
Mode, Reduction, and Termination
Analysis for LolliMon

Ruy Ley-Wild

November 4, 2014
CMU-CS-14-141

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

LolliMon [10] is a linear logic programming language that combines backward-
chaining, backtracking semantics for the asynchronous connectives and
forward-chaining, committed choice for the synchronous connectives. Mode,
reduction, and termination properties are important correctness criteria that
can be verified automatically of both backward-chaining and forward-chaining
logic programs by establishing suitable moding and subterm relationships
between a clause’s head and its subgoals. This work combines existing tech-
niques for termination checking of backward-chaining higher-order intuitionistic
logic programs and complexity analysis of forward-chaining first-order logic
programs, by devising mode, reduction, and termination analyses for the linear
logic programming setting in LolliMon.

Note: This document was written as a project report for 15-819K Logic
Programming taught by Frank Pfenning in the fall of 2006.

Keywords: linear logic, logic programming, mode analysis, reduction anal-
ysis, termination analysis

15-819K: Logic Programming

Final Project Report

Mode, Reduction, and Termination Analysis
for LolliMon

Ruy Ley-Wild

Abstract
LolliMon [10] is a linear logic programming language that com-

bines backward-chaining, backtracking semantics for the asynchronous
connectives and forward-chaining, committed choice for the synchronous
connectives. Mode, reduction, and termination properties are im-
portant correctness criteria that can be verified automatically of both
backward-chaining and forward-chaining logic programs by estab-
lishing suitable moding and subterm relationships between a clause’s
head and its subgoals. This work combines existing techniques for
termination checking of backward-chaining higher-order intuitionis-
tic logic programs and complexity analysis of forward-chaining first-
order logic programs, by devising mode, reduction, and termination
analyses for the linear logic programming setting in LolliMon.

1 Introduction

LolliMon [10] is a logic programming language based on intuitionistic lin-
ear logic that combines backward-chaining, backtracking semantics for the
asynchronous connectives and forward-chaining, committed choice for the
synchronous connectives. The synchronous fragment is syntactically seg-
regated by a monad and is used to transition from backward-chaining to
forward-chaining. The forward-chaining phase in LolliMon finishes and
returns to backward-chaining search when the linear context is quiescent
(no forward steps are possible) and the unrestricted context is saturated (for-
ward steps may be possible, but do not generate any new information).

Certain correctness properties of LolliMon logic programs can be checked
automatically in a style similar to that found in Twelf [14]. Mode check-
ing establishes a groundedness relationship between inputs and outputs,

Mode, Reduction, and Termination Analysis for LolliMon 2

reduction checking determines a subterm relationship between inputs and
outputs, and termination checking ensures queries complete in finite time.
Mode checking is available in the current implementation of LolliMon, but
there is no formal description nor proof of correctness of mode, reduction,
or termination analysis for LolliMon. This work gives a refined operational
semantics for LolliMon and formal algorithms for mode, reduction, and
termination analysis. We state correctness criteria for the analyses, but de-
fer formal proofs of correctness to future work. Besides establishing the
correctness of logic programs, these static analyses could be extended to an
implementation of CLF in order to verify properties of proofs encoded in
the framework.

Two main methods for fully automatic termination checking for higher-
order term rewriting systems are van de Pol and Schwichtenberg’s strict
functionals [20] and Jouannaud and Rubio’s recursive path orderings [9].
However, the presence of higher-order subgoals in the LF family of lan-
guages prevents direct application of these techniques. Rohwedder and
Pfenning [19] develop mode and termination analyses for higher-order logic
programs in Elf [13] whereby the properties are manually specified and au-
tomatically verified. The mode behavior of programs is given by specifying
which parameters are inputs and outputs, and termination is specified by
indicating which input terms must decrease in recursive subgoals. The cor-
rectness of these analyses is stated with respect to the operational semantics
with an explicit success continuation and proven by induction on the com-
putation sequence. Pientka and Pfenning [17, 15, 16] present sequent calculi
for deriving subterm relationships in Twelf, reduction checking for prov-
ing outputs are subterms of inputs, and termination checking that permits
course-of-value induction with the aid of reduction properties. They prove
the consistency of the subterm sequent calculi by cut-admissibility, but do
not prove the correctness of reduction or termination checking with respect
to the operational semantics. Termination checking for higher-order logic
programs in Twelf is applicable to the asynchronous fragment of LolliMon
but is complicated by the richer formula (and proof term) language and the
interaction with forward-chaining.

1.1 LolliMon

The Concurrent Logical Framework (CLF) [21] is a foundational depen-
dent type theory based on linear logic that internalizes the ability to rep-
resent state and concurrency. The formula language syntactically distin-
guishes asynchronous (A) and synchronous (S) formulas, in the terminol-

Mode, Reduction, and Termination Analysis for LolliMon 3

A ::= P | {S} | > | A1 & A2 Asynchronous Formulas
| S2 (A1 | ∀x:A2.A1

S ::= Q | ¡Q | 1 | S1 ⊗ S2 Synchronous Formulas
| ∃x:A2.S1 | A | !A

P,Q ::= a · Z Atomic Formulas
N ::= H · Z | λx.N Terms
H ::= c | x Heads
Z ::= NIL | N; Z Spines
Γ ::= · | Γ,A Unrestricted context
∆ ::= · | ∆,A Linear context
Ψ ::= · | S,Ψ Pattern context

Figure 1: LolliMon Syntax

ogy of Andreoli [1], by segregating the latter in a monad. Linearity in-
ternalizes resource consumption and can be used to encode state, while
synchronous fragment can be used to encode concurrency. LolliMon [10]
is a linear logic programming language that extends a fragment of CLF
with an operational proof search semantics. The monad mediates between
backward-chaining, backtracking semantics for the asynchronous connec-
tives and forward-chaining, committed choice for the synchronous connec-
tives. Top-down search in the asynchronous fragment permits the repre-
sentation of backtracking logic programs, while bottom-up search in the
synchronous fragment permits the representation of saturating algorithms.

LolliMon differs from CLF in the treatment of the dependent function
type and the absence of proof terms. The dependent type Πx:A2.A1 of CLF
is differentiated as intuitionistic implication A2 ⊃ A1 and universal quan-
tification ∀x:A2.A1 in LolliMon, where objects are restricted to a prenex
polymorphically typed λ-calculus. An operational semantics of CLF could
be given by extending LolliMon to treat the dependent function type and
allowing quantification over CLF proof terms.

In this work we consider a variant of LolliMon that generalizes the for-
mula language and makes the operational semantics more explicit. The
syntax is given in Figure 1, the judgments in Figure 2, and the opera-
tional semantics in Figures 3 and 4. We refer the reader to [10] for a dis-

Mode, Reduction, and Termination Analysis for LolliMon 4

Γ; ∆⇒ A Right inversion
Γ; ∆; A� P Left focusing
Γ; ∆→ S Forward chaining
Γ; ∆; A < S Monadic left focusing
Γ; ∆; Γ′; ∆′; Ψ⇐ S Left inversion
Γ; ∆� S Right focusing
Γ; ∆; Ψ⇐A A Left inversion (Asynchronous)

Figure 2: LolliMon Judgments

cussion on the operational semantics of proof search for LolliMon. Here
we make saturation and quiescence explicit in by initiating left inversion
Γ; ∆; Γ′; ∆′; Ψ⇐ S (rule {}L) with separate contexts Γ′,∆′ to accumulate the
new formulas and only succeeding if new unrestricted or linear hypotheses
have been created (rule →⇐). An explicit success continuation semantics
is obtained by having a stack of goals

S ::= · | J/S

where J is one of the judgments, transforming each rule

J1 . . . Jn

J ;

J1/ . . . /Jn/S

J/S

and adding a rule that states the empty stack succeeds.
The term language was a prenex polymorphically typed λ-calculus and

quantification was restricted to terms of type τ in that type system. In this
work restrict terms N to a simply-typed λ-calculus but reuse the formula
language as the type system, thus allowing quantification over terms of
type A restricted to intuitionistic implication and atomic types.

The original formulation of LolliMon included linear implication A2 (
A1 and intuitionistic implication A2 ⊃ A1 where the antecedent is asyn-
chronous, here we generalize the language by allowing a synchronous an-
tecedent in linear implication S2 (A1 and removing intuitionistic impli-
cation because it can be encoded as !A2 (A1. This means that when left
focusing on a linear implication S2 (A1 (rule (L), we continue left fo-
cusing on A1 and additionally right focus on S2; and when right inverting

Mode, Reduction, and Termination Analysis for LolliMon 5

Γ; ·; P� P
PL

Γ; ∆; A� P

Γ; ∆,A⇒ P
PRx

Γ,A; ∆; A� P

Γ,A; ∆⇒ P
PRx

Γ; ∆→ S

Γ; ∆⇒ {S}
{}R

(no >L rule) Γ; ∆⇒ >
>R

Γ; ∆; A1 � P

Γ; ∆; A1 & A2 � P
&L1

Γ; ∆; A2 � P

Γ; ∆; A1 & A2 � P
&L2

Γ; ∆⇒ A1 Γ; ∆⇒ A2

Γ; ∆⇒ A1 & A2
&R

Γ; ∆1; A1 � P Γ; ∆2 � S2

Γ; ∆1,∆2; S2 (A1 � P
(L

Γ; ∆; S2 ⇐A A1

Γ; ∆⇒ S2 (A1
(R

Γ; ∆; [t/x]A1 � P

Γ; ∆;∀x:A2.A1 � P
∀L

Γ; ∆⇒ [a/x]A1

Γ; ∆⇒ ∀x:A2.A1
∀R

Γ; ∆⇒ A

Γ; ∆; · ⇐A A
⇒⇐A

Γ; ∆,Q; Ψ⇐A S

Γ; ∆; Q,Ψ⇐A S
QL

Γ,Q; ∆; Ψ⇐A S

Γ; ∆; ¡Q,Ψ⇐A S
¡LA

Γ; ∆; Ψ⇐A A

Γ; ∆; 1,Ψ⇐A A
1LA

Γ; ∆; S1,S2,Ψ⇐A A

Γ; ∆; S1 ⊗ S2,Ψ⇐A A
⊗LA

Γ; ∆; [a/x]S1,Ψ⇐A A

Γ; ∆;∃x:A2.S1,Ψ⇐A A
∃LA

Γ; ∆,A′; Ψ⇐A A

Γ; ∆; A′,Ψ⇐A A
ALA

Γ,A′; ∆; Ψ⇐A A

Γ; ∆; !A′,Ψ⇐A A
!LA

Figure 3: LolliMon Operational Semantics

Mode, Reduction, and Termination Analysis for LolliMon 6

Γ; ∆� S

Γ; ∆→ S
�→

Γ; ∆; A < S

Γ; ∆,A→ S
x′

Γ,A; ∆; A < S

Γ,A; ∆→ S
u′

(no PL′ rule)

Γ; ∆; ·; ·; S′ ⇐ S

Γ; ∆; {S′} < S
{}L

(no >L′ rule)

Γ; ∆; A1 < S

Γ; ∆; A1 & A2 < S
&L′1

Γ; ∆; A2 < S

Γ; ∆; A1 & A2 < S
&L′2

Γ; ∆2 � S2 Γ; ∆1; A1 < S

Γ; ∆1,∆2; S2 (A1 < S
(L′

Γ; ∆; [t/x]A1 < S

Γ; ∆;∀x:A2.A1 < S
∀L′

Γ * Γ′ or ∆′ , · Γ,Γ′; ∆,∆′ → S

Γ; ∆; Γ′; ∆′; · ⇐ S
→⇐

Γ; ∆; Γ′; ∆′,Q; Ψ⇐ S

Γ; ∆; Γ′; ∆′; Q,Ψ⇐ S
QL

Γ; Q� Q
QRx

Γ,Q; · � Q
QRu

Γ; ∆; Γ′,Q; ∆′; Ψ⇐ S

Γ; ∆; Γ′; ∆′; ¡Q,Ψ⇐ S
¡L

Γ,Q; · � ¡Q
¡R

Γ; ∆; Γ′; ∆′; Ψ⇐ S

Γ; ∆; Γ′; ∆′; 1,Ψ⇐ S
1L

Γ; · � 1
1R

Γ; ∆; Γ′; ∆′; S1,S2,Ψ⇐ S

Γ; ∆; Γ′; ∆′; S1 ⊗ S2,Ψ⇐ S
⊗L

Γ; ∆1 � S1 Γ; ∆2 � S2

Γ; ∆1,∆2 � S1 ⊗ S2
⊗R

Γ; ∆; Γ′; ∆′; [a/x]S1,Ψ⇐ S

Γ; ∆; Γ′; ∆′;∃x:A2.S1,Ψ⇐ S
∃L

Γ; ∆� [t/x]S1

Γ; ∆� ∃x:A2.S1
∃R

Γ; ∆; Γ′; ∆′,A; Ψ⇐ S

Γ; ∆; Γ′; ∆′; A,Ψ⇐ S
AL

Γ; ∆⇒ A

Γ; ∆� A
⇒�

Γ; ∆; Γ′,A; ∆′; Ψ⇐ S

Γ; ∆; Γ′; ∆′; !A,Ψ⇐ S
!L

Γ; · ⇒ A

Γ; · � !A
!R

Figure 4: LolliMon Operational Semantics (continued)

Mode, Reduction, and Termination Analysis for LolliMon 7

a linear implication S2 (A1 (rule (R), we immediately decompose the
antecedent by left inverting on S2 (LA rules) and then resume by right in-
verting on A1 (rule⇒⇐A).

We also generalize asynchronous atoms by syntactically allowing them
to be either asynchronous P or synchronous Q. Previously, when monadic
left focusing on an implication A2 (A1 during forward-chaining, the sub-
goal A2 would initiate a backward-chaining phase. In particular, since
all atomic formulas P were considered asynchronous, an atomic subgoal
would initiate a backward-chaining phase by selecting and left focusing on
a clause until the head matched the atom and the subgoals were satisfied.
It was possible to simulate synchronous atoms that did not require switch-
ing to backward-chaining, by syntactically restricting their occurrence in a
clause head to be monadic so that an atomic goal would initiate backward-
chaining but could only succeed if the atom was already in the context.
Here we allow explicit synchronous atoms Q which can only be generated
if they occur in a monadic head (rule QL) and can only be proven as goals
during right focusing if they appear in the context (rules QRx and QRu).
However, due to linearity and the syntax of the unrestricted modality, it
would not be possible to generate unrestricted synchronous atoms. There-
fore we also include unrestricted synchronous atoms ¡Q which are added
to the unrestricted context when they are generated by a forward-chaining
clause (rule ¡L) and proven as goals during right focusing (rule ¡R).

2 Project Results

This work presents mode, reduction, and termination analyses for Lol-
liMon as syntax-directed inference rules that verify suitable moding and
subterm relationships between terms in a clause’s head and its subgoals.
These analyses combine existing techniques for higher-order backward-
chaining intuitionistic logic programs and complexity analysis of first-order
forward-chaining logic programs. The novelty of this work stems from Lol-
liMon’s richer formula language, the semantics of linearity, and the mixed
backward-chaining and forward-chaining search behavior. We assume mode,
reduction, and termination are explicitly specified by mode, red, and term
for each atom.

Since the syntax of LolliMon allows clauses such as S (A1 & A2 to
have multiple heads, it is possible for a clause to be used in both backward-
and forward-chaining. However, focusing on such a clause will only use
one of the heads so it is possible to transform a clause with multiple heads

Mode, Reduction, and Termination Analysis for LolliMon 8

into multiple clauses with one head each. In this work we allow clauses
with multiple heads, but restrict the analyses to backward-chaining clauses
which only have (asynchronous) atomic or > heads and forward-chaining
clauses which only have monadic heads.

Backward- and forward-chaining clauses satisfy a specified mode or re-
duction property if the property of the head can be deduced from the prop-
erties of the subgoals. Due to the combination of backward- and forward-
chaining in the operational semantics, it is necessary to perform a global
analysis for termination checking in order to extract a dependence rela-
tion between synchronous and asynchronous atoms prior to checking each
clause individually. Backward-chaining clauses satisfy termination if the
recursive subgoals involve proper subterms of the terms in the head and
the nonrecursive subgoals are known to be terminating. These criteria can
be extended to mutually recursive atomic predicates [18], although incor-
porating this analysis is deferred to future work. The proof system for re-
duction and termination checking of backward-chaining higher-order logic
programs in [16] serves as a basis for the analyses in the asynchronous
phase. Termination of forward-chaining clauses that only generate unre-
stricted hypotheses can be verified by determining that the terms in the
head are subterms (not necessarily proper) of the terms in the antecedents.
Termination of forward-chaining clauses that generate linear hypotheses is
subtle and in this work we discuss design considerations for handling the
linear case, although the formal analysis does not account for this case.

2.1 Mode Checking

A mode specification µ for an atom a consists of an input + or output −
assignment to each of its arguments. Intuitively, an asynchronous atom
aP with mode specification mode(aP) = µ should satisfy the property that
whenever a goal aP · Z is solved with ground input terms and the goal
succeeds, then the output terms are also ground. A backward-chaining
clause is well-moded if for each head it satisfies the mode specification,
namely that if the input terms of a head are ground and the subgoals satisfy
their mode property, then the output terms of that head are also ground.
Since synchronous atoms are only generated by forward-chaining clauses,
in order to maintain a ground context synchronous atoms have assign the
output −mode to each argument.

Mode checking for a backward-chaining clause is performed by extract-
ing from the head a proof obligation o of which terms must be ground if
the clause returns and an initial abstract substitution σ̂ of which variables

Mode, Reduction, and Termination Analysis for LolliMon 9

µ ::= · | +, µ | −, µ Spine moding
σ̂ ::= · | σ̂, g/x | σ̂, u/x Abstract substitution
o ::= · | o,N Proof obligation
ι ::= · | ι, (σ̂; o) Substitution and proof obligation pair

Figure 5: Mode Checking Syntax

are assumed to be ground, then traversing the clause from the head out-
wards refining the abstract substitution assuming the subgoals are well-
moded, and checking that the final abstract substitution ensures the terms
in the proof obligation are ground. The abstract substitution for backward-
chaining clauses is refined by proceeding from the innermost to the outer-
most subgoal because that is the order in which subgoals are solved accord-
ing to the operational semantics. Similarly, since forward-chaining clauses
are used by solving subgoals from the outside in, the abstract substitution
is refined from the outermost to the innermost goal and finally the head is
checked to satisfy its mode specification. For synchronous atoms occurring
as goals they can be assumed to be ground and occurring as heads they
must be shown to be ground. Since there is one proof obligation per head,
it is necessary to maintain a list ι of proof obligations and their associated
abstract substitutions. Due to presence of higher-order subgoals, it is nec-
essary to also check the well-moding of subclauses that are introduced to
the context when solving a subgoal. The syntax of specifications, abstract
substitutions, and proof obligations is given in Figure 5.

The auxiliary judgments are given in Figure 6 and the principal judg-
ments are given in Figures 7, 8, and 9. We assume a judgment σ̂ ` N ground
that check that a term N is ground under the abstract substitution σ̂, and lift
it to similar judgments for spines and proof obligations. We also assume a
judgment σ̂ ` N/σ̂′ that refines σ̂ into σ̂′ assuming N is ground, and lift it to
a judgment for spines. The judgment ` ι checks that each abstract substitu-
tion satisfies its associated proof obligation. When an atom is encountered
at the head of a clause, the proof obligation and initial abstract substitu-
tion are extracted from the spine with the judgment σ̂; o MCZ

=⇒ µ ∼ Z | σ̂′; o′

by refining the initial substitution σ̂ into σ̂′ using terms that are ground on
input and extending the initial proof obligations o with terms that should
be ground on output. Dually, when an atom is encountered as a subgoal,

Mode, Reduction, and Termination Analysis for LolliMon 10

the judgment σ̂ MGZ
=⇒ µ ∼ Z | σ̂′ checks that the inputs are ground under

the abstract substitution σ̂ and refines it into σ̂′ assuming the outputs are
ground.

The principal judgment σ̂ ` S mode checks that a clause S is well-
moded by checking that synchronous atoms are ground and that asyn-
chronous clauses are well-moded according to whether they are backward-
or forward-chaining. Backward-chaining clauses are checked by extract-
ing a list of proof obligations and abstract substitution with the judgment
σ̂

MBCA
=⇒ A | ι and ensuring the proof obligation is satisfied. Subgoals of

backward-chaining clauses are used to refine the abstract substitution and
check subclauses with the judgments σ̂ MBGA

=⇒ A | σ̂′ and σ̂ MBGS
=⇒ S | σ̂′, and a

lifted version ι MBGS
=⇒ S | ι′ for lists that keeps the proof obligation but refines

the substitution. Forward-chaining clauses are checked with the judgment
σ̂

MFCA
=⇒ A by refining the abstract substitution with the judgments the judg-

ments σ̂ MFGA
=⇒ A | σ̂′ and σ̂ MFGS

=⇒ S | σ̂′ and checking that the synchronous
head is well-moded.

2.2 Reduction Checking

A reduction property is a specification of a subterm relationship between
the arguments of an atom, which is useful for course-of-values induction.
We assume each atom is assigned a reduction property red(a · (x1; . . . ; xn)) =
P consisting of an order O, a lexicographic {O1,O2}, or simultaneous order
[O1,O2] between arguments x1, . . . , xn. Intuitively, an atom satisfies a re-
duction property P if whenever a goal aP · Z is solved and succeeds, the
order relation P holds of the specified arguments in Z. Backward- and
forward-chaining clauses satisfy a reduction property of a head if the re-
duction properties of the subgoals imply the reduction property of that
head. Here we represent parameters as ∀x:A, variables as ∃x:A, and sub-
goals ∃!u:A with a mixed prefix context Φ. Figure 10 gives the syntax for
orders, order relations, order contexts, and mixed prefix contexts based on
the Twelf case.

We assume a sequent calculus with judgment Φ; Ω −→ P, which estab-
lishes the subterm relation P in the context of subterm relations Ω. Such a
calculus can be adapted from [16] to the proof term language of LolliMon
(and of CLF) and its consistency can be shown by proving cut-admissibility.
The judgments Φ

RPA
=⇒ A/Ω and Φ

RPS
=⇒ S/Ω in Figure 11 extract the reduc-

tion property of every atom occurring in a backward- or forward-chaining

Mode, Reduction, and Termination Analysis for LolliMon 11

` ι [Obligations satisfied]

` ·

` ι σ̂ ` o ground

` ι, (σ̂; o)

σ̂; o MCZ
=⇒ µ ∼ Z | σ̂′; o′ [Spine moding (clause)]

σ̂; o MCZ
=⇒ · ∼ NIL | σ̂; o

σ̂ ` N/σ̂′ σ̂′; o MCZ
=⇒ µ ∼ Z | σ̂′′; o′′

σ̂; o MCZ
=⇒ +, µ ∼ N; Z | σ̂′′; o′′

σ̂; o,N MCZ
=⇒ µ ∼ Z | σ̂′; o′

σ̂; o MCZ
=⇒ −, µ ∼ N; Z | σ̂′; o′

σ̂
MGZ
=⇒ µ ∼ Z | σ̂′ [Spine moding (goal)]

σ̂
MGZ
=⇒ · ∼ NIL | σ̂

σ̂ ` N ground σ̂
MGZ
=⇒ µ ∼ Z | σ̂′

σ̂
MGZ
=⇒ +, µ ∼ N; Z | σ̂′

σ̂′
MGZ
=⇒ µ ∼ Z | σ̂′ σ̂′ ` N/σ̂′′

σ̂
MGZ
=⇒ −, µ ∼ N; Z | σ̂′′

Figure 6: Mode Checking Auxiliary Judgments

Mode, Reduction, and Termination Analysis for LolliMon 12

σ̂ ` S mode [Well moded (clause)]

σ̂ ` Z ground

σ̂ ` a · Z mode
QMODE

σ̂ ` Z ground

σ̂ ` ¡a · Z mode
¡MODE

σ̂ ` 1 mode
1MODE

σ̂ ` S1 mode σ̂ ` S2 mode

σ̂ ` S1 ⊗ S2 mode
⊗MODE

σ̂, g/x ` S1 mode

σ̂ ` ∃x:A2.S1 mode
∃MODE

(A backward) σ̂
MBCA
=⇒ A | ι ` ι

σ̂ ` A mode
AMODEb

(A forward) σ̂
MFCA
=⇒ A

σ̂ ` A mode
AMODE f

(A backward) σ̂
MBCA
=⇒ A | ι ` ι

σ̂ ` !A mode
!MODEb

(A forward) σ̂
MFCA
=⇒ A

σ̂ ` !A mode
!MODE f

Figure 7: Mode Checking Principal Judgments (1)

Mode, Reduction, and Termination Analysis for LolliMon 13

σ̂
MBCA
=⇒ A | ι [Mode check (backward, clause)]

σ̂; · MCZ
=⇒ mode(a) ∼ Z | σ̂′; o′

σ̂
MBCA
=⇒ a · Z | (σ̂′; o′)

PMBCA
(no {}MBCA rule)

σ̂
MBCA
=⇒ > | ·

>MBCA
σ̂

MBCA
=⇒ A1 | ι1 σ̂

MBCA
=⇒ A2 | ι2

σ̂
MBCA
=⇒ A1 & A2 | ι1, ι2

&MBCA

σ̂
MBCA
=⇒ A1 | ι ι

MBGS
=⇒ S2 | ι

′

σ̂
MBCA
=⇒ S2 (A1 | ι

′
(MBCA

σ̂, u/x MBCA
=⇒ A1 | ι

σ̂
MBCA
=⇒ ∀x:A2.A1 | ι

∀MBCA

σ̂
MBGA
=⇒ A | σ̂′ and σ̂ MBGS

=⇒ S | σ̂′ [Mode check (backward, goal)]

σ̂
MGZ
=⇒ mode(a) ∼ Z | σ̂′

σ̂
MBGA
=⇒ a · Z | σ̂′

PMBGA
σ̂

MBGS
=⇒ S | σ̂′

σ̂
MBGA
=⇒ {S} | σ̂′

{}MBGA

σ̂
MBGA
=⇒ > | σ̂

>MBGA
σ̂

MBGA
=⇒ A1 | σ̂

′ σ̂′
MBGA
=⇒ A2 | σ̂

′′

σ̂
MBGA
=⇒ A1 & A2 | σ̂

′′
&MBGA

σ̂ ` S2 mode σ̂
MBGA
=⇒ A1 | σ̂

′

σ̂
MBGA
=⇒ S2 (A1 | σ̂

′
(MBGA

σ̂, g/x MBGA
=⇒ A1 | σ̂

′, /x

σ̂
MBGA
=⇒ ∀x:A2.A1 | σ̂

′
∀MBGA

σ̂
MGZ
=⇒ mode(a) ∼ Z | σ̂′

σ̂
MBGS
=⇒ a · Z | σ̂′

QMBGS
σ̂

MGZ
=⇒ mode(a) ∼ Z | σ̂′

σ̂
MBGS
=⇒ ¡a · Z | σ̂′

¡MBGS

σ̂
MBGS
=⇒ 1 | σ̂

1MBGS
σ̂

MBGS
=⇒ S1 | σ̂

′ σ̂′
MBGS
=⇒ S2 | σ̂

′′

σ̂
MBGS
=⇒ S1 ⊗ S2 | σ̂

′′
⊗MBGS

σ̂, u/x MBGS
=⇒ S1 | σ̂

′, /x

σ̂
MBGS
=⇒ ∃x:A2.S1 | σ̂

′
∃MBGS

σ̂
MBGA
=⇒ A | σ̂′

σ̂
MBGS
=⇒ A | σ̂′

AMBGS

σ̂
MBGA
=⇒ A | σ̂′

σ̂
MBGS
=⇒ !A | σ̂′

!MBGS

Figure 8: Mode Checking Principal Judgments (2)

Mode, Reduction, and Termination Analysis for LolliMon 14

σ̂
MFCA
=⇒ A [Mode check (forward, clause)]

(no PMFCA rule)

σ̂ ` S mode

σ̂
MFCA
=⇒ {S}

{}MFCA
(no >MFCA rule)

σ̂
MFCA
=⇒ A1 σ̂

MFCA
=⇒ A2

σ̂
MFCA
=⇒ A1 & A2

&MFCA
σ̂

MFGS
=⇒ S2 | σ̂

′ σ̂′
MFCA
=⇒ A1

σ̂
MFCA
=⇒ S2 (A1

(MFCA

σ̂, u/x MFCA
=⇒ A1

σ̂
MFCA
=⇒ ∀x:A2.A1

∀MFCA

σ̂
MFGA
=⇒ A | σ̂′ and σ̂ MFGS

=⇒ S | σ̂′ [Mode check (forward, goal)]

σ̂
MGZ
=⇒ mode(a) ∼ Z | σ̂′

σ̂
MFGA
=⇒ a · Z | σ̂′

PMFGA
σ̂

MFGS
=⇒ S | σ̂′

σ̂
MFGA
=⇒ {S} | σ̂′

{}MFGA

σ̂
MFGA
=⇒ > | σ̂

>MFGA
σ̂

MFGA
=⇒ A1 | σ̂

′ σ̂′
MFGA
=⇒ A2 | σ̂

′′

σ̂
MFGA
=⇒ A1 & A2 | σ̂

′′
&MFGA

σ̂ ` S2 mode σ̂
MFGA
=⇒ A1 | σ̂

′

σ̂
MFGA
=⇒ S2 (A1 | σ̂

′
(MFGA

σ̂, g/x MFGA
=⇒ A1 | σ̂, /x

σ̂
MFGA
=⇒ ∀x:A2.A1 | σ̂

∀MFGA

σ̂ ` Z/σ̂′

σ̂
MFGS
=⇒ a · Z | σ̂′

QMFGS
σ̂ ` Z/σ̂′

σ̂
MFGS
=⇒ ¡a · Z | σ̂′

¡MFGS
σ̂

MFGS
=⇒ 1 | σ̂

1MFGS

σ̂
MFGS
=⇒ S1 | σ̂

′ σ̂′
MFGS
=⇒ S2 | σ̂

′′

σ̂
MFGS
=⇒ S1 ⊗ S2 | σ̂

′′
⊗MFGS

σ̂, u/x MFGS
=⇒ S1 | σ̂

′, /x

σ̂
MFGS
=⇒ ∃x:S2.S1 | σ̂

′
∃MFGS

σ̂
MFGA
=⇒ A | σ̂′

σ̂
MFGS
=⇒ A | σ̂′

AMFGS
σ̂

MFGA
=⇒ A | σ̂′

σ̂
MFGS
=⇒ !A | σ̂′

!MFGS

Figure 9: Mode Checking Principal Judgments (3)

Mode, Reduction, and Termination Analysis for LolliMon 15

Ω ::= · | Ω,P Order context
P ::= O1 ≺ O2 | O1 � O2 | O1 ≡ O2 | Πx:A.P Order relations
O ::= N | {O1,O2} | [O1,O2] Orders
Φ ::= · | Φ,∀x:A | Φ,∃x:A | Φ,∃!u:A Mixed prefix context

Figure 10: Reduction Checking Syntax

head and accumulate it into Ω. The judgments Φ; Ω RGA
=⇒ A and Φ; Ω RGS

=⇒ S
in Figure 12 traverse a subgoal A or S and verify that subclauses satisfy
their corresponding reduction properties. Figures 13, 14, and 15 present
the principal judgment Φ; Ω ` S red that checks the reduction property of
backward and forward-chaining clauses via the judgments Φ; Ω RBCA

=⇒ A and
Φ; Ω RFCA

=⇒ A which ensure that the reduction properties of the subgoals im-
ply the reduction of the head and that the reduction property holds of each
subclause assuming the reduction property of earlier (closer to the head
for backward-chaining clauses) or later (further from the head for forward-
chaining clauses) subgoals via the judgment Φ; Ω RBIA

=⇒ Sg; Ac. In the Twelf
case reduction properties are assumed to be valid (true without any hy-
potheses), so the reduction properties of all subgoals are used to verify
the reduction properties of any subclauses. This formulation of reduction
checking differs in that only reduction properties that occur earlier (with
respect to the proof search order) are used to prove the reduction property
of subclauses.

2.3 Termination Checking

The termination property of an asynchronous atom is that left focusing on
any clause with that atom in the head fails or succeeds in a finite number
of steps. For LolliMon we conservatively establish termination provided
subgoals of backward-chaining clauses are well-founded by invoking re-
cursive calls with strictly smaller arguments (in the inductive argument
given by term(a ·Z) = O) and forward-chaining clauses only generate unre-
stricted synchronous atoms with arguments that are no larger than those in
the antecedents. We defer addressing forward-chaining clauses that gen-
erate linear synchronous atoms or asynchronous formulas to future work.
Intuitively, the correctness criteria is that if a program satisfies the termi-

Mode, Reduction, and Termination Analysis for LolliMon 16

Φ
RPA
=⇒ A/Ω and Φ

RPS
=⇒ S/Ω [Reduction Properties (goal)]

Φ
RPA
=⇒ P/red(P)

PRPA
Φ

RPS
=⇒ S/Ω

Φ
RPA
=⇒ {S}/Ω

{}RPA
Φ

RPA
=⇒ >/·

>RPA

Φ
RPA
=⇒ A1/Ω1 Φ

RPA
=⇒ A2/Ω2

Φ
RPA
=⇒ A1 & A2/Ω1,Ω2

&RPA
Φ

RPA
=⇒ A1/Ω

Φ
RPA
=⇒ S2 (A1/Ω

(RPA

Φ,∀x:A2
RPA
=⇒ A1/Ω

Φ
RPA
=⇒ ∀x:A2.A1/Ω

∀RPA

Φ
RPA
=⇒ Q/red(Q)

QRPS
Φ

RPA
=⇒ ¡Q/red(Q)

¡RPS
Φ

RPS
=⇒ 1/·

1RPS

Φ
RPS
=⇒ S1/Ω1 Φ

RPS
=⇒ S2/Ω2

Φ
RPS
=⇒ S1 ⊗ S2/Ω1,Ω2

⊗RPS
Φ,∃x:A2

RPS
=⇒ S1/Ω1

Φ
RPS
=⇒ ∃x:A2.S1/Ω1

∃RPS

Φ
RPA
=⇒ A/Ω

Φ
RPS
=⇒ A/Ω

ARPS
Φ

RPA
=⇒ A/Ω

Φ
RPS
=⇒ !A/Ω

!RPS

Figure 11: Reduction Checking Property Extraction

Mode, Reduction, and Termination Analysis for LolliMon 17

Φ; Ω RGA
=⇒ A and Φ; Ω RGS

=⇒ S [Reduces (backward or forward, goal)]

Φ; Ω RGA
=⇒ P

PRGA
Φ; Ω RGS

=⇒ S

Φ; Ω RGA
=⇒ {S}

{}RGA
Φ; Ω RGA

=⇒ >
>RGA

Φ; Ω RGA
=⇒ A1 Φ; Ω RGA

=⇒ A2

Φ; Ω RGA
=⇒ A1 & A2

&RGA

Φ; Ω ` S2 red Φ; Ω RGA
=⇒ A1

Φ; Ω RGA
=⇒ S2 (A1

(RGA
Φ,∀x:A2; Ω RGA

=⇒ A1

Φ; Ω RGA
=⇒ ∀x:A2.A1

∀RGA

Φ; Ω RGS
=⇒ Q

QRGS
Φ; Ω RGS

=⇒ ¡Q
¡RGS

Φ; Ω RGS
=⇒ 1

1RGS

Φ; Ω RGS
=⇒ S1 Φ; Ω RGS

=⇒ S2

Φ; Ω RGS
=⇒ S1 ⊗ S2

⊗RGS
Φ,∃x:A2; Ω RGS

=⇒ S1

Φ; Ω RGS
=⇒ ∃x:A2.S1

∃RGS

Φ; Ω RGA
=⇒ A

Φ; Ω RGS
=⇒ A

ARGS
Φ; Ω RGA

=⇒ A

Φ; Ω RGS
=⇒ !A

!RGS

Figure 12: Reduction Checking Subgoals

Mode, Reduction, and Termination Analysis for LolliMon 18

Φ; Ω ` S red [Reduces (clause)]

Φ; Ω −→ red(Q)

Φ; Ω ` Q red
QRED

Φ; Ω −→ red(Q)

Φ; Ω ` ¡Q red
¡RED

Φ; Ω ` 1 red
1RED

Φ; Ω ` S1 red Φ; Ω ` S2 red

Φ; Ω ` S1 ⊗ S2 red
⊗RED

Φ,∃x:A2; Ω ` S1 red

Φ; Ω ` ∃x:A2.S1 red
∃RED

(A backward) Φ; Ω RBCA
=⇒ A

Φ; Ω ` A red
AREDb

(A forward) Φ; Ω RFCA
=⇒ A

Φ; Ω ` A red
ARED f

(A backward) Φ; Ω RBCA
=⇒ A

Φ; Ω ` !A red
!REDb

(A forward) Φ; Ω RFCA
=⇒ A

Φ; Ω ` !A red
!RED f

Figure 13: Reduction Checking Principal Judgments (1)

Mode, Reduction, and Termination Analysis for LolliMon 19

Φ; Ω RBCA
=⇒ A [Reduces (backward, clause)]

Φ; Ω −→ red(P)

Φ; Ω RBCA
=⇒ P

PRBCA
(no {}RBCA rule) Φ; Ω RBCA

=⇒ >
>RBCA

Φ; Ω RBCA
=⇒ A1 Φ; Ω RBCA

=⇒ A2

Φ; Ω RBCA
=⇒ A1 & A2

&RBCA

Φ
RPS
=⇒ S2/Ω2 Φ; Ω,Ω2

RBCA
=⇒ A1 Φ; Ω RBIA

=⇒ S2; A1

Φ; Ω RBCA
=⇒ S2 (A1

(RBCA

Φ,∃x:A2; Ω RBCA
=⇒ A1

Φ; Ω RBCA
=⇒ ∀x:A2.A1

∀RBCA

Φ; Ω RBIA
=⇒ Sg; Ac [Reduces implication (backward, goal)]

Φ; Ω RGS
=⇒ S

Φ; Ω RBIA
=⇒ S; P

PRBIA
(no {}RBIA rule)

Φ; Ω RGS
=⇒ S

Φ; Ω RBIA
=⇒ S;>

>RBIA

Φ; Ω RBIA
=⇒ S; A1 Φ; Ω RBIA

=⇒ S; A2

Φ; Ω RBIA
=⇒ S; A1 & A2

&RBIA

Φ
RPA
=⇒ S2/Ω2 Φ; Ω,Ω2

RBIA
=⇒ S; A1

Φ; Ω RBIA
=⇒ S; S2 (A1

(RBIA
Φ,∃x:A2; Ω RBIA

=⇒ S; A1

Φ; Ω RBIA
=⇒ S;∀x:A2.A1

∀RBIA

Figure 14: Reduction Checking Principal Judgments (2)

Mode, Reduction, and Termination Analysis for LolliMon 20

Φ; Ω RFCA
=⇒ A [Reduces (forward, clause)]

(no PRFCA rule)

Φ; Ω ` S red

Φ; Ω RFCA
=⇒ {S}

{}RFCA
(no >RFCA rule)

Φ; Ω RFCA
=⇒ A1 Φ; Ω RFCA

=⇒ A2

Φ; Ω RFCA
=⇒ A1 & A2

&RFCA

Φ
RPS
=⇒ S2/Ω2 Φ,Ω2; Ω RFCA

=⇒ A1 Φ; Ω RGS
=⇒ S2

Φ; Ω RFCA
=⇒ S2 (A1

(RFCA

Φ,∀x:A2; Ω RFCA
=⇒ A1

Φ; Ω RFCA
=⇒ ∀x:A2.A1

∀RFCA

Figure 15: Reduction Checking Principal Judgments (3)

nation property, then it’s computation sequence is finite independently of
whether it succeeds or fails.

In order to prevent obvious loops between backward- and forward-
chaining, we require a global analysis that extracts a subordination relation
ag � ac which holds if a clause with atomic head ac has an atomic subgoal
ag, {} � ac which holds if a clause with atomic head ac has a subgoal that
invokes saturation, and ag � {} which holds if a forward-chaining clause
has an atomic subgoal ag. We next compute the transitive closure �∗ of �
and require that no asynchronous atom p satisfies both p �∗ {} and {} �∗ p,
and no synchronous atom q satisfies {}�∗ q. Intuitively, this partitions asyn-
chronous atoms into those that use saturation (directly or indirectly) but
do not occur as the subgoal of a forward-chaining clause and those that do
not depend on saturation and may be used as subgoals in forward-chaining
clauses, and no forward-chaining clause invokes saturation. Therefore if an
asynchronous atom p invokes saturation, then no forward-chaining clause
will attempt to solve p via backward-chaining. In particular, this disallows
the pair of clauses p � {S1} and p({S2}which would loop when trying to

Mode, Reduction, and Termination Analysis for LolliMon 21

solve p as follows.

Γ; ·; p� p

Γ; · ⇒ p

Γ; · � p
⇒�

. . .

Γ; ·; p({S2} < S1
(L′

Γ; · → S1
u′

Γ; · � S1
{}R

Γ; · � {S1}
⇒�

Γ; ·; {S1}(p� p
(L

Γ; · ⇒ p
PRu

Similarly, the condition prevents forward-chaining clauses from invoking
saturation as a subgoal because a synchronous atom q cannot occur in a
clause {q} ({q} which would loop when trying to saturate and solve q as
follows.

Γ; · ⇒ {q}

Γ; · � {q}
⇒�

. . .

Γ; ·; {q}({q} < q
(L′

Γ; · → q
u′

Γ; · ⇒ {q}
{}R

After checking the global subordination condition, we verify that each
clause is terminating. The principal judgment Φ; Ω ` S term (Figure 16)
verifies the termination property of a clause by verifying backward- and
forward-chaining chaining asynchronous clauses terminate. For backward-
chaining clauses, the judgment Φ; Ω TBCA

=⇒ A; Φg (Figure 18) accumulates a
stack of subgoals into the context Φg and then appeals to the judgment

Φ; Ω TKA
=⇒ P; Φg (Figure 17) to check that the subclauses are terminating via

the judgments Φ; Ω TGA
=⇒ A ≺ P and Φ; Ω TGS

=⇒ S ≺ P provided the sub-
goal atoms are known to be terminating or are recursive goals with strictly
smaller arguments in the inductive argument, possibly using the reduction
property of earlier (closer to the head) subgoals. Forward-chaining clauses
are checked with the judgment Φ; Ω TFCA

=⇒ A; Φg (Figure 19) by checking

the termination of subclauses via the judgment Φ; Ω TGS
=⇒ S ≺ P and en-

suring that unrestricted synchronous atoms generated by the clause satisfy

Mode, Reduction, and Termination Analysis for LolliMon 22

Φ; Ω ` S term [Termination (clause)]

Φ; Ω ` Q term
QTERM

Φ; Ω ` ¡Q term
¡TERM

Φ; Ω ` 1 term
1TERM

Φ; Ω ` S1 term Φ; Ω ` S2 term

Φ; Ω ` S1 ⊗ S2 term
⊗TERM

Φ,∀x:A2; Ω ` S1 term

Φ; Ω ` ∃x:A2.S1 term
∃TERM

(A backward) Φ; Ω TBCA
=⇒ A; ·

Φ; Ω ` A term
ATERMb

(A forward) Φ; Ω TFCA
=⇒ A; ·

Φ; Ω ` A term
ATERM f

(A backward) Φ; Ω TBCA
=⇒ A; ·

Φ; Ω ` !A term
!TERMb

(A forward) Φ; Ω TFCA
=⇒ A; ·

Φ; Ω ` !A term
!TERM f

Figure 16: Termination Checking Principal Judgments (1)

a specific subterm property. In particular, the judgment Φ; Ω TFHS
=⇒ S; Φg

verifies that every argument term in the unrestricted synchronous atom
¡Q is no larger than the arguments of synchronous atoms in the subgoals.
Intuitively, the subheight judgment Φ; Ω SH

=⇒ Q v Φg extracts the (maxi-
mum) depth of each existential variable in the head Q and subgoals Φg,
and ensures that maximum depth of each existential variable in the head is
less than or equal to the maximum depth in the antecedent. This ensures
that the height of arguments is non-increasing and due to the restriction
of the analysis to unrestricted hypotheses in forward-chaining clauses, this
bounds the size of the context to all formulas with arguments of size less
than or equal to those in the initial database.

Mode, Reduction, and Termination Analysis for LolliMon 23

Φ; Ω TKA
=⇒ P; Φg [Termination stack (backward or forward)]

Φ; Ω TKA
=⇒ P; ·

·TKA
Φ; Ω TKA

=⇒ P; Φg

Φ; Ω TKA
=⇒ P; Φg,∀x:A

∀TKA

Φ; Ω TKA
=⇒ P; Φg

Φ; Ω TKA
=⇒ P; Φg,∃x:A

∃TKA

Φ
RPA
=⇒ S/Ω′ Φ; Ω TGS

=⇒ S ≺ P Φ; Ω,Ω′ TKA
=⇒ P; Φg

Φ; Ω TKA
=⇒ P; Φg,∃!u:S

∃!TKA

Φ; Ω TGA
=⇒ A ≺ P and Φ; Ω TGS

=⇒ S ≺ P [Termination (backward or forward, goal)]

Φ; Ω −→ term(a · Z′) ≺ term(a · Z)

Φ; Ω TGA
=⇒ a′ · Z′ ≺ a · Z

PTGA
a′ , a a′ terminating

Φ; Ω TGA
=⇒ a′ · Z′ ≺ a · Z

PTGA

Φ; Ω TGS
=⇒ S ≺ P

Φ; Ω TGA
=⇒ {S} ≺ P

{}TGA
Φ; Ω TGA

=⇒ > ≺ P
>TGA

Φ; Ω TGA
=⇒ A1 ≺ P Φ; Ω TGA

=⇒ A2 ≺ P

Φ; Ω TGA
=⇒ A1 & A2 ≺ P

&TGA

Φ; Ω ` S2 term Φ; Ω TGA
=⇒ A1 ≺ P

Φ; Ω TGA
=⇒ S2 (A1 ≺ P

(TGA
Φ,∀x:A2; Ω TGA

=⇒ A1 ≺ P

Φ; Ω TGA
=⇒ ∀x:A2.A1 ≺ P

∀TGA

Φ; Ω TGS
=⇒ Q ≺ P

QTGS
Φ; Ω TGS

=⇒ ¡Q ≺ P
¡TGS

Φ; Ω TGS
=⇒ 1 ≺ P

1TGS

Φ; Ω TGS
=⇒ S1 ≺ P Φ; Ω TGS

=⇒ S2 ≺ P

Φ; Ω TGS
=⇒ S1 ⊗ S2 ≺ P

⊗TGS
Φ,∃x:A2; Ω TGS

=⇒ S1 ≺ P

Φ; Ω TGS
=⇒ ∃x:A2.S1 ≺ P

∃TGS

Φ; Ω TGA
=⇒ A ≺ P

Φ; Ω TGS
=⇒ A ≺ P

ATGS
Φ; Ω TGA

=⇒ A ≺ P

Φ; Ω TGS
=⇒ !A ≺ P

!TGS

Figure 17: Termination Checking Principal Judgments (2)

Mode, Reduction, and Termination Analysis for LolliMon 24

Φ; Ω TBCA
=⇒ A; Φg [Termination (backward, clause)]

Φ,Φg; Ω TKA
=⇒ P; Φg

Φ; Ω TBCA
=⇒ P; Φg

PTBCA
(no {}TBCA rule)

Φ; Ω TKA
=⇒ a>; Φg

Φ; Ω TBCA
=⇒ >; Φg

>TBCA

Φ; Ω TBCA
=⇒ A1; Φg Φ; Ω TBCA

=⇒ A2; Φg

Φ; Ω TBCA
=⇒ A1 & A2; Φg

&TBCA

Φ; Ω TBCA
=⇒ A1; Φg,∃!u:S2

Φ; Ω TBCA
=⇒ S2 (A1; Φg

(TBCA
Φ; Ω TBCA

=⇒ A1; Φg,∃x:A2

Φ; Ω TBCA
=⇒ ∀x:A2.A1; Φg

∀TBCA

Figure 18: Termination Checking Principal Judgments (3)

2.4 Examples

In this section we consider several programs and how to apply the mode,
reduction, and termination analyses, as well as some programs which can’t
be handled by the current formulation.

The following forward-chaining program saturates the context with nat-
ural numbers between zero and nine.

{¡digit (s9z)}.
¡digit (s N)({¡digit N}.

Subordination determines digit � {} which is a valid relation because the
synchronous atom digit does not invoke saturation. The first clause is ter-
minating because it generates an unrestricted ground atom, so the con-
dition on existential variables is trivial. The second clause is terminating
because it generates an unrestricted ground atom and the depth of the
variable N is zero in the head and one in the antecedent, so the Φ; Ω SH

=⇒
digit N v ∃N:nat,∃!u:digit (sN) judgment holds.

The following forward-chaining program generates the symmetric clo-
sure s as a synchronous atom of a relation r represented by an asynchronous
atom.

!r X Y({¡s X Y}.
¡s X Y({¡s Y X}.

Mode, Reduction, and Termination Analysis for LolliMon 25

Φ; Ω TFCA
=⇒ A; Φg [Termination (forward, clause)]

(no PTFCA rule)

Φ; Ω TFHS
=⇒ S; Φg

Φ; Ω TFCA
=⇒ {S}; Φg

{}TFCA
(no >TFCA rule)

Φ; Ω TFCA
=⇒ A1; Φg Φ; Ω TFCA

=⇒ A2; Φg

Φ; Ω TFCA
=⇒ A1 & A2; Φg

&TFCA

Φ,Φg; Ω TGS
=⇒ S2 ≺ aq Φ; Ω TFCA

=⇒ A1; Φg,∃!u:S2

Φ; Ω TFCA
=⇒ S2 (A1; Φg

(TFCA

Φ; Ω TFCA
=⇒ A1; Φg,∃x:A2

Φ; Ω TFCA
=⇒ ∀x:A2.A1; Φg

∀TFCA

Φ; Ω TFHS
=⇒ S; Φg [Termination (forward, head)]

(no QTFHS rule)

Φ; Ω SH
=⇒ Q v Φg

Φ; Ω TFHS
=⇒ ¡Q; Φg

¡TFHS
Φ; Ω TFHS

=⇒ 1; Φg

1TFHS

Φ; Ω TFHS
=⇒ S1; Φg Φ; Ω TFHS

=⇒ S2; Φg

Φ; Ω TFHS
=⇒ S1 ⊗ S2; Φg

⊗TFHS

Φ,∃x:A2; Ω TFHS
=⇒ S1; Φg

Φ; Ω TFHS
=⇒ ∃x:A2.S1; Φg

∃TFHS
(no ATFHS rule) (no !TFHS)

Figure 19: Termination Checking Principal Judgments (4)

Mode, Reduction, and Termination Analysis for LolliMon 26

The mode assignment mode(r · (X; Y)) = −,− and the default assignment
mode(s · (X; Y)) = −,− are easily verified because no rule proves r and in
both clauses the variables are made ground by the antecedents and there-
fore are ground in the head. Termination is similar to the above case, al-
though this program shows that unlike backward-chaining programs, it is
possible to change the order of an atom’s arguments in forward-chaining
clauses.

Similarly, the transitive closure t of a relation r can be shown to be well-
moded and terminating. Moreover, it is possible to show that if the initial
relation is reducing, then so is the transitive closure.

!r X Y({¡t X Y}.
¡t X Y(¡t Y Z({¡t X Z}.

Assuming red(r · (X; Y)) = X ≺ Y, it is possible to show that this program
satisfies the reduction property red(t · (X; Y)) = X ≺ Y. In the first clause, t
satisfies the reduction property X ≺ Y because r satisfies it. In the second
clause, the inductive reduction properties X ≺ Y and Y ≺ Z can be used
in the subterm sequent calculus to show t satisfies the reduction property
X ≺ Z.

The following mixed-search implementation of CKY parsing in Lol-
liMon can be shown to be well-moded and terminating.

!rule X (char C)(!str I C({¡parse X I I}.
!rule X (jux Y Z)(¡parse Y I J(¡parse Z (s J) K({¡parse X I K}.
load N nil S � {¡parse S (s z) N}.
load I (C :: Cs) S � !(!str (s I) C(load (s I) Cs S).
start Cs S � !load 0 Cs S.

It is possible to verify the clauses are well-moded by assigning modes to
the asynchronous atoms

mode(str (I; C)) = −,−

mode(rule (X; R)) = −,−

mode(load (I; Cs; S)) = +,+,−

mode(start (Cs; S)) = +,−

and the necessary assignment mode(parse·(X; I; J)) = −,−,− for synchronous
atoms. Since str and rule do not occur in the head of any clause, they triv-
ially satisfy the mode specification. The first two clauses are well-moded

Mode, Reduction, and Termination Analysis for LolliMon 27

by analyzing each clause from left to right and and establishing that the
variables in the head are ground after the subgoals have been solved. The
third clause is well-moded because parse’s mode guarantees S is ground
after saturation. The last two clauses are well-moded by standard reason
for backward-chaining clauses. For termination, the subordination analysis
determines str, rule�parse� {}� load�start which satisfies the global subor-
dination condition because each asynchronous atom (str, rule, load, start) oc-
curs on only one side of {} in the relation and the synchronous atom (parse)
is below {}. The atoms str and rule are trivially terminating because they
do not occur at the head of any clause. The first clause is terminating be-
cause the depth of of the variables X and I in the conclusion is zero, which
is equal to their height in the antecedents. Similarly, the second clause sat-
isfies the the depth condition because the existential variables in the head
occur at depth zero. The third clause is terminating because the subgoal
involves a strictly subordinated atom. The fourth clause is terminating by
specifying term(load · (I; Cs; S)) = Cs because the second argument acts as
the induction variable, which is also trivially satisfied by the third clause.
The higher-order subgoal of the fourth clause also checks the termination
of the subclause str (s I) C. Finally, the fifth clause is terminating because
the subgoal involves a strictly subordinated atom.

One example that can’t be shown to terminate is ¡q (s X) Y({¡q X (sY)},
which converges by using the first argument as an induction variable, but
our analysis rejects the program because the depth of Y in the head is
greater than its depth in the antecedent and it is not possible to specify ter-
mination orders of synchronous atoms. Handling forward-chaining clauses
that generate linear hypotheses is subtle because of the interaction between
linear consumption and linear production. For example, the clauses > (
{q} and p ⊃ {q} are always applicable (assuming p is always satisfiable)
and saturation would generate an unbounded number of copies of q. This
means that a forward-chaining clause that generates linear hypotheses must
have at least one non-trivial atomic linear subgoal. However, this is not suf-
ficient because p({q} could still diverge if p is always satisfiable and q(
{q} clearly loops. The latter example is also problematic because clauses
such as q (q′ (s X) ({q ⊗ q′X} consume a token from the context and
immediately return it, although the database converges because the sec-
ond argument is strictly decreasing. Again, the convergence of the clause
is conditional on the linearity of q′, because the clause would always be
applicable if q′ were unrestricted. Since linear goals may be solved by un-
restricted means, it would be necessary to perform another static analysis
that determines whether an atom may occur in the linear or unrestricted

Mode, Reduction, and Termination Analysis for LolliMon 28

context, or alternatively require a block declaration that makes the shape of
the context explicit. Some programming idioms do not satisfy the subterm
property between the head and subgoals but still converge because the size
of the context is strictly decreasing. For example p (q X ({q (s X)} in-
formally counts the number of p’s in the context and converges if p is truly
linear, although the depth of X in the head is not less than or equal to its
height in the antecedents. Due to the variety of termination arguments for
forward-chaining clauses with linear heads, it may be necessary to provide
multiple ways of specifying the termination property according to which
antecedents are truly linear, whether a rule shrinks the context or generates
hypotheses with strictly smaller arguments, and addressing the interaction
between clauses that terminate for different reasons.

3 Conclusion

We have presented a variant of LolliMon with synchronous atoms and
generalized linear implication together with an operational semantics that
makes saturation and quiescence explicit, as well as mode, reduction, and
termination analyses that handle the mixed backward-chaining and forward-
chaining search behavior. The termination analysis only accounts for backward-
chaining clauses and forward-chaining clauses that generate unrestricted
synchronous atoms, and we have discussed design considerations for han-
dling the general forward-chaining case. The next step will be to prove
soundness and completeness of the explicit operational semantics with re-
spect to the original semantics, extend termination analysis to handle gen-
eral forward-chaining clauses, and prove the correctness of the analyses
with respect to the operational semantics. The reduction and termination
analyses could be revised using contextual modal type theory [12] instead
of the mixed-prefix context presentation.

Termination of forward-chaining logic programs can be refined to es-
tablish asymptotic time complexity bounds on the running time of satu-
rating logical algorithms. Ganzinger and McAllester [11, 7, 8] give meta-
complexity results for forward-chaining first-order logic programming lan-
guages. The first results deal with bottom-up search without deletion and
union-find primitives, a richer language incorporates deletion of antecedent
formulas and rules with fixed priority which enable an encoding of union-
find, and a further extension allows deletion of arbitrary formulas (not only
those that appear in the antecedent) and variable priority as a function of
the object terms. The metacomplexity results permit the analysis of sat-

Mode, Reduction, and Termination Analysis for LolliMon 29

urating logic programs whose complexity is given in terms of the size of
the initial database and the number of prefix firings (the number of ways
the antecedent of a clause can be satisfied). The metacomplexity theorems
are proven by translating logic programs into a restricted fragment of the
language and giving an algorithm that generates the completed database
within the purported time complexity. Their example saturating logical
algorithms be encoded in LolliMon by simulating deletion with linear re-
source consumption, although LolliMon does not provide a logical founda-
tion for rule priorities. In their setting deletion is irrevocable so a sufficient
termination criterion is that terms in the conclusion are subterms (not nec-
essarily proper) of the terms in the antecedents. Termination for saturat-
ing LolliMon logic programs may be verified by means of a similar meta-
complexity result, although linearity will likely require a more complicated
subterm criterion because linear production and consumption are comple-
mentary and certain LolliMon programs may oscillate between states even
though the linear context remains bounded. The Ganzinger and McAllester
algorithm for computing the saturated completion of a database according
to rules with deletion may be adapted to the linear setting by relaxing the
saturation and quiescence conditions and employing model checking tech-
niques for determining when a local fixed point has been reached, even if
the context oscillates. Another direction for research will be to extend the
operational semantics as well as the static analyses to the dependent case
of CLF.

Termination analysis of backward-chaining logic programs may also be
refined into a nondeterministic time complexity metatheorem by consider-
ing the running time of a clause as a recurrence relation in terms of the
running time of the subgoals. This approach would be similar to the com-
plexity analyses of Debray, López Garcı́a, Hermenegildo, and Lin [6, 4, 5]
and could employ the techniques for automatic solution of recurrence rela-
tions developed by Bagnara, Zaccagnini, and Zolo [3, 2].

Once the theoretical foundations for termination and complexity anal-
ysis in LolliMon are settled, a termination checker and complexity synthe-
sizer can be implemented in LolliMon, the algorithm in the proof of the
metacomplexity theorem can be implemented separately or as a replace-
ment for the existing LolliMon saturation/quiescence engine, and the sub-
term analysis can be extended to CLF proof terms.

Mode, Reduction, and Termination Analysis for LolliMon 30

4 Acknowledgments

I am grateful to thank Frank Pfenning for introducing me to the topic and
discussing existing work, and to Brigitte Pientka for explaining the design
considerations of reduction and termination checking for Twelf.

5 References

[1] Jean-Marc Andreoli. Logic programming with focusing proofs in lin-
ear logic. J. Log. Comput., 2(3):297–347, 1992.

[2] Roberto Bagnara and Alessandro Zaccagnini. Checking and bound-
ing the solutions of some recurrence relations. Quaderno 344, Dipar-
timento di Matematica, Universit di Parma, Italy, 2004.

[3] Roberto Bagnara, Alessandro Zaccagnini, and Tatiana Zolo. The au-
tomatic solution of recurrence relations. I. Linear recurrences of fi-
nite order with constant coefficients. Quaderno 334, Dipartimento di
Matematica, Universit di Parma, Italy, 2003.

[4] Saumya K. Debray, Pedro López Garcı́a, Manuel Hermenegildo, and
Nai-Wei Lin. Estimating the computational cost of logic programs. In
Baudoin Le Charlier, editor, Proceedings of the First International Static
Analysis Symposium, pages 255–265. Springer Verlag, 1994.

[5] Saumya K. Debray, Pedro López Garcı́a, Manuel Hermenegildo, and
Nai-Wei Lin. Lower Bound Cost Estimation for Logic Programs. In
International Symposium on Logic Programming, oct 1997.

[6] Saumya K. Debray and Nai-Wei Lin. Cost analysis of logic programs.
ACM Transactions on Programming Languages and Systems, 15(5):826–
875, November 1993.

[7] Harald Ganzinger and David A. McAllester. A new meta-complexity
theorem for bottom-up logic programs. In IJCAR, pages 514–528, 2001.

[8] Harald Ganzinger and David A. McAllester. Logical algorithms. In
ICLP, pages 209–223, 2002.

[9] Jean-Pierre Jouannaud and Albert Rubio. The higher-order recursive
path ordering. In G. Longo, editor, Proceedings of the 14th Annual Sym-
posium on Logic in Computer Science (LICS’99), pages 402–411, Trento,
Italy, 1999. IEEE Computer Society Press.

Mode, Reduction, and Termination Analysis for LolliMon 31

[10] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins.
Monadic concurrent linear logic programming. In PPDP, pages 35–
46, 2005.

[11] David A. McAllester. On the complexity analysis of static analyses. J.
ACM, 49(4):512–537, 2002.

[12] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contex-
tual modal type theory. In Transactions on Computational Logic. ACM,
sep 2005. Submitted.

[13] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149–181. Cambridge University Press, 1991.

[14] Frank Pfenning and Carsten Schürmann. System description: Twelf
— A meta-logical framework for deductive systems. In H. Ganzinger,
editor, Proceedings of the 16th International Conference on Automated De-
duction (CADE-16), pages 202–206, Trento, Italy, 1999. Springer-Verlag
LNAI 1632.

[15] Brigitte Pientka. Termination and reduction checking for higher-order
logic programs. In Rajeev Goré, Alexander Leitsch, and Tobias Nip-
kow, editors, IJCAR, volume 2083 of Lecture Notes in Computer Science,
pages 401–415. Springer, 2001.

[16] Brigitte Pientka. Verifying termination and reduction properties about
higher-order logic programs. J. Autom. Reasoning, 34(2):179–207, 2005.

[17] Brigitte Pientka and Frank Pfenning. Termination and reduction
checking in the logical framework. In Carsten Schürmann, editor,
Workshop on Automation of Proofs by Mathematical Induction, Pittsburgh,
Pennsylvania, jun 2000.

[18] Lutz Plumer. Termination Proofs for Logic Programs, volume 446 of Lec-
ture Notes in Artificial Intelligence. Springer-Verlag, 1990.

[19] Ekkehard Rohwedder and Frank Pfenning. Mode and termination
checking for higher-order logic programs. In ESOP, pages 296–310,
1996.

[20] Jaco van de Pol and Helmut Schwichtenberg. Strict functionals for ter-
mination proofs. In Mariangiola Dezani-Ciancaglini and Gordon D.
Plotkin, editors, TLCA, volume 902 of Lecture Notes in Computer Sci-
ence, pages 350–364. Springer, 1995.

Mode, Reduction, and Termination Analysis for LolliMon 32

[21] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker.
A concurrent logical framework I: Judgments and properties. Tech-
nical Report CMU-CS-02-101, Department of Computer Science,
Carnegie Mellon University, 2002. Revised May 2003.

