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Abstract

In this paper we seek to provide greater automation for formal deductive verification tools working
with continuous and hybrid dynamical systems. We present an efficient procedure to check invari-
ance of conjunctions of polynomial equalities under the flow of polynomial ordinary differential
equations. The procedure is based on a necessary and sufficient condition that characterizes invari-
ant conjunctions of polynomial equalities. We contrast this approach to an alternative one which
combines fast and sufficient (but not necessary) conditions using differential cuts for soundly re-
stricting the system evolution domain.





1 Introduction
The problem of reasoning about invariant sets of dynamical systems is of fundamental importance
to verification and modern control design [3, 27, 35, 31]. A set is an invariant of a dynamical
system if no trajectory can escape from it. Of particular interest are safety assertions that describe
states of the system which are deemed safe; it is clearly important to ensure that these sets are
indeed invariant.

Hybrid systems combine discrete and continuous behavior and have found application in mod-
elling a vast quantity of industrially relevant designs, many of which are safety-critical. In order to
verify safety properties in hybrid models, one often requires the means of reasoning about safety in
continuous systems. This paper focuses on developing and improving the automation of reasoning
principles for a particular class of invariant assertions for continuous systems – conjunctions of
polynomial equalities; these can be used, e.g. to assert the property that certain values (temper-
ature, pressure, water level, etc.) in the system are maintained at a constant level as the system
evolves.

In practice, it is highly desirable to have the means of deciding whether a given set is invariant
in a particular dynamical system. It is equally important that such methods be efficient enough to
be of practical utility. This paper seeks to address both of these issues. The contributions of this
paper are twofold:

• It extends differential radical invariants [14] to obtain a characterization of invariance for al-
gebraic sets under the flow of algebraic differential equations. It also introduces an optimized
decision procedure to decide the invariance of algebraic sets.

• It explores an approach combining deductively less powerful rules [19, 33, 22, 30] using
differential cuts [28] to exploit the structure of the system to yield efficient proofs even for
non-polynomial systems. Furthermore, differential cuts [28] are shown to fundamentally
improve the deductive power of Lie’s criterion [19].

The two approaches to proving invariance of conjunctive equational assertions explored in this pa-
per are complementary and aim at improving proof automation—deductive power and efficiency—
in deductive formal verification tools.

Content. In Section 2, we recall some basic definitions and concepts. Section 3 introduces
a new proof rule to check the invariance of a conjunction of polynomial equations along with
an optimized implementation. Section 4 presents another novel approach to check invariance of a
conjunction; it leverages efficient existing proof rules together with differential cuts and differential
weakening. An automated proof strategy that builds on top of this idea is given in Section 5.
The average performance of these different approaches is assessed using a set of 32 benchmarks
(Section 6).
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2 Preliminaries
Let x = (x1, . . . , xn) : Rn, and x(t) = (x1(t), . . . , xn(t)), where xi : R → R, t 7→ xi(t). The
ring of polynomials over the reals will be denoted by R[x1, . . . , xn]. We consider autonomous1

differential equations described by polynomial vector fields.

Definition 1 (Polynomial Vector Field). Let pi, 1 ≤ i ≤ n, be multivariate polynomials in the
polynomial ring R[x]. A polynomial vector field, p, is an explicit system of ordinary differential
equations with polynomial right-hand side:

dxi
dt

= ẋi = pi(x), 1 ≤ i ≤ n . (1)

One important problem is that of checking the invariance of a variety (or algebraic set), with
evolution domain constraints H; that is, we ask whether a polynomial conjunction h1 = 0 ∧ · · · ∧
hr = 0, initially true, holds true in all reachable states2 that satisfy the evolution domain con-
straints. The problem is equivalent to the validity of the following formula in differential dynamic
logic [27]:

(h1 = 0 ∧ · · · ∧ hr = 0)→ [ẋ = p&H](h1 = 0 ∧ · · · ∧ hr = 0) (2)

where [ẋ = p&H]ψ is true in a state xι if the postcondition ψ is true in all states reachable from
xι—satisfying H—by following the differential equation ẋ = p for any amount of time as long as
H is not violated. For simplicity, for a polynomial h in x, we write h = 0 for h(x) = 0.

Geometrically, the dL formula in Eq. (2) is true if and only if the solution x(t), t ≥ 0, of the
initial value problem (ẋ = p, x(0) = xι), with hi(xι) = 0 for i = 1, . . . , r, is a real root of the
system h1 = 0, . . . , hr = 0 as long as it satisfies the constraints H .

The algebraic counterpart of varieties are ideals. Ideals are sets of polynomials that are closed
under addition and external multiplication. That is, if I is an ideal, then for all h1, h2 ∈ I , the sum
h1 + h2 ∈ I; and if h ∈ I , then, qh ∈ I , for all q ∈ R[x1 . . . , xn].

We will use∇h to denote the gradient of a polynomial h, that is the vector of its partial deriva-
tives

(
∂h
∂x1
, . . . , ∂h

∂xn

)
. The Lie derivative of a polynomial h along a vector field p is defined as

follows (the symbol “·” denotes the scalar product):

Lp(h)
def
= ∇h · p =

n∑
i=1

∂h

∂xi
pi . (3)

Higher-order Lie derivatives are: L(k+1)
p (h) = Lp(L

(k)
p (h)), where L

(0)
p (h) = h.

1Autonomous means that the rate of change of the system over time depends only on the system’s state, not on
time. Non-autonomous systems with time dependence can be made autonomous by adding a new state variable to
account for the progress of time.

2Reachable states implicitly means that we focus on positive time invariance, that is the time variable t is assumed
to be non-negative.
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3 Characterizing Invariance of Conjunctive Equations
In this section we give an exact characterization of invariance for conjunctions of polynomial
equalities under the flow of algebraic differential equations and assuming that the evolution domain
constraintH is an open set.3 The characterization, as well as the proof rule, generalize our previous
work which handles purely equational invariants of the form h = 0 without considering evolution
domains (that is H = Rn, which is open).

The differential radical invariants proof rule DRI [14, Theorem 2] has been shown to be a
necessary and sufficient criterion for the invariance of equations of the form h = 0:

(DRI)
h = 0→

∧N−1
i=0 L

(i)
p (h) = 0

h = 0→ [ẋ = p] h = 0
. (4)

The order N ≥ 1 denotes the length of the chain of ideals 〈h〉 ⊆ 〈h,Lp(h)〉 ⊆ · · · which reaches a
fixed point after finitely many steps by the ascending chain property of Noetherian rings. Thus, the
order N is always finite and computable—using Göbner Bases [5]—for polynomials with rational
coefficients. The premise of the proof rule DRI is a real quantifier elimination problem and can be
solved algorithmically [6].

A naı̈ve approach to prove invariance of a conjunction h1 = 0 ∧ · · · ∧ hr = 0, without evolu-
tion domain constraints, is to use the proof rule DRI together with the following sum-of-squares
equivalence from real arithmetic:

h1 = 0 ∧ · · · ∧ hr = 0 ≡R

r∑
i=1

h2i = 0 . (5)

Sums-of-squares come at the price of doubling the polynomial degree, thereby increasing the com-
plexity of checking the premise (Section 3.2 discusses the link between polynomial degree and
the complexity of DRI-based proof rules). Instead, we present an extension of the proof rule
DRI that exploits the underlying logical structure of conjunctions. For a conjunction of equations
h1 = 0∧ · · · ∧ hr = 0, the order N is generalized to the length of the chain of ideals formed by all
the polynomials h1, . . . , hr and their successive Lie derivatives:

I = 〈h1, . . . , hr〉 ⊆ 〈h1, . . . , hr,Lp(h1), . . . ,Lp(hr)〉 ⊆ 〈h1, . . . ,L(2)
p (hr)〉 · · · (6)

Theorem 1 (Conjunctive Differential Radical Characterization). Let h1, . . . , hr ∈ R[x] and let H
denote some open evolution domain constraint. Then, the conjunction h1 = 0 ∧ · · · ∧ hr = 0, is
invariant under the flow of the vector field p, subject to the evolution constraint H , if and only if

H `
r∧
j=1

hj = 0→
r∧
j=1

N−1∧
i=1

L(i)
p (hj) = 0 . (7)

where N denotes the order of the conjunction.
3We will briefly discuss the case when H is an arbitrary set later. We leave the formal treatment of the general case

as a future work.
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Here ` is used, as in sequent calculus, to assert that whenever the constraint H (antecedent)
is satisfied, then at least one (in this case, the only) formula to the right of ` is also true. The
detailed proof can be found Appendix A. When the evolution domain constraints are dropped
(H = True) and r = 1 (one equation), one recovers exactly the statement of [14, Theorem 2] which
characterizes invariance of atomic equations. Intuitively, Theorem 3 says that on the invariant
algebraic set, all higher-order Lie derivatives of each polynomial hi must vanish. It adds however a
crucial detail: checking finitely many—exactly N—higher-order Lie derivatives is both necessary
and sufficient. The theorem does not check for invariance of each conjunct taken separately, rather
it handles the conjunction simultaneously. The order N is a property of the ideal chain formed
by all the polynomials and their Lie derivatives. If Ni denotes the order of each atom hi taken
separately, then one can readily see that

N ≤ max
i
Ni . (8)

The equality does not hold in general: consider for instance h1 = x1, h2 = x2 and p = (x2, x1).
Since L

(2)
p (hi) = hi, for i = 1, 2, we have N1 = N2 = 2. However,

〈x1, x2〉 = 〈h1, h2〉 ⊆ 〈h1, h2,Lp(h1),Lp(h2)〉 = 〈x1, x2, x2, x1〉 = 〈x1, x2〉,

which means that N = 1. This example highlights one of the main differences between this work
and the characterization given in [21, Theorem 24], where the criterion is given by

H `
r∧
j=1

hj = 0→
r∧
j=1

Nj−1∧
i=1

L(i)
p (hj) = 0 . (9)

The computation of each order Nj requires solving Nj ideal membership problems. One can ap-
preciate the difference with the criterion of Theorem 3 which only requires N ideal membership
checks for the entire conjunction. In the worst case, when N = Nk = maxiNi, Theorem 3 per-
forms

∑r
j=1,j 6=kNj fewer ideal membership checks compared to the criterion of Eq. (9). A smaller

order N confers an additional benefit of reducing the cost of quantifier elimination—discussed in
Section 3.2—by bringing down both the total number of polynomials and their maximum degree.

Remark 1 (Reducing the Differential Radical Order Using the Evolution Domain Constraint).
Ideally, one should also account for H when computing N . When H is an algebraic set, its
generators should be appended to the ideal 〈h1, . . . , hr〉. We leave the semi-algebraic case for
future work. For instance, consider the vector field p = (x2 − 1, x1 − 2) and the candidate
h = x2−1 subject to H : x1−2 = 0. The differential radical order of 〈x2−1〉 is 2. If we consider
H , the ideal to consider would be 〈x1 − 2, x2 − 1〉 leading to N = 1.

Using Theorem 3, the differential radical invariant proof rule DRI [14] generalizes to conjunc-
tions of equations with evolution domain constraints as follows:

(DRI∧)
H `

(∧r
j=1 hj = 0

)
→
∧r
j=1

∧N−1
i=1 L

(i)
p (hj) = 0(∧r

j=1 hj = 0
)
→ [ẋ = p&H]

(∧r
j=1 hj = 0

) . (10)

Next, we implement the proof rule DRI∧ and discuss its theoretical complexity.
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Algorithm 1: Checking invariance of a conjunction of polynomial equations.
Data: H (evolution domain constraints), p (vector field), x (state variables)
Data: h1, . . . , hr (conjunction candidate)
Result: True if and only if h1 = 0 ∧ . . . ∧ hr = 0 is an invariant of [ẋ = p&H]

1 Ň ← 1
2 I← {h1, . . . , hr} // Elements of the chain of ideals
3 L← {h1, . . . , hr} // Work list of polynomial to derive
4 symbs← Variables[p, h1, . . . , hr]
5 while True do
6 GB← GröbnerBasis[I, x]
7 LD← {} // Work list of Lie derivatives not in I
8 foreach ` in L do
9 LieD← LieDerivative[`, p, x]

10 Rem← PolynomialRemainder[LieD, GB, x]
11 if Rem 6= 0 then
12 LD← LD ∪ LieD

13 if LD = {} then
14 return True

15 else
16 foreach ` in LD do
17 if QE[∀ symbs (H ∧ h1 = 0 ∧ · · · ∧ hr = 0→ ` = 0)] 6= True then
18 return False

19 I← GB ∪ LD
20 Ň ← Ň + 1
21 L← LD

3.1 Decision Procedure
To check the validity of the premise in the proof rule DRI∧, one needs to compute the order N and
to decide a purely universally quantified sentence in the theory of real arithmetic. These two tasks
do not have to be performed in that precise order. We present an algorithm that computes N on the
fly while breaking down the quantifier elimination problem into simpler sub-problems.

Algorithm 1 implements the proof rule DRI∧. The algorithm returns True if and only if the
candidate is an invariant. The variable Ň strictly increases and converges, from below, toward
the finite unknown order N . It is therefore a decision procedure for the invariance problem with
conjunctive equational candidates.

At each iteration of the while loop it checks whether a fixed point of the chain of ideals has
been reached, implying Ň = N . To this end, it computes a Gröbner basis (GB) of the ideal I (line
2), containing the polynomials hi as well as their respective higher-order Lie derivatives up to the
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derivation order Ň − 1. Then it enters a foreach loop (line 8), where it computes the Ň th order
Lie derivatives and their respective reductions (or remainders) (LieD) by the Gröbner basis GB.
All Lie derivatives with non-zero remainders are stored in the list LD (line 12). If the list is empty,
then all Ň th Lie derivatives are in the ideal I: the fixed point of the chain of ideals is reached,
and Ň = N . This also means that True can be returned since all prior quantifier elimination calls
returned True. Otherwise, the outermost while loop (line 5) needs to be executed one more time
after increasing Ň (line 20). Before re-executing the while loop, however, we make sure that the
premise of the proof rule DRI∧ holds up to Ň . Since in this case, we know that Ň < N , if the
quantifier elimination fails to discharge the premise of the proof rule DRI∧ at Ň , then we do not
need to go any further as the invariance property is already falsified.

The while loop decomposes the right hand side of the implication in Eq. (10) along the con-
junction

∧N−1
i=1 : the ith iteration checks whether the conjunction

∧r
j=1 L

(i)
p hj vanishes. The main

purpose of the foreach loop in line 16 is to decompose further the conjunction
∧r
j=1 using the

logical equivalence a → (b ∧ c) ≡ (a → b) ∧ (a → c) for any boolean variables a, b, and c. This
leads to more tractable problems of the form:

H `
r∧
j=1

hj = 0→ L(i)
p (hj) = 0 . (11)

Observe that the quantifier elimination problem in line 17 performs a universal closure for all
involved symbols—state variables and parameters— denoted by symbs and determined once at
the beginning of the algorithm using the procedure Variables (line 4). Besides, the quantifier
elimination problem in line 17 can be readily adapted to explicitly return extra conditions on the
parameters to ensure invariance of the given conjunction. When the algorithm returns False, any
counterexample to the quantifier elimination problem of line 17 can be used as an initial condition
for a concrete counterexample that falsifies the invariant.

3.2 Complexity
Algorithm 1 relies on two expensive procedures: deciding purely universally quantified sentences
in the theory of real arithmetic (line 17) and ideal membership of multivariate polynomials using
Gröbner bases (line 6). We discuss their respective complexity.

Quantifier elimination over the reals is decidable [36]. The purely existential fragment of the
theory of real arithmetic has been shown to exhibit singly exponential time complexity in the
number of variables [1]. Theoretically, the best bound on the complexity of deciding a sentence
in the existential theory of R is given by (sd)O(n), where s is the number of polynomials in the
formula, d their maximum degree and n the number of variables [1]. However, in practice this has
not yet led to an efficient decision procedure, so typically it is much more efficient to use partial
cylindrical algebraic decomposition (PCAD) due to Collins & Hong [6], which has running time
complexity doubly-exponential in the number of variables.

Ideal membership of multivariate polynomials with rational coefficients is complete for EXPSPACE
[23]. Gröbner bases [5] allow membership checks in ideals generated by multivariate polynomials.
Significant advances have been made for computing Gröbner bases [11, 12] which in practice can
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be expected to perform very well. The degree of the polynomials involved in a Gröbner basis com-
putation can be very large. Theoretically, a Gröbner basis may contain polynomials with degree
22d [24]. The degrees of all the polynomials involved are bounded by O(d2

n
) [10]. Gröbner bases

are also highly sensitive to the monomial order arranging the different monomials of a multivariate
polynomial (see, e.g., [8, Chapter 2] for formal definitions). The Degree Reverse Lexicographic
(degrevlex) order gives (on average) Gröbner bases with the smallest total degree [2], although
there exist known examples (cf. Mora’s example in [18]) for which, even for the degrevlex
monomial ordering, the (reduced) Gröbner basis contains a polynomial of total degree O(d2). Fi-
nally, the rational coefficients of the generators of Gröbner bases may become involved (compared
to the rational coefficients of the original generators of the ideal), which can have a negative impact
on the running time and memory requirements.

3.3 Optimization
The theoretical complexity of both the quantifier elimination and Gröbner bases algorithms sug-
gests several opportunities for optimization for Algorithm 1. The maximal degree of the polynomi-
als appearing in H is assumed to be fixed. We can reduce the polynomial degrees in the right-hand
side of the implication in Eq. (11) as follows: by choosing a total degree monomial ordering (e.g.
degrevlex), the remainder Rem has at most the same total degree as LieD; replacing LieD by
Rem serves to reduce (on average) the cost of calling a quantifier elimination procedure. Lem. 1
proves that substituting LieD by its remainder Rem in line 17 does not compromise correctness.

Lemma 1. Let q be the remainder of the reduction of the polynomial s by the Gröbner basis of the
ideal generated by the polynomials h1, . . . , hr. Then,

h1 = 0 ∧ · · · ∧ hr = 0→ s = 0 if and only if h1 = 0 ∧ · · · ∧ hr = 0→ q = 0 .

Proof. By construction, we have s =
∑r

i=1 αihi + q for some polynomials αi. Therefore, the
conjunction h1 = 0 ∧ · · · ∧ hr = 0 implies that s − q = 0, or equivalently s = q, and the lemma
follows.

The same substitution reduces the Gröbner basis computation cost since it attempts to keep a
low maximal degree in all the polynomials appearing in the generators of the ideal I. Lem. 2 shows
that it is safe to perform this substitution: the ideal I remains unchanged regardless of whether we
choose to construct the list LD using LieD or Rem.

Lemma 2. Let q be the remainder of the reduction of the polynomial s by the Gröbner basis of the
ideal generated by the polynomials h1, . . . , hr. Then,

〈h1, . . . , hr, s〉 = 〈h1, . . . , hr, q〉 .

Proof. By construction, we have s =
∑r

i=1 αihi + q for some polynomials αi. Therefore, s ∈
〈h1, . . . , hr, q〉 and q ∈ 〈h1, . . . , hr, s〉, which respectively leads to
〈h1, . . . , hr, s〉 ⊆ 〈h1, . . . , hr, q〉 and 〈h1, . . . , hr, s〉 ⊇ 〈h1, . . . , hr, q〉.
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(DI=)
H ` Lp(h) = 0

(h = 0)→ [ẋ = p & H](h = 0)
(P-c)

H ` Lp(h) ∈ 〈h〉
(h = 0)→ [ẋ = p & H](h = 0)

(Lie)

∧k−1
i=1 gi = 0 ` h = 0→ (Lp(h) = 0 ∧ rank(∇g1, . . . ,∇gk−1,∇h) = k)

(h = 0)→ [ẋ = p &
∧k−1
i=1 gi = 0](h = 0)

(Lieo)
H ` h = 0→ (Lp(h) = 0 ∧∇h 6= 0)

(h = 0)→ [ẋ = p & H](h = 0)
(DW)

H ` F
F → [ẋ = p &H ]F

Figure 1: Proof rules for checking the invariance of h = 0 w.r.t. the vector field p: DI= [30, Theorem 3], P-c [33,
Lemma 2], Lie, Lieo based on [26, Theorem 2.8], DW [29, Lemma 3.6]

Although this optimization reduces the total degree of the polynomials involved, the coeffi-
cients of the remainder q may get more involved than the coefficients of the original polynomial s.
In Section 6 we give an empirical comparison of the optimized—as detailed in this section—versus
the unoptimized version of Algorithm 1.

4 Sufficient Conditions for Invariance of Equations
The previous section dealt with a method for proving invariance which is both necessary and
sufficient for conjunctions of polynomial equalities. Given the proof rule DRI∧, it is natural to ask
whether previously proposed sufficient proof rules are still relevant. After all, theoretically, DRI∧
is all that is required for producing proofs of invariance in this class of problems. This is a perfectly
legitimate question; however, given the complexity of the underlying decision procedures needed
for DRI∧ it is perhaps not surprising that one will eventually face scalability issues. This, in turn,
motivates a different question - can one use proof rules (which are perhaps deductively weaker
than DRI∧) in such a way as to attain more computationally efficient proofs of invariance?

Before addressing this question, this section will review existing sufficient proof rules which
allow reasoning about invariance of atomic equational assertions. In Fig. 1, DI= shows the equa-
tional differential invariant [28] proof rule. The condition is sufficient (but not necessary) and
characterizes polynomial invariant functions [28, 30]. The premise of the Polynomial-consecution
rule [33, 22], P-c in Fig. 1, requires Lp(h) to be in the ideal generated by h. This condition is also
only sufficient and was mentioned as early as 1878 [9]. The Lie proof rule uses Lie’s criterion
[19, 26, 30] for invariance of h = 0 and characterizes smooth invariant manifolds, while Lieo is a
common variant that assumes the evolution constraint H provided that it defines an open set.

Remark 2. In an earlier version, Lieo was incorrectly represented as Lie, which only applies to
instances where H is open. See [26, 30] for more information about Lie’s criterion.

The rule DW is called differential weakening [29] and covers the trivial case when the evolution
constraint implies the invariant candidate; in contrast to all other rules in the table, DW can work
with arbitrary invariant assertions.
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Unlike the necessary and sufficient condition provided by the rule DRI (see Eq. (4)), all the
other proof rules in Figure 1 only impose sufficient conditions and may thus fail at a proof even in
cases when the candidate is indeed an invariant.

The purpose of all the rules shown in Figure 1, save perhaps DW, is to show invariance of
atomic equations. However, in general, one faces the problem F → [ẋ = p & H]C, where F is a
formula defining a set of states where the system is initialized, and C is the post-condition where
the system always enters after following the differential equation ẋ = p as long as the domain
constraint H is satisfied.

One way to prove such a statement is to find an invariant I which is true initially (i.e. F → I),
is indeed an invariant for the system (I → [ẋ = p&H]I), and implies the post-condition (I → C).
These conditions can be formalized in the proof rule [31]

(Inv)
F → I I → [ẋ = p &H ]I I → C

F → [ẋ = p &H ]C
.

In this paper we consider the special case when the invariant is the same as the post-condition, so
we can drop the last clause and the rule becomes

(Inv)
F → C C → [ẋ = p &H ]C

F → [ẋ = p &H ]C
.

In the following sections, we will be working in a proof calculus, rather than considering a
single proof rule, and will call upon this definition in the proofs we construct.

5 Differential Cuts and Lie’s Rule
When considering a conjunctive invariant candidate h1 = 0 ∧ h2 = 0 ∧ · · · ∧ hr = 0, it may be
the case that each conjunct considered separately is an invariant for the system. Then, one could
simply invoke the following basic result about invariant sets to prove invariance of each atomic
formula individually.

Proposition 1. Let S1, S2 ⊆ Rn be invariant sets for the differential equation ẋ = p, then the set
S1 ∩ S2 is also an invariant.

Corollary 1. The proof rule

(∧Inv)
h1 = 0→ [ẋ = p &H ]h1 = 0 h2 = 0→ [ẋ = p &H ]h2 = 0

h1 = 0 ∧ h2 = 0→ [ẋ = p &H ](h1 = 0 ∧ h2 = 0)
(12)

is sound and may be generalized to accommodate arbitrarily many conjuncts.

Of course, one still needs to choose an appropriate proof rule from Figure 1 (or DRI) in order
to prove invariance of atomic equational formulas. For purely polynomial problems it would be
natural to attempt a proof using DRI first, but in the presence of transcendental functions, one may
need to resort to other rules. In general however, even if the conjunction defines an invariant set,
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the individual conjuncts need not themselves be invariants. If such is the case, one cannot simply
break down the conjunctive assertion using the rule ∧Inv and prove invariance of each conjunct
individually. In this section, we explore using a proof rule called differential cut (DC) to address
this issue.

Differential cuts were introduced as a fundamental proof principle for differential equations [28]
and can be used to (soundly) strengthen assumptions about the system evolution.

Proposition 2 (Differential Cut [28]). The proof rule

(DC)
F → [ẋ = p]C F → [ẋ = p & C]F

F → [ẋ = p]F
,

where C and F denote quantifier-free first-order formulas, is sound.

Remark 3. The rule ∧Inv may in fact be derived from DW, Inv, and DC.

One may appreciate the geometric intuition behind the rule DC if one realizes that the left
branch requires one to show that the set of states satisfying C is an invariant for the system initial-
ized in any state satisfying F . Thus, the system does not admit any trajectories starting in F that
leave C and hence by adding C to the evolution constraint, one does not restrict the behavior of
the original system.

Differential cuts may be applied repeatedly to the effect of refining the evolution constraint
with more invariant sets. It may be profitable to think of successive differential cuts as showing an
embedding of invariants in a system.

There is an interesting connection between differential cuts and embeddings of invariant sub-
manifolds, when used with the proof rule Lie. To develop this idea, let us remark that if one
succeeds at proving invariance of some h1 = 0 using the rule Lie in a system with no evolution
constraint, one shows that h1 = 0 is a smooth invariant sub-manifold of Rn. If one now considers
the system evolving inside that invariant manifold and finds some h2 = 0 which can be proved
to be invariant using Lie with h1 = 0 acting as an evolution constraint, then inside the manifold
h1 = 0, h2 = 0 defines an invariant sub-manifold (even in cases when h2 = 0 might not define a
sub-manifold of the ambient space Rn). One can proceed using Lie in this way to look for further
embedded invariant sub-manifolds. We will illustrate this idea using a basic example.

Example 1 (Differential cut with Lie). Let the system dynamics be p = (x1,−x2). This system has
an equilibrium at the origin, i.e. p(0) = 0. Consider an invariant candidate x1 = 0∧x1−x2 = 0.
One cannot use Lie directly to prove the goal

x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p] (x1 = 0 ∧ x1 − x2 = 0) .

Indeed, rewriting x1 = 0 ∧ x1 − x2 = 0 as x21 + (x1 − x2)2 = 0 and attempting to use Lie will not
succeed as h = 0→ ∇(x21 + (x1 − x2)2) = 0.

Instead, DC can be used to cut by x1 = 0, which is an invariant for this system provable using
Lie. The left branch of DC is proved as follows:

10
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Figure 2: System invariant x1 = 0 (left) used in a differential cut to show that the intersection at the origin (right)
is an invariant.

*(R)
x1 = 0 ∧ x1 − x2 = 0→ x1 = 0

*(R)
x1 = 0→ x1 = 0 ∧ (1 6= 0)

(Lie)
x1 = 0→ [ẋ = p] x1 = 0

(Inv)
x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p] x1 = 0

One can also prove that x1 − x2 = 0 is a invariant under the evolution constraint x1 = 0:

*
(DW)

x1 = 0→ [ẋ = p & x1 = 0] x1 = 0

*
(R)

x1 = 0 ` x1 − x2 = 0→ x1 + x2 = 0 ∧ rank(∇(x1),∇(x1− x2)) = 2
(Lie)

x1 − x2 = 0→ [ẋ = p & x1 = 0] x1 − x2 = 0
(∧Inv)

x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p & x1 = 0] (x1 = 0 ∧ x1 − x2 = 0)

Using these two sub-proofs to close the appropriate branches, the rule DC proves

x1 = 0 ∧ x1 − x2 = 0→ [ẋ = p ] (x1 = 0 ∧ x1 − x2 = 0).

While this example is very simplistic, it provides a good illustration of the method behind differen-
tial cuts. We used DC to restrict system evolution to an invariant manifold x1 = 0 using Lie and
then used Lie again to show that x1 − x2 = 0 defines an invariant sub-manifold inside x1 = 0.
This is illustrated in Fig. 2.

It is also worth noting that the choice of conjunct for use in the differential cut was crucial.
Had we initially picked x1 − x2 = 0 to act as C in DC, the proof attempt would have failed, since
this does not define an invariant sub-manifold of R2 (see Fig. 2).

Let us now remark that by employing DC, we proved invariance of a conjunction which could
not be described by an atomic equational assertion which is provable using the rule Lie, or by
using Lie to prove invariance of each conjunct after breaking down the conjunction with the rule
∧Inv. It has previously been shown that differential cuts increase the deductive power of the system
when used in concert with differential invariants [28, 31, 30]. We prove that the same is true for

11



differential cuts with Lie. Indeed, differential cuts serve to address some of the limitations inherent
in both DI= and Lie.

Theorem 2. The deductive power of Lie together with DC is strictly greater than that of Lie
considered separately. We write this as DC + Lie � Lie.

Proof. In Example 1 we demonstrate the use of Lie together with DC to prove invariance of a
conjunction of polynomial equalities which is not provable using Lie alone. To see this, suppose
that for the system in Example 1 there exists some real-valued differentiable function g(x) whose
zero level set is precisely the origin, i.e. (g(x) = 0) ≡ (x = 0). Then, for all x ∈ R2 \ {0}
this function evaluates to g(x) > 0 or g(x) < 0 (by continuity of g(x)) and 0 is thus the global
minimum or global maximum, respectively. In either case, g(x) = 0 =⇒ ∇g(x) = 0 is valid,
which cannot satisfy the premise of Lie. �

Similar to the embedding of invariants observed when combining differential cuts with Lie
proof rule, we briefly explore an intriguing connection between the use of differential cuts together
with DI= and higher integrals of dynamical systems.

The premise of the rule DI= establishes that h(x) is a first integral (i.e. a constant of motion)
for the system in order to conclude that h = 0 is an invariant. More general notions of invariance
have been introduced to study integrability of dynamical systems. For instance, h(x) is a second
integral if Lp(h) = αh, where α is some function; this is also sufficient to conclude that h = 0
is an invariant. Let us remark that in a purely polynomial setting, such an h ∈ R[x] is known as
a Darboux polynomial [16, 9] and the condition corresponds to ideal membership in the premise
of P-c. Going further, a third integral is a function h(x) that remains constant on some level set
of a first integral g(x) [16, Section 2.6], i.e. Lp(h) = αg where g is a first integral and α is some
function. These ideas generalize to higher integrals (see [16, Section 2.7]).

Example 2 (Deconstructed aircraft [30] - differential cut with DI=). Consider the system ẋ = p =
(−x2, x3,−x2) and consider the invariant candidate x21 + x22 = 1 ∧ x3 = x1. One cannot use DI=
directly to prove the goal

x21 + x22 = 1 ∧ x3 = x1 → [ẋ = p] (x21 + x22 = 1 ∧ x3 = x1) .

We can apply DC to cut by x1 = x3, which is a first integral for the system and is thus provable
using DI=. The left branch of DC is proved as follows:

*(R)
x21 + x22 = 1 ∧ x3 = x1 → x3 = x1

*(R) −x2 = −x2(DI=)
x3 = x1 → [ẋ = p]x3 = x1

(Inv)
x21 + x22 = 1 ∧ x3 = x1 → [ẋ = p]x3 = x1

For the right branch of DC we need to show that x21 + x22 = 1 is an invariant under the evolution
constraint x3 = x1. This is again provable using DI=:

12



*
(DW)

x3 = x1 → [ẋ = p & x3 = x1] x3 = x1

*
(R)

x3 = x1 ` −2x1x2 + 2x2x3 = 0
(DI=)

x21 + x22 = 1→ [ẋ = p & x3 = x1] x21 + x22 = 1
(∧Inv)

x21 + x22 = 1 ∧ x3 = x1 → [ẋ = p & x3 = x1] (x21 + x22 = 1 ∧ x3 = x1)

We can now construct a proof of invariance for the conjunction using DC.
Note that in this example, we have only ever had to resort to the rule DI= for showing in-

variance of an equational candidate. We first showed that x3 − x1 is an invariant function (first
integral) for the system. After restricting the evolution domain to the zero set of the first integral,
x3− x1 = 0, we proved that the polynomial x21 + x22− 1 is conserved in the constrained system. In
this example we have Lp(x21 + x22 − 1) = −2x1x2 + 2x2x3 = 2x2(x3 − x1), where (x3 − x1) is a
first integral of the system. Thus, x21 + x22 − 1 is in fact a (polynomial) third integral.

5.1 Proof Strategies using Differential Cuts
Differential cuts can be used to search for a proof of invariance of conjunctive equational assertions.
This involves selecting some conjunct hi = 0 to cut by (that is use it as C in DC). If the conjunct
is indeed an invariant, it will be possible to strengthen the evolution domain constraint and proceed
in a similar fashion by selecting a new C from the remaining conjuncts until a proof is attained.
A formal proof of invariance using differential cuts can be quite long and will repeatedly resort to
proof rules such as (∧Inv) (Eq. (12)) and DW (Fig. 1), which is used to prune away conjuncts that
have already been added to the evolution domain constraint.

Algorithm 2: DCSearch. Differential cut proof search
Data: {h1, . . . , hr}, p, H
Result: True, False.

1 if r = 0 then
2 return True

3 else
4 i← 1
5 while i ≤ r do
6 if Inv(hi, H) then
7 if DCSearch({h1 . . . , hr} \ {hi},p, H ∧ hi = 0) then
8 return True

9 else
10 i← i+ 1

11 return False

Our proof strategy iteratively selects a conjunct with which to attempt a differential cut as a
recursive function DCSearch, shown in Algorithm 2. Before calling this function, the conjuncts
are put into ascending order with respect to the number of variables appearing in the conjunct.
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For purely polynomial problems, the ordering is also ascending with respect to the total degree
of the polynomials. The aim of this pre-processing step is to ensure that conjuncts which are
potentially less expensive to check for invariance are processed first (see Section 3.2). There is in
general no easy way of selecting the “right” proof rule for showing invariance of atomic equations
(step Inv line 6 of Algorithm 2); a possible, albeit not very efficient, solution would be to iterate
through all the available proof rules. This would combine their deductive power, but could also
lead do diminished performance. In practice, selecting a good proof rule for atomic invariants is
very much a problem-specific matter. We have implemented DCSearch to use the proof rule DI=
before trying Lie.

The overall proof strategy, if successful, would lead to a proof tree resembling that shown
below. The proof steps labelled with ? mark choices in selecting the rule for atomic invariants
from Figure 1.

*
(R) ∧r

i=1 hi = 0→ h1 = 0

*
?

h1 = 0→ [ẋ = p] h1 = 0
(Inv) ∧r

i=1 hi = 0→ [ẋ = p] h1 = 0

*
(DW)

h1 = 0→ [ẋ = p & h1 = 0] h1 = 0

*
?

hr = 0→ [ẋ = p &
∧r−1

i=1 hi = 0] hr = 0
(DC)

.

.

.
(DC) ∧r

i=2 hi = 0→ [ẋ = p & h1 = 0]
∧r

i=2 hi = 0
(∧inv) ∧r

i=1 hi = 0→ [ẋ = p & h1 = 0]
∧r

i=1 hi = 0
(DC) ∧r

i=1 hi = 0→ [ẋ = p]
∧r

i=1 hi = 0

5.2 Performance and Limitations
Unlike with purely automated methods, such as DRI∧, knowledge about the system is often crucial
for differential cuts to be effective; however, this knowledge can sometimes be used to construct
proofs that are more computationally efficient. We have identified an example (shown in Ex. 3)
with 13 state variables which defeats the current implementation of DRI∧ and which is easily prov-
able using differential cuts together with both DI= and Lie (solved quickly by running DCSearch).
Though very much an artificial problem, it demonstrates that structure in the problem can some-
times be exploited to yield efficient proofs using DC. This is especially useful for large systems
with many variables where the structure of the problem is well-understood. Additionally, we see
that a combination of proof rules (DI=,Lie,DC) can be both helpful and efficient.
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Example 3. Consider the system

ẋ1 = −292x7(−1 + x26 + x27 + x28)
145,

ẋ2 = −292x8(−1 + x26 + x27 + x28)
145,

ẋ3 = −42(2x10 + 2x310 + 2x9)(−3 + 6x210 + x410 + 2x10x9 + 2x310x9 + x29)
41,

ẋ4 = −42(12x10 + 4x310 + 2x9 + 6x210x9)(−3 + 6x210 + x410 + 2x10x9 + 2x310x9 + x29)
41,

ẋ5 = −2x13(−1 + x13 + x11x13),

ẋ6 = −2x12(−1 + x12 + x11x12),

ẋ7 = 26(−6x1x
2
2 + 4x31x

2
2 + 2x1x

4
2)(1− 3x21x

2
2 + x41x

2
2 + x21x

4
2)

25,

ẋ8 = 26(−6x21x2 + 2x41x2 + 4x21x
3
2)(1− 3x21x

2
2 + x41x

2
2 + x21x

4
2)

25,

ẋ9 = 14(4x33x
2
4 + 2x3x

4
4 − 6x3x

2
4x

2
5)(x

4
3x

2
4 + x23x

4
4 − 3x23x

2
4x

2
5 + x65)

13,

ẋ10 = 14(2x43x4 + 4x23x
3
4 − 6x23x4x

2
5)(x

4
3x

2
4 + x23x

4
4 − 3x23x

2
4x

2
5 + x65)

13,

ẋ11 = 14(−6x23x
2
4x5 + 6x55)(x

4
3x

2
4 + x23x

4
4 − 3x23x

2
4x

2
5 + x65)

13,

ẋ12 = 292x6(−1 + x26 + x27 + x28)
145,

ẋ13 = −x13.

Suppose the invariant candidate is given by the following conjunction:

x13 = 0 ∧ ((x41x
2
2 + x21x

4
2 − 3x21x

2
2 + 1)13)2 +

((x43x
2
4 + x23x

4
4 − 3x23x

2
4x

2
5 + x65)

7)2 +

((−1 + x26 + x27 + x28)
73)2 +

((−3 + 6x210 + x410 + 2x10x9 + 2x310x9 + x29)
21)2 +

(x12 + x11x12 − 1)2 = 0.

By using a differential cut to restrict the evolution domain to the invariant smooth manifold x13 = 0
(using the rule Lie), one obtains a system for which the sum-of-squares conjunct is a Hamiltonian
and thus a first integral; this can be easily proved to be a system invariant using the rule DI=.
Naı̈vely attempting to use DRI∧ takes an unreasonable amount of time due to the high degrees
involved, while the proof involving DC takes under a second for both branches, provided the right
rules are selected to prove invariance of atoms.

While differential cuts can serve to increase the deductive power of sufficient proof rules, there
are invariant conjunctions of equalities for which applying DC on the conjuncts given in the prob-
lem will altogether fail to be fruitful. This is due to DCSearch relying on the fact that at least some
of the conjuncts considered individually are invariants for the system, which may not be the case
even if the conjunction is invariant.

6 Experiments
In this section, we empirically compare the performance of three families of proof rules for check-
ing the invariance of conjunctions: (1) DRI-related proof rules including SoSDRI (DRI plus
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Figure 3: Empirical performance comparison of different proof rules and strategies. The total number of problems
solved each in at most ts (log scale) is given in the x-axis for each method.

sum-of-squares rewriting), DRI∧ as well as their optimized versions as detailed in Section 3.3,
(2) DCSearch: the differential cut proof search presented in Section 5.1, and (3) the Liu et al.
procedure [21] applied to a conjunction of equalities.

We do not consider domain constraints, i.e. H = Rn. In Fig. 3, the pair (k, t) in the plot of
a proof rule P reads: the proof rule P solved k problems each in less than t seconds. The set
of benchmarks contains 32 entries composed of equilibria (16), singularities (8), higher integrals
(4) and abstract examples (4). The examples we used in our benchmarks originate from a num-
ber of sources - many of them come from textbooks on Dynamical Systems; others have been
hand-crafted to exploit sweetspots of certain proof rules. For instance, we constructed Hamilto-
nian systems, systems with equilibria and systems with smooth invariants of various polynomial
degrees. The most involved example has 13 state variables, a vector field with a maximum total
degree of 291 and an invariant candidate with total degree of 146. It should be noted that these
benchmarks are not necessarily representative, but nevertheless, an important first step towards a
more comprehensive empirical analysis we hope to pursue.

For a third example, all DRI-related proof rules timed out after 60s in one example which was
discharged by DCSearch in less than 6s. The detailed results are given Fig. 4. The benchmarks
themselves can be found in Appendix B.

One can clearly see that for the considered set of examples, the proof rule DRI∧ is much
more efficient on average compared to SoSDRI as it solves 31—out of 32—in less than 0.1s each.
The optimization discussed in Section 3.3 yields a slight improvement in the performance of both
SoSDRI and DRI∧. Notice that the performance imporvement is manifested more clearly when
compared with SoSDRI, where the polynomials involved have large degrees. In most examples,
both DRI∧ and DRI∧-OPT are very efficient. We also noticed for another example—featuring
the Motzkin polynomial—that SoSDRI-OPT timed out whereas SoSDRI was able to check the
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Problem Dim d.Inv d.VF SoSDRI SoSDRI-OPT Liu-Zhan-Zhao DCSearch DRI ∧ DRI∧-OPT

1 1 1 1
0.000
True (N=1)

0.000
True (N=1)

0.093
True

0.000
True

0.000
True (N=1)

0.000
True (N=1)

2 1 1 3
0.000
True (N=1)

0.000
True (N=1)

0.004
True

0.001
True

0.000
True (N=1)

0.000
True (N=1)

3 1 1 3
0.006
True (N=2)

0.004
True (N=2)

0.011
True

0.003
True

0.002
True (N=1)

0.002
True (N=1)

4 2 1 2
0.002
True (N=1)

0.003
True (N=1)

0.008
True

0.005
True

0.002
True (N=1)

0.002
True (N=1)

5 2 1 4
0.035
True (N=3)

0.023
True (N=3)

0.010
True

0.004
True

0.002
True (N=1)

0.002
True (N=1)

6 3 1 3
0.030
True (N=3)

0.023
True (N=3)

0.009
True

0.004
True

0.002
True (N=1)

0.002
True (N=1)

7 2 1 5
0.042
True (N=3)

0.021
True (N=3)

0.019
True

0.014
True

0.003
True (N=1)

0.003
True (N=1)

8 3 1 2
0.149
True (N=4)

0.072
True (N=4)

0.018
True

0.006
True

0.003
True (N=1)

0.003
True (N=1)

9 3 1 2
0.020
True (N=2)

0.015
True (N=2)

0.018
True

0.007
True

0.003
True (N=1)

0.003
True (N=1)

10 3 1 2
0.026
True (N=3)

0.018
True (N=3)

0.009
True

0.005
True

0.002
True (N=1)

0.002
True (N=1)

11 4 1 4
> 60s
Timeout

> 60s
Timeout

0.036
True

0.009
True

0.005
True (N=1)

0.004
True (N=1)

12 4 1 2
0.028
True (N=2)

0.024
True (N=2)

0.034
True

0.010
True

0.005
True (N=1)

0.005
True (N=1)

13 4 1 2
> 60s
Timeout

1.842
True (N=5)

0.019
True

0.008
True

0.003
True (N=1)

0.003
True (N=1)

14 5 1 6
> 60s
Timeout

> 60s
Timeout

0.073
True

0.014
True

0.006
True (N=1)

0.006
True (N=1)

15 5 1 3
0.560
True (N=4)

0.692
True (N=4)

0.066
True

0.014
True

0.006
True (N=1)

0.006
True (N=1)

16 5 1 2
0.287
True (N=4)

0.069
True (N=4)

0.034
True

0.011
True

0.005
True (N=1)

0.005
True (N=1)

17 3 2 3
0.158
True (N=3)

0.055
True (N=3)

0.038
True

0.019
True

0.003
True (N=1)

0.003
True (N=1)

18 3 2 3
0.041
True (N=3)

0.022
True (N=3)

0.014
True

0.009
True

0.003
True (N=1)

0.003
True (N=1)

19 3 2 1
0.158
True (N=5)

0.100
True (N=5)

0.015
True

0.007
True

0.003
True (N=1)

0.003
True (N=1)

20 3 2 3
0.041
True (N=2)

0.041
True (N=2)

0.012
True

0.006
True

0.003
True (N=1)

0.003
True (N=1)

21 3 3 2
0.012
True (N=2)

0.011
True (N=2)

0.007
True

0.004
True

0.003
True (N=1)

0.002
True (N=1)

22 9 9 8
0.349
True (N=2)

0.303
True (N=2)

0.050
True

0.015
True

0.011
True (N=1)

0.011
True (N=1)

23 5 2 4
> 60s
Timeout

> 60s
Timeout

0.052
True

0.150
True

0.008
True (N=1)

0.008
True (N=1)

24 9 5 4
11.65
True (N=2)

11.61
True (N=2)

0.020
True

0.245
True

0.006
True (N=1)

0.006
True (N=1)

25 3 2 3
0.508
True (N=5)

0.142
True (N=5)

0.035
True

0.010
True

0.004
True (N=1)

0.004
True (N=1)

26 6 2 2
0.002
True (N=1)

0.003
True (N=1)

0.013
True

0.001
True

0.003
True (N=1)

0.003
True (N=1)

27 6 3 2
> 60s
Timeout

> 60s
Timeout

> 60s
Timeout

0.106
True

0.009
True (N=1)

0.008
True (N=1)

28 6 6 2
> 60s
Timeout

> 60s
Timeout

> 60s
Timeout

0.560
False

> 60s
Timeout

> 60s
Timeout

29 3 2 1
0.140
True (N=5)

0.127
True (N=5)

0.126
True

0.008
True

0.004
True (N=1)

0.003
True (N=1)

30 6 2 3
> 60s
Timeout

> 60s
Timeout

0.048
True

0.019
True

0.006
True (N=1)

0.006
True (N=1)

31 3 6 2
17.75
True (N=6)

> 60s
Timeout

0.095
True

0.058
False

0.077
True (N=3)

0.056
True (N=3)

32 13 292 291
> 60s
Timeout

> 60s
Timeout

> 60s
Timeout

0.003
True

> 60s
Timeout

> 60s
Timeout

Figure 4: Benchmarks

invariance in 15s.

Remark 4. There is a slight discrepancy between the benchmarks reported in [15], which is due to
a software bug that resulted in quickly falsifying example 28 with the optimized version of DRI∧,
while all the other necessary and sufficient methods timed out.

17



Example 4. The Motzkin polynomial, given by

M(x, y) = x4y2 + x2y4 − 3x2y2 + 1,

is often associated with Hilbert’s 17th problem (see e.g. [34]). In particular, it was the first explicit
example of a non-negative polynomial which is not a sum-of-squares. The roots of M(x, y) are
(1, 1), (1,−1), (−1, 1), (−1,−1) ∈ R2 . Let us consider the vector field

p(x1, x2) = ((x1 − 1)(x1 + 1), (x2 − 1)(x2 + 1))

under which the set of roots is invariant (illustrated in Fig. 5, left). Additionally, let us introduce

- 3 - 2 -1 0 1 2 3

- 3

- 2

-1
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1

2

3

x1

x
2

- 3 - 2 -1 0 1 2 3

- 3

- 2
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3

x1 Hand x2 L

x
3

Figure 5: Invariant zero level set M(x) = 0 (left) on an invariant sub-space in R3 (right).

an extra dimension for which we construct an invariant sub-space x3 = 0 by adding the dynamics
ẋ3 = −x3 ( Fig. 5, right) to yield an augmented vector field defined on R3, i.e.

p(x1, x2, x3) = ((x1 − 1)(x1 + 1), (x2 − 1)(x2 + 1),−x3) .

We can see that in this augmented system the set of states satisfying

M(x1, x2) = 0 ∧ x3 = 0

is invariant under the flow of ẋ = p(x1, x2, x3).
When we investigated this example, it turned out that the rational coefficients of the remainder

became more involved than those of the original polynomial before performing the reduction. For
this particular example, the optimized version was able to prove invariance in 300s which is 20
times slower than the unoptimized version.
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7 Related Work
In this paper we focus on checking invariance of algebraic sets under the flow of polynomial vector
fields. For similar techniques used to automatically generate invariant algebraic sets we refer the
reader to the discussion in [14].

Nagumo’s Theorem [3], proved by Mitio Nagumo in 1942, characterizes invariant closed sets—
a superset of algebraic sets—of locally Lipschitz-continuous vector fields—a superset of polyno-
mial vector fields. The geometric criterion of the theorem is however intractable. The analyticity
of solutions of analytic vector fields—a superset of polynomial vector fields—also gives a power-
ful, yet intractable, criterion to reason about invariant sets. In [35], the authors attempted to define
several special cases exploiting either Nagumo’s theorem or the analyticity of solutions, to give
proof rules for checking invariance of (closed) semi-algebraic sets under the flow of polynomial
vector fields. Liu et al. in [21] also used analyticity of solutions to polynomial ordinary differen-
tial equations and extended [35] using the ascending chain condition in Noetherian rings to ensure
termination of their procedure; they gave a necessary and sufficient condition for invariance of
arbitrary semi-algebraic sets under the flow of polynomial vector fields and proved the resulting
conditions to be decidable.

We develop a purely algebraic approach where the ascending chain condition is also used but
without resorting to local Taylor series expansions. As in [21], we require finitely many higher-
order Lie derivatives to vanish; what is different, however, is the definition of the finite number
each characterization requires: in [21], one is required to compute orders Ni of each atom hi and
to prove that all higher-order Lie derivatives of hi, up to order Ni − 1, vanish. We state a weaker
condition as we only require that all higher-order Lie derivatives of hi up to order (N − 1), for
all i, vanish. A straightforward benefit of our characterization is the immediate reduction of the
computational complexity as discussed in Section 3 and shown empirically in Section 6.

Zerz and Walcher [38] have previously considered the problem of deciding invariance of al-
gebraic sets in polynomial vector fields; they gave a sufficient condition for checking invariance
of algebraic sets which can be seen as one iteration of Algorithm 1. Therefore, Section 3 general-
izes their work by providing a complete characterization of invariant algebraic sets in polynomial
vector fields.

8 Conclusion
We have introduced an efficient decision procedure (DRI∧) for deciding invariance of conjunctive
equational assertions for polynomial dynamical systems. We have explored the use of the differ-
ential cut rule both as a means of increasing the deductive power of existing sufficient proof rules
and also as a way of constructing more computationally efficient proofs of invariance.

The empirical performance we observe in the optimized implementations of DRI and DRI∧
is very encouraging and we are confident that a proof strategy in a deductive formal verification
system should give precedence to these methods. However, certain problems fall out of scope
of these rules. For instance, when the problems involve transcendental functions, or still take
unreasonably long time to prove. We leave these interesting questions for future work.
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duction to zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and
Algebraic Computation, ISSAC ’02, pages 75–83, New York, NY, USA, 2002. ACM.
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A Proof of Theorem 3
In [13, Theorem 2], we characterized the invariance of a polynomial equality—of the form h =
0—for a polynomial vector field ẋ = p(x). The purpose of this section is to prove Theorem 3
(Section 3), an extension of [13, Theorem 2] to a conjunction of polynomial equalities, i.e. h1 =
0 ∧ h2 = 0 ∧ · · · ∧ hr = 0. We first recall some basic definitions and known results (Section A.1).
The proof is then given in Section A.2. Unless otherwise specified, the evolution domain H will
be considered as an open set of Rn.

A.1 Preliminaries
Polynomial functions are smooth (C∞, i.e. they have derivatives of any order), they are locally
Lipschitz-continuous. By Cauchy-Lipschitz theorem (a.k.a. Picard-Lindelöf theorem) [20], the
initial value problem (ẋ = p,x(0) = xι), for some xι ∈ Rn, admits a unique maximal solution
x(t) defined for t ∈ U , where U is some nonempty open set (interval) in R that contains zero.

The orbit of x(t) is defined as follows:

Definition 2 (Orbit). The orbit of the solution of Def. 1, x(t) is defined as

O(xι)
def
= {x(t) | t ∈ U} ⊆ Rn .

Since we are interested in forward reachability, we restrict in addition the orbit to non-negative
time:

Definition 3 (Positive Orbit). The positive orbit, or reachable set, of the solution of Def. 1, x(t) is
defined as

O+(xι)
def
= {x(t) | t ∈ U ∩ [0,+∞]} ⊆ Rn .

In the presence of an open evolution domain H ⊆ Rn, we require that xι ∈ H and we restrict
the orbit O+(xι) to H , that is, we are only interested in the portion of the trajectory that remains
inside H .

O+(xι)|H
def
= {x(t) | t ∈ U ∩ [0,+∞] ∧ ∀t′ ∈ [0, t] : x(t′) ∈ H} .

Definition 4 (Ideal). An ideal I is a subset of R[x] that contains the polynomial zero (0), is stable
under addition, and external multiplication. That is, for all h1, h2 ∈ I , the sum h1 + h2 ∈ I; and
if h ∈ I , then, qh ∈ I , for all q ∈ R[x].

For a finite natural number r, we denote by 〈h1, . . . , hr〉 the subset of R[x] generated by the
polynomials {h1, . . . , hr}, i.e. the set of linear combinations of the polynomials hi (where the
coefficients are themselves polynomials):

〈h1, . . . , hr〉
def
=

{
r∑
i=1

qihi | q1, . . . , qr ∈ R[x]

}
.
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By Def. 4, the set 〈h1, . . . , hr〉 is an ideal. More interestingly, by Hilbert’s Basis Theorem [17], any
ideal I of the Noetherian ring R[x] can be generated by a finite set of polynomials, {h1, . . . , hr},
so that I = 〈h1, . . . , hr〉.

Definition 5 (Variety or Algebraic Set or Zeros Set). Given Y ⊆ R[x], the variety (over the reals),
V (Y ), is a subset of Rn defined by the common roots of all polynomials in Y . That is,

V (Y )
def
=
{
x ∈ Rn | ∀h ∈ Y, h(x) = 0

}
.

V (·) can be thought of as an operator that maps subsets of R[x] to subsets of Rn. In general, the
map V (·) is not injective even when applied to ideals: two distinct subsets of R[x] can be mapped
to the exact same variety. For instance, in R[x1, x2], the ideals I1 = 〈x1, x22〉 and I2 = 〈x21, x2〉,
are mapped to the point (x1, x2) = (0, 0) (which is a variety). The ideals I1 and I2 are distinct and
incomparable: the polynomial x1 ∈ I1 is not in I2 but x2 ∈ I2 is not in I1.

Definition 6 (Vanishing Ideal). The vanishing ideal (over the reals), I(S), of S ⊆ Rn is the set of
all polynomials that evaluates to zero for all x ∈ S:

I(S)
def
=
{
h ∈ R[x] | ∀x ∈ S, h(x) = 0

}
. (13)

The set I(S) ⊆ R[x] is an ideal as it satisfies the requirements of Def. 4. Likewise, we can
think of I(·) (Def. 6) as a non-injective operator that acts on subsets of Rn. For instance, the two
intervals [1, 2] and [−2,−1] are subsets of R mapped to the same ideal, namely 〈0〉. However,
when restricted to varieties, the operator I(·) is injective.

We state the following well-known result (see, e.g. [8, Chapter 4, Theorem 7]) for convenience
as it permits to switch back and forth between varieties of Rn and ideals of R[x].

Proposition 3 (Ideal-Variety Correspondence). For any ideals I1 and I2 of R[x], if I1 ⊆ I2, then
V (I1) ⊇ V (I2). Likewise, for any varieties V1 and V2 of Rn, if V1 ⊆ V2, then I(V1) ⊇ I(V2).
Furthermore, for any variety S, we have V (I(S)) = S and for any ideal Y , we have Y ⊆ I(V (Y )).

The Zariski closure Ō+(xι)|H of the set O+(xι)|H is the variety of the vanishing ideal of
O+(xι)|H :

Ō+(xι)|H
def
= V (I(O+(xι)|H)) . (14)

That is, Ō+(xι)|H is defined as the set of all points that are common roots of all polynomials that
are zero everywhere in O+(xι)|H .

Proposition 4 (Soundness of Zariski Closure). O+(xι)|H ⊆ Ō+(xι)|H .

Proof. All points of O+(xι)|H are roots of some polynomial in its vanishing ideal I(O+(xι)|H)
(Def. 6), and all roots of all polynomials in I(O+(xι)|H) are in Ō+(xι)|H (Def. 5). Thus,O+(xι)|H ⊆
V (I(O+(xι)|H)) = Ō+(xι)|H

4.

4NB: If we use an algebraically closed field instead of R, the operators V (.) and I(.) form a Galois connection.
One can therefore talk about exact abstraction, where subsets of the space are abstracted by varieties. Since we use
the real numbers field, which is not closed, we technically only have a concretisation-based abstraction [7].
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Lie derivatives (Eq. (3)) are closely related to time derivatives. In fact, they are equal when
evaluated on the solution x(t).

Lemma 3 (Derivation). Let h ∈ R[x]. Then, the Lie derivative of h along the vector field p is
exactly equal to the time derivative of h(x(t)).

Lp(h) =
dh(x(t))

dt
= ḣ .

Proof. The lemma follows from the chain rule: the polynomial h is seen as a function of x which
is in turn a function of t (when x(t) is the solution of the initial value problem (ẋ = p,x(0) = xι).
Thus,

ḣ =
d

dt
h(x(t)) =

∑ ∂h

∂xi
ẋi(t) = Lp(h) .

The time derivation gives an analytic point of view, whereas the Lie derivative is purely alge-
braic and makes explicit the link to the vector field. Lie derivation allows, therefore, to compute
symbolically the time derivative of any polynomial h ∈ R[x]: it only requires the partial derivatives
of h and the vector field p.

Definition 7 (Real Ideal [4, Definition 4.1.3]). An ideal I of R[x] is said to be real if and only if
for every sequence q1, . . . , qr of elements of R[x], we have

q21 + · · ·+ q2r ∈ I −→ qi ∈ I, for i = 1, . . . , r .

In particular, all vanishing ideals are real ideals.

Lemma 4. The vanishing ideal I(S) of any S ⊆ Rn is a real ideal.

Proof. If the polynomial q21 + · · ·+ q2r is in I(S), for some q1, . . . , qr ∈ R[x], then its set of roots
contain S (Def. 6). However, we have the following equivalence over the reals

q21 + · · ·+ q2r = 0↔ qi = 0, for i = 1, . . . , r .

Thus, a root of the polynomial q21 + · · · + q2r is also a root of the polynomials qi, for i = 1, . . . , r.
This means that qi ∈ I(S) for i = 1, . . . , r. By Def. 7, I(S) is a real ideal.

In R[x], real ideals have an important property, they are fixed under the mapping I(V (·)) (see
Def. 6 and Def. 5).

Proposition 5 (Real Nullstellensatz [4, Theorem 4.1.4]). Let Y be an ideal of R[x]. Then, Y =
I(V (Y )) if and only if Y is real.

Definition 8 (Invariant Regions subject to evolution domain constraints). The region S ⊆ Rn is
(positively) invariant for the vector field p subject to the evolution domain constraint H if and only
if

∀xι ∈ S ∩H,O+(xι)|H ⊆ S .
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In particular, we focus on invariant algebraic sets, that is, where S is a variety. This choice
is essentially motivated by the interesting algebraic properties of varieties. As a matter of fact,
when S is a variety, the (intractable) orbit O+(xι)|H in Def. 8 can be equivalently substituted by
its closure Ō+(xι)|H allowing a powerful algebraic handle for invariant varieties.

Lemma 5. The variety S is a positive invariant variety for the vector field p subject to the evolution
domain constraint H , if and only if

∀xι ∈ S ∩H, Ō+(xι)|H ⊆ S .

Proof. If S is an invariant variety subject to H then, for all xι ∈ S ∩H , O+(xι)|H ⊆ S (Def. 8).
However, Ō+(xι)|H is the smallest variety containing O+(xι)|H . Therefore, Ō+(xι)|H ⊆ S.

On the other hand, since O+(xι)|H ⊆ Ō+(xι)|H (Prop. 4), then Ō+(xι)|H ⊆ S implies
O+(xι)|H ⊆ S.

We state an important property of the vanishing ideal I(O+(xι)|H). Similar results are known
under different formulations ([32, Theorem 3.1], [29, Lemma 3.7] and [13, Proposition 3]).

Proposition 6. I(O+(xι)|H) is a differential ideal for Lp, i.e. it is stable under the action of the
Lp operator: for all h ∈ I(O+(xι)|H), Lp(h) ∈ I(O+(xι)|H).

Proof. Let I denote I(O+(xι)|H). Given h ∈ I , we prove that Lp(h) ∈ I . If h is in I , then the
vector x(t) is a root of the polynomial h(x). This means that the real-valued function h(x(t))—
obtained by substituting x in h by the solution x(t)—is a constant function and is actually equal to
zero over an open interval containing 0. The existence of such an open interval follows immediately
from three facts: xι ∈ H , x(t) is defined over an open interval U containing 0, and that H
is an open set. Its time derivative is therefore also zero for all x(t) ∈ O+(xι)|H . Since the
time derivative of h(x(t)) corresponds exactly to the Lie derivative of h, it follows that for all
x(t) ∈ O+(xι)|H , x(t) is a zero of Lp(h)—seen as a polynomial of R[x]. Therefore, Lp(h) ∈ I ,
by definition of I .

Notice that the fact that H is an open set plays a crucial role in this proposition. In fact the
statement does no longer hold for an arbitrary (or even closed) set H .

Example 5. Consider the vector field p = (−x2, x1) and the evolution domain constraint H :=
x1 ≤ −1. When xι = (−1, 0), O+(xι)|H is reduced to one point, namely (−1, 0) and therefore,
I(O+(xι)|H) = 〈x1 + 1, x2〉. The polynomial h = x2 is trivially in 〈x1 + 1, x2〉, however, its Lie
derivative Lp(h) = x1 is not. This suggests that the proposition may fail whenever xι is on the
boundaries of H .

A.2 Proof of the Main Result
The differential radical of an ideal generated by one polynomial (principal ideal) 〈h〉 can be ex-
tended to a generic ideal J = 〈h1, . . . , hr〉 ⊆ R[x]. Since the ring of polynomials over R is
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Noetherian, the following chain of ideals:

〈h1, . . . , hr〉 ⊂ 〈h1, . . . , hr,L(1)
p (h1), . . . ,L

(1)
p (hr)〉

⊂ · · · ⊂ 〈h1, . . . , hr, . . . ,L(N−1)
p (h1), . . . ,L

(N−1)
p (hr)〉

= 〈h1, . . . , hr, . . . ,L(N)
p (h1), . . . ,L

(N)
p (hr)〉 .

has necessarily a finite length. The construction of such ascending chain is very similar to the
construction of the radical of an ideal5, except with higher-order Lie derivatives, L(i)

p (hj), in place
of higher powers of polynomials, hij . This motivates the following definition.

Definition 9 (Differential Radical Ideal). For 〈h1, . . . , hr〉 ⊆ R[x], let 1 ≤ N <∞ be the smallest
natural number such that:

∀j = 1, . . . , r L(N)
p (hj) ∈ 〈h1, . . . , hr, . . . ,L(N−1)

p (h1), . . . ,L
(N−1)
p (hr)〉 . (15)

We call the ideal
Lp
√
〈h1, . . . , hr〉

def
= 〈h1, . . . , hr, . . . ,L(N−1)

p (h1), . . . ,L
(N−1)
p (hr)〉, (16)

the differential radical ideal of h1, . . . , hr. N will be referred to as the differential radical order, or
simply order, of Lp

√
〈h1, . . . , hr〉.

Def. 9 extends the concept of differential radical order introduced, for one polynomial, in [13,
Definition 8]. Differential radical order is akin to the concept of rank used in [21, Theorems 14 &
15].

Theorem 3 (Conjunctive Differential Radical Characterization). Let h1, . . . , hr ∈ R[x] and let H
denote some open evolution domain constraint. Then, the conjunction h1 = 0 ∧ · · · ∧ hr = 0, is
invariant under the flow of the vector field p, subject to the evolution constraint H , if and only if

H `
r∧
j=1

hj = 0→
r∧
j=1

N−1∧
i=1

L(i)
p (hj) = 0 . (17)

where N denotes the order of the conjunction.

Proof. The proof follows the same steps of [13, Theorem 1] while generalizing it to higher-
dimensions. Typically, the vector g below is formed by concatenating r vectors, and the matrix
A(t) is a block matrix.

Necessary condition. Let 〈h1, . . . , hr〉 ⊆ I(O+(xι)|H). By Prop. 6, all higher-order Lie deriva-
tives of all hj are also in I(O+(xι)|H). Eq. (17) follows from the fact that all polynomials of
I(O+(xι)|H) vanish on all points of O+(xι)|H , in particular for xι, since xι ∈ O+(xι)|H .

Sufficient condition. We prove that if Eq. (17) is satisfied then h1(x(t)) = 0, . . . , hr(x(t)) = 0
for all x(t) ∈ O+(xι)|H , which implies that the ideal 〈h1, . . . , hr〉 ⊆ I(O+(xι)|H) by definition

5For a principal ideal, 〈h〉, the construction of its radical ideal,
√
〈h〉 consists of augmenting 〈h〉 by all high powers

hi of the generating element h.
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of I(O+(xι)|H) (Def. 6). Recall that U is the domain of definition (some open interval of R) for t
of the solution x(t). We will denote by U|H the restriction of U to H: U|H = {t | x(t) ∈ H}.

We define the real functions fj : U|H → R by: fj(t) = hj(x(t)). We want to prove that
the functions fj are identically zero on U|H . Since N is the order of Lp

√
〈h1, . . . , hr〉, by Eq. (15)

(Def. 9), for each hj , there exists a vector of polynomials qij(x) such that

L(N)
p (hj)−

N−1∑
i=0

qij · (L(i)
p (h1), . . . ,L

(i)
p (hr)) = 0 . (18)

Let αij : U|H → Rr; t 7→ qij(x(t)). The equality of Eq. (18), together with the initial value
condition given by Eq. (17), can be transformed into the following homogeneous higher-order
higher-dimension linear differential equation.

f (N)(t)−
N−1∑
i=0

Ai(t)f
(i)(t) = 0,

f (0)(0) = f (1)(0) = · · · = f (N−1)(0) = 0,

(19)

where f = (f1, . . . , fr) and the r × r square matrices Ai(t) are such that the jth row of Ai(t) is
the vector αij .

The newly defined system in Eq. (19) can be seen as an Nr dimensional linear nonautonomous
(Ai(t) are time dependent) system using the encoding g =

(
f (0), . . . ,f (N−1)), that is, g is the

vector obtained by concatenating the N vectors f (i):

ġ − A(t)g = 0, (20)

where,

A(t) =


0 Ir 0 · · · 0

0 0 Ir
. . . ...

...
... . . . . . . 0

0 0 · · · 0 Ir
A0(t) A1(t) · · · AN−2(t) AN−1(t)

 .

Ir denotes the identity matrix of dimension r. In the newly defined linear system of Eq. (20),A(t)g
is globally Lipschitz continuous, w.r.t. g. That is, there exists a global Lipschitz constant, namely
‖A(t)‖, the induced norm of RNr on the RNr×Nr space, such that, for all t:

∀g1, g2 ∈ RNr, ‖A(t)g1 − A(t)g2‖ ≤ ‖A(t)‖‖g1 − g2‖ .

By Cauchy-Lipschitz theorem [20] (see [37, Chapter 14, Theorem VI] for the multi-linear case),
there exists a unique solution g(t) defined on the entire interval U|H (Ai(t), and hence A(t), are
not defined outside U|H by definition), that satisfies the initial condition g(0) = 0. However, the
null function, g(t) = 0 is an obvious solution to Eq. (20), which satisfies g(0) = 0. Hence, g(t) is
identically zero for all t ∈ U|H . Since g =

(
f (0), . . . ,f (N−1)), by Lem. 3, for all i = 0 . . . N − 1,

for all j = 1 . . . r, L(i)
p (hj)(x(t)) = 0 for all x(t). Therefore, all the polynomials hj as well as all

their Lie derivatives vanish on the set O+(xι)|H and are hence members of I(O+(xι)|H).
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We finally prove Theorem 3. For convenience, we first recall the theorem.

Theorem (Conjunctive Differential Radical Characterization). Let h1, . . . , hr ∈ R[x]. Then, the
conjunction h1 = 0 ∧ · · · ∧ hr = 0, is invariant under the flow of the vector field p subject to the
evolution domain constraint H , if and only if

(
H ∧

r∧
j=1

hj = 0
)
→

r∧
j=1

N−1∧
i=1

L(i)
p (hj) = 0 . (21)

where N denotes the order of the ideal 〈h1, . . . , hr〉.

Proof. Necessary Condition. Letxι ∈ H be a root of all hj , j = 1 . . . r (i.e.xι ∈ V (〈h1, . . . , hr〉)).
If V (〈h1, . . . , hr〉) is an invariant variety subject to H , then by Lem. 5

V (I(O+(xι)|H)) = Ō+(xι)|H ⊆ V (〈h1, . . . , hr〉),

and therefore I(V (I(O+(xι)|H))) ⊇ I(V (〈h1, . . . , hr〉)) (Prop. 3).
We know that I(V (〈h1, . . . , hr〉)) ⊇ 〈h1, . . . , hr〉 and that I(V (I(O+(xι)|H))) = I(O+(xι)|H)

(from Lem. 4, I(O+(xι)|H) is a real ideal, the equality follows from the real Nullstellensatz stated
in Prop. 5), hence I(O+(xι)|H) ⊇ 〈h1, . . . , hr〉. By Theorem ??, this implies Eq. (17), and, there-
fore, Eq. (21) holds.

Sufficient Condition. The initial condition xι satisfies Eq. (17) of Theorem ?? by hypothesis,
which implies 〈h1, . . . , hr〉 ⊆ I(O+(xι)|H) by Theorem ??. But then by Prop. 3, V (〈h1, . . . , hr〉) ⊇
V (I(O+(xι)|H)) = Ō+(xι)|H . The conclusion follows by Lem. 5: V (〈h1, . . . , hr〉 is an invariant
region subject to the evolution domain H .

Eq. (21) can be restated using sequent calculus, where F ` Gmeans that whenever the boolean
formula F (antecedent) is satisfied, then the boolean formula G is true. Eq. (21) can therefore be
rewritten as follows:

H `
r∧
j=1

hj = 0→
r∧
j=1

N−1∧
i=1

L(i)
p (hj) = 0 .

This reformulation—used in Theorem 3—is more suitable for the main theme of the presented
paper: developing and extending proof calculus for hybrid systems.
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B Benchmarks
For all examples the constraint evolution domain H is set to Rn. For each problem, The left hand
side equation gives the candidate to check. The right hand side gives the vector field p.

1

x1=0 ẋ1 = x1

2

x1=0 ẋ1 = x31

3

x1−1=0 ∧ x1+1=0 ẋ1 = (x1 − 1)(x1 + 1)(x1 + 3)

4

x1−1=0 ∧ x2+1=0
ẋ1 = (x1 − 1)x2
ẋ2 = x2(x2 + 1)

5

x1−1=0 ∧ x2−1=0
ẋ1 = (x1 − 1)x1x2
ẋ2 = (x2 − 1)x32

6

x1−1=0 ∧ x3−4=0
ẋ1 = (x1 − 1)x23
ẋ2 = x1x2
ẋ3 = x1(x3 − 4)

7

x1=0 ∧ x2=0
ẋ1 = x52 + x21(x2 − x1)
ẋ2 = −2x1x22(2x21 + x22 − 3)

8

x1−1=0 ∧ x2+1=0 ∧ x3−4=0
ẋ1 = (x1 − 1)2

ẋ2 = x1(x2 + 1)
ẋ3 = x2(x3 − 4)

9

x1−1=0 ∧ x2−1=0 ∧ x3−4=0
ẋ1 = (x1 − 1)x2
ẋ2 = (x2 − 1)x2
ẋ3 = x1(x3 − 4)

10

x1−1=0 ∧ x3−4=0
ẋ1 = (x1 − 1)x3
ẋ2 = x2
ẋ3 = x1(x3 − 4)

11

x1−1=0 ∧ x2+1=0 ∧ x3−4=0 ∧ x4−4=0

ẋ1 = (x1 − 1)x2
ẋ2 = x1(x2 + 1)
ẋ3 = x1(x3 − 4)
ẋ4 = (x4 − 4)4

12

x1−1=0 ∧ x2−1=0 ∧ x3−4=0 ∧ x4−1=0

ẋ1 = (x1 − 1)x2
ẋ2 = (x2 − 1)x2
ẋ3 = x1(x3 − 4)
ẋ4 = x1(x4 − 1)

13

x1−1=0 ∧ x3−4=0 ∧ x4−4=0

ẋ1 = (x1 − 1)x2
ẋ2 = x2
ẋ3 = (x3 − 4)x3
ẋ4 = x1(x4 − 4)

14

30



x1−1=0 ∧ x2+1=0 ∧ x3−4=0 ∧ x4−4=0 ∧ x5−

2=0

ẋ1 = (x1 − 1)x2
ẋ2 = x1(x2 + 1)
ẋ3 = x2(x3 − 4)
ẋ4 = (x4 − 4)6

ẋ5 = (x5 − 2)3

15

x1−1=0 ∧ x2−1=0 ∧ x3−4=0 ∧ x4−1=0 ∧ x5+

2=0

ẋ1 = (x1 − 1)2

ẋ2 = (x2 − 1)3

ẋ3 = x2(x3 − 4)
ẋ4 = x2(x4 − 1)
ẋ5 = x2(x5 + 2)

16

x1−1=0 ∧ x3−4=0 ∧ x4−4=0 ∧ x5−1=0

ẋ1 = (x1 − 1)x2
ẋ2 = x1
ẋ3 = x2(x3 − 4)
ẋ4 = x2(x4 − 4)
ẋ5 = x1(x5 − 1)

17

x21+x
2
2+x

2
3−1=0 ∧ x3=0

ẋ1 = x1(−x21 − x22 + 1)− x2
ẋ2 = x1 + x2(−x21 − x22 + 1)
ẋ3 = x3

18

x21+x
2
2−1=0 ∧ x3=0

ẋ1 = x1(−x21 − x22 + 1)− x2
ẋ2 = x1 + x2(−x21 − x22 + 1)
ẋ3 = x3

19

x21+x
2
2−1=0 ∧ x3−x1=0

ẋ1 = −x2
ẋ2 = x3
ẋ3 = −x2

20

x1x3+x3−1=0 ∧ x2−x21=0
ẋ1 = x2 + x3
ẋ2 = 2x1x2 + 2x1x3
ẋ3 = −x33 − x2x23

21

x31+x
2
1−x22=0 ∧ x3=0

ẋ1 = −2x2
ẋ2 = −3x21 − 2x1
ẋ3 = −x3

22

27x71+12x4x25x1−(x6x25+x1)3+x2(x7−3)3−
x38
5
−

(−16x24+x1+77x1x2+3x1x2x3)2=0 ∧ x9=0

ẋ1 = 6x5x6(x6x25 + x1)2 − 24x1x4x5
ẋ2 = 3x25(x6x

2
5 + x1)2

ẋ3 = −3x2(x7 − 3)2

ẋ4 =
3x2

8
5

ẋ5 = 189x61 + 12x4x25 − 3(x6x25 + x1)2

− 2(3x3x2 + 77x2 + 1)(−16x24 + x1 + 77x1x2 + 3x1x2x3)
ẋ6 = (x7 − 3)3 − 2(3x3x1 + 77x1)(−16x24 + x1 + 77x1x2 + 3x1x2x3)
ẋ7 = −6x1x2(−16x24 + x1 + 77x1x2 + 3x1x2x3)
ẋ8 = 12x1x25 + 64x4(−16x24 + x1 + 77x1x2 + 3x1x2x3)
ẋ9 = −x9

23

x21+x
2
2+x

2
3+x

2
4−1=0 ∧ x5=0

ẋ1 = x21 − x1(x31 + x32 + x33 + x34)
ẋ2 = x22 − x2(x31 + x32 + x33 + x34)
ẋ3 = x23 − x3(x31 + x32 + x33 + x34)
ẋ4 = x24 − x4(x31 + x32 + x33 + x34)
ẋ5 = −x5

24

31



(x1x22−12)(x21+x22+x23+x24+x25+x26+x27+x28−1)=

0 ∧ x9=0

ẋ1 = −2(x1x22 − 12)x5
ẋ2 = −2(x1x22 − 12)x6
ẋ3 = −2(x1x22 − 12)x7
ẋ4 = −2(x1x22 − 12)x8
ẋ5 = (x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 − 1)x22 + 2x1(x1x22 − 12)
ẋ6 = 2x2(x1x22 − 12) + 2x1x2(x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 − 1)
ẋ7 = 2(x1x22 − 12)x3
ẋ8 = 2(x1x22 − 12)x4
ẋ9 = x9

25

−α−x21+x22−x3=0 ∧ −x21+3x22+x3=0
ẋ1 = 2x3 − 2x21
ẋ2 = −3x1x2
ẋ3 = 4x1x3 − 2x1(2x21 − 9x22)

26

J1x1x4+J2x2x5+J3x3x6=0

ẋ1 =
(J2−J3)x2x3−x6X2+x5X3

J1

ẋ2 =
(J3−J1)x1x3+x6X1−x4X3

J2

ẋ3 =
(J1−J2)x1x2−x5X1+x4X2

J3

ẋ4 = x3x5 − x2x6
ẋ5 = x1x6 − x3x4
ẋ6 = x2x4 − x1x5

27

−α−Jx1x6X1+(x21+x
2
2)x3=0 ∧ 4x1x4+4x2x5+

x3x6=0

ẋ1 = 3x2x3
4

ẋ2 = 1
4
(Jx6X1 − 3x1x3)

ẋ3 = −Jx5X1

ẋ4 = x3x5 − x2x6
ẋ5 = x1x6 − x3x4
ẋ6 = x2x4 − x1x5

28

(x21+x
2
2)x3−Jx1x6X1=0 ∧ 4x1x4+4x2x5+x3x6=

0 ∧ α(x21+x22)3−2x21=0

ẋ1 = 3x2x3
4

ẋ2 = 1
4
(Jx6X1 − 3x1x3)

ẋ3 = −Jx5X1

ẋ4 = x3x5 − x2x6
ẋ5 = x1x6 − x3x4
ẋ6 = x2x4 − x1x5

29

x24+x
2
5−1=0 ∧ x6−x4=0 ∧ x24+x25+1=0

ẋ4 = −x5
ẋ5 = x6
ẋ6 = −x5

30

x21+x
2
2−1=0 ∧ x3=0 ∧ x24+x25−1=0 ∧ x6−x4=0

ẋ1 = x1(−x21 − x22 + 1)− x2
ẋ2 = x1 + x2(−x21 − x22 + 1)
ẋ3 = x3
ẋ4 = −x5
ẋ5 = x6
ẋ6 = −x5

31

x22x
4
1+x

4
2x

2
1−3x22x21+1=0 ∧ x3=0

ẋ1 = (x1 − 1)(x1 + 1)
ẋ2 = (x2 − 1)(x2 + 1)
ẋ3 = −x3

32

32



x13=0 ∧ (x26+x
2
7+x

2
8−1)146+(x410+2x9x310+

6x210+2x9x10+x29−3)42+(x22x
4
1+x

4
2x

2
1−3x22x21+

1)26+(x65−3x23x24x25+x23x44+x43x24)14+(x11x12+

x12−1)2=0

ẋ1 = −292x7(x26 + x27 + x28 − 1)145

ẋ2 = −292x8(x26 + x27 + x28 − 1)145

ẋ3 = −42(2x310 + 2x10 + 2x9)(x410 + 2x9x310 + 6x210 + 2x9x10 + x29 − 3)41

ẋ4 = −42(4x310 + 6x9x210 + 12x10 + 2x9)
× (x410 + 2x9x310 + 6x210 + 2x9x10 + x29 − 3)41

ẋ5 = −2x12(x11x12 + x12 − 1)
ẋ6 = −2(x11 + 1)(x11x12 + x12 − 1)
ẋ7 = 26(2x1x42 + 4x31x

2
2 − 6x1x22)(x

2
2x

4
1 + x42x

2
1 − 3x22x

2
1 + 1)25

ẋ8 = 26(2x2x41 + 4x32x
2
1 − 6x2x21)(x

2
2x

4
1 + x42x

2
1 − 3x22x

2
1 + 1)25

ẋ9 = 14(2x3x44 + 4x33x
2
4 − 6x3x25x

2
4)(x

6
5 − 3x23x

2
4x

2
5 + x23x

4
4 + x43x

2
4)

13

˙x10 = 14(2x4x43 + 4x34x
2
3 − 6x4x25x

2
3)(x

6
5 − 3x23x

2
4x

2
5 + x23x

4
4 + x43x

2
4)

13

˙x11 = 14(6x55 − 6x23x
2
4x5)(x

6
5 − 3x23x

2
4x

2
5 + x23x

4
4 + x43x

2
4)

13

˙x12 = 292x6(x26 + x27 + x28 − 1)145

˙x13 = −x13
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