
Logical, Metric, and Algorithmic
Characterisations of Probabilistic Bisimulation

Yuxin Deng1 Wenjie Du2

March 25, 2011
CMU-CS-11-110

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1Author affiliations: Carnegie Mellon University, Shanghai Jiao Tong University, and Chinese Academy of Sciences
2Author affiliation: Shanghai Normal University
This work was partially supported by the Qatar National Research Fund under grant NPRP 09-1107-1-168, the

Natural Science Foundation of China under Grant No. 61033002 and the Opening Fund of Top Key Discipline of
Computer Software and Theory in Zhejiang Provincial Colleges at Zhejiang Normal University. The statements made
herein are solely the responsibility of the authors.

Keywords: Probabilistic concurrency theory, bisimulation, logic, metric, algorithm

Abstract

Many behavioural equivalences or preorders for probabilistic processes involve a lifting operation
that turns a relation on states into a relation on distributions of states. We show that several
existing proposals for lifting relations can be reconciled to be different presentations of essentially
the same lifting operation. More interestingly, this lifting operation nicely corresponds to the
Kantorovich metric, a fundamental concept used in mathematics to lift a metric on states to a
metric on distributions of states, besides the fact the lifting operation is related to the maximum
flow problem in optimisation theory.

The lifting operation yields a neat notion of probabilistic bisimulation, for which we provide logical,
metric, and algorithmic characterisations. Specifically, we extend the Hennessy-Milner logic and
the modal mu-calculus with a new modality, resulting in an adequate and an expressive logic
for probabilistic bisimilarity, respectively. The correspondence of the lifting operation and the
Kantorovich metric leads to a natural characterisation of bisimulations as pseudometrics which are
post-fixed points of a monotone function. We also present an “on the fly” algorithm to check if two
states in a finitary system are related by probabilistic bisimilarity, exploiting the close relationship
between the lifting operation and the maximum flow problem.

1 Introduction

In the last three decades a wealth of behavioural equivalences have been proposed in concurrency
theory. Among them, bisimilarity [43, 48] is probably the most studied one as it admits a suitable
semantics, an elegant co-inductive proof technique, as well as efficient decision algorithms.

In recent years, probabilistic constructs have been proven useful for giving quantitative specifi-
cations of system behaviour. The first papers on probabilistic concurrency theory [25, 5, 38] proceed
by replacing nondeterministic with probabilistic constructs. The reconciliation of nondeterministic
and probabilistic constructs starts with [27] and has received a lot of attention in the literature
[67, 54, 40, 53, 29, 41, 3, 32, 44, 6, 57, 42, 14, 15, 13, 12].

We shall also work in a framework that features the co-existence of probability and nondeter-
minism. More specifically, we deal with probabilistic labelled transition systems (pLTSs) [14] which
are an extension of the usual labelled transition systems (LTSs) so that a step of transition is in
the form s a−→ ∆, meaning that state s can perform action a and evolve into a distribution ∆ over
some successor states. In this setting state s is related to state t by a relation R, say probabilistic
simulation, written s R t, if for each transition s a−→ ∆ from s there exists a transition t a−→ Θ
from t such that Θ can somehow simulate the behaviour of ∆ according to R. To formalise the
mimicking of ∆ by Θ, we have to lift R to be a relation R† between distributions over states and
require ∆ R† Θ.

Various approaches of lifting relations have appeared in the literature; see e.g. [37, 54, 14, 8, 12].
We will show that although those approaches appear different, they can be reconciled. Essentially,
there is only one lifting operation, which has been presented in different forms. Moreover, we argue
that the lifting operation is interesting itself. This is justified by its intrinsic connection with some
fundamental concepts in mathematics, notably the Kantorovich metric [34]. For example, it turns
out that our lifting of binary relations from states to distributions nicely corresponds to the lifting
of metrics from states to distributions by using the Kantorovich metric. In addition, the lifting
operation is closely related to the maximum flow problem in optimisation theory, as observed by
Baier et al. [2].

A good scientific concept is often elegant, even seen from many different perspectives. Bisimu-
lation is one of such concepts in the traditional concurrency theory, as it can be characterised in a
great many ways such as fixed point theory, modal logics, game theory, coalgebras etc. We believe
that probabilistic bisimulation is also one of such concepts in probabilistic concurrency theory. As
an evidence, we will provide in this paper three characterisations, from the perspectives of modal
logics, metrics, and decision algorithms.

1. Our logical characterisation of probabilistic bisimulation consists of two aspects: adequacy
and expressivity [50]. A logic L is adequate when two states are bisimilar if and only if they
satisfy exactly the same set of formulae in L. The logic is expressive when each state s has
a characteristic formula ϕs in L such that t is bisimilar to s if and only if t satisfies ϕs.
We will introduce a probabilistic choice modality to capture the behaviour of distributions.
Intuitively, distribution ∆ satisfies the formula

⊕
i∈I pi · ϕi if there is a decomposition of ∆

into a convex combination some distributions, ∆ =
∑

i∈I pi · ∆i, and each ∆i confirms to
the property specified by ϕi. When the new modality is added to the Hennessy-Milner logic
[28] we obtain an adequate logic for probabilistic bisimilarity; when it is added to the modal
mu-calculus [36] we obtain an expressive logic.

2. By metric characterisation of probabilistic bisimulation, we mean to give a pseudometric

1

such that two states are bisimilar if and only if their distance is 0 when measured by the
pseudometric. More specifically, we show that bisimulations correspond to pseudometrics
which are post-fixed points of a monotone function, and in particular bisimilarity corresponds
to a pseudometric which is the greatest fixed point of the monotone function.

3. As to the algorithmic characterisation, we propose an “on the fly” algorithm that checks
if two states are related by probabilistic bisimilarity. The schema of the algorithm is to
approximate probabilistic bisimilarity by iteratively accumulating information about state
pairs (s, t) where s and t are not bisimilar. In each iteration we dynamically constructs
a relation R as an approximant. Then we verify if every transition from one state can
be matched up by a transition from the other state, and their resulting distributions are
related by the lifted relation R†, which involves solving the maximum flow problem of an
appropriately constructed network, by taking advantage of the close relation between our
lifting operation and the above mentioned maximum flow problem.

Related work Probabilistic bisimulation was first introduced by Larsen and Skou [37]. Later
on, it was investigated in a great many probabilistic models. An adequate logic for probabilistic
bisimulation in a setting similar to our pLTSs has been studied in [33, 49]. It is also based on
an probabilistic extension of the Hennessy-Milner logic. The main difference from our logic in
Section 5.1 is the introduction of the operator [·]p. Intuitively, a distribution ∆ satisfies the formula
[ϕ]p when the set of states satisfying ϕ is measured by ∆ with probability at least p. So the
formula [ϕ]p can be expressed by our logic in terms of the probabilistic choice

⊕
i∈I pi·ϕi by setting

I = {1, 2}, p1 = p, p2 = 1 − p, ϕ1 = ϕ, and ϕ2 = true. When restricted to deterministic pLTSs
(i.e., for each state and for each action, there exists at most one outgoing transition from the
state), probabilistic bisimulations can be characterised by simpler forms of logics, as observed in
[37, 16, 49].

An expressive logic for nonprobabilistic bisimulation has been proposed in [55]. In this paper
we partially extend the results of [55] to a probabilistic setting that admits both probabilistic and
nondeterministic choice. We present a probabilistic extension of the modal mu-calculus [36], where
a formula is interpreted as the set of states satisfying it. This is in contrast to the probabilistic
semantics of the mu-calculus as studied in [29, 41, 42] where formulae denote lower bounds of
probabilistic evidence of properties, and the semantics of the generalised probabilistic logic of [6]
where a mu-calculus formula is interpreted as a set of deterministic trees that satisfy it.

The Kantorovich metric has been used by van Breugel et al. for defining behavioural pseudo-
metrics on fully probabilistic systems [61, 64, 60] and reactive probabilistic systems [62, 63, 58, 59];
and by Desharnais et al. for labelled Markov chains [17, 19] and labelled concurrent Markov chains
[18]; and later on by Ferns et al. for Markov decision processes [23, 24]; and by Deng et al. for
action-labelled quantitative transition systems [7]. One exception is [20], which proposes a pseu-
dometric for labelled Markov chains without using the Kantorovich metric. Instead, it is based on
a notition of ε-bisimulation, which relaxes the definition of probabilistic bisimulation by allowing
small perturbation of probabilities. In this paper we are mainly interested in the correspondence
of our lifting operation to the Kantorovich metric. The metric characterisation of probabilistic
bisimulation in Section 6 is merely a direct consequence of this correspondence.

Decision algorithms for probabilistic bisimilarity and similarity have been considered by Baier
et al. in [2] and Zhang et al. in [68]. Their algorithms are global in the sense that a whole state
space has to be fully generated in advance. In contrast, “on the fly” algorithms are local in the

2

sense that the state space is dynamically generated which is often more efficient to determine that
one state fails to be related to another. Our algorithm in Section 7 is inspired by [2] because we also
reduce the problem of checking if two distributions are related by a lifted relation to the maximum
flow problem of a suitable network. We generalise the local algorithm of checking nonprobabilistic
bisimilarity [22, 39] to the probabilistic setting.

This paper provides a relatively comprehensive account of probabilistic bisimulation. Some of
the results or their variants were mentioned previously in [7, 9, 10, 11]. Here they are presented in
a uniform way and equipped with detailed proofs.

Outline of the paper The paper proceeds by recalling a way of lifting binary relations from
states to distributions, and showing its coincidence with a few other ways in Section 2. The
lifting operation is justified in Section 3 in terms of its correspondence to the Kantorovich metric
and the maximum flow problem. In Section 4 we define probabilistic bisimulation and show its
infinite approximation. In Section 5 we introduce a probabilistic choice modality, then extend the
Hennessy-Milner logic and the modal mu-calculus so to obtain two logics that are adequate and
expressive, respectively. In Section 6 we characterise probabilistic bisimulations as pseudometrics.
In Section 7 we exploit the correspondence of our lifting operation to the maximum flow problem,
and present a polynomial time decision algorithm. Finally, Section 8 concludes the paper.

2 Lifting relations

In the probabilistic setting, formal systems are usually modelled as distributions over states. To
compare two systems involves the comparison of two distributions. So we need a way of lifting
relations on states to relations on distributions. This is used, for example, to define probabilistic
bisimulation as we shall see in Section 4. A few approaches of lifting relations have appeared in the
literature. We will take the one from [12], and show its coincidence with two other approaches.

We first fix some notation. A (discrete) probability distribution over a set S is a mapping
∆ : S → [0, 1] with

∑
s∈S ∆(s) = 1. The support of ∆ is given by d∆e := { s ∈ S | ∆(s) > 0 }.

In this paper we only consider finite state systems, so it suffices to use distributions with finite
support; let D(S), ranged over by ∆,Θ, denote the collection of all such distributions over S. We
use s to denote the point distribution, satisfying s(t) = 1 if t = s, and 0 otherwise. If pi ≥ 0 and
∆i is a distribution for each i in some finite index set I, then

∑
i∈I pi ·∆i is given by

(
∑
i∈I

pi ·∆i)(s) =
∑
i∈I

pi ·∆i(s)

If
∑

i∈I pi = 1 then this is easily seen to be a distribution in D(S). Finally, the product of
two probability distributions ∆,Θ over S, T is the distribution ∆ × Θ over S × T defined by
(∆×Θ)(s, t) := ∆(s) ·Θ(t).

Definition 2.1 Given two sets S and T and a relation R ⊆ S×T . Then R† ⊆ D(S)×D(T) is
the smallest relation that satisfies:

1. s R t implies s R† t

2. ∆i R† Θi implies (
∑

i∈I pi ·∆i) R† (
∑

i∈I pi ·Θi), where I is a finite index set and
∑

i∈I pi = 1.

3

The lifting construction satisfies the following useful property whose proof is straightforward
thus omitted.

Proposition 2.2 Suppose R ⊆ S × S and
∑

i∈I pi = 1. If (
∑

i∈I pi ·∆i) R† Θ then Θ =∑
i∈I pi ·Θi for some set of distributions Θi such that ∆i R† Θi. ut

We now look at alternative presentations of Definition 2.1. The proposition below is immediate.

Proposition 2.3 Let ∆ and Θ be distributions over S and T , respectively, and R⊆ S × T . Then
∆ R† Θ if and only if ∆,Θ can be decomposed as follows:

1. ∆ =
∑

i∈I pi · si, where I is a finite index set and
∑

i∈I pi = 1

2. For each i ∈ I there is a state ti such that si R ti

3. Θ =
∑

i∈I pi · ti. ut

An important point here is that in the decomposition of ∆ into
∑

i∈I pi · si, the states si are not
necessarily distinct : that is, the decomposition is not in general unique. Thus when establishing
the relationship between ∆ and Θ, a given state s in ∆ may play a number of different roles.

From Definition 2.1, the next two properties follows. In fact, they are sometimes used in the
literature as definitions of lifting relations instead of being properties (see e.g. [54, 37]).

Theorem 2.4 1. Let ∆ and Θ be distributions over S and T , respectively. Then ∆ R† Θ if
and only if there exists a weight function w : S × T → [0, 1] such that

(a) ∀s ∈ S :
∑

t∈T w(s, t) = ∆(s)

(b) ∀t ∈ T :
∑

s∈S w(s, t) = Θ(t)

(c) ∀(s, t) ∈ S × T : w(s, t) > 0⇒ s R t.

2. Let ∆,Θ be distributions over S and R is an equivalence relation. Then ∆ R† Θ if and only
if ∆(C) = Θ(C) for all equivalence class C ∈ S/R, where ∆(C) stands for the accumulation
probability

∑
s∈C ∆(s).

Proof: 1. (⇒) Suppose ∆ R† Θ. By Proposition 2.3, we can decompose ∆ and Θ such that
∆ =

∑
i∈I pi · si, Θ =

∑
i∈I pi · ti, and si R ti for all i ∈ I. We define the weight function w

by letting w(s, t) =
∑
{pi | si = s, ti = t, i ∈ I} for any s ∈ S, t ∈ T . This weight function can

be checked to meet our requirements.

(a) For any s ∈ S, it holds that∑
t∈T w(s, t) =

∑
t∈T
∑
{pi | si = s, ti = t, i ∈ I}

=
∑
{pi | si = s, i ∈ I}

= ∆(s)

(b) Similarly, we have
∑

s∈S w(s, t) = Θ(t).

(c) For any s ∈ S, t ∈ T , if w(s, t) > 0 then there is some i ∈ I such that pi > 0, si = s, and
ti = t. It follows from si R ti that s R t.

4

(⇐) Suppose there is a weight function w satisfying the three conditions in the hypothesis. We
construct the index set I = {(s, t) | w(s, t) > 0, s ∈ S, t ∈ T} and probabilities p(s,t) = w(s, t)
for each (s, t) ∈ I.

(a) It holds that ∆ =
∑

(s,t)∈I p(s,t) · s because, for any s ∈ S,

(
∑

(s,t)∈I p(s,t) · s)(s) =
∑

(s,t)∈I w(s, t)

=
∑
{w(s, t) | w(s, t) > 0, t ∈ T}

=
∑
{w(s, t) | t ∈ T}

= ∆(s)

(b) Similarly, we have Θ =
∑

(s,t)∈I w(s, t) · t.
(c) For each (s, t) ∈ I, we have w(s, t) > 0, which implies s R t.

Hence, the above decompositions of ∆ and Θ meet the requirement of the lifting ∆ R† Θ.

2. (⇒) Suppose ∆ R† Θ. By Proposition 2.3, we can decompose ∆ and Θ such that ∆ =∑
i∈I pi · si, Θ =

∑
i∈I pi · ti, and si R ti for all i ∈ I. For any equivalence class C ∈ S/R, we

have that
∆(C) =

∑
s∈C ∆(s) =

∑
s∈C

∑
{pi | i ∈ I, si = s}

=
∑
{pi | i ∈ I, si ∈ C}

=
∑
{pi | i ∈ I, ti ∈ C}

= Θ(C)

where the equality in the third line is justified by the fact that si ∈ C iff ti ∈ C since si R ti
and C ∈ S/R.

(⇐) Suppose, for each equivalence class C ∈ S/R, it holds that ∆(C) = Θ(C). We construct

the index set I = {(s, t) | s R t and s, t ∈ S} and probabilities p(s,t) = ∆(s)Θ(t)
∆([s]R) for each (s, t) ∈

I, where [s]R stands for the equivalence class that contains s.

(a) It holds that ∆ =
∑

(s,t)∈I p(s,t) · s because, for any s′ ∈ S,

(
∑

(s,t)∈I p(s,t) · s)(s′) =
∑

(s′,t)∈I p(s′,t)

=
∑
{∆(s′)Θ(t)

∆([s′]R) | s
′ R t, t ∈ S}

=
∑
{∆(s′)Θ(t)

∆([s′]R) | t ∈ [s′]R}
= ∆(s′)

∆([s′]R)

∑
{Θ(t) | t ∈ [s′]R}

= ∆(s′)
∆([s′]R)Θ([s′]R)

= ∆(s′)
∆([s′]R)∆([s′]R)

= ∆(s′)

(b) Similarly, we have Θ =
∑

(s,t)∈I p(s,t) · t.
(c) For each (s, t) ∈ I, we have s R t.

Hence, the above decompositions of ∆ and Θ meet the requirement of the lifting ∆ R† Θ.
�

5

3 Justifying the lifting operation

In our opinion, the lifting operation given in Definition 2.1 is not only concise but also on the right
track. This is justified by its intrinsic connection with some fundamental concepts in mathematics,
notably the Kantorovich metric.

3.1 Justification by the Kantorovich metric

We begin with some historical notes. The transportation problem has been playing an important
role in linear programming due to its general formulation and methods of solution. The original
transportation problem, formulated by the French mathematician G. Monge in 1781 [45], consists
of finding an optimal way of shovelling a pile of sand into a hole of the same volume. In the 1940s,
the Russian mathematician and economist L.V. Kantorovich, who was awarded a Nobel prize in
economics in 1975 for the theory of optimal allocation of resources, gave a relaxed formulation
of the problem and proposed a variational principle for solving the problem [34]. Unfortunately,
Kantorovich’s work went unrecognized during a long period of time. The later known Kantorovich
metric has appeared in the literature under different names, because it has been rediscovered
historically several times from different perspectives. Many metrics known in measure theory,
ergodic theory, functional analysis, statistics, etc. are special cases of the general definition of
the Kantorovich metric [65]. The elegance of the formulation, the fundamental character of the
optimality criterion, as well as the wealth of applications, which keep arising, place the Kantorovich
metric in a prominent position among the mathematical works of the 20th century. In addition,
this formulation can be computed in polynomial time [47], which is an appealing feature for its
use in solving applied problems. For example, it is widely used to solve a variety of problems
in business and economy such as market distribution, plant location, scheduling problems etc. In
recent years the metric attracted the attention of computer scientists [9]: it has been used in various
different areas in computer science such as probabilistic concurrency, image retrieval, data mining,
bioinformatics, etc.

Roughly speaking, the Kantorovich metric provides a way of measuring the distance between
two distributions. Of course, this requires first a notion of distance between the basic elements
that are aggregated into the distributions, which is often referred to as the ground distance. In
other words, the Kantorovich metric defines a “lifted” distance between two distributions of mass
in a space that is itself endowed with a ground distance. There are a host of metrics available in
the literature (see e.g. [26]) to quantify the distance between probability measures; see [52] for a
comprehensive review of metrics in the space of probability measures. The Kantorovich metric has
an elegant formulation and a natural interpretation in terms of the transportation problem.

We now recall the mathematical definition of the Kantorovich metric. Let (X,m) be a separable
metric space. (This condition will be used by Theorem 3.4 below.)

Definition 3.1 Given any two Borel probability measures ∆ and Θ on X, the Kantorovich distance
between ∆ and Θ is defined by

K(∆,Θ) = sup

{∣∣∣∣∫ fd∆−
∫
fdΘ

∣∣∣∣ : ||f || ≤ 1

}
.

where || · || is the Lipschitz semi-norm defined by ||f || = supx 6=y
|f(x)−f(y)|
m(x,y) for a function f : X → R

with R being the set of all real numbers.

6

The Kantorovich metric has an alternative characterisation. We denote by P(X) the set of all
Borel probability measures on X such that for all z ∈ X, if ∆ ∈ P(X) then

∫
X m(x, z)∆(x) <∞.

We write M(∆,Θ) for the set of all Borel probability measures on the product space X ×X with
marginal measures ∆ and Θ, i.e. if Γ ∈M(∆,Θ) then

∫
y∈X dΓ(x, y) = d∆(x) and

∫
x∈X dΓ(x, y) =

dΘ(y) hold.

Definition 3.2 For ∆,Θ ∈ P(X), we define the metric L as follows:

L(∆,Θ) = inf

{∫
m(x, y)dΓ(x, y) : Γ ∈M(∆,Θ)

}
.

Lemma 3.3 If (X,m) is a separable metric space then K and L are metrics on P(X). ut

The famous Kantorovich-Rubinstein duality theorem gives a dual representation of K in terms
of L.

Theorem 3.4 [Kantorovich-Rubinstein [35]] If (X,m) is a separable metric space then for any two
distributions ∆,Θ ∈ P(X) we have K(∆,Θ) = L(∆,Θ). ut

In view of the above theorem, many papers in the literature directly take Definition 3.2 as
the definition of the Kantorovich metric. Here we keep the original definition, but it is helpful to
understand K by using L. Intuitively, a probability measure Γ ∈ M(∆,Θ) can be understood as
a transportation from one unit mass distribution ∆ to another unit mass distribution Θ. If the
distance m(x, y) represents the cost of moving one unit of mass from location x to location y then
the Kantorovich distance gives the optimal total cost of transporting the mass of ∆ to Θ. We refer
the reader to [66] for an excellent exposition on the Kantorovich metric and the duality theorem.

Many problems in computer science only involve finite state spaces, so discrete distributions
with finite supports are sometimes more interesting than continuous distributions. For two discrete
distributions ∆ and Θ with finite supports {x1, ..., xn} and {y1, ..., yl}, respectively, minimizing
the total cost of a discretised version of the transportation problem reduces to the following linear
programming problem:

(1)

minimize
∑n

i=1

∑l
j=1 Γ(xi, yj)m(xi, yj)

subject to • ∀1 ≤ i ≤ n :
∑l

j=1 Γ(xi, yj) = ∆(xi)

• ∀1 ≤ j ≤ l :
∑n

i=1 Γ(xi, yj) = Θ(yj)
• ∀1 ≤ i ≤ n, 1 ≤ j ≤ l : Γ(xi, yj) ≥ 0.

Since (1) is a special case of the discrete mass transportation problem, some well-known polyno-
mial time algorithm like [47] can be employed to solve it, which is an attractive feature for computer
scientists.

Recall that a pseudometric is a function that yields a non-negative real number for each pair of
elements and satisfies the following: m(s, s) = 0, m(s, t) = m(t, s), and m(s, t) ≤ m(s, u) +m(u, t),
for any s, t ∈ S. We say a pseudometric m is 1-bounded if m(s, t) ≤ 1 for any s and t. Let ∆ and
Θ be distributions over a finite set S of states. In [61] a 1-bounded pseudometric m on S is lifted
to be a 1-bounded pseudometric m̂ on D(S) by setting the distance m̂(∆,Θ) to be the value of the
following linear programming problem:

(2)
maximize

∑
s∈S(∆(s)−Θ(s))xs

subject to • ∀s, t ∈ S : xs − xt ≤ m(s, t)
• ∀s ∈ S : 0 ≤ xs ≤ 1.

7

This problem can be dualised and then simplified to yield the following problem:

(3)

minimize
∑

s,t∈S ystm(s, t)

subject to • ∀s ∈ S :
∑

t∈S yst = ∆(s)
• ∀t ∈ S :

∑
s∈S yst = Θ(t)

• ∀s, t ∈ S : yst ≥ 0.

Now (3) is in exactly the same form as (1).
This way of lifting pseudometrics via the Kantorovich metric as given in (3) has an interesting

connection with the lifting of binary relations given in Definition 2.1.

Theorem 3.5 Let R be a binary relation and m a pseudometric on a state space S satisfying

(4) s R t iff m(s, t) = 0

for any s, t ∈ S. Then it holds that

∆ R† Θ iff m̂(∆,Θ) = 0

for any distributions ∆,Θ ∈ D(S).

Proof: Suppose ∆ R† Θ. From Theorem 2.4(1) we know there is a weight function w such that

1. ∀s ∈ S :
∑

t∈S w(s, t) = ∆(s)

2. ∀t ∈ S :
∑

s∈S w(s, t) = Θ(t)

3. ∀s, t ∈ S : w(s, t) > 0⇒ s R t.

By substituting w(s, t) for ys,t in (3), the three constraints there can be satisfied. For any s, t ∈ S
we distinguish two cases:

1. either w(s, t) = 0

2. or w(s, t) > 0. In this case we have s R t, which implies m(s, t) = 0 by (4).

Therefore, we always have w(s, t)m(s, t) = 0 for any s, t ∈ S. Consequently,
∑

s,t∈S w(s, t)m(s, t) =
0 and the optimal value of the problem in (3) must be 0, i.e. m̂(∆,Θ) = 0, and the optimal solution
is determined by w.

The above reasoning can be reversed to show that the optimal solution of (3) determines a
weight function, thus m̂(∆,Θ) = 0 implies ∆ R† Θ. �

The above property will be used in Section 6 to give a metric characterisation of probabilistic
bisimulation (cf. Theorem 6.9).

8

3.2 Justification by network flow

The lifting operation discussed in Section 2 is also related to the maximum flow problem in opti-
misation theory. This was already observed by Baier et al. in [2].

We briefly recall the basic definitions of networks. More details can be found in e.g. [21]. A
network is a tuple N = (N,E,⊥,>, c) where (N,E) is a finite directed graph (i.e. N is a set of
nodes and E ⊆ N×N is a set of edges) with two special nodes ⊥ (the source) and > (the sink) and
a capability c, i.e. a function that assigns to each edge (v, w) ∈ E a non-negative number c(v, w).
A flow function f for N is a function that assigns to edge e a real number f(e) such that

• 0 ≤ f(e) ≤ c(e) for all edges e.

• Let in(v) be the set of incoming edges to node v and out(v) the set of outgoing edges from
node v. Then, for each node v ∈ N\{⊥,>},∑

e∈in(v)

f(e) =
∑

e∈out(v)

f(e).

The flow F (f) of f is given by

F (f) =
∑

e∈out(⊥)

f(e)−
∑

e∈in(⊥)

f(e).

The maximum flow in N is the supremum (maximum) over the flows F (f), where f is a flow
function in N .

We will see that the question whether ∆ R† Θ can be reduced to a maximum flow problem in a
suitably chosen network. Suppose R⊆ S × S and ∆,Θ ∈ D(S). Let S′ = {s′ | s ∈ S} where s′ are
pairwise distinct new states, i.e. s′ ∈ S for all s ∈ S. We create two states ⊥ and > not contained
in S ∪ S′ with ⊥ 6= >. We associate with the pair (∆,Θ) the following network N (∆,Θ,R).

• The nodes are N = S ∪ S′ ∪ {⊥,>}.

• The edges are E = {(s, t′) | (s, t) ∈R} ∪ {(⊥, s) | s ∈ S} ∪ {(s′,>) | s ∈ S}.

• The capability c is defined by c(⊥, s) = ∆(s), c(t′,>) = Θ(t) and c(s, t′) = 1 for all s, t ∈ S.

The next lemma appeared as Lemma 5.1 in [2].

Lemma 3.6 Let S be a finite set, ∆,Θ ∈ D(S) and R⊆ S × S. The following statements are
equivalent.

1. There exists a weight function w for (∆,Θ) with respect to R.

2. The maximum flow in N (∆,Θ,R) is 1. ut

Since the lifting operation given in Definition 2.1 can also be stated in terms of weight functions,
we obtain the following characterisation using network flow.

Theorem 3.7 Let S be a finite set, ∆,Θ ∈ D(S) and R⊆ S × S. Then ∆ R† Θ if and only if the
maximum flow in N (∆,Θ,R) is 1.

Proof: Combining Theorem 2.4(1) and Lemma 3.6. �

The above property will play an important role in Section 7 to give an “on the fly” algorithm
for checking probabilistic bisimilarity.

9

4 Probabilistic bisimulation

With a solid base of the lifting operation, we can proceed to define a probabilistic version of
bisimulation. We start with a probabilistic generalisation of labelled transition systems (LTSs).

Definition 4.1 A probabilistic labelled transition system (pLTS)1 is a triple
〈S,Act,→〉, where

1. S is a set of states;

2. Act is a set of actions;

3. → ⊆ S × Act×D(S) is the transition relation.

As with LTSs, we usually write s a−→ ∆ in place of (s, a,∆) ∈ →. A pLTS is finitely branching if
for each state s ∈ S the set {〈α,∆〉 | s α−→ ∆, α ∈ Act,∆ ∈ D(S)} is finite; if moreover S is finite,
then the pLTS is finitary.

In a pLTS, one step of transition leaves a single state but might end up in a set of states; each
of them can be reached with certain probability. An LTS may be viewed as a degenerate pLTS,
one in which only point distributions are used.

Let s and t are two states in a pLTS, we say t can simulate the behaviour of s if the latter
can exhibit action a and lead to distribution ∆ then the former can also perform a and lead to a
distribution, say Θ, which can mimic ∆ in successor states. We are interested in a relation between
two states, but it is expressed by invoking a relation between two distributions. To formalise the
mimicking of one distribution by the other, we make use of the lifting operation investigated in
Section 2.

Definition 4.2 A relation R⊆ S × S is a probabilistic simulation if s R t implies

• if s a−→ ∆ then there exists some Θ such that t a−→ Θ and ∆ R† Θ.

If both R and R−1 are probabilistic simulations, then R is a probabilistic bisimulation. The largest
probabilistic bisimulation, denoted by ∼, is called probabilistic bisimilarity.

As in the nonprobabilistic setting, probabilistic bisimilarity can be approximated by a family
of inductively defined relations.

Definition 4.3 Let S be the state set of a pLTS. We define:

• ∼0:= S × S

• s ∼n+1 t, for n ≥ 0, if

1. whenever s a−→ ∆, there exists some Θ such that t a−→ Θ and ∆ ∼†n Θ;

2. whenever t a−→ Θ, there exists some ∆ such that s a−→ ∆ and ∆ ∼†n Θ.

• ∼ω:=
⋂
n≥0 ∼n

1Essentially the same model has appeared in the literature under different names such as NP-systems [30], proba-
bilistic processes [31], simple probabilistic automata [53], probabilistic transition systems [32] etc. Furthermore, there
are strong structural similarities with Markov Decision Processes [51, 15].

10

In general, ∼ is a strictly finer relation than ∼ω. However, the two relations coincide when limited
to finitely branching pLTSs.

Proposition 4.4 On finitely branching pLTSs, ∼ω coincides with ∼.

Proof: It is trivial to show by induction that s ∼ t implies s ∼n t for all n ≥ 0, thus s ∼ω t.
Now we show that ∼ω is a bisimulation. Suppose s ∼ω t and s a−→ ∆. We have to show that

there is some Θ with t a−→ Θ and ∆ ∼†ω Θ. Consider the set

T := {Θ | t a−→ Θ ∧∆ 6∼†ω Θ}.

For each Θ ∈ T , we have ∆ 6∼†ω Θ, which means that there is some nΘ > 0 with ∆ 6∼†nΘ Θ. Since

t is finitely branching, T is a finite set. Let N = max{nΘ | Θ ∈ T}. It holds that ∆ 6∼†N Θ for all
Θ ∈ T , since by a straightforward induction on m we can show that s ∼n t implies s ∼m t for all
m,n ≥ 0 with n > m. By the assumption s ∼ω t we know that s ∼N+1 t. It follows that there is
some Θ with t a−→ Θ and ∆ ∼†N Θ, so Θ 6∈ T and hence ∆ ∼†ω Θ. By symmetry we also have that

if t a−→ Θ then there is some ∆ with s a−→ ∆ and ∆ ∼†ω Θ. �

Proposition 4.4 has appeared in [1]; here we have given a simpler proof.

5 Logical characterisation

Let L be a logic. We use the notation L(s) to stand for the set of formulae that state s satisfies.
This induces an equivalence relation on states: s =L t iff L(s) = L(t). Thus, two states are
equivalent when they satisfy exactly the same set of formulae.

In this section we consider two kinds of logical characterisations of probabilistic bisimilarity.

Definition 5.1 [Adequacy and expressivity]

1. L is adequate w.r.t. ∼ if for any states s and t,

s =L t iff s ∼ t.

2. L is expressive w.r.t. ∼ if for each state s there exists a characteristic formula ϕs ∈ L such
that, for any states s and t,

t |= ϕs iff s ∼ t.

We will propose a probabilistic extension of the Hennessy-Milner logic, showing its adequacy, and
then a probabilistic extension of the modal mu-calculus, showing its expressivity.

5.1 An adequate logic

We extend the Hennessy-Milner logic by adding a probabilistic choice modality to express the
bebaviour of distributions.

11

Definition 5.2 The class L of modal formulae over Act, ranged over by ϕ, is defined by the
following grammar:

ϕ := > | ϕ1 ∧ ϕ2 | 〈a〉ψ | ¬ϕ
ψ :=

⊕
i∈I pi · ϕi

We call ϕ a state formula and ψ a distribution formula. Note that a distribution formula ψ only
appears as the continuation of a diamond modality 〈a〉ψ. We sometimes use the finite conjunction∧
i∈I ϕi as a syntactic sugar.

The satisfaction relation |=⊆ S × L is defined by

• s |= > for all s ∈ S.

• s |= ϕ1 ∧ ϕ2 if s |= ϕi for i = 1, 2.

• s |= 〈a〉ψ if for some ∆ ∈ D(S), s a−→ ∆ and ∆ |= ψ.

• s |= ¬ϕ if it is not the case that s |= ϕ.

• ∆ |=
⊕

i∈I pi · ϕi if there are ∆i ∈ D(S), for all i ∈ I, t ∈ d∆ie, with t |= ϕi, such that
∆ =

∑
i∈I pi ·∆i.

With a slight abuse of notation, we write ∆ |= ψ above to mean that ∆ satisfies the distribution
formula ψ. The introduction of distribution formula distinguishes L from other probabilistic modal
logics e.g. [33, 49].

It turns out that L is adequate w.r.t. probabilistic bisimilarity.

Theorem 5.3 [Adequacy] Let s and t be any two states in a finitely branching pLTS. Then s ∼ t
if and only if s =L t.

Proof: (⇒) Suppose s ∼ t, we show that s |= ϕ⇔ t |= ϕ by structural induction on ϕ.

• Let s |= >, we clearly have t |= >.

• Let s |= ϕ1 ∧ ϕ2. Then s |= ϕi for i = 1, 2. So by induction t |= ϕi, and we have t |= ϕ1 ∧ ϕ2.
By symmetry we also have t |= ϕ1 ∧ ϕ2 implies s |= ϕ1 ∧ ϕ2.

• Let s |= ¬ϕ. So s 6|= ϕ, and by induction we have t 6|= ϕ. Thus t |= ¬ϕ. By symmetry we
also have t 6|= ϕ implies s 6|= ϕ.

• Let s |= 〈a〉
⊕

i∈I pi ·ϕi. Then s a−→ ∆ and ∆ |=
⊕

i∈I pi ·ϕi for some ∆. So ∆ =
∑

i∈i pi ·∆i

and for all i ∈ I and s′ ∈ d∆ie we have s′ |= ϕi. Since s ∼ t, there is some Θ with t a−→ Θ
and ∆ ∼† Θ. By Proposition 2.2 we have that Θ =

∑
i∈I pi ·Θi and ∆i ∼† Θi. It follows that

for each t′ ∈ dΘie there is some s′ ∈ d∆ie with s′ ∼ t′. So by induction we have t′ |= ϕi for all
t′ ∈ dΘie with i ∈ I. Therefore, we have Θ |=

⊕
i∈I pi ·ϕi. It follows that t |= 〈a〉

⊕
i∈I pi ·ϕi.

By symmetry we also have t |= 〈a〉
⊕

i∈I pi · ϕi ⇒ s |= 〈a〉
⊕

i∈I pi · ϕi.

(⇐) We show that the relation =L is a probabilistic bisimulation. Suppose s =L t and s a−→ ∆.
We have to show that there is some Θ with t a−→ Θ and ∆ (=L)† Θ. Consider the set

T := {Θ | t a−→ Θ ∧Θ =
∑

s′∈d∆e

∆(s′) ·Θs′ ∧ ∃s′ ∈ d∆e,∃t′ ∈ dΘs′e : s′ 6=L t′}

12

For each Θ ∈ T , there must be some s′Θ ∈ d∆e and t′Θ ∈ dΘs′Θ
e such that (i) either there is a

formula ϕΘ with s′Θ |= ϕΘ but t′Θ 6|= ϕΘ (ii) or there is a formula ϕ′Θ with t′Θ |= ϕ′Θ but s′Θ 6|= ϕ′Θ.
In the latter case we set ϕΘ = ¬ϕ′Θ and return back to the former case. So for each s′ ∈ d∆e it
holds that s′ |=

∧
{Θ∈T |s′Θ=s′} ϕΘ and for each Θ ∈ T with s′Θ = s′ there is some t′Θ ∈ dΘs′e with

t′Θ 6|=
∧
{Θ∈T |s′Θ=s′} ϕΘ. Let

ϕ := 〈a〉
⊕
s′∈d∆e

∆(s′) ·
∧

{Θ∈T |s′Θ=s′}

ϕΘ.

It is clear that s |= ϕ, hence t |= ϕ by s =L t. It follows that there must be a Θ∗ with t a−→ Θ∗,
Θ∗ =

∑
s′∈d∆e∆(s′) · Θ∗s′ and for each s′ ∈ d∆e, t′ ∈ dΘ∗s′e we have t′ |=

∧
{Θ∈T |s′Θ=s′} ϕΘ. This

means that Θ∗ 6∈ T and hence for each s′ ∈ d∆e, t′ ∈ dΘ∗s′e we have s′ =L t′. It follows that
∆ (=L)† Θ∗. By symmetry all transitions of t can be matched up by transitions of s. �

5.2 An expressive logic

We now add the probabilistic choice modality introduced in Section 5.1 to the modal mu-calculus,
and show that the resulting probabilistic mu-calculus is expressive w.r.t. probabilistic bisimilarity.

5.2.1 Probabilistic modal mu-calculus

Let Var be a countable set of variables. We define a set Lµ of modal formulae in positive normal
form given by the following grammar:

ϕ := > | ⊥ | 〈a〉ψ | [a]ψ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | X | µX.ϕ | νX.ϕ
ψ :=

⊕
i∈I pi · ϕi

where a ∈ Act, I is a finite index set and
∑

i∈I pi = 1. Here we still write ϕ for a state formula
and ψ a distribution formula. Sometimes we also use the finite conjunction

∧
i∈I ϕi and disjunction∨

i∈I ϕi. As usual, we have
∧
i∈∅ ϕi = > and

∨
i∈∅ ϕi = ⊥.

The two fixed point operators µX and νX bind the respective variable X. We apply the usual
terminology of free and bound variables in a formula and write fv(ϕ) for the set of free variables
in ϕ.

We use environments, which binds free variables to sets of distributions, in order to give seman-
tics to formulae. We fix a finitary pLTS and let S be its state set. Let

Env = { ρ | ρ : Var → P(S) }

be the set of all environments and ranged over by ρ. For a set V ⊆ S and a variable X ∈ Var , we
write ρ[X 7→ V] for the environment that maps X to V and Y to ρ(Y) for all Y 6= X.

The semantics of a formula ϕ can be given as the set of states satisfying it. This entails a
semantic functional [] : Lµ → Env → P(S) defined inductively in Figure 1, where we also apply
[] to distribution formulae and [ψ] is interpreted as the set of distributions that satisfy ψ. As the
meaning of a closed formula ϕ does not depend on the environment, we write [ϕ] for [ϕ]ρ where ρ
is an arbitrary environment.

The semantics of probabilistic modal mu-calculus (pMu) is the same as that of the modal mu-
calculus [36] except for the probabilistic choice modality which are satisfied by distributions. The

13

[>]ρ = S

[⊥]ρ = ∅
[ϕ1 ∧ ϕ2]ρ = [ϕ1]ρ ∩ [ϕ2]ρ
[ϕ1 ∨ ϕ2]ρ = [ϕ1]ρ ∪ [ϕ2]ρ

[〈a〉ψ]ρ = { s ∈ S | ∃∆ : s a−→ ∆ ∧ ∆ ∈ [ψ]ρ }
[[a]ψ]ρ = { s ∈ S | ∀∆ : s a−→ ∆ ⇒ ∆ ∈ [ψ]ρ }

[X]ρ = ρ(X)

[µX.ϕ]ρ =
⋂
{V ⊆ S | [ϕ]ρ[X 7→V] ⊆ V }

[νX.ϕ]ρ =
⋃
{V ⊆ S | [ϕ]ρ[X 7→V] ⊇ V }

[
⊕

i∈I pi · ϕi]ρ = {∆ ∈ D(S) | ∆ =
⊕

i∈I pi ·∆i ∧ ∀i ∈ I, ∀t ∈ d∆ie : t ∈ [ϕi]ρ }

Figure 1: Semantics of probabilistic modal mu-calculus

characterisation of least fixed point formula µX.ϕ and greatest fixed point formula νX.ϕ follows
from the well-known Knaster-Tarski fixed point theorem [56].

We shall consider (closed) equation systems of formulae of the form

E : X1 = ϕ1
...

Xn = ϕn

whereX1, ..., Xn are mutually distinct variables and ϕ1, ..., ϕn are formulae having at mostX1, ..., Xn

as free variables. Here E can be viewed as a function E : Var → Lµ defined by E(Xi) = ϕi for
i = 1, ..., n and E(Y) = Y for other variables Y ∈ Var .

An environment ρ is a solution of an equation system E if ∀i : ρ(Xi) = [ϕi]ρ. The existence
of solutions for an equation system can be seen from the following arguments. The set Env, which
includes all candidates for solutions, together with the partial order ≤ defined by

ρ ≤ ρ′ iff ∀X ∈ Var : ρ(X) ⊆ ρ′(X)

forms a complete lattice. The equation functional E : Env → Env given in the λ-calculus notation
by

E := λρ.λX.[E(X)]ρ

is monotonic. Thus, the Knaster-Tarski fixed point theorem guarantees existence of solutions, and
the largest solution

ρE :=
⊔
{ ρ | ρ ≤ E(ρ) }

5.2.2 Characteristic equation systems

As studied in [55], the behaviour of a process can be characterised by an equation system of modal
formulae. Below we show that this idea also applies in the probabilistic setting.

Definition 5.4 Given a finitary pLTS, its characteristic equation system consists of one equation
for each state s1, ..., sn ∈ S.

E : Xs1 = ϕs1
...

Xsn = ϕsn

14

where

(5) ϕs := (
∧

s
a−→∆

〈a〉X∆) ∧ (
∧
a∈Act

[a]
∨

s
a−→∆

X∆)

with X∆ :=
⊕

s∈d∆e∆(s) ·Xs.

Theorem 5.5 Suppose E is a characteristic equation system. Then s ∼ t if and only if t ∈ ρE(Xs).

Proof: (⇐) Let R= { (s, t) | t ∈ ρE(Xs) }. We first show that

(6) Θ ∈ [X∆]ρE implies ∆ R† Θ.

Let ∆ =
⊕

i∈I pi ·si, then X∆ =
⊕

i∈I pi ·Xsi . Suppose Θ ∈ [X∆]ρE . We have that Θ =
⊕

i∈I pi ·Θi

and, for all i ∈ I and t′ ∈ dΘie, that t′ ∈ [Xsi]ρE , i.e. si R t′. It follows that si R† Θi and thus

∆ R† Θ.
Now we show that R is a bisimulation.

1. Suppose s R t and s a−→ ∆. Then t ∈ ρE(Xs) = [ϕs]ρE . It follows from (5) that t ∈
[〈a〉X∆]ρE . So there exists some Θ such that t a−→ Θ and Θ ∈ [X∆]ρE . Now we apply (6).

2. Suppose s R t and t a−→ Θ. Then t ∈ ρE(Xs) = [ϕs]ρE . It follows from (5) that t ∈
[[a]

∨
s
a−→∆X∆]. Notice that it must be the case that s can enable action a, otherwise,

t ∈ [[a]⊥]ρE and thus t cannot enable a either, in contradiction with the assumption t a−→ Θ.
Therefore, Θ ∈ [

∨
s
a−→∆X∆]ρE , which implies Θ ∈ [X∆]ρE for some ∆ with s a−→ ∆. Now

we apply (6).

(⇒) We define the environment ρ∼ by

ρ∼(Xs) := { t | s ∼ t }.

It sufficies to show that ρ∼ is a post-fixed point of E , i.e.

(7) ρ∼ ≤ E(ρ∼)

because in that case we have ρ∼ ≤ ρE , thus s ∼ t implies t ∈ ρ∼(Xs) which in turn implies
t ∈ ρE(Xs).

We first show that

(8) ∆ ∼† Θ implies Θ ∈ [X∆]ρ∼ .

Suppose ∆ ∼† Θ, by Proposition 2.3 we have that (i) ∆ =
⊕

i∈I pi·si, (ii) Θ =
⊕

i∈I pi·ti, (iii) si ∼ ti
for all i ∈ I. We know from (iii) that ti ∈ [Xsi]ρ∼ . Using (ii) we have that Θ ∈ [

⊕
i∈I pi ·Xsi]ρ∼ .

Using (i) we obtain Θ ∈ [X∆]ρ∼ .
Now we are in a position to show (7). Suppose t ∈ ρ∼(Xs). We must prove that t ∈ [ϕs]ρ∼ , i.e.

t ∈ (
⋂

s
a−→∆

[〈a〉X∆]ρ∼) ∩ (
⋂
a∈Act

[[a]
∨

s
a−→∆

X∆]ρ∼)

by (5). This can be done by showing that t belongs to each of the two parts of this intersection.

15

1. Rule 1: E → F

2. Rule 2: E → G

3. Rule 3: E → H if Xn 6∈ fv(ϕ1, ..., ϕn)

E : X1 = ϕ1 F : X1 = ϕ1 G : X1 = ϕ1[ϕn/Xn] H : X1 = ϕ1
...

...
...

...
Xn−1 = ϕn−1 Xn−1 = ϕn−1 Xn−1 = ϕn−1[ϕn/Xn] Xn−1 = ϕn−1

Xn = ϕn Xn = νXn.ϕn Xn = ϕn

Figure 2: Transformation rules

1. In the first case, we assume that s a−→ ∆. Since s ∼ t, there exists some Θ such that t a−→ Θ
and ∆ ∼† Θ. By (8), we get Θ ∈ [X∆]ρ∼ . It follows that t ∈ [〈a〉X∆]ρ∼ .

2. In the second case, we suppose t a−→ Θ for any action a ∈ Act and distribution Θ. Then by
s ∼ t there exists some ∆ such that s a−→ ∆ and ∆ ∼† Θ. By (8), we get Θ ∈ [X∆]ρ∼ . As
a consequence, t ∈ [[a]

∨
s
a−→∆X∆]ρ∼ . Since this holds for arbitrary action a, our desired

result follows.

�

5.2.3 Characteristic formulae

So far we know how to construct the characteristic equation system for a finitary pLTS. As intro-
duced in [46], the three transformation rules in Figure 2 can be used to obtain from an equation
system E a formula whose interpretation coincides with the interpretation of X1 in the great-
est solution of E. The formula thus obtained from a characteristic equation system is called a
characteristic formula.

Theorem 5.6 Given a characteristic equation system E, there is a characteristic formula ϕs such
that ρE(Xs) = [ϕs] for any state s. ut

The above theorem, together with the results in Section 5.2.2, gives rise to the following corol-
lary.

Corollary 5.7 For each state s in a finitary pLTS, there is a characteristic formula ϕs such that
s ∼ t iff t ∈ [ϕs]. ut

6 Metric characterisation

In the definition of probabilistic bisimulation probabilities are treated as labels since they are
matched only when they are identical. One may argue that this does not provide a robust re-
lation: Processes that differ for a very small probability, for instance, would be considered just

16

as different as processes that perform completely different actions. This is particularly relevant
to many applications where specifications can be given as perfect, but impractical processes and
other, practical processes are considered acceptable if they only differ from the specification with
a negligible probability.

To find a more flexible way to differentiate processes, researchers in this area have borrowed from
mathematics the notion of metric2. A metric is defined as a function that associates a distance with
a pair of elements. Whereas topologists use metrics as a tool to study continuity and convergence,
we will use them to provide a measure of the difference between two processes that are not quite
bisimilar.

Since different processes may behave the same, they will be given distance zero in our metric
semantics. So we are more interested in pseudometrics than metrics.

In the rest of this section, we fix a finite state pLTS (S,Act,−→) and provide the set of pseu-
dometrics on S with the following partial order.

Definition 6.1 The relation � for the set M of 1-bounded pseudometrics on S is defined by

m1 � m2 if ∀s, t : m1(s, t) ≥ m2(s, t).

Here we reverse the ordering with the purpose of characterizing bisimilarity as the greatest fixed
point (cf: Corollary 6.10).

Lemma 6.2 (M,�) is a complete lattice.

Proof: The top element is given by ∀s, t : >(s, t) = 0; the bottom element is given by ⊥(s, t) = 1
if s 6= t, 0 otherwise. Greatest lower bounds are given by (

d
X)(s, t) = sup{m(s, t) | m ∈ X} for

any X ⊆M. Finally, least upper bounds are given by
⊔
X =

d
{m ∈M | ∀m′ ∈ X : m′ � m}. �

Definition 6.3 m ∈M is a state-metric if, for all ε ∈ [0, 1), m(s, t) ≤ ε implies:

• if s a−→ ∆ then there exists some ∆′ such that t a−→ ∆′ and m̂(∆,∆′) ≤ ε

where the lifted metric m̂ was defined in (2) via the Kantorovich metric. Note that if m is a
state-metric then it is also a metric. By m(s, t) ≤ ε we have m(t, s) ≤ ε, which implies

• if t a−→ ∆′ then there exists some ∆ such that s a−→ ∆ and m̂(∆′,∆) ≤ ε.

In the above definition, we prohibit ε to be 1 because we use 1 to represent the distance between
any two incomparable states including the case where one state may perform a transition and the
other may not.

The greatest state-metric is defined as

mmax =
⊔
{m ∈M | m is a state-metric}.

It turns out that state-metrics correspond to bisimulations and the greatest state-metric cor-
responds to bisimilarity. To make the analogy closer, in what follows we will characterize mmax

as a fixed point of a suitable monotone function on M. First we recall the definition of Hausdorff
distance.

2For simplicity, in this section we use the term metric to denote both metric and pseudometric. All the results
are based on pseudometrics.

17

Definition 6.4 Given a 1-bounded metric d on Z, the Hausdorff distance between two subsets
X,Y of Z is defined as follows:

Hd(X,Y) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(y, x)}

where inf ∅ = 1 and sup ∅ = 0.

Next we define a function F on M by using the Hausdorff distance.

Definition 6.5 Let der(s, a) = {∆ | s a−→ ∆}. F (m) is a pseudometric given by:

F (m)(s, t) = sup
a∈Act

{Hm̂(der(s, a), der(t, a))}.

Thus we have the following property.

Lemma 6.6 For all ε ∈ [0, 1), F (m)(s, t) ≤ ε if and only if:

• if s a−→ ∆ then there exists some ∆′ such that t a−→ ∆′ and m̂(∆,∆′) ≤ ε;

• if t a−→ ∆′ then there exists some ∆ such that s a−→ ∆ and m̂(∆′,∆) ≤ ε. ut

The above lemma can be proved by directly checking the definition of F , as can the next lemma.

Lemma 6.7 m is a state-metric if and only if m � F (m). ut

Consequently we have the following characterisation:

mmax =
⊔
{m ∈M | m � F (m)}.

Lemma 6.8 F is monotone on M. ut

Because of Lemma 6.2 and 6.8, we can apply Knaster-Tarski fixed point theorem, which tells
us that mmax is the greatest fixed point of F . Furthermore, by Lemma 6.7 we know that mmax is
indeed a state-metric, and it is the greatest state-metric.

We now show the correspondence between state-metrics and bisimulations.

Theorem 6.9 Given a binary relation R and a pseudometric m ∈M on a finite state pLTS such
that

(9) m(s, t) =

{
0 if s R t
1 otherwise.

Then R is a probabilistic bisimulation if and only if m is a state-metric.

Proof: The result can be proved by using Theorem 3.5, which in turn relies on Theorem 2.4 (1).
Below we give an alternative proof that uses Theorem 2.4 (2) instead.

Given two distributions ∆,∆′ over S, let us consider how to compute m̂(∆,∆′) if R is an
equivalence relation. Since S is finite, we may assume that V1, ..., Vn ∈ S/R are all the equivalence
classes of S under R. If s, t ∈ Vi for some i ∈ 1..n, then m(s, t) = 0, which implies xs = xt by the

18

first constraint of (2). So for each i ∈ 1..n there exists some xi such that xi = xs for all s ∈ Vi.
Thus, some summands of (2) can be grouped together and we have the following linear program:

(10)
∑
i∈1..n

(∆(Vi)−∆′(Vi))xi

with the constraint xi−xj ≤ 1 for any i, j ∈ 1..n with i 6= j. Briefly speaking, if R is an equivalence
relation then m̂(∆,∆′) is obtained by maximizing the linear program (10).

(⇒) Suppose R is a bisimulation and m(s, t) = 0. From the assumption in (9) we know that
R is an equivalence relation. By the definition of m we have s R t. If s a−→ ∆ then t a−→ ∆′ for
some ∆′ such that ∆ R† ∆′. To show that m is a state-metric it suffices to prove m(∆,∆′) = 0.
We know from ∆ R† ∆′ and Theorem 2.4 (2) that ∆(Vi) = ∆′(Vi), for each i ∈ 1..n. It follows that
(10) is maximized to be 0, thus m̂(∆,∆′) = 0.

(⇐) Suppose m is a state-metric and has the relation in (9). Notice that R is an equivalence
relation. We show that it is a bisimulation. Suppose s R t, which means m(s, t) = 0. If s a−→ ∆
then t a−→ ∆′ for some ∆′ such that m̂(∆,∆′) = 0. To ensure that m̂(∆,∆′) = 0, in (10) the
following two conditions must be satisfied.

1. No coefficient is positive. Otherwise, if ∆(Vi)−∆′(Vi) > 0 then (10) would be maximized to
a value not less than (∆(Vi)−∆′(Vi)), which is greater than 0.

2. It is not the case that at least one coefficient is negative and the other coefficients are either
negative or 0. Otherwise, by summing up all the coefficients, we would get

∆(S)−∆′(S) < 0

which contradicts the assumption that ∆ and ∆′ are distributions over S.

Therefore the only possibility is that all coefficients in (10) are 0, i.e., ∆(Vi) = ∆′(Vi) for any
equivalence class Vi ∈ S/ R. It follows from Theorem 2.4 (2) that ∆ R† ∆′. So we have shown
that R is indeed a bisimulation. �

Corollary 6.10 Let s and t be two states in a finite state pLTS. Then s ∼ t if and only if
mmax (s, t) = 0.

Proof: (⇒) Since ∼ is a bisimulation, by Theorem 6.9 there exists some state-metric m such that
s ∼ t iff m(s, t) = 0. By the definition of mmax we have m � mmax . Therefore mmax (s, t) ≤
m(s, t) = 0.

(⇐) From mmax we construct a pseudometric m as follows.

m(s, t) =

{
0 if mmax (s, t) = 0
1 otherwise.

Since mmax is a state-metric, it is easy to see that m is also a state-metric. Now we construct a
binary relation R such that ∀s, s′ : s R s′ iff m(s, s′) = 0. If follows from Theorem 6.9 that R is a
bisimulation. If mmax (s, t) = 0, then m(s, t) = 0 and thus s R t. Therefore we have the required
result s ∼ t because ∼ is the largest bisimulation. �

19

7 Algorithmic characterisation

In this section we propose an “on the fly” algorithm for checking if two states in a finitary pLTS
are bisimilar.

An important ingredient of the algorithm is to check if two distributions are related by a lifted
relation. Fortunately, Theorem 3.7 already provides us a method for deciding whether ∆ R† Θ, for
two given distributions ∆,Θ and a relation R. We construct the network N (∆,Θ,R) and compute
the maximum flow with well-known methods, as sketched in Algorithm 1.

Algorithm 1 Check(∆,Θ,R)

Input : A nonempty finite set S, distributions
∆,Θ ∈ D(S) and R⊆ S × S

Output : If ∆ R† Θ then “yes” else “no”
Method :

Construct the network N (∆,Θ,R)
Compute the maximum flow F in N (∆,Θ,R)
If F < 1 then return “no” else “yes”.

As shown in [4], computing the maximum flow in a network can be done in time O(n3/ log n)
and space O(n2), where n is the number of nodes in the network. So we immediately have the
following result.

Lemma 7.1 The test whether ∆ R† Θ can be done in time O(n3/ log n) and space O(n2). ut

We now present a bisimilarity-checking algorithm by adapting the algorithm proposed in [39]
for value-passing processes, which in turn was inspired by [22].

The main procedure in the algorithm is Bisim(s, t). It starts with the initial state pair (s, t),
trying to find the smallest bisimulation relation containing the pair by matching transitions from
each pair of states it reaches. It uses three auxiliary data structures:

• NotBisim collects all state pairs that have already been detected as not bisimilar.

• V isited collects all state pairs that have already been visited.

• Assumed collects all state pairs that have already been visited and assumed to be bisimilar.

The core procedure, Match, is called from function Bis inside the main procedure Bisim. When-
ever a new pair of states is encountered it is inserted into V isited. If two states fail to match each
other’s transitions then they are not bisimilar and the pair is added to NotBisim. If the current
state pair has been visited before, we check whether it is in NotBisim. If this is the case, we
return false. Otherwise, a loop has been detected and we make assumption that the two states
are bisimilar, by inserting the pair into Assumed, and return true. Later on, if we find that the
two states are not bisimilar after finishing searching the loop, then the assumption is wrong, so we
first add the pair into NotBisim and then raise the exception WrongAssumption, which forces
the function Bis to run again, with the new information that the two states in this pair are not
bisimilar. In this case, the size of NotBisim has been increased by at least one. Hence, Bis can
only be called for finitely many times. Therefore, the procedure Bisim(s, t) will terminate. If it

20

Algorithm 2 Bisim(s, t)

Bisim(s, t) = {
NotBisim := {}
fun Bis(s, t)={

V isited := {}
Assumed := {}
Match(s, t)}

} handle WrongAssumption⇒ Bis(s, t)
return Bis(s, t)

Match(s, t) =
V isited := V isisted ∪ {(s, t)}
b =

∧
a∈A MatchAction(s, t, a)

if b = false then
NotBisim := NotBisim ∪ {(s, t)}
if (s, t) ∈ Assumed then

raise WrongAssumption
end if

end if
return b

MatchAction(s, t, a) =
for all s a−→ ∆i do

for all t a−→ Θj do
bij = MatchDistribution(∆i,Θj)

end for
end for
return (

∧
i(
∨
j bij))∧(

∧
j(
∨
i bij))

MatchDistribution(∆,Θ) =
Assume d∆e = {s1, ..., sn} and dΘe =
{t1, ..., tm}
R:= {(si, tj) | Close(si, tj) = true}
return Check(∆,Θ,R)

Close(s, t) =
if (s, t) ∈ NotBisim then

return false
else if (s, t) ∈ V isited then
Assumed := Assumed ∪ {(s, t)}
return true

else
return Match(s, t)

end if

21

returns true, then the set (V isited−NotBisim) constitutes a bisimulation relation containing the
pair (s, t).

The main difference from the algorithm of checking non-probabilistic bisimilarity in [39] is the
introduction of the procedure MatchDistribution(∆,Θ), where we approximate ∼ by a binary
relation R which is coarser than ∼ in general, and we check the validity of ∆ R† Θ. If ∆ R† Θ does
not hold, then ∆ ∼† Θ is invalid either and MatchDistribution(∆,Θ) returns false correctly.
Otherwise, the two distributions ∆ and Θ are considered equivalent with respect to R and we move
on to match other pairs of distributions. The correctness of the algorithm is stated in the following
theorem.

Theorem 7.2 Given two states s0 and t0 in a finitary pLTS, the function Bisim(s0, t0) terminates,
and it returns true if and only if s0 ∼ t0.

Proof: Let Bisi stand for the i-th execution of the function Bis. Let Assumedi and NotBisimi be
the setAssumed andNotBisim at the end of Bisi. When Bisi is finished, either aWrongAssumption
is raised or no WrongAssumption is raised. In the former case, Assumedi∩NotBisimi 6= ∅; in the
latter case, the execution of the function Bisim is completed. From function Close we know that
Assumedi ∩ NotBisimi−1 = ∅. Now it follows from the simple fact NotBisimi−1 ⊆ NotBisimi

that NotBisimi−1 ⊂ NotBisimi. Since we are considering finitary pLTSs, there is some j such
that NotBisimj−1 = NotBisimj , when all the non-bisimilar state pairs reachable from s0 and t0
have been found and Bisim must terminate.

For the correctness of the algorithm, we consider the relation Ri= V isitedi−NotBisimi, where
V isitedi is the set V isited at the end of Bisi. Let Bisk be the last execution of Bis. For each
i ≤ k, the relation Ri can be regarded as an approximation of ∼, as far as the states appeared
in Ri are concerned. Moreover, Ri is a coarser approximation because if two states s, t are re-
visited but their relation is unknown, they are assumed to be bisimilar. Therefore, if Bisk(s0, t0)
returns false, then s0 6∼ t0. On the other hand, if Bisk(s0, t0) returns true, then Rk constitutes
a bisimulation relation containing the pair (s0, t0). This follows because Match(s0, t0) = true
which basically means that whenever s Rk t and s a−→ ∆ there exists some transition t a−→ Θ such
that Check(∆,Θ,Rk) = true, i.e. ∆ R†k Θ. Indeed, this rules out the possibility that s0 6∼ t0
as otherwise we would have s0 6∼ω t0 by Proposition 4.4, that is s0 6∼n t0 for some n > 0. The
latter means that some transition s0

a−→ ∆ exists such that for all t0
a−→ Θ we have ∆ 6∼†n−1 Θ, or

symmetrically with the roles of s0 and t0 exchanged, i.e. ∆ and Θ can be distinguished at level n,
so a contradiction arises. �

Below we consider the time and space complexities of the algorithm.

Theorem 7.3 Let s and t be two states in a pLTS with n states in total. The function Bisim(s, t)
terminates in time O(n7/ log n) and space O(n2).

Proof: The number of state pairs is bounded by n2. In the worst case, each execution of the
function Bis(s, t) only yields one new pair of states that are not bisimilar. The number of state
pairs examined in the first execution of Bis(s, t) is at most O(n2), in the second execution is at
most O(n2 − 1), · · · . Therefore, the total number of state pairs examined is at most O(n2 + (n2 −
1)+ · · ·+1) = O(n4). When a state pair (s, t) is examined, each transition of s is compared with all
transitions of t labelled with the same action. Since the pLTS is finitely branching, we could assume
that each state has at most c outgoing transitions. Therefore, for each state pair, the number of

22

comparisons of transitions is bound by c2. As a comparison of two transitions calls the function
Check once, which requires time O(n3/ log n) by Lemma 7.1. As a result, examining each state
pair takes time O(c2n3/ log n). Finally, the worst case time complexity of executing Bisim(s, t) is
O(n7/ log n).

The space requirement of the algorithm is easily seen to be O(n2), in view of Lemma 7.1. �

Remark 7.4 With mild modification, the above algorithm can be adapted to check probabilistic
similarity. We simply remove the underlined part in the function MatchAction; the rest of the
algorithm remains unchanged. Similar to the analysis in Theorems 7.2 and 7.3, the new algorithm
can be shown to correctly check probabilistic similarity over finitary pLTSs; its worst case time and
space complexities are still O(n7/ log n) and O(n2), respectively.

8 Conclusion

To define behavioural equivalences or preorders for probabilistic processes often involves a lifting
operation that turns a binary relationR on states into a relationR† on distributions over states. We
have shown that several different proposals for lifting relations can be reconciled. They are nothing
more than different forms of essentially the same lifting operation. More interestingly, we have
discovered that this lifting operation corresponds well to the Kantorovich metric, a fundamental
concept used in mathematics to lift a metric on states to a metric on distributions over states,
besides the fact the lifting operation is related to the maximum flow problem in optimisation
theory.

The lifting operation leads to a neat notion of probabilistic bisimulation, for which we have
provided logical, metric, and algorithmic characterisations.

1. We have introduced a probabilistic choice modality to specify the behaviour of distributions
of states. Adding the new modality to the Hennessy-Milner logic and the modal mu-calculus
results in an adequate and an expressive logic w.r.t. probabilistic bisimilarity, respectively.

2. Due to the correspondence of the lifting operation and the Kantorovich metric, bisimulations
can be naturally characterised as pseudometrics which are post-fixed points of a monotone
function, and bisimilarity as the greatest post-fixed point of the funciton.

3. We have presented an “on the fly” algorithm to check if two states in a finitary pLTS are
bisimilar. The algorithm is based on the close relationship between the lifting operation and
the maximum flow problem.

In the belief that a good scientific concept is often elegant, even seen from different perspectives,
we consider the lifting operation and probabilistic bisimulation as two concepts in probabilistic
concurrency theory that are formulated in the right way.

References

[1] C. Baier. On the algorithmic verification of probabilistic systems, 1998. Habilitation Thesis,
Universitt Mannheim.

23

[2] C. Baier, B. Engelen, and M. E. Majster-Cederbaum. Deciding bisimilarity and similarity for
probabilistic processes. Journal of Computer and System Sciences, 60(1):187–231, 2000.

[3] E. Bandini and R. Segala. Axiomatizations for probabilistic bisimulation. In Proceedings of
the 28th International Colloquium on Automata, Languages and Programming, volume 2076
of Lecture Notes in Computer Science, pages 370–381. Springer, 2001.

[4] J. Cheriyan, T. Hagerup, and K. Mehlhorn. Can a maximum flow be computed on O(nm)
time? In Proceedings of the 17th International Colloquium on Automata, Languages and
Programming, volume 443 of Lecture Notes in Computer Science, pages 235–248. Springer,
1990.

[5] I. Christoff. Testing equivalences and fully abstract models for probabilistic processes. In
Proceedings the 1st International Conference on Concurrency Theory, volume 458 of Lecture
Notes in Computer Science, pages 126–140. Springer, 1990.

[6] R. Cleaveland, S. P. Iyer, and M. Narasimha. Probabilistic temporal logics via the modal
mu-calculus. Theoretical Computer Science, 342(2-3):316–350, 2005.

[7] Y. Deng, T. Chothia, C. Palamidessi, and J. Pang. Metrics for action-labelled quantitative
transition systems. Electronic Notes in Theoretical Computer Science, 153(2):79–96, 2006.

[8] Y. Deng and W. Du. Probabilistic barbed congruence. Electronic Notes in Theoretical Com-
puter Science, 190(3):185–203, 2007.

[9] Y. Deng and W. Du. Kantorovich metric in computer science: A brief survey. Electronic Notes
in Theoretical Computer Science, 353(3):73–82, 2009.

[10] Y. Deng and W. Du. A local algorithm for checking probabilistic bisimilarity. In Proceedings
of the 4th International Conference on Frontier of Computer Science and Technology, pages
401–407. IEEE Computer Society, 2009.

[11] Y. Deng and R. van Glabbeek. Characterising probabilistic processes logically. In Proceedings
of the 17th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, volume 6397 of Lecture Notes in Computer Science, pages 278–293. Springer, 2010.

[12] Y. Deng, R. van Glabbeek, M. Hennessy, and C. Morgan. Testing finitary probabilistic pro-
cesses (extended abstract). In Proceedings of the 20th International Conference on Concurrency
Theory, volume 5710 of Lecture Notes in Computer Science, pages 274–288. Springer, 2009.

[13] Y. Deng, R. van Glabbeek, M. Hennessy, and C. C. Morgan. Characterising testing preorders
for finite probabilistic processes. Logical Methods in Computer Science, 4(4):1–33, 2008.

[14] Y. Deng, R. van Glabbeek, M. Hennessy, C. C. Morgan, and C. Zhang. Remarks on testing
probabilistic processes. Electronic Notes in Theoretical Computer Science, 172:359–397, 2007.

[15] Y. Deng, R. van Glabbeek, C. C. Morgan, and C. Zhang. Scalar outcomes suffice for finitary
probabilistic testing. In Proceedings of the 16th European Symposium on Programming, volume
4421 of Lecture Notes in Computer Science, pages 363–378. Springer, 2007.

24

[16] J. Desharnais, A. Edalat, and P. Panangaden. A logical characterization of bisimulation for
labelled Markov processes. In Proceedings of the 13th Annual IEEE Symposium on Logic in
Computer Science, pages 478–489. IEEE Computer Society Press, 1998.

[17] J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden. Metrics for labeled Markov
systems. In Proceedings of the 10th International Conference on Concurrency Theory, volume
1664 of Lecture Notes in Computer Science, pages 258–273. Springer-Verlag, 1999.

[18] J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden. The metric analogue of weak
bisimulation for probabilistic processes. In Proceedings of the 17th Annual IEEE Symposium
on Logic in Computer Science, pages 413–422. IEEE Computer Society, 2002.

[19] J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden. Metrics for labelled markov
processes. Theoretical Computer Science, 318(3):323–354, 2004.

[20] J. Desharnais, F. Laviolette, and M. Tracol. Approximate analysis of probabilistic processes:
Logic, simulation and games. In Proceedings of the 5th International Conference on the Quan-
titative Evaluaiton of Systems, pages 264–273. IEEE Computer Society, 2008.

[21] S. Even. Graph Algorithms. Computer Science Press, 1979.

[22] J.-C. Fernandez and L. Mounier. Verifying bisimulations “on the fly”. In Proceedings of the
3rd International Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols, pages 95–110. North-Holland, 1990.

[23] N. Ferns, P. Panangaden, and D. Precup. Metrics for finite Markov decision processes. In
Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence, pages 162–169.
AUAI Press, 2004.

[24] N. Ferns, P. Panangaden, and D. Precup. Metrics for Markov decision processes with infinite
state spaces. In Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence,
pages 201–208. AUAI Press, 2005.

[25] A. Giacalone, C.-C. Jou, and S. A. Smolka. Algebraic reasoning for probabilistic concurrent
systems. In Proceedings of IFIP TC2 Working Conference on Programming Concepts and
Methods, 1990.

[26] A. L. Gibbs and F. E. Su. On choosing and bounding probability metrics. International
Statistical Review, 70(3):419–435, 2002.

[27] H. Hansson and B. Jonsson. A calculus for communicating systems with time and probabili-
ties. In Proceedings of IEEE Real-Time Systems Symposium, pages 278–287. IEEE Computer
Society Press, 1990.

[28] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of
the ACM, 32(1):137–161, 1985.

[29] M. Huth and M. Kwiatkowska. Quantitative analysis and model checking. In Proceedings
of the 12th Annual IEEE Symposium on Logic in Computer Science, pages 111–122. IEEE
Computer Society, 1997.

25

[30] B. Jonsson, C. Ho-Stuart, and W. Yi. Testing and refinement for nondeterministic and prob-
abilistic processes. In Proceedings of the 3rd International Symposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 863 of Lecture Notes in Computer Science,
pages 418–430. Springer, 1994.

[31] B. Jonsson and W. Yi. Compositional testing preorders for probabilistic processes. In Pro-
ceedings of the 10th Annual IEEE Symposium on Logic in Computer Science, pages 431–441.
Computer Society Press, 1995.

[32] B. Jonsson and W. Yi. Testing preorders for probabilistic processes can be characterized by
simulations. Theoretical Computer Science, 282(1):33–51, 2002.

[33] B. Jonsson, W. Yi, and K. G. Larsen. Probabilistic extensions of process algebras. In Handbook
of Process Algebra, chapter 11, pages 685–710. Elsevier, 2001.

[34] L. Kantorovich. On the transfer of masses (in Russian). Doklady Akademii Nauk, 37(2):227–
229, 1942.

[35] L. V. Kantorovich and G. S. Rubinshtein. On a space of totally additive functions. Vestn
Lening. Univ., 13(7):52–59, 1958.

[36] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27:333–
354, 1983.

[37] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and
Computation, 94(1):1–28, 1991.

[38] K. G. Larsen and A. Skou. Compositional verification of probabilistic processes. In Proceedings
of the 3rd International Conference on Concurrency Theory, volume 630 of Lecture Notes in
Computer Science, pages 456–471. Springer, 1992.

[39] H. Lin. “On-the-fly” instantiation of value-passing processes. In Proceedings of FORTE’98,
volume 135 of IFIP Conference Proceedings, pages 215–230. Kluwer, 1998.

[40] G. Lowe. Probabilistic and prioritized models of timed CSP. Theoretical Computer Science,
138:315–352, 1995.

[41] A. McIver and C. Morgan. An expectation-based model for probabilistic temporal logic.
Technical Report PRG-TR-13-97, Oxford University Computing Laboratory, 1997.

[42] A. McIver and C. Morgan. Results on the quantitative mu-calculus. ACM Transactions on
Computational Logic, 8(1), 2007.

[43] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[44] M. M. Mislove, J. Ouaknine, and J. Worrell. Axioms for probability and nondeterminism.
Electronic Notes in Theoretical Computer Science, 96:7–28, 2004.

[45] G. Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de l’Academie des
Science de Paris, page 666, 1781.

26

[46] M. Müller-Olm. Derivation of characteristic formulae. Electronic Notes in Theoretical Com-
puter Science, 18:159–170, 1998.

[47] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. In Proceedings of the
20th ACM Symposium on the Theory of Computing, pages 377–387. ACM, 1988.

[48] D. Park. Concurrency and automata on infinite sequences. In Proceedings of the 5th GI
Conference, volume 104 of Lecture Notes in Computer Science, pages 167–183. Springer, 1981.

[49] A. Parma and R. Segala. Logical characterizations of bisimulations for discrete probabilistic
systems. In Proceedings of the 10th International Conference on Foundations of Software
Science and Computational Structures, volume 4423 of Lecture Notes in Computer Science,
pages 287–301. Springer, 2007.

[50] A. Pnueli. Linear and branching structures in the semantics and logics of reactive systems. In
Proceedings of the 12th International Colloquium on Automata, Languages and Programming,
volume 194 of Lecture Notes in Computer Science, pages 15–32. Springer, 1985.

[51] M. L. Puterman. Markov Decision Processes. Wiley, 1994.

[52] S. Rachev. Probability Metrics and the Stability of Stochastic Models. Wiley New York, 1991.

[53] R. Segala. Modeling and verification of randomized distributed real-time systems. Technical
Report MIT/LCS/TR-676, PhD thesis, MIT, Dept. of EECS, 1995.

[54] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In Proceedings
of the 5th International Conference on Concurrency Theory, volume 836 of Lecture Notes in
Computer Science, pages 481–496. Springer, 1994.

[55] B. Steffen and A. Ingólfsdóttir. Characteristic formulae for processes with divergence. Infor-
mation and Computation, 110:149–163, 1994.

[56] A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific Journal of Math-
ematics, 5:285–309, 1955.

[57] R. Tix, K. Keimel, and G. Plotkin. Semantic domains for combining probability and non-
determinism. Electronic Notes in Theoretical Computer Science, 129:1–104, 2005.

[58] F. van Breugel, C. Hermida, M. Makkai, and J. Worrell. An accessible approach to be-
havioural pseudometrics. In Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming, volume 3580 of Lecture Notes in Computer Science, pages 1018–
1030. Springer, 2005.

[59] F. van Breugel, C. Hermida, M. Makkai, and J. Worrell. Recursively defined metric spaces
without contraction. Theoretical Computer Science, 380(1-2):143–163, 2007.

[60] F. van Breugel, B. Sharma, and J. Worrell. Approximating a behavioural pseudometric without
discount for probabilistic systems. In Proceedings of the 10th International Conference on
Foundations of Software Science and Computational Structures, volume 4423 of Lecture Notes
in Computer Science, pages 123–137. Springer, 2007.

27

[61] F. van Breugel and J. Worrell. An algorithm for quantitative verification of probabilistic tran-
sition systems. In Proceedings of the 12th International Conference on Concurrency Theory,
volume 2154 of Lecture Notes in Computer Science, pages 336–350. Springer, 2001.

[62] F. van Breugel and J. Worrell. Towards quantitative verification of probabilistic transition
systems. In Proceedings of the 28th International Colloquium on Automata, Languages and
Programming, volume 2076 of Lecture Notes in Computer Science, pages 421–432. Springer,
2001.

[63] F. van Breugel and J. Worrell. A behavioural pseudometric for probabilistic transition systems.
Theoretical Computer Science, 331(1):115–142, 2005.

[64] F. van Breugel and J. Worrell. Approximating and computing behavioural distances in prob-
abilistic transition systems. Theoretical Computer Science, 360(1-3):373–385, 2006.

[65] A. Vershik. Kantorovich metric: Initial history and little-known applications. Journal of
Mathematical Sciences, 133(4):1410–1417, 2006.

[66] C. Villani. Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics.
American Mathematical Society, 2003.

[67] W. Yi and K. G. Larsen. Testing probabilistic and nondeterministic processes. In Proceedings
of the IFIP TC6/WG6.1 12th International Symposium on Protocol Specification, Testing and
Verification, volume C-8 of IFIP Transactions, pages 47–61. North-Holland, 1992.

[68] L. Zhang, H. Hermanns, F. Eisenbrand, and D. N. Jansen. Flow faster: Efficient decision
algorithms for probabilistic simulations. Logical Methods in Computer Science, 4(4:6), 2008.

28

