
Instrumentation Analysis: An Automated Method
for Producing Numeric Abstractions of

Heap-Manipulating Programs
Stephen Magill
CMU-CS-10-150

November 29, 2010

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Peter Lee, Chair
Stephen Brookes
John Reynolds

Byron Cook, Microsoft Research, Cambridge, UK

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2010 Stephen Magill

This research was sponsored by the National Science Council, Taiwan, (ICAST) under the Grant No.
NSC96-3114-P-001-002-Y; the Office of Naval Research under grant number N0001401107; the National
Science Foundation under grant number CCF0429120; the U.S. Army Research Office under grant number
DAAD19-01-1-0485; the Commonwealth of Pennsylvania under grant number FC410004860; and DARPA
under grant number F19628-00-C-0003. The views and conclusions contained in this document are those of
the author and should not be interpreted as representing the official policies, either expressed or implied, of
any sponsoring institution, the U.S. government or any other entity.

Keywords: Separation Logic, Instrumentation Analysis, Static Analysis, Abstract In-
terpretation, Termination Proving, Hoare Logic

iv

Abstract

A number of questions regarding programs involving heap-based data
structures can be phrased as questions about numeric properties of those struc-
tures. A data structure traversal might terminate if the length of some path is
eventually zero or a function to remove n elements from a collection may only
be safe if the collection has size at least n.

In this thesis, we develop proof methods for reasoning about the connec-
tion between heap-manipulating programs and numeric programs. In addi-
tion, we develop an automatic method for producing numeric abstractions of
heap-manipulating programs. These numeric abstractions are expressed as
simple imperative programs over integer variables and have the feature that
if a property holds of the numeric program, then it also holds of the original,
heap-manipulating program. This is true for both safety and liveness. The
abstraction procedure makes use of a shape analysis based on separation logic
and has support for user-defined inductive data structures.

We also discuss a number of applications of this technique. Numeric ab-
stractions, once obtained, can be analyzed with a variety of existing verifica-
tion tools. Termination provers can be used to reason about termination of
the numeric abstraction, and thus termination of the original program. Safety
checkers can be used to reason about assertion safety. And bound inference
tools can be used to obtain bounds on the values of program variables. With
small changes to the program source, bounds analysis also allows the compu-
tation of symbolic bounds on memory use and computational complexity.

vi

Acknowledgments

I would first like to thank my thesis committee. I am very appreciative of the level of
interest they all showed and the amount of time that they committed to meeting during
the work’s progression and to reading once the document was complete. Their advice
and support was invaluable during this process. In particular, I want to thank my advisor,
Peter Lee, for always finding time in his (very busy) schedule and for his constant encour-
agement. Thanks to Byron Cook for giving me the opportunity to spend time with the
wonderful group in Cambridge (and thanks to Josh Berdine for the many interesting dis-
cussions we had there). Thanks to John Reynolds and Stephen Brookes for many helpful
meetings and for their careful reading of the final document.

Thanks also to my collaborators along the way: Edmund Clarke, Aleksandar Nanevski,
Yih-Kuen Tsay, Ming-Hsien Tsai, Ashutosh Gupta, Andrey Rybalchenko, Jiri Simsa, Mo-
hammad Raza, Satnam Singh, Viktor Vafeiadis, Josh Berdine, Kevin Donnelly, Tyler Gib-
son, Neel Krishnaswami, and Sungwoo Park. A special thanks to Aleksandar Nanevski
for first suggesting that I work with Separation Logic.

I also want to thank my parents and sister. Special thanks to my father for buying me
that first Macintosh (and a progression of computers thereafter). Thanks to my mother for
always encouraging me to try new things and to read, read, read. Thanks to my sister for
being not only a sibling, but also a wonderful friend.

Finally, I want to thank my wife, Laura. She wasn’t around yet at the start, but she
more than made up for it at the end, providing constant support and understanding (as well
as just the right amount of pressure to finish).

vii

viii

Contents

1 Introduction 1

1.1 Approach . 2

1.2 Contributions . 3

1.3 Example . 4

2 Preliminaries 13

2.1 Programs . 13

2.1.1 Syntax and Typing . 14

2.1.2 Semantics . 15

2.2 Separation Logic . 25

2.2.1 Effect of Free Variables . 27

2.2.2 Defining Inductive Pointer Structures 31

2.3 Semantics of Programs . 47

2.3.1 Transition Systems . 47

2.3.2 Programs As Transition Systems 48

2.3.3 Transitive Closure of Relations 49

2.3.4 Deadlock and Angelic Non-determinism 49

2.4 Representing C Programs . 51

2.4.1 Control Flow . 52

2.4.2 Memory Operations . 52

2.4.3 Unhandled Features . 58

ix

CONTENTS

2.5 Generating C Programs . 60

3 Abstractions and Program Properties 63

3.1 LTSL . 64

3.1.1 Notation . 66

3.1.2 Examples . 67

3.1.3 Core Connectives . 69

3.2 Stuttering Equivalence . 72

3.2.1 Mapping Between Stuttering Equivalent Traces 80

3.2.2 Stuttering Containment . 86

3.2.3 Programs and Stuttering Equivalence 88

3.3 Stuttering Equivalence and LTSL Properties 94

3.3.1 Syntactic Descriptions of E-invariance 97

3.3.2 Translating Results Obtained By Analyzing Abstractions 101

3.3.3 Example . 117

3.4 Stuttering Simulation . 119

3.5 Properties of Interest . 127

4 Instrumented Programs 129

4.1 Theory . 130

4.1.1 Common Cases . 133

4.1.2 Properties . 144

4.1.3 Derived Rules . 148

4.2 Example . 154

4.2.1 Alternate Size Measures . 158

4.3 Soundness . 160

4.4 Numeric Abstractions . 170

4.4.1 Projection and Simulation . 173

4.4.2 Combining Projection and Instrumentation 176

x

CONTENTS

4.5 Example . 178

4.6 Summary . 182

4.7 Conclusion . 186

5 Instrumentation Analysis 189

5.1 Symbolic State Formulae . 190

5.2 Inductive Predicate Specifications . 192

5.3 Basic Types . 199

5.4 Basic Structure . 201

5.4.1 instrument . 202

5.4.2 geninstCont . 208

5.4.3 instPost . 214

5.5 Theorem Proving . 220

5.5.1 Entailment . 221

5.5.2 implies . 237

5.5.3 Frame Inference . 239

5.5.4 exposeCellThenInst . 252

5.6 Example . 253

5.7 Abstraction . 258

5.7.1 Abstraction Patterns . 259

5.7.2 Empty Patterns . 266

5.7.3 Applying Abstraction Patterns 268

5.7.4 Additional Comments . 274

5.8 Example (continued) . 276

5.9 Tracking Flow of Control . 280

5.10 Translating Branch Conditions . 282

5.11 Experimental Results . 291

5.11.1 Simple Examples . 291

5.11.2 Complex Examples . 293

xi

CONTENTS

5.11.3 Summary and Challenges . 295

6 Related Work 297
6.1 Approaches to Analyzing the Heap . 297

6.2 Termination Proving . 301

6.3 Program Logics . 302

7 Conclusion 307
7.1 Logic of Instrumentation . 307

7.2 Analysis Algorithm . 309

7.3 Implementation . 310

A Guide to Notation 313
A.1 Programs, States, and Transition Systems 313

A.2 Relations . 314

A.3 Separation Logic . 315

A.4 LTSL . 315

B Pseudo-code 317
B.1 Local Functions . 319

Bibliography 321

xii

List of Figures

1.1 A function for depth-first traversal of a tree rooted at root 6

1.2 Sample execution showing results from the first four iterations of the loop
in the traverse function from Figure 1.1. 7

1.3 A numeric abstraction of the program in Figure 1.1. 9

1.4 An example showing slen and ssize used in the program in Figure
1.3. slen is the number of nodes in the stack and ssize is the sum
of the values in the bold circles. The shaded area contains the nodes that
contribute to ssize and nodes in this area are labeled with the size of the
subtree rooted at that node. Empty trees (denoted by nil) have size 0. . . . 10

1.5 An illustration of the notion of ssize used to generate the program in
Figure 1.6. The shaded area contains the nodes contributing to ssize.
Empty trees (denoted by nil) have size 1. Non-empty nodes are labeled
with the size of the subtree rooted at that node. ssize is the sum of the
values in the bold circles, plus 1 for the first element in the stack, as nil has
size 1 using this notion of size. 10

1.6 A numeric abstraction of the program in Figure 1.1 with the notion of ssize
and tsize given in Figure 1.5. 11

2.1 Syntax of programs. 16

2.2 Semantics of expressions. ∧,∨,¬ in the definitions refer to the standard
Boolean operations with type Bool × Bool → Bool (for ∧ and ∨) and
Bool→ Bool (for ¬). The functions +,−,× refer to the standard addition,
subtraction, and multiplication functions of type Z × Z → Z. The ≤
relation is the standard “less than or equal to” relation on integers and = is
the identity relation on addresses, which relates each address only to itself. 18

xiii

LIST OF FIGURES

2.3 Semantics of commands. dom(g) indicates the domain of function g. The nota-
tion g[x→ v] indicates the function that is the same as g, except that x is mapped
to v. The notation h[v1.f → v2] indicates the heap that is the same as h except the
record at v1 maps field f to v2. We write h−X to indicate the function obtained
by restricting the domain of h to dom(h)−X 23

2.4 Semantics of continuations. The semantic rule for “assume(e);k” is in-
cluded for clarity, but officially we consider “assume(e);k” to be an ab-
breviation for “branch e⇒ k end” (which produces the same result as the
rule above). 24

2.5 Iteration number one of a loop that creates a singly-linked list. 26

2.6 Syntax of separation logic formulae. 27

2.7 Semantics of separation logic formulae. We have combined the ∃ rules for
address and integer-valued variables, using a “/” to separate the alterna-
tives. The field names in any record ρ must be distinct. The semantics of
expressions, JeK s, is given in Figure 2.2. 28

2.8 The definition of the function fv(Q), which gives the free variables of
formula Q. If Q = eb, the free variables are as given in Definition 2. . . . 29

2.9 Translations of C programs with regular control-flow into the syntax pre-
sented in Section 2.1. The function “ctrans()” represents a recursive ap-
plication of these rules. We assume that fresh labels (li) are generated and
inserted in the C program wherever necessary to apply these rules. Trans-
lations for atomic commands are not given, but are discussed in Section
2.4.2. 54

3.1 Syntax of the logic LTSL. 65

3.2 Semantics of LTSL formulae. The notation Ti denotes the suffix of T start-
ing at position i (where the first element has position 0). The satisfaction
relation for Q is in Figure 2.7. We write T 6|=X φ to indicate that the
relation T |=X φ does not hold. 66

3.3 Example depicting the sequences, functions, and variables involved in the
proof of Lemma 8. 81

3.4 Four examples of stuttering equivalent programs. Each example involves
a different continuation at L0. 90

3.5 Increasingly weaker abstractions of P5. 92

xiv

LIST OF FIGURES

3.6 Two programs with traces related by ≈={x,t} 101

3.7 Definition of ∃ and ∀ . 103

3.8 Derivations showing that our definition of ∃ is consistent with the rewrit-
ings given in Theorem 9. The corresponding derivations for ∀ are identi-
cal, with the symbols ∃ and ∀ interchanged. 104

3.9 Pictorial overview of the proof of Theorem 3.9. The picture depicts
how we build up T ′, α, and β. Solid elements of the figure are
given. These include α(i), β(i), the elements of T and the fact that
T (α(i)) R T ′(β(i)). The dashed elements are defined / proved in terms
of these givens. Definitions must be provided for α(i + 1), β(i + 1), and
the elements of T ′ from index β(i) to β(i+ 1). It must then be proved that(
T (α(i+ 1))

)
R
(
T ′(β(i+ 1))

)
and that

(
T (a) R T ′(b)

)
for all a, b such

that α(i) ≤ a < α(i+ 1) and β(i) ≤ b < β(i+ 1). 122

4.1 Rules for establishing that Γ ` {Q} k̂ IV k, read “under precondition
Q, with label invariants Γ, the continuation k̂ is an instrumented version
of k with instrumentation variables V .” Premises of the form {Q} c {Q′}
are partial correctness triples and hold iff for all s, h, (s, h) |= Q implies
(∀(s′, h′) ∈ (JcK (s, h)). (s′, h′) |= Q′). Premises of the form Q ⇒ Q′

hold iff Q⇒ Q′ is valid (that is, (s, h) |= (Q⇒ Q′) for all s, h). 132

4.2 Rule for proving that P̂ is an instrumented version of P . The function
fv(P) gives the set of variables occurring free in P . Since there are no
binding constructs in our language, this is just the set of all variables ap-
pearing in P . 133

4.3 Derivation showing an instrumented program that performs a deterministic
update of a variable representing the length of a linked list. I-A stands for
INST-ASSIGN. 135

4.4 Derivation showing that, for the tree traversal program on page 136,
the commands given re-establish the invariant Γ(L1). We write I-E as
an abbreviation for INST-EXISTS and abbreviate STRENGTHENING as
STRENGTHEN. 139

4.5 Derivation corresponding to the insertion of a case split on e1 ∨ e2. The
premises that become premises of the derived rule are boxed (the other
two premises are tautologies). We abbreviate STRENGTHENING as STR

and INST-ASSUME as I-A. The unlabeled rule is an instance of INST-DISJ. 150

xv

LIST OF FIGURES

4.6 Derivation corresponding to the translation of branch conditions into con-
ditions on instrumentation variables. In the rule labeled ∀i, the premise
holds for each value of i. The premises that become premises of the de-
rived rule are boxed. We require that they hold for each i ∈ {1, . . . , n}. . 152

4.7 Derivation of the INST-ASSIGN rule for the case where x 6∈ fv(e). The
formulas and conditions that become premises and side conditions in the
derived rule are boxed. The unboxed formulas can always be made to hold,
either because they are tautologies or, in the case of x′ 6∈ fv(Q) because we
get to choose x′ when constructing the derivation. I-A stands for INST-
ASSUME, I-E stands for INST-EXISTS. All other rules are instances of
STRENGTHENING. 154

4.8 C code implementing a membership query for an ordered binary tree. . . 155

4.9 The program from Figure 4.8 translated into our program notation, with
control points numbered. 156

4.10 Instrumented version of the program in Figure 4.9. 157

4.11 Guide to variable names used throughout the proof of Theorem 22. In each
case of the proof, our goal is to show that one of the dashed relation lines
exists. 164

4.12 Definition of the function πV (k) which projects a continuation onto vari-
ables in V . 172

4.13 A summary of the current state of the technical development. 177

4.14 An example program that traverses a circular linked list, conditionally
freeing elements. 179

4.15 An instrumented version of the program in Figure 4.14 and the corre-
sponding projection onto the set {n}. 181

4.16 An instrumentation and projection of the program in Figure 4.14, with
instrumentation variables n and z and projection variables n, z, v. 183

4.17 The numeric program from Figure 4.16, but rearranged so that the cases
of the second branch are split into separate continuations. 184

5.1 Restricted subset of separation logic formulae. The notation ~x in-
dicates a list of variables x1, x2, . . . , xn and ∃~x. Q is shorthand for
∃x1.∃x2. . . .∃xn. Q. 190

5.2 Equivalence relation for symbolic state formulae. 191

xvi

LIST OF FIGURES

5.3 Syntax of inductive specifications as implemented in THOR. The notation
‘|’ is used to indicate the literal character |, and distinguish it from the
BNF grammar operator consisting of the same symbol. 193

5.4 Graphical depiction of the doubly-linked list segment predicate. 194

5.5 Types used by the instrumentation algorithm. 200

5.6 A summary of the primary functions involved in the implementation. . . . 202

5.7 Additional functions used by the implementation. These are primarily
concerned with reasoning about implications between symbolic state for-
mulae. 203

5.8 Proof system for entailment. Basic rules. 225

5.9 Proof system for entailment. Rules for inductively specified predicates
and variables. We write ~z := ? to indicate the sequence of commands
z1 := ?; . . .;zn := ?. 226

5.10 Rules for frame inference that are the same as for entailment. 245

5.11 Rules for frame inference that differ from those for entailment. 247

5.12 Proof for the frame inference query
ls(n;x, nil) ∧ x 6= nil =⇒

S
fk x 7→ 2 � Γ ` k̂

We use Γ1, k̂1 to refer to the results from the left branch and Γ2, k̂2 to refer
to the result from the right branch. 256

5.13 Main rewrite rules for abstraction. We use the notation ~x := ? to indicate
x1 := ?; . . .;xn := ?. 272

5.14 The full instrumentation of the singly-linked list example. 278

5.15 A simplified version of the instrumentation given in Figure 5.14. 279

5.16 An instrumentation of the singly-linked list example that tracks flow of
control using a variable p. 281

5.17 The numeric program corresponding to the program in Figure 5.16. . . . 283

5.18 Proof for the given frame inference query. Below each rule name we show
the value that Πa has in the conclusion of that rule. 289

5.19 The numeric program corresponding to the program from page 284 after
perform branch condition annotation. The original branch conditions are
given in square brackets. 290

xvii

LIST OF FIGURES

xviii

List of Tables

5.2 Experimental results. Time is in seconds. TNA represents the time required
to produce the numeric abstraction. TBLAST, TARMC, and TARMC-LIVE repre-
sent the time taken to verify the numeric abstraction by BLAST, ARMC,
and ARMC-LIVE respectively. 292

5.3 Heap bounds and lines of code. 295

xix

LIST OF TABLES

xx

Chapter 1

Introduction

Current static analysis tools can check a wide variety of both safety and liveness properties
for programs involving integer variables. Tools such as BLAST [Henzinger et al., 2002],
SLAM [Ball et al., 2001], ARMC [Podelski and Rybalchenko, 2007], ASTRÉE [Cousot
et al., 2005], SPEED [Gulwani et al., 2009] and TERMINATOR [Cook et al., 2006] all focus
on this class of programs. Some of these also have support for pointers, but the heap
reasoning is generally kept as simple as possible for the given problem domain.

Difficulty occurs when we try to integrate these methods with very precise methods for
heap analysis. Such combinations generally involve a large increase in complexity, both
in terms of the verification problem and in the implementation. In this thesis, we offer a
solution to this problem in the form of an automatic analysis method that proves program
properties by converting a heap-manipulating program into a numeric program that can
then be analyzed by analysis tools that only support integer-valued variables.

The numeric program may include additional variables, called instrumentation vari-

ables, which are not present in the input program. These variables track numeric proper-
ties of heap-based data structures, such as the height of a tree, the maximal element in a
list of integers, or the length of a path between two points in a data structure. Safety and
liveness of the numeric program can be analyzed and the results carried over to the original
heap-manipulating program. Bounds on variables are also preserved, which, when com-

1

1 Introduction

bined with additional instrumentation, allows us to use the numeric program to calculate
bounds on execution time and memory usage.

1.1 Approach

The approach taken by this thesis is to prove properties of heap programs by reducing them
to numeric programs using a static analysis based on separation logic. As such, there are
two main questions to address: “Why use separation logic?” and “Why generate numeric
programs?”

Why Separation Logic? Work such as [Magill et al., 2006, Distefano et al., 2006, Chang
et al., 2007, Calcagno et al., 2009, Yang et al., 2008] has firmly established separation
logic as a viable basis for automated program analysis. Its suitability stems from its focus
on local reasoning [O’Hearn et al., 2001], which means that when performing analysis
of a piece of code, we need only consider memory used by that code, rather than the
global heap. This allows us to break the verification problem into several smaller sub-
problems and enables results to be re-used in different contexts, all of which helps improve
scalability of analyses based on separation logic.

In addition, the inductive predicates used by separation logic to define data structures
can be viewed as specifying the connection between the concrete pointer structures ma-
nipulated by a program and more abstract properties of these structures. We leverage this
ability of separation logic in our static analysis to establish a link between concrete pointer
structures and associated size measures. Such measures include obvious counts, such as
“the size of the list starting at x” as well as less obvious metrics, such as “the number of
nodes in the tree at root which are to the left of the path from root to curr.” These measures
are critical when proving termination and other liveness properties, as well as being useful
for safety properties.

2

1.2 Contributions

Why Numeric Programs? Given that there are techniques that prove termination of
pointer programs directly [Brotherston et al., 2008b, Berdine et al., 2006, Loginov et al.,
2006b], one might wonder why it is useful to introduce the added complication of translat-
ing pointer programs to numeric programs and then proving termination of these numeric
programs. One answer is that, in many ways, using numeric programs as an intermedi-
ate form actually simplies the program analysis. Termination proving itself is a complex
process of computing transitive closures and inferring ranking functions [Podelski and Ry-
balchenko, 2004, Cook et al., 2006]. By making the generation of numeric programs the
end goal of the shape analysis, we insulate it from the complexities of termination proving
(and shape analysis already has plenty of complexity itself). Furthermore, by studying
what we can prove while still separating heap analysis from numeric analysis, we are
able to investigate the interplay between the fundamentally structural notion of heap and
fundamentally arithmetic termination arguments.

Finally, because the technique of generating numeric programs makes use of termina-
tion analysis in a “black box” fashion, we can benefit immediately from advances in ter-
mination proving without requiring any changes to the work described and implemented
in this thesis. Given that there is a large and active community doing termination research
[Bradley et al., 2005b,a, Cook et al., 2009b, 2008, Giesl et al., 2006], this is a major benefit
of our approach. This same argument applies to other applications of this technique, such
as computing bounds or proving safety properties. Furthermore, a significant advantage of
this approach is the fact that the same numeric abstraction can be used to produce safety
proofs, termination proofs, and bounds on variable values. This significantly reduces the
amount of work that must be done to prove multiple properties of a program.

1.2 Contributions

The contributions of this thesis are as follows:

1. We develop a theory of instrumented programs as a means of relating heap-
manipulating programs and numeric abstractions. Instrumented programs use sep-

3

1 Introduction

aration logic annotations to connect the commands in the numeric abstraction with
the states of the original program.

2. A static analysis that automates the generation of numeric abstractions. This as-
pect of the work involves the specification of a proof system for separation logic
assertions, a strategy for proof search in this system, and the definition of symbolic
execution and abstraction rules for separation logic formulas involving inductive
predicates. These components are all augmented with rules for generating numeric
commands that describe how data structure manipulations change numeric proper-
ties of data structures. These commands form the building blocks from which the
numeric abstraction is constructed.

3. An implementation of the static analysis described above that supports the analysis
of C programs. It accepts user-specified inductive data structure definitions and thus
allows support for new data structures to be added fairly easily. Experimental results
involving a number of examples and various data structures are given. Our experi-
ments also consider multiple program properties, including safety, termination, and
memory bounds.

1.3 Example

We conclude this section with an example that concretely demonstrates our approach.
Consider the function traverse in Figure 1.1. This C-style code performs a left-to-
right, depth-first traversal of the tree at root. It does this by maintaining a stack of nodes
to be processed. The stack is a linked-list with nodes of type TreeList and initially
contains a single node with a pointer to the root of the tree. On each iteration, the top
element of the stack is removed and its children are added. Empty trees are discarded and
when the entire stack is empty, execution terminates.

There are a number of properties one might want to prove about this code. First, we
might like to show that it terminates on all valid inputs. We might also be interested
in obtaining a bound on the amount of memory allocated by the procedure. Both these

4

1.3 Example

questions are really questions about numeric properties of the code. In the case of termi-
nation, we want to demonstrate that some ranking function decreases during each itera-
tion. For a bound on the number of memory cells used, we can imagine adding a variable
mem usage to the program, which is initially zero and increments each time memory
is allocated and decrements each time it is freed. We might be interested in obtaining a
bound on mem usage in terms of the size of the input tree.

In this example, answering either of these questions requires some reasoning about the
shape and size properties of heap-allocated data structures. What we show in this thesis,
and demonstrate in our experiments, is that the shape reasoning can be separated from
the numeric reasoning by constructing a numeric program that explicitly tracks changes
in data structure sizes. A graphical view of the steps in the algorithm is given in Figure
1.2. The figure also shows the values of the slen and ssize size measures, which we will
describe shortly.

A numeric program for this example is given in Figure 1.3. This program can be
constructed from the original using the rules in Chapter 4 and an equivalent, though larger
program can be constructed automatically by the analysis implementation discussed in
Chapter 5. In each case, the variables in the numeric program correspond to size properties
of the data structures involved.

Informally, tsize root is the number of nodes in the tree at the top of the stack,
the variable slen tracks the number of nodes in the stack, and ssize is the number of
nodes in the trees linked to by nodes in the stack, as depicted in Figure 1.4. The main
integer variables ssize and slen are updated by means of a number of temporary vari-
ables. These updates are sometimes non-deterministic. For example, in the while loop
in traverse, we remove the first element of the stack and, if it links to a non-empty
tree, we replace it with two nodes that link to that tree’s children. Thus, in the numeric
program we must represent how removing an element from the stack changes the values
slen and ssize. In the case of slen we know that the length simply decreases by one.
For ssize, however, the effect of removing an element is not deterministic. The most we
can conclude is that ssize can be broken into tsize, the size of the tree linked to by
the element we just removed, and ssize tail, the size of the remaining portion of the

5

1 Introduction

struct Tree {

Tree left;

Tree right;

}
struct TreeList {

Tree tree;

TreeList next;

}

TreeList push(Tree r, TreeList next) {

TreeList t;

t = malloc();

t->tree = r;

t->next = next;

return t;

}

void traverse(Tree root) {

TreeList stack, tail;

stack = push(root,0);

while(stack != 0) {

tail = stack->next;

if(stack->tree == 0) { // remove empty trees

free(stack);

stack = tail;

}

else { // process non-empty trees

tail = push(stack->tree->right,tail);

tail = push(stack->tree->left,tail);

free(stack);

stack = tail;

}

}

}

Figure 1.1: A function for depth-first traversal of a tree rooted at root

6

1.3 Example

stack

a

b c

d e

f

g

h i

j

k

slen = 2

ssize = 11

stack

b c

d e

f

g

h i

j

k

slen = 3

ssize = 10

stack

c

d e

f

g

h i

j

k

slen = 4

ssize = 9

stack

c

d e

f

g

h i

j

k

slen = 3

ssize = 9

Figure 1.2: Sample execution showing results from the first four iterations of the loop in the

traverse function from Figure 1.1.

7

1 Introduction

stack. This is accomplished by the non-deterministic assignment on line 6 coupled with the
assume statements at lines 7 and 8. A similar situation occurs on line 12, when we record
the relationship between tsize and the sizes of its left and right children (tsize l and
tsize r, respectively).

While assume statements are not part of standard C, they are accepted by many ver-
ification tools, allowing us to pass the code in Figure 1.3 directly to ARMC or TERMI-
NATOR in order to check termination. In this case, the termination argument involves a
lexicographic order on ssize and slen. By producing numeric abstractions such as that
given in Figure 1.3, we allow ourselves and our program analysis tool to concentrate on
the shape analysis problem, while leaving details of lexicographic rankings or disjunctive
well-foundedness [Podelski and Rybalchenko, 2004] to other tools.

We can also ask bounds analysis tools as described in [Gulwani et al., 2009] and [Cook
et al., 2009a] for a bound on the length of the stack. In this case, the stack can grow to size
tsize root + 1 if the tree is maximally unbalanced. The theory presented in Chapter
4 also allows us to obtain a numeric program that demonstrates the expected logarithmic
bound on stack length for balanced trees. However, the shape analysis used by our tool
to compute numeric programs does not yet support reasoning about tree balance, so such
proofs still involve a manual component.

Alternate Abstractions It is often the case that there are different notions of data struc-
ture size. The measures used in Figure 1.3 are fairly natural in the sense that the number
of allocated heap cells reachable through the stack is the sum of slen and ssize. If
we abandon this correspondence, we can obtain the simpler numeric abstraction given in
Figure 1.6. In this case we have only one main size variable, ssize, which tracks the
sum of the sizes of the subtrees reachable through the stack. However, we alter the notion
of tree size such that empty trees have size equal to one, as depicted in Figure 1.5. This
simplifies the termination argument, as there is now only a single count, ssize, which
decreases during every iteration. However, we lose the ability to talk about the length of
the stack when computing bounds and we lose the close connection between our counts
and the number of allocated heap cells.

8

1.3 Example

void traverse(int tsize_root) {

1: assume(tsize_root >= 0);

2: slen = 1;

3: ssize = tsize_root;

4: while(slen > 0) {

5: tsize = ?; ssize_tail = ?;

6: assume(tsize >= 0 && ssize_tail >= 0);

7: assume(ssize == tsize + ssize_tail);

8: if(tsize == 0) // remove empty trees

9: slen--;

10 else { // process non-empty trees

11: tsize_l = ?; tsize_r = ?;

12: assume(tsize_l >= 0 && tsize_r >= 0);

13: assume(tsize == tsize_l + tsize_r + 1);

14: ssize = tsize_l + tsize_r + ssize_tail;

15: slen++;

}

}

}

Figure 1.3: A numeric abstraction of the program in Figure 1.1.

The technique described in this thesis has the flexibility to allow either approach to
numeric abstraction, and the implementation is not tied to any fixed notion of size. Instead,
we allow the user to specify the definition of size they have in mind when running the
tool. The numeric abstraction corresponding to the input C program is then automatically
generated for that notion of size.

9

1 Introduction

ssize=8

nil nil

1

nil nil

2

nil 1

nil nil

5

3

1

nil nil

1

nil nil

1

nil nil

nil

slen = 4

Figure 1.4: An example showing slen and ssize used in the program in Figure 1.3. slen is the

number of nodes in the stack and ssize is the sum of the values in the bold circles. The shaded

area contains the nodes that contribute to ssize and nodes in this area are labeled with the size of

the subtree rooted at that node. Empty trees (denoted by nil) have size 0.

ssize=20

nil nil

3

nil nil

5

nil 3

nil nil

11

7

3

nil nil

3

nil nil

3

nil nil

nil

Figure 1.5: An illustration of the notion of ssize used to generate the program in Figure 1.6. The

shaded area contains the nodes contributing to ssize. Empty trees (denoted by nil) have size 1.

Non-empty nodes are labeled with the size of the subtree rooted at that node. ssize is the sum

of the values in the bold circles, plus 1 for the first element in the stack, as nil has size 1 using this

notion of size.

10

1.3 Example

void traverse(int tsize_root) {

1: assume(tsize_root > 0);

2: ssize = tsize_root;

3: while(ssize > 0) {

4: tsize = ?; ssize_tail = ?;

5: assume(tsize > 0 && ssize_tail >= 0);

6: assume(ssize == tsize + ssize_tail);

7: if(tsize == 1) // remove empty trees

8: ssize = ssize_tail;

9: else { // process non-empty trees

10: tsize_l = ?; tsize_r = ?;

11: assume(tsize_l > 0 && tsize_r > 0);

12: assume(tsize == tsize_l + tsize_r + 1);

13: ssize = tsize_l + tsize_r + ssize_tail;

}

}

}

Figure 1.6: A numeric abstraction of the program in Figure 1.1 with the notion of ssize and tsize

given in Figure 1.5.

11

1 Introduction

12

Chapter 2

Preliminaries

In this chapter we present the basic definitions on which we will build the theory of instru-
mented programs and numeric abstractions that is the topic of this thesis. In Section 2.1,
we present the syntax and semantics of the programming language we consider. Section
2.2 gives the syntax and semantics of the version of separation logic we use. Section 2.2.2
gives the syntax and semantics we adopt for inductive predicates in separation logic. And
finally, Section 2.4 describes how we can translate C programs into the language defined
in this chapter.

Notation A summary of the notation used in the thesis is given as Appendix A. This
notation is described in detail in this and subsequent chapters.

2.1 Programs

Since our final goal is to analyze C-language programs, we consider an imperative pro-
graming language with unstructured flow of control (also referred to as a goto language).
Because of the non-returning nature of gotos, the language is presented as a language of
continuations. This serves as a convenient intermediate language for C since the C lan-

13

2 Preliminaries

guage contains a goto statement and all other control-flow constructs can be reduced to
branches and gotos. We give examples of such reductions in Section 2.4.

The language is strongly typed, which deviates from C. We make this choice because
it allows us to focus on issues of memory safety, assertion safety, and termination while
ignoring issues such as pointer arithmetic and casts.

2.1.1 Syntax and Typing

Figure 2.1 gives the syntax for programs. A program P is a list of labeled continuations,
which can also be viewed as a partial mapping from labels to continuations (and we will
often use function syntax for P , writing P (l) for the continuation labeled with l in program
P). The first label l0 is taken to be the starting point of execution and l0 will be referred to
as the initial location. We write initloc(P) for the initial location of program P . The set
L of labels is assumed to be infinite.

A continuation is a branching structure consisting of conditional branches and com-
mands that update the state. At the leaves of each continuation, we have either a goto
or an indication that execution should halt or abort. We write ε for the empty list of
branch cases and omit it when writing branching continuations. For example, we write
branch true⇒ k end instead of branch true⇒ k, ε end. We list assume(e);k as a contin-
uation, but this is actually definable as branch e ⇒ k end—a fact we return to in Section
2.3.4.

Commands include the standard commands for variable assignment, heap lookup,
heap mutation, memory allocation, and deallocation. The commands range over variables
drawn from the infinite set Vars and field names drawn from the infinite set Fields.

We will write k ∈ subterms(P) if k is a sub-term of some continuation in the range of
P . A program P is considered well-formed iff {l | goto l ∈ subterms(P)} ⊆ dom(P),
where dom(P) is the domain of P (the set of labels prefixing continuations in P). This
ensures that all jumps are to locations defined by P . We will restrict ourselves to well-
formed programs for the rest of this thesis.

14

2.1 Programs

Variables and expressions are typed, with the types drawn from the set {a, i, b} (rep-
resenting addresses, integers, and Booleans, respectively). We assume that the set Vars

can be partitioned into two infinite subsets Varsa and Varsi. We do not include variables
of type b in our syntax or states. We write xa to denote an element of Varsa and xi for an
element of Varsi. We use τ to stand for either a or i. Often, types can be inferred from the
context and, in such cases, we will omit them.

We take a similar approach to typing of record fields. We assume the set Fields can
be partitioned into two infinite subsets Fieldsa and Fieldsi and write f a for elements of
Fieldsa and f i for elements of Fieldsi.

We make a distinction between integer values and values representing addresses as a
means of ruling out pointer arithmetic. Pointer arithmetic could be handled by moving
to a lower-level memory model, where addresses are integers and records are represented
by contiguous groups of memory cells. However, our analysis algorithm does not support
pointer arithmetic, so we chose to rule it out from the beginning.

2.1.2 Semantics

The semantics is given in terms of transitions between states. Each non-terminal state
includes a store paired with a heap. Formally, a store is a mapping from variables to their
values, which are either integers or addresses. We require that this mapping respects types
and indicate this by using the notation→τ to denote the function space. A function f is in
Vars→τ Values iff f ∈ Vars→ Values and variables in Varsi are mapped by f to integers
while variables in Varsa are mapped to addresses. We assume that Z and Addr are disjoint
and that Addr is an infinite set. We use the meta-variable v to represent a value and s to
represent a store.

v ∈ Values def
= Z ∪ Addr

s ∈ Stores def
= Vars→τ Values

The set of addresses contains a distinguished element nil which is not in the domain
of any heap. The heap is a finite partial function from non-nil addresses to records, which

15

2 Preliminaries

SYNTAX OF PROGRAMS

Types τ ∈ {a, i}

Variables xτ ∈ Varsτ

Fields f τ ∈ Fieldsτ

Labels l ∈ L

Integers n ∈ Z

Integer Expressions ei ::= xi | n | ei
1 + ei

2 | ei
1 − ei

2 | ei
1 × ei

2

Address Expressions ea ::= xa | nil

Boolean Expressions eb ::= true | false | ea
1 = ea

2 | ei
1 ≤ ei

2 | eb
1 ∧ eb

2 | eb
1 ∨ eb

2 | ¬eb

Commands c ::= xτ := eτ | xτ := ?τ | xτ1 := xa
2.f

τ | xa.f τ := eτ |

xa := alloc(f τ11 , . . . , f τnn) | free xa | skip

Branch Cases β ::= eb ⇒ k, β | ε

Continuations k ::= c;k | halt | abort | goto l | branch β end | assume(eb);k

Programs P ::= l0 : k0; . . . ; ln : kn

Figure 2.1: Syntax of programs.

are finite partial functions from fields to values of the appropriate type. We use the meta-
variable h to represent an element of Heaps.

Records def
= Fields fin

⇀τ Values

h ∈ Heaps def
= (Addr − {nil}) fin

⇀ Records

As with stores, the functions that serve as the denotation of records must respect types.
Unlike stores, they need not be defined on all elements of the domain (different heap cells
may contain different sets of fields). We refer to an (s, h) pair as a memory state.

Memory States (s, h) ∈ Stores× Heaps

We also include an error state representing the result of an erroneous computation such
as an attempt to dereference unallocated memory.

16

2.1 Programs

The semantics of expressions is given in Figure 2.2. In addition to the sets Addr and
Z, that were defined previously, the semantics of expressions makes use of a set Bool of
Boolean values, defined as Bool = {true, false}. We note the following theorem, which
relates the meaning of expressions to their types and ensures that our interpretation of
expressions is well-defined.

Theorem 1.
∀s, ea. JeaK s ∈ Addr (2.1)

∀s, ei. JeiK s ∈ Z (2.2)

∀s, eb. JebK s ∈ Bool (2.3)

Proof. The proof is by induction on the structure of the expression language and each
case follows directly from the expression semantics and the requirement that stores are
well-typed.

Another property of expressions is that only the portion of the store involving the
variables that appear in the expression affects its value. This is captured by the following
lemma.

Definition 1. Let s =V s
′ hold iff ∀x. x ∈ V ⇒ s(x) = s′(x).

Definition 2. Let fv(e) be the function that returns the set of variables occurring free in e.

Since there are no binding constructs in the expression language, this is just the set of all

variables appearing in e.

Lemma 1. If s =V s
′ and fv(e) ⊆ V then JeK s = JeK s′.

Proof. The proof is by induction on the expression e. The inductive cases are straight-
forward. To take an example, consider the case e1 + e2. We assume s =V s′ and
fv(e1 +e2) ⊆ V . The second assumption implies fv(e1) ⊆ V and fv(e2) ⊆ V . This allows
us to apply the induction hypothesis and conclude that Je1K s = Je1K s′ and Je2K s = Je2K s′.
It then follows that Je1K s+ Je2K s = Je1K s′+ Je2K s′, which, by the definition of Je1 + e2K
implies that Je1 + e2K s = Je1 + e2K s′.

17

2 Preliminaries

SEMANTICS OF EXPRESSIONS

JnK s = n

Jxτ K s = s(xτ)

JnilK s = nil

JtrueK s = true

JfalseK s = false

J¬ebK s = ¬(JebK s)

Jei
1 + ei

2K s = (Jei
1K s) + (Jei

2K s)

Jei
1 − ei

2K s = (Jei
1K s)− (Jei

2K s)

Jei
1 × ei

2K s = (Jei
1K s)× (Jei

2K s)

Jea
1 = ea

2K s = (Jea
1K s) = (Jea

2K s)

Jei
1 ≤ ei

2K s = (Jei
1K s) ≤ (Jei

2K s)

Jeb
1 ∧ eb

2K s = (Jeb
1K s) ∧ (Jeb

2K s)

Jeb
1 ∨ eb

2K s = (Jeb
1K s) ∨ (Jeb

2K s)

Figure 2.2: Semantics of expressions. ∧,∨,¬ in the definitions refer to the standard Boolean

operations with type Bool × Bool → Bool (for ∧ and ∨) and Bool → Bool (for ¬). The functions

+,−,× refer to the standard addition, subtraction, and multiplication functions of type Z×Z→ Z.

The ≤ relation is the standard “less than or equal to” relation on integers and = is the identity

relation on addresses, which relates each address only to itself.

The base cases for the constants are immediate, as the store does not affect their se-
mantics at all. This covers n, nil, true, and false. We are left with the variable case. If
e = x then JeK s = s(x), so we must show s(x) = s′(x). The definition of s =V s′ gives
us x ∈ V ⇒ s(x) = s′(x), so it suffices to show x ∈ V . This follows directly from our
assumption that fv(x) ⊆ V and the fact that fv(x) = {x}.

The semantics of commands is given in Figure 2.3. The command x := e is a standard
assignment statement, x := ? is non-deterministic assignment, x1 := x2.f reads a value
from a heap cell, and x.f := e writes a value into a heap cell. Attempts to read from or
write to a non-existent record field result in a run-time error, represented by error. The
command x := alloc(f1, . . . , fn) allocates a new heap cell with fields f1, . . . , fn. The
fields are initially mapped to non-deterministically chosen values of the correct type. The
field names provided must all be distinct. The command free x disposes of the heap cell
at x. We permit the call free nil, which has the effect of a no-op. We do this to match the
semantics of the “free” function call in the C programming language, which will be the
source language we ultimate target with our analysis.

18

2.1 Programs

We claim that the type of JcK is Stores × Heaps → 2((Stores×Heaps)∪{error}). To verify
this, we must check that, in all rules, the store and heap are updated in a manner consistent
with the types. In all cases, this follows immediately from the well-typedness of the initial
store and heap and Theorem 1.

One property of commands is that only the heap and the portion of the store corre-
sponding to the variables used by the command affects execution. This is captured by the
following Lemma.

Definition 3. Let fv(c) indicate the set of free variables occurring in command c. Since

there are no binders in the syntax for commands, this is the set of all variables occurring

in c.

Lemma 2. If s1 =V s2 and fv(c) ⊆ V then for all h, s′1, h
′ the following holds(

(s′1, h
′) ∈

(
JcK (s1, h)

))
⇒
(
∃s′2. (s′2, h

′) ∈
(
JcK (s2, h)

)
∧ (s′1 =V s

′
2)
)

This states that if V is a set containing the free variables of command c, and two stores
agree on the values of variables in V , then an evaluation of c from either of the two stores
has a matching evaluation starting from the other store (matching in the sense that the
post-states agree on the values of variables in V).

Proof. The proof proceeds by case analysis on the command c in question and most cases
follow directly from the definition of JcK and Lemma 1. Note that according to the seman-
tics in Figure 2.3, we have

∀c, s, h.
(
error ∈ JcK (s, h)

)
⇔
(
JcK (s, h) = {error}

)
To see why this holds, note that the only commands that can result in error are those of
the form x1 := x2.f or x.f := e or free x. Examining the semantics for these commands
reveals that the error case results in the singleton set {error}. Thus, the fact that we have
(s′1, h

′) ∈
(
JcK (s1, h)

)
as a hypothesis implies that error 6∈

(
JcK (s1, h)

)
.

CASE x.f := e: Since error 6∈
(
Jx.f := eK (s1, h)

)
, we have the following

s1(x) ∈ dom(h) ∧ f ∈ dom(h(s1(x)))

19

2 Preliminaries

We have s1 =V s2 as an assumption and x ∈ V from our assumption that fv(x.f := e) ⊆ V .
This then gives us s1(x) = s2(x) and allows us to derive

s2(x) ∈ dom(h) ∧ f ∈ dom(h(s2(x)))

This implies that Jx.f := eK (s2, h) does not result in an error. Thus, we have

Jx.f := eK (s1, h) = {(s1, h[(s1(x)).f → (JeK s1)])}

and
Jx.f := eK (s2, h) = {(s2, h[(s2(x)).f → (JeK s2)])}

We must show s1 =V s2, which we already have from our assumptions. We also must
show the following.(

h[(s1(x)).f → (JeK s1)]
)

=
(
h[(s2(x)).f → (JeK s2)]

)
Since x ∈ V , we have that s1(x) = s2(x). Thus, the above reduces to showing that

(JeK s1) = (JeK s2)

which follows from Lemma 1.

CASE x1 := x2.f : Again, we have from our assumptions that x1 := x2.f does not result
in error. From s1 =V s2 and fv(x1 := x2.f) ⊆ V , we have that s1(x1) = s2(x1) and
s1(x2) = s2(x2). This gives us the following.

Jx1 := x2.fK (s1, h) = {(s1[x1 → (h(s1(x2))) f], h)}

and
Jx1 := x2.fK (s2, h) = {(s2[x1 → (h(s2(x2))) f], h)}

We must show (
s1[x1 → (h(s1(x2))) f]

)
=V

(
s2[x1 → (h(s2(x2))) f]

)
We have that x1 ∈ V and s1 =V s2, so the above will hold if we can show(

h(s1(x2))
)

=
(
h(s2(x2))

)
20

2.1 Programs

This holds if s1(x2) = s2(x2) which follows from x2 ∈ V and s1 =V s2.

CASE free x: As before, we have s1 =V s2 and fv(free x) ⊆ V , which implies x ∈ V and
thus s1(x) = s2(x). Since Jfree xK (s1, h) 6= {error}, we have s1(x) ∈

(
dom(h)∪{nil}

)
.

This combined with s1(x) = s2(x) gives us s2(x) ∈
(
dom(h) ∪ {nil}

)
. Since

Jfree xK (s1, h) = (s1, h − {s1(x)}), and Jfree xK (s2, h) = (s2, h − {s2(x)}), we must
show s1 =V s2, which we already have, and (h − {s1(x)}) = (h − {s2(x)}), which
follows from s1(x) = s2(x).

CASE x := ?: We have

Jx := ?K (s1, h) = {(s′1, h) | s′1 = s[x→ v]}

where v is chosen from the appropriate domain (either Addr or Z). For s2 we have

Jx := ?K (s2, h) = {(s′2, h) | s′2 = s[x→ v]}

Suppose (s′1, h) ∈ Jx := ?K (s1, h). We must show

∃s′2. (s′2, h) ∈ (Jx := ?K (s2, h)) ∧ s′1 =V s
′
2

We choose s′2 = s2[x→ s′1(x)]. Clearly this is in Jx := ?K (s2, h). To see that s′1 =V s
′
2, we

must show that s′2(x) = s′1(x), which is immediate from the definition of s′2. Agreement
of s′2 and s′1 on the rest of V follows from the assumption that s1 =V s2.

CASE x := alloc(f1, . . . , fn): The semantics of this command chooses an address v not in
dom(h) and assign v to x in the post-state. Since we are evaluating x := alloc(f1, . . . , fn)

under the same heap but a different store, we have that v is also a valid choice of
address when determining Jx := alloc(f1, . . . , fn)K (s2, h). It remains to show that
s1[x→ v] =V s2[x→ v], which follows from s =V s

′.

CASE x := e: We have

Jx := eK (s1, h) = {(s1[x→ JeK s1], h)}

and
Jx := eK (s2, h) = {(s2[x→ JeK s2], h)}

21

2 Preliminaries

We must show

s1[x→ JeK s1] =V s2[x→ JeK s2]

Since we have s1 =V s2, it suffices to show that JeK s1 = JeK s2. This is established by
Lemma 1.

We also have a similar property for commands that result in an error.

Lemma 3. If s1 =V s2 and fv(c) ⊆ V then

error ∈
(
JcK (s1, h)

)
⇒ error ∈

(
JcK (s2, h)

)
Proof. The proof proceeds by case analysis on the command c. There are only three
commands that can result in error. These are x1 := x2.f and x.f := e and free x.

CASE x1 := x2.f : If error ∈
(
Jx1 := x2.fK (s1, h)

)
then, according to the semantics

of commands (Figure 2.3), either s1(x2) 6∈ dom(h) or f 6∈ dom(h(s1(x2))). Suppose
s1(x2) 6∈ dom(h). Then since s1 =V s2 and x2 ∈ V we have s1(x2) = s2(x2) and thus
s2(x2) 6∈ dom(h). If f 6∈ dom(h(s1(x2))), then again we note that x2 ∈ V and thus
s1(x2) = s2(x2), which gives us f 6∈ dom(h(s2(x2))).

CASE x.f := e: This is similar to the case above. We have either s1(x) 6∈ dom(h) or
f 6∈ dom(h(s1(x))). We have x ∈ V and s1 =V s2, which yields s1(x) = s2(x), which
gives us that either s2(x) 6∈ dom(h) or f 6∈ dom(h(s2(x))).

CASE free x: In this case we have s1(x) 6∈
(
dom(h) ∪ {nil}

)
. Again s1(x) = s2(x) and

so s2(x) 6∈
(
dom(h) ∪ {nil}

)
Figure 2.4 gives the transition semantics of continuations. There are three types of

execution states: intermediate states, in which the continuation is still executing; terminal
states, which indicate that execution has stopped; and goto states, which indicate that
the end of this continuation has been reached but execution has not stopped and should
continue from another continuation. Intermediate states have the form 〈k, (s, h)〉 where k
is the current continuation and (s, h) is the current store and heap. Terminal states either
have the form final(s, h), which indicates that the program has terminated in the memory

22

2.1 Programs

SEMANTICS OF COMMANDS

JskipK (s, h) = {(s, h)}

Jxτ := eτ K (s, h) = {(s[xτ → Jeτ K s], h)}

Jxa := ?aK (s, h) = {(s′, h) | s′ = s[xa → v] ∧ v ∈ Addr}

Jxi := ?iK (s, h) = {(s′, h) | s′ = s[xi → v] ∧ v ∈ Z}

Jxτ1 := xa
2.f

τ K (s, h) = {(s[xτ1 → (h(s(xa
2))) f τ], h)} if s(xa

2) ∈ dom(h)

∧ f τ ∈ dom(h(s(xa
2)))

{error} otherwise

Jxa.f τ := eτ K (s, h) = {(s, h[(s(xa)).f τ → (Jeτ K s)])} if s(xa) ∈ dom(h)

∧ f τ ∈ dom(h(s(xa)))

{error} otherwise

Jxa := alloc(f τ11 , . . . , f τnn)K (s, h) =

{(s′, h′) | v ∈ dom(h′) and dom(h′(v)) = {f τ11 , . . . , f τnn }

and h′ − {v} = h

and s′ = s[xa → v] and v ∈ Addr

and h′(v)(f τii) ∈ Z if τi = i

and h′(v)(f τii) ∈ Addr if τi = a}

Jfree xaK (s, h) = {(s, h− {s(xa)})} if s(xa) ∈
(
dom(h) ∪ {nil}

)
{error} otherwise

Figure 2.3: Semantics of commands. dom(g) indicates the domain of function g. The notation

g[x → v] indicates the function that is the same as g, except that x is mapped to v. The notation

h[v1.f → v2] indicates the heap that is the same as h except the record at v1 maps field f to v2.

We write h−X to indicate the function obtained by restricting the domain of h to dom(h)−X .

23

2 Preliminaries

SEMANTICS OF CONTINUATIONS

(s′, h′) ∈ JcK (s, h)

〈(c;k), (s, h)〉; 〈k, (s′, h′)〉

error ∈ JcK (s, h)

〈(c;k), (s, h)〉; error

JeiK s = true

〈branch . . . , ei ⇒ ki, . . . end, (s, h)〉; 〈ki, (s, h)〉 〈halt, (s, h)〉; final(s, h)

〈(goto l), (s, h)〉; goto(l, (s, h)) 〈abort, (s, h)〉; error

JeK s = true

〈(assume(e); k), (s, h)〉; 〈k, (s, h)〉

Figure 2.4: Semantics of continuations. The semantic rule for “assume(e);k” is included for

clarity, but officially we consider “assume(e);k” to be an abbreviation for “branch e ⇒ k end”

(which produces the same result as the rule above).

state (s, h) or error, which indicates that the program has terminated in the error state.
Goto states have the form goto(l, (s, h)) and indicate that execution should continue from
label l in memory state (s, h) (the role of goto states is further described in Section 2.3,
Definition 13). We use the meta-variable γ to represent an execution state and the meta-
variable G to represent the set of all execution states.

Execution States (G) γ ::= 〈k, (s, h)〉 | final(s, h) | goto(l, (s, h)) | error

We will sometimes simply use the word state when it is clear from context whether we are
referring to an execution state or a memory state.

Note that in the semantics for branches given in figure 2.4, a non-deterministic choice
is made among all branches whose condition is satisfied. There is no transition from a
state in which we are evaluating a branch and none of the conditions hold. We will say
more about how this property of the continuation semantics affects our program semantics
in the next section when we discuss execution traces. Here we will simply note that, in the

24

2.2 Separation Logic

source programs we consider, all branches will be total in the sense that the disjunction of
their conditions is equivalent to true. Thus, any execution state associated with a branch
in the source program can always make a transition.

Figure 2.5 gives an example of the semantics of continuations. The arrows are labeled
with the commands corresponding to the transitions. Transitions labeled with Boolean
conditions (i > 0 in the first transition) correspond to the selection of the branch labeled
with that condition.

2.2 Separation Logic

Note that all non-error states contain a store and a heap. We will use formulas in separation

logic [Reynolds, 2002] to represent sets of store-heap pairs. The syntax for formulae is
given in Figure 2.6 and describes a fragment of separation logic specialized to our heap
model. The expressions (e) are those defined in Figure 2.1. P is a set of identifiers that are
used to refer to inductively-defined predicates, which we discuss in Section 2.2.2.

The semantics of formulae is given in Figure 2.7. The semantics is given as a relation of
the form (s, h) |=X Q, where s is a store, h is a heap,Q is a separation logic formula andX
is a partial mapping from inductive predicate names to the predicates’ denotations (which
are functions yielding sets of heaps). The relation (s, h) |=X Q is only defined when
dom(X) contains all predicate names appearing in Q. We describe inductive predicates in
detail in the next section and focus on the other cases here. If (s, h) |=X Q holds for all
s, h, we denote this as |=X Q.

The formula emp describes the empty heap. The formula x 7→ [f1 : e1, ..., fn : en]

describes a singleton heap where x points to a record whose f1 field contains the value
of e1 and so on (as with the syntax for branches, we omit the ε that terminates the field
list when writing records). The field names f1, . . . , fn must be distinct. A store, heap
pair (s, h) satisfies Q1 ∗ Q2 iff h is a union of domain-disjoint heaps h1 and h2 such
that (s, h1) satisfies Q1 and (s, h2) satisfies Q2. The binary operators ∧ (conjunction), ∨
(disjunction), and ⇒ (implication) have their usual semantics. For the binary operators,

25

2 Preliminaries
Stack

x
n
il

i
2

H
eap

i
>

0

Stack

x
n
il

i
2

H
eap

t
:=

a
llo

c(n
ext)

Stack

x
n
il

i
2

t
a

H
eap

a
n
ext

:
?

t

t.n
ext

=
x

Stack

x
n
il

i
2

t
a

H
eap

a
n
ext

:
n
il

t

n
il

x
:=

t

Stack

x
a

i
2

t
a

H
eap

a
n
ext

:
n
il

t

n
il

i
:=

i−
1

Stack

x
a

i
1

t
a

H
eap

a
n
ext

:
n
il

t

n
il

g
o
to

L
1

Stack

x
a

i
1

t
a

H
eap

a
n
ext

:
n
il

t

n
il

L
1

:
bran

ch
i
>

0
⇒

t
:=

allo
c(n

ext);
t.n

ext
=

x;

x
:=

t;
i
:=

i−
1;

goto
L
1 ,

i
=

0
⇒

h
alt

en
d

Figure
2.5:Iteration

num
berone

ofa
loop

thatcreates
a

singly-linked
list.

26

2.2 Separation Logic

SYNTAX OF SEPARATION LOGIC FORMULAE

Inductive Predicates p~τ , r~τ ∈ P~τ

Records ρ ::= ε | f τ : eτ , ρ

Spatial Predicates Ξ ::= emp | ea 7→ [ρ] | p~τ (~e ~τ)

Separation Logic Formulae Q ::= eb | Ξ | Q1 ∗Q2 | Q1 ∧Q2 | Q1 ∨Q2 |

Q1 ⇒ Q2 | ∃xτ . Q | ∀xτ . Q

Figure 2.6: Syntax of separation logic formulae.

the order of precedence, from strongest to weakest is: 7→, ∗,∧,∨,⇒. The operators ∧,∨,
and ∗ are associative, so order of operations among sequences of formulae joined by the
same one of these operators at the same level does not matter.

We write ~τ to represent the sequence of types τ1τ2 . . . τn. Meta-variables p~τ and r~τ

represent the names of inductive predicates. The superscript ~τ encodes both the number
and types of the arguments the predicate expects. For example, piaa is a predicate that takes
an integer-valued argument followed by two address-valued arguments. We write P~τ for
the set of all predicates of type ~τ . If ~τ = τ1 . . . τn, we write ~x ~τ to denote a list of variables
xτ11 , . . . , x

τn
n . Similarly, we write ~e ~τ to represent the list of expressions eτ11 , . . . , e

τn
n . We

discuss inductive predicates further in the next section.

2.2.1 Effect of Free Variables

The free variables of a separation logic formula Q are defined in Figure 2.8. We have a
result for separation logic formulae similar to Lemma 1, which involved expressions.

Lemma 4. If s =V s
′ and fv(Q) ⊆ V then for all X, h, we have (s, h) |=X Q if and only

if (s′, h) |=X Q.

Proof. The proof is by induction on the structure of Q.

27

2 Preliminaries

SEMANTICS OF SEPARATION LOGIC FORMULAE

Jf τ : eτ , ρK s = {(f τ , Jeτ K s)} ∪ (JρK s)

JεK s = {}

Jeτ11 , . . . , e
τn
n K s = (Jeτ11 K s, . . . , Je

τn
n K s)

(s, h) |=X eb ⇔ JebK s = true

(s, h) |=X emp ⇔ h = {}

(s, h) |=X ea 7→ [ρ] ⇔ h = {(JeaK s, JρK s)}

(s, h) |=X p~τ (~e ~τ) ⇔ h ∈
(
X(p~τ)(J~e ~τ K s)

)
(s, h) |=X Q1 ∧Q2 ⇔ (s, h) |=X Q1 and (s, h) |=X Q2

(s, h) |=X Q1 ∨Q2 ⇔ (s, h) |=X Q1 or (s, h) |=X Q2

(s, h) |=X Q1 ⇒ Q2 ⇔ (s, h) |=X Q1 implies (s, h) |=X Q2

(s, h) |=X Q1 ∗Q2 ⇔ There exist h1, h2 such that

dom(h1) ∩ dom(h2) = ∅ and h = h1 ∪ h2 and

(s, h1) |=X Q1 and (s, h2) |=X Q2

(s, h) |=X ∃xa/i. Q ⇔ there exists v ∈ Addr/Z such that

(s[xa/i → v], h) |=X Q

(s, h) |=X ∀xa/i. Q ⇔ for all v ∈ Addr/Z we have

(s[xa/i → v], h) |=X Q

|=X Q ⇔ ∀s, h.
(
(s, h) |=X Q

)
Figure 2.7: Semantics of separation logic formulae. We have combined the ∃ rules for address and

integer-valued variables, using a “/” to separate the alternatives. The field names in any record ρ

must be distinct. The semantics of expressions, JeK s, is given in Figure 2.2.

28

2.2 Separation Logic

fv(f τ : eτ , ρ) = fv(e) ∪ fv(ρ)

fv(ε) = {}

fv(emp) = {}

fv(ea 7→ [ρ]) = fv(ea) ∪ fv(ρ)

fv(p~τ (eτ11 . . . eτnn)) = fv(eτ11) ∪ . . . ∪ fv(eτnn)

fv(Q1 ∗Q2) = fv(Q1) ∪ fv(Q2)

fv(Q1 ∧Q2) = fv(Q1) ∪ fv(Q2)

fv(Q1 ∨Q2) = fv(Q1) ∪ fv(Q2)

fv(Q1 ⇒ Q2) = fv(Q1) ∪ fv(Q2)

fv(∃xτ . Q) = fv(Q)− {xτ}

fv(∀xτ . Q) = fv(Q)− {xτ}

Figure 2.8: The definition of the function fv(Q), which gives the free variables of formula Q. If

Q = eb, the free variables are as given in Definition 2.

CASE Q = eb: In this case, the definition of |=X from Figure 2.7 tells us that (s, h) |=X Q

iff JebK s = true. By Lemma 1 we then have that JebK s = true iff JebK s′ = true. This
implies (s, h) |=X Q iff (s′, h) |=X Q.

CASE Q = emp: In this case, (s, h) |=X emp iff h = {}. Since s is not involved in the
definition of the semantics of emp, we easily have (s, h) |=X emp iff (s′, h) |=X emp.

CASE Q = ea 7→ [ρ]: We first prove the following lemma:

∀ρ, s, s′. (s =V s
′) ∧ (fv(ρ) ⊆ V)⇒ (JρK s = JρK s′)

This is proved by structural induction on ρ. There are two cases. If ρ = ε then
JρK s = {} and JρK s′ = {}, implying JρK s = JρK s′. If ρ = f τ : eτ , ρ′ then we have
JρK s = {(f τ , JeτK s)} ∪ (Jρ′K s). By the induction hypothesis we have Jρ′K s = Jρ′K s′.
Since fv(Q) ⊆ V we have that fv(eτ) ⊆ V and thus by Lemma 1 we have JeτK s = JeτK s′.
Combining these we have the following.

{(f τ , JeτK s)} ∪ (Jρ′K s) = {(f τ , JeτK s′)} ∪ (Jρ′K s′)

This is equivalent to JρK s = JρK s′, which is our goal.

Having proved the result for record expressions ρ, we can now turn back to Q. Since
fv(Q) ⊆ V and Q = ea 7→ [ρ], we have, as a consequence of Definition 2.2.1 that
fv(ea) ⊆ V and fv(ρ) ⊆ V . Thus, by Lemma 1 and by our intermediate lemma above, we

29

2 Preliminaries

have JeaK s = JeaK s′ and JρK s = JρK s′. This implies

{(JeaK s, JρKs)} = {(JeaK s′, JρKs′)}

which implies (s, h) |=X Q⇔ (s′, h) |=X Q by the definition of |=X given in Figure 2.7.

CASE Q = p~τ (~e ~τ): We first consider the forward implication. We assume
(s, h) |= p~τ (~e ~τ) and show (s′, h) |= p~τ (~e ~τ). We have from our semantics that
(s, h) |= p~τ (~e ~τ) implies h ∈

(
X(p)(J~e ~τK s)

)
. Since fv(~e ~τ) ⊆ V we have by Lemma

1 that J~e ~τK s = J~e ~τK s′. This implies(
X(p)(J~e ~τK s)

)
=
(
X(p)(J~e ~τK s′)

)
Since we have h ∈

(
X(p)(J~e ~τK s)

)
this lets us conclude h ∈

(
X(p)(J~e ~τK s′)

)
which

implies (s′, h) |= Q. The backward implication is the same with s and s′ reversed.

CASE Q = Q1 ∗ Q2: We have (s, h) |=X Q1 ∗ Q2 iff there exist h1, h2 such that
dom(h1) ∩ dom(h2) = ∅ and h = h1 ∩ h2 and (s, h1) |=X Q1 and (s, h2) |=X Q2.
That fv(Q) ⊆ V implies fv(Q1) ⊆ V and fv(Q2) ⊆ V . We can then apply the induction
hypothesis, which gives us that (s, h1) |=X Q1 iff (s′, h1) |=X Q1 and similarly for Q2.
This implies our result.

CASE Q = Q1 ∧ Q2: We have (s, h) |=X Q1 ∧ Q2 iff (s, h) |=X Q1 and (s, h) |=X Q2.
Again, fv(Q) ⊆ V implies fv(Q1) ⊆ V and fv(Q2) ⊆ V , allowing us to apply the
inductive hypothesis and obtain (s, h) |=X Q1 iff (s′, h) |=X Q1 (and similarly for
(s′, h) |=X Q2). This implies our result.

CASE Q = Q1 ∨ Q2: This case is very similar to the ∗ and ∧ cases. We have
(s, h) |=X Q1∨Q2 iff (s, h) |=X Q1 or (s, h) |=X Q2. In either case, we have fv(Qi) ⊆ V

and apply our inductive hypothesis to obtain (s, h) |=X Qi iff (s′, h) |=X Qi, which lets
us conclude that (s, h) |=X Q iff (s′, h) |=X Q.

CASE Q = (Q1 ⇒ Q2): We will consider the forward direction first and show that
(s, h) |=X (Q1 ⇒ Q2) implies (s′, h) |=X (Q1 ⇒ Q2). Suppose (s, h) |=X (Q1 ⇒ Q2).
Then by the definition of |=X given in Figure 2.7 we have (s, h) |=X Q1 implies
(s, h) |=X Q2. Now, suppose (s′, h) |=X Q1. Since fv(Q) = fv(Q1) ∪ fv(Q2) and

30

2.2 Separation Logic

fv(Q) ⊆ V , we have fv(Q1) ⊆ V and fv(Q2) ⊆ V . This lets us apply our inductive hy-
pothesis, obtaining (s, h) |=X Q1. This implies (s, h) |=X Q2 by our assumption, which,
applying the inductive hypothesis again, gives us (s′, h) |=X Q2. Thus, we have shown
that (s′, h) |=X Q1 implies (s′, h) |=X Q2, which lets us conclude (s′, h) |=X (Q1 ⇒ Q2).
The proof of the backwards direction is the same, with s and s′ interchanged.

CASE Q = ∃x. Q′: We consider the forward direction first. The relation (s, h) |=X ∃x. Q′

implies there exists a v such that (s[x → v], h) |=X Q′. Consider the store s′[x → v].
Since s =V s

′, we have s[x→ v] =V ∪{x} s
′[x→ v]. We have that fv(Q) = fv(Q′)− {x}

and fv(Q) ⊆ V which implies fv(Q′) ⊆ V ∪ {x}. We can then apply our inductive
hypothesis to (s[x → v], h) |=X Q′, obtaining (s′[x → v], h) |=X Q′. This implies
(s′, h) |=X ∃x. Q′. The backward direction is the same, with s and s′ interchanged.

CASE Q = ∀x. Q′: We consider the forward direction first. The relation (s, h) |=X ∀x. Q′

implies that for all v we have (s[x → v], h) |=X Q′. Consider an arbitrary v′. In-
stantiating v above with v′ we have (s[x → v′], h) |=X Q′. Since s =V s′, we have
s[x → v] =V ∪{x} s

′[x → v]. We have that fv(Q) = fv(Q′) − {x} and fv(Q) ⊆ V

which implies fv(Q′) ⊆ V ∪ {x}. We can then apply our inductive hypothesis to
(s[x → v′], h) |=X Q′, obtaining (s′[x → v′], h) |=X Q′. Since v′ was arbitrary, we
conclude that for all v′ we have (s′[x→ v′], h) |=X Q′, which implies (s′, h) |=X ∀x. Q′.
The backward direction is the same, with s and s′ interchanged.

2.2.2 Defining Inductive Pointer Structures

We follow an approach similar to Brotherston [2007] in our treatment of inductively-
defined predicates. Pointer structures in our system are described inductively using defini-
tions of the following form.

Definition List D ::= ε |
(
p~τ (~x ~τ) ≡ Q

)
:: D

The symbol ε represents an empty sequence of definitions. D then specifies a set of mu-
tually inductive predicates. We require for each definition p~τ (~x ~τ) ≡ Q that all variables
in ~x ~τ are distinct, that fv(Q) ⊆ ~x, and that all predicates p~τ occurring to the left of ≡ in

31

2 Preliminaries

D are distinct. We also do not allow implication or universal quantification to appear in Q
(and recall that Q also cannot contain negated spatial predicates according to the grammar
in Figure 2.6).

As the constraints on type and arity of predicates and type and length of argument
vectors are standard and generally clear from context, we will henceforth write predicates
and vectors without mentioning arity or length except when necessary for clarity. For
example, we will write p(~x) to represent p~τ (~x ~τ) for some ~τ implicitly given by context.

We will write (p(~x) ≡ Q) ∈ D when the definition p(~x) ≡ Q appears in D. We
require that if (p(~x) ≡ Q) ∈ D and the predicate instance p′(~e ~τ) appears in Q then
(p′(~y ~τ) ≡ Q′) ∈ D for some ~y ~τ and Q′. This ensures that all predicates referenced in the
inductive definitions are defined. We write dom(D) to refer to the set of predicates being
defined by D. This is defined inductively as follows.

dom((p(~x) ≡ Q) :: D) = {p} ∪ dom(D)

dom(ε) = ∅

As an example of an inductive definition, consider the following definition of a doubly-
linked list segment with length n starting at heap cell first and ending at last. The parameter
prev records the value of the prev field of the first cell in this list and next records the value
in the next field of the last cell.

dll(n,prev , first , last , next) ≡

emp ∧ n = 0 ∧ first = next ∧ last = prev

∨ (∃z. (first 7→ [prev : prev , next : z]) ∗

dll(n − 1, first , z , last , next)) ∧ n > 0

The disjunction indicates that there are two possible cases for a list segment with length n.
Either n = 0 and the list is empty, or n > 0 and there is an allocated heap cell at the head
of the list and a separate tail of length n− 1.

The semantics of inductive predicates is defined in terms of iterated expansion. We
begin with the following definition.

32

2.2 Separation Logic

Definition 4. Let o(τ) be the function defined such that o(a) = Addr and o(i) = Z. We

extend o to vectors, letting o(τ1 . . . τn) = o(τ1)× . . .× o(τn).

We then view an inductively-defined predicate of arity ~τ as a function of type
o(~τ) → 2Heaps, which maps values for the parameters to the set of heaps that satisfy
the predicate. We will call such a function an interpretation function and define this as
follows.

Definition 5. If N is a set of predicate names, the set of interpretation functions ∆N is

defined as follows.

∆N
def
=
⋃
p~τ∈N

(
{p~τ} →

(
o(~τ)→ 2Heaps

))

In the type above, we use a union over functions with a singleton domain {p~τ} to indicate
that the range of the function depends on the type of ~τ of the argument p~τ . Note that
dom(∆N) = N .

The meaning of a list of inductively defined predicates D is then an element of the set
∆dom(D). We devote the remainder of the section to discussing appropriate elements of
∆dom(D) to take as the semantics of D.

Fixed-Point Semantics

Let D be the following list of inductive definitions

(p1(~x1) ≡ Q1) :: . . . :: (pn(~xn) ≡ Qn)

with the arity of pi equal to ~τi. LetX be an element of ∆dom(D). We will write s[~x→ ~v] for
the store s′ such that s′(y) = vi if y ≡ xi for some i and s′(y) = s(y) otherwise. We use
lambda notation to denote functions at the meta-level and write λ~v. t as an abbreviation
for λv1. λv2. . . . λvn. t where t is some term in the meta-language. As always, we require
that the types of the ~x and the domains from which the ~v are drawn match, so that if
xi has type a then vi ∈ Addr (and similarly for i and Z). Let ωD be a function of type

33

2 Preliminaries

∆dom(D) → ∆dom(D) defined as follows.

ωD(X) =
⋃

(p(~x) ≡ Q) ∈ D

{
(p, Y) | Y = λ~v. {h | ∃s. (s[~x→ ~v], h) |=X Q}

}
Intuitively, this operator corresponds to taking X as the current approximation of the
meaning of the definitions in D, and adding the heaps that are satisfied when we expand
the definitions once.

A fixed-point of ωD is any X ∈ ∆dom(D) such that ωD(X) = X . Any fixed-point
of ωD may be taken as the meaning for a set of inductive definitions without introducing
inconsistency into the system. The tool that we discuss in Chapter 5 makes no assumptions
about which fixed-point has been chosen, and thus its conclusions are sound for all fixed-
points. In order to formalize this, we introduce the following definition of satisfaction with
respect to a set of inductive definitions.

Definition 6. Let D be a set of inductive predicate definitions. Then we define satisfaction

of Q with respect to D as follows.

(s, h) |=D Q iff (s, h) |=X Q for all X ∈ ∆dom(D) such that ωD(X) = X

This will be the definition of satisfaction that we will use throughout the thesis as it
most closely captures the behavior of our static analysis tool. However, it is important to
ensure that the universal quantification in the definition above is not vacuously satisfied. If
there are no fixed-points for ωD, then (s, h) |=D Q is trivially satisfied for all s, h,Q, i.e.
the logic becomes inconsistent. We turn now to this issue, showing that ωD does in fact
always have fixed-points. Furthermore, these fixed-points are partially ordered and there
is always a least fixed-point with respect to this ordering.

Least Fixed-Points

We first prove the following lemma, which states that if the denotations of predicates
given by X ′ include more states than those given by X , then satisfaction with respect to X
implies satisfaction with respect toX ′. The fact that implication is not allowed in inductive
predicate definitions is crucial for this lemma.

34

2.2 Separation Logic

Lemma 5. Suppose X ∈ ∆N and X ′ ∈ ∆N for some N . Then

∀p,~v. (p ∈ N)⇒ X(p)(~v) ⊆ X ′(p)(~v) (2.4)

implies

∀s, h.
(
(s, h) |=X Q

)
⇒
(
(s, h) |=X′ Q

)
Proof. The proof is by induction on the structure of Q.

CASE Base Cases Not Involving Inductive Predicates: The base cases not involving in-
ductive predicates are Q = eb, Q = emp, and Q = ea 7→ [ρ]. In each case, the satisfac-
tion relation does not depend on the predicate meanings provided. For example, suppose
Q = eb. Then we have (s, h) |=X eb which implies JebK s = true. This then implies
(s, h) |=X′ e

b, which is our goal.

CASE Inductive Cases: Since we have disallowed implication in the body of inductive
definitions, the inductive cases all follow directly from the inductive hypothesis. To give
an example, suppose Q = ∃xa. Q′. Then we have (s, h) |=X ∃xa. Q′ and must show
(s, h) |=X′ ∃xa. Q′. According to the definition of satisfaction (Figure 2.7) our assumption
implies that for some v ∈ Addr we have (s[xa → v], h) |=X Q. Our inductive hypothesis
then gives us (s[xa → v], h) |=X′ Q. Thus, we have (s[xa → v], h) |=X′ Q for some
v ∈ Addr which implies (s, h) |=X′ ∃xa. Q′.

CASE Inductive Predicates: This is the only non-trivial case. We have Q = p(~e). Accord-
ing to the semantics in Figure 2.7 we have that (s, h) |=X p(~e) implies h ∈

(
X(p)(s(~e))

)
.

As we have assumed that (s, h) |=X Q is only defined when the predicate names appearing
inQ are in the domain ofX , we also have that p ∈ dom(X) which implies p ∈ N . We can
now apply assumption (2.4) to obtain h ∈

(
X ′(p)(s(~e))

)
. This implies (s, h) |=X′ p(~e),

which is our goal.

We next show that the following lemma holds of our definition of ωD. This will serve
as the basis for establishing a monotonicity property.

Lemma 6. Suppose X ∈ ∆dom(D) and X ′ ∈ ∆dom(D). Then

∀p,~v. (p ∈ dom(X))⇒ X(p)(~v) ⊆ X ′(p)(~v) (2.5)

35

2 Preliminaries

implies

∀p,~v. (p ∈ dom(D))⇒ ωD(X)(p)(~v) ⊆ ωD(X ′)(p)(~v)

Proof. Assume X ∈ ∆dom(D) and X ′ ∈ ∆dom(D) and suppose we have

∀p,~v. (p ∈ dom(X))⇒ X(p)(~v) ⊆ X ′(p)(~v)

Let p be an arbitrary predicate name in dom(D) and ~v be a list of values. We must show

ωD(X)(p)(~v) ⊆ ωD(X ′)(p)(~v) (2.6)

Expanding the definitions of ωD(X)(p)(~v) and ωD(X ′)(p)(~v) we obtain the following,
where Q is the body of the definition of p (that is, (p(~x) ≡ Q) ∈ D for some ~x).

ωD(X)(p)(~v) =
{
h
∣∣ ∃s. (s[~x→ ~v], h) |=X Q

}
ωD(X ′)(p)(~v) =

{
h
∣∣ ∃s. (s[~x→ ~v], h) |=X′ Q

}
Given these definitions, equation (2.6) is equivalent to the following.{

h
∣∣ ∃s. (s[~x→ ~v], h) |=X Q

}
⊆
{
h
∣∣ ∃s. (s[~x→ ~v], h) |=X′ Q

}
This holds if and only if the following holds for all h.(

∃s. (s[~x→ ~v], h) |=X Q
)
⇒
(
∃s. (s[~x→ ~v], h) |=X′ Q

)
This follows from Lemma 5. We have (s[~x→ ~v], h) |=X Q for some s. By Lemma 5 and
our assumption (2.5), we have

∀s, h.
(
(s, h) |=X Q

)
⇒
(
(s, h) |=X′ Q

)
Applying the above with s[~x → ~v] substituted for s then gives us (s[~x → ~v], h) |=X′ Q

which implies our goal of ∃s. (s[~x→ ~v], h) |=X′ Q.

A corollary of this lemma is that ωD is monotone with respect to v, an ordering on
functions defined as follows.

36

2.2 Separation Logic

Definition 7. Let X1 and X2 be elements in ∆N for some N . Then we define the ordering

v as follows.

X1 v X2 iff ∀p,~v. (p ∈ N)⇒ X1(p)(~v) ⊆ X2(p)(~v)

The set of names N will always be clear from context, so we do not include it in the
notation for the order v.

The monotonicity result is then the following.

Theorem 2. If X ∈ ∆dom(D) and X ′ ∈ ∆dom(D) and X v X ′ then ωD(X) v ωD(X ′).

Proof. We must show the following.

∀p,~v. (p ∈ dom(D))⇒ ωD(X)(p)(~v) ⊆ ωD(X ′)(p)(~v)

Our assumption that X v X ′ gives us the following.

∀p,~v. (p ∈ dom(D))⇒ X(p)(~v) ⊆ X ′(p)(~v)

Applying Lemma 6 then yields our goal.

Next, we define the following operation on sets of functions Xi.

Definition 8. For any set {X0, X1, . . .} of functions in ∆N , let
⊔
iXi be defined as follows.⊔

i

Xi =
{

(p, λ~v.
⋃
i

Xi(p)(~v)) | p ∈ N
}

This operation gives the supremum of the set {X0, X1, . . .}.

Theorem 3.
⊔
iXi is the supremum of the set {X0, X1, . . .} with respect to the order v.

Proof. We must show that ∀i. Xi v
⊔
iXi and

∀X. (∀i. Xi v X)⇒
⊔
i

Xi v X

or informally, that
⊔
iXi is an upper bound and that it is the least upper bound.

37

2 Preliminaries

Upper Bound We first show ∀i. Xi v
⊔
iXi. Choose some Xj . We must show that

Xj v
⊔
iXi. This holds if ∀p,~v. (p ∈ N) ⇒ Xj(p)(~v) ⊆ (

⊔
iXi)(p)(~v). Expanding the

definition of
⊔
iXi and applying the function, we have to show the following.

∀p,~v. (p ∈ N)⇒
(
Xj(p)(~v) ⊆

⋃
i

(Xi(p)(~v))
)

This holds since
⋃
iXi(p)(~v) contains Xj(p)(~v) (there is some i in this union such that

i = j which guarantees the inclusion).

Least Upper Bound We now show the following.

∀X. (∀i. Xi v X)⇒
⊔
i

Xi v X

We consider some X such that (∀i. Xi v X) and show
⊔
iXi v X . We must show the

following.
∀p,~v. (p ∈ N)⇒ (

⊔
i

Xi)(p)(~v) ⊆ X(p)(~v)) (2.7)

Our assumption (∀i. Xi v X) implies the following.

∀p,~v. (p ∈ N)⇒ ∀i. Xi(p)(~v) ⊆ X(p)(~v) (2.8)

Expanding the definition of
⊔
i(Xi) in (2.7) and reducing the function application, we

find that we must show

∀p,~v. (p ∈ N)⇒
⋃
i

(Xi(p)(~v)) ⊆ X(p)(~v))

This follows from (2.8) and the fact that
⋃
i(Xi(p)(~v)) is the supremum of the set

{X1(p)(~v), X2(p)(~v), . . .}.

That ωD is monotone with respect to v and
⊔

is the supremum with respect to v
implies that ωD has a least fixed-point.

Theorem 4. ωD has a least fixed-point.

38

2.2 Separation Logic

Proof. We first note that Theorem 3 implies that the lattice of interpretation functionsX is
complete. The current theorem then follows from Lemma 2 and application of the Tarski
fixed-point theorem.

Continuity Let ⊥ = {(p, λ~x. ∅) | p ∈ dom(D)}. Not only does ωD have a least fixed-
point, but this fixed-point is the least upper bound of the increasing chain ω0

D, ω
1
D, . . .,

where ωiD for i ∈ N is defined as follows.

ω0
D = ⊥

ωi+1
D = ωD(ωiD)

This is captured by the following theorems. These all rely on the fact that universal
quantification is not permitted in inductive predicate definitions.

Theorem 5. ωD is continuous.

Proof. We have shown that
⊔

is the least upper-bound. We must show that ωD pre-
serves least upper-bounds of directed sets (the definition of Scott continuity). Consider
a set X of functions in ∆dom(D) such that for all i, j, if Xi ∈ X and Xj ∈ X then
∃Xk. Xk ∈ X ∧ Xi v Xk ∧ Xj v Xk (that is, X is a directed set). We must show
that ωD(

⊔
X) =

⊔
(ωD(X)) where ωD(X) = {ωD(X) | X ∈ X}. Expanding the defini-

tion of ωD, we have the following for the left side of the equality.⋃
(p(~x) ≡ Q) ∈ D

{
(p, Y) | Y = λ~v. {h | ∃s. (s[~x→ ~v], h) |=⊔

X Q}
}

The right side becomes the following

⊔ ⋃
(p(~x) ≡ Q) ∈ D

{
(p, Y) | Y = λ~v. {h | ∃s. (s[~x→ ~v], h) |=X Q}

} ∣∣∣∣∣ X ∈ X

Applying the definition of

⊔
(Definition 7), the right side expands to the following.⋃

(p(~x) ≡ Q) ∈ D

{
(p, Y) | Y = λ~v.

⋃
i

{h |
(
∃s. (s[~x→ ~v], h) |=Xi Q

)
∧Xi ∈ X}

}
39

2 Preliminaries

Continuity will then be implied if we can show the following for all Q of our restricted
form (formulas not containing implication or universal quantification).(
{h | ∃s. (s[~x→ ~v], h) |=⊔

X Q}
)

=
(⋃

i

{h |
(
∃s. (s[~x→ ~v], h) |=Xi Q

)
∧Xi ∈ X}

)
Since an element is in the set on the left of the equality exactly when it is in some set being
unioned on the right, we have that the statement above holds if and only if we have the
following for all h.(

∃s. (s[~x→ ~v], h) |=⊔
X Q

)
⇔
(
∃Xi ∈ X.

(
∃s. (s[~x→ ~v], h) |=Xi Q

))
The right-to-left direction of the implication follows immediately from Lemma 5 and

the fact that for all Xi ∈ X we have Xi v
⊔

X.

We show the left-to-right direction by showing the following, stronger statement by
induction on the structure of Q.

∀s.
(

(s[~x→ ~v], h) |=⊔
X Q

)
⇒

∃s′. (s =fv(Q) s
′) ∧

(
∃Xi ∈ X.

(
(s′[~x→ ~v], h) |=Xi Q

))
CASE Base Cases Not Involving Inductive Predicates: The base cases not involving induc-
tive predicates areQ = eb, Q = emp, andQ = ea 7→ [ρ]. In each case, the satisfaction re-
lation does not depend on the predicate meanings provided. For example, supposeQ = eb.
Then we have (s[~x→ ~v], h) |=⊔

X eb, which is true if and only if JebK (s[~x→ ~v]) = true.
This implies (s[~x → ~v], h) |=Xi e

b for all Xi, thus implying our goal (we trivially have
s =fv(Q) s, which is the other potion of the goal formula).

CASE Q = Q1 ∗Q2: We assume that we have the following.

(s[~x→ ~v], h) |=⊔
X Q1 ∗Q2

The semantics of |=⊔
X then implies that there exist heaps h1 and h2 such that

dom(h1) ∩ dom(h2) = ∅ and h = h1 ∪ h2 and (s[~x → ~v], h1) |=⊔
X Q1 and

(s[~x→ ~v], h2) |=⊔
X Q2. Our inductive hypothesis then gives us the following

∃s′. (s =fv(Q1) s
′) ∧ ∃Xi ∈ X.

(
(s′[~x→ ~v], h1) |=Xi Q1

)
40

2.2 Separation Logic

and
∃s′′. (s =fv(Q2) s

′′) ∧ ∃Xj ∈ X.
(
(s′′[~x→ ~v], h2) |=Xj Q2

)
Let s′ and s′′ be as above. Since s =fv(Q1) s

′ and s =fv(Q2) s
′′ we can apply Lemma 4

to the formulas above to obtain

∃Xi ∈ X.
(
(s[~x→ ~v], h1) |=Xi Q1

)
and

∃Xj ∈ X.
(
(s[~x→ ~v], h2) |=Xj Q2

)
Let Xi and Xj be the functions whose existence is stated in the formulas above. Then

the assumption that X is directed implies that there is some Xk such that Xk ∈ X

and Xi v Xk and Xj v Xk. Lemma 5 then gives us (s[~x → ~v], h1) |=Xk Q1 and
(s[~x → ~v], h1) |=Xk Q1. We can then combine these and apply the definition of |=Xk

(Figure 2.7) to conclude the following, which is the second conjunct of our goal.

∃Xk ∈ X.
(
(s[~x→ ~v], h2) |=Xk Q1 ∗Q2

)
The first conjunct of the goal is s =fv(Q) s, which is immediate.

CASE Q = Q1 ∧ Q2 and Q = Q1 ∨ Q2: These cases are very similar to the case above.
For Q1 ∧Q2, we have the assumption below.

(s[~x→ ~v], h) |=⊔
X Q1 ∧Q2

Applying the definition of |=⊔
X gives us (s[~x→ ~v], h) |=⊔

X Q1 and (s[~x→ ~v], h) |=⊔
X Q2.

Applying the inductive hypothesis yields (s′[~x→ ~v], h) |=Xi Q1 and (s′′[~x→ ~v], h) |=Xj Q1

where s =fv(Q1) s
′ and s =fv(Q2) s

′′. Applying Lemma 4 yields (s[~x → ~v], h) |=Xi Q1

and (s[~x → ~v], h) |=Xj Q2. Let Xk be the upper bound of Xi and Xj . We
then have (s[~x → ~v], h) |=Xk Q1 and (s[~x → ~v], h) |=Xk Q2, which implies
(s[~x→ ~v], h) |=Xk Q1 ∧Q2, which is our goal.

ForQ1∨Q2 the proof is similar except that we only have one of (s[~x→ ~v], h) |=⊔
X Q1

or (s[~x→ ~v], h) |=⊔
X Q2. Without loss of generality, suppose it is (s[~x→ ~v], h) |=⊔

X Q1

that holds. We then apply the inductive hypothesis, obtaining (s′[~x → ~v], h) |=Xi Q1 and

41

2 Preliminaries

s =fv(Q1) s
′. Let s′′ be defined such that s′′(x) = s′(x) if x ∈ fv(Q1) and s′′(x) = s(x)

otherwise. Consider some y ∈ fv(Q1 ∨Q2). There are two cases. If y ∈ fv(Q1), then we
have s′′(y) = s′(y) and, due to s′ =fv(Q1) s, we also have s′′(y) = s(y). If y 6∈ fv(Q1)

then we have s′′(y) = s(y) by the definition of s′′. Thus we have shown s =fv(Q) s
′′. By

Lemma 4 we also have (s′′[~x→ ~v], h) |=Xi Q1. Thus we have shown our goal.

CASE Q = ∃y. Q1: We first assume that y is distinct from all elements of ~x. This
can always be made to hold via α-conversion. We have from the semantics of existential
quantification that there is some vy such that ((s[~x → ~v])[y → vy], h) |=⊔

X Q1. As y is
distinct from all elements of ~x, we have that (s[~x → ~v])[y → vy] = (s[y → vy])[~x → ~v].
We can then apply our inductive hypothesis with s = s[y → vy]. This yields
∃s′. (s′[~x → ~v], h) |=Xi Q1 for some Xi and s =fv(Q1) s

′. By the case for existentials
in the semantics of |=Xi , this then implies ∃s′. (s′[~x → ~v], h) |=Xi ∃y. Q1, which is the
second conjunct of our goal. The first conjunct, s =fv(Q) s

′, is implied by our assumption
s =fv(Q1) s

′ and the fact that fv(Q1) ⊇ fv(Q).

CASE Q = p(~e): In this case, we have (s[~x→ ~v], h) |=⊔
X p(~y). The semantics for |=⊔

X

from Figure 2.7 then gives us

h ∈
(⊔

X(p)(JeK s[~x→ ~v]
)

Applying the definition of
⊔

, this implies the following, where Xi ∈ X.

h ∈
⋃
i

(
Xi(p)(JeK s[~x→ ~v])

)
This implies that there is some Xj ∈ X such that h ∈ Xj(p)(JeK s[~x → ~v]). Again
applying the semantics from Figure 2.7, we obtain

(s[~x→ ~v], h) |=Xj p(~e)

We clearly have s =fv(Q) s, so introducing an existential on s then gives us our goal.

Theorem 6. Let ⊥N = {(p, λ~x. ∅) | p ∈ N}. Then ⊥N is the least element of ∆N with

respect to v.

42

2.2 Separation Logic

Proof. We will show that for all X in ∆N we have ⊥N v X . Consider an arbitrary
X ∈ ∆N . Expanding the definition of v, we must show that

∀p,~v. (p ∈ N)⇒ ⊥N(p)(~v) ⊆ X(p)(~v)

Suppose p ∈ N and choose an arbitrary ~v. Expanding the definition of ⊥N , we must show
∅ ⊆ X(p)(~v). But this is immediate since ∅ is the least element with respect to ⊆.

Theorem 7. The least fixed-point of ωD is
⊔
{ωiD | i ∈ N}, where ωiD is defined as follows.

ω0
D = ⊥dom(D) (2.9)

ωi+1
D = ωD(ωiD)

Proof. This follows from Theorem 6, Theorem 5, and Scott’s fixed-point theorem.

Least Fixed-point Semantics of Satisfaction The benefit of the theory of least fixed-
points developed above is two-fold. First, it ensures that fixed-points exist and thus that
Definition 6 does not vacuously hold. Furthermore, least fixed-points are often taken as
the semantics of inductive definitions. Rather than Definition 6, we could have introduced
the following.

Definition 9 (Alternate Satisfaction Relation). Let D be a set of inductive predicate def-

initions and let lfp(ωD) be the least fixed-point of ωD with respect to v. Then we define

least fixed-point satisfaction of Q with respect to inductive definitions D as follows.

(s, h) ||=D Q iff (s, h) |=lfp(ωD) Q

The development in this thesis does not depend on which fixed-point is taken as the
meaning of a set of inductive predicates and could be carried out with either Definition 6 or
Definition 9. We chose Definition 6 since it is more general, in the sense that (s, h) |=D Q
implies (s, h) ||=D Q. This ensures that all results given in terms of the satisfaction relation
in Definition 6 also hold for the definition of satisfaction in terms of least fixed-points
(Definition 9).

43

2 Preliminaries

Example Let D be the definition list containing the single inductively-defined predicate
below.

ls(n, start , end) ≡

(emp ∧ start = end ∧ n = 0)

∨ (n > 0 ∧ (∃z. (start 7→ [next : z]) ∗ ls(n− 1, z, end)))

Then lfp(ωD) is the function that maps ls to the following function (where #(S) represents
the cardinality of set S).

λ(n, s, e).
{
h
∣∣ #(dom(h)) = n ∧

∃a1, . . . , an. s = a1 ∧ e = an ∧

(∀i. 1 ≤ i < n⇒ (ai ∈ dom(h) ∧ h(ai) = {(next, ai+1)}))
}

This maps the tuple (n, s, e) to the set of heaps containing only cells that are structured as
a solitary singly-linked list segment of length n. Examples of such heaps are the empty
heap {}, the singleton heap {(s, {(next, e)})} and the heap below, which contains a list
segment of length 3 (in the set below, a0 and a1 must be chosen such that a0, a1 and s are
all distinct).

{(s, {(next, a0)}), (a0, {(next, a1)}), (a1, {(next, e)})}

Defining Inductive Predicates With Characteristic Formulae

An alternative to defining an inductive predicate symbol as above is to describe it in terms
of the properties it satisfies. The key property of an inductive definition is that the inter-
pretation of the definition should establish an equivalence between the predicate and the
body of the definition. In fact, we will show in this section that requiring the predicate to
satisfy this equivalence is just the same as defining it via fixed-points as we did before. We
present this alternate approach because it more closely matches the reasoning performed
by the tool we have developed (which is described in Chapter 5).

First we define the characteristic formula associated with a definition. This is the
equivalence that we expect the interpretation of the predicate to satisfy.

44

2.2 Separation Logic

Definition 10. Let the characteristic formula of a set of inductive definitions D, denoted

dDe, be defined as follows.

dp1(~x1) ≡ Q1 :: . . . :: pn(~xn) ≡ Qne
def
=

(∀~x1. p1(~x1)⇔ Q1) ∧ . . . ∧ (∀~xn. pn(~xn)⇔ Qn)

Then we can show the following, which states that the set of fixed-points of D is
exactly the set of interpretations satisfying the characteristic formula of D. Recall that
|= Q holds if and only if (s, h) |= Q holds for all s, h.

Theorem 8. For all s, h,D, Q, we have (s, h) |=D Q if and only if (s, h) |=X Q holds for

all X ∈ ∆dom(D) such that |=X dDe.

Proof. We first note that the definition of (s, h) |=D Q states that (s, h) |=X′ Q for all X ′

such that ωD(X ′) = X ′. We can complete the proof by showing that ωD(X) = X if and
only if |=X dDe.

Let D = p1(~x1) ≡ Q1 :: . . . :: pn(~xn) ≡ Qn. Then dDe is the formula below.

(∀~x1. p1(~x1)⇔ Q1) ∧ . . . ∧ (∀~xn. pn(~xn)⇔ Qn)

Since we have |=X dDe, this implies that for all s, h we have

(s, h) |=X (∀~x1. p1(~x1)⇔ Q1) ∧ . . . ∧ (∀~xn. pn(~xn)⇔ Qn)

Applying the semantics of satisfaction from Figure 2.7, we then have the following for
each s, h, i, ~v.

(s[~xi → ~v], h) |=X (pi(~xi)⇔ Qi) (2.10)

We must show that ωD(X) = X implies the formula above for each s, h, i, ~v,
as well as the reverse implication. We have that ωD(X) = X if and only if(
ωD(X)

)
(pi)(~v) = X(pi)(~v) for all pi ∈ dom(D). Expanding ωD in the previous for-

mula, we obtain the following for each i.

{h | ∃s. (s[~xi → ~v], h) |=X Qi} = X(pi)(~v) (2.11)

45

2 Preliminaries

We now show that (2.10) holds if and only (2.11) does, thus completing the proof. Suppose
(2.10) holds. Then we have (s[~xi → ~v], h) |=X pi(~xi) if and only if (s[~xi → ~v], h) |=X Qi.
Expanding the definition of satisfaction, we obtain h ∈ X(pi)(J~xiK s[~xi → ~v]) if and only
if (s[~xi → ~v], h) |=X Qi or, simplifying further, the following.

h ∈ X(pi)(~v) iff (s[~xi → ~v], h) |=X Qi

This holds if and only if

X(pi)(~v) = {h | (s[~xi → ~v], h) |=X Qi}

To show our goal (2.11) we must show that (s[~xi → ~v], h) |=X Qi if and only if
∃s. (s[~xi → ~v], h) |=X Qi. The forward direction is immediate. The backward direction
follows from Lemma 4 and the fact that, since Qi is the body of an inductive definition
with arguments ~xi, we have fv(Qi) ⊆ ~xi. Since s[~xi → ~v] =~xi s

′[~xi → ~v] for any s, s′, the
Lemma allows us to assume the existence of some s′ such that (s′[~xi → ~v], h) |=X Qi and
conclude that (s[~xi → ~v], h) |=X Qi.

We will see the utility of this theorem when we discuss our implementation’s treatment
of inductive predicates in Section 5.2.

Induction Induction is commonly used to prove properties of inductively defined struc-
tures. Least fixed-points come with a built-in induction principle based on the construction
given in Theorem 7. When working in the context of the satisfaction relation given as Def-
inition 6, we do not have this principle available. However, we can still use mathematical
induction over the naturals as a justification for inductive proofs. For example, given the
list segment predicate ls from our example (page 44), we can show the following by in-
duction on n1.

∀n1, n2, x, y, z. ls(n1, x, y) ∗ ls(n2, y, z)⇒ ls(n1 + n2, x, z)

Even when there is no parameter present that is suitable for induction, we can still use
induction over the size of satisfying heaps to prove properties of our data structures.

46

2.3 Semantics of Programs

2.3 Semantics of Programs

A program can be viewed as defining a transition system. In this section we first give the
general definitions related to transition systems and then discuss the interpretation of a
program as a transition system.

2.3.1 Transition Systems

Definition 11. A transition system S is a tuple (A, I, F, 99K) where A is a set of states,

I ⊆ A is a set of initial states, F ⊆ A is a set of final states, and 99K ⊆ A × A is a

transition relation.

Each transition system defines a set of traces, which are sequences of states where
adjacent states are related by the transition relation. We use the following standard notation
for sequences.

ε is the empty sequence.

γ is a sequence consisting of one element—the execution state γ.

If T1 and T2 are sequences, then T1 T2 is the sequence that results from concatenating
T1 and T2. If T1 is infinite, then T1 T2 = T1.

γ ∈ T holds iff ∃T1, T2. T = T1 γ T2.

len(T) is the length of sequence T . If T is finite this is the number of elements in
T . If T is infinite, then len(T) = ω.

T (i) is the ith element of T , with the first element given by T (0). This is only defined
if 0 ≤ i < len(T). The last element of a finite sequence T is given by T (len(T)−1).

Tn is the trace obtained by discarding the first n elements of trace T . That is, if
T = γ0 γ1 . . . γn−1 T

′ then Tn = T ′. If len(T) ≤ n then Tn = ε.

We then define traces as follows.

47

2 Preliminaries

Definition 12. T is a trace of transition system (A, I, F, 99K) iff

1. len(T) > 0

2. T (0) ∈ I

3. ∀i. if 0 ≤ i < (len(T)− 1) then T (i) 99K T (i+ 1)

4. T finite implies T (len(T)− 1) ∈ F .

We write traces(A, I, F, 99K) to represent the set of traces of the transition system
(A, I, F, 99K).

2.3.2 Programs As Transition Systems

We will now discuss how to form the transition system corresponding to a program P . We
first define −→

P
, the transition relation associated with program P .

Definition 13. Given program P , let −→
P

be the least relation satisfying the following.

1. If γ1 ; γ2 then γ1 −→
P

γ2

2. goto(l, (s, h)) −→
P
〈P (l), (s, h)〉

This definition states that the program transitions as long as either the current continu-
ation can transition via the ; relation or a goto(l, (s, h)) state has been reached, in which
case execution proceeds from the continuation at l.

We can now define the interpretation of a program as a transition system. Recall that
G is the set of all execution states.

Definition 14. We write ((P |Q0)) to represent the transition system corresponding to pro-

gram P with initial precondition Q0. Let I and F be sets of states defined as follows.

I =
{
goto(l0, (s, h))

∣∣ (l0 = initloc(P)) ∧ (s, h) |= Q0

}
F =

{
final(s, h)

∣∣ s ∈ Stores ∧ h ∈ Heaps
}
∪
{
error

}
Then ((P |Q0)) = (G, I, F,−→

P
).

48

2.3 Semantics of Programs

The semantics of a program P is then taken to be the set of traces produced by the
transition system corresponding to P .

Definition 15. The meaning of program P in initial state Q0 is the set of traces given by

traces((P |Q0)).

Note that infinite traces arise not from execution at the continuation level, as continu-
ations always terminate, but rather from the execution of an infinite sequence of continua-
tions, each of which reaches a goto l statement for some label l.

2.3.3 Transitive Closure of Relations

In addition to the relations −→
P

and ;, we will also use their non-reflexive transitive
closures, defined as follows.

Definition 16. If R is a relation of type A×A→ Bool for some set A, then the transitive
closure of R, written as R+ is the least relation satisfying

∀a, b ∈ A. aR+b⇔ ((aRb) ∨ (∃c ∈ A. aRc ∧ cR+b))

Thus, −→
P

+ indicates the transitive closure of the −→
P

relation, ;+ is the transitive
closure of ;, etc.

2.3.4 Deadlock and Angelic Non-determinism

We now consider how our semantics of branch statements interacts with the program se-
mantics just presented. In particular, we consider what occurs in an execution state of the
form

〈branch e1 ⇒ k1, . . . , en ⇒ kn end, (s, h)〉

where JeiK s = false for all i. Such a state cannot make any transitions, thus it could only
appear at the end of a finite trace. But this is not permitted, since Definition 12 states that
the last state in a finite trace must be in F , the set of final states. Definition 14 specifies F

49

2 Preliminaries

for our programs and this set does not contain any execution states of the form 〈k, (s, h)〉.
Such a state might be described as stuck or deadlocked. An important property of our trace
semantics is that traces are not allowed to contain deadlocked states.

We will further illustrate this with a concrete example. Consider the continuation be-
low.

k
def
=
(
branch true⇒ (branch e1 ⇒ k1 end), true⇒ (branch e2 ⇒ k2 end) end

)
Suppose T is a trace of a program containing k and that T (i) = 〈k, (s, h)〉. Then it must
be the case that Je1K s = true or Je2K s = true. Otherwise, execution would get stuck as
neither (branch e1 ⇒ k1 end) nor (branch e2 ⇒ k2 end) would be able to transition from
memory state (s, h). And as we just saw, such deadlocked states are not allowed to appear
in traces. Furthermore, if Je2K s = false then T (i+1) = 〈branch e1 ⇒ k1 end, (s, h)〉. That
is, non-determinism is resolved such that only cases which do not later cause execution to
deadlock are chosen. Such a situation is often described as angelic non-determinism. But
why is this the appropriate treatment of non-determinism here?

One answer is that, in some sense, it does not matter how we choose to deal with stuck
branches. The source language we actually consider—the C programming language—
contains only total branches, which are branches where the disjunction of the branch con-
ditions is equivalent to true. This ensures that, in the source program, execution can never
get stuck at a branch point. For any branch, there is always a well-defined next state.

Our soundness theorem will then tell us that every trace of the original program cor-
responds to a trace of the numeric program. Thus, the fact that the numeric program
throws away deadlocked traces does not hurt us, since soundness tells us that those traces
were not necessary in order to obtain an over-approximation1. Once we have an over-
approximation, this can be used to prove a variety of properties of the original program, as
we will see in Chapter 3.

If it does not matter for soundness, then why then do we bother with this interpretation
of branches? The reason is that the numeric programs we generate constitute an inter-

1For the purposes of this discussion, a program P ′ is an over-approximation of a program P iff the set
of traces of P ′ contains the set of traces of P . More details are given in Chapter 3.

50

2.4 Representing C Programs

mediate language for communicating with an external verification tool (an intermediate
language that corresponds to the input language of the tool). As such, it makes sense to
leverage the full power of this language and include the constructs that have proved to be
useful when verifying programs (and which are thus supported by most external verifica-
tion tools).

One such construct is the “assume” statement, which lets us represent—in the code—
properties that we know to be true at a given program point. For example, suppose that,
from a verification standpoint, the only important property of a library routine foo(x) is
that it always returns a non-negative number. Then we can represent this in the code by
replacing the statement “y = foo(x)” with “y := ?;assume(y ≥ 0)”. The statement
“assume(y ≥ 0)” indicates that we should only consider traces for which y ≥ 0 is true at
this point, and discard all other traces. Our branch statements, with the given semantics,
are similar in that the continuation “branch e1 ⇒ k1, e2 ⇒ k2 end” states that only traces
where e1 or e2 are true need to be considered. If we have only one condition, as in the
continuation “branch e ⇒ k end,” then the semantics correspond exactly to our informal
description of assume(e) and we will adopt the notation assume(e);k as an abbreviation
for branch e⇒ k end.

In summary, since verification generally views a program as representing a set of traces
and attempts to over- or under-approximate those traces, having a command in the lan-
guage for filtering trace sets is very useful. Our semantics for the “branch . . . end” con-
struct provides this. The difficulties that may be encountered if one attempts to actually
implement such a command are not a concern, since the source programs we consider do
not make use of the trace filtering aspect of these commands.

2.4 Representing C Programs

The C language syntax contains a number of ambiguities and corner cases as described
in [Necula et al., 2002]. In our implementation, we use the framework described in that
paper (CIL) to reduce C to a more regular subset of the language. We will not go into

51

2 Preliminaries

a large amount of detail on how CIL constructs can be translated into our language (the
CIL syntax is rather involved), but we will address some of the high-level issues that arise
when working with code originally written in the C language.

2.4.1 Control Flow

Figure 2.9 shows how various control-flow constructs can be interpreted. The constructs
considered in that figure are all well-structured, in that they do not contain jumps out of
loops or case statements that fall through. Such irregular flow-of-control can be dealt with
by asking CIL to convert break and continue statements into explicit gotos.

2.4.2 Memory Operations

Memory operations in C are considerably more complex than those permitted by the lan-
guage in Section 2.1. However, they can be reduced to the simpler memory model that we
use for our logic and analysis by a number of conversions. In the following, we will use the
terminology record to refer to a collection of values structured using named fields. In C,
these same constructs are called structures or structs. C requires that structure definitions
and types always be proceeded by the struct keyword.2

Nested Records The C language allows nested records, as below, where (*out) indi-
cates the dereference of the memory cell at the address stored in out.

struct inner {

int x;

int y;

};

struct outer {

2There are ways around this syntactic inconvenience, but for clarity and consistency, we do not use such
tricks in these examples.

52

2.4 Representing C Programs

int x;

struct inner in;

};

int main() {

struct outer *out;

out = malloc(sizeof(struct outer));

(*out).in.x = 5;

...

}

Such records can be flattened to contain only a single level of fields. If there are naming
conflicts, as there are in this example, then fields must be renamed to avoid clashes. Code
equivalent to the above that uses only a single level of record structure is given below.

struct outer {

int x;

int in_x;

int in_y;

};

int main() {

struct outer *out;

out = malloc(sizeof(struct outer));

(*out).in_x = 5;

...

}

The code for main in our syntax then becomes

out := alloc(xi, in xi, in yi);

out.in x := 5;

halt

53

2 Preliminaries

if(e) {
c1

} else

c2

}
l1 : c3

=⇒

branch e⇒ ctrans(c1); goto l1,

¬e⇒ ctrans(c2); goto l1 end

; l1 : ctrans(c3)

l1 : while(e) {
c1

}
c2

=⇒
l1 : branch e⇒ ctrans(c1);goto l1,

¬e⇒ ctrans(c2) end

switch(e) {
case e1 : c1; break;

case e2 : c2; break;
...

case en : cn; break;

}
l1 : c

=⇒

branch (e = e1)⇒ ctrans(c1); goto l1,

(e = e2)⇒ ctrans(c2); goto l1,

...

(e = en)⇒ ctrans(cn); goto l1 end

; l1 : ctrans(c)

Figure 2.9: Translations of C programs with regular control-flow into the syntax presented in Sec-

tion 2.1. The function “ctrans()” represents a recursive application of these rules. We assume that

fresh labels (li) are generated and inserted in the C program wherever necessary to apply these

rules. Translations for atomic commands are not given, but are discussed in Section 2.4.2.

If the record is not heap-allocated, but instead allocated on the stack, as in the main
procedure given below, then we can convert the record fields to stack variables. For exam-
ple, consider the code below.

int main() {

struct outer out;

out.in_x = 5;

...

}

This becomes the following.

54

2.4 Representing C Programs

int main() {

int out_x;

int out_in_x;

int out_in_y;

out_in_x = 5;

...

}

Translated into our language, this corresponds to

out in x := 5; halt

Addresses of substructures The above tricks for nested records fail in the presence of
the “address-of” operator. For example, C permits the following, which specifies a record
within a record and then uses “address-of” (the “&” operator) to obtain a pointer to the
inner record.

int get_x(struct inner *in) {

return (*in).x;

}

int main() {

struct outer out;

...

int x = get_x(&out.in);

...

}

In such cases, to perform a faithful translation, we have to keep the record nesting
explicit, using pointers to connect the inner and outer records. In general, any time a
component of a record may have its address taken, we have to ensure that this component
is allocated as a separate heap cell. Below, we give the translation of the code above,

55

2 Preliminaries

including updated versions of the structure definitions. Note that the inner structure is now
explicitly allocated on the heap.

struct inner {

int x;

int y;

};

struct outer {

int x;

struct inner *in;

};

int get_x(struct inner *in) {

return (*in).x;

}

int main() {

struct outer out;

out.in = malloc(sizeof(struct inner));

...

int x = get_x(out.in);

...

}

This can then be translated to the following code in our system (where the call to
get x has been inlined).

out in := alloc(xi, yi);

x := out in.x

56

2.4 Representing C Programs

Pass by reference The “address-of” operator is also used to get around the call-by-value
nature of C language functions. In the following example, the function add front uses
double-indirection to update the list pointer that is passed in by the main function.

struct list {

struct list *next;

int data;

};

void add_front(struct list **lst, int v) {

struct list *temp = malloc(sizeof(struct list));

temp->data = v;

temp->next = (*lst);

*lst = temp;

}

int main() {

struct list *p;

p = 0;

add_front(&p, 1);

add_front(&p, 2);

add_front(&p, 3);

...

}

For such cases, as with nested records whose address is taken, we have to insert code
that lays out the structure in memory and change commands that access the structure in a
way this is consistent with the semantics of the original code. The basic rule is the same
as before: any piece of memory that may have its address taken must be allocated as a
separate cell in the heap. The code below is the translation of the code above. Only the
code in main needs to be changed.

int main() {

57

2 Preliminaries

struct list **p;

p = malloc(sizeof(struct list *));

*p = 0;

add_front(p, 1);

add_front(p, 2);

add_front(p, 3);

...

}

In general, if we have a stack variable x of type t whose address is taken, we must
change the type of x to “pointer to t.” At the start of the scope containing x, we allocate a
new heap cell and set x to the address of this cell. Commands that previously accessed x
are changed to instead access *(x) (the dereference of x) and commands that had the form
&x (address of x) are changed to instead refer to x directly.

The reason these rewrites are required is that, in our memory model, all fields asso-
ciated with a record are always referred to through a common address. Other models are
possible, in which record components are given different, often related, addresses. For
example, if addresses are taken to be natural numbers, record components can be laid out
sequentially in memory. Such models are sometimes referred to as field splitting models

(Berdine [2006]) and, while they enable easier treatment of record components whose ad-
dress is taken, they make it harder to write a rule for C-style de-allocation (where calling
free(x) causes the entire contiguous block starting at x to be freed).

2.4.3 Unhandled Features

There are a number of C language features that cannot be translated into the program rep-
resentation presented in Section 2.1. Pointer arithmetic cannot be translated, as we have
adopted a type system specifically aimed at eliminating that feature. Our language’s inte-
ger variables also do not match up exactly with C’s integers. Our integers are unbounded
whereas in C there are several types of integer variable, each of which can store different,
finite subsets of the integers. For example, “unsigned long x” declares x to be a

58

2.4 Representing C Programs

variable that can store an unsigned 32-bit value (that is, a value in the range 0 to 232 − 1).
Such types could be easily added to our system. In addition to the types a and i that we
have already, we would simply have additional base types representing bounded integers
for which mathematical operations are performed modulo the range.

Such additional types do not cause problems, and in fact are included in our imple-
mentation. However, since our focus is on the type a of addresses and the analysis of data
structures built through pointer manipulations, we omit these types from the theory pre-
sented here. Note that even if we add integer types corresponding to C’s bounded integers,
we still must retain the unbounded integer type i. This is needed because the size measures
associated with data structures are unbounded.

This distinction between bounded and unbounded integers must be kept in mind when
choosing tools to apply to the numeric programs that our algorithm generates. Since our
numeric programs involve unbounded integers, the tools we use to analyze them must
support these. Otherwise, we can end up with cases where, for example, we repeatedly
cons onto a list, increasing the length by one each time, but due to modular arithmetic the
tool concludes that the list is eventually empty (length equal to zero).

Finally, we do not support arrays or unions. Verification of arrays has been extensively
studied [Halbwachs and Péron, 2008, Bozga et al., 2009, Gopan et al., 2005] and most of
these approaches could likely be incorporated into our analysis to provide some level of
support for arrays. A straightforward combination, such as a direct product of domains
[Cousot and Cousot, 1979] would allow for tracking of heap properties and tracking of ar-
ray properties, but would not permit interaction between the two. However, in C there are
many ways in which arrays and the heap can interact—perhaps more so than in other lan-
guages since C considers arrays to be pointers and allows them to appear in most contexts
where a pointer would be expected. Tracking such interactions is an interesting avenue of
future work, but is outside the scope of this thesis.

59

2 Preliminaries

2.5 Generating C Programs

The end goal of our analysis is to convert a program in the language given in Figure 2.1
into another program that only manipulates integer-valued variables and which can be
passed to a separate program analysis tool for further checking. The program we generate
will also be in the language given in Figure 2.1 and so we must consider how we will
represent this program in a format that standard verification tools can accept. Most of our
commands have standard analogues in C and other imperative languages. The exceptions
are non-deterministic assignment (x := ?) and our branch construct.

The input format for program analysis tools is generally either some specific program-
ming language, such as C or Java, or some form of transition system. The details vary and
we will not go into the specific translations required for each tool. Instead, we note that
we can generally perform such translations provided that the input language for the tool
supports two basic features: non-deterministic values and assume statements.

Non-deterministic Values Non-determinism is often used by analysis tools to abstract
portions of the code. For example, functions can sometimes be soundly abstracted by
assuming that their result is non-deterministically chosen. Suppose we are checking the C
code below for memory safety.

a = foo();

if(a > 0) {

int x = malloc(sizeof(int));

*x = 0;

}

else {

a = a - 1;

}

Memory safety of this piece of code does not depend on the value of a, nor does it
depend on which branch is taken (both branches are memory safe from any starting state).
If we know that foo does not access the heap, then assuming that foo returns a non-

60

2.5 Generating C Programs

deterministically chosen value still results in sound reasoning about memory safety and
allows us to avoid analyzing the body of foo (which may be quite large).

Because this is a common abstraction technique, verification tools often expose the
ability to generate non-deterministically chosen values. For example, BLAST recog-
nizes the special identifier BLAST NONDET, which always represents a fresh, non-
deterministically-chosen value. Systems without a special non-deterministic value often
interpret undefined functions non-deterministically. For example, in ARMC, the code
x = foo(); is equivalent to x := ? in our language if the function foo is undefined.

Assume Statements Another common feature is support for assume statements. The
semantics of the sequence of statements assume(e); c is defined such that control only
passes to c if the expression e is true. Otherwise, execution blocks or silently halts. The
effect of this, and the source for this statement’s name, is that it allows a program analysis
tool to add the assumption e to the current symbolic state before analyzing c.

These statements can be used to model functions more precisely than non-deterministic
values alone allow us to. For example, if foo is known to return a positive value and not
modify the global state, then the command x := foo() can be abstracted by the code
x = nondet; assume(x > 0); where nondet represents a non-deterministically
chosen value. Our semantics results in the non-determinism being resolved angelically—
that is, a non-deterministic value is chosen which satisfies the following assume statement.

Often, verification tools accept a version of C that is augmented with an assume state-
ment that has the semantics above. Even if assume is not present in the input language
explicitly, the command

assume(e); c

can be modeled as

if(e)

{ c }

else

{ exit(0); }

61

2 Preliminaries

where exit(0) causes normal (non-error) termination of the program.

Representing Branches These two features combine to let us faithfully encode our
branch construct. If we have the code below

branch e1 ⇒ k1

e2 ⇒ k2

...

en ⇒ kn end

then this can be encoded by the following sequence of conditionals, non-deterministic
assignment, and assume statements. We write c1 for the translation of k1, c2 for the
translation of k2, etc.

a = nondet;

if(a == 1)

{ assume(e1); c1; }

else if (a == 2)

{ assume(e2); c2; }

...

else if (a == n)

{ assume(en); cn; }

else

{ assume(false); }

This encoding ensures that all valid paths through the code will be explored. The
variable a can take on any value, and so any sound analysis tool must explore each branch.
In each case, the analysis is allowed to assume the condition for that case (e1, e2, etc.).
The branch where none of the conditions are true is modeled with assume(false),
which indicates that there are no valid executions along this branch (and this is exactly the
semantics of our branch construct in the case where all branch conditions are false).

62

Chapter 3

Abstractions and Program Properties

In Chapter 2 we gave the semantics of programs in terms of the traces produced by a
transition system. In this chapter, we present the logic we will use for describing properties
of these traces. A common language for describing properties of traces is linear temporal

logic (LTL) [Clarke et al., 1999], and the logic we describe in the next section is based on
this.

In addition to presenting the logic we use for stating program properties, we formally
define a notion of program abstraction in this section. Roughly, a program P ′ is an ab-
straction of program P with respect to some property φ if whenever φ holds of P ′, it also
holds of P .

When setting up a framework for program abstraction, it is common for a program
and its abstraction to require different numbers of executions steps to arrive at the same
result. To take a simple example, the command x := 1 and the commands skip;x := 1

both transition to a state in which x has the value 1, but the second sequence requires two
steps to reach this state.

This motivates the use of a logic for program properties that is not sensitive to the
number of steps taken and the logic we describe in this chapter has this property. We also
present equivalence relations between traces that are insensitive to the number of steps
taken and use this notion of equivalence to formally define a notion of program abstraction.

63

3 Abstractions and Program Properties

Finally, we conclude by highlighting four specific program properties that we have
focused on in our experiments.

The techniques used in this chapter are tailored toward our semantic domain but are
based on standard notions of stuttering equivalence, simulation and stuttering simulation
[Milner, 1971, Browne et al., 1988].

3.1 LTSL

In this section we describe a temporal logic based on LTL\X [Clarke et al., 1999], or
“linear temporal logic without X (the next-time operator).” This logic supports the stat-
ing of program properties involving constraints on ordering, necessity, and properties of
sequences of events, but does not permit specifications of exactly how many steps are
involved in satisfying the property. The variant of LTL\X presented here differs from
standard LTL\X in that the atomic propositions consist of separation logic formulae and
the traces over which temporal formulae are interpreted can be finite. The resulting logic
will be referred to as LTSL (for “linear temporal separation logic”). The syntax of the
logic is given in Figure 3.1.

An atomic formula is either a separation logic formula Q, the formula err, which rep-
resents an error state, the formula final, which represents a non-error final state, or the
formula atloc(l), which indicates that the current execution state is associated with label
l. An LTSL formula is then composed of these atomic formulae plus the temporal oper-
ators G,F, and U and the Boolean operators ·∧, ·∨ and ∼, corresponding to conjunction,
disjunction, and negation, respectively. We use these symbols in order to distinguish the
connectives at the level of path formulae from the connectives ∧,∨, and ¬ that were al-
ready defined for separation logic formulae. We define implication as a ·⊃ b if and only if
∼a ·∨ b.

The semantics of the LTSL constructs is defined in Figure 3.2. Recall that Tn is the
trace obtained by discarding the first n elements of trace T (resulting in the empty trace
ε if T does not contain at least n elements). A separation logic formula holds at a state

64

3.1 LTSL

State Formulae ς ::= Q | err | final | atloc(l)

Path Formulae φ ::= ς | φ ·∧ φ | φ ·∨ φ | ∼φ | Gφ | Fφ | φU φ

Figure 3.1: Syntax of the logic LTSL.

if the store and heap at that state satisfy the formula. The err and final formulas hold
of error and final states respectively. The atloc(l) formula holds if a state is of the form
goto(l, (s, h)). The semantics of the path formulas involves reasoning about a sequence
of states. The formula Gφ holds if φ holds globally—that is, it holds of every suffix of the
sequence. The formula Fφ holds if φ holds of some suffix of the sequence. If we interpret
the sequence as a series of points in time, then Gφ says that φ holds at all future points,
whereas Fφ says that φ holds at some future point. Note that “future” here includes what
might, in common usage, be referred to as the “present” (that is, it includes the first state
in the trace). The formula φ1 U φ2 holds when φ2 holds at some future point and φ1 holds
at every point up to (but not necessarily including) the point at which φ2 holds.

An LTSL formula holds of a transition system S if and only if it holds of all traces of
S. The relation T |=X φ below is the one given in Figure 3.2.

Definition 17. Let S be a transition system. Then S |=X φ iff ∀T ∈ traces(S). T |=X φ.

We say that an LTSL formula φ holds of a program P with initial states satisfying Q0 iff
((P |Q0)) |=X φ.

LTL\X is generally interpreted over infinite paths. However, our execution traces can
be finite and the semantics presented in Figure 3.2 provides for interpretation of LTSL
formulae over finite paths. This interpretation of the LTSL operators over finite paths
given here is consistent with the other common method of accommodating finite paths,
which is to extend them to infinite paths by replicating the final state.

Note that, as in the semantics for separation logic formulae given in Figure 2.7, the
satisfaction relation given here is parametric in the set of inductive predicates X . All the
properties we discuss in this section will hold for any set X satisfying the conditions given

65

3 Abstractions and Program Properties

STATE FORMULAE

γ |=X err iff γ = error

γ |=X final iff γ = final(s, h) for some s, h

γ |=X atloc(l) iff γ = goto(l, (s, h)) for some s, h

γ |=X Q iff there exists s, h such that (s, h) |=X Q and

(γ = 〈k, (s, h)〉 for some k, or γ = final(s, h), or

γ = goto(l, (s, h)) for some l)

PATH FORMULAE

T |=X ς iff len(T) > 0 and T (0) |=X ς

T |=X ∼φ iff T 6|=X φ

T |=X φ1 ·∨ φ2 iff T |=X φ1 or T |=X φ2

T |=X φ1 ·∧ φ2 iff T |=X φ1 and T |=X φ2

T |=X Gφ iff ∀i. 0 ≤ i < len(T) implies Ti |=X φ

T |=X Fφ iff ∃i. 0 ≤ i < len(T) and Ti |=X φ

T |=X φ1 U φ2 iff ∃i. 0 ≤ i < len(T) and Ti |=X φ2

and (∀j. 0 ≤ j < i implies Tj |=X φ1)

Figure 3.2: Semantics of LTSL formulae. The notation Ti denotes the suffix of T starting at position

i (where the first element has position 0). The satisfaction relation for Q is in Figure 2.7. We write

T 6|=X φ to indicate that the relation T |=X φ does not hold.

in Section 2.2.2. Thus, all theorems given in this section should be considered universally
quantified over X , unless otherwise specified.

3.1.1 Notation

To facilitate the compact representation of execution states, we will sometimes label con-
trol points in continuations with numbers enclosed in circles. We then use each number to
refer to the continuation starting at that point in the term. For example, the continuation

66

3.1 LTSL

below contains four numbered control points.

1 branch x = 0⇒ 2 x := x + 1; halt,

x > 0⇒ 3 x := x− 1; 4 halt end

The numbers then represent the following continuations:

1 ≡ branch x = 0⇒ x := x + 1; halt,

x > 0⇒ x := x− 1; halt end

(3.1)

2 ≡ x := x + 1; halt (3.2)

3 ≡ x := x− 1; halt (3.3)

4 ≡ halt

3.1.2 Examples

Consider the following program.

P1
def
=

L0 : 1 x := 0; 2 goto L1;

L1 : 3 branch x < 2⇒ 4 x := x + 1; 5 goto L1,

x ≥ 2⇒ 6 x := 0; 7 goto L1

end

Below is an example trace through this system. We only show the value of variable x since
this is the only variable that appears in the program. We start this example trace in a state
where x has the value 12. Similar traces would exist for all initial values of x.

67

3 Abstractions and Program Properties

goto(L0, ({(x, 12)}, {}))

〈 1 , ({(x, 12)}, {})〉

〈 2 , ({(x, 0)}, {})〉

goto(L1, ({(x, 0)}, {}))

〈 3 , ({(x, 0)}, {})〉

〈 4 , ({(x, 0)}, {})〉

〈 5 , ({(x, 1)}, {})〉

goto(L1, ({(x, 1)}, {}))

〈 3 , ({(x, 1)}, {})〉

〈 4 , ({(x, 1)}, {})〉

〈 5 , ({(x, 2)}, {})〉

goto(L1, ({(x, 2)}, {}))

〈 3 , ({(x, 2)}, {})〉

〈 6 , ({(x, 2)}, {})〉

〈 7 , ({(x, 0)}, {})〉

goto(L1, ({(x, 0)}, {}))
...

We will now state some properties satisfied by this trace. First, it does not terminate.
This corresponds to the LTSL formula ∼(F(final∨err)). It also visits location L1 infinitely
often. This corresponds to the formula G(F(atloc(L1))). Note that the formula G(F(ς))

does not, in general, guarantee that ς holds infinitely often. It can also be satisfied by finite
traces ending in a state satisfying ς . This means that our example formula G(F(atloc(L1)))

would also be satisfied by any finite trace ending in a state of the form goto(L1, (s, h)).
However, such traces are ruled out by the semantics of programs given in Definition 14.
Since the state goto(l, (s, h)) can always make a transition, it is not allowed to be the final
state in a trace.

68

3.1 LTSL

Finally, at label L1 in the example program, x is always less than or equal to 2, which
corresponds to the formula G(atloc(L1) ·⊃ x ≤ 2). All of these properties are satisfied by
all traces of the program and thus hold of the transition system ((P1 | true)).

As a second example, consider the program below.

P2
def
=

L0 : x := nil; a := 0; goto L1;

L1 : branch true⇒ t := alloc(next); t.next := x;

x := t; a := a + 1; goto L1,

true⇒ halt

end

This program satisfies the property G(atloc(L1) ·⊃ ls(a, x, nil)), where ls(a, x, nil) is
the predicate defined below, which states that there is a list of length a starting at memory
address x.

ls(n, start , end) ≡

(emp ∧ start = end ∧ n = 0)

∨ (n > 0 ∧ (∃z. (start 7→ [next : z]) ∗ ls(n− 1, z, end)))

It is also the case that every trace either visits location L1 infinitely often, or the trace termi-
nates in a state final(s, h). This corresponds to the property F(final) ·∨G(F(atloc(L1))).

3.1.3 Core Connectives

Not all the connectives defined in Figure 3.2 need to be considered primitive. Many can
be defined in terms of other connectives. The following list of connectives is sufficient to
define the others.

·∧ ∼ U

The following theorem shows how to define the other connectives in terms of these. In the
following, we write φ⇔ φ′ as shorthand for ∀T. (T |=X φ) iff (T |=X φ′).

69

3 Abstractions and Program Properties

Theorem 9.
φ1 ·∨ φ2 ⇔ ∼(∼φ1 ·∧ ∼φ2) (3.4)

Fφ⇔ true U φ (3.5)

Gφ⇔ ∼(F(∼φ)) (3.6)

Proof. Equivalence 1: φ1 ·∨ φ2 ⇔ ∼(∼φ1 ·∧ ∼φ2)

Suppose we have a trace T and T |=X φ1 ·∨ φ2. Then either T |=X φ1 or T |=X φ2.
Without loss of generality, suppose it is T |=X φ1 that holds. Then T |=X ∼φ1

does not hold and thus T |=X (∼φ1) ·∧ (∼φ2) does not hold. But this means that
T |=X ∼

(
(∼φ1) ·∧ (∼φ2)

)
does hold, thus establishing the forward direction of the equiva-

lence.

For the backward direction, assume that ∼(∼φ1 ·∧ ∼φ2) holds of T . Then (∼φ1 ·∧ ∼φ2)

does not hold of T . This implies that either ∼φ1 or ∼φ2 does not hold. Without loss of
generality, assume it is ∼φ1 that does not hold. Then φ1 does hold, which implies that
φ1 ·∨ φ2 does hold of T .

Equivalence 2: Fφ⇔ true U φ

Suppose T |=X Fφ for an arbitrary T . Then by the semantics in Figure 3.2 we have
that there is an i satisfying

0 ≤ i < len(T) and Ti |=X φ

We must show the following

∃i′. 0 ≤ i′ < len(T) and T ′i |=X φ and ∀j. 0 ≤ j < i′ implies Tj |=X true

We let i′ be i. Our assumption on i tells us that the formula 0 ≤ i′ < len(T) is satisfied,
as is Ti |=X φ. All that remains is to show

∀j. 0 ≤ j < i implies Tj |=X true

Since j < i′ and i′ < len(T) we have that j ≤ len(T)−2 and thus the trace Tj contains at
least two states. This implies that Tj(0) cannot be the final state in the trace Tj . This fact

70

3.1 LTSL

ensures that Tj(0) has either the form 〈k, (s, h)〉 or goto(l, (s, h)). In either case, we have
(Tj(0) |=X true) and thus (Tj |=X true). Since j was arbitrary, we have this for all j.

For the reverse direction, suppose that (T |=X true U φ) holds. Then we have

∃i. 0 ≤ i < len(T) and Ti |=X φ and ∀j. 0 ≤ j < i implies Tj |=X true

But this implies
∃i. 0 ≤ i < len(T) and Ti |=X φ

(we have simply dropped the last conjunct). This is the semantics of Fφ.

Equivalence 3: Gφ⇔ ∼(F(∼φ))

Suppose we have Gφ. Then by the semantics of LTSL (Figure 3.2) we have

∀i. 0 ≤ i < len(T) implies Ti |=X φ (3.7)

We must show that F(∼φ) does not hold. The proof is by contradiction. Suppose F(∼φ)

did hold. Then there would exist a j with 0 ≤ j < len(T) such that Tj |=X ∼φ. This
implies that Tj |=X φ does not hold. But by (3.7) we have that Tj |=X φ does hold,
leading to a contradiction.

For the backward direction, suppose that ∼(F(∼φ)) holds. Then we have that the fol-
lowing does not hold

∃i. 0 ≤ i < len(T) and Ti |=X ∼φ

This is equivalent to saying that the following formula does hold

∀i. ¬(0 ≤ i < len(T)) or Ti 6|=X ∼φ

Expanding the semantics of ∼, this is equivalent to

∀i. ¬(0 ≤ i < len(T)) or Ti |=X φ

If we now pick an arbitrary j and suppose that 0 ≤ j < len(T), then the assumption above
tells us that Tj |=X φ must hold. Thus we have

∀j. 0 ≤ j < len(T) implies Tj |=X φ

which is the definition of T |=X Gφ.

71

3 Abstractions and Program Properties

3.2 Stuttering Equivalence

We consider traces equivalent up to repeated states or stuttering. We use a definition of
stuttering based on that in [Manolios, 2001] and [Martı́-Oliet et al., 2008]. To formally
define stuttering, we first define what it means for traces to match according to an equiva-
lence relation E.

Definition 18. If T and T ′ are traces, we write matches(T, T ′, α, β, E) iff E is an equiv-

alence relation on states and α and β are strictly increasing functions α, β : N→ N with

α(0) = β(0) = 0 such that, for all i, j, k ∈ N,

α(i) ≤ j < α(i+ 1) and β(i) ≤ k < β(i+ 1)

implies(
j < len(T)⇔ k < len(T ′)

)
and

(
j < len(T)⇒ (T (j)) E (T ′(k))

)
The functions α and β partition the traces into matching segments. The condition that

(j < len(T)) ⇔ (k < len(T ′)) ensures that, if the traces are both finite, then the final
segment of T matches the final segment of T ′. It also ensures that if the final segment of
T ends at α(i) then α(i) = len(T) and β(i) = len(T ′). In essence, this states that there is
no segment that “straddles” the end of either trace.

We can now define stuttering equivalence of traces with respect to an equivalence
relation E.

Definition 19. Two traces T and T ′ are E-stuttering equivalent, written T ∼E T ′, iff

∃α, β. matches(T, T ′, α, β, E).

If two traces match, there is always a canonical α, β that witness this. The canonical
matching function for trace T , written BT , is defined below.

72

3.2 Stuttering Equivalence

Definition 20. Given a trace T , let BT be the strictly increasing function of type N → N
defined as follows.

BT (0) = 0

BT (i+ 1) =

the least j such that j > BT (i) ∧ ¬
(
(T (j)) E (T (BT (i)))

)
if such a j exists

len(T) if no such j exists and BT (i) < len(T)

and T is finite

BT (i) + 1 otherwise

The functionBT divides T into blocks such that all elements within the same block are
related by E and these blocks have maximum size. If T is finite, the last of these blocks
ends at len(T). If T is infinite, either the first case of the definition will apply infinitely
often, or we will eventually reach some tail consisting of elements that are all E-related.
If this happens, then the third case of the definition applies and BT begins counting up by
one at each step. Note that BT is clearly strictly increasing. For each case of the inductive
definition, we have that BT (i+ 1) > BT (i).

The following theorem then states that if a match exists, the matching functions can be
replaced with the canonical matching functions for the two traces.

Theorem 10. If matches(T, T ′, α, β, E) then matches(T, T ′, BT , BT ′ , E).

Proof. We haveBT (0) = 0 andBT ′(0) = 0 from the definition ofB. This is one condition
for matches(T, T ′, BT , BT ′ , E). To complete the proof, we must show that the following
holds for an arbitrary i, j, k.

BT (i) ≤ j < BT (i+ 1) and BT ′(i) ≤ k < BT ′(i+ 1)

implies(
j < len(T)⇔ k < len(T ′)

)
and

(
j < len(T)⇒ (T (j)) E (T ′(k))

)
Let i, j, k be as above. We then case split on the case of Definition 20 that was used to

define BT (i+ 1).

73

3 Abstractions and Program Properties

CASE 1 [First or second case of Definition 20 was used for BT (i + 1)] In this case, we
can establish the following, which states that if a block of BT ends at some index, then
there is also a block of α that ends at that index, and similarly for BT ′ and β. Furthermore,
if it is the rth block of α that coincides with BT , then it is also the rth block of β that
coincides with BT ′ .

∀q ∈ N. q ≤ i+ 1⇒ ∃r ∈ N. BT (q) = α(r) ∧BT ′(q) = β(r) (3.8)

Proof. We show this by induction on q. The 0 case is straightforward. We let r = 0. Since
BT (0), BT ′(0), α(0), and β(0) are all equal to 0, we have the equalities in the conclusion
immediately.

For the inductive case, we assume that there exists some r such that BT (q) = α(r)

and BT ′(q) = β(r) and we show there exists some s such that BT (q + 1) = α(s) and
BT ′(q + 1) = β(s) provided q + 1 ≤ i+ 1.

Showing BT (q + 1) = α(s) We have q + 1 ≤ i + 1, which implies q ≤ i. Since
BT (q+ 1) was defined by either the first or second case of Definition 20, we also have that
either there is some next block of elements not related by E to those at BT (q) or BT (q)

marks the start of the last block of E-related elements in a finite trace. Since α is strictly
increasing, there is some s such that α(s) ≤ BT (q + 1) < α(s+ 1). If α(s) = BT (q + 1)

then we have shown the first conjunct of our goal. We will show that in the other case we
obtain a contradiction. Suppose α(s) < BT (q + 1). Then we have

α(s) ≤ BT (q + 1)− 1 < BT (q + 1) < α(s+ 1) (3.9)

and thus, because we have matches(T, T ′, α, β, E), we know that the following holds.

T (BT (q + 1)− 1) E (T (BT (q + 1)))

This contradicts the maximality of block q of BT if BT (q + 1) is the index of the next
block that is not E-related to T (BT (q)) (that is, if BT (q + 1) is defined via the first case
in Definition 20). If BT (q + 1) = len(T) (that is, if BT (q + 1) was defined via the second

74

3.2 Stuttering Equivalence

case in Definition 20), then we case split on whether α(s) = len(T). If it does, then we
are done, as BT (q+ 1) = len(T) and thus BT (q+ 1) = α(s). If it does not, then we again
have (3.9). Because matches(T, T ′, α, β, E) holds, this implies BT (q + 1)− 1 < len(T)

if and only if BT (q + 1) < len(T). But this cannot be since BT (q + 1) = len(T).

Showing BT ′(q + 1) = β(s) To show that β(s) = BT ′(q + 1), we note that we
have α(r) = BT (q) and α(s) = BT (q + 1). This implies that there are s − r blocks
of α which correspond to the single block of BT from q to q + 1. Because we have
matches(T, T ′, α, β, E), each of these blocks of α must match the corresponding block
of β. This implies ∀x. β(r) ≤ x < β(s) ⇒ T ′(β(x)) E T ′(β(r)). To show that
BT ′(q + 1) = β(s), we must show that this segment from β(r) to β(s) constitutes
a maximal block of E-related elements in T ′. We already have that the elements are
E-related. To see that it is maximal, first note that one of the first two cases of Def-
inition 20 were used to define BT . From this, we have that either α(s) = len(T)

or ¬(T (α(r)) E T (α(s))). Due to matches(T, T ′, α, β, E), this implies that either
β(s) = len(T ′) or ¬(T ′(β(r)) E T ′(β(s))). In either case, we have a maximal block
of E-related elements in T ′ and so the definition of BT ′ ensures BT ′(q + 1) = β(s).

We now return to the proof of the following.

BT (i) ≤ j < BT (i+ 1) and BT ′(i) ≤ k < BT ′(i+ 1)

implies(
j < len(T)⇔ k < len(T ′)

)
and

(
j < len(T)⇒ (T (j)) E (T ′(k))

)
We first show the requirement that elements in the same block beE-related (the second

conjunct in the consequent). SupposeBT (i) ≤ j < BT (i+1) andBT ′(i) ≤ k < BT ′(i+1).
We have from (3.8) that there exists some r such that BT (i) = α(r) and BT ′(i) = β(r).
From matches(T, T ′, α, β, E) we then have T (α(r)) E T ′(β(r)) and thus we have
T (BT (i)) E T ′(BT ′(i)). Since BT (i + 1) is the first index s such that s > BT (i) and
either ¬(T (BT (i)) E T (s)) or j = len(T), we have that T (BT (i)) E T (j) for all j such
thatBT (i) ≤ j < BT (i+1). Similarly, sinceBT ′(i+1) is either len(T ′) or the index of the

75

3 Abstractions and Program Properties

first element after BT ′(i) in T ′ that is not E-related to BT ′(i), we have T ′(BT ′(i)) E T ′(k)

for all k satisfying BT ′(i) ≤ k < BT ′(i + 1). Since E is an equivalence relation and
T (BT (i)) E T ′(BT ′(i)), this gives us T (j) E T (k) as desired.

For the length requirement, we have that either the first or second case of the definition
of BT (i + 1) applies, implying that either BT (i + 1) < len(T) or BT (i + 1) = len(T).
In either case, for any j with BT (i) ≤ j < BT (i + 1) we have j < len(T). It remains
to show that for k satisfying BT ′(i) ≤ k < BT ′(i + 1) we have k < len(T ′). From (3.8)
we have that there is some r such that BT (i + 1) = α(r) and BT ′(i + 1) = β(r). This,
together with matches(T, T ′, α, β, E) and α(r) ≤ len(T) implies that β(r) ≤ len(T) and
thus BT ′(i+ 1) ≤ len(T ′), which implies k < len(T ′) as required.

CASE 2 [Third case of Definition 20 was used for BT (i + 1)] In this case, we have that
BT (i) is some point along an infinite tail of T where all elements are E-related. Let i′ be
the first element in this tail, which is necessarily less than or equal to BT (i). Either i′ = 0

or there is some block of E-related elements prior to this infinite tail. We consider each
case separately.

CASE i′ = 0: In this case, T consists entirely of an infinite sequence of elements that
are E-related. Since we have matches(T, T ′, α, β, E), this implies that T ′ is an infinite
sequence of elements such that for all x, x′ we have T (x)E T ′(x′). Given such a situation,
it trivially follows that for our j and k we have T (j) E T ′(k).

CASE i′ > 0: In this case, there is some block of T prior to the infinite tail of
E-related elements. Let BT (x) mark the start of this block. Since i′ > BT (x) and
¬(T (BT (x)) E T (i′)), we have that the first case of Definition 20 must have been used
when defining BT (x). Thus, CASE 1 applies to BT (x), as does (3.8). That is, we have the
following.

∀q ∈ N. q ≤ x+ 1⇒ ∃r ∈ N. BT (q) = α(r) ∧BT ′(q) = β(r)

This implies that there is some r such that BT (x+ 1) = α(r) and BT ′(x+ 1) = β(r).
This plus matches(T, T ′, α, β, E) implies that T (BT (x + 1)) E T ′(BT ′(x + 1)). Since
BT (x) marks the start of the block just before the infinite tail, BT (x + 1) marks the start
of the infinite tail (and so we have i′ = BT (x + 1)). Since BT (x + 1) = α(r) and

76

3.2 Stuttering Equivalence

matches(T, T ′, α, β, E), it must be the case that β(r), which is equal toBT ′(x+1), marks
the start of an infinite tail ofE-related elements in T ′. From T (BT (x+1))E T ′(BT ′(x+1)),
it follows that for all y ≥ BT (x + 1) and for all z ≥ BT ′(x + 1), we have T (y) E T ′(z).
Thus, we will have our result (that T (j) E T (k)) if we can show that j ≥ BT (x + 1) and
k ≥ BT ′(x+ 1).

Since i′ = BT (x + 1), and we have i′ ≤ i, we have BT (x + 1) ≤ BT (i). Since BT is
strictly increasing, this implies x + 1 ≤ i. Since BT ′ is strictly increasing we then have
BT ′(x+ 1) ≤ BT ′(i). Since j ≥ BT (i) and k ≥ BT ′(i) we then have our result.

For the length requirement, we have in both cases that T is infinite and thus, because
of matches(T, T ′, α, β, E), T ′ is also infinite. So the j ≤ len(T)⇔ k ≤ len(T) conjunct
of our goal holds trivially since len(T) = len(T ′) = ω.

The relation ∼E is symmetric, reflexive, and transitive. These properties result from
the following properties of matches .

Lemma 7. The following three statements hold of the matches relation.

matches(T, T ′, α, β, E)⇒ matches(T ′, T, β, α, E)

matches(T, T, λx. x, λx. x, E)

matches(T, T ′, α, α′, E) ∧matches(T ′, T ′′, α′, α′′, E)⇒ matches(T, T ′′, α, α′′, E)

Proof. Recall thatE is an equivalence relation. The first property, symmetry, follows from
the fact that the definition of matches is symmetric in T, α and T ′, β. The second property,
reflexivity, is proved as follows. Both α and β are the identity relation, so T is partitioned
by α (resp. β) into blocks consisting of a single element. Thus, we must establish that for
any i ∈ N we have i < len(T) ⇔ i < len(T) and i < len(T) ⇒ (T (i)) E (T (i)). The
first property is a tautology and the second follows from the fact that E is an equivalence
relation and thus is reflexive.

For the third property, transitivity, we have α(0) = α′(0) = 0 and α′(0) = α′′(0) = 0,
thus α(0) = α′′(0) = 0. This is the first part of the definition of matches . For the second

77

3 Abstractions and Program Properties

part, we have the following

∀i, j, k.
(
α(i) ≤ j < α(i+ 1)

)
∧
(
α′(i) ≤ k < α′(i+ 1)

)
⇒(

j < len(T)⇔ k < len(T ′)
)
∧
(
j < len(T)⇒

(
T (j)

)
E
(
T ′(k)

))
∀i, j, k.

(
α′(i) ≤ j < α′(i+ 1)

)
∧
(
α′′(i) ≤ k < α′′(i+ 1)

)
⇒(

j < len(T ′)⇔ k < len(T ′′)
)
∧
(
j < len(T)⇒

(
T ′(j)

)
E
(
T ′′(k)

))
and we must show the following

∀i, j, k.
(
α(i) ≤ j < α(i+ 1)

)
∧
(
α′′(i) ≤ k < α′′(i+ 1)

)
⇒(

j < len(T)⇔ k < len(T ′′)
)
∧
(
j < len(T)⇒

(
T (j)

)
E
(
T ′′(k)

))
The following derivation establishes this.

1 ∀i, j, k. α(i) ≤ j < α(i+ 1) ∧ α′(i) ≤ k < α′(i+ 1)⇒

((j < len(T))⇔ (k < len(T ′))) ∧ (j < len(T)⇒ T (j) E T ′(k)) (Given)

2 ∀i, j, k. α′(i) ≤ j < α′(i+ 1) ∧ α′′(i) ≤ k < α′′(i+ 1)⇒

((j < len(T ′))⇔ (k < len(T ′′))) ∧ (j < len(T)⇒ T ′(j) E T ′′(k)) (Given)

3 α(i) ≤ j < α(i+ 1) (Assumption)

4 α′′(i) ≤ k < α′′(i+ 1) (Assumption)

5 ∃k′. α′(i) ≤ k′ < α′(i+ 1) (α′ is strictly increasing)

6 α′(i) ≤ k′ < α′(i+ 1) (∃-elim)

7 ((j < len(T))⇔ (k′ < len(T ′))) ∧ (j < len(T)⇒ T (j) E T ′(k′))

(line 1 with lines 3 and 6)

8 ((k′ < len(T ′))⇔ (k < len(T ′′))) ∧ (k′ < len(T)⇒ T ′(k′) E T ′′(k))

(line 2 with lines 6 and 4)

9 ((j < len(T))⇔ (k < len(T ′′)))

(First conjuncts of lines 7 and 8 and transitivity of⇔)

10 j < len(T) (Assumption)

78

3.2 Stuttering Equivalence

11 T (j) E T ′(k′) (Line 7 second conjunct and line 10)

12 k′ < len(T ′) (Line 7 first conjunct and line 10)

13 T ′(k′) E T ′′(k) (Line 8 second conjunct and above)

14 T (j) E T ′′(k) (Transitivity of E and lines 11 and 13)

15 j < len(T)⇒ T (j) E T ′′(k) (⇒-introduction lines 10 and 14)

16 ((j < len(T))⇔ (k < len(T ′′))) ∧ (j < len(T)⇒ T (j) E T ′′(k))

(∧-intro lines 9 and above)

17 α(i) ≤ j < α(i+ 1) ∧ α′′(i) ≤ k < α′′(i+ 1)⇒

((j < len(T))⇔ (k < len(T ′′))) ∧ (j < len(T)⇒ T (j) E T ′′(k))

(⇒-intro: 3 and 4)

Given Lemma 7, we can now establish that ∼E is an equivalence relation.

Theorem 11. ∼E is an equivalence relation.

Proof. That ∼E is reflexive and symmetric follows immediately from Lemma 7 and the
definition of ∼E . Transitivity also requires Theorem 10. We have T ∼E T ′ and T ′ ∼E T ′′

and must show T ∼E T ′′. From the definition of ∼E applied to our two assumptions, we
have matches(T, T ′, α, β, E) and matches(T ′, T ′′, α′, β′, E). By Theorem 10 we can con-
vert these assumptions to matches(T, T ′, BT , BT ′ , E) and matches(T ′, T ′′, BT ′ , BT ′′ , E).
By Lemma 7 we then have matches(T, T ′′, BT , BT ′′ , E) which implies T ∼E T ′′.

Furthermore, given an appropriate equivalence relation, we can even compose ∼E
statements involving different Es.

Theorem 12. Let E ′′ be an equivalence relation satisfying the following.

∀a, b, c. (a E b ∧ b E ′ c⇒ a E ′′ c)

Then T ∼E T ′ and T ′ ∼E′ T ′′ implies T ∼E′′ T ′′.

79

3 Abstractions and Program Properties

Proof. We first apply the definition of∼ (Definition 19) to obtain matches(T, T ′, α, β, E)

and matches(T ′, T ′′, α′, β′, E ′) for some α, β, α′, β′. We then apply Theorem 10 to ob-
tain matches(T, T ′, BT , BT ′ , E) and matches(T ′, T ′′, BT ′ , BT ′′ , E). We now show that
matches(T, T ′′, BT , BT ′′ , E

′′) holds and thus T ∼E′′ T ′′.

Let i, j, k be such that BT (i) ≤ j < BT (i + 1) and BT ′′(i) ≤ k < BT ′′(i + 1).
We must show j < len(T) ⇔ k < len(T ′′) and j < len(T) implies T (j) E ′′ T ′′(k).
From matches(T, T ′, BT , BT ′ , E) we have that T (j) E T ′(BT ′(i)). From our assumption
matches(T ′, T ′′, BT ′ , BT ′′ , E

′′) we have T ′(BT ′(i)) E T ′′(k). Combining these, we have
T (j) E ′′ T (k), which is one of our goals.

For j < len(T) ⇔ k < len(T ′′), we note that matches(T, T ′, BT , BT ′ , E)

implies j < len(T) ⇔ BT ′(i) < len(T ′) and matches(T ′, T ′′, BT ′ , BT ′′ , E
′) im-

plies BT ′(i) < len(T ′) ⇔ k < len(T ′′). Combining these, we have our goal of
j < len(T)⇔ k < len(T ′′).

3.2.1 Mapping Between Stuttering Equivalent Traces

The following Lemma will be very useful in several upcoming proofs. It establishes the
existence of functions that map between related positions in stuttering equivalent traces.

Lemma 8. If T ∼E T ′ then there exist functions f : N → N and f−1 : N → N such that

∀i. Ti ∼E T ′f(i) and ∀i. Tf−1(i) ∼E T ′i and f and f−1 are monotonic and ∀i. f−1(f(i)) ≤ i.

Proof. Since T ∼E T ′ we have that there are strictly increasing functions α, β with the
properties listed in Definition 18 and reproduced below.

α, β strictly increasing (3.10)

α(0) = β(0) = 0 (3.11)

∀i, j, k. α(i) ≤ j < α(i+ 1) ∧ β(i) ≤ k < β(i+ 1)⇒(
j < len(T)⇔ k < len(T ′)

)
∧
(
j < len(T)⇒ (T (j)) E (T ′(k))

) (3.12)

We first define f(i). Since i ∈ N we have i ≥ 0. Because α is strictly increasing and
α(0) = 0 and i ≥ 0, we have that there exists a c such that α(c) ≤ i < α(c + 1). Given

80

3.2 Stuttering Equivalence

T
f−1(j) i

. . .

T ′
f(i) j

. . .

α(0) α(1) α(2) α(3)

β(0) β(1) β(2) β(3)

c = 2 d = 2

Figure 3.3: Example depicting the sequences, functions, and variables involved in the proof of

Lemma 8.

this c, we then define f(i) as follows.

f(i) =

len(T ′) if i ≥ len(T)

β(c) if i < len(T)

Essentially, by discarding the first i elements of T , we have changed the starting point
of our trace and thus also the starting point for the matching functions α and β. The
constant c is the index for α that brackets i. That is, α(c) ≤ i < α(c + 1). We use this
value to appropriately adjust the starting point of T ′. Figure 3.3 gives an overview.

We first present the proof for the Ti ∼E T ′f(i) conjunct and the properties of f , then we
give the proof of Tf−1(i) ∼E T ′i and the properties of f−1.

Ti ∼E T ′f(i) and Properties of f

We first handle the case where i ≥ len(T). In this case, Ti = ε and T ′f(i) = ε and
ε ∼E ε. We now consider the case where i < len(T).

We need to produce functions α′ and β′ satisfying the conditions in Definition 18.
In constructing these, we are allowed to use the α and β that we know exist due to the

81

3 Abstractions and Program Properties

assumption T ∼E T ′ (formulas (3.10), (3.11), and (3.12)). The functions are as follows.

α′(n) = max (α(n+ c)− i, 0) (3.13)

β′(n) = max (β(n+ c)− f(i), 0) (3.14)

α′(0) = β′(0) = 0 We first show that α′(0) = β′(0) = 0. We have α′(0) = max (α(c)−i, 0).
From the definition of c, above, we have α(c) ≤ i. This implies α(c)−i ≤ 0 which implies
max (α(c) − i, 0) = 0. For β′(0) we have β′(0) = max (β(c) − f(i), 0) and f(i) = β(c),
which gives us β′(0) = max (β(c)− β(c), 0) = 0.

Strictly Increasing We must also check that α′ and β′ are strictly increasing. We will
first consider α′. To show α′ is strictly increasing, it suffices to show that α′(1) > 0.
This is due to the max operation in the definition of α′ and the fact that α is strictly in-
creasing. Given the definition of α′ (3.13), we have that if α′(n) > 0 for some n, then
α′(n) = α(n + c) − i. Since α is strictly increasing, we have α(n + c + 1) > α(n + c)

and thus α(n + c + 1) − i > α(n + c + 1) − 1 and finally α′(n + 1) > α′(n). Thus,
α′(n) > 0 implies α′ is strictly increasing on the interval [n,∞). As we have already
shown α′(0) = 0, showing α′(1) > 0 will give us that α′ is strictly increasing on the
interval [0,∞), as desired.

To show that α′(1) > 0, note that α′(1) = max (α(1 + c) − i, 0). We have from
our choice of c that i < α(c + 1). This implies α(1 + c) − i > 0 which implies
max (α(1 + c)− i, 0) > 0.

The case for β′ is similar. Since β is also strictly increasing and β′ is defined using
max with 0, the same reasoning applies and to show β′ is strictly increasing it suffices to
show that β′(1) > 0. We have β′(1) = max (β(1 + c)− f(i), 0). The definition of f(i) is
β(c), so we have β′(1) = max (β(1 + c)− β(c), 0). Since β is strictly increasing we have
β(1 + c) > β(c) implying that β′(1) > 0.

End of Last Blocks Coincide Let j′ and k′ satisfy α′(i′) ≤ j′ < α′(i′ + 1) and
β′(i′) ≤ k′ < β(i′ + 1). We must show that (j′ < len(Ti))⇔ (k′ < len(T ′f(i))).

82

3.2 Stuttering Equivalence

Expanding the definition of α′ and β′ we have

α(i′ + c)− i ≤ j′ < α(i′ + 1 + c)− i

β(i′ + c)− f(i) ≤ k′ < β(i′ + 1 + c)− f(i)

Rewriting by moving i and f(i) to the inside of the inequalities, we obtain

α(i′ + c) ≤ j′ + i < α(i′ + 1 + c) (3.15)

β(i′ + c) ≤ k′ + f(i) < β(i′ + 1 + c) (3.16)

Note that now we have j′ + i is a quantity bounded between α(i′ + c) and α(i′ + c + 1)

(consecutive values of α) and similarly for β in the second formula. By (3.12) we then
have (j′ + i < len(T))⇔ (k′ + f(i) < len(T ′)). This implies

(j′ < len(T)− i)⇔ (k′ < len(T ′)− f(i))

Since len(Ti) = len(T)− i and len(T ′f(i)) = len(T ′)− f(i) this gives us

(j′ < len(Ti))⇔ (k′ < len(T ′f(i)))

which is our goal.

E-related To show that j′ < len(Ti) ⇒ (Ti(j
′)) E (T ′f(i)(k

′)) we first assume
j′ < len(Ti) and apply the conclusion above (that j′ < len(Ti) ⇔ k′ < len(T ′f(i)))
to conclude k′ < len(T ′f(i)). This ensures that both Ti(j

′) and T ′f(i)(k
′) are defined.

Next, we note that Ti(j′) = T (i + j′) and T ′f(i)(k
′) = T ′(f(i) + k′). Thus, it suffices

to show that
(
T (i + j′)

)
E
(
T ′(f(i) + k′)

)
. From (3.15), (3.16), and (3.12) we have(

T (j′ + i)
)
E
(
T ′(k′ + f(i))

)
which, together with commutativity of +, proves our goal.

Monotonicity of f Recall that for i ≥ len(T) we have f(i) = len(T ′) and for
i < len(T) we have f(i) = β(c) for the c such that α(c) ≤ i < α(c + 1). We now
prove that such an f is monotonic. Suppose a ≤ b. We will show that f(a) ≤ f(b).
There are three cases. If a ≥ len(T) then b ≥ len(T) and f(a) = f(b) = len(T ′). If

83

3 Abstractions and Program Properties

a < len(T) and b ≥ len(T) then f(b) = len(T ′). For f(a), we first choose c such that
α(c) ≤ a < α(c + 1). By (3.12) and a < len(T) we then have β(c) < len(T ′). Since
f(a) = β(c) we have f(a) < len(T ′). Thus f(a) < f(b).

Finally, we consider a < len(T) and b < len(T). We first choose c such that
α(c) ≤ a < α(c + 1) and d such that α(d) ≤ b < α(d + 1). Since α is strictly in-
creasing, this can always be done. Since a ≤ b and α is strictly increasing, we have c ≤ d.
Now, since c ≤ d and β is strictly increasing, we have β(c) ≤ β(d). Since f(a) = β(c)

and f(b) = β(d) we then have f(a) ≤ f(b).

Definition of f−1: We are given some i ≥ 0. We first let d be the number such that
β(d) ≤ i < β(d+ 1). Since β is strictly increasing, such a d always exists. We then define
f−1(i) as follows.

f−1(i) =

len(T) if i ≥ len(T ′)

α(d) if i < len(T ′)

Tf−1(i) ∼E T ′i and Properties of f−1

We now show that ∀i. Tf−1(i) ∼E T ′i . Similar to before, the α′ and β′ that show this are

α′(n) = max (α(n+ d)− f−1(i), 0) (3.17)

β′(n) = max (β(n+ d)− i, 0)

For i ≥ len(T ′), we have T ′i = ε and Tf−1(i) = Tlen(T) = ε. Since ε ∼E ε, we have
Tf−1(i) ∼E T ′i . We next consider the case where i < len(T ′), considering in turn each
property that must hold of α′ and β′.

α′(0) = β′(0) = 0 We have α′(0) = max (α(d) − f−1(i), 0). We have f−1(i) = α(d).
Thus, α′(0) = max (α(d)−α(d), 0) = 0. For β′(0), we have β′(0) = max (β(0+d)−i, 0).
We have from our choice of d that β(d) ≤ i. Thus, β(d)−i ≤ 0 and max (β(d)−i, 0) = 0.

Strictly Increasing As before, α′(1) > 0 will be sufficient to prove α′ is strictly in-
creasing (given the assumption that α is strictly increasing) and similarly for β′. We have

84

3.2 Stuttering Equivalence

α′(1) = max (α(1 + d) − f−1(i), 0) = max (α(1 + d) − α(d), 0). Since α is strictly
increasing, we have α(1 + d)− α(d) > 0 which implies α′(1) > 0.

For β′(1), we have β′(1) = max (β(1 + d) − i, 0). We have from our choice of d that
i < β(d+ 1) which implies β(1 + d)− i > 0 and thus β′(1) > 0.

End of Last Blocks Coincide Suppose α′(i′) ≤ j′ < α′(i′+1) and β′(i′) ≤ k′ < β(i′+1).
We must show that (j′ < len(Tf−1(i)))⇔ (k′ < len(T ′i)).

Expanding the definition of α′ and β′ we have

α(i′ + d)− f−1(i) ≤ j′ < α(i′ + 1 + d)− f−1(i)

β(i′ + d)− i ≤ k′ < β(i′ + d+ 1)− i

Rewriting by moving i and f−1(i) to the inside of the inequalities, we obtain

α(i′ + d) ≤ j′ + f−1(i) < α(i′ + 1 + d) (3.18)

β(i′ + d) ≤ k′ + i < β(i′ + d+ 1) (3.19)

Note that now we have j′ + f−1(i) is a quantity bounded between α(i′ + d) and
α(i′ + d + 1) (consecutive values of α) and similarly for β in the second formula. By
(3.12) we then have (j′ + f−1(i) < len(T)) ⇔ (k′ + i < len(T ′)). This implies
(j′ < len(T)− f−1(i))⇔ (k′ < len(T ′)− i). Since len(Tf−1(i)) = len(T)− f−1(i) and
len(T ′i) = len(T ′) − i this gives us (j′ < len(Tf−1(i))) ⇔ (k′ < len(T ′i)) which is our
goal.

E-related To show that j′ < len(Tf−1(i)) ⇒ (Tf−1(i)(j
′)) E (T ′i (k

′)) we first assume
that j′ < len(Tf−1(i)) and apply our result above to conclude k′ < len(T ′i). This ensures
that both Tf−1(i)(j

′) and T ′i (k
′) are defined. We next note that Tf−1(i)(j

′) = T (f−1(i) + j′)

and T ′i (k
′) = T ′(i + k′). Thus, it suffices to show that

(
T (f−1(i) + j′)

)
E
(
T ′(i + k′)

)
.

From (3.18), (3.19), and (3.12) we have
(
T (j′ + f−1(i))

)
E
(
T ′(k′ + i)

)
which, together

with commutativity of +, proves our goal.

85

3 Abstractions and Program Properties

Monotonicity of f−1 Recall that for i ≥ len(T ′) we have f−1(i) = len(T) and for
i < len(T ′) we have f−1(i) = α(d) for the d such that β(d) ≤ i < β(d + 1). We now
prove that such an f−1 is monotonic. Suppose a ≤ b. We will show that f−1(a) ≤ f−1(b).
There are three cases. If a ≥ len(T ′) and b ≥ len(T ′) then f−1(a) = f−1(b) = len(T).
If a < len(T ′) and b ≥ len(T ′) then f−1(b) = len(T). For f−1(a), we first choose the d
such that β(d) ≤ a < β(d+ 1). By (3.12) and a < len(T ′) we then have α(d) < len(T).
Since f−1(a) = α(d) we have f−1(a) < len(T). Thus f−1(a) < f−1(b).

Finally, we consider a < len(T ′) and b < len(T ′). To compute f−1(a) and f−1(b), we
first choose d1 such that β(d1) ≤ a < β(d1 + 1) and d2 such that β(d2) ≤ b < β(d2 + 1).
Since β is strictly increasing and a ≤ b we have d1 ≤ d2. Since α is strictly increasing,
we then have α(d1) ≤ α(d2). Since f−1(a) = α(d1) and f−1(b) = α(d2) we then have
f−1(d1) ≤ f−1(d2).

Inverse Relationship We now show that f−1(f(i)) ≤ i. Let i be an arbitrary natural
number. If i ≥ len(T) then f(i) = len(T ′) and f−1(len(T ′)) = len(T). Since i ≥ len(T)

we have f−1(f(i)) = len(T) ≤ i. We now consider the case where i < len(T).

In this case, we have f(i) = β(c) for some c such that α(c) ≤ i < α(c + 1) and
f−1(f(i)) = f−1(β(c)) = α(d) for some d such that β(d) ≤ β(c) < β(d + 1). Since β
is strictly increasing, β(d) ≤ β(c) < β(d + 1) implies that c = d. We can then use this
equality to derive from f−1(f(i)) = α(d) the fact that f−1(f(i)) = α(c). Since we have
α(c) ≤ i we then have f−1(f(i)) ≤ i which was our goal.

3.2.2 Stuttering Containment

We now use this notion of stuttering equivalence to define stuttering containment for sets
and define stuttering equivalence of trace sets as mutual containment.

86

3.2 Stuttering Equivalence

Definition 21. Let T and T′ be sets of traces. Then T′ E-stuttering contains T, written

T .E T′, iff ∀T ∈ T. ∃T ′ ∈ T′. T ∼E T ′. We say T is E-stuttering equivalent to T′,

written T ≈E T′, iff T .E T′ and T′ .E T.

When T ≈E T′ and the relation E is clear from context we will simply say that T and
T′ are stuttering equivalent.

We can now obtain a version of Theorem 12 for stuttering containment.

Theorem 13. Let E ′′ be an equivalence relation satisfying the following.

∀a, b, c. (a E b ∧ b E ′ c⇒ a E ′′ c)

Then T .E T′ and T′ .E′ T′′ implies T .E′′ T′′.

Proof. We must show the following.

∀T ∈ T. ∃T ′′ ∈ T′′. T ∼E′′ T ′′

From our assumption T .E T′ we have

∀T ∈ T. ∃T ′ ∈ T′. T ∼E T ′

From our assumption T′ .E′ T′′ we have

∀T ′ ∈ T′. ∃T ′′ ∈ T′′. T ′ ∼E′ T ′′

Combining these we have

∀T ∈ T. ∃T ′ ∈ T′, T ′′ ∈ T′′. T ∼E T ′ ∧ T ′ ∼E′ T ′′

We can then apply Theorem 12 to obtain

∀T ∈ T. ∃T ′ ∈ T′, T ′′ ∈ T′′. T ∼E′′ T ′′

Eliminating the quantification on T ′ then gives us our goal.

87

3 Abstractions and Program Properties

3.2.3 Programs and Stuttering Equivalence

We now tie these general notions of stuttering equivalence and containment to programs
and give some examples of stuttering equivalent programs.

The trace sets of interest for programs are those obtained when executing the pro-
gram from a state satisfying some precondition. Thus, for some programs P and P ′ and
preconditions Q and Q′, we will be interested in questions such as whether the relation
traces((P |Q)) .E traces((P ′ |Q′)) holds for some equivalence relation E. Since the se-
mantics of a program can be viewed as the set of traces produced by that program, this
provides a connection between the semantics of P and the semantics of P ′ (provided each
is started in a satisfactory initial state). This will form the basis of our notion of abstrac-

tion.

Definition 22. A program P ′ with precondition Q′ is an abstraction of a program P with

precondition Q, with respect to an equivalence relation E iff Q and Q′ are separation

logic formulae and

traces((P |Q)) .E traces((P ′ |Q′))

When Q,Q′ and E are clear from context, we will just say that P ′ is an abstraction of P .

This property can be more or less useful depending on the particular preconditions
involved (and also depending on the equivalence relation utilized). For example, if Q is
false, then we can establish this for any P, P ′, Q′. The conciseness of the term abstraction

is useful in informal discussions, and we will restrict ourselves to using it in such settings.
For the presentation of the formal development, we will use the more precise notation
developed previously (i.e. .E,≈E, etc.).

The strongest correspondence between programs P and P ′ is given by the statement
traces((P | true)) ≈≡ traces((P ′ | true)), where≡ is the identity relation on execution states.
Since our execution states include the current continuation, this will only hold when
P = P ′, where the equality is up to reordering of labeled continuations (with the ini-
tial continuation not subject to reordering). In order to get a more interesting (and weaker)
correspondence, we move to the following notion of equality. Let .= be the least relation

88

3.2 Stuttering Equivalence

satisfying the following.

goto(l, (s, h))
.
= goto(l, (s, h))

〈k, (s, h)〉 .
= 〈k′, (s, h)〉

final(s, h)
.
= final(s, h)

error
.
= error

Note that .= identifies exactly those states that are the same modulo the current continua-
tion k. Now we can describe programs that involve different continuations, but which pro-
duce stuttering equivalent sequences of store, heap pairs (and location, store, heap triples in
the case of goto states). Figure 3.4 lists four programs that are stuttering equivalent in the
sense that for any P and P ′ in the figure, we have traces((P | true)) ≈ .= traces((P ′ | true)).
In each case, the traces of Pi consist of one occurrence of the state goto(L0, (s, h)) fol-
lowed by either one (as in P1, P2) or two (as in P3, P4) occurrences of the state 〈k, (s, h)〉
for some k, followed by one (as in P1, P3, P4) or two (as in P2) occurrences of the state
〈k, (s[a → 0], h)〉, followed by the traces starting from goto(L1, (s[a → 0], h)). Exam-
ining one of the example programs in detail, we see that traces produced by P3 have the
following form.

goto(L0, (s, h))

〈branch . . . end, (s, h)〉

〈a := 0;goto L1, (s, h)〉

〈goto L1, (s[a→ 0], h)〉

goto(L1, (s[a→ 0], h))

〈halt, (s[a→ 0], h)〉

final(s[a→ 0], h)

It is also instructive to consider which changes violate stuttering equivalence. The
program below, while quite similar to P4, is not stuttering equivalent from precondition

89

3 Abstractions and Program Properties

P1
def
=

L0 : a := 0; goto L1;

L1 : halt

end

P2
def
=

L0 : a := 0;a := 0; goto L1;

L1 : halt

end

P3
def
=

L0 : branch true⇒ a := 0; goto L1,

true⇒ a := 0; goto L1;

end

L1 : halt

end

P4
def
=

L0 : branch x > 0⇒ a := 0; goto L1,

x ≤ 0⇒ a := 0; goto L1
end;

L1 : halt

end

Figure 3.4: Four examples of stuttering equivalent programs. Each example involves a different

continuation at L0.

true.

P ′4
def
=
L0 : branch x > 0⇒ a := 0; goto L1,

x < 0⇒ a := 0; goto L1
end;

L1 : halt
end

The reason this program is not stuttering equivalent to the programs in Figure 3.4 is that,
due to the lack of a branch for x = 0 in the continuation at L0, P ′4 does not contain traces
in which s(x) = 0 (where s is the store associated with some state in the trace). However,
P ′4 is stuttering equivalent to the other programs when evaluated from the precondition
x 6= 0. This is an example of the importance of the initial conditions (as represented by
the precondition). By removing certain sets of traces from consideration, the precondition
can cause programs that do not correspond in general to be stuttering equivalent.

90

3.2 Stuttering Equivalence

There are, however, programs which cannot be made stuttering equivalent according
to .

= regardless of the precondition. Consider the program below.

P ′1
def
=
L0 : a := 0; b := 0; b := 1; goto L1;
L1 : halt

end

This program is similar to P1 except that it mentions an additional variable b. The traces
of P ′1 contain states where s(b) = 0 and states where s(b) = 1. The value of b in any trace
of P1 will always be constant, preventing these two programs to from being related by . .=
for any precondition other than false.

However, these programs are stuttering equivalent if we change the equivalence rela-
tion on execution states to one that does not take into account the value of b. Consider the
equivalence relation given below, which is the =V relation on stores (Definition 1) lifted
to execution states.

Definition 23. =V is the least relation satisfying the following.

goto(l, (s, h)) =V goto(l, (s′, h)) iff s =V s
′

〈k, (s, h)〉 =V 〈k′, (s′, h)〉 iff s =V s
′

final(s, h) =V final(s′, h) iff s =V s
′

error =V error

With this relation, we can now specify the correspondence between P1 and P ′1. We
have traces((P1 | true)) ≈(={a}) traces((P ′1 | true)).

Heap-Manipulating Examples New commands can also be added to heap-manipulating
programs while preserving this version of stuttering equivalence. Figure 3.5 gives some
examples of relationships between programs that involve the heap. P5 gives a program
that frees a linked list at x with length a. As it frees elements, it keeps track of the length
of the remaining portion of the list by updating a.

91

3 Abstractions and Program Properties

P5
def
=

L0 : goto L1;

L1 : branch x 6= nil⇒
t := x;
x := x.next;
free t;
a := a− 1;
goto L1,

x = nil⇒ halt

end

P6
def
=

L0 : goto L1;

L1 : branch a > 0⇒
t := x;
x := x.next;
free t;
a := a− 1;
goto L1,

a = 0⇒ halt

end
P7

def
=

L0 : goto L1;

L1 : branch a > 0⇒
a := a− 1;
goto L1,

a = 0⇒ halt

end

P8
def
=

L0 : a := ?; goto L1;

L1 : branch a > 0⇒
a := a− 1;
goto L1,

a = 0⇒ halt

end

traces((P5 | ls(a, x, nil))) ≈={x,t,a} traces((P6 | ls(a, x, nil)))

traces((P6 | ls(a, x, nil))) ≈ s
={a}

traces((P7 | ls(a, x, nil)))

traces((P7 | ls(a, x, nil))) .={a} traces((P8 | ∃a. ls(a, x, nil)))

Figure 3.5: Increasingly weaker abstractions of P5.

When started from the precondition ls(a, x, nil) this program is safe, in the sense that
no traces from this precondition end with error. This corresponds to the LTSL property
∼(F(err)).

The program also has the property that for every state of the form goto(L1, (s, h)), we
have (s, h) |=X ls(a, x, nil). Put another way, ls(a, x, nil) is an invariant of location L1.
This corresponds to the LTSL property G(atloc(L1)⇒ ls(a, x, nil)).

Finally, the program always terminates, meaning that its trace set contains no infinite
traces. The LTSL formula corresponding to termination is F(final).

92

3.2 Stuttering Equivalence

Program P6 is stuttering equivalent to P5 in the sense that they satisfy

traces((P5 | ls(a, x, nil))) ≈ .= traces((P6 | ls(a, x, nil)))

That is, when started in a state satisfying ls(a, x, nil), their traces consist of the same se-
quence of memory states with the only difference being possible repetition of some states.
In this case, there is not even any repetition. The only difference between the two pro-
grams is that P5 branches on x 6= nil, whereas P6 branches on a > 0. Since a is always
equal to the length of the list at x, these conditions are equivalent and result in the same
set of traces.

Program P7 consists solely of the commands involving a. Such a program is not stut-
tering equivalent to P5 or P6 given any of the equality relations on execution states that
have been discussed so far. However, it is stuttering equivalent given the relation below.

Definition 24. s
=V is the least relation on execution states that satisfies the following.

goto(l, (s, h))
s
=V goto(l, (s′, h′)) iff s =V s

′

〈k, (s, h)〉 s
=V 〈k′, (s′, h′)〉 iff s =V s

′

final(s, h)
s
=V final(s′, h′) iff s =V s

′

error
s
=V error

The s
=V relation is the same as =V except that the heaps are not required to be the

same. We can now state the relationship between P6 and P7. It is

traces((P6 | ls(a, x, nil))) ≈ s
={a}

traces((P7 | ls(a, x, nil)))

and the same relation holds between P5 and P7.

The program P8 is an example of a program that is not stuttering equivalent to any of
the previous programs, but does stuttering contain the traces of some of them. We have
the following.

traces((P7 | ls(a, x, nil))) .={a} traces((P8 | ls(a, x, nil)))

93

3 Abstractions and Program Properties

The program P8 contains traces stuttering equivalent to the traces in P7, but also contains
traces where the non-deterministic assignment causes a to have a value other than the
length of the list.

The non-deterministic assignment can also be used to ensure that we consider execu-
tions where a is the length of the list even when such a situation is not guaranteed by the
precondition. For example, the following relationship holds.

traces((P7 | ls(a, x, nil))) .={a} traces((P8 | ∃a. ls(a, x, nil)))

Note that we are abstracting a program that assumes a is the length of the list by a program
that only assumes there exists some length—the requirement that some program variable
is storing the length is dropped in the precondition of P8.

This use of non-determinism is an important component of the numeric abstraction
technique that is the subject of Chapters 4 and 5.

3.3 Stuttering Equivalence and LTSL Properties

We now present some theorems relating stuttering equivalence and containment and satis-
faction of LTSL properties.

Definition 25. A state formula ς is E-invariant for an equivalence relation E iff

∀γ, γ′. γ E γ′ ⇒
(
(γ |=X ς)⇔ (γ′ |=X ς)

)
An LTSL formula φ is E-invariant iff all state formulae in φ are E-invariant. The set of

E-invariant LTSL formulae is denoted LTSLE .

In the case of the a path formula containing the state formula Q, this definition above
does not require that sub-formulas of Q be E-invariant. However, all examples of E-
invariant state formulae that we will present in this thesis are composed of E-invariant
sub-formulas.

Formulae that are E-invariant are preserved by E-stuttering equivalence.

94

3.3 Stuttering Equivalence and LTSL Properties

Theorem 14. If φ ∈ LTSLE and T ∼E T ′ then T |=X φ if and only if T ′ |=X φ.

We first state an easy lemma, which follows directly from the definition of LTSLE .

Lemma 9. If φ ∈ LTSLE , then for all path formulae φ′ such that φ′ is a sub-formula of φ,

we have φ′ ∈ LTSLE .

Proof. By the definition of LTSLE (Definition 25) we have that all state formulae in φ are
E-invariant. Since φ′ is a sub-formula of φ, the set of state formulae appearing in φ′ is a
subset of those appearing in φ. Thus, all the state formulae in φ′ are E-invariant and so
φ′ ∈ LTSLE .

We now turn to the proof of the theorem above (Theorem 14).

Proof. The proof is by induction on the structure of φ. We only consider the core connec-
tives ·∧, ∼, and U as the other connectives are definable in terms of these (Theorem 9). We
start with the base case, in which φ = ς for some state formula ς .

CASE φ = ς: We first consider the forward direction of the “if and only if.” Suppose
T |=X ς . From the semantics in Figure 3.2 we have that len(T) > 0 and T (0) |=X ς .
From our assumption that T ∼E T ′ we have matches(T, T ′, α, β, E) and, by the definition
of matches, this gives us 0 < len(T) ⇔ 0 < len(T ′) and T (0) E T ′(0). Since we
have len(T) > 0 this gives us len(T ′) > 0. From our assumption that φ ∈ LTSLE and
Definition 25 we then have

γ E γ′ ⇒
(
(γ |=X ς)⇔ (γ′ |=X ς)

)
Applying this to T (0)E T ′(0) we obtain T (0) |=X ς ⇔ T ′(0) |=X ς . As T (0) |=X ς is one
of our assumptions, we then have T ′(0) |=X ς , which, combined with len(T ′) > 0 gives
us T ′ |=X ς . The backward direction is the same, except that T and T ′ are exchanged.

CASE φ = φ1 ·∧ φ2: We first consider the forward direction of the “if and only if.” We
assume T |=X φ1 ·∧ φ2. By the semantics of ·∧ we then have T |=X φ1 and T |=X φ2. By
Lemma 9 and φ ∈ LTSLE we have φ1 ∈ LTSLE and φ2 ∈ LTSLE . This allows us to apply
the inductive hypothesis to each of these formulae yielding T ′ |=X φ1 and T ′ |=X φ2.

95

3 Abstractions and Program Properties

Again applying the semantics of ·∧ we obtain T ′ |=X φ1 ∧ φ2 which is our goal. The
reverse implication is identical, but with T and T ′ exchanged.

CASE φ = ∼φ1: We first consider the forward implication and assume T |=X ∼φ1.
The semantics of ∼ then give us that T 6|=X φ1. The inductive hypothesis then gives us
T ′ 6|=X φ1 (since the conclusion of the theorem is an “if and only if”). From this, we apply
the semantics of ∼ to obtain our goal: T ′ |=X ∼φ1. The reverse implication is the same,
but with T and T ′ exchanged.

CASE φ = φ1 U φ2: As before, Lemma 9 tells us that φ1 ∈ LTSLE and φ2 ∈ LTSLE ,
which is one condition needed to apply the inductive hypothesis.

The following derivation establishes the forward direction of the implication. We start
from the assumption that T |=X φ1 Uφ2, which tells that there is some i satisfying the two
initial assumptions below.

1 0 ≤ i < len(T) ∧
(
Ti |=X φ2

)
(Given)

2 ∀j. 0 ≤ j < i⇒
(
Tj |=X φ1

)
(Given)

3 T ∼E T ′ (Given)

4 Ti ∼E T ′f(i) (Lemma 8 (for the f defined in that lemma))

5 T ′f(i) |=X φ2 (Inductive Hypothesis: line 1 conjunct 2 and line 4)

6 0 ≤ j′ < f(i) (Assumption)

7 (Tf−1(j′)) ∼E (T ′j′) (Lemma 8 (f−1 defined in the Lemma))

8 j′ < f(i) (6)

9 f−1(j′) < f−1(f(i)) (Lemma 8, monotonicity of f−1)

10 f−1(f(i)) ≤ i (Lemma 8)

11 f−1(j′) < i (9 and 10)

12 Tf−1(j′) |=X φ1 (2 and 11)

13 T ′j′ |=X φ1 (Inductive Hyp: 7 and 12)

14 ∀j′. 0 ≤ j′ < f(i)⇒
(
T ′j′ |=X φ1

)
(∀-intro,⇒-intro: 6 and 13)

15 ∃i. T ′i |=X φ2 ∧ ∀j′. 0 ≤ j′ < i⇒
(
T ′j′ |=X φ1

)
(∃-intro (f(i)→ i): 5 and 14)

96

3.3 Stuttering Equivalence and LTSL Properties

16 T ′ |=X φ1 U φ2 (Semantics of U)

As before, since ∼E is symmetric, the proof of the backward implication is the same
as for the forward direction, but with T and T ′ exchanged.

A corollary of Theorem 14 is that stuttering containment preserves satisfaction of
LTSLE properties in one direction.

Corollary 1. If φ ∈ LTSLE and S, S ′ are transition systems and traces(S) .E traces(S ′)

then S ′ |=X φ implies S |=X φ.

Proof. This follows from the fact that LTSL formulae are interpreted universally over trace
sets. Suppose S ′ |=X φ. By Definition 17 this implies

∀T ′ ∈ traces(S ′). T ′ |=X φ (3.20)

That traces(S) .E traces(S ′) implies the following.

∀T ∈ traces(S). ∃T ′ ∈ traces(S ′). T ∼E T ′ (3.21)

We now show ∀T ∈ traces(S). T |=X φ, which implies S |=X φ by Definition 17. Sup-
pose T ∈ traces(S). By (3.21) we have ∃T ′ ∈ traces(S ′). T ∼E T ′. Then by Theorem 14
and (3.20) we have T |=X φ, which is our goal.

These results are not new. Analogous theorems are presented in [Clarke et al., 1999]
and [Clarke and Schlingloff, 2001]. Here we have adapted these results to our particular
formal setup, with separation logic formulae as the state formulae for the temporal logic
and transitions systems arising from programs in our source language.

3.3.1 Syntactic Descriptions of E-invariance

The theorems above are stated in terms of E-invariant LTSL formulae, and the definition
of E-invariance (Definition 25) is given in terms of the satisfaction relation |=X for LTSL

97

3 Abstractions and Program Properties

formulae. However, we can also give syntactic restrictions that enforce E-invariance for
the equality relations =V and s

=V . These syntactic restrictions are much easier to check
than the semantic properties used in Definition 25.

Syntactic Description of =V -invariance

Definition 26. Let LTSL(V) be the set of LTSL formulae with free variables contained in

the set V .

Theorem 15. If φ ∈ LTSL(V) then φ is =V -invariant.

Proof. We must show that if the free variables of φ are contained in V , then all state
formulae ς which are subterms of φ have the following property.

∀γ, γ′.
(
γ =V γ

′)⇒ (
(γ |=X ς)⇔ (γ′ |=X ς)

)
We first note that if the free variables of φ are contained in V and ς is a subterm of φ, then
the free variables of ς are contained in V . We now consider an arbitrary γ, γ′ such that
γ =V γ

′ and show that (γ |=X ς)⇔ (γ′ |=X ς). The proof is by case analysis on the state
formula ς .

CASE ς = err: That γ |=X err holds implies γ = error. The relation γ =V γ′ then
implies γ′ = error which implies γ′ |=X err. The reverse direction is identical with γ
and γ′ exchanged.

CASE ς = final: That γ |=X final holds implies γ = final(s, h) for some s, h. The
relation γ =V γ′ then implies γ′ = final(s′, h) where s =V s′. This implies γ′ |=X final.
The reverse direction is the same with γ and γ′ exchanged.

CASE ς = atloc(l): That γ |=X atloc(l) holds implies γ = goto(l, (s, h)). The relation
γ =V γ′ then implies γ′ = goto(l, (s′, h)) with s =V s′. This implies γ′ |=X atloc(l).
The reverse direction is the same with γ and γ′ exchanged.

CASE ς = Q: That γ |=X Q holds implies γ = 〈k, (s, h)〉 or γ = goto(l, (s, h)) or
γ = final(s, h) and in each case (s, h) |=X Q. We will consider the γ = 〈k, (s, h)〉
case. The others are similar. We have γ =V γ

′ which implies that γ′ = 〈k′, (s′, h)〉 where

98

3.3 Stuttering Equivalence and LTSL Properties

s =V s′. By Lemma 4 and the fact that fv(Q) ⊆ V we then have (s′, h) |=X Q. This
implies 〈k′, (s′, h)〉 |=X Q according to the semantics given in Figure 3.2.

Next, we have a similar result for s
=V .

Syntactic Description of s
=V -invariance

Definition 27. Let LTSLP(V) be the set of pure LTSL formulae with free variables in V .

These are LTSL(V) formulae that do not contain subterms that are in the grammar for

spatial predicates given in Figure 2.6. That is, they do not contain subterms of the form

emp, ea 7→ [ρ], or p~τ (~e ~τ).

Theorem 16. If φ ∈ LTSLP(V) then φ is s
=V -invariant.

Proof. The proof is similar to the proof for =V above. We must show that if
φ ∈ LTSLP(V) then for all state formulae ς which are sub-formulae of φ, we have

∀γ, γ′. (γ
s
=V γ

′)⇒
(
γ |=X ς

)
⇔
(
γ′ |=X ς

)
(3.22)

The formula ς must have the form final, err, atloc(l), or Q. The first three cases are iden-
tical to the corresponding cases in the proof of Theorem 15 above. For ς = Q, we have
that Q is pure since Q is a sub-formula of φ and φ ∈ LTSLP(V). Given the semantics
of γ |=X ς in the case where ς = Q, showing condition (3.22) reduces to showing the
following.

if Q is pure then (s
s
=V s

′)⇒ ∀h, h′.
(
(s, h) |=X Q

)
⇔
(
(s′, h′) |=X Q

)
We show this by induction on Q, recalling that since Q is pure, the base cases Q = emp,
Q = ea 7→ [ρ] and Q = p~τ (~e ~τ) need not be considered.

CASE Q = eb: In this case, the semantics of Q is independent of the heap. The definition
of |=X from Figure 2.7 tells us that (s, h) |=X Q iff JebK s = true. By Lemma 1 we have
that JebK s = JebK s, which implies (s, h) |=X Q iff (s′, h′) |=X Q.

CASE Q = Q1 ∗ Q2: We have (s, h) |=X Q1 ∗ Q2 iff there exist h1, h2 such that
dom(h1) ∩ dom(h2) = ∅ and h = h1 ∩ h2 and (s, h1) |=X Q1 and (s, h2) |=X Q2.

99

3 Abstractions and Program Properties

That fv(Q) ⊆ V implies fv(Q1) ⊆ V and fv(Q2) ⊆ V . This allows us to apply the
induction hypothesis.

But we must first determine how to split the heap. We wish to show (s′, h′) |=X Q1∗Q2

for an arbitrary h′. To do this, we must show that there exists h′1, h
′
2 such that

dom(h′1) ∩ dom(h′2) = ∅ and h′ = h′1 ∪ h′2 and (s′, h′1) |=X Q1 and (s′, h′2) |=X Q2.
We let h′1 = h′ and let h′2 = {}. Clearly dom(h′1) ∩ dom(h′2) = ∅ and h′ = h′1 ∪ h′2. Our
inductive hypothesis tells us that since (s, h) |=X Q1, we can conclude (s′, h′1) |=X Q1

and similarly for Q2. This completes the proof.

CASE Q = Q1 ∧ Q2: We have (s, h) |=X Q1 ∧ Q2 iff (s, h) |=X Q1 and (s, h) |=X Q2.
Again, fv(Q) ⊆ V implies fv(Q1) ⊆ V and fv(Q2) ⊆ V , allowing us to apply the
inductive hypothesis to (s, h) |=X Q1, obtaining (s′, h′) |=X Q1 for an arbitrary h′ (and
similarly for (s′, h′) |=X Q2). This implies our result.

CASE Q = Q1 ∨ Q2: This case is very similar to the ∗ and ∧ cases. We have
(s, h) |=X Q1∨Q2 iff (s, h) |=X Q1 or (s, h) |=X Q2. In either case, we have fv(Qi) ⊆ V

and apply our inductive hypothesis to obtain (s, h) |=X Qi iff (s′, h′) |=X Qi for an arbi-
trary h′, which lets us conclude that (s, h) |=X Q iff (s′, h) |=X Q.

CASE Q = (Q1 ⇒ Q2): We will consider the forward direction first and show that
for all h′ we have (s, h) |=X (Q1 ⇒ Q2) implies (s′, h′) |=X (Q1 ⇒ Q2). Sup-
pose (s, h) |=X (Q1 ⇒ Q2). Then by the definition of |=X given in Figure 2.7 we
have (s, h) |=X Q1 implies (s, h) |=X Q2. Now, suppose (s′, h′) |=X Q1. Since
fv(Q) = fv(Q1)∪fv(Q2) and fv(Q) ⊆ V , we have fv(Q1) ⊆ V and fv(Q2) ⊆ V . This lets
us apply our inductive hypothesis, obtaining (s, h) |=X Q1. This implies (s, h) |=X Q2 by
our assumption, which, applying the inductive hypothesis again, gives us (s′, h′) |=X Q2.
Thus, we have shown that (s′, h′) |=X Q1 implies (s′, h′) |=X Q2, which lets us conclude
(s′, h′) |=X (Q1 ⇒ Q2). The proof of the backwards direction is symmetric, with s and s′

interchanged.

CASE Q = ∃x. Q′: We consider the forward direction first. The relation (s, h) |=X ∃x. Q
implies there exists a v such that (s[x → v], h) |=X Q′. Consider the store s′[x → v].
Since s =V s

′, we have s[x→ v] =V ∪{x} s
′[x→ v]. We have that fv(Q) = fv(Q′)− {x}

100

3.3 Stuttering Equivalence and LTSL Properties

P
def
=

L0 : goto L1;

L1 : branch x 6= nil⇒
t := x;
x := x.next;
free t;
goto L1,

x = nil⇒ halt

end

P ′
def
=

L0 : goto L1;

L1 : branch a > 0⇒
t := x;
x := x.next;
free t;
a := a− 1;
goto L1,

a = 0⇒ halt

end

Figure 3.6: Two programs with traces related by ≈={x,t}

and fv(Q) ⊆ V which implies fv(Q′) ⊆ V ∪ {x}. We can then apply our inductive
hypothesis to (s[x → v], h) |=X Q′, obtaining (s′[x → v], h′) |=X Q′ for an arbitrary
h′. This implies (s′, h′) |=X ∃x. Q′. The backward direction is symmetric, with s and s′

interchanged.

CASE Q = ∀x. Q: We consider the forward direction first. Let h′ be an arbitrary heap.
The relation (s, h) |=X ∀x. Q implies that for all v we have (s[x → v], h) |=X Q′.
Consider an arbitrary v′. Instantiating v above with v′ we have (s[x → v′], h) |=X Q′.
Since s =V s

′, we have s[x→ v] =V ∪{x} s
′[x→ v]. We have that fv(Q) = fv(Q′)− {x}

and fv(Q) ⊆ V which implies fv(Q′) ⊆ V ∪ {x}. We can then apply our inductive
hypothesis to (s[x → v′], h) |=X Q′, obtaining (s′[x → v′], h′) |=X Q′. Since v′ was
arbitrary, we conclude that for all v′ we have (s′[x → v′], h′) |=X Q′, which implies
(s′, h′) |=X ∀x. Q′. The backward direction is symmetric, with s and s′ interchanged.

3.3.2 Translating Results Obtained By Analyzing Abstractions

Corollary 1 stated the connection between E-stuttering trace containment and E-invariant
LTL\X properties. Given programs P and P ′ and preconditions Q and Q′ such that
traces((P |Q)) .E traces((P ′ |Q′)), this allows us to take a property φ, which we would
like to check for ((P |Q)) and instead check that it holds of ((P ′ |Q′)). For example, in

101

3 Abstractions and Program Properties

Figure 3.6 we give two programs satisfying the following.

traces((P | ls(a, x, nil))) ≈={x,t} traces((P ′ | ls(a, x, nil)))

Suppose we want to show that P terminates. Termination corresponds to the LTSL prop-
erty F(final). We can check that this property holds of P ′, which it does since variable
a decreases during each iteration and is bounded below by 0. This then implies that P
satisfies F(final) and thus P also terminates.

This approach, of stating a property of the original program and then proving it holds
of the abstraction, naturally leads one to consider properties stated over the free variables
of the original program. However, it can also be useful to consider properties involving the
variables that occur in the abstraction, but not in the original program (a is an example of
such a variable in P ′). We could ask a static analysis to analyze P ′ and return an invariant
that holds at L1. Such an invariant may involve variables in P ′ that are not in P and thus the
property may not hold of P . For example, the property G(atloc(L1) ·⊃ ls(a, x, nil)) holds
of ((P ′ | ls(a, x, nil))). However, since the variable a is not updated by P , this property does
not hold of P , even when started from the same set of initial states.

We can, however, translate the property that holds of P ′ to a property that holds of
P by accounting for the fact that the variable a is not updated by P . By existentially
quantifying a, we capture the fact that there is a value of a that makes the property true,
without requiring a to actually be updated with the appropriate value. The property that
holds of P then becomes G(atloc(L1) ·⊃ ∃a. ls(a, x, nil)).

This mode of reasoning is captured by the following theorem, which allows us to
relate properties of P ′ to properties of P even when P ′ includes variables not present in
P . First we define a function ∃ (V, φ) which existentially quantifies the variables in V in
all state formulae. We write ∃V. Q where V is a finite set of variables to represent the
existential quantification of all variables in V (that is, (∃V. Q) = (∃v1, v2, . . . , vn. Q) if
V = {v1, v2, . . . , vn}).

Definition 28. Let V be a finite set of variables. Then ∃ (V, φ) and ∀ (V, φ) are defined

via mutual induction as given in Figure 3.7.

102

3.3 Stuttering Equivalence and LTSL Properties

∃ (V, ς) =

∃V. Q if ς = Q

for some Q

ς otherwise

∃ (V, φ1 ·∧ φ2) =
(
∃ (V, φ1)

)
·∧
(
∃ (V, φ2)

)
∃ (V, φ1 ·∨ φ2) =

(
∃ (V, φ1)

)
·∨
(
∃ (V, φ2)

)
∃ (V,∼φ) = ∼

(
∀ (V, φ)

)
∃ (V,Gφ) = G

(
∃ (V, φ)

)
∃ (V,Fφ) = F

(
∃ (V, φ)

)
∃ (V, φ1 U φ2) =

(
∃ (V, φ1)

)
U
(
∃ (V, φ)

)

∀ (V, ς) =

∀V. Q if ς = Q

for some Q

ς otherwise

∀ (V, φ1 ·∧ φ2) =
(
∀ (V, φ1)

)
·∧
(
∀ (V, φ2)

)
∀ (V, φ1 ·∨ φ2) =

(
∀ (V, φ1)

)
·∨
(
∀ (V, φ2)

)
∀ (V,∼φ) = ∼

(
∃ (V, φ)

)
∀ (V,Gφ) = G

(
∀ (V, φ)

)
∀ (V,Fφ) = F

(
∀ (V, φ)

)
∀ (V, φ1 U φ2) =

(
∀ (V, φ1)

)
U
(
∀ (V, φ)

)
Figure 3.7: Definition of ∃ and ∀ .

Theorem 17. Suppose T ∼=V T ′ and let V ′ = fv(φ) − V . Then T ′ |=X φ implies

T |=X ∃ (V ′, φ) and T ′ 6|=X φ implies T 6|=X ∀ (V ′, φ).

Corollary 2. Let V ′ = fv(φ) − V . If traces((P |Q)) .=V traces((P ′ |Q′)) and

((P ′ |Q′)) |=X φ then ((P |Q)) |=X ∃ (V ′, φ).

To the best of our knowledge, this theorem has not been stated before, perhaps because
most of the work on LTL\X makes minimal assumptions about the language of state for-
mulae; in particular, existential and universal quantification are not assumed to be present.

Before we proceed with the proof, we first establish the following lemma.

Lemma 10. If len(T ′) > 0 and T ∼=V T
′ then len(T) > 0 and T (0) =V T

′(0).

Proof. The conditions len(T) > 0 and len(T ′) > 0 are required for T (0) and T ′(0) to be
defined. The proof proceeds as follows.

1 T ∼=V T
′ (Given)

2 len(T ′) > 0 (Given)

3 ∃α, β. matches(T, T ′, α, β,=V) (Def. of ∼E (Def. 19))

4 matches(T, T ′, α, β,=V) (∃-elim)

103

3 Abstractions and Program Properties

∃ (V, φ1 ·∨ φ2) =

∃ (V,∼(∼φ1 ·∧ ∼φ2)) =

∼(∀ (V,∼φ1 ·∧ ∼φ2)) =

∼
(
∀ (V,∼φ1) ·∧ ∀ (V,∼φ2)

)
=

∼
(
∼(∃ (V, φ1)) ·∧ ∼(∃ (V, φ2))

)
=(

∃ (V, φ1)
)
·∨
(
∃ (V, φ2)

)

∃ (V,Fφ) =

∃ (V, true U φ) =(
∃ (V, true)

)
U
(
∃ (V, φ)

)
=

true U
(
∃ (V, φ)

)
=

F(∃ (V, φ))

∃ (V,Gφ) =

∃ (V,∼(F(∼φ))) =

∼(∀ (V,F(∼φ))) =

∼(F(∀ (V,∼φ))) =

∼
(
F(∼(∃ (V, φ)))

)
=

G
(
∃ (V, φ)

)
Figure 3.8: Derivations showing that our definition of ∃ is consistent with the rewritings given

in Theorem 9. The corresponding derivations for ∀ are identical, with the symbols ∃ and ∀

interchanged.

5 α(0) = β(0) = 0 (Def. of matches (Def. 18))

6 α(0) ≤ 0 < α(1) ∧ β(0) ≤ 0 < β(1) (Above and α, β strictly increasing)

7 ∀i, j, k.
(
α(i) ≤ j < α(i+ 1)

)
∧
(
β(i) ≤ k < β(i+ 1)

)
⇒(

len(T) > 0⇔ len(T ′) > 0
)
∧
(
T (j) =V T

′(k)
)

(Def. of matches)

8
(
len(T) > 0⇔ len(T ′) > 0

)
∧
(
T (0) =V T

′(0)
)

(⇒-elim: above two lines)

We now present the proof of Theorem 17. We will only consider the core connectives
∼, ·∧, and U. To justify this simplification, we must show that Definition 28 is consistent
with the encoding of ·∨,F, and G in terms of these core connectives. This is demon-
strated by the derivations in Figure 3.8, where we first translate a formula into its core
representation as given by Theorem 9, then apply the definition of ∃ , then rewrite the
result according to Theorem 9. The formula we obtain in the end should be the same as
that given by Definition 28. The corresponding derivations for ∀ are identical, with the
symbols ∃ and ∀ interchanged.

104

3.3 Stuttering Equivalence and LTSL Properties

Proof. (of Theorem 17) The proof is by induction on the formula φ. We have the following
assumptions.

T ∼=V T
′ (3.23)

V ′ = fv(φ)− V (3.24)

And we wish to show
T ′ |=X φ implies T |=X ∃ (V ′, φ)

and
T ′ 6|=X φ implies T 6|=X ∀ (V ′, φ)

Base Cases

We now consider the ∃ conjunct for the first three base cases, which are as follows.

φ = atloc(l)

φ = err

φ = final

These are all proved in the same way. We present derivations for each base case, but
they all have the same structure. The final base case, φ = Q, is presented last and the
structure of the proof is different in that case.

CASE φ = atloc(l):

1 T ′ |=X atloc(l) (Given)

2 len(T ′) > 0 ∧
(
T ′(0) |=X atloc(l)

)
(Def. of |=X relation for path formulae (Figure 3.2))

3 ∃s, h. T ′(0) = goto(l, (s, h))

(Def. of |=X relation for state formulae (Figure 3.2))

4 T ′(0) = goto(l, (s, h)) (∃-elim)

105

3 Abstractions and Program Properties

5 len(T) > 0 ∧
(
T (0) =V T

′(0)
)

(Lemma 10: assumption (3.23) and line 2 conjunct 1)

6 T (0) =V goto(l, (s, h)) (Above and line 4)

7 ∃s′. T (0) = goto(l, (s′, h)) ∧ s =V s
′ (Def. of =V (Def. 23))

8 T (0) |=X atloc(l) (Def. of |=X (for state formulae))

9 T |=X atloc(l) (Def. of |=X (for path formulae): above and line 5 conjunct 1)

10 T |=X ∃ (V ′, atloc(l)) (Def. of ∃ (Def. 28))

CASE φ = err:

1 T ′ |=X err (Given)

2 len(T ′) > 0 ∧
(
T ′(0) |=X err

)
(Def. of |=X relation (Figure 3.2))

3 T ′(0) = error (Def. of |=X relation (Figure 3.2))

4 len(T) > 0 ∧
(
T (0) =V T

′(0)
)

(Lemma 10: assumption (3.23) and line 2 conjunct 1)

5 T (0) =V error (Above and line 3)

6 T (0) = error (Def. of =V (Def. 23))

7 T (0) |=X err (Def. of |=X (for state formulae))

8 T |=X err (Def. of |=X (for path formulae): above and line 4 conjunct 1)

9 T |=X ∃ (V ′, err) (Def. of ∃ (Def. 28))

CASE φ = final:

1 T ′ |=X final (Given)

2 len(T ′) > 0 ∧ T ′(0) |=X final (Def. of |=X relation (Figure 3.2))

3 ∃s, h. T ′(0) = final(s, h) (Def. of |=X relation (Figure 3.2))

4 T ′(0) = final(s, h) (∃-elim)

5 len(T) > 0 ∧
(
T (0) =V T

′(0)
)

106

3.3 Stuttering Equivalence and LTSL Properties

(Lemma 10: assumption (3.23) and line 4 conjunct 1)

6 T (0) =V final(s, h) (Above and line 5)

7 ∃s′. T (0) = final(s′, h) ∧ s =V s
′ (Def. of =V (Def. 23))

8 T (0) |=X final (Def. of |=X (for state formulae))

9 T |=X final (Def. of |=X (for path formulae): above and line 7 conjunct 1)

10 T |=X ∃ (V ′, final) (Def. of ∃ (Def. 28))

CASE φ = Q: We have that T ′ |=X Q and want to show that T |=X ∃ (V ′, Q). The
definition of |=X states that our assumption T ′ |=X Q implies len(T ′) > 0∧T ′(0) |=X Q.
We also have the assumption T ∼=V T ′ which, by Lemma 10, implies len(T) > 0 and
T (0) =V T ′(0). We have by the definition of ∃ (Definition 28) that ∃ (V ′, Q) = ∃V ′. Q
and from the definition of |=X we have that T |=X ∃V ′. Q iff len(T) > 0 and
T (0) |=X ∃V ′. Q. Thus, our goal reduces to showing that T (0) |=X ∃V ′. Q based on
the assumptions T ′(0) |=X Q and T (0) =V T

′(0).

We now case split on the form of T ′(0). Based on the semantics of LTSL in Figure 3.2
and T ′(0) |=X Q we have that T ′(0) either has the form 〈k, (s, h)〉, or goto(l, (s, h)), or
final(s, h) and that whichever case holds, we have (s, h) |=X Q. All the cases are proved
in the same way, so we will only show 〈k, (s, h)〉 here.

We have from T (0) =V T ′(0) and T ′(0) = 〈k, (s, h)〉 that T (0) = 〈k′, (s′, h)〉 for
some s′ such that s′ =V s. We want to show (s′, h) |=X ∃V ′. Q, which will hold if we
can give some s′′ that differs from s′ only on the values of variables in V ′ and for which
(s′′, h) |=X Q holds. The needed s′′ is defined as follows.

s′′(x) =

s′(x) if x 6∈ V ′

s(x) if x ∈ V ′

Clearly this s′′ differs from s′ only in the values of variables in V ′. We will show that
(s′′, h) |=X Q by applying Lemma 4 to our assumption that (s, h) |=X Q. In order to
apply this lemma, we must show that s =fv(Q) s

′′. To do this, we consider an arbitrary
variable x and show that if x ∈ fv(Q) then s(x) = s′′(x). From V ′ = fv(Q) − V and

107

3 Abstractions and Program Properties

x ∈ fv(Q), we have that either x ∈ V ′ or x ∈ V . If x ∈ V ′ then we have s′′(x) = s(x)

(our goal) from the definition of s′′. If x ∈ V then we have from s =V s
′ that s(x) = s′(x).

Then, from the definition of s′′ we have that either s′′(x) = s(x) (in which case we have
attained our goal) or s′′(x) = s′(x), in which case transitivity of equality with s(x) = s′(x)

gives us s(x) = s′′(x). Thus, we have s =fv(Q) s
′′ and can apply Lemma 4 obtaining our

goal of (s′′, h) |=X Q and completing the proof of this case.

We now show the base cases for the ∀ conjunct. They are similar to the ∃ cases except
that since our assumption involves the |=X relation not holding, there is some disjunction
involved. In particular, a trace can fail to satisfy a state formula either by being empty or by
being non-empty with a first state that is not of the appropriate form. This is demonstrated
by the following derivation.

1 T ′ 6|=X ς (Given)

2 ¬(len(T ′) > 0 ∧
(
T ′(0) |=X ς

)
) (Def. of |=X)

3 ¬(len(T ′) > 0) ∨
(
T ′(0) 6|=X ς

)
(Boolean Reasoning)

The empty cases are all handled uniformly. We show the derivation for these below.

1 ¬(len(T ′) > 0) (Given)

2 ∃α, β. matches(T, T ′, α, β,=V) (Assumption (3.23) and Def. of ∼E (Def. 19))

3 matches(T, T ′, α, β,=V) (∃-elim)

4 α(0) = β(0) = 0 (Def. of matches (Def. 18))

5 α(0) ≤ 0 < α(1) ∧ β(0) ≤ 0 < β(1) (Above and α, β strictly increasing)

6 ∀i, j, k.
(
α(i) ≤ j < α(i+ 1)

)
∧
(
β(i) ≤ k < β(i+ 1)

)
⇒

j < len(T)⇔ k < len(T ′) (Def. of matches)

7
(
α(0) ≤ 0 < α(1)

)
∧
(
β(0) ≤ 0 < β(1)

)
⇒

0 < len(T)⇔ 0 < len(T ′) (∀-elim, i, j, k = 0)

8 0 < len(T)⇔ 0 < len(T ′) (⇒-elim: above and line 5)

108

3.3 Stuttering Equivalence and LTSL Properties

9 ¬(len(T) > 0) (Above and line 1)

10 T 6|=X ∀ (V ′, ς) (Def of |=X for path formulae)

This leaves us with the task of showing that T ′(0) 6|=X ς implies T (0) 6|=X ∀ (V ′, ς)

under the assumption that len(T ′) > 0 and len(T) > 0. As before, Lemma 10 gives us
that T (0) =V T

′(0). We consider each base case, starting with ς = err.

CASE ς = err:

1 len(T) > 0 (Given)

2 len(T ′) > 0 (Given)

3 T (0) =V T
′(0) (Given)

4 T ′(0) 6|=X err (Given)

5 T ′(0) 6= error (Def. of |=X)

6 (T ′(0) = final(s, h)) ∨ (T ′(0) = goto(l, (s, h))) ∨ (T ′(0) = 〈k, (s, h)〉)

(Case analysis)

At this point, the reasoning is the same for each disjunct. We show T ′(0) = final(s, h)

as an example.
7 T ′(0) = final(s, h) (Given)

8 T (0) =V final(s, h) (Above and line 3)

9 T (0) = final(s′, h) ∧ s′ =V s (Def. of =V (Def. 23))

10 T (0) 6= error (Def. of = (syntactic equality))

11 T (0) 6|=X err (Def. of |=X for state formulae)

12 T (0) 6|=X ∀ (V ′, err) (Def. of ∀)

CASE ς = final:

1 len(T) > 0 (Given)

2 len(T ′) > 0 (Given)

109

3 Abstractions and Program Properties

3 T (0) =V T
′(0) (Given)

4 T ′(0) 6|=X final (Given)

5 ∀s, h. T ′(0) 6= final(s, h) (Def. of |=X)

We now begin a proof by contradiction aimed at showing that T (0) 6= final(s, h) for
all s, h.
6 T (0) = final(s′, h′) (Assumption)

7 final(s′, h′) =V T
′(0) (Above and line 3)

8 T ′(0) = final(s′′, h′) ∧ s′′ =V s
′ (Def. of =V)

9 T ′(0) 6= final(s′′, h′) (∀-elim, line 5)

10 false (Previous two lines)

11 (T (0) = final(s′, h′))⇒ false (⇒-intro line 5 and above)

12 T (0) 6= final(s′, h′) (Boolean reasoning)

13 ∀s′, h′. T (0) 6= final(s′, h′) (∀-intro)

14 T (0) 6|=X final (Def. of |=X for state formulae)

15 T (0) 6|=X ∀ (V ′, final) (Def. of ∀)

CASE ς = atloc(l):

1 len(T) > 0 (Given)

2 len(T ′) > 0 (Given)

3 T (0) =V T
′(0) (Given)

4 T ′(0) 6|=X atloc(l) (Given)

5 ∀s, h. T ′(0) 6= goto(l, (s, h)) (Def. of |=X)

We now begin a proof by contradiction aimed at showing that T (0) 6= final(s, h) for
all s, h
6 T (0) = goto(l, (s′, h′)) (Assumption)

7 final(s′, h′) =V T
′(0) (Above and line 3)

110

3.3 Stuttering Equivalence and LTSL Properties

8 T ′(0) = goto(l, (s′′, h′)) ∧ s′′ =V s
′ (Def. of =V)

9 T ′(0) 6= goto(l, (s′′, h′)) (∀-elim, line 5)

10 false (Previous two lines)

11 (T (0) = goto(l, (s′, h′)))⇒ false (⇒-intro line 5 and above)

12 T (0) 6= goto(l, (s′, h′)) (Boolean reasoning)

13 ∀s′, h′. T (0) 6= goto(l, (s′, h′)) (∀-intro)

14 T (0) 6|=X atloc(l) (Def. of |=X for state formulae)

15 T (0) 6|=X ∀ (V ′, atloc(l)) (Def. of ∀)

CASE ς = Q: This case is structured as a proof by contradiction. We have T (0) =V T
′(0)

and T ′(0) 6|=X Q. We will show that from T (0) |=X ∀ (V ′, Q) we can derive a contradic-
tion, leading us to conclude that our goal formula T (0) 6|=X ∀ (V ′, Q) must hold.

Since ∀ (V ′, Q) = ∀V ′. Q, the assumption T (0) |=X ∀ (V ′, Q) implies that
T (0) |=X ∀V ′. Q. We now case split on the form of T (0), which must be either final(s, h),
goto(l, (s, h)), or 〈k, (s, h)〉. As these are all handled the same way (only the s, h portion
is important), we will only consider 〈k, (s, h)〉 here.

From T (0) =V T ′(0) and T (0) = 〈k, (s, h)〉 we have T ′(0) = 〈k′, (s′, h)〉 such that
s′ =V s. The assumption T (0) |=X ∀V ′. Q implies that (s, h) |=X ∀V ′. Q which implies
that for all s′′ such that s′′ and s differ only in the values assigned to variables in V ′, we
have (s′′, h) |=X Q. In particular, we will consider the s′′ given below.

s′′(x) =

s(x) if x 6∈ V ′

s′(x) if x ∈ V ′

We will now derive a contradiction from (s′′, h) |=X Q and T ′(0) 6|=X Q and s′ =V s. We
start by proving s′′ =fv(Q) s

′. Suppose x ∈ fv(Q). Then since V ′ = fv(Q) − V we have
either x ∈ V ′ or x ∈ V . If x ∈ V ′ then by the definition of s′′ we have s′′(x) = s′(x)

which is our goal. If x ∈ V then we can establish s′′(x) = s′(x) regardless of which case
of the s′′ definition we are in. If s′′(x) = s(x), then by s′ =V s we have s′(x) = s(x)

111

3 Abstractions and Program Properties

and thus s′′(x) = s′(x). If s′′(x) = s′(x) then this is already our goal formula and we are
done.

Now that we have shown s′′ =fv(Q) s
′ we can apply Lemma 4 to our assumption of

(s′′, h) |=X Q to obtain (s′, h) |=X Q. Recall that T ′(0) = 〈k′, (s′, h)〉. The definition of
|=X then gives us that T ′(0) |=X Q. But this contradicts the assumption T ′(0) 6|=X Q.

Inductive Cases

We now consider the connectives that operate on path formulae. These constitute the
inductive cases. We consider only the core connectives, as justified by the derivations in
Figure 3.8 and Theorem 9.

CASE 3 [∼φ]

CASE 3.1 [∃ conjunct]

1 T ′ |=X ∼φ (Assumption)

2 T ′ 6|=X φ (Semantics of ∼ (Figure 3.2))

3 T 6|=X ∀ (V ′, φ) (Inductive Hypothesis)

4 T |=X ∼
(
∀ (V ′, φ)

)
(Semantics of ∼ (Figure 3.2))

5 T |=X ∃ (V ′, ∼φ) (Def. of ∃ (Def. 28))

CASE 3.2 [∀ conjunct] This case is the dual of the above case.

1 T ′ 6|=X ∼φ (Assumption)

2 T ′ |=X φ (Semantics of ∼ (Figure 3.2))

3 T |=X ∃ (V ′, φ) (Inductive Hypothesis)

4 T 6|=X ∼
(
∃ (V ′, φ)

)
(Semantics of ∼ (Figure 3.2))

5 T |=X ∀ (V ′, ∼φ) (Def. of ∀ (Def. 28))

CASE 4 [φ1 ·∧ φ2]

112

3.3 Stuttering Equivalence and LTSL Properties

CASE 4.1 [∃ conjunct]

1 T ′ |=X φ1 ·∧ φ2 (Assumption)

2 T ′ |=X φ1 and T ′ |=X φ2 (Semantics of ·∧ (Figure 3.2))

3 T |=X ∃ (V ′, φ1) and T |=X ∃ (V ′, φ2) (Inductive Hypothesis)

4 T |=X ∃ (V ′, φ1) ·∧ ∃ (V ′, φ2) (Semantics of ·∧ (Figure 3.2))

5 T |=X ∃ (V ′, φ1 ·∧ φ2) (Def. of ∃ (Def. 28))

CASE 4.2 [∀ conjunct]

1 T ′ 6|=X φ1 ·∧ φ2 (Assumption)

2 T ′ 6|=X φ1 or T ′ 6|=X φ2 (Semantics of ·∨ (Figure 3.2))

Without loss of generality, we assume that the T ′ 6|=X φ1 case holds. The other case is
identical.
3 T ′ 6|=X φ1 (Given)

4 T 6|=X ∀ (V ′, φ1) (Inductive Hypothesis)

5 T 6|=X ∀ (V ′, φ1) ·∧ ∀ (V ′, φ2) (Semantics of ·∧ (Figure 3.2))

6 T 6|=X ∀ (V ′, φ1 ·∧ φ2) (Def. of ∀ (Def. 28))

CASE 5 [φ1 U φ2]

CASE 5.1 [∃ conjunct]

1 T ′ |=X φ1 U φ2 (Assumption)

2 ∃i. 0 ≤ i < len(T ′) ∧ (T ′i |=X φ2) ∧
(
∀j. 0 ≤ j < i⇒ T ′j |=X φ1

)
(Semantics of U (Figure 3.2))

3 (0 ≤ i < len(T ′)) ∧ (T ′i |=X φ2) ∧
(
∀j. 0 ≤ j < i⇒ T ′j |=X φ1

)
(∃-elim)

We first establish that there is a Tk such that Tk |=X ∃ (V ′, φ2)

4 T ′ ∼=V T (Assumption (3.23) and Theorem 11)

113

3 Abstractions and Program Properties

5 T ′i ∼=V Tf(i) (Lemma 8)

6 (f(i) < len(T))⇔ (i < len(T ′))

(Def. of ∼=V (Def. 19) and Def. of matches (Def. 18))

7 f(i) < len(T) (Above and line 3 first conjunct)

8 0 ≤ f(i) (f has type N→ N)

9 0 ≤ f(i) < len(T) (Above two lines)

10 T ′i |=X φ2 (3 second conjunct)

11 Tf(i) |=X ∃ (V ′, φ2) (Induction Hypothesis: 5 and 10)

12 (0 ≤ f(i) < len(T)) ∧ (Tf(i) |=X ∃ (V ′, φ2)) (∧-intro, above and line 9)

We next show that for all j such that 0 ≤ j < f(i) we have Tj |=X ∃ (V ′, φ1)

13 0 ≤ j < f(i) (Assumption)

14 f−1(j) < f−1(f(i)) (Lemma 8, monotonicity of f−1)

15 f−1(f(i)) ≤ i (Lemma 8, composition of f and f−1)

16 0 ≤ f−1(j) (f−1 has type N→ N)

17 0 ≤ f−1(j) < i (Previous three lines)

18 T ′f−1(j) |=X φ1 (line 3 last conjunct and 17)

19 Tj ∼=V T
′
f−1(j) (Lemma 8)

20 Tj |=X ∃ (V ′, φ1) (Induction Hypothesis: 18, 19)

21 0 ≤ j < f(i)⇒ Tj |=X ∃ (V ′, φ1) (Imp. Intro.: lines 13 and 20)

22 ∀j. 0 ≤ j < f(i)⇒ Tj |=X ∃ (V ′, φ1) (∀-introduction)

23
(
∃x. 0 ≤ x < len(T) ∧ Tx |=X ∃ (V ′, φ2) ∧

(
∀j. 0 ≤ j < x⇒ Tj |=X ∃ (V ′, φ1)

)
(∃-intro with x = f(i): lines 12 and 22)

24 T |=X

(
∃ (V ′, φ1)

)
U
(
∃ (V ′, φ2)

)
(Semantics of U (Figure 3.2))

25 T |=X ∃ (V ′, φ1 U φ2) (Def. of ∃ (Def. 28))

CASE 5.2 [∀ Case]

114

3.3 Stuttering Equivalence and LTSL Properties

1 T ′ 6|=X φ1 U φ2 (Assumption)

2 ∀k. k ≥ len(T ′) ∨ T ′k 6|=X φ2 ∨ (∃j. 0 ≤ j < k ∧ T ′j 6|=X φ1)

(Semantics of U (Figure 3.2))

Let p be an arbitrary natural number.

3 T ′f(p) ∼=V Tp (Lemma 8 and assumption (3.23))

4 f(p) ≥ len(T ′) ∨ T ′f(p) 6|=X φ2 ∨ (∃j. 0 ≤ j < f(p) ∧ T ′j 6|=X φ1)

(line 2 with k = f(p))

Case 1: f(p) ≥ len(T ′)

5 (f(p) < len(T ′))⇔ (p < len(T))

(Def. of ∼=V (Def. 19) and Def. of matches (Def. 18) and line 3)

6 p ≥ len(T) (Line 5 and this case assumption)

Case 2: T ′f(p) 6|=X φ2

7 Tp 6|=X ∀ (V ′, φ2) (Inductive Hypothesis: line 3 and this case assumption)

Case 3: ∃j. 0 ≤ j < f(p) ∧ T ′j 6|=X φ1

8 0 ≤ j < f(p) ∧ T ′j 6|=X φ1 (∃-elim)

9 f−1(j) < f−1(f(p)) (Lemma 8, monotonicity of f−1)

10 Tf−1(j) ∼=V T
′
j (Lemma 8 and assumption 3.23)

11 f−1(f(p)) ≤ p (Lemma 8, composition of f and f−1)

12 0 ≤ f−1(j) < p (lines 11 and 9 and f−1 has type N→ N)

13 Tf−1(j) 6|=X ∀ (V ′, φ1) (Inductive hypothesis: line 8 conjunct 2 and line 10)

14 ∃m. 0 ≤ m < p ∧ Tm 6|=X ∀ (V ′, φ1)

(∃-intro with m = f−1(j): lines 12 and 13)

We now combine the results from Cases 1, 2, and 3 to obtain the following disjunction.

15 p ≥ len(T) ∨ Tp 6|=X ∀ (V ′, φ2) ∨ ∃m. 0 ≤ m < p ∧ Tm 6|=X ∀ (V ′, φ1)

(∨-intro: lines 7 and 14)

115

3 Abstractions and Program Properties

16 ∀p. p ≥ len(T) ∨ Tp 6|=X ∀ (V ′, φ2) ∨ ∃m. 0 ≤ m < p ∧ Tm 6|=X ∀ (V ′, φ1)

(∀-intro)

17 T 6|=X ∀ (V ′, φ1) U ∀ (V ′, φ2) (Semantics of U (Figure 3.2))

18 T 6|=X ∀ (V ′, φ1 U φ2) (Def. of ∀ (Def. 28))

We also have that the set of quantified variables can always be extended.

Lemma 11.

1. If T |=X ∃ (V, φ) and V ′ ⊇ V then T |=X ∃ (V ′, φ).

2. If T 6|=X ∀ (V, φ) and V ′ ⊇ V then T 6|=X ∀ (V ′, φ).

Proof. The proof is by induction on the structure of the formula φ. The inductive cases
all follow directly from the inductive hypothesis, the definitions of ∀ and ∃ , and the se-
mantics of LTSL operators. We give the example of φ = ∼φ′. Suppose T |=X ∃ (V, ∼φ′).
Then by the definition of ∃ we have T |=X ∼(∀ (V, φ′)). This implies T 6|=X ∀ (V, φ′).
Applying the inductive hypothesis, we have T 6|=X ∀ (V ′, φ′). Applying the semantics
of |=X and the definition of ∃ to this formula gives us T |=X ∼(∀ (V ′, φ′)) and then
T |=X ∃ (V ′, ∼φ′). This completes the proof of this case.

The proof for ∀ is dual (∃ and ∀ are interchanged, as are |=X and 6|=X). We start
from T 6|=X ∀ (V, ∼φ′) and derive T 6|=X ∼(∃ (V, φ′)) and then T |=X ∃ (V, φ′). The
inductive hypothesis gives us T |=X ∃ (V ′, φ′). Applying the semantics of ∼ gives us
T 6|=X ∼(∃ (V ′, φ′)). Applying the definition of ∀ gives T 6|=X ∀ (V ′, ∼φ′).

The base cases err, final, and atloc(l) are all straightforward since if φ is one of these
formulae, we have ∃ (V, φ) = ∀ (V, φ) = φ for all sets of variables V .

The only interesting case is φ = Q. In this case, the ∃ conjunct follows from the
fact that, ∃V. Q ⇒ ∃V ′. Q if V ′ ⊇ V . Formally, we have T |=X ∃ (V,Q). Apply-
ing the definition of |=X gives us that T (0) = 〈k, (s, h)〉 or T (0) = goto(l, (s, h)) or

116

3.3 Stuttering Equivalence and LTSL Properties

T (0) = final(s, h). In all these cases we have (s, h) |=X ∃ (V,Q), which is equivalent
to (s, h) |=X ∃V. Q. At this point, we reason that for any V ′ such that V ′ ⊃ V , we have
(s, h) |=X ∃V. Q implies (s, h) |=X ∃V ′. Q. Re-applying the definitions of ∃ and |=X

we then derive T (0) |=X ∃ (V ′, Q) and finally T |=X ∃ (V ′, Q).

The ∀ case is similar except that we make use of the fact that if V ′ ⊇ V then
(s, h) 6|=X ∀V. Q implies (s, h) 6|=X ∀V ′. Q.

3.3.3 Example

Consider the example below, which iterates through a linked list.

P
def
=
L0 : goto L1
L1 : branch x 6= nil⇒

x := x.next;
goto L1,

x = nil⇒ halt

end

A shape analysis such as those in [Berdine et al., 2007, Gotsman et al., 2007, Distefano
and Parkinson, 2008] might discover an invariant at L1 similar to the one below, where
ls(a, x, y) is the list segment predicate defined on page 69.

∃a, b, x′. ls(a, x′, x) ∗ ls(b, x, nil)

This describes the shape of the heap (there are two linked list segments with x pointing to
the head of the second segment) but includes no information about data structure sizes (the
size information is existentially quantified). We will call analyses producing invariants
such as this shape-focused analyses in recognition of the fact that they focus on shape
invariants and support little, if any, reasoning about size (some analyses do keep limited
size information by tracking whether a data structure is empty).

We can use the addition of extra variables and Corollary 2 to generate invariants that are
more precise than those generated by a shape-focused analysis. In the following program

117

3 Abstractions and Program Properties

we have included statements modifying variables a and b (we will show how to generate
such a program in Chapter 4 and how to automate this process in Chapter 5).

P ′
def
=
L0 : a := 0; b := n; goto L1
L1 : branch x 6= nil⇒

x := x.next;
a := a + 1;
b := b− 1;
goto L1,

x = nil⇒ halt

end

We have the following relationship between P and P ′.

traces((P | ls(n, x, nil))) ≈={x} traces((P ′ | ls(n, x, nil)))

Note that the precondition assumes the existence of a program variable n which initially
contains the length of the list at x. We can prove that the following LTSL property holds
of ((P ′ | ls(n, x, nil))).

G
(

atloc(L1) ·⊃
(
∃x′. (ls(a, x′, x) ∗ ls(b, x, nil)) ∧ a + b = n

))
By Corollary 2 we then have that the following property holds of ((P | ls(n, x, nil))).

G
(

atloc(L1) ·⊃
(
∃a, b, x′. (ls(a, x′, x) ∗ ls(b, x, nil)) ∧ a + b = n

))
The invariant at L1 now expresses that the sum of the lengths of the list segments (a + b)
is always equal to n.

In Chapter 5 we will show that by using this approach to verification, we can easily
extend a shape-focused analysis to an analysis that also supports reasoning about integer
invariants. Furthermore, we can decompose the verification process in a way that allows
the integer reasoning to occur independently of the shape reasoning.

118

3.4 Stuttering Simulation

3.4 Stuttering Simulation

In the previous sections, we presented some examples of programs that produce stuttering
equivalent traces, as well as programs whose trace sets obey a stuttering containment re-
lation. But we have not shown how to prove that the trace set of one program stuttering
contains that of another. In this section, we introduce the concept of stuttering simulation

relations and show how these can be used to prove that one program is an abstraction of
another with respect to some equality relation on states. The definition below is based
on Definition 4 from [Manolios, 2001] and corresponds to the concept of well-founded

simulation (the well-foundedness referring to the rank functions that are involved in the
definition).

Definition 29. Given transition systems S1 = (A1, I1, F1,
1

99K) and S2 = (A2, I2, F2,
2

99K),

we say that S2 E-stuttering simulates S1 iff there exists a relation R between the states of

S1 and S2 that satisfies the following conditions

1. (Initial States Related)

∀a1 ∈ I1. ∃a2 ∈ I2. a1 R a2

2. (E-equivalent) ∀a1, a2. (a1 R a2)⇒ (a1 E a2)

3. (Transitions Match) There exist ranking functions rankt : A1 × A2 → N and

rankl : A2 × A1 × A1 → N such that for all a1, a2, if a1 R a2 and a1
1

99K a′1 then

one of the following holds:

(a) (S2 Matches) ∃a′2. (a2
2

99K a′2) ∧ (a′1 R a′2)

(b) (S1 Stutters) (a′1 R a2) ∧ (rankt(a′1, a2) < rankt(a1, a2))

(c) (S2 Stutters)

∃a′2. (a2
2

99K a′2) ∧ (a1 R a′2) ∧ (rankl(a′2, a1, a
′
1) < rankl(a2, a1, a

′
1))

4. (Final States Related) If a1 R a2 then a1 ∈ F1 ⇔ a2 ∈ F2.

119

3 Abstractions and Program Properties

We call R an E-stuttering simulation relation and write S1
<∼R,E S2 to indicate that R is

an E-stuttering simulation relation relating S1 and S2. We will also state the existence of

such an R using the phrase “S2 E-stuttering simulates S1”.

Note that the definition allows three types of behavior when S1 can take a step (con-
ditions 3a, 3b, and 3c). The first corresponds to the standard requirement of simulation
relations and specifies that the transition system on the right can match the step that the
system on the left makes. The second and third conditions are what classifies this def-
inition as stuttering simulation. These conditions allow for cases where only one of the
systems takes a step. In such cases the system making the transition is said to “stutter,”
since the pre- and post-states of the transition are both E-equivalent. Thus, the state is
repeated (with respect to the equivalence E), which is the connection with the common
usage of “stutter” as the generation of repeated words or sounds. We include the conditions
involving rankt and rankl to ensure that one system cannot stutter infinitely.

Given this definition of stuttering simulation, we can obtain the following theorem,
which tells us that stuttering simulation implies stuttering trace containment. The fact that
we prohibit infinite stuttering is important here, as this theorem would not hold without
this restriction.

Theorem 18. If ∃R. S <∼R,E S
′ then traces(S) .E traces(S ′).

Proof. (adapted from the proof of Proposition 1 in [Manolios, 2001]) We assume that
∃R. S <∼R,E S ′ and S = (A, I, F, 99K) and S ′ = (A′, I ′, F ′, 99K′). We must show the
following.

∀T ∈ traces(S). ∃T ′ ∈ traces(S ′). T ∼E T ′

The definition of ∼E (Def. 19) states that this is equivalent to the following.

∀T ∈ traces(S). ∃T ′ ∈ traces(S ′). ∃α, β. matches(T, T ′, α, β, E)

We will assume T ∈ traces(S) and give a definition of T ′ such that T ′ ∈ traces(S ′) and
the following holds

∃α, β. matches(T, T ′, α, β, E) (3.25)

120

3.4 Stuttering Simulation

As we produce T ′, we also define α and β. Recall that α and β partition T and T ′ re-
spectively into blocks of elements which are E-equivalent. Recall also that α(i) gives the
index of the start of block i in trace T (and similarly for β and T ′). Formally, we must
provide an α and β satisfying the following (obtained by expanding (3.25) according to
Definition 18).

α(0) = β(0) = 0 (3.26)

∀i, j, k. α(i) ≤ j < α(i+ 1) ∧ β(i) ≤ k < β(i+ 1)⇒(
j < len(T)⇔ k < len(T ′)

)
∧
(
j < len(T)⇒ (T (j)) E (T ′(k))

) (3.27)

The definition of α and β is by recursion on the block number. We assume we are
given α(i), β(i), and from these define α(i + 1) and β(i + 1). We also assume that if
α(i) < len(T) then we are provided with T ′(β(i)) such that

(
T (α(i))

)
R
(
T (β(i))

)
. If

α(i) < len(T) we also build the ith block of T ′—that is, we define the elements T ′(k)

where β(i) ≤ k < β(i+ 1). These are defined so as to establish (3.27) for block i, which
can be split into the following two implications.

∀j, k. α(i) ≤ j < α(i+ 1) ∧ β(i) ≤ k < β(i+ 1)⇒

(j < len(T))⇔ (k < len(T ′))
(3.28)

∀j, k. α(i) ≤ j < α(i+ 1) ∧ β(i) ≤ k < β(i+ 1)⇒(
j < len(T)⇒

(
T (j)

)
E
(
T ′(k)

)) (3.29)

Finally, if α(i + 1) < len(T) then we define T ′(β(i + 1)) such that it satisfies(
T (α(i + 1))

)
R
(
T ′(β(i + 1))

)
, thus ensuring that the assumptions for generating the

next block hold. We give a pictorial overview of the proof setup in Figure 3.9.

Base Case We start with the base case for T ′, α, and β. Condition (3.26) requires us to
set α(0) = 0 and β(0) = 0. Next we define T ′(0) given T (0). We have from S <∼R,E S ′

that ∀a ∈ I. ∃a′ ∈ I ′. a R a′. Since T ∈ traces(S) we have that T (0) ∈ I . Thus,
∃a′ ∈ I ′. T (0) R a′. We set T ′(0) equal to this a′, thus giving us (T (0)) R (T ′(0)).

121

3 Abstractions and Program Properties

T . . .
α(i)

. . .
α(i+ 1)

T ′ . . .

β(i)

. . .

β(i+ 1)

all pairs

E-related
R R

Figure 3.9: Pictorial overview of the proof of Theorem 3.9. The picture depicts how we build up

T ′, α, and β. Solid elements of the figure are given. These include α(i), β(i), the elements of T

and the fact that T (α(i)) R T ′(β(i)). The dashed elements are defined / proved in terms of these

givens. Definitions must be provided for α(i+1), β(i+1), and the elements of T ′ from index β(i)

to β(i+ 1). It must then be proved that
(
T (α(i+ 1))

)
R
(
T ′(β(i+ 1))

)
and that

(
T (a) R T ′(b)

)
for all a, b such that α(i) ≤ a < α(i+ 1) and β(i) ≤ b < β(i+ 1).

Recursive Case We break the proof of the recursive case into three sub-cases: ei-
ther α(i) < len(T) − 1 (the trace T contains at least two elements starting at α(i))
or α(i) = len(T) − 1 (the element at α(i) is the last element in the trace T) or
α(i) > len(T)− 1 (the index α(i) is past the end of the trace T).

CASE 1 [α(i) = len(T)− 1] If α(i) is the index of the last element in the trace T , then
we make T ′ end at β(i). The constraints on well-formed traces ensure that since α(i) is the
index of the last element in T , we have T (α(i)) ∈ F . From condition 4 in the definition
of simulation, and the fact that

(
T (α(i)

)
R
(
T ′(β(i))

)
, we have that T ′(β(i)) ∈ F ′, which

ensures that taking T ′(β(i)) to be the last element of trace T ′ results in a well-formed
trace. We set α(i + 1) = α(i) + 1 and β(i + 1) = β(i) + 1. We now must check
(3.28) and (3.29). We have

(
T (α(i)

)
R
(
T ′(β(i))

)
which, by condition 2 of Definition 29,

implies
(
T (α(i)

)
E
(
T ′(β(i))

)
. This establishes (3.29). For equation (3.28), we note that

α(i) < len(T) and β(i) < len(T ′) while α(i+1) ≥ len(T) and β(i+1) ≥ len(T ′). This,
combined with the fact that α(i + 1) = α(i) + 1 and β(i + 1) = β(i) + 1 is sufficient to
establish (3.28).

122

3.4 Stuttering Simulation

CASE 2 [α(i) > len(T)−1] In this case, we cannot satisfy the antecedent j < len(T) in
3.29. Thus, that formula holds vacuously. Our rule above for ending the trace T ′ ensured
that α(i) ≥ len(T)⇒ β(i) ≥ len(T ′), so we can establish 3.28 regardless of what α(i+1)

and β(i + 1) are set to (j and k in that formula will both index past the end of the trace).
Essentially, we are past the end of both traces, so the values of α and β at this point are not
relevant. Since we are free to set them to any values provided the functions remain strictly
increasing, we choose α(i+ 1) = α(i) + 1 and β(i+ 1) = β(i) + 1.

CASE 3 [α(i) < len(T) − 1] If T contains at least two elements at α(i), then we have
T (α(i)) 99K T (α(i) + 1). Since we also have S <∼R,E S

′ and
(
T (α(i)) R T ′(β(i))

)
, then

by Definition 29, we know that either condition 3a, 3b, or 3c holds. We now case split on
these possibilities.

CASE 3.1 [Condition 3a (S ′ Matches)] In this case, we have that there exists an a′ such
that (T ′(β(i)) 99K′ a′) ∧ (T (α(i) + 1) R a′). Since each transition system takes a step to
new states which are related, we start a new block in each trace. We set α(i+1) = α(i)+1

and β(i + 1) = β(i) + 1. We set T ′(β(i + 1)) = a′. Applying these definitions to
T (α(i) + 1) R a′, we obtain

(
T (α(i + 1))

)
R
(
T ′(β(i + 1))

)
. Note that T (α(i)) and

T ′(β(i)) are the only elements in the ith block of T and T ′, respectively. We also have(
T (α(i))

)
R
(
T ′(β(i))

)
, and that R-relation implies E-equivalence (condition 2 of Defi-

nition 29). These facts together are sufficient to prove (3.29). Equation (3.28) follows from
the fact that neither T (α(i)) nor T (β(i)) are the last elements in their respective traces.

CASE 3.2 [Condition 3b (S Stutters)] We further assume that condition 3a does not
hold (otherwise, this situation would be handled by the case above). In this case, we have(
T (α(i)+1)

)
R
(
T ′(β(i))

)
and rankt(T (α(i)+1), T ′(β(i))) < rankt(T (α(i)), T ′(β(i))).

We will consider the longest sub-sequence of T starting at index α(i) such that condition
3b holds for consecutive elements, but condition 3a does not. This will be used to define
the ith block of T ′.

Let n be the maximum integer such that

∀l. 1 ≤ l ≤ n⇒(
T (α(i) + l)

)
R
(
T ′(β(i))

)
∧
(
@a′.

(
T ′(β(i)) 99K′ a′

)
∧
(
T (α(i) + l) R a′

))
(3.30)

123

3 Abstractions and Program Properties

Note that n ≥ 1 since the above holds for the current step of T . Also, n must be finite due
to the well-foundedness of rankt . We set α(i+1) = α(i)+n+1 and β(i+1) = β(i)+1.
The value of T ′(β(i+ 1)) depends on whether T (α(i) + n) is the last element of T .

CASE 3.2.1 [T (α(i) + n) is the last element of T] In this case, T ′(β(i)) will be the last
element of T ′ and we proceed as in CASE 1. From Definition 12 we have T (α(i)+n) ∈ F .
We have

(
T (α(i)+n)

)
R
(
T ′(β(i))

)
from (3.30). By condition 4 of Definition 29 we then

have T ′(β(i)) ∈ F ′ and thus T ′(β(i)) is a valid last state for T ′, so we leave T ′ undefined
past β(i). We set α(i + 1) = α(i) + n + 1 and β(i + 1) = β(i) + 1. By (3.30) we have(
T (α(i) + l)

)
R
(
T ′(β(i))

)
for 1 ≤ l ≤ n and thus

(
T (α(i) + l)

)
E
(
T ′(β(i))

)
, thus

satisfying (3.29). Equation 3.28 follows from the fact that α(i) + n is the last index of T
and β(i) is the index of the last element of T ′.

CASE 3.2.2 [T (α(i)+n) is not the last element of T] In this case, we let α(i+1) = α(i)+n+1

and we have that T (α(i) + n) 99K T (α(i) + n + 1). By (3.30) and the maximality of n,
we have that the consequent of (3.30) does not hold for l = n + 1. Thus, we have the
following.

¬
((
T (α(i) + n+ 1)

)
R
(
T ′(β(i))

))
∨(

∃a′.
(
T ′(β(i)) 99K′ a′

)
∧
(
T (α(i) + n+ 1)

)
R a′

)
(3.31)

We can show that the second disjunct must be the one that holds. Because we have(
T (α(i) + n)

)
R
(
T ′(β(i))

)
and T (α(i) + n) 99K T (α(i) + n + 1), then by Defini-

tion 29 either 3a, 3b, or 3c must hold for the transition T (α(i) + n) 99K T (α(i) + n + 1)

and T ′(β(i)).

• Condition (3a) corresponds exactly to the second disjunct in (3.31).

• Condition (3b) contradicts the first disjunct in (3.31), from which we conclude that
the second disjunct must hold in this case.

• Condition (3c) cannot hold. If it did, we would have ∃a′. T ′(β(i)) 99K′ a′∧
(
T (α(i)+n)R a′

)
,

which contradicts (3.30).

124

3.4 Stuttering Simulation

Thus, we have (
∃a′.

(
T ′(β(i)) 99K′ a′

)
∧
(
T (α(i) + n+ 1)

)
R a′

)
Let a′ be the element described by the formula above. We set α(i+ 1) = α(i) + n+ 1

and set β(i + 1) = β(i) + 1. We set T ′(β(i + 1)) = a′. We have (3.28) since neither
sequence is ending. We have (3.29) from assumption (3.30) and the fact that R-relation
implies E-equivalence. We have

(
T (α(i + 1))

)
R
(
T ′(β(i + 1))

)
from the assumption

that
(
T (α(i) + n+ 1)

)
R a′.

CASE 3.3 [Only condition 3c (S ′ Stutters) applies] This proceeds similarly to CASE 3.2.
We again consider a maximal sequence (maximal with respect to prefix order) where only
condition 3c applies. Formally, T ′′ is a maximal sequence with T ′′(0) = T ′(β(i)) such
that

∀j. 0 ≤ j < len(T ′′)⇒
((
T (α(i))

)
R
(
T ′′(j)

))
(3.32)

and

∀j. 0 ≤ j < (len(T ′′)− 1)⇒
(
T ′′(j) 99K′ T ′′(j + 1)

)
(3.33)

and for each j such that 0 ≤ j < (len(T ′′)− 1) we have

@a.
(
T (α(i)) 99K a

)
∧ a R

(
T ′′(j + 1)

)
(3.34)

(which states that condition 3a does not hold) and

@a.
(
T (α(i)) 99K a

)
∧ a R (T ′′(j))

(which states that condition 3b does not hold). There may be several choices for the
sequence T ′′. Any choice satisfying the stated conditions is acceptable.

Note that T ′′ contains at least two elements since condition 3c (the assumption in
this case) states that there is an a′ such that

(
T ′(β(i)) 99K′ a′

)
∧
(
T (α(i)) R a′

)
. This

implies that there is a sequence satisfying these conditions with T ′′(0) = T ′(β(i)) and
T ′′(1) = a′. Let n+ 1 be the length of this sequence (thus making T ′′(n) the last element
in the sequence).

125

3 Abstractions and Program Properties

We have
(
T (α(i))

)
R
(
T ′′(n)

)
from (3.32) and we have T (α(i)) 99K T (α(i) + 1)

due to the fact that we are in CASE 3. Thus, condition 3 of Definition 29 states that either
condition 3a, 3b, or 3c holds for the transition T (α(i)) 99K T (α(i) + 1) and T ′′(n).

Due to the maximality of T ′′, we cannot have that only condition 3c holds. If this were
the case, then we would have T ′′(n) 99K′ a′ for some a′ and T ′′ could be extended by
setting T ′′(n+ 1) = a′, thus contradicting the maximality of T ′′.

Condition 3b also cannot hold. Suppose it did. Then we would have

T (α(i)) 99K T (α(i) + 1) and
(
T (α(i) + 1)

)
R
(
T ′′(n)

)
Since we already have

(
T (α(i))

)
R
(
T ′′(n− 1)

)
and T ′′(n− 1) 99K′ T ′′(n) by (3.32) and

(3.33), this implies that condition 3a holds of the transition T (α(i)) 99K T (α(i) + 1) and
T ′′(n− 1). This contradicts (3.34).

Thus, 3a must hold for T (α(i)) 99K T (α(i) + 1) and T ′′(n), implying that there is a b
such that T ′′(n) 99K′ b and T (α(i) + 1) R b. We handle this case similarly to CASE 3.1.
We set α(i + 1) = α(i) + 1 and β(i + 1) = β(i) + n + 1. We let T ′(j) = T ′′(j − β(i))

for 0 ≤ j ≤ n. We set T ′(β(i+ 1)) equal to b. Since T contains elements at least through
index α(i + 1) and T ′ contains indices at least through β(i + 1), we have (3.28). From
3.32 and the fact that R-relation implies E-equivalence, we have (3.29). We also have
T (α(i + 1)) R b which implies

(
T (α(i + 1))

)
R
(
T ′(β(i + 1))

)
, completing our proof

requirements.

Simulation gives us a method of proving E-stuttering trace containment that only in-
volves examining local transitions. Stuttering simulation is a stronger property than stut-
tering trace containment and actually preserves all ACTL∗\X properties [Manolios, 2001].
Though we are only interested in LTSL, which is a subset of ACTL∗\X, we will never-
theless use stuttering simulation as our main proof method, as its local character makes
reasoning much easier.

126

3.5 Properties of Interest

3.5 Properties of Interest

While we have shown that stuttering equivalence preserves all LTSL properties, there are
certain specific properties that we will focus on in our examples and experiments.

Definition 30.

1. A program P is safe iff P |=X ∼(F(err)).

2. A program P is terminating iff P |=X F(final ·∨ err).

3. A formula Q is invariant for P at l iff P |=X G(atloc(l) ·⊃Q).

4. An expression ei
B bounds an expression ei iff P |=X G(ei ≤ ei

B).

In less formal terms, the safe property states that the execution state error is never
reached. The terminating property holds exactly when the program has no infinite traces.
The reason this statement is equivalent to the LTSL formula given above is that neither
of the states error nor final(s, h) can ever make a transition. Thus, any trace containing
error must be a finite trace with final state error (and similarly for final(s, h)).

The invariant at l property holds exactly when Q is an invariant at location l. This
means that whenever the program jumps to label l, the current store and heap satisfy Q.
The bounds property states that at every step in the execution of program P , the value of
the expression ei

B (as evaluated in the current state) is greater than or equal to the value
of the expression ei (in other words, ei

B is an upper bound of ei). In general, when we
consider bounds we will be interested in finding a bound for a variable in terms of specific
other, designated values. For example, we may be interested in finding a bound on the size
of a function’s outputs in terms of its inputs.

127

3 Abstractions and Program Properties

128

Chapter 4

Instrumented Programs

The translation from heap-manipulating programs to numeric abstractions proceeds via an
intermediate step that we call instrumented programs. These are programs that include the
original program commands along with commands that update a set of instrumentation

variables V , drawn from a set that is disjoint from the set of program variables. The addi-
tional commands describe how numeric counts, such as the size of a data structure, change
during execution of the program. We call such additional commands instrumentation com-

mands. The instrumentation commands are added to the instrumented program as a proof
of memory safety is constructed and make use of the intermediate results of this safety
analysis. Once the instrumented program has been constructed, the numeric abstraction is
extracted from it by a simple syntax-directed translation. This step is discussed in Section
4.4. The end result is that the numeric abstraction s

=V ′-stuttering simulates the original
program, where V ′ is a subset of the program and instrumentation variables that depends
on the details of the construction of the abstraction. This results in a numeric abstraction
that is sound for both safety and liveness properties over variables in V ′.

129

4 Instrumented Programs

4.1 Theory

Informally, an instrumented program for program P is a program P̂ that contains all the
commands and control-flow of P , but with the addition of some commands and branches
that make use of a set of instrumentation variables that are separate from the program
variables. These instrumentation variables play a role similar to that of auxiliary variables
in program logics for concurrency [Owicki and Gries, 1976].

In Figure 4.2 we give a set of inference rules for establishing the judgment Γ ` P̂ IV P

which is read “P̂ is an instrumented version of P ” and also explicitly lists V , the set of
instrumentation variables and Γ, a mapping from labels to separation logic formulae that
specifies program invariants for each label. This judgement is intended to capture the fact
that P̂ simulates P when both are started from states satisfying Γ(initloc(P)) (the invari-
ant for the initial location). The soundness theorem for the system, proved in Section
4.3, states that the proof rules described in this chapter do ensure the existence of such a
simulation.

Figure 4.1 defines a similar judgment at the level of continuations. The judgment for
continuations, which has the form Γ ` {Q} k̂ IV k, should be provable only if, when
started from a state satisfying Q, the continuation k̂ simulates the continuation k. For
continuations, this simulation means that k̂ can match any transition k makes and the
continuations eventually either both halt, both reach an error, or both jump to the same
label.

The simulation relation we obtain in Section 4.3 enforces a relationship between the
memory states of the two programs. The instrumented program P̂ modifies variables in
V , but the original program P does not. The simulation relation ensures that, despite
these extra commands involving new variables, for every execution trace T of the original
program, there is a matching execution trace T ′ in the instrumented program such that T
and T ′ agree on the values of the non-instrumentation variables (that is, all variables in
the original program). This connection lets us check properties of P by instead checking
them on P̂ . For example, if x is a program variable and x is never assigned the value

130

4.1 Theory

0 in executions of P̂ then we can conclude that it is also never assigned the value 0 in
executions of P .

Note that the property of being a valid instrumentation is defined with respect to pro-
gram invariants Γ and, in the case of continuations, with respect to a precondition Q. If
we view the construction of a proof in the system given in Figure 4.1 as proceeding in
a bottom-up manner, then instrumentation proceeds in lock-step with the derivation of
a partial correctness proof of the program. The rules COMMAND and BRANCH tell us
how to update the precondition to reflect the results of executing an existing command
and rules INST-ASSIGN, INST-DISJ, INST-EXISTS, and INST-ASSUME tell us which new
commands can be inserted. The triple {Q} c {Q′} in the COMMAND rule is a partial
correctness triple and holds iff

∀s, h. ((s, h) |= Q)⇒
(
error 6∈ (JcK (s, h))

)
∧
(
∀(s′, h′) ∈ (JcK (s, h)). (s′, h′) |= Q′

)
Note that such triples can be found only if c is memory safe under precondition Q (this
is required due to the clause error 6∈ (JcK (s, h)) and the fact that error is the result of
any command that violates memory safety). For this reason, the rules in Figures 4.1 and
4.2 will only let us derive instrumented versions of a program if the original program is
memory safe.

A key difference between this approach to command insertion and the auxiliary vari-
able approach lies with the INST-EXISTS rule. This rule tells us that if we insert an as-
signment x := ?, then we can remove an existential quantifier on x. This may seem odd,
since {∃x. Q} x := ? {Q} is not a valid partial correctness triple. However, inserting such
a command and reasoning from the unquantified formula is sound because our soundness
result is based on simulation. To maintain soundness, we must show that if the original
program can take a step, then there exists a step in the instrumented program that takes us
to a related state. The fact that the semantics of x := ? includes all possible updates to x
allows us to find such a step. Similarly, the INST-DISJ rule allows us to reason separately
about each side of a disjunction. Again, this is valid because we are targeting a correspon-
dence between the two programs that is based on simulation. We say more about these
connections in Section 4.7.

131

4 Instrumented Programs

HALT

Γ ` {Q} halt IV halt

ABORT

Γ ` {Q} abort IV abort

GOTO

Γ(l) = Q

Γ ` {Q} goto l IV goto l

COMMAND

{Q} c {Q′} Γ ` {Q′} k̂ IV k

Γ ` {Q} (c;k̂) IV (c;k)

STRENGTHENING

Q⇒ Q′ Γ ` {Q′} k̂ IV k

Γ ` {Q} k̂ IV k

BRANCH

∀i. (Γ ` {Q ∧ eb
i } k̂i IV ki)

Γ ` {Q} branch . . . , eb
i ⇒ k̂i, . . . end IV branch . . . , eb

i ⇒ ki, . . . end

FALSE

Γ ` {false} halt IV k

INST-ASSIGN

{Q} xτ := eτ {Q′} Γ ` {Q′} k̂ IV k

Γ ` {Q} (xτ := eτ;k̂) IV k
xτ ∈ V

INST-DISJ

Γ ` {Q1} k̂1 IV k Γ ` {Q2} k̂2 IV k

Γ ` {Q1 ∨Q2} branch true⇒ k̂1, true⇒ k̂2 end IV k

INST-EXISTS

Γ ` {Q} k̂ IV k

Γ ` {∃xτ . Q} (xτ := ?τ;k̂) IV k
xτ ∈ V

INST-ASSUME

Q⇒ eb Γ ` {Q} k̂ IV k

Γ ` {Q} assume(eb);k̂ IV k

Figure 4.1: Rules for establishing that Γ ` {Q} k̂ IV k, read “under precondition Q, with label

invariants Γ, the continuation k̂ is an instrumented version of k with instrumentation variables V .”

Premises of the form {Q} c {Q′} are partial correctness triples and hold iff for all s, h, (s, h) |= Q

implies (∀(s′, h′) ∈ (JcK (s, h)). (s′, h′) |= Q′). Premises of the form Q⇒ Q′ hold iff Q⇒ Q′ is

valid (that is, (s, h) |= (Q⇒ Q′) for all s, h).

132

4.1 Theory

INST-PROG

dom(P̂) = dom(P)

fv(P) ∩ V = ∅ initloc(P̂) = initloc(P) ∀l ∈ dom(P). (Γ ` {Γ(l)} P̂ (l) IV P (l))

Γ ` P̂ IV P

Figure 4.2: Rule for proving that P̂ is an instrumented version of P . The function fv(P) gives the

set of variables occurring free in P . Since there are no binding constructs in our language, this is

just the set of all variables appearing in P .

Notation As before, we will use circled numbers to label continuations in our examples.
To help distinguish between the instrumented program and the original program, we will
adopt the convention of using black numbers in white circles (1 , 2 , . . .) to represent
control points in the original program and white numbers in black circles (1 , 2 , . . .)
to represent control points in the instrumented program. We will also assign numbers
such that if the original program contains a continuation labeled 2 and the instrumented
program contains a continuation labeled 2 then we will have Γ ` {Q} 2 IV 2 for
some Γ, V , and Q. Intuitively, this indicates that the control points 2 and 2 are related
by the simulation relation used to demonstrate soundness.

4.1.1 Common Cases

The rules INST-ASSIGN, INST-DISJ, INST-EXISTS and INST-ASSUME allow us to ex-
presses various facts about the behavior of numeric properties of data structures. These
facts generally fall into four categories.

133

4 Instrumented Programs

Deterministic Size Changes

We can record deterministic size changes using the INST-ASSIGN rule. Suppose we have
the following definition of singly-linked list segments.

ls(n, start , end) ≡

(emp ∧ start = end ∧ n = 0)

∨ (n > 0 ∧ (∃z. (start 7→ [next : z]) ∗ ls(n− 1, z, end)))

and execute the code given below.

L1 : 1 branch x 6= nil⇒ 2 x := x.next; 3 goto L1,

x = nil⇒ 4 halt end

An invariant of this code at label L1 is ∃n1, n2, x
′. ls(n1, x

′, x) ∗ ls(n2, x, nil). In order
to track how the sizes of the segments are changing, we can generate an instrumented
program for the code above. Let Γ(L1) = ∃x′. ls(n1, x

′, x) ∗ ls(n2, x, nil). Then the code
below is an instrumented version of the code above with instrumentation variables n1 and
n2 (the assignments to n1 and n2 are added with the INST-ASSIGN rule). The variable n2

tracks the quantity “length of the list segment from x to nil” and n1 tracks the quantity
“length of the list segment ending at x.”

L1 : 1 branch x 6= nil⇒ 2 x := x.next; 3 n1 := n1 + 1;

n2 := n2 − 1; goto L1,

x = nil⇒ 4 halt end

Note that the existential quantification is dropped in the invariant used for the instru-
mented program (in Γ(L1) the variables n1 and n2 appear unquantified). This is possible
because we are now updating n1 and n2 in the body of the loop. Viewed another way, it
is by committing to an invariant in which n1 and n2 are unquantified that we are forced to
write the appropriate updates to n1 and n2 in the body (if we update n1 or n2 incorrectly,
we will not be able to show that Γ(L1) is an invariant). Figure 4.3 gives a derivation show-
ing that the instrumentation we presented is a valid instrumented version of the original
program according to the rules in Figures 4.1 and 4.2.

134

4.1 Theory

...
{Q3} n2 := n2 − 1 {Q4}

Γ(L1) = Q4

Γ ` {Q4} goto L1 In1,n2 goto L1

GOTO

Γ ` {Q3} n2 := n2 − 1; goto L1 In1,n2 goto L1

I-A

...
{Q2} n1 := n1 + 1 {Q3} Γ ` {Q3} n2 := n2 − 1; goto L1 In1,n2 goto L1

Γ ` {Q2} 3 In1,n2 3
I-A

...
{Q1 ∧ x 6= nil} x := x.next {Q2} Γ ` {Q2} 3 In1,n2 3

Γ ` {Q1 ∧ x 6= nil} 2 In1,n2 2
CMD

Γ ` {Q1 ∧ x 6= nil} 2 In1,n2 2 Γ ` {Q1 ∧ x = nil} halt In1,n2 halt
HALT

Γ ` {Q1} 1 In1,n2 1
BRANCH

Γ(L1) = ∃x′. ls(n1, x
′, x) ∗ ls(n2, x, nil)

Q1 = ∃x′. ls(n1, x
′, x) ∗ ls(n2, x, nil)

Q2 = ∃x′. ls(n1 + 1, x′, x) ∗ ls(n2 − 1, x, nil)

Q3 = ∃x′. ls(n1, x
′, x) ∗ ls(n2 − 1, x, nil)

Q4 = ∃x′. ls(n1, x
′, x) ∗ ls(n2, x, nil)

Figure 4.3: Derivation showing an instrumented program that performs a deterministic update of a

variable representing the length of a linked list. I-A stands for INST-ASSIGN.

135

4 Instrumented Programs

Non-deterministic Size Changes

Suppose we have the following definition of a binary tree, where n represents the number
of nodes in the tree.

tree(n, r) ≡ (n = 0 ∧ r = nil)

∨ (n > 0 ∧ ∃n1, n2. n = n1 + n2 + 1 ∧

∃lc, rc. r 7→ [left : lc, right : rc]

∗ tree(n1, lc) ∗ tree(n2, rc))

If we now consider code for descending through the tree, we can obtain update commands
similar to those obtained for the linked list example above. However, when a pointer p is
advanced through a list, the change in the size of the list at p is deterministic (it always
decreases by one). In the case of trees, if some pointer p descends to the left child, we do
not have a deterministic function that describes how the number of nodes reachable from
p changes. Instead, there is a relation between the two quantities which specifies that the
number of nodes in the left sub-tree can range from zero to one less than the number of
nodes in the full tree. We will use non-deterministic assignment to capture this update
relation.

The original program we consider is given below. The program checks whether the tree
at r is empty and, if it is not, it non-deterministically chooses a child to descend to. We
have marked with 1 a location of interest during creation of the instrumented program.

L1 : branch r 6= nil⇒ 1 branch true⇒ r := r.left;

goto L1,

true⇒ r := r.right;

goto L1 end

r = nil⇒ halt end

136

4.1 Theory

Let Γ(L1) = (tree(n, r))∗true (where true is used to capture the part of the heap no longer
below r in the tree) and let Q be the following formula

Q
def
= (n > 0 ∧ n = n1 + n2 + 1) ∧

∃lc, rc. r 7→ [left : lc, right : rc] ∗ tree(n1, lc) ∗ tree(n2, rc) ∗ true

We will now construct an instrumented version of this program using the following pro-
cess, obtained by taking an algorithmic, bottom-up reading of the inference rules given in
Figure 4.1.

1. Start with the continuation at L1 and the invariant Γ(L1).

2. Copy commands from the original program over to the instrumented program, up-
dating the current invariant using the rules BRANCH and COMMAND.

3. If a halt or abort is encountered, then we can stop analyzing this branch.

4. If a goto L command is encountered, then we insert instrumentation commands
using rules INST-EXISTS, INST-ASSUME, and INST-ASSIGN in order to establish the
invariant Γ(L).

This process is not general enough to give us the instrumentation we want in all cases (for
example it will never insert new branches using the INST-BRANCH rule) but it will suffice
for this example. We give a more general procedure in Chapter 5.

Following steps 1 and 2 we can obtain the formula ∃n1, n2. Q for the invariant at the
position labeled with 1 in the original program. We now must give an instrumentation of
each case of the branch at this location. Let us consider first the case that chooses the left
child. This case executes the continuation r := r.left; goto L1. A valid post-condition
after executing r := r.left is the following

Q′
def
= ∃n1, n2. n > 0 ∧ (n = n1 + n2 + 1) ∧

∃r′, rc. r ′ 7→ [left : r , right : rc] ∗ tree(n1, r) ∗ tree(n2, rc) ∗ true

137

4 Instrumented Programs

We now need to add instrumentation commands that allow us to re-establish the invariant
Γ(L1) which is (tree(n, r))∗true. The commands we will add are the following, which are
justified using the INST-EXISTS, INST-ASSUME, and INST-ASSIGN rules. A full derivation is
given in Figure 4.4.

n1 := ?; n2 := ?; assume(n = n1 + n2 + 1); n := n1

Executing these leads us to the invariant

∃r′, rc. r ′ 7→ [left : r , right : rc] ∗ tree(n, r) ∗ tree(n2, rc) ∗ true

which is labeled Q2 in Figure 4.4. This formula implies (tree(n, r))∗ true which is Γ(L1).
This allows us to finish the processing of this branch by using the STRENGTHENING rule to
show that we have the invariant (tree(n, r)) ∗ true here. As this is equal to Γ(L1), this lets
us use the GOTO rule to process the goto L1 command.

We can perform the same analysis of the branch that descends into the right sub-tree
and obtain the instrumentation commands below.

n1 := ?; n2 := ?; assume(n = n1 + n2 + 1); n := n2

Putting this all together, the full instrumented version of this program is given below.

L1 : branch r 6= nil⇒ 1 branch true⇒ r := r.left; n1 := ?; n2 := ?;

assume(n = n1 + n2 + 1);

n := n1; goto L1,

true⇒ r := r.right; n1 := ?; n2 := ?;

assume(n = n1 + n2 + 1);

n := n2; goto L1 end,

r = nil⇒ halt end

Recall that we generated this program in a fairly directed manner. We copied com-
mands from the original program into the instrumented program and only inserted instru-
mentation commands when this was necessary to establish an invariant in Γ. It still re-
quired some ingenuity to derive the post-conditions of commands and determine which

138

4.1 Theory

{Q1} n := n1 {Q2}

Q2 ⇒ Q3

Γ(L1) = Q3

Γ ` {Q3} goto L1 In,n1,n2 goto L1

GOTO

Γ ` {Q2} goto L1 In,n1,n2 goto L1

STRENGTHEN

Γ ` {Q1} n := n1; goto L1 In,n1,n2 goto L1

INST-ASSIGN

Γ ` {Q1} assume(n = n1 + n2 + 1); n := n1; goto L1 In,n1,n2 goto L1

INST-ASSUME

Γ ` {∃n2. Q1} n2 := ?;
assume(n = n1 + n2 + 1); n := n1 ;goto L1

In,n1,n2 goto L1

I-E

Γ ` {∃n1, n2. Q1} n1 := ?; n2 := ?;
assume(n = n1 + n2 + 1); n := n1

In,n1,n2 goto L1

I-E

Q1 = n > 0 ∧ (n = n1 + n2 + 1) ∧

∃r′, rc. r ′ 7→ [left : r , right : rc] ∗ tree(n1, r) ∗ tree(n2, rc) ∗ true

Q2 = ∃r′, rc. r ′ 7→ [left : r , right : rc] ∗ tree(n, r) ∗ tree(n2, rc) ∗ true

Q3 = tree(n, r) ∗ true

Γ(L1) = tree(n, r) ∗ true

Figure 4.4: Derivation showing that, for the tree traversal program on page 136, the commands

given re-establish the invariant Γ(L1). We write I-E as an abbreviation for INST-EXISTS and

abbreviate STRENGTHENING as STRENGTHEN.

instrumentation commands to insert (although the former could be handled by using
strongest post-conditions). In Chapter 5 we will describe how to automate all portions
of the instrumentation process.

Our semi-automated process had us insert instrumentation commands only immedi-
ately before goto commands. If we had chosen different points at which to insert the
instrumentation commands, we could have obtained the code below, which places the
commands that affect n1 and n2 before the branch instead of replicating them in each

139

4 Instrumented Programs

branch case.

L1 : branch r 6= nil⇒ n1 := ?; n2 := ?;

assume(n = n1 + n2 + 1);

branch true⇒ r := r.left;

n = n1; goto L1,

true⇒ r := r.right;

n = n2; goto L1 end

r = nil⇒ halt end

Both this code and our previously derived code are valid instrumentations of the origi-
nal program, as can be verified using the rules in Figure 4.1. However, the second, shorter
program may be easier to verify using automated tools. In general, the less statements,
variables, and branching a program contains, the easier it is for automated tools to handle.
We say more about this in Section 5.11, which discusses our experimental results.

Branch Condition Translation

Let us return to the linked-list example from before. The instrumented code that we gen-
erated is replicated below.

L1 : 1 branch x 6= nil⇒ 2 x := x.next; 3 n1 := n1 + 1;

n2 := n2 − 1; goto L1,

x = nil⇒ 4 halt end

This summarizes how n1 and n2 change during each iteration. Recall that n1 and n2

are the lengths of the list segments in the invariant ∃x′. ls(n1, x
′, x) ∗ ls(n2, x, nil). The

instrumentation commands in the program above are sufficient to prove some properties
of the list lengths. For example, we can show that the sum n1 + n2 is invariant at location
L1. However, we have not added any commands to indicate how n1 and n2 influence the
truth of the branch condition. Thus, though we would like to use n1 and n2 to reason about

140

4.1 Theory

termination of the code, we cannot obtain a ranking function because n1 and n2 are not
bounded.

To obtain a more precise numeric abstraction that will be useful for termination rea-
soning, we need to notice that only certain values of n2 are possible when the branch
condition x = nil is true. Similarly, when x 6= nil is true, this also gives us information on
the possible values of n2. Specifically, if x = nil then n2 = 0 and if x 6= nil then n2 > 0.
To record this information and make it available to subsequent analyses, we can use the
INST-ASSUME rule to insert an assumption on n2. The final instrumented program then
becomes the following.

L1 : branch x 6= nil⇒ assume(n2 > 0); x := x.next;

n1 := n1 + 1; n2 := n2 − 1; goto L1,

x = nil⇒ assume(n2 = 0); halt end

It is now clear that, for any n2, the program terminates. This is the case because n2

decreases by one during each iteration and once n2 = 0, the first assume statement prevents
us from executing the loop body again. Values of n2 such that n2 < 0 are not possible
as the two assume conditions together ensure that the only valid executions are those for
which n2 ≥ 0 in the initial state. Ruling out the states where n2 < 0 does not pose a
problem for soundness since the precondition ∃x′. ls(n1, x

′, x) ∗ ls(n2, x, nil) implies that
n2 ≥ 0.

Alternate Translation We could also have inserted a branch on n2 using the INST-DISJ

rule and then pruned inconsistent cases using the FALSE rule. Recall that the original code
was as below.

L1 : 1 branch x 6= nil⇒ 2 x := x.next; 3 goto L1,

x = nil⇒ 4 halt end

We start by noting that Γ(L1) = ∃x′. ls(n1, x
′, x)∗ls(n2, x, nil) and this impliesQ1∨Q2

where Q1 and Q2 are defined as follows.

Q1 ≡ ∃x′. ls(n1, x
′, x) ∧ x = nil ∧ n2 = 0

Q2 ≡ ∃x′, z. ls(n1, x
′, x) ∗ (x 7→ [next : z]) ∗ ls(n2 − 1, z, nil) ∧ n2 > 0

141

4 Instrumented Programs

This was obtained by replacing ls(n2, x, nil) with its definition and distributing ∧ and ∗
over disjunction. We can then use the INST-DISJ rule to insert a non-deterministic branch

branch true⇒ k̂1, true⇒ k̂2 end

where k̂1 and k̂2 are chosen such that Γ ` {Q1} k̂1 In1,n2 1 and Γ ` {Q2} k̂2 In1,n2 1 .
Our next step is to copy over the branch from the original program, obtaining the following
partial instrumented program. In each branch case, we have indicated what the precondi-
tion at that location will be during the proof that this program is a valid instrumentation.

L1 : {Q1 ∨Q2} branch true⇒ {Q1} branch x 6= nil⇒ {Q1 ∧ x 6= nil} . . . ,

x = nil⇒ {Q1 ∧ x = nil} . . . end,

true⇒ {Q2} branch x 6= nil⇒ {Q2 ∧ x 6= nil} . . . ,

x = nil⇒ {Q2 ∧ x = nil} . . . end end

Thus, we get four cases, one for each combination of conditions from the two branches.
Since the formulas Q1 ∧ x 6= nil and Q2 ∧ x = nil are both equivalent to false, we can
prune those branches with the FALSE rule, obtaining the following.

L1 : {Q1 ∨Q2} branch true⇒ {Q1} branch x 6= nil⇒ {false} halt,

x = nil⇒ {Q1 ∧ x = nil} . . . end,

true⇒ {Q2} branch x 6= nil⇒ {Q2 ∧ x 6= nil} . . . ,

x = nil⇒ {false} halt end end

We can then use INST-ASSUME to record facts about n2, obtaining

L1 : {Q1 ∨Q2} branch true⇒ {Q1} branch x 6= nil⇒{false} halt,

x = nil⇒{Q1 ∧ x = nil}

assume(n2 = 0); . . . end,

true⇒ {Q2} branch x 6= nil⇒{Q2 ∧ x 6= nil}

assume(n2 > 0); . . . ,

x = nil⇒{false} halt end end

142

4.1 Theory

In this case, the use of INST-DISJ just described yields an instrumented program which
is equivalent to the program we previously obtained from the simpler and more succinct
method of inserting assume() statements with INST-ASSUME. This will be the case when-
ever there are expressions over instrumented variables that are equivalent to each of the
original branch conditions (as is the case with the expressions n2 = 0 and n2 > 0 and the
branch conditions x = nil and x 6= nil).

However, there are cases where INST-DISJ is necessary and the simpler method does
not yield satisfactory results. This happens when the instrumented variables only allow us
to express an under- or over-approximation of the original branch condition. For example,
consider the condition x = y in a state satisfying ls(n, x, y). If n = 0 in this state, then
x = y. But if n > 0 then x and y can still be equal if the list is cyclic. As such, n = 0

is an under-approximation of the condition x = y, but we have no corresponding under-
approximation for x 6= y. An instrumentation of a branch on x = y might then look like
the following (we have added the assume() statements on n in a different location, but
the procedure is otherwise the same as in the previous example). As before, we mark the
inconsistent branch with the precondition {false}.

L1 : {ls(n, x, y)} branch true⇒ assume(n = 0); branch x = y ⇒ . . . ,

x 6= y ⇒{false} halt end,

true⇒ assume(n > 0); branch x = y ⇒ . . .

x 6= y ⇒ . . . end end

In all of these examples, we used INST-DISJ to split on a disjunction that arose naturally
from the disjunctive form of the definition of ls . We can also use INST-DISJ to case split on
any predicate. Since the standard (non-separating) logical connectives in separation logic
are classical in nature, we have the law of excluded middle and thus can always introduce
the disjunction Q∨¬Q for any formula Q. This then allows us to case split on an arbitrary
Q at any point in the instrumented program. For example, we can branch on whether two
variables are equal even if such an expression does not appear in the precondition or in the
program text.

143

4 Instrumented Programs

4.1.2 Properties

We note here a few useful properties of the proof system given in Figure 4.1. Of course
soundness is the property in which we are most interested. However as its proof is the
most complex, we save it for Section 4.3.

Choice of Instrumentation Variables

The proof system in Figure 4.1 asks us to choose a set V of instrumentation variables
which must contain all the variables that appear free in the instrumentation commands.
Intuitively, this set need only mention the instrumentation variables that are actually used
by the instrumented program. This is captured by the following theorem.

Theorem 19. If Γ ` P̂ IV P then Γ ` P̂ IV ′ P for V ′ = (fv(P̂)− fv(P)).

Proof. We will show that any derivation of Γ ` P̂ IV P can be transformed into a
derivation of Γ ` P̂ IV ′ P . The INST-PROG rule ensures that fv(P) ∩ V = ∅ and
we proceed to transform the derivation of each Γ ` {Γ(l)} P̂ (l) IV P (l) premise in
INST-PROG. The set V only participates in side conditions of rules and is unchanged as we
move up the proof tree. We want to show that for each rule, replacing V by V ′ in the side
condition still results in a valid derivation.

To take a representative case, consider the INST-EXISTS rule. We have x ∈ V . We must
show that x ∈ V ′. Clearly x ∈ fv(P̂) as (x := ?; k̂) is a sub-term of P̂ . Then x ∈ V ′

provided that x 6∈ fv(P). But we have that fv(P)∩V = ∅, thus x ∈ V implies x 6∈ fv(P).
The other cases are similar.

We also have that if V is sufficient to show instrumentation, then any extension of V
is also sufficient.

Theorem 20. If Γ ` P̂ IV P then for all V ′ ⊇ V such that V ′ ∩ fv(P) = ∅ we have

Γ ` P̂ IV ′ P .

144

4.1 Theory

Proof. The proof is by induction on the derivation of Γ ` P̂ IV P . For the rule INST-PROG

we need to show that fv(P) ∩ V ′ = ∅ and ∀l ∈ dom(P). (Γ ` {Q} P̂ (l) IV ′ P (l)).
The first is given as an assumption, the second is proved by induction on the derivation.
Specifically, we show that for all k and V ′ ⊇ V , if Γ ` {Q} k̂ IV k holds, then so does
Γ ` {Q} k̂ IV ′ k.

Examining the rules in Figure 4.1 we see that only INST-ASSIGN and INST-EXISTS in-
volve conditions on the set of variables V ′. For the other rules, our goal will follow imme-
diately from the inductive hypothesis. Suppose that INST-ASSIGN was the last rule applied
in the derivation of Γ ` {Q} k̂ IV k. Then we have {Q} xτ := eτ {Q′}, Γ ` {Q′} k̂ IV k

and xτ ∈ V . From the last condition and V ′ ⊇ V we have xτ ∈ V ′. The inductive hypoth-
esis gives us Γ ` {Q} k̂ IV ′ k. These last two together with {Q} xτ := eτ {Q′} are then
sufficient to apply INST-ASSIGN with V ′ as the set of instrumentation variables, obtaining
Γ ` {Q} (xτ := eτ;k̂) IV ′ k, which is our goal.

The case for INST-EXISTS is similar, as again the only condition on V is the side con-
dition that xτ ∈ V .

Combined, these theorems indicate that the use of V in the inference system is merely
a notational convenience. It could be derived, up to extension, from the free variables of
P and P ′.

Weakening Γ

For an instrumentation of a given continuation, Γ can always be weakened (this is not the
case at the level of programs, however).

Lemma 12. If Γ ` {Q} k̂ IV k and ∀l. Γ(l)⇒ Γ′(l) then

Γ′ ` {Q} k̂ IV k

Proof. We show how to transform a derivation of Γ ` {Q} k̂ IV k into a derivation of
Γ′ ` {Q} k̂ IV k. For all the rules in the derivation except GOTO, we can simply replace
Γ by Γ′. The rule will still be valid. For GOTO, which is the only rule in Figure 4.1 that

145

4 Instrumented Programs

involves a condition on Γ, we make the following change. The GOTO rule is reproduced
below.

Γ(l) = Q

Γ ` {Q} goto l IV goto l
GOTO

As the equality in Γ(l) = Q is syntactic equality, any instance of GOTO has the form below.

Γ ` {Γ(l)} goto l IV goto l
GOTO

These rule instances are each replaced with the following derivation, which uses our as-
sumption Γ(l)⇒ Γ′(l).

Γ(l)⇒ Γ′(l) Γ′ ` {Γ′(l)} goto l IV goto l
GOTO

Γ′ ` {Γ(l)} goto l IV goto l
STRENGTHENING

Over-approximation of Reachable States

The manner in which the preconditions in Figure 4.1 are transformed is reminiscent
of Hoare-logic reasoning. And in fact, it is the case that these formulae always over-
approximate the reachable states at the corresponding point in the execution of the in-
strumented program, just as Hoare-style pre- and post-conditions do. We show this now,
beginning with the following lemma.

Lemma 13. Suppose that Γ ` {Q} k̂ IV k holds and (s, h) |= Q. Then for all s′, h′, l′ we

have 〈k̂, (s, h)〉 −→̂
P

+ goto(l′, (s′, h′)) implies (s′, h′) |= Γ(l′).

The proof is by induction on the derivation of Γ ` {Q} k̂ IV k and in each inductive
case involves checking that if the instrumented command in the conclusion of a rule takes
a single step from a state satisfying the precondition, then the precondition in the premise

146

4.1 Theory

holds of the post-state. We do not give a full proof here since the proof of soundness also
involves checking this property of the rules. For details, see Section 4.3.

We can now show that the preconditions over-approximate the reachable states.

Theorem 21. If Γ ` P̂ IV P and (s, h) |= Γ(initloc(P̂)) and

goto(initloc(P̂), (s, h)) −→̂
P

+ goto(l′, (s′, h′))

then (s′, h′) |= Γ(l′).

Let l0 = initloc(P̂). If Γ ` P̂ IV P holds, then we have Γ ` {Γ(l0)} P̂ (l0) IV P (l0).
This together with our assumption (s, h) |= Γ(l0) allows us to apply Lemma 13, thus
obtaining that goto(initloc(P̂), (s, h)) −→̂

P

+ goto(l′, (s′, h′)) implies (s′, h′) |= Γ(l′), as

desired.

Inversion

Since there is only one rule for proving Γ ` P̂ IV P , we have the following inversion
lemma.

Lemma 14. If Γ ` P̂ IV P then all the following hold

1. dom(P̂) = dom(P)

2. fv(P) ∩ V = ∅

3. initloc(P̂) = initloc(P)

4. ∀l ∈ dom(P). (Γ ` {Γ(l)} P̂ (l) IV P (l))

We also have that all judgments appearing in the proof involve sub-terms of the pro-
gram P in the position following the I symbol.

Lemma 15. If D is a sub-derivation of Γ ` P̂ IV P with conclusion Γ ` {Q} k̂ IV k

then k is a sub-term of P .

147

4 Instrumented Programs

Proof. The proof is by induction on the derivation of Γ ` P̂ IV P . We check each rule
in the system given in Figures 4.1 and 4.2 and verify that if the conclusion has the form
Γ ` {Q} k̂ IV k and a premise has the form Γ ` {Q′} k̂′ IV k′ then k′ is a sub-term of
k.

Corollary 3. If D is a sub-derivation of Γ ` P̂ IV P with conclusion Γ ` {Q} k̂ IV k

then V ∩ fv(k) = ∅.

Proof. Since Γ ` P̂ IV P holds, we have V ∩ fv(P) = ∅ from Lemma 14. By Lemma
15 we have that k is a sub-term of P . Thus, fv(k) ⊆ fv(P). Combining these facts gives
us that V ∩ fv(k) = ∅.

4.1.3 Derived Rules

We now discuss certain rules which are derived in the sense that, given their premises, their
conclusion can be constructed by the use of existing rules. Such rules capture common rea-
soning patterns and thus we will often use them directly in proofs. Often the instrumented
program in the conclusion of the rule is equivalent to another, simpler, instrumented pro-
gram in the sense that they produce sets of execution traces that are stuttering equivalent.
In such cases we will note this and adopt the rule with the simplified conclusion. Note
that this simplification step is not usually part of the process of generating derived rules.
Thus, these are more accurately described as “simplifications of derived rules,” however
we adopt the term “derived rule” for conciseness.

Case Split with Conditions In the previous section, we repeatedly encountered contin-
uations with the following structure.

k
def
= branch true⇒ assume(e1); k̂1,

true⇒ assume(e2); k̂2 end

148

4.1 Theory

Such a pattern corresponds to the derivation given in Figure 4.5. The code above is equiv-
alent to the following.

k′
def
= branch e1 ⇒ k̂1,

e2 ⇒ k̂2 end

To see why, consider the traces of k. These have one of two forms. Either they fit the
pattern

〈k, (s, h)〉 〈(assume(e1); k̂1), (s, h)〉 T1

where (s, h) |= e1 and T1 is a trace of k̂1 starting from s, h, or they are of the form

〈k, (s, h)〉 〈(assume(e2); k̂2), (s, h)〉 T2

where (s, h) |= e2 and T2 is a trace of k̂2 starting from s, h.

The traces of k′ are stuttering equivalent to these with respect to the equivalence rela-
tion .

=, which is the equivalence relation on states that allows the current continuation to
differ but otherwise requires the states to match (a full definition is given on page 89). The
traces of k′ have the form

〈k′, (s, h)〉T1

and

〈k′, (s, h)〉T2

These differ from the trace of k only in that the traces of k contain one more repetition of
the memory state s, h.

Collecting the premises in the derivation in Figure 4.5 and using the simplified contin-
uation k′ as the conclusion gives us the following derived rule.

INST-BRANCH

Q⇒ e1 ∨ e2 Γ ` {Q ∧ e1} k̂1 IV k Γ ` {Q ∧ e2} k̂2 IV k

Γ ` {Q} branch e1 ⇒ k̂1, e2 ⇒ k̂2 end IV k

This lets us directly branch on pure conditions present in a disjunctive precondition.

149

4 Instrumented Programs

Q ∧ e1 ⇒ e1 Γ ` {Q ∧ e1} k̂1 IV k

Γ ` {Q ∧ e1} (assume(e1);k̂1) IV k
I-A

Q ∧ e2 ⇒ e2 Γ ` {Q ∧ e2} k̂2 IV k

Γ ` {Q ∧ e2} (assume(e2);k̂2) IV k
I-A

Γ ` {(Q ∧ e1) ∨ (Q ∧ e2)} branch true⇒ assume(e1);k̂1, true⇒ assume(e2);k̂2 end IV k

Q⇒ e1 ∨ e2

...

Q⇒ (Q ∧ e1) ∨ (Q ∧ e2)

Γ ` {Q} branch true⇒ assume(e1);k̂1, true⇒ assume(e2);k̂2 end IV k
STR

Figure 4.5: Derivation corresponding to the insertion of a case split on e1 ∨ e2. The premises

that become premises of the derived rule are boxed (the other two premises are tautologies). We

abbreviate STRENGTHENING as STR and INST-ASSUME as I-A. The unlabeled rule is an instance

of INST-DISJ.

Branch Translation We can build on the INST-BRANCH rule given previously to derive
a rule that lets us translate branch conditions in one step when the conditions have an
exact analogue in terms of instrumentation variables. To take an example, in the case of
complete lists of the form ls(n, x, nil)—that is, lists of length n starting at x and ending at
nil—we have that ls(n, x, nil) ∧ n = 0 ⇔ ls(n, x, nil) ∧ x = nil. Thus, in a state in which
we have ls(n, x, nil), knowing that n = 0 tells us just as much as knowing that x = nil.

The derivation given in Figure 4.6 forms the basis of the derived rule. We then, as in the
previous case, simplify the conclusion. However, the argument that such a simplification
is permitted is more complicated in this case. We would like to take the following

k
def
= branch e1 ⇒ assume(e′1); k̂1, . . . , en ⇒ assume(e′n); k̂n end

and reduce it to the continuation below.

k′
def
= branch e′1 ⇒ k̂1, . . . , e

′
n ⇒ k̂n end

The problem is that these two continuations are only equivalent for initial states (s, h) in
which (s, h) |= e′i implies (s, h) |= ei.

150

4.1 Theory

If this implication holds, then the traces of k have the following form

〈k, (s, h)〉 〈(assume(e′i); k̂i), (s, h)〉Ti

where (s, h) |= ei and (s, h) |= e′i and Ti is a trace of k̂i. The traces of k′ have the form

〈k′, (s, h)〉Ti

where (s, h) |= e′i. If (s, h) |= e′i implies (s, h) |= ei, then these two sets of traces are
related by ∼ .= (for each trace of k there is a matching trace of k′ and vice-versa).

To ensure that the above simplification is always valid then, we require thatQ∧e′i ⇒ ei.
This, combined with the fact thatQ is an over-approximation of the reachable states at this
point in the execution, ensures that the continuation will only be executing in contexts in
which for all s, h we have (s, h) |= e′i implies (s, h) |= ei and the replacement is valid.
This leaves us with the rule below. Note that since the derivation in Figure 4.6 requires
that (Q∧ ei)⇒ e′i and the rule for simplifying the conclusion requires that (Q∧ e′i)⇒ ei,
this forces the assumption that (Q ∧ ei)⇔ (Q ∧ e′i) in the final rule.

INST-BRANCHTRANS

(Q ∧ ei)⇔ (Q ∧ e′i) ∀i. (Γ ` {Q ∧ ei} k̂i IV ki)

Γ ` {Q}

(
branch e′1 ⇒ k̂1, . . . ,

e′n ⇒ k̂n end

)
IV

(
branch e1 ⇒ k̂1, . . . ,

en ⇒ k̂n end

)

Assignment We took as primitive the INST-ASSIGN rule. Having a succinct rule for up-
dating instrumentation variables is useful, as this operation occurs quite frequently. How-
ever, as we will see in this section, this rule is actually derivable from the others. Figure 4.7
gives the derivation for the simpler case where we are inserting the instrumentation com-
mand x := e and x 6∈ fv(e). We can then derive the more general rule with the commonly-
used trick of inserting a temporary variable (transforming x := e into y := e; x := y

where y is a fresh variable).

Essentially, the derivation relies on the fact that we can use the STRENGTHENING

rule to reason forward from our precondition Q, obtaining the sequence of implications

151

4 Instrumented Programs

(Q ∧ ei)⇒ e′i Γ ` {Q ∧ ei} k̂i IV ki
INST-ASSUME

Γ ` {Q ∧ ei} (assume(e′i); k̂i) IV ki∀i BRANCH

Γ ` {Q}

(
branch e1 ⇒ assume(e′1); k̂1, . . . ,

en ⇒ assume(e′n); k̂n end

)
IV

(
branch e1 ⇒ k1, . . . ,

en ⇒ kn end

)

Figure 4.6: Derivation corresponding to the translation of branch conditions into conditions on

instrumentation variables. In the rule labeled ∀i, the premise holds for each value of i. The

premises that become premises of the derived rule are boxed. We require that they hold for each

i ∈ {1, . . . , n}.

Q⇒ ∃x. Q⇒ ∃x′. Q[x′/x]. This allows us to perform the quantification of the previous
value of x that occurs in the forward reasoning rule for x := e in Hoare logic. We then
note that, since our semantics of expressions is total, if e does not contain x then ∃x. x = e

is a tautology, allowing us to conclude

(∃x′. Q[x′/x]) ∧ (∃x. x = e)

Since x is not free in ∃x′. Q[x′/x], we can extend the scope of the quantifier on x, obtaining

∃x. (∃x′. Q[x′/x]) ∧ x = e

We can the use the INST-EXISTS rule to add the command x := ? and obtain the precondi-
tion

(∃x′. Q[x′/x]) ∧ x = e

which allows us to insert assume(x = e) with the INST-ASSUME rule.

The derivation in Figure 4.7 also makes use of the fact that {Q} x := e {Q′} implies
∃x′.

(
Q[x′/x]∧ (x = e[x′/x])

)
⇒ Q′. This holds because ∃x′.

(
Q[x′/x]∧ (x = e[x′/x])

)
is the strongest post-condition of x := e with respect to the precondition Q. If x 6∈ fv(e)

then e[x′/x] = e and the strongest post-condition is simply ∃x′. Q[x′/x] ∧ x = e.

Collecting the premises and side-conditions from the derivation in Figure 4.7 we
obtain the following derived rule for assignments (note that we have also simplified

152

4.1 Theory

x 6∈ fv(Q[x′/x], e) to x 6∈ fv(e) since Q[x′/x] cannot contain x).

{Q} x := e {Q′} Γ ` {Q′} k̂ IV k

Γ ` {Q} (x := ?; assume(x = e); k̂) IV k
x ∈ V, x 6∈ fv(e)

We can then prove that if x 6∈ fv(e) then (x := ?; assume(x = e); k̂) is stuttering
equivalent to (x := e; k̂). Let k be the first continuation and k′ be the second. The traces
of k have the form

〈k, (s, h)〉 〈(assume(x = e); k̂), (s′, h)〉T

where s′ = s[x→ v] for some v and (s′, h) |= (x = e) and T is a trace of k̂ starting from
(s′, h). The traces of k′ have the form

〈k′, (s, h)〉 〈k̂, (s[x→ JeK s], h)〉T

The traces are stuttering equivalent (with respect to .
=) provided we can show that

s′ = s[x → JeK s]. The fact that (s′, h) |= (x = e) implies s′(x) = JeK s. Combined
with the fact that s′ = s[x → v], this tells us that v = JeK s and thus s′ = s[x → JeK s] as
desired.

The above argument allows us to simplify the instrumented continuation in the conclu-
sion, obtaining the following rule.

INST-ASSIGN-NOTFREE

{Q} x := e {Q′} Γ ` {Q′} k̂ IV k

Γ ` {Q} (x := e; k̂) IV k
x ∈ V, x 6∈ fv(e)

This then gives us all the machinery necessary to replicate the INST-ASSIGN rule. Sup-
pose we had the proof system in Figure 4.1, but without the INST-ASSIGN rule and we
wanted to insert the assignment x := e, where x is an instrumentation variable. Then
we could select an instrumentation variable y which is not otherwise used (by Theo-
rem 20 this can always be done) and insert the commands y := e; x := y using the
INST-ASSIGN-NOTFREE rule.

153

4 Instrumented Programs

((∃x′. Q[x′/x]) ∧ x = e)⇒ x = e

{Q} x := e {Q′} x 6∈ fv(e)
...

((∃x′. Q[x′/x]) ∧ x = e)⇒ Q′ Γ ` {Q′} k̂ IV k

Γ ` {(∃x′. Q[x′/x]) ∧ x = e} k̂ IV k
I-A

Γ ` {(∃x′. Q[x′/x]) ∧ x = e} (assume(x = e) ;k̂) IV k
x ∈ V I-E

Γ ` {∃x. (∃x′. Q[x′/x]) ∧ x = e} (x := ?; assume(x = e) ;k̂) IV k

x′ 6∈ fv(Q) x 6∈ fv(e)

...

Q⇒ ∃x. (∃x′. Q[x′/x]) ∧ x = e

Γ ` {Q} (x := ?; assume(x = e) ;k̂) IV k

Figure 4.7: Derivation of the INST-ASSIGN rule for the case where x 6∈ fv(e). The formulas

and conditions that become premises and side conditions in the derived rule are boxed. The un-

boxed formulas can always be made to hold, either because they are tautologies or, in the case of

x′ 6∈ fv(Q) because we get to choose x′ when constructing the derivation. I-A stands for INST-

ASSUME, I-E stands for INST-EXISTS. All other rules are instances of STRENGTHENING.

4.2 Example

Before examining in more detail the theory behind instrumented programs, we first con-
sider a concrete example. Consider the C program in Figure 4.8. This program advances a
pointer r through an ordered binary tree, searching for the value v. It returns 1 if the value
is found and 0 otherwise. Suppose we want to verify that this program terminates.

The usual method for showing this is to produce a ranking function, which is a function
from program states to some well-founded set (often a bounded subset of the integers). For
programs not involving the heap, these ranking functions can be given as functions of the
program variables. However, for programs that manipulate heap-based data structures,
these functions may involve properties of the heap.

154

4.2 Example

int mem(TreePointer r, int v) {

int u;

while(r != 0) {

u = r->data;

if (u == v)

return 1;

else if (u < v)

r = r->right;

else

r = r->left;

}

return 0;

}

Figure 4.8: C code implementing a membership query for an ordered binary tree.

This is the case for our example. We cannot write a ranking function for the loop
that is given solely in terms of program variables. The quantity that is decreasing at each
iteration is the size of the sub-tree at r, which does not have an explicit representation in
the program. As such, standard termination tools cannot be applied to this example and we
might think that any method for constructing a ranking function for this example would
have to be heap-aware.

What we show in this section (and in the thesis in general) is that by constructing an ap-
propriate instrumented version of the code, we can provide explicit information regarding
the counts involved in the termination argument. This provides a standard termination tool
with the components it needs to construct a ranking function and allows the rank function
synthesis to be done with no knowledge of the underlying heap-based data structures.

We begin by translating the C program into our program format. The result of this
translation is given in Figure 4.9. We include a variable “return” that models the return
value of the function.

155

4 Instrumented Programs

loop : 1 branch r = nil⇒ 2 return := 0; halt,

r 6= nil⇒ 3 u := r.data;

4 branch u = v ⇒ 5 return := 1; halt,

u < v ⇒ 6 r := r.right; goto loop,

u > v ⇒ 7 r := r.left; goto loop

end

end

Figure 4.9: The program from Figure 4.8 translated into our program notation, with control points

numbered.

To produce the instrumented version, we need a means of describing the contents of
the heap. This is provided by the following definition of binary trees. Here, n represents
the number of nodes in the tree.

tree(n, r) ≡

(n = 0 ∧ r = nil ∧ emp)

∨ (n > 0 ∧ ∃n1, n2. (n = n1 + n2 + 1) ∧

(∃lc, rc,m. (r 7→ [left : lc, right : rc, data : m]) ∗

tree(n1, lc) ∗ tree(n2, rc)))

An instrumented version of the search program is given in Figure 4.10. The
loop invariant is tree(n, r) ∗ true, which indicates that there is a binary search tree
at r consisting of n separate nodes (where a “node” is a pointer cell of the form
x 7→ [left : a, right : b, data : c]). The “∗ true” portion indicates that the heap may also
contain other cells. For a more complete analysis of this program, we would want to define
a predicate describing a “tree with a hole” (similar to the approach taken in Calcagno et al.
[2005]) in order to track these other cells more precisely, as this information is needed to
conclude that the heap still contains a tree when the function returns.

We have annotated the instrumented program with invariants at key locations, show-
ing the value of Q that would be used in the proof of Γ ` {Q} k̂ IV k at that point.

156

4.2 Example

loop : {tree(n, r) ∗ true}

1 branch

n = 0⇒ 2 return := 0;halt

n > 0⇒ 3

{∃n1, n2. Q} n1 := ?; n2 := ?;

{Q} assume(n = n1 + n2 + 1);

{Q} u := r .data;

4 branch

u = v ⇒ 5 return := 1;halt,

u < v ⇒ 6 r := r .left;

{tree(n1, r) ∗ true} n := n1;

{tree(n, r) ∗ true} goto loop

u > v ⇒ 7 r := r .right;

{tree(n2, r) ∗ true} n := n2;

{tree(n, r) ∗ true} goto loop

end

end

Q
def
= ∃lc, rc,m. (r 7→ [left : lc, right : rc, data : m] ∗

tree(n1, lc) ∗ tree(n2, rc) ∗ true) ∧ (n = n1 + n2 + 1)

Figure 4.10: Instrumented version of the program in Figure 4.9.

157

4 Instrumented Programs

The main branch on r = nil is transformed into an equivalent branch on n = 0 by the
INST-BRANCHTRANS derived rule from Section 4.1.3. Other commands are added via the
INST-ASSUME, INST-EXISTS, and INST-ASSIGN rules.

The program first branches on the instrumentation variable n, which represents the
number of nodes in the tree rooted at r. In the case where the tree is empty, we return.
In the case where the tree is non-empty, it is expanded into its left and right child, whose
sizes summed plus one equals n. When we reach the end of this case, having advanced r
to the appropriate child, the instrumentation command n := ni is inserted (where i = 1 or
i = 2 depending on the child that was chosen). This updates n to contain the number of
nodes in the sub-tree that is now pointed to by r.

To show termination, we can focus on the changes to n. We see that in all paths through
the loop, either we halt or n strictly decreases. As n is bounded below by 0, this ensures
termination of the loop.

Note that the commands n1 := ?, n2 := ?, and assume(n = n1 +n2 +1) have the effect
of ensuring that, regardless of whether the left child (with size n1) or the right child (size
n2) is chosen, the size of the tree at r decreases. The non-deterministic choice commands
assign new, arbitrary values to n1 and n2 and then the assume statement ensures that only
values that satisfy the relationship between the sizes are considered (the assume allows us
to disregard executions where non-satisfactory values of n1 and n2 are chosen).

If the assume statement were not present, the program in Figure 4.10 would still be a
valid instrumentation according to the rules in Figure 4.1. However, it would have execu-
tions that we know are not possible (namely, executions where n1 and n2 do not satisfy
n = n1 + n2 + 1). These extra paths must be considered by subsequent analyses and,
in this case, the absence of the constraint n = n1 + n2 + 1 would prevent a termination
analysis from showing that the instrumented program terminates.

4.2.1 Alternate Size Measures

We just presented a treatment of trees where the notion of size corresponded to the number
of nodes in the tree. Trees also admit other notions of size—tree height, for example—

158

4.2 Example

and this is true of most data structures. Even singly-linked lists of integers admit multiple
notions of size. One may be interested in tracking the length of the list, the maximal value
contained in the list, or the sum of all values contained in the list, to name just a few. The
rules presented in Figure 4.1 permit reasoning about any of these notions of size. Any
quantity whose update relation can be represented using the expression language can be
tracked by inserting instrumentation commands in the manner discussed previously.

As an example, if we want to track the height of a tree, we could use the definition
below.

treeh(h, r) ≡ (h = 0 ∧ r = nil)

∨ (h > 0 ∧ ∃h1, h2,m. (h1 < h) ∧ (h2 < h) ∧ (h = h1 + 1 ∨ h = h2 + 1)

∃lc, rc. r 7→ [left : lc, right : rc, data : m]

∗ treeh(h1, lc) ∗ treeh(h2, rc))

Here we use the constraint (h1 < h) ∧ (h2 < h) ∧ (h = h1 + 1 ∨ h = h2 + 1) to ensure
that if h1 and h2 are the heights of the left and right sub-trees, then h is the height of the
full tree. If our expression language had a function max of type Z× Z→ Z that returned
the greater of its two arguments, then we could represent this constraint more succinctly
as h = max (h1, h2) + 1.

We can also specify more abstract notions of size. For example, below is the same
tree definition, but with argument a representing an abstract notion of size, rather than a
particular size measure.

treea(a, r) ≡ (a = 0 ∧ r = nil)

∨ (a > 0 ∧ ∃a1, a2. (a1 < a) ∧ (a2 < a)

∃lc, rc. r 7→ [left : lc, right : rc]

∗ treea(a1, lc) ∗ treea(a2, rc))

The specific size measures discussed previously—number of nodes and height—would
both satisfy this definition. That is, if treeh is the tree predicate that tracks height and tree

is the predicate that specifies the number of nodes and treea is the definition above, then

159

4 Instrumented Programs

we have
tree(h, r)⇒ treea(h, r)

treeh(h, r)⇒ treea(h, r)

This follows from the fact that the update relation for tree is contained in the update rela-
tion for treea, and similarly for treeh. More specifically, we can view the pure constraint
on sizes as a relation between “size of the entire tree,” “size of the left sub-tree,” and “size
of the right sub-tree.” If we then write s, sl, and sr for these quantities, thus unifying our
variable notation, we get an update relation of s = sl+sr+1 for tree and (sl < s)∧(sr < s)

for treea. The fact that for sl, sr ≥ 0 we have (s = sl + sr + 1)⇒ (sl < s) ∧ (sr < s) is
then the main step in justifying the first implication given above.

To consider another example, below is the definition of a predicate for a list of integers
where the notion of size is the sum of the integers in the list. Note that termination of
a traversal routine could be established for such a notion of size only if the list contains
solely positive elements.

ls(n, first , next) ≡

(emp ∧ first = next ∧ n = 0)

∨
(
∃z.
(
(first 7→ [next : z, data : d]) ∗ ls(n′, z, next)

)
∧ n = n′ + d

)
This is also an example of a situation where there is not a condition on the size that

uniquely determines which case of the definition applies. If we have ls(n, a, b) and n > 0,
then the definition above specifies that the list must be non-empty. However, if n = 0,
then either case of the definition may hold.

4.3 Soundness

In this section, we prove that instrumented programs meeting our criteria simulate the
original program. This takes us half-way to numeric abstractions. In Section 4.4, we
complete the formal development by showing how numeric abstractions can be extracted
from instrumented programs.

160

4.3 Soundness

Definition 31. Let RV,Γ be the relation on execution states defined as follows. We use the

notation Ṽ to abbreviate the set Vars− V .

goto(l, (s, h)) RV,Γ goto(l̂, (ŝ, ĥ)) iff
(
(ŝ, ĥ) |= Γ(l)

)
∧ (l = l̂)

∧ (s =Ṽ ŝ) ∧ (h = ĥ)

〈k, (s, h)〉 RV,Γ 〈k̂, (ŝ, ĥ)〉 iff ∃Q.
(
Γ ` {Q} k̂ IV k

)
∧
(
(ŝ, ĥ) |= Q

)
∧ (s =Ṽ ŝ) ∧ (h = ĥ)

final(s, h) RV,Γ final(ŝ, ĥ) iff (s =Ṽ ŝ) ∧ (h = ĥ)

error RV,Γ error

We can now state the main theorem associated with the proof system in Figure 4.1.
This states that, if P̂ is an instrumented version of P according to the proof rules in Figures
4.1 and 4.2, then P with initial states satisfying Γ(initloc(P)) is simulated by P̂ with the
same set of initial states.

Theorem 22. (Soundness) Let Q0 = Γ(initloc(P)). Then Γ ` P̂ IV P implies

((P |Q0)) <∼RV,Γ,=
Ṽ

((P̂ |Q0)).

Proof. We must show that RV,Γ satisfies the conditions in Definition 29. We consider each
condition in order.

goal (Initial States Related):

By Definition 14 we have that the initial states I of ((P |Q0)) are

I =
{
goto(l0, (s, h))

∣∣ (l0 = initloc(P)) ∧ (s, h) |= Q0

}
and the initial states Î of ((P̂ |Q0)) are

Î =
{
goto(l0, (s, h))

∣∣ (l0 = initloc(P̂)) ∧ (s, h) |= Q0

}
We must show that ∀γ ∈ I. ∃γ̂ ∈ Î . γ RV,Γ γ̂. Consider γ ∈ I . We have that
γ = goto(l0, (s, h)) where l0 = initloc(P) and (s, h) |= Q0. Since Q0 = Γ(l0) we
have (s, h) |= Γ(l0). By our definition of RV,Γ, we then have the following.

goto(l0, (s, h)) RV,Γ goto(l0, (s, h))

161

4 Instrumented Programs

By Lemma 14 we have initloc(P) = initloc(P̂), thus we have that goto(l0, (s, h)) ∈ Î ,
completing the proof of this case.

goal (=Ṽ -equivalent):

∀γ1, γ2. (γ1 R
V,Γ γ2)⇒ (γ1 =Ṽ γ2)

This follows immediately from our definition of RV,Γ and the definition of the =Ṽ

relation.

goal (P Transitions Match): If γ RV,Γ γ̂ and γ −→
P

γ′ then one of the following holds

1. (P̂ Matches) γ̂ −→
P

γ̂ ′ and γ′ RV,Γ γ̂ ′

2. (P Stutters) (γ′ RV,Γ γ̂) and (rankt(γ′, γ̂) < rankt(γ, γ̂))

3. (P̂ Stutters) γ̂ −→̂
P

γ̂ ′ and γ RV,Γ γ̂ ′ and rankl(γ̂ ′, γ, γ′) < rankl(γ̂, γ, γ′).

Since γ −→
P

γ′ we know that γ either has the form goto(l, (s, h)) or 〈k, (s, h)〉.

Goto State Suppose it has the form goto(l, (s, h)). Then by the definition of RV,Γ, the
state γ̂ must have the form goto(l̂, (ŝ, ĥ)) with (ŝ, ĥ) |= Γ(l) and l = l̂ and s =Ṽ ŝ and
h = ĥ. We have from the definitions of −→

P
and −→̂

P
that

goto(l, (s, h)) −→
P
〈P (l), (s, h)〉

and
goto(l̂, (ŝ, ĥ)) −→̂

P
〈P̂ (l̂), (ŝ, ĥ)〉

Since l = l̂, the second statement is equivalent to

goto(l̂, (ŝ, ĥ)) −→̂
P
〈P̂ (l), (ŝ, ĥ)〉

We will show that condition 1 holds (P̂ matches). This corresponds to the statement below.

〈P (l), (s, h)〉 RV,Γ 〈P̂ (l), (ŝ, ĥ)〉

162

4.3 Soundness

This follows from the conclusions of Lemma 14. We already have that s =Ṽ ŝ and h = ĥ

and (ŝ, ĥ) |= Γ(l). Lemma 14 gives us that Γ ` {Γ(l)} P̂ (l) IV P (l), which is the last
condition needed to establish that the states are RV,Γ-related.

Intermediate State Now we consider the case where γ̂ has the form 〈k̂, (ŝ, ĥ)〉. From
the definition of RV,Γ for states of this form, we have that there exists a Q such that the
following hold.

(Assumption 1) Γ ` {Q} k̂ IV k

(Assumption 2) (ŝ, ĥ) |= Q

(Assumption 3) s =Ṽ ŝ

(Assumption 4) h = ĥ

We will show that for all choices of k, s, h, k̂, ŝ, ĥ consistent with these assumptions,
one of the goal conditions holds (either P̂ matches, P stutters, or P̂ stutters). The proof is
by induction on the derivation of Γ ` {Q} k̂ IV k with one case for each rule in Figure
4.1. The induction is required to handle the STRENGTHENING rule. Figure 4.11 summarizes
the variables used throughout this proof.

In the cases where either P or P̂ stutters, we must also show that a ranking function de-
creases, in order to rule out the possibility of an infinite sequence of states being matched
by a single state (and thus infinite traces being matched by finite traces). The ranking
function in this case will simply be the size of the continuation k in a state of the form
〈k, (s, h)〉 and 0 in the case of error or final(s, h). Formally, we have the following defi-
nitions for rankt and rankl , where size(k) represents the number of nodes in the abstract

163

4 Instrumented Programs

γ

〈k, (s, h)〉
γ′

γ̂

〈k̂, (ŝ, ĥ)〉
γ̂ ′

P

P̂

RV,Γ RV,Γ

Figure 4.11: Guide to variable names used throughout the proof of Theorem 22. In each case of

the proof, our goal is to show that one of the dashed relation lines exists.

syntax tree for k.

rankt(〈k, (s, h)〉, γ̂) = size(k)

rankt(error, γ̂) = 0

rankt(final(s, h), γ̂) = 0

rankl(〈k̂, (ŝ, ĥ)〉, γ, γ′) = size(k̂)

rankl(error, γ, γ′) = 0

rankl(final(s, h), γ, γ′) = 0

CASE

HALT

Γ ` {Q} halt IV halt

:

In this case, k = halt and k̂ = halt and γ′ = final(s, h). Since k̂ = halt, we have that
〈k̂, (ŝ, ĥ)〉 −→̂

P
final(ŝ, ĥ). It remains to show that final(s, h) RV,Γ final(ŝ, ĥ).

This follows from (Assumption 3), (Assumption 4), and the definition of RV,Γ. Thus,
we have shown that P̂ can match the transition.

CASE

ABORT

Γ ` {Q} abort IV abort

:

164

4.3 Soundness

In this case, k = abort and k̂ = abort. Thus, γ′ = error. We have immediately from
the definition of −→̂

P
that 〈abort, (ŝ, ĥ)〉 −→̂

P
error. We have that error RV,Γ error by

the definition ofRV,Γ for final states. Thus, we have shown that P̂ can match the transition.

CASE

GOTO

Γ(l) = Q

Γ ` {Q} goto l IV goto l

:

This is very similar to the halt case. We have that k = goto l and k̂ = goto l. By the
definition of−→

P
we have 〈k, (s, h)〉 −→

P
goto(l, (s, h)) and 〈k̂, (ŝ, ĥ)〉 −→̂

P
goto(l, (ŝ, ĥ)).

We must show that goto(l, (s, h)) RV,Γ goto(l, (ŝ, ĥ)) which requires showing that
s =Ṽ ŝ, h = ĥ, and (ŝ, ĥ) |= Γ(l). The first two are exactly (Assumption 3) and (As-

sumption 4). The last follows from (Assumption 2) by the premise of this rule, which
states that Γ(l) = Q. Thus, P̂ matches the transition.

CASE

COMMAND

{Q} c {Q′} Γ ` {Q′} k̂ IV k

Γ ` {Q} (c;k̂) IV (c;k)

:

We have from (Assumption 4) that h = ĥ. From the definition of −→
P

, we have the
transition 〈(c;k), (s, h)〉 −→

P
γ where either

γ = error

or

γ = 〈k, (s′, h′)〉 ∧ (s′, h′) ∈ JcK (s, h)

For the error case, we apply Corollary 3 to obtain V ∩ fv(c) = ∅ and thus fv(c) ⊆ Ṽ . This
together with (Assumption 3) allows us to apply Lemma 3 and obtain error ∈ JcK (ŝ, ĥ)

and thus 〈(c;k̂), (ŝ, ĥ)〉 −→̂
P

error. This completes this case since error RV,Γ error.

For the non-error case, we apply Corollary 3 to obtain fv(c) ⊆ Ṽ . This and (Assump-

tion 3) allows us to apply Lemma 2, which gives us an ŝ ′ such that (ŝ ′, h′) ∈ JcK (ŝ, h) and
s′ =Ṽ ŝ

′. The semantics of continuations then gives us that 〈(c;k̂), (ŝ, h)〉 −→̂
P
〈k̂, (ŝ ′, h′)〉.

165

4 Instrumented Programs

Applying our equality h = ĥ to this transition we then have 〈(c;k̂), (ŝ, ĥ)〉 −→̂
P
〈k̂, (ŝ ′, h′)〉.

Our goal is to show that 〈k, (s′, h′)〉 RV,Γ 〈k̂, (ŝ ′, h′)〉. We have shown one condition of
RV,Γ, namely that s′ =Ṽ ŝ ′. The condition on heaps in this case is h′ = h′, which is
immediate. It remains to show that (ŝ ′, h′) |= Q′ and Γ ` {Q′} k̂ IV k.

From (Assumption 2) and (ŝ ′, h′) ∈ JcK (ŝ, ĥ) and {Q} c {Q′} we have (ŝ ′, h′) |= Q′.
From the second premise of the rule under consideration we have Γ ` {Q′} k̂ IV k. These
were the only remaining conditions, so we have shown that P̂ can match P ’s transition.

CASE

STRENGTHENING

Q⇒ Q′ Γ ` {Q′} k̂ IV k

Γ ` {Q} k̂ IV k

:

We have Γ ` {Q′} k̂ IV k by the second premise and (ŝ, ĥ) |= Q by (Assumption 2).
Since Q⇒ Q′ we have (ŝ, ĥ) |= Q′. This, together with (Assumption 3) and (Assumption

4) allows us to apply the induction hypothesis on Γ ` {Q′} k̂ IV k, thus proving the goal.

CASE

BRANCH

∀i. (Γ ` {Q ∧ ei} k̂i IV ki)

Γ ` {Q} branch . . . , ei ⇒ k̂i, . . . end IV branch . . . , ei ⇒ ki, . . . end

:

Since γ −→
P

γ′ we have that JeiK s = true for some i and γ′ = 〈ki, (s, h)〉. By

Corollary 3 we have that V ∩ fv(e) = ∅. Thus, fv(e) ⊆ Ṽ . This lets us apply Lemma 1 to
conclude that JeiK ŝ = true. Thus, γ̂ −→̂

P
γ̂ ′ and γ̂ ′ = 〈k̂i, (ŝ, ĥ)〉.

Since JeiK ŝ = true and (ŝ, ĥ) |= Q by (Assumption 2) we have (ŝ, ĥ) |= Q ∧ ei. We
also have Γ ` {Q ∧ ei} k̂i IV ki as one of the premises of the rule under consideration.
Then γ′ RV,Γ γ̂ ′ follows from these facts and (Assumption 3) and (Assumption 4). We have
shown that in this case P̂ can match the transition that P takes.

CASE

FALSE

Γ ` {false} halt IV k

:

166

4.3 Soundness

This case holds vacuously. One of our assumptions is that (ŝ, ĥ) |= Q. But in this case
Q = false. Since there are no states satisfying false, our assumptions are contradictory.

CASE

INST-ASSIGN

{Q} x := e {Q′} Γ ` {Q′} k̂ IV k

Γ ` {Q} (x := e;k̂) IV k
x ∈ V

:

We will show that P̂ stutters. We have that γ̂ = 〈(x := e;k̂), (ŝ, ĥ)〉 and, applying
the definition of −→̂

P
we have γ̂ −→̂

P
γ̂ ′ where γ̂ ′ = 〈k̂, (ŝ[x → JeK ŝ], ĥ)〉. Since x ∈ V

we have ŝ[x → JeK ŝ] =Ṽ ŝ and thus, by (Assumption 3) and transitivity of =Ṽ we have
ŝ[x→ JeK ŝ] =Ṽ s. This is one condition required to establish γ RV,Γ γ̂ ′.

The premise {Q} x := e {Q′} and (Assumption 2) allow us to conclude that
(ŝ[x → JeK ŝ], ĥ) |= Q′. This is another condition for γ RV,Γ γ̂ ′. The second premise
of the rule under consideration and (Assumption 4) provide the other two conditions, com-
pleting the proof that γ RV,Γ γ̂ ′.

We must also show that rankl decreases. We have rankl(γ̂, γ, γ′) = size(x := e; k̂)

and rankl(γ̂ ′, γ, γ′) = size(k̂). Since size(k) is the size of the abstract syntax tree for k,
we have that size(k̂) < size(x := e; k̂).

CASE

INST-DISJ

Γ ` {Q1} k̂1 IV k Γ ` {Q2} k̂2 IV k

Γ ` {Q1 ∨Q2} branch true⇒ k̂1, true⇒ k̂2 end IV k

:

We will show that γ̂ makes a stuttering transition. That is, γ̂ −→̂
P

γ̂ ′ and γ RV,Γ γ̂ ′.

From (Assumption 2) we have that (ŝ, ĥ) |= Q1 ∨Q2. This implies that either (ŝ, ĥ) |= Q1

or (ŝ, ĥ) |= Q2.

Suppose the first case holds, so (ŝ, ĥ) |= Q1. Then let γ̂ ′ be 〈k̂1, (ŝ, ĥ)〉. Since
(ŝ, ĥ) |= true, we have that γ̂ −→̂

P
γ̂ ′. That γ RV,Γ γ̂ ′ then follows from the first premise,

(Assumption 3), (Assumption 4), and (ŝ, ĥ) |= Q1, which was our assumption for this case.

167

4 Instrumented Programs

The (ŝ, ĥ) |= Q2 case is similar, with Q2 substituted for Q1 and the second premise
used in place of the first premise.

The condition that rankl decreases is satisfied since k̂1 is a smaller term than
branch true⇒ k̂1, true⇒ k̂2 end.

CASE

INST-EXISTS

Γ ` {Q} k̂ IV k

Γ ` {∃xτ . Q} (x := ?τ;k̂) IV k
x ∈ V

:

This is similar to the previous case, except that the non-determinism is unbounded
rather than a choice between two alternatives. We will consider only the case where τ = i.
The case for a is similar. We have that (ŝ, ĥ) |= ∃xi. Q and thus, by the semantics of
existential quantifiers there is some v ∈ Z such that (ŝ[xi → v], ĥ) |= Q. From the
semantics for non-deterministic assignment, we know there is some execution of xi := ?i

that assigns v to xi. Formally, we have that (ŝ[xi → v], ĥ) ∈ Jxi := ?iK ŝ which implies
that 〈(xi := ?i;k̂), (ŝ, ĥ)〉 −→̂

P
γ̂ ′ where γ̂ ′ = 〈k̂, (ŝ[xi → v], ĥ)〉. It remains to show that

γ RV,Γ γ̂ ′.

We have (ŝ[xi → v], ĥ) |= Q and Γ ` {Q} k̂ IV k. Since xi ∈ V and Ṽ is the
complement of V , we have that xi 6∈ Ṽ . This allows us to conclude that ŝ[xi → v] =Ṽ ŝ

and thus, by transitivity of =Ṽ and (Assumption 3) we have ŝ[xi → v] =Ṽ s. This is the
third of the four conditions for establishing γ RV,Γ γ̂ ′. (Assumption 4) provides the fourth
condition and completes the proof.

As before, the condition on rankl reduces to showing that size(k̂) < size(xi := ?i; k̂)

which is immediate.

CASE

INST-ASSUME

Q⇒ e Γ ` {Q} k̂ IV k

Γ ` {Q} assume(e);k̂ IV k

:

We will show that 〈(assume(e);k̂), (ŝ, ĥ)〉 −→
P

γ̂ ′ and γ RV,Γ γ̂ ′. The transition can

occur if (ŝ, ĥ) |= e. We have from (Assumption 2) that (ŝ, ĥ) |= Q. The premise Q ⇒ e

168

4.3 Soundness

then gives us that (ŝ, ĥ) |= e. It remains to show that γRγ̂ ′. This follows from (Assumption

2), (Assumption 3), (Assumption 4), and the second premise.

As before, since size(k̂) < size(assume(e); k̂) we have that rankl decreases.

goal (Final States Related):

By Definition 14 we have that the final states F of ((P |Q0)) are

F =
{
final(s, h)

∣∣ s ∈ Stores ∧ h ∈ Heaps
}
∪
{
error

}
The final states F̂ of ((P̂ |Q0)) are the same.

F̂ =
{
final(s, h)

∣∣ s ∈ Stores ∧ h ∈ Heaps
}
∪
{
error

}
We must show the following.

∀γ ∈ I. ∀γ̂ ∈ Î . (γ RV,Γ γ̂)⇒ (γ ∈ F ⇔ γ̂ ∈ F̂)

This follows directly from our definition ofRV,Γ. Examining Definition 31, we can see that
error is onlyRV,Γ-related to error and final(s, h) is onlyRV,Γ-related to final(s, h).

Below we make note of an important corollary. This follows from the theorem above
(Theorem 22), Theorem 18, and Corollary 2.

Corollary 4. Let Q0 = Γ(initloc(P)). Then Γ ` P̂ IV P and ((P̂ |Q0)) |= φ implies

((P |Q0)) |= ∃ (V, φ)

This tells us that if we prove some LTSL formula holds of ((P̂ |Q0)), we can obtain
an LTSL formula that holds of ((P |Q0)) by existentially quantifying the instrumentation
variables appearing in the formula. As a special case, formulas that hold of P̂ and do not
contain instrumentation variables do not need to be changed. The same formula that held
of P̂ will also hold of P .

As an example, consider the program below.

L0 : goto L1

L1 : 1 branch x 6= nil⇒ 2 x := x.next; 3 goto L1,

x = nil⇒ 4 halt end

169

4 Instrumented Programs

The following is an instrumented version of this program.

L0 : n2 := n; n1 := 0; goto L1

L1 : 1 branch x 6= nil⇒ 2 x := x.next; 3 n1 := n1 + 1;

n2 := n2 − 1; goto L1,

x = nil⇒ 4 halt end

Starting from the precondition ls(n, x, nil) we can show that the following formula holds
of the instrumented program.

G
(
atloc(L1)⇒ (∃x′. ls(n1, x

′, x) ∗ ls(n2, x, nil)) ∧ n1 + n2 = n
)

This states that if n is the length of the list before executing the code, then at L1, during
every iteration of the loop, n1 and n2 sum to n. Note that n is not an instrumentation
variable here, but a program variable containing the initial length of the list. Our corollary
above then tells us that the following LTSL formula holds of the original program.

G
(
atloc(L1)⇒ (∃n1, n2, x

′. ls(n1, x
′, x) ∗ ls(n2, x, nil)) ∧ n1 + n2 = n)

)
This is the same formula as before, but with the instrumentation variables n1 and n2 exis-
tentially quantified. This loop invariant is strong enough to let us conclude that the length
of the list is unchanged by the traversal.

4.4 Numeric Abstractions

In Figure 4.12 we give the rules for generating a projection of a continuation onto a set of
variables V . This results in a continuation that only involves reads and writes to variables
in V and does not include any heap commands. The projection function πV (k) is defined
with the help of the predicates WV (c) and detV (c).

The predicate WV (c) holds if the command c writes to a variable in V . For example, if
V = {x}, then x := alloc(. . .) satisfies this since it results in the newly allocated address
being written to x, which is in V . The other commands that write to x are x := e, x := ?,

and x := x2.f .

170

4.4 Numeric Abstractions

The predicate detV (c) holds if the result of c is determined given only the values of
the variables in V (and, crucially, given no access to the heap). The only command that
satisfies this is x := e in the case where fv(e) ⊆ V .

The function πV (k) discards command that do not write to variables in V and it re-
places with non-deterministic assignment any commands that write to variables in V but
are not determined. The result is that writes into heap cells and free x commands are
always discarded. Allocation and heap lookup are replaced with non-deterministic assign-
ment. Non-deterministic assignments present in the original program are carried through
to the projected program provided they affect a variable in V . For deterministic assign-
ment commands x := e, the command is discarded if x 6∈ V , it is converted to the non-
deterministic assignment x := ? if e contains any variables not in V , and otherwise it is
carried through unchanged.

Branch conditions are carried over unchanged if the condition only involves variables
in V or, if variables outside of V are required, the branch is replaced by true. With such
an approach, when we encounter a branch that cannot be evaluated accurately in the pro-
jection, we conservatively assume that the branch can be taken, thus erring on the side of
exploring more paths (and consequently maintaining soundness for universal properties
over paths, such as our LTSL formulae). Note that fv(πV (P)) ⊆ V , a fact that can be
verified by induction over the structure of P .

The projection operation for programs is defined as follows (where πV (P (l)) refers to
the projection of the continuation P (l), as defined in Figure 4.12).

Definition 32. The projection of a program P onto variables V , written πV (P), is the

program P ′ such that dom(P ′) = dom(P), initloc(P ′) = initloc(P) and ∀l ∈ dom(P).

P ′(l) = πV (P (l)).

Our numeric programs will be the result of projecting an instrumented program onto a
subset of the integer-valued variables. These variables can include instrumented variables
as well as program variables. Maintaining program variables in the projection is necessary
when the LTSL formula being checked contains program variables. It may be necessary
in other cases as well—for example, if termination depends on the fact that a program

171

4 Instrumented Programs

COMMANDS THAT WRITE TO VARIABLES IN V

WV (c) iff for some x ∈ V, c has the form

x := e or x := ? or x := alloc(. . .) or x := x2.f

COMMANDS THAT ARE DETERMINED GIVEN V

detV (c) iff c has the form x := e and fv(e) ⊆ V

DEFINITION OF πV (k)

πV (c;k) =

c;(πV (k)) if WV (c) and detV (c)

x := ?;(πV (k)) if WV (c) and ¬detV (c) and

c has the form x := . . .

πV (k) otherwise

let πV

branch

e1 ⇒ k1, . . . ,

en ⇒ kn

end

 =

branch

e′1 ⇒ πV (k1), . . . ,

e′n ⇒ πV (kn)

end

where e′i =

ei if fv(ei) ⊆ V

true if fv(ei) * V

πV (k) = k if k = abort or k = halt or k = goto l

Figure 4.12: Definition of the function πV (k) which projects a continuation onto variables in V .

variable is decreasing and has a lower bound, then that variable must be preserved in the
projection.

172

4.4 Numeric Abstractions

4.4.1 Projection and Simulation

We now discuss how the concept of program projections fits into the formal framework
presented earlier for instrumented programs. Recall the definition of s

=V (Definition 24),
reproduced below.

Definition 24. s
=V is the least relation on execution states satisfying the following.

〈k, (s, h)〉 s
=V 〈k′, (s′, h′)〉 iff s =V s

′

goto(l, (s, h))
s
=V goto(l, (s′, h′)) iff s =V s

′

final(s, h)
s
=V final(s′, h′) iff s =V s

′

error
s
=V error

This will be the relation on states that is preserved by projection. The following theo-
rem captures this fact. The proof is fairly straightforward, as the projection translates each
command or branch to a version that is at least as non-deterministic as the original. Thus,
the projected command / branch includes the original behavior as well as possibly some
additional behavior.

Theorem 23. If P ′ = πV (P) then there exists an R such that for all Q0, the following

holds.

((P |Q0)) <∼R, s
=V

((P ′ |Q0))

Proof. The R in this case is the least relation satisfying the following.

〈k, (s, h)〉 R 〈k′, (s′, h′)〉) iff k′ = πV (k) and s =V s
′

(goto(l, (s, h))) R (goto(l, (s′, h′))) iff s =V s
′

final(s, h) R final(s′, h′) iff s =V s
′

error R error

The ranking functions rankl and rankt are defined as in the proof of Theorem 22 in
Section 4.3 (see page 164).

173

4 Instrumented Programs

Initial States Related First we show that initial states are related. Every state
goto(initloc(P), (s, h)) is related to the state goto(initloc(P ′), (s, h)). This holds be-
cause P ′ = πV (P) ensures that initloc(P ′) = initloc(P) and reflexivity of s

=V gives us
s

s
=V s. Together, these establish the necessary conditions for R to hold, giving us

(goto(initloc(P), (s, h))) R (goto(initloc(P ′), (s, h)))

s
=V -equivalent The second condition of stuttering simulation, that R implies s

=V is easy
to check. We can see thatR is strictly contained in s

=V since all the conditions are the same
except thatR additionally requires k′ = πV (k) in the case where 〈k, (s, h)〉R 〈k′, (s′, h′)〉.

Transitions Match The third condition is that any transition of P can be matched. Sup-
pose γ1 R γ2 and γ1 −→

P
γ′1. Then γ1 must either have the form goto(l, (s1, h1)) or

〈k1, (s1, h1)〉.

CASE γ1 = goto(l, (s1, h1)): By the definition of R, we have that γ2 has the form
goto(l, (s2, h2)) with s1 =V s2. By the semantics of program transitions, we have

goto(l, (s1, h1)) −→
P
〈P (l), (s1, h1)〉

and

goto(l, (s2, h2)) −→
P ′
〈P ′(l), (s2, h2)〉

We will show

〈P (l), (s1, h1)〉 R 〈P ′(l), (s2, h2)〉

We already have s1 =V s2. It remains to show that P ′(l) = πV (P (l)). This follows
directly from the definition of πV (P) and the fact that P ′ = πV (P). Expanding these
definitions, we have that πV (P)(l) = πV (P (l)), which gives us our result.

CASE γ1 = 〈k1, (s1, h1)〉: Since γ1 R γ2, we have that γ2 has the form 〈k2, (s2, h2)〉 with
s1 =V s2 and k2 = πV (k1). We now consider each possible form for k1.

CASE k1 = (c;k′1): In this case, k2, which is πV (k1), depends on whether WV (c) and
detV (c) are true.

174

4.4 Numeric Abstractions

SUB-CASE WV (c) AND detV (c): In this case, we have that k2 = (c; k′2) where
k′2 = πV (k′1). That detV (c) holds ensures that c = (x := e) and fv(e) ⊆ V which,
together with s1 =V s2 ensures that JeK s1 = JeK s2 (by Lemma 1). Let v be this value
(JeK s1). The definition of −→

P
tells us that γ1 −→

P
〈k′1, (s1[x → v], h1)〉. Similarly, we

have that γ2 −→
P ′
〈k′2, (s2[x → v], h2)〉. We must show that (s1[x → v]) =V (s2[x → v]).

This follows from the fact that s1 =V s2. We already have that k′2 = πV (k′1). Thus, P ′ can
match the transition.

SUB-CASE WV (c) AND ¬detV (c): In this case, c has either the form x := e or x := ?

or x := alloc(. . .) or x := x2.f for some x ∈ V . In all these cases, we have a transition
〈(c;k′1), (s1, h1)〉 −→

P
〈k′1, (s′1, h′1)〉. The exact conditions on s′1 and h′1 differ; however, in

every case we have that s′1 = s1[x → v] for some v in the appropriate domain (either ad-
dresses or integers depending on the type of x). We have k2 = πV (k1) = (x := ?;πV (k′1)),
which, given the semantics of x := ? ensures that

〈k2, (s2, h2)〉 −→
P ′
〈πV (k′1), (s2[x→ v], h2)〉

That (s1[x → v]) =V (s2[x → v]) then follows from s1 =V s2, which we have from
γ1 R γ2. Thus, P ′ can match the transition of P .

SUB-CASE ¬(WV (c)): In this case, k2 = πV (k′1).

In this case, either c does not write to some store variable x or it does but x is not in V .
If the command in question does not modify the store, then we have γ′1 = 〈k′1, (s1, h

′
1)〉.

We also have γ1 R γ2 and will show that γ′1 R γ2 where we recall that γ2 = 〈k2, (s2, h2)〉.
To do this we must show s1 =V s2, which we already have from the definition of R
and γ1 R γ2. We also must show that k2 = πV (k′1), but this we already have from our
assumptions. The only remaining condition is to show that the ranking function decreases.
This is the case since k′1 is a sub-term of k1.

We now consider the case where the command c modifies store variable x, but x is not
in V . Here we have that γ′1 = 〈k′1, (s1[x→ v], h′1)〉 for some v. We will show that γ′1 R γ2,
where γ2 = 〈k2, (s2, h2)〉. We already have that k2 = πV (k′1). We must also show that
(s1[x → v]) =V s2. This follows from s1 =V s2 and x 6∈ V , which we have from our
assumptions.

175

4 Instrumented Programs

CASE k1 = (branch e1 ⇒ k′1, . . . , en ⇒ k′n end): In this case we have

k2 = (branch e′1 ⇒ πV (k′1), . . . , e′n ⇒ πV (k′n) end)

where e′i = ei if fv(ei) ⊆ V or e′i = true otherwise.

We are assuming that 〈k1, (s1, h1)〉 −→
P

γ′1. If this is the case, then γ′1 = 〈k′i, (s1, h1)〉
for some i such that JeiK s1 = true. We want to show that for γ2 = 〈k2, (s2, h2)〉 we
have γ2 −→

P ′
γ′2 and γ′1 R γ′2. We first case split on whether e′i = true or e′i = ei. In

the first case, we are done since branches labeled with true can always be taken. So we
have γ2 −→

P ′
〈πV (k′i), (s2, h2)〉. We already have s1 =V s2, which is sufficient to show

γ′1 R 〈πV (k′i), (s2, h2)〉.

In the case where e′i = ei, we use our an assumption JeiK s1 = true. Since s1 =V s2,
we have JeiK s2 = true by Lemma 1. Applying the equality e′i = ei gives us Je′iK s2 = true,
which is sufficient to ensure that the transition γ2 −→

P ′
〈πV (k′i), (s2, h2)〉 exists. That

γ′1 R 〈πV (k′i), (s2, h2)〉 then follows from our assumption that s1 =V s2.

CASE k1 = abort: In this case, γ′1 = error. Also, k2 = πV (k1) = abort, which ensures
γ2 −→

P ′
error. Since error R error we are done.

CASE k1 = halt: In this case, k2 = πV (k1) = halt. We have γ1 −→
P

final(s1, h1) and
γ2 −→

P ′
final(s2, h2). From γ1 R γ2 and the definition of R we have s1 =V s2, which

implies that final(s1, h1) R final(s2, h2).

CASE k1 = goto l: In this case, k2 = πV (k1) = goto l. We have γ1 −→
P

goto(l, (s1, h1))

and γ2 −→
P ′

goto(l, (s2, h2)). From γ1 R γ2 and the definition of R we have s1 =V s2,
which implies that goto(l, (s1, h1)) R goto(l, (s2, h2)).

4.4.2 Combining Projection and Instrumentation

We have shown that a program is simulated by any of its instrumentations and that an
instrumentation (or any other program) is simulated by any of its projections. As one of
our goals is to use numeric programs, which are projections of instrumentations, to reason
about the original program, we need to obtain a result relating numeric programs to the
original program. Figure 4.13 summarizes the situation.

176

4.4 Numeric Abstractions

P P̂ P ′
Syntactic Relationship

Semantic Relationship

Related Theorem

NOTATION GUIDE

Γ ` P̂ IV P

P <∼R,=
Ṽ
P̂

P ′ = πV ′(P̂)

P̂ <∼R′, s
=V ′

P ′

Theorem 22 Theorem 23

Theorem 24

P . s
=

(Ṽ ∩V ′)
P ′

Figure 4.13: A summary of the current state of the technical development.

The following theorem ties the two endpoints in this figure together, describing the
simulation result that holds of projections of instrumentations.

Theorem 24. (Projections of Instrumentations) If Γ ` P̂ IV P and P ′ = πV ′(P̂) and

Q0 = Γ(initloc(P)) then

((P |Q0)) . s
=

(Ṽ ∩V ′)
((P ′ |Q0))

Proof. The result follows from Theorem 22, Theorem 23, Theorem 18, and Theorem 13.
By Theorem 22 we have some R such that ((P |Q0)) <∼R,=

Ṽ
((P̂ |Q0)). By Theorem 23 we

have an R′ such that ((P̂ |Q0)) <∼R′, s
=V ′

((P ′ |Q0)). Applying Theorem 18 to each of these
yields

((P |Q0)) .=
Ṽ

((P̂ |Q0))

and

((P̂ |Q0)) . s
=V ′

((P ′ |Q0))

Expanding the definitions of =Ṽ and s
=V ′ allows us to verify the following.

∀a, b, c. (a =Ṽ b) ∧ (b
s
=V ′ c)⇒ (a

s
=Ṽ ∩V ′ c)

177

4 Instrumented Programs

The proof is by case analysis on a. To take a representative case, suppose a = final(s, h).
Then b = final(s′, h) with s =Ṽ s′ and c = final(s′′, h′) with s′ =V ′ s

′′. We must
show that final(s, h)

s
=Ṽ ∩V ′ final(s′′, h′). This is the case if we can show s

s
=Ṽ ∩V ′ s

′′.
This requires showing ∀x. (x ∈ Ṽ ∩ V ′) ⇒ s(x) = s′′(x). If x ∈ Ṽ ∩ V ′ then x ∈ Ṽ

and x ∈ V ′. This allows us to use our assumptions s =Ṽ s′ and s′ =V ′ s
′′ to conclude

s(x) = s′′(x).

Theorem 13 then combines these results, giving us

((P |Q0)) . s
=

(Ṽ ∩V ′)
((P ′ |Q0))

The result of this is that numeric programs preserve LTSLP properties over variables
in Ṽ ∩V ′. In practical terms, this means that, provided we include all of the integer-valued
variables from the original program in the projection, then any LTSLP property over these
original integer variables can be checked by analyzing P ′.

4.5 Example

We now consider an example that shows how the translation to numeric programs can be
used to check program properties (and also how choosing the wrong numeric program
can result in an inability to prove the desired property, an unsurprising result given that
numeric programs over-approximate the behavior of the original program).

Figure 4.14 gives a program that traverses a circular linked list rooted at x. The main
loop checks whether x.next = x. This is true if and only if the list contains only one
element. If the list has more than one element, then (x.next).data1 is compared to v. If
it is less than or equal to v, then the list cell at x.next is removed. Otherwise, v is set to
(x.next).data. This will cause the cell at x.next.data to be freed during the next iteration.

1We use C-style multiple dereference for clarity. The intermediate variables x′, y and t are used in Figure
4.14 since our language does not support multiple dereference, nor dereference inside of expressions.

178

4.5 Example

L0 : goto L1

L1 : y = x.next;

branch y = x⇒ halt,

y 6= x⇒ x′ := x.next;

t := x′.data;

goto L2

end

L2 : branch t ≤ v ⇒ x.next := x′.next;

free x′;

goto L1,

t > v ⇒ v := x′.data;

goto L1

end

Figure 4.14: An example program that traverses a circular linked list, conditionally freeing ele-

ments.

In order to show that this program terminates, we will produce an instrumentation that
tracks the following two instrumentation variables.

n the size of the linked list at x

z the value present at (x.next).data

We will use the following inductive definition to represent the circular linked list.

ls(n, first , next) ≡

(emp ∧ first = next ∧ n = 0)

∨ (∃z, d. (first 7→ [next : z, data : d]) ∗ ls(n− 1, z, next))

First, we present an instrumentation tracking only n, the size of the linked list. The left
half of Figure 4.15 presents the instrumented program. We consider executions starting
from the precondition ∃n. ls(n, x, x)∧ n ≥ 1 indicating that there is a non-empty circular

179

4 Instrumented Programs

linked list at x. We underline the instrumentation commands in order to make it more
clear which commands were added. The first instrumentation command n := ? allows us
to remove the quantifier on n from the precondition and reason from Γ(L1) (displayed
at the bottom of Figure 4.15). The removal of an element from the list corresponds to
a decrease of n by 1. The command assume(n = 1) records a pure consequence of the
branch condition y = x. As y is x.next, we have y = x exactly when the list contains a
single cell.

The right half of Figure 4.15 gives the numeric program obtained by projecting the
instrumented program onto the singleton set {n}. The branches from the original program
become non-deterministic branches and we are left with only the assume commands in-
volving n and the update to n in the first branch of the continuation at L2. This program is
not a sufficiently precise abstraction to enable us to show termination. While we are able
to model the fact that n is decreasing, we cannot show that the branch which decreases n
is taken infinitely often. It could, for example, be the case that the second branch of the
continuation at L2 is always taken. While it is not sufficient for termination, this numeric
program does allow us to prove some non-trivial properties. For example, we can show
that n is non-increasing, represented by the following LTSLP formula.

G
(
(atloc(L1) ∧ n = n0) ·⊃G(atloc(L1) ·⊃ n ≤ n0)

)
Note the use of the ghost variable n0 to capture the current value of n. Since n0 does not
appear in the program, its value is never changed. Since the precondition does not mention
n0, it can have any value in the initial state. This ensures that there are traces for which the
antecedent atloc(L1) ∧ n = n0 is true. The use of implication then confines our attention
to those traces when evaluating the rest of the formula.

We now move on to an instrumented version of the program that also tracks z, the
current contents of x.next.data. The left half of Figure 4.16 gives the instrumented version
of the program and the right half of the same figure contains the numeric program obtained
by projecting this instrumented program onto the set of variables {n, z, v}. This program
can be shown to terminate since the existence of z enables us to track the contents of
x.next.data across iterations of the loop at location L1. Specifically, we can now show that
in the numeric program, the second case of the branch at L2 cannot occur infinitely often.

180

4.5 Example

Instrumented Program

L0 : n := ?;

goto L1

L1 : y = x.next;

branch y = x⇒ assume(n = 1);

halt,

y 6= x⇒ assume(n > 1);

x′ := x.next;

t := x′.data;

goto L2

end

L2 : branch t ≤ v ⇒ x.next := x′.next;

free x′;

n := n− 1;

goto L1,

t > v ⇒ v := x′.data;

goto L1

end

Numeric Program

L0 : n := ?;

goto L1

L1 : branch true⇒ assume(n = 1);

halt,

true⇒ assume(n > 1);

goto L2

end

L2 : branch true⇒ n := n− 1;

goto L1,

true⇒ goto L1

end

Γ(L0) = ∃n. ls(n, x, x) ∧ n ≥ 1

Γ(L1) = ls(n, x, x) ∧ n ≥ 1

Γ(L2) = ∃a, b.
(
x 7→ [next : x′, data : a] ∗ x′ 7→ [next : b, data : t]

∗ ls(n− 2, b, x)
)
∧ n > 1

Figure 4.15: An instrumented version of the program in Figure 4.14 and the corresponding projec-

tion onto the set {n}.

181

4 Instrumented Programs

The reason is that executing this branch sets v to z, which then prevents the assume(z > v)

statement from being satisfied the next time L2 is reached, forcing execution to proceed
along the first case of the branch. Thus, at least every other iteration of the loop at L2
results in n decreasing by 1. If n is initially greater than or equal to 1 (a situation which
the assume statements at L1 force), then eventually n will be equal to 1 and the program
will halt.

Finally, we consider a liveness property other than termination. Consider the numeric
program in Figure 4.17. This is the same program that was on the right side of Figure 4.16,
but with the two cases of the branch at L2 split into their own continuations. This allows
us to write LTSL formulae that specify which branch is taken.

One example of such a formula is the following, which states that it is always the case
that after an execution visits label L4, it eventually visits label L3.

G
(
atloc(L4) ·⊃ F(atloc(L3))

)
If L4 were associated with a request and L3 with a response, then this formula would state
that every request is eventually responded to.

Note that all of the properties we have considered are universal in that they hold if
and only if they hold of all program traces. This is the nature of LTSL formulae. We
cannot write statements in LTSL that describe existential path properties. An example of
such a property is “there are traces in which n > 1 is true at L1 but L4 is never visited.”
Since numeric programs are over-approximations of the original program, such existential
properties are not necessarily preserved (it is possible that such a property could hold of
the numeric program but not hold of the original program).

4.6 Summary

We now summarize what we have accomplished in this chapter, collecting and combining
the various theorems into their most useful forms. We first showed how to associate an in-
strumented program with an original program. We can reason about the safety and liveness

182

4.6 Summary

Instrumented Program

L0 : n := ?; z := ?; goto L1

L1 : y = x.next;

branch y = x⇒ assume(n = 1);

halt,

y 6= x⇒ assume(n > 1);

x′ := x.next;

t := x′.data;

goto L2 end

L2 : branch t ≤ v ⇒ assume(z ≤ v);

x.next := x′.next;

free x′;

n := n− 1;

z := ?;

goto L1,

t > v ⇒ assume(z > v);

v := x′.data;

assume(v = z);

goto L1 end

Numeric Program

L0 : n := ?; z := ?; goto L1

L1 : branch true⇒ assume(n = 1);

halt,

true⇒ assume(n > 1);

goto L2

end

L2 : branch true⇒ assume(z ≤ v);

n := n− 1;

z := ?;

goto L1,

true⇒ assume(z > v);

v := ?;

assume(v = z);

goto L1

end

Γ(L0) = ∃n. ls(n, x, x) ∧ n ≥ 1

Γ(L1) =
(
∃a, b, d. x 7→ [next : a, data : d] ∗ a 7→ [next : b, data : z] ∗ ls(n− 2, b, x)

)
∨
(
x 7→ [next : x, data : z] ∧ n = 1

)
Γ(L2) = ∃a, b, d. (x 7→ [next : x′, data : d] ∗ x′ 7→ [next : b, data : z] ∗ ls(n− 2, b, x))

∧ z = t

Figure 4.16: An instrumentation and projection of the program in Figure 4.14, with instrumentation

variables n and z and projection variables n, z, v.

183

4 Instrumented Programs

L0 : n := ?; z := ?; goto L1

L1 : branch true⇒ assume(n = 1);

halt,

true⇒ assume(n > 1);

goto L2

end

L2 : branch true⇒ goto L3

true⇒ goto L4

end

L3 : assume(z ≤ v);

n := n− 1;

z := ?;

goto L1,

L4 : assume(z > v);

v := ?;

assume(v = z);

goto L1

Figure 4.17: The numeric program from Figure 4.16, but rearranged so that the cases of the second

branch are split into separate continuations.

behavior of the instrumented program and the properties satisfied by the instrumentation
can be converted into properties that are satisfied by the original program.

Theorem 25. Let Q0 = Γ(initloc(P)). If Γ ` P̂ IV P and φ ∈ LTSL then

((P̂ |Q0)) |= φ implies ((P |Q0)) |= ∃ (V, φ).

Proof. This theorem is the result of combining Theorem 22, Theorem 18, Corollary 2, and
Lemma 11. By Theorem 22 we have

((P |Q0)) <∼RV,Γ,=
Ṽ

((P̂ |Q0))

184

4.6 Summary

From Theorem 18 we then have

traces(((P |Q0))) .=
Ṽ

traces(((P̂ |Q0)))

If we let V ′ = fv(φ)− Ṽ , then Corollary 2 gives us

((P |Q0)) |= ∃ (V ′, φ)

To complete the proof we need only show that V ′ ⊆ V and apply Lemma 11. To show
this, suppose that x ∈ V ′. Then x ∈ fv(φ) and x 6∈ Ṽ . This last fact implies x ∈ V (since
Ṽ is the complement of V). This establishes V ′ ⊆ V .

Instrumented programs let us introduce additional variables and commands and use
these to prove properties of the original program. However, we will usually want to de-
compose the verification problem further, using projection to obtain a program that only
involves integer-valued variables and then passing this program to an external verification
tool. The following theorem states what we can conclude about the original program if we
use such a method.

Theorem 26. Let Q0 = Γ(initloc(P)). If the following hold

1. Γ ` P̂ IV P and φ ∈ LTSL and ((P̂ |Q0)) |= φ

2. P ′ = πV ′(P̂) and φ′ ∈ LTSLP(V ′) and ((P ′ |Q0)) |= φ′

then ((P |Q0)) |= ∃ (V, φ ·∧ φ′).

Proof. This theorem is primarily a combination of Theorem 23 and Theorem 25. Suppose
condition 2 holds. Then by Theorem 23 we have that there is some relation R′ such that
((P̂ |Q0)) <∼R′, s

=V ′
((P ′ |Q0)). By Theorem 18 we have ((P̂ |Q0)) . s

=V ′
((P ′ |Q0)). By The-

orem 16 we have that φ′ is s
=V ′-invariant. Then by Corollary 1 we have that ((P ′ |Q0)) |= φ′

(which we have) implies ((P̂ |Q0)) |= φ′. Since we also have ((P̂ |Q0)) |= φ, we have
((P̂ |Q0)) |= φ ·∧ φ′. This holds since for any trace T in traces((P̂ |Q0)), we have T |= φ

and T |= φ′, which according to the semantics of LTSL implies that T |= φ ·∧ φ′.

Finally, we note that φ ·∧ φ′ is an LTSL formula and thus Theorem 25 applied to
((P̂ |Q0)) |= φ ·∧ φ′ and Γ ` P̂ IV P gives us ((P |Q0)) |= ∃ (V, φ ·∧ φ′).

185

4 Instrumented Programs

4.7 Conclusion

The instrumentation analysis given in the next section gives a method of automatically
generating instrumented programs and thus numeric abstractions. But there are likely to
be other approaches to instrumentation analysis that differ in their efficiency, complete-
ness, and generality. Thus, one of the primary technical contributions of this thesis is that
the rules given for checking Γ ` P̂ IV P are sufficient to ensure that πV ′(P̂) simulates P .
This gives a well-defined target for analyses that produce numeric abstractions of programs
in much the same way that partial correctness proofs in Hoare logic provide a common tar-
get for safety analyses. In fact, the process of generating an instrumented program can be
viewed as a generalization of the process of proving partial correctness. The invariants Γ

that are required are valid partial correctness invariants, but the proving process is relaxed
in the sense that, rather than only working with invariants, we are allowed to also insert
instrumentation commands.

In this sense, the process is similar to program proving in Hoare logic with auxiliary
variables, for example as described in [Owicki and Gries, 1976]. A major difference is due
to the handling of non-determinism. Our INST-EXISTS rule lets us insert a command x := ?

when we have the precondition ∃x. Q in order to reason from Q. And our INST-DISJ rule
lets us insert branch true⇒ . . . , true⇒ . . . end when we have the precondition Q1 ∨Q2

in order to reason separately from Q1 and Q2. Such operations are not allowed in standard
Hoare logic with auxiliary variables. The reason the two methods differ is that we are
interested in properties preserved by simulation, which requires the existence of some

transition with a given property, whereas Hoare logic for partial correctness is interested
in properties that hold for all transitions. Another reason for the difference is that we are
only translating one program to another, whereas Hoare logic is concerned with proving
properties of programs. Once we have added the new commands to the program and turn
our attention to the problem of proving program properties, we switch to a universal view
of transitions, checking that a property holds of all paths.

One contribution of the approach we have taken in this chapter is the careful separa-
tion of the addition of auxiliary / instrumentation variables from the process of proving

186

4.7 Conclusion

program properties. Once we start down this path, we see that the traditional restrictions
on auxiliary variables are overly harsh. By relaxing these, we obtain rules that exhibit a
novel correspondence between existential variables and non-deterministic assignment and
between disjunction and non-deterministic choice.

187

4 Instrumented Programs

188

Chapter 5

Instrumentation Analysis

In this chapter, we present an automated algorithm for generating instrumented programs
of the form given in Chapter 4. We call such an automated procedure an instrumentation

analysis. The algorithm proceeds by performing a shape analysis on the program, which
enables it to discover an appropriate mapping Γ for the proof that Γ ` P̂ IV P . During
the analysis process, the algorithm also inserts instrumentation commands at certain points
in order to record information about numeric properties. The syntax-directed projection
operation presented in Section 4.4 can then be used to generate a numeric program from the
instrumented program produced by the instrumentation analysis. We have implemented
this algorithm in a tool called THOR [Magill et al., 2008], which is able to generate numeric
abstractions of C programs using the techniques described in this thesis.

The portion of the analysis that is concerned with the generation of Γ can be described
as an abstract interpretation [Cousot and Cousot, 1977] where the abstract domain con-
sists of separation logic formulae of a restricted form. However, familiarity with abstract
interpretation will not be required in order to understand the presentation of the algo-
rithm that we provide here. While we will use some terms from the abstract interpretation
framework, we will describe the algorithm in terms of our goal of generating instrumented
programs according to the rules in Chapter 4. For a description of this style of shape

189

5 Instrumentation Analysis

Inductive Predicates d ∈ P

Records ρ ::= ε | f τ : eτ , ρ

Spatial Predicates Ξ ::= emp | ea 7→ [ρ] | d(~e)

Spatial Formulae Σ ::= Ξ | Σ ∗ Σ

Pure Formulae Π ::= true | false | ea
1 = ea

1 | ei
1 ≤ ei

2 | ¬Π | Π1 ∧Π2

Symbolic State Formulae (Φ) ϕ ::= ∃~x. Σ ∧Π

Figure 5.1: Restricted subset of separation logic formulae. The notation ~x indicates a list of vari-

ables x1, x2, . . . , xn and ∃~x. Q is shorthand for ∃x1.∃x2. . . .∃xn. Q.

analysis in abstract interpretation terms, see [Distefano et al., 2006] and [Berdine et al.,
2007].

We begin our discussion by describing the restricted form of separation logic formulae
used by the automated analysis.

5.1 Symbolic State Formulae

Figure 5.1 gives the restricted set of separation logic formulae used in the automated anal-
ysis. Working in this subset simplifies the theorem proving problem that we discuss in
Section 5.5 and also results in simple predicate transformers for the commands in our lan-
guage. We write ~x to represent a list of variables x1, x2, . . . , xn. We will implicitly convert
these ordered lists into unordered sets as needed when stating certain properties. Such con-
versions will be obvious due to the set notation used. For example, ~x∪~y represents the set
consisting of the elements of ~x together with those in ~y. The notation y ∈ ~x indicates that
y is a member of the set consisting of the elements of ~x.

We would like to identify formulae that are logically equivalent. However, logical
equivalence of separation logic formulae cannot always be accurately determined.1 For

1The undecidability of separation logic formulae, as we have defined them, follows from the fact that
they contain the integers with addition, multiplication, and existential quantification as a fragment of the

190

5.1 Symbolic State Formulae

Σ ∗ emp ≡ Σ ∃ ~x1, x, ~x2. Σ ∧Π ≡ ∃ ~x1, x
′, ~x2. Σ[x′/x] ∧Π[x′/x]

(x′ 6∈ fv(Σ,Π))

∃ ~x1, x, x
′, ~x2. Σ ∧Π ≡ ∃ ~x1, x

′, x, ~x2. Σ ∧Π Σ1 ∗ Σ2 ≡ Σ2 ∗ Σ1

Σ1 ∗ (Σ2 ∗ Σ3) ≡ (Σ1 ∗ Σ2) ∗ Σ3

Σ1 ≡ Σ2

∃~x. Σ1 ∧Π ≡ ∃~x. Σ2 ∧Π

Figure 5.2: Equivalence relation for symbolic state formulae.

this reason, our implementation may distinguish some formulae that are actually equiv-
alent. This does not affect soundness of the approach, but can affect completeness. We
assume that the implemented equivalence check at least identifies formulae that are re-
lated by the equivalence relation given in Figure 5.2. This considers formulae equivalent
up to commutativity and associativity of ∗, the unit law for emp, renaming of quantified
variables, and re-ordering of existential quantifiers.

The set Φ is closed with respect to ∗ in the sense that the ∗-conjunction ϕ ∗ ϕ′ of
elements of Φ is semantically equivalent to an element ϕ′′ ∈ Φ (according to the semantics
given in Figure 2.7). The element ϕ′′ is defined as follows. Let ϕ = ∃~v. Σ ∧ Π and
ϕ′ = ∃~v ′. Σ′ ∧Π′ such that fv(Σ∧Π)∩~v ′ = ∅ and fv(Σ′ ∧Π′)∩~v = ∅ (these constraints
can always be satisfied by renaming quantified variables). Then we have the following

ϕ ∗ ϕ′ ⇔ ∃~v,~v ′. (Σ ∗ Σ′) ∧ (Π ∧ Π′)

and this is in Φ.

Similarly, Φ is closed with respect to conjunction of pure formulae (for all ϕ ∈ Φ

there is a ϕ′ ∈ Φ such that (ϕ ∧ Π) ⇔ ϕ′). These operations will be used freely with the

logic. Decidability of this fragment is Hilbert’s 10th problem and was shown to be undecidable by Davis,
Matiyasevich, Putnam, and Robinson. Decidability of fragments of the logic not including multiplication has
been explored to some extent by [Berdine et al., 2004] and [Bozga et al., 2008], but much is still unknown.

191

5 Instrumentation Analysis

understanding that they refer not to a general separation logic formula that falls outside of
Φ, but rather to the element of Φ semantically equivalent to that formula.

5.2 Inductive Predicate Specifications

In order to reason about data structures, our tool incorporates support for inductive pred-

icate specifications. We use the term “specification” rather than “definition” deliberately,
as these specifications differ from definitions in two key ways.

First, the syntax for specifications adds additional structure beyond that present in def-
initions. This structure serves to separate the instrumentation variables from the program
variables in a way that simplifies automatic reasoning.

Secondly, we allow multiple specifications for the same predicate name, whereas only
a single definition for each name was permitted in Section 2.2.2. This allows inductive
consequences of definitions to be provided to the tool. Such consequences cannot be
inferred by the tool, as the automated analysis does not perform inductive reasoning. Al-
lowing multiple specifications for the same predicate has implications for the semantics of
specifications, and we will formally connect this semantics to the semantics of definitions
given previously. One consequence of this decision to allow multiple specifications is that
it provides opportunity for the user to introduce inconsistency into the system. We address
this concern with Theorem 27 on page 198.

Syntax

The syntax for inductive specifications is given in Figure 5.3. A predicate specification
has the following form.

d(~x; ~y) <=> C1(~x; ~y) | . . . | Cn(~x; ~y)

The variable d is the name of the inductive predicate we are specifying. The vari-
ables to the left of the semicolon, ~x, are referred to as instrumentation parameters. These

192

5.2 Inductive Predicate Specifications

Predicate Names d ∈ P

Inductive Specification Sd ::= d(~x; ~y) <=> C1(~x; ~y) ‘|’ . . . ‘|’ Cn(~x; ~y)

Case C(~x; ~y) ::= Π : let ~z satisfy Π′ in ϕ

where fv(Π) ⊆ ~x and fv(Π′) ⊆ (~x ∪~z)

and fv(ϕ) ⊆ (~y ∪~~z) and ~x, ~y, ~z distinct and disjoint

Figure 5.3: Syntax of inductive specifications as implemented in THOR. The notation ‘|’ is used

to indicate the literal character |, and distinguish it from the BNF grammar operator consisting of

the same symbol.

parameters represent integer-valued quantities that we want our analysis to track with in-
strumentation variables—for example, the length of a list or the height of a tree. We will
underline instrumentation parameters to help the reader identify them. The Ci are cases of
the definition and have the following form.

Π : let ~z satisfy Π′ in ϕ

The pure condition Π is a constraint on the instrumentation parameters ~x which gives
the condition that differentiates this case from the others. Often the Πi in the cases of a
definition will be non-overlapping in the sense that for any i, j we have Πi ∧ Πj ⇒ false.
For example, in the definition of a list of length n, we might have n = 0 and n > 0 as
our two conditions. However, this disjointness of conditions is not a requirement. For
example, a list predicate that does not track list length would simply have true for the
condition in both the base case and the inductive case.

Before explaining the rest of the syntax, it is helpful to consider a concrete example.
Figure 5.4 shows a graphical depiction of a doubly-linked list segment. The inductive
specification for this segment is given below. The syntax [] represents an empty list.

193

5 Instrumentation Analysis

first

next

prev

p

last

n

next

prev

. . .

. . .

Figure 5.4: Graphical depiction of the doubly-linked list segment predicate.

dll(k; p, first , last , n) <=>

k = 0 : let [] satisfy true in emp ∧ first = n ∧ last = p

| k > 0 : let k′ satisfy k = k′ + 1 in

∃z. (first 7→ [prev : p, next : z]) ∗ dll(k′; first , z, last , n))

The parameters first and last are the addresses of the first and last cells in the list
segment. The parameter p is the contents of the prev field of the first element and the n

parameter is the address value contained in the next field of the last element of the segment.
The parameter k is the length of the list.

The specification can be read as saying that there are two possible cases for a list
segment with length k. Either k = 0, in which case the list is empty, or k > 0, in which
case the list is non-empty.

In the non-empty case, the sub-formula

∃z. (first 7→ [prev : p, next : z]) ∗ dll(k′; first , z, last , n))

indicates that the list can be split into the head element, given by the formula
first 7→ [prev : p, next : z] and the tail of the list, given by dll(k′; first , z, last , n). This
tail portion of the list has length k′. The rest of this case of the specification is concerned
with relating k (the length of the full list segment) and k′ (the length of the sub-segment).

After the keyword “let,” a list of variables can appear. These are the variables that
appear as instrumentation parameters in recursive instances of inductive predicates in the
body of the case. Returning to our general syntax, reproduced below,

C(~x; ~y) ::= Π : let ~z satisfy Π′ in ϕ

194

5.2 Inductive Predicate Specifications

the list z gives the variables that will be passed as instrumentation parameters to inductive
predicates appearing in ϕ. The formula Π′ then relates z to the instrumentation parameters
for the predicate being specified, which are given by ~x. In our doubly-linked list example,
Π′ for the non-empty case is k = k′ + 1. Since the empty case contains no instances of
inductive predicates, the list of variables in that case in empty. This is the role of the []

syntax—it represents an empty list.

To summarize, new variables will be added by our instrumentation analysis and used
to track quantities like the length of a list or the size of a tree. The specification of an
inductive predicate gives a list of possible expansions. Each expansion may expose sub-
structures which themselves have quantities to be tracked. The list ~z contains the variables
representing these new quantities and each Π′ gives a relation between the variables in ~x
(the sizes passed into this predicate instance) and those in ~z (the sizes passed to recursive
instances of the predicate). This relation is represented as an expression over variables in
~x ∪ ~z.

Syntactic Connection with Inductive Definitions

Individual specifications are very closely related to individual inductive definitions. In
fact, they differ only in syntax. Consider the specification below.

d(~x; ~y) <=> C1(~x; ~y) | . . . | Cn(~x; ~y)

Let 〈Ci〉 be defined such that ifCi is Π : let ~z satisfy Π′ in ϕ, then 〈Ci〉
def
= Π∧∃~zn. (Π′∧ϕ).

Then the specification above corresponds to the definition below.

d(~x, ~y) ≡ 〈C1(~x; ~y)〉 | . . . | 〈Cn(~x; ~y)〉

We will write 〈S〉 to denote the translation of specification S to the syntax for definitions.
We also generalize this to sets of specifications. Let S = {S1, . . . , Sn} be a set of induc-
tive specifications. Then 〈S〉 = 〈S1〉 :: . . . :: 〈Sn〉 (where :: separates the elements in a
list of inductive definitions as used in Section 2.2.2). Note that while the translation of a
single specification is always a well-formed definition, the translation of a set of specifica-

195

5 Instrumentation Analysis

tions will not be a valid list of definitions if there are multiple specifications for the same
predicate name.

Multiple Specifications

Note that the specification of a doubly-linked list segment given previously is “front-
biased,” in that the heap cell exposed in the inductive case is at the front of the list. As
we will see when we describe our instrumentation algorithm, this will result in the spec-
ification being useless for exposing cells at the back of the list, which is often necessary.
Multiple specifications solve this problem by providing multiple ways of viewing a data
structure. These various views are then all available for use during the analysis. An exam-
ple of a specification for accessing a doubly-linked list from the back is given below.

dll(k; p, first , last , n) <=>

k = 0 : let [] satisfy true in emp ∧ first = n ∧ last = p

| k > 0 : let k′ satisfy k = k′ + 1 in

∃z. dll(k′; p, first , z, last) ∗ (last 7→ [prev : z, next : n])

Unlike the previous specification, here the inductive case involves exposing the points-
to predicate at the end of the list segment. These specifications are equivalent in the sense
that, if they are taken as definitions, they define the same set of structures. In fact, we can
use induction on the length of the list to show that each definition implies the other.

However, it does not have to be the case that all specifications of a given predicate
are equivalent. Consider the specification below, which lets us view a list segment as
consisting of two sub-segments.

dll(k; p, first , last , n) <=>

true : let k1, k2 satisfy k = k1 + k2 in

∃x, y. dll(k1; p, first , x, y) ∗ dll(k2;x, y, last , n)

This specification is not equivalent to either of the other two. In fact, taken on its
own as a definition, it has multiple fixed-points, the least of which is the empty set of
heaps—clearly not the same set defined by the other specifications.

196

5.2 Inductive Predicate Specifications

However, the specification above is compatible with the others in the sense that, if we
take the forward or backward-oriented specification as our definition of dll, then the speci-
fication above can be proved valid. Informally speaking (since we have not yet defined the
semantics of specifications), we have that the forward and backward specifications imply
the splitting specification above, but neither of the reverse implications hold. In Theorem
27 we formalize this idea of using some subset of the specifications to justify the others.

Semantics

In Definition 6, we gave the semantics of a set of inductive definitions. Inductive definition
sets have the restriction that each predicate symbol must appear at most once on the left-
hand side of a definition. We have no such restriction for specifications. In fact, a primary
reason we introduce specifications is so that we can provide multiple specifications for
a single predicate symbol. As such, the method of specifying semantics developed in
Theorem 8 is more appropriate here, as it is straightforward to generalize characteristic
formulae (Definition 10) in order to reduce the restrictions on where predicate symbols
may occur.

When we are provided with multiple specifications for a single predicate symbol, we
require that they all hold. The meaning of a single specification S is given by the charac-
teristic formula (Definition 10) associated with the translation of S to a definition. This is
given by d〈S〉e. The meaning of multiple specifications is then the conjunction of these
formulas

∧
S∈Sd〈S〉e, which we abbreviate as dSe. Formally, we have the following.

Definition 33. Let S be a set of specifications and let dom(S) give the set of predicate

names appearing on the left-hand side of “ <=> ” in specifications in S. A store, heap

pair s, h satisfy separation logic formula Q given S, written (s, h) |=S Q, if and only if

(s, h) |=X Q for all X ∈ ∆dom(S) such that |=X dSe.

When each predicate name in dom(S) appears to the left of <=> in at most one spec-
ification, then each predicate name is defined at most once by 〈S〉 and so 〈S〉 is a valid
list of definitions. In this case, our definition of satisfaction for specifications (Definition
33) coincides with our definition of satisfaction for definitions (Definition 6) and we have

197

5 Instrumentation Analysis

(s, h) |=S Q if and only if (s, h) |=〈S〉 Q. This follows immediately from Definition 33
and Theorem 8.

Even when we have multiple specifications, we can still relate Definition 33 to Defi-
nition 6 by taking some subset of the specifications as predicate definitions and showing
that these definitions imply the remaining specifications, as demonstrated by the follow-
ing theorem. Of course, even when the theorem below does not apply, the semantics of
specifications are still well-defined by Definition 33.

Theorem 27. Consider a set of specifications S and a subset S′ ⊆ S such that 〈S′〉
is a valid set of inductive definitions (no predicate name is defined more than once)

and dom(S) = dom(S′). If |=〈S′〉 dSe then for all Q we have (s, h) |=S Q implies

(s, h) |=〈S′〉 Q.

Proof. Suppose (s, h) |=S Q holds. Applying the definition of |=S gives us the following.

(s, h) |=X Q for all X ∈ ∆dom(S) such that |=X dSe (5.1)

We must show (s, h) |=〈S′〉 Q. We have |=〈S′〉 dSe, which by Theorem 8 implies the
following.

|=X dSe for all X ∈ ∆dom(〈S′〉) such that |=X d〈S′〉e (5.2)

Note that dom(S) = dom(〈S′〉) and thus we can combine (5.1) and (5.2), obtaining the
following.

(s, h) |=X Q for all X ∈ ∆dom(S′) such that |=X d〈S′〉e

Again applying Theorem 8, we have (s, h) |=〈S′〉 Q, which was our goal.

Besides connecting satisfaction involving inductive specifications to satisfaction in-
volving inductive definitions, the theorem above also provides a means to ensure that
the use of multiple specifications does not introduce inconsistency into the system. The
premise of the theorem requires that a subset of the specifications can be taken as a set
of definitions and these definitions imply the validity of the other specifications. If this
holds, then the fact that each set of inductive definitions has a least fixed-point (Theorem
4) guarantees that the system remains consistent.

198

5.3 Basic Types

THOR does not check that the premise of the theorem above holds of the inductive
specifications provided. Thus, if use of the theorem is desired, the premise must be verified
by the user via other means. One option is to employ a system such as that given in
[Nguyen and Chin, 2008], which provides support for formally proving separation logic
implications involving inductive definitions and in many cases allows for automation of
such proofs.

5.3 Basic Types

Figure 5.5 lists the types used by the algorithm and the meta-variables used for terms of
these types. The type “τ option” is the type of optional values of type τ . That is, a value
of type “τ option” may either be Some(a) for some a of type τ or it may be None.

Note that we have two types of variable—one that is used for program variables and
another that is used for instrumentation variables. In the following presentation we will
use underlines to indicate that a variable is of type IVar. Non-underlined variables x, y, z
and their subscripted forms denote program variables. Either type of variable can appear
quantified. The type Gen of instrumentation generators is dependent on a continuation k
of type K. This is used in stating the specification that these functions must satisfy. This
specification (as well as specifications for the other functions used by the implementation)
is given in Figures 5.6 and 5.7.

In the implementation, these different classes of variable are maintained as separate
types. However, the syntax and semantics of separation logic formulae and of programs
and instrumented programs was given in terms of a single set of variables, Vars. Thus,
when stating theorems about the implementation presented here, we need some way of
encoding these separate types. We will model them as disjoint subsets of the set Vars. To
support this set-based interpretation, we will sometimes use the name of one of these types
to represent the set of variables of that type. So the statement x ∈ IVar should be read
as saying that x is a variable in the subset of Vars corresponding to the type IVar in the
implementation.

199

5 Instrumentation Analysis

E = The type of expressions e as defined in Figure 2.1.

E list = The type of lists of expressions.

C = The type of commands c as defined in Figure 2.1.

C list = The type of lists of commands, represented by the meta-variable c.

K = The type of continuations k as defined in Figure 2.1.

K̂ = The type of instrumented continuations k̂. These are drawn from the same

language as values of type K, but are assigned their own type for clarity.

P = The type of programs P as defined in Figure 2.1.

P̂ = The type of instrumented programs P̂ . These are drawn from the same language

as values of type P, but are assigned their own type for clarity.

Φ = The type of symbolic state formulae ϕ as defined in Figure 5.1.

G = The type of contexts Γ. Equal to Labels→ (Φ set).

Gen(k : K) = The type of functions fk, which are instrumentation generators for continuation

k. These are functions of type Φ → (G × K̂) option that additionally satisfy

the specification given in Figure 5.6.

Var = The type of program variables, x, y, z, x1, y1, z1, . . .

IVar = The type of instrumentation variables, x, y, z, x1, y1
,

Figure 5.5: Types used by the instrumentation algorithm.

Values of type G fill the same role as the contexts Γ from Chapter 4. In that chapter,
we defined Γ to be a function of type Labels → Q (a mapping from labels to separation
logic formulae). In the implementation, we work with elements of Φ instead of arbitrary
separation logic formulae. Since elements of Φ do not contain disjunction, but disjunction
is generally necessary to express the invariants in Γ, we let values of type G be functions
of type Labels → Φ set (mappings from labels to sets of formulae drawn from Φ). The
sets in the range are interpreted disjunctively, so the set {ϕ1, ϕ2, ϕ3} corresponds to the
separation logic formula ϕ1 ∨ ϕ2 ∨ ϕ3.

The implementation also uses lists of commands in certain places. These are repre-
sented by the meta-variable c and the type of such command lists is “C list.” We use

200

5.4 Basic Structure

standard syntax for lists, writing [c1, . . . , cn] to represent a list of commands, [] to repre-
sent the empty list, and c :: c to represent the cons operator. We define below an operation
that sequences a list of commands with a continuation.

(c :: c) # k def
= c; (c # k)

ε # k def
= k

5.4 Basic Structure

Figures 5.6 and 5.7 provide a guide to the functions used in the implementation. For each
function, we list the type of the function and the formal specification that it must satisfy.
The functions all return optional values. The option type is used throughout because each
operation in the analysis is partial. The problems we are solving are undecidable in general
and so sometimes a solution will not be found. It is also the case that sometimes a solution
just does not exist. Our instrumentation system only allows us to derive instrumentations
for programs that are memory safe. So if a program is not memory safe, no implementation
of the system described in this thesis would be able to produce an instrumented version
of that program. This restriction to memory-safe programs arises as a consequence of the
COMMAND rule in Figure 4.1, which requires that for every command c in the original
program, we can derive the partial correctness triple {Q} c {Q′}, where Q is the current
precondition. Since partial correctness ensures memory safety in separation logic, such a
triple is only derivable if c is memory safe.

If the instrumentation process gets stuck and cannot make progress in the analysis, it
will return a result of None. All functions called by the main procedure for the analysis
(which is called instrument) are also allowed to return None and will do so as soon as a
command is encountered whose safety cannot be shown. Once this occurs, the value None
propagates up the call stack until it is eventually returned by the instrument procedure.

Undecidability of the problems involved can also manifest as non-termination. For
example, the implementation includes a theorem prover for showing implications between
symbolic state formulae. This problem is undecidable and, as a result, it is possible for

201

5 Instrumentation Analysis

Function name and type Specification

fk : Gen(k) If fk(ϕ) = Some
(
Γ, k̂

)
then

Γ ` {ϕ} k̂ IIVar k

instrument

: Φ× P→ (G× P̂) option

If instrument(ϕ0, P) = Some
(
Γ, P̂

)
then

Γ ` P̂ IIVar P and ϕ0 ∈ Γ(initloc(P))

geninstCont

: G×Φ×K→ (G× K̂) option

If geninstCont(Γ, ϕ, k) = Some
(
Γ′, k̂

)
then

Γ′ ` {ϕ} k̂ IIVar k and ∀l. Γ′(l) ⊇ Γ(l)

partialPost

: Φ× C→ Φ option

If partialPost(ϕ, c) = Some
(
ϕ′
)

then

{ϕ} c {ϕ′}

instPost

: Φ× C×Gen(k)→
(G× K̂) option

If instPost(ϕ, c, fk) = Some
(
Γ, k̂

)
then

Γ ` {ϕ} k̂ IIVar (c;k)

Figure 5.6: A summary of the primary functions involved in the implementation.

an implication to hold but for the theorem prover to fail to show this. If this occurs for an
implication that was crucial for construction of the instrumentation proof, the analysis will
diverge.

5.4.1 instrument

At the highest level of the implementation, we have a function instrument of type
Φ× P→ (G× P̂) option. A call to instrument(ϕ0, P) takes the following arguments.

202

5.4 Basic Structure

Function name and type Specification

branchAnnot

: Φ× (E list)→ E list

If branchAnnot(ϕ, [e1, . . . , en]) = [e′1, . . . , e
′
n] then

∀i. (ϕ ∧ ei ⇒ e′i)

implies

: Φ× Φ× K̂→ K̂ option

If implies(ϕ, , ϕ′, k̂ ′) = Some
(
k̂
)

then for all Γ, k

Γ ` {ϕ′} k̂ ′ IIVar k

implies

Γ ` {ϕ} k̂ IIVar k

exposeCellThenInst

: Φ×Var×Gen(k)→
(G× K̂) option

If exposeCellThenInst(ϕ, x, fk) = Some
(
Γ, k̂

)
then

Γ ` {ϕ} k̂ IIVar k

abstract

: Φ→ Φ× (C list)

If abstract(ϕ) = (ϕ′, c) then for all Γ, k, k̂ ′

Γ ` {ϕ′} k̂ ′ IIVar k

implies

Γ ` {ϕ} (c # k̂ ′) IIVar k

Figure 5.7: Additional functions used by the implementation. These are primarily concerned with

reasoning about implications between symbolic state formulae.

203

5 Instrumentation Analysis

P The program to be analyzed.

ϕ0 The precondition under which to analyze P .

It optionally returns a context Γ and an instrumented program P̂ such that the following
holds.

Γ ` P̂ IIVar P

If the algorithm cannot find a Γ, P̂ such that this relation holds, then instrument returns
None.

In the property above, we make use of IVar, the set of all instrumentation variables.
In practice, any program uses only a finite subset of these. According to Theorem 19, we
can reduce the number of variables used in the statement above to V ′ = fv(P̂) − fv(P),
obtaining the following.

Γ ` P̂ IV ′ P

Recall that the role of Γ in the instrumentation rules in Figure 4.1 was to give invariants
of the program at each label. The instrumentation analysis has to automatically infer such a
Γ, which is akin to inferring loop invariants. It also has to determine which instrumentation
commands should be added.

The code for the instrument function is given on page 205. It consists of two
loops, where the first loop is focused on generating Γ and the second loop performs the
instrumentation. This separation of concerns aids in the explanation of the algorithm, but
does cause us to recompute values that have already been produced. The results of function
calls (most crucially geninstCont) can easily be cached to avoid such duplicate effort.

The instrument function, as well as subsequent functions, make use of a union
operation on contexts, defined as follows.

(Γ1 ∪ Γ2)(l) = Γ1(l) ∪ Γ2(l)

The instrument function processes the program by passing each continuation to
the geninstCont function. geninstCont has type G×Φ×K→ (G× K̂) option. It

204

5.4 Basic Structure

Function instrument(ϕ0, P). Main function of the instrumentation analysis.

/* Set precondition of initial location to ϕ0 */

Γnew := {(l0, {ϕ0})} ∪ {(l, ∅) | l ∈ dom(P) ∧ l 6= l0}
/* Analyze continuations until a fixed-point on Γnew is

reached. */

repeat
Γold := Γnew

foreach l ∈ dom(P) do
foreach ϕ ∈ Γnew(l) do

match geninstCont(Γnew, ϕ, P (l)) with
case Some

(
Γ, k̂

)
Γnew := Γ

case None

return None /* possible memory fault */

end
until Γnew = Γold

/* Generate instrumentations of all continuations

starting from the invariants stored in Γnew */

foreach l ∈ dom(P) do
let {ϕ1, ϕ2, . . . , ϕn} = Γnew(l) in

let Some
(
Γ1, k̂1

)
= geninstCont(Γnew, ϕ1, P (l)) in

let Some
(
Γ2, k̂2

)
= geninstCont(Γnew, ϕ2, P (l)) in

...
let Some

(
Γn, k̂n

)
= geninstCont(Γnew, ϕn, P (l)) in

P̂ (l) := (branch true⇒ k̂1, true⇒ k̂2, . . . , true⇒ k̂n end)

end
return (Γnew, P̂)

205

5 Instrumentation Analysis

takes a context Γ, a symbolic state formula representing a precondition ϕ0 and a continu-
ation k and optionally returns an instrumented continuation k̂ together with a new context
Γ′ mapping labels to symbolic state formulae. The context Γ describes the invariants at lo-
cations that the analysis has discovered thus far. The returned context Γ′ is Γ extended with
information about the states reachable through k. Formally, if geninstCont(Γ, ϕ0, k)

returns Some
(
Γ′, k̂

)
then these should satisfy

Γ′ ` {ϕ0} k̂ IIVar k

It will also be the case that ∀l. Γ′(l) ⊇ Γ(l). That is, Γ′ is an extension of Γ obtained by
adding more disjuncts. If None is returned, it indicates that no such Γ′, k̂ could be found.
After calling geninstCont, passing in Γnew as the context, the instrument function
then sets Γnew to be the context that was returned, thus ensuring the current context reflects
the information about reachable states discovered by geninstCont.

At a high level, we can describe the instrumentation analysis as a fixed-point compu-
tation on Γ. Suppose we are analyzing the program P . First, we assume that fv(P) ⊆ Var

(we can always establish this by renaming variables). This ensures that the new variables
we will be adding (which are in IVar) are disjoint from the program variables. Initially we
set Γ = {(l0, {ϕ0})} ∪ {(l, ∅) | l ∈ dom(P) ∧ l 6= l0}. That is, Γ maps the initial location
to ϕ0 and all other locations to the empty set. We then repeatedly infer the post-conditions
of the continuations in the domain of P , adding these post-conditions to Γ. The function
Γ maps each label to the set of reachable states that have been discovered at that label. If
this process converges, such that Γ is no longer growing, this indicates that we have fully
characterized all the reachable states of the program. We then generate the instrumenta-
tion of the program by instrumenting each continuation under each possible precondition.
The version of instrument given here discards the instrumentations that it generates in
the first loop, which computes Γ. In practice, these results are retained to avoid duplicat-
ing work. A simple memoization scheme is sufficient to allow reuse of these previously
computed instrumentations.

Proof of Correctness We now show that if geninstCont satisfies its specification as
given in Figure 5.6, then instrument also satisfies its specification. That is, we show

206

5.4 Basic Structure

the following.

if instrument(ϕ0, P) = Some
(
Γ, P̂

)
then Γ ` P̂ IIVar P and ϕ0 ∈ Γ(initloc(P))

Suppose instrument(ϕ0, P) = Some
(
Γ, P̂

)
. This implies that the first loop has

terminated and each geninstCont call in the second loop returns Some
(
Γj, k̂j

)
.

That the first loop terminates implies that Γnew = Γold. This implies that every as-
signment Γnew := Γ in the body of the loop left Γnew unchanged. That is, for each ϕil
such that ϕil ∈ Γnew(l) we have that geninstCont(Γnew, ϕ

i
l, P (l)) = Some

(
Γil, k̂

i
l

)
im-

plies Γil = Γnew. Given the specification of geninstCont from Figure 5.6, these Γil and
k̂il also each satisfy Γil ` {ϕil} k̂il IIVar P (l) which, applying the equalities Γil = Γnew,
implies Γnew ` {ϕil} k̂il IIVar P (l) for each ϕil and k̂il .

Since geninstCont is deterministic (in fact, all functions involved in our implemen-
tation are deterministic), the calls to geninstCont in the second loop will also satisfy
these properties. In particular, Γnew ` {ϕil} k̂il IIVar P (l) for all ϕil ∈ Γnew(l) implies

Γnew ` {
∨
i

ϕil} branch . . . , true⇒ k̂il , . . . end IIVar P (l) (5.3)

by repeated application of the INST-DISJ rule from Figure 4.1.

We will now show that the program P̂ constructed by the second loop satisfies

Γ ` P̂ IIVar P and ϕ0 ∈ Γ(initloc(P))

There is only one rule for showing this, namely the INST-PROG rule in Figure 4.2. Since
IVar was defined to be disjoint from the program variables, we have IVar ∩ fv(P) = ∅,
which is the first premise of that rule. We have dom(P̂) = dom(P) from the fact that the
second loop defines P̂ (l) for each l ∈ dom(P). The initial locations are the same in each
program, so we have initloc(P̂) = initloc(P). Finally we must show the following.

∀l ∈ dom(P). (Γnew ` {Γnew(l)} P̂ (l) IIVar P (l))

This follows from (5.3) and the fact that Γnew is interpreted disjunctively, so if
Γnew(l) = {ϕ1

l , . . . , ϕ
n
l } then this corresponds to the formula ϕ1

l ∨ . . . ∨ ϕnl .

207

5 Instrumentation Analysis

The second conjunct of the specification for instrument follows from the second
conjunct of the specification of geninstCont. We have ϕ0 ∈ Γnew(l0) initially. We also
have that all calls geninstCont(Γnew, ϕ, k) = Some

(
Γ′, k̂

)
satisfy ∀l. Γ′(l) ⊇ Γnew(l),

which implies that ϕ0 ∈ Γ′(l0). From this it follows that ϕ0 ∈ Γnew(l0) for the final value
of Γnew computed by instrument.

Organization We will now proceed to discuss geninstCont and the other functions
that the implementation makes use of. These are all mutually recursive and thus difficult
to discuss separately. However the guide in Figures 5.6 and 5.7 should be of use in under-
standing at a high level the role of functions that have yet to be discussed. We will also
attempt to informally give the intuition behind functions that are being used, but whose
full description is yet to come. As we discuss each function, we prove that it satisfies its
specification as given in Figures 5.6 and 5.7.

5.4.2 geninstCont

The function call geninstCont(Γ, ϕ, k) takes the following arguments.

Γ A mapping from labels to sets of abstract state formulae that describes the
invariants that have already been discovered.

ϕ A symbolic state formula that gives the current precondition.

k The continuation to be instrumented.

geninstCont has an optional return value. If it returns Some
(
Γ′, k̂

)
, then these must

satisfy the following. (
Γ′ ` {ϕ} k̂ IIVar k

)
∧
(
∀l. Γ′(l) ⊇ Γ(l)

)
Recall that k̂ consists of the commands and control structure of k, plus possibly some
additional commands over variables in IVar.

The code for geninstCont is given on page 210. We first check if the precondition
is unsatisfiable by calling implies(ϕ, false, . . .), which returns Some

(
k̂
)

only if false

208

5.4 Basic Structure

can be established from the precondition ϕ (modulo the instrumentation commands, this
corresponds to showing ϕ⇒ false). Such inconsistency can occur due to the accumulation
of constraints from branch conditions. implies also ensures k̂ is an instrumentation
command that establishes the precondition false. A formal summary of implies is given
in Figure 5.7. Since Γ ` {false} (assert(false);halt) IIVar k holds for any k by rule FALSE

from Figure 4.1, our specification of implies ensures that the following holds.

Γ ` {ϕ} k̂ IIVar k

This result satisfies the specification for geninstCont from Figure 5.6.

If ϕ is consistent, then the instrumentation depends on the form of the continua-
tion k. We now consider each case in turn, describing the operations performed by
geninstCont and presenting the soundness argument at the same time (that is, we show
in each case that geninstCont satisfies its specification as given in Figure 5.6).

CASE k = (c;k′): In the case of a command, where k = (c;k′), we construct the
following function, which we will refer to here as fk′ .

fk′
def
= λx. geninstCont(Γ, x, k′)

Given the specification of geninstCont from Figure 5.6, this function has the type
Gen(k′). It can thus be passed to instPost, which expects such a function as its third
argument.

The function call instPost(ϕ, c, fk′) computes the post-condition of c with respect
to the state ϕ. It then calls fk′ with that post-condition. The reason instPost operates
this way, instead of simply returning the post-condition, is that it is sometimes necessary
to perform case splits before the post-condition of c can be determined. In such situations,
the post-condition can be different under each branch of the case split. Passing fk′ to
instPost yields a simple method of obtaining instrumentations of k for each of these
cases.

By examining the specifications given in Figure 5.6, we can verify that the code in the
k = (c;k′) case is correct. To satisfy the specification for geninstCont, this case must

209

5 Instrumentation Analysis

Function geninstcont(Γ, ϕ, k). Generates an instrumented continuation for k
starting from precondition ϕ.

if implies(ϕ, false, (assume(false); halt)) = Some
(
k̂
)

then
/* If ϕ is unsatisfiable, return k̂. */

return Some
(
Γ, k̂

)
else
/* Otherwise, continue instrumenting k. */

match k with
case (c;k′)

return instPost(ϕ, c, λx. geninstCont(Γ, x, k′))

case branch e1 ⇒ k1, . . . , en ⇒ kn end

let [e′1, . . . , e
′
n] = branchAnnot(ϕ, [e1, . . . , en]) in

let Some
(
Γ1, k̂1

)
= geninstCont(Γ, ϕ ∧ e1, k1) in

...
let Some

(
Γn, k̂n

)
= geninstCont(Γ, ϕ ∧ en, kn) in

return Some

(⋃
i(Γi),

branch e1 ⇒ assume(e′1);k̂1, . . .

en ⇒ assume(e′n);k̂n end

)
match failed⇒ return None

case goto l

if ∃ϕ′ ∈ Γ(l). implies(ϕ, ϕ′, goto l) = Some
(
k̂
)

then
return Some

(
Γ, k̂

)
else

let (ϕ′, c) = abstract(ϕ) in
return Some

(
Γ[l→ (Γ(l) ∪ ϕ′)], (c # goto l)

)
case halt

return Some
(
Γ, halt

)
case abort

return Some
(
Γ, abort

)
end

210

5.4 Basic Structure

return Some
(
Γ, k̂

)
such that

Γ ` {ϕ} k̂ IIVar (c;k′)

(or return None). Checking the specification for instPost, we see that the return value
of instPost(ϕ, c, fk′) satisfies this exactly.

CASE k = branch . . . , ei ⇒ ki, . . . end:

For each case i of the branch, we conjoin ei to the current symbolic state ϕ and
then pass this updated state to a recursive call of geninstCont. By the specification
of geninstCont, this will return either None or Some

(
Γi, k̂i

)
such that the following

holds.
Γi ` {ϕ ∧ ei} k̂i IIVar ki

We also call branchAnnot(ϕ, [e1, . . . , en]). This returns [e′1, . . . , e
′
n] such that each e′i

is an over-approximation of ei in the state ϕ. That is, ϕ ∧ ei ⇒ e′i for all ei, e′i. The idea
is that, whereas the ei are statements over program variables, which may involve variables
of address type, the e′i will be statements over instrumentation variables.

For example, under the symbolic state ls(n;x, nil), the branch condition x = nil might
be translated to n = 0. In this case, the call

branchAnnot(ls(n;x, nil), [x = nil, x 6= nil])

would return
[n = 0, n > 0]

The specifications of the recursive geninstCont calls and the branchAnnot

function are sufficient to allow us to show that this case satisfies the specification of
geninstCont. The implications ϕ∧ ei ⇒ e′i allow us to apply the INST-ASSUME rule to
conclude

Γi ` {ϕ ∧ ei} (assume(e′i);k̂i) IIVar ki

Let Γ′ =
⋃
i(Γi). Since the sets given by Γ′(l) are interpreted disjunctively—that is,⋃

i(Γi)(l) corresponds to the separation logic formula
∨
i(Γi(l))—we have that for all l, i

211

5 Instrumentation Analysis

the implication Γi(l)⇒ Γ′(l) holds. Thus we can apply Lemma 12 to obtain

Γ′ ` {ϕ ∧ ei} (assume(e′i);k̂i) IIVar ki

for all ei, ki. This then allows us to apply the BRANCH rule to obtain

Γ′ ` {ϕ} branch . . . , ei ⇒ assume(e′i);k̂i, . . . end IIVar k

Thus the value returned satisfies the specification for geninstCont.

CASE k = goto l:

In the goto case, there are two approaches, depending on what can be shown of the
current state ϕ.

“then” branch If there is some ϕ′ in Γ associated with the same label we are jumping
to such that ϕ ⇒ ϕ′, then we can apply the GOTO rule followed by the STRENGTHENING

rule as follows.

We first note that if ϕ′ ∈ Γ then we have the following by the GOTO rule from Figure
4.1.

Γ ` {ϕ′} goto l IIVar goto l

Examining the specification for the call to implies(ϕ, ϕ′, goto l), we see that if the result
is Some

(
k̂
)

then this ensures that the following holds.

Γ ` {ϕ} k̂ IIVar goto l

Thus returning Some
(
k̂
)

allows this case to satisfy the specification for geninstCont.

In essence, the goal of implies(ϕ, ϕ′, k̂ ′) is to generate an instrumentation that con-
nects ϕ to ϕ′. This instrumentation may involve applications of INST-ASSIGN, which will
prepend commands to k̂ ′. It may also make use of STRENGTHENING and case-splitting
rules such as our INST-BRANCH derived rule from Section 4.1.3.

As a simple example, consider the call implies(ls(n−1;x, nil), ls(n;x, nil), goto l),
where Γ maps l to {ls(n;x, nil)}. This would return the instrumented continuation

212

5.4 Basic Structure

(n := n − 1; goto l), where the addition of the command n := n − 1 ensures that
if ls(n − 1;x, nil) is the precondition, then ls(n;x, nil) will hold just prior to the goto l

statement.

“else” branch If we instead end up executing the “else” branch in the goto l case, then
we call abstract(ϕ). The goal of abstract is to weaken symbolic state formulae
so that they cover more states. These more abstract states are then more likely to be loop
invariants.

For example, during execution of a program that creates a linked list, we might en-
counter a symbolic state such as the one below.

ϕ1
def
= ∃z. (x 7→ [next : z]) ∗ (z 7→ [next : nil])

This formula implies the formula below, which would be a valid loop invariant for a list
creation routine.

ls(n;x, nil)

In order to establish this formula, we need to initialize n. This is the role of the second
component of the return value of abstract. The initialization command for this example
is n = 2 and so abstract(ϕ1) would return (ls(n;x, nil), [n = 2]).

The formal specification of abstract given in Figure 5.7 ensures that if
abstract(ϕ) returns (ϕ′, c) then for all Γ, k, k̂ ′ we have that Γ ` {ϕ′} k̂ ′ IIVar k

implies Γ ` {ϕ} (c # k̂ ′) IIVar k. Let Γ′ = Γ[l→ (Γ(l)∪{ϕ′})]. Clearly ∀l. Γ′(l) ⊇ Γ(l).
We have that Γ′ ` {ϕ′} goto l IIVar goto l. The specification of abstract then tells us
that Γ′ ` {ϕ} c # goto l IIVar goto l holds. Since we return Some

(
Γ′, (c # goto l)

)
, this

establishes the specification of geninstCont in this case of the match.

CASE halt, abort: In the case of halt or abort, no instrumentation commands are added.
The fact that the return values in these cases satisfy the specification for geninstCont
follows directly from the rules HALT and ABORT in Figure 4.1.

213

5 Instrumentation Analysis

Second Conjunct

We now show that the second conjunct in the specification of geninstCont holds. We
must show that if geninstCont(Γ, ϕ, k) = Some

(
Γ′, k̂

)
then

∀l. Γ′(l) ⊇ Γ(l)

In the branch case, we have ∀l. Γi(l) ⊇ Γ(l) by the inductive hypothesis. We then
have

⋃
i(Γi) by the definition of ∪ on contexts. The halt, and abort cases are immediate,

as ∀l. Γ(l) ⊇ Γ(l) trivially holds. This leaves the (c;k) case and the goto l case.

For (c;k) we need to examine the definition of instPost. This is defined in the
next section and we will discuss it in more detail there. For now, it suffices to note that
the context instPost returns is the same context produced by the function passed as the
third argument—in this case, a recursive call to geninstCont. This lets us apply the
inductive hypothesis, from which this case then immediately follows.

For goto l, the “then” branch is immediate as the input context is returned unchanged.
The “else” branch returns Γ[l→ (Γ(l) ∪ ϕ′)]. Since Γ(l) ∪ ϕ′ ⊇ Γ(l) we have our result.

5.4.3 instPost

The function instPost, which is responsible for instrumenting commands, is given on
page 215. A call instPost(ϕ, c, fk) takes the following arguments.

ϕ A symbolic state formula that gives the precondition.

c The command whose post-condition should be taken.

fk The instrumentation generator to apply to the post-condition when it is ob-
tained.

instPost has an optional return value. If it returns Some
(
Γ, k̂

)
, then these must satisfy

the following.
Γ ` {ϕ} k̂ IIVar (c;k)

214

5.4 Basic Structure

We write A[x] to denote the commands that access the cell at x.

A[x] ::= y := x.f | free x | x.f = e

These commands require a heap cell to exist at x in order to ensure that execution does not
result in a memory fault.

Function instpost(ϕ, c, fk). Takes the post-condition of ϕ with respect to the
command c and applies fk to the result, returning an instrumentation of c;k.

fun doPost(ϕ, c, fk) =
match partialPost(ϕ, c) with

case Some(ϕ′)

if fk(ϕ′) = Some
(
Γ, k̂

)
then

return Some
(
Γ, (c;k̂)

)
else

return None

case None
return None

end
in

match c with
case A[x]

return exposeCellThenInst(ϕ, x, λϕ. doPost(ϕ, c, fk))

otherwise
return doPost(ϕ, c, fk)

end

The function instPost makes use of two helper functions: partialPost and
exposeCellThenInst. The partialPost function returns the post-condition of
a command with respect to some precondition, but is not able to perform the theorem
proving that is sometimes necessary to show that the heap contains a cell at a given address.
The exposeCellThenInst fills in this shortcoming by making calls into a theorem
prover for symbolic state formulae.

215

5 Instrumentation Analysis

Helper Function: partialPost

The code for partialPost is given on page 217. This function implements a partial
post-condition operator. It takes the following arguments.

ϕ A symbolic state formula that gives the current precondition.

c The command for which the postcondition should be computed.

It returns either None or Some
(
ϕ′
)
. If Some

(
ϕ′
)

is returned, then this formula satisfies the
following.

{ϕ} c {ϕ′}

For assignment, the standard strongest post-condition rule is used. For allocation, we
use the standard post-condition rule from separation logic Reynolds [2002]. For non-
deterministic assignment we existentially quantify what is now the previous value of x.
For skip we leave the precondition unchanged.

The rules for the heap-manipulating commands first check that the precondition syn-
tactically contains a points-to predicate specifying the contents of the heap cell being ac-
cessed. For example, in the case for x1 := x2.f , the expression

let (∃~z. (Σ ∗ (x2 7→ [f : e, ρ])) ∧ Π) = ϕ with x1, x2 6∈ ~z in

matches ϕ against the pattern ∃~z. (Σ ∗ (x2 7→ [f : e, ρ])) ∧ Π. The match succeeds if ϕ
can be shown to have the given form using only the equivalence defined in Figure 5.2. If
the match succeeds, then ~z,Σ, e, ρ, and Π are bound to the sub-formulae at these positions
in ϕ. Additionally, the condition x1, x2 6∈ ~z is enforced, which may require alpha-varying
ϕ prior to performing the matching.

Once this syntactic match has been performed, the precondition is updated to reflect
the effect of executing the command. Heap-manipulating commands such as x1 := x2.f

are only safe in states containing a heap cell at a given address (in this case a heap cell
at x2 with field f). If the required heap cell does not appear in the formula explicitly as
a points-to predicate (that is, if the syntactic match fails), then the function returns None.
Otherwise it returns Some

(
ϕ′
)

where ϕ′ is the post-condition.

216

5.4 Basic Structure

Function partialPost(ϕ, c). Returns the post-condition for command c given
precondition ϕ. All primed variables are chosen to be fresh. Side conditions are
satisfied by alpha-varying ϕ (the match fails if this is not possible).

match c with
case x := e

return Some
(
∃x′. (ϕ[x′/x] ∧ x = e[x′/x])

)
case x := alloc(f1, . . . , fn)

return Some
(
∃x′, y′1, . . . , y′n. (ϕ[x′/x] ∗ (x 7→ [f1 : y′1, . . . , fn : y′n]))

)
case x := ?

return Some
(
∃x. ϕ

)
case skip

return Some
(
ϕ
)

case x1 := x2.f

let (∃~z. (Σ ∗ (x2 7→ [f : e, ρ])) ∧ Π) = ϕ with x1, x2 6∈ ~z in

let e′ = e[x′1/x1] in

let ρ′ = ρ[x′1/x1] in

let Σ′ = Σ[x′1/x1] in

let Π′ = Π[x′1/x1] in
return Some

(
∃x′1, ~z. (Σ′ ∗ (x2[x′1/x1] 7→ [f : e′, ρ′])) ∧ (Π′ ∧ x1 = e′)

)
match failed⇒ return None

case x.f := e

let (∃~z. (Σ ∗ (x 7→ [f : e1, ρ])) ∧ Π) = ϕ with fv(x, e) ∩ ~z = ∅ in
return Some

(
∃~z. (Σ ∗ (x 7→ [f : e, ρ])) ∧ Π

)
match failed⇒ return None

case free x

let (∃~z. (Σ ∗ (x 7→ [ρ])) ∧ Π) = ϕ with x 6∈ ~z in
return Some

(
∃~z. Σ ∧ Π

)
match failed⇒ return None

end

217

5 Instrumentation Analysis

Helper Function: exposeCellThenInst

In order to produce a result for a command that accesses a heap cell at x, the code dis-
cussed above for partialPost requires the precondition to contain a term that syntac-
tically matches (x 7→ [ρ]) ∗ ϕ for some ρ and ϕ. This causes the code to return None in
some cases where a post-condition does exist. An example of such a case is the formula
ls(n;x, nil) ∧ n > 0, which implies that the list at x is non-empty and thus x is a valid
pointer into the heap. However, discovering this fact requires reasoning about separation
logic implications.

We will talk about separation logic reasoning in Section 5.5. In the meantime, we
will give a high-level description of exposeCellThenInst, which is the function that
makes the appropriate call into our theorem proving system to show that a heap cell at
some address x exists. The call exposeCellThenInst(ϕ, x, fk) takes the following
arguments.

ϕ A symbolic state formula that gives the current precondition.

x The address of the heap cell to be revealed.

fk The instrumentation generator to apply to the formula that results from
showing that x is in the heap.

If exposeCellThenInst(ϕ, x, fk) returns Some
(
Γ, k̂

)
then these must satisfy

Γ ` {ϕ} k̂ IIVar k

As with the implies function, informally described on page 212, the instrumentation
commands added to the result of fk in order to obtain k̂ may consist of assignments or
branches. To take a branching example, consider the following symbolic state formula.

ϕ0
def
= (ls(a;x, y) ∗ ls(b, y, x)) ∧ a+ b > 0

This states that there is a non-empty cyclic singly-linked list with x and y pointing into
it. The pointers x and y divide the cycle into two segments: one starting at x and ending

218

5.4 Basic Structure

at y and the other running from y back to x. The condition a + b > 0 implies that there
is at least one heap cell in the cyclic list. This implies that at least one of the segments is
non-empty, but it does not specify which. If we want to expose the heap cell at x, we must
first case split on whether the list segment starting at x is empty. We obtain the following
if the segment starting at x is non-empty (and thus a > 0)

ϕ1
def
= (∃z. x 7→ [next : z] ∗ ls(a− 1; z, y) ∗ ls(b, y, x)) ∧ a > 0

and the following if that segment is empty (and thus a = 0)

ϕ2
def
= (∃z. x 7→ [next : z] ∗ ls(b− 1; z, x)) ∧ x = y ∧ a = 0 ∧ b > 0

If fk(ϕ1) = Some
(
Γ1, k̂1

)
and fk(ϕ2) = Some

(
Γ2, k̂2

)
then the call

exposeCellThenInst(ϕ0, x, fk)

would return
Some

(
Γ1 ∪ Γ2, branch a > 0⇒ k̂1, a = 0⇒ k̂2 end

)
Correctness

We now show that instPost satisfies its specification. We first consider the case where
c does not match A[x]. In this case, instPost calls doPost(ϕ, c, fk) which calls
partialPost(ϕ, c). Suppose partialPost(ϕ, c) returns Some

(
ϕ′
)
. Then by its

specification in Figure 5.6 we have

{ϕ} c {ϕ′} (5.4)

Since fk has type Gen(k) we have that if f(ϕ′) returns Some
(
Γ, k̂

)
then the following

holds.
Γ ` {ϕ′} k̂ IIVar k (5.5)

We can then apply the COMMAND rule from Figure 4.1 to (5.4) and (5.5) to obtain

Γ ` {ϕ} (c;k̂) IIVar (c;k)

219

5 Instrumentation Analysis

which establishes that our return value satisfies the specification for instPost.

For the c = A[x] case, we first note that one consequence of the argument above about
doPost is that the function

λϕ. doPost(ϕ, c, fk)

has type Gen(c;k). This allows it to be passed to exposeCellThenInst. The speci-
fication of exposeCellThenInst then tells us that if this call returns Some

(
Γ, k̂

)
then

we have

Γ ` {ϕ} k̂ IIVar (c;k)

which satisfies the specification for exposeCellThenInst.

5.5 Theorem Proving

We now describe our proof system for symbolic state formulae.2 This forms the basis of
many of the remaining functions. Specifically, the functions exposeCellThenInst,
implies, and branchAnnot all make use of the theorem prover. Each of these func-
tions answers slightly different problems, and so we will actually describe three different
proof systems. However, the vast majority of the proof rules are shared by all three sys-
tems. We will thus start with the simplest problem, entailment, which is used by the
implies function, and then describe our solution for the more complex problems of
frame inference and pure abduction, by focusing on the differences between the proof
systems for these problems and the proof system for entailment. The discussion of pure
abduction will be delayed until Section 5.10, as this constitutes an optional portion of the
algorithm. Instrumentations for programs can be produced without having a proof system
for pure abduction, but including this system enables us to generate more precise instru-
mentations.

2As symbolic state formulae correspond to separation logic formulae of a restricted form, this can also
be viewed as a proof system for separation logic formulae of this form.

220

5.5 Theorem Proving

5.5.1 Entailment

Our system for entailment targets the same problem as Berdine et al. [2004] and Nguyen
and Chin [2008], although our system is unique in that it generates instrumentation com-
mands during proof search. This addition is necessary if the prover is to be used in a
system for producing instrumented programs, such as the one we are considering in this
chapter.

We start with an example showing when entailment is useful. Suppose we have reached
symbolic state

ϕ
def
= ls(n+ 1;x, nil)

and have previously discovered that the symbolic state

ϕ′
def
= ls(n;x, nil)

is reachable at the same location. In this case, we would like to notice that we can reach
ϕ′ from ϕ by executing the instrumentation command n := n + 1. If we can show this,
then we may stop exploring this branch. If we fail to notice such situations, this can lead
to non-termination of the algorithm. This is the sort of query performed by the implies
function and supported by our proof system for entailment.

Formally, we will define the following judgment.

ϕ =⇒
S k̂′ ϕ

′ � k̂

In the above, ϕ, ϕ′,S, and k̂′ are considered inputs and k̂ is the output. Recall that S is a
set of inductive predicate specifications as described in Section 5.2.

The proof system will be designed such that if the judgment ϕ =⇒
S k̂′ ϕ

′ � k̂ holds and

Γ ` {ϕ′} k̂′ IIVar k for some Γ, k, then

Γ ` {ϕ} k̂ IIVar k

To establish this, the entailment system can be viewed as transforming a proof of
Γ ` {ϕ′} k̂′ IIVar k into a proof of Γ ` {ϕ} k̂ IIVar k by using the instrumentation

221

5 Instrumentation Analysis

rules in Figure 4.1 to fill in the gaps between ϕ and ϕ′. And in fact, we will establish
soundness of the proof system by showing that each rule presented can be justified in
terms of rules from Figure 4.1.

As an example, if ϕ is

ls(n1 + 1; y, x) ∗ ls(n2;x, nil) ∧ x 6= nil

and ϕ′ is

∃z, v. ls(n1; y, x) ∗ x 7→ [next : z, data : v] ∗ ls(n2; z, nil)

then the system may reason that ϕ′ can be reached from ϕ by inserting the instrumentation
command n1 := n1 + 1. The post-condition of this command is

ls(n1; y, x) ∗ ls(n2;x, nil) ∧ x 6= nil

from which ϕ′ follows by pure separation logic reasoning.

Bookkeeping

At a high level, proving proceeds by matching spatial predicates to the left of =⇒
S

with
spatial predicates on the right. This matching procedure is essentially an application of the
following inference rule (the frame rule), which is admissible in separation logic.

Q1 ⇒ Q2

Q1 ∗R⇒ Q2 ∗R

To give an analogous example in our syntax, if the following holds

ϕ =⇒
S k̂′ ϕ

′ � k̂

then the statement below does as well (provided x and y are program variables and not
instrumentation variables).

ϕ ∗ x 7→ [data : y] =⇒
S k̂′ ϕ

′ ∗ x 7→ [data : y] � k̂

222

5.5 Theorem Proving

We then view proof search as proceeding from the bottom up. If we are ever faced with
a goal matching that given above, we can note that x 7→ [data : y] occurs on both sides,
discard it, and proceed to search for a proof of ϕ =⇒

S k̂′ ϕ
′ � k̂.

This relatively simple matching process becomes somewhat complicated in the pres-
ence of instrumentation commands, pure formulae, and quantifiers, so the actual proof
search is performed over an expanded form of the judgment, which includes some book-
keeping information.

The rules for the proof system are given in Figures 5.8 and 5.9 and involve judgments
of the following form.

Σa 8 ϕ =⇒
S k̂′ ϕ

′ � k̂

The Γ, ϕ, ϕ′,S, and k̂′ components are the same as before. The Σa component exists to
aid in the matching process. As spatial predicates in ϕ are matched with predicates in ϕ′,
the matched predicate is moved to Σa.

Formally, if the sequent
Σa 8 ϕ =⇒

S k̂′ ϕ
′ � k̂

is derivable, then the following holds

Γ ` {Σa ∗ ϕ′} k̂′ IIVar k implies Γ ` {Σa ∗ ϕ} k̂ IIVar k

The following components are inputs in a bottom-up proof search using these rules.

S, k̂′,Σa, ϕ, ϕ
′

The only output is k̂.

Our earlier notation ϕ =⇒
S k̂′ ϕ

′ � k̂ should be viewed as an abbreviation for the fol-
lowing.

emp 8 ϕ =⇒
S k̂′ ϕ

′ � k̂

Notation

One common operation in the rules in Figures 5.8 and 5.9 is to check whether a spatial
formula is present in a symbolic state formula. We define the following notation to indicate

223

5 Instrumentation Analysis

this check (where ≡ denotes the equality relation given in Figure 5.2).

Σ′ ∈ ϕ def
=
(
ϕ ≡ ∃~x. Σ ∧ Π

)
and Σ = Σ′ ∗ Σ1 for some Σ1 and fv(Σ′) ∩ ~x = ∅

This implies that ϕ is logically equivalent to ϕ′ ∗ Σ′, where ϕ′ = ∃~x. Σ1 ∧ Π (using the
variable names in the definition above).

An example usage of this notation occurs in rule NOTNULL in Figure 5.8, where we
have (e 7→ ρ) ∈ (Σa ∗ ϕ) as one of the premises. Recall that Σa ∗ ϕ denotes the symbolic
state formula ϕ′ that is semantically equivalent to Σa ∗ ϕ (for more details, see Section
5.1). The result is that the statement (e 7→ ρ) ∈ (Σa ∗ ϕ) is true when e 7→ ρ is present
in either Σa or ϕ, with quantified variables in Σa and ϕ handled appropriately (though, as
can be seen by examining the other rules, Σa will never contain quantifiers).

As another example, consider the statement ((e1 7→ ρ1) ∗ (e2 7→ ρ2)) ∈ (Σa ∗ ϕ), as
present in the DISJOINT rule. This is true if e1 7→ ρ1 and e2 7→ ρ2 both occur in Σa, or
both occur in ϕ, or if one occurs in Σa and one occurs in ϕ. Thus, this notation gives us a
concise way of writing statements regarding the presence of spatial formulae which would
otherwise involve a great deal of disjunction.

Rule Explanation and Soundness

We now go through each rule in turn, explaining its effect and presenting its soundness
proof. Soundness is shown via induction on the structure of the derivation. Intuitively, we
want a derivation of Σa 8ϕ =⇒

S k̂′ ϕ
′� k̂ to ensure that we can reach ϕ′ from ϕ. That is, via

repeated application of the instrumentation rules from Figure 4.1, we can construct some
continuation prefix that reaches the state ϕ′ along all of its branches. Formally, we have
the statement below.

Theorem 28. If Σa 8 ϕ =⇒
S k̂′ ϕ

′ � k̂ is derivable then for all Γ, k

Γ ` {Σa ∗ ϕ′} k̂′ IIVar k implies Γ ` {Σa ∗ ϕ} k̂ IIVar k

Stated in terms of our abbreviated form of judgment, this becomes the following.

224

5.5 Theorem Proving

PROPEQL
Σa 8 ϕ[e/x] ∧ x = e =⇒

S k̂′
ϕ′ � k̂

Σa 8 ϕ ∧ x = e =⇒
S k̂′

ϕ′ � k̂

NOTNULL

(e 7→ ρ) ∈ (Σa ∗ ϕ) Σa 8 ϕ ∧ (e 6= nil) =⇒
S k̂′

ϕ′ � k̂

Σa 8 ϕ =⇒
S k̂′

ϕ′ � k̂

DISJOINT

((e1 7→ ρ1) ∗ (e2 7→ ρ2)) ∈ (Σa ∗ ϕ) Σa 8 ϕ ∧ (e1 6= e2) =⇒
S k̂′

ϕ′ � k̂

Σa 8 ϕ =⇒
S k̂′

ϕ′ � k̂

RIGHTPURE

Π⇒ ∃~x. Π′ is valid

Σa 8 emp ∧Π =⇒
S k̂′

∃~x. emp ∧Π′ � k̂′

LEFTPUREFALSE

Π⇒ false is valid

Σa 8 Σ ∧Π =⇒
S k̂′

ϕ′ � assume(false); halt

PTOMATCHES

Σa ∗ (e 7→ ρ) 8 ϕ =⇒
S k̂′

ϕ′ � k̂

Σa 8 (e 7→ ρ) ∗ ϕ =⇒
S k̂′

ϕ′ ∗ (e 7→ ρ) � k̂

PREDMATCHES

Σa ∗ d(~e) 8 ϕ =⇒
S k̂′

ϕ′ � k̂

Σa 8 d(~e) ∗ ϕ =⇒
S k̂′

ϕ′ ∗ d(~e) � k̂

Figure 5.8: Proof system for entailment. Basic rules.

Corollary 5. If ϕ =⇒
S k̂′ ϕ

′ � k̂ then for all Γ, k

Γ ` {ϕ′} k̂′ IIVar k implies Γ ` {ϕ} k̂ IIVar k

Proof. The proof is by induction on the structure of the derivation of Σa 8 ϕ =⇒
S k̂′ ϕ

′ � k̂.
We consider each case below.

PROPEQL This rule propagates equalities throughout the formula on the left. Applying
our inductive hypothesis yields

Γ ` {Σa ∗ ϕ′} k̂′ IIVar k implies Γ ` {Σa ∗ (ϕ[e/x] ∧ x = e)} k̂ IIVar k (5.6)

225

5 Instrumentation Analysis

DEFL (
d(~v) <=> . . . | Ci(~v) | . . .

)
∈ S

Ci(~e) =
(
Πi : let ~zi satisfy Π′i in ϕi

)
∀i.
(
Σa 8 (ϕ ∗ ϕi) ∧Πi ∧Π′i =⇒

S k̂′
ϕ′ � k̂i

)
Σa 8 ϕ ∗ d(~e) =⇒

S k̂′
ϕ′�

branch . . . ,Πi ⇒ ~zi := ?;assume(Π′i);k̂i, . . . end

∀i. ~zi 6∈ fv(ϕ,Σa,Πi)

INSTL
Σa 8 ϕ =⇒

S k̂′
ϕ′ � k̂

Σa 8 ϕ[e/x] =⇒
S k̂′

ϕ′ � (x := e;k̂)
x 6∈ fv(Σa), fv(x, e) ∩ V = ∅

EXISTSR
Σa 8 ϕ =⇒

S k̂′
ϕ′[e/x] � k̂

Σa 8 ϕ =⇒
S k̂′

∃x. ϕ′ � k̂

EXISTSL
Σa 8 ϕ[c/x] =⇒

S k̂′
ϕ′ � k̂

Σa 8 ∃x. ϕ =⇒
S k̂′

ϕ′ � c := ?;k̂
c fresh

Figure 5.9: Proof system for entailment. Rules for inductively specified predicates and variables.

We write ~z := ? to indicate the sequence of commands z1 := ?; . . .;zn := ?.

We must show

Γ ` {Σa ∗ ϕ′} k̂′ IIVar k implies Γ ` {Σa ∗ (ϕ ∧ x = e)} k̂ IIVar k

We first assume Γ ` {Σa ∗ ϕ′} k̂′ IIVar k and apply (5.6) to derive

Γ ` {Σa ∗ (ϕ[e/x] ∧ x = e)} k̂ IIVar k

We can then apply the STRENGTHENING rule from Figure 4.1 to the formula above using
the following implication.(

Σa ∗ (ϕ ∧ x = e)
)
⇒
(

Σa ∗ (ϕ[e/x] ∧ x = e)
)

This yields

Γ ` {Σa ∗ (ϕ ∧ x = e)} k̂ IIVar k

226

5.5 Theorem Proving

which completes the proof.

Note that the antecedent of the goal matched the antecedent of the implication we
got from the inductive hypothesis (5.6). This will be the case for all rules, so we will
henceforth focus on showing that the conclusion of the implication from the inductive
hypothesis implies the conclusion of our goal.

NOTNULL This rule adds e 6= nil to our assumptions in cases where a cell at location e
has been shown to be present in the heap. For soundness, we have

Γ ` {Σa ∗ (ϕ ∧ e 6= nil)} k̂ IIVar k

and

(e 7→ ρ) ∈ (Σa ∗ ϕ)

which, by our definition of this notation (see page 223) gives us

(Σa ∗ ϕ) = (e 7→ ρ) ∗ ϕ1

for some ϕ1. Note that this implies

Σa ∗ ϕ⇒ (e 6= nil)

We must show

Γ ` {Σa ∗ ϕ} k̂ IIVar k

This follows from STRENGTHENING and the implication above.

DISJOINT This rule is similar to the one above, except that it uses the fact that both
e1 7→ ρ1 and e2 7→ ρ2 are present on the left to infer e1 6= e2. We have

Γ ` {Σa ∗ (ϕ ∧ e1 6= e2)} k̂ IIVar k

and

((e1 7→ ρ1) ∗ (e2 7→ ρ2)) ∈ (Σa ∗ ϕ)

227

5 Instrumentation Analysis

This second fact implies

(Σa ∗ ϕ) = ((e1 7→ ρ1) ∗ (e2 7→ ρ2)) ∗ ϕ1

for some ϕ1, which implies
(Σa ∗ ϕ)⇒ e1 6= e2

We need to show
Γ ` {Σa ∗ ϕ} k̂ IIVar k

which follows from STRENGTHENING and the implication above.

RIGHTPURE This is one of the axioms of the proof system. It is triggered when the
right-hand side becomes empty—that is, the component to the right of the =⇒

S
no longer

contains any spatial predicates. In such a case, we check that the left also contains no
spatial predicates and that the pure entailment Π ⇒ ∃~x. Π′ holds. Since this entailment
does not involve spatial predicates, it can be sent to a standard theorem prover for first-
order logic plus arithmetic. We then set the output to k̂′ (viewing the proof system as
specifying a bottom-up search algorithm). This output gets passed down the proof tree
and added to by various rules such as DEFL, INSTL, and EXISTSL.

For the soundness proof, we have

Π⇒ ∃~x. Π′

and
Γ ` {Σa ∗ (∃~x. emp ∧ Π′)} k̂′ IIVar k

We must show that the following holds.

Γ ` {Σa ∗ (emp ∧ Π)} k̂ IIVar k

This is a simple application of STRENGTHENING with the following implication.(
Σa ∗ (emp ∧ Π)

)
⇒
(

Σa ∗ (∃~x. emp ∧ Π′)
)

The implication above follows directly from our assumption that Π⇒ ∃~x. Π′.

228

5.5 Theorem Proving

LEFTPUREFALSE This is the axiom that applies when the left-hand side has been dis-
covered to be unsatisfiable. As with RIGHTPURE, the pure entailment Π ⇒ false can be
checked with a standard theorem prover for classical logic with arithmetic.

For the soundness proof in this case, we have Π⇒ false and must show

Γ ` {Σa ∗ (Σ ∧ Π)} (assume(false);halt) IIVar k

This is an application of FALSE from Figure 4.1 to obtain

Γ ` {false} halt IIVar k

followed by INST-ASSUME to obtain

Γ ` {false} (assume(false);halt) IIVar k

followed by STRENGTHENING with Σa ∗ (Σ ∧ Π)⇒ false to obtain our goal.

PTOMATCHES In this case, we match a points-to predicate on the left and the right. For
the soundness proof, we have

Γ ` {(Σa ∗ (e 7→ ρ)) ∗ ϕ} k̂ IIVar k

and must show

Γ ` {Σa ∗ ((e 7→ ρ) ∗ ϕ)} k̂ IIVar k

which follows immediately from STRENGTHENING and associativity of ∗.

PREDMATCHES This is the same as PTOMATCHES except that we are matching an
inductive predicate instance instead of a points-to predicate.

DEFL In this case, we expand an inductive predicate on the left, case splitting on the
possible expansions. We insert a branch into the instrumented program, with one case
for each condition Πi. In each case, we first non-deterministically assign the ~zi, then

229

5 Instrumentation Analysis

assume Π′i, which establishes the connection between ~v and ~zi. Finally we insert k̂i, the
instrumented continuation for case i of the inductive predicate.

As an example, suppose ϕ is as given below

ls(n1;x, y) ∗ ls(n2; y, nil) ∧ n1 + n2 > 0

and ϕ′ is

∃z, v. x 7→ [next : z, data : v] ∗ ls(n3; z, nil)

If we then search bottom-up for a proof of

Σa 8 ϕ =⇒
S k̂′ ϕ

′ � k̂

then the first step of entailment will be to case split on whether the first list segment in ϕ
is empty. This results in the following two sub-goals

Σa 8 ls(n2; y, x) ∧ x = y ∧ n1 = 0 ∧ n1 + n2 > 0 =⇒
S

fk ϕ
′ � Γ1 ` k̂1

and

Σa 8 ∃z. x 7→ [next : z] ∗ ls(n′1; z, y)

∗ ls(n2; y, x) ∧ n1 + n2 > 0 ∧ n1 > 0 ∧ n1 = n′1 + 1 =⇒
S

fk ϕ
′ � Γ2 ` k̂2

Assuming proofs of these subgoals are found (which in this case they are), then they
are combined such that the k̂ returned is

branch n1 = 0⇒ assume(true);k̂1,

n1 > 0⇒ n′1 := ?; assume(n1 = n′1 + 1); k̂2 end

For the proof of soundness, we have the following for each i from our inductive hy-
potheses.

Γ ` {((ϕ ∗ ϕi) ∧ Πi ∧ Π′i) ∗ Σa} k̂i IIVar k

From each of these assumptions, we can construct the following proof. We write STR for
STRENGTHENING, I-E for INST-EXISTS, and I-A for INST-ASSUME.

230

5.5 Theorem Proving

STR

I-E

I-A

STR

Ind. Hyp.
Γi ` {((ϕ ∗ ϕi) ∧Πi ∧Π′i) ∗ Σa} k̂i IIVar k

Γi ` {(((ϕ ∗ ϕi) ∧Πi) ∗ Σa) ∧Π′i} k̂i IIVar k

Γi ` {(((ϕ ∗ ϕi) ∧Πi) ∗ Σa) ∧Π′i}

assume(Π′i);k̂i IIVar k

Γi ` {∃~zi. (((ϕ ∗ ϕi) ∧Πi) ∗ Σa) ∧Π′i}

~zi := ?;assume(Π′i);k̂i IIVar k

Γi ` {(ϕ ∗ (∃~zi. ϕi∧Π′i) ∗ Σa) ∧Πi}

~zi := ?;assume(Π′i);k̂i IIVar k

~zi 6∈ fv(ϕ,Σa,Πi)

Note that each assumption now has a precondition of the form below

(ϕ ∗ (∃~zi. ϕi ∧ Π′i) ∗ Σa) ∧ Πi (5.7)

Our goal is to show that the following holds, where k̂b is the branch in the conclusion
of the rule.

Γ ` {(ϕ ∗ d(~e)) ∗ Σa} k̂b IIVar k

By expanding d according to the same specification used in the premise of the rule we are
considering, we can see that the precondition in this formula is equivalent to the following.

ϕ ∗

(∨
i

(
dCi(~e)e

))
∗ Σa

Recall that dCi(~e)e gives the interpretation of Ci(~e) as a separation logic formula. Apply-
ing the definition of dCi(~e)e we obtain the following

ϕ ∗

(∨
i

(
Πi ∧ (∃zi. Π′i ∧ ϕi)

))
∗ Σa

By commuting and re-associating terms, we can rewrite this such that it is equal to equation
(5.7) for each i. The soundness of the branch that we add will then follow from an n-ary

231

5 Instrumentation Analysis

version of the derived rule given below.

Q⇒ (Q1 ∧ e1) ∨ (Q2 ∧ e2) Γ ` {Q1 ∧ e1} k̂1 IV k Γ ` {Q2 ∧ e2} k̂2 IV k

Γ ` {Q} branch e1 ⇒ k̂1, e2 ⇒ k̂2 end IV k

This rule is simply INST-BRANCH from Section 4.1.3 but with the premise
Q ⇒ (Q1 ∧ e1) ∨ (Q2 ∧ e2) instead of Q ⇒ e1 ∨ e2 and preconditions Qi ∧ ei instead of
Q ∧ ei. The reasoning used to justify it is the same.

INSTL This rule is responsible for unifying the names of instrumentation variables. For
example, if the left-hand side of the sequent contains ls(n+1; x, nil) and the right-hand side
contains ls(n;x, nil) then we cannot apply PREDMATCHES to remove these nearly match-
ing spatial formulae until we have made the instrumentation variables match. Since we
are allowed to insert new commands that affect the instrumentation variables, we can add
the command n := n + 1 in order to connect the two formulae. The post-condition of the
left-hand side after executing this command is then ls(n;x, nil) and the PREDMATCHES

rule can be applied.

In order to show soundness, we assume x 6∈ fv(Σa) and

Γ ` {Σa ∗ ϕ} k̂ IIVar k

By the INST-ASSIGN rule and the backward Hoare logic rule for assignment, we have

Γ ` {(Σa ∗ ϕ)[e/x]} (x := e;k̂) IIVar k

We will then apply STRENGTHENING to show that our goal, given below, follows.

Γ ` {Σa ∗ ϕ[e/x]} (x := e;k̂) IIVar k

To do so, we must prove the implication(
Σa ∗ ϕ[e/x]

)
⇒
(

(Σa ∗ ϕ)[e/x]
)

We assume Σa∗ϕ[e/x]. Then since x 6∈ fv(Σa) we can extend the scope of the substitution,
obtaining the needed result.

(Σa ∗ ϕ)[e/x]

232

5.5 Theorem Proving

EXISTSR This is the rule used to instantiate existentially quantified variables on the
right of =⇒

S k̂′ . Reading it from top to bottom, if ϕ′[e/x] follows from ϕ, then ∃x. ϕ′

follows from ϕ.

For soundness, we assume that for some Γ, k we have Γ ` {Σa ∗ (∃x. ϕ′)} k̂′ IIVar k.
We can then use strengthening and the implication ϕ′[e/x]⇒ ∃x. ϕ′ to obtain

Γ ` {Σa ∗ ϕ′[e/x]} k̂′ IIVar k

From our inductive hypothesis we have

Γ ` {Σa ∗ ϕ′[e/x]} k̂′ IIVar k implies Γ ` {Σa ∗ ϕ} k̂ IIVar k

As we have established the antecedent of this implication, we can conclude

Γ ` {Σa ∗ ϕ} k̂ IIVar k

which is our goal.

EXISTSL This rule governs the elimination of existentially quantified variables on the
left and is justified using the INST-EXISTS rule from Figure 4.1. We introduce a fresh
variable c for the quantified variable, as this renaming is performed by our implementation.
It is not strictly necessary for soundness.

We must show the following

Γ ` {Σa ∗ (∃x. ϕ)} c := ?;k̂ IIVar k

and we have the following as an assumption.

Γ ` {Σa ∗ ϕ[c/x]} k̂ IIVar k

We first apply INST-EXISTS to obtain the statement below.

Γ ` {∃c. Σa ∗ ϕ[c/x]} c := ?;k̂ IIVar k

233

5 Instrumentation Analysis

That c is fresh implies c 6∈ fv(Σa) and thus we have that ∃c. Σa ∗ ϕ[c/x] implies
Σa ∗ (∃c. ϕ[c/x]). Applying STRENGTHENING with this implication yields the following.

Γ ` {Σa ∗ (∃c. ϕ[c/x])} c := ?;k̂ IIVar k

We then note that since c is fresh and thus c 6∈ fv(ϕ), the formula ∃c. ϕ[c/x] is an
alpha-varying of ∃x. ϕ. We thus have that ∃x. ϕ implies ∃c. ϕ[c/x] and can apply
STRENGTHENING again to obtain the following, which is our goal.

Γ ` {Σa ∗ (∃x. ϕ)} c := ?;k̂ IIVar k

Proof Search Structure

There are many potential search techniques involving the rules presented in Figures 5.8
and 5.9. Here we discuss the choices we made in our implementation of this proof system.

Our proof search procedure starts by eliminating all existentials on the left with the
EXISTSL rule. Any new existentials that appear on the left during the search (e.g. by
the expansion of definitions) are also eliminated as soon as they arise. The procedure
then proceeds by inferring pure consequences of the heap assumptions (rules NOTNULL

and DISJOINT), propagating equalities (rule PROPEQL), introducing constants for existen-
tials on the left (EXISTSL), expanding definitions (rule DEFL) and matching spatial pred-
icates (rules PTOMATCHES and PREDMATCHES). As spatial predicates are matched, they
are moved to the portion of the sequent to the left of the 8 symbol. Once all spatial pred-
icates in ϕ′ have been matched, then the proof search can terminate with the RIGHTPURE

rule, closing off the current branch. The search can also succeed via the LEFTPUREFALSE

rule if the antecedent ever becomes inconsistent. The pure entailment checks present in
the premises of these rules (for example, Π ⇒ ∃~x. Π′) can be implemented as a call to
an automated theorem prover for classical logic. We use the SMT solver Yices [Dutertre
and Moura, 2006], but any prover with support for existential quantifiers and unbounded
integer variables would work.

There are a few rules that would seem to interfere with an efficient implementation of
the proof system. The EXISTSR and INSTL rules both require us to guess a substitution

234

5.5 Theorem Proving

to apply when moving from the inputs in the conclusion to the inputs in the premise.
However, this substitution can be delayed until the term to be substituted is clear. In our
implementation, we only apply these rules when attempting to match spatial predicates via
the PTOMATCHES or PREDMATCHES rules. In such cases, we may have, for example

x 7→ [next : a, data : b] ∗ ϕ

on the left and

∃z, q. x 7→ [next : z, data : q] ∗ ϕ′

on the right. In this case, we can apply the EXISTSR rule to instantiate z with a and q with
b, which results in the two point-to predicates matching according to the PTOMATCHES

rule.

Inductive Specifications

The DEFL rule first looks up a specification for the inductive predicate d in the set of
specifications S. If there are multiple specifications, any one may be chosen. The side
conditions on this rule can always be satisfied by applying alpha conversion, since ~zi is
considered bound in “let ~zi satisfy Π′i in ϕi.”

This expansion of inductive predicates is a potential source of non-termination for our
proof search. If we are not careful, we can end up repeatedly expanding definitions on the
left. The DEFL rule is also the only source of branching in the proof system and the number
of inductive predicate expansions applied has a large effect on the running time of our
proof search. To combat both these problems, we restrict the number of times a predicate
can be expanded. In our implementation, we associate an integer with each inductive
predicate instance and increment this counter each time the instance is expanded. This
integer starts at zero and, when it reaches some bound, we do not allow further expansion
of that predicate instance. The bound can be set via a command line argument. We have
found that a bound of one (allowing each predicate instance to be expanded once) is usually
sufficient, however in some cases two expansions are required. With a bound of two, we
have not yet had an example fail verification where the reason for failure was too few

235

5 Instrumentation Analysis

predicate expansions (any failures have always been related to failure of the abstraction
heuristics described in Section 5.7 or failure to make the appropriate inductive predicate
specification available to the system).

Since predicate expansions are so costly in terms of execution time, we try to perform
them only when necessary. Our proof search will only apply DEFL when no other rules
are applicable. When we do apply the expansion rules, we try to intelligently choose the
appropriate specification from S to use. Suppose we are applying DEFL to our current
goal formula. We will look at the formula on the right of the =⇒

S
f arrow and see what

spatial predicates have not yet been matched. We then select a definition that can expose a
predicate matching one of the predicates we have on the right.

To compute what predicates a definition may generate, we start from an instance of
the definition with distinct variables in each argument position, say d(~x). We then recur-
sively expand d. As we perform the expansions, we replace any fresh variables that would
be generated with a wildcard variable. We also replace non-address variables with wild-
cards and only record which non-emp spatial predicates are generated. Thus, we only
track what happens to the pointer-valued arguments of d during expansion. For example,
suppose we have the doubly-linked list specification below.

dll(k; p, first , last , n) <=>

k = 0 : let [] satisfy true in emp ∧ first = n ∧ last = p

| k > 0 : let k′ satisfy k = k′ + 1 in

∃z. (first 7→ [prev : p, next : z]) ∗ dll(k′; first , z, last , n))

Using to represent a wildcard variable, and expanding dll(; a, b, c, d) once (and discard-
ing non-spatial predicates), we obtain the following.

b 7→ [prev : a, next :] dll(; b, , c, d)

The first pattern cannot be expanded further, but the second pattern can. If we expand
dll(; b, , c, d) we obtain the following.

7→ [prev : b, next :] dll(; , , c, d)

236

5.5 Theorem Proving

At this point, expanding any of these patterns results only in patterns that have already
been generated. Thus, we have generated all the patterns that will result from expanding
dll(; a, b, c, d).

We then store these patterns in a data structure that supports efficient querying. This is
essentially a multimap from patterns to specifications that is aware of unification. Sup-
pose we look up ∃z. x 7→ [prev : y, next : z]. The map will see that this matches
b 7→ [prev : a, next :]. It will bind b to x and a to y and return as one of its results
the pattern dll(; y, x, ,) along with the specification that was used to obtain it. This indi-
cates that expanding a predicate instance matching dll(; y, x, ,) will produce a points-to
predicate that matches ∃z. x 7→ [prev : y, next : z]. We then search the left formula of our
current goal for such a spatial formula matching dll(; y, x, ,), expand it, and proceed.

We can generate this pattern map on program start-up as soon as we read in the list of
inductive predicate specifications provided by the user, after which it benefits every proof
search performed by the analysis (and there are typically hundreds of frame inference
queries even for small examples). Applying this optimization significantly speeds up our
proof search. Furthermore, proof search is by far the major contributor to running time,
thus any proof search optimizations have a large effect on total running time of the analysis.

Note that we do not have a corresponding “DEFR” rule for expanding definitions on
the right. Such a rule could be added, but has proved unnecessary in our experiments. We
comment further on this in Section 5.7, which discusses abstraction, as this is the operation
that renders DEFR unnecessary.

5.5.2 implies

We now show how the proof system just presented is used to implement the implies
function. On page on the following page we give the implementation of implies. The
function call implies(ϕ, ϕ′, k̂′) takes the following arguments.

237

5 Instrumentation Analysis

ϕ An antecedent formula.

ϕ′ The consequent formula.

k̂′ An instrumentation of some continuation under precondition ϕ′.

Given an instrumentation k̂′ of some continuation k starting from the precondition ϕ′, a
call to implies(ϕ, ϕ′, k̂′) returns Some

(
k̂
)

if it can establish that k̂ is an instrumentation
of k with precondition ϕ. That is, if implies(ϕ, ϕ′, k̂′) = Some

(
k̂
)

then for all k

Γ ` {ϕ′} k̂′ IIVar k

implies

Γ ` {ϕ} k̂ IIVar k

Function implies(ϕ, ϕ′, k̂ ′). Assumes that Γ ` {ϕ′} k̂ ′ IIVar k for some Γ and
k. If so, and implies returns Some

(
k̂
)

then Γ ` {ϕ} k̂ IIVar k holds for the same
Γ and k.

let (ϕa, ca) = abstract(ϕ) in
if ϕa =⇒

S k̂′ ϕ
′ � k̂ then

return Some
(
Γ, (ca;k̂)

)
else return None

The function first calls abstract(ϕ) in order to simplify the state formula. In par-
ticular, abstract will fold inductive predicate definitions, which is something that our
entailment system does not do—entailment will only expand predicates on the left. For
example, abstract(∃k. x 7→ [next : k] ∗ k 7→ [next : nil]) will return ls(n;x, nil) and
the instrumentation command n := 2. Entailment is not able to create instances of data
structures, nor for example to take

∃z. x 7→ [next : z] ∗ ls(n; z, nil)

and discover this implies ls(n+ 1; z, nil).

238

5.5 Theorem Proving

This is a deliberate choice, as restricting entailment only to expansionary rules sig-
nificantly decreases the search space and helps prevent cycles in the proof search. By
combining the expansionary behavior of entailment with the collapsing or summarizing
behavior of abstraction, we are able to perform all the inference steps necessary for our
instrumentation procedure while increasing efficiency of the component operations.

Following the call to abstract, the implies function then calls into entailment,
passing in the continuation k. It then returns the instrumentation k̂ that is discovered by
entailment.

That implies satisfies its specification from Figure 5.7 follows directly from Corol-
lary 5 and the specification of abstract.

5.5.3 Frame Inference

We now consider a slight modification of the proof system presented in Section 5.5.1.
Whereas the original proof system was able to answer queries of the form ϕ ⇒ ϕ′, the
new system permits the case where ϕ′ specifies a sub-heap of ϕ (implication, in contrast,
requires both formulae to describe heaps with the same domain). The problem is very
similar to the frame inference problem described in Berdine et al. [2005], but differs in
that we will need to produce instrumentation commands during the proof search. The
frame refers to that portion of the heap described by the hypothesis which is not in the
conclusion. Inferring frames is useful when a particular command requires a piece of heap
to exist but does not care whether the heap contains additional elements.

As an example of such a situation, consider the symbolic state

ϕ
def
= ls(n;x, nil) ∧ x 6= nil

Suppose we are trying to take the post-condition of this state with respect to the command
x := x.next. Doing so requires us to show that a heap cell at x exists. In this case, such a
cell does exist since ϕ implies the following formula.

ϕ′
def
= ∃z, v. x 7→ [next : z, data : v] ∗ ls(n− 1; z, nil)

239

5 Instrumentation Analysis

However, we don’t generally know this expanded version of the state formula. We would
like to be able to ask our proof system to show that x is in the heap and obtain ϕ′ while
providing only ϕ and x. This is the sort of query facilitated by our system for frame
inference.

Frame inference is also useful for answering pure entailments. Suppose we have the
symbolic state

ϕ
def
= ls(n;x, nil) ∧ n = 0

and we want to know whether this implies x = nil. In this case, we can ask whether the
implication below holds.

ϕ⇒ x = nil

But note that this is different from the implications considered in Section 5.5.1. In
the previously-presented proof system for entailment, there was a spatial aspect to the
proving—we wanted all of the heap described by the antecedent to be accounted for by
the consequent. In this example, since the consequent is pure, we do not have this re-
quirement. The antecedent is allowed to describe any amount of heap. Such a situation is
captured by asking whether there is a frame that allows us to show x = nil follows from ϕ

(the particular frame does not matter, we only check that a valid frame exists).

Pure entailment could also be handled by our system for entailment from Section 5.5.1
if we allowed true to appear as a spatial formula. The example query above would then
correspond to the implication ϕ⇒ (x = nil)∗true. However, since we do not have “∗true”
in our language of symbolic state formulae, pure entailment is more naturally built on top
of frame inference.

Formulae with holes In order to account for queries such as “does the heap contain a
cell at address x?” which arise frequently when checking memory safety, we allow the
consequent of a frame inference query to contain the special points-to predicate x 7→ 2.
The 2 will match any record expression and is only allowed to occur once in any symbolic
state formula. Thus, the predicate x 7→ 2 states that the heap contains a cell at address x,
but provides no information about the contents of the heap cell. This predicate is satisfied

240

5.5 Theorem Proving

by any heap consisting of a single cell at x. In particular, the set of fields present at x do
not matter, so the following are both valid implications.

x 7→ [next : nil]⇒ x 7→ 2

x 7→ [next : y, data : 0]⇒ x 7→ 2

Formally, we can give a semantics for x 7→ 2 by extending the satisfaction relation in
Figure 2.7 with the following case.

(s, h) |=X ea 7→ 2 ⇔ h = {((JeaK s), r)} for some r ∈ Records

The predicate x 7→ 2 essentially acts as a pattern, ensuring that frame inference ex-
poses a points-to at the appropriate address. This operates somewhat like the common sep-
aration logic abbreviation x 7→ −, which is frequently used as shorthand for ∃y. x 7→ y.
If we had variables of record type and permitted existential quantification over these, such
that y in ∃y. x 7→ y could represent some set of field bindings, then we could use a similar
abbreviation. Since we make limited use of these patterns (in particular, since we only
require at most one in any formula), we found it simpler to work with the weaker x 7→ 2

form and avoid the complexities of introducing more types of variable.

Judgment Form and Soundness

As just mentioned, our primary use of frame inference is to expose heap cells needed to
compute post-conditions for heap-manipulating commands. The structure of the judgment
we define must change slightly to accommodate this usage. The interface we will adopt is
the following.

Input: ϕ A symbolic state formula describing the current state.

ϕ′ A symbolic state formula describing the heap that is required to be present.

fk A function that takes a formula ϕ′′ and produces an optional pair (Γ′, k̂′),
where Γ′ is a context and k̂′ is an instrumented continuation.

S A set of inductive predicate specifications describing the data structures
used.

241

5 Instrumentation Analysis

We also require that the input satisfy the following invariant:

If fk = Some
(
Γ′, k̂′

)
then Γ′ ` {ϕ′} k̂′ IIVar k

Note that fk is parameterized by the continuation k that it produces an instrumentation
of. This parameter is included to help make it clear which k is being considered during
examples and proofs.

Output: k̂ An instrumentation of k.

Γ A context.

These outputs must satisfy Γ ` {ϕ} k̂ IIVar k.

The form of our judgment for frame inference will be the following.

ϕ =⇒
S

fk ϕ
′ � Γ ` k̂

where ϕ, ϕ′,S, and fk are considered inputs and Γ and k̂ are the outputs.

Relation to Entailment The function fk in frame inference corresponds to the input k̂′

from entailment. One might wonder why frame inference requires this input to be a func-
tion while a single-valued input sufficed for entailment. The reason is that, when searching
for a frame that shows ϕ contains ϕ′, we may find different frames along different branches
of the proof.

For example, let ϕ be the following formula

(ls(n1;x, y) ∗ ls(n2; y, x)) ∧ (n1 + n2 > 0)

and suppose we want to show the following.

ϕ =⇒
S

fk x 7→ 2 � Γ ` k̂

We know from n1 + n2 > 0 that at least one of the two lists is non-empty and thus x is in
the heap. However, the portion of the heap that remains when we separate out x is different
depending on whether n1 > 0. If n1 > 0 then we have that ϕ implies the following.

∃z, v. x 7→ [next : z, data : v] ∗ ls(n1 − 1; z, y) ∗ ls(n2; y, x) (5.8)

242

5.5 Theorem Proving

If n1 = 0 then we have that ϕ implies the formula below.

∃z, v. (y 7→ [next : z, data : v] ∗ ls(n2 − 1; z, x)) ∧ x = y (5.9)

We use the function fk to account for this. In the above example, fk would be expected
to produce an instrumentation for each of these possible preconditions. Let ϕ1 be formula
(5.8) and ϕ2 be formula (5.9). If fk(ϕ1) = Some

(
Γ1, k̂1

)
and fk(ϕ2) = Some

(
Γ2, k̂2

)
then

a valid instrumentation from the precondition ϕ is

branch n1 > 0⇒ k̂1,

n1 = 0⇒ k̂2 end

Let this continuation be k̂. We then have the following.

Γ1 ∪ Γ2 ` {ϕ} k̂ IIVar k

This fact—that the output of frame inference results in a valid instrumentation of k—is
the main soundness theorem for frame inference and is discussed further below.

As with entailment, we track some extra bookkeeping information during the search
for a proof in the form of a list of matched spatial formulae Σa. This plays the same role
it did in entailment and is described on page 223. The statement ϕ =⇒

S
fk ϕ

′ � Γ ` k̂ is an
abbreviation for the following judgment, which tracks this extra information.

Σa 8 ϕ =⇒
S

fk ϕ
′ � Γ ` k̂

Soundness As with entailment, the soundness result we will seek states that the output
of frame inference is a valid instrumentation.

Theorem 29. If Σa 8 ϕ =⇒
S

fk ϕ
′ � Γ ` k̂ is derivable then so is

Γ ` {Σa ∗ ϕ} k̂ IIVar k

Stated in terms of our abbreviated form of judgment, this becomes the following.

243

5 Instrumentation Analysis

Corollary 6. If ϕ =⇒
S

fk ϕ
′ � Γ ` k̂ is derivable then so is

Γ ` {ϕ} k̂ IIVar k

Since a major use of frame inference in our system is to rewrite symbolic state formulae
into a given form, it is also worth showing that the function fk is called with arguments
of the appropriate form. This is captured by the following theorem, which states that the
instrumentation function fk is only called with symbolic states ϕ which have been shown
to describe a heap containing some sub-heap satisfying ϕ′, the symbolic state formula to
the right of the =⇒

S
.

Theorem 30. In a derivation of

Σa 8 ϕ =⇒
S

fk ϕ
′ � Γ ` k̂

The function fk is only called with inputs of the form (ϕ′′ ∗ Σa) for some ϕ′′ such that

ϕ′′ ⇒ ϕ′ ∗ true.

Stated in terms of our abbreviated form of judgment, this becomes the following.

Corollary 7. In a derivation of ϕ =⇒
S

fk ϕ
′ � Γ ` k̂, the function fk is only called with

inputs ϕ′′ such that ϕ′′ ⇒ ϕ′ ∗ true.

Rules and Proof of Soundness

We now present the rules for frame inference along with a proof of Theorems 29 and 30
(which are shown by structural induction on the frame inference derivation). Most of the
rules are the same as for entailment, with the only difference being the replacement of
input k̂′ with the input function fk and the inclusion of the output context Γ. For example,
the rule PROPEQL becomes the following.

PROPEQL

Σa 8 ϕ[e/x] ∧ x = e =⇒
S

fk ϕ
′ � Γ ` k̂

Σa 8 ϕ ∧ x = e =⇒
S

fk ϕ
′ � Γ ` k̂

244

5.5 Theorem Proving

PROPEQL
Σa 8 ϕ[e/x] ∧ x = e =⇒

S
fk ϕ

′ � Γ ` k̂

Σa 8 ϕ ∧ x = e =⇒
S

fk ϕ
′ � Γ ` k̂

NOTNULL

(e 7→ ρ) ∈ (Σa ∗ ϕ) Σa 8 ϕ ∧ (e 6= nil) =⇒
S

fk ϕ
′ � Γ ` k̂

Σa 8 ϕ =⇒
S

fk ϕ
′ � Γ ` k̂

DISJOINT

((e1 7→ ρ1) ∗ (e2 7→ ρ2)) ∈ (Σa ∗ ϕ) Σa 8 ϕ ∧ (e1 6= e2) =⇒
S

fk ϕ
′ � Γ ` k̂

Σa 8 ϕ =⇒
S

fk ϕ
′ � Γ ` k̂

LEFTPUREFALSE

Π⇒ false is valid

Σa 8 Σ ∧Π =⇒
S

fk ϕ
′ � Γ ` assume(false); halt

PTOMATCHES

Σa ∗ (e 7→ ρ) 8 ϕ =⇒
S

fk ϕ
′ � Γ ` k̂

Σa 8 (e 7→ ρ) ∗ ϕ =⇒
S

fk ϕ
′ ∗ (e 7→ ρ) � Γ ` k̂

PREDMATCHES

Σa ∗ d(~e) 8 ϕ =⇒
S

fk ϕ
′ � Γ ` k̂

Σa 8 d(~e) ∗ ϕ =⇒
S

fk ϕ
′ ∗ d(~e) � Γ ` k̂

INSTL
Σa 8 ϕ =⇒

S
fk ϕ

′ � Γ ` k̂

Σa 8 ϕ[e/x] =⇒
S

fk ϕ
′ � Γ ` (x := e;k̂)

x 6∈ fv(Σa), fv(x, e)

EXISTSR
Σa 8 ϕ =⇒

S
fk ϕ

′[e/x] � Γ ` k̂

Σa 8 ϕ =⇒
S

fk ∃x. ϕ′ � Γ ` k̂

EXISTSL
Σa 8 ϕ[c/x] =⇒

S
fk ϕ

′ � Γ ` k̂

Σa 8 ∃x. ϕ =⇒
S

fk ϕ
′ � Γ ` c := ?;k̂

c fresh

Figure 5.10: Rules for frame inference that are the same as for entailment.

245

5 Instrumentation Analysis

The full list of rules that are essentially unchanged is given in Figure 5.10.

The first rule that is different is RIGHTPURE. In the system for frame inference, rather
than returning the k̂′ that was passed in as the output instrumentation, we instead call fk to
obtain the output instrumentation. We also no longer require that the spatial portion of the
left-hand formula be empty. The new rule is given in Figure 5.11.

We also must change the DEFL rule to account for the fact that each branch of the proof
may return a different context (the other rules do not branch and thus just pass the context
from the premise through to the conclusion). The new rule merges the contexts from the
premises using the union operation defined for contexts on page 204. The updated version
is given in Figure 5.11.

Finally, we must add a rule to handle our new x 7→ 2 construct. This is given as rule
PTOMATCHESANY in Figure 5.11 and captures the fact that x 7→ 2 on the right matches
any points-to predicate of the form x 7→ ρ on the left.

Proof of Soundness The proof of Theorem 29 for the rules in Figure 5.10 is the same as
for Theorem 28, which was described on page 243. The only difference is the presence of
Γ and the fact that fk is a function.

We take the rule PROPEQL as a representative example. In the proof for PROPEQL for
entailment we showed that given

Γ ` {Σa ∗ (ϕ[e/x] ∧ x = e)} k̂ IIVar k (5.10)

we can derive the following by application of the STRENGTHENING rule from Figure 4.1.

Γ ` {Σa ∗ (ϕ ∧ x = e)} k̂ IIVar k

For entailment, the inductive hypothesis and our goal were both implications and (5.10)
was the conclusion of the inductive hypothesis. In the soundness theorem for frame infer-
ence, we get (5.10) directly from the inductive hypothesis. Once (5.10) is obtained, further
reasoning is the same. We apply STRENGTHENING with the implication below.(

Σa ∗ (ϕ ∧ x = e)
)
⇒
(

Σa ∗ (ϕ[e/x] ∧ x = e)
)

We now consider the rules in Figure 5.11.

246

5.5 Theorem Proving

RIGHTPURE

Π⇒ ∃~x. Π′ fk(∃~x. (Σa ∗ Σ) ∧Π′) = Some
(
Γ, k̂

)
Σa 8 Σ ∧Π =⇒

S
fk ∃~x. emp ∧Π′ � Γ ` k̂

DEFL (
d(~v) <=> . . . | Ci(~v) | . . .

)
∈ S

Ci(~e) =
(
Πi : let ~zi satisfy Π′i in ϕi

)
∀i.
(
Σa 8 (ϕ ∗ ϕi) ∧Πi ∧Π′i =⇒

S
fk ϕ

′ � Γi ` k̂i
)

Σa 8 ϕ ∗ d(~e) =⇒
S

fk ϕ
′�⋃

i

(Γi) ` branch . . . ,Πi ⇒ ~zi := ?;assume(Π′i);k̂i, . . . end

∀i. ~zi 6∈ fv(ϕ,Σa,Πi)

PTOMATCHESANY

Σa ∗ (e 7→ ρ) 8 ϕ =⇒
S

fk ϕ
′ � Γ ` k̂

Σa 8 (e 7→ ρ) ∗ ϕ =⇒
S

fk ϕ
′ ∗ (e 7→ 2) � Γ ` k̂

Figure 5.11: Rules for frame inference that differ from those for entailment.

RIGHTPURE We are given Π⇒ ∃~x. Π′ from the first premise and

Γ ` {(Σa ∗ Σ) ∧ Π′} k̂ IIVar k

from our requirement that fk produce valid instrumentations of k. We then must show the
following.

Γ ` {(Σa ∗ Σ) ∧ Π} k̂ IIVar k

This follows from our assumption on k̂ by the STRENGTHENING rule from Figure 4.1 to-
gether with the implication below.

(Σa ∗ Σ) ∧ Π⇒ ∃~x. (Σa ∗ Σ) ∧ Π′

The implication holds since Π⇒ ∃~x. Π′ implies the following.

(Σa ∗ Σ) ∧ Π⇒ (Σa ∗ Σ) ∧ (∃~x. Π′)

The scope of the existential on ~x can then be extended, as ∃~x. Π′ can always be alpha-
varied such that ~x ∩ fv(Σa,Σ) = ∅.

247

5 Instrumentation Analysis

PTOMATCHESANY This case follows the same reasoning as for PTOMATCHES, as the
only difference in the rules involves the formula on the right-hand side of the sequent
arrow, which does not participate in the statement of this theorem.

DEFL We have the following from our inductive hypothesis applied to each premise(
Σa 8 (ϕ ∗ ϕi) ∧ Πi ∧ Π′i =⇒

S
fk ϕ

′ � Γi ` k̂i
)
.

Γ ` {Σa ∗ ((ϕ ∗ ϕi) ∧ Πi ∧ Π′i)} k̂ IIVar k

We then follow the same reasoning as in the proof for our entailment system (Theorem
28), generating the following result for each premise.

Γi ` {(ϕ ∗ (∃~zi. ϕi∧Π′i) ∗ Σa) ∧ Πi}
~zi := ?;assume(Π′i);k̂i IIVar k

Note that each assumption now has a precondition of the form below

(ϕ ∗ (∃~zi. ϕi ∧ Π′i) ∗ Σa) ∧ Πi (5.11)

Our goal is to show that the following holds, where k̂b is the branch in the instrumented
continuation in the conclusion of the DEFL rule (which has the form branch . . . end).

Γ ` {(ϕ ∗ d(~e)) ∗ Σa} k̂b IIVar k

As with entailment, we note that the precondition in the formula above is equivalent to the
following.

ϕ ∗

(∨
i

(
Πi ∧ (∃zi. Π′i ∧ ϕi)

))
∗ Σa

By commuting and re-associating terms, we can rewrite this such that it is equal to equation
(5.11) for each i. In entailment, we then had that the soundness of the branch that we add
follows from an n-ary version of the derived rule below.

Q⇒ (Q1 ∧ e1) ∨ (Q2 ∧ e2) Γ ` {Q1 ∧ e1} k̂1 IV k Γ ` {Q2 ∧ e2} k̂2 IV k

Γ ` {Q} branch e1 ⇒ k̂1, e2 ⇒ k̂2 end IV k

248

5.5 Theorem Proving

This was the extent of the proof for this case in Theorem 28. For frame inference, one
more step is necessary. We have to address the fact that the statements of valid instrumen-
tation for our premises do not involve the same context. For this reason, we need the rule
below.

Q⇒ (Q1 ∧ e1) ∨ (Q2 ∧ e2)

Γ1 ` {Q1 ∧ e1} k̂1 IV k Γ2 ` {Q2 ∧ e2} k̂2 IV k

Γ1 ∪ Γ2 ` {Q} branch e1 ⇒ k̂1, e2 ⇒ k̂2 end IV k
INST-BRANCH′

This can be derived from the previous rule (where the contexts were required to be the
same) by making use of Lemma 12. Recall that (Γ ∪ Γ′)(l) = Γ(l) ∨ Γ′(l)3. Since
Γ(l) ⇒ Γ(l) ∨ Γ′(l) and Γ′(l) ⇒ Γ(l) ∨ Γ′(l) we can unify the contexts present in the
premises of our desired inference rule above, obtaining the following derivation, which
establishes this as a valid derived rule and completes the proof of soundness for this case.

Lem. 12
Γ1 ` {Q1 ∧ e1} k̂1 IV k

Γ1 ∪ Γ2 ` {Q1 ∧ e1} k̂1 IV k
Lem. 12

Γ1 ` {Q1 ∧ e1} k̂1 IV k

Γ1 ∪ Γ2 ` {Q1 ∧ e1} k̂1 IV k

Q⇒ (Q1 ∧ e1) ∨ (Q2 ∧ e2)

Γ1 ∪ Γ2 ` {Q} branch e1 ⇒ k̂1, e2 ⇒ k̂2 end IV k
INST-BRANCH′

Proper Form We now show the proof for Theorem 30, which states that fk is only called
with inputs of the appropriate form. The proof is by induction on the derivation of

Σa 8 ϕ =⇒
S

fk ϕ
′ � Γ ` k̂

For rules where ϕ′ and Σa are identical in the premise and conclusion of the rule, our
result follows immediately from the inductive hypothesis. This includes rules PROPEQL,
NOTNULL, DISJOINT, INSTL, EXISTSL, and DEFL. For LEFTPUREFALSE there is nothing to
prove, as fk is not called in the derivation (this rule is an axiom that does not call fk).

3Technically, contexts in this chapter map locations to sets of symbolic state formulas, whereas the
contexts in Chapter 4 mapped locations to separation logic formulas. However, since we are interpreting
sets of symbolic state formulas disjunctively, the equality given here in terms of formulas holds.

249

5 Instrumentation Analysis

We now consider each of the other rules.

PTOMATCHES We have from our inductive hypothesis that fk is only called with inputs
of the form

(ϕ′′ ∗ (Σa ∗ (e 7→ ρ)))

for some ϕ′′ such that ϕ′′ ⇒ ϕ′ ∗ true. We must show that fk is only called with inputs of
the form (ϕ′′′ ∗Σa) such that ϕ′′′ ⇒

(
ϕ′ ∗ (e 7→ ρ) ∗ true

)
. We let ϕ′′′ = ϕ′′ ∗ (e 7→ ρ). To

complete the proof, we must show
(
ϕ′′ ∗ (e 7→ ρ)

)
⇒
(
ϕ′ ∗ (e 7→ ρ) ∗ true

)
. This follows

directly from our assumption ϕ′′ ⇒ ϕ′ ∗ true and the fact that, in separation logic, if p⇒ q

is valid, then so is p ∗ r ⇒ q ∗ r.

PREDMATCHES The proof for this case is the same as for PTOMATCHES, but with d(~e)

substituted for e 7→ ρ.

PTOMATCHESANY We have from our inductive hypothesis that fk is only called with
inputs of the form

(ϕ′′ ∗ (Σa ∗ (e 7→ ρ)))

for some ϕ′′ such that ϕ′′ ⇒ ϕ′ ∗ true. We must show that fk is only called with inputs of
the form (ϕ′′′ ∗ Σa) such that ϕ′′′ ⇒

(
ϕ′ ∗ (e 7→ 2) ∗ true

)
. We let ϕ′′′ = ϕ′′ ∗ (e 7→ ρ).

To complete the proof, we must then show
(
ϕ′′ ∗ (e 7→ ρ)

)
⇒
(
ϕ′ ∗ (e 7→ 2) ∗ true

)
.

This follows directly from our assumption ϕ′′ ⇒ ϕ′ ∗ true and the fact that e 7→ ρ implies
e 7→ 2.

EXISTSR We have from our inductive hypothesis that fk is only called with inputs of
the form

(ϕ′′ ∗ Σa)

for some ϕ′′ such that ϕ′′ ⇒ ϕ′[e/x] ∗ true. We must show that fk is only called with
inputs of the form ϕ′′′ ∗ Σ such that ϕ′′′ ⇒

(
∃x. ϕ′ ∗ true

)
. We let ϕ′′′ = ϕ′′. Because

ϕ′[e/x]⇒ ∃x. ϕ′ we then have ϕ′′′ ⇒ (∃x. ϕ′) ∗ true which is our goal.

250

5.5 Theorem Proving

RIGHTPURE This is the only axiom that calls fk and thus is the base case for this proof.
The argument passed to fk is the following

∃~x. (Σa ∗ Σ) ∧ Π′

We must show that this has the form ϕ′′ ∗ Σa where ϕ′′ ⇒ (∃~x. emp ∧ Π′) ∗ true. We let
ϕ′′ be ∃~x. Σ ∧ Π′. We then must show

(∃~x. Σ ∧ Π′)⇒ (∃~x. emp ∧ Π′) ∗ true

We first assume (∃~x. Σ ∧ Π′). From this and the tautology Σ ⇒ true, we have that
∃~x. true ∧ Π′ holds. Since true ⇔ true ∗ emp we have ∃~x. (true ∗ emp) ∧ Π′. Since Π′

is pure this implies ∃~x. true ∗ (emp∧Π′). Applying commutativity of ∗ and moving true

outside the scope of the existential quantifier then gives us our result.

Usage Example

We now provide an example designed to give some intuition into the use of frame inference
in the construction of an instrumentation.

One main problem that we are introducing frame inference to address is the failure of
post-conditions to match up with preconditions in general. Our partialPost function
on page 217 requires the preconditions of commands that access a heap cell at x to explic-
itly contain a points-to predicate at x. Often, the precondition does not have this form, but
can be shown to imply one which does. In such cases, having a method of proving this
implication allows us to proceed with our program analysis.

Suppose we are instrumenting continuation k which is equal to (x := x.next);k′.
Further assume that we have a precondition of ls(n;x, nil) ∧ x 6= nil. In order to apply
partialPost, we need a precondition of the form ∃~y. ((x 7→ [ρ]) ∗ Σ) ∧ Π. We
can then construct a frame inference query that produces an instrumentation starting from
ls(n;x, nil) ∧ x 6= nil as follows.

Let fk be the function below.

fk
def
= λs1. instPost(s1, x := x.next, λs2. geninstCont(∅, s2, k

′)))

251

5 Instrumentation Analysis

Then the frame inference query that we want is the one below.

ls(n;x, nil) ∧ x 6= nil =⇒
S

fk (x 7→ 2) � Γ ` k̂

This is an abbreviation for the query below, which initiates a proof search using the rules
in Figures 5.10 and 5.11.

emp 8 ls(n;x, nil) ∧ x 6= nil =⇒
S

fk (x 7→ 2) � Γ ` k̂

5.5.4 exposeCellThenInst

The function exposeCellThenInst provides the interface to frame inference in
our implementation. The code for this function is given on the next page. The call
exposeCellThenInst(ϕ, x, fk) takes the following arguments.

ϕ A symbolic state formula that gives the current precondition.

x The address of the heap cell to be revealed.

fk The instrumentation generator to apply to the formula that results from
showing that x is in the heap.

If exposeCellThenInst returns Some
(
Γ, k̂

)
then these must satisfy

Γ ` {ϕ} k̂ IIVar k

This function issues a frame inference query with the pattern x 7→ 2 on the right in
order to expose the heap cell at x. The sequent ϕ =⇒

S
fk x 7→ 2 � Γ ` k̂ will be derivable

only if x can be shown to be in the heap. If the cell at x is indeed exposed, then fk will
be called with the resulting heap. This gives us a method of converting symbolic state
formulae to the form expected by the partialPost function presented on page 217.

The soundness result for frame inference tells us that the following holds.

Γ ` {ϕ} k̂ IIVar k

which is exactly what is required for exposeCellThenInst to satisfy its specification
from Figure 5.7.

252

5.6 Example

Function exposeCellThenInst(ϕ, x, fk). Exposes the heap cell at x by at-
tempting to prove an implication of the form ϕ ⇒ (x 7→ 2) ∗ ϕ′ where the box
represents any record expression. If this proof succeeds, then the instrumentation
generator fk is applied to the formula that results.

let f ′k = λ(b, ϕ). fk(ϕ) in
Search for proof of ϕ =⇒

S
f ′k
x 7→ 2 � Γ ` k̂. (The elements Γ and k̂ are returned

by the proof procedure if a proof is found. The others are provided as inputs.)
if proof is found and proof procedure returns Γ, k̂ then

return Some
(
Γ, k̂

)
else

return None

5.6 Example

We now pause to present an example of the automated analysis we have developed thus
far. We will consider the following inductive specification of a singly linked list.

ls(n;x, y) <=>

n = 0 : let [] satisfy true in emp ∧ x = y

| n > 0 : let n′ satisfy n = n′ + 1 in

∃z. (x 7→ [next : z]) ∗ ls(n′; z, y)

And analyze the following program, which traverses a list of this form.

L1 : 1 branch x 6= nil⇒ 2 x := x.next; 3 goto L1,

x = nil⇒ 4 halt end

We will let ϕ0 = ls(n;x, nil) and Γ = {(L1, ϕ0)} and we will execute

geninstCont(Γ, ϕ0, 1)

Since we have not yet presented definitions of abstract and branchAnnot, we will
adopt the following definitions for now, which trivially satisfy the specifications given in

253

5 Instrumentation Analysis

Figure 5.7, but are not as useful as those we present later.

abstract(ϕ) = (ϕ, ε)

branchAnnot(ϕ, [e1, . . . , en]) = [true, . . . , true]

The first construct in our continuation is a branch, so the code for geninstCont on page
210 calls

branchAnnot(ϕ, [x 6= nil, x = nil])

This returns [true, true]. Next, the function calls geninstCont recursively on 2 and

4 . The call to geninstCont(Γ, ϕ0 ∧ x = nil, 4) returns Some
(
Γ, halt

)
. The call to

geninstCont(Γ, ϕ0 ∧ x 6= nil, 2) calls instPost in order to process x := x.next.
So we now have the partial instrumentation given below, where we elide portions that have
not been generated yet and write the precondition at that point in braces. We also write
dark circle numbers to indicate those control points that have already been considered by
our algorithm.

L1 : 1 branch x 6= nil⇒ assume(true);{ls(n;x, nil) ∧ x 6= nil} 2 . . . ,

x = nil⇒ assume(true); 4 halt

end

The instPost function notices that x := x.next is in A[x]—that is, it is a command
that requires a memory cell at x to be present in the heap. Because of this, it calls frame
inference to derive a proof of

ls(n;x, nil) ∧ x 6= nil =⇒
S

fk x 7→ 2 � Γ ` k̂

where the function fk is the function that calls partialPost and then geninstCont
on the post-condition to continue processing. Recall that the above is an abbreviation for
the following sequent.

emp 8 ls(n;x, nil) ∧ x 6= nil =⇒
S

fk x 7→ 2 � Γ ` k̂

The first step of frame inference applies DEFL, obtaining the following start for the
proof tree.

254

5.6 Example

emp 8 ls(n;x, nil) ∧ x 6= nil =⇒
S

fk x 7→ 2 � Γ1 ∪ Γ2 `

branch n = 0⇒ assume(true);k̂1,

n > 0⇒ n0 := ?;assume(n = n0 + 1);k̂2 end

DEFL

emp 8 emp ∧ n = 0 ∧ x = nil ∧ x 6= nil =⇒
S

fk

x 7→ 2 � Γ1 ` k̂1

LEFTPUREFALSE

emp 8 ∃z. x 7→ [next : z] ∗

ls(n0; z, nil) ∧ n > 0 ∧ n = n0 + 1 ∧ x 6= nil =⇒
S

fk

x 7→ 2 � Γ2 ` k̂2

Clearly the sequents involved are far too long to display a full traditional proof tree
here. Instead, we will present an abbreviated tree that labels each node with the inference
rule applied at that point and also records the arguments used in any calls to f . We will
write the information needed to reconstruct the full rule instance to the side of the rule
name. For the matching rules, this will be the formula that is matched. For rules that
instantiate variables, this will be the substitution. For DEFL, this will be the predicate
instance expanded. The context and instrumented continuation that are returned by each
rule are listed below it. We write Γ1 and k̂1 to refer to the context and continuation returned
by the first (leftmost) child in the tree, Γ2, k̂2 to refer to the second, etc. Figure 5.12 gives
the derivation tree.

255

5 Instrumentation Analysis

DEFL (ls(n;x, nil))

Γ1 ∪ Γ2 `
branch n = 0⇒ assume(true);k̂1,

n > 0⇒ n0 := ?;assume(n = n0 + 1);k̂2 end

LEFTPUREFALSE
∅ ` assume(false); halt

EXISTSL [a/z]

PTOMATCHESANY (x 7→ [next : a])

RIGHTPURE

f(∃a. (x 7→ [next : a] ∗ ls(n0; a, nil)) ∧ x 6= nil)

Γ ` k̂

Figure 5.12: Proof for the frame inference query

ls(n;x, nil) ∧ x 6= nil =⇒
S

fk x 7→ 2 � Γ ` k̂

We use Γ1, k̂1 to refer to the results from the left branch and Γ2, k̂2 to refer to the result from the

right branch.

Combining this with what we had before, we have now built up the following partial
continuation.

L1 : 1 branch x 6= nil⇒ assume(true);

branch n = 0⇒ assume(true); assume(false);halt,

n > 0⇒ n0 := ?;assume(n = n0 + 1);

{∃a. (x 7→ [next : a] ∗ ls(n0; a, nil))

∧ x 6= nil}

2 . . . end

x = nil⇒ assume(true); 4 halt end

256

5.6 Example

We now execute partialPost to find the post-condition of the invariant at control
location 2 , reproduced below

∃a. (x 7→ [next : a] ∗ ls(n0; a, nil)) ∧ x 6= nil

with respect to the command x := x.next. This results in the formula below.

∃a, x′. (x′ 7→ [next : a] ∗ ls(n0; a, nil)) ∧ x′ 6= nil ∧ x = a

If we perform some simplification, we obtain the formula below.

∃x′. (x′ 7→ [next : x]) ∗ ls(n0;x, nil) (5.12)

The next command encountered is the gotoL1 command, which causes geninstCont
to compare the current state against the invariants that have been collected in Γ. The only
invariant currently in Γ and associated with location L1 is the following.

ls(n;x, nil)

This is not implied by (5.12) because, while we can match ls(n0;x, nil) against ls(n;x, nil)

by inserting the instrumentation command n := n0, we cannot match the portion of the
heap described by x′ 7→ [next : x]. The current formula thus represents states not sat-
isfied by the previous formula at L1 and geninstCont indicates that we should apply
abstract, add the result to Γ, and then continue processing from this new state.

Here we see the problem with the simple version of abstract we defined earlier.
With abstract defined to be the identity function, we will never converge on a finite set
of invariants associated with L1 that describe all the reachable states of this program.

To show that this is the case, we list the next two invariants that the analysis will
discover associated with L1.

∃x′, x2. (x′ 7→ [next : x2]) ∗ (x2 7→ [next : x]) ∗ ls(n2;x, nil)

∃x′, x2, x3. (x′ 7→ [next : x2]) ∗ (x2 7→ [next : x3]) ∗ (x3 7→ [next : x]) ∗ ls(n3;x, nil)

The symbolic state formulae that we generate continue to contain more and more points-to
predicates that are not part of the list from x to nil.

257

5 Instrumentation Analysis

This highlights the importance of the abstract function. Without it, the algorithm
does not terminate. But with a well-chosen abstract, as we will see in the next section,
the algorithm is able to converge on fixed-points for many programs.

5.7 Abstraction

The final component necessary before we can present a full example run of the algorithm,
is the framework for performing abstraction. This is similar to the summarization step
in TVLA Sagiv et al. [2002] and corresponds to the abstraction function used in abstract
interpretation Cousot and Cousot [1977].

The motivation for abstraction is that if we only perform post-condition computation
and unroll inductive predicates on the left, we will never converge on a finite set of invari-
ants, as we saw in the previous section. Abstraction solves this problem by occasionally
intentionally forgetting information about our current symbolic state formula in order to
allow it to cover more concrete states. The term abstraction refers to the fact that this
operation results in a more abstract (weaker) formula.

To give a simple example, consider one of the states we generated when looking at the
example in the previous section.

∃x′. (x′ 7→ [next : x]) ∗ ls(n0;x, nil)

The formula x′ 7→ [next : x] describes a list segment of length one. That is, every
concrete stack and heap pair which satisfy x′ 7→ [next : x] also satisfy ls(1;x′, x).
We are thus free to apply STRENGTHENING to switch the current state formula from
∃x′. (x′ 7→ [next : x]) ∗ ls(n0;x, nil) to ∃x′. ls(1;x′, x) ∗ ls(n0;x, nil) before storing
the state in Γ. This is what abstract will do—return a different formula that is implied
by the formula supplied as input.

258

5.7 Abstraction

The transformation just described is not enough, however, to cause the analysis to
terminate. We will simply obtain the sequence of states

∃x′. ls(1;x′, x) ∗ ls(n0;x, nil)

∃x′. ls(2;x′, x) ∗ ls(n0;x, nil)

∃x′. ls(3;x′, x) ∗ ls(n0;x, nil)
...

We need to forget the length as well before we can obtain a formula weak enough to
describe all reachable states. One way to do this would be to existentially quantify the
length, obtaining the invariant

∃n, x′. ls(n;x′, x) ∗ ls(n0;x, nil)

However, we can also use an instrumentation variable to capture the fact that the length
is changing. This provides a more precise abstraction, as we will record instrumentation
commands describing exactly how the changes to the length occur (in this case, we will
record that the length of this segment increases by one each time we reach L1).

Because we must describe exactly how an instrumentation variable is updated, this
method requires more care than the use of an existential variable. However, as we will see,
all the information we need is already present in the form of our inductive specifications.

5.7.1 Abstraction Patterns

We will derive formulae termed abstraction patterns from the cases of our inductive spec-
ifications. These describe exactly how to replace some portion of the state formula with
an instance of an inductively specified predicate.

We will again take the singly-linked list specification as our example.

ls(n;x, y) <=>

n = 0 : let [] satisfy true in emp ∧ x = y

| n > 0 : let n′ satisfy n = n′ + 1 in

∃z. (x 7→ [next : z]) ∗ ls(n′; z, y)

259

5 Instrumentation Analysis

We first consider the n > 0 case. Reading the equivalence from right to left, this states
that if the heap contains x 7→ [next : z] for some z and separately contains ls(n′; z, y) for
the same z, then this can be viewed as ls(n;x, y) for some n such that n = n′ + 1. This
allows us to replace (x 7→ [next : z]) ∗ ls(n′; z, y) with ls(n;x, y) provided we also update
the instrumentation variables appropriately. The main issue in terms of implementation of
such a replacement method is how to perform the initial matching. That is, how do we
determine the instantiation of bound variables in the inductive specification that results in
an applicable instance of the rule. Our matching will be guided by the spatial formulae
present in the specification and in the current state.

For the example of the non-empty case of the singly-linked list predicate, we want to
search for a sub-formula of the current state—call it ϕ—that has the form below.

(e1 7→ [next : e2]) ∗ ls(e4; e2, e3)

Once we have found such a sub-formula, we can replace it with ls(n; e1, e3) provided that
the following pattern condition holds

ϕ⇒ ∃n. n = e4 + 1 ∧ n > 0

The reason for this check is that we could have a predicate such as the one below, which
describes lists of length less than 5.

ls(n;x, y) <=>

n = 0 : let [] satisfy true in emp ∧ x = y

| n > 0 ∧ n < 5 : let n′ satisfy n = n′ + 1 in

∃z. (x 7→ [next : z]) ∗ ls(n′; z, y)

Such a specification cannot always be applied right-to-left even if the spatial portion of
one of the cases can be matched. In practice, we have never needed to work with such a
specification. All the specifications we have written while running our experiments have
the property that the check above is always true. We will state the theory in terms of the
general case, which requires this check. But it is useful to avoid it whenever possible in
the implementation, as proving pure implications involving existential quantification on
the right can be a slow process for many theorem provers.

260

5.7 Abstraction

We now consider the general case. Recall that a case of a specification has the form
below

Π : let ~z satisfy Π′ in ∃ ~x1. Σ ∧ Π′′

and is abbreviated as C(~x; ~y), where ~x is the list of instrumentation parameters for the
definition and ~y is the list of non-instrumentation parameters. The meaning of this case as
a separation logic formula is the following

Π ∧ ∃~z. (Π′ ∧ ϕ)

which we write dC(~x; ~y)e.

When matching such a case against a symbolic state, most of the variables will be
interpreted existentially, as they were in our example above. To see why, consider the
reasoning process we are trying to establish in executing this replacement. For some case
C(~x; ~y) of an inductive predicate d(~x; ~y), and some symbolic state formula ϕ, we want to
show the following.

ϕ⇒ (ϕ′ ∗ dC(~e1; ~e2)e)⇒ (ϕ′ ∗ d(~e1; ~e2)) (5.13)

In the first implication,C(~e1; ~e2) appears on the right, so we get to choose terms not just for
the parameters, but also for any existentially quantified variables in the body of the case.
This includes ~x1 and also ~z, as these appear existentially quantified in the representation
of the case as a separation logic formula.

Though these variables are all existential in nature, they do serve different roles, moti-
vated by our desire to use this rewriting process to produce formulae that are more likely
to be invariants across multiple iterations of loops. As we saw with the list example, where
we obtained a list of length 1, then length 2, then 3, etc., the instrumentation parameters x
can interfere with the discovery of a loop invariant. Furthermore, it is difficult to find the
list of expressions ~e1 that witness the validity of the implication in (5.13), as ~e1 may be an
arithmetic expression not occurring in ϕ.

To remedy both these issues, we instead use the following line of reasoning.

ϕ⇒ ∃ ~x1. (ϕ′ ∗ dC(~x1; ~e2)e)⇒ ∃ ~x1. (ϕ′ ∗ d(~x1; ~e2))

261

5 Instrumentation Analysis

We then insert the instrumentation command ~x1 := ? to eliminate the existential on ~x1.
As we will see when we present the details, we also want to record at this point some
assumption linking ~x1 to other instrumentation variables. Following this line of reasoning
ensures that the symbolic state formulae generated by abstraction always contain variables
in the instrumentation parameter positions. This will make it easier to use the INSTL rule in
our frame inference system to find instrumentation commands that allow us to re-establish
a previously discovered invariant.

Another issue we must take care to avoid is the production of a formula that is too
weak to be useful in further analysis of the program. To see an example of this, consider
the invariant we obtained at L1 after a single pass of analysis of our example list traversal
program. We had

∃x′. (x′ 7→ [next : x] ∗ ls(n0;x, nil))

We noted previously that this formula implies

∃x′. ls(1;x′, x) ∗ ls(n0;x, nil)

However it is also implies
∃x′. ls(n0 + 1, x′, nil)

But pushing this formula through the analysis will quickly lead us to trouble. The formula
does not say anything about x, and so when we next try to execute x := x.next we are
unable to show that x exists in the heap.

The reason we lost track of x is that we matched x to a variable that did not occur in
the parameter list of the predicate. When we replace some piece of the formula represent-
ing the body of a case with an instance of an inductive predicate, we only retain spatial
information about expressions occurring as parameters of that definition. In [Magill et al.,
2006] we introduced a condition on abstraction rewrites that avoids this case. If we want
to replace a piece of heap with an inductive predicate instance using a case of the form
below

Π : let ~z satisfy Π′ in ∃ ~x1. Σ ∧ Π′′

the expressions corresponding to ~x1 must not contain program variables. Distefano et al.
[2006] present a stronger condition that also requires that variables in the expressions cor-

262

5.7 Abstraction

responding to ~x1 must not appear elsewhere in the spatial portion of the state. This stronger
condition is important in more complicated sharing patterns. Consider the symbolic state
below.

∃z. ls(n1;x, z) ∗ ls(n2; y, z) ∗ ls(n3; z, nil)

Suppose we had a specification like the one below

ls(n; x, y) <=>

true : let n1, n2 satisfy n = n1 + n2 in

∃z. ls(n1;x, z) ∗ ls(n2; z, y)

The weaker condition would then allow us to replace ls(n2; y, z) ∗ ls(n3; z, nil) with
ls(n2 + n3; y, nil) obtaining

∃z. ls(n1;x, z) ∗ ls(n2 + n3; y, nil)

This formula loses the information about x and y eventually reaching the same heap cell.
This does not affect soundness, but would cause problems when, for example, traversing
the list at x, as we would be unable to show memory safety beyond the point where x
reaches z. The stronger condition would prevent us from combining these lists since z,
the variable that is disappearing, occurs in ls(n1;x, z), which does not participate in the
replacement. We use the stronger condition in the presentation here and in our implemen-
tation.

Now that the motivation for the various checks is clear, we will present the general
form of an abstraction pattern. The pattern will have the format below.

[~v]
(
Σ
) Π−PAT�

Π′

(
Σ′
)

[~x]

The variables in ~v can be instantiated with expressions when matching the pattern. The
formula Σ gives the spatial formula that should be matched. The formula Π gives the pat-
tern condition that must hold for the rewrite to be applicable. The variables ~x are the new
instrumentation variables that will be introduced, and the formula Π′ gives the relationship
between the new instrumentation variables and the old instrumentation variables present
in Σ. The formula Σ′ is the replacement for the spatial formula Σ. The variables ~v and ~x

263

5 Instrumentation Analysis

are considered bound. We derive such a pattern from a case of an inductive specification
as follows.

Definition 34. Let C(~x; ~y) be a case of an inductive specification of predicate d and sup-

pose C(~x; ~y) has the following form, where the variables ~z, ~x1, ~x, and ~y are all distinct.

Π : let ~z satisfy Π′ in ∃ ~x1. Σ ∧ Π′′

Then the abstraction pattern associated with C(~x; ~y) is

[~x1,~z, ~y]
(
Σ
) Π∧Π′∧Π′′−PAT�

Π′

(
d(~x; ~y)

)
[~x]

We expect patterns to obey the following soundness criterion.

Definition 35. A pattern [~x]
(
Σ
) Π−PAT�

Π′

(
Σ′
)

[~y] is sound iff ~x and ~y are all distinct,

y ∩ fv(Σ) = ∅, and

∀~x. Σ ∧ (∃~y. Π)⇒ ∃~y. Σ′ ∧ Π′

We then have the following theorem regarding our method for translating cases to
patterns.

Theorem 31. The method given as Definition 34 for converting a case of an inductive

specification to an abstraction pattern is sound.

Proof. The condition on distinction of the variables and the new instrumentation variables
being not free in Σ follow from the same conditions on the syntax of our inductive speci-
fications (see Figure 5.3).

For the main soundness condition, recall that an inductive specification

d(~x; ~y) = C1 | . . . | Cn

is interpreted as the separation logic formula

∀~x, ~y. d(~x, ~y)⇔ dC1e ∨ . . . ∨ dCne

264

5.7 Abstraction

This implies
∀~x, ~y. dCie ⇒ d(~x, ~y)

And this is the formula on which we will base the soundness argument.

Instantiating this with the particular Ci from Definition 34 we obtain

∀~x, ~y.
(
Π ∧ ∃~z. Π′ ∧ ∃ ~x1. Σ ∧ Π′′

)
⇒ d(~x, ~y)

The restrictions on fv(Π) and fv(Π′) in Figure 5.3 on page 193 give us that ~z ∩ fv(Π) = ∅
and ~x1 ∩ fv(Π,Π′) = ∅. This lets us rewrite the above as

∀~x, ~y.
(
∃~z, ~x1. Π ∧ Π′ ∧ (Σ ∧ Π′′)

)
⇒ d(~x, ~y) (5.14)

This implication is available for use since it follows from one of the inductive specifi-
cations and all reasoning is done under the assumption that the inductive specifications
hold.

To show soundness of the abstraction pattern, we must show the following.

∀ ~x1,~z, ~y. Σ ∧ (∃~x. Π ∧ Π′ ∧ Π′′)⇒ ∃~x. d(~x; ~y) ∧ Π′

We consider some arbitrary ~x1,~z, ~y and assume Σ∧(∃~x.Π∧Π′∧Π′′). Since ~x∩fv(Σ) = ∅
we can move the quantifier on ~x to the outside, obtaining

∃~x. Σ ∧ (Π ∧ Π′ ∧ Π′′)

Eliminating the existential quantifier on ~x and applying (5.14), then gives us.

d(~x, ~y)

We already have Π′, so we can obtain

d(~x, ~y) ∧ Π′

Then we re-introduce the existential quantifier on ~x, obtaining

∃~x. d(~x, ~y) ∧ Π′

which is our goal.

265

5 Instrumentation Analysis

5.7.2 Empty Patterns

In the discussion above, we concentrated on patterns that arose from the non-empty cases
of our inductive specifications. Patterns based on empty cases pose a problem for automa-
tion because the spatial formula emp can be found in any symbolic state. Thus, patterns
derived from empty cases would always be applicable. As a result, we do not generate
patterns from empty cases. However, we need to include some sort of pattern derived
from the base case or we will never be able to introduce instances of inductive predicates.
Consider a routine that creates a linked list. We will get states like the following

x 7→ [next : nil]

∃x1. x 7→ [next : x1] ∗ x1 7→ [next : nil]

∃x1, x2. x 7→ [next : x2] ∗ x2 7→ [next : x1] ∗ x1 7→ [next : nil]

and with no way to introduce an instance of the list predicate, we will never find a finite
description of all these states.

One solution is to have the user provide a creation pattern for each data structure. For
example, for a linked list, they could provide

[x, y]
(
x 7→ [next : y]

) true−PAT�
k=1

(
ls(k;x, y)

)
[k]

However such patterns can also be generated automatically by expanding inductive predi-
cates repeatedly. For example, suppose we take the doubly-linked list definition below.

dll(k; p, first , last , n) <=>

k = 0 : let [] satisfy true in emp ∧ first = n ∧ last = p

| k > 0 : let k′ satisfy k = k′ + 1 in

∃z. (first 7→ [prev : p, next : z]) ∗ dll(k′; first , z, last , n))

We can expand the predicate dll(k; a, b, c, d) once using the non-empty case, obtaining

k > 0 ∧ ∃k′. k = k′ + 1∧

∃z. (b 7→ [prev : a, next : z]) ∗ dll(k′; b, z, c, d)

266

5.7 Abstraction

and then expand dll(k′; b, z, c, d) using the empty case, obtaining

k > 0 ∧ ∃k′. k = k′ + 1∧

∃z. (b 7→ [prev : a, next : z])

∧ (k′ = 0 ∧ b = c ∧ z = d)

We now have a description of a list segment that contains no inductive instances of the dll
predicate but describes a non-empty heap. We can translate this into the following creation
pattern.

[a, b, c, d, z]
(
b 7→ [prev : a, next : z]

) (k=k′+1)∧(k′=0∧b=c∧z=d)
−PAT�

(k=k′+1)∧(k′=0)

(
dll(k; a, b, c, d)

)
[k, k′]

Now suppose we are faced with a state such as the following.

x 7→ [prev : nil, next : y]

We can apply the pattern above by using the substitution a→ nil, b→ x, c→ x, d→ y, z → y.
To make the pattern more useful for automation, it helps to eliminate the variable z and
propagate the equality b = c. Propagating the equality k′ = 0 is also helpful as this re-
sults in fewer instrumentation variables. Applying these simplifications leaves us with the
pattern below.

[a, b, d]
(
b 7→ [prev : a, next : d]

) k=1
−PAT�
k=1

(
dll(k; a, b, b, d)

)
[k]

The pattern condition in this case is equivalent to true (soundness for abstraction patterns
states that ∃k. k = 1 must hold in this case, but this is a tautology). This enables us to
simplify the pattern even further.

[a, b, d]
(
b 7→ [prev : a, next : d]

) true−PAT�
k=1

(
dll(k; a, b, b, d)

)
[k]

Our implementation attempts to discover when pattern conditions are tautologies and ap-
ply this simplification, as avoiding the theorem proving call associated with checking the
pattern condition each time the pattern is applied significantly decreases execution time.

267

5 Instrumentation Analysis

5.7.3 Applying Abstraction Patterns

Now that we have shown how to derive abstraction patterns from inductive predicate spec-
ifications, we will show how these patterns are used to abstract a symbolic state formula.
In Figure 5.13 we define a relation with syntax ϕ −ABS�

A
〈ϕ′ | c〉. This relation takes a

symbolic state formula ϕ to a pair consisting of a weaker formula ϕ′ and c, the sequence
of instrumentation commands necessary to generate ϕ′ from ϕ (the empty command list ε
is used if ϕ′ follows from ϕ by STRENGTHENING). The rules are parametrized by the set of
abstraction patternsA. Note that the side condition of the first rule can always be satisfied
by renaming bound variables, as the variables ~y are bound in the abstraction pattern. We
show on page 275 the code for abstract, which uses the relation just described.

The formal specification of
ϕ −ABS�

A
〈ϕ′ | c〉

is that this should hold only if for all Γ, k̂, k,

Γ ` {ϕ′} k̂ IIVar k

implies
Γ ` {ϕ} (c # k̂) IIVar k

First Rule

The first rule in Figure 5.13 has a number of premises. We go through them each here,
explaining their function. First we present a guide to the notation in the figure, using a
linked list example. Below is an abstraction pattern that replaces two list-structured heap
cells with an instance of the list predicate.

[x, y, z]
(
x 7→ [next : y] ∗ y 7→ [next : z]

) true−PAT�
k=2

(
ls(k;x, z)

)
[k]

We will show how to apply this pattern to the symbolic state below (and several variations
on this state).

ϕ0
def
= ∃b. a 7→ [next : b] ∗ b 7→ [next : nil] ∗ c 7→ [next : b] ∧ g > 0

268

5.7 Abstraction

We now describe each meta-variable present in the first rule in Figure 5.13.

ϕ The symbolic state formula that is being abstracted. For our example, this is
ϕ0, defined above.

Σ The left-hand side of the rewrite rule. Specifies the pattern to search ϕ for. In
our example, this is x 7→ [next : y] ∗ y 7→ [next : z].

Σ′ The right-hand side of the rewrite rule. Specifies the replacement for Σ. In our
example, this is ls(k;x, z).

~x The list of variables in the pattern that can be instantiated to expressions. In
our example this is x, y, z. This can also include instrumentation variables if
these are available for replacement.

σ The substitution that makes some portion of ϕmatch Σ. Its domain is ~x. In our
example, this substitution will be x→ a, y → b, z → nil (other matchings are
also possible—the abstraction process is non-deterministic and any matching
pattern can be chosen and applied without affecting soundness).

Σ0 The spatial portion of ϕ not matched by the pattern. This is c 7→ [next : b] in
our example.

Π0 This is the pure portion of ϕ. In our example this is g > 0.

~x0 The list of quantified variables in ϕ. In our example, this is the singleton b.

Π The condition that must hold in order for the replacement to occur. This is in
addition to the premises on free variables that occur as preconditions in the
first abstraction rule. In our example, this is true.

~y The list of new instrumentation variables that are introduced by this pattern.
In our example, this is k.

Π′ The relation between instrumentation variables in Σ and the new variables ~y.
In our example this is k = 2.

We now discuss each premise of the first rule in Figure 5.13.

condition(
(
fv(σ(Σ))− fv(σ(Σ′))

)
⊆ ~x0)

269

5 Instrumentation Analysis

The difference fv(σ(Σ))− fv(σ(Σ′)) gives the set of free variables that disappear from
the formula when applying the patten. In our example, the difference evaluates to b, in-
dicating that by combining a 7→ [next : b] ∗ b 7→ [next : nil] into the predicate instance
ls(k;x, z), we lose track of where b is pointing. The ⊆ ~x0 portion of this check ensures
that the variables that are disappearing are existentially quantified. We want to avoid hav-
ing non-quantified variables disappearing as these correspond to program variables, which
may be dereferenced by later commands. In our example, this check passes, since b is
quantified.

condition(
(
fv(σ(Σ))− fv(σ(Σ′))

)
∩ fv(Σ0) = ∅)

This condition checks that the variables disappearing do not appear free in the por-
tion of ϕ that is not participating in the replacement. In our example, this check fails,
since b occurs in the predicate c 7→ [next : b]. We want to avoid losing track of such
shared points of reference, as they can also later be accessed by heap commands. Sup-
pose we were to perform our example replacement in spite of this check failing. Then we
would obtain ls(k;x, nil) ∗ c 7→ [next : b]. In such a state, if we execute the commands
v := c.next; v := v.next we will be unable to show that the second heap lookup is safe
because we have lost track of the fact that b is in the middle of the two-element list at x.

In order to allow this check to pass and continue examining the other conditions, we
will change our example state to the following, which changes the value of the next field
of c so that it no longer points into the list.

ϕ0
def
= ∃b. a 7→ [next : b] ∗ b 7→ [next : nil] ∗ c 7→ [next : nil] ∧ g > 0

condition(dom(σ) = ~x)

This condition simply checks that we are only performing substitutions on variables
that are bound in the pattern.

condition(ϕ = ∃~x0. (Σ0 ∗ σ(Σ)) ∧ Π0)

This premise separates ϕ into the portion that satisfies the pattern, σ(Σ), and the rest,
Σ0 and Π0. In our example, a 7→ [next : b] ∗ b 7→ [next : nil] corresponds to σ(Σ).

condition(ϕ⇒ ∃~y. σ(Π))

270

5.7 Abstraction

This premise checks that the symbolic state being rewritten satisfies the pattern con-
dition Π. In our example, Π is true, so there is nothing to check here. The predicates
we have encountered in our experiments have all had conditions of true. However, it is
easy to construct examples whose abstraction rules require this check to be performed. An
example of such a predicate is given on page 260.

condition(
(

[~x]
(
Σ
) Π−PAT�

Π′

(
Σ′
)

[~y]
)
∈ A)

This condition ensures that the pattern we are considering is one of the provided pat-
terns. There may be multiple applicable patterns at any single point during the abstraction
process. In such cases, any pattern can be chosen without violating soundness. The order
in which patterns are applied can affect the performance of our instrumentation analysis.
In the implementation, we adopt the heuristic of matching “longest” rules first. That is, we
prefer to apply patterns where the left-hand side ϕ specifies a larger formula, where length
is defined as the number of spatial predicates appearing in ϕ.

Second Rule

The second rule in Figure 5.13 simply discards arithmetic constraints collected during
symbolic execution to prevent these from interfering with convergence. An abstract do-
main for integer variables could also be used, as in [Chang and Rival, 2008].

The rules in Figure 5.13 can be automated provided that the existence of the substitu-
tion σ in the first rule can be automatically checked for each element ofA. To accomplish
this, we guide the search for σ by the assumption ϕ = ∃~x0. (Σ0 ∗σ(Σ′))∧Π0. Given some
symbolic state formula ϕ1 = ∃~x1. Σ1 ∧ Π1, we search Σ1 for some collection of spatial
predicates matching Σ′, modulo some unifying substitution σ. If the search fails, we move
on to the next element of A. If the search fails for all elements of A, then we conclude
that there is no ϕ′, c related to ϕ by −ABS�

A
.

Soundness

We have the following soundness theorem for −ABS�
A

.

271

5 Instrumentation Analysis

(
[~x]
(
Σ
) Π−PAT�

Π′

(
Σ′
)

[~y]

)
∈ A

dom(σ) = ~x ϕ = ∃~x0. (Σ0 ∗ σ(Σ)) ∧Π0 ϕ⇒ ∃~y. σ(Π)(
fv(σ(Σ))− fv(σ(Σ′))

)
⊆ ~x0

(
fv(σ(Σ))− fv(σ(Σ′))

)
∩ fv(Σ0) = ∅

ϕ −ABS�
A
〈∃~x0. (Σ0 ∗ σ(Σ′)) ∧Π0 | ~y := ?;assume(σ(Π))〉

~y 6∈ fv(ϕ)

ϕ ∧ (ei
1 ≤ ei

2) −ABS�
A
〈ϕ | ε〉

Figure 5.13: Main rewrite rules for abstraction. We use the notation ~x := ? to indicate

x1 := ?; . . .;xn := ?.

Theorem 32. If all patterns inA are sound, and Γ ` {ϕ2} k̂ IIVar k for some Γ, k̂, k, and

ϕ1 −ABS�
A
〈ϕ2 | c〉, then Γ ` {ϕ1} (c # k̂) IIVar k.

Proof. The proof follows fairly directly from Definition 35 and the rules for instrumenta-
tion given in Figure 4.1. The case for the second rule is immediate as ϕ ∧ (ei

1 ≤ ei
2)⇒ ϕ

and so the conclusion follows from STRENGTHENING.

Turning to the first rule, our goal is to show the following.

Γ ` {ϕ} ~y := ?;assume(σ(Π));k̂ IIVar k

We will work backward from this to our assumption that Γ ` {∃~x0. (Σ0∗σ(Σ))∧Π0} k̂ IIVar k.
We have from the assumptions of this rule that ϕ = ∃~x0. (Σ0 ∗ σ(Σ)) ∧ Π0 and
ϕ⇒ ∃~y. σ(Π). Together, these give us the following.

ϕ⇒ (∃~x0. (Σ0 ∗ σ(Σ)) ∧ Π0) ∧ ∃~y. σ(Π)

Our side-condition that ~y 6∈ fv(ϕ) and the fact that ϕ = ∃~x0. (Σ0 ∗ σ(Σ)) ∧ Π0 gives
us that ~y 6∈ fv(∃~x0. (Σ0 ∗ σ(Σ)) ∧ Π0). This lets us move the existential quantifier to the
front of the consequent, obtaining

ϕ⇒ ∃~y. (∃~x0. (Σ0 ∗ σ(Σ)) ∧ Π0) ∧ σ(Π)

272

5.7 Abstraction

Thus, by STRENGTHENING, if we can show the following, we will have proved this case.

Γ ` {∃~y. (∃~x0. (Σ0 ∗ σ(Σ)) ∧ Π0) ∧ σ(Π)} ~y := ?;assume(σ(Π));k̂ IIVar k

By INST-EXISTS, we will have the goal if we can show

Γ ` {(∃~x0. (Σ0 ∗ σ(Σ)) ∧ Π0) ∧ σ(Π)} assume(σ(Π));k̂ IIVar k

And again working backward from this goal, using rule INST-ASSUME this time, we must
show that

Γ ` {(∃~x0. (Σ0 ∗ σ(Σ)) ∧ Π0) ∧ σ(Π)} k̂ IIVar k

We can weaken the precondition by dropping σ(Π). We do so, applying STRENGTHENING

to reduce our goal to

Γ ` {∃~x0. (Σ0 ∗ σ(Σ)) ∧ Π0} k̂ IIVar k

This is one of our assumptions, so the case is proved.

abstract

The code for our function abstract is given on page 275. We use a comma for concate-
nation, so the operation c, c′ gives the concatenation of c and c′. We will show that this
function satisfies the specification given in Figure 5.7.

The invariant for the loop is the following.

Invariant
Γ ` {ϕ} k̂ IIVar k implies Γ ` {ϕ0} (c # k̂) IIVar k

Initially Holds First we show that this is satisfied initially. abstract(ϕ0) sets ϕ equal
to ϕ0 and c equal to ε. Thus, we must show that

Γ ` {ϕ0} k̂ IIVar k implies Γ ` {ϕ0} (ε # k̂) IIVar k

Since ε # k̂ = k̂, this is immediate.

273

5 Instrumentation Analysis

Inductively Holds Next, we assume that we have the loop invariant at the current values
of ϕ and c, which we will refer to as ϕ1 and c1.

Γ ` {ϕ1} k̂ IIVar k implies Γ ` {ϕ0} (c1 # k̂) IIVar k

We also assume that we have
ϕ1 −ABS�

A
〈ϕ′ | c′〉

Now, to show that one execution of the loop preserves this invariant, we assume we
have executed ϕ := ϕ′ and c := c1, c

′. We then show that the loop invariant is re-
established. That is, the following holds.

Γ ` {ϕ′} k̂ IIVar k implies Γ ` {ϕ0} (c1, c
′) # k̂ IIVar k

We first assume Γ ` {ϕ′} k̂ IIVar k. By Theorem 32 we then have Γ ` {ϕ1} (c′#k̂) IIVar k.
The loop invariant from previous iterations then gives us Γ ` {ϕ0} c1 # (c′ # k̂) IIVar k.
Since (c1, c

′)# k̂ = c1 #(c′ # k̂) we have now established the conclusion of the loop invariant
for this iteration.

Implies Specification Finally we show that the loop invariant implies the specification.
The invariant is

Γ ` {ϕ} k̂ IIVar k implies Γ ` {ϕ0} (c # k̂) IIVar k

and the specification requires that if abstract(ϕ0) returns (ϕ, c) then the following
holds

Γ ` {ϕ} k̂ IIVar k implies Γ ` {ϕ0} (c # k̂) IIVar k

As the two implications are the same, the proof is complete.

5.7.4 Additional Comments

There is much more that can be said about abstraction. For some starting points in the
context of shape analysis with separation logic, see [Yang et al., 2008, Chang et al., 2007,

274

5.7 Abstraction

Function abstract(ϕ0). Returns a weaker symbolic state ϕ′ along with a list of
instrumentation commands associated with the transition from ϕ to ϕ′. The operation
c, c′ gives the concatenation of c and c′.
ϕ := ϕ0

c := ε

while ∃ϕ′, c′. ϕ −ABS�
A
〈ϕ′ | c′〉 do

ϕ := ϕ′

c := c, c′

end
return (ϕ, c)

Chang and Rival, 2008]. Each of these presents a different take on what criteria to use
when deciding whether or not to weaken a formula and by how much. In particular, [Yang
et al., 2008] notes the importance of keeping track of whether predicate instances are
known to represent non-empty data structures. Depending on other details of the language
of symbolic state formulae, this information can be necessary to prove certain examples.

Non-emptiness information is not preserved by the abstraction patterns presented in
the previous section, though our implementation does have a command line parameter to
toggle tracking of non-emptiness information. In the treatment of abstraction just pre-
sented, we chose to concentrate on the core idea of abstraction, which is the use of the
spatial portion of the heap to guide the selection and application of abstraction rules. The
rules themselves can be made to keep more or less information, and the conditions that
trigger them can be adjusted, but the basic matching strategy is the same in all current
systems of which the authors are aware.

275

5 Instrumentation Analysis

5.8 Example (continued)

Now that we have a definition for abstract, we return to our list traversal example,
reproduced below.

L1 : 1 branch x 6= nil⇒ 2 x := x.next; 3 goto L1,

x = nil⇒ 4 halt end

We had previously obtained the following formula just prior to evaluating the goto L1

statement which triggered a call to abstract.

∃x′. (x′ 7→ [next : x] ∗ ls(n0;x, nil))

We will now execute our new definition of abstract with the following abstraction
patterns. These are the actual patterns used by our tool for singly-linked lists.

[x, y, z, n0]
(
x 7→ [next : y] ∗ ls(n0; y, z)

) true−PAT�
n=n0+1

(
ls(n;x, z)

)
[n] (5.15)

[x, y, z, n0]
(
ls(n0;x, y) ∗ y 7→ [next : z]

) true−PAT�
n=n0+1

(
ls(n;x, z)

)
[n] (5.16)

[x, y, z, n1, n2]
(
ls(n1;x, y) ∗ ls(n2; y, z)

) true−PAT�
n=n1+n2

(
ls(n;x, z)

)
[n] (5.17)

[x, z]
(
x 7→ [next : z]

) true−PAT�
n=1

(
ls(n;x, z)

)
[n] (5.18)

We can abstract ∃x′. (x′ 7→ [next : x] ∗ ls(n0;x, nil)) by applying (5.18) to obtain

∃x′. ls(n1;x′, x) ∗ ls(n0;x, nil) (5.19)

along with the instrumentation commands n1 := ?;assume(n1 = 1). This formula will be
an invariant at L1, as we can see by executing geninstCont starting from this state. If
we do this, the formula we obtain at location 3 , just before goto L1, is

∃x′, x2. ls(n1;x′, x2) ∗ (x2 7→ [next : x]) ∗ ls(n2;x, nil)

along with the instrumentation command n2 := ?; assume(n0 = n2 +1). Now we can ex-
ecute implies to verify that this formula in fact implies the invariant (5.19). implies

276

5.8 Example (continued)

first calls abstract, obtaining instrumentation commands n3 := ?;assume(n3 = n+1)

and state formula

∃x′. ls(n3;x′, x) ∗ ls(n2;x, nil)

Next we search for a frame inference proof, using INSTL to match n2 to n0 and n3 to
n1. This results in instrumentation commands n0 := n2;n1 := n3. Note that implies
calls abstract before performing the frame inference proof. This compensates for the
fact that the frame inference system does not contain a rule to expand inductive predicate
instances on the right (and not having such a rule in frame inference is useful as this
reduces the proof space that must be searched).

Combining all this, the entire process results in the instrumented continuation in Figure
5.14. Note that since there are two symbolic state formulae associated with L1 in the final
version of Γ (the initial state and the discovered invariant) we have a non-deterministic
choice between the instrumentations corresponding to each element of Γ(L1).

There are a number of simplifications that can be made to this program while retaining
the same semantics. For example, the sequence of commands n1 := ?; assume(n1 = 1)

is equivalent to n1 := 1. We proved this in Section 4.1.3 in the context of the derivability
of the INST-ASSIGN rule. Similarly, n3 := ?; assume(n3 = n1 + 1) is equivalent to
n3 := n1 +1. Noting that assume(n = n0 +1) is equivalent to assume(n0 = n−1) allows
us to also rewrite n0 := ?; assume(n = n0 + 1) to the command n0 := n− 1.

We can also eliminate intermediate writes. The sequence n3 := n1+1; . . .;n1 := n3; . . .

can be reduced to n1 := n1+1 in cases where n3 is not read or written by other commands.
Simplification based on these equivalences is implemented in our tool for list-based data
structures. This results in a quite dramatic reduction in the size of the instrumented pro-
gram. The simplified program for this example is given in Figure 5.15.

Such simplifications are possible because the instrumentation commands for lists are
deterministic. For data structures like trees, where an instrumentation based on tracking
the size of the tree is inherently non-deterministic, such translations of assume statements
to assignments no longer apply. That is not to say, however, that there are is no hope of
simplifying more complex examples. Even though the non-determinism is an important

277

5 Instrumentation Analysis

L1 : branch

true⇒
branch

x 6= nil⇒ assume(true);

branch

n = 0⇒ assume(true); assume(false); halt,

n > 0⇒
n0 := ?; assume(n = n0 + 1); x := x.next;
n1 := ?; assume(n1 = 1); goto L1

end,

x = nil⇒ assume(true); halt

end

true⇒
branch

x 6= nil⇒ assume(true);

branch

n0 = 0⇒ assume(true); assume(false); halt,

n0 > 0⇒
n2 := ?; assume(n0 = n2 + 1); x := x.next;
n3 := ?; assume(n3 = n1 + 1); n0 := n2; n1 := n3;
goto L1

end

x = nil⇒ assume(true); assume(false) halt

end

end

Γ(L1) = { ls(n;x, nil),

∃x′. (ls(n1;x′, x) ∗ ls(n0;x, nil)) }

Figure 5.14: The full instrumentation of the singly-linked list example.

278

5.8 Example (continued)

L1 : branch

true⇒
branch

x 6= nil⇒ assume(true);

branch

n = 0⇒ assume(true); assume(false); halt,

n > 0⇒
n0 := n− 1; x := x.next;
n1 := 1; goto L1

end,

x = nil⇒ assume(true); halt

end

true⇒
branch

x 6= nil⇒ assume(true);

branch

n0 = 0⇒ assume(true); assume(false); halt,

n0 > 0⇒
n0 := n0 − 1; x := x.next;
n1 = n1 + 1; goto L1

end

x = nil⇒ assume(true); assume(false) halt

end

end

Γ(L1) = { ls(n;x, nil),

∃x′. (ls(n1;x′, x) ∗ ls(n0;x, nil)) }

Figure 5.15: A simplified version of the instrumentation given in Figure 5.14.

part of the instrumentation for branching data structures, the approach presented in this
section still produces unnecessary intermediate variables. When passing our numeric pro-
grams to external tools, the number of variables is often an important quantity that we
would like to minimize. Finding methods of eliminating these unnecessary intermediate
variables in the general case is ongoing work.

279

5 Instrumentation Analysis

5.9 Tracking Flow of Control

Note that the instrumented program produced for our example contains some paths that
we know to be infeasible. For example, it should not be possible to start at the initial state
and immediately execute the second case of the main branch. This case was generated
from the precondition

∃x′. (ls(n1;x′, x) ∗ ls(n0;x, nil))

but this formula does not hold in the initial state of ls(n;x, nil) (the variables n0 and n1

have not yet been assigned values). We can rule out such spurious paths in the following
way. We number each element of Γ(L1) and add an instrumentation variable that tracks
which precondition was supplied for the current execution of the code at L1. This counter
is initially set to the value corresponding to the initial state. If we make this change, giving
the initial state number 1 and the invariant number 2, and using p to track the precondition
from which we are executing, we obtain the code in Figure 5.16. Control now begins at
L0 so that p can be assigned the correct value.

We can apply this control-flow-tracking transformation to the general case. Cur-
rently, when we emit the final instrumented continuation in instrument, we iter-
ate over each continuation in the original program, emitting a branch of the form
branch true ⇒ k̂1, . . . , true ⇒ k̂n end where k̂1, . . . , k̂n are instrumentations of the orig-
inal continuation starting from different preconditions. If we number the preconditions
from 1 to n, we can track viable paths more precisely by emit a branch of the form

branch (p = 1)⇒ k̂1, . . . , (p = n)⇒ k̂n end

Then, in geninstCont, when we process a goto l command and discover that the current
state implies the ith element in the set Γ(l), we emit the instrumentation command p = i

just prior to the goto l statement.

This records in the code more information about feasible paths. However, not all ex-
ternal tools will make use of this information. It is common for program analysis tools to
handle control flow and data differently. Thus, our trick of encoding control flow informa-
tion in an extra integer-valued variable may not work. In such cases, since the domain of

280

5.9 Tracking Flow of Control

L0 : p := 1; goto L1

L1 : branch

p = 1⇒
branch

x 6= nil⇒ assume(true);

branch

n = 0⇒ assume(true); assume(false); halt,

n > 0⇒
n0 := n− 1; x := x.next; n1 := 1;
p := 2;goto L1

end,

x = nil⇒ assume(true); halt

end

p = 2⇒
branch

x 6= nil⇒ assume(true);

branch

n0 = 0⇒ assume(true); assume(false); halt,

n0 > 0⇒
n0 := n0 − 1; x := x.next; n1 := n1 + 1;
p := 2;goto L1

end

x = nil⇒ assume(true); halt

end

end

Γ(L0) = { ls(n;x, nil) }

Γ(L1) = { ls(n;x, nil) ∧ p = 1,

∃x′. (ls(n1;x′, x) ∗ ls(n0;x, nil)) ∧ p = 2 }

Figure 5.16: An instrumentation of the singly-linked list example that tracks flow of control using

a variable p.

281

5 Instrumentation Analysis

our p variable is finite, we can fully unroll the program with respect to p, as is commonly
done in bounded model checking [Biere et al., 1999], before passing it to the analysis tool.

5.10 Translating Branch Conditions

We will now consider what happens when we want to prove a property of our example
program. Suppose we are interested in showing termination, and in using an external ter-
mination prover to do the termination reasoning. Then we first convert the instrumented
program that we have produced to a numeric program using the projection operation de-
fined in Section 4.4. The result of the operation is given in Figure 5.17, where we have
projected the program onto the set of instrumentation variables IVar. The result is that the
branch conditions involving x become true and the x := x.next commands disappear.

The example does terminate in all cases, as the branch that executes goto L1 in the
p = 2 case is guarded by n0 > 0. This condition cannot remain true forever since this
branch also decreases n0. However, there are important properties of the program that are
not captured by this abstraction. Specifically, while the program will always terminate, it is
allowed to “terminate early.” The instrumented program terminates exactly when n0 = 0,
however the numeric abstraction may terminate with any value of n0 (by executing the
second true branch in the p = 2 case of L1.

As with our discussion of flow of control in the previous section, the result is still
sound, but the program contains paths that are known to be spurious. Thus we can obtain
a more precise abstraction if we can rule out these paths.

Consider the program below, which iterates through a list and then checks that x = nil

following the traversal (aborting if this does not hold). Triggering the abort in this program
is not possible.

L1 : 1 branch x 6= nil⇒ 2 x = x.next; 3 goto L1,

x = nil⇒ 4 goto L2 end

L2 : 5 branch x 6= nil⇒ 6 abort,

x = nil⇒ 7 halt end

282

5.10 Translating Branch Conditions

L0 : p := 1; goto L1

L1 : branch

p = 1⇒
branch

true⇒ assume(true);

branch

n = 0⇒ assume(true); assume(false); halt,

n > 0⇒
n0 := n− 1; n1 := 1;
p := 2;goto L1

end,

true⇒ assume(true); halt

end

p = 2⇒
branch

true⇒ assume(true);

branch

n0 = 0⇒ assume(true); assume(false); halt,

n0 > 0⇒
n0 := n0 − 1; n1 := n1 + 1;
p := 2;goto L1

end

true⇒ assume(true); halt

end

end

Figure 5.17: The numeric program corresponding to the program in Figure 5.16.

A simplified version of a numeric program for this code is given below. For each
branch condition, we write in square brackets the original program branch condition,
if any, associated with that branch. We have eliminated the branches of the form
n = 0 ⇒ assume(true); assume(false) since the assume(false) ensures that there are
no executions along this branch. We then replaced the single remaining “n > 0 ⇒ . . .”

283

5 Instrumentation Analysis

branch with “assume(n > 0); . . .,” which is equivalent.

L0 : p := 1; goto L1

L1 : branch

p = 1⇒
branch

true [x 6= nil]⇒ assume(true); assume(n > 0);
n0 := n− 1; n1 := 1;
p := 2; goto L1

true [x = nil]⇒ assume(true); goto L2

end

p = 2⇒
branch

true [x 6= nil]⇒ assume(true); assume(n0 > 0);
n0 := n0 − 1; n1 := n1 + 1;
p := 2; goto L1

true [x = nil]⇒ assume(true); goto L2

end

end

L2 : branch

true [x 6= nil]⇒ abort

true [x = nil]⇒ halt

end

There are two types of assume commands that have been inserted here. The
assume(n > 0) and assume(n0 > 0) commands came from expanding the list segment
predicate in order to prove that x is in the heap for the processing of the x := x.next

command. The assume(true) statements come from the call to branchAnnot in
geninstCont. Because the DEFL rule in frame inference is the only operation that
inserts instrumentation branches into the code, we will only record information about n
and n0 when we are forced to expand an inductive predicate. Branches such as those as-
sociated with the x 6= nil conditions in L1 and L2, which do not access the heap following
the branch, do not result in information about n and n2 being recorded.

What we would like to do is incorporate into the automated analysis some version of
the INST-BRANCHTRANS derived rule from Section 4.1.3. To do so, we need some method
of finding pure formulae implied by the current symbolic heap. One approach is suggested

284

5.10 Translating Branch Conditions

by our DEFL rule and the fact that branches that make use of DEFL already end up record-
ing some information about the instrumentation variables. This occurs because DEFL case
splits on the conditions associated with an inductive predicate and then LEFTPUREFALSE

effectively prunes any impossible branches, thus recording in the code which values of the
instrumentation variables are consistent with the current symbolic state.

One approach to recording more information at branch points is to have branchAnnot
eagerly try to expand all inductive predicates in the current symbolic state in order to test
which expansions are consistent. This can be accomplished fairly easily and generally by
augmenting our system for frame inference. We add support for pure abduction, which
is similar to the abductive inference of spatial predicates discussed in [Calcagno et al.,
2009] but discovers pure rather than spatial assumptions. The pure abduction problem is
to produce from ϕ and ϕ′ a pure formula Π such that ϕ ∧ Π⇒ ϕ′. To accomplish this we
modify the form of our sequents to the following.

Πa + Σa 8 ϕ =⇒
S

fk ϕ
′ � Γ ` k̂

We have added a component Πa to the left, which is the pure hypothesis necessary to
guarantee the conclusion. Πa is considered an output in the algorithmic interpretation of
our inference system. A derivation of the new sequent form above guarantees that the
following is derivable in the old system.

Σa 8 ϕ ∧ Πa =⇒
S

fk ϕ
′ � Γ ` k̂

For all rules except DEFL, Πa is simply passed unchanged from the hypothesis to the
conclusion. So, for example, PTOMATCHES becomes

PTOMATCHES

Πa + Σa ∗ (e 7→ ρ) 8 ϕ =⇒
S

fk ϕ
′ � Γ ` k̂

Πa + Σa 8 (e 7→ ρ) ∗ ϕ =⇒
S

fk ϕ
′ ∗ (e 7→ ρ) � Γ ` k̂

285

5 Instrumentation Analysis

The axioms set Πa to true, since when they hold no additional assumptions are neces-
sary.

RIGHTPURE

Π⇒ ∃~x. Π′ fk(∃~x. (Σa ∗ Σ) ∧ Π′) = Some
(
Γ, k̂

)
true + Σa 8 Σ ∧ Π =⇒

S
fk ∃~x. emp ∧ Π′ � Γ ` k̂

The DEFL rule then becomes the following which, rather than requiring all cases to be
provable, instead checks that the conclusion is provable for some subset of the cases. It
then includes the negation of all the cases which are not provable in the constraint Πa that
is returned. The idea is that, if these negations had been provided as assumptions, then all
the non-provable cases would have followed from LEFTPUREFALSE due to the conditions
for those cases being inconsistent with these assumptions. We will present an example
shortly.

We write I to represent a set of integers and write branch
i∈I to represent the branch with

one case for each element i of I (just as
⋃
i∈I represents the union with one component for

each i ∈ I). As is standard, the empty iterated conjunction is equal to true. We write ¬I
for the complement of I . This is all cases that are not in I . So if the cases are {1 . . . n}
and I ⊆ {1 . . . n} (as the rule requires), then ¬I is {1 . . . n} − I .

DEFL (
d(~v) <=> C1(~v) | . . . | Cn(~v)

)
∈ S

Ci(~e) =
(
Πi : let ~zi satisfy Π′i in ϕi

)
I ⊆ {1, . . . , n}

∀i ∈ I.
(
Πai + Σa 8 (ϕ ∗ ϕi) ∧ Πi ∧ Π′i =⇒

S
fk ϕ

′ � Γi ` k̂i
)

∧
i∈I

(Πi ⇒ Πai) ∧
∧
i∈¬I

(¬Πi) + Σa 8 ϕ ∗ d(~e) =⇒
S

fk ϕ
′�

(
⋃
i∈I Γi) ` branch

i∈I
. . . ,Πi ⇒ ~zi := ?;assume(Π′i);k̂i, . . . end

∀i. ~zi 6∈ fv(ϕ,Σa,Πi)

The assumptions Πa that build up can be simplified using rules of Boolean logic, as we
show later in an example.

The soundness result then becomes the following.

Theorem 33. If Πa + ϕ =⇒
S

fk ϕ
′ � Γ ` k̂ then

Γ ` {ϕ ∧ Πa} k̂ IIVar k

286

5.10 Translating Branch Conditions

Soundness of the augmented proof system is straightforward. For most rules it follows
directly from the induction hypothesis, since Πa is not changed from premise to conclu-
sion. For the axioms, the same proof can be reused since ϕ ∧ true ⇔ ϕ. For DEFL, the
reasoning is similar to that for the original rule in terms of reducing cases to instances of
the inductive hypothesis. The main addition is that we must show that the omitted cases
have proofs if we assume Πa. But Πa contains the negation of the case conditions for all
omitted cases, so ϕ ∧ Πa implies false in every omitted case, allowing us to prove each of
these cases with LEFTPUREFALSE.

We can now give a definition of branchAnnot that uses this augmented frame infer-
ence procedure to introduce assumptions on instrumentation variables at every branch case
present in the original program. The code for the function is listed on this page. Given
the current symbolic state formula ϕ, the function tries to prove for each branch condition
ei that ϕ ∧ ei ⇒ false. It does this by making a call into frame inference. If the proof
search succeeds, then Πa will contain the conditions under which this implication holds.
This makes Πa an under-approximation of the negation of the branch condition. To obtain
an over-approximation of the branch condition, we simply negate Πa.

Function branchannot(ϕ, e1, e2, . . . , en). Function for annotating original
branches with pure formulae over the instrumentation variables that are guaranteed
to hold by each original branch. ϕ is the current symbolic state and e1, . . . , en are the
conditions to be translated.

fun f(ϕ) =
return Some

(
∅, halt

)
in

foreach ei do
if Πa + ϕ ∧ ei =⇒

S
fk emp ∧ false � Γ ` k̂ then

e′i := ¬Πa

end
end
return (e′1, . . . , e

′
n)

287

5 Instrumentation Analysis

We will now show an example demonstrating the use of our augmented version of
frame inference to infer conditions on instrumentation variables. Suppose we have the
following state, using the ls(n;x, y) predicate from earlier.

(ls(n1;x, y) ∗ ls(n2; y, x)) ∧ n1 + n2 > 0

This indicates that the heap consists of a non-empty cyclic list with x and y pointing into
it. We will translate the branch condition x 6= y into a condition on n1 and n2. We give the
proof tree in Figure 5.18, following the syntax from section 5.6, where we annotate each
node in the tree with the name of the rule that is applied and list any parameters that must
be chosen next to the name. Below the name of the rule, we write the output. Since we are
only interested in the set of assumptions that are returned, we only list Πa and omit Γ and
k̂. We write not provable for the cases for which no proof can be found.

The derivation below the root of the tree in the figure demonstrates how the condition
that is returned can be simplified to ¬(n1 > 0) ∨ ¬(n2 > 0). This then gets negated and
used as the assumption for this case. Thus, we have discovered that in the state

(ls(n1;x, y) ∗ ls(n2; y, x)) ∧ n1 + n2 > 0

if x 6= y then it is also the case that n1 > 0 ∧ n2 > 0. We can perform a similar analysis
working from the condition x = y. We will get a proof tree like that in Figure 5.18, but the
not provable and LEFTPUREFALSE cases will be flipped. The condition returned will sim-
plify to (n1 6= 0)∧(n2 6= 0) resulting in an assumption for the case of (n1 = 0)∨(n2 = 0),
exactly the conditions under which the state allows us to conclude x = y (although the
result is not always exact; in general it is an over-approximation of the condition we are
analyzing).

We now return to our list traversal example from page 284, in order to insert branch
assumptions and obtain an abstraction that is more precise. Figure 5.19 gives the result.
In the p = 1 case, the condition that we obtain for x 6= nil is n > 0 and for x = nil

we obtain n = 0. For p = 2 the conditions are n0 > 0 and n0 = 0. We have also
expanded the continuation atL2 to account for the fact that it is executed from two different
preconditions.

288

5.10 Translating Branch Conditions

DEFL (ls(n1;x, y))(
(n1 = 0)⇒ ((n2 = 0)⇒ true) ∧ (n2 > 0⇒ true) ∧

(n1 > 0)⇒ ((n2 = 0)⇒ true) ∧ ¬(n2 > 0)
)

⇔ true ∧ (n1 > 0⇒ ¬(n2 > 0))

⇔¬(n1 > 0) ∨ ¬(n2 > 0)

DEFL (ls(n2; y, x))

((n2 = 0)⇒ true) ∧ (n2 > 0⇒ true)

EXISTSL [a/z]
true

LEFTPUREFALSE
true

n2 = 0

EXISTSL [b/z]
true

LEFTPUREFALSE
true

n2 > 0

n1 = 0

DEFL (ls(n2; y, x))

((n2 = 0)⇒ true) ∧ ¬(n2 > 0)

EXISTSL [c/z]

LEFTPUREFALSE
true

n2 = 0

not provable

n2 > 0

n1 > 0

Derivation of

Πa + (ls(n1;x, y) ∗ ls(n2; y, x)) ∧ n1 + n2 > 0 ∧ x 6= y =⇒
S

fk emp ∧ false � Γ ` k̂

Figure 5.18: Proof for the given frame inference query. Below each rule name we show the value

that Πa has in the conclusion of that rule.

It is now clear due to the additional assume statements that goto L2 can only be exe-
cuted in the p = 1 case if n = 0. The assume(n > 0) that guards the abort command in
L2 then ensures that abort will not be reached in any execution. A similar situation holds
with n0 for p = 2.

In this example, unreachability of abort could have been proved with pure heap rea-
soning (integer values are not required). However, for more complicated properties, such
as computing upper bounds on variables, and for more complex examples with multiple
integer quantities involved, it can be useful to have a more accurate numeric abstraction.

289

5 Instrumentation Analysis

L0 : p := 1; goto L1

L1 : branch

p = 1⇒
branch

true [x 6= nil]⇒ assume(n > 0); assume(n > 0);
n0 := n− 1; n1 := 1;
p := 2;goto L1

true [x = nil]⇒ assume(n = 0); p := 1; goto L2

end

p = 2⇒
branch

true [x 6= nil]⇒ assume(n0 > 0); assume(n0 > 0);
n0 := n0 − 1; n1 := n1 + 1;
p := 2;goto L1

true [x = nil]⇒ assume(n0 = 0); p := 2; goto L2

end

end

L2 : branch

p = 1⇒
branch

true [x 6= nil]⇒ assume(n > 0); abort

true [x = nil]⇒ assume(n = 0); halt

end

p = 2⇒
branch

true [x 6= nil]⇒ assume(n0 > 0); abort

true [x = nil]⇒ assume(n0 = 0); halt

end

end

Γ(L1) = { ls(n;x, nil) ∧ p = 1,

∃x′. (ls(n1;x′, x) ∗ ls(n0;x, nil)) ∧ p = 2 }

Γ(L2) = { ls(n;x, nil) ∧ p = 1,

∃x′. (ls(n1;x′, x) ∗ ls(n0;x, nil)) ∧ p = 2 }

Figure 5.19: The numeric program corresponding to the program from page 284 after perform

branch condition annotation. The original branch conditions are given in square brackets.

290

5.11 Experimental Results

5.11 Experimental Results

We have implemented the techniques described here in the tool THOR [Magill et al., 2008].
The program takes as input a file containing specifications of inductive predicates and a
C language source file. The source file can optionally be annotated with function pre-
and post-conditions. If pre- and post-conditions are not provided, they are inferred by the
analysis (with the assumption that the heap is empty at the beginning of execution). The
program is analyzed using the data structure specification provided and a numeric program
is generated which can be passed to an external tool for further analysis. The numeric pro-
gram can be generated in several formats, matching the input languages of various analysis
tools. The most useful output format is C language source code, as many verification tools
can accept C language source either directly or after some simple translation.

THOR is written in Ocaml and uses Yices [Dutertre and Moura, 2006] as the external
theorem prover for discharging pure entailments. It uses the CIL [Necula et al., 2002]
program analysis framework to handle parsing of the C code and to convert the input
to a more regular form (e.g. eliminating switch statements by encoding them using if
statements and gotos).

5.11.1 Simple Examples

Table 5.2 summarizes the experimental results of verifying safety and termination of some
programs that manipulate different inductive data structures. For each program, we use
THOR to produce the numeric abstraction of the original program. Then we use BLAST

[Henzinger et al., 2002] and ARMC [Podelski and Rybalchenko, 2007] to verify assertion
safety and ARMC-LIVE to check termination of the numeric abstraction. The results of
BLAST, ARMC, and ARMC-LIVE are all consistent with the expected results and thus
we only list the timing information.

Most of the programs are common data structure manipulations that involve looping,
e.g. to insert an element into a binary search tree. In such cases termination is the main
property of interest. The first two doubly-linked list examples require the proving of in-

291

5 Instrumentation Analysis

Safety yTerminationy

Program Expected Result TNA TBLAST TARMC TARMC-LIVE

Doubly Linked Lists

copy zip safe / terminates 4.862 0.238 7.674 31.683

iter sum safe / terminates 1.204 0.342 8.036 9.589

Circular Doubly-Linked Lists

traverse safe / terminates 1.526 0.046 0.908 1.383

delete safe / terminates 2.245 0.068 11.138 20.204

meet safe / diverges 0.760 0.126 1.734 0.180

Circular Linked Lists

sum safe / terminates 0.827 0.065 1.621 2.582

add after safe / terminates 1.072 0.061 4.846 12.342

add after loop safe / diverges 0.997 0.065 1.945 3.364

Skip Lists

create safe / terminates 9.651 0.122 10.546 34.960

lift unsafe / diverges 10.464 0.356 5.814 971.090

find loop safe / diverges 4.431 0.106 36.860 45.709

Binary Search Trees

insert safe / terminates 1.550 0.046 0.458 0.895

mem safe / terminates 0.573 0.042 0.387 2.690

Table 5.2: Experimental results. Time is in seconds. TNA represents the time required to produce

the numeric abstraction. TBLAST, TARMC, and TARMC-LIVE represent the time taken to verify the

numeric abstraction by BLAST, ARMC, and ARMC-LIVE respectively.

292

5.11 Experimental Results

teger properties in order to guarantee memory safety. For example copy zip defines a zip
routine that takes in two lists and returns a list of pairs. The routine assumes that both lists
have the same length and is only memory safe if this holds. The main function then calls
zip with a list plus the result of a list copy operation.

Attempting to construct a standard memory safety proof for such a program fails, as
we cannot show that certain memory accesses do not involve dereferencing nil. To fix this,
we can take each command A[x] that requires a heap cell to exist at x and replace it with
“if x 6= nil then A[x] else abort.” This yields a program where the assumption that x 6= nil

is available to us when we execute the command A[x], but we are left with potential aborts
in the code. If we can then show that abort is unreachable, by running a safety checker on
the numeric program we generate, then we will have shown memory safety of the original
program. Essentially, we have used the error operation represented by abort to capture
a class of memory errors (those that result from dereferencing nil). The copy sum and
iter sum examples are both based on taking this approach to proving memory safety.

5.11.2 Complex Examples

We have also run some experiments involving more complicated data structures and algo-
rithms. These were chosen as motivating examples for work on circuit translation [Cook
et al., 2009a] that requires, as a first step, the computation of a bound on the amount of
memory allocated by a program. To compute this bound, we take a program and replace
instances of alloc(f1, . . . , fn) with the command alloc(f1, . . . , fn); mem := mem + 1.
We also replace free x with free x; mem := mem − 1. If we initialize mem to 0 at the
beginning of the program, then mem will always be a count of the number of memory
cells currently allocated in the heap.

We can then ask a tool for computing bounds on integer variables to give a bound on
mem in terms of the program inputs. For example, a program that reads in n integers
may store these values in a list, allocating n heap cells in the process. If it performs some
sorting of this list, it then might use auxiliary storage, which we can also bound in terms
of n. Generating a numeric program that captures the connection between the integer n

293

5 Instrumentation Analysis

that is input and subsequent data structure allocations and transformations is the key to
obtaining such bounds.

Priority Queue This example repeatedly reads inputs, inserting them into a sorted list.
It then outputs the list in sorted order.

Merge Sort This example implements a merge of two sorted sequences.

Packet Sorting This example processes pairs of identifiers and data. The program reads
in a list of identifier, data pairs and filters them as they are read to ensure that if a duplicate
identifier is encountered, the data is discarded. Once it has read in a certain number of
unique elements, it sorts them according to identifier and then outputs the sorted list. This
example mimics the behavior of a simple network device, which would use a similar setup
to process network packets.

Dictionary This example uses a binary search tree to implement a dictionary.

Huffman Encoder This example implements the Huffman encoding algorithm. It reads
in a list of symbols paired with their frequency. It builds a list of one-element trees using
this data. It then repeatedly merges the two trees in the list with the lowest frequencies,
assigning the sum of their frequencies to the resulting tree. The building phase finishes
when the list contains a single tree. The program then processes queries, repeatedly read-
ing symbols from the input and outputting the binary string corresponding to the encoding
of that symbol.

Results Table 5.3 lists the results from this set of experiments. In each case, the bound
on allocated memory in terms of input sizes is listed along with the number of lines of
code in the example.

294

5.11 Experimental Results

Program Bound LOC

merge 8 ∗ n1 + 8 ∗ n2 80

prio 8 ∗ n 56

packet 12 ∗ n+ 8 95

huffman 52 ∗ n− 12 202

bst dict 24 ∗ n 142

Table 5.3: Heap bounds and lines of code.

Numeric programs were produced for all examples and bounds were inferred by the
bounds inference algorithm for all examples except huffman. In this case, the numeric
program was too large for the bounds analysis tool, indicating a need for better meth-
ods of simplifying the numeric abstraction and eliminating unnecessary instrumentation
variables.

5.11.3 Summary and Challenges

Our implementation demonstrates the viability of this approach for reasoning about safety
and liveness of heap-manipulating programs. However, there are still issues to be solved
before such an approach can scale to large programs. The biggest issue is the size of the
numeric programs that are generated. The algorithm presented in this dissertation and
implemented in THOR produces a number of temporary variables that could potentially be
eliminated, either with a post-processing pass or during the instrumentation process. Extra
variables generally degrade performance of the analysis tools that we run on the numeric
programs. Finding a general method for eliminating these temporary variables is ongoing
work.

Another contributor to the size of the numeric program is the disjunction and subse-
quent extra branching that is introduced by the analysis. This is hard to avoid, as much of
it is needed for the memory safety proof. Better abstraction procedures and better abstract
domains that benefit shape analysis also provide an immediate benefit to an algorithm

295

5 Instrumentation Analysis

such as the one in THOR, which is heavily based on these techniques. A smaller state
space during the memory safety proof translates directly to a smaller numeric program.
Much progress has been made in terms of abstract domains for shape analysis that permit
more concise proofs of memory safety [Yang et al., 2008], so we are optimistic that there
is room for improvement in numeric program size based on these techniques.

It may also be worth investigating whether performing additional abstraction on the
numeric program would help with these issues. For example, abstract interpretation meth-
ods could possibly be used to simplify the update relations involved. Such investigations
are left to future work.

296

Chapter 6

Related Work

We now present some background material and describe existing work in the area of
static analysis for heap-manipulating programs, termination proving of such programs,
and translations from heap programs to numeric programs.

6.1 Approaches to Analyzing the Heap

First, we will discuss various approaches to reasoning about imperative programs that ma-
nipulate the heap and highlight the advantages that separation logic provides over previous
methods.

Alias Analysis The simplest static analysis for programs that use the heap is an alias
analysis [Shapiro and Horwitz, 1997b, Landi and Ryder, 1992]. These analyses fall into
the general category of data-flow analysis and originate from the compiler community. At
each program point, a set of equivalence classes is computed. Depending on the analy-
sis, these equivalence classes either represent variables that must alias or those that may

alias [Deutsch, 1994]. This information is useful for code optimization, but also when
doing program verification. For example, consider the sequence of commands [x] =

3; [y] = 4, where we use brackets to indicate dereferencing. This results in a state

297

6 Related Work

where (x = y) ∧ y = 4 if x and y must alias. If they are known to not alias, it results
in x = 3 ∧ y = 4. And if they may alias, we must consider that both possibilities could
hold. That is, the postcondition would be (x = y ∧ y = 4) ∨ (x = 3 ∧ y = 4). In general,
if n variables may alias, we must consider 2n cases (in each case assuming that a distinct
subset of the variables alias). This quickly becomes intractable even for small n. And n
is generally not small, particularly when dynamic allocation and deallocation are involved
[Shapiro and Horwitz, 1997a]. It should be noted that the imprecision of alias analysis is
not a problem for compiler transformations. If the alias analysis results are too imprecise
to be useful, the compiler simply forgoes any alias-based optimizations it would otherwise
apply. Thus, for compiler optimizations, it provides a good tradeoff between usefulness of
results and analysis time.

Shape Analysis Shape analysis is the next step up in precision for the analysis of pro-
grams that manipulate the heap. Rather than tracking alias sets of variables, it tracks
invariants of pointer structures. For example, in the case of doubly-linked lists, a shape
analysis would check the fact that if the forward link of memory cell a points to cell b, then
the back link of cell b points to cell a. Shape properties also encompass heap reachability
properties. Continuing with the example of linked lists, we might want to track whether
the list is null-terminated. That is, whether a cell holding the value null is reachable from
the head of the list by following “next” pointers.

TVLA One of the most thoroughly-studied shape analysis frameworks is TVLA (Three-
Valued Logic Analysis) [Sagiv et al., 2002]. As the name suggests, it is based on using
a three-valued logic to represent abstract states. More specifically, the logical foundation
consists of first-order logic with transitive closure. The set of individuals corresponds to
the set of heap cells, and unary predicates are used to record which cell a stack variable
points to. So, for example, if x and y are pointer-valued variables in the program, we would
have two predicates px and py. If x and y alias, then this situation would be represented by
the formula ∃c. px(c) ∧ py(c). Fields are represented by binary predicates, f(a, b), where
f is the field name, a is a memory cell with field f , and b is the cell pointed to by the f

298

6.1 Approaches to Analyzing the Heap

field of a (or equivalently, b is the value stored in the f field of a). So if x is a pointer to a
record that contains a next field, and the next field points to the same memory location as
y, this would be written ∃c, d. px(c) ∧ next(c, d) ∧ py(d). The analysis itself uses models
rather than formulas to represent the program state at each point. The effect is the same in
that abstract states in both approaches represent sets of concrete states.

Shape Analysis Based on Separation Logic As part of this thesis, I present a shape
analysis based on separation logic, which we originally described in [Magill et al., 2006].
Similar analyses have also been presented in [Distefano et al., 2006] and [Chang et al.,
2007]. Significant advances to the style of analysis we utilize are present in [Berdine
et al., 2007] and [Calcagno et al., 2009]. Berdine et al. [2007] give a framework with
support for inferring the predicates necessary to describe higher-order structures, such as
lists-of-lists. Calcagno et al. [2009] give a procedure for using bi-abduction to infer not
only invariants and post-conditions, but also preconditions. This helps to eliminate the
need for any programmer-supplied annotations.

Other work includes [Chang et al., 2007], which gives a shape analysis framework that
allows data structures to be defined by routines for checking their structural invariants.
Chang et al. have extended their approach to support numeric invariants of data struc-
tures Chang and Rival [2008], but not via reduction to numeric programs. [Guo et al.,
2007] give a method of automatically inferring the appropriate inductive definitions based
on the code being analyzed. Finally, Distefano and Parkinson [2008] give a shape analy-
sis with support for user-provided rewrite rules, although the rules are not automatically
generated from inductive definitions, as they are in our implementation.

There has also been previous work on extending shape analysis with support for track-
ing integer properties. Calcagno et al. handle the case where arithmetic is allowed in the
domain of the heap Calcagno et al. [2006]. For approaches based on TVLA, there is the
work of Beyer et al. Beyer et al. [2006]. Rugina develops an analysis targeting balance
properties of tree-shaped data structures Rugina [2004]. Nguyen et al. present a veri-
fication condition-based procedure that can handle shape plus size properties when loop
invariants and pre- and post-conditions are provided Nguyen et al. [2007]. However, none

299

6 Related Work

of these use the method described here of generating numeric programs as an intermediate
step in the verification process.

Relation with TVLA There are some similarities between these approaches and TVLA.
For example, they can all be described using the framework of abstraction interpretation.
Also, their approach to abstraction is similar in that they all have operations that can be
seen as folding and unfolding of an inductive definition of the data structure. However,
there are marked differences as well. In TVLA, one describes a data structure by stating a
number of properties of that structure. For example, a list is defined in terms of the basic
predicates for stack variables and field dereference plus reachability and cyclicity. Reason-
ing about doubly-linked lists requires the addition of predicates relating dereferences of
“forward” and “back” fields. In the shape analysis based on separation that we presented
as part of this thesis, the data structure as whole is defined inductively. We believe this
allows for a more straightforward definition from the user’s point of view.

On the other hand, there are also advantages to the TVLA approach. Because it tracks
individual data structure properties, rather than descriptions of specific structures, it is
more general than the approach followed in our work. When faced with a data structure
that was not considered when defining the instrumentation predicates, it may still be able
to provide some information.

Another notable difference between the two approaches is in their treatment of disjoint
data structures. In TVLA, two structures that do not overlap are described by explicitly
stating that elements in one are not reachable from elements in the other. The treatment
based on separation logic has support in the logic for expressing disjointness, but no ex-
plicit support for expressing reachability (instead, reachability information is implicitly
encoded in the inductive definitions we use for data structures). Taking disjointness as a
fundamental property allows for local reasoning, which has advantages in terms of scala-
bility of the analysis.

300

6.2 Termination Proving

6.2 Termination Proving

Termination proving for heap-manipulating programs has been described in Loginov et al.
[2006a] and Podelski et al. [2008]. Both of these approaches utilize a different shape
analysis framework and Loginov et al. [2006a] does not involve the production of numeric
abstractions, instead incorporating a rank-finding algorithm directly in the analysis.

The work in Podelski et al. [2008] does involve the production of numeric abstrac-
tions, but they are produced from counter-example traces generated by the termination
analysis and used to communicate with the heap analysis, which is run only on-demand.
By contrast, we convert an entire program to a numeric abstraction before doing any ter-
mination analysis, which permits a looser coupling between the termination tool and the
shape analysis tool.

In Brotherston et al. [2008a], Brotherston et al. give a method of showing termination
of programs using separation logic, based on the notion of cyclic proofs. However, they
do not give a static analysis capable of automatically generating these proofs. It is also
not clear that such an approach can handle cases where more complicated termination
arguments, such as lexicographic orderings, are needed.

In Berdine et al. [2006] a method is presented for using a separation logic shape anal-
ysis to prove termination. However, that work is tied to a specific rather weak abstract
domain for tracking size changes. The approach described here is able to obtain much
more precise information by tracking the actual change in data structure size rather than
only the presence and direction of change.

The closest work to ours is that of Boujjani et al. Bouajjani et al. [2006] which gives
a bi-simulation between programs manipulating singly-linked lists and counter automata
and Habermehl et al. Habermehl et al. [2007] which provides a termination result for trees
by relating tree-manipulating programs to tree automata. By focusing on specific data
structures, these papers are able to obtain very precise results. In our work, we obtain a
simulation result rather than bi-simulation, but the result holds of arbitrary inductively-
defined data structures.

301

6 Related Work

6.3 Program Logics

In this section we discuss related work in logics for reasoning about programs and, in par-
ticular, logics with a notion of auxiliary variables, logics designed to relate two programs,
and logics designed for goto languages.

Auxiliary Variables Our instrumentation variables are similar in usage to auxiliary vari-
ables in Hoare logic [Owicki and Gries, 1976]. Both auxiliary variables and instrumen-
tation variables are not permitted to affect the values of the original variables nor the
control flow of the original program. However, deciding whether one program has been
derived from another by the addition of auxiliary variables is a purely syntactic operation.
Our rules for placing commands involving instrumented variables are based in part on the
invariant that holds at the point where the command is being added. The process of in-
strumenting a program can also change the structure of the code by inserting or removing
branches. As such, there is not a simple syntactic relationship between the two programs.
Our treatment of existential quantifiers also differentiates our work as mentioned above
and in Chapter 4. By virtue of the fact that we are relating two programs and focusing
on simulation as the defining concept for soundness, we obtain rules that relate existential
quantification to nondeterministic assignment and disjunction to nondeterministic choice
in a novel way.

History Variables History variables Abadi and Lamport [1988] are a generalization of
auxiliary variables. An augmented transition system is obtained from an original transition
system via the addition of history variables if the systems satisfy properties H1-H5 in
Abadi and Lamport [1988], the first four of which informally correspond to the following.

H1. The state space of the augmented system consists of the state space of the
original plus the addition of some new variables.

H2. Initial states in the original system and augmented system agree on the val-
ues of the original variables.

302

6.3 Program Logics

H3. If the augmented system takes a step, and we project out the new variables,
then this corresponds to a step in the original system.

H4. The augmented system can simulate any step of the original system.

The condition H5 specifies how fairness constraints for the properties of these systems
should be related, and we omit it here since it does not constrain the transition systems.

In this thesis, we have proved H1, H2, and H4 for our instrumented programs. We do
not give a formal treatment of H3 for instrumented programs, though we conjecture that
it holds. In either case, clearly our instrumented variables have much in common with
history variables.

If H3 holds, one could view our theory of instrumented programs as giving a particular
method of adding history variables to heap-manipulating programs using separation logic
annotations to guide the process. As with auxiliary variables, the connection between
added variables and existential quantification in the separation logic formulae is novel.
The conditions above on history variables give another clue as to why such a connection is
reasonable. Existential quantification is, in a sense, the logical analogue of the projection
operation referenced in H3 and H4.

Relating Programs The concept of relating two programs at different levels of abstrac-
tion is used heavily in the area of program refinement [Wirth, 1971]. However, the goal of
our work, and thus the approach, is different. In program refinement, the goal is typically
to start from a high-level description of the program and produce successively lower-level
refinements until a concrete implementation is reached. By contrast, our goal is to take a
concrete implementation and produce a more abstract version. Furthermore, the relation
between the two programs in our approach is looser than would generally be acceptable in
a program refinement context. This is motivated and justified by our goal of passing the
numeric abstractions to automated program verification tools.

Another approach to relating programs, based on a relational version of Hoare logic,
is given in [Benton, 2004]. The goal is to relate two programs when their total correctness

303

6 Related Work

properties are the same. In our work, since we are only concerned with obtaining an
over-approximation of the original program, the numeric program may diverge in cases
where the original program terminates. We also are able to get by with a logic where the
annotations represent sets of states rather than relations. Indeed, the main goal of our work
is to offload the relational reasoning to separate analysis tools.

Yang [2007] gives a relational logic like Benton’s for separation logic and uses it to
prove that the Schorr-Waite graph marking algorithm is equivalent to a depth-first traversal.
This approach differs from ours in that we are only concerned with preserving properties
of the stack variables, whereas the logic Yang presents tracks relations between heaps as
well. The other main difference is that we are focused on a logic that can be automated
and a means of automating it, whereas the logic in [Yang, 2007] is currently only suitable
for by-hand proofs.

Our treatment of existential quantifiers is also a key difference between this work and
other work in logics for relating programs. Because we state soundness in terms of simu-
lation, we are able to use the EXISTS rule, which is explained in Chapter 4, Figure 4.1 to
insert and update variables representing values that are quantified in the original program
proof. We thus obtain information about how quantified values change without resorting
to relational invariants.

Verification of Goto Languages Clint and Hoare Clint and Hoare [1972] present a logic
for functions that can be interrupted by goto. Here the idea is already present of viewing
“goto” as a special type of function that is known to never return. This is essentially the
same as our treatment, where gotos are viewed as executing a continuation. The proof
system that Clint and Hoare develop handles the goto construct by allowing the program
prover to assume that the triple {Q} goto l {false} holds of any goto statement, where
Q is a precondition associated with label l. In this thesis, we note the redundancy of the
post-condition for a goto statement and instead work solely with preconditions. A more
significant difference exists in the general approach of Clint and Hoare [1972] versus the
approach taken here. Clint and Hoare view gotos as exceptional cases in an otherwise well-
structured program. We instead view gotos as the main control flow construct and provide

304

6.3 Program Logics

no support for structured control constructs such as while loops. This has the advantage
of making the treatment extremely uniform. Arbib and Alagic [1979] and de Bruin [1981]
also present similar systems for proving partial correctness of goto programs and note the
connection to continuations.

305

6 Related Work

306

Chapter 7

Conclusion

In this thesis work, we have done the following

1. Developed a logic of instrumentation for relating a heap-manipulating program to a
numeric abstraction, which tracks how numeric properties of the data structures are
changing.

2. Developed a static analysis algorithm that generates numeric abstractions, the
soundness of which is justified using the logic of instrumentation.

3. Implemented the static analysis and used this implementation to prove properties of
programs of various sizes and operating over various data structures.

We now discuss each of these items in turn, summarizing our contributions and remaining
future work in each area.

7.1 Logic of Instrumentation

The logic we developed in Chapter 4 gives a program proving method based on adding
additional variables to the program. The basic judgment in the logic relates a program
to an instrumentation of that program. This instrumentation consists of the commands

307

7 Conclusion

from the original program plus some additional commands and branches involving new
variables not present in the original program.

This proof system is adapted to proving properties preserved by simulation and thus
has a different character than most traditional logics based on pre- and post-condition rea-
soning. In particular, the simulation-based view of verification has led us to elevate non-
determinism to a more prominent role. We obtain proof rules that use nondeterministic
choice in the language to encode disjunctions from the logic and which use nondetermin-
istic assignment to capture existential quantification.

The logic is proved sound where the notion of soundness is that if two programs are
related by the logic, then a simulation relation exists between them. The direction of sim-
ulation is such that the instrumented program is an abstraction of the original program and
the notion of simulation is stuttering simulation. This implies that all LTL\X properties
that hold of the instrumentation also hold of the original program. We define a version
of LTL\X where the state properties can contain separation logic formulae. These formu-
lae are then shown to be invariant under stuttering equivalence and thus respect stuttering
simulation.

Future Work We only considered the soundness question in the work presented here.
A remaining open question is what can be attained in terms of completeness. There are
many possible questions to investigate here. Bouajjani et al. [2006] obtain a bi-simulation
result for list programs and counter automata, implying that our logic of instrumentation or
something similar could potentially be shown complete for this class of programs. It would
also be interesting to investigate completeness results that are relative to completeness of
the underlying shape analysis.

The instrumentation variables which we add when constructing Instrumented programs
function similarly to auxiliary variables Owicki and Gries [1976], but are less restricted in
their interactions with existing program variables and control flow. Such variables may be
useful in other situations where auxiliary variables are used, such as in proofs of parallel
programs.

308

7.2 Analysis Algorithm

Finally, considering under-approximations would provide a means of proving non-
termination and other properties that are existentially quantified over paths. Combined
these could potentially allow the sound handling of a more expressive temporal logic such
as CTL∗.

7.2 Analysis Algorithm

We also presented an automated analysis based on the logic just described. This cor-
responds to a restricted subset of the derivations in the logic of instrumentation and its
soundness is justified by showing that a derivation in this logic exists for every output
returned by the analysis.

The analysis is based on a shape analysis that uses separation logic to represent abstract
states. In the process of describing how to automatically add instrumentation commands,
we also show how we can automatically obtain shape invariants for data structures.

Our analysis accepts user-provided descriptions of inductive data structures and uses
these during the shape analysis and instrumentation process. By altering these description
files, the user can add support for new inductive data structures or change the notion of
size that is tracked by the instrumentation variables.

Future Work The numeric programs that are produced by the automated analysis can
sometimes be quite large. However, generally a much shorter proof is possible according
to the logic presented in the first part of the thesis. Adding optimizations and simplification
passes to the analysis in order to have it produce a numeric program closer to the short
program that a human can often discover is an ongoing challenge. That this issue arises
is not surprising since the same issue arises with shape analysis using separation logic.
In that case, the invariants discovered automatically are often more complex than those
discovered by hand and finding better abstract domains that permit the discovery of these
simpler invariants has clear benefits in terms of scalability of the approach. Much progress

309

7 Conclusion

has been made in this direction for the pure shape analysis problem [Yang et al., 2008], so
we are optimistic that similar improvements may be possible for instrumentation analyses.

7.3 Implementation

We implemented the analysis algorithm described above and ran experiments involving a
number of programs over a variety of data structures, including composite data structures
such as lists of trees. The implementation analyses C code and generates a new C language
program that is a numeric abstraction of the input. Support for various data structures is
implemented by defining a language of inductive specifications, which describe inductive
properties of the data structures. For example, a description of a doubly-linked list would
specify that it can be unfolded from the front or the back and that the concatenation of two
list segments is also a list.

The implementation is written in Ocaml and uses CIL to parse the C code provided
as input. Yices is used to prove pure entailments and an implementation of the frame
inference procedure described in Section 5.5.3 is used to reason about spatial formulae. A
number of optimizations and command line options affecting analysis behavior have been
incorporated into the implementation in order to efficiently handle a larger set of programs.

Future Work A great deal of implementation efficiency comes down to heuristics. For
example, quick checks that indicate an implication is not provable, and save the time
required to do a full proof search, can significantly program decrease analysis time.
Heuristics for generating abstraction patterns from inductive specifications and choos-
ing good points at which to apply abstraction are also important. For example, sup-
pose we have an inductive definition for a list segment and are analyzing a loop that
generates a null-terminated list at x. We could perform abstraction once we have a
single points-to x 7→ [next : nil] or we could wait for a pair of points-to predicates
∃z. x 7→ [next : z] ∗ z 7→ [next : nil]. Choosing the first option results in shorter analysis
times, but sometimes prevents programs from being proved memory safe that could be
proved by taking the second approach of waiting longer before performing abstraction.

310

7.3 Implementation

Similarly, when analyzing programs that call non-recursive functions, these functions
can be inlined and the program treated as if it were written as a single large function. Al-
ternatively, we can view function call sites as an opportunity to apply abstraction, which
simplifies the symbolic static formulas at that call site, but may result in too much infor-
mation loss and a failure to prove memory safety.

Currently, we choose a reasonable default for these options and provide command-
line flags that allow the user to alter the behavior of the analysis. One approach that
may provide a better solution would be to incorporate counter-example guided abstraction
refinement [Clarke et al., 2003]. This technique, which originated in the software model
checking community, is based on the idea of performing abstraction as aggressively as
possible but providing a means of backtracking and keeping more precise information if
this abstraction is found to cause problems.

While the frequency of calls to abstraction has a large effect on the running time of the
analysis, the actual abstraction function used is at least as important. We have chosen a
relatively simple abstraction function for our implementation and exploring other options
from the literature may provide additional improvements. For example, in [Yang et al.,
2008], an abstraction function is described that provides predicates for empty, non-empty,
and possibly-empty lists. While only one of these predicates is needed to reason about
list programs, including all of them allows for a fairly precise abstraction function that
still results in the small state space sizes that are usually associated with coarser abstrac-
tion functions. In [Chang et al., 2007] an abstraction function is described that uses the
symbolic execution history to guide the abstraction process. The current symbolic state is
compared to the symbolic state obtained during the previous iteration of a loop and this
combined information is used to guide abstraction.

It should be possible to incorporate techniques such as these into our instrumentation
analysis in order to further improve performance.

311

7 Conclusion

312

Appendix A

Guide to Notation

A.1 Programs, States, and Transition Systems

a The type of variables and expressions denoting addresses.

i The type of variables and expressions denoting integers.

τ An arbitrary type. Either a or i.

xτ Variable of type τ . Figure 2.1, page 16.

eτ Expression of type τ . Figure 2.1, page 16.

c Command. Figure 2.1, page 16.

k Continuation. Figure 2.1, page 16.

P Program. Figure 2.1, page 16.

fv(t) Free variables in some term t (t can be an expression, command,
continuation, program, logical formula, etc. Definitions 2, 3, and
2.2.1.

Values The set of values. Page 15.

Stores The set of stores. Page 15.

Records The set of records. Page 16.

313

A Guide to Notation

Heaps The set of heaps. Page 16.

v An element of Values. Page 15.

s An element of Stores. Page 15.

h An element of Heaps. Page 16.

(s, h) Memory State. A store, heap pair.

JeK Denotation of expression e. A function from Stores to Values.
Figure 2.2, page 18.

JcK Denotation of command c. A function from Stores× Heaps to
2Stores×Heaps∪{error}. Figure 2.3, page 115.

G Set of execution states. Page 24.

γ An element of G. Page 24.

; Transition relation for continuations. A subset of G×G. Figure
2.4, page 115.

−→
P

Transition relation for programs. A subset of G×G. Definition 13,
page 115.

S Transition System. A tuple of the form (A, I, F, 99K). Definition
11, page 47.

T A trace of a transition system. Definition 12, page 48.

traces(S) The set of traces of transition system S. Definition 48, page 48

((P |Q0)) The transition system corresponding to program P with
precondition Q0. Definition 14, page 48.

A.2 Relations

R An arbitrary relation.

E An equivalence relation.

R+ The transitive closure of relation R. Definition 16, page 49.

314

A.4 LTSL

s =V s
′ s and s′ agree on the values of variables in V . Definition 1, page 17.

γ
.
= γ′ The execution states γ and γ′ agree on all but the current

continuation. Page 89.

γ =V γ
′ The execution states γ and γ′ include the same heap and their stores

are =V -related. Definition 23, page 91.

γ
s
=V γ

′ The execution states γ and γ′ have stores that are =V -related. Their
heaps are not required to be the same. Definition 24, page 93.

A.3 Separation Logic

p~τ An inductive predicate name with arity ~τ . Also written as p when
the arity is clear from context. Figure 2.6, page 27.

ρ A record expression. Figure 2.6, page 27.

Ξ A spatial predicate. Figure 2.6, page 27.

Q A separation logic formula. Figure 2.6, page 27.

JρK The denotation of record expression ρ. A mapping from Stores to
Records.

(s, h) |=X Q The memory state (s, h) satisfies separation logic formula Q given
inductive predicate meanings X . Figure 2.7, page 28.

(s, h) |= Q The memory state (s, h) satisfies separation logic formula Q. Used
when the set of inductive predicate meanings X is clear from
context or otherwise unnecessary (all of the technical development
is independent of the particular choice of X).

A.4 LTSL

LTSLE The set of E-invariant LTSL formulae. Definition 25, page 94.

315

A Guide to Notation

LTSLV The set of LTSL formulae containing only variables in the set V .
All these formulae are ∼=V -invariant. Definition 26, page 98.

LTSLPV The set of LTSL formulae containing only pure state formulas over
variables in the set V . All these formulae are ∼ s

=V
-invariant.

Definition 27, page 99.

∃ (V ′, φ) The function on LTSL formulae defined in Figure 3.7 on page 103

S1
<∼R,E S2 S2 E-stuttering simulates S1 and R is the simulation relation

witnessing this. Definition 29, page 119.

T1 .E T2 T2 E-stuttering contains T1. Definition 21, page 86.

T1 ≈E T2 T1 and T2 are E-stuttering equivalent. Definition 21, page 86.

316

Appendix B

Pseudo-code

We use an ML-like pseudo-code when describing our algorithms. The type system in-
cludes the standard type constructors for tuples and option types. We also assume a “set”
type exists and use standard set notation to describe values of set type. The main language
constructs are match, let, and return.

return simply returns the value following it. So return 1 returns the integer value 1.
match examines a value and executes different code depending on the form of the value.
For example, the code below returns 1 if c is an assignment statement or 2 if it is an
allocation.

match c with
case x := e

return 1

case x := alloc(. . .)
return 2

end

The let command is used to introduce binding an perform pattern matching. The com-
mand let e1 = e2 in pattern matches e2 against e1, introducing bindings if the match suc-

317

B Pseudo-code

ceeds. If the match fails, the match failed clause is executed. The code below returns
Some

(
x
)

if the continuation k starts with an assignment to x and returns None otherwise.

let x := e;k′ = k in
return Some

(
x
)

match failed⇒ return None

Finally, we note that let statements can be sequenced and let bindings of the form x = t

where x is a variable and t is an arbitrary term can never fail (since they involve no pattern
matching. Also, functions can be recursive. As an example, the code in Figure 9 converts
all assignment statements into non-deterministic assignments in the continuation k.

Function make nondet(k). Pseudo-code example. Converts assignment statements
into non-deterministic assignments to the same variable.

match k with
case c;k′

let (x := e) = c in

let k′′ = make nondet(k′) in
return (x := ?;k′′)

match failed⇒
let k′′ = make nondet(k′) in

return (c;k′′)

case branch e1 ⇒ k1, . . . , en ⇒ kn end

let k′1 = make nondet(k1) in
...

let k′n = make nondet(kn) in
return branch e1 ⇒ k′1, . . . , en ⇒ k′n end

case goto l return goto l case halt return halt case abort return abort

end

318

B.1 Local Functions

B.1 Local Functions

We will also occasionally define functions that are local to the primary function being
presented in a figure. The syntax for this is as below, where localfun is the name of the
local function begin defined.

fun localfun(args) =
body of local function

in
body of primary function

319

B Pseudo-code

320

Bibliography

Martn Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical

Computer Science, 82:253–284, 1988. 6.3

Michael Arbib and Suad Alagic. Proof rules for gotos. Acta Informatica, pages 139–148,
1979. 6.3

T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate abstraction of
C programs. In PLDI, pages 203–213. ACM Press, 2001. 1

Nick Benton. Simple relational correctness proofs for static analyses and program trans-
formations. In In POPL, pages 14–25. ACM Press, 2004. 6.3

J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn, T. Wies, and H. Yang.
Shape analysis for composite data structures. In CAV, LNCS 4590, pages 178–192.
Springer, 2007. 3.3.3, 5, 6.1

Josh Berdine. personal communication, 2006. 2.4.2

Josh Berdine, Cristiano Calcagno, and Peter O’Hearn. A decidable fragment of separation
logic. In In FSTTCS, pages 97–109. Springer, 2004. 1, 5.5.1

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution with sepa-
ration logic. In APLAS, pages 52–68. Springer, 2005. 5.5.3

Josh Berdine, Byron Cook, Dino Distefano, and Peter W. O’Hearn. Automatic termination
proofs for programs with shape-shifting heaps. In CAV, pages 386–400. Springer, 2006.
1.1, 6.2

321

B Bibliography

D. Beyer, T. A. Henzinger, and G. Théoduloz. Lazy shape analysis. In CAV, LNCS 4144,
pages 532–546. Springer, 2006. 6.1

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model
checking without bdds. In TACAS ’99: Proceedings of the 5th International Conference

on Tools and Algorithms for Construction and Analysis of Systems, pages 193–207,
London, UK, 1999. Springer-Verlag. ISBN 3-540-65703-7. 5.9

A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with
lists are counter automata. In CAV, LNCS 4144, pages 517–531. Springer, 2006. ISBN
3-540-37406-X. 6.2, 7.1

M. Bozga, P. Habermehl, R. Iosif, F. Konecny, and T. Vojnar. Automatic verification of
integer array programs. In Computer Aided Verification, 2009. 2.4.3

Marius Bozga, Radu Iosif, and Swann Perarnau. Quantitative separation logic and pro-
grams with lists. In IJCAR ’08: Proceedings of the 4th international joint conference on

Automated Reasoning, pages 34–49, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN
978-3-540-71069-1. doi: http://dx.doi.org/10.1007/978-3-540-71070-7 4. 1

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. The polyranking principle. In
Proc. 32nd International Colloquium on Automata, Languages and Programming, vol-
ume 3580 of Lecture Notes in Computer Science, pages 1349–1361. Springer Verlag,
2005a. 1.1

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination analysis of integer
linear loops. In Martin Abadi and Luca de Alfaro, editors, Proc. 16th Intl. Conference on

Concurrency Theory (CONCUR), volume 3653 of Lecture Notes in Computer Science,
pages 488–502. Springer Verlag, August 2005b. 1.1

J. Brotherston. Formalised inductive reasoning in the logic of bunched implications. In
SAS, LNCS 4634, pages 87–103. Springer, 2007. ISBN 978-3-540-74060-5. 2.2.2

J. Brotherston, R. Bornat, and C. Calcagno. Cyclic proofs of program termination in
separation logic. In POPL, pages 101–112. ACM, 2008a. 6.2

322

B Bibliography

James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic proofs of program
termination in separation logic. SIGPLAN Not., 43(1):101–112, 2008b. ISSN 0362-
1340. doi: http://doi.acm.org/10.1145/1328897.1328453. 1.1

M. C. Browne, E. M. Clarke, and O. Grümberg. Characterizing finite Kripke structures in
propositional temporal logic. Theoretical Computer Science, 59(1-2):115–131, 1988.
ISSN 0304-3975. doi: http://dx.doi.org/10.1016/0304-3975(88)90098-9. 3

C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond reachability: Shape
abstraction in the presence of pointer arithmetic. In SAS, LNCS 4134, pages 182–203,
2006. 6.1

Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Context logic and tree
update. SIGPLAN Not., 40(1):271–282, 2005. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1047659.1040328. 4.2

Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Compositional
shape analysis by means of bi-abduction. SIGPLAN Not., 44(1):289–300, 2009. ISSN
0362-1340. doi: http://doi.acm.org/10.1145/1594834.1480917. 1.1, 5.10, 6.1

B.-Y. E. Chang, X. Rival, and G. C. Necula. Shape analysis with structural invariant
checkers. In SAS, LNCS 4634, pages 384–401. Springer, 2007. 1.1, 5.7.4, 6.1, 7.3

Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis. In POPL,
2008. 5.7.3, 5.7.4, 6.1

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J. ACM,
50:752–794, September 2003. 7.3

Edmund M. Clarke and Bernd-Holger Schlingloff. Model checking. In John Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated Reasoning, pages 1635–
1790. Elsevier and MIT Press, 2001. ISBN 0-444-50813-9, 0-262-18223-8. 3.3

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT
Press, January 1999. ISBN 0262032708. 3, 3.1, 3.3

323

B Bibliography

M. Clint and C.A.R. Hoare. Program proving: Jumps and functions. Acta Informatica,
pages 214–224, 1972. 6.3

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for systems
code. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Program-

ming language design and implementation, pages 415–426, New York, NY, USA, 2006.
ACM. ISBN 1-59593-320-4. doi: http://doi.acm.org/10.1145/1133981.1134029. 1, 1.1

Byron Cook, Sumit Gulwani, Tal Lev-Ami, Andrey Rybalchenko, and Mooly Sa-
giv. Proving conditional termination. In CAV ’08: Proceedings of the

20th international conference on Computer Aided Verification, pages 328–340,
Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-70543-7. doi:
http://dx.doi.org/10.1007/978-3-540-70545-1 32. 1.1

Byron Cook, Ashutosh Gupta, Stephen Magill, Andrey Rybalchenko, Jiri Simsa, Satnam
Singh, and Viktor Vafeiadis. Finding heap-bounds for hardware synthesis. In FM-

CAD’09, 2009a. 1.3, 5.11.2

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. CFL-termination. Technical
report, Microsoft Research, 2009b. 1.1

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL, pages 238–252,
Los Angeles, California, 1977. ACM Press, New York, NY. 5, 5.7

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Confer-

ence Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 269–282, San Antonio, Texas, 1979. ACM Press, New
York, NY. 2.4.3

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The
ASTREÉ analyzer. In ESOP, pages 21–30, 2005. 1

Arie de Bruin. Goto statements: Semantics and deduction systems. Acta Informatica,
pages 385–424, 1981. 6.3

324

B Bibliography

Alain Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting. In
PLDI ’94, pages 230–241, New York, NY, USA, 1994. ACM. ISBN 0-89791-662-X.
doi: http://doi.acm.org/10.1145/178243.178263. 6.1

D. Distefano and M. J. Parkinson. jStar: towards practical verification for Java. In OOP-

SLA, pages 213–226. ACM, 2008. 3.3.3, 6.1

D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on separation
logic. In TACAS, LNCS 3920, pages 287–302. Springer, 2006. 1.1, 5, 5.7.1, 6.1

Bruno Dutertre and Leonardo De Moura. The YICES SMT Solver. Technical report, SRI
International, 2006. 5.5.1, 5.11

J. Giesl, P. Schneider-Kamp, and R. Thiemann. Aprove 1.2: Automatic termination proofs
in the dependency pair framework. In Proceedings IJCAR ’06, LNAI 4130, pages 281–
286. Springer, 2006. 1.1

Denis Gopan, Thomas Reps, and Mooly Sagiv. A framework for numeric analysis of array
operations. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 338–350, New York, NY, USA, 2005.
ACM. ISBN 1-58113-830-X. doi: http://doi.acm.org/10.1145/1040305.1040333. 2.4.3

Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly Sagiv. Thread-modular shape
analysis. In PLDI, pages 266–277, New York, NY, USA, 2007. ACM. 3.3.3

Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. Speed: precise and efficient
static estimation of program computational complexity. In POPL ’09: Proceedings

of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 127–139, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-379-
2. doi: http://doi.acm.org/10.1145/1480881.1480898. 1, 1.3

B. Guo, N. Vachharajani, and D. I. August. Shape analysis with inductive recur-
sion synthesis. SIGPLAN Notices, 42(6):256–265, 2007. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1273442.1250764. 6.1

325

B Bibliography

P. Habermehl, R. Iosif, A. Rogalewicz, and T. Vojnar. Proving termination of tree ma-
nipulating programs. In ATVA, LNCS 4762, pages 145–161. Springer, 2007. ISBN
978-3-540-75595-1. 6.2

Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in simple pro-
grams. In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on Program-

ming language design and implementation, pages 339–348, New York, NY, USA, 2008.
ACM. ISBN 978-1-59593-860-2. doi: http://doi.acm.org/10.1145/1375581.1375623.
2.4.3

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL, pages
58–70. ACM Press, 2002. 1, 5.11.1

William Landi and Barbara G. Ryder. A safe approximate algorithm for interprocedural
aliasing. In PLDI ’92: Proceedings of the ACM SIGPLAN 1992 conference on Program-

ming language design and implementation, pages 235–248, New York, NY, USA, 1992.
ACM Press. ISBN 0-89791-475-9. doi: http://doi.acm.org/10.1145/143095.143137. 6.1

A. Loginov, T. W. Reps, and M. Sagiv. Automated verification of the Deutsch-Schorr-
Waite tree-traversal algorithm. In SAS, LNCS 4134, pages 261–279. Springer, 2006a.
6.2

Alexey Loginov, Thomas Reps, and Mooly Sagiv. Automated verification of the Deutsch-
Schorr-Waite tree-traversal algorithm. In Proc. of SAS-06 Sagiv, M.; Reps, T.; and.
Springer, 2006b. 1.1

S. Magill, A. Nanevski, E. M. Clarke, and P. Lee. Inferring invariants in separation logic
for imperative list-processing programs. In SPACE, 2006. 1.1, 5.7.1, 6.1

S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. THOR: A tool for reasoning about shape
and arithmetic. In CAV, LNCS 5123, pages 428–432. Springer, 2008. 5, 5.11

Panagiotis Manolios. Mechanical Verification of Reactive Systems. PhD thesis, University
of Texas at Austin, 2001. 3.2, 3.4, 3.4, 3.4

326

B Bibliography

Narciso Martı́-Oliet, José Meseguer, and Miguel Palomino. Algebraic stuttering simula-
tions. Electron. Notes Theor. Comput. Sci., 206:91–110, 2008. ISSN 1571-0661. doi:
http://dx.doi.org/10.1016/j.entcs.2008.03.077. 3.2

Robin Milner. An algebraic definition of simulation between programs. In IJCAI, pages
481–489, 1971. 3

George C. Necula, Scott Mcpeak, S. P. Rahul, and Westley Weimer. Cil: Intermediate
language and tools for analysis and transformation of c programs. In In International

Conference on Compiler Construction, pages 213–228, 2002. 2.4, 5.11

H. H. Nguyen and W.-N. Chin. Enhancing program verification with lemmas. In CAV

2008, LNCS 5123, pages 355–369. Springer, 2008. ISBN 978-3-540-70543-7. doi:
http://dx.doi.org/10.1007/978-3-540-70545-1 34. 5.2, 5.5.1

Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin. Automated ver-
ification of shape and size properties via separation logic. In VMCAI, pages 251–266,
2007. 6.1

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about pro-
grams that alter data structures. In CSL ’01: Proceedings of the 15th International Work-

shop on Computer Science Logic, pages 1–19, London, UK, 2001. Springer-Verlag.
ISBN 3-540-42554-3. 1.1

Susan S. Owicki and David Gries. An axiomatic proof technique for parallel programs i.
Acta Informatica, 6:319–340, 1976. 4.1, 4.7, 6.3, 7.1

A. Podelski and A. Rybalchenko. Transition invariants. In LICS, pages
32–41. IEEE Computer Society, 2004. ISBN 0-7695-2192-4. doi:
http://dx.doi.org/10.1109/LICS.2004.50. 1.1, 1.3

A. Podelski and A. Rybalchenko. ARMC: the logical choice for software model checking
with abstraction refinement. In PADL, LNCS 4354, pages 245–259. Springer, 2007. 1,
5.11.1

327

B Bibliography

A. Podelski, A. Rybalchenko, and T. Wies. Heap assumptions on demand. In CAV 2008,
LNCS 5123, pages 314–327. Springer-Verlag, 2008. ISBN 978-3-540-70543-7. doi:
http://dx.doi.org/10.1007/978-3-540-70545-1 31. 6.2

J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,
pages 55–74. IEEE Computer Society, 2002. 2.2, 5.4.3

Radu Rugina. Quantitative shape analysis. In SAS, pages 228–245, 2004. 6.1

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. In
TOPLAS, 2002. 5.7, 6.1

M. Shapiro and S. Horwitz. The effects of the precision of pointer analysis. In Static

Analysis Symposium, 1997a. 6.1

Marc Shapiro and Susan Horwitz. Fast and accurate flow-insensitive points-to analysis.
In POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Princi-

ples of programming languages, pages 1–14, New York, NY, USA, 1997b. ACM Press.
ISBN 0-89791-853-3. doi: http://doi.acm.org/10.1145/263699.263703. 6.1

N. Wirth. Program development by stepwise refinement. Communications of the ACM, 14
(4):221–227, 1971. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/362575.362577.
6.3

Hongseok Yang. Relational separation logic. Theoretical Computer Science, 375(1-3):
308–334, 2007. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/j.tcs.2006.12.036. 6.3

Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Dis-
tefano, and Peter W. O’Hearn. Scalable shape analysis for systems code. In CAV, pages
385–398, 2008. 1.1, 5.7.4, 5.11.3, 7.2, 7.3

328

	1 Introduction
	1.1 Approach
	1.2 Contributions
	1.3 Example

	2 Preliminaries
	2.1 Programs
	2.1.1 Syntax and Typing
	2.1.2 Semantics

	2.2 Separation Logic
	2.2.1 Effect of Free Variables
	2.2.2 Defining Inductive Pointer Structures

	2.3 Semantics of Programs
	2.3.1 Transition Systems
	2.3.2 Programs As Transition Systems
	2.3.3 Transitive Closure of Relations
	2.3.4 Deadlock and Angelic Non-determinism

	2.4 Representing C Programs
	2.4.1 Control Flow
	2.4.2 Memory Operations
	2.4.3 Unhandled Features

	2.5 Generating C Programs

	3 Abstractions and Program Properties
	3.1 LTSL
	3.1.1 Notation
	3.1.2 Examples
	3.1.3 Core Connectives

	3.2 Stuttering Equivalence
	3.2.1 Mapping Between Stuttering Equivalent Traces
	3.2.2 Stuttering Containment
	3.2.3 Programs and Stuttering Equivalence

	3.3 Stuttering Equivalence and LTSL Properties
	3.3.1 Syntactic Descriptions of E-invariance
	3.3.2 Translating Results Obtained By Analyzing Abstractions
	3.3.3 Example

	3.4 Stuttering Simulation
	3.5 Properties of Interest

	4 Instrumented Programs
	4.1 Theory
	4.1.1 Common Cases
	4.1.2 Properties
	4.1.3 Derived Rules

	4.2 Example
	4.2.1 Alternate Size Measures

	4.3 Soundness
	4.4 Numeric Abstractions
	4.4.1 Projection and Simulation
	4.4.2 Combining Projection and Instrumentation

	4.5 Example
	4.6 Summary
	4.7 Conclusion

	5 Instrumentation Analysis
	5.1 Symbolic State Formulae
	5.2 Inductive Predicate Specifications
	5.3 Basic Types
	5.4 Basic Structure
	5.4.1
	5.4.2
	5.4.3

	5.5 Theorem Proving
	5.5.1 Entailment
	5.5.2
	5.5.3 Frame Inference
	5.5.4

	5.6 Example
	5.7 Abstraction
	5.7.1 Abstraction Patterns
	5.7.2 Empty Patterns
	5.7.3 Applying Abstraction Patterns
	5.7.4 Additional Comments

	5.8 Example (continued)
	5.9 Tracking Flow of Control
	5.10 Translating Branch Conditions
	5.11 Experimental Results
	5.11.1 Simple Examples
	5.11.2 Complex Examples
	5.11.3 Summary and Challenges

	6 Related Work
	6.1 Approaches to Analyzing the Heap
	6.2 Termination Proving
	6.3 Program Logics

	7 Conclusion
	7.1 Logic of Instrumentation
	7.2 Analysis Algorithm
	7.3 Implementation

	A Guide to Notation
	A.1 Programs, States, and Transition Systems
	A.2 Relations
	A.3 Separation Logic
	A.4 LTSL

	B Pseudo-code
	B.1 Local Functions

	Bibliography

