Teacher). Every positive (negative) sample returned by the

teacher should have an execution mapping to the target (conjecture).

First of all, note that the proof of the above theorem no longer works because up-

dating the value of λ in Fig. 5.9 violates the above condition on previously returned

positive samples. In fact, as we show below, using the state-space partitioning tech-

nique for inferring a consistent LPTS in each iteration (see Section 5.2.1) ensures

convergence.

Lemma 26. Under Condition 1 on the teacher, the learning algorithm that computes

the quotient of a least-sized consistent state-space partition leads to convergence in

the active learning framework LearnLPTS.

Proof. Let U be the unknown target LPTS. Consider an arbitrary iteration of the

learning loop in LearnLPTS. First of all, the execution mappings between the

positive samples and U (which exist due to Condition 1) induce an equivalence

relation among the states in SP where two states are related iff they are mapped to
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the same state of U . One can easily show that the quotient of the corresponding

state-space partition is a sub-structure of U , i.e., U with some (if any) transitions

removed, and hence, is trivially simulated by U . As U itself is a consistent LPTS,

the quotient is also consistent (follows from Lemma 13). Therefore, the quotient of

a consistent partition of the least size has at most |SU | number of states.

Now, one can show that there are only finitely many possible conjectures for a

given number of states, across all iterations of LearnLPTS. This is because, from

Condition 1, every distribution in P is a replica of some distribution of U , which are

finitely many, and lifting a distribution to a partition only adds probabilities, which

can only be done in finitely many ways. As every conjecture is inconsistent with

the next sample, no two conjectures are simulation equivalent, and hence, no two

conjectures are identical.

Together, we conclude that the learner converges.

The following is immediate.

Theorem 15. There exists a converging learning algorithm in the active learning

framework under Condition 1 on the teacher.

With our ultimate objective of deploying the learning algorithm for assume-

guarantee compositional reasoning, it is desirable to learn an LPTS with as few

states as possible. For this purpose, we will now impose the following condition on

the learner to output only consistent LPTSes of the least number of states.

Condition 2 (Optimal Learner). Every conjecture H made by the learner is a con-

sistent LPTS of the least number of states.

However, there exists no converging learning algorithm under both Condition 1
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and Condition 2, as shown below.

Theorem 16. There is no converging learning algorithm in the active learning frame-

work LearnLPTS under both Condition 1 on the teacher and Condition 2 on the

learner.

Proof. Let the LPTS H1 in Fig. 5.3 be the unknown target. We will show that there

is an adversarial strategy for the teacher to ensure that there is a counterexample

for every conjecture made by the learner. In fact, we show that Hλ in Fig. 5.3, for a

suitable value of λ, is a valid conjecture for every iteration of the learning loop for

the adversarial strategy.

By Condition 2, the learner only conjectures least-state consistent LPTSes and

so, the initial strategy of the teacher is to return samples until a 1-state LPTS H∗

with self-loops on actions a, b, and c is conjectured. Until then, if a conjecture has

transitions on an action other than a, b, and c, a negative sample with a single

transition on that action is returned. Otherwise, the tree P in Fig. 5.3 is returned

as the positive sample. Note that P has an execution mapping to H1. It is easy to

see that such samples can always be returned until the learner conjectures H∗.

Once H∗ is conjectured, the teacher returns Na in the figure to make sure that

every future conjecture has at least 2 states. If a future conjecture has a transition on

an action other than a, b, and c, the teacher can similarly return a negative sample

as above. If not, it returns P or Nb in the figure, if possible. Otherwise, the teacher

returns a new negative sample as follows.

Let s1 and s2 be the 2 states of the current conjecture H. Let ∆i
a, ∆

i
b, and ∆i

c

be the sets of distributions of the transitions outgoing from si, i ∈ {1, 2}, on actions
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a, b and c, respectively. As Na 6� H, we have that ∆1
a 6= ∅ and for every µa ∈ ∆1

a,

µa(s1) < 1 and hence, µa(s2) > 0. Similarly, as Nb 6� H and P � H, we have that

∆1
b 6= ∅ and for every µb ∈ ∆1

b , µb(s2) > 0 and every si ∈ Supp(µb), ∆i
c 6= ∅. That

is, every transition on action b from s1 has non-zero probability of going to s2 and

every state in its support has a transition on c. The teacher then returns Nβ,γ
c in the

figure, where β = µa(s2) for some µa ∈ ∆1
a and γ = µc(s2) for some µc ∈ ∆2

c . Note

that Nβ,γ
c has an execution mapping to H.

It remains to show that there always exists a consistent LPTS of 2-states for the

above adversarial strategy. We will show that Hλ in the figure is such a consistent

LPTS. We have seen earlier in the chapter that Hλ simulates P and does not simulate

either Na or Nb. Moreover, if we choose λ ∈ (0, βmin), where βmin is the minimum

value of β in all Nβ,γ
c samples returned so far, then Hλ does not simulate the current

Nβ,γ
c either. Such a λ can always be chosen as βmin > 0.

We conclude that there is no converging learning algorithm under both Condi-

tion 1 on the teacher and Condition 2.

Despite the above negative result, we obtain a semi-algorithm for the learning

problem under both the conditions, by using stochastic state-space partitioning (Sec-

tion 5.2.2) for FindConsistent in every iteration of the active learning framework.

That is, if the learner converges, it is guaranteed to learn the target with the least

number of states. Correctness is immediate from Theorem 13.
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5.4 Learning Assumptions for

Compositional Reasoning

We will now describe how the active learning framework LearnLPTS can be used

for learning a sufficient intermediate assumption A in the rule ASym mentioned in

Section 5.1. We start with the algorithms for the teacher and the learner and then

briefly describe the complexity guarantees.

Teacher

The teacher simply performs two conformance checks corresponding to the two

premises of the rule. If a conjecture A satisfies both the premises, the teacher re-

turns yes. In this case, the conclusion holds as well, given that ASym is sound

(Lemma 12). If one of the premises fails, the teacher generates a new sample with

an execution mapping, using the counterexample generation algorithm described in

Section 4.5. Thus, the teacher satisfies Condition 1. If premise 2 fails, a positive

sample is returned to the learner. If premise 1 fails, the obtained counterexample

C is first projected onto A, using the one-to-one correspondence from C to L1 ‖ A

given by the execution mapping, and the projection is returned as a negative sample

(see Section 6.3 for more details on projection).

Learner

The learner uses the state-space (stochastic) partitioning techniques described in

Section 5.2 for inferring a new conjecture for the assumption A whenever a new
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sample is returned by the teacher. As every positive sample has an execution mapping

to L2, the learning target is L2 from the learner’s perspective. This works because

if the system (L1 ‖ L2) conforms to P , then L2 is clearly an assumption satisfying

the premises. However, in practice, we expect the algorithm to converge to a smaller

assumption that also satisfies the premises.

If the system conforms to the specification P , i.e., if the conclusion of ASym

is actually true, then the learner is guaranteed to converge, provided it uses the

state-space partitioning technique (Lemma 26). However, if it uses stochastic state-

space partitions instead, convergence is not guaranteed as we saw in Section 5.3.

Nevertheless, using stochastic partitions leads to a semi-algorithm for the problem

of learning an intermediate assumption of the least-size.

If the system does not conform to P , however, there is no assumption satisfying

both the premises of ASym (due to soundness of the rule). In this case, we are

also interested in computing a counterexample to L1 ‖ L2 � P . For this purpose,

the learner performs a spuriousness check on the samples returned by the teacher,

similar to the CEGAR approach [38]. We restrict the spuriousness check to negative

samples following previous approaches [99]. In our case, the learner simply checks

N � L2 for a negative sample N . If the check succeeds, then a counterexample can

be constructed from the failure of L1 ‖ N � P . Otherwise, the learning framework

moves on to the next iteration. A slightly more involved, but practical, way for

detecting spuriousness of a negative sample is described in the next chapter.
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Time Complexity Analysis

Let us now analyze the time complexity of assume-guarantee reasoning when state-

space partitions are used by the learner. Note that, as described in Section 4.4, the

time complexity of checking simulation conformance is polynomial in the sizes of the

two LPTSes. So, the time complexity of monolithic reasoning to determine L1 ‖

L2 � P is O(poly(|L1| · |L2|, |P |)), where |L| denotes max(|SL|, |τL|), the maximum

of the number of states and the number of transitions of L.

Let d = |τ2| and b be the maximum size of the support of a distribution in L2.

Given a state of a candidate assumption of size k and a transition of L2, there can be

at most kb-many corresponding outgoing transitions (taking non-determinism into

account) from that state. For k states and d distributions, this gives an upper bound

of dkb+1. Therefore, there are 2dk
b+1

different possible candidates of size k to consider.

If m is the number of states in the final assumption output by the algorithm, the

total number of iterations of the learning algorithm is then given by O(2dm
b+1

). Note

that m = O(|S2|), i.e., m is upper bounded by the number of states in L2.

In each iteration, in the worst-case, the learning algorithm enumerates all the

candidate assumptions of the current size k and performs simulation checks with all

the negative samples. Each of these checks has a time complexity of O(poly(|A|, |N |,

|N |max )), where A is the final assumption, N is the final set of negative samples

and |N |max is the largest value of |N |, for any N ∈ N . Thus, the total worst-case

time complexity of the learning algorithm for computing the final assumption is

O(poly(|A|, |N |, |N |max ) · 2
dmb+1

). Furthermore, the time complexity of checking the

two premises of ASym (by the teacher) is O(poly(|L1| · |A|, |P |) + poly(|L2|, |A|)) in
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every iteration. We observe that, if the final assumption is small (i.e., |A| ≪ |L2|)

in practice, this approach can be better than monolithic reasoning. Moreover, when

A is small, we also expect memory savings in practice. In other cases, however, we

would need better algorithms to address the problem.

5.5 Related Work

Learning for automating compositional reasoning of probabilistic systems has been

proposed before [52] in the context of checking probabilistic reachability properties,

which are refuted by sets of trace counterexamples. The approach uses a variant of

L* [14], a learning algorithm for DFAs, to automatically learn deterministic assump-

tions, following previous work in the non-probabilistic setting [99]. The approach

uses a sound but incomplete rule, and therefore, it is not guaranteed to terminate

(completeness is necessary for termination). A complete rule for such properties re-

stricted to systems without non-determinism has been considered recently [51]. It

uses learning with probabilistic trace inclusion as the conformance relation which is

undecidable. Also, the learning algorithm is not guaranteed to terminate. In con-

trast, we use simulation conformance which is decidable in polynomial time and leads

to a sound and complete rule (Theorem 12). We are also able to guarantee termina-

tion for the algorithm proposed in Section 5.4 when using state-space partitions to

infer a consistent LPTS.

Our work draws inspiration from a previous work [67] that automates assumption

generation by using an algorithm for learning the minimal separating automaton from
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positive and negative trace counterexamples. The counterexamples are provided via

model checking in an assume-guarantee framework. Similar to our work, they use

a partitioning approach, where the goal is to find a folding of the counterexamples

into the learnt model. A different approach has been proposed to find the separating

automaton based on L* which makes use of membership queries, in addition to

equivalence queries [33]. All these works were done in the context of non-probabilistic

reasoning under trace semantics and thus, are different from our setting.

Learning a minimum-state automaton from positive and negative samples is a

well studied problem [15, 58, 97] that is known to be hard [61]. Algorithms have

also been proposed for samples with stochastic information, i.e., the probability of

acceptance of a trace or a tree [27, 28], learning stochastic finite (tree) automata. As

also previously said, we cannot immediately borrow existing results from the above

automata-theoretic approaches.

LPTSes are related to probabilistic automata (PA) [100]. Algorithms to learn

PAs have only been proposed in restricted settings of stronger assumptions on a

teacher [104] or approximate learning [44, 87]. Algorithms to learn a multiplicity

automaton, which generalizes a PA by replacing the probabilities with arbitrary ra-

tionals, have also been proposed [21]. Adapting these to solve verification problems

involving probabilistic transition systems is difficult and results in non-terminating

algorithms [51]. On the other hand, we show in Section 5.4 that one can readily

apply the algorithms we propose to infer intermediate assumptions in an automated

assume-guarantee style framework for the verification of strong simulation confor-

mance between LPTSes. This yields the first complete and fully automated learning
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framework for compositional verification of probabilistic systems. Moreover, one can

extend this framework to check logical properties, such as the fragment weakly safe

PCTL [29], which are preserved by the conformance and also have tree counterex-

amples.

5.6 Conclusion

We have presented algorithms and decidability results for the problem of active

learning for LPTSes from stochastic tree samples, using traditional and stochastic

state-space partitioning. We have also described the application of the algorithms

to automating the discovery of assumptions for the compositional verification of

LPTSes.

In the future, it would be interesting to investigate further conditions on the

teacher that will make the active learning problem with stochastic partitions decid-

able. The learning algorithms presented here are quite general and not restricted

to compositional verification. So, another interesting future direction is to investi-

gate new applications of our algorithms that may be in domains outside automatic

verification.

The algorithms presented in this chapter are published as part of the proceedings

of LICS 2012 [79].
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Chapter 6

Abstraction Refinement for

Simulation Conformance

6.1 Introduction

In previous chapters, we have described the problem of state-space explosion for

checking simulation conformance of a multi-component Labeled Probabilistic Transi-

tion System (LPTS) against a specification LPTS. We have also described a frame-

work for compositional reasoning in Chapter 5, using an assume-guarantee paradigm.

To recall, the assume-guarantee reasoning we are interested in is captured by the fol-

lowing inference rule for the case of two components:

1 : L1 ‖ A � P 2 : L2 � A

L1 ‖ L2 � P

(ASym)
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In the last chapter, we have seen iterative algorithms for learning a suitable

intermediate assumption A that satisfies the premises of the above rule, utilizing

counterexamples to the premises obtained from previous conjectures for A. In this

chapter, we describe an alternative approach based on automatic abstraction re-

finement [38]. In this approach, the assumption A is maintained as a conservative

abstraction of L2, i.e., an LPTS that simulates L2 (and hence, premise 2 holds by

construction), and is iteratively refined based on tree counterexamples obtained from

checking premise 1. Moreover, we use a state-space partitioning technique, similar to

the one described in Section 5.2.1, for obtaining such an abstraction from L2. This

ensures that the iterative process is guaranteed to terminate, with the number of

iterations bounded by the number of states of L2.

We first describe an automatic abstraction refinement based algorithm for check-

ing simulation conformance between two LPTSes in Section 6.2. This is based on the

well-known CounterExample Guided Abstraction Refinement (CEGAR) approach for

non-probabilistic systems [38]. We will then describe how to adapt CEGAR to the

assume-guarantee setting, to obtain our algorithm Assume-Guarantee Abstraction

Refinement (AGAR), in Section 6.3. When the system is composed of more than 2

components, i.e., when L2 itself is composed of multiple components, we can apply

assume-guarantee reasoning recursively for the second premise (L2 � A). We extend

the rule ASym for the case of n ≥ 2 components and describe how AGAR can be

naturally extended to the new rule. We also briefly describe how AGAR can further

be applied to the case where the required specification is given as a property in a

logic preserved by strong simulation. We implemented the algorithms for counterex-
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ample generation (described in Section 4.5) and for AGAR in Java using the Yices

SMT solver [46] and show experimentally in Section 6.4 that AGAR can achieve

significantly better performance than monolithic conformance checking.

Related Work. CEGAR algorithms for probabilistic systems have been proposed

earlier in the context of probabilistic reachability [72] and safe-PCTL [29]. The

CEGAR approach we describe in Section 6.2 is an adaptation of the latter. However,

our main interest is in the compositional setting (Section 6.3).

6.2 CEGAR for Checking Strong Simulation

Assume that we are interested in checking whether L � P holds for 2 LPTSes

L = 〈SL, s
0
L, αL, τL〉 and P = 〈SP , s

0
P , αP , τP 〉. We describe an algorithm based on

automatic abstraction refinement to infer an LPTS A that simulates L (in which

case, we refer to A as an abstraction of L) while conforming to P , i.e., L � A � P .

By Lemma 13, it will then follow that L � P . The algorithm is based on the well-

known CounterExample Guided Abstraction Refinement (CEGAR) approach [38].

Such a CEGAR approach can be useful when checking L � P directly is expensive.

Moreover, we will see how CEGAR can be adapted to the assume-guarantee setting

in Section 6.3.

Fig. 6.1 shows the pseudo-code of the CEGAR algorithm for simulation confor-

mance between LPTSes. The algorithm maintains an abstraction A of L as the

quotient of a state-space partition of L. The partition and the quotient construction

are as described in Section 5.2.1. The algorithm initializes a variable Π, denoting a
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CEGAR(L = 〈SL, s
0
L, αL, τL〉, P = 〈SP , s

0
P , αP , τP 〉)

1 Π← the coarsest partition of SL

2 A← L/Π
3 while true do

4 (res , C,M)← CheckSim(A,P )
5 if res = yes then

6 return (yes ,−)

7 (spurious,Π, R)← AnalyzeAndRefine(C,L,Π, A,M) // see text

8 if spurious then

9 A← L/Π

10 else

11 return (no, C)

Figure 6.1: CEGAR algorithm for checking L � P .

state-space partition of SL, to the coarsest partition where there is only one equiv-

alence class which contains all the states (line 1). The algorithm then iteratively

refines Π (and hence, refines A) based on the counterexamples obtained from the

simulation check A = L/Π � P (denoted by CheckSim on line 4). If A � P can be

shown, we can conclude L � P (lines 5–6). Otherwise, we obtain a counterexample

C to L � P which we need to check for feasibility in L (see below for details). For

this purpose, we use the routine AnalyzeAndRefine (line 7), which we explain

below. We also describe how the routine refines the partition Π in case C is spurious,

which can then be used to update the abstraction A (line 9). However, if C is feasible

in L, then we have found a counterexample to L � P which we return on line 11.

Our counterexample analysis explained below is an adaptation of an existing one

for counterexamples which are arbitrary sub-structures of A [29]; our stochastic tree

counterexamples are not necessarily sub-structures of A.1

1A sub-structure of an LPTS L, at a high level, is an LPTS that can be obtained from L by
removing some transitions. A formal presentation can be found elsewhere [29].
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Spuriousness Check and Refinement (AnalyzeAndRefine). Let Π be a

partition and A = L/Π be such that A 6� P and let C = 〈SC , s
0
C , αC , τC〉 be a

counterexample with an execution mapping M from SC to SA. Our goal is now to

check whether C is feasible in L, i.e., whether C � L. If it is feasible, C is a real

counterexample as we already know C 6� P . If it is not feasible, we need to refine A by

refining the partition Π. Fig. 6.2 shows the pseudo-code for AnalyzeAndRefine,

which is essentially an instrumented version of the algorithm for checking simulation

conformance for trees from Section 4.4 (see ComputeSimTree in Fig. 4.11). With

the goal of partition refinement, we compute the coarsest strong simulation between

C and L contained in RM = {(s1, s2) | s1 ∈ SC , s2 ∈ SL,M(s1) = [s2]Π}, as opposed

to SC × SL (line 1). In words, RM relates a state s1 of SC to all states of SL in the

equivalence class M(s1). The analysis works as follows.

Intuitively, the algorithm does a bottom-up traversal of C and for each transition

s1
a
−→ µ1, checks whether it is simulated by a transition from a state in R(s1), where

R is the current value of the binary relation maintained by the algorithm. After every

iteration of the for-loop beginning at line 4, the algorithm checks for the following

two cases and refines the partition or continues with the next iteration. Let Rold be

the value of R at the beginning of every iteration of this for-loop (see lines 2 and 20).

1. R(s1) = ∅: There are two possible reasons for this case. One is that no

state in RM(s1) simulates all the outgoing transitions of s1, in which case the

equivalence class M(s1) is a candidate for refinement. The other reason is

that R does not relate the states in Supp(µ1) sufficiently enough to the states

in L for the transition to be simulated by a state in RM(s1). In this case,
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the equivalence classes corresponding to the states in Supp(µ1) are candidates

for refinement. As shown on lines 14–15, we refine every equivalence class in

{M(s) | s ∈ {s1} ∪ Supp(µ1)} by splitting M(s) into Rold(s), which is a subset

of M(s) by construction, and the rest.

2. R(s1) 6= ∅, but M(s1) = [s0L]Π and s0L ∈ Rold(s1) \R(s1): In this case, M(s1) is

the initial state of the abstraction A but s1 is no longer related to the initial

state s0L of L. Here, the equivalence class M(s1) is a candidate for refinement

and we split it into Rold(s1) \R(s1) and the rest (line 18).

The following lemma shows that the above mentioned refinement strategy is guar-

anteed to result in a strictly finer partition and hence, refine the abstraction A.

Lemma 27. If AnalyzeAndRefine(C,L,Π, A,M) returns (yes ,Π′,−), then Π′

is a strictly finer partition than Π, i.e., Π′ < Π.

Proof. It suffices to show that on lines 15 and 18, at least one equivalence class gets

split into two non-empty subsets.

Consider the first case where R(s1) = ∅ for some s1 ∈ SC on line 13 of the

pseudo-code in Fig. 6.2. If Rold(s1) ( RM(s1), then we are done. Otherwise, it must

be the case that Rold(s) ( RM(s) for some s ∈ Supp(µ1). This is because, s1 and

µ1 are related to A by the execution mapping M and the corresponding distribution

in A is obtained by lifting a distribution of L. So, if Rold(s) = RM(s) for every

s ∈ Supp(µ1), one can then show that R(s1) could not have been empty.

In the second case, s0L ∈ Rold(s1) \ R(s1) and ∅ 6= R(s1) ⊆ Rold(s1). Clearly,

splitting M(s1) results in two non-empty subsets.
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AnalyzeAndRefine(C,L,Π, A = L/Π,M : SC → SA)
// BEGIN INSTRUMENTATION

1 R← {(s1, s2) | s1 ∈ SC , s2 ∈ SL,M(s1) = [s2]Π}
// relate s1 with all states in the equivalence class M(s1)

2 Rold ← R
// END INSTRUMENTATION

3 for every non-leaf s1 ∈ SC in a bottom-up traversal of C do

4 for every s1
a
−→ µ1 do

5 for every s2 ∈ R(s1) do

6 sim ← false

7 for every s2
a
−→ µ2 do

8 if µ1 ⊑R µ2 then

9 sim ← true

10 break

11 if sim = false then

12 R← R \ {(s1, s2)}

// BEGIN INSTRUMENTATION

13 if R(s1) = ∅ then

14 for every s ∈ {s1} ∪ Supp(µ1) do

15 refine Π by splitting M(s) into Rold(s) and the rest

16 return (yes ,Π,−)

17 else if M(s1) = [s0L]Π and s0L 6∈ R(s1) then

18 refine Π by splitting M(s1) into Rold(s1) \R(s1) and the rest
19 return (yes ,Π,−)

20 Rold ← R
// END INSTRUMENTATION

21 return (no,−, R)

Figure 6.2: Counterexample analysis and partition refinement, obtained by instrumenting Com-

puteSimTree in Fig. 4.11.
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If neither of the above mentioned cases for refinement is encountered before reach-

ing the end (line 21), clearly, R(s0C) 6= ∅ and s0L ∈ R(s
0
C) and hence, the final value

of R is a strong simulation between C and L that relates the initial states. In other

words, C is a real counterexample.

6.3 Assume-Guarantee Abstraction Refinement

We will now describe how CEGAR can be adapted to the assume-guarantee setting,

which we call Assume-Guarantee Abstraction Refinement (AGAR). The notable dif-

ference with CEGAR is that the counterexample analysis is performed in an assume

guarantee style: a counterexample obtained from checking one component (together

with an abstraction of the environment, i.e., the other components) is used to refine

the abstraction of a different component.

Fig. 6.3 shows the pseudo-code of our AGAR algorithm. Given LPTSes L1, L2

and P , the goal is to check L1 ‖ L2 � P in an assume-guarantee style, using the

rule ASym. The basic idea is to maintain A in the rule as an abstraction of L2, i.e.,

the second premise (L2 � A) holds for free throughout, and to check only the first

premise (L1 ‖ A � P ) for the abstraction A maintained by the algorithm. As in

CEGAR, we restrict A to the quotient of a state-space partition of S2, the states of

L2. If the first premise holds for A, then L1 ‖ L2 � P also holds, by the soundness

of the rule. Otherwise, the obtained counterexample C is analyzed to see whether

it indicates a real error or is spurious, in which case A is refined. The spuriousness

analysis and refinement are compositional, as explained below.
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AGAR(L1, L2, P )
Π← the coarsest partition of S2

A← L2/Π
while true do

(res , C,M)← CheckSim(L1 ‖ A,P )
if res = yes then

return (yes ,−)

(C⇂A,M⇂A)← Project(C,A,M)
(spurious,Π, R)← AnalyzeAndRefine(C⇂A, L2,Π, A,M⇂A)
if spurious then

A← L2/Π

else
return (no, C)

Figure 6.3: AGAR algorithm for checking L1 ‖ L2 � P in an assume-guarantee style.

Analysis and Refinement. In AGAR, the counterexample analysis is performed

compositionally, using the projections of C onto L1 and A obtained as follows. As

in the case of CEGAR, we make use of an execution mapping M from SC to SL1‖A.

From Definition 12, we know that every state of L1 ‖ A is a pair of states of L1 and

A, and every distribution of a transition in L1 ‖ A is the product of two distributions,

one each from L1 and A. So, we can utilize the one-to-one correspondence from the

states and distributions of C to those of L1 ‖ A, given by M , and pick the respective

components of the state pairs and products of distributions to obtain what we call

projections of C onto L1 and A. We denote these projections by C⇂L1
and C⇂A,

respectively. Note that there is a natural execution mapping from C⇂A to A, which

we denote by M⇂A (line 5). We will then use AnalyzeAndRefine, described in

Section 6.2, to check whether C⇂A is simulated by L2 or if it is spurious and refine the

partition and the abstraction A (line 6). If AnalyzeAndRefine returns no, i.e., it

concludes that C⇂A is not spurious, we can conclude that C is a counterexample to
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L1 ‖ L2 � P , as the following lemma shows.

Lemma 28. If AnalyzeAndRefine returns no at line 6 of Agar, then then C,

found on line 4, is a counterexample to L1 ‖ L2 � P .

Proof. For an LPTS L = 〈SL, s
0
L, αL, τL〉 and alphabet β such that αL ⊆ β, we write

Lβ to denote the LPTS 〈SL, s
0
L, β, τL〉. Let Si and αi be the set of states and alphabet

for the LPTS Li.

If AnalyzeAndRefine returns no, then C⇂A � A holds. So, (C⇂A)
α2 � L2

also holds. Moreover, we know that the projection C⇂L1
satisfies (C⇂L1

)α1 � L1. To-

gether, it follows that (C⇂L1
)α1 ‖ (C⇂A)

α2 � L1 ‖ L2 (Lemmas 19 and 13). Moreover,

the projections can also be shown to satisfy C � (C⇂L1
)α1 ‖ (C⇂A)

α2 . As C 6� P is

already known, it follows from Lemma 13 that C is a real counterexample.

The following is immediate from Theorem 12 and Lemmas 27 and 28.

Theorem 17 (Correctness and Termination). Agar is guaranteed to terminate

within |S2| − 1 iterations, the conformance L1 ‖ L2 � P holds iff it returns on

line 11 and fails to hold iff it returns on line 10.

In practice, we expect AGAR to take less than |S2| − 1 iterations, terminating

with an assumption smaller than L2. AGAR will terminate as soon as it finds an

assumption that satisfies the premises or that helps exhibit a real counterexample.

Note also that, although AGAR uses an explicit representation for the individual

components, it never builds L1 ‖ L2 directly (except in the worst-case) keeping the

cost of verification low.

For example, Fig. 6.4 shows a specification LPTS for the 2-component input-
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Figure 6.4: A specification for L1 ‖ L2, where L1 and L2 are in Fig. 4.16.
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Figure 6.5: An assumption for L1 ‖ L2 in Fig. 4.16 and specification P in Fig. 6.4.

output system we saw in Fig. 4.16. For this example, our algorithm AGAR generates

the sufficient assumption A shown in Fig. 6.5.

6.3.1 Reasoning with n ≥ 2 Components

So far, we have discussed assume-guarantee reasoning in the context of two compo-

nents L1 and L2. This reasoning can be generalized to n ≥ 2 components using the

following rule ASym-N (which can similarly be shown to be sound and complete).

This rule enables us to overcome the intermediate state-space explosion that may be

associated with two-way decompositions when the subsystems are larger than the

entire system.

1 : L1 ‖ A1 � P 2 : L2 ‖ A2 � A1 ... n : Ln � An−1

‖ni=1 Li � P

(ASym-N)
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AGAR-N(〈L1, . . . , Ln〉, An, P )
1 L← Ln

2 if An 6= ǫ then // An = ǫ holds only for the very first call

3 L← L ‖ An

4 if n = 1 then

5 (res , C,M)← CheckSim(L,P )
6 (C⇂An

,M⇂An
)← Project(C,An,M)

7 return (res , C,M)

// compute sufficient assumption A for (L1 ‖ · · · ‖ Ln−1) ‖ L � P
8 Π← coarsest partition of SL

9 A← L/Π
10 while true do

11 (res , C,M)← AGAR-N(〈L1, . . . , Ln−1〉, A, P )
12 if res = yes then

13 return (yes ,−,−)

// C � A with execution mapping M
14 (spurious,Π, R)← AnalyzeAndRefine(C,L,Π, A,M)
15 if spurious then

16 A← L/Π

17 else

// R is a strong simulation between C and L
// but we also need an execution mapping

18 (TL,ML)← ObtainCexWithMapping(C,L,R)
19 (TL⇂An

,ML⇂An
)← Project(TL, An,ML)

20 return (no, TL⇂An
,ML⇂An

)

Figure 6.6: AGAR algorithm for checking L1 ‖ · · · ‖ Ln ‖ An � P for n ≥ 2.

Fig. 6.6 shows the pseudo-code for AGAR-N, the adaptation of AGAR for the

rule ASym-N. The algorithm takes as input n components 〈L1, . . . , Ln〉 and an en-

vironmental assumption An, which abstracts the rest of the components (if any),

which should together conform to a specification P . Initially, the environmental as-

sumption is absent, which we denote by letting An to be ǫ. AGAR-N then tries to

compute an assumption A, in the sense of the two-component rule ASym, by using

the two-way decomposition (L1 ‖ · · · ‖ Ln−1) ‖ (Ln ‖ An) � P as follows.
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It first composes Ln with An, to obtain an LPTS L (lines 1–3). If there was

only one component to begin with (line 4), it performs a monolithic simulation

conformance check (denoted by CheckSim on line 5) and returns the result. If

a counterexample is returned on line 5, along with an execution mapping M , it is

projected onto the assumption An (line 6) so that the caller can check for spuriousness

and refine An. On the other hand, if n > 1, the desired assumption A is computed

by means of abstraction refinement of L (lines 8–20), similar to AGAR, recursively

invoking AGAR-N for 〈L1, . . . , Ln−1〉 with the current abstraction A of L as the

environmental assumption (line 11).

If the recursive call to AGAR-N returns yes, then A is a sufficient assumption

(line 13). Otherwise, we obtain a counterexample C with an execution mapping

M from SC to SA. The goal is now to check whether C is spurious and refine A

in case it is. This is done similar to AGAR (line 14–16). If C is not spurious,

then the environmental assumption An needs to be checked for refinement. But,

we cannot simply project C onto An, as C does not have an execution mapping

to L. However, the call to AnalyzeAndRefine on line 14 also returns a strong

simulation R between C and L that relates the initial states. We can then use R to

obtain a new tree TL by simulating every transition in C, say in a top-down traversal

of C (ObtainCexWithMapping on line 18). We can show that C � TL � L and

hence, we can use TL instead of C. As TL is essentially an unrolling of L, we can

also obtain an execution mapping to L, say ML. We can then project TL and ML

onto An (line 19) which are returned to the caller (line 20).
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6.3.2 Compositional Verification of Logical Properties

AGAR can be further applied to automate assume-guarantee verification of prop-

erties written as formulae in a logic that is preserved by strong simulation, such as

the weak-safety fragment of probabilistic CTL (PCTL) [29] which also admits tree

counterexamples. The modified rule ASym is both sound and complete for this logic

(|= denotes property satisfaction), provided αA ⊆ α2 with a proof similar to that of

Theorem 12.

1 : L1 ‖ A |= φ 2 : L2 � A

L1 ‖ L2 |= φ

The intermediate assumption A can be similarly maintained as a conservative

abstraction of L2 and iteratively refined based on the tree counterexamples to premise

1, using the same procedures as before. The rule can be generalized to reasoning

about n ≥ 2 components as described above and also to richer logics with more

general counterexamples adapting existing CEGAR approaches [29] to AGAR. We

plan to further investigate this direction in the future.

6.4 Implementation and Results

Implementation. We implemented the algorithms for checking strong simulation

and generating counterexamples, which we described in Chapter 4, as well as AGAR

and AGAR-N in Java. We used the front-end of the tool PRISM [82] to parse
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the models of the components described in PRISM’s input language and construct

LPTSes which are then handled by our implementation.

As mentioned in Chapter 4, in order to take advantage of the efficient SMT solvers

that exist today, we used the SMT encoding given by EncodeSim in Fig. 4.9 for

checking simulation conformance. It follows from Lemma 15 that the constraints

generated by the SMT encoding are satisfiable iff the conformance check succeeds.

However, when the conformance check fails to hold, there is no direct way to obtain

a tree counterexample. Note that in this case, the constraints generated by the SMT

encoding are unsatisfiable. So, when the conformance check fails to hold, say between

LPTSes L1 and L2, we obtain an unsatisfiable subset of the constraints, by utilizing

the unsat core extraction facility provided by the Yices SMT solver. From this subset

of constraints, we then construct a sub-structure of L1 and check the conformance of

this sub-structure against L2 using the Java implementation. This sub-structure is

usually much smaller than L1 and contains only the information necessary to expose

the counterexample.

Results. We evaluated our algorithms using this implementation on several exam-

ples analyzed in previous work [52]. Some of these examples were created by introduc-

ing probabilistic failures into non-probabilistic models used earlier [99] while others

were adapted from PRISM benchmarks [82]. The properties used previously were

about probabilistic reachability and we created our own specification LPTSes after

developing an understanding of the models. The models in all the examples satisfy

the respective specifications. We briefly describe the models and the specifications
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below.2

CS1 and CSN model a Client-Server protocol with mutual exclusion having prob-

abilistic failures in one or all of the N clients, respectively. The specifications

describe the probabilistic failure behavior of the clients while hiding some of

the actions as is typical in a high level design specification.

MER models a resource arbiter module of NASA’s software for Mars Exploration

Rovers which grants and rescinds shared resources for several users. We consid-

ered the case of two resources with varying number of users and probabilistic

failures introduced in all the components. As in the above example, the spec-

ifications describe the probabilistic failure behavior of the users while hiding

some of the actions.

SN models a wireless Sensor Network of one or more sensors sending data and

messages to a process via a channel with a bounded buffer having probabilistic

behavior in the components. Creating specification LPTSes for this example

turned out to be more difficult than the above examples, and we obtained them

by observing the system’s runs and by manual abstraction.

Table 6.1 shows the comparison of running time and memory consumption among

ASym, ASym-N, and monolithic (non-compositional) conformance checking. Time

is in seconds and Memory is in megabytes. Table 6.2 compares the sizes of various

LPTSes constructed by the approaches. |X| stands for the number of states of an

LPTS X. L stands for the whole system, P for the specification, LM for the LPTS

2All models and specifications are available at
http://www.cs.cmu.edu/~akomurav/projects/agar/AGAR.html.
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Example ASym ASym-N Mono

(param) Time Mem Time Mem Time Mem

CS1(5) 7.2 15.6 74.0 15.1 0.2 8.8
CS1(6) 11.6 22.7 810.7 21.4 0.5 12.2
CS1(7) 37.7 49.4 out – 0.8 17.9
CSN (2) 0.7 7.1 2.4 6.8 0.1 5.9
CSN (3) 43.0 63.0 1.6k 109.6 14.8 37.9
CSN (4) out – out – 1.8k 667.5
MER (3) 2.6 19.7 3.6 14.6 193.8 458.5
MER (4) 15.0 53.9 34.7 37.8 out –
MER (5) – out1 257.8 65.5 – out1

SN (1) 0.2 6.2 1.7 8.5 1.5 27.7
SN (2) 79.5 112.9 694.4 171.7 4.7k 1.3k
SN (3) out – 7.2k 528.8 – out

Table 6.1: Time and Memory consumption for AGAR vs monolithic verification. 1 Mem-out during
model construction.

Example ASym ASym-N Mono

(param) |L1| |L2| |LM | |AM | |Lc| |LM | |AM | |L| |P |
CS1(5) 36 405 182 33 36 182 34 94 16
CS1(6) 49 1215 324 41 49 324 40 136 19
CS1(7) 64 3645 538 56 64 – – 186 22
CSN (2) 25 9 51 7 9 40 25 34 15
CSN (3) 125 16 324 12 16 372 125 184 54
CSN (4) 625 25 – – 25 – – 960 189
MER (3) 278 1728 706 7 278 706 7 16k 12
MER (4) 465 21k 2k 11 465 2k 11 120k 15
MER (5) 700 250k – – 700 3.3k 16 841k 18
SN (1) 43 32 43 3 126 165 6 462 18
SN (2) 796 32 796 3 252 1.4k 21 7860 54
SN (3) 7545 32 – – 378 1.4k 21 78k 162

Table 6.2: Sizes of various LPTSes constructed for AGAR vs monolithic verification. 1 Mem-out
during model construction.

with the largest number of states built by composing LPTSes during the course of

AGAR, AM for the assumption with the largest number of states during the execution

and Lc for the component with the largest number of states in ASym-N. We also

compared |LM | with |L|, as |LM | denotes the largest LPTS ever built by AGAR. Best

figures, among ASym, ASym-N and Mono, for Time, Memory and LPTS sizes, are

boldfaced. All the results were obtained on a Fedora-10 64-bit machine running on

an Intel R© CoreTM2 Quad CPU of 2.83GHz and 4GB RAM. We imposed a 2GB

upper bound on Java heap memory and a 2 hour upper bound on the running time.
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We observed that most of the time during AGAR was spent in checking the premises

and an insignificant amount was spent for the composition and the refinement steps.

Also, most of the memory was consumed by Yices. We tried several orderings of the

components (the Li’s in the rules) and report only the ones giving the best results.

While monolithic checking outperformed AGAR for Client-Server, there are sig-

nificant time and memory savings for MER and Sensor Network where in some cases

the monolithic approach ran out of resources (time or memory). One possible reason

for AGAR performing worse for Client-Server is that |L| is much smaller than |L1|

or |L2|. When compared to using ASym, ASym-N brings further memory savings

in the case of MER and also time savings for Sensor Network with parameter 3

which could not finish in 2 hours when used with ASym. As already mentioned,

these models were analyzed previously with an assume-guarantee framework using

learning from traces [52]. Although that approach uses a similar assume-guarantee

rule (but instantiated to check probabilistic reachability) and the results have some

similarity (e.g. Client-Server is similarly not handled well by the compositional ap-

proach), we can not directly compare it with AGAR as it considers a different class

of properties.

6.5 Conclusion

We described a complete, fully automated abstraction-refinement approach for assume-

guarantee reasoning of strong simulation conformance between LPTSes. The ap-

proach uses refinement based on stochastic tree counterexamples and it further ap-
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plies to checking safe-PCTL properties. We showed experimentally the merits of the

proposed technique in comparison to monolithic conformance checking. In future,

it would be interesting to extend the approach to cases where the assumption A

is allowed to have a smaller alphabet than that of the component it abstracts as

this can potentially lead to further savings. Strong simulation would no longer work

and one would need to use weak simulation [102], whose decidability is not known

yet to the best of our knowledge. In an orthogonal direction, it is interesting to

explore symbolic implementations of our algorithms, for increased scalability. An

experimental comparison of the approach presented in this chapter with the active

learning based algorithms from the previous chapter is also interesting. However,

this requires one to first evaluate the algorithms from the previous chapter from a

practical perspective and/or investigate practical implementations of the algorithms.

The results presented in this chapter are published as part of the proceedings of

CAV 2012 [78].
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Chapter 7

Future Work

There are several exciting research directions one can extend the thesis work to in

the future. We will briefly describe some of them below.

Proof Based Abstraction from different under-approximations. As we have

mentioned right in Chapter 1, a central theme of SAT/SMT-based model checking

is to iteratively solve Bounded Model Checking (BMC) problems, obtain proofs of

bounded safety, and try to generalize the proofs to invariants of the entire program.

More generally, the strategy used is to under-approximate and generalize, in an iter-

ative manner. In that sense, the approach presented in Chapter 3 adds an important

component to the generalization step by means of Proof Based Abstraction. It is

interesting to note that the approach, as described in Fig. 3.2, is quite general and

not restricted to bounding the number of iterations of a loop. For example, one

can obtain different kinds of under-approximations by bounding the range sets of

the program variables, or the stack-depth in a recursive program, or the number of
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context-switches in a concurrent program. It would be particularly interesting to ex-

plore these ideas for concurrent programs as such programs are notoriously difficult

to verify.

Syntactic vs. Semantic Abstractions. We have seen several abstraction and

approximation mechanisms in the algorithms described in Chapters 2 and 3. In the

latter, especially in our implementation described in Section 3.5, we use a combina-

tion of a constraint-based method and program invariants to obtain an abstraction.

While a constraint-based method depends on the input syntactic structure of the

transition relation, an invariant is primarily a semantic artifact – a formula that

over-approximates the reachable set of states. On the other hand, the abstraction

mechanism described in Chapter 2 is purely semantic – we use formulas over the

input-output parameters of a procedure to approximate its behavior. It would be

interesting to explore a combination of the two abstraction mechanisms.

Synthesizing Ghost-code for Verification. In the literature on deductive verifi-

cation, the term ghost-code is used to refer to a piece of code that is added specifically

to assist in verification and which does not interfere with the execution of the orig-

inal program (I do not know the origin of the term, but see Filliâtre et al. [53] for

a recent reference). However, to the best of our knowledge, there is no automatic

verification method that has a seamless integration with synthesizing and utilizing

appropriate ghost-code. The program transformation we describe in Section 3.5 adds

code to count the number of iterations of a loop which is one of the simplest kinds

of ghost-code. It would be interesting to explore the use of other, more expressive,

kinds of ghost-code, e.g., synthesizing useful terms or predicates over program vari-
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ables (inspired by Predicate Abstraction [62]) and treating them as first-class objects

as opposed to artifacts in an external verification mechanism.

Verification of Evolving Software. Real software is constantly evolving with

design modifications, addition of new functionality, improvements in efficiency, etc.

An exhaustive verification of the entire software after every change can be very

expensive. It is interesting to consider how we can reuse the verification efforts from

a previous version of the software for verifying the current version. For example,

if we have an abstraction of the previous version of the software that continues to

be an abstraction of the current version, then we can simply reuse the invariants

computed in the past. However, this is only the best case scenario and there have

been some recent attempts at localizing verification efforts by making use of previous

abstractions (e.g., [50]). In general, we also need effective ways of translating the

artifacts, such as invariants, from previous versions to maximize reuse and minimize

verification efforts.

Handling Richer Logical Theories. The algorithms we described in this dis-

sertation can handle programs over any decidable logical theory. However, the ap-

proximation techniques for existential quantification described in Chapter 2, which

are essential to avoid the exponentially growing BMC problems, are restricted to

Linear Rational Arithmetic and Presburger Arithmetic. In particular, if the theory

has uninterpreted functions, it is not possible, in general, to eliminate existential

quantifiers given the undecidability of first-order logic. This raises the important

question of how we can efficiently approximate existential quantification in order to

have a useful compositional verification approach. Handling theories with non-linear
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real functions is another very important problem given the rise of cyber-physical

systems. There have been recent advancements in efficient and practical constraint

solving for such theories [56] and Bounded Model Checking using satisfiability over

such theories [57], but extending the techniques to scalable unbounded verification

remains an open challenge.

Verifying programs that manipulate pointers and arrays is another important

problem which poses significant challenges given that even the simplest of the pro-

grams require universal quantifiers in the invariants. Given the rise of scalable ver-

ification algorithms for inferring quantifier-free invariants (including the algorithms

developed in this dissertation), one approach is to iteratively reduce to the problem

of inferring quantifier-free invariants [23]. This involves finite heuristic instantiation

of the universal quantifiers with ground terms and has been shown to work success-

fully for small textbook examples in the above reference. However, scaling such an

approach to handle realistic programs remains a challenge.

Efficient Probabilistic Analysis. With the growing complexity of software, a

practical alternative for scaling verification technology is to focus on probabilistic cor-

rectness guarantees as opposed to ensuring correctness in all scenarios. However, such

techniques are significantly under-developed when compared to non-probabilistic

analyses. The algorithms presented in Chapters 5 and 6 are the first complete al-

gorithms for compositional reasoning in order to deal with the state-space explosion

problem. However, real software deals with infinite data types (or practically infinite,

if physical limitations of the machine are taken into account). It would be interesting

to explore SAT/SMT-based methods for probabilistic reasoning. While there exist
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techniques for Bounded Model Checking of probabilistic programs (e.g., [26]), we

are not aware of unbounded verification algorithms. This would require new expres-

sive logics for proofs, appropriate proof-systems, algorithms for constraint solving in

presence of probabilities (finding suitable problem formulations as well as solutions),

etc.
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