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Abstract

The general problem of planning for uncertain domains remains a difficult chal-
lenge. Research that focuses on constructing plans by reasoning with explicit mod-
els of uncertainty has produced some promising mechanisms for coping with specific
types of domain uncertainties; however, these approaches generally have difficulty
scaling. Research in robust planning has alternatively emphasized the use of deter-
ministic planning techniques, with the goal of constructing a flexible plan (or set of
plans) that can absorb deviations during execution. Such approaches are scalable, but
either result in overly conservative plans, or ignore the potential leverage that can be
provided by explicit uncertainty models.

The main contribution of this work is a composite approach to planning that cou-
ples the strengths of both the above approaches while minimizing their weaknesses.
Our approach, called Probabilistic Plan Management (PPM), takes advantage of the
known uncertainty model while avoiding the overhead of non-deterministic planning.
PPM takes as its starting point a deterministic plan that is built with deterministic mod-
eling assumptions. PPM begins by layering an uncertainty analysis on top of the plan.
The analysis calculates the overall expected outcome of execution and can be used to
identify expected weak areas of the schedule.

PPM uses the analysis in two main ways to maximize the utility of and manage
execution. First, it makes deterministic plans more robust by minimizing the negative
impact that unexpected or undesirable contingencies can have on plan utility. PPM
strengthens the current schedule by fortifying the areas of the plan identified as weak
by the probabilistic analysis, increasing the likelihood that they will succeed. In exper-
iments, probabilistic schedule strengthening is able to significantly increase the utility
of execution while introducing only a modest overhead.

Second, PPM reduces the amount of replanning that occurs during execution via
a probabilistic meta-level control algorithm. It uses the probability analysis as a basis
for identifying cases where replanning probably is (or is not) necessary, and acts ac-
cordingly. This addresses the trade-off of too much replanning, which can lead to the
overuse of computational resources and lack of responsiveness, versus too little, which
can lead to undesirable errors or missed opportunities during execution. Experiments
show that probabilistic meta-level control is able to considerably decrease the amount
of time spent managing plan execution, without affecting how much utility is earned.
In these ways, our approach effectively manages the execution of deterministic plans
for uncertain domains both by producing effective plans in a scalable way, and by
intelligently controlling the resources that are used maintain these high-utility plans
during execution.
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Chapter 1

Introduction

We are motivated by the high-level goal of building intelligent robotic systems in which robots, or
teams of robots and humans, operate autonomously in real-world situations. The rich sources of
uncertainty common in these scenarios pose challenges for the various aspects of execution, from
sending commands to the controller to navigate over unpredictable terrain, to deciding which activ-
ities to execute given unforeseen circumstances. Many domains of this type are further complicated
by the presence of durative actions and concurrent, multi-agent execution. This thesis focuses on
the high-level aspect of the problem: generating, executing and managing robust plans for agents
operating in such situations.

Not surprisingly, the general problem of planning and scheduling for uncertain domains re-
mains a difficult challenge. Research that focuses on constructing plans (or policies) by reasoning
with explicit models of uncertainty has produced some promising results (e.g., [McKay et al., 2000,
Beck and Wilson, 2007]). Such approaches typically produce optimal or expected optimal solu-
tions that encode a set of plans that cover many or all of the contingencies of execution. However,
in complex domains these approaches can quickly become prohibitively expensive, making them
undesirable or impractical for real-world use [Bryce et al., 2008].

Research in robust planning, in contrast, has emphasized the use of expected models and de-
terministic planning techniques, with the goal of constructing a flexible plan (or set of plans) that
can absorb deviations at execution time [Policella et al., 2007]. These approaches are much more
scalable than probabilistic planning or scheduling, but either result in overly conservative schedules
at the expense of performance (e.g., [Morris et al., 2001]) or ignore the potential leverage that can
be provided by an explicit uncertainty model. For example, even though such systems typically
replan during execution, the deterministic assumptions unavoidably can create problems to which
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1 Introduction

replanning cannot adequately respond, such as a missed deadline that cannot be repaired. Replan-
ning very frequently can help to alleviate the number of these problems that occur, but a large
amount of online replanning has the potential to lead to a lack of responsiveness and an overuse of
computational resources during execution, ultimately resulting in a loss of utility.

The main contribution of this work is adopting a composite approach to planning and schedul-
ing that couples the strengths of both deterministic and non-deterministic planning while mini-
mizing their weaknesses. Our approach, called Probabilistic Plan Management (PPM), is a natural
synthesis of both of the above research streams that takes advantage of the known uncertainty model
while avoiding the large computational overhead of non-deterministic planning. As a starting point,
we assume a deterministic plan, or schedule, that is built to maximize utility under deterministic
modeling assumptions, such as by assuming deterministic durations for activities or by ignoring
unlikely outcomes or effects of activity execution. Our approach first layers an uncertainty analy-
sis, called a probabilistic analysis of deterministic schedules (PADS), on top of the deterministic
schedule. The analysis calculates the overall expected outcome of execution and can be used to
identify expected weak areas of the schedule. We use this analysis in two main ways to manage
and bolster the utility of execution. Probabilistic schedule strengthening strengthens the current
schedule by targeting local improvements at identified likely weak points. Such improvements
have inherent trade-offs associated with them; these trade-offs are explicitly addressed by PADS,
which ensures that schedule strengthening efforts increase the schedule’s expected utility. Proba-
bilistic meta-level control uses the expected outcome of the plan to intelligently control the amount
of replanning that occurs, explicitly addressing the trade-off of too much replanning, which can
lead to the overuse of computational resources and lack of responsiveness, versus too little, which
can lead to undesirable errors or missed opportunities during execution.

Probabilistic plan management combines these different components to effectively manage
the execution of plans for uncertain domains. During execution, PADS tracks and updates the
probabilistic state of the schedule. Based on this, PPM makes the decision of when replanning
and probabilistic schedule strengthening is necessary, and replans and strengthens at the identified
times, maintaining high utility schedules while also limiting unnecessary replanning.

In the following sections, we introduce the concepts of PADS, probabilistic schedule strength-
ening, and probabilistic meta-level control, and our basic approaches to them.
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1.1 Probabilistic Analysis of Deterministic Schedules

Central to our approach is the idea of leveraging domain uncertainty models to provide information
that can help with more effective execution-time management of deterministic schedules. We have
developed an algorithm that performs a Probabilistic Analysis of Deterministic Schedules (PADS),
given their associated uncertainty model. At the highest level of abstraction, the algorithm explores
all known contingencies within the context of the current schedule in order to find the probability
that execution “succeeds” by meeting its objective. It calculates, for each activity, the probability of
the activity meeting its objective, as well as its expected contribution to the schedule. By explicitly
calculating these values, PADS is able to summarize the expected outcome of execution, as well as
identify portions of the schedule where something is likely to go wrong.

PADS can be used as the basis for many planning decisions. In this thesis, we discuss how it
can be used to strengthen plans to increase the expected utility of execution, and how it can be used
as the basis for different meta-level control strategies that control the computational resources used
to replan during execution. Further, we show how its low computational overhead makes it a useful
analysis for even complex, multi-agent domains.

1.2 Probabilistic Schedule Strengthening

While deterministic planners have the benefit of being more scalable than probabilistic planners,
they make strong, and often inaccurate, assumptions on how execution will unfold. In the case of
domains with temporal uncertainty (e.g., uncertain activity durations), such as the ones we con-
sider, deterministic modeling assumptions have the potential to lead to frequent constraint viola-
tions when activities end at unanticipated times and cause inconsistencies in the schedule. Re-
planning during execution can effectively respond to such unexpected dynamics, but only as long
as dependencies allow sufficient time for one or more agent planners to respond to problems that
occur; further, even if the agent is able to sufficiently respond to a problem, utility loss may occur
due to the last-minute nature of the schedule repair. One way to prevent this situation is to layer a
step on top of the planning process that proactively tries to prevent these problems from occurring,
or to minimize their effects, thereby strengthening schedules against the uncertainty of execution
[Gallagher, 2009].

Schedules are strengthened via strengthening actions, which make small modifications to the
schedule to make them more robust. The use of such improvements, however, typically has an
associated trade-off. Example strengthening actions, and their trade-offs, are:
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1. Adding redundant back-up activities - This provides protection against activity failure but
can clog schedules and reduce slack. In a search and rescue scenario, for example, trying
to reach survivors via two rescue points, instead of one, may increase the likelihood of a
successful rescue; but, as a result, the agents at the added rescue point may not have enough
time to execute the rest of their schedule.

2. Swapping activities for shorter-duration alternatives - This provides protection against an
activity missing a deadline, but shorter-duration alternatives tend to be less effective or have
a lower utility. For example, restoring power to only critical buildings instead of the entire
area may allow power to be restored more quickly, but it is less desirable as other buildings
go without power.

3. Reordering scheduled activities - This may or may not help, depending on which activities
have tight deadlines and/or constraints with other activities. Deciding to take a patient to the
hospital before refueling, for example, may help the patient, but the driver then has a higher
risk of running out of fuel and failing to perform other activities.

The set of strengthening actions used can be adapted to suit a variety of domains, depending on
what is most appropriate for the domain’s structure. Ideally, schedule strengthening should be used
in conjunction with replanning during execution, allowing agents to take advantage of opportunities
that may arise while also ensuring that they always have schedules that are robust to unexpected or
undesirable outcomes.

In deterministic systems, schedule strengthening can be performed by using simple determin-
istic heuristics, or limited stochastic analyses of the current schedule (e.g., considering the uncer-
tainty of the duration of an activity without any propagation) [Gallagher, 2009]. In this thesis,
we argue that explicitly reasoning about the uncertainty associated with scheduled activities, via
our PADS algorithm, provides a more effective basis for strengthening schedules. Probabilistic
schedule strengthening first relies on PADS to identify the most profitable activities to strengthen.
Then, improvements are targeted at activities that have a high likelihood of not doing their part
to contribute to the schedule’s success, and whose failure would have the largest negative impact.
As described, all such improvements have an associated trade-off; PADS, however, ensures that
all strengthening actions have a positive expected benefit and improve the expected outcome of
execution.

We have evaluated the effect of probabilistic schedule strengthening in a multi-agent simulation
environment, where the objective is to maximize utility earned during execution and there is tem-
poral and activity outcome uncertainty. Probabilistic schedule strengthening produced schedules
that are significantly more robust and earn 32% more utility than their deterministic counterparts
when executed. When it is used in conjunction with replanning during execution, it results in 14%
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more utility earned as compared to replanning alone during execution.

1.3 Probabilistic Meta-Level Control

Replanning provides an effective way of responding to the dynamics of execution: it helps agents
avoid failure or utility loss resulting from unpredicted and undesirable outcomes, and takes advan-
tage of opportunities that may arise from unpredicted favorable outcomes. Replanning too much
during execution, however, has the potential to become counter-productive by leading to a lack
of responsiveness and a waste of computational resources. Meta-level control is one technique
commonly used to address this trade-off. Meta-level control allows agents to optimize their perfor-
mance by selectively choosing deliberative actions to perform during execution.

In deterministic systems, meta-level control can be done by learning a model for deliberative
action selection based on deterministic, abstract features of the current schedule [Raja and Lesser,
2007]. Deterministic approaches such as this one, however, ignore the benefit that explicitly con-
sidering the uncertainty model can provide. For example, whether replanning would result in a
better schedule can depend, in part, on the probability of the current schedule meeting its objective;
similarly, the benefit of planning actions such as probabilistic schedule strengthening can be greatly
affected by the robustness of the current schedule. In this thesis, we show that a probabilistic meta-
level control algorithm, based on probability profile information obtained by the PADS algorithm,
is an effective way of selecting when to replan (or probabilistically strengthen) during execution.

Ideally, agents would replan if it would be useful either in avoiding failure or in taking advan-
tage of new opportunities. Similarly, they ideally would not replan if it would not be useful, either
because: (1) there is no potential failure to avoid; (2) there is a possible failure but replanning
would not fix it; (3) there is no new opportunity to leverage; (4) or replanning would not be able to
exploit the opportunities that were there. Many of these situations are difficult to explicitly predict,
in large part because it is difficult to predict whether a replan is beneficial without actually doing it.
As an alternative, probabilistic meta-level control uses the probabilistic analysis to identify times
where there is potential for replanning to be useful, either because there is likely a new opportunity
to leverage or a possible failure to avoid. When such times are identified, no replanning is done;
otherwise, replanning is possibly useful and so should be performed.

The control strategy can also be used to select the amount of the current schedule that is re-
planned. In situations with high uncertainty, always replanning the entire schedule means that
activities farther down the schedule are potentially replanned many times before they are actually
executed, possibly wasting computational effort. To avoid this, we introduce an uncertainty hori-
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zon, which distinguishes between portions of the schedule that are likely to need to be managed and
replanned at the current time, and portions that are not. This distinction is made based on the prob-
ability that activities beyond the uncertainty horizon will need to be replanned before execution
reaches them.

We have shown, through experimentation, the effectiveness of probabilistic meta-level control.
Its use in a single-agent scenario with temporal uncertainty has shown a 23% reduction in sched-
ule execution time (where execution time is defined as the schedule makespan plus the time spent
replanning during execution) versus replanning whenever a schedule conflict arises. Using proba-
bilistic meta-level control in a multi-agent scenario with temporal and activity outcome uncertainty
results in a 49% decrease in plan management time as compared to a plan management strategy
that replans according to deterministic heuristics, with no significant change in utility earned.

1.4 Thesis Statement

Explicitly analyzing the probabilistic state of deterministic plans built for uncertain domains pro-
vides important information that can be leveraged in a scalable way to effectively manage plan
execution.

We support this statement by presenting algorithms for probabilistic plan management that
probabilistically analyze schedules, strengthen schedules based on this analysis, and limit the
amount of computational effort spent replanning and strengthening schedules during execution.
Our approach was validated through a series of experiments in simulation for two different do-
mains. For one domain, using probabilistic plan management was about to reduce schedule execu-
tion time by 23% (where execution time is defined as the schedule makespan plus the time spent
replanning during execution). For another, probabilistic plan management resulted in increasing
utility earned by 14% with only a small added overhead. Overall, PPM provides some of the
benefits of non-deterministic planning while avoiding its computational overhead.

1.5 Thesis Outline

The rest of this document is organized as follows. In Chapter 2, we discuss related work, describ-
ing various approaches to the problem of planning and scheduling for uncertain domains, as well
as different methodologies for meta-level control. In Chapter 3, we discuss background concepts
related to our work, including details on the two domains we consider. Next, Chapter 4 provides an
overview of our approach to probabilistic plan management. The following three chapters go into
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more detail about the three main components of our approach: probabilistic analyses of determin-
istic schedules, probabilistic schedule strengthening, and probabilistic meta-level control. Finally,
in Chapter 8, we discuss future work and conclusions.
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Chapter 2

Related Work

There are many different approaches that handle planning and execution for uncertain domains.
Approaches can be distinguished by what restrictions they place on the domains they can handle,
such as whether they consider durative actions and temporal uncertainty, and whether they account
for concurrency and multiple agents. We present some of these approaches, categorized by whether
uncertainty is taken into account in the planning process or planning is done deterministically.
We also discuss various approaches to the meta-level control of computation during execution,
including work utilizing planning horizons.

2.1 Non-Deterministic Planning

The main distinction between planners that deal with uncertainty is whether they assume agents
can observe the world during execution. Of those that make this assumption, there are policy-
based approaches based on the basic Markov Decision Process (MDP) model [Howard, 1960] and
more search-based approaches such as contingency planners. Some MDP models also assume that
the world is partially observable. Planning approaches that assume the world is not observable are
commonly referred to as conformant planners.

2.1.1 Policy-Based Planning

One common policy-based planner is based on an MDP model [Howard, 1960]. The classic MDP
model has four components: a collection of states, a collection of actions, a transition model (i.e.,
which states actions transition between, and the probability of the transition happening), and the
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rewards associated with each transition (or state). The MDP can be solved to find the optimal
policy that maximizes reward based on the problem specification.

This classic MDP model is unable to handle explicit durative actions, which can be consid-
ered by our approach. There is a growing body of work, however, that has been done to remove
this limitation. Semi-MDPs, for example, handle domains with uncertain action durations and no
deadlines [Howard, 1971]. Time-dependent MDPs [Boyan and Littman, 2000] go one step further
and can model deadlines by undiscounting time in the MDP model. Hybrid MDPs can also handle
deadlines, and can represent both discrete and continuous variables. One of the main difficulties
of this model is convolving the probability density functions and value functions while solving the
model; this has been approached in a variety of ways [Feng et al., 2004, Li and Littman, 2005,
Marecki et al., 2007].

None of the above MDP models, however, can handle concurrency, and so cannot be used for
multi-agent scenarios. Generalized Semi-MDPs, an extension of Semi-MDPs [Younes et al., 2003,
Younes and Simmons, 2004a], can handle concurrency and actions with uncertain, continuous du-
rations, at the cost of very high complexity. The DUR family of MDP planners can also handle
both concurrency and durative actions [Mausam and Weld, 2005], again at a very high computa-
tional cost. The work shows, in fact, that the ∆DUR planner that plans with expected durations
outperforms the ∆DUR planner that explicitly models temporal uncertainty [Mausam and Weld,
2006].

In addition to the MDP systems above, MDPs have been used to solve a distributed, multi-
agent domain with activity duration and outcome uncertainty, the same domain that we use as part
of this thesis work [Musliner et al., 2006, 2007]. This domain is especially challenging for MDP
approaches, as plans must be constructed in real time. Each agent in this approach has its own
MDP, which it partially and approximately solves in order to generate a solution in acceptable
time. However, despite this success, scalability ultimately prevented it from performing better than
competing deterministic approaches.

MDPs that assume the world is partially observable, or POMDPs, assume that agents can make
some local observations during execution but cannot directly observe the true state - instead, agents
must probabilistically infer it [Kaelbling et al., 1998]. This assumption makes POMDP’s very
difficult to solve, and the additional complexity is unnecessary for the domains considered in this
document, where the world is fully observable.

A non-MDP policy-based approach is FPG, a Factored Policy Gradient planner [Buffet and
Aberdeen, 2009]. This planner uses gradient ascent to optimize a parameterized policy, such as
if users prefer a safer, or more optimal but riskier, plan. It still, however, suffers from the high
complexity of policy-based probabilistic planners, and the authors suggest that it may be improved
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by combining deterministic reasoning with their probabilistic approach in order to allow it to handle
larger and more difficult policies.

2.1.2 Search-Based Contingency Planning

Conditional, or contingency, planners create branching plans, and assume observations during ex-
ecution to choose which branch of the plan to follow. Many contingency planners such as SGP
[Weld et al., 1998], MBP [Bertoli et al., 2001], PGraphPlan [Blum and Langford, 1999] and Para-
graph [Little and Thiébaux, 2006], however, are unable to support durative actions. Partial-order
contingency approaches include C-Buridan [Draper et al., 1994], B-Prodigy [Blythe and Veloso,
1997], DTPOP [Peot, 1998] and Mahinur [Onder and Pollack, 1999]. They do not support con-
currency or durative actions; it is possible to add them to these architectures, but at an even higher
computational cost.

[Xuan and Lesser, 1999, Wagner et al., 2006] consider a domain similar to ours, and use con-
tingency planning in their scheduling process and to manage the uncertainty between agents, but
at the cost of high complexity. Prottle uses forward search planning to solve a concurrent, du-
rative problem over a finite horizon [Little et al., 2005]. Although it uses a probabilistic planning
graph-based heuristic to reduce the search space, memory usage prevents this algorithm from being
applied to anything but small problems.

Some work tries to lessen the computational burden of contingency planners by planning in-
crementally. These approaches share some similarities with our approach, as they try to identify
weak parts of the plan to improve at plan time. One common incremental approach is Just-In-Case
(JIC) scheduling [Drummond et al., 1994], which creates branch points in a schedule by finding the
place where it is most likely to fail based on normal task distributions overrunning their scheduled
duration. For simple distribution types, this involves performing probability calculations similar to
how we calculate our uncertainty horizon for single-agent schedules.

ICP [Dearden et al., 2003] and Tempastic [Younes and Simmons, 2004b] also build contingency
plans incrementally, by branching on utility gain and fixing plan failure points, respectively. Both
of these approaches use stochastic simulation to find plan outcome probabilities. [Blythe, 1998]
calculates plan certainty by translating the plan into a Bayesian network, and adding contingent
branches to increase the probability of success. [Meuleau and Smith, 2003]’s OKP generates the
optimal plan having a limited number of contingency branches. These incremental approaches
make contingency planning more manageable or tractable; however, the approach in general is still
unable to model large numbers of outcomes. Due to its difficulty, contingency planning is best for
dealing with avoiding unrecoverable or critical errors in domains with small numbers of outcomes
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as in [Foss et al., 2007].

2.1.3 Conformant Planning

Conformant planners such as [Goldman and Boddy, 1996], CGP [Smith and Weld, 1998], CMBP
[Cimatti and Roveri, 2000], BURIDAN [Kushmerick et al., 1995] and PROBAPOP [Onder et al.,
2006] handle uncertainty by developing plans that will lead to the goal without assuming that the
results of actions are observable. A common way to think about conformant planners is that they try
force the world into a single, known state by generating “fail-safe” plans that are robust to anything
that may happen during execution. Conformant planning is very difficult, and also very limiting;
typically, effective conformant planning requires domains with limited uncertainty and very strong
actions. Additionally, none of the above conformant planners can currently handle durative actions.

Planning to add “robustness” is similar to conformant planning, and has the goal of building
plans that are robust to various types of uncertainty. [Fox et al., 2006] “probes” a temporal plan for
robustness by testing the effectiveness of different slight variations of the plan, where each variation
is generated by stochastically altering the timings of execution points in the plan. [Blackmore et al.,
2007] build plans robust to temporal and other types of uncertainty by utilizing sampling techniques
such as Monte Carlo simulation to approximately predict the outcome of execution. In [Younes and
Musliner, 2002], a probabilistic extension to the CIRCA planner [Musliner et al., 1993] is described
that uses Monte Carlo simulation to verify whether a potential deterministic plan meets specified
safety constraints. [Beck and Wilson, 2007] also uses Monte Carlo simulation to generate effective
deterministic schedules for the job-shop scheduling problem. Using Monte Carlo simulation in this
way, however, is not practical for our run-time analysis, as the number of particles needed increases
quickly with the amount of domain uncertainty; in contrast, our approach analytically calculates
and stores probability information for each activity. [Fritz and McIlraith, 2009] also considers
probabilities analytically, in part, while calculating the robustness of plans, but still partially relies
on sampling and cannot handle complex plan objective functions.

2.2 Deterministic Planning

The basic case for deterministic planning in uncertain domains is to generate a plan based on a de-
terministic reduction of the domain, and then replan as necessary during execution. A well-known
example of this strategy is FF-Replan [Yoon et al., 2007], which determinizes probabilistic input
domains, plans with the deterministic planner FF [Hoffmann and Nebel, 2001], and replans when
unexpected states occur. This very simple strategy for dealing with domain uncertainty won the
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Probabilistic Track of the 2004 International Planning Competition, and was also the top performer
in the 2006 competition. Planning in this way, however, suffers from problems such as unrecover-
able errors and spending large amounts of time replanning at execution time (even though the time
spent planning may be smaller overall). Below we discuss two main bodies of work that have been
developed to improve deterministic planning of uncertain domains: increasing plan flexibility and
robustness to lessen the need to replan, and making each replan that does happen as fast as possible.

2.2.1 Plan Flexibility and Robustness

Whereas fixed times schedules specify only one valid start time for each task, flexible times sched-
ules allow execution intervals for tasks to drift within a range of feasible start and end times [Smith
et al., 2006]. This allows the system to adjust to unforeseen temporal events as far as constraints
will allow, replanning only if one or more constraints in the current deterministic schedule cannot
be satisfied. The schedules are modeled as simple temporal networks (STNs) [Dechter et al., 1991],
enabling fast constraint propagation through the network as start and end times are updated after
execution to generate new execution intervals for later tasks. Flexible times schedules may be total-
or partial-order.

IxTeT [Laborie and Ghallab, 1995], VHPOP [Younes and Simmons, 2003] and [Vidal and
Geffner, 2006] are temporal planners that generate partial-order plans. Partial-order planners repair
plans at run time by searching through the partial plan space. These planners in general, however,
have a much larger state space than total-order planners, and so replanning in general is more
expensive. This work is orthogonal to our approach, as either total- or partial-order plans could be
used as part of our analysis.

In a robustness-focused approach to partial-order planning, [Policella et al., 2007] generates ro-
bust partial-order plans by expanding a fixed times schedule to be partial-order, showing improve-
ments with respect to fewer precedence orderings and more temporal slack over a more top-down
planning approach. [Lau et al., 2007] also generates partial-order schedules that are guaranteed to
have a minimum utility with probability (1 − ε) for scenarios where the only uncertainty is in the
processing time of each task.

[Jiménez et al., 2006] look at how to create more robust deterministic plans for probabilistic
planning problems by directly considering the underlying probabilistic model. They incorporate
probabilistic information as an action “cost model,” and by solving the resulting deterministic
problems they see a decrease in the frequency of replanning. This approach has been demonstrated
to outperform FF-Replan on single agent domains without durative actions, but it is so far unable
to handle the types of domains we are considering. [Gallagher, 2009] makes plans more robust
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by using simple schedule strengthening that relies on a limited stochastic analysis of the current
schedule; in general, however, it is not as effective as our probabilistic schedule strengthening
approach which relies on a probability analysis that propagates probability information throughout
the entire schedule.

An approach that helps to promote a different kind of flexibility during execution allows agents
to switch tasks during execution in order to expedite the execution of bottleneck tasks, minimizing
schedule makespan [Sellner and Simmons, 2006]. In order to anticipate problems, the agents
predict how much longer executing tasks will take to complete; in theory, this prediction could
also be used as part of our probability calculations.

Alternately, a plan can be configured to be dynamically controllable [Morris et al., 2001].
A plan with this property is guaranteed to have a successful solution strategy for an uncertain
temporal planning problem. This approach, as well as the above approaches in general, however,
are either overly conservative or ignore the extra leverage that explicit consideration of uncertainty
can provide.

2.2.2 Plan Management and Repair

A second way to optimize the deterministic planning approach is manage them during execution,
identifying problems and, ideally, making replanning as fast as possible. [Pollack and Horty, 1999]
describes an approach to plan management which includes commitment management, alternate
plan assessment, and selective plan elaboration to manage plans during execution and provide the
means to readily change plans if better alternatives are found.

Another common way to manage plans is to perform fast replanning during execution when
errors are identified. This typically involves plan repair, where the planner starts with the current,
conflicted plan and makes changes to it, such as by adding or removing tasks, until a new plan is
found. ASPEN [Chien et al., 2000] is one such planner that makes heuristic, randomized changes
to a conflicted plan to find a new, valid plan. Because of the randomness, there are no guarantees
on how long it will take before a solution is found. [Gallagher et al., 2006] and [Smith et al., 2007]
rely on an incremental scheduler to manage schedules during execution, and use heuristics to both
maximize schedule utility and minimize disruption. Other plan repair systems are O-Plan [Tate
et al., 1994], GPG [Gerevini and Serina, 2000] and [van der Krogt and de Weerdt, 2005]; however,
none of these three approaches has yet been demonstrated to work with durative tasks.

HOTRiDE (Hierarchical Ordered Task Replanning in Dynamic Environments) [Ayan et al.,
2007] is a Hierarchical Task Network (HTN) planning system that replans the lowest task in the
task network that has a conflict whose parent does not. This helps promote plan stability, but no
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data is available about the time spent replanning during execution. RepairSHOP [Warfield et al.,
2007] is similar to HOTRiDE, but minimizes replanning based on “explanations” of plan conflicts.
RepairSHOP results indicate that it also helps to lessen the time spent replanning during execution.
The only uncertainty these two approaches address, however, is whether an executed task succeeds.

[Maheswaran and Szekely, 2008] considers a distributed, multi-agent domain with activity du-
ration and outcome uncertainty that we use as part of this thesis work. Probability-based criticality
metrics are used to repair the plan during execution according to pre-defined policies, in the spirit
of our schedule strengthening. Their approach, however, is not as methodical in its probabilistic
analysis nor its use of it, and is highly tailored to the domain in question.

Overall, deterministic planning systems are at a disadvantage because they ignore the potential
leverage that can be provided by an explicit uncertainty model. Frequent replanning can help to
overcome this downside, but the deterministic assumptions unavoidably can create problems to
which replanning cannot adequately respond. Frequent replanning should also be used with care,
as it has the potential to grow out of hand in extremely uncertain environments.

2.3 Meta-Level Control

Meta-level control is “the ability of complex agents operating in open environments to sequence
domain and deliberative actions to optimize expected performance” [Raja and Lesser, 2007]. There
is a large body of work in the area of meta-level control that addresses a variety of aspects of the
problem [Cox, 2005]. Work has been performed to control the computational effort of any-time
algorithms [Russell and Wefald, 1991, Hansen and Zilberstein, 2001b, Alexander et al., 2008,
Boddy and Dean, 1994], to ensure that any extra time spent finding a better solution is worth
the expected increase in utility of that solution. [Alexander et al., 2010] describe an any-time
approach that unrolls an MDP incrementally at run time based on the trade-off of improving the
policy versus executing it. [Raja and Lesser, 2007] develop a meta-level control framework for a
distributed multi-agent domain that learns a meta-level MDP to decide what control actions to take
at any give time. The MDP is based on a state space of abstract features of the current schedule;
it would be interesting to see how the MDP would perform if the state space also incorporated in
the probability profiles generated by our PADS algorithm. [Musliner et al., 2003] perform meta-
level control of a real-time agent, and adaptively learn performance profiles of deliberation and the
meta-level strategy.

Using a planning horizon is another way of performing meta-level control [Léauté and Williams,
2005, Chien et al., 2000, Estlin et al., 2001]. Typically, planning horizons specify how far into the
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future a planner should plan. Although planning with a horizon can threaten the effectiveness of
the schedule, as portions of the solution are being ignored, horizons can increase the tractability of
planning (or replanning). In the above approaches, however, the horizon is set at a fixed amount of
time in the future. Any-time algorithms such as [Hansen and Zilberstein, 2001a, Alexander et al.,
2010] also inherently include a planning horizon as they expand an MDP’s horizon while time is
available; both of these approaches consider the cost of computation in their choice of a horizon.

In general, many of these approaches explicitly reason about the cost of computation, which we
do not for several reasons. First, execution and replanning can occur concurrently in our domains,
removing the need to explicitly choose between deliberation and action at any given time. Second,
deterministic replanning tends to be fast, lessening the benefit of explicitly modeling it to use in a
meta-level control algorithm. Finally, performance profiles can be difficult to model for heuristic
or randomized planners like the ones we use in this document. Instead, our approach analyzes the
schedule to see if replanning is likely necessary based on probabilistic information such as how
likely it is that execution will succeed if a replan does not occur.
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Chapter 3

Background

In this chapter, we describe core concepts and technologies upon which we build our work. We
first discuss our use of plan versus schedule terminology, followed by the representation of domains
and schedules that we use. Next, we discuss in detail the two domains we specifically analyze as
part of this thesis. Finally, we introduce decision trees with boosting, a technique we use in our
probabilistic meta-level control strategy.

3.1 Plan Versus Schedule Terminology

In this document, we use both the terms planning and scheduling freely. For the purposes of this
document, we define planning as the problem of deciding what to execute, and scheduling as the
problem of deciding when to execute it. By this definition, all temporal planning domains include a
scheduling component; similarly, many domains typically considered scheduling domains include
at least a limited planning component.

This leads us to the choice of planning/scheduling in our title and in the name of our algorithms.
We name our algorithms for the general case, where there is an overall plan with a schedule that
is executed to realize it. Our title, “Probabilistic Plan Management,” reflects the idea that we are
managing plans to satisfy goals at the highest level. Two of our algorithms, “Probabilistic Analysis
of Deterministic Schedules” and “Probabilistic Schedule Strengthening” work to analyze plans at
the schedule level, so we use the word “schedule” to describe them.

Our terminology, however, should not be thought to limit the scope of our approach. The ideas
in this document could very well be tailored to probabilistic schedule management, a probabilistic
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analysis of deterministic plans, or plan strengthening, depending on the needs of the domain.

3.2 Domain and Schedule Representation

3.2.1 Activity Networks

We present much of the description of our work in terms of activity networks, of which Hierar-
chical Task Networks (HTNs) are a well-known example [Erol et al., 1994]. Activity networks
represent and organize domain knowledge by expressing dependencies among executable actions
as a hierarchical network (or tree) of activities. At the lowest level of the tree are the primitive,
executable actions, which are called methods. The methods are collected under aggregate nodes,
or tasks. Tasks can be children of other tasks, and ultimately all activities (a term that refers to
either methods or tasks) are collected under the root node of the network, called the taskgroup. The
successful satisfaction of the objective of the root node corresponds to the goal of the domain.

Constraints are used to describe dependency relationships between any two activities in the
network (although typically there are no explicit dependency constraints between activities with
direct ancestry relationships). The most common constraint type is a temporal constraint between
activity execution time points, which we refer to as a prerequisite relationship; for example, a
prerequisite relationship from activity A to activity B means that the source A must come before the
target B. As part of our analysis of one of our domains we also consider other types of constraints
such as facilitates, an optional prerequisite that, if observed, magnifies the utility of an action.

Activities can also have constraints such as release (earliest possible start) times and deadlines.
These types of constraints are passed down such that child activities inherit constraints from their
parents, and an activity’s effective execution window is defined by the tightest of these bound-
aries. Sibling activities can be executed concurrently in the absence of any constraints that require
otherwise.

In our activity networks, each task has a type: AND, OR, or ONE. An AND task must have
all children underneath it succeed by meeting their objective in order for its own objective to be
satisfied. An OR task must have at least one child underneath it execute successfully, and a ONE
task can have only one child underneath it successfully execute. Typically, a good schedule would
include all children under an AND task, one or more under an OR task, and only one child under a
ONE task; otherwise, the schedule is at risk of losing utility by not observing the task types.

In this work, we assume all domains can be represented by activity networks. The assumption
that such domain knowledge is available is common for many real-world domains [Wilkins and
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Figure 3.1: A sample STN for a single scheduled method m with duration 5 and a deadline of 10.
Notice that the method is constrained to start no earlier than time 0 (via the constraint between
time 0 and m start) and finish by time 10 (via the constraint between time 0 and m finish).

desJardins, 2000]. A simple example of an activity network representation for a domain where a
set of activities must be executed is a network where all methods are children of an AND taskgroup.

3.2.2 Flexible Times Schedules

We assume that schedules are represented as deterministic, flexible times schedules as in [Smith
et al., 2007]. This type of schedule representation allows the execution intervals of activities to
float within a range of feasible start and finish times, so that slack can be explicitly used as a
hedge against temporal uncertainty. As the underlying representation we use Simple Temporal
Networks (STNs) [Dechter et al., 1991]. An STN is a graph where nodes represent event time
points, such as method start and finish times, and edges specify lower and upper bounds (i.e.,
[lb, ub]) on temporal distances between pairs of time points. A special time point represents time
0, grounding the network. All constraints and relationships between activities, such as deadlines,
durations, ancestry relationships and prerequisites, are represented as edges in the graph. For
example, a deadline dl is represented as an edge with bounds [0, dl] between time 0 and the finish
time of the constrained method, and prerequisites may be represented as edges of [0,∞] between
the finish time of the first method and the start of the second. Method durations are represented
as an edge of [d, d′] between a method’s start and finish time. In the deterministic systems we
consider, method durations are [d, d], where d is the method’s deterministic, scheduled duration.
An agent’s schedule is represented by posting precedence constraints between the start and end
points of each neighboring pair of methods, termed predecessors and successors. The STN for a
single scheduled method with duration 5 whose execution must finish before its deadline at time
10 is shown in Figure 3.1.

Constraints are propagated in order to maintain lower and upper bounds on all time points in
the STN. Specifically, the constraint network provides an earliest start time est, latest start time
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lst, earliest finish time eft and latest finish time lft for each activity. Conflicts occur in the
STN whenever negative cycles are present, which indicates that some time bound is violated.

Even if a schedule is not generated by a flexible times planner, and is fixed times, it can easily
be translated into a flexible times schedule, similar to [Policella et al., 2009]. The process begins by
representing the schedule as described above, preserving the sequencing of the original schedule.
To generate initial time bounds, each node can be initialized with all possible times (e.g., times in
the range [0, h] where h is a time point known to be after all deadlines and when execution will have
halted), and constraint propagation used to generate the valid execution intervals of each activity.

3.3 Domains

We have investigated our approach in two domains: a single-agent domain and a multi-agent one.
The objective in the single-agent domain is to execute a set of tasks by a final deadline, where there
is uncertainty in method durations. The domain is based on a well-studied problem with temporal
constraints and little schedule slack, and its success is greatly affected by the temporal uncertainty.
These characteristics make it an ideal domain for which to demonstrate the fundamental principles
of our probabilistic analysis.

The second domain is a multi-agent domain that has a plan objective of maximizing utility.
Utility is explicitly modeled as part of the domain description. There is uncertainty in method
duration and outcome, as well as a rich set of constraints between activities. Using this large, com-
plex domain demonstrates the generality and scalability of our algorithms. The next subsections
describe these domains in detail.

3.3.1 Single-Agent Domain

We first demonstrate our work on a single-agent planning problem, which is concerned with execut-
ing a set of tasks by a final deadline. Minimal and maximal time lags specify temporal constraints
between activity start and finish time points. All tasks must be executed, observing all temporal
domain constraints, in order for the plan to succeed, and tasks do not have explicitly utility. Each
task has a variable number of children methods, only one of which can be executed to fulfill that
task’s role in the plan. The agent can execute at most one method at a time.

Our domain is based on the Multi-Mode Resource Constrained Project Scheduling Problem
with Minimal and Maximal Time Lags (MRCPSP/max) [Schwindt, 1998]. This NP-complete
makespan minimization problem is well-studied in the scheduling community. Although the do-
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Figure 3.2: A sample MRCPSP/max problem.

main description allows a variable number of tasks and methods, each problem we use in this thesis
has 20 tasks, and tasks have 2, 3 or 5 methods underneath them, each with potentially different du-
rations. Activity dependency constraints are in the form of time lags between the finish times of the
children of a source task and the start times of the children of a target task. Although all children
of a source task are constrained with all children of a target task, the specifics of the constraints
can vary. These constraints act as prerequisite constraints that have an associated minimal and/or
maximal time delay between the execution time points of the two methods involved. The time lags
specified in the problem description can also be negative; intuitively, this reverses the prerequisite
constraint. The domain can be represented as an activity network with the AND taskgroup decom-
posing into each of the 20 tasks of the problem; those tasks, represented as ONE nodes, further
decompose into their child methods.

A sample problem (with only 2 tasks) is shown in Figure 3.2. Underneath the parent taskgroup
are the two tasks, each with two children. Constraints are in the form of prerequisite constraints
between the end time of the source task and the start time of the target task. Note how all of T1’s
children are constrained with each of T2’s children, but with different time lags.

The problems specify a duration durm for each method m, which is the method’s determinis-
tic, scheduled duration. As the domain itself does not include uncertainty, we modified the prob-
lems by assigning each method a normal duration distribution DUR (m) with a standard deviation
σ (DUR (m)) that is uniformly sampled from the range [1, 2 · durm/5], and a mean µ (DUR (m))
of (durm − σ (DUR (m)) /2). These values were chosen because, after experimenting with sev-
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eral values, they seemed to present the best compromise between schedule robustness (i.e., more
slack built into the schedule) and a minimal schedule makespan (i.e., no slack build into the sched-
ule). When sampling from duration distributions to find methods’ actual durations, durations are
rounded to the nearest integer in order to simplify the simulation of execution. Finally, we assign
each problem a final deadline, since the original problem formulations do not have explicit dead-
lines represented in it. The addition of deadlines adds to the temporal complexity of the domain.

Core Planner

We use ASPEN (Automated Scheduling/Planning ENvironment) [Chien et al., 2000] as the plan-
ner for this domain. ASPEN is an iterative-repair planner that produces fixed times plans and is
designed to support a wide range of planning and scheduling domains. To generate a valid plan,
ASPEN first generates an initial, flawed plan, then iteratively and randomly repairs plan conflicts
until the plan is valid. It will continue to attempt to generate a plan until a solution is found or
the number of allowed repair iterations is reached, in which case it returns with no solution. When
replanning during execution, the planner begins with the current, potentially conflicted plan and
performs the same repair process until the plan is valid or until it times out. The schedule is gen-
erated using durm for each method m’s deterministic duration. We used ASPEN instead of a
flexible times planner because it was what we had available to use, at the time. A sample problem
for this domain in ASPEN syntax is shown in Appendix A.1. In order to fit the problem on a rea-
sonable number of pages, the problem was simplified and some constraints between methods were
removed.

After planning (or replanning), we expand the plan output by ASPEN into a total-order, flexible
times representation, as described in Section 3.2.2. As our constraint propagation algorithm for the
STN, we implemented a version of a standard constraint propagation algorithm AC3 [Machworth,
1977] that propagates constraints both forward and backward. The algorithm begins with all edges
marked as pending, meaning they are yet to be checked. It examines each edge and removes
possible values from the two connected nodes if they are not consistent with the constraint asserted
by the edge. If any node has a value removed, all edges except for the current one are added back
onto the pending list. The algorithm terminates when the pending list is empty.

During execution, the executive monitors the prerequisite conditions of any pending activities,
and executes the next activity as soon as its prerequisites are satisfied. The agent replans whenever
the STN becomes inconsistent. We will present the run-time plan management approach for this
domain later, in Section 7.2.1.
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Figure 3.3: A graph of a normal distribution.

Normal Distributions

Task duration distributions are modeled in this domain as normal distributions. Normal, or Gaus-
sian, distributions are continuous probability distributions typically used to describe data that is
clustered around a mean, or average, µ (Figure 3.3). A distribution’s standard deviation (σ) de-
scribes how tightly the distribution is clustered around the mean; its variance σ2 is the square of
the standard deviation. To indicate that a real-valued random variable X is normally distributed
with mean µ and variance σ2, we write X ∼ N

(
µ, σ2

)
. Normal distributions have the nice prop-

erty that the mean of the sum of two normal distributions equals the sum of the means of each of
the distributions; the same is true for variance. Thus, the normal distribution exactly representing
the distribution of the sum of two random variables drawn from ∼N

(
µ1, σ

2
1

)
and ∼N

(
µ2, σ

2
2

)
is

∼N
(
µ1 + µ2, σ

2
1 + σ2

2

)
. This property makes normal distributions very easy to work with in our

analysis of this domain, which requires summing distributions over groups of tasks, as the sum of
n distributions can be done in O(n) time. For other functions that some domains may require (e.g.,
maximum, minimum, etc.), however, normals do not combine as nicely and an approximation or
discretization may be appropriate. Of course, if a domain’s distribution type is not represented as a
normal, these calculations can be changed as appropriate.

We use two functions as part of our use of normal distributions. The first is normcdf (c, µ, σ),
the normal cumulative distribution function. This function calculates the probability that a variable
drawn from the distribution will have a value less than or equal to c. As an example, the value of
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normcdf (µ, µ, σ) is 0.5, as 50% of the distribution’s probability is less than the mean.

As part of its analysis, PADS needs to calculate the distribution of a method’s finish time,
given that it meets a deadline. This requires truncating distributions and combining them, such
as by addition, with other normal distributions. There is no known way to represent exactly
the combination of a truncated normal distribution and a normal distribution; the best approxi-
mation we are aware of finds the mean and standard deviation of the truncated distribution and
treats it as the mean and standard deviation of a normal distribution. We define this function as
µtrunc, σtrunc = truncate (lb, ub, µ, σ), meaning that the normal distribution ∼ N(µ, σ2) is
being truncated below and above at [lb, ub]. To find the mean and standard deviation of a truncated
distribution, we base our calculations on [Barr and Sherrill, 1999], which specifies that the mean
of a standard normal random variable ∼ N(0, 1) truncated below at a fixed point c is

µtrunc =
e−c2/2

√
2π (1− normcdf (c, 0, 1))

and the variance1 is

σ2
trunc =

(
1− chi-square-cdf

(
c2, 3

))
2 · (1− normcdf (c, 0, 1))

− µ2
trunc

From this we derive equations that truncate both above and below at [lb, ub]:

µtrunc =
−e−ub2/2 + e−lb2/2

√
2π (normcdf (ub, 0, 1)− normcdf (lb, 0, 1))

σ2
trunc =

(
chi-square-cdf

(
ub2, 3

)
− chi-square-cdf

(
lb2, 3

))
2 · (normcdf (ub, 0, 1)− normcdf (lb, 0, 1))

− µ2
trunc

These equations are the basis of the function truncate, which we use in our probabilistic analysis
of this domain.

3.3.2 Multi-Agent Domain

Our second domain is an oversubscribed, multi-agent planning problem that is concerned with the
collaborative execution of a joint mission by a team of agents in a highly dynamic environment.
Missions are formulated as a hierarchical network of activities in a version of the TAEMS language

1The formula used in this calculation, chi-square-cdf (x, N) is the chi-squared cumulative distribution function
and returns the probability that a single observation from the chi-squared distribution with N degrees of freedom will
fall in the interval [0, x].
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Figure 3.4: A simple, deterministic 3-agent problem.

(Task Analysis, Environment Modeling and Simulation) [Decker, 1996] called C TAEMS [Boddy
et al., 2005]. The plan objective is to maximize earned utility, which is explicitly modeled in this
domain2. The taskgroup node of the network, which is an OR node, is the overall mission task, and
agents cooperate to accrue as much utility at this level as possible. On successive levels, interior
nodes constitute aggregate activities that can be decomposed into sets of tasks and/or methods (leaf
nodes), which are directly executable in the world. Other than this, there is no pre-determined
structure to the problems of this domain. The domain’s activity network also includes special
types of constraints and relationships between activities that warrant special consideration while
probabilistically analyzing plans of this domain, as described further below.

To illustrate the basic principles of this domain, consider the simple activity network shown
in Figure 3.4. At the root is the OR taskgroup, with two child tasks, one OR and one AND; each
child task has two methods underneath it. Each method can be executed only by a specified agent
(agent: Name) and each agent can execute at most one method at a time. The enables relationship
shown is a prerequisite relationship.

Given this activity network, one could imagine a number of schedules being generated. We list
below all possible valid schedules, as well as situations in which they would be appropriate.

• m1 - Jeremy executes method m1, but there is not enough room in Buster’s schedule for m3

2In the terminology of the domain and our previous publications of PPM for this domain [Hiatt et al., 2008, 2009],
utility is called “quality”; for consistency in this document, we will continue to refer to it as “utility.”
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and m4.
• m2 - Jeremy does not have enough room in its schedule to execute method m1, so Sarah

executes the lower-utility option of m2.
• m1→ {m3, m4} - Jeremy executes method m1, which fulfills the prerequisite constraint and

allows Buster to execute m3 and m4, which can be executed in any order.
• m2 → {m3, m4} - Jeremy does not have enough room in its schedule to execute method

m1, so Sarah executes the lower-utility option of m2; this fulfills the prerequisite constraint
and allows Buster to execute m3 and m4, which can be executed in any order.
• {m1 or m2} → {m3, m4} - Jeremy executes method m1, and Sarah concurrently executes

method m2. Whichever finishes first fulfills the prerequisite constraint and allows Buster to
execute m3 and m4, which can be executed in any order. An example of when this schedule
is appropriate is if Buster’s schedule is tight and it is useful for m3 and m4 to begin execution
before m1 is able to finish, calling for the scheduling of m2; since m1 earns higher utility,
however, it is also scheduled.

Note that the reason why methods m3 and m4 are not executed concurrently in this example is that
they are owned by the same agent.

Now that we have illustrated the basic principles of the domain, we show the full model of
this example problem in Figure 3.5, and refer to it as we describe the further characteristics of the
domain.

Method durations are specified as discrete probability distributions over times (DUR: X), with
the exact duration of a method known only after it has been executed. Method utilities, (UTIL:
X), are also specified as discrete probability distributions over utilities. Methods do not earn utility
until their execution has completed. Methods may also have an a priori likelihood of ending with
a failure outcome (fail: X%), which results in zero utility. In subsequent text, we refer to DUR,
UTIL and fail as functions, which when given a method as input return the duration distribution,
utility distribution and failure likelihood, respectively, of that method. We also define the functions
averageDur and averageUtil, which return the deterministic expectation of an activity’s du-
ration and utility, respectively. We use “average” here to distinguish these values from the expected
utility which is calculated as part of the probabilistic analysis. Methods can fail for reasons other
than a failure outcome, such as by missing a deadline; however, any type of failure results in the
method earning zero utility. Even if a method fails, execution of the schedule still continues, since
the complicated activity structure and plan objective means that there is very likely still potential
for earning further utility at the taskgroup level.

Each task in the activity network has a specified utility accumulation function (uaf) defining
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Figure 3.5: A small 3-agent problem.

when, and how, a task accumulates utility. The uafs are grouped by node type: OR, AND and
ONE. Tasks with OR uafs earn positive utility as soon as their first child executes with positive
utility. Tasks with AND uafs earn positive utility once all children execute with positive utility.
Trivially, ONE tasks earn utility when their sole child executes with positive utility. Uafs also
specify how much final utility the tasks earn. For example, a sum task’s utility at any point equals
the total earned utility of all children. Other uafs are max, whose utility equals the maximum utility
of its executed children, and sum and, which earns the sum of the utilities of its children once they
all execute with positive utility. A less common uaf is min, which specifies that tasks accumulate
the minimum of the utilities of their children once they all execute with positive utility. A summary
of the uaf types is shown in Table 3.1.

Additional constraints in the network include a release (earliest possible start) time and a dead-
line (denoted by rel: X and dl: X, respectively, in Figure 3.5) that can be specified for any activity.
Each descendant of a task inherits these constraints from its ancestors, and its effective execution
window is defined by the tightest of these constraints. An executed activity fails if any of these
constraints are violated. In the rest of this document, we refer to rel and dl as functions, which
when given an activity as input return its release and deadline, respectively.

Inter-dependencies between activities are modeled via constraints called non-local effects (NLEs).
NLEs express causal effects between a source activity and a target activity. NLEs can be between
any two activities in the network that do not have a direct ancestry relationship. If the target activity
is a task, the NLE is interpreted as applying individually to each of the methods in the activity net-
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Table 3.1: A summary of utility accumulation function (uaf) types.
uaf type description

sum OR
utility is sum of children’s utility

(task earns utility as soon as the first child earns positive utility)

max OR
utility is max of children’s utility

(task earns utility as soon as the first child earns positive utility)

sum and AND
utility is sum of children’s utility

(task earns utility once all children earn positive utility)

min AND
utility is min of children’s utility

(task earns utility once all children earn positive utility)

exactly one ONE
utility is only executed child’s utility

(task earns utility as soon as the first child earns positive utility,
task has zero utility if any other children earn positive utility)

work under the task. Therefore, in much of our future discussion, we treat NLEs where the target
is a task as the analogous situation where there are enabling NLEs from the source to each of the
task’s method descendants.

NLEs are activated by the source activity accruing positive utility, and must be activated before
a target method begins execution in order to have an effect on it. All NLEs have an associated delay
parameter specifying how much time passes from when the source activity accrues positive utility
until the NLE is activated; although our approach can handle any arbitrary delay, for the sake of
simplicity we present our discussion as if delays do not exist.

There are four types of NLEs. The most common is the enables relationship. The enables NLE
stipulates that unless the target method begins execution after the source activity earns positive
utility, it will fail. For example, in Figure 3.5, the execution of targets m3 and m4 will not result
in positive utility unless the methods are executed after the source T1 earns positive utility. The
enables relationship is unique among the NLEs because an effective agent will wait for all of a
method’s enablers to earn positive utility before it attempts to begin executing it; otherwise, its
execution would be a waste as the method would not earn utility.

The second NLE is the disables NLE, which has the opposite effect of enabling. The disables
relationship stipulates that the target method fails (earns zero utility) if it begins executing after its
source has accrued positive utility. Typically, an effective planner will schedule sources of disables
to finish after the targets start. If a source activity does finish, however, before the target has started,
executing the target serves no purpose and so the planner should remove it from the schedule. The
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disables NLE and enables NLE are referred to as “hard” NLEs, as they must be observed to earn
utility.

The third NLE is the facilitates NLE. This NLE, when activated, increases the target method’s
utility and decreases its executed duration. The amount of the effect depends on the proportional
utility (prop-util) of the source s at the time e when the target starts execution:

prop-util (s, e) = min (1, util-earned (s, e)) /MaxU (s)

In this formula, util-earned refers to the utility so far accumulated by s, and MaxU (s) refers to
an approximation of the maximum possible utility of the activity s. As it is not important to our
approach, we omit describing how MaxU is calculated.

This formula is used to specify the effect of the NLE in terms of a utility coefficient uc such
that 0 ≤ uc ≤ 1, and a duration coefficient dc such that 0 ≤ dc < 1. Putting it all together, the
utility distribution of the target t if it starts at time e becomes:

UTIL (t) = UTIL (t) · (1 + uc · prop-util (s, e))

The duration distribution, similarly, becomes:

DUR (t) = dDUR (t) · (1− dc · prop-util (s, e))e

Note that the presence of d e in the duration ensures that durations are integral; utilities may not
be after a facilitating effect. Also note that according to this feature of the domain description, a
target’s utility can be, at most, doubled by the effect of a single facilitator.

The hinders NLE is exactly the same as the facilitates, except that the signs of the effect are
changed:

UTIL (t) = UTIL (t) · (1− uc · prop-util (s))

DUR (t) = dDUR (t) · (1 + dc · prop-util (s))e

Again, note that durations are always integral and, according to this feature of the domain descrip-
tion, a target’s duration can, at most, be doubled by the effect of a single hinderer.

If a method is the target of multiple facilitates or hinders, the effects can be applied in any order,
as multiplication is communicative; for the duration calculation, the ceiling function is applied after
the individual NLE effects have been combined. The facilitates and hinders NLEs are referred to as
“soft” NLEs as, unlike the hard NLEs, utility can be earned without observing them. A summary
of the NLE types is shown in Table 3.2.

In the rest of this document, we refer to en, dis, fac and hind as functions that, when
given an activity as input, return the scheduled enablers, disablers, facilitators and hinderers of
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Table 3.2: A summary of non-local effect (NLE) types.
NLE hard/soft description

enables hard
target will fail if it begins executing

before the source earns positive utility

disables hard
target will fail if the source earns

positive utility before the target begins executing

facilitates soft
target’s duration/utility are decreased/increased

if the source earns positive utility before the target begins executing

hinders soft
target’s duration/utility are increased/decreased

if the source earns positive utility before the target begins executing

the activity, as appropriate. The function enabled and disabled return the activities directly
enabled (or disabled) by the input activity. NLEs returns the scheduled source NLEs of all types
of an activity. We will also refer later to the function directlyDisabledAncestor which,
when given a method and (one of) its disabler, returns the ancestor of the method that is directly
targeted by the disables NLE. A sample problem for this domain in C TAEMS syntax is shown
in Appendix A.2. In order to fit the problem on a reasonable number of pages, the problem was
simplified and some activities were deleted.

We assume that a planner generates a complete flexible times schedule for all the agents. When
execution begins, agents receive a copy of their portion of the initial schedule and limited local
views of the activity network. Agents’ local views consist of activities that are designated as local
(the agent is responsible for executing and/or managing them) or remote (the agent tracks current
information for these activities via status updates from the agent responsible for maintaining them).
Agents receive copies of all of their local activities, as well as remote copies of all activities that are
constrained via NLEs with their local activities. Additionally, all activities are ultimately connected
to the root node (i.e., the local view consists of a single tree rooted at the taskgroup node). The
limited local view for agent Buster of Figure 3.5 is shown in Figure 3.6. After execution begins,
agents have a short, fixed period of time to perform initial computations (such as calculating initial
probability information) before they actually begin to execute methods.

We have developed two versions of our probabilistic plan management approach for this do-
main. One analysis applies to the initial, global schedule and is used to strengthen it before it
is distributed to agents. The second analysis is used by each agent during execution to distribu-
tively manage their portion of the schedule. During our discussion of PADS, we distinguish be-
tween the functions jointSchedule, which returns the scheduled methods across all agents,
and localSchedule, which returns the methods scheduled locally on a single agent. Similarly,
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Figure 3.6: The limited local view for agent Buster of Figure 3.5.

the local function, when given an activity, returns whether that activity is local to the agent.

Core Planner

The planner for this domain is the incremental flexible times scheduling framework described in
[Smith et al., 2007]. It adopts a partial-order schedule (POS) representation, with an underlying
implementation of an STN, as described in Section 3.2.2. The constraint propagation algorithm
used an incremental, arc-consistency based shortest path algorithm, based on [Cesta and Oddi,
1996]. The schedule for any individual agent is total-order; however, the joint schedule as a whole
may be partial-order as inter-agent activities are constrained with each other only by NLEs, and not
by explicit sequencing constraints.

The planner uses expected duration and utility values for methods, ignores a priori failure
likelihoods, and focuses on producing a POS for the set of agents that maximizes overall problem
utility. Given the complexity of solving this problem optimally and an interest in scalability, the
planner uses a heuristic approach. Specifically, the initial, global schedule is developed via an
iterative two-phase process. In the first phase, a relaxed version of the problem is solved optimally
to determine the set of “contributor” methods, or methods that would maximize overall utility if
there were no capacity constraints. In the second phase, an attempt is made to sequentially allocate
these methods to agent schedules. If a contributor being allocated depends on one or more enabling
activities that are not already scheduled, these are scheduled first. Should a method fail to be
inserted at any point (due to capacity constraints), the first phase is re-invoked with the problematic
method excluded. A similar process takes place within each agent when it replans locally. More
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detail on the planner can be found in [Smith et al., 2007].

During distributed execution, the executor monitors the NLEs of any pending activities and ex-
ecutes the next pending activity as soon as all the necessary constraints are satisfied. Agents replan
selectively in response to execution, such as if the STN becomes inconsistent, or if a method ends
in a failure outcome. We describe the run-time plan management system further in Section 7.3.1.

Discrete Probability Distributions

In this domain, uncertainty is represented as discrete distributions. We use summation, multiplica-
tion, maximization and minimization in our algorithms in later chapters; if a domain’s distribution
type is different than discrete, the below equations can be changed as appropriate.

The sum of two discrete probability distributions, Z = X + Y is [Grinstead and Snell, 1997]:

P (Z = z) =
∞∑

k=−∞
P (X = k) · P (Y = z − k)

The max of two discrete probability distributions, Z = max (X,Y ) is:

P (Z = z) = P (X = z) · P (Y < z) + P (X < z) · P (Y = z)

For the sake of redundancy, we omit the versions of these formulas for the multiplication of
and the minimum of two distributions. These equations can be implemented by iterating through
the distributions in question. Unlike with normal distributions, therefore, these calculations are
not linear and are done in O (|X| · |Y |) time; the size of the resulting distribution is bounded by
|X|·|Y | as well (although typically such a distribution has duplicate values and so its representation
is not that large). Discrete distributions do, however, have the benefit of being able to be combined
or modified exactly by any arbitrary operator.

3.4 Decision Trees with Boosting

We use decision trees with boosting [Quinlan, 1986] as part of our work on probabilistic meta-
level control. Decision trees, and classifiers in general, are a way of assigning one of a number
of classes to a given state. For our purposes, this means determining what high-level planning
action to take based on the current probabilistic analysis of the schedule. Decision trees, however,
are easily susceptible to overfitting: they can become unnecessarily complex and describe random
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error or noise in the dataset instead of the true underlying model. Boosting is one technique that is
commonly used to overcome this problem. Boosting is a meta-algorithm that creates many small,
weak classifiers (such as decision trees restricted in size), weighs them according to their goodness,
and lets them “vote” to determine the overall classification. We choose this type of classification
because it is easy to implement and very effective; [Breiman, 1996] even called AdaBoost with
decision trees the “best off-the-shelf classifier in the world.”

To construct a decision tree, one needs a training set of example states, x1...xj , each with a
known class Y ∈ y1...yk. Each example consists of a number of attributes; in our case, these
attributes are variables that have continuous values. Because we are using a boosting algorithm,
the examples also have associated weights, w1...wj . A decision tree is built recursively. It starts at
the root node and inspects the data. If all examples have the same class, the node becomes a leaf
node specifying that class. If all examples have identical states, it becomes a leaf node specifying
the class that the weighted majority of the states have. Otherwise, the node branches based on an
attribute and a threshold for that attribute: all examples with a value for that attribute less than the
threshold are passed to the right child, all others are passed to the left. This process recurses for
each child, continuing until the algorithm terminates. An example decision tree where all examples
are weighted equally is shown in Figure 3.7.

To choose which attribute to branch on, we use the algorithm C4.5 [Quinlan, 1993]. At each
node of the tree C4.5 chooses an attribute A and, if A is a continuous attribute, a threshold t, which
maximize Information Gain (IG), or the reduction in entropy that occurs by splitting the data by A
and t. Formally, IG is defined as

IG (A, t) = H (Y )−H (Y | A, t)

where H (Y ) represents the entropy of the class variable Y before the split:

H (Y ) = −
k∑

i=1

P (Y = yi) log2 P (Y = yi)

and H (Y | A, t) represents the entropy of the class variable Y after the split, which divides the
data according to whether the value for attribute A is less than t:

H (Y | A, t) =− P (A < t)
k∑

i=1

P (Y = yi | A < t) log2 P (Y = yi | A < t)

− P (A ≥ t)
k∑

i=1

P (Y = yi | A ≥ t) log2 P (Y = yi | A ≥ t)
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Figure 3.7: An example decision tree built from a data set. The tree classifies 11 examples giving
state information about the time of day and how much rain there has been in the past 10 minutes as
having or not having traffic at that time. Each node of the tree shows the attribute and threshold for
that branch as well as how many instances of each class are present at that node. Instances that are
not underlined refer to traffic being present; underlined instances refer to traffic not being present.

As the data is weighted, P (Y = yi) is:

P (Y = yi) =
∑j

i=1 (wi · 1 (Y (xi) = yi))∑j
i=1wi

where 1 is the indicator function, which returns 1 if the passed in equation is true and 0 otherwise.

Because we are solving a multi-class classification problem, we use the boosting algorithm
SAMME [Zhu et al., 2005], a multi-class variant of AdaBoost [Freund and Schapire, 1997]. The
algorithm begins by weighing all training examples equally. It builds a simple decision tree (e.g.,
a decision tree with two levels), and calculates a “goodness” term α for the classifier based on
the (weighted) percent of examples that were misclassified. Next, it increases the weight of the
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misclassified examples and decreases the weight of the correctly classified examples, and builds
another decision tree based on the newly weighted examples. It repeats the process of building
decision trees and reweighing the examples until the desired numberM of classifiers are built. The
overall classification C (x) of an example x is then:

C (x) = arg max
y

M∑
m=1

α (m) · 1 (Cm (x) = y)

This equation, intuitively, means that the classifier returns the classification that receives the highest
total of votes from each of the weighted decision trees.
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Chapter 4

Approach

Probabilistic plan management (PPM) is a composite approach to planning and scheduling under
uncertainty that couples the strengths of deterministic and non-deterministic planning, while avoid-
ing their weaknesses. The goal is to manage and execute effective deterministic plans in a scalable
way. As its starting point, PPM assumes a deterministic planner that generates an initial schedule
to execute and replans as necessary during execution. It then layers a probabilistic analysis on top
of the planner to explicitly analyze the uncertainty of the schedules the planner produces. PPM
maintains this probabilistic analysis of the current deterministic schedule as it changes due to both
the dynamics of execution and replanning. Both before and during execution, it uses the analysis
to make the schedule more robust to execution uncertainty, via probabilistic schedule strengthen-
ing. It also uses the analysis to manage the execution of the schedule via probabilistic meta-level
control, limiting the use of resources to replan and strengthen the schedule during execution while
maintaining the effectiveness of the schedule.

In this chapter, we first discuss the types of domains that our approach can analyze. We then
detail each of the three main components of probabilistic plan management, as well as discussing
how they fit together to probabilistically manage plans.

4.1 Domain Suitability

In the problems we consider, plan execution has an overall, explicit objective. Objectives typically
fall under one of two general categories: all activities must be executed within their constraints;
or reward (or another metric such as cost) is maximized or minimized. The objective can also be
a combination of these two categories. In all cases, the objective must be specified in terms of a
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numeric utility, which quantifies how well the objective was achieved. For example, if all activities
must be executed within their constraints, then one possible utility function is assigning a schedule
that does so a utility of 1, and one that does not a utility of 0. Similarly, the objective of maximizing
reward leads to a utility that simply equals the reward earned during execution. For multi-agent
scenarios, we assume agents cooperate together to jointly achieve the plan objective. Additionally,
the objective must be affected in some way by the presence of uncertainty in the problem. If it is
not, then our analysis will not provide any information helpful for probabilistically managing plan
execution.

Any domain that is to be considered by our approach must have an explicit model of its uncer-
tainty. No specific representation of uncertainty is assumed, as long as the distributions represent-
ing the uncertainty can be combined, or approximately combined, according to various functions
(e.g., sum, max). Two common distribution types (and the two that we consider explicitly in this
document) are normal and discrete distributions. Normal distributions can be very readily summed
to calculate activities’ finish time distributions; however, they are unable to exactly capture more
complicated functions, such as the finish time of an activity given that it meets a deadline [Barr
and Sherrill, 1999]. Discrete distributions, on the other hand, allow for the exact calculation of
combinations of distributions; however, the size of the combination of two distributions is bounded
by the product of the size of the two individual distributions.

In this work, we make the assumption that domain representations can be translated into hier-
archical activity networks, which are then considered by our analysis (Section 3.2.1). Discussion
of our analysis does presuppose that we are considering planning problems with durative tasks and
temporal uncertainty; such problems are in general difficult to solve, and we show our approach
is effective in such domains. We assume that schedules are represented as STNs. However, the
temporal aspect of the analysis can easily be left out to perform PPM for domains without durative
actions. Our analysis also assumes that plans do not branch; again, however, this assumption could
be broken and the approach extended to include branching or conditional plans. Our approach does
not place any restrictions on what planner is used or how it determinizes the domain, but ideally it
generates good deterministic plans for the problem of interest. This is because we do not integrate
our approach with the planner, but instead layer an uncertainty analysis on top of the schedules it
produces. In particular, we do not assume the planner plans with activity networks; the planner can
work with whatever domain representation is most convenient.

Although a variety of executive systems can be used in our approach, the most suitable would
provide execution results as they become known throughout execution, allowing for more effective
runtime probabilistic plan management. Also, for the purposes of this analysis, we assume that the
executive is perfect (e.g., tasks always start when requested, no latency exists, etc.). If the executive
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system broke this assumption often enough, it should be explicitly modeled and incorporated into
the uncertainty analysis to increase PPM’s effectiveness.

For multi-agent domains, we also assume that communication is reliable and has sufficient
bandwidth for agent communications; this assumption is not broken in the multi-agent domain
we specifically consider, as all communication is done via message passing over a wired intranet.
Ways to limit communication in domains with limited bandwidth are discussed in Sections 5.3.5
and 8.1.1. If communication is unreliable and readily goes down, it would adversely affect our
approach as agents only intermittently be able to share probability information. However, the effect
of communication accidently going down can be alleviated somewhat by probabilistic schedule
strengthening, because agents’ last schedules would have the benefit of having been strengthened.
We discuss this further in Section 6.4.4.

In this thesis, we use PPM in two different domains. One is a single-agent domain where the
objective is to execute all tasks within their temporal constraints. There is uncertainty in method
duration, which is represented as normal distributions. The second is a distributed, oversubscribed
multi-agent domain where the objective is to maximize reward. There are a variety of sources of
uncertainty, such as in method durations and outcomes, which are represented as discrete distribu-
tions.

4.2 Probabilistic Analysis of Deterministic Schedules

At the core of our approach is a Probabilistic Analysis of Deterministic Schedules (PADS). At
the highest level of abstraction, the algorithm explores all known contingencies within the context
of the current schedule in order to find its expected utility. It calculates, for each activity, the
probability of the activity meeting its objective, as well as its expected utility; these values, in
part, make up a probability profile for each activity. PADS culminates in finding the probability
profile of the taskgroup, which summarizes the expected outcome of execution and provides the
overall expected utility. For domains where the plan objective is to execute all activities, the overall
expected utility is between 0 and 1; trivially, it equals the probability that the plan objective will
be met by executing the schedule. For domains with an explicit notion of reward, the taskgroup
expected utility equals the expected earned reward.

By explicitly calculating a schedule’s expected utility, PADS allows us to distinguish between
the deterministic and probabilistic states of a schedule. We consider the deterministic state to be the
status of the deterministic schedule, such as the deterministically scheduled start and finish times
of activities. The probabilistic state, on the other hand, tracks activities’ finish time distributions,
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probabilities of meeting deadlines, and expected utility. The deterministic state knows about one (or
a small set of) possible execution paths, whereas the probabilistic state expands that to summarize
all execution paths within the scope of the current schedule. Thus, the deterministic state and the
probabilistic state have very different notions of what it means for something to be “wrong” with
the schedule. In the deterministic state, something is wrong if execution does not follow that one
path (or small set of paths) and an event happens at a non-scheduled time or in a non-planned way;
in the probabilistic state, something is wrong if the average utility is below the targeted amount or
the likelihood of not meeting the plan objective is unacceptably low.

In general, domains can have a wide variety of sources of uncertainty, which can affect the ac-
complishment of their objectives. Common examples are uncertainty associated with an activity’s
duration, utility, and outcome (e.g., was the activity successful in achieving its goal or not). These
sources of uncertainty propagate through the schedule, affecting the execution of other scheduled
activities and, ultimately, determining how much utility is earned during execution. The overall
structure of PADS analyzes this, starting with the earliest and least constrained activities and prop-
agating probability values throughout the schedule to find the overall expected utility.

PADS can also provide useful information about the relative importance of activities via the
expected utility loss metric. This metric measures the relative importance of an activity by quanti-
fying how much the expected utility of the schedule would suffer if the activity failed, scaled by the
activity’s likelihood of failing. This metric is most useful for plan objectives that involve maximiz-
ing or minimizing some characteristic of execution; for plan objectives that involve executing all
activities, the schedule’s expected utility suffers equally from any activity failing, and so expected
utility loss could simply equal the probability of the activity failing.

In distributed, multi-agent scenarios, PADS cannot be calculated all at once since no agent has
complete knowledge or control over the entire activity hierarchy. In such situations, therefore, the
PADS algorithm is also distributed, with each agent calculating as much as it can for its portion
of the activity network, and communicating the information with others. Calculations such as
expected utility loss, however, are approximated by agents as needed during execution, because
agents cannot calculate changes in expected utility for the entire schedule with only partial views
of the activity network.

PADS can be used as the basis of many potential planning actions or decisions. In this docu-
ment, we discuss how it can be used to strengthen plans to increase expected utility, and how it can
be used as the basis of different meta-level control algorithms that intelligently control the compu-
tational resources used to replan during execution. Other potential uses are described in Chapter 8,
which discusses future work.

A novelty of our algorithm is how quickly PADS can be calculated and its results utilized to
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make plan improvements, due to analytically calculating the uncertainty of a problem in the context
of a given schedule. On large reference multi-agent problems with 10-25 agents, the expected
utility is globally calculated in an average of 0.58 seconds, which is a very reasonable time for
large, complicated multi-agent problems such as these.

4.3 Probabilistic Schedule Strengthening

While deterministic planners have the benefit of being more scalable than probabilistic planners,
they make strong, and often inaccurate, assumptions on how execution will unfold. Replanning
during execution can effectively counter such unexpected dynamics, but only as long as planners
have sufficient time to respond to problems that occur; moreover, there are domains when replan-
ning is always too late to respond to activity failure, as backup tasks would have needed to be
set up ahead of time. Additionally, even if the agent is able to sufficiently respond to a problem,
utility loss may occur due to the last minute nature of the schedule repair. Schedule strengthening
is one way to proactively protect schedules against such contingencies [Gallagher, 2009]. In this
thesis, we utilize the information provided by PADS to layer an additional probabilistic schedule
strengthening step on top of the planning process, making local improvements to the schedule by
anticipating problems that may arise and probabilistically strengthening them to protect schedules
against them.

The philosophy behind schedule strengthening is that it preserves the existing plan structure
while making it more robust. Probabilistic schedule strengthening improvements are targeted at
activities that have a (high) likelihood of failing to contribute to the plan’s objective and whose
failure negatively impacts schedule utility the most. By minimizing the likelihood of these failures
occurring, probabilistic schedule strengthening increases schedule robustness, thereby raising the
expected utility of the schedule.

Because schedule strengthening works within the existing plan structure, its effectiveness can
be limited by the original goodness of the schedule. If a schedule has low utility to begin with, for
example, probabilistic schedule strengthening will not be that useful; if a schedule has high utility
but with a high chance of not meeting its objective or earning that utility, probabilistic schedule
strengthening can help to decrease the risk associated with the schedule and raise the schedule’s
expected utility. Probabilistic schedule strengthening improves the expected outcome of the current
schedule, not the schedule itself.

The effectiveness of schedule strengthening also depends on the structure of the domain, and
on knowledge of that structure, as the specific actions that can be used to strengthen these activities
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depend on the domain’s activity network. Domains well-suited to schedule strengthening ideally
have a network structure that allows for flexibility in terms of activity redundancy, substitution,
or constraints; without this flexibility, it would be difficult to find ways to make schedules more
robust. We list here example strengthening actions that can be applied to a variety of domains:

1. Adding a redundant activity - Scheduling a redundant, back-up activity under a parent OR
task. This protects against a number of contingencies, such as an activity having a failure
outcome or not meeting a deadline. However, it can also decrease schedule slack, potentially
increasing the risk that other activities will violate their temporal constraints.

2. Switching scheduled activities - Replacing an activity with a sibling under a parent OR or
ONE task, with the goal of shortening activity duration or lowering a priori failure likelihood.
This may result, however, in a lower utility activity being scheduled.

3. Decreasing effective activity duration - Adding an extra agent to assist with the execution
of an activity to shorten its effective duration [Sellner and Simmons, 2006] or to facilitate
its execution in some other way. This decreases the chance that the activity will violate a
temporal constraint such as a deadline; however, adding agents to activities or facilitating
them in another way may decrease schedule slack and increase the likelihood other activities
miss their deadline.

4. Removing an activity - Unscheduling an activity. Although an unexecuted activity does not
contribute to a schedule’s utility, removing activities increases schedule slack, potentially
increasing the likelihood that remaining activities meet their deadlines.

5. Reordering activities - Changing the execution order of activities. This has the potential to
order activities so that constraints and deadlines are more likely to be met; however, it might
also increase the likelihood that activities miss their deadlines or violate their constraints.

PADS allows us to explicitly address the trade-offs inherent in each of these actions to ensure
that all modifications make improvements with respect to the domain’s objective. After any given
strengthening action, the expected utility of the plan is recalculated to reflect the modifications
made. If expected utility increases, the strengthening action is helpful; otherwise it is not helpful
and the action can be rejected and undone.

During overall probabilistic schedule strengthening, activities are prioritized for strengthening
by expected utility loss so that the most critical activities are strengthened first. Strengthening
actions can be prioritized by their effectiveness: in general, the most effective actions preserve the
existing schedule structure (such as (1) and (3)); the least effective do not (such as (4)).
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During execution, probabilistic schedule strengthening can be performed at any time to ro-
bustify the schedule as execution proceeds. Ultimately, however, it is best when coupled with
replanning to build effective, robust schedules. Replanning during execution allows agents to gen-
erate schedules that take advantage of opportunities that may arise; schedule strengthening in turn
makes those schedules more robust to unexpected or undesirable outcomes, increasing schedule
expected utility.

On reference problems in the multi-agent domain, we have shown that probabilistically strength-
ened schedules are significantly more robust, and have an average of 32% more expected utility
than their initial, deterministic counterparts. Using probabilistic schedule strengthening in con-
junction with replanning during execution results, on average, in 14% more utility earned than
replanning alone during execution.

4.4 Probabilistic Meta-Level Control

Replanning during execution provides an effective way of responding to the unexpected dynamics
of execution. There are clear trade-offs, however, in replanning too much or too little during
execution. On one hand, an agent could replan in response to every update; however, this could
lead to lack of responsiveness and a waste of computational resources. On the other hand, an agent
could limit replanning, but run the risk of not meeting its goals because errors were not corrected
or opportunities were not taken advantage of.

Ideally, an agent would always and only replan (or take some other planning action, like
strengthening) when it was useful; either to take advantage of opportunities that arise or to min-
imize problems and/or conflicts during execution. At other times, the agent would know that the
schedule had enough flexibility – temporal or otherwise – to absorb unexpected execution out-
comes as they arise without replanning. The question of whether replanning would be beneficial,
however, is difficult to answer, in large part because it is difficult to predict whether replanning is
beneficial without actually doing it.

As an alternative to explicitly answering the question, we use our probabilistic analysis to
identify times where there is potential for replanning to be useful, either because there is a potential
new opportunity to leverage or a potential failure to avoid. The probabilistic control algorithm thus
distinguishes between times when it is likely necessary (or beneficial) to replan, and times when it
is not. This eliminates potentially unnecessary and expensive replanning, while also ensuring that
replans are done when they are probably necessary or may be useful.

There are several different ways to use PADS to drive the meta-level decision of when to replan.
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For example, strategies can differ in which activity probability profiles they consider when deciding
whether to replan. Which component of a probability profile is utilized (e.g., expected utility,
probability of meeting objective, etc.) can also vary between strategies. Additionally, different
strategies can either consider activities’ profiles on their own, or look at how the profiles change
over time.

When designing meta-level control strategies, the objective of the plan can help lead to finding
the best strategy. For planning problems with a clear upper bound on utility, such as ones in
which the objective is to execute all or a set of activities within their temporal constraints, a good
strategy is to replan whenever the expected utility of the entire schedule falls below a threshold.
For oversubscribed problems with the goal of maximizing reward, the maximum feasible utility is
typically not known, and a better strategy might be a learning-based approach that learns when to
replan based on how activities’ expected utilities change over time.

Whether the approach is centralized or distributed can also affect the choice of a control strat-
egy. For centralized applications, looking at the plan as a whole may suffice for deciding when
to replan. For distributed applications, however, when agents decide to replan independently of
one another, the plan as a whole may be a poor basis for a control algorithm because the state of
the joint plan does not necessarily directly correspond to the state of an agent’s local schedule and
activities. Instead, in distributed cases, it may be more appropriate to consider the local probabilis-
tic state, such as the probability profiles of methods in an agent’s local schedule, when deciding
whether to replan.

The control strategy can also be used to limit not only the number of replans, but also the
amount of the current schedule that is replanned. In situations with high uncertainty, always re-
planning the entire schedule means that tasks far removed from what is currently being executed
are replanned again and again as the near term causes conflicts, potentially causing a waste of com-
putational effort. To this end, we introduce an uncertainty horizon, which uses PADS to distinguish
between portions of the schedule that are likely to need to be replanned at the current time, and
portions that are not. This distinction is made based on the probability that activities beyond the
uncertainty horizon will need to be replanned before executing them.

Experiments in simulation for the single-agent domain have shown a 23% reduction in schedule
execution time (where execution time is defined as the schedule makespan plus the time spent
replanning during execution) when probabilistic meta-level control is used to limit the amount of
replanning and to impose an uncertainty horizon, versus when the entire plan is replanned whenever
a schedule conflict arises. Experiments in the multi-agent domain show a 49% decrease in plan
management time when our probabilistic meta-level control strategy is used, as compared to a plan
management strategy that replans according to deterministic heuristics, with no significant change
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in utility earned.

In PPM, all these components come together to probabilistically and effectively manage plan
execution. A flow diagram of PPM is shown in Figure 4.1. At all times, PADS calculates and
updates probabilistic information about the current schedule as execution progresses. The default
state of an agent is a “wait” state, where it waits to hear of changed information, either from the
simulator specifying the results of execution or, in multi-agent scenarios, messages from other
agents specifying changes to their probabilistic information. Any time such an update is received,
the agent updates its probability profiles via PADS (described in Chapter 5). Then, in order to
control the amount of replanning, probabilistic meta-level control (PMLC in Figure 4.1, described
in Chapter 7) decides whether to replan (or probabilistically strengthen the schedule) in response to
the changes in the agents probability profiles. Probabilistic meta-level control makes this decision
with the goal of maintaining high utility schedules while also limiting unnecessary replanning.
Finally, each time that a replan is performed, PADS first updates the probability profiles of the new
schedule, and then a probabilistic schedule strengthening pass is performed (PSS in Figure 4.1,
described in Chapter 6) in order to improve the expected utility of the new schedule. Finally, in
multi-agent scenarios, agents would communicate these changes to other agents. Note that this
diagram illustrates only the flow of PPM in order to demonstrate its principles. It does not, for
example, show the flow of information to or from agents’ executive systems.

Overall, the benefit of PPM is clear. When all components of PPM are used, the average utility
earned in the multi-agent domain increases by 14% with an average overhead of only 18 seconds
per problem, which corresponds to only 2% of the total time of execution.

In the next chapter, we discuss the PADS algorithm for both the single-agent and multi-agent
domains. Chapter 6 details our probabilistic schedule strengthening approach, while Chapter 7
explains in depth the probabilistic meta-level control strategy. Finally, Chapter 8 presents our
conclusions and future work.
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Figure 4.1: Flow diagram for PPM.
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Chapter 5

Probabilistic Analysis of Deterministic
Schedules

This section discusses in detail how to perform a Probabilistic Analysis of Deterministic Schedules
(PADS), which is the basis of our probabilistic plan management approach. We developed versions
of this algorithm for both of our domains of interest. Section 5.1 provides an overview of how
the probability analysis is performed in the two domains we consider, while Sections 5.2 and 5.3
provide details about the algorithms. The casual reader, after reading the overview section, can
safely pass over the two more detailed sections that follow. Finally, Section 5.4 presents PADS
experimental results.

5.1 Overview

The goal of the PADS algorithm is to calculate, for each activity in a problem’s activity network,
a probability profile, which includes the activity’s probability of meeting its objective (po) and its
expected utility (eu). The algorithm propagates probability profiles through the network, culminat-
ing in finding the probability profile of the taskgroup, which summarizes the expected outcome of
execution and provides the overall expected utility.

For domains with temporal constraints like the two we consider, a method’s finish time distri-
bution (FT ) is typically necessary for calculating the probability that the method meets the plan
objective; in turn, its start time distribution (ST ) and duration distribution are necessary for cal-
culating its finish time distribution. Along with the method’s probability of meeting its objective
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5 Probabilistic Analysis of Deterministic Schedules

and expected utility, we call these values the method’s probability profile. In general, in this and
following chapters we use uppercase variables to refer to distributions or sets and lowercase vari-
ables to refer to scalar values. We also use lowercase variables to refer to methods or activities, but
uppercase variables to refer specifically to tasks.

Algorithm 5.1 provides the general, high-level structure for calculating a method’s probability
profile. It can be adjusted or instantiated differently for different domain characteristics, as we will
see in Sections 5.2 and 5.3, when we discuss PADS in detail for the two domains.

Algorithm 5.1: Method probability profile calculation.

Function : calcMethodProbabilityProfile (m)

//calculate m’s start time distribution

ST (m) = calcStartTimes (m)1

//calculate m’s finish time distribution

FT (m) = calcFinishTimes (m)2

//calculate m’s probability of meeting its objective

po (m) = calcProbabilityOfObjective (m)3

//calculate m’s expected utility

eu (m) = calcExpectedUtility (m)4

The order in which activities’ profiles are calculated is based on the structure of activity de-
pendencies in the activity network. For example, a method is dependent on its predecessor and
its prerequisites; correspondingly, its profile depends on the profiles of those activities and cannot
be calculated until they are. Once these profiles are known, a method’s start time distribution can
be calculated (Line 1). Typically, calculating a method’s start time distribution includes finding
the maximum of its earliest start time, est, and its predecessors and prerequisite activities’ finish
time distributions, as it cannot start until those activities finish. A method’s finish time distribu-
tion is found next (Line 2), and generally includes summing its start time distribution and duration
distribution.

At any point during these calculations, a method may be found to have a non-zero probability
of violating a constraint or otherwise not meeting its objective, leading to a failure. These cases
are collected and combined to find m’s probability of meeting its objective (Line 3). Similarly, if
a method is found to have a non-zero a priori probability of failing, such information should be
incorporated into the po (m) calculation.

Finally, a method’s expected utility is calculated (Line 4). Its expected utility depends on
po (m) and its utility, as well as any other dependencies (such as soft NLEs) that may affect it.
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5.1 Overview

Its utility depends on the plan objective. If the plan objective is to execute all scheduled methods,
individual methods should all have the same utility; if the plan objective includes an explicit model
of reward or utility, a method’s utility is defined by that.

Probability profiles are found differently for tasks. The general, high-level algorithm is shown
in Algorithm 5.2. For tasks, start time distributions are ignored as they are not necessary for
calculating a task’s finish time distribution; instead, a task’s finish time distribution depends on the
finish time distributions of its children. A task’s finish time distribution may only be necessary to
explicitly calculate if there are direct relationships between it or its ancestors and other activities;
however, we do not show that check here. The algorithm calculates tasks’ probability profiles based
on whether the task is an AND, OR or ONE task.

Algorithm 5.2: Task probability profile calculation.

Function : calcTaskProbabilityProfile (T )

switch Type of task T do1

case AND2

FT (T ) = calcANDTaskFinishTimes (T )3

po (T ) = calcANDTaskProbabilityOfObjective (T )4

eu (T ) = calcANDTaskExpectedUtility (T )5

case OR6

FT (T ) = calcORTaskFinishTimes (T )7

po (T ) = calcORTaskProbabilityOfObjective (T )8

eu (T ) = calcORTaskExpectedUtility (T )9

case ONE10

if |scheduledChildren (T ) | == 1 then11

c = sole-element (scheduledChildren (T ))12

FT (T ) = FT (c)13

po (T ) = po (c)14

eu (T ) = eu (c)15

else16

po (T ) = eu (T ) = 017

end18

end19

For AND and OR tasks, the algorithm does not explicitly check the number of children that are
scheduled. That is because we assume that unscheduled tasks have a po and eu of 0. This property
means that the equations in the algorithm evaluate to the desired values without such a check. In
this algorithm, the function scheduledChildren returns the scheduled children of a task.
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5 Probabilistic Analysis of Deterministic Schedules

An AND task’s finish time distribution includes calculating the max of its children’s, as it does
not meet its plan objective until all children do (Line 3). Similarly, its probability of meeting the
plan objective should equal the probability that all children do (Line 4). An AND task’s expected
utility is generally a function of the utility of its children, multiplied by the probability that it meets
its objective; this function depends on the domain specifics (such as what the task’s uaf is) (Line 5).

An OR task’s finish time distribution includes calculating the min of its scheduled children’s,
as it meets its plan objective when its first child does (Line 7). Its probability of meeting the plan
objective is the probability that at least one child does (which is equivalent to the probability that
not all scheduled children do not) (Line 8). An OR task’s expected utility is generally a function
of the utility of its children; this function depends on the domain specifics (such as what the task’s
uaf is) (Line 9).

Trivially, ONE tasks’ profiles equal those of their sole scheduled child. Typically, planners do
not schedule more than one child under a ONE task. Therefore, we omit considering, for cases
where more than one child is scheduled, the probability that only one succeeds. Instead, we say
instead that in such a case the task has an expected utility of 0. Algorithms 5.1 and 5.2, put together,
enable the expected utility of the entire schedule to be found. In subsequent equations, we refer to
this as eu (TG), where TG is the taskgroup.

5.1.1 Single-Agent PADS

Recall the representation of the single-agent domain: at the root is the AND taskgroup, and below
it are the ONE tasks, each with their possible child methods underneath. That is, the plan objective
is to execute one child of each task within its imposed temporal constraints. Trivially, therefore,
po (a) equals the probability that an activity a meets this objective. We define plan utility for this
domain to be 1, if all tasks have one child method that executes within its constraints, or 0 if all do
not. Due to this simple plan structure, PADS for this domain is fairly intuitive. It moves linearly
through the schedule, calculating the probability profiles of each method, and passing them up to
their parents, until all tasks’ profiles have been found and the expected utility of the schedule is
known.

5.1.2 Multi-Agent PADS

The overall objective of our multi-agent domain is to maximize utility earned. While calculating
probability profiles for this domain, we define po (a) to equal the probability that an activity a earns
positive utility; its utility is trivially its domain-defined utility.
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5.2 Single-Agent Domain

This domain is inherently more complex than our single-agent domain, leading to a number
of extensions to the simple algorithms and equations presented above. First, the calculations of
tasks’ expected utilities depend on the tasks’ uaf types, not just node types (i.e., AND, OR or
ONE). Second, the disables, facilitates and hinders relationships need to be factored in at various
stages in the calculations as appropriate: disablers affect whether a method starts; and facilitators
and hinderers affect its finish time and expected utility calculations. The analysis begins at the
lowest method level, and propagates profiles both forward and upward through agents’ schedules
and the activity hierarchy until all activities’ (including the taskgroup’s) probability profiles have
been calculated and the schedule’s expected utility is known.

We have developed two versions of PADS for this domain. The first is intended to be performed
offline and centrally in order to perform plan management before the initial global schedule is dis-
tributed to agents. The second version is used for probabilistic plan management during distributed
execution. When PADS is performed globally, calculations begin with the first method(s) sched-
uled to execute, and later activities’ profiles can be calculated as soon as the profiles of all activities
they are dependent on have been determined. In the distributed case, the same basic propagation
structures takes place; however, agents can update only portions of the activity network at a time
and must communicate (via message passing) relevant activity probability profiles to other agents
as the propagation progresses. Figure 5.1 shows a schedule, the resulting activity dependencies
and profile propagation order for the small example shown in Figure 3.5, on page 39. Figure 5.2
shows how the profile propagation is done in a distributed way. Although it is not illustrated in the
diagram for visual clarity, after agent Buster finish its calculations, it would pass the profiles of T2
and the taskgroup to agent Jeremy, as Jeremy has remote copies of them.

5.2 Single-Agent Domain

We have implemented PADS for a single-agent domain [Hiatt and Simmons, 2007]. Recall the
characteristics of this domain: the plan’s objective is that all tasks, each with exactly one method
underneath them, execute without violating any temporal constraints. The only source of uncer-
tainty is in method duration; and temporal constraints are in the form of minimal and maximal time
lags between tasks, as well as a final deadline. We use a fixed times planner to generate schedules,
and we expand solutions to be flexible times by translating them into an STN.

Recall from our discussion on STNs (Section 3.2.2, on page 31) that if a method does not
begin by its latest start time, lst, the STN will become inconsistent. In the STN representing
the deterministic schedules of this domain, time bounds are based only on methods’ scheduled
durations, i.e., the edge representing the duration constraint specifies lower and upper bounds of
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Figure 5.1: The activity dependencies (denoted by solid arrows) and propagation order (denoted
by circled numbers) that result from the schedule shown for the problem in Figure 3.5.
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profiles for its activities, m1 and T1, and passes the profile of T1 to Buster; Buster can then finish
the profile calculation for the rest of the activity network.
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[durm,durm] (see Section 3.2.2, on page 31, for this description). One implication of this is that,
if a method misses its lst, the STN will become inconsistent; however, the schedule may still
execute successfully, such as if the method begins after its lst but executes with a duration less
than durm. Ideally, this contingency would be captured by the probabilistic analysis.

To do so, before performing its analysis, PADS expands the duration edges in the STN to
include the range of possible integer durations for methods bounded by

[max (1, µ (DUR (m))− 3 · σ (DUR (m))) , µ (DUR (m)) + 3 · σ (DUR (m))]

This covers approximately 99.7% of methods’ duration distributions. We use integer durations
because method’s executed durations are rounded to the nearest integer during simulation (Sec-
tion 3.3.1). By expanding method durations in the STN, we can interpret the resulting time bounds
differently. Now, if a method does not start by its revised lst, it is almost certain that the schedule
cannot successfully be executed as-is. This allows PADS to more accurately calculate the sched-
ule’s probability of succeeding. We use a “ ′ ” symbol to denote that we are using this modified
STN: we refer to it as STN′, and time bounds generated from it are est′, lst′, etc.

5.2.1 Activity Dependencies

In this domain, since all tasks need to be executed within their constraints, the probability that
the schedule meets its objective for a problem with T tasks is po (TG) = po (m1, ...,mT ), where
po (mi) is the probability that method mi executes without violating any constraints.

The probabilities po (m1) , ..., po (mT ) are not independent. The successful execution of any
method is dependent on the successful execution of its predecessors, because if a predecessor
does not execute successfully (for example by violating its lft′) then execution of the current
schedule no longer has any possibility of succeeding. Conditional probability allows us to rewrite
the equation as:

po (m1, ...,mT ) =
T∏

i=1

po (mi | m1, ...,mi−1)

That is, a method’s po value should equal the probability that it executes within all its constraints
given that all previous ones do, as well. Then, the schedule’s po value is calculated by multiplying
the po values for the individual ONE tasks, which equal the po values of their sole scheduled child,
as shown in Section 5.1. Note that we can avoid explicit consideration of prerequisite relationships;
they are implicitly considered by the above consideration that all of a method’s predecessors must
successfully execute before it can, since the agent can execute only one thing at a time.
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5.2 Single-Agent Domain

5.2.2 Probability Profiles

As the structure of the entire activity network is standard for all problems in this domain, we are
able to present a closed-form PADS algorithm. Algorithm 5.3 shows the pseudocode for this. Note
how this algorithm provides domain-specific implementations of the functions in Algorithm 5.1,
and reuses its calculation of ONE tasks’ probability profiles. We do not need to calculate the
finish time distributions of the ONE tasks, because neither they nor their ancestors have any direct
dependencies with other activities. Since the distributions in this domain are represented as normal
distributions, we present them in terms of their mean and variance. Distributions are combined
according to the equations presented in Section 3.3.1 (on page 35).

The function schedule in this and later algorithms returns the agent’s current schedule, with
methods sorted by their scheduled start time, and children and scheduledChildren return
the children and scheduled children of a task, respectively. The algorithm iterates through each
scheduled method and finds its probability of violating temporal constraints given that all previous
methods successfully complete. As with Algorithm 5.1, it first calculates the method’s start time
distribution. We use the truncate function to approximate the max function (see Section 3.3.1
for specifics). It follows that its approximate start time distribution is its predecessor’s finish time
distribution, given it succeeds, truncated at its lower bound by est′ (mi) (Line 2); as stated above,
we can avoid explicit consideration of prerequisite relationships in our calculations.

The method’s finish time distribution is the sum of its start time and duration distributions
(Line 3). The probability of the method ending at a valid time equals the probability of it ending
in the interval defined by its earliest finish time eft′ and its latest finish time lft′ (Line 4),
as reported by the STN′. This value is m’s po value, assuming all prior methods have finished
successfully.

Assigning each method an arbitrary constant utility of 1, mi’s expected utility equals po (mi).
Next, the method’s finish time distribution is truncated to approximate its finish time distribution
given it succeeds, FTs, in order to pass that forward to future methods (Line 6). It is not necessary
to find mi’s failure finish time distribution, as if any method fails the schedule cannot execute
successfully as-is.

After the profiles of all methods have been found, their profiles are passed up to the task level.
All tasks are ONE tasks, so their profiles equal that of their sole scheduled child (Lines 9-11); if
no child (or more than one child) is scheduled, the tasks’ po and eu values are 0 (Lines 12-14).
Finally, after this has been done for all tasks, the individual task po values can be multiplied to find
the overall probability of the schedule meeting its objective (Line 17). This, trivially, equals the
schedule’s expected utility (Line 18).

67



5 Probabilistic Analysis of Deterministic Schedules

Algorithm 5.3: Taskgroup expected utility calculation for the single-agent domain with normal dura-
tion distributions and temporal constraints.

Function : calcExpectedUtility
foreach method mi ∈ schedule do1

//calculate mi’s start time distribution

ST (mi) = truncate (est′ (mi) ,∞, µ (FTs (mi−1)) , σ (FTs (mi−1)))2

//calculate mi’s finish time distribution

FT (mi) = ST (mi) + DUR (mi)3

//calculate mi’s probability of meeting its objective

po (mi) = normcdf (lft′ (mi) , µ (FT (mi)) , σ (FT (mi)))−4

normcdf (eft′ (mi) , µ (FT (mi)) , σ (FT (mi)))

//calculate mi’s expected utility

eu (mi) = po (mi)5

//adjust the FT distribution to be mi’s FT distribution given it

succeeds

FTs (mi) = truncate (eft′ (mi) ,lft′ (mi) , µ (FT (mi)) , σ (FT (mi)))6

end7

//calculate ONE tasks’ profiles

foreach T ∈ children (TG) do8

if |scheduledChildren (T ) | == 1 then9

po (T ) = po (sole-element (T ))10

eu (T ) = eu (sole-element (T ))11

else12

po (T ) = 013

eu (T ) = 014

end15

end16

po (TG) =
∏

T∈children(TG) po (T )17

eu (TG) = po (TG)18
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Before execution begins, this algorithm is used to find the probability profiles of the entire
schedule. During execution, feedback of execution results, i.e., the methods’ actual, executed
durations, are asserted into the STN as they become known. As PADS continues to update its
probability values, it skips over activities that have already been executed and finds only the profiles
for activities that have not yet completed. These profiles will be used in as part of a probabilistic
meta-level control algorithm, which will be described in Section 7.2.

5.3 Multi-Agent Domain

This section discusses the implementation of PADS for the multi-agent domain we consider [Hiatt
et al., 2008, 2009]. Recall that the goal of this domain is to maximize utility earned. We say, there-
fore, that the probability of meeting the plan objective equals the probability of earning positive
utility. The multi-agent domain has many sources of uncertainty and a complicated activity struc-
ture. We assume a partial-order deterministic planner exists, which outputs schedules represented
as STNs. Unlike the single-agent domain, however, when performing PADS we do not expand
the STN to an STN′ that includes all possible method durations; this design decision was made to
facilitate integration with the existing architecture [Smith et al., 2007].

The distributions we work with in this domain are discrete. In its algorithms, PADS combines
the distributions according to the equations defined in Section 3.3.2 (on page 44). As part of the
algorithms it also iterates through distributions. We use the foreach loop construct to designate
this; e.g., “foreach ft ∈ FT (m),” which iterates through each item ft in the distribution FT (m).
Inside the loop, PADS will also refer to p (ft); this is the probability of ft occurring according to
FT .

5.3.1 Activity Dependencies

Activity dependencies and po calculations need to be handled differently for this domain than in the
single-agent domain. First, there is a more complicated dependency structure, due to more types
of NLEs and, more specifically, NLEs between activities on different agents’ schedules. There
are also more ways for activities to fail than violating their temporal constraints, including other
activities explicitly disabling them. Finally, because of the varying activity network structure and
dependencies between activities, we do not present a closed-form formula representing po (TG).

When calculating activity finish time profiles for this domain, we make the simplifying as-
sumption that a method’s non-local source NLEs finish times are independent of one another (e.g.,
a method’s enabler is different from its disabler or facilitator); this assumption is rarely broken

69



5 Probabilistic Analysis of Deterministic Schedules

in practice (e.g., an enabler rarely also serves as a facilitator). For tasks, we also assume that all
children’s finish time distributions are independent of one another. This assumption fails if, for
example, both children are enabled by the same enabler. This approximation was found to be accu-
rate enough for our purposes, however, and the extra computational effort required to sort out these
dependencies was deemed unnecessary (see Section 5.4); we also show an example supporting this
decision at the end of this section.

We do not, however, make this type of independence assumption when calculating po values, as
it is too costly with respect to accuracy. To see why, consider the activity network and associated
schedule shown in Figure 5.1 (on page 64). It is clear from this example that po (T1) = 0.8
because its only scheduled child is m1, and m1 only fails with a 20% likelihood. Both m3 and m4
are enabled by T1. Therefore, if neither has a probability of missing its deadline, po (m3) = 0.8
and po (m4) = 0.8 as they both can earn utility only if T1 does. Assuming that these values are
independent means that po (T2) = 0.8 · 0.8 = 0.64, when in fact it should equal 0.8; essentially,
we are double-counting T1’s probability of failing in po (T2). We deem this error unacceptably
high, and so put forth the computational effort to keep track of these dependencies.

To track the dependencies, our representation of po for all activities is based on a utility formula
UF (a), which indicates what events must occur during execution for activity a to earn utility and
how to combine the events (e.g., at least one needs to happen, or all must happen, etc.) into an
overall formula of earning utility. We define events as possible contingencies of execution, such as
a method ending in a failure outcome, a method’s disabler ending before the method begins, or a
method missing its deadline. The formula assigns probabilities to each individual event, and can
be evaluated to find an overall probability of earning utility.

As an example of how the utility formula is handled, consider again the example in Figure 5.1.
We define UF (T1) = (util-m1, (util-m1← 0.8)). This formula says, intuitively, that “m1 must
execute with positive utility for T1 to earn utility; this happens with a probability of 0.8.” Formally,
UF formulas have two parts: the event formula component, UFev, and the value assignment com-
ponent, UFval. In the example above, UFev (T1) = util-m1 and UFval (T1) = (util-m1← 0.8).
The event formula component specifies which events must come true in order for T1 to earn utility;
here, just m1 must earn utility. The event variable util-m1 designates “the event of m1 earning
utility” and is used in place of m1 to avoid confusion. The value assignment component specifies
probability assignments for the events; here, it says that the event of m1 earning utility will occur
with probability 0.8 (due to m1’s possible failure outcome). UF (T1) can be evaluated to find
po (T1), which here, trivially, is 0.8.

Since neither m3 nor m4 will fail on their own, but depend on T1 earning utility, their for-
mulas mimic that of T1: UF (m3) = UF (m4) = (util-m1, (util-m1← 0.8)). Now we can
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define UF (T2). For T2 to earn utility, both m3 and m4 need to. Therefore, UFev (T2) is the
and of UFev (m3) and UFev (m4), as both m3 and m4 must earn utility for T2 to earn utility.
UFval (T2) is the union of UFval (m3) and UFval (m4), ensuring all events have probability value
assignments. So, UF (T2) = ((and util-m1 util-m1) , (util-m1← 0.8, util-m1← 0.8)). This
can be simplified to UF (T2) = (util-m1, (util-m1← 0.8)), which evaluates to po (T2) = 0.8,
the correct value.

More generally, there are five events that affect whether a method earns utility: (1) whether
it is disabled before it begins to be executed; (2) whether its enablers must earn positive utility;
(3) whether it begins executing by its lst; (4) whether it meets its deadline; and (5) whether its
execution yields a successful outcome. These events have event variables associated with them
(e.g., the suc-m variable represents a method m executing with a successful outcome), which
can be combined together as an event formula that represents what must happen for a method to
earn utility; as we saw above, that event formula can then be evaluated in conjunction with value
assignments to find the method’s probability of earning utility.

In this domain, if a method ends in a failure outcome, violates a domain constraint or cannot
be executed, executing the remainder of the schedule as-is could still earn utility. Therefore, in
contrast to the single-agent domain, it is necessary to explicitly calculate methods’ failure finish
time distributions to propagate forward. In this domain, a method’s finish time is either when it
actually finishes (whether it earns utility or not) or, if it is not able to be executed, when the next
activity could begin executing. For example, if while a method’s predecessor is executing, the agent
learns that the method has been disabled by an activity d, the “finish time” of the disabled method is
max (FT (pred (m)) , ft (d)), as that is the earliest time that the subsequently scheduled method
(on the same agent’s schedule) could start. The function pred returns the predecessor of a method
(the method scheduled before it on the same agent’s schedule).

We represent FT (a) in terms of two components: FTu (a), or a’s finish time distribution
when it earns utility, and FTnu (a), or a’s finish time distribution when it does not earn utility.
Together, the probabilities of FTu (a) and FTnu (a) sum to 1; when we refer to FT (a) alone, it is
the concatenation of these distributions.

We now return back to our assumption that a task’s children’s finish time distributions are
independent of one another. When calculating the finish time distribution of task T2 from the above
example, we would double-count the probability that T1 fails and does not enable eitherm3 orm4.
Say, hypothetically, that we have already calculated that FTu (m3) = {{118, 0.3}, {120, 0.5}},
and FTu (m4) = {{127, 0.6}, {129, 0.2}}. Because T2 is an AND task, FTu (T2) equals the
maximum of its children’s FTu distributions, since it does not earn utility until both children have.
When we find the maximum of these distributions as if they were independent, we get FTu (T2) =
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{{127, 0.48}, {129, 0.16}}. Intuitively, however, the finish time distribution of T2 should be
{{127, 0.6}, {129, 0.2}}, because m3 and m4 always either both earn utility, or both do not earn
utility. If, however, we scaleFTu (T2) by our previously calculated po (T2), so that the distribution
of T2’s finish time when it earns utility sums to po (T2), we get the desired value of FTu (T2) =
{{127, 0.6}, {129, 0.2}}. Although this approach does not always result in the exactly correct
finish time distributions, this example illustrates why we make the independence assumption for
tasks’ finish time distributions, and introduces the extra step we take of scaling the distributions by
activities’ po values.

5.3.2 Probability Profiles

We define the algorithms of PADS recursively, with each activity calculating its profile in terms
of the profiles of other activities it is connected to. The complex activity dependency structure
for this domain also means that the high-level algorithms presented in Algorithms 5.1 and 5.2 (on
pages 60 and 61) must be elaborated upon in order to calculate probability profiles for activities
in this domain. We present much of the probability profile calculation in this domain in terms of
providing appropriate individual functions to instantiate these algorithms.

The following algorithms are used in both the global and distributed versions of PADS for this
domain. Then, Sections 5.3.3 and 5.3.4 addresses the global and distributed versions, specifically.

Method Probability Profile Calculations

The calculation of methods’ profiles for this domain is the most complicated, as all activity de-
pendencies (e.g., predecessors, enablers, disablers, facilitators and hinderers) are considered at this
level.

Recall again the five events determining whether a method earns utility: (1) it is not disabled;
(2) it is enabled; (3) it meets its lst and begins executing; (4) it meets its deadline; and (5) it
does not end in a failure outcome. Of these events, (5) is independent of the others; we also, as
previously stated, assume that (1) and (2) are independent. Event (3), however, depends on whether
it is able to begin execution and is contingent on (1) and (2); similarly, (4) is dependent on (3). To
find the overall event formula of m earning utility, then, we find the probability value assignments
of these individual events given these dependencies. We list them explicitly below along with the
associated event variable:

1. dis-m - The event of m being disabled before it starts.
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2. en-m - The event of m being enabled; we assume this is independent of dis-m.

3. st-m - The event of m beginning execution given that it is not disabled and is enabled.

4. ft-m - The event of m meeting its deadline given that it begins execution.

5. suc-m - The event of m not ending in a failure outcome; due to its a priori likelihood, it is
independent of the other events.

Overall, UFev (m) = (and (not dis-m) en-m st-m ft-m suc-m).

Two of these events, dis-m and en-m are actually event formulas, in that they are determined
by the outcome of other events. For example, en-m = (and UFev (en1) UFev (en2) ...), where
en1, en2, etc. are the enablers of m. The variable dis-m equals a similar formula. These formulas
appear in the place of dis-m and en-m in m’s event formula.

Of the five events determining whether a method earns utility, the probability values (and event
formulas, if applicable) of two – all enablers earning utility, and the method having a successful
outcome – can be found initially. The values of the other three, however, depend on the method’s
start and finish times. Therefore as we calculate the method’s start time and finish time distribu-
tions, we also calculate the value assignments (and event formulas, for the case of disablers) for
these three cases in order to avoid duplicate work.

In the algorithms presented below, we assume that variables are global (e.g., ST (m), FT (m),
etc.); therefore, these functions in general do not have return values.

Start Time Distributions We assume in our calculations that methods begin at their est, as
executives have incentive to start methods as early as possible. This assumption, in general, holds;
we discuss one example of a method not being able to start at its est in our PADS experiments in
Section 5.4.2.

When calculating a method’s starting distribution, as execution continues in this domain past a
method failure, we must include in our implementation of Line 1 of Algorithm 5.1 consideration for
what happens when a method’s enablers fail. We must also check for disablers. And, as execution
continues even if a constraint is violated, we must explicitly check to see if methods’ will be able
to start by their lst.

The algorithm for calcStartTimes is shown in Algorithm 5.4. In this domain, a method’s
start time distribution is a function of three things: (1) the finish time distribution of the method’s
predecessor, FT (pred (m)); (2) the finish time distributions of its enablers given that they earn
utility, FTu (e) (recall that m will not execute until all enablers earn utility); and (3) the method’s
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release (earliest possible start) time. Along the way, several types of failures can occur: (1) the
method might be disabled; (2) the method might not be enabled; and (3) the method might miss its
lst. Before a method’s start time distribution can be calculated, the profiles of m’s predecessor
and all enablers must have been calculated. If all enablers are not scheduled, then po (m) and
eu (m) both equal 0.

The algorithm begins by generating a distribution of the maximum of its enablers’ finish times
(Line 1). The first component shown, {maxe∈en(m)FTu (e)} is the distribution representing when
all enablers will successfully finish. The second component, {{∞, 1 −

∏
e∈en(m) (1− po (e))}},

represents the group’s finish time if not all enablers succeed; in this case, the group as a whole
never finishes and so has an end time of∞.

The algorithm iterates through this distribution, as well as the distribution of m’s predecessor’s
finish time (Line 4), to consider individual possible start times st. It first checks to see if the method
might be disabled by the time it starts; if it is, the method would immediately be removed from
the schedule without being executed. To calculate the probability that m is disabled, the algorithm
considers the distribution of the first of m’s disablers to successfully finish with utility (Lines 8 -
9). If there is a chance a disabler will finish with utility by st, it adds this probability (scaled by the
probability of st) to FTnu (m), along with m’s finish time in that case (Lines 10-11).

If m might be disabled it also makes note of it for UF (m). For each potential disabler the
algorithm creates a unique event variable representing the disabling (Line 12). The variable is of
the form d-dis-d′, where d′ is eitherm or an ancestor ofm, whichever is directly disabled by d. The
algorithm increments the probability of this event and adds it tom’s disable formula (Lines 13-14).
It also increments the probability that m will be disabled at this start time for later use (Line 15).

Next, the algorithm checks fte. If fte equals ∞, then m is not enabled in this iteration. In
such cases, m is not removed from the schedule until its lst has passed; the planner will wait to
remove it just in case the failed enabler(s) can be rescheduled. Therefore we add lst (m) + 1 to
FTnu (m) along with the probability pst − pdisbl, which is the probability of this iteration minus
the probability that m has already been disabled (Line 20).

Finally, if m is not disabled and is enabled, but st > lst (m), then this is an invalid start time
(Line 23). In this case m will miss its latest start time with probability pst − pdisbl. The associated
finish time is the maximum of the predecessor’s finish time and lst (m) + 1. We add these to
FTnu(m) (Line 24). Otherwise, m can start at time st and so we add pst− pdisbl and st to ST (m)
(Line 26). This process is repeated for all possible st’s. Note that ST (m) does not sum to 1;
instead, it sums to the probability that m successfully begins execution.

At the end of the algorithm we collect information forUF (m). The event formula representing
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Algorithm 5.4: Method start time distribution calculation with discrete distributions, temporal con-
straints and hard NLEs.

Function : calcStartTimes (m)
E = {maxe∈en(m)FTu (e)}

⋃
{{∞, 1−

∏
e∈en(m) po (e)}}1

pnorm = 02

foreach fte ∈ E do3

foreach ftpred ∈ FT (pred (m)) do4

st = max (rel (m) , ftpred, fte)5

pst = p (fte) · p (ftpred)6

//might the method be disabled in this combination?

pdisbl = 07

foreach D ∈ P (dis (m)) do8

foreach ftd ∈ mind∈dis(m) (d ∈ D ? FTu (d) |FTnu (d) +∞) do9

if ftd ≤ st and ftd ≤ lst (m) then10

//the method is disabled

push ({max (ftpred, ftd) , pst · p (ftd)}, FTnu (m))11

a = directlyDisabledAncestor (m, d)12

p (d-dis-a) = p (d-dis-a) + pst · p (ftd)13

disev = disev ∪ {d-dis-a}14

pdisbl = pdisbl + pst · p (ftd)15

end16

end17

end18

//is the method enabled for this start time?

if fte ==∞ then19

push ({max (lst (m) + 1, ftpred) , pst − pdisbl}, FTnu (m))20

else21

pnorm = pnorm + pst − pdisbl22

if st > lst (m) then23

//invalid start time

push ({max (lst (m) + 1, ftpred) , pst − pdisbl}, FTnu (m))24

else25

push ({st, pst − pdisbl}, ST (m))26

end27

end28

end29

end30

//collect the probability formulas for UF (m)
dis-m = (or disev)31

p (st-m) = Σst∈ST (m)p (st) /pnorm32
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m being disabled is (not (or disev)) where disev and the corresponding value assignments of it
were found earlier (Line 31). The event variable representing m meeting its lst and starting is
st-m, which happens with probability Σst∈ST (m)p (st) /pnorm; it is normalized in this way so that
it equals the probability that it starts given that it is not disabled and is enabled (Line 32).

Soft NLE Distributions In order to calculate m’s finish time and expected utility, we first need
to know m’s facilitating and hindering effects. Algorithm 5.5 presents the algorithm for this. The
algorithm returns a set of distributions representing the effects on both m’s duration NLEd and
utility NLEu. Further, it indexes the distribution NLEd by m’s possible start times; each entry is
the distribution of possible NLE coefficients for that start time.

Algorithm 5.5: Method soft NLE duration and utility effect distribution calculation with discrete
distributions.

Function : calcNLEs (m)
foreach st ∈ ST (m) do1

DC = {1, 1}2

UC = {1, 1}3

foreach f ∈ fac (m) do4

p-nle =
∑

ft∈FTu(f) ft ≤ st ? p (ft) : 05

push ({{(1− df · prop-util (f, st)) , p-nle}, {1, 1− p-nle}}, DC)6

push ({{(1 + uf · prop-util (f, st)) , p-nle}, {1, 1− p-nle}}, UC)7

end8

foreach h ∈ hind (m) do9

p-nle =
∑

ft∈FTu(h) ft ≤ st ? p (ft) : 010

push ({{(1 + df · prop-util (h, st)) , p-nle}, {1, 1− p-nle}}, DC)11

push ({{(1− uf · prop-util (h, st)) , p-nle}, {1, 1− p-nle}}, UC)12

end13

foreach dc ∈
∏

ci∈DC ci do14

push ({dc, p (dc)}, NLEd (m, st))15

end16

foreach uc ∈
∏

ci∈UC ci do17

push ({uc, p (uc)}, NLEu (m))18

end19

end20

At a high level, the algorithm iterates through m’s start times, facilitators and hinderers. For
each start time st in ST (m) and facilitator (hinderer), it finds the probability that the facilitator
(hinderer) will earn utility by time st (Line 5). It then adds a small distribution to the lists DC and

76



5.3 Multi-Agent Domain

UC representing the possible coefficients of what the facilitator’s (hinderer’s) effect on m will be:
with probability p-nle it will have an effect, with probability 1−p-nle it will not (Lines 6-7). Then,
the algorithm combines these small distributions via multiplication to find an overall distribution
of what the possible NLE coefficients for m are at time st (Line 14), and the result is added to m’s
NLE distributions (Line 15). This is repeated for each possible start time until the full distributions
are found.

Finish Time Distributions Next, FTu (m) is calculated. The implementation of Line 2 of Algo-
rithm 5.1 (on page 60) is complicated due to the presence of NLEs and the separation of FTu and
FTnu. The algorithm is illustrated in Algorithm 5.6. It iterates through st ∈ ST (m), and for each
start time multiplies m’s duration distribution with NLEd (m, st) to find m’s effective duration
distribution when it starts at time st. Iterating through the effective duration distribution, the algo-
rithm considers each finish time ft that results from adding each possible start time and duration
together (Lines 2-3). If ft > dl(m), the method earns zero utility and the algorithm adds the prob-
ability of this finish time p (ft) and ft to FTnu(m) (Line 7). Otherwise, it is a valid finish time. At
this point, the only other thing to consider is that m might end with a failure outcome. Therefore
p (ft) · fail (m) and the time ft are added to FTnu(m) (Line 10), and p (ft) · (1− fail (m))
and the time ft are added to FTu(m) (Line 11).

The last line of the algorithm collects the probability value assignment for ft-m (Line 15). Its
value is the probability that it does not miss a deadline given that it begins execution.

Probability of Earning Utility To calculatem’s probability of meeting the plan objective (which
equals its probability of earning positive utility), all of the event probabilities that have been cal-
culated in preceding algorithms are combined. This is shown in Algorithm 5.7. In the preceding
algorithms the event formula for dis-m and the corresponding value assignments were found, as
well as p (st-m) and p (ft-m); additionally, the event formulas and value assignments for en-m
and suc-m are already known. With these formulas and value assignments in hand, the algorithm
can put it all together to get m’s final utility formula. As all of the events must happen for m to
earn utility, the event formula is the and of these five individual event formulas (Line 1). Trivially,
the value assignments are the union of the individual value assignments (Line 2).

To calculate po (m) from UF (m), there are two options: reduce the event formula UFev (m)
such that each event appears only once and evaluate it using the variable probability values in
UFval (m); or consider all possible assignments of truth values to those events and, for each as-
signment, calculate the probability of that assignment occurring as well as whether it leads to an
eventual success or failure. The former, however, is not guaranteed to be possible, so we chose the
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Algorithm 5.6: Method finish time distribution calculation with discrete distributions, temporal con-
straints and soft NLEs.

Function : calcFinishTimes (m)
pdl = 01

foreach st ∈ ST (m) do2

foreach dur ∈ dDUR (m) ·NLEd (m, st)e do3

ft = st+ dur4

p (ft) = p (st) · p (dur)5

if ft > dl (m) then6

//the method did not meet its deadline

push ({ft, p (ft)}, FTnu (m))7

pdl = pdl + p (ft)8

else9

//the method might finish with a failure outcome

push ({ft, p (ft) · fail (m)}, FTnu (m))10

//otherwise it ends with positive utility

push ({ft, p (ft) · (1− fail (m))}, FTu (m))11

end12

end13

end14

//collect the probability for m meeting its deadline

p (ft-m) =
(
Σst∈ST (m)p (st)− pdl

)
/Σst∈ST (m)p (st)15

Algorithm 5.7: Method probability of earning utility calculation with utility formulas.

Function : calcProbabilityOfObjective (m)
//first put it all together to get UF (m)

UFev (m) =
(
and (not dis-m)

⋃
e∈en(m) UFev (e) st-m ft-m suc-m

)
1

UFval (m) = {
⋃

d-dis-a∈dis-m d-dis-a← p (d-dis-a) ,
⋃

e∈en(m) UFval (e) , st-m←2
p (st-m) , ft-m← p (ft-m) , suc-m← (1− fail (m))}
//evaluate UF (m)
po (m) = evaluateUtilityFormula (UF (m))3
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latter to use in our approach, shown as Algorithm 5.8.

The algorithm creates different truth value assignments by looking at all possible subsets of
the events and assigning “true” to the events in the set and “false” to those not in the set. We use
the powerset function P to generate the set containing all subsets of the events (Line 1). For each
subset S, the algorithm evaluates whether UFen (a) is true when all variables in S are true and all
that are not are false (Line 3). It does so by substituting all variables in UFen (a) that are in S
with true and all that are not with false, and evaluating the formula. If it is true, it calculates the
probability of that subset and adds it to po (a). Once all subsets are considered we have the final
value of po (a).

Finally, PADS normalizes FTu (a) and FTnu (a) so that they sum to the values po (a) and
1− po (a), respectively, as discussed in Section 5.3.1. This algorithm is the same for all activities
in the hierarchy.

Algorithm 5.8: Activity utility formula evaluation.

Function : evaluateUtilityFormula (a)
foreach S ∈ P (UFvar (a)) do1

L = UFvar (a)− S2

if evaluate (UFen/∀s ∈ S ← true/∀l ∈ L← false) then3

p (S) =
∏

s∈S p (s) ·
∏

l∈L (1− p (l))4

po (a) = po (a) + p (S)5

end6

end7

normalize (FTu (a) , po (a))8

normalize (FTnu (a) , 1− po (a))9

Expected Utility Algorithm 5.9 shows how eu (m) is calculated for methods, providing an im-
plementation for Line 4 of Algorithm 5.1 (on page 60). The algorithm iterates through UTIL (m)
and NLEu (m) to find the method’s effective average utility, after soft NLEs, and then multiplies
that by m’s probability of earning utility.

OR Task Probability Profile Calculations

An OR task’s utility at any time is a direct function of its children’s: if any child has positive utility,
the task does as well; similarly if no child has positive utility, nor will the task. Therefore its FTu

distribution represents when the first child earns utility, and its FTnu distribution represents when
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Algorithm 5.9: Method expected utility calculation with discrete distributions and soft NLEs.

Function : calcExpectedUtility (m)
eu (m) = 01

foreach util ∈ UTIL (m) do2

enle = 03

foreach nle ∈ NLEu (m) do4

enle = enle+ nle · p (nle)5

end6

eu (m) = eu (m) + (enle · util · p (util))7

end8

eu (m) = eu (m) · po (m)9

the last child fails to earn utility. To find these distributions, it is necessary to consider all possible
combinations of children succeeding and failing. As a simple example of this, if a task T has two
scheduled children a and b, to calculate the finish time distribution of T we must consider:

• The min of FTu (a) and FTu (b), to find when T earns utility if both a and b earn utility.
• FTu (a), scaled by 1− po (b), to find when T earns utility if only a earns utility.
• FTu (b), scaled by 1− po (a), to find when T earns utility if only b earns utility.
• The max of FTnu (a) and FTnu (b), to find when T fails to earn utility if neither a nor b earn

utility.

We do this algorithmically by calculating the powerset of T ’s children, where each subset repre-
sents a hypothetical set of children earning utility. A task’s probability profile cannot be calculated
until the profiles of all scheduled children have been found; if there are no scheduled children, its
eu and po values equal 0.

Algorithm 5.10 shows how to calculate these distributions, providing implementation for Line 7
of Algorithm 5.2 (on page 61). As described in the above paragraph, the algorithm considers each
possible set of task T ’s children earning utility by taking the powerset of T ’s scheduled children
(Line 1). Each set S in the powerset represents a set of children that hypothetically earns utility; the
set difference between T ’s scheduled children and S is L, a set of children that hypothetically does
not earn utility. If the size of set S is at least one, meaning at least one child earns utility in this
hypothetical case, the algorithm finds the distribution representing the minimum finish time of the
children in S and iterates through it, considering each member ft in turn (Line 4). The probability
of this finish time under these circumstances is the probability of ft multiplied by the probability
that all children in L do not earn utility (i.e., the product of 1 − po (l) for each l ∈ L) (Line 5).
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The algorithm adds each possible finish time and its probability to FTu (T ) (Line 6). Otherwise,
if no child earns utility in the current hypothetical case (i.e., S is the empty set), the algorithm
finds the latest finish time distribution of the hypothetically failed children and adds it to FTnu (T )
(Line 10).

Algorithm 5.10: OR task finish time distribution calculation with discrete distributions and uafs.

Function : calcORTaskFinishTimes (T )
foreach S ∈ P (scheduledChildren (T )) do1

L = scheduledChildren (T )− S2

if |S| ≥ 1 then3

//at least one child earned utility

foreach ft ∈ mins∈SFTu (s) do4

pft = p (ft) ·
∏

l∈L(1− po (l))5

push ({ft, pft}, FTu (T ))6

end7

else8

//no child earned utility

foreach ft ∈ maxl∈LFTnu (l) do9

push ({ft, p (ft)}, FTnu (T ))10

end11

end12

end13

An OR task’s utility formula is simple to calculate. The event formula is the or of its children’s
formulas, and the value assignments are the union of its children’s assignments. It can be evaluated
by using the function evaluateUtilityFormula from Algorithm 5.8.

The expected utility of an OR task depends on its uaf; its calculation is shown in Algo-
rithm 5.11. For a sum task, it is the sum of the expected utilities of its children, as the expectation
of a sum is the sum of the expectation (Line 3). For a max task, the algorithm must consider all
possible combinations of children succeeding or failing and find what the maximum utility is for
each combination. As with an OR task’s finish time distribution, to do so the algorithm consid-
ers the powerset of all scheduled children, where each set in the powerset represents a hypothetical
combination of children earning utility. The probability that any set S in that powerset occurs is the
probability that the children in S earn utility and the children in L do not (Line 10). As the task’s
expected utility is the max of only the children that earn utility, its expected utility is a function of
the expected utilities of its children provided they earn positive utility. This number can be easily
calculated for activities as part of their probability profiles. We call this value epu (Line 11).
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Algorithm 5.11: OR task expected utility calculation with discrete distributions and uafs.

Function : calcORTaskExpectedUtility (T )
switch Type of task T do1

case sum2

eu (T ) =
∑

s∈scheduledChildren(T ) eu (s)3

case max4

foreach S ∈ P (scheduledChildren (T )) do5

if |S| == 0 then6

eu (T ) = 07

else8

L = scheduledChildren (T )− S9

p (S) =
∏

s∈S po (s)
∏

l∈L (1− po (l))10

eu (T ) = eu (T ) + p (S) · maxs∈Sepu (s)11

end12

end13

end14

end15

AND Task Probability Profile Calculations

An AND task’s utility at any time depends on whether all children have earned utility. If any child
has zero utility, then the task does as well. Therefore its FTu distribution represents when the last
child earns utility, and its FTnu distribution represents when the first child fails to earn utility. As
with an OR task’s finish time distribution, to do so it is necessary to consider all possible combina-
tions of children succeeding and failing, which can be generated algorithmically by the powerset
operator. A task’s probability profile cannot be calculated until the profiles of all scheduled chil-
dren have been found; if not all children are scheduled, its eu and po values equal 0 and no further
calculation is necessary.

The finish time distribution calculation is shown in Algorithm 5.12. The algorithm considers
each possible set of task T ’s children not earning utility by taking the powerset of T ’s scheduled
children (Line 1). Each set L in the powerset represents a hypothetical set of children that do not
earn utility; the set difference between T ’s scheduled children and L is S, the children that do earn
utility in this hypothetical case. If at least one child does not earn utility in the current set, the
algorithm finds the distribution representing the minimum finish time of the children who do not
earn utility and consider each possible value ft in the distribution (Line 4). The probability of this
finish time under these circumstances is the probability of ft times the probability that all children
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in S do earn utility (Line 5). We add each possible finish time and its probability to FTnu (T )
(Line 10). Otherwise, if all children earn utility, then we find the latest finish time of the children
and add it to FTu (T ) (Line 10).

Algorithm 5.12: AND task finish time distribution calculation with discrete distributions and uafs.

Function : calcANDTaskFinishTimes (T )
foreach L ∈ P (scheduledChildren (T )) do1

S = scheduledChildren (T )− L2

if |L| ≥ 1 then3

//at least one child did not earn utility

foreach ft ∈ minl∈LFTnu (l) do4

pft = p (ft) ·
∏

s∈S po (s)5

push ({ft, pft}, FTnu (T ))6

end7

else8

//all children earned utility

foreach ft ∈ maxs∈SFTu (s) do9

push ({ft, p (ft)}, FTu (T ))10

end11

end12

end13

An AND task’s event formula is the and of its children’s formulas, and the value assign-
ments are the union of its children’s assignments. It can be evaluated by using the function
evaluateUtilityFormula from Algorithm 5.8.

The algorithm for calculating the expected utility of an AND task is shown in Algorithm 5.13.
Because an and task earns utility only when all children do, its expected utility is a function of the
expected utilities of its children provided they earn positive utility. As mentioned in the discussion
of OR tasks’ expected utility calculations, this value, epu, can easily be calculated as part of an
activity’s probability profile. If the activity is a sum and task, it is the sum over all children of this
estimate (Line 3); if the activity is a min task, it is the minimum of these estimates (Line 5).

ONE Task Probability Profile Calculation

A ONE task’s probability profile is that of its sole scheduled child; if the number of scheduled
children is not one, the task will not earn utility and its profile is trivial. Its implementation is the
same as in Algorithm 5.2 (on page 61).

83



5 Probabilistic Analysis of Deterministic Schedules

Algorithm 5.13: AND task expected utility calculation with discrete distributions and uafs.

Function : calcANDTaskExpectedUtility (T )
switch Type of task T do1

case sum and2

eu (T ) = po (T ) · Σc∈children(T )epu (c)3

case min4

eu (T ) = po (T ) · minc∈children(T )epu (c)5

end6

end7

Expected Utility Loss / Gain

As part of its analysis, PADS also calculates two heuristics which are used to rank activities by
their importance by probabilistic schedule strengthening (Chapter 6). It measures this importance
in terms of expected utility loss (eul) and expected utility gain (eug). Both of these metrics are
based on the expected utility of the taskgroup assuming that an activity a earns positive utility,
minus the expected utility of the taskgroup assuming that a earns zero utility:

eu (TG | po (a) = 1)− eu (TG | po (a) = 0)

In this and subsequent chapters, we rely on the | operator, which signifies a change to the structure
or profiles of the taskgroup. For example, eu (TG | po (a) = 1) denotes the expected utility of
the taskgroup if po (a) were to equal 1. The above equation, then, specifies by how much the
expected utility of the taskgroup would differ if the activity were to definitely succeed versus if
it were to definitely fail; we call this utility difference (ud). The utility difference is, in general,
positive; however, in the presence of disablers, it may be negative. The utility difference can be
interpreted as representing two different measures: how much utility the taskgroup would lose if
the activity were to fail; or, how much utility the taskgroup would gain if the activity were to earn
positive utility. These two interpretations are the bases for the ideas behind expected utility loss
and expected utility gain.

To find expected utility loss, we scale ud by 1 − po (a); this turns the measure into the utility
loss expected to happen based on a’s probability of failing. For example, when considering eul we
do not care if an activity has a huge utility difference if it will never fail; instead, we would want
to prioritize looking at activities with medium utility differences but large probabilities of failing.
The overall equation for expected utility loss is:

eul (a) = (1− po (a)) · (eu (TG | po (a) = 1)− eu (TG | po (a) = 0))
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Expected utility gain also scales ud, but by a’s probability of earning utility, so that it measures
the gain in utility expected to happen based on a’s probability of earning utility. This ensures that
eug prioritizes activities with, for example, a medium utility difference but high probability of
earning utility over an activity with a high utility difference but a very low probability of earning
utility. The equation for expected utility gain is:

eug (a) = po (a) · (eu (TG | po (a) = 1)− eu (TG | po (a) = 0))

Although we do not to so in this work, utility difference can also be used as a metric without
considering po values, depending on what the goals of the programmer are. Using ud alone is
suitable for systems that want to prioritize, for example, eliminating the possibility of a catastrophic
failure, no matter how unlikely; (1 − po) · ud and po · ud are suitable for systems with the goal
of maximizing expected utility, as ours. These heuristics are not specific to this domain, as utility
difference can be calculated for any activity in any activity network.

Because these calculations ideally require knowledge of the entire activity hierarchy, they are
implemented differently depending on whether it is global or distributed. We discuss details of this
in the following two sections.

5.3.3 Global Algorithm

When initially invoked, global PADS goes through the activity network and calculates probability
profiles for each activity. PADS begins with the method(s) with the earliest est(s); it then prop-
agates profiles through the network until profiles for the entire tree have been found. Profiles are
stored with each activity, and are updated by PADS if the information associated with upstream (or
child) activities changes.

To calculate eul (a) and eug (a), PADS temporarily sets po (a) to be 1 and 0, in turn, and
propagates that information throughout the activity network until the eu (TG) has been updated
and provides the values of eu (TG | po (a) = 1) and eu (TG | po (a) = 0). PADS can then find the
utility difference, ud = eu (TG | po (a) = 1)−eu (TG | po (a) = 0), and multiply it by 1−po (a)
or po (a) to find eul (a) or eug (a), respectively.

Probability Profile Propagation Example

In this section, we show global probability profile calculations for a simple example (Figure 5.3)
to give further intuition for how PADS works . The problem that we show is similar to Figures 3.5
and 5.1, but is simplified here to promote understanding; it has deterministic utilities and smaller
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Figure 5.3: A simple 3-agent problem and a corresponding schedule.

duration distributions. We also show the schedule for this problem. The time bounds for this
schedule generated by the deterministic STN (and thus based on the methods’ average, scheduled
durations) are:

• est (m1) = 100,lst (m1) = 101,eft (m1) = 115,lft (m1) = 116
• est (m3) = 115,lst (m3) = 116,eft (m3) = 120,lft (m3) = 121
• est (m4) = 120,lst (m4) = 121,eft (m4) = 129,lft (m4) = 130

Our calculation begins with method m1, as it is the earliest scheduled method. It has no en-
ablers and no predecessor, so its start time distribution depends on nothing but its release time
(rel). Therefore, since methods are always started as early as possible, ST (m1) = {{100, 1.0}};
this implies that p (st-m1) = 1 because it never misses its lst of 101. It has no disablers, so
p (dis-m1) = 0. It also has no soft NLEs, so NLEu (m1) = {{1, 1}} and NLEd (m1) =
{{1, 1}} for all start times.
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The finish time of m1 is a combination of ST (m1) = {{100, 1.0}} and its duration distri-
bution, {{14, 0.75}, {16, 0.25}}. Iterating through these, PADS first gets ft = 100 + 14 = 114
which occurs with p (ft) = 1.0 · 0.75 = 0.75. This meets m1’s deadline of 120. So, PADS pushes
{114, 0.75·0.2} onto FTnu (m1) to account for its failure outcome likelihood, and {114, 0.75·0.8}
onto FTu (m1). The method’s other possible finish time is ft = 100 + 16 = 116 which occurs
with p (ft) = 1.0 · 0.25 = 0.25, which also meets m1’s deadline. Again, however, m1 might fail
so PADS pushes {116, 0.25 ·0.2} onto FTnu (m1) and {116, 0.25 ·0.8} onto FTu (m1). Trivially,
p (ft-m1) = 1.

The utility event formula for m1 is UFev (m1) = (and st-m1 ft-m1 suc-m1); we omit
dis-m1 and en-m1 because m1 does not have enablers or disablers. The utility value assignment
is UFval (m1) = {st-m1 ← 1, ft-m1 ← 1, suc-m1 ← 0.8}. To evaluate this, PADS creates
different truth value assignments to the variables in UFev (m1) by looking at all possible subsets
of the events and assigning “true” to the events in the set and “false” to those not in the set. We list
below the different sets, generated by the powerset operator. and how the utility formula evaluates
for those sets, in the context of Algorithm 5.8.

1. S = {}:

T = {st-m1, ft-m1, suc-m1}
p (S) = (1− p (st-m1)) · (1− p (ft-m1)) · (1− p (suc-m1)) = 0

UFen/∀s ∈ S ← true/∀t ∈ T ← false = (and false false false) = false

2. S = {st-m1}:

T = {ft-m1, suc-m1}
p (S) = p (st-m1) · (1− p (ft-m1)) · (1− p (suc-m1)) = 0

UFen/∀s ∈ S ← true/∀t ∈ T ← false = (and true false false) = false

3. S = {ft-m1}: not shown, evaluates to false
4. S = {suc-m1}: not shown, evaluates to false
5. S = {st-m1, ft-m1}: not shown, evaluates to false
6. S = {st-m1, suc-m1}: not shown, evaluates to false
7. S = {ft-m1, suc-m1}: not shown, evaluates to false
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8. S = {st-m1, ft-m1, suc-m1}:

T = {}
p (S) = p (st-m1) · p (ft-m1) · p (suc-m1) = 0.8

UFen/∀s ∈ S ← true/∀t ∈ T ← false = (and true true true) = true

po (m1) = po (m1) + 0.8

Based on these iterations, po (m1) = 0.8. As util (m1) = 12 and NLEu (m1) = {{1, 1}},
eu (m1) = 0.8 · 12 = 9.6. To put together m1’s probability profile:

ST (m1) = {{100, 1.0}}
FTu (m1) = {{114, 0.6}, {116, 0.2}}
FTnu (m1) = {{114, 0.15}, {116, 0.05}}
UFev (m1) = (and st-m1 ft-m1 suc-m1)

UFval (m1) = {st-m1← 1, ft-m1← 1, suc-m1← 0.8}
po (m1) = 0.8

eu (m1) = 9.6

Next we can calculate T1’s probability profile. Because it only has one scheduled child, its
profile is the same as m1’s:

FTu (T1) = {{114, 0.6}, {116, 0.2}}
FTnu (T1) = {{114, 0.15}, {116, 0.05}}
UFev (T1) = (and st-m1 ft-m1 suc-m1)

UFval (T1) = {st-m1← 1, ft-m1← 1, suc-m1← 0.8}
po (T1) = 0.8

eu (T1) = 9.6

Because m3 is enabled by T1, its start time depends on T1’s finish time. The algorithm begins
by iterating through the distribution E (Line 1 of Algorithm 5.4), which here equals FTu (T1)
appended by {∞, 1− po (T1)}, so E = {{114, 0.6}, {116, 0.2}, {∞, 0.2}}. It can skip Line 4 as
m3 has no predecessors. First, then, st = 114 with probability 0.6. Since this is a valid start time,
PADS pushes {114, 0.6} onto ST (m3). Next, st = 116 with probability 0.2 and PADS pushes
{116, 0.2} onto ST (m3).

Next, st = ∞ with probability 0.2. This represents the case when T1 does not earn utility.
Because the method is not enabled in this case, the method fails at max (lst (m3) + 1, ftpred) =
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117; recall that in cases where a method’s enabler fails, the method is not removed from the sched-
ule until its lst has passed in case the planner is able to reschedule the enabler. So, PADS pushes
{117, 0.2} onto FTnu (m3). Finally, p (st-m3) = 0.8/0.8 and p (dis-m3) = 0. Asm3 has no soft
NLEs, NLEu (m3) = {{1, 1}} and NLEd (m3) = {{1, 1}} for all possible start times.

To find m3’s finish time distribution, ST (m3) is combined with DUR (m3). The first combi-
nation is st = 114 and dur = 4, which happens with probability 0.6 ·0.5 = 0.3; the finish time 118
is less than m3’s deadline, and so PADS pushes {118, 0.3} onto FTu (m3). The next combination
is st = 114 and dur = 6, which happens with probability 0.6 ·0.5 = 0.3; the finish time 120 is less
than m3’s deadline, and so we push {120, 0.3} onto FTu (m3). The next combination is st = 116
and dur = 4, which happens with probability 0.2 · 0.5 = 0.1; the finish time 120 is less than m3’s
deadline, and so PADS pushes {120, 0.1} onto FTu (m3). The final combination is st = 116 and
dur = 6, which happens with probability 0.2 · 0.5 = 0.1; the finish time 122 is less than m3’s
deadline, and so PADS pushes {122, 0.1} onto FTu (m3). Trivially, p (ft-m3) = 0.8/0.8 = 1.

The utility event formula for m3 is (omitting dis-m3, as m3 has no disablers):

UFev (m3) =(and (and st-m1 ft-m1 suc-m1) st-m3 ft-m3 suc-m3)

and the utility value assignment is

UFval (m3) = {st-m1← 1, ft-m1← 1, suc-m1← 0.8,

st-m3← 1, ft-m3← 1, suc-m3← 1}

UF (m3) is evaluated the same as is m1’s utility formula. The calculation is not shown, but it
evaluates to 0.8, and m3’s expected utility is 0.8 · 6 = 4.8. Thus m3’s full profile is:

ST (m3) = {{114, 0.6}, {116, 0.2}}
FTu (m3) = {{118, 0.3}, {120, 0.4}, {122, 0.1}}
FTnu (m3) = {{117, 0.2}}
UFev (m3) =(and (and st-m1 ft-m1 suc-m1) st-m3 ft-m3 suc-m3)

UFval (m3) = {st-m1← 1, ft-m1← 1, suc-m1← 0.8,

st-m3← 1, ft-m3← 1, suc-m3← 1}
po (m3) = 0.8

eu (m3) = 4.8

Methodm4’s profile is calculated next as per Algorithm 5.4. Its start time depends on T1’s and
m3’s finish times. As with method m4, the distribution E = {{114, 0.6}, {116, 0.2}, {∞, 0.2}}.
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PADS iterates through this distribution and m4’s predecessor’s (m3’s) finish time distribution,
calculating m4’s start time distribution along the way. Recall that lst (m4) = 121. We collapse
the cases where fte equals∞ and do not bother showing the iteration through m4’s predecessor’s
distribution for that case.

1. fte = 114, ftpred = 117, st = 117, pst = 0.6 · 0.2 = 0.12
Method starts, push {117, 0.12} onto ST (m4)

2. fte = 114, ftpred = 118, st = 118, pst = 0.6 · 0.3 = 0.18
Method starts, push {118, 0.18} onto ST (m4)

3. fte = 114, ftpred = 120, st = 120, pst = 0.6 · 0.4 = 0.24
Method starts, push {120, 0.24} onto ST (m4)

4. fte = 114, ftpred = 122, st = 114, pst = 0.6 · 0.1 = 0.06
Method misses lst, push {122, 0.06} onto FTnu (m4)

5. fte = 116, ftpred = 117, st = 117, pst = 0.2 · 0.2 = 0.04
Method starts, push {117, 0.04} onto ST (m4)

6. fte = 116, ftpred = 118, st = 118, pst = 0.2 · 0.3 = 0.06
Method starts, push {118, 0.06} onto ST (m4)

7. fte = 116, ftpred = 120, st = 120, pst = 0.2 · 0.4 = 0.08
Method starts, push {120, 0.08} onto ST (m4)

8. fte = 116, ftpred = 122, st = 122, pst = 0.2 · 0.1 = 0.02
Method misses lst, push {122, 0.02} onto FTnu (m4)

9. fte =∞, st =∞, pst = 0.2
Method is not enabled, push {122, 0.2} onto FTnu (m4)

PADS ultimately ends up with ST (m4) = {{117, 0.16}, {118, 0.24}, {120, 0.32}}. As it is en-
abled with probability 0.8 but starts with probability 0.72, p (st-m4) = 0.72/0.8 = 0.9. As m4
has no soft NLEs, NLEu (m4) = {{1, 1}} and NLEd (m4) = {{1, 1}}.

To find m4’s finish time distribution, ST (m4) is combined with DUR (m4). Since DUR (m4)
has only two possible values, m4 has six possible finish time combinations; we do not show the
calculation. The latest one, when m4 starts at time 120 and has duration 11, is the only one where
m4 misses its deadline; so p (ft-m4) = 0.72−0.16

0.72 = 0.77778.

The utility event formula for m4 is

UFev (m4) = (and (and st-m1 ft-m1 suc-m1) st-m4 ft-m4 suc-m4)

The utility value formula is UFval (m4) = {st-m1← 1, ft-m1← 1, suc-m1← 0.8, st-m4←
0.9, ft-m4 ← 0.77778, suc-m4 ← 1}. We evaluate this as we evaluated m1’s utility formula.
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The calculation is not shown but it evaluates to 0.56, and m4’s expected utility is 0.56 · 9 = 5.04.
Thus m4’s full profile is:

ST (m4) = {{117, 0.16}, {118, 0.24}, {120, 0.32}}
FTu (m4) = {{124, 0.08}, {125, 0.12}, {127, 0.16}, {128, 0.08}, {129, 0.12}}
FTnu (m4) = {{122, 0.28}, {131, 0.16}}
UFev (m4) = (and (and st-m1 ft-m1 suc-m1) st-m4 ft-m4 suc-m4)

UFval (m4) = {st-m1← 1, ft-m1← 1, suc-m1← 0.8,

st-m4← 0.9, ft-m4← 0.77778, suc-m4← 1}
po (m4) = 0.56

eu (m4) = 5.04

T2 is calculated next. PADS begins by iterating through the superset of T2’s children to
consider the possible combinations of T2’s children not earning utility, as per Algorithm 5.12.
When L = {}, all children earn utility; PADS finds the distribution representing the max of
their FTu distributions and adds it to FTu (T2). Because m4 always finishes later, FTu (T2) =
{{124, 0.064}, {125, 0.096}, {127, 0.128}, {128, 0.064}, {129, 0.096}} (note that this is the same
as FTu (m4) times 0.8, the probability that m3 earns utility). When L = {m3}, T2 will fail
at the same time m3 does and so PADS adds {117, 0.2 · 0.56 = 0.112} to FTnu (T2). When
L = {m4}, T2 will fail at the same timem4 does and so PADS adds {122, 0.28 ·0.8 = 0.224} and
{131, 0.16 · 0.8 = 0.128} to FTnu (T2). Finally, when L = {m3,m4}, T2 will fail at the same
timem3 does, as it always fails earlier, and so PADS adds {117, 0.2 ·0.44 = 0.088} to FTnu (T2).

UFev (T2) equals the and of its children’s event formulas, and UFval (T2) equals the union of
its children’s value assignments. UF (T2) evaluates to 0.56. Note here the discrepancy between
the sum of the members of FTu and po: FTu (T2) sums to 0.448, but po (T2) = 0.56. This
highlights the difference between assuming that the enablers of m3 and m4 are independent, as in
the FTu calculation, and not making that assumption, as for po. T2’s expected utility, as described
in Algorithm 5.13, is 0.56 · (6 + 9) = 8.4, where 6 and 9 are utilities of m3 and m4, respectively.
The last part of the calculation is to normalize T2’s FT distributions so that they sum to po (T2)
and 1− po (T2).
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T2’s final probability profile is:

FTu (T2) = {{124, 0.08}, {125, 0.12}, {127, 0.16}, {128, 0.08}, {129, 0.12}}
FTnu (T2) = {{117, 0.16}, {122, 0.18}, {131, 0.1}}
UFev (T2) = (and (and (and st-m1 ft-m1 suc-m1) st-m3 ft-m3 suc-m3)

(and (and st-m1 ft-m1 suc-m1) st-m4 ft-m4 suc-m4))

UFval (T2) = {st-m1← 1, ft-m1← 1, suc-m1← 0.8,

st-m3← 1, ft-m3← 1, suc-m3← 1,

st-m4← 0.9, ft-m4← 0.77778, suc-m4← 1}
po (T2) = 0.56

eu (T2) = 8.4

Finally we can find the taskgroup’s probability profile. We first find its finish time distribution
as per Algorithm 5.10. In the first iteration of the algorithm, S = {}, which means that in this
hypothetical case no child earns utility. As T2’s failure finish time distribution is strictly later
than T1’s, we can add FTnu (T2) · (1 − po (T1)), or {{117, 0.032}, {122, 0.036}, {131, 0.02}},
to FTnu (TG).

Next, S = {T1}, meaning that in this hypothetical case T1 earns utility and T2 does not.
Therefore, we add FTu (T1) · (1 − po (T2)), or {{114, 0.264}, {116, 0.088}}, to FTu (TG).
S next equals {T2}. For the same reasoning, we add FTu (T2) · (1 − po (T1)), which equals
{{124, 0.016}, {125, 0.024}, {127, 0.032}, {128, 0.016}, {129, 0.024}}, to FTu (TG). Finally,
S = {T1, T2}. As FTu (T1) is strictly less than FTu (T1), we add {{114, 0.336}, {116, 0.112}}
to FTu (TG).

UFev (TG) equals the or of its children’s event formulas, and UFval (TG) equals the union of
its children’s value assignments. Together, they evaluate to 0.8. Given this value, we can normalize
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FTu (TG) and FTnu (TG) so they sum to 0.8 and 0.2, respectively. Overall:

FTu (TG) = {{114, 0.53}, {116, 0.175}, {124, 0.014}, {125, 0.021}, {127, 0.028},
{128, 0.014}, {129, 0.021}}

FTnu (TG) = {{117, 0.073}, {122, 0.082}, {131, 0.045}}
UFev (TG) = (or (and st-m1 ft-m1 suc-m1)

(and (and (and st-m1 ft-m1 suc-m1) st-m3 ft-m3 suc-m3)

(and (and st-m1 ft-m1 suc-m1) st-m4 ft-m4 suc-m4)))

UFval (TG) = {st-m1← 1, ft-m1← 1, suc-m1← 0.8,

st-m3← 1, ft-m3← 1, suc-m3← 1,

st-m4← 0.9, ft-m4← 0.77778, suc-m4← 1}
po (TG) = 0.8

eu (TG) = 18

Therefore the probability that the schedule with earn positive utility during execution is 0.8, and its
expected utility is 18.

5.3.4 Distributed Algorithm

The distributed version of PADS (D-PADS) is used by agents locally during execution. It is in-
tuitively very similar to global PADS. In fact, the algorithms for calculating activities start times,
NLE information, finish times and expected utility are for the large part the same. However, not
all activity profiles can be found in a single pass, as no agent has a complete view of the activ-
ity network. Recall from Section 3.3.2 (on page 36) that when execution begins, agents have a
fixed period of time to perform initial computations, such as calculating initial probability profiles,
before they actually begin to execute methods. When execution begins, during this time, the prob-
ability profiles of the activity network are computed incrementally, with each agent calculating as
many profiles as it can at a time. Agents then pass on the newly-found profiles to other agents
in order to allow them to calculate further portions of the network. This process repeats until the
profiles of the entire network have been found.

Once execution begins and methods begin executing, probability profiles are continuously and
asynchronously being updated to reflect the stochasticity of the domain and the evolving schedule.
Whenever an agent receives updates concerning an activity’s execution, its enablers, disablers,
facilitators, hinderers, or (for tasks) children, it updates that activity’s profile; if the activity’s profile
does in fact change, D-PADS passes that information on to other agents interested in that activity.
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Agents do not explicitly wait for or keep track of the effects these changes have on the rest of the
hierarchy, even though changes resulting from their update may eventually propagate back to them;
in a domain with high executional uncertainty such as this one, doing so would be very difficult
because typically many probability profiles are changing concurrently.

The run-time aspect of the approach also necessitates an additional notion of the current-time,
which is used as a lower bound on when a method will start (assuming its execution has not already
begun); similarly, after an activity has been executed, its profile is changed to the actual outcome
of its execution. Since handling these issues involve very small changes to the PADS algorithms
presented in Section 5.3.2, we will not explicitly show the changes needed to those algorithms.

The distributed version, however, does make several approximations of expected utility at the
taskgroup level. For example, in the global version, while calculating ud, which is necessary for
eul and eug, eu(TG | po(a) = 1) and eu(TG | po(a) = 0) can be calculated exactly by setting
po(a) to the appropriate value and updating the entire network. In the distributed case, a different
approach must be taken since no agent has a complete view of the network.

There are three options for calculating ud in a distributed way. The first is to exactly calculate
such values on demand. This involves agents querying other agents for information to use in their
calculations, which would introduce a large delay in the calculation. The second option, which
can also calculate the values exactly, avoids this delay by always having such values cached. This
requires every agent to calculate, for each of its activities, how the success or failure of every other
activity in the network would affect it, and communicate that to other agents. Such computations
would take long to compute due to the large number of contingencies to explore, and would also
require a large increase in the amount of communication; overall, therefore, we consider them
intractable given the real-time constraints of the domain.

Instead, we utilize a third option in which these values are estimated locally by agents as
needed. During D-PADS, agents estimate ud based on an estimation of the expected utility of
the taskgroup if an activity a were to have a hypothetical probability value h of earning utility,̂euTG (a, h); we use the ̂ symbol to designate a number as an estimate.

The algorithm for calculating ̂euTG is shown in Algorithm 5.14. The algorithm begins at some
local activity a and ascends the activity hierarchy one parent at a time until it reaches the taskgroup
(Line 5). At each level it estimates the po and eu that the current task T would have if po (a) = h,
notated as p̂o (T | po (a) = h) and êu (T | po (a) = h). To begin, p̂o (a | po (a) = h) = h and
êu (a | po (a) = h) = h · averageUtil (a) (where averageUtil is defined in Section 3.3.2)
(Lines 1-2). At higher levels the algorithm estimates these numbers according to tasks’ uafs. As a
simple example, if a’s parent is a max task T , its estimated expected utility is the maximum of a’s
new estimated expected utility and the expected utility of T ’s other children (Lines 20-21).
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5.3 Multi-Agent Domain

Algorithm 5.14: Distributed taskgroup expected utility approximation with enablers and uafs.

Function : approximateEU (a, h)
p̂o (a | po (a) = h) = h1

êu (a | po (a) = h) = h · averageUtil (a)2

c = a3

n̂le∆ = 04

while T = parent (c) do5

foreach ce ∈ enabled (c) do6

p̂o (ce | p̂o (c)) = po (ce) · cpo(c|po(a)=h)
po(c)7

n̂le∆ = n̂le∆ + approximateEU (ce, p̂o (ce | p̂o (c)))8

end9

foreach cd ∈ disabled (c) do10

p̂o (cd | p̂o (c)) = po (cd) · 1−cpo(c|po(a)=h)
1−po(c)11

n̂le∆ = n̂le∆ + approximateEU (cd, p̂o (cd | p̂o (c)))12

end13

children′ = scheduledChildren (T )− {c}14

switch Type of task T do15

case sum16

p̂o (T | po (a) = h) = 1−
(

(1− po (T )) · 1−cpo(c|po(a)=h)
1−po(c)

)
17

êu (T | po (a) = h) = êu (c | po (a) = h) +
∑

c′∈children′ eu (c′)18

case max19

p̂o (T | po (a) = h) = 1−
(

(1− po (T )) · 1−cpo(c|po(a)=h)
1−po(c)

)
20

êu (T | po (a) = h) = max (êu (c | po (a) = h) ,maxc′∈children′eu (c′))21

case exactly one22

p̂o (T | po (a) = h) = p̂o (c | po (a) = h)23

êu (T | po (a) = h) = êu (c | po (a) = h)24

case sum and25

p̂o (T | po (a) = h) = po (T ) · cpo(c|po(a)=h)
po(c)26

êu (T | po (a) = h) = p̂o (T | po (a) = h) ·
(

eu(c)cpo(c|po(a)=h) +
∑

c′∈children′
eu(c′)
po(c′)

)
27

case min28

p̂o (T | po (a) = h) = po (T ) · cpo(c|po(a)=h)
po(c)29

êu (T | po (a) = h) = p̂o (T | po (a) = h)·min
(

eu(c)cpo(c|po(a)=h) ,minc′∈children′
eu(c′)
po(c′)

)
30

end31

end32

c = T33

end34

return êu (TG | po (a) = h) + n̂le∆35
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5 Probabilistic Analysis of Deterministic Schedules

Enabling and disabling relationships are also included in the estimation. If an activity c is
reached that enables another activity ce, ce’s probability of earning utility given p̂o (c | po(a) = h)
is estimated. We abbreviate this for clarity as p̂o (ce | p̂o (c)). How this hypothetical po value for
ce would impact the overall taskgroup utility, ̂euTG (ce, p̂o (ce | p̂o (c))), is then estimated by a
recursive call (Line 8). The same process happens for disablers. We do not include facilitating or
hindering relationships as they do not affect whether a method earns utility, and we expected little
benefit in including them in the estimation. Our experimental results, showing the accuracy of this
approximation, support this decision (Section 5.4.2). Overall, the algorithm returns the sum of the
estimated taskgroup utilities (Line 35).

This algorithm, if it recurses, clearly returns a value not directly comparable to eu (TG) as it
includes potentially multiple summands of it (Lines 8, 35). Instead, it is meant to be compared to
another call to the estimation algorithm. So, to estimate ud, agents use this algorithm twice, with
h = 1 and h = 0:

ud = ̂euTG (a, 1)− ̂euTG (a, 0)

This value can then be used to provide estimates of eul and eug.

Typically, the estimate the calculation provides is good. The main source of inaccuracy is in
cases where an activity c and its enabler would separately cause the same task to lose utility if
they fail. For example, if c and an activity it enables ce were crucial to the success of a common
ancestral task, both the core algorithm as well as the recursive call would return a high utility
difference stemming from that common ancestor. As we sum these values together, we end up
double-counting the utility difference at this task and the overall estimate is higher than it should
be. Ultimately, however, we did not deem this a critical error, as even though we are overestimating
the impact c’s failure would have on the schedule, in such cases it typically has a high impact,
anyway.

5.3.5 Practical Considerations

When combining discrete distributions, the potential exists for generating large distributions: the
size of a distribution Z = X + Y , for example, is bounded by |X| + |Y |. As described in Sec-
tion 3.3.2 (on page 44), however, typically such a distribution has duplicate values which we col-
lapse to reduce its size (i.e., if the distribution already contained an entry {5, 0.25} and PADS adds
{5, 0.2} to it, the resulting distribution is {5, 0.45}). In part because of this, we did not find dis-
tribution size to be a problem. Even so, we demonstrate how the size can be further reduced by
eliminating very unlikely outcomes. We found that eliminating outcomes that occur with less than
a 1% probability worked well for us; however, depending on what point in the trade-off of speed
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versus accuracy is needed for a given domain, that threshold can be adjusted. The elimination did
not much impair the calculation’s accuracy, as is shown in the next section, and can readily be done
for systems which are negatively affected by the distribution sizes.

We also memoized the results of function calls to evaluateUtilityFormula. This was
found to greatly reduce the memory usage and increase the speed of updating probability profiles.
It is effective because many activities have identical formulas or portions of formulas (e.g., a parent
task with only one scheduled child), and because many activities’ profiles do not change over time.

In the distributed version of PADS, our approach has the potential to increase communication
costs as compared to a system not using PADS, as more information is being exchanged. One
simple way to decrease this effect is to communicate only those changes in probability profiles that
are “large enough” to be important, based on a threshold value. We discuss other ways to reduce
communication in our discussion of future work, Section 8.1.1.

5.4 Experiments and Results

We performed experiments in the single-agent domain to test the speed of PADS, as well as in the
multi-agent domain to test the speed and accuracy of both the global and distributed versions of
PADS.

5.4.1 Single-Agent Domain

We performed an experiment to test the speed of PADS in this domain. We used as our test
problems instances PSP94, PSP100 and PSP107 of the mm-j20 benchmark suite of the resource-
relaxed Multi-Mode Resource Constrained Project Scheduling Problem with Minimal and Maxi-
mal Time Lags (MRCPSP/max) [Schwindt, 1998]. The problems were augmented as described in
Section 3.3.1.

In the experiment, we executed the three problems 250 times each, using PADS to calculate and
maintain all activity probability profiles, and timed all PADS calculations. To execute the problems,
we implemented a simple simulator. Execution starts at time zero, and methods are started at their
est. To simulate method execution the simulator picks a random duration for the method based on
its duration distribution, rounds the duration to the nearest integer, advances time by that duration,
and updates the STN as appropriate. The planner is invoked both initially, to generate an initial
plan, and then during execution whenever a method finishes at a time that caused an inconsistency
in the STN. PADS is invoked to analyze the initial plan before execution begins, as well as to update
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5 Probabilistic Analysis of Deterministic Schedules

Table 5.1: Average time spent by PADS calculating and updating probability profiles while execut-
ing schedules in the single-agent domain.

average standard deviation average
PADS time (s) PADS time (s) makespan (s)

PSP94 8.65 2.25 130.99
PSP100 14.82 7.54 140.94
PSP107 6.43 1.68 115.41

probability profiles when execution results become known and when replanning occurs.

Table 5.1 shows the results. For each problem, it shows the average time taken to perform
all PADS calculations, as well as the corresponding standard deviation. It also shows the average
executed schedule makespan. All values are shown in seconds. Clearly, PADS incurs only a modest
time cost in this domain, incurring an average overhead of 10.0 seconds, or 7.6% of the duration of
execution.

5.4.2 Multi-Agent Domain

Test Suite

For these experiments, we used a test suite consisting of 20 problems taken from the Phase II
evaluation test problem suite of the DARPA Coordinators program1. In this test suite, methods
have deterministic utility (before the effects of soft NLEs), which promotes consistency in the
utility of the results. Method durations were, in general, 3-point distributions. Table 5.2 shows the
main features of each of the problems, roughly ordered by size. In general, three problems had
10 agents, 20 problems had 20 agents, and two problems had 25 agents. The problems had, on
average, between 200 and 300 methods in the activity network, and each method had, on average,
2.4 possible execution outcomes. The table also shows how many max-leaf tasks, tasks overall,
and NLEs of each type were present in the activity network. Recall that “max-leaf” tasks are max
tasks that are the parents of methods. Typically, a deterministic planner would choose only one
child of a max-leaf task to schedule. We include this information here because we also use this test
suite in our probabilistic schedule strengthening experiments in the following chapter. In general,
20-30% of the total methods in the activity network were scheduled in the initial schedule of these
problems, or roughly 50-90 methods.

1http://www.darpa.mil/ipto/programs/coor/coor.asp
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Table 5.2: Characteristics of the 20 DARPA Coordinators test suite problems.

agents methods
avg # method max-

tasks
enable disable facilitate hinder

outcomes leafs NLEs NLEs NLEs NLEs
1 10 189 3 63 89 18 12 0 18
2 10 225 2.4 45 67 0 0 13 0
3 10 300 2.66 105 140 50 36 33 33
4 20 126 2.95 42 59 21 2 13 10
5 20 135 2.67 52 64 22 0 11 0
6 20 135 2.67 45 64 23 0 12 0
7 20 198 2.67 66 93 38 12 21 10
8 20 225 2.64 75 105 43 10 28 8
9 20 225 5 75 106 23 12 14 11
10 20 225 5 75 106 23 12 20 19
11 20 225 5 75 106 28 12 8 13
12 20 225 5 75 106 29 13 10 13
13 20 225 5 75 106 33 11 15 17
14 20 384 1.55 96 137 33 10 20 17
15 20 384 1.58 96 137 38 23 16 15
16 20 384 1.59 96 137 32 18 17 16
17 20 384 1.59 96 137 35 23 19 14
18 20 384 1.62 96 137 47 16 19 23
19 25 460 3.01 115 146 106 28 42 47
20 25 589 3.06 153 194 81 12 60 26

99



5 Probabilistic Analysis of Deterministic Schedules

!"

!#$"

%"

%#$"

&"

&#$"

%" &" '" (" $" )" *" +" ," %!" %%" %&" %'" %(" %$" %)" %*" %+" %," &!"

!
"
#
$%
&'
$

()*+,#"$

Figure 5.4: Time spent calculating 20 schedules’ initial expected utilities.

Analysis of Multi-Agent Global PADS

We performed two experiments in which we characterized the running time and accuracy of global
PADS. For each problem in the test suite, we timed the calculation of the expected utility of the
initial schedule, using a 3.6 GHz Intel computer with 2GB RAM. Figure 5.4 shows how long it took
to calculate the initial expected utility for the entire activity network for each of the 20 problems.
The problems are numbered as presented in Table 5.2, and so their order is roughly correlated
to their size. The time is very fast, with the largest problem taking 2.1 seconds, and well within
acceptable range.

Next, we ran an experiment to characterize the accuracy of the calculation. We executed the
initial schedules of each of the 20 test suite problems in a distributed execution environment to
see what utility was actually earned by executing the schedules. Each problem in the test suite
was run 25 times. In order to directly compare the calculated expected utility with the utility the
schedule earns during execution, we executed the schedules as is, with no replanning or strength-
ening allowed. The schedule’s flexible times representation does, however, allow the time bounds
of methods to float in response to execution dynamics, and we did retain basic conflict-resolution
functionality that naively repairs inconsistencies in the STN, such as removing methods from a
schedule if they miss their lst.

In the distributed execution environment, when execution begins, agents are given their local
view of the activity network and their portion of the pre-computed initial joint schedule, and are
left to manage execution of their local schedules while trying to work together to maximize overall
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Figure 5.5: The accuracy of global PADS: the calculated expected utility compared to the average
utility, when executed.

joint schedule utility. They communicate method start commands to the simulator, receive back
execution results (based on the stochastics of the problem) as they become known, and share status
information asynchronously. Each agent and the simulator run on their own processor and com-
municate via message passing. We assume communication is perfect and sufficient bandwidth is
available.

Figure 5.5 shows the experimental results, and compares the calculated expected utility with the
average utility that was actually earned during execution. The problems are numbered as presented
in Table 5.2, and for visual clarity are sorted in the graph by their calculated expected utility. Error
bars indicate the standard deviation of utility earned over the 25 execution trials.

Note that although the calculations are close to the average achieved utilities, they are not ex-
actly the same. In addition to assumptions we make that affect the accuracy (Section 5.3.1), there
are sources of inaccuracy due to aspects of the problem that we do not model. For example, meth-
ods may not start as early as possible (at their est) because of the asychronousness of execution;
this accounts in large part for the inaccuracy of problem 3. Also, very rarely, when a method misses
its lst it is left on the schedule and, instead, a later method is removed to increase schedule slack,
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going against our assumption that the method that misses its lst is always removed. This occurs
during the execution of problem 1, accounting for most of its inaccuracy.

Despite these differences, only 4 of the problems - 1, 14, 17, and 18 - have average executed
utilities that are statistically different from the corresponding calculated expected utility. Problem
1 we have already discussed. Each of the other problems’ 25 simulated executed utilities consist
solely of two different values; this occurs, for example, when there is one high-level (and high
utility) task that has a non-zero probability of failing but all others always succeed. In cases such
as these, a slight error in the calculation of the probability of that task earns utility can lead to
a reasonable error in the calculated expected utility, and this is what happens in for these three
problems. Overall, however, as the results show, our PADS calculation is very accurate and there is
an average error of only 7% between the calculations of the expected utility and the utility earned
during execution for these schedules.

Analysis of Multi-Agent Distributed PADS

We also performed experiments to characterize the run-time and accuracy of D-PADS. Recall that
when execution begins, agents have a fixed period of time to perform initial computations, such
as calculating initial probability profiles, before they actually begin to execute methods. The first
experiment measured how much time, during this period, agents spent on PADS from when they
received their initial schedule until all probability profiles for the entire activity network were
calculated. The experiment was performed on the 20 problem test suite described above. Agent
threads were distributed among 10 3.6 GHz Intel computers, each with 2GB RAM. Figure 5.6
shows the average computation time each agent spent distributively calculating the initial expected
utilities for each problem, as well as the total computation time spent across agents calculating
profiles for that problem. On average, the clock time that passed between when execution began
and when all profiles were finished being calculated was 4.9 seconds. In this figure, the problems
are numbered as presented in Table 5.2.

Comparing this graph with Figure 5.4, we see that distributing the PADS algorithm does incur
some overhead. This is due to probability profiles on an agent needing to be updated multiple times
as profile information arrives asynchronously from other agents and affects already-calculated pro-
files. Even considering this, however, the average time spent per agent calculating probability
profiles is quite low, and suitable for a run-time algorithm.

Once agents begin executing methods and execution progresses, the workload in general is not
as high as these results, since profiles are only updated on an as-needed basis. On average across
these problems, once method execution has begun, individual PADS updates take an average of
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Figure 5.6: Time spent distributively calculating 20 schedule’s initial expected utility; shown as
both the average time per agent and total time across all agents.

0.003 seconds (with standard deviation σ = 0.01). Overall, each agent spends an average of
1.5 seconds updating probabilities. In contrast, each individual replan takes an average of 0.309
seconds (σ = 0.39) with agents spending an average of 47.7 seconds replanning. Thus the overhead
of distributed PADS is insignificant when compared to the cost of replanning.

Because there are no approximations in our initial calculation of the probability profiles of the
activity tree, we do not duplicate our accuracy results for D-PADS. We did, however, perform an
experiment which tested the accuracy of our utility difference approximation. For each method
scheduled for each of the 20 test suite problems, we calculated the utility difference exactly (using
the method described in Section 5.3.3), and approximately (using the approximation algorithm
described in Section 5.3.4). Overall, there were 1413 methods used in the experiment. A repeated
measures ANOVA showed a weakly significant difference between the two calculations with p <
0.07; however, the utility difference approximations were, on average, within 4.58% of the actual
utility difference.
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Chapter 6

Probabilistic Schedule Strengthening

This chapter discusses how to effectively strengthen schedules by utilizing the information pro-
vided by PADS. The next section describes the approach at a high level. The two sections follow-
ing that provide detailed descriptions of the algorithms, and can be skipped by the casual reader.
Finally, Section 6.4 shows probabilistic schedule strengthening experimental results.

6.1 Overview

The goal of probabilistic schedule strengthening is to make improvements to the most vulnerable
portions of the schedule. It relies on PADS to target, or focus strengthening efforts on, “at-risk”
activities, or activities in danger of failing, whose failure impacts taskgroup utility the most. It
then takes steps to strengthen the schedule by protecting those activities against failure. Proba-
bilistic schedule strengthening also utilizes PADS to ensure that all strengthening actions raise the
taskgroup expected utility. We implemented probabilistic schedule strengthening for the multi-
agent domain [Hiatt et al., 2008, 2009]. In this domain, schedule strengthening is performed both
on the initial schedule before it is distributed to agents, and during distributed execution in con-
junction with replanning.

At a high level, schedule strengthening works within the structure of the current schedule to
improve its robustness and minimize the number of activity failures that arise during execution. In
this way is somewhat dependent on the goodness of the schedules generated by the deterministic
planner. It is most effective if domain knowledge can be taken advantage of to find the best ways
to make the schedule most robust. In the multi-agent domain, for example, a common structural
feature of the activity networks is to have max tasks as the direct parents of several leaf node
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methods. These sibling methods are typically of different durations and utilities, and often belong
to different agents. For example, a search and rescue domain might have “Restore Power” modeled
as a max task, with the option of fully restoring power to a town (higher utility and longer duration)
or restoring power only to priority buildings (lower utility and shorter duration). We refer to these
max tasks as “max-leafs.” Typically, a deterministic planner would choose only one child of a
max-leaf task to schedule. Probabilistic schedule strengthening, in contrast, might schedule an
additional child, or substitute one child for another, in order to make the schedule more robust.

Given our knowledge of the multi-agent domain’s characteristics, such as the presence of max-
leaf tasks, we have investigated three strengthening tactics for this domain:

1. “Backfilling” - Scheduling redundant methods under a max-leaf task to improve the task’s
likelihood of earning utility (recall that max tasks accrue the utility of the highest utility child
that executes successfully). This decreases schedule slack, however, which may lead to a loss
of utility.

2. “Swapping” - Replacing a scheduled method with a currently unscheduled sibling method
that has a lower a priori failure likelihood, a shorter duration or a different set of NLEs1. This
potentially increases the parent’s probability of earning utility by lowering the likelihood of
a failure outcome, or potentially increases overall schedule slack and the likelihood that this
(or another) method earns utility. Swapping may lead to a loss of utility, however, as the
sibling may have a lower average utility, or a set of NLEs that is less desirable.

3. “Pruning” - Unscheduling a method to increase overall schedule slack, possibly strengthen-
ing the schedule by increasing the likelihood that remaining methods earn utility. This can
also lead to utility loss, however, as the removed method will not earn utility.

Note that each of these tactics has an associated trade-off. PADS allows us to explicitly address
this trade-off to ensure that all schedule modifications improve the taskgroup expected utility. A
priori, we expect backfilling to improve expected utility the most, as it preserves the higher-utility
option while still providing a back-up in case that higher-utility option fails. Swapping is expected
to be the next most useful, as the task remains scheduled (although possibly at a lower utility).
Pruning is expected to be the weakest individual tactic. Our results (Section 6.4.2) support these
conjectures.

Activities to strengthen are identified and prioritized differently for the three tactics. For back-
filling, max-leaf tasks are targeted which have a non-zero likelihood of failing, and methods are

1The reason to consider siblings with a different set of NLEs is because they may change the effective time bounds
of the method (via different hard NLEs) or its effective duration (via soft NLEs).
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added to reduce this failure probability. Parent tasks are prioritized for backfilling by their expected
utility loss (Section 5.3.2, on page 84). Recall that this metric specifies by how much utility the
overall taskgroup is expected to suffer because of a task earning zero utility. As schedules can sup-
port a limited amount of backfilling before they become too saturated with methods, prioritizing
the tasks in this way ensures that tasks whose expected failure affects taskgroup utility the most are
strengthened first and have the best chance of being successfully backfilled. While this does not
always result in optimal behavior (for example, if backfilling the activity with the highest eul pre-
vents backfilling two subsequent ones, which could have led to a higher overall expected utility),
we found it to be an effective heuristic in prioritizing activities for strengthening.

For both swapping and pruning, “chains” of methods are first identified where methods are
scheduled consecutively and threaten to cause a method(s) to miss its deadline. Methods within
the chain are sorted by increasing expected utility gain (Section 5.3.2). Recall that this metric
specifies by how much utility the overall taskgroup is expected to gain by a task earning positive
utility. Sorting methods in this way ensures that low-importance methods, that do not contribute
much to the schedule, are removed or swapped first to try increase overall schedule slack. The
chains themselves are prioritized by decreasing expected utility loss so that the most important
potential problems are solved first. Methods with non-zero likelihoods of a failure outcome are
also considered candidates for swapping; such methods are identified and incorporated into the list
of chains, above. As with backfilling, using the eul and eug heuristics are not guaranteed to result
in optimal behavior, but we found them to be effective when used with our swapping and pruning
tactics.

Every time that a tactic attempts to modify the schedule, it takes a step. A step of any tac-
tic begins with sorting the appropriate activities in the ways specified above. The step considers
strengthening each activity sequentially until a valid strengthening action is made. An action is
valid if (1) it is successful (i.e., a method is successfully scheduled, swapped or unscheduled) and
(2) it raises the taskgroup’s expected utility. When a valid action is found, the step returns without
trying to modify the schedule further. A step will also return if no valid action was found after all
possible actions were considered (e.g., all max-leaf tasks have been looked at but no valid backfill
is found). The main computational cost of schedule strengthening comes from updating probability
profiles while performing strengthening during these steps.

Given the three tactics introduced above, we next address the question of the order in which
they should be applied. The ordering of tactics can affect the effectiveness of probabilistic schedule
strengthening because the tactics are not independent: performing a step of one tactic, such as un-
scheduling a method, may make another tactic, such as swapping that method, infeasible. We call
an approach to determining how tactics can be applied to perform probabilistic schedule strength-
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Figure 6.1: The baseline strengthening strategy explores the full search space of the different or-
derings of backfills, swapping and pruning steps that can be taken to strengthen a schedule.

ening a strategy. The baseline “pseudo-optimal” strategy that finds the best possible combination
of these actions considers each possible order of backfilling, swapping and pruning steps, finds the
taskgroup expected utility that results from each ordering, and returns the sequence of steps that
results in the highest expected utility (Figure 6.1). This strategy, however, can take an unmanage-
able amount of time as it is exponential in the number of possible strengthening actions. Although
its practical use is infeasible, we use it as a baseline to compare more efficient strategies against.

The high-level strategy we use is a variant of a round-robin strategy. Agents perform one
backfill step, one swap step and one prune step, in that order, repeating until no more actions are
possible. This strategy is illustrated in Figure 6.2. Two additional heuristics are incorporated in
order to improve the strategy. The first prevents swapping methods for lower-utility methods (to
lower the a priori failure likelihood) while backfilling the parent max-leaf task is still possible.
The second prevents pruning methods that are a task’s sole scheduled child, and thus pruning en-
tire branches of the taskgroup, when a backfill or swap is still possible. These heuristics help to
prioritize the tactics in order of their individual effectiveness, leading to a more effective proba-
bilistic schedule strengthening strategy. If other strengthening actions were being used, analogous
heuristics could be used to prioritize the new set in its order of effectiveness. Although we found
these heuristics to be very effective at increasing the amount of expected utility gained by perform-
ing round-robin schedule strengthening, they are not guaranteed to be optimal. For example, if a
backfill was performed instead of a prune to bolster the expected utility of a task, it is possible that
then backfilling some other set tasks may not be possible, which may have led to a higher overall
expected utility.

We also experimented with a greedy heuristic variant that performs one “trial” step of each
tactic, and commits to the step that raises the expected utility the most, repeating until no more
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Figure 6.2: The round-robin strengthening strategy performs one backfill, one swap and one prune,
repeating until no more strengthening actions are possible.
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Figure 6.3: The greedy strengthening strategy repeatedly performs one trial backfill, one trial swap
and one trial prune, and commits at each point to the action that raises the expected utility of the
joint schedule the most.

steps are possible (Figure 6.3). It utilizes the same two heuristics as the round-robin strategy. It
performs, in general, roughly as well as the round-robin strategy, but with a higher running time,
as for each successful strengthening action it performs up to three trial actions; the round-robin
strategy, on the other hand, only performs the one.

During distributed execution, probabilistic schedule strengthening and replanning work well
when used together, as they ensure that the current schedule takes advantage of opportunities that
arise while also being robust to execution uncertainty; ideally, therefore, replanning would not be
performed without being followed by probabilistic schedule strengthening. Schedule strengthen-
ing may also be useful when performed alone if the schedule has changed since the last time it
was performed, as the changes may have made it possible to strengthen activities that could not be
strengthened before, or they may have weakened new activities that could be helped by strength-
ening.

Agents operate independently and asynchronously during execution. This means that actions
such as replanning and probabilistic schedule strengthening are also performed asynchronously.
Coordination is required, therefore, to prevent agents from simultaneously performing duplicate
actions needlessly and/or undesirably (e.g., two agents backfilling the same task when one backfill
would suffice). To address this, agents communicate a “strengthening status” for each local method
indicating whether it is scheduled, whether it is unscheduled and the agent has not tried to backfill it
yet, or whether the agent has tried to backfill it but the backfill action was invalid. Agents use this
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information to reduce these unwanted situations and to inform the two heuristics of round-robin
strengthening described above.

Recall also that, as agents make changes to their own probability profiles, they do not explicitly
wait for or keep track of the effects these changes have on the rest of the hierarchy, even though
changes resulting from their update may eventually propagate back to them. In a domain with
high executional uncertainty such as this one, doing so would be very difficult because typically
many probability profiles are changing concurrently. Instead, agents replan and strengthen with as
complete information as they have. Although this of course has the potential to lead to suboptimal
behavior, this situation is alleviated since agents have the option of replanning and strengthening
again later if their actions became unsuitable for the updated situation.

6.2 Tactics

The next three sections describe the tactics in detail, for both the global and distributed versions of
our multi-agent domain.

6.2.1 Backfilling

Global

Algorithm 6.1 shows pseudocode for a step of the global backfilling tactic. The step performs
one backfill, if possible, and then returns. It begins by sorting all scheduled max-leaf tasks T
where po (T ) < 1 by eul (T ) (Line 2), targeting improvements at max-leaf tasks which might fail.
We define the function maxLeafs to return scheduled max-leaf tasks. Additionally, in this and
subsequent algorithms we assume sort takes as its arguments the set of activities to sort, the sort
order, and the field of the activity to sort by. Sorting in this way ensures that tasks whose expected
failure leads to the highest utility loss are strengthened first.

Once the max-leaf tasks are sorted, the step stores the original eu (TG) value (Line 3) to use
later for comparison. Then, each child of each task is sequentially considered for backfilling. If a
child is unscheduled, and the step is able to schedule it via a call to the planner do-schedule
(Line 6), then the activity hierarchy’s probability profiles are updated (Line 7). Next, the step
compares the taskgroup’s new eu value to the original (Line 8). If it is higher, the step returns the
successfully backfilled child c. If not, it undoes the schedule (Lines 11-12) and continues looping
through the tasks and children. If no successful backfills are found once all max-leaf tasks have
been considered, the step returns null (Line 17).

110



6.2 Tactics

Algorithm 6.1: Global backfilling step utilizing max-leaf tasks.

Function : doOneGlobalBackfill
MLT = maxLeafs ()1

MLTs = sort({T ∈MLT | po (T ) < 1}, >, eul)2

euTG = eu (TG)3

foreach T ∈MLTs do4

foreach c ∈ children(T) do5

if unscheduled (c) and do-schedule (c) then6

updateAllProfiles()7

if eu (TG) > euTG then8

//expected utility increased, commit to backfill

return c9

else10

//expected utility decreased or stayed the same, undo

backfill

undo (do-schedule (c))11

updateAllProfiles()12

end13

end14

end15

end16

return null17
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This step, as well as the steps for the swapping and pruning tactics (described below), can be
modified in several simple ways to suit the needs of different domains. Threshold values for failure
probabilities could be utilized, if desired, to limit computation. Also, if a domain has an effective
way to sort child methods of a max-leaf task for backfilling, then that could be added as well at
Line 5; in our domain, the order of the methods considered for backfilling and swapping was found
to be unimportant.

Distributed

The distributed backfilling step has several complications. First, as agents no longer have access to
the entire activity network in order to calculate eul values, it must use instead the êul approximation
(Section 5.3.4). Second, updateAllProfiles can no longer update profiles throughout the
entire task tree, and the step must instead rely only on updating local probabilities via the function
updateLocalProfiles. It follows that the change in taskgroup expected utility that results
from a backfill can only be estimated, which can be done using the same approximation technique
used to approximate eul and eug. Third, the maxLeafs function returns only max-leafs that the
agent knows about (whether local or remote), and their children must be checked to see if they
are local before they can be considered by an agent. Fourth, agents are strengthening their local
schedule asynchronously, and so coordination is required to prevent agents from simultaneously
performing duplicate actions needlessly and/or undesirably.

To address the fourth issue, agents communicate a “strengthening status” for each method:

• no-attempt : this method is unscheduled and the owning agent has not yet tried to schedule
this method as part of a backfill
• failed-backfill : this method is unscheduled because the owning agent tried, but failed, to

schedule this method as part of a backfill
• scheduled : this method is scheduled

The strengthening status is communicated along with probability profiles during execution. Agents
use this information to implicitly and partially coordinate schedule strengthening during execution.
Namely, given a pre-defined sort order for max-leaf children, agents will not try to backfill a task
with their own methods if there is a method earlier in the list of the task’s children whose owner has
not yet attempted to use it to backfill the task. This helps to prevent the duplicate actions mentioned
above, as the first time that a max-leaf task is distributively strengthened all of its children are
scheduled (or attempted to be scheduled) in order. It is still possible for duplicate strengthening
actions to be performed, such as if two agents simultaneously revisit the max-leaf task on a later
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schedule strengthening pass and both succeed in backfilling it; however, in practice we rarely
see this occur. We define the function status to return a method’s strengthening status. The
strengthening status is also used to inform the heuristics for some of our strengthening strategies,
described in Section 6.3.

Algorithm 6.2 presents the pseudocode for a distributed backfill step. It begins by sorting all
max-leaf tasks by their estimated eul values (Line 2). The step next stores the original eu (TG)
value (Line 3) to use later for comparison. Then, each child of each task is sequentially considered
for backfilling. If a child is not local and its owner has not yet attempted to backfill it (i.e., its
strengthening status is no-attempt), then it skips this max-leaf task and continue to the next. This
ensures that methods are (attempted to be) backfilled in order, discouraging concurrent backfilling.
If the method is local, unscheduled, and the algorithm is able to schedule it via a call to the planner
do-schedule (Line 8), then the agent’s local activity profiles are updated (Line 9).

Next, the step looks at each method in the agent’s local schedule. It estimates the change in
expected utility of the taskgroup by summing the estimated change resulting from differences in
each method’s profiles, if any; this ensures that any effects a backfill has on other methods in the
schedule (e.g., pushing them towards a deadline) are accounted for (Line 11). If the expected utility
is estimated to be higher, the step returns the successfully backfilled child c. If not, it undoes the
schedule (Lines 16-17) and continues looping through the tasks and their children. If no successful
backfill is found once all max-leaf tasks have been considered, the step returns null (Line 22).

6.2.2 Swapping

Global

A step of the swapping tactic performs one swap, if possible. The step begins by identifying
methods that are candidates for swapping. Swapping can serve to strengthen the schedule in two
different ways: it can include methods with lower a priori failure outcome likelihoods and can
increase schedule slack to increase the likelihood that this (or another) method meets a deadline.

Algorithm 6.3 shows pseudocode for a step of the global swapping tactic. The step first finds
chains of methods, scheduled back-to-back on the same agent, that have overlapping execution
intervals, where at least one method in the chain has a probability of missing a deadline (Line 1).
It sorts the methods m within the chains by increasing eug (m), so that methods that are expected
to contribute the least to the overall utility are swapped first (Line 2).

To this set of chains, the step adds scheduled methods that have an a priori likelihood of a
failure outcome (Lines 3-5). It identifies the max eul value of the methods in the group, and sorts
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Algorithm 6.2: Distributed backfilling step utilizing max-leaf tasks.

Function : doOneDistributedBackfill
MLT = maxLeafs () //all max-leafs the agent knows about, whether1

local or remote

MLTs = sort({T ∈MLT | po (T ) < 1}, >, êul)2

euTG = eu (TG)3

foreach T ∈MLTs do4

foreach c ∈ children(T) do5

if not (local (c)) and status (c) == no-attempt then6

continue //continue to next task7

else if local (c) and unscheduled (c) and do-schedule (c) then8

updateLocalProfiles()9

foreach m ∈ localSchedule () do10

//estimate how m’s new po value impacts TG expected

utility

∆̂eu = ∆̂eu+ (approximateEU (m, po (m))− euTG)11

end12

if ∆̂eu > 0 then13

//expected utility increased, commit to backfill

return c14

else15

//expected utility decreased, undo backfill

undo (do-schedule (c))16

updateLocalProfiles()17

end18

end19

end20

end21

return null22
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the resulting groups by the decreasing maximum eul, so that groups whose worst expected failure
leads to the most utility loss are considered first (Line 9). Next, the step iterates through the groups
and methods in the groups to find candidates for swapping (Line 11-12).

A method and its sibling are a candidate for swapping if they are owned by the same agent
and the sibling is unscheduled. In addition, the sibling must be considered a good candidate for
swapping. If the original method was considered for swapping because it has a failure likelihood,
the sibling method must have a lower failure likelihood. If the original method was identified
because it was part of a chain, the sibling must meet one of two criteria to be considered a candidate:
(1) the sibling has a shorter average duration, so swapping may increase schedule slack; or (2) the
sibling has a different set of NLEs, so swapping might increase schedule slack due to the different
temporal constraints (Lines 13-18). If the two methods meet this criteria, the planner is called to
attempt to swap them. Then, if the swap is successful, the activity hierarchy’s probability profiles
are updated, and the taskgroup’s new eu value is compared to the original (Line 19-20). If it is
higher, the step returns the successfully swapped methods (Line 21). If not, it undoes the swap and
continues looping through the methods and chains (Line 23-24). If no successful swaps are found
once all chains have been considered, the step returns the empty set {} (Line 30).

Distributed

The adaptation of this step to make it distributed is analogous to changes made for the distributed
version of the backfilling step, where localSchedule is called instead of jointSchedule,
not all profiles can be updated at once, and eul, eug and the change in expected utility of the
taskgroup have to be approximated.

6.2.3 Pruning

Global

Algorithm 6.4 shows pseudocode for a step of the global pruning tactic. The step performs one
prune, if possible. It begins by finding chains of methods on agents’ schedules that have overlap-
ping execution intervals, exactly as in the swapping algorithm (Line 1). Also as with swapping, it
sorts the methods m within the chains by increasing eug, and the chains themselves by decreasing
eul (Lines 2-3). Next, the step iterates through the chains and each method in the chains to find
methods that can be unscheduled (Lines 5-7). When it reaches a method that can be unscheduled,
then the activity hierarchy’s probability profiles are updated, and the new eu (TG) value is com-
pared to the original (Lines 8-9). If it is higher, the step returns the successfully pruned method
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Algorithm 6.3: Global swapping tactic for a schedule with failure likelihoods and NLEs.

Function : doOneGlobalSwap
C = findChains (jointSchedule ())1

foreach c ∈ C do c← sort (c, <, eug)2

foreach m ∈ jointSchedule () do3

if fail (m) > 0 then4

push ({m}, F )5

end6

end7

G = C ∪ F8

G = sort (G, >, eul)9

euTG = eu (TG)10

foreach g ∈ G do11

foreach m ∈ g do12

foreach m′ ∈ siblings(m) do13

if owner (m′) = owner (m) and unscheduled (m′)14

and ((g ∈ F and fail (m′) < fail (m))15

or (g ∈ C and16

(averageDur (m′) < averageDur (m) or NLEs (m′) 6= NLEs (m))))17

and do-swap (m,m′) then18

updateAllProfiles()19

if eu (TG) > euTG then20

return {m, m′}21

else22

undo (do-swap (m,m′))23

updateAllProfiles()24

end25

end26

end27

end28

end29

return {}30
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(Line 10). If not, it undoes the unschedule and continues looping through the chains and methods
(Lines 12-13). If no successful swaps are found once all chains have been considered, the step
returns null (Line 18).

Algorithm 6.4: Global pruning step.

Function : doOneGlobalPrune
C = findChains (jointSchedule ())1

foreach c ∈ C do c← sort (c, <, eug)2

G = sort (C, >, eul)3

euTG = eu (TG)4

foreach g ∈ G do5

foreach m ∈ g do6

if do-unschedule (m) then7

updateAllProfiles()8

if eu (TG) > euTG then9

return m10

else11

undo (do-unschedule (m))12

updateAllProfiles()13

end14

end15

end16

end17

return null18

Distributed

The adaptation of this step to make it distributed is analogous to changes made for the distributed
version of the backfilling step, where localSchedule is called instead of jointSchedule,
not all profiles can be updated at once, and eul, eug and the change in expected utility of the
taskgroup have to be approximated.

6.3 Strategies

Given these three strengthening tactics, the next step is to find a strategy that specifies the order in
which to apply them. The ordering of tactics can affect the effectiveness of probabilistic schedule
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strengthening because the tactics are not independent: performing an action of one tactic, such
as unscheduling a method, may make another tactic, such as swapping that method, infeasible.
Similarly, performing an action of one tactic, such as swapping sibling methods, may increase
schedule slack and make another tactic, such as backfilling a max-leaf task, possible.

In order to develop a good strategy to use for probabilistic schedule strengthening, we first con-
sider a search-based strategy that optimizes the application of the tactics. This baseline, “pseudo-
optimal” solution considers each possible order of backfilling, swapping and pruning steps, finds
the taskgroup expected utility that results from each ordering, and returns the sequence of steps
that results in the highest expected utility. This strategy is not optimal, since the ordering of ac-
tivities within each tactic is just a heuristic; however, as this strategy is exponential in the number
of possible strengthening actions, it still quickly grows to take an unmanageable amount of time.
Although this makes its own use infeasible, we use it as a baseline against which to compare more
efficient strategies.

Algorithm 6.5 shows the pseudocode for globally finding the best possible ordering of tactics
for the baseline strategy. It performs a depth-first search to enumerate all possible orderings, re-
cursing until no more strengthening actions are possible. It returns the highest expected utility for
the schedule it found as well as the ordering of tactics that produced that schedule. As we are using
this strategy as a baseline, it is not necessary to show how it would be implemented distributively.

We implemented two more efficient strategies to compare against the baseline strategy. One
is a variant of a round-robin strategy, shown in Algorithm 6.6. The global version of the strategy
performs one backfilling step, one swapping step and one pruning step, repeating until no more
steps are possible. Two additional heuristics are incorporated. The first concerns swapping meth-
ods to find a lower a priori failure likelihood. The heuristic specifies that a swap cannot take place
for a method unless the method’s parent is not eligible for backfilling, where not eligible means
that either its po value equals 1 or backfilling has already been attempted on all of the method’s
siblings (i.e., no siblings have a strengthening status of no-attempt). This heuristic prevents swap-
ping methods for lower-utility methods while backfilling a parent max-leaf task (and preserving a
higher utility option) is still possible. This is incorporated in as part of the swapping tactic; we do
not show the revised algorithm.

The second heuristic is that a prune cannot take place unless either: (1) the candidate for
pruning is not the only scheduled child of its parent; or (2) swapping or backfilling any method is
not possible at the current point in the algorithm. This heuristic prevents pruning methods, and thus
entire branches of the taskgroup, when a backfill or swap is still possible and would better preserve
the existing task structure. Again this is added in as part of the pruning tactic; we do not show the
revised algorithm.
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Algorithm 6.5: Global baseline strengthening strategy utilizing backfills, swaps and prunes.

Function : baselineStrengthening
b = doOneBackfill()1

if b then2

eub, orderingsb = baselineStrengthening()3

undo (do-schedule (b))4

updateAllProfiles()5

end6

{s, s′} = doOneSwap()7

if {s, s′} then8

eus,s′ , orderingss,s′ = baselineStrengthening()9

undo (do-swap (s, s′))10

updateAllProfiles()11

end12

p = doOnePrune()13

if p then14

eup, orderingsp = baselineStrengthening()15

undo (do-unschedule (p))16

updateAllProfiles()17

end18

if b or {s, s′} or p then19

switch max (eub, eus,s′ , eup) do20

case eub return eub, {b} ∪ orderingsb21

case eus,s′ return eus,s′ , {{s, s′}} ∪ orderingss,s′22

case eup return eup, {p} ∪ orderingsp23

end24

end25

return eu (TG), {}26

Algorithm 6.6: Global round-robin strengthening strategy utilizing backfills, swaps and prunes.

Function : roundRobinStrengthening
while true do1

b = doOneBackfill ()2

{s, s′} = doOneSwap ()3

p = doOnePrune ()4

if not (b or {s, s′} or p) then return5

end6
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The distributed version of this strategy differs only in how the distributed versions of backfill-
ing, swapping and pruning functions are invoked. The overall structure and heuristics remain the
same. As the details are purely implementational, we do not provide them here.

The other strategy is a greedy variant, shown in Algorithm 6.7. This strategy is similar to
hill-climbing: it performs one ‘trial’ step of each tactic, records for each the increase in expected
utility that resulted (Lines 2-7), and commits to the step that raises the expected utility the most
(Lines 9-20), repeating until no more steps are possible. This greedy strategy also incorporates in
the same two heuristics as does the round-robin strategy. In general, it performed the same as the
round-robin strategy in our preliminary testing, but at a much higher computational cost; therefore
we omit discussion of its distributed counterpart.

Algorithm 6.7: Global greedy strengthening strategy utilizing backfills, swaps and prunes.

Function : greedyStrengthening
while true do1

b = doOneBackfill(), eub = eu (TG)2

if b then undo (do-schedule (b)), updateAllProfiles()3

{s, s′} = doOneSwap(), eus,s′ = eu (TG)4

if {s, s′} then undo (do-swap (s, s′)), updateAllProfiles()5

p = doOnePrune(), eup = eu (TG)6

if p then undo (do-unschedule (p)), updateAllProfiles()7

if b or {s, s′} or p then8

switch max(eub, eus,s′ , eup) do9

case eub10

do-schedule (b)11

end12

case eus,s′13

do-swap (s, s′)14

end15

case eup16

do-unschedule (p)17

end18

end19

updateAllProfiles()20

else21

return22

end23

end24
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6.4 Experimental Results

We used the DARPA test suite of problems described in Section 5.4.2 (on page 98) for the proba-
bilistic schedule strengthening experiments. We ran four experiments: one testing the effectiveness
of using PADS to target and prioritize activities for schedule strengthening; one testing the effec-
tiveness of the various schedule strengthening strategies; one testing how schedule utility improves
when executing pre-strengthened schedules; and one measuring the effect of probabilistic schedule
strengthening when performed in conjunction with replanning during execution.

6.4.1 Effects of Targeting Strengthening Actions

We ran an experiment to test the effectiveness of using PADS to target and prioritize activities
when performing probabilistic schedule strengthening [Hiatt et al., 2008]. For simplicity, in this
experiment the only tactic considered was backfilling. We compared three different classes of
schedules: (1) the original schedule generated by the deterministic, centralized planner; (2) the
schedule generated by performing backfilling on the original schedule, using PADS to target and
prioritize activities (for clarity we refer to this as probabilistic backfilling); and (3) the schedule
generated by performing unconstrained backfilling on the original schedule. The unconstrained
backfilling tactic is deterministic, and loops repeatedly through the set of all scheduled max-leaf
tasks and attempts to add one additional method under each task in each pass. It will continue
until it can no longer backfill under any of the max-leafs due to lack of space in agents’ sched-
ules. This third mode provides the schedule strengthening benefits of backfilling without either the
algorithmic overhead or the probabilistic focus of probabilistic backfilling.

We ran the pre-computed schedules for each condition through a multi-agent simulation en-
vironment in order to test their relative robustness. All agents and the simulator ran on separate
threads on a 2.4 GHz Intel Core 2 Due computer with 2GB RAM. For each problem in our test suite,
and each condition, we ran 10 simulations, each with their own stochastically chosen durations and
outcomes, but purposefully seeded such that the same set of durations and outcomes were executed
by each of the conditions. In order to directly compare the relative robustness of schedules, we
executed the schedules as is, with no replanning allowed. The schedule’s flexible times representa-
tion does, however, allow the time bounds of methods to float in response to execution dynamics,
and we did retain basic conflict-resolution functionality that naively repairs inconsistencies in the
STN, such as removing methods from a schedule if they miss their lst.

The average utility earned by the three conditions for each of the 20 problems is shown in
Figure 6.4. The utility is expressed as a function of the scheduled utility of the original initial
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Figure 6.4: Utility earned by different backfilling conditions, expressed as the average proportion
of the originally scheduled utility earned.

schedule: it is represented as the average proportion of that scheduled utility earned during ex-
ecution. Problem numbers correspond to the numbers in Table 5.2, and problems are sorted by
how well the condition (1) did; this roughly correlates to sorting the problems by their level of
uncertainty. On all but 4 of the problems (16, 19, 20 and 6), probabilistic backfilling earned the
highest percentage of the scheduled utility. In the four problems that unconstrained backfilling
wins, it does so marginally. On average across all problems, no backfilling earned a proportional
utility of 0.64, unconstrained backfilling earned a proportional utility of 0.66, and probabilistic
backfilling earned a proportional utility of 0.77. Using a repeated measures ANOVA, probabilistic
backfilling is significantly better than either other mode with p < 0.02. Unconstrained backfill-
ing and no backfilling are not statistically different; although unconstrained backfilling sometimes
outperformed no backfilling, it also sometimes performed worse than no backfilling.

Looking more closely at the 4 problems where unconstrained backfilling outperformed prob-
abilistic backfilling, we observe that these results in some cases are due to occasional sub-par
planning by the deterministic planner. For example, under some circumstances, the method al-
located by the planner under a max-leaf may not be the highest utility child, even though there
is enough schedule space for the latter. Unconstrained backfilling may correct this coincidentally
due to its undirected nature, while probabilistic backfilling will not even consider this max-leaf if
the originally scheduled method is not in danger of earning no utility. This highlights our earlier
supposition that the benefit of probabilistic schedule strengthening is affected by the goodness of
the original, deterministic schedule.

Figure 6.5 shows the percent increase in the number of methods in the initial schedule after
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Figure 6.5: The percent increase of the number of methods in the initial schedule after backfilling
for each mode.

backfilling for the two modes that performed backfilling. Problem numbers correspond to the
numbers in Table 5.2, and problems are sorted to be consistent with Figure 6.4. In all cases but
one, probabilistic backfilling added at least 1 method. Despite resulting in less utility earned during
execution, unconstrained backfilling far exceeds probabilistic backfilling in the number of backfills.

Comparing Figures 6.4 and 6.5, the effective, probabilistic nature of our schedule strengthen-
ing approach is emphasized. In general, for the more certain problems to the left, targeted back-
filling does not add many methods because not many are needed. For the more uncertain, difficult
problems to the right, it adds methods in order to hedge against that uncertainty. Unconstrained
backfilling, in contrast, has no discernible pattern in the graph from left to right. These figures
again highlight how schedule strengthening can be limited by the goodness of the original schedule
and how it is unable to fix all problems: for problems 6 and 3, for example, probabilistic backfill-
ing does not much affect the utility earned as it is able to make only a small number of effective
strengthening actions.

Overall, these results illustrate the advantage to be gained by our probabilistic schedule strength-
ening approach. There is an inherent trade-off associated with reinforcing schedules in resource-
constrained circumstances: there is advantage to be gained by adding redundant methods, as seen
by comparing the probabilistic backfilling results to the no backfilling results; however, this ad-
vantage can be largely negated if backfilling is done without guidance, as seen by comparing the
no backfilling results to the relatively similar results of unconstrained backfilling. Our explicit
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use of probabilities to target and prioritize activities provides a means of effectively balancing this
trade-off.

6.4.2 Comparison of Strengthening Strategies

We compared the effectiveness of the different strengthening strategies by strengthening initial
schedules for the 20 problems in the DARPA test suite in 6 ways: (1) pruning only; (2) swapping
only; (3) backfilling only; (4) the round-robin strategy; (5) the greedy strategy; and (6) the baseline
strategy [Hiatt et al., 2009]. Strengthening was performed on a 3.6 GHz Intel computer with 2GB
RAM. For 8 of the 20 problems the baseline strategy did not finish by 36 hours; for these cases
we considered the run time to be 36 hours and the utility earned to be the best found when it
was stopped. The resulting average expected utility after the probabilistic schedule strengthening,
as well as the average running time for each of the strategies, is shown in Table 6.1. The table
also shows, on average, how many strengthening actions each strategy successfully performed;
recall, for comparison, that these problems initially had roughly between 50-90 methods initially
scheduled.

Table 6.1: A comparison of strengthening strategies.

avg expected utility avg running time
avg num actions

(% of baseline) (in seconds)
initial 74.5 – –
prune 77.2 6.7 0.8
swap 85.1 32.9 3.5

backfill 92.8 68.5 10.4
round-robin 99.5 262.0 13.1

greedy 98.5 354.5 13.0
baseline 100 32624.3 13.0

Our supposition of the effectiveness of individual tactics is supported by these results: namely,
that backfilling is the strongest individual tactic, followed by swapping and then pruning. Fur-
ther, despite the limitations of each individual tactic due to each one’s associated trade-off, their
different properties can also have synergistic effects (e.g., swapping can increase schedule slack,
making room for backfilling), and using all three results in stronger schedules than using any one
individually.
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The round-robin strategy uses, on average, fewer strengthening actions than the sum of the
number of actions performed by the pruning, swapping and backfilling strategies independently
(13.1 compared to 14.6). In contrast, its running time is much more than the sum of the running
times of the three independent strategies (262.0 seconds compared to 108.1 seconds). This is
because of the increased search space: when attempting to perform a valid action, instead of only
trying to backfill, the round-robin strategy must consider the space of backfills, swaps and prunes.
Therefore, in situations where only backfills are possible, for example, the round-robin strategy
incurs a higher overhead than the pure backfilling strategy.

Clearly the round-robin strategy outperforms each of the individual strategies it employs at a
modest run-time cost. When compared to the greedy strategy, it performs mostly the same. There
are, however, a couple problems where round-robin outperforms greedy. An example of such a
situation is when the greedy strategy backfilled a max-leaf task twice, but round-robin backfilled
it and then swapped two of its children; the round-robin strategy turned out to be better, as it
resulted in more schedule slack and left room for other backfills. Although we do not see the
difference between the two conditions to be very meaningful, the difference in run time leads us to
choose round-robin as the dominant strategy. Additionally, round-robin is almost as effective as the
baseline strategy and, with a run-time that is over two orders of magnitude faster, is the preferred
choice.

6.4.3 Effects of Global Strengthening

We performed an experiment to compare the utility earned when executing initial deterministic
schedules with the utility earned when executing strengthened versions of the schedules. We ran
simulations comparing the utility earned by executing three classes of schedules: (1) the sched-
ule generated by the deterministic, centralized planner; (2) the schedule generated by performing
backfilling (the best individual tactic) only on the schedule in condition (1); and (3) the sched-
ule generated by performing round-robin schedule strengthening on the schedule in condition (1).
Experiments were run on a network of computers with Intel Pentium D CPU 2.80GHz and Intel
Pentium 4 CPU 3.60GHz processors; each agent and the simulator ran on its own machine.

For each problem in our DARPA test suite, and each condition, we ran 25 simulations, each
with their own stochastically chosen durations and outcomes, but purposefully seeded such that the
same set of durations and outcomes were executed by each of the three conditions. As with previous
experiments, in order to directly compare the relative robustness of schedules, we executed the
schedules as is, with no replanning allowed. Recall that the schedule’s flexible times representation
does, however, allow the time bounds of methods to float in response to execution dynamics, and
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6 Probabilistic Schedule Strengthening

we did retain basic conflict-resolution functionality that naively repairs inconsistencies in the STN,
such as removing methods from a schedule if they miss their lst.

Figure 6.6 shows the average utility earned by the three sets of schedules for each of the 20
problems. The utility is expressed as the fraction of the originally scheduled utility earned during
execution. Problem numbers correspond to the numbers in Table 5.2, and problems are sorted by
how well condition (1) did; this roughly correlates to sorting the problems by their level of uncer-
tainty. Note although this graph and Figure 6.4 share two conditions, the data are slightly different;
this is due to the previous experiment running only 10 simulations per problem, in contrast to the
25 simulations this experiment performs.
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Figure 6.6: Utility for each problem earned by different strengthening strategies, expressed as the
average proportion of the originally scheduled utility earned.

For problems 14, 15, 2, 8, 3 and 10, round-robin strengthening identified only backfill steps
to be of value, and as a result produced results identical to the backfilling only strategy. Problems
18, 5, 17 and 20, while not identical, are on average very close for these conditions. For individ-
ual simulations of these four problems, we see that round-robin strengthening usually performs
slightly worse than backfilling alone, but occasionally far outperforms it. This interesting behavior
arises because round-robin can hedge against method failure by swapping in a lower utility, shorter
duration method for a method with a small chance of earning zero utility. While for many runs this
tactic sacrifices a few utility points when the original method succeeds, on average round-robin
avoids the big utility loss that occurs when the method fails. For problem 3, strengthening is un-
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6.4 Experimental Results

able to provide much help in making the schedule more robust, and so all three conditions earn
roughly the same utility.

As the figure shows, round-robin schedule strengthening outperforms backfilling, which in
turn outperforms the initial schedule condition. Round-robin schedule strengthening, overall, out-
performs the initial schedule condition by 31.6%. The differences between the conditions are
significant with p < 0.01, when tested for significance with a repeated measures ANOVA.

6.4.4 Effects of Run-Time Distributed Schedule Strengthening

We next ran an experiment to quantify the effect that schedule strengthening has when performed
in conjunction with replanning during execution. We used a 16 problem subset of the 20 problems
described above. Twelve of the problems involved 20 agents, 2 involved 10 agents, and 2 involved
25 agents. Three of the problems had fewer than 200 methods, 6 had between 200 and 300 methods,
5 between 300 and 400 methods, and 2 had more than 400 methods. We initially avoided 4 of the
problems due to difficulties getting the planner we were using to work well with them; as the results
were significant with only 16 problems, we did not spend the time necessary to incorporate them
into the test suite for these experiments.

We ran simulations comparing three conditions: (1) agents are initially given their portion
of the pre-computed initial joint schedule and during execution replan as appropriate; (2) agents
are initially given their portion of a strengthened version of the initial joint schedule and during
execution replan as appropriate; (3) agents are initially given their portion of a strengthened version
of the initial joint schedule and replan as appropriate during execution; further, agents perform
probabilistic schedule strengthening each time a replan is performed. Experiments were run on a
network of computers with Intel(R) Pentium(R) D CPU 2.80GHz and Intel(R) Pentium(R) 4 CPU
3.60GHz processors; each agent and the simulator ran on its own machine. For each problem in our
test suite we ran 25 simulations, each with their own stochastically chosen durations and outcomes,
but purposefully seeded such that the same set of durations and outcomes were executed by each
of the three conditions.

Figure 6.7 shows the average utility earned by the three conditions for each of the 16 problems.
The utility is expressed as the fraction of the “omniscient” utility earned during execution. We
define the omniscient utility for a given simulation to be the utility produced by a deterministic,
centralized version of the planner on omniscient versions of the problems, where the actual method
durations and outcomes generated by the simulator are given as inputs to the planner. As the planner
is heuristic, the fraction of omniscient utility earned can be greater than one. Problem numbers
correspond to the numbers in Table 5.2, and problems are sorted by how well the condition (1) did;
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Figure 6.7: Utility for each problem for the different online replanning conditions, expressed as the
average proportion of omniscient utility earned.

this roughly correlates to sorting the problems by their level of uncertainty.

Online schedule strengthening results in higher utility earned for all problems. For some the
difference is considerable; for others it results in only slightly more utility on average as replanning
is able to sufficiently respond to most unexpected outcomes. On average, probabilistic schedule
strengthening outperforms condition (1) by 13.6%. Note that this difference is less dramatic than
the difference between the probabilistic schedule strengthening and initial schedule conditions of
the previous experiment of global schedule strengthening. This difference is because replanning
is able to recover from some of the problems that arise during execution. Online probabilistic
schedule strengthening does, however, have an additional benefit of protecting schedules against
an agent’s planner going down during execution, or an agent losing communication so that it can
no longer send and receive information to other agents. This is because the last schedule produced
will likely be more effective in the face of unexpected outcomes. Note, though, that our results
do not reflect this because we assume that communication is perfect and never fails, and so these
communication problems are not present in our experiments. Overall, the differences between the
online schedule strengthening condition and the other two conditions are significant with p < 0.01,
when tested for significance with a repeated measures ANOVA.
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Figure 6.8: Utility earned across various conditions, with standard deviation shown.

Interestingly, conditions (1) and (2), which differ in which joint schedule they begin with, have
very similar results for many of the problems. Ultimately this is because when an agent replans for
the first time, it effectively “undoes” much of the schedule strengthening: the deterministic planner
believes that redundant methods are unnecessary, and that as long as all methods fit in the schedule,
the amount of slack is acceptable. This indicates that pre-strengthening schedules is not critical to
the success of probabilistic schedule strengthening; still, we include it in future experiments for
completeness.

Figure 6.8 shows, for the same problems, the utility earned when replanning only (condition
(1)) to the utility earned when both replanning and schedule strengthening (condition (3)). Error
bars indicate one standard deviation above and below the mean. A notable feature of this graph is
how probabilistic schedule strengthening, in general, reduces the standard deviation of the utility
earned across the 25 simulations. These results emphasize how probabilistic schedule strengthen-
ing improves the average utility by helping to protect against activity failures, lessening the impact
of uncertainty on the outcome of execution.

Timing measurements gathered during these experiments show that each individual call to up-
date probability profiles and to strengthen a schedule was very fast. Individual profile updates took
on average 0.003 seconds (with standard deviation σ = 0.01) and individual schedule strength-
enings took on average 0.105 seconds (σ = 0.27). Overall, each agent spent an average of 1.7
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6 Probabilistic Schedule Strengthening

seconds updating probabilities and 37.6 seconds strengthening schedules for each problem. In con-
trast, each individual replan took an average of 0.309 seconds (σ = 0.39) with agents spending an
average of 47.7 seconds replanning. Even with the fast-paced execution of our simulations, with
methods lasting between 15 and 30 seconds, these computations are well within range to keep pace
with execution.

Ultimately, the results clearly show that the best approach utilizes both replanning and schedule
strengthening to generate and maintain the best schedule possible: replanning provides the means
to take advantage of opportunities for earning higher utility when possible, while schedule strength-
ening works to protect against activity failure and minimize the problems that arise to which the
planner cannot sufficiently respond.
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Chapter 7

Probabilistic Meta-Level Control

This chapter discusses how to perform effective meta-level control of planning actions by utilizing
the information provided by PADS. The first section discusses the control strategy at a high-level,
and describes how our overall probabilistic plan management approach comes together. The two
following sections provide a more detailed description of probabilistic meta-level control, and can
be skipped by the casual reader. Finally, Section 7.4 shows probabilistic meta-level control and
PPM experimental results.

7.1 Overview

We developed versions of probabilistic meta-level control for both the single-agent and multi-agent
domains. The goal of these control strategies is to intelligently decide, based on a probabilistic
analysis, when replanning is likely to be helpful and when it is not. Ideally, agents would replan
only if it would be useful either in avoiding failure or in taking advantage of new opportunities.
Similarly, they ideally would not replan if it would not be useful, either because: (1) there was no
potential failure to avoid; (2) there was a possible failure but replanning could not fix it; (3) there
was no new opportunity to leverage; or (4) replanning would not be able to exploit the opportuni-
ties that were there. Many of these situations are difficult to explicitly predict, in large part because
it is difficult to predict whether a replan is beneficial without actually doing it. As an alternative,
probabilistic meta-level control uses the probabilistic analysis to identify times where there is po-
tential for replanning to be useful, either because there is likely a new opportunity to leverage or
a possible failure to avoid. The probabilistic meta-level control strategy is the final component of
our probabilistic plan management approach.
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7 Probabilistic Meta-Level Control

7.1.1 Single-Agent Domain

The probabilistic meta-level control strategy has two components in the single agent domain. First,
there is a probability-based planning horizon, called the uncertainty horizon, which limits how
much of the schedule is replanned at any given time. A planning horizon is an effective meta-level
strategy for this domain due to its relatively flat activity network, its lack of AND nodes, and the
presence of activity dependencies only at the method level. The uncertainty horizon is placed where
the probability of a replan occurring before execution reaches that point in the schedule rises above
a threshold. The threshold can be adjusted via trial and error as necessary to achieve the right
balance between expected utility and computation time. The portion of the schedule within the
horizon is considered for further PPM; the portion outside is ignored, lowering the computational
overhead of managing the plan during execution.

The second meta-level control component determines when replanning is performed during
execution. Because this domain has a clear maximal and minimal utility, an effective meta-level
control strategy is to replan based on a threshold of expected utility. As execution progresses,
as long as the expected utility of the schedule within the uncertainty horizon remains above a
threshold, execution continues without replanning, because there is likely enough flexibility to suc-
cessfully absorb unexpected method durations during execution and avoid failure. If the expected
utility ever goes below the threshold, a replan is performed to improve the schedule. The threshold
can be adjusted via trial and error as necessary to achieve the right balance between expected utility
and computation time. We term this strategy likely replanning.

7.1.2 Multi-Agent Domain

The probabilistic meta-level control strategy for our oversubscribed, distributed, multi-agent do-
main determines when to replan and perform probabilistic schedule strengthening during execution.
Because the domain is oversubscribed and the maximal feasible utility is unknown, a likely replan-
ning strategy thresholding on expected utility is not a good fit for this domain. Instead, meta-level
control is based on learning when it is effective to replan or strengthen based on the probabilistic
state of the schedule: it assumes the initial schedule is as robust as possible and then learns when
to replan and strengthen, or only strengthen, based on how execution affects probability profiles at
the method level.

There are several reasons for considering only method-level profiles. First, since this is a
distributed scenario, looking at the probabilistic state of the taskgroup or other high-level tasks is
not always helpful for determining whether locally replanning could be of use. Second, due to the
presence of OR nodes in this scenario, the probability profile of the taskgroup or another high-level
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7.1 Overview

task does not always accurately represent the state of the plan due to the different uafs at each level
of the tree. For example, if a task has two children, one of which will always earn utility and one
of which will almost never earn utility, the task itself will have a probability of earning utility of
100%; this probability does not adequately capture the idea that one of its children will probably
fail. Finally, we wanted also to learn when probabilistic schedule strengthening would be a good
action to take, and lower-level profiles provide a better indication of when this might be useful.

The probabilistic meta-level control strategy for this domain learns when to replan using a
classifier; specifically, decision trees with boosting (described in Section 3.4, on page 44). The
classifier is learned offline, based on data from previous execution traces. Once the classifier has
been learned, it is used to decide what planning action to take at any given time during execution.

7.1.3 Probabilistic Plan Management

With a meta-level control strategy in hand, our overall probabilistic plan management approach
can be used to manage plans during execution. For the purposes of this discussion, we assume
agent execution is a message-based system, where during execution agents take planning actions
in response to update messages, either from other agents providing information such as changes
in probability profiles, or from the simulator providing feedback on method execution such as a
method’s actual start or end time. Such a message is referred to as updateMessage. We assume
this solely for clarity of presentation.

High-level, general pseudocode for the run-time approach is shown in Algorithm 7.1. During
execution, PPM waits for updates to be received, such as about the status of a method the agent is
currently executing or from other agents communicating status updates (Line 2). When a message
is received, PADS is used to update all (or local for distributed cases) probability profiles (Line 3).
Once the profiles have been updated, probabilistic meta-level control is used to decide what plan-
ning action to take, if any (Line 4). Once that action has been taken, probability profiles are updated
again (Line 7), and any actions the agent needs to take to process the changes (e.g., communicate
changes to other agents) are done (Line 9). This process repeats until execution halts.

This algorithm can be instantiated depending on the specifics of probabilistic plan management
for a domain. For example, for the single-agent domain, the overall structure of probabilistic
plan management for this domain is: during execution, each time a method finishes and the agent
gets a message from the simulator about its end time (corresponding to Line 2 of Algorithm 7.1),
the agent first updates the uncertainty horizon and then updates all profiles within the horizon to
reflect the current state of execution (Line 3). At this point, the probabilistic meta-level control
strategy is invoked (Line 4). To decide whether to replan, it considers the current expected utility
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Algorithm 7.1: Probabilistic plan management.

Function : ProbabilisticPlanManagement ()
while execution continues do1

if updateMessage () then2

updateAllProfiles ()3

act = metaLevelControlAction ()4

if act then5

plan (act)6

updateAllProfiles ()7

end8

process ()9

end10

end11

of the schedule. If it is within the acceptable range, it returns null and so the agent does nothing.
Otherwise, it returns replan, and so the agent replans all activities within the uncertainty horizon,
ignoring all others, and updates all profiles within the horizon to reflect the new schedule (Lines 6-
7). There is no processing necessary in this domain (Line 9). This process continues until execution
has completed.

For the multi-agent domain, any time an agent receives an update message, whether from the
simulator specifying method execution information or from another agent communicating infor-
mation about remote activities (corresponding to Line 2 of Algorithm 7.1), the agent updates its
local probabilities (Line 3). It then passes the probabilistic state to the probabilistic meta-level
control classifier, which indicates whether the agent should replan and strengthen, only strengthen,
or do nothing (Line 4). The agent acts accordingly, and communicates changes to interested agents
(Lines 6-9). This process continues until execution has finished.

7.2 Single-Agent Domain

We developed a probabilistic meta-level control strategy for our single-agent domain [Hiatt and
Simmons, 2007]. Recall once again that the objective of the domain is that all tasks have exactly
one method underneath them execute without violating any temporal constraints, and the only
source of uncertainty is in method duration. The schedule is represented as an STN.

The probabilistic meta-level control strategy for this domain has two components: an uncer-
tainty horizon and likely replanning. We begin by discussing a baseline, deterministic plan manage-
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ment strategy for this domain, and then describe our more informed, probability-driven strategies.

7.2.1 Baseline Plan Management

In the baseline plan management strategy for this domain, ASPEN is invoked both initially, to
generate an initial plan, and then during execution whenever a method finishes at a time that causes
an inconsistency in the STN, such as a method missing a deadline or running so early or so late
that a future method is unable to start in its specified time window.

7.2.2 Uncertainty Horizon

In general, we would like to spend time managing only methods that are near enough to the present
to warrant the effort, and not waste time replanning methods far in the future when they will
only have to be replanned again later. The problem, then, is how to determine which methods
are “near enough.” We pose this as how to find the first method at which the probability of a
replan occurring before that method is executed rises above a threshold, which we call the horizon
threshold. We calculate the probability of a replan occurring before a method starts executing based
on the baseline, deterministic plan management system.

The high-level equation for finding the probability that the baseline system will need to replan
before the execution of some method mi in the schedule is:

(1− pob (m1, ...,mi))

where pob (mj) is defined as the probability that method mj meets its plan objective by observing
the constraints in the deterministic STN. We simplify the calculation by assuming this means it
ends within its range of valid end times, [eft (mj) ,lft (mj)], given that it starts at est (mj).

Because pob (mi) is independent of pob (m1, ...,mi−1), pob (m1, ...,mi) =
∏i

j=1 pob (mj). To
begin calculating, we find the probability that each methodm ends in the range [eft (m) ,lft (m)]
given that it starts at its est:

pob (m) =normcdf (lft (m) , µ (DUR (m)) + est (m) , σ (DUR (m)))

− normcdf (eft (m) , µ (DUR (m)) + est (m) , σ (DUR (m)))

Multiplying these together, we can find the probability of a replan occurring before execution
reaches method mi. The horizon is set at the method where this probability rises above the user-
defined horizon threshold. The algorithm pseudocode is shown in Algorithm 7.2, where the vari-
able max horizon indicates that the horizon includes all scheduled methods. Recall that the function
schedule returns the agent’s current schedule, with methods sorted by their scheduled start time.
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Algorithm 7.2: Uncertainty horizon calculation for a schedule with normal duration distributions.
Function : calcUncertaintyHorizon
pob = 11

foreach method m ∈ schedule do2

pob = pob · (normcdf (lft (m) , µ (DUR (m)) + est (m) , σ (DUR (m)))3

−normcdf (eft (m) , µ (DUR (m)) + est (m) , σ (DUR (m))))4

if (1− pob) > horizon threshold then return m5

end6

return max horizon7

We find the uncertainty horizon boundary and use it to limit the scope of probabilistic plan
management, ignoring methods, tasks and constraints outside of the horizon. A higher horizon
threshold is a more conservative approach and results in a longer horizon, where more methods
and tasks are considered during each replan. A lower threshold corresponds to a shorter horizon,
and results in fewer methods being considered by PPM. The threshold can be adjusted via trial
and error as necessary to achieve the right balance between expected utility and computation time.
In our experimental results (Section 7.4.1), we show experiments run with various thresholds and
demonstrate the impact they have on plan management.

When a replan is performed, the planner replans all methods and tasks within the uncertainty
horizon. This may cause inconsistencies between portions of the schedule inside and outside of
the horizon as constraints between them are not observed while replanning. As long as at least
one activity involved in the constraint remains outside of the horizon, such constraint violations
are ignored. As execution progresses, however, and the horizon correspondingly advances, these
conflicts shift to be inside the uncertainty horizon. They are handled at that time as necessary by
replanning.

7.2.3 Likely Replanning

The decision of when to replan is based on the taskgroup’s expected utility within the uncertainty
horizon. The algorithm to calculate this value is very similar to Algorithm 5.3 (on page 68), which
calculates the expected utility of the entire schedule. The differences are that instead of iterating
through all methods and tasks to update activity probability profiles, only the profiles of methods
and tasks within the uncertainty horizon are updated. Similarly, when calculating po (TG), only
those tasks within the uncertainty horizon are considered. The expected utility calculation within
the uncertainty horizon is shown in Algorithm 7.3.
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Algorithm 7.3: Taskgroup expected utility calculation, within an uncertainty horizon, for the single-
agent domain with normal duration distributions and temporal constraints.

Function : calcExpectedUtility (uh)
foreach method mi ∈ schedule until uh do1

//calculate mi’s start time distribution

ST (mi) = truncate (est′ (mi) ,∞, µ (FTs (mi−1)) , σ (FTs (mi−1)))2

//calculate mi’s finish time distribution

FT (mi) = ST (mi) + DUR (mi))3

//calculate mi’s probability of meeting its objective

po (mi) = normcdf (lft′ (mi) , µ (FT (mi)) , σ (FT (mi)))−4

normcdf (eft′ (mi) , µ (FT (mi)) , σ (FT (mi)))

//calculate mi’s expected utility

eu (mi) = po (mi)5

//adjust the FT distribution to be mi’s FT distribution given it

succeeds

FTs (mi) = truncate (eft′ (mi) ,lft′ (mi) , µ (FT (mi)) , σ (FT (mi)))6

end7

foreach T ∈ children (TG) until uh do8

if |scheduledChildren (T ) | == 1 then9

po (T ) = po (sole-element (T ))10

eu (T ) = eu (sole-element (T ))11

else12

po (T ) = 013

eu (T ) = 014

end15

end16

po (TG) =
∏

T∈children(TG) until uh po (T )17

eu (TG) = po (TG)18

137



7 Probabilistic Meta-Level Control

Note that, as before, we set eu (TG) equal to po (TG), where po (TG) is the probability that
the schedule within the horizon executes successfully. This means the range of values for eu (TG)
within the horizon is [0, 1]; this is ideal, as we are using the value to compare to a fixed threshold,
called the replanning threshold. As long as the expected utility of the taskgroup remains above
the replanning threshold, no replanning is performed; if the expected utility ever goes below the
threshold, however, a replan is done to improve schedule utility. A high replanning threshold, close
to 1, corresponds to a more conservative approach, rejecting schedules with high expected utilities
and replanning more often. At very high thresholds, for example, even a conflict-free schedule just
generated by the planner may not satisfy the criterion if its probability of successful execution, and
thus its expected utility, is less than 1. Lower thresholds equate to more permissive approaches,
allowing schedules with less certain outcomes and lower expected utility to remain, and so per-
forming fewer replans. The threshold can be adjusted via trial and error as necessary to achieve
the right balance between utility and replanning time. In our experimental results (Section 7.4.1),
we show experiments run with various thresholds and demonstrate the impact they have on plan
management.

If a replan is not performed, there may be a conflict in the STN due to a method running early
or late. If that is the case, we adjust methods’ scheduled durations to make the STN consistent. To
do so, we first use the STN to find all valid integer durations for unexecuted methods. Then we
iteratively choose for each method the valid duration closest to its original one as the method’s new
scheduled, deterministic duration. The durations are reset to their domain-defined values when the
next replan is performed. The ability to perform this duration adjustment is why we are able to
perform the extra step of extending the STN to STN′ for our analysis (see Section 5.2, on page 63),
and is what allows us to assume that methods can violate their lst as long as they do not violate
their lst′.

7.2.4 Probabilistic Plan Management

The overall PPM algorithm is derived from Algorithm 7.1. As before, the agent waits for update
messages to be received. When one is, the agent updates all probability profiles. The function
updateAllProfiles (Line 3 in Algorithm 7.1) for this domain is defined as

calcExpectedUtility (calcUncertaintyHorizon ())

This equation finds the uncertainty horizon and updates all probability profiles within it. The agent
next determines whether to replan. The meta-level control function (Line 4) is defined as:

if eu (TG) < planning threshold then return replan else return null
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Finally, after agents have replanned (or not), they have nothing to process at this point, so process
does not do anything.

7.3 Multi-Agent Domain

We implemented a probabilistic meta-level control strategy for the multi-agent domain, where the
plan objective is to maximize utility earned. We begin by discussing baseline plan management
for this domain, then describe our probabilistic meta-level control strategy and overall probabilistic
plan management approach.

7.3.1 Baseline Plan Management

We use the planning system described in [Smith et al., 2007] as our baseline plan management
system for this domain. During execution, agents replan locally in order to respond to updates
from the simulator specifying the current time and the results of execution for their own methods,
as well as updates passed from other agents communicating the results of their execution, changes
due to replanning, or changes to their schedules that occur because of messages from other agents.
Specifically, replans occur when:

• A method completes earlier than its expected finish time and the next method cannot start
immediately (a replan here exploits potential schedule slack)
• A method finishes later than the lst of its successor or misses a deadline
• A method starts later than requested and causes a constraint violation
• A method ends in a failure outcome
• Current time advances and causes a constraint violation

No updates are processed while an agent is replanning or schedule strengthening, and so important
updates must wait until the current replan or strengthening pass, if one is occurring, has finished
before they can be incorporated into the agent’s schedule and responded to. More detail on this
planning system can be found in [Smith et al., 2007].

7.3.2 Learning When to Replan

Our probabilistic meta-level control strategy is based on a classifier which classifies the current
state of execution and indicates what planning action, if any, the agent should take. We use decision
trees with boosting (see Section 3.4) to learn the classifier. The learning algorithm takes training
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examples that pair states (in our case, probabilistic information about the current schedule) and
classifications (e.g., “replan and strengthen,” “do nothing,” etc.), and learns a function that maps
from states to classifications. States are based on changes in probability profiles at the method
and max-leaf task level that result from update messages. Considering profiles at this level is
appropriate for distributed applications like this one: higher-level profiles can be poor basis for a
control algorithm because the state of the joint plan does not necessarily directly correspond to the
state of an agents’ local schedule and activities.

For each local method, we look at how its probability of meeting its objective (po), finish time
distribution when it earns utility (FTu) and finish time distribution when it does not earn utility
(FTnu) change. For each of these values, we consider the maximum increase and decrease in their
value or, for distributions, their average and standard deviation. This allows the meta-level control
strategy to respond to, for example, methods’ projected finish times becoming earlier or later, or
a large change in a method’s probability of earning utility. We also look at the po value of max-
leaf tasks and their remote children, as well as whether any of their remote children have been
scheduled or unscheduled, since changes in these values are indicative of whether probabilistic
schedule strengthening may be useful. The overall state consists of:

1. the largest increase in local method po
2. the largest decrease in local method po
3. the largest increase in local method µ (FTu)
4. the largest decrease in local method µ (FTu)
5. the largest increase in local method σ (FTu)
6. the largest decrease in local method σ (FTu)
7. the largest increase in local method µ (FTnu)
8. the largest decrease in local method µ (FTnu)
9. the largest increase in local method σ (FTnu)

10. the largest decrease in local method σ (FTnu)
11. the largest increase in max-leaf task po
12. the largest decrease in max-leaf task po
13. the largest increase in any max-leaf tasks’ remote child po
14. the largest decrease in any max-leaf tasks’ remote child po
15. whether any max-leaf task’s remote children have been scheduled or unscheduled

To distinguish this state from the probabilistic state of the schedule as a whole, we call this state
the “learning state.”
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We trained two different classifiers: one to decide whether to replan, and one to decide whether
to replan and strengthen, only strengthen, or do nothing. We use the former in our experiments to
test the effectiveness of the probabilistic meta-level control strategy when used alone. It learned
when to replan based on the baseline system with no strengthening; its possible classifications were
“replan only” or “do nothing.” We use the latter to test the overall plan management approach,
which also includes probabilistic schedule strengthening. Its possible classifications were “replan
and strengthen,” “strengthen only,” and “do nothing.” We do not consider “replan only” a condition
here because, as previously argued (Section 6.1), replanning should always be used in conjunction
with strengthening, if possible.

To generate our training data, we used 4 training problems that closely mirrored in structure
those used in our experiments, described in Section 7.4.2. We executed the problems 5 times each.
During execution, agents replanned in response to every update received (for the first classifier),
or replanned and strengthened in response to every update received (for the second classifier). For
the rest of this section, we describe the learning approach in terms of the more general case, which
includes strengthening.

We analyzed the execution traces of these problems to generate training examples. Each time
a replan and strengthening pass was performed by an agent in response to an update, we recorded
the learning state that resulted from the changes in probabilities caused by that update. We next
looked to see if either replanning or strengthening resulted in “important” changes to the schedule.
Important changes were defined as changes that either: (1) removed methods originally in the
schedule but not ultimately executed; or (2) added methods not originally in the schedule but
ultimately executed. Note that a method could be removed from the schedule but still executed
if, for example, it was added back onto the schedule at a later time; this would be considered a non-
important change. If an important change was made, the learning state was considered a “replan
and strengthen” or “strengthen only” example, depending on which action resulted in the change.
If no important change was made, the learning state was considered a “do nothing” example.

Using this data, we learned a classifier of 100 decision trees, each of height 2. When given a
state as an input, the classifier outputs a sum of the weighted votes for each of the three classes.
Each sum represents the strength of the belief that the example is in that class according to the
classifier. In classic machine learning, the classification with the maximal sum is used as the state’s
classification.

In our domain, however, the data are very noisy and, despite using decision trees with boosting
(which are typically effective with noisy data), we found that the noisy data were still adversely
affecting classification and almost all learning states were being classified as “do nothing.” The
source of the noise is the lack of direct correlation between a schedule’s probabilistic state and
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whether a replan will improve it, since it is hard to predict whether a replan will be useful. For
example, if something is drastically wrong with the schedule, a replan might not be able to fix it;
similarly, if nothing is wrong with the schedule, a replan still might improve scheduled utility. In
terms of our classifier, this means that in situations, for example, where the need to replan may seem
obvious according to the learning state (e.g., many probability values have changed), replanning
is not always useful and so in our training data such learning states were often classified as “do
nothing.”

We address this by changing the interpretation of the weighted votes for the three classes output
by the classifier. Instead of treating them as absolute values, we treat them as relative values and
compare them to a baseline classification to see whether the weight of the classifications for “replan
and strengthen” or “strengthen only” increase, decrease, or remain the same. If the weight for one
of the classifications increases, such as “replan and strengthen,” then we determine that replanning
and strengthening may be useful in that case. More technically, to get a baseline classification, we
classify the baseline learning state where no probabilities have changed (i.e., a learning state of all
zeroes). Then, for each class, we calculate the proportion that the current learning state’s weighted
votes have as compared to the baseline example, and use that as the class’s new weighted vote. As
a second step to address the noisy data, we randomly choose a class, with each class weighted by
their adjusted votes. These steps are shown below.

7.3.3 Probabilistic Plan Management

The overall PPM algorithm is derived from Algorithm 7.1. As before, the agent waits for update
messages to be received. When one is, the agent updates all of its local probability profiles, via
a call to updateLocalProfiles, and generates the learning state based on the new profile
probabilities. Then, the meta-level control algorithm is invoked to classify the learning state. The
pseudocode for the probabilistic meta-level control algorithm for this domain, which implements
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metaLevelControlAction from Algorithm 7.1, is:

rs, so, dn = classify (learning state)

rsb, sob, dnb = classify (0, 0, 0, 0, 0...)

rs′ = rs/rsb, so
′ = so/sob, dn

′ = dn/dnb

rand = random
(
0, rs′ + so′ + dn′

)
switch rand

case rand < rs′ : return replan () ,updateLocalProfiles () ,

roundRobinStrengthening ()

case rs′ ≤ rand < rs′ + so′ : return roundRobinStrengthening ()

case rs′ + so′ ≤ rand < rs′ + so′ + dn′ : return null

end

The algorithm classifies both the learning state and the baseline learning state of all zeros, and
scales the learning state’s classification weights as described above. Then, it randomly samples a
class from the scaled values. Based on this, it returns the appropriate planning action(s), and the
agent performs that action as per Algorithm 7.1. If a replan is performed, probabilities must be
updated before probabilistic schedule strengthening can be performed; it is not necessary to update
probability profiles after a strengthen, however, as probabilistic schedule strengthening takes care
of that. If no replan or strengthening pass is performed, execution continues with the schedule as-
is. If there is an inconsistency in the STN due to a method running late, however, the next method
is removed from the schedule to make the STN consistent again. At this point, all that is left to do
is for the agent to process the changes (process in Algorithm 7.1) by sending updates to other
agents notifying them of appropriate changes.

7.4 Experiments and Results

We performed experiments to characterize the benefits of probabilistic meta-level control for the
single-agent domain, which uses a thresholding meta-level control strategy, as well as for the multi-
agent domain, which uses a learning-based meta-level control strategy. Finally, we ran additional
experiments characterizing the overall benefit of probabilistic plan management for each domain.
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7.4.1 Thresholding Meta-Level Control

We performed several experiments to characterize the effectiveness of the different aspects of meta-
level control, as well as PPM overall, for the single-agent domain [Hiatt and Simmons, 2007]. We
used as our test problems instances PSP94, PSP100 and PSP107 of the mm-j20 benchmark suite of
the resource-relaxed Multi-Mode Resource Constrained Project Scheduling Problem with Minimal
and Maximal Time Lags (MRCPSP/max) [Schwindt, 1998]. The problems were augmented as
described in Section 3.3.1.

We developed a simple simulator to execute schedules for this domain. Execution starts at
time zero, and methods are started at their est. To simulate method execution the simulator
picks a random duration for the method based on its duration distribution, advances time by that
duration, and updates the STN as appropriate. In this simple simulator, time does not advance
while replanning is performed; instead, time effectively is paused and resumed when the replan is
complete.

Uncertainty Horizon Analysis

The first experiment tested how the choice of a horizon threshold affects the performance of exe-
cution. In this experiment, the agent replanned whenever a method ended at a duration other than
its scheduled one, but replanned activities only within the uncertainty horizon. We ran experiments
under 5 conditions: the baseline deterministic system, and four conditions testing horizon threshold
values of 0.75, 0.9. 0.95 and 0.99. A threshold of 0.75 corresponds to replanning approximately
2 methods in the future, and a threshold of 0.99 replans approximately all 20 methods; in between
these two extremes, the number of methods scales roughly exponentially as the threshold linearly
increases.

The experiment was run on a 3.4 GHz Pentium D computer with 2 GB RAM. We performed
250 simulation runs for each condition and problem instance combination. Method duration means
and standard deviations were randomly re-picked for each simulated run.

The results are shown in Figure 7.1. Figure 7.1(a) shows both the average makespan of the exe-
cuted schedule alone and the average makespan plus average time spent managing and replanning,
which we refer to as execution time. It also has error bars for PSP94 showing the standard deviation
of the execution time; for clarity of the graph, we omit error bars for the other two problems. We
believe the high variances in execution time, shown by the error bars, are due to the randomness of
execution and the randomness of ASPEN, the planner. Figure 7.1(b) shows the average number of
replans per simulation run.
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(a) Average makespan and execution time using an uncertainty horizon at
various thresholds.
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(b) Average number of replans using an uncertainty horizon
at various thresholds.
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Figure 7.1: Uncertainty horizon results.
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Figure 7.1(c) shows average expected utility. Simulations that did not earn utility failed due
to the planner timing out during a replan, either because a solution did not exist (e.g., a constraint
violation could not be repaired) or a solution was not found in time. We began by allowing ASPEN
to take 100,000 repair iterations to replan (Section 3.3.1); this resulted, however, in the planner
timing out unintuitively often. Believing this to be due in part to ASPEN’s randomness, we there-
fore switched to a modified random-restart approach [Schoning, 1999], invoking it 5 separate times
with an increasing limit of repair iterations - 5000, 5000, 10000, 25000, and finally 50000. This
approach significantly decreased the number of time outs. All other statistics reported are compiled
from only those runs that completed successfully. Note that the notion of time-outs would be less
important when using more methodical, and less randomized, planners.

Figure 7.1(a) shows that, as the horizon threshold increases, the average schedule makespan
decreases - an unanticipated benefit. It occurs because with longer horizons, the planner is able
to generate better overall plans, since it plans with more complete information. As the horizon
threshold increases, however, the average execution time also increases. This is due to replanning
more methods and tasks each time a replan is performed, increasing the amount of time each
replan takes. This point is highlighted when one considers Figure 7.1(b), which shows that despite
the execution time and replanning time increasing as the horizon threshold increases, the number
of replans performed decreases; therefore, clearly, each replan must take longer as the threshold
approaches 1.

The trend in the number of replans in Figure 7.1(b) occurs because, as the threshold decreases,
the number of replans increases due to needing to replan extra conflicts that arise by extending the
uncertainty horizon. This trend in turn explains Figure 7.1(c), where we believe higher thresholds
earn on average higher utility both because they have fewer conflicts between activities inside and
outside of the horizon, and because there are fewer replans performed, lessening the number of
replans that result in a time-out.

Although as the threshold in Figure 7.1(a) decreases the execution time plateaus, the balance
of management time and makespan continues to change, with the schedule span increasing as the
time spent managing continues to decrease. This suggests the use of a threshold where the overall
execution time is near the lower bound, and the schedule span is as low as possible, such as at the
thresholds of 0.75 or 0.9.

A repeated measures ANOVA test showed that the choice of horizon threshold significantly
affects schedule makespan, execution time, number of replans, and utility earned, all with a confi-
dence of 5% or better.
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Likely Replanning Analysis

We also tested how the choice of a replanning threshold affects the performance of execution.
In this experiment, the agent replanned all activities (i.e., there was no uncertainty horizon), but
replanned only when the schedule’s expected utility fell below the replanning threshold. We ran
experiments under 7 conditions testing replanning threshold values of 0.01, 0.05, 0.25, 0.45, 0.65,
0.85 and 1. Note that a replanning threshold of 1 has the potential to replan even if there are no
actual conflicts in the plan, since there may still be a small possibility of a constraint violation.

The experiment was run on a 3.4 GHz Pentium D computer with 2 GB RAM. We performed
250 simulation runs for each condition and problem instance combination. Method duration means
and standard deviations were randomly re-picked for each simulated run.

The results are shown in Figure 7.2. Figure 7.2(a) shows both the average makespan of the
executed schedule and the execution time, with error bars for PSP94 showing the standard deviation
of execution time; we do not show error bars for the other two problems for clarity of the graph.
As with the uncertainty horizon results, we believe that the high variances in execution time are
due to the randomness of execution and the planner. Figure 7.2(b) shows the average number of
replan episodes per simulation run, and Figure 7.2(c) shows the average utility earned. As with
the uncertainty horizon results, simulations that did not earn utility failed due to the planner timing
out during a replan, either because a solution did not exist (e.g., a constraint violation could not
be repaired) or the solution was not found in time. The same modified random-restart approach
was utilized, and all other statistics reported are compiled from only those runs that completed
successfully.

As Figure 7.2(a) shows, schedule makespan tends to decrease as the replanning threshold in-
creases due to its requirement that schedules have a certain amount of expected utility, which
loosely correlates with schedule temporal flexibility. The overall execution time, however, in-
creases, as more replans are performed in response to more schedules’ expected utility not meeting
the replanning threshold. Figure 7.2(b) explicitly shows this trend of the average number of re-
plans increasing as the replanning threshold increases. The threshold of 1 clearly takes this to an
extreme. This threshold, in fact, becomes problematic when one considers Figure 7.2(c). The high
expectations incurred by a replanning threshold of 1 result in a higher number of failures, due to
more frequent replans which have a chance of not finding a solution in the allotted amount of time.
We expect that the average utility would increase if we increased the number of iterations allowed
to the planner.

As with the uncertainty horizon, Figure 7.2(a) shows that as the replanning threshold decreases,
the execution time plateaus, but the balance of management time and makespan continues to
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(a) Average makespan and execution time using likely replanning at various
thresholds.
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(b) Average number of replan episodes using likely replan-
ning at various thresholds.
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Figure 7.2: Likely replanning results.

148



7.4 Experiments and Results

change, with the schedule span increasing as the time spent continues to decrease. This again
suggests the use of a threshold where the overall execution time is near the lower bound, and the
schedule span is as low as possible, such as at a threshold of 0.65 or 0.85.

A repeated measures ANOVA showed that the choice of replanning threshold significantly
affects schedule makespan, execution time, number of replans and utility, all with a confidence of
5% or better.

Analysis of Probabilistic Plan Management

We ran a third experiment to test overall PPM for this domain, which integrates the probabilistic
meta-level control strategies of uncertainty horizon and likely replanning. The experiment com-
pared the probabilistic meta-level control strategy with the baseline management strategy for this
domain (Section 7.2.1). In the experiment we also varied the thresholds for the uncertainty horizon
and probabilistic flexibility.

As with the two previous experiments, this experiment was run on a 3.4 GHz Pentium D com-
puter with 2 GB RAM. We performed 250 simulation runs for each condition and problem instance
combination. Method duration means and standard deviations were randomly re-picked for each
simulated run.

To summarize the results, Figure 7.3 shows the average execution time across all three problems
using various combinations of thresholds of the uncertainty horizon and likely replanning. We also
show the average utility in Figure 7.4; note the axes are reversed in the diagram for legibility. The
label no-uh refers no uncertainty horizon being used (and so only using likely replanning), and the
label no-lr refers to not utilizing likely replanning (and so only using the uncertainty horizon). The
bar with both no-uh and no-lr, then, is baseline deterministic plan management. The bars are also
labeled with their numerical values.

The analyses of the two individual components hold when we consider the simulations that
incorporate both likely replanning and the uncertainty horizon. Specifically, the average utility is
highest at higher horizon thresholds and lower replanning thresholds, as Figure 7.4 shows. Fig-
ure 7.3 also shows that as the thresholds decrease, the average execution time in general decreases
both because it replans fewer tasks during each replan episode and because fewer replans are made.
These figures also show that using the uncertainty horizon and likely replanning together results
in a lower execution time than each technique results in separately, while retaining the high aver-
age utility earned when using likely replanning alone. The graphs indicate also that after a certain
point the analysis is not extremely parameter sensitive, and the execution time plateaus at a global
minimum.

149



7 Probabilistic Meta-Level Control

!"#$%
!"&%

!"&$%
!"&&%

'()*+%

!"!!%

$!"!!%

,!!"!!%

,$!"!!%

-!!"!!%

'()./% !"0$% !"1$% !"2$% !"-$% !"!$%

!"#$!%&
!"'$(#& !""$%'& !"'$)'& !""$!!& !""$*+&

!+"$#!&

!""$'+& !""$,,& !""$'(& !""$#+& !""$,*&

!,'$(%&

!",$'(& !",$',&
!"+$+(& !"+$,'& !"+$)(&

!#($'#&

!+*$'!& !+*$('&
!+*$*(&

!")$,,& !")$(#&

!#($"+&

!+%$#*&
!+%$*!& !+%$!!&

!+!$!+& !+*$#+&

-./01.2&

3-/45-.67&

8
9
4
/8
:
4
&4
;
4
<=
>
.
2
&>
?
4
&

/4@682202:&3-/45-.67&

Figure 7.3: Average execution time across all three problems using PPM with both the uncertainty
horizon and likely replanning at various thresholds.

Overall, these results show that the benefit of PPM is clear, and achieves a significantly better
balance of time spent replanning during execution versus schedule makespan. Using a horizon
threshold of 0.9 and a replanning threshold of 0.85, PPM decreases the schedule execution time
from an average of 187s to an average of 144s - a 23% reduction, while increasing average utility
by 30%.

7.4.2 Learning Probabilistic Meta-Level Control

We performed several experiments to characterize the effectiveness of the different aspects of meta-
level control, as well as PPM overall, for the multi-agent domain. To perform the experiments,
we use a multi-agent, distributed execution environment. Agents’ planners and executors run on
separate threads, which allows deliberation to be separated from execution. The executor executes
the current schedule by activating the next pending activity to execute as soon as all of its causal
and temporal constraints are satisfied. A simulator also runs separately and receives method start
commands from the agent executor and provides back execution results as they become known.
All agents, and the simulator, run and communicate asynchronously but are grounded by a current
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Figure 7.4: Average utility across all three problems using PPM with both the uncertainty horizon
and likely replanning at various thresholds.

understanding of time. Time, e.g., method durations and deadlines, is measured in an abstract
measure of “ticks”; for our purposes, one tick equals 5 seconds.

Test Suite

We created a test suite specifically for this series of experiments in order to have problems that
were similar to each other structurally, for the benefit of the learning algorithm. The test suite was
generated by an in-house problem generator. All problems had 10 agents. The structures of the
problems were randomly created according to a variable template. Each problem had, underneath
the sum taskgroup, two subproblems with a sum and uaf. The subproblems had between 3 and 6
tasks underneath them, and all deadlines were imposed at this level. We call these tasks “windows”
for clarity. The windows had either sum and or sum uafs, and there were enabling constraints
between many of them. Each window had 4 tasks underneath it. All tasks at this level were max
uafs and had four child methods each. Two of these four had a utility and expected duration of 10;
the other two had a utility and expected duration of 5. The methods were also typically assigned
between two different agents. In this test suite, methods have deterministic utility, which promotes
consistency in the utility of the results. The duration distributions were 3-point distributions: the
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highest was 1.3 times the expected duration; the middle was the expected duration; and the lowest
was 0.7 times the expected duration. Forty percent of methods had a 20% likelihood of a failure
outcome. There were no disablers, facilitators or hinderers.

Several parameters were varied throughout problem generation to get our overall test suite:

• Subproblem overlap - how much the execution intervals of the subproblems overlapped.
• Window overlap - how much the execution intervals of windows overlapped.
• Deadline tightness - how tight the deadlines were at the window level.

Each problem in our test suite was generated with a different set of values for these three pa-
rameters. The generator then constructed problems randomly, using the parameters as a guide to
determine deadlines, etc., according to the structure above. Table 7.1 shows the main features of
each of the problems, sorted by the number of methods and average number of method outcomes.
In general, the problems have between 128 and 192 methods in the activity network, with roughly 4
execution outcomes possible for each method. The table also shows the number of max-leaf tasks,
tasks overall, enables NLEs, and ticks for each problem. The “ticks” field specifies the maximum
length of execution for each problem; recall that method durations, deadlines, etc. for this domain
are represented in terms of ticks, and that for our purposes, one tick equals 5 seconds.

Analysis of Probabilistic Meta-Level Control

We performed two experiments in which we try to characterize the benefits gained by using our
probabilistic meta-level control strategy. For our first experiment, we tested probabilistic meta-
level control alone, without schedule strengthening. We ran trials under three different control
algorithms:

1. control-baseline - replanning according to the baseline, deterministic plan management (de-
scribed in Section 7.3.1).

2. control-always - replanning in response to every update.
3. control-likely - replanning according to the probabilistic meta-level control strategy.

The control-always condition was included to provide an approximate upper bound for how
much replanning could be supported during execution; we are most interested in the difference
between the control-baseline and control-likely conditions to measure the effectiveness of proba-
bilistic meta-level control.
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Table 7.1: Characteristics of the 20 generated test suite problems.

methods
avg # method max-

tasks
enable

ticks
outcomes leafs NLEs

1 128 3.91 32 43 2 125
2 128 4.01 32 43 2 164
3 128 4.01 32 43 2 232
4 128 4.10 32 43 2 210
5 128 4.17 32 43 2 131
6 128 4.20 32 43 2 183
7 128 4.20 32 43 2 79
8 128 4.24 32 43 2 76
9 128 4.27 32 43 2 120
10 144 4.33 36 48 3 93
11 144 4.33 36 48 3 233
12 160 4.03 40 53 4 101
13 160 4.11 40 53 4 80
14 160 4.14 40 53 4 164
15 160 4.14 40 53 4 233
16 160 4.16 40 53 4 212
17 160 4.22 40 53 4 221
18 176 4.28 44 58 5 150
19 176 4.50 44 58 5 169
20 192 4.08 48 63 6 232
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Table 7.2: Average amount of effort spent managing plans under various probabilistic meta-level
control strategies.

PADS replanning num num update
time time replans messages

control-baseline 0 5.9 40.8 114.2
control-always 0 17.4 117.8 117.8
control-likely 1.7 1.3 10.2 149.0

Agent threads were distributed among 10 3.6 GHz Intel computers, each with 2 GB RAM. For
each problem and condition combination, we ran 10 simulations, each with their own stochasti-
cally chosen durations and outcomes. To ensure fairness across conditions, these simulations were
purposefully seeded such that the same set of durations and outcomes were executed by each of the
conditions of the experiment.

Table 7.2 shows how much effort was spent replanning for each of the conditions. It specifies
the average time spent on PADS by each agent updating profiles (which is, of course, non-zero only
for the control-likely case). It also shows the average number of replans performed by each agent,
as well as the number of update messages received; recall that agents decide whether to replan in
response to update messages (Section 7.1.3). The table shows that the control-always condition
performs almost three times as many replans as does the control-baseline condition, which replans
in response to 36% of update messages received. The control-likely condition, on the other hand,
performs roughly a quarter of the number of replans as the control-baseline condition, and replans
in response to 7% of update messages received, reducing the plan management time by 49%. Note
how PADS causes more messages to be passed during execution, as probability profiles tend to
change more frequently than their deterministic counterparts. Despite the overhead that PADS
incurs, the overall effect of the probabilistic meta-level control algorithm is a significant decrease
in computational effort.

Figure 7.5 shows the average utility earned by each condition. The utility is expressed as the
fraction of the omniscient utility earned during execution. We define the omniscient utility for a
given simulation to be the utility produced by a deterministic, centralized version of the planner on
omniscient versions of the problems, where the actual method durations and outcomes generated
by the simulator are given as inputs. As the planner is heuristic, the fraction of omniscient utility
earned can be greater than one. Problem numbers correspond to the numbers in Table 7.1, and the
problems are sorted by how well the control-baseline condition performs; this roughly correlates
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Figure 7.5: Average proportion of omniscient utility earned for various probabilistic meta-level
control strategies.

to sorting by increasing problem difficulty.

An important feature of this graph is the difference between control-baseline and control-
always. We had expected control-always to always outperform the control-baseline condition.
Although the two conditions are not significantly different, their behavior disproves our conjecture:
control-always does outperform control-baseline on some of the problems, but there are several in
which it performs worse than the control-baseline condition. This is, in part, due to control-always
replanning at inopportune times and missing the opportunity to respond to an important update
(such as an important, remote method failing), as the system is unresponsive to updates during
replans. On average, in fact, control-always earns slightly less utility than the control-baseline
condition, although not significantly so.

In contrast, the control-likely condition slightly outperforms the control-baseline condition with
respect to utility, although again without a significant difference. These results establish the control-
likely condition as the best option. By using probabilistic meta-level control, deliberation during
execution is reduced by 49%, while still maintaining high-utility schedules.

Our second experiment tested probabilistic meta-level control in conjunction with probabilistic
schedule strengthening. For each problem in the generated test suite, we ran simulations executing
the problem under a variety of control algorithms:

1. PPM-always - replanning and strengthening in response to every update.
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2. PPM-change - replanning and strengthening whenever anything in the local schedule’s de-
terministic state changes, or when a remote max-leaf task’s deterministic state changes. Oth-
erwise, strengthening (without replanning) when anything in the probabilistic state changes.

3. PPM-baseline - replanning and strengthening whenever the baseline, deterministic plan man-
agement system chooses to replan.

4. PPM-likely - replanning and strengthening, or only strengthening, according to the proba-
bilistic meta-level control strategy.

5. PPM-interval - replanning and strengthening, or only strengthening, at fixed intervals, with
roughly the same frequency as PPM-likely.

6. PPM-random - replanning and strengthening, or only strengthening, at random times, with
roughly the same frequency as PPM-likely. In this condition, a replan and strengthen were
programmed to occur automatically if a replan or strengthen had not happened in 2.5 times
the expected interval between replans.

The PPM-always and PPM-change conditions were included to provide approximate upper
bounds for how much replanning and strengthening could be supported during execution. We
conjectured that PPM-likely would have a considerable drop in computational effort as compared
to these conditions, while meeting or exceeding their average utility; after seeing the above results
for control-always, we expected PPM-always and PPM-change to be very adversely affected by
their large computational demands, which far exceed those of control-always.

PPM-interval and PPM-random, on the other hand, were included to test our claim that PPM-
likely intelligently limits replanning by correctly identifying when to replan. Each condition re-
planned and strengthened, or only strengthened, with roughly the same frequency as PPM-likely,
but not necessarily at the same times. The frequency was determined with respect to the number of
updates received. For each simulation performed by PPM-likely, we calculated the ratio of replans
and strengthens performed to the number of updates received. Separate ratios were calculated for
replanning and strengthening together, and for strengthening only. Then, for each problem and
each agent, we conservatively took the maximum of these ratios. We then passed the frequencies
to the appropriate agents during execution so they could use them in their control algorithm. The
design decision to base the frequency of replanning on updates instead of time was made with the
belief that this would prove to be the stronger strategy, as replans and strengthens would be more
likely to be performed at highly dynamic times.

Agent threads were distributed among 10 3.6 GHz Intel computers, each with 2 GB RAM. For
each problem and condition combination, we ran 10 simulations, each with their own stochasti-
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Table 7.3: Average amount of effort spent managing plans under various probabilistic meta-level
control strategies using strengthening.

PADS strengthen replan num only num replans
time time time strengthens and strengthens

PPM-always 2.3 79.1 31.9 0 140.3
PPM-change 2.1 55.1 22.1 4.0 66.1
PPM-baseline 2.1 38.8 13.7 0 64.9
PPM-likely 1.9 20.5 3.2 10.4 9.4
PPM-interval 2.2 25.7 4.8 13.9 13.4
PPM-random 2.2 26.5 4.6 13.8 14.0

cally chosen durations and outcomes. To ensure fairness across conditions, these simulations were
purposefully seeded such that the same set of durations and outcomes were executed by each of the
conditions of the experiments.

Table 7.3 shows how much effort was spent during plan management for each of the conditions.
The table shows the average time spent by PADS updating profiles, strengthening schedules, and
replanning by each agent. It also shows the average number of schedule strengthenings, and replans
and strengthenings, each agent performed; note that the column showing the number of schedule
strengthenings specifies the number of times the classifier returned “strengthen only,” and does not
include strengthening following a replan.

The results are what we expected. Clearly, PPM-always provides an upper bound on computa-
tion time, spending a total of 113.3 seconds managing execution. The average time spent on each
replan for this condition, however, is much lower that the average for all the other conditions; this
is because it replans and strengthens even when nothing in the deterministic or probabilistic state
has changed, and such replans and strengthens tend to be faster than replans and strengthens which
actually modify the schedule. PPM-change is next in terms of computation time (79.3 seconds),
followed by PPM-baseline (54.6 seconds). PPM-likely drastically reduces planning effort com-
pared to these conditions, with a total management time of 25.6 seconds. Note that PPM-interval
and PPM-random end up with slightly greater numbers of replans and strengthens than PPM-likely.
This is due to their conservative implementation, which uses the maximum of the replanning and
strengthening ratios from PPM-likely, described above.

Figure 7.6 shows the average utility earned by each condition. The utility is expressed as the
fraction of the omniscient utility earned during execution. We define the omniscient utility for a
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given simulation to be the utility produced by a deterministic, centralized version of the planner on
omniscient versions of the problems, where the actual method durations and outcomes generated
by the simulator are given as inputs. As the planner is heuristic, the fraction of omniscient utility
earned can be greater than one. Problem numbers correspond to the numbers in Table 7.1, and the
problems are sorted by how well the PPM-always condition did.

The conditions PPM-always, PPM-change, PPM-baseline and PPM-likely are very close for all
of the problems, with PPM-likely ending up earning only a little more utility, on average. Surpris-
ingly, and in contrast to the control-always condition (Figure 7.5), PPM-always and PPM-change
did not seem to be as adversely affected by their high computational load. Looking into this further,
we discovered that even though these conditions do suffer from lack of responsiveness, utility in
general does not suffer very much because their schedules are strengthened, protecting them against
execution outcomes that would otherwise have led to failure in the face of their unresponsiveness.
This highlights one of the benefits of probabilistic schedule strengthening: that it protects against
agents not being responsive. Using both replanning and probabilistic schedule strengthening to-
gether truly does allow agents to take advantage of opportunities that may arise during execution
while also protecting their schedules against unexpected or undesirable outcomes.

Along these lines, however, we do expect that if we lessened the amount of seconds that pass
per tick (currently, that value is 5), PPM-always, and perhaps even PPM-baseline, would also
be adversely affected by their high computational loads and probabilistic schedule strengthening
would not be able to sufficiently protect them from the resulting utility loss. We expect, therefore,
that in such a situation probabilistic meta-level control would become a necessity for executing
schedules with high utility, instead of only reducing the amount of computation.

Using a repeated measures ANOVA, no combination of PPM-always, PPM-change, PPM-
baseline or PPM-likely is statistically significantly different. Each of these conditions, however,
is significantly better than both PPM-interval and PPM-random with p < 0.001; similarly, PPM-
interval and PPM-random are significantly different from each other with the less confident p value
of p < 0.09, with PPM-interval being the worse condition. Notice that PPM-likely is significantly
better than PPM-interval and PPM-random despite replanning and strengthening fewer times, fur-
thering our claim of PPM-likely’s dominance over these strategies.

These results confirm that PPM-likely does, in fact, intelligently limit replanning and strength-
ening, eliminating likely wasteful and unnecessary planning effort during execution. The results
of PPM-interval and PPM-random, in addition, confirm our claim that PPM-likely intelligently
chooses not only how much to replan, but also when to replan: although they performed slightly
more replans and strengthens on average than PPM-likely, on a number of problems their perfor-
mance was much worse due to their unfocused manner of replanning and strengthening. Overall,
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Figure 7.6: Average proportion of omniscient utility earned for various probabilistic meta-level
control strategies.

the benefit of probabilistic meta-level control is clear. When PPM-likely is used, the amount of time
spent replanning and schedule strengthening is decreased by 79% as compared to PPM-always, and
55% as compared to PPM-baseline, with no significant difference in utility earned.

Analysis of Probabilistic Plan Management

To highlight the overall benefit of PPM, we ran an experiment comparing PPM-likely with four
other conditions:

1. control-baseline - replanning whenever the baseline, deterministic system would have.
2. control-likely - replanning according to the probabilistic meta-level control strategy.
3. ds-baseline - replanning and deterministically strengthening whenever the baseline, deter-

ministic system would replan.
4. PPM-baseline - replanning and (probabilistically) strengthening whenever the baseline, de-

terministic plan management system chooses to replan.
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The first, second and fourth conditions are straightforward, and are repeated from the above
experiments. The condition ds-baseline is similar to control-baseline, with the additional step
of following every replan with a less informed, deterministic version of schedule strengthening
[Gallagher, 2009]. Deterministic strengthening makes two types of modifications to the schedule
in order to protect it from activity failure:

• Schedule a back-up method for methods under a max-leaf that either have a non-zero failure
likelihood or whose est plus their maximum duration is greater than their deadline. The
back-up method must have an average utility of at least half the average utility of the original
method.
• Swap in a shorter-duration sibling for methods under a max-leaf whose est plus their max-

imum duration is greater than the lst of the subsequently scheduled method (on the same
local schedule). The sibling method’s average utility must be at least half the average utility
of the original method.

As with the previous experiment, agent threads were distributed among 10 3.6 GHz Intel com-
puters, each with 2 GB RAM. For each problem and condition combination, we ran 10 simulations,
each with their own stochastically chosen durations and outcomes. To ensure fairness across condi-
tions, these simulations were purposefully seeded such that the same set of durations and outcomes
were executed by each of the conditions of the experiments.

Table 7.4 shows the average amount of time spent managing plans under the various strategies.
It also shows the average number of schedule strengthenings, and replans and strengthenings, each
agent performed on average; note that the column showing number of schedule strengthens spec-
ifies the number of times the classifier returned “strengthen only,” and does not include strength-
ening following a replan. For the deterministic conditions that do not strengthen, the replans and
strengthens column denotes the average number of replans performed.

In these results, PPM-likely performed far fewer replans/strengthens than the deterministic
baseline condition (19.8 versus 40.8 for control-baseline); however, the time spent managing plans
was much higher. This is because of a higher computational cost to probabilistic schedule strength-
ening than to replanning for the problems of this test suite. In the previous test suite, agents spent
an average of 47.7 seconds replanning in the control condition; for this test suite, however, agents
in the control condition spent an average of 6.1 seconds replanning. This large difference is due to
the simplified activity network structure of the problems we utilized for this test suite (i.e., no dis-
ablers or soft NLEs, etc.). We anticipate that the savings PPM-likely provides would be much more
significant for more complicated problems. In contrast, in more complicated problem structures,
schedule strengthening time would not increase by as much, as its complexity is more dependent
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Table 7.4: Average amount of effort spent managing plans under various probabilistic plan man-
agement approaches.

PADS strengthen replan num only num replans
time time time strengthens (and strengthens)

control-baseline 0 0 5.9 0 40.8
control-likely 1.7 0 1.3 0 10.2
ds-baseline 0 2.8 5.9 0 51.1
PPM-baseline 2.1 38.8 13.7 0 64.9
PPM-likely 1.9 20.5 3.2 10.4 9.4

on the number of methods than it is on the complexity of the activity network. Still, even in this
domain, PADS-likely incurs an average overhead of only 17.8 seconds over control-baseline – a
minute overhead when compared to an average execution time of 802 seconds.

Figure 7.7 shows the average utility earned by each problem. The utility is expressed as the
fraction of the omniscient utility earned during execution. We define the omniscient utility for a
given simulation to be the utility produced by a deterministic, centralized version of the planner on
omniscient versions of the problems, where the actual method durations and outcomes generated
by the simulator are given as inputs. As the planner is heuristic, the fraction of omniscient utility
earned can be greater than one. Problem numbers correspond to the numbers in Table 7.1, and the
problems are sorted by how well the control condition did; this roughly correlates to sorting the
problems by increasing problem difficulty.

The deterministic strengthening condition, ds-baseline, performs on average better than the
control-baseline condition. Ultimately, though, it fails to match PPM-baseline or PPM-likely in
utility, because its limited analysis does not identify all cases where failures might occur and be-
cause it does not determine whether its modifications ultimately help the schedule.

PPM-likely clearly outperforms, on average, all of the deterministic conditions. It does under-
perform ds-baseline for problem 8; the utility difference, however, was less than 5 utility points.
Figure 7.8 explicitly shows this, specifying the absolute average utility earned by each condition.
On average, PPM-likely earned 13.6% more utility than the control-baseline condition, and 8.1%
more than the ds-baseline condition, and is the clear winner.

Using a repeated measures ANOVA, there is no statistically significant difference between
PPM-likely and PPM-baseline; these conditions, however, are significantly different from each of
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Figure 7.7: Average proportion of omniscient utility earned for various plan management ap-
proaches.
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Figure 7.8: Average utility earned for various plan management approaches.
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Table 7.5: Average size of communication log file.

avg log size (MB)
control-baseline 0.29
control-always 0.31
control-likely 0.71
PPM-always 0.92
PPM-change 0.90
PPM-baseline 0.96

PPM-likely 0.79

the other conditions with p < 0.001. The control-baseline and control-likely conditions are not
significantly different. The ds-baseline condition is significantly different from each of the other
conditions with p < 0.001.

In distributed scenarios, PPM increases the amount of communication between agents, as
agents must communicate more information about each activity. Communicating such informa-
tion also increases the frequency of communication, as probability profiles change more frequently
than deterministic information (as was suggested by Table 7.2). Additionally, communication hap-
pens more often because schedules are changing more frequently due to the added step of schedule
strengthening. Table 7.5 shows the average amount of communication that occurred for each agent,
expressed as the average file size (in megabytes) of a text log file that recorded all outgoing mes-
sages across agents.

The table suggests that the main source of communication increase is communicating the prob-
ability profiles, not the added step of schedule strengthening. We determine this by comparing the
large difference in the amount of communication of control-baseline versus PPM-baseline (0.29MB
versus 0.96MB), with the small difference between the amount of communication for control-likely
versus PPM-likely (0.71MB versus 0.79MB). The difference between the PPM-likely and PPM-
always conditions also shows that probabilistic meta-level control is able to decrease communica-
tion somewhat by limiting the frequency of replanning and probabilistic schedule strengthening.
In these experiments, the level of communication was within reasonable range for our available
bandwidth. If not, communication could be explicitly limited as described in Sections 5.3.5 and
8.1.1.

Overall, these results highlight the benefit of probabilistic plan management. When proba-
bilistic meta-level control is used alone, it can greatly decrease the computational costs of plan
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management for this domain. PPM, including both probabilistic schedule strengthening and prob-
abilistic meta-level control, is capable of significantly increasing the utility earned at a modest
increase in computational effort for this domain, and achieves its goal effectively managing plans
during execution in a scalable way.
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Chapter 8

Future Work and Conclusions

8.1 Future Work

Our current system of probabilistic plan management has been shown to be effective in the man-
agement of the execution of plans for uncertain, temporal domains. There are other ways to use
the probabilistic information provided by PADS, however, that remain to be explored. We discuss
below some main areas in which we believe it would be beneficial to extend PPM in the future.

8.1.1 Meta-Level Control Extensions

Although we do not explicitly describe it as such, probabilistic schedule strengthening is an any-
time algorithm where the benefit of the initial effort is high and tapers off as the algorithm continues
due to the prioritization of strategies and activities by expected utility loss. In this thesis, we
do not limit its computation time, and let it run until completion; we found this to be effective
for our domains. If it is necessary to limit schedule strengthening computation, we previously
suggested imposing a fixed threshold on the po values of activities considered (Section 6.2.1).
A more dynamic approach would be to utilize a meta-level control technique (e.g., [Russell and
Wefald, 1991, Hansen and Zilberstein, 2001b]) to adaptively decide whether further strengthening
was worth the effort.

As implemented, our meta-level control strategies ignore the cost of computation, and focus
instead on its possible benefit. This works well to lessen computation, and is sufficient for domains,
such as the multi-agent domain we present, where deliberation and execution occur at the same
time. It would be interesting to see, however, whether our approach could be combined with
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one such as in [Raja and Lesser, 2007, Musliner et al., 2003] to fully integrate both domain and
computation probabilistic models into a meta-level control strategy. This would involve using our
probabilistic state information as part of an MDP model that chooses deliberative actions based on
both the state of the current schedule and performance profiles of deliberation.

We also did not explicitly consider the cost of communication, as we assume sufficient band-
width in our multi-agent domain. Although we propose a simple way to limit communication, by
only communicating changes with a minimum change in probability profile, in situations with a
firm cap on bandwidth more thorough deliberation may be useful. One example strategy would
be to communicate only probability changes that are likely to cause a planning action in another
agent; this would involve a learning process similar to how we learn when an agent should replan
based on the updates it receives. An alternate strategy would be to reason about which information
is most important to pass on at a given time, and which can be reserved for later.

Similarly, reasoning could be performed to decide what level of coordination between agents
is useful, and when it would be useful [Rubinstein et al., 2010, Raja et al., 2010]. For example, if
one agent is unable to improve its expected execution outcome via probabilistic schedule strength-
ening, in oversubscribed settings it may be useful to coordinate with other agents to change which
portions of the task tree are scheduled, with the goal of finding tasks to execute that have a better
expected outcome. This coordinated probabilistic schedule strengthening could be achieved by
agents communicating with each other how they expect their schedules to be impacted by hypo-
thetical changes, with the group as a whole committing to the change which results in the highest
overall expected utility.

8.1.2 Further Integration with Planning

An interesting area of exploration would be to integrate PPM with the deterministic planner being
used, instead of layering PPM on top of the plans the planner produces. Although many deter-
ministic planners have been augmented to handle decision-theoretic planning (e.g., [Blythe, 1999,
Kushmerick et al., 1995, Blythe, 1998]), most have done so at the expense of tractability. In accor-
dance with the philosophy of this approach, however, PADS could be integrated with the planning
process at a lower level, improving the search without fully integrating probability information into
the planner. A simple example of this in the single-agent domain using PADS to determine which
child of a ONE task should be scheduled to maximize expected utility. PADS could also help to
guide the search at key points by using the expected utility loss and expected utility gain heuristics
to identify activities that are profitable to include in the schedule. For example, in the multi-agent
domain, when choosing between two children of an OR max task, the eug heuristic could be used
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to suggest which would have the highest positive impact on taskgroup utility.

8.1.3 Demonstration on Other Domains / Planners

One extension of this work that we would like to see is applying it to other planners in order to
demonstrate its principles in another setting. For example, we would like to use our approach in
conjunction with FF-Replan [Yoon et al., 2007] in order see what improvement could be garnered.
In the problems FF-Replan considers, uncertainty is in the effects of actions. In its determinization
of these problems, FF-Replan uses an “all-outcomes” technique that expands a probabilistic action
such that there is one deterministic action available to the planner for each possible probabilistic
effect of the original action. Planning is then done based on these deterministic actions. One
possible way FF-Replan could benefit from our approach is to analyze the current deterministic
plan, find a likely point of failure, and then try switching to alternate deterministic actions to try to
bolster the probability of success.

8.1.4 Human-Robot Teams

Although, as is, PPM could be used to manage the execution of plans for teams of both human and
robotic agents, it could also be extended to specifically tailor to those types of situations. First,
in many situations it would be appropriate to include humans’ preferences into the plan objective,
complicating the analysis. For example, humans may like their job more if they are frequently
assigned tasks that they enjoy performing. Other modifications to the objective function include
discounting utility earned later in the plan or discounting utility once a certain amount has been
earned. This would reflect, for example, a human getting tired and assigning a higher cost to
execution as time goes on. These more complex plan objective functions would make schedule
strengthening more difficult since it is harder to predict what types of actions will bolster low-
utility portions of the plan.

Additionally, including humans in the loop introduces the possibility of having plan stability
as a component of the objective function [van der Krogt and de Weerdt, 2005]. Ideally, in human-
robot scenarios, plans should remain relatively stable throughout execution in order to facilitate
continued human understanding of the plan as well as agent predictability. Instead of using meta-
level control to limit only the frequency of replanning, which implicitly encourages plan stability,
it could be used to explicitly encourage plan stability and limit the number of times (and the degree
to which) the plans change overall. It could also be used to choose the best times to replan; an
example of this is discouraging replanning a human’s schedule at times when the human is likely
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mentally overloaded, and favoring replanning at a time when the human has the capacity to fully
process and understand the resulting changes.

8.1.5 Non-Cooperative Multi-Agent Scenarios

Our multi-agent work assumes that agents are cooperative and work together to maximize joint
plan utility. Breaking that assumption entails rethinking much of the PPM strategies. The dis-
tributed PADS algorithm and basic communication protocol, for example, would need to change as
agents may not have incentive to share all of their probability profile information. Instead, agents
may share information or query other agents for information if they feel that it would raise their
expected utility [Gmytrasiewicz and Durfee, 2001]. Negotiation would also be a possibility for
an information sharing protocol. Ideally, agents would track not only the expected benefit from
receiving information, but also whether sharing information would have an expected cost; such
metrics could be used to decide whether an information trade was worth while.

Similar ideas apply to probabilistic schedule strengthening. Non-cooperative, self-interested
agents have little incentive, for example, to schedule a back-up activity for other agents. Again,
negotiation could be one way of achieving coordination, based on agents’ projected expected gain
in utility.

8.2 Conclusions

This thesis has described an approach to planning and execution for uncertain domains called
Probabilistic Plan Management (PPM). The thesis claims that explicitly analyzing the probabilistic
state of deterministic plans built for uncertain domains provides important information that can be
leveraged in a scalable way to effectively manage plan execution, providing some of the benefits of
non-deterministic planning while avoiding much of its computational overhead. PPM relies on a
probabilistic analysis of deterministic schedules to inform probabilistic schedule strengthening and
to act as the basis of a probabilistic meta-level control strategy. We support this thesis by developing
algorithms for each of the three components of the approach, in the contexts of a single-agent
domain with temporal constraints and activity durational uncertainty and a multi-agent domain
with a rich set of activity constraints and sources of uncertainty.

We developed PADS, a general way to probabilistically analyze deterministic schedules. PADS
assumes that plan execution has a specific objective that can be expressed in terms of utility and that
the domain has a known uncertainty model. With this information, PADS analyzes deterministic
schedules to calculate their expected utility. It explicitly considers the uncertainty model of the do-
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main and propagates probability information throughout the schedule. A novelty of our algorithm
is how quickly PADS can be calculated and its results utilized to make plan improvements, due to
analytically calculating the uncertainty of a problem in the context of a given schedule. For large,
10-25 agent problems, schedule expected utility can be globally calculated in an average of 0.58
seconds.

We also developed a way to strengthen deterministic schedules based on the probabilistic anal-
ysis, making them more robust to the uncertainty of execution. This step is best done in conjunction
with replanning during execution to ensure that robust, high-utility schedules are always being ex-
ecuted. Probabilistic schedule strengthening is also best done when the structure of the domain
can be exploited to identify classes of strengthening actions that may be helpful in different situ-
ations. Through experimentation, we found strengthened schedules to earn 36% more utility, on
average, than their initial deterministic counterparts, when both were executed with no replanning
allowed. We also found that even in cases where it increases computation time, probabilistic sched-
ule strengthening makes up for the lack of agent responsiveness by ensuring that agents’ schedules
are strengthened and robust to unexpected outcomes that may occur while an agent is tied up re-
planning or strengthening.

We investigated the use of a PADS-driven probabilistic meta-level control strategy, which ef-
fectively controls planning actions during execution by performing them only when they would
likely be beneficial. It identifies cases when there are likely opportunities to exploit or failures
to avoid, and replans only at those times. Probabilistic meta-level control reduces unnecessary
replanning, and improves agent responsiveness during execution. Experiments in the multi-agent
domain showed that this strategy can reduce plan management effort by an average of 49% over
approaches driven by deterministic heuristics, with no significant change in utility earned.

As part of this thesis, we performed experiments to test the efficacy of our overall PPM ap-
proach. For a single-agent domain, PPM afforded a 23% reduction in schedule execution time
(where execution time is defined as the schedule makespan plus the time spent replanning during
execution). For a multi-agent, distributed domain, PPM using probabilistic schedule strengthening
in conjunction with replanning and probabilistic meta-level control resulted in 14% more utility
earned on average, with only a small added overhead.

Overall, probabilistic plan management is able to take advantage of the strengths of non-
deterministic planning while, in large part, avoiding its computational burden. It is able to sig-
nificantly improve the expected outcome of execution while also reasoning about the probabilistic
state of the schedule to reduce the computational overhead of plan management. We conclude
that probabilistic plan management, including both probabilistic schedule strengthening and prob-
abilistic meta-level control, achieves its goal of being able to leverage the probabilistic information

169



8 Future Work and Conclusions

provided by PADS to effectively manage plan execution in a scalable way.

170



Chapter 9

Bibliography

George Alexander, Anita Raja, and David J. Musliner. Controlling deliberation in a markov deci-
sion process-based agent. In Seventh International Joint Conference on Autonomous Agents and
Multi-Agent Systems AAMAS ’08, 2008. 2.3

George Alexander, Anita Raja, and David Musliner. Controlling deliberation in coordinators. In
Michael T. Cox and Anita Raja, editors, Metareasoning: Thinking about thinking. MIT Press,
2010. 2.3

N. Fazil Ayan, Ugur Kuter, Fusun Yaman, and Robert P. Goldman. HOTRiDE: Hierarchical ordered
task replanning in dynamic environments. In Proceedings of the 3rd Workshop on Planning and
Plan Execution for Real-World Systems (held in conjunction with ICAPS 2007), September 2007.
2.2.2

Donald R. Barr and E. Todd Sherrill. Mean and variance of truncated normal distributions. The
American Statistician, 53(4):357–361, November 1999. 3.3.1, 4.1

J. C. Beck and N. Wilson. Proactive algorithms for job shop scheduling with probabilistic durations.
Journal of Artificial Intelligence Research, 28:183–232, 2007. 1, 2.1.3

Piergiorgio Bertoli, Alessandro Cimatti, Marco Roverie, and Paolo Traverso. Planning in nonde-
terministic domains under partial observability via symbolic model checking. In Proceedings of
IJCAI ’01, 2001. 2.1.2

Lars Blackmore, Askar Bektassov, Masahiro Ono, and Brian C. Williams. Robust, optimal predic-
tive control of jump markov linear systems using particles. Hybrid Systems: Computation and
Control, 2007. 2.1.3

Avrim Blum and John Langford. Probabilistic planning in the graphplan framework. In Proceed-
ings of the Fifth European Conference on Planning (ECP ’99), 1999. 2.1.2

171



9 Bibliography

Jim Blythe. Decision-theoretic planning. AI Magazine, 20(2):37–54, 1999. 8.1.2

Jim Blythe. Planning under Uncertainty in Dynamic Domains. PhD thesis, Carnegie Mellon
University, 1998. 2.1.2, 8.1.2

Jim Blythe and Manuela Veloso. Analogical replan for efficient conditional planning. In Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence (AAAI ’97), Menlo
Park, California, 1997. 2.1.2

Mark Boddy and Thomas Dean. Decision-theoretic deliberation scheduling for problem solving in
time-constrained environments. Artificial Intelligence, 67(2):245–286, 1994. 2.3

Mark Boddy, Bryan Horling, John Phelps, Robert Goldman, Regis Vincent, C. Long, and Bob
Kohout. C TAEMS language specification v. 1.06. October 2005. 3.3.2

Justin A. Boyan and Michael L. Littman. Exact solutions to time-dependent mdps. In Advances in
Neural Information Processing Systems (NIPS), 2000. 2.1.1

L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996. 3.4

Daniel Bryce, Mausam, and Sungwook Yoon. Workshop on a reality check for planning and
scheduling under uncertainty (held in conjunction with ICAPS ’08). 2008. URL http://
www.ai.sri.com/˜bryce/ICAPS08-workshop.html. 1

Olivier Buffet and Douglas Aberdeen. The factored policy-gradient planner. Artificial Intelligence,
173(5-6):722–747, 2009. 2.1.1

Amedeo Cesta and Angelo Oddi. Gaining efficiency and flexibility in the simple temporal problem.
In Proceedings of the Third International Workshop on Temporal Representation and Reasoning,
1996. 3.3.2

S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt, D. Mutz, T. Estlin, B. Smith,
F. Fisher, T. Barrett, G. Stebbins, and D. Tran. Aspen - automated planning and scheduling for
space mission operations. In Space Ops, Toulouse, June 2000. URL http://citeseer.
ist.psu.edu/chien00aspen.html. 2.2.2, 2.3, 3.3.1

Alessandro Cimatti and Marco Roveri. Conformant planning via symbolic model checking. Jour-
nal of Artificial Intelligence Research, 13:305–338, 2000. URL citeseer.ist.psu.edu/
cimatti00conformant.html. 2.1.3

Michael T. Cox. Metacognition in computation: A selected research review. Artificial Intelligence,
169(2):104–141, 2005. 2.3

172

http://www.ai.sri.com/~bryce/ICAPS08-workshop.html
http://www.ai.sri.com/~bryce/ICAPS08-workshop.html
http://citeseer.ist.psu.edu/chien00aspen.html
http://citeseer.ist.psu.edu/chien00aspen.html
citeseer.ist.psu.edu/cimatti00conformant.html
citeseer.ist.psu.edu/cimatti00conformant.html


9 Bibliography

Richard Dearden, Nicolas Meuleau, Sailesh Ramakrishnan, David E. Smith, and Rich Washington.
Incremental contingency planning. In Procceedings of ICAPS Workshop on Planning under
Uncertainty, 2003. URL citeseer.ist.psu.edu/dearden03incremental.html.
2.1.2

Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial Intelligence,
49:61–95, May 1991. 2.2.1, 3.2.2

Keith Decker. TAEMS: A framework for environment centered analysis & design of coordina-
tion mechanisms. In G. O’Hare and N. Jennings, editors, Foundations of Distributed Artificial
Intelligence, chapter 16, pages 429–448. Wiley Inter-Science, 1996. 3.3.2

Denise Draper, Steve Hanks, and Daniel Weld. Probabilistic planning with information gathering
and contingent execution. In Proceedings of the Second International Conference on Artificial
Intelligence Planning Systems (AIPS), Menlo Park, California, 1994. 2.1.2

Mark Drummond, John Bresina, and Keith Swanson. Just-in-case scheduling. In Proceedings of
the Twelfth National Conference on Artificial Intelligence, 1994. URL citeseer.ist.psu.
edu/drummond94justcase.html. 2.1.2

Kutluhan Erol, James Hendler, and Dana S. Nau. Htn planning: Complexity and expressivity. In
Proceedings of AAAI-94, 1994. 3.2.1

Tara Estlin, Rich Volpe, Issa Nesnas, Darren Mutz, Forest Fisher, Barbara Engelhardt, and Steve
Chien. Decision-making in a robotic architecture for autonomy. In Proceedings of iSAIRAS
2001, Montreal, CA, June 2001. 2.3

Zhengzhu Feng, Richard Dearden, Nicolas Meuleau, and Richard Washington. Dynamic program-
ming for structured continuous markov decision problems. In Proceedings of the Twentieth
Conference on Uncertainty in Artificial Intelligence (UAI ’04), 2004. 2.1.1

Janae Foss, Nulifer Onder, and David E. Smith. Preventing unrecoverable failures through precau-
tionary planning. In Workshop on Moving Planning and Scheduling Systems into the Real World
(held in conjunction with ICAPS ’07), 2007. 2.1.2

Maria Fox, Richard Howey, and Derek Long. Exploration of the robustness of plans. In Proceed-
ings of AAAI-06, 2006. 2.1.3

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997. 3.4

Christian Fritz and Shiela McIlraith. Computing robust plans in continuous domains. In Pro-
ceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS),
2009. 2.1.3

173

citeseer.ist.psu.edu/dearden03incremental.html
citeseer.ist.psu.edu/drummond94justcase.html
citeseer.ist.psu.edu/drummond94justcase.html


9 Bibliography

Anthony Gallagher. Embracing Conflicts: Exploiting Inconsistencies in Distributed Schedules
using Simple Temporal Network Representation. PhD thesis, Carnegie Mellon University, 2009.
1.2, 1.2, 2.2.1, 4.3, 7.4.2

Anthony Gallagher, Terry L. Zimmerman, and Stephen F. Smith. Incremental scheduling to max-
imize quality in a dynamic environment. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS ’06), 2006. 2.2.2

Alfonso Gerevini and Ivan Serina. Fast plan adaptation through planning graphs: Local and system-
atic search techniques. In Proceedings of the International Conference on Artificial Intelligence
Planning Systems (AIPS ’00), 2000. 2.2.2

Piotr J. Gmytrasiewicz and Edmund H. Durfee. Rational communication in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 4(3):233–273, 2001. 8.1.5

Robert P. Goldman and Mark S. Boddy. Expressive planning and explicit knowledge. In AIPS,
1996. 2.1.3

Charles M. Grinstead and J. Laurie Snell. Introduction to Probability. American Mathematical
Society, 1997. 3.3.2

Eric A. Hansen and Shlomo Zilberstein. LAO*: A heuristic search algorithm that finds solutions
with loops. Artificial Intelligence, 129(1-2):35–62, 2001a. URL http://rbr.cs.umass.
edu/shlomo/papers/HZaij01b.html. 2.3

Eric A. Hansen and Shlomo Zilberstein. Monitoring and control of anytime algorithms: A dynamic
programming approach. Artificial Intelligence, 126(1-2):139–157, 2001b. URL http://rbr.
cs.umass.edu/shlomo/papers/HZaij01a.html. 2.3, 8.1.1

Laura M. Hiatt and Reid Simmons. Torwards probabilistic plan management. In Proceedings of
the 3rd Workshop on Planning and Plan Execution for Real-World Systems (held in conjunction
with ICAPS 2007), Providence, RI, September 2007. URL http://www.cs.drexel.edu/
˜pmodi/papers/sultanik-ijcai07.pdf. 5.2, 7.2, 7.4.1

Laura M. Hiatt, Terry L. Zimmerman, Stephen F. Smith, and Reid Simmons. Reasoning about
executional uncertainty to strengthen schedules. In Proceedings of the Workshop on A Reality
Check for Planning and Scheduling Under Uncertainty (held in conjunction with ICAPS-08),
2008. 2, 5.3, 6.1, 6.4.1

Laura M. Hiatt, Terry L. Zimmerman, Stephen F. Smith, and Reid Simmons. Strengthening sched-
ules through uncertainty analysis. In Proceedings of the Twenty-First International Joint Con-
ference on Artificial Intelligence (IJCAI-09), 2009. 2, 5.3, 6.1, 6.4.2

174

http://rbr.cs.umass.edu/shlomo/papers/HZaij01b.html
http://rbr.cs.umass.edu/shlomo/papers/HZaij01b.html
http://rbr.cs.umass.edu/shlomo/papers/HZaij01a.html
http://rbr.cs.umass.edu/shlomo/papers/HZaij01a.html
http://www.cs.drexel.edu/~pmodi/papers/sultanik-ijcai07.pdf
http://www.cs.drexel.edu/~pmodi/papers/sultanik-ijcai07.pdf


9 Bibliography

Jorg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through heuris-
tic search. Hournal of Artificial Intelligence Research, 14:263:302, 2001. 2.2

Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960. 2.1, 2.1.1

Ronald A. Howard. Dynamic Probabilistic Systems: Semi-Markov and Decision Processes. John
Wiley & Sons, New York, New York, 1971. 2.1.1
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A Sample Problems

A.1 Sample MRCPSP/max problem in ASPEN syntax

activity a001 {
decompositions = a001_0 or a001_1;

};

activity a001_0 {
decompositions = a001_0_by_a012_0 or a001_0_by_a012_1;

};

activity a001_0_by_a012_0 {
duration = 10;
constraints = ((ends_before start of a012_0 by [1, 1000000]));

};

activity a001_0_by_a012_1 {
duration = 10;
constraints = ((ends_before start of a012_1 by [3, 1000000]));

};

activity a001_1 {
decompositions = a001_1_by_a012_0 or a001_1_by_a012_1;

};

activity a001_1_by_a012_0 {
duration = 4;
constraints = ((ends_before start of a012_0 by [1, 1000000]));

};

activity a001_1_by_a012_1 {
duration = 4;
constraints = ((ends_before start of a012_1 by [6, 1000000]));

};

activity a002 {
decompositions = a002_0 or a002_1;

};

activity a002_0 {
decompositions = a002_0_by_a015_0_a020_0 or a002_0_by_a015_0_a020_1 or

a002_0_by_a015_1_a020_0 or a002_0_by_a015_1_a020_1;
};

activity a002_0_by_a015_0_a020_0 {
duration = 7;
constraints = ((ends_before start of a015_0 by [-19, 1000000]) and

(ends_before start of a020_0 by [10, 1000000]));
};

activity a002_0_by_a015_0_a020_1 {
duration = 7;
constraints = ((ends_before start of a015_0 by [-34, 1000000]) and

(ends_before start of a020_1 by [1, 1000000]));
};

activity a002_0_by_a015_1_a020_0 {
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A.1 Sample MRCPSP/max problem in ASPEN syntax

duration = 7;
constraints = ((ends_before start of a015_1 by [19, 1000000]) and

(ends_before start of a020_0 by [10, 1000000]));
};

activity a002_0_by_a015_1_a020_1 {
duration = 7;
constraints = ((ends_before start of a015_1 by [19, 1000000]) and

(ends_before start of a020_1 by [1, 1000000]));
};

activity a002_1 {
decompositions = a002_1_by_a015_0_a020_0 or a002_1_by_a015_0_a020_1 or

a002_1_by_a015_1_a020_0 or a002_1_by_a015_1_a020_1;
};

activity a002_1_by_a015_0_a020_0 {
duration = 2;
constraints = ((ends_before start of a015_0 by [2, 1000000]) and

(ends_before start of a020_0 by [1, 1000000]));
};

activity a002_1_by_a015_0_a020_1 {
duration = 2;
constraints = ((ends_before start of a015_0 by [2, 1000000]) and

(ends_before start of a020_1 by [4, 1000000]));
};

activity a002_1_by_a015_1_a020_0 {
duration = 2;
constraints = ((ends_before start of a015_1 by [6, 1000000]) and

(ends_before start of a020_0 by [1, 1000000]));
};

activity a002_1_by_a015_1_a020_1 {
duration = 2;
constraints = ((ends_before start of a015_1 by [6, 1000000]) and

(ends_before start of a020_1 by [4, 1000000]));
};

activity a003 {
decompositions = a003_0 or a003_1;

};

activity a003_0 {
decompositions = a003_0_by_a010_0_a013_0_a020_0 or a003_0_by_a010_0_a013_1_a020_0 or

a003_0_by_a010_1_a013_0_a020_0 or a003_0_by_a010_1_a013_1_a020_0 or
a003_0_by_a010_0_a013_0_a020_1 or a003_0_by_a010_0_a013_1_a020_1 or
a003_0_by_a010_1_a013_0_a020_1 or a003_0_by_a010_1_a013_1_a020_1;

};

activity a003_0_by_a010_0_a013_0_a020_0 {
duration = 4;
constraints = ((ends_before start of a010_0 by [6, 1000000]) and

(ends_before start of a013_0 by [-1000000, 16]) and
(ends_before start of a020_0 by [2, 1000000]));

};
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activity a003_0_by_a010_0_a013_1_a020_0 {
duration = 4;
constraints = ((ends_before start of a010_0 by [6, 1000000]) and

(ends_before start of a013_1 by [-1000000, 18]) and
(ends_before start of a020_0 by [2, 1000000]));

};

activity a003_0_by_a010_1_a013_0_a020_0 {
duration = 4;
constraints = ((ends_before start of a010_1 by [8, 1000000]) and

(ends_before start of a013_0 by [-1000000, 16]) and
(ends_before start of a020_0 by [2, 1000000]));

};

activity a003_0_by_a010_1_a013_1_a020_0 {
duration = 4;
constraints = ((ends_before start of a010_1 by [8, 1000000]) and

(ends_before start of a013_1 by [-1000000, 18]) and
(ends_before start of a020_0 by [2, 1000000]));

};

activity a003_0_by_a010_0_a013_0_a020_1 {
duration = 4;
constraints = ((ends_before start of a010_0 by [6, 1000000]) and

(ends_before start of a013_0 by [-1000000, 16]) and
(ends_before start of a020_1 by [8, 1000000]));

};

activity a003_0_by_a010_0_a013_1_a020_1 {
duration = 4;
constraints = ((ends_before start of a010_0 by [6, 1000000]) and

(ends_before start of a013_1 by [-1000000, 18]) and
(ends_before start of a020_1 by [8, 1000000]));

};

activity a003_0_by_a010_1_a013_0_a020_1 {
duration = 4;
constraints = ((ends_before start of a010_1 by [8, 1000000]) and

(ends_before start of a013_0 by [-1000000, 16]) and
(ends_before start of a020_1 by [8, 1000000]));

};

activity a003_0_by_a010_1_a013_1_a020_1 {
duration = 4;
constraints = ((ends_before start of a010_1 by [8, 1000000]) and

(ends_before start of a013_1 by [-1000000, 18]) and
(ends_before start of a020_1 by [8, 1000000]));

};

activity a003_1 {
decompositions = a003_1_by_a010_0_a013_0_a020_0 or a003_1_by_a010_0_a013_1_a020_0 or

a003_1_by_a010_1_a013_0_a020_0 or a003_1_by_a010_1_a013_1_a020_0 or
a003_1_by_a010_0_a013_0_a020_1 or a003_1_by_a010_0_a013_1_a020_1 or
a003_1_by_a010_1_a013_0_a020_1 or a003_1_by_a010_1_a013_1_a020_1;

};
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activity a003_1_by_a010_0_a013_0_a020_0 {
duration = 5;
constraints = ((ends_before start of a010_0 by [-8, 1000000]) and

(ends_before start of a013_0 by [-1000000, 12]) and
(ends_before start of a020_0 by [-17, 1000000]));

};

activity a003_1_by_a010_0_a013_1_a020_0 {
duration = 5;
constraints = ((ends_before start of a010_0 by [-15, 1000000]) and

(ends_before start of a013_1 by [-1000000, 30]) and
(ends_before start of a020_0 by [-32, 1000000]));

};

activity a003_1_by_a010_1_a013_0_a020_0 {
duration = 5;
constraints = ((ends_before start of a010_1 by [3, 1000000]) and

(ends_before start of a013_0 by [-1000000, 12]) and
(ends_before start of a020_0 by [-47, 1000000]));

};

activity a003_1_by_a010_1_a013_1_a020_0 {
duration = 5;
constraints = ((ends_before start of a010_1 by [3, 1000000]) and

(ends_before start of a013_1 by [-1000000, 30]) and
(ends_before start of a020_0 by [-62, 1000000]));

};

activity a003_1_by_a010_0_a013_0_a020_1 {
duration = 5;
constraints = ((ends_before start of a010_0 by [-22, 1000000]) and

(ends_before start of a013_0 by [-1000000, 12]) and
(ends_before start of a020_1 by [13, 1000000]));

};

activity a003_1_by_a010_0_a013_1_a020_1 {
duration = 5;
constraints = ((ends_before start of a010_0 by [-29, 1000000]) and

(ends_before start of a013_1 by [-1000000, 30]) and
(ends_before start of a020_1 by [13, 1000000]));

};

activity a003_1_by_a010_1_a013_0_a020_1 {
duration = 5;
constraints = ((ends_before start of a010_1 by [3, 1000000]) and

(ends_before start of a013_0 by [-1000000, 12]) and
(ends_before start of a020_1 by [13, 1000000]));

};

activity a003_1_by_a010_1_a013_1_a020_1 {
duration = 5;
constraints = ((ends_before start of a010_1 by [3, 1000000]) and

(ends_before start of a013_1 by [-1000000, 30]) and
(ends_before start of a020_1 by [13, 1000000]));

};

activity a004 {
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decompositions = a004_0 or a004_1;
};

activity a004_0 {
decompositions = a004_0_by_a006_0_a012_0 or a004_0_by_a006_1_a012_0 or

a004_0_by_a006_0_a012_1 or a004_0_by_a006_1_a012_1;
};

activity a004_0_by_a006_0_a012_0 {
duration = 9;
constraints = ((ends_before start of a006_0 by [20, 1000000]) and

(ends_before start of a012_0 by [25, 1000000]));
};

activity a004_0_by_a006_1_a012_0 {
duration = 9;
constraints = ((ends_before start of a006_1 by [22, 1000000]) and

(ends_before start of a012_0 by [25, 1000000]));
};

activity a004_0_by_a006_0_a012_1 {
duration = 9;
constraints = ((ends_before start of a006_0 by [20, 1000000]) and

(ends_before start of a012_1 by [18, 1000000]));
};

activity a004_0_by_a006_1_a012_1 {
duration = 9;
constraints = ((ends_before start of a006_1 by [22, 1000000]) and

(ends_before start of a012_1 by [18, 1000000]));
};

activity a004_1 {
decompositions = a004_1_by_a006_0_a012_0 or a004_1_by_a006_1_a012_0 or

a004_1_by_a006_0_a012_1 or a004_1_by_a006_1_a012_1;
};

activity a004_1_by_a006_0_a012_0 {
duration = 7;
constraints = ((ends_before start of a006_0 by [18, 1000000]) and

(ends_before start of a012_0 by [-18, 1000000]));
};

activity a004_1_by_a006_1_a012_0 {
duration = 7;
constraints = ((ends_before start of a006_1 by [6, 1000000]) and

(ends_before start of a012_0 by [-31, 1000000]));
};

activity a004_1_by_a006_0_a012_1 {
duration = 7;
constraints = ((ends_before start of a006_0 by [18, 1000000]) and

(ends_before start of a012_1 by [20, 1000000]));
};

activity a004_1_by_a006_1_a012_1 {
duration = 7;
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constraints = ((ends_before start of a006_1 by [6, 1000000]) and
(ends_before start of a012_1 by [20, 1000000]));

};

activity a005 {
decompositions = a005_0;

};

activity a005_0 {
decompositions = a005_0_by_a014_0 or a005_0_by_a014_1;

};

activity a005_0_by_a014_0 {
duration = 1;
constraints = ((ends_before start of a014_0 by [2, 8]));

};

activity a005_0_by_a014_1 {
duration = 1;
constraints = ((ends_before start of a014_1 by [1, 7]));

};

activity a006 {
decompositions = a006_0 or a006_1;

};

activity a006_0 {
decompositions = a006_0_by_a017_0 or a006_0_by_a017_1;

};

activity a006_0_by_a017_0 {
duration = 9;
constraints = ((ends_before start of a017_0 by [27, 1000000]));

};

activity a006_0_by_a017_1 {
duration = 9;
constraints = ((ends_before start of a017_1 by [15, 1000000]));

};

activity a006_1 {
decompositions = a006_1_by_a017_0 or a006_1_by_a017_1;

};

activity a006_1_by_a017_0 {
duration = 4;
constraints = ((ends_before start of a017_0 by [4, 1000000]));

};

activity a006_1_by_a017_1 {
duration = 4;
constraints = ((ends_before start of a017_1 by [10, 1000000]));

};

activity a007 {
decompositions = a007_0 or a007_1 with (duration <- duration);

};

187



A Sample Problems

activity a007_0 {
decompositions = a007_0_by_a010_0_a013_0 or a007_0_by_a010_0_a013_1 or

a007_0_by_a010_1_a013_0 or a007_0_by_a010_1_a013_1;
};

activity a007_0_by_a010_0_a013_0 {
duration = 3;
constraints = ((ends_before start of a010_0 by [-1000000, -1]) and

(ends_before start of a013_0 by [5, 42]));
};

activity a007_0_by_a010_0_a013_1 {
duration = 3;
constraints = ((ends_before start of a010_0 by [-1000000, -1]) and

(ends_before start of a013_1 by [8, 31]));
};

activity a007_0_by_a010_1_a013_0 {
duration = 3;
constraints = ((ends_before start of a010_1 by [-1000000, -29]) and

(ends_before start of a013_0 by [5, 42]));
};

activity a007_0_by_a010_1_a013_1 {
duration = 3;
constraints = ((ends_before start of a010_1 by [-1000000, -29]) and

(ends_before start of a013_1 by [8, 31]));
};

activity a007_1 {
decompositions = a007_1_by_a010_0_a013_0 or a007_1_by_a010_0_a013_1 or

a007_1_by_a010_1_a013_0 or a007_1_by_a010_1_a013_1;
};

activity a007_1_by_a010_0_a013_0 {
duration = 3;
constraints = ((ends_before start of a010_0 by [-1000000, -1]) and

(ends_before start of a013_0 by [1, 18]));
};

activity a007_1_by_a010_0_a013_1 {
duration = 3;
constraints = ((ends_before start of a010_0 by [-1000000, -1]) and

(ends_before start of a013_1 by [6, 20]));
};

activity a007_1_by_a010_1_a013_0 {
duration = 3;
constraints = ((ends_before start of a010_1 by [-1000000, 7]) and

(ends_before start of a013_0 by [1, 18]));
};

activity a007_1_by_a010_1_a013_1 {
duration = 3;
constraints = ((ends_before start of a010_1 by [-1000000, 7]) and

(ends_before start of a013_1 by [6, 20]));
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};

activity a008 {
decompositions = a008_0 or a008_1;

};

activity a008_0 {
decompositions = a008_0_by_a009_0_a016_0 or a008_0_by_a009_0_a016_1 or

a008_0_by_a009_1_a016_0 or a008_0_by_a009_1_a016_1;
};

activity a008_0_by_a009_0_a016_0 {
duration = 10;
constraints = ((ends_before start of a009_0 by [-1000000, -29]) and

(ends_before start of a016_0 by [18, 1000000]));
};

activity a008_0_by_a009_0_a016_1 {
duration = 10;
constraints = ((ends_before start of a009_0 by [-1000000, -29]) and

(ends_before start of a016_1 by [17, 1000000]));
};

activity a008_0_by_a009_1_a016_0 {
duration = 10;
constraints = ((ends_before start of a009_1 by [-1000000, -4]) and

(ends_before start of a016_0 by [18, 1000000]));
};

activity a008_0_by_a009_1_a016_1 {
duration = 10;
constraints = ((ends_before start of a009_1 by [-1000000, -4]) and

(ends_before start of a016_1 by [17, 1000000]));
};

activity a008_1 {
decompositions = a008_1_by_a009_0_a016_0 or a008_1_by_a009_0_a016_1_none or

a008_1_by_a009_1_a016_0_none or a008_1_by_a009_1_a016_1_none;
};

activity a008_1_by_a009_0_a016_0 {
duration = 9;
constraints = ((ends_before start of a009_0 by [-1000000, -10]) and

(ends_before start of a016_0 by [7, 1000000]));
};

activity a008_1_by_a009_0_a016_1 {
duration = 9;
constraints = ((ends_before start of a009_0 by [-1000000, -10]) and

(ends_before start of a016_1 by [11, 1000000]));
};

activity a008_1_by_a009_1_a016_0 {
duration = 9;
constraints = ((ends_before start of a009_1 by [-1000000, -1]) and

(ends_before start of a016_0 by [7, 1000000]));
};
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activity a008_1_by_a009_1_a016_1 {
duration = 9;
constraints = ((ends_before start of a009_1 by [-1000000, -1]) and

(ends_before start of a016_1 by [11, 1000000]));
};

activity a009 {
decompositions = a009_0 or a009_1;

};

activity a009_0 {
decompositions = a009_0_by_a012_0_a013_0_a016_0 or a009_0_by_a012_0_a013_0_a016_1 or

a009_0_by_a012_0_a013_1_a016_0 or a009_0_by_a012_0_a013_1_a016_1 or
a009_0_by_a012_1_a013_0_a016_0 or a009_0_by_a012_1_a013_0_a016_1 or
a009_0_by_a012_1_a013_1_a016_0 or a009_0_by_a012_1_a013_1_a016_1;

};

activity a009_0_by_a012_0_a013_0_a016_0 {
duration = 10;
constraints = ((ends_before start of a012_0 by [-1000000, -4]) and

(ends_before start of a013_0 by [-1000000, -21]) and
(ends_before start of a016_0 by [-1000000, 43]));

};

activity a009_0_by_a012_0_a013_0_a016_1 {
duration = 10;
constraints = ((ends_before start of a012_0 by [-1000000, -4]) and

(ends_before start of a013_0 by [-1000000, -21]) and
(ends_before start of a016_1 by [-1000000, 39]));

};

activity a009_0_by_a012_0_a013_1_a016_0 {
duration = 10;
constraints = ((ends_before start of a012_0 by [-1000000, -4]) and

(ends_before start of a013_1 by [-1000000, -22]) and
(ends_before start of a016_0 by [-1000000, 43]));

};

activity a009_0_by_a012_0_a013_1_a016_1 {
duration = 10;
constraints = ((ends_before start of a012_0 by [-1000000, -4]) and

(ends_before start of a013_1 by [-1000000, -22]) and
(ends_before start of a016_1 by [-1000000, 39]));

};

activity a009_0_by_a012_1_a013_0_a016_0 {
duration = 10;
constraints = ((ends_before start of a012_1 by [-1000000, -17]) and

(ends_before start of a013_0 by [-1000000, -21]) and
(ends_before start of a016_0 by [-1000000, 43]));

};

activity a009_0_by_a012_1_a013_0_a016_1 {
duration = 10;
constraints = ((ends_before start of a012_1 by [-1000000, -17]) and

(ends_before start of a013_0 by [-1000000, -21]) and
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(ends_before start of a016_1 by [-1000000, 39]));
};

activity a009_0_by_a012_1_a013_1_a016_0 {
duration = 10;
constraints = ((ends_before start of a012_1 by [-1000000, -17]) and

(ends_before start of a013_1 by [-1000000, -22]) and
(ends_before start of a016_0 by [-1000000, 43]));

};

activity a009_0_by_a012_1_a013_1_a016_1 {
duration = 10;
constraints = ((ends_before start of a012_1 by [-1000000, -17]) and

(ends_before start of a013_1 by [-1000000, -22]) and
(ends_before start of a016_1 by [-1000000, 39]));

};

activity a009_1 {
decompositions = a009_1_by_a012_0_a013_0_a016_0 or a009_1_by_a012_0_a013_0_a016_1 or

a009_1_by_a012_0_a013_1_a016_0 or a009_1_by_a012_0_a013_1_a016_1 or
a009_1_by_a012_1_a013_0_a016_0 or a009_1_by_a012_1_a013_0_a016_1 or
a009_1_by_a012_1_a013_1_a016_0 or a009_1_by_a012_1_a013_1_a016_1;

};

activity a009_1_by_a012_0_a013_0_a016_0 {
duration = 4;
constraints = ((ends_before start of a012_0 by [-1000000, -1]) and

(ends_before start of a013_0 by [-1000000, -3]) and
(ends_before start of a016_0 by [-1000000, 47]));

};

activity a009_1_by_a012_0_a013_0_a016_1 {
duration = 4;
constraints = ((ends_before start of a012_0 by [-1000000, -1]) and

(ends_before start of a013_0 by [-1000000, -3]) and
(ends_before start of a016_1 by [-1000000, 18]));

};

activity a009_1_by_a012_0_a013_1_a016_0 {
duration = 4;
constraints = ((ends_before start of a012_0 by [-1000000, -1]) and

(ends_before start of a013_1 by [-1000000, -6]) and
(ends_before start of a016_0 by [-1000000, 47]));

};

activity a009_1_by_a012_0_a013_1_a016_1 {
duration = 4;
constraints = ((ends_before start of a012_0 by [-1000000, -1]) and

(ends_before start of a013_1 by [-1000000, -6]) and
(ends_before start of a016_1 by [-1000000, 18]));

};

activity a009_1_by_a012_1_a013_0_a016_0 {
duration = 4;
constraints = ((ends_before start of a012_1 by [-1000000, -16]) and

(ends_before start of a013_0 by [-1000000, -3]) and
(ends_before start of a016_0 by [-1000000, 47]));
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};

activity a009_1_by_a012_1_a013_0_a016_1 {
duration = 4;
constraints = ((ends_before start of a012_1 by [-1000000, -16]) and

(ends_before start of a013_0 by [-1000000, -3]) and
(ends_before start of a016_1 by [-1000000, 18]));

};

activity a009_1_by_a012_1_a013_1_a016_0 {
duration = 4;
constraints = ((ends_before start of a012_1 by [-1000000, -16]) and

(ends_before start of a013_1 by [-1000000, -6]) and
(ends_before start of a016_0 by [-1000000, 47]));

};

activity a009_1_by_a012_1_a013_1_a016_1 {
duration = 4;
constraints = ((ends_before start of a012_1 by [-1000000, -16]) and

(ends_before start of a013_1 by [-1000000, -6]) and
(ends_before start of a016_1 by [-1000000, 18]));

};

activity a010 {
decompositions = a010_0 or a010_1;

};

activity a010_0 {
duration = 2;

};

activity a010_1 {
duration = 10;

};

activity a011 {
decompositions = a011_0 or a011_1;

};

activity a011_0 {
decompositions = a011_0_by_a012_0_a018_0 or a011_0_by_a012_0_a018_1 or

a011_0_by_a012_1_a018_0 or a011_0_by_a012_1_a018_1;
};

activity a011_0_by_a012_0_a018_0 {
duration = 4;
constraints = ((ends_before start of a012_0 by [-1000000, -1]) and

(ends_before start of a018_0 by [9, 1000000]));
};

activity a011_0_by_a012_0_a018_1 {
duration = 4;
constraints = ((ends_before start of a012_0 by [-1000000, -1]) and

(ends_before start of a018_1 by [6, 1000000]));
};

activity a011_0_by_a012_1_a018_0 {
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duration = 4;
constraints = ((ends_before start of a012_1 by [-1000000, -7]) and

(ends_before start of a018_0 by [9, 1000000]));
};

activity a011_0_by_a012_1_a018_1 {
duration = 4;
constraints = ((ends_before start of a012_1 by [-1000000, -7]) and

(ends_before start of a018_1 by [6, 1000000]));
};

activity a011_1 {
decompositions = a011_1_by_a012_0_a018_0 or a011_1_by_a012_0_a018_1 or

a011_1_by_a012_1_a018_0 or a011_1_by_a012_1_a018_1;
};

activity a011_1_by_a012_0_a018_0 {
duration = 10;
constraints = ((ends_before start of a012_0 by [-1000000, 3]) and

(ends_before start of a018_0 by [-24, 1000000]));
};

activity a011_1_by_a012_0_a018_1 {
duration = 10;
constraints = ((ends_before start of a012_0 by [-1000000, 3]) and

(ends_before start of a018_1 by [25, 1000000]));
};

activity a011_1_by_a012_1_a018_0 {
duration = 10;
constraints = ((ends_before start of a012_1 by [-1000000, -7]) and

(ends_before start of a018_0 by [-39, 1000000]));
};

activity a011_1_by_a012_1_a018_1 {
duration = 10;
constraints = ((ends_before start of a012_1 by [-1000000, -7]) and

(ends_before start of a018_1 by [25, 1000000]));
};

activity a012 {
decompositions = a012_0 or a012_1;

};

activity a012_0 {
decompositions = a012_0_by_a019_0 or a012_0_by_a019_1;

};

activity a012_0_by_a019_0 {
duration = 6;
constraints = ((ends_before start of a019_0 by [-1000000, 16]));

};

activity a012_0_by_a019_1 {
duration = 6;
constraints = ((ends_before start of a019_1 by [-1000000, 17]));
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};

activity a012_1 {
decompositions = a012_1_by_a019_0 or a012_1_by_a019_1;

};

activity a012_1_by_a019_0 {
duration = 6;
constraints = ((ends_before start of a019_0 by [-1000000, 27]));

};

activity a012_1_by_a019_1 {
duration = 6;
constraints = ((ends_before start of a019_1 by [-1000000, 25]));

};

activity a013 {
decompositions = a013_0 or a013_1;

};

activity a013_0 {
duration = 7;

};

activity a013_1 {
duration = 10;

};

activity a014 {
decompositions = a014_0 or a014_1;

};

activity a014_0 {
duration = 4;

};

activity a014_1 {
duration = 4;

};

activity a015 {
decompositions = a015_0 or a015_1;

};

activity a015_0 {
duration = 8;

};

activity a015_1 {
duration = 1;

};

activity a016 {
decompositions = a016_0 or a016_1;

};

activity a016_0 {
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duration = 7;
};

activity a016_1 {
duration = 2;

};

activity a017 {
decompositions = a017_0 or a017_1;

};

activity a017_0 {
duration = 9;

};

activity a017_1 {
duration = 10;

};

activity a018 {
decompositions = a018_0 or a018_1;

};

activity a018_0 {
duration = 5;

};

activity a018_1 {
duration = 2;

};

activity a019 {
decompositions = a019_0 or a019_1;

};

activity a019_0 {
duration = 5;

};

activity a019_1 {
duration = 6;

};

activity a020 {
decompositions = a020_0 or a020_1;

};

activity a020_0 {
duration = 10;

};

activity a020_1 {
duration = 8;

};
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A.2 Sample C TAEMS Problem

;;Scenario time bounds
(spec_boh 20)
(spec_eoh 115)

;;Agents
(spec_agent (label Miek))
(spec_agent (label Marc))
(spec_agent (label Christie))
(spec_agent (label Hector))
(spec_agent (label Moses))
(spec_agent (label Jesper))
(spec_agent (label Blayne))
(spec_agent (label Amy))
(spec_agent (label Les))
(spec_agent (label Kevan))
(spec_agent (label Starbuck))
(spec_agent (label Tandy))
(spec_agent (label Betty))
(spec_agent (label Ole))
(spec_agent (label Liyuan))
(spec_agent (label Naim))
(spec_agent (label Galen))
(spec_agent (label Sandy))
(spec_agent (label Kyu))
(spec_agent (label Cris))

;;Activities
(spec_task_group (label scenario-1)

(subtasks problem-1 problem-2)
(qaf q_sum))

(spec_task (label problem-1)
(subtasks guttural-winroot songbird-winroot hunk-winroot)
(qaf q_sum_and))

(spec_task (label guttural-winroot)
(earliest_start_time 30) (deadline 61)
(subtasks averment exudate healthcare)
(qaf q_sum_and))

(spec_task (label averment)
(subtasks solve solve-ff1 solve-rd1)
(qaf q_max))

(spec_method (label solve) (agent Betty)
(outcomes

(default (density 1.000000)
(quality_distribution 11.75 1.0)
(duration_distribution 9 0.25 4 0.25 7 0.50))))

(spec_method (label solve-ff1) (agent Betty)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
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(duration_distribution 4 0.25 6 0.50 7 0.25))))

(spec_method (label solve-rd1) (agent Moses)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 9 0.25 4 0.25 7 0.50))))

(spec_task (label exudate)
(subtasks snarf snarf-ff1 snarf-rd1)
(qaf q_max))

(spec_method (label snarf) (agent Moses)
(outcomes

(default (density 1.000000)
(quality_distribution 11.75 1.0)
(duration_distribution 11 0.50 14 0.25 7 0.25))))

(spec_method (label snarf-ff1) (agent Moses)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 4 0.25 5 0.50 6 0.25))))

(spec_method (label snarf-rd1) (agent Hector)
(outcomes

(default (density 0.800000)
(quality_distribution 10.00 1.0)
(duration_distribution 3 0.25 5 0.50 6 0.25))

(failure (density 0.200000)
(quality_distribution 0.00 1.0)
(duration_distribution 3 0.25 5 0.50 6 0.25))))

(spec_task (label healthcare)
(subtasks mousetrap mousetrap-rd1)
(qaf q_max))

(spec_method (label mousetrap) (agent Hector)
(outcomes

(default (density 1.000000)
(quality_distribution 11.75 1.0)
(duration_distribution 9 0.50 11 0.25 6 0.25))))

(spec_method (label mousetrap-rd1) (agent Jesper)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 4 0.25 6 0.50 7 0.25))))

(spec_task (label songbird-winroot)
(earliest_start_time 45) (deadline 55)
(subtasks owngoal tandoori)
(qaf q_sum))

(spec_task (label owngoal)
(subtasks scorn scorn-ff1 scorn-rd1)
(qaf q_max))
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(spec_method (label scorn) (agent Les)
(outcomes

(default (density 1.000000)
(quality_distribution 10.75 1.0)
(duration_distribution 9 0.25 4 0.25 7 0.50))))

(spec_method (label scorn-ff1) (agent Les)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 8 0.25 5 0.25 7 0.50))))

(spec_method (label scorn-rd1) (agent Cris)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 8 0.50 10 0.25 5 0.25))))

(spec_task (label tandoori)
(subtasks unstop unstop-rd1)
(qaf q_max))

(spec_method (label unstop) (agent Marc)
(outcomes

(default (density 1.000000)
(quality_distribution 11.75 1.0)
(duration_distribution 9 0.50 11 0.25 6 0.25))))

(spec_method (label unstop-rd1) (agent Les)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 8 0.50 10 0.25 5 0.25))))

(spec_task (label hunk-winroot)
(earliest_start_time 50) (deadline 74)
(subtasks barmecide glacis cherry)
(qaf q_sum_and))

(spec_task (label barmecide)
(subtasks gutter gutter-ff1 gutter-rd1)
(qaf q_max))

(spec_method (label gutter) (agent Kevan)
(outcomes

(default (density 1.000000)
(quality_distribution 10.75 1.0)
(duration_distribution 3 0.25 5 0.50 6 0.25))))

(spec_method (label gutter-ff1) (agent Kevan)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 4 0.25 5 0.50 6 0.25))))

(spec_method (label gutter-rd1) (agent Liyuan)
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(outcomes
(default (density 1.000000)

(quality_distribution 8.75 1.0)
(duration_distribution 9 0.50 11 0.25 6 0.25))))

(spec_task (label glacis)
(subtasks purchase purchase-ff1 purchase-rd1)
(qaf q_max))

(spec_method (label purchase) (agent Liyuan)
(outcomes

(default (density 1.000000)
(quality_distribution 11.75 1.0)
(duration_distribution 4 0.25 6 0.50 7 0.25))))

(spec_method (label purchase-ff1) (agent Liyuan)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 4 0.25 6 0.50 7 0.25))))

(spec_method (label purchase-rd1) (agent Kevan)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 9 0.50 11 0.25 6 0.25))))

(spec_task (label cherry)
(subtasks misreport misreport-ff1)
(qaf q_max))

(spec_method (label misreport) (agent Kevan)
(outcomes

(default (density 1.000000)
(quality_distribution 10.75 1.0)
(duration_distribution 10 0.50 13 0.25 7 0.25))))

(spec_method (label misreport-ff1) (agent Kevan)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 9 0.50 10 0.25 7 0.25))))

(spec_task
(label problem-2)
(subtasks elevon-winroot pingo-winroot extent-winroot)
(qaf q_sum_and))

(spec_task (label elevon-winroot)
(earliest_start_time 72) (deadline 84)
(subtasks racerunner washup reticle)
(qaf q_sum))

(spec_task (label racerunner)
(subtasks fissure fissure-ff1 fissure-rd1)
(qaf q_max))
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(spec_method (label fissure) (agent Ole)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 3 0.25 5 0.50 6 0.25))))

(spec_method (label fissure-ff1) (agent Ole)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 3 0.25 4 0.75))))

(spec_method (label fissure-rd1) (agent Naim)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 4 0.25 6 0.50 7 0.25))))

(spec_task (label washup)
(subtasks tie tie-rd1)
(qaf q_max))

(spec_method (label tie) (agent Kyu)
(outcomes

(default (density 1.000000)
(quality_distribution 10.75 1.0)
(duration_distribution 10 0.50 13 0.25 7 0.25))))

(spec_method (label tie-rd1) (agent Tandy)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 3 0.25 5 0.50 6 0.25))))

(spec_task (label reticle)
(subtasks stem stem-ff1 stem-rd1)
(qaf q_max))

(spec_method (label stem) (agent Tandy)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 9 0.25 4 0.25 7 0.50))))

(spec_method (label stem-ff1) (agent Tandy)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 4 0.25 5 0.50 6 0.25))))

(spec_method (label stem-rd1) (agent Betty)
(outcomes

(default (density 1.000000)
(quality_distribution 8.75 1.0)
(duration_distribution 9 0.25 4 0.25 7 0.50))))

(spec_task (label pingo-winroot)
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(earliest_start_time 78) (deadline 90)
(subtasks bromicacid aquanaut mandinka)
(qaf q_sum))

(spec_task (label bromicacid)
(subtasks randomize randomize-ff1)
(qaf q_max))

(spec_method (label randomize) (agent Naim)
(outcomes

(default (density 1.000000)
(quality_distribution 11.75 1.0)
(duration_distribution 10 0.50 13 0.25 7 0.25))))

(spec_method (label randomize-ff1) (agent Naim)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 8 0.50 9 0.25 6 0.25))))

(spec_task (label aquanaut)
(subtasks enervate enervate-ff1)
(qaf q_max))

(spec_method (label enervate) (agent Ole)
(outcomes

(default (density 1.000000)
(quality_distribution 11.75 1.0)
(duration_distribution 9 0.25 4 0.25 7 0.50))))

(spec_method (label enervate-ff1) (agent Ole)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 4 0.25 6 0.50 7 0.25))))

(spec_task (label mandinka)
(subtasks entrust entrust-ff1)
(qaf q_max))

(spec_method (label entrust) (agent Kyu)
(outcomes

(default (density 1.000000)
(quality_distribution 11.75 1.0)
(duration_distribution 8 0.50 10 0.25 5 0.25))))

(spec_method (label entrust-ff1) (agent Kyu)
(outcomes

(default (density 1.000000)
(quality_distribution 8.75 1.0)
(duration_distribution 4 0.25 5 0.50 6 0.25))))

(spec_task (label extent-winroot)
(earliest_start_time 84) (deadline 110)
(subtasks squashbug-syncpoint civilwar-syncpoint cellarage-syncpoint)
(qaf q_sum_and))
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(spec_task (label squashbug-syncpoint)
(subtasks cloudscape salesman plainsman angina)
(qaf q_sync_sum))

(spec_task (label cloudscape)
(subtasks orient orient-rd1)
(qaf q_max))

(spec_method (label orient) (agent Miek)
(outcomes

(default (density 1.000000)
(quality_distribution 10.75 1.0)
(duration_distribution 4 0.25 6 0.50 7 0.25))))

(spec_method (label orient-rd1) (agent Cris)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 8 0.50 10 0.25 5 0.25))))

(spec_task (label salesman)
(subtasks reface reface-ff1)
(qaf q_max))

(spec_method (label reface) (agent Blayne)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 11 0.50 14 0.25 7 0.25))))

(spec_method (label reface-ff1) (agent Blayne)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 9 0.50 10 0.25 7 0.25))))

(spec_task (label plainsman)
(subtasks diarize diarize-rd1)
(qaf q_max))

(spec_method (label diarize) (agent Amy)
(outcomes

(default (density 1.000000)
(quality_distribution 11.75 1.0)
(duration_distribution 9 0.50 11 0.25 6 0.25))))

(spec_method (label diarize-rd1) (agent Blayne)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 9 0.25 4 0.25 7 0.50))))

(spec_task (label angina)
(subtasks search search-ff1)
(qaf q_max))

(spec_method (label search) (agent Cris)
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(outcomes
(default (density 1.000000)

(quality_distribution 10.75 1.0)
(duration_distribution 8 0.50 10 0.25 5 0.25))))

(spec_method (label search-ff1) (agent Cris)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 8 0.25 5 0.25 7 0.50))))

(spec_task (label civilwar-syncpoint)
(subtasks gyrocopter shoreline putoption denverboot)
(qaf q_sum))

(spec_task (label gyrocopter)
(subtasks intoxicate intoxicate-ff1 intoxicate-rd1)
(qaf q_max))

(spec_method (label intoxicate) (agent Les)
(outcomes

(default (density 1.000000)
(quality_distribution 11.75 1.0)
(duration_distribution 9 0.50 11 0.25 6 0.25))))

(spec_method (label intoxicate-ff1) (agent Les)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 3 0.25 4 0.75))))

(spec_method (label intoxicate-rd1) (agent Cris)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 8 0.50 10 0.25 5 0.25))))

(spec_task (label shoreline)
(subtasks enwreathe enwreathe-rd1)
(qaf q_max))

(spec_method (label enwreathe) (agent Cris)
(outcomes

(default (density 1.000000)
(quality_distribution 10.75 1.0)
(duration_distribution 10 0.50 13 0.25 7 0.25))))

(spec_method (label enwreathe-rd1) (agent Miek)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 4 0.25 6 0.50 7 0.25))))

(spec_task (label putoption)
(subtasks configure configure-ff1 configure-rd1)
(qaf q_max))
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(spec_method (label configure) (agent Marc)
(outcomes

(default (density 1.000000)
(quality_distribution 11.75 1.0)
(duration_distribution 4 0.25 6 0.50 7 0.25))))

(spec_method (label configure-ff1) (agent Marc)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 4 0.25 5 0.50 6 0.25))))

(spec_method (label configure-rd1) (agent Les)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 3 0.25 5 0.50 6 0.25))))

(spec_task (label denverboot)
(subtasks skitter skitter-ff1)
(qaf q_max))

(spec_method (label skitter) (agent Starbuck)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 9 0.25 4 0.25 7 0.50))))

(spec_method (label skitter-ff1) (agent Starbuck)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 3 0.25 4 0.75))))

(spec_task (label cellarage-syncpoint)
(subtasks bonfire mojarra skimmilk flapjack)
(qaf q_sum))

(spec_task (label bonfire)
(subtasks preprogram preprogram-ff1 preprogram-rd1)
(qaf q_max))

(spec_method (label preprogram) (agent Galen)
(outcomes

(default (density 1.000000)
(quality_distribution 11.75 1.0)
(duration_distribution 3 0.25 5 0.50 6 0.25))))

(spec_method (label preprogram-ff1) (agent Galen)
(outcomes

(default (density 1.000000)
(quality_distribution 8.75 1.0)
(duration_distribution 9 0.50 10 0.25 7 0.25))))

(spec_method (label preprogram-rd1) (agent Starbuck)
(outcomes

(default (density 1.000000)

204



A.2 Sample C TAEMS Problem

(quality_distribution 10.00 1.0)
(duration_distribution 4 0.25 6 0.50 7 0.25))))

(spec_task (label mojarra)
(subtasks barf barf-ff1)
(qaf q_max))

(spec_method (label barf) (agent Starbuck)
(outcomes (default

(density 1.000000)
(quality_distribution 10.75 1.0)
(duration_distribution 3 0.25 5 0.50 6 0.25))))

(spec_method (label barf-ff1) (agent Starbuck)
(outcomes

(default (density 1.000000)
(quality_distribution 7.75 1.0)
(duration_distribution 8 0.25 5 0.25 7 0.50))))

(spec_task (label skimmilk)
(subtasks conceive conceive-ff1 conceive-rd1)
(qaf q_max))

(spec_method (label conceive) (agent Marc)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 11 0.50 14 0.25 7 0.25))))

(spec_method (label conceive-ff1) (agent Marc)
(outcomes

(default (density 1.000000)
(quality_distribution 8.75 1.0)
(duration_distribution 4 0.25 6 0.50 7 0.25))))

(spec_method (label conceive-rd1) (agent Les)
(outcomes

(default (density 1.000000)
(quality_distribution 8.75 1.0)
(duration_distribution 4 0.25 6 0.50 7 0.25))))

(spec_task (label flapjack)
(subtasks import import-rd1)
(qaf q_max))

(spec_method (label import) (agent Les)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 3 0.25 5 0.50 6 0.25))))

(spec_method (label import-rd1) (agent Marc)
(outcomes

(default (density 1.000000)
(quality_distribution 10.00 1.0)
(duration_distribution 4 0.25 6 0.50 7 0.25))))

205



A Sample Problems

;;NLEs
(spec_hinders (label salesman_to_fissure-ff1)

(from salesman) (to fissure-ff1) (delay 1)
(quality_power 0.50) (duration_power 0.50))

(spec_enables (label guttural-winroot_to_tandoori)
(from guttural-winroot) (to tandoori) (delay 1))

(spec_enables (label gutter-rd1_to_famous)
(from gutter-rd1) (to famous) (delay 1))

(spec_enables (label scorn-rd1_to_gutter-rd1)
(from scorn-rd1) (to gutter-rd1) (delay 1))

(spec_disables (label racerunner_to_randomize)
(from racerunner) (to randomize) (delay 1))

(spec_facilitates (label barmecide_to_exudate)
(from barmecide) (to exudate) (delay 1)
(quality_power 0.50) (duration_power 0.50))

(spec_facilitates (label enwreathe-rd1_to_elevon-winroot)
(from enwreathe-rd1) (to elevon-winroot) (delay 1)
(quality_power 0.50) (duration_power 0.50))

(spec_enables (label elevon-winroot_to_entrust)
(from elevon-winroot) (to entrust) (delay 1))

(spec_enables (label tandoori_to_barmecide)
(from tandoori) (to barmecide) (delay 1))

(spec_facilitates (label guttural-winroot_to_purchase-ff1)
(from guttural-winroot) (to purchase-ff1) (delay 1)
(quality_power 0.50) (duration_power 0.50))

(spec_hinders (label enervate_to_diarize)
(from enervate) (to diarize) (delay 1)
(quality_power 0.50) (duration_power 0.50))

(spec_enables (label stem-rd1_to_enervate)
(from stem-rd1) (to enervate) (delay 1))

;;Initial Schedule
(spec_schedule
(schedule_elements
(mousetrap (start_time 30) (spec_attributes (performer "Hector") (duration 9)))
(snarf (start_time 30) (spec_attributes (performer "Moses") (duration 11)))
(solve (start_time 30) (spec_attributes (performer "Betty") (duration 7)))
(unstop (start_time 45) (spec_attributes (performer "Marc") (duration 9)))
(scorn (start_time 45) (spec_attributes (performer "Les") (duration 7)))
(scorn-rd1 (start_time 45) (spec_attributes (performer "Cris") (duration 8)))
(misreport (start_time 50) (spec_attributes (performer "Kevan") (duration 10)))
(gutter-rd1 (start_time 55) (spec_attributes (performer "Liyuan") (duration 9)))
(gutter (start_time 60) (spec_attributes (performer "Kevan") (duration 5)))
(purchase (start_time 64) (spec_attributes (performer "Liyuan") (duration 6)))
(misreport-ff1 (start_time 65) (spec_attributes (performer "Kevan") (duration 9)))
(stem-ff1 (start_time 72) (spec_attributes (performer "Tandy") (duration 5)))
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(stem-rd1 (start_time 72) (spec_attributes (performer "Betty") (duration 7)))
(fissure-rd1 (start_time 72) (spec_attributes (performer "Naim") (duration 6)))
(tie (start_time 72) (spec_attributes (performer "Kyu") (duration 10)))
(randomize (start_time 78) (spec_attributes (performer "Naim") (duration 10)))
(enervate (start_time 80) (spec_attributes (performer "Ole") (duration 7)))
(entrust (start_time 82) (spec_attributes (performer "Kyu") (duration 8)))
(enwreathe-rd1 (start_time 84) (spec_attributes (performer "Miek") (duration 6)))
(import-rd1 (start_time 84) (spec_attributes (performer "Marc") (duration 6)))
(intoxicate (start_time 84) (spec_attributes (performer "Les") (duration 9)))
(barf (start_time 84) (spec_attributes (performer "Starbuck") (duration 5)))
(preprogram (start_time 84) (spec_attributes (performer "Galen") (duration 5)))
(preprogram-rd1 (start_time 89) (spec_attributes (performer "Starbuck") (duration 6)))
(orient (start_time 90) (spec_attributes (performer "Miek") (duration 6)))
(conceive (start_time 90) (spec_attributes (performer "Marc") (duration 11)))
(reface-ff1 (start_time 90) (spec_attributes (performer "Blayne") (duration 9)))
(diarize (start_time 90) (spec_attributes (performer "Amy") (duration 6)))
(search (start_time 90) (spec_attributes (performer "Cris") (duration 8)))
(skitter-ff1 (start_time 95) (spec_attributes (performer "Starbuck") (duration 4)))
(configure (start_time 101) (spec_attributes (performer "Marc") (duration 6))))
(spec_attributes (Quality 421.35208)))
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