
Olive:
Sustaining Executable Content Over Decades

Mahadev Satyanarayanan, Gloriana St. Clair‡,
Benjamin Gilbert, Jan Harkes, Dan Ryan‡,

Erika Linke‡, Keith Webster‡

November 2014
CMU-CS-14-115

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

‡CMU Libraries

This work won the runner-up prize in the May 2014 National Academy of Science Board on
Research Data and Information Challenge.

Abstract

We describe a system called Olive that freezes and precisely reproduces the environment necessary
to execute software long after its creation. It uses virtual machine (VM) technology to encapsulate
legacy software, complete with all its software dependencies. This legacy world can be completely
closed-source: there is no requirement for availability of source code, nor a requirement for re-
compilation or relinking. The entire VM is streamed over the Internet from a web server, much as
video is streamed today.

This work was supported by the Alfred P. Sloan Foundation and the Institute of Museum and Library Sciences.
Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and should
not be attributed to Carnegie Mellon University or the funding sources.

Keywords: scientific reproducibility, virtual machines, demand paging, caching, prefetching,
software archiving, software obsolescence, software maintenance, software forensics

1 Software in Science
Reproducibility is at the heart of the scientific method. Confidence in a result grows as researchers
all over the world are able to reproduce it independently. Today, an increasing fraction of the
world’s intellectual output is in the form of executable content — i.e., software. This is true in
virtually all areas of scholarship, from physics, chemistry, biology, and engineering to economics,
political science and the humanities. Examples of such executable content include data analysis
tools to slice and dice raw data, zoomable visualization tools that enable results to be viewed at
many levels of abstraction, and simulation models written in a variety of programming languages
and using a wide range of supporting libraries and reference data sets. Such software is central,
not peripheral, to the discovery of new results today. Raw scientific data is often of limited value
unless it is accompanied by the uniquely customized software that was created to decode, interpret,
analyze and display that data.

The role of software in the scientific method is illustrated by a recent controversy [6]. In early
2010, Reinhart and Rogoff published an analysis of economic data spanning many countries [8, 9].
Herndon et al [4] refuted their findings in 2013 by discovering an error in their calculations. The
significance of the error was described as follows [7]:

“The Reinhart-Rogoff research is best known for its result that, across a broad range of
countries and historical periods, economic growth declines dramatically when a country’s level
of public debt exceeds 90 per cent of gross domestic product.
· · ·
When we performed accurate recalculations using their dataset, we found that, when countries’
debt-to-GDP ratio exceeds 90 per cent, average growth is 2.2 per cent, not -0.1 per cent.”

The controversy continues, but regardless of how it is eventually resolved, there is no denying the
central role of software (in this case, a Microsoft Excel spreadsheet) in the original analysis, its
refutation and its eventual resolution.

2 The Ravages of Time
In the Reinhart-Rogoff example, there was no difficulty in obtaining the software necessary to
perform the recalculations. Only three years had elapsed since the original publication of results,
and the same version of Microsoft Excel continued to be in widespread use. Imagine, however, that
the recalculations were attempted by a researcher 30 years later. Would Microsoft Excel still be in
use? If so, would the version then in use accept the data format used by the original researchers?
Would the calculations performed by that version be identical in every respect (including, for
example, handling of rounding errors) to the version used by the original researchers? What if
Microsoft goes out of business ten years after the original publication of results, and the Windows
environment (which is needed to run Excel) ceases to be in use? As these questions suggest, our
growing dependence on software in scientific research introduces new challenges to the premise of
reproducibility that is the bedrock of science. Unless these challenges are addressed, our ability to
re-validate published results will evaporate over time.

In this paper, we describe a system called Olive that seeks to freeze and precisely reproduce the
environment necessary to execute software long after its creation (possibly many decades later). It

1

uses virtual machine (VM) technology to encapsulate legacy software, complete with all its soft-
ware dependencies. This includes the operating system, dynamically linked libraries, tool chains,
configuration files, data files and other supporting items. This legacy world can be completely
closed-source: there is no requirement for availability of source code, nor a requirement for re-
compilation or relinking. The entire VM is streamed over the Internet from a web server, much
as video is streamed today. One-click execution of pre-packaged legacy software from a web site
thus becomes possible. The rest of this paper examines the challenges addressed by Olive, and
then describes its design, implementation and current status.

3 Execution Fidelity
Precise reproduction of software execution, which we call execution fidelity, is a complex problem
in which many moving parts must all be perfectly aligned for a solution. Preserving this alignment
over space and time is difficult. Many things can change: the hardware, the operating system,
dynamically linked libraries, configuration and user preference specifications, geographic location,
execution timing, and so on. Even a single change may hurt fidelity or completely break execution.

Unfortunately, the available mechanisms for enforcing execution fidelity are weak. Most soft-
ware distribution today takes the form of install packages, typically in binary form but sometimes
in source form. The act of installing a package involves checking for a wide range of dependen-
cies, discovering missing components, and ensuring that the transitive closure of dependencies
involving these components is addressed. Tools have been developed to simplify and partially au-
tomate these steps. However, the process still involves considerable skill and knowledge, remains
failure-prone, and typically involves substantial time and effort.

These difficulties loom large to any researcher who attempts to re-validate old scientific results.
Software install packages themselves are static content, and can be archived in a digital library
using the same mechanisms that are used to archive scientific data. However, the chances of
successfully installing and executing this software in the distant future are low. In addition to
all of the software installation challenges mentioned above, there is the additional difficulty that
the passage of time makes hardware and software environments obsolete. The chances of finding
compatible hardware and operating system on which to even attempt an install become vanishingly
small over time scales of decades. These challenges have long stymied efforts to archive executable
content [2, 3, 5].

4 Virtual Machines
Olive leverages VM technology to encapsulate and deliver a bit-exact, pre-packaged execution
environment. The VM abstraction is implemented by a virtual machine monitor (VMM). This is
a computer architecture and instruction set emulator of such high accuracy and transparency that
neither an application nor the operating system is able to detect its presence. In other words, em-
ulated execution is indistinguishable from execution on genuine hardware. VMs have a venerable
history, dating back to the late 1960s. In the past decade, the emergence of cloud computing has
spawned tremendous activity and investment in advancing the VM abstraction. Olive benefits indi-
rectly from the many efforts in academia and industry that are aimed at improving the performance

2

Figure 1: Microsoft Office 6.0 on Windows 3.1
Figure 2: Great American History Machine on Win-
dows 3.1

and functionality of VM-based systems. In Olive, VMs are transparently streamed from servers
to execution sites over the Internet. The archived software within the VM executes without any
awareness of the streaming process.

5 Olive Status
Olive contains over 15 VMs today, including operating systems and applications dating back to the
late 1980s. A summary of the collection is shown at the end of the paper (Figure 7). The collection
continues to grow. For brevity, we describe only four of these VMs below.

Microsoft Office 6.0
Figure 1 shows a screenshot of this VM, containing Word, Excel and PowerPoint for Windows 3.1.
If Reinhart and Rogoff had published their controversial paper [8] in the 1993-94 timeframe, this
is the VM that you would need to re-validate their results today.

Great American History Machine
This application was originally created in the late 1980s by Professor David Miller of Carnegie
Mellon University. It was used by him and by many professors at other universities nationwide to
teach 19th century and early 20th century American history. As the screenshot in Figure 2 shows,
this educational software used census and election data to teach students important historical con-
cepts such as the origins of the Civil War. The Windows 3.1 version of this software was created in
collaboration with the University of Maryland. Because of lack of financial resources to port the
software to newer Windows platforms, it fell into disuse over time. No modern equivalent of this
software exists today.

3

Figure 3: TurboTax 1997 on Windows 3.1 Figure 4: Mosaic Browser on MacOS 7.5

TurboTax 1997
This application for Windows 3.1 and Windows 95 was used by millions of Americans to prepare
their 1997 tax returns. Figure 3 shows a screenshot of this application. Since TurboTax is updated
each year to reflect the current tax laws, a suite of TurboTax VMs from consecutive years can offer
unique historical value. Imagine a class in political science, public policy or economics assigning
students a project based on TurboTax versions that are ten years apart. By calculating the tax
returns for hypothetical families with different sources and amounts of income, students can see
for themselves the impact of tax code changes over time. Such active learning can transform the
abstract topic of tax law into a source of valuable real-world insights.

NCSA Mosaic
As the world’s first widely-used web browser dating back to 1992-93, Mosaic has a unique histori-
cal status. This VM, whose screenshot is shown in Figure 4, is also interesting for a second reason.
The version of Mosaic that it encapsulates was written for the Apple MacOS 7.5 operating system
on Motorola 68040 hardware. The VM also encapsulates Basilisk II, an open source hardware em-
ulator for Motorola 68040 on modern Intel x86 hardware running Linux. The bootable disk image
of MacOS 7.5 with Mosaic is stored as a file in the virtual file system of the outer Linux guest.
In spite of two levels of virtualization, performance is acceptable because modern hardware is so
much faster than the original Apple hardware. Pointing the Mosaic browser at modern web sites
is instructive. Since Mosaic predates web technologies such as JavaScript, HTTP 1.1, Cascading
Style Sheets, and HTML5 it is unable to render content from modern web sites. It is, however,
capable of rendering web pages from some older sites that are still on the Internet.

6 Olive Impementation
Figure 5 illustrates the conceptual structure of an Olive client. At the bottom (1 and 2) is stan-
dard Intel x86 desktop or laptop hardware running Linux (generically called the “host operating

4

1

1. Today’s Hardware (x86)

3. VMNetX

4. Virtual Machine Monitor (KVM/QEMU)

gu
es

t e
nv

iro
nm

en
t

2. Operating System (Linux) (host OS)

5. Hardware emulator (e.g. Basilisk II)
(not needed if old hardware was x86)

6. Old Operating System (guest OS)
(e.g., Windows 3.1)

7. Old Application
(e.g., Great American History Machine)

8. Data file, Script, Simulation Model, etc.
(e.g. Excel spreadsheet)

ho
st

 e
nv

iro
nm

en
t

Virtual Machine
(streamed over the Internet from Olive archive)

Figure 5: Abstract Olive Client Structure

Linux

VMNetX
client

FUSE

VM Image file

pristine
cache

modified
cache

to Olive server
via standard
HTTP range

requests

G
ue

st
 O

S

KVM / QEMU

VM
M

G
ue

st
 A

pp Unmodified
Web Server

Manifest Domain
XML

Disk
Image

Memory
Image

Figure 6: Olive Architecture

system”). Layered above this (3) is an Olive component called VMNetX that implements caching
and prefetching of VM images over the Internet. VMNetX presents the illusion of a fully as-
sembled VM image to the VMM layer above, which virtualizes the x86 host hardware. We use
KVM/QEMU as our VMM. Layers 5 through 8 in Figure 5 are encapsulated within the archival
VM image that is streamed from Olive servers. The lowest of these layers (5) is a hardware em-
ulator that presents the illusion of now-obsolete hardware (such as Motorola 68040). This layer
can be omitted if the archived environment targets x86 hardware. Layer 6 is the archived operating
system (generically called the “guest” operating system). The virtual disk of the VM is managed
by the guest operating system, and appears as a local file system to higher layers.

Layer 7, which represents the archived application (such as the Great American History Ma-
chine) is the focal point of interest in archiving. It is to support execution of this application with
high fidelity that the entire edifice shown in Figure 5 is necessary. Layer 8 represents input that
is provided to the archived application. In the Reinhart-Rogoff example, Layer 8 would be the
original Excel spreadsheet that was used in their analysis. Layer 7 would be the version of Excel
that they used. In a different situation, such as examining an old archived engineering drawing,
Layer 7 might be the AutoCAD application and Layer 8 would be the input files to AutoCAD that
represent the drawing. Alternatively, Layer 8 may be placed on an external data source such as a
distributed file system and exposed to the guest OS as a virtual floppy disk or virtual CD-ROM.

Figure 6 shows how the abstract layers shown in Figure 5 are mapped to the Olive architec-
ture. Layers 8 through 5 are encapsulated within the VM instance shown on the left. Layer 4
(KVM/QEMU) is explicitly shown in Figure 6. Layer 3 (VMNetX) maps to the user-level process
and file caches (“pristine” and “modified”). As the VM instance executes, it may access parts of
its VM image that have not been cached yet. VMNetX services these cache misses using HTTP
range requests to a standard Web server such as Apache. The “web page” in this case is a large file
on the server that contains all components of the VM image, including its disk image, its memory
image, and its hardware configuration.

To support non-Linux clients, the entire client structure shown in Figure 6 can be executed
on a nearby cloudlet [10] or private cloud. The SPICE remote desktop protocol [1] is used for
thin client user interactions with the VM instance. Low-latency, high-bandwidth network connec-
tivity between the user and the VM instance is necessary for thin clients to provide a good user
experience.

5

7 Conclusion
Executable content ranging from simulation models to visualization tools plays an increasingly
important role in scientific research. The ability to archive these artifacts for posterity would be
an important transformative step. Imagine being able to reach back across time to execute the
simulation model of a long-dead scientist on new data that you have just acquired. What do the
results suggest? Would they have changed the conclusions of that scientist? Although you aren’t
quite bringing the scientist back to life, you are collaborating with that person in a way that was
not possible until now. Olive is the first system to provide this new capability, which we predict
will become a sine qua non for the scientific method in the 21st century and beyond.

Availability
The Olive web site is at http://olivearchive.org. Due to software licensing restrictions
outside our control, the VMs on the web site are currently accessible only to our research collab-
orators. We hope to lift this restriction in the future. VMNetX is open-source software available
under the GPLv2 license.

Acknowledgements
Vas Bala and his colleagues at IBM collaborated with us on the early research that led to the Olive
vision. We wish to thank IBM for its support and early advocacy of Olive. This work was supported
by the Alfred P. Sloan Foundation and the Institute of Museum and Library Sciences. Any opinions,
findings, conclusions or recommendations expressed in this material are those of the authors and
should not be attributed to Carnegie Mellon University or the funding sources.

References
[1] Spice, 2014. http://www.spice-space.org/.

[2] P. Conway. Preservation in the Digital World. http://www.clir.org/pubs/reports/
conway2/, March 1996.

[3] P. Conway. Preservation in the Age of Google: Digitization, Digital Preservation, and Dilem-
mas. Library Quarterly, 80(1), 2010.

[4] T. Herndon, M. Ash, and R. Pollin. Does High Public Debt Stifle Economic Growth? A
Critique of Reinhart and Rogoff. Working Paper 322, Political Economy Research Institute,
University of Massachussets Amherst, April 2013. http://www.peri.umass.edu/236/
hash/31e2ff374b6377b2ddec04deaa6388b1/publication/566/.

[5] B. Matthews, A. Shaon, J. Bicarreguil, and C. Jones. A Framework for Software Preservation.
The International Journal of Digital Curation, 5(1), June 2010.

[6] P. Monaghan. ’They Said at First That They Hadn’t Made a Spreadsheet Error, When
They Had’. The Chronicle of Higher Education, April 2013. https://chronicle.com/
article/UMass-Graduate-Student-Talks/138763/.

6

[7] R. Pollin and M. Ash. Austerity after Reinhart and Rogoff. Financial Times, April 2013.
http://www.ft.com/cms/s/0/9e5107f8-a75c-11e2-9fbe-00144feabdc0.
html#axzz2zLV7HuwS.

[8] C. M. Reinhart and K. S. Rogoff. Growth in a Time of Debt. American Economic Review,
100(2):573–78, May 2010.

[9] C. M. Reinhart and K. S. Rogoff. Growth in a Time of Debt. Working Paper 15639, National
Bureau of Economic Research, January 2010. http://www.nber.org/papers/w15639.

[10] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for VM-Based Cloudlets
in Mobile Computing. IEEE Pervasive Computing, 8(4), October-December 2009.

7

Timeframe Operating Application Description
System

1 Late
1980s
to early
1990s

Microsoft
MS-DOS

Preferred orienta-
tion package - Los
Alamos

Texture analysis software package that provides a comprehensive
treatment of material texture analysis.

2 Air Stripper De-
sign and Costing
(ASDC)

ASDC enables rapid generation and evaluation of alternative air
stripper designs for removal of volatile organic compounds (VOCs)
from water.

3 Amortizer Plus 3.01 Amortizer calculates loan amortization in a user-friendly, character-
cell interface

4 Wanderer Wanderer is a game similar to the old ”Boulderdash” or ”Repton”
games, and was originally written to run under UNIX on text termi-
nals (TVI910 and Wyse60)

5 DOOM for DOS The original DOOM First Person Shooter game

6 Early
to mid-
1990s

Microsoft
Windows 3.1

Microsoft Office 6.0 Microsoft Word 6.0c, Excel 5.0, and PowerPoint 4.0

7 WordPerfect 6.1 Widely used word-processing software before Microsoft Word be-
came dominant

8 Electronic Anes-
thesiology Library
1991-95

A compilation in multimedia format of four journals (Anesthesiology,
Anesthesia and Analgesia, British Journal of Anaesthesia, and The
Canadian Journal of Anaesthesia). Includes the Knowledge Finder
software for searching the journals.

9 TurboTax 1997 Tax-preparation software for tax year 1997

10 Great American
History Machine

Visualization software to explore historical American census and
election data from the 19th and early 20th centuries. The original
version was created in the late 1980s for Carnegie Mellon Univer-
sity’s Andrew system.

11 Mid-
1990s

Apple Mac-
Intosh 7.5

Oregon Trail 1.1 A game designed to teach school children about the realities of 19th
century pioneer life on the Oregon Trail. The original pre-Mac ver-
sion was conceived in 1971 and produced by the Minnesota Educa-
tional Computing Consortium (MECC) in 1974.

12 HyperCard 2.4.1 The last version of Apple’s HyperCard multimedia authoring system
for Macintosh.

13 NCSA Mosaic 1.0 A very early web browser that triggered world-wide awareness of the
Internet

14 Netscape Naviga-
tor 1.12

One of the earliest versions of the first commercial web browser.

15 Early
2000s

Microsoft
Windows XP

Basic operating system environment

16 2012 Scientific
Linux 6.4

A Linux release put together by Fermilab, CERN, and various other
labs and universities around the world. Its primary purpose is to
reduce duplicated effort of the labs, and to have a common install
base for the various experimenters.

17 ChemCollective A collection of virtual labs, scenario-based learning activities, tutori-
als, and concept tests to teach and learn chemistry.

Figure 7: VM Collection in Olive as of April 20148

