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Abstract

The ubiquity of mobile wireless devices greatly magnifies the threats of
clandestine physical tracking, profiling, and surveillance. This is because
these devices often reveal their identities and locations to third parties, either
inadvertently to eavesdroppers nearby or in reports to location-based services.

In this dissertation, we address the challenges in building practical wire-
less protocols and services that protect users from these threats. To under-
stand the nature of the problem, we first quantify how easily eavesdroppers
can track devices that use 802.11, the dominant local area wireless protocol
for the foreseeable future. Using wireless traffic from hundreds of real de-
vices, we show that eavesdroppers can track 802.11 devices accurately even
if explicit identifiers, such as MAC addresses, are changed over time. This is
because implicit identifiers, or identifying characteristics of 802.11 traffic, can
still identify many users with high accuracy. We develop an automated proce-
dure that can identify users even when countermeasures, such as pseudonyms
and encryption, are employed.

In response to these shortcomings, we present the design and evaluation of
an 802.11-like wireless link layer protocol that obfuscates all transmitted bits,
rather than select fields, to increase privacy. By obscuring all bits, we greatly
increase the difficulty of identifying or profiling users from their transmis-
sions. Our design, called SlyFi, is nearly as efficient as existing schemes for
discovery, link setup, and data delivery because transmission requires only
symmetric key encryption and reception requires a table lookup followed by
symmetric key decryption. Experiments using our implementation on Atheros
802.11 drivers show that SlyFi performs comparably with 802.11 using WPA.

Finally, we demonstrate how to build wireless service directories that can
not track users who submit location-aware reports. This problem is increas-
ingly relevant for 802.11 hotspot directories, which may rely on users that sub-
mit accurate information about hotspot location and characteristics but want
to remain anonymous. We present Wifi-Reports, a location-based service that
provides Wi-Fi clients with historical information about AP location, perfor-
mance, and application support. Wifi-Reports addresses two conflicting goals:
preserving the privacy of users’ reports and limiting fraudulent reports.

Our contributions demonstrate that future wireless protocols and services
need not sacrifice users’ privacy in order to be practical.
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Chapter 1

Introduction

Privacy is widely recognized as one of the most important unresolved issues associated
with information technologies. For example, a recent CRA report identified “security that
users can understand and privacy that they can control” as a grand challenge for Trustwor-
thy Computing [44]. Similarly, the Federal Trade Commission identified privacy as cen-
tral to its consumer protection mission in light of modern computer and communications
technologies [54]. Meanwhile, significant public outcry has followed privacy incidents
involving network devices and services (e.g., AOLs release of poorly anonymized Web
search queries [15], Intel’s introduction of Processor Serial Numbers [6], and Benetton’s
addition of RFID into their clothing [26]).

In the context of network architecture, the protection of information privacy [164] has
primarily been achieved by maintaining the confidentiality of messages. That is, no en-
tity other than the sender or intended recipient can access the contents of a message and
the sensitive information therein. Much effort has concentrated on developing end-to-end
and link-layer protocols that encrypt messages to provide this form of privacy (along with
other security properties). The result has been many techniques that make the recovery of
the contents of encrypted messages computationally infeasible, even under strong assump-
tions, such as an attacker with prior knowledge of the encryption algorithm. On the whole,
these techniques have been extremely successful (despite occasional problems [30, 34])
and protocols that use these techniques, such as IPSEC, SSL, and WPA, are now in com-
mon use.

However, the emergence of ubiquitous computing devices raises new privacy concerns
not addressed by these techniques. A sample of these devices includes headsets, game
controllers, mobile phones, laptops, cameras, audio and video players, and specialized de-
vices such as blood pressure monitors with wireless communications. These devices are
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networked and are rapidly becoming integral parts of our daily lives — people, cars, and
homes may now have many of these devices to provide rich and seamless network con-
nectivity. Unfortunately, three properties of this class of devices raise additional threats:

Mobility of Devices. Unlike desktop computers, which served as the primary interfaces
for network access during most of the previous 30 years, these devices are often carried
with their users as they go about their daily lives. Moreover, many, such as smart phones
and wireless sensors, are used to connect to the Internet and to each other in an oppor-
tunistic manner, often without requiring user input. This mode of network access implies
that devices that identify themselves to third parties during communication enable those
parties to track them as they move from place to place, even if the remainder of their
communication is encrypted.

Wireless Communication. These devices typically connect to the Internet and to each
other via a wide range of wireless links, such as Bluetooth, 802.11, WiMAX, Zigbee and
GSM/UMTS. Wireless links are more exposed than their wired counterparts because trans-
missions are broadcast and can be received by anyone within radio range (e.g., about 250
meters with standard 802.11b radios [104]). Without sophisticated wiretapping hardware
or access to network cables, third parties that are not intended recipients may eavesdrop
on conversations using only commodity radios and off-the-shelf software. For example,
any nearby observer can intercept unique low-level identifiers that are always sent unen-
crypted, such as Bluetooth and 802.11 device addresses. Therefore, third entity eavesdrop-
pers can easily detect the presence of their devices and follow them from place to place.
Several tracking networks for Bluetooth and 802.11 have already been deployed in the
wild [33, 102, 103].

Location-based Services. The mobility of networked devices has also given rise to a large
number of location-based services to which users may explicitly report their locations in
order to obtain local information. For example, the iPhone and Android smart phones may
send a user’s location to Google to obtain driving directions; a number of smart phone
applications report users’ current locations in order to retrieve information about nearby
restaurants and other physical establishments. These services, therefore, also have the
ability to physically track clients that use them.

These three properties significantly magnify the threats of clandestine physical track-
ing and profiling because they give a number of entities the ability to collect information
that ties a person to his or her past and current locations. Therefore, our use of ubiquitous
computing devices poses threats to our location privacy even if the confidentiality of mes-
sages is maintained. A growing body of legal and social analyses argue that these threats
are significant, as location privacy (as a form of contextual integrity) is an important foun-
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dation for freedom, human relationships, and liberal democracy [123]. The erosion of
location privacy has, thus, drawn the concern of the popular media [29, 168], the United
States government [109, 169], and technical standards bodies [81]. To protect location
privacy, users must be able to control when and with whom their location information is
shared.

1.1 Location Privacy Threats

The primary threat to location privacy comes from the collection of location traces. A lo-
cation trace is a set of location samples known to be from the same device or user. In addi-
tion to revealing where a user has been, researchers have shown that outdoor location traces
(e.g., from GPS samples) can be used to infer a person’s mode of transportation [130] and
predict where they will drive [59, 98, 99]. Indoor location traces can be used to infer group
gatherings [120], and character traits [112] (e.g., age, work role, smoker, coffee drinker).

In order to collect a location trace about a device, an entity needs only the ability to
record the device’s location and the ability to assign a consistent identity to the location
measurements that distinguishes them from those recorded for other devices. The precise
definitions of location and identity will shape the nature of location privacy threats. In this
dissertation we typically define a location to be a spatial point measured with an accuracy
of 100 to 250 feet (the local area wireless transmission range). Knowledge of such a
location is usually sufficient to answer questions about whether a person visited a physical
establishment (e.g., “Was Alice at Bob’s house,” “Was Alice at the clinic,” and “Was
Alice at the 4th floor office?”). Since we are primarily concerned with location traces, we
define identity to be any identifier, with respect to a set of location measurements, that is
consistent and distinguishing over time. For example, the MAC address of wireless traffic
collected at a location is an identity because it does not change over time and is globally
unique.

It is important to note that the ability to capture location traces is concerning even
if these identities are not explicitly tied to user identities (e.g., a person’s name). This
is because a small amount of location context can be used to implicitly connect device
identifiers to user identities [27, 62, 64, 74, 75, 97]. For example, the identity of a device
used in a user’s home can be inferred to be tied to a person that lives there. Thus, device
tracking effectively enables user tracking. Even if a device can not be tied to a unique
individual, the ability to track it still poses threats. For example, a thief might want to
track all the devices that have been to a high-end retail store, regardless of the identity of
their owners.
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Figure 1.1: Entities that can detect the location and identity of Alice’s devices (bold).

1.1.1 A Taxonomy of Location Privacy Threats

The three properties of ubiquitous computing devices we discussed above imply that there
are a number of entities that may collect location traces about us. In this section, we
describe the types of entities that can obtain both location and identity information, how
they can do so, and whether they pose significant location privacy threats. We illustrate
this taxonomy of entities by considering an example involving a user Alice and her devices
(Figure 1.1).

Internet Service Providers. When Alice wants to connect her laptop the Internet, the
laptop must rendezvous with a wireless access point nearby, such as a Wi-Fi access point
(AP) or GSM base station. This access point may be controlled by an individual (e.g., the
Wi-Fi AP in Alice’s home) or by an access network Internet Service Provider (ISP) (e.g.,
the Wi-Fi APs on a campus network). Since local area wireless communications have a
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range of only tens of meters, a Wi-Fi AP can infer that Alice’s laptop is nearby, thereby
learning its rough location. Since Alice’s laptop typically must authenticate itself to access
points before obtaining connectivity, it also learns her identity. Access network ISPs, thus,
have the ability to collect location traces of their users. The scope of these traces will, of
course, be limited to where ISPs have access points and when users connect.

Location information and identity may also be transmitted as part of Alice’s com-
munications subsequent to obtaining connectivity. However, end-to-end encryption that
protects the confidentiality of messages can prevent ISPs from observing this information.
Moreover, as we describe in the next section, economic incentives and legal deterrents of-
ten exist that are sufficient to prevent ISPs from revealing our location traces under normal
circumstances, so technical countermeasures may not be necessary.

Ad-hoc devices. Alice’s laptop may also communicate locally with other wireless devices
such as her PDA without going through an access network, or to a private access point that
itself is mobile [133]. We call this ad-hoc communication. Ad-hoc communication is typ-
ically used between Bluetooth devices and between some Wi-Fi devices. These devices
can obviously detect that Alice’s laptop is nearby due to the limited range of local area
wireless connectivity. However, Alice will probably only authorize this communication if
she owns all such devices or trusts their owners. Moreover, the scope of traces collected by
ad-hoc devices are limited to when and where such devices communicate. Ad-hoc com-
munication is typically only used in social settings (e.g., to exchange music files or play
games) where device owners already have established social trust relationships. Therefore,
technical countermeasures may not be necessary to prevent ad-hoc devices from collecting
and abusing location traces.

Location-based services. Once a connection is established, Alice’s laptop will likely
communicate with services on the Internet. These services can obtain the location of Al-
ice’s laptop in a number of ways: the IP address that the access ISP assigns to it may reveal
coarse geographic location (typically to within 10s of kilometers [92]) or the client may
explicitly measure its own location (e.g., using GPS) and send it to the service as part of
a query. The later is typically the case with location-based services (LBSes), such as a
service that tells Alice the restaurants that are nearby. If Alice identifies herself to these
services before using them (e.g., by logging in), they then also obtain her identity. There-
fore, services that record these two pieces of information also have the ability to collect
location traces on their users. The scope of these traces may not be limited to a small
number of locations because clients may use these services wherever they have network
access. However, an LBS can only collect a location sample when a user makes a query
to the service and they can not ensure that all locations in queries are actually visited by
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users. Nonetheless, as we describe in the next section, a class of LBSes that are also rec-
ommender systems may need to collect location samples more frequently and accurately
in order to be effective. Therefore, technical countermeasures to protect location traces in
these systems may be needed.

Wireless eavesdroppers. Independent of whether her devices communicate through an
access point or in an ad-hoc fashion with each other, eavesdroppers nearby can overhear
her devices’ transmissions with proper radio equipment. These eavesdroppers, like access
points and ad-hoc devices, can infer location due to the limited range of wireless transmis-
sions. Furthermore, eavesdroppers can record device identities because they can observe
low-level identifiers such as addresses and network names in transmissions.

For example, it is trivial to track an 802.11 device today since each device advertises
a globally unique and persistent MAC address with every frame that it transmits. More
generally, 802.11 facilitates user tracking and inventorying attacks that are conceptually
identical to RFID threats [88], which have prompted much public concern over privacy.
The low cost of 802.11 and Bluetooth hardware and ease of access to network monitoring
software—all that is required for someone to locate others nearby and eavesdrop on their
traffic—enable anyone to track users, from government surveillance networks to ad hoc
scanners set up by thieves and curious individuals (e.g., [33, 102, 103]). Although the
scope of location traces collected by these entities is limited to the locations where they
have monitors deployed, clients may be secretly tracked whenever they use a wireless
device if a monitor is nearby. Finally, we note that the collection of location traces by
eavesdroppers need not be for malicious purposes. For example, it is often necessary to
collect wireless traces for diagnostic purposes. Such traces can effectively be combined
to form location traces because device identities are exposed. Since eavesdroppers may
have economic incentives to collect location traces (e.g., to profile users), we argue that
technical countermeasures are needed to prevent eavesdroppers from collecting them.

1.1.2 Legal and Economic Deterrents

ISPs typically do not need to collect location traces on their users in order to operate.
Since users enter into service level agreements with network providers and services that
they use, ISPs and LBSes have a strong incentive to protect their customer’s privacy, lest
their customers switch to a competing ISP that protects user privacy better. Moreover,
government actors are prevented from arbitrarily procuring this data by law the United
States [118, 157] and by the constitution of many European countries. In addition, tight
regulation of licensed spectrum used by cellular networks has made it difficult for entities
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other than ISPs to obtain the eavesdropping equipment for cellular protocols such as GSM.

Most LBSes only answer location-aware queries submitted by users (e.g., “Find the
restaurants near this location”), and, thus, do not have an explicit need to record user
identities and locations. We call any service that accepts location-based queries a query-
only LBS. Since users explicitly decide to report their locations to an LBS, they can control
when they allow these services to see their locations and can control the accuracy of the
location reported. As with ISP location traces, location privacy threats can be further
mitigated if location traces are anonymized or obfuscated (Section 1.3 surveys techniques).

Limitations of legal and economic deterrents. Unfortunately, due to the unlicensed na-
ture of the 802.11 and Bluetooth radio spectrum, existing legal deterrents against mobile
phone tracking may not apply to the tracking of these devices. Even if this were not the
case, it would be very difficult to enforce anti-eavesdropping measures because passive
eavesdropping is not easily detectable. No specialized hardware is needed to eavesdrop on
802.11 or Bluetooth, so it is also impractical to regulate the sale of such devices. Further-
more, eavesdroppers do not enter into any contractual agreements with those that they are
eavesdropping on, so they do not have any explicit legal incentive to protect users’ privacy.
Indeed, the purpose of eavesdropping is to collect information about users’ traffic, so they
have a disincentive to delete or anonymize location traces.

In addition, while ISPs have incentives to protect the privacy of their own customers’
privacy, their wireless networks may also act as large scale eavesdropping networks that
spy on the communications of other ISPs’ customers. Unfortunately, an ISP may not
be substantially deterred from protecting the privacy of these users, since they have no
contractual agreement with them and, indeed, may find it useful to collect location traces
about them to profile competitors and develop ways to try to attract their customers. We
categorize ISPs that behave in this manner as eavesdroppers.

Some LBSes are Web 2.0 services that use “crowd-sourcing” (e.g., reports submitted
by users) in order to populate their database. We term such LBSes crowd-sourced LBSes
because they are typically used to recommend services to their users. For example, there
are hundreds of Wi-Fi services providers in major metropolitan areas, so AP directories,
such as JiWire [85], Hotspotr [78], and WiGLE [167], are often used to locate Wi-Fi ser-
vice. Some of these directories rely on crowd-sourcing to populate them because manually
cataloging hotspots across many geographic areas is too burdensome. Because reports on
wireless APs also implicitly reveal locations that users have been, these directories effec-
tively collect location traces. These LBSes can not easily discard or anonymize location
traces that they collect because they rely on their users for location-aware information.

Unlike LBSes that just answer location-based queries, these LBSes need to hold users
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non-technical
entity type where when deterrents
access network ISPs access point locations user uses ISP legal, economic
ad-hoc devices rendezvous locations devices communicate social
query-only LBSes anywhere user makes query economic
crowd-sourced LBSes anywhere user records report none
wireless eavesdroppers monitor locations user uses wireless none

Table 1.1: Summary of entities that pose location privacy threats, where and when they can
track devices, and whether there are substantial non-technical deterrents against location
trace collection.

accountable (i.e., by recording their identity) and record locations of their reports in order
to provide good service. Standard techniques to anonymize or obfuscate reports would
severely degrade the utility of an AP directory service, for example, because it would
be hard to distinguish fraudulent and inaccurate reports. Therefore, crowd-soured LBSes
actually have an incentive to collect identifiable and accurate location traces in order to
improve their service. Indeed, these LBSes are most useful when its users submit reports
frequently (e.g., for every Wi-Fi AP that they visit).

1.1.3 Desirable Technical Countermeasures

Table 1.1 summaries the entities that pose potential threats to location privacy and their
properties. This dissertation focuses on technical countermeasures to those threats that
are currently not substantially mitigated by legal, economic, and social deterrents, namely,
those posed by wireless eavesdroppers and by crowd-sourced LBSes. Technical counter-
measures for other types of entities, such as query-only LBSes, may also be desired in
some circumstances, but there is already a relatively complete body of work that addresses
these measures. We describe this work in the Section 1.3.

1.2 Thesis and Approach

The very use of wireless networks by mobile wireless devices poses risks to location pri-
vacy even if users trust ISPs that they connect to and we disregard LBSes that are not
needed for network communication. In this dissertation, we seek to mitigate these loca-
tion privacy threats by improving the mechanisms necessary for network communication
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by ubiquitous computing devices. We make the following thesis:

Existing protocols and techniques that wireless devices use to discover and
communicate with each other pose risks to users’ location privacy. It is, how-
ever, possible to redesign these protocols and techniques to substantially mit-
igate location privacy threats without degrading their functionality or practi-
cality.

That is, we show that adversaries need only expend a small amount of resources and ef-
fort in order to track and profile devices that use existing wireless protocols. For example,
eavesdroppers can track and profile users with commodity hardware and typical LBSes
can track all users that login and submit information. The ease and limited cost of these
tracking and profiling attacks imply that almost anyone with the motivation can threaten
our location privacy. The goal of this dissertation is to develop protocols that significantly
raise the bar for adversaries that wish to carry out these attacks so that only a small minor-
ity of entities can carry them out in practice. In developing these protocols, however, we
also want to maintain the same functions of and achieve comparable efficiency to existing
protocols, so that adopters of these protocols do not have to make difficult trade-offs.

In order to illustrate problems with and solutions for wireless protocols in general, this
dissertation uses Wi-Fi (or 802.11) as a concrete case study. We use the terms Wi-Fi and
802.11 interchangeably. 802.11 is the most widely used local area wireless protocol today,
is used for both infrastructure and ad hoc networks, and is deployed in devices ranging
from laptops to cell phones. We examine empirical 802.11 networks and traffic to quan-
tify location privacy threats and develop solutions that maintain the same functionality of
existing 802.11 devices and networks. However, the qualitative conclusions we draw apply
to the broader class of wireless protocols, networks, and services that we have discussed
in this chapter.

Users of 802.11 devices typically take the following steps in order to communicate
with each other and the Internet. First, when connecting to the Internet, users must select
APs to use. Second, whether connecting to the Internet or to a nearby ad-hoc device,
users’ devices rendezvous with relevant APs and devices (i.e., discover and authenticate
those nearby). Finally, users’ devices communicate data to APs and to each other. Through
their communication, user devices may report about local services and their environment
(e.g., about the quality of the AP they are using).

Select. Locating and selecting an appropriate AP to use is an important part of the 802.11
usage model. This is typically achieved via out-of-band means, such as by matching the
AP’s network name to a trusted entity (e.g., a known home network). To facilitate AP
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discovery in unknown locations, a number of hotspot directories exist that report their
locations (e.g., [85, 78, 167]).

Rendezvous. The process of rendezvous with an AP in given area typically occurs by
listening for beacons transmitted by APs nearby or by broadcasting wild card query probes
and listening for responses. Once an AP is discovered, the user obtains any necessary
credentials to access the AP (e.g., by paying for access), typically through out-of-band
means (e.g., by obtaining a password from a web service or the AP’s owner). Then, and
after subsequent discovery attempts, the user’s device can automatically authenticate itself
to the AP.

Communicate. Once the device finishes setting up the connection with the AP, it can
communicate with and through it. One threat to location privacy comes from eavesdrop-
pers that can overhear the messages sent during rendezvous and communication.

Report. Many of the hotspot directory services described above rely on reports submitted
by users to populate them because manually cataloging hotspots across many geographic
areas is too burdensome. Since reports contain the location of APs that users have used
in addition to user identities, another potential threat to location privacy comes from these
directory services.

1.3 Thesis Scope

Section 1.1.3 outlined the three classes of entities that might obtain our location informa-
tion. In this dissertation, we focus on techniques that mitigate threats from eavesdroppers
and by those LBSes used for the discovery of wireless networks, as there are already incen-
tives and mechanisms for ISPs and query-only LBSes to protect their customers’ location
information. We also address other attacks that eavesdroppers and malicious directory
services might carry out, such as user profiling and inventorying.

Table 1.2 shows which entities can observe identity and location during each stage.
Identity may be revealed by explicit or implicit identifiers in link-layer or higher-layer
(IP or application layer) protocols. Location may be revealed by physical proximity (e.g.,
knowledge that a device is nearby due to its limited transmission range) or by a device
explicitly reporting it.

Most prior work on protecting location privacy has focused on preventing query-only
LBSes from obtaining identity, location, or both.
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Explicit identifiers in LBS queries. The traditional mechanism to protect privacy in
location traces is to replace each device identity with a pseudonym [132] (i.e., an identifier
that can not be traced back to a device). For example, a user may sign into an LBS
with a random name rather than with his real name. Unfortunately, a number of research
studies have shown that using pseudonyms in location traces is often insufficient to protect
location privacy because enough contextual information remains to tie a location trace
to a specific individual. These inference attacks have been effective on indoor location
traces [27] and outdoor GPS location traces [75, 97]. It has also been shown that a small
number of location traces with high-frequency periodic samples can be disambiguated
even if no two samples were linked by a pseudonym [64, 74, 166].

Self-reported location in LBS queries. As a consequence, there have also been a num-
ber of proposals to prevent query-only LBSes from collecting accurate location-traces
from their users by adding noise to self-reported location. Location privacy defenses in-
clude having users submit queries with lower fidelity [65, 28, 72, 114, 111], with lower
frequency [27, 75, 76], with added noise [97, 74, 173], or that are fake [93] to make a col-
lected location trace too inaccurate to be useful. Krum [100] and Duckham and Kulik [53]
present more complete surveys of the privacy issues surrounding query-only LBSes and
location trace anonymization in general.

Work on protecting location privacy in query-only LBSes is important, but it only ad-
dresses one phase of the wireless usage model (locating service). Merely using wireless
mobile devices enables undesirable parties such as eavesdroppers to collect location traces
because we reveal identity and location to many other entities through our use of mobile
devices. Furthermore, unlike query-only LBSes, which users can avoid if they do not
provide sufficient privacy guarantees, the processes of network discovery and communi-
cation can not be avoided without rendering all network-reliant applications useless. This
dissertation focuses on this more fundamental problem:

How we can build wireless protocols and discovery services in ways that pro-
tect location privacy?

To mitigate location privacy threats, either identity or location must be concealed from
the entities discussed in the previous section that are undeterred from collecting it: eaves-
droppers and crowd-sourced LBSes, in particular. Therefore, we focus on the following
three problems:

Explicit identifiers in network protocols. Wireless transmissions have limited range.
Therefore, it is difficult to conceal physical proximity from eavesdroppers because receiv-
ing a wireless transmission implies that a device is nearby. To prevent eavesdroppers from
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identity location
link-layer higher-layer physical proximity self-reported

LBS LBS
locate service (personalization (filtering results)

/accounting)
eavesdroppers, ad-hoc devices, ISPs eavesdroppers,

rendezvous ad-hoc devices, ISPs (device discovery) ad-hoc devices, ISPs
(device discovery) (limited wireless range)

eavesdroppers, ad-hoc devices, ISPs eavesdroppers,
communication ad-hoc devices, ISPs (message filtering) ad-hoc devices, ISPs

(message filtering) (limited wireless range)
crowd-sourced LBS crowd-sourced LBS

report on service (accountability) (accurate results)

Table 1.2: How identity and location is revealed during different stages of wireless device
usage. Each cell lists the entities that can observe such information and, in parenthesis,
the primary reason why the information is revealed.

tracking devices, a device’s transmissions must not contain any information that identifies
the device. Unfortunately, nearly all wireless protocols today, including 802.11, Bluetooth,
WiMAX, GSM, and RFID, transmit unique and device addresses in many of the packets
transmitted during rendezvous and communication (e.g., when associating in Bluetooth
and GSM and in all packets in 802.11).

Implicit identifiers in network protocols. Even if explicit identifiers are removed, how-
ever, other information that remains exposed in packet transmissions may reveal a de-
vice’s identity. More generally, a large body of security research has demonstrated that
side-channels such as packet sizes and inter-packet timing can be used to infer hidden in-
formation about those packets, such as their contents, the type of device that sent them,
etc. Although, simple counter-measures to these side-channel attacks have been proposed,
such as by adding cover-traffic and packet padding, they are heavy-weight and substan-
tially degrade performance.

Explicit identifiers in crowd-sourced reports. The mechanisms that facilitate service lo-
cation (e.g., finding an AP) may pose location privacy risks because they are often crowd-
sourced LBSes (e.g., AP directories such as JiWire and Hotspotr). These systems are in the
class of LBSes that are also recommender systems. That is, they take reports on localized
service (e.g., reports on an AP) from user volunteers and summarize those reports to give
other users recommendations nearby. The defenses against query-only LBSes discussed
above can not typically be applied to location-based recommender systems because they
all substantially degrade the accuracy of location information collected, rendering col-
lected reports useless.
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1.4 Our Contributions

We describe previous proposals that attempt to solve each of these three problems in sub-
sequent chapters. Prior work has two main limitations that this dissertation redresses:
First, previous solutions address the parts of the wireless usage model in a piecemeal fash-
ion; therefore, applying one proposal in isolation will not sufficiently address location
privacy threats in other stages of the usage model. It is a non-trivial exercise to stitch
various solutions together. Secondly, no previous proposal has been shown to be practical
when applied as replacements for real wireless protocols such as 802.11. This dissertation
studies the practical problems and solutions in building wireless protocols and discovery
services by actually implementing them. We make three major contributions:

1. We show that 802.11 eavesdroppers can track users using only logical-layer implicit
identifiers. Therefore, even if we conceal obvious device and service addresses,
such as MAC addresses, using pseudonyms as much previous work has proposed,
eavesdroppers can still carry out practical tracking attacks using commodity hard-
ware [127].

2. We show how to build complete and practical wireless protocols that conceal all
explicit identifiers, substantially mitigating eavesdroppers’ ability to detect implicit
identifiers. In other words, we show that such protocols can have the same func-
tionality and efficiency of 802.11, and also conceal all transmitted bits in mes-
sages [63, 129].

3. We show that it is feasible to build recommender LBSes for wireless service discov-
ery that protect the location privacy of users that contribute reports, yet are also re-
silient to malicious users that submit fraudulent reports. We show that such systems
can be practical alternatives to non-private 802.11 hotspot directories today [128].

The following three chapters presents our work for each contribution, respectively,
though the analysis of empirical wireless traffic, novel protocol design, and detailed eval-
uation of prototype implementations.

1.5 Dissertation Outline

The remainder of this dissertation is organized as follows:
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• Chapter 2 demonstrates that previously proposed counter measures, when applied
to existing protocols such as 802.11, are insufficient to prevent eavesdroppers from
collecting accurate location traces, thereby necessitating more private protocols.

• Chapter 3 demonstrates how to build complete wireless protocols that protect loca-
tion privacy from eavesdroppers by presenting the design and evaluation of a prac-
tical link-layer protocol that makes it impractical for eavesdroppers from carry out
tracking attacks.

• Chapter 4 demonstrates how crowd-sourced LBSes can protect location privacy in
a practical manner by presenting the design and evaluation of a privacy-preserving
crowd-sourced LBS for the discovery of wireless networks.

• Chapter 5 summarizes the contributions of this dissertation and outlines some open
problems.
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Chapter 2

Quantifying Tracking Threats

The best practices for securing 802.11 networks, embodied in the 802.11i standard [80],
provide user authentication, service authentication, data confidentiality, and data integrity.
However, they do not provide anonymity, a property essential to prevent location tracking.
It is trivial to track an 802.11 device today since each device advertises a globally unique
and persistent MAC address with every frame that it transmits. In response, researchers
have proposed applying pseudonyms [66, 84] (temporary, unlinkable names) to mask this
identifier, i.e., by having users periodically change the MAC addresses of their 802.11
devices.

In this chapter, we demonstrate that short-term pseudonyms are insufficient to provide
prevent the tracking of 802.11 devices. Even without a unique address, other characteris-
tics of users’ 802.11 traffic can identify them implicitly and track them with high accuracy.
An example of such an implicit identifier is the IP address of a service that a user frequently
accesses, such as his or her email server. In a population of several hundred users, this ad-
dress might be unique to one individual; thus, the mere observation of this IP address
would indicate the presence of that user. Of course, in a wireless network that employs
link-layer encryption, IP addresses would not be visible to an eavesdropper. However,
other implicit identifiers would remain and these identifiers can be used in combination to
identify users accurately.

This chapter quantifies how well a passive adversary can track users with four implicit
identifiers visible to commodity hardware. We thereby place a lower bound on how ac-
curately users can be identified implicitly, as more implicit identifiers and more capable
adversaries exist in practice. More specifically, we identify four previously unrecognized
implicit identifiers: network destinations, network names advertised in 802.11 probes, dif-
fering configurations of 802.11 options, and sizes of broadcast packets that hint at their
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contents. We then develop an automated procedure to identify users. This procedure
allows us to quantify how much information implicit identifiers, both alone and in combi-
nation, reveal about several hundred users in three empirical 802.11 traces.

Our evaluation shows that users emit highly discriminating implicit identifiers, and,
thus, even a small sample of network traffic can identify them more than half (56%) of the
time in public networks, on average. Moreover, we will almost never mistake them as the
source of other network traffic (1% of the time). Since adversaries will obtain multiple
traffic samples from a user over time, this high accuracy in traffic classification enables
them to track many users with even higher accuracy in common wireless networks. For
example, an adversary can identify 64% of users with 90% accuracy when they spend a
day at a busy hot spot that serves 25 concurrent users each hour.

Chapter outline. In Section 2.1 we illustrate the power of implicit identifiers with sev-
eral real examples. Section 2.2 discusses prior work on implicit identifiers. Section 2.3
explains our experimental methodology. Section 2.4 describes our empirical 802.11 traces.
Section 2.5 analyzes how well 802.11 users can be identified using each implicit identifier
individually. Section 2.6 examines how accurately an adversary can track people using
these implicit identifiers in public, home, and enterprise networks. We conclude this chap-
ter in Section 2.7.

2.1 The Implicit Identifier Problem

How significantly do implicit identifiers erode location privacy? Consider the seem-
ingly innocuous trace of 802.11 traffic collected at the 2004 SIGCOMM conference, now
anonymized and archived for public use [47]. Interestingly, hashing real MAC addresses
to pseudonyms is also the best practice for anonymizing traces such as this. Unfortunately,
implicit identifiers remain and they are sufficient to identify many SIGCOMM attendees.
For example:

Implicit identifiers can identify us uniquely. One particular attendee’s laptop transmit-
ted requests for the network names “MIT,” “StataCenter,” and “roofnet,” identifying him
or her as someone probably from Cambridge, MA. This occurred because the default be-
havior of a Windows laptop is to actively search for the user’s preferred networks by name,
or Service Set Identifier (SSID). The SSID “therobertmorris” perhaps identifies this person
uniquely [137]. A second attendee requested “University of Washington” and “djw.” The
last SSID is unique in the SIGCOMM trace and suggests that this person may be Univer-
sity of Washington Professor David J. Wetherall, one of our coauthors. More distressingly,
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Wigle [167], an online database of 802.11 networks observed around the world, shows that
there is only one “djw” network in the entire Seattle area. Wigle happens to locate this
network within 192 feet of David Wetherall’s home.

Implicit identifiers remain even when counter measures are employed. Another SIG-
COMM attendee transferred 512MB of data via BitTorrent (this user contacted hosts on
the typical BitTorrent port, 6881). A request for the SSID “roofnet” [140] from the same
MAC address suggests that this user is from Cambridge, MA. Suppose that this user had
been more stealthy and changed his or her MAC address periodically. In this particular
case, since the user had not requested the SSID during the time he or she had been down-
loading, the MAC address used in the SSID request would have been different from the
one used in BitTorrent packets. Therefore, we would not be able to use the MAC address
to explicitly link “roofnet” to this poor network etiquette. However, the user does access
the same SSH and IMAP server nearly every hour and was the only user at SIGCOMM to
do so. Thus, this server’s address is an implicit identifier, and knowledge of it enables us
to link the user’s sessions together.

Now suppose that the network employed link-layer encryption scheme, such as WPA,
that obscures network addresses. Even then, we could link this user’s sessions together by
employing the fact that, of the 341 users that sent 802.11 broadcast packets, this was the
only one that sent broadcast packets of sizes 239, 245, and 257 bytes and did so repeatedly
throughout the entire conference. Furthermore, the identical 802.11 capabilities advertised
in each session’s management frames improves our confidence of this linkage because
these capabilities differentiate different 802.11 cards and drivers. Prior research has shown
that peer-to-peer file sharing traffic can be detected through encryption [172]. Thus, even
if pseudonyms and link-layer encryption were employed, we could still implicate someone
in Cambridge.

In the remainder of this chapter, we examine how the shortcomings of wireless proto-
cols impact the location privacy of a large number of users in different 802.11 networks
and demonstrate that the examples described in this section are not isolated anomalies.

2.2 Related Work

The body of work that examines inferring information from implicit side-channels falls
into three categories: using logical layer side-channels to fingerprint devices, using logical
layer side-channels to infer message contents, and using physical layer side-channels to
fingerprint devices.
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Logical layer fingerprints. Seemingly innocuous information such as packet sizes, tim-
ing, and header information serve as fingerprints that identify individual devices or classes
of devices. We call such fingerprints implicit identifiers because they can implicitly iden-
tify the device that transmitted a sequence of messages even when no explicit identifiers,
such as MAC addresses, are exposed. For example, Kohno et al. [95] showed that devices
could be fingerprinted using the clock skew exposed by TCP timestamps. Padmanabhan
and Yang [126] explored fingerprinting users with “clickprints,” or the paths that users
take through a website. Security tools like nmap [61] and p0f [125] leverage differences
in network stack behaviors to determine a device’s operating system.

Although this work demonstrates serious privacy risks with the release of IP or application-
level network traces, the information these fingerprinting techniques rely on is concealed
by link-layer encryption. Thus, they are less of a concern for properly secured wireless
communications. There are also practical limitations that limit tracking attacks using these
implicit identifiers as well. Kohno et al. note that one limitation of their work is that an
adversary can not passively obtain timestamps from devices running the most prevalent
operating system, Windows XP. For example, we find that only 15%-32% of users in send
TCP timestamps in wireless traces that we analyze. Padmanabhan and Yang’s techniques
rely on data from many user sessions collected at actual web servers.

In contrast to these IP and application layer implicit identifiers, Franklin et al. [56]
showed that it is possible to fingerprint device drivers using the timing of 802.11 probes.
However, it is not yet clear how well individual devices can be distinguished using this
implicit identifier.

By addressing these limitations in this chapter, we show that tracking wireless devices
using implicit identifiers exposed in wireless protocols is practical. These three research
efforts compliment our work, since the procedure we develop for identifying users enables
an adversary to use these implicit identifiers in combination with ours, yielding even more
accurate user fingerprints. None of these previous efforts offer a formal method to combine
multiple pieces of evidence. Moreover, to our knowledge, we are the first to evaluate the
how well users are identified by implicit identifiers observed in empirical wireless data.

Logical layer message inference. Implicit identifiers also reveal sensitive information
other than device identity. Key-stroke dynamics have been shown to accurately identify
users [115, 147]. The timing and sizes of Web transfers often uniquely identify web-
sites, even when transmitted over encrypted channels [31, 150]. Finally, there has been
a large body of research in identifying applications from implicit identifiers in encrypted
traffic [90, 91, 116, 172, 177].

It is important to note that many of these side-channel attacks are partly enabled by
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the presence of short-term connection (i.e., session) identifiers. This is because they rely
on analyzing sequences of encrypted messages in individual connections. Thus, if an
eavesdropper could not distinguish the messages sent in different connections, these side-
channels would be much noisier and harder to extract accurate information from. We
exploit this fact in our solution presented in Chapter 3.

Physical layer fingerprints. Physical layer information may also sometimes act as side
channels that link messages together, but they are typically less accurate than logical layer
fingerprints or require expensive, non-commodity hardware to detect. For example, Tao et
al. [153] and Bahl and Padmanabhan [12] show that signal strength measurements from
multiple locations can be used to distinguish the rough locations where they originated.
Therefore, when devices are stationary, they can approximately distinguish the messages
sent by each one. Nonetheless, Bauer et al. [18, 19] find that, while using multiple sig-
nal strength measurements to distinguish messages sources can be moderately accurate,
the error rate is sufficiently high that certain side-channel attacks (e.g., [105]) have much
lower success rates (e.g., 50% vs. 95%). Moreover, collecting sufficient physical layer fin-
gerprints requires multiple monitoring points and their accuracy can be reduced by varying
a client’s transmit power [18, 19]. Patwari et al. [131] describe a similar location distin-
guishing physical layer fingerprint based on measuring a device’s multipath signal prop-
agation signature. However, it is not possible to collect these signatures with commodity
hardware (software defined radios were used).

Differences in radio transients induced by manufacturing defects in different radios
might also be used to fingerprint devices. Some work has shown this to be true at least for
a small number of devices [16, 70, 143]. Other persistent signal and modulation differ-
ences induced by manufacturing defects can be used to accurately fingerprint devices [36].
However, all these fingerprinting techniques require expensive signal analyzers to perform,
so only well-funded adversaries are likely to be able to deploy networks of these monitors
at threatening scales.

This dissertation focuses on logical layer fingerprints and message inference and does
not explicitly address physical layer implicit identifiers. Therefore, an eavesdropper with
specialized equipment, such as expensive signal analyzers, may still be able to track users
when our solutions are applied. However, it is much less likely that such expensive equip-
ment would be deployed as part of surveillance networks rather than commodity hardware.
Moreover, our solutions are a necessary first step in defending against such threats.
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2.3 Experimental Setup

This section describes the evaluation criteria we use to determine how well several implicit
identifiers can be used to track users.

The Adversary. Strong adversaries, such as service providers and large monitoring net-
works, obviously pose a large threat to our location privacy. However, the significance of
the threat posed by 802.11 is that anyone that wishes to track users can do so.

Therefore, we consider an adversary that runs readily available monitoring software,
such as tcpdump [156], on one or more laptops or on less conspicuous commodity 802.11
devices [165]. We further restrict adversaries by assuming that their devices listen pas-
sively. That is, they never transmits 802.11 frames, not even to associate with a network.
This means that the adversary can not be detected by other radios. The adversary deploys
monitoring devices in one or more locations in order to observe 802.11 traffic from nearby
users. By considering a weak adversary, we place a lower bound on the accuracy with
which users can be tracked, as stronger adversaries would be strictly more successful.

The Environments. An adversary’s tracking accuracy will depend on the 802.11 net-
works he or she is monitoring. Since implicit identifiers are not perfectly identifying, it
will be more difficult to distinguish users in more populous networks. In addition, differ-
ent networks employ different levels of security, making some implicit identifiers invisible
to an adversary. We consider the three dominant forms of wireless deployments today:
public networks, home networks, and enterprise networks.

Public networks, such as hot spots or metro-area networks [117], are typically un-
encrypted at the link-layer. Although many public networks employ access control—for
example, to allow access to only a provider’s customers—most do so via authentication
above the link-layer (e.g., through a web page) and by using MAC address filtering there-
after. Very few use 802.11i-compliant protocols that also enable encryption. Hence, identi-
fying features at the network, link, and physical layers would be visible to an eavesdropper
in such an environment. Unfortunately, this is the most common type of network today
due to the challenge of secure key distribution.

Home and small business networks are small, but detecting when specific users are
present is increasingly challenging due to the high density of access points in urban ar-
eas [8]. In addition, these networks are more likely to employ link-layer encryption, such
as WEP or WPA, because the set of authorized users is typically known and is small. In
cases where link-layer encryption is employed, an eavesdropper will not be able to view
the payloads of data packets. However, features that are derived from frame sizes or tim-
ing, which are not masked by encryption, or from 802.11 management frames, which are
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always sent in the clear, remain visible.

Finally, security conscious enterprise networks are likely to employ link-layer encryp-
tion. Moreover, if the only authorized devices on the network are provided by the company,
there will be less diversity in the behavior of wireless cards. For example, Intel corporation
issues similar corporate laptops to its employees. We consider a enterprise network where
only one type of wireless card and configuration is in use, so users can not be identified by
differences in device implementation. However, features derived from the networks that
users visit or the applications and services they run remain visible.

The Monitoring Scenario. We assume that users use different pseudonyms during each
wireless session in each of these environments, as Gruteser et al. [66] propose. As a result,
explicit identifiers can not link their sessions together. Sessions can vary in length, so we
assume that every hour, each user will have a different pseudonym. We define a traffic
sample to be one user’s network traffic observed during one hour.

Although it is possible for users to change their MAC addresses more frequently, this
is unlikely to be very useful in practice because other features, such as received signal
strength, can link
pseudonyms together at these timescales [13, 154]. Moreover, changing a device’s MAC
address forces a device to re-associate with the access point and, thus, disrupts active con-
nections. In addition, it may require users to revisit a web page to re-authenticate them-
selves, since MAC addresses are tied to user accounts in many public networks. Users are
unlikely to tolerate these annoyances multiple times per session.

Of course, the ability to link traffic samples together does not help an adversary detect
a user’s presence unless the adversary is also able to link at least one sample to that user’s
identity. In Section 2.1, we showed that identity can sometimes be revealed by correlating
implicit identifiers with out-of-band information, such as that provided by the Wigle [167]
location database. However, if the adversary knows the user he wishes to track, he can
likely obtain a few traffic samples known to come from that user’s device. For example, an
adversary could obtain such samples by physically tracking a person for a short time. We
assume the adversary is able to obtain this set of training samples either before, during, or
after the monitoring period. Our results show that on average, only 1 to 3 training samples
are sufficient to track users with each implicit identifier (see Section 2.5.2). The monitor
itself collects samples that the adversary wants to test, which we call validation samples.

Evaluation Criteria. There are a number of questions an adversary may wish to answer
with these validation samples. Who was present? When was user U present? Which sam-
ples came from user U? Essential to answering all these questions is the ability to classify
samples by the user who generated them. In other words, given a validation sample, the
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sigcomm ucsd apt
training validation training validation training validation

Duration (hours) 37 54 10 11 119 345
Total Samples 1974 3391 587 1240 638 1473
Frames Per Sample (median) 289 284 1227 1128 57 92
Total Users 377 412 225 371 97 196
Profiled Users 337 337 153 153 39 39
Samples per Profiled User (mean) 5.5 9.1 3.1 4.7 14.7 32.2
Users per Hour (mean) 53 64 59 113 5 4

Table 2.1: Summary of relevant workload statistics and parameters. The duration reports
only hours with at least one active user.

adversary needs to answer the following question for one or more users U :

Question 1 Did this traffic sample come from user U?

Section 2.5 evaluates how well an adversary can answer this question with each of our
implicit identifiers.

To demonstrate how well implicit identifiers can be used for tracking, we also evaluate
the accuracy in answering the following:

Question 2 Was user U here today?

This question is distinct from Question 1 because an adversary can observe many traffic
samples at any given time, any one of which may be from the target user U . In addition, a
single affirmative answer to Question 1 does not necessitate a affirmative answer to Ques-
tion 2 because an adversary may want to be more certain by obtaining multiple positive
samples. Section 2.6 details the interaction between these questions and evaluates how
many users can be tracked with high accuracy in each of the 802.11 networks described
above.

2.4 Wireless Traces

We evaluate the implicit identifiers of users in three 802.11 traces. We consider sigcomm,
a 4 day trace taken from one monitoring point at the 2004 SIGCOMM conference [47],
ucsd, a trace of all 802.11 traffic in U.C. San Diego’s computer science building on
November 17, 2006 [43], and apt, a 19 day trace monitoring all networks in an apartment
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building, which we collected. All traces were collected with tcpdump-like tools and
only contain information that can be collected using standard wireless cards in monitor
mode. The ucsd trace is the union of observations from multiple monitoring points. IP
and MAC addresses are anonymized but are consistent throughout each trace (i.e., there
is a unique one-to-one mapping between addresses and anonymized labels). Link-layer
encryption (i.e., WEP or WPA) was not employed in either the sigcomm or ucsd net-
work and neither trace recorded application packet payloads. In our analysis, we show
that implicit identifiers remain even when we emulate link layer encryption and that we
do not need packet payloads to identify users accurately. The apt trace only recorded
broadcast management packets due to privacy concerns; hence, we only use it to study the
one implicit identifier that is extracted from these packets.

We distinguish unique users by their MAC address since it is not currently common
practice to change it. To simulate the effect of using pseudonyms, we assume that every
user has a different MAC address each hour. Hence, we have one sample per user for each
hour that they are active. To simulate the training samples collected by an adversary, we
split each trace into two temporally contiguous parts. Samples from the first part are used
as training samples and the remainder are validation samples. We choose a training period
in each trace long enough to profile a large number of users. For the sigcomm trace, the
training period covers the time until the end of the first full day of the conference. For
the ucsd trace, the training period covers the time until just before noon. We skip one
hour between the training and validation periods so user activities at the end of the training
period are less likely to carry over to the validation period. For the apt trace, the training
period covers the first 5 days. We consider a user to be present during an hour if and only
if she sends at least one data or 802.11 probe packets during that time; i.e., if the user is
actively using or searching for a wireless network.1

Table 2.1 shows the relevant statistics about each trace. Note that since can we only
compute accuracy for users that were present in both the training and validation data, those
are the only users that we profile. Therefore, results in this chapter refer to ‘Profiled Users’
as the total user count and not ‘Total Users.’

1We ignore samples that only contain other 802.11 management frames, such as power management
polls. Including samples with these frames would not appreciably change the characteristics of the
sigcomm workload, but would double the number of total “users” in the ucsd workload. This is be-
cause many devices observed in the ucsd trace were never actively using the network; we ignore these idle
devices.
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2.5 Implicit Identifiers

In this section, we describe four novel implicit identifiers and evaluate how much informa-
tion each one reveals. Our results show that (1) many implicit identifiers are effective at
distinguishing individual users and others are effective at distinguishing groups of users;
(2) a non-trivial fraction of users are trackable using any one highly discriminating iden-
tifier; (3) on average, only 1 to 3 training samples are required to leverage each implicit
identifier to its full effect; and (4) at least one implicit identifier that we examine accurately
identifies users over multiple weeks.

2.5.1 Identifying Traffic Characteristics

Network Destinations. We first consider netdests, the set of IP <address, port> pairs
in a traffic sample, excluding pairs that are known to be common to all users, such as the
address of the local network’s DHCP server. There are several reasons to believe that this
set is relatively unique to each user. It is well known that the popularity of web sites has
a Zipf distribution [35], so many sites are visited by a small number of users. In fact, in
the sigcomm and ucsd training data, each <address, port> pair is visited by 1.15 and
1.20 users on average, respectively. The set of sites that a user visits is even more likely
to be unique. In addition, users are likely to visit some of the same sites repeatedly over
time. For example, a user generally has only one email server and a set of bookmarked
sites they check often [155].

An adversary could obtain network addresses in any wireless network that does not
enable link layer encryption. Even if users sent all their traffic through VPNs, the case
for several users in the sigcomm trace, the IP addresses of the VPN servers would be
revealing. No application or network level confidentiality mechanisms, such as SSL or
IPSec, would mask this identifier either.

SSID Probes. Next we consider ssids, the set of SSIDs in 802.11 probes observed in a
traffic sample. Windows XP and OS X add the SSID of a network to a preferred networks
list when the client first associates with the network. To simplify future associations, sub-
sequent attempts to discover any network will try to locate this network by transmitting
the SSID in a probe request. As we observed in Section 2.1, SSID names can be distin-
guishing.2 In addition, probes are never encrypted because active probing must be able to

2A recent patch [113] to Windows XP allows a user to disable active probing, but it remains enabled by
default because disabling it would break association in networks where the access point does not announce
itself. In addition, revealing probes or beacons are still required for devices to discover each other in ad hoc
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occur before association and key agreement.

There are two practical issues that limit the use of ssids as an implicit identifier. First,
the preferred networks list changes each time a user adds a network, and thus a profile
may degrade over time. Second, clients transmit the SSIDs on their preferred networks
lists only when attempting to discover service. Therefore, clients may not probe for distin-
guishing SSIDs very often. While this is true, our results show that when distinguishing
SSIDs are probed for, they can often uniquely identify a user. Since all users in the mon-
itoring area are likely to use the SSIDs of the networks being monitored, these SSIDs are
not distinguishing and we do not include them in the ssids set.

Broadcast Packet Sizes. We now consider bcast, the set of 802.11 broadcast packet
sizes in each traffic sample. Many applications broadcast packets to advertise their exis-
tence to other machines on the local network. Due to the nature of this function, these
packets often contain naming information. For example, in our traces, we observed many
Windows machines broadcasting NetBIOS naming advertisements and applications such
as FileMaker and Microsoft Office advertising themselves.

Since these packets vary in length, their sizes can reveal information about their content
even if the content itself is encrypted. Packet sizes alone appear to distinguish users almost
as well as <application, size> tuples. For example, in the sigcomm trace, there are only
16% more unique tuples than unique sizes. Table 2.2 lists the most unique broadcast
packet sizes we observed and the application port that generated them. Broadcast packets
are sent to a known broadcast MAC address; thus, an adversary can distinguish them from
other traffic even if link encryption is employed and the adversary is not granted network
privileges. This set would remain identifying even when user behavior changes because
most broadcast packets are emitted automatically.

Two types of broadcast packets, standard DHCP requests and power management bea-
cons, are common to all users, since a device must send a DHCP request in order to obtain
an IP address and sends power management beacons when in low power mode. Thus, we
do not include these packets’ sizes in the bcast set. These packets have distinct sizes (336
and 36 payload bytes, respectively) so they can be filtered even when link-layer encryption
is enabled.

MAC Protocol Fields. Finally, we consider fields, the specific combination of 802.11
protocol fields visible in the MAC header that distinguish a user’s wireless card, driver, and
configuration. The fields included are the ‘more fragments,’ ‘retry,’ ‘power management,’
and ‘order,’ bits in the header, the authentication algorithms offered, and the supported

mode.
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Application Port Number of Sizes
wireless driver or OS NA 14
DHCP 67 14
sunrpc 111 1
NetBIOS 138 7
groove-dpp 1211 1
Microsoft Office v.X 2222 1
FileMaker Pro 5003 7
X Windows 6000 1

Table 2.2: A list of the most unique broadcast packets observed in the sigcomm trace.
The third column shows the number of packet sizes that were emitted by at most 2 users.

transmission rates. Some card configurations can be more or less likely to emit different
values in each of these fields, so they can distinguish users with different wireless cards.
Although this identifier is unlikely to distinguish users uniquely, it can be combined with
others to add more evidence. Moreover, many of these fields are available in any 802.11
packet, so they can almost always assist in identification. Furthermore, the likelihood of
any particular field combination is unlikely to change for a user unless she obtains a new
wireless device or driver; thus, fields should remain identifying over long time periods.

2.5.2 Evaluating User Distinctiveness

To show much information each identifier reveals, we now evaluate how accurately an
adversary can answer Question 1 (see Section 2.3) using each implicit identifier.

Methodology

We construct a classifier CU for each user U in our traces. Given a traffic sample s, CU re-
turns “Yes” if it believes the sample came from user U and “No” otherwise. We use a naı̈ve
Bayes classifier due to its effectiveness in application traffic classification [116, 172, 177].
More sophisticated classifiers exist, but this simple one is sufficient to demonstrate that
implicit identifiers are a problem. Specifically, from each traffic sample, we extract a
vector of features (f1, . . . , fm). In our case, m ≤ 4, one feature per implicit identifier
present in the sample. Each of our features has a different source, so we assume that they
are independent. For each feature fi, we estimate the posterior probability distribution
Pr[s has fi|s is from U ] and the prior probability distribution
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Pr[s has fi] from training data. We are interested in
Pr[s is from U |s has f1, . . . , fm] =∏m

i (Pr[s has fi|s is from U ]) · Pr[s is from U ]∏m
i Pr[s has fi]

.

We classify a sample as being from U if and only if this value is greater than a threshold T .
We also estimate the prior
Pr[s is from U ] from training data, though this could also be based on a priori knowledge
of how frequently the adversary believes his target will be present.

Feature Generation. To compute these probabilities, we must convert each of our im-
plicit identifiers into a categorical or real-valued feature. We treat the fields identifier as a
categorical feature by having each field combination represent a different value. Each of
the other three identifiers is defined as a set of discrete elements; e.g., netdests is a set
of network addresses. The following procedure describes how this set is converted into a
real-valued feature that measures how similar it is to the target user’s expected set.

We first construct a profile set, ProfileU , comprising all the elements in the union of
all training samples for user U . To obtain a numeric value from the set of elements from
a sample s, Sets, we use a weighted version of the Jaccard similarity index [159] of the
profile and the sample sets. The Jaccard index of two sets computes J(X, Y ) = |X∩Y |

|X∪Y | .
However, some elements in each set are more discriminating than others (i.e., those that
we observe in fewer users’ traffic). Hence, we weight each element e by w(e), the inverse
of the number of users that accessed it. We learn these weights from the training data.
Hence, given the profile ProfileU , the feature we compute for sample s is:

featureU(s) =

∑
e∈ProfileU∩Sets

w(e)∑
e∈ProfileU∪Sets

w(e)
.

This value quantifies how similar the set seen in the sample is to the user’s profile. Since
this procedure computes a real-valued feature, we estimate the probability distributions
using a density estimator. We use the default estimator in the R statistical package [135],
which uses multiple Gaussian kernels.

Accuracy Metrics

Implicit identifiers are not perfectly identifying. Therefore, to evaluate Question 1, we
quantify the accuracy of our classifier. Accuracy has two components: (1) the true positive
rate (TPR), or the fraction of validation samples that user U generates that we correctly
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Figure 2.1: Mean TPR and FPR as the classifier threshold T is varied for fields.
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Figure 2.2: CCDF of classifier thresholds T that achieve FPR = 0.01 for different users

classify, and (2) the false positive rate (FPR), or the fraction of validation samples that user
U does not generate that we incorrectly classify. The former tells us how often U ’s traffic
will identify her, while the later tells us how often we will mistake U as the source of other
traffic. We measure accuracy with TPR and FPR instead of just precision (i.e., the fraction
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Fraction of users trainable
sigcomm ucsd

netdests 0.89 0.84
ssids 0.81 0.55
bcast 0.70 0.65
fields 1.00 1.00

Table 2.3: The fraction of profiled users that we could train using each feature.

of all samples classified correctly) because the vast majority of samples are negative (i.e.,
not from the target user). Hence, classifiers that mark a larger fraction samples as negative
would score higher in precision even if they marked the same fraction of true positives
incorrectly.

Trainable Users. When evaluating each identifier, we consider only those users that have
at least one training sample that contain it, since we can’t build profiles for those with no
such samples. Table 2.3 shows the number of profiled users that exhibit each feature in
the training period. Each implicit identifier is exhibited by a different subset of users. In
both workloads, each implicit identifier is exhibited by a majority of profiled users. The
fraction of users that exhibited the ssids feature is lower in the ucsd workload (55% vs
81%) because fewer users sent SSID probes to search for a network. This may be because
many ucsd users already established a high preference for the UCSD network, having
used it previously. sigcomm users were all new to the SIGCOMM network and initiated
broader searches for their preferred networks before association.

Classifier Thresholds. We evaluate each classifier across several thresholds T in order
to determine the trade-off between TPR and FPR. As T increases, FPR and TPR decrease
because the classifier requires more evidence that a user is present in order to answer
positively. This is exemplified in Figure 2.1 for the classifier using the fields feature. We
assume that an adversary desires a target FPR, such as 1 in 100, and chooses a threshold
T based on that target. Ideally, the target FPR would be low. Due to variance in each
user’s training data, an adversary may need to use different thresholds to achieve the same
FPR for different users. This is exemplified in Figure 2.2, which shows a complementary
cumulative distribution function (CCDF) of thresholds that achieve FPR = 0.01 for each
user’s classifier using the fields feature. An adversary would train a different classifier for
each user that he is tracking. In practice, an adversary would have to select T without a
priori knowledge of the FPR achieved on the validation data. In Section 2.6.1, we show
that an adversary can select T to achieve a desired FPR without this knowledge when using
multiple features in combination.
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Figure 2.3: Classification accuracy using each feature. The top two graphs show the mean
achieved TPR for (a) FPR = 0.01 and (b) FPR = 0.1. The line above each bar show the
maximum expected TPR given a perfect classifier on that feature. The bottom two graphs
show a CCDF of the achieved TPR on sigcomm users for (c) FPR = 0.01 and (d) FPR =
0.1.

Results

In order to examine the characteristics of each individual implicit identifier, we now focus
on the TPR achieved for different FPR targets using each identifier in isolation.

Mean Accuracy. Figure 2.3(a) and (b) shows the mean TPR achievable with each im-
plicit identifier in isolation for FPR = 0.01 and FPR = 0.1, respectively. For example, when
using netdests, we can identify samples from the average user in both workloads about
60% of the time for FPR = 0.01. The line above each bar indicates the maximum expected
TPR that a perfect classifier would achieve on that implicit identifier—i.e., a classifier that
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always classifies a sample correctly if it has that implicit identifier, but guesses randomly
otherwise. This line is below 1.0 because some validation samples do not contain a partic-
ular implicit identifier and, hence, even a perfect classifier on this identifier would not do
better than random guessing on those samples. For example, many samples have no SSID
probes and, thus, are missing the ssids identifier.

Figure 2.3(a) shows that the average user sometimes emits an implicit identifier that is
highly distinguishing. netdests, ssids, and bcast all achieve moderate TPRs (about 60%,
18%, and 30%, respectively) even for a very low FPR (1%). The lower TPR for ssids is
expected, since users usually only emit distinguishing SSIDs when they are searching for
a network. Indeed, the theoretical maximum TPR achievable by a perfect classifier is only
about 40%. Also, as expected, fields is not able to identify many samples on its own since
it only distinguishes wireless cards and drivers.

Figure 2.3(b) shows that the TPR for fields improves to 40% and 60% when FPR =
0.1, for the sigcomm and ucsd workloads, respectively. Thus, the fields identifier is
good at classifying users into groups, and can aid in identifying users in those cases when
no unique identifier is observed. This is expected, since fields only distinguishes wireless
cards and divers. The TPR of the other three features improves much less dramatically
when we increase the allowable FPR from 0.01 to 0.1. This is because most of the other
implicit identifiers either uniquely identify a user, or are not identifying at all. Thus, the
TPR gains observed when we increase FPR are mostly due to less conservative random
guessing on the remaining samples.

This effect can be seen in Figure 2.4, which shows the variation in mean TPR and
FPR across classification thresholds for sigcomm users. The x = y line shows how
well random guessing is expected to perform. The TPR of all the features except for
fields grows roughly linearly toward 1.0 after the initial spike, which is the effect that
progressively less conservative random guessing would have.

For all features, users in the ucsdworkload are slightly more identifiable than those in
the sigcomm trace. This is probably because there are more total users in the sigcomm
workload and, thus, a higher likelihood that two users exhibit the same traits. We examine
the effect population size has on tracking in Section 2.6.2.

Variation Across Users. Accuracy for some users is better than others. Thus, Fig-
ure 2.3(c) and (d) shows a CCDF of achieved TPR over all users in the sigcomm work-
load, for FPR = 0.01 and FPR = 0.1, respectively. For example, consider netdests when
FPR = 0.01. In this case, 65% of users achieve a TPR of at least 50%.

Each of the first three implicit identifiers distinguishes some users very often. Fig-
ure 2.3(c) shows that 65%, 11%, 24% of users have samples that are identified at least half

31



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR vs TPR

Mean false positive rate

M
ea

n 
tr

ue
 p

os
iti

ve
 r

at
e

netdests
ssids
bcast
fields
x=y

Figure 2.4: The mean achieved TPR and FPR for sigcomm users as we vary the classi-
fication threshold T using each feature alone. The x = y line shows how well random
guessing would perform.

of the time with an FPR of only 0.01 using netdests, ssids, and bcast, respectively. This
implies that a non-trivial number of users are trackable even if only one of these features
is available.

Nonetheless, when FPR = 0.1, 12%, 53%, and 29% of users have a TPR of at most 0.1
as well using netdests, bcast, and ssids, respectively (see Figure 2.3(d)). This means
that our classifier does not perform any better than random guessing on these users. These
users are simply not identifiable. For example, for the netdests feature, this means that
these users only visited popular destinations during the training period or did not revisit
any site in the subsequent days. This result also implies that the mean TPR shown in
Figure 2.3(a) and (b) actually underestimates the TPR for the users that are identifiable at
all, since this fraction of non-identifiable users drags the mean down. We conclude that
there is a large variation in user distinctiveness.

Training Sample Sensitivity. To explore the variability in classifier accuracy for different
users, we examine whether users observed more often during the training period are more
identifiable. Figure 2.5 shows the mean TPR achieved for FPR = 0.01 for sets of sigcomm
users with different numbers of training samples. The error bars show 95% confidence
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Figure 2.5: Sensitivity to the number of training samples for each feature. The mean TPR
achieved for FPR = 0.01 for sigcomm users with different numbers of training samples.
The error bars indicate 95% confidence intervals.

intervals, which are negligible for most points.

Figure 2.5 shows that the mean TPR noticeably increases with more training samples
for netdests and bcast. For netdests, TPR stabilizes after 3 training samples. The TPR
of ssids and fields does not change dramatically with more training samples, probably
because these identifiers are generated without user interaction and, thus, are nearly always
identical when emitted. Artifacts near the right hand side of each graph, such as large
confidence intervals, are mostly due to small sample sizes for those points. We conclude
that an adversary can build a more accurate classifier with more samples, but needs very
few to build one that is useful.

Accuracy Over Time. One concern is that the accuracy of ssids may degrade over
time since a user’s preferred networks list can change. Figure 2.6 shows how the mean
TPR varies over two weeks in the apt trace, the only trace of that duration, fixing FPR
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Figure 2.6: Accuracy over time. Normalized mean TPR on each day in the apt trace
for FPR = 0.01. Each TPR value is normalized to the mean TPR for the entire period,
evaluated over the users present during that day. The mean TPR for the entire period over
all profiled users is 42%.

= 0.01. Each value is normalized by the mean TPR for the entire period. Even after two
weeks, normalized values are close to 1, which suggests that the SSIDs that users emit are
relatively stable over time.

2.6 When can we be tracked?

In this section, we evaluate how accurately an adversary can answer Question 1 and Ques-
tion 2 in each of the wireless environments described in Section 2.3. The previous section
evaluated how well an adversary could use implicit identifiers independently to determine
whether a sample came from a given user, but in practice, an adversary would not be
restricted to using identifiers in isolation.

Without link-layer encryption, public networks reveal features both at the link and
network layers. In contrast, home networks that employ encryption reveal only link-layer
features. Encrypted enterprise networks comprised of homogeneous devices might reveal
only link-layer features that vary due to application and user behavior; features that vary
due to driver- and card-level differences provide no useful information since they would
not vary. Therefore, we evaluate each environment with the following features visible to
an adversary:

• Public network: netdests, ssids, fields, bcast.
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% users with FPR error ¡ 0.01
median error 90th percentile error

Public 97% 82%
Home 80% 64%
Enterprise 79% 68%

Table 2.4: Stability of classifier threshold T across different validation sub-samples. The
percentage of users that have FPR errors that are less than 0.01 away from the target FPR
of 0.01.

• Home network: ssids, fields, bcast.

• Enterprise network: ssids, bcast.

Since measurements from these environments can be difficult to obtain due to legal
and ethical restrictions, we use our analysis of the sigcomm trace to estimate answers
to these questions. In all three scenarios, we consider users with devices that will have a
different pseudonym each hour of the day as in our analysis in the previous section.

Many users in both the sigcomm and ucsd traces expose implicit identifiers of all
four types, so we conjecture that populations in other environments are unlikely to differ
substantially beyond the identifiers available. The population sizes will differ, however, so
we vary the population size in our experiments. Enterprise networks may be more homo-
geneous, but the identifiers we consider vary due to user behavior and the applications that
they run. ssids will remain distinguishing as long as users visit other networks with their
devices, and bcast will remain distinguishing as long as laptops run Windows and use or
search for different names, since a large number of broadcast packets are due to NetBIOS.

2.6.1 Q1: Did this Sample come from User U?

First, we evaluate how well an adversary can answer Question 1 using features in com-
bination. Since all profiled users had at least one training sample with each of the four
features in our training sets, we can evaluate the accuracy on all profiled users, not just a
fraction, as was the case when using individual features (see Table 2.3).

Figure 2.7 shows how accurately we can answer Question 1 for the average user when
varying the threshold T in each of our three environments. Figure 2.8 shows the CCDF of
TPR achieved for users in public, home, and enterprise networks for several FPR = 0.01.
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Figure 2.7: Classification accuracy for Question 1 if sigcomm users where in typical
public, home, and enterprise networks.

When more features are visible, classification accuracy is better. In public networks,
user samples are identified 56% of the time with a very low FPR (1%), on average. This
TPR is slightly lower than that observed for netdests in Figure 2.3(a) because here we are
considering all users, not only the 89% that exhibited netdests in their training samples.
The average TPR in home and enterprise networks is 31% and 26%, respectively, when
FPR = 0.01. Figure 2.8 shows that when FPR = 0.01, 63%, 31%, and 27% of users are
identifiable at least 50% of the time in public, home, and enterprise networks, respectively.
As expected, users are more identifiable in environments with more features.

Selecting the Classifier Threshold. As mentioned in Section 2.5.2, an adversary would
have to select a classifier threshold T to achieve a desired target FPR. In practice, he would
have to select the threshold without knowing a priori the resulting FPR of the validation
data. Instead, an adversary would have to choose a T that achieves a target FPR in pre-
vious samples he has collected (e.g., as part of training). Therefore, in order to achieve
the desired accuracy, the adversary requires that the T chosen in this manner achieves
approximately the FPR target in yet unknown validation data.

To test whether this requirement is met, we ran the following experiment on the sigcomm
workload: An adversary selects T that achieves FPR = 0.01 on a random 20% subsample
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Figure 2.8: CCDF of TPR for Question 1 if sigcomm users were in a typical public,
home, or enterprise network for FPR = 0.01.

of the validation data and tests whether the same T achieves a similar FPR in a different
random 20% subsample. We perform 10 trials of this experiment per user and measure
the absolute FPR errors, i.e., the difference between the achieved FPR and the target FPR.
Table 2.4 shows the number of users that have median and 90th percentile errors that are
less than 0.01 away from the target FPR. 79-97% of users in all scenarios have errors less
than 0.01 away from the target most of the time. This suggests that an adversary would be
able to select T that achieves an FPR very close to a desired target in most circumstances.

2.6.2 Q2: Was User U here today?

Now we consider Question 2. We consider an adversary that wants to accurately detect
the presence of a user during a particular 8 hour work day. In this section, we answer the
following two questions: (1) How many users can be detected with high confidence? (2)
How often does a user have to be active in order to be detected?
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Methodology

Accuracy Estimation. Consider an environment with N users present each hour during
an eight hour day. User U operates a laptop during active different hours this day and thus
an adversary obtains active samples from U . The adversary also obtains up to N samples
each hour from the other users.

Suppose an adversary would like to determine whether U is
present during this day with a TPR of at least TPRtarget and an FPR of no more than
FPRtarget. In section 2.5.2, it was shown that an adversary could use features in combina-
tion to answer
whether a particular traffic sample came from U with a moderate TPR (tprQ1) and a very
low FPR (fprQ1), on average. Unfortunately, even a very low fprQ1 could result in the
misclassification of a sample because during an eight hour day, there would be up to 8N
opportunities to do so. Therefore, to boost the adversary’s accuracy, he could answer
Question 2 affirmatively only when multiple samples are classified as being from U .

Specifically, suppose the adversary only answers Question 2 affirmatively when at least
one sample from belief different hours is classified as from U . That is, he believes U is
present during at least belief different hours. If we assume that the observations made
during each hour are independent, when U is active during at least active ≥ belief hours,

TPRtarget ≥ Pr[X ≥ belief ],

where X is a binomial random variable with parameters n = active and p = tprQ1. In
addition,

FPRtarget ≤ Pr[Y ≥ belief ],

where Y is a binomial random variable with parameters n = 8 and p ≤ 1− (1− fprQ1)
N ,

the probability that at least 1 sample not from U during one hour is misclassified. We show
below that the independence assumption is not unreasonable.

In order for an adversary to answer Question 2 with TPRtarget and FPRtarget, he
would determine if there exists a threshold T for U ’s classifier that would satisfy these
constraints. In the process, he would also determine the minimum number of hours that
U would have to be active (active). For example, when all four features are available, we
show that quite a few users can be detected when they are active for several hours even if
an adversary desires 99% accuracy (i.e., TPRtarget ≥ 99% and FPRtarget ≤ 1%).

Dependence. The constraints above assume that the observations made during each hour
are independent. That is, the likelihood of observing a true or false positive is not depen-
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Figure 2.9: Limited dependence in the sigcomm trace. CDF of the maximum number of
false positives (FPs) generated by any one user for each user.

dent on the adversary’s past observations. The following analysis of the sigcomm trace
shows that there is some dependence in reality, but that the dependence is small.

There are two primary concerns. The first concern is that our classifier may often
confuse user U with another user Q, so that if Q is active, then the false positive rate
will be high regardless of the number of hours that the adversary samples. This concern
is mitigated by two factors that add randomness to the sampling process: 1) users enter
and depart from the environment and 2) user behavior is variable to begin with. Consider
our classifier on all features using a classification threshold T = 0.5. Figure 2.9 shows,
for each user that exhibits any false positives during the second full day of the sigcomm
trace, the maximum number of false positives that are contributed by any other single user.
From this cumulative distribution function (CDF), we see that for 60% of users, no single
other user is responsible for more than 1 false positive, and for over 95%, no single user
is responsible for more than 3 false positives. Therefore, most of the time the two factors
mentioned prevent a large number of false positives from being correlated to a single user.
In addition, since the user set is relatively static at a conference, there is likely to be more
churn in the population of most other environments, further reducing the dependence.

The second concern is that there may be temporal locality in either true or false positive
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Figure 2.10: Limited dependence in the sigcomm trace. CDF of how much more likely a
true or false positive is given that one was observed recently.

samples. For example, we might expect that a user is much more likely to exhibit a par-
ticular feature if he has done so in the recent past. If temporal correlation was substantial
then the ratio

Pr[positive | positive in the last t hours]
Pr[positive]

would be much larger or smaller than 1. Figure 2.10 shows a CDF of this ratio for each
users’ true and false positives when t = 2 using the same classifier as above. For true
positives, we only consider times during which the user is active. For false positives, we
only consider the active 9 hours of the last 2 days of the conference since false positives
are obviously less likely to occur when fewer people are present. If there was no temporal
correlation, we would obtain a vertical line at x = 1. We note that 60 and 70% of users’
true and false positives are within a factor of 2 of this line, meaning that if a true (false)
positive was seen in the last two hours we are no more than 2 times more or less likely
to observe another true positive than otherwise. Moreover, given the small number of
positives for each user, much of this variation is probably due to randomness. Therefore,
temporal dependence is small.
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Figure 2.11: The number of of users detectable and the number of hours they must be
active to be detected with (a) 90% accuracy and (b) 99% accuracy. The x-axis in each
graph varies the population size. The top portion shows the number and percentage of
users it is possible to detect. The bottom portion shows a box plot of the number of hours
during which they must be active to be detected. That is, the thick line through the middle
of each box indicates the median, the ends of each box demark the middle 50% of the
distribution, and the whiskers indicate the minimum and maximum values.

Results

Figure 2.11 shows the number of users detectable and the number of hours they must be
active to be detected with (a) 90% accuracy, (b) 99% accuracy. The x-axis in each graph
varies the number of users present each hour. The top half of each graph shows the number
of users an adversary can detect and, above each bar, the percentage of profiled users the
number represents. The bottom half of each graph shows a box plot of the number of hours
during which these users must be active to be detected. That is, the thick line within each
box shows the median number of hours a detectable user has to be active to be detected,
while the ends of each box demark the first and third quartiles. The whiskers mark the
minimum and maximum.
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For example, part (a) shows the results if the adversary desires an accuracy of 90%
(i.e., TPRtarget ≥ 90% and FPRtarget ≤ 10%). Consider the public networks figure. The
fourth bar from the left in top part shows that when there are 10 users present per hour, we
can detect 71% of users if they are active during all 8 hours when present. The box and
whiskers just below that in the bottom part shows that shows that most of these users do
not need to be active all 8 hours to be detected. Of the 71% of users that can be detected,
75% of them only need to be active for 4 hours to be detected, 50% for at most 3 hours,
and 25% for at most 2 hours.

Conclusions. We make two overall conclusions. First, an adversary can successfully
combine multiple implicit identifiers from a few samples to detect many users in common
networks with high accuracy. The majority of users can be detected with 90% accuracy
when active often enough in public networks with 100 concurrent users or less. At least
27% of users are detectable with 90% accuracy in all of the networks when there are 25
concurrent users or less. This implies that many users can be detected with high confidence
in small to medium sized networks regardless of type if they are active often enough. Even
in large networks with 100 users, 12% to 52% remain detectable.

Second, some users are detectable with very high accuracy. Even if an adversary de-
sires 99% accuracy, the fraction of detectable users is between 12% and 37% in all net-
works with 25 users when they are active often enough. Therefore, even applying existing
best network security practices will fail to protect the anonymity of a non-trivial fraction
of users.

Indeed, several usage patterns in home and enterprise networks make detection more
likely than the overall results suggest. In home networks, very few users are likely to be
active during each hour. For example, even when monitoring all the networks in our apt
trace, we only observed 4 users per hour, on average. Therefore, the results closer to the
left side of each graph are more representative of home environments. Since users of a
enterprise network are probably employees, they are more likely to be active for the entire
observation period. Thus, the top half of each graph is probably a good estimation of the
fraction of users that an adversary can detect on a typical day.

2.7 Summary, Implications, and Limitations

This chapter demonstrated that users can be tracked using implicit identifiers, traffic char-
acteristics that remain even when unique addresses and names are removed. Although
we found that our technique’s ability to identify users is not uniform—some users do not
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display any characteristics that distinguish themselves from others—most users can be ac-
curately tracked. For example, the majority of users can be tracked with 90% accuracy
when active often enough in public networks with 100 concurrent users or less. Some
users can be tracked with even higher accuracy. Therefore, pseudonyms are insufficient to
provide location privacy for many users in 802.11 networks.

Moreover, our results showed that even a single implicit identifier, such as netdests,
ssids, or bcast, can be highly discriminating and that an adversary needs only 1 to 3 sam-
ples of users’ traffic to track them successfully, on average. We note that by considering
a subset of all possible implicit identifiers and a weak, passive adversary, our results only
place a lower bound on the accuracy with which users can be tracked.

2.7.1 Implications

We believe our study illustrates three inherent shortcomings of the 802.11 protocol beyond
exposing explicit identifiers, none of which is trivially fixed. These shortcomings afflict
not only 802.11 but many wireless protocols, including Bluetooth and ZigBee.

Identifying information exposed at higher layers of the network stack is not ade-
quately masked. For example, even with encryption, packet sizes can be identifying.
Padding, decoy transmissions, and delays may hide information exposed by size and tim-
ing channels, but increase overhead. For example, Sun et al. [150] found that 8 to 16 KB
of padding is required to hide the identity of web objects. The performance penalty due to
this overhead would be especially acute in wireless networks due to shared nature of the
medium.

Identifying information during service discovery is not masked. 802.11 service dis-
covery can not be encrypted since no shared keys exist prior to association. This raises
the more general problem of how two devices can discover each other in a private manner,
which is expensive to solve [1]. This problem arises not only when searching for access
points, but also when clients want to locate devices in ad hoc mode, such as when using a
Microsoft Zune to share music or a Nintendo DS to play games with friends.

Identifying information exposed by variations in implementation and configuration
is not masked. Each 802.11 implementation typically supports different 802.11 features
(e.g., supported rates) and has different timing characteristics. This problem is difficult
to solve due to the inherent ambiguity of human specifications and manufacturers’ and
network implementers’ desire for flexibility to meet differing constraints.

Balancing the costs involved in rectifying these shortcomings with the incentives nec-
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essary for deployment is itself a challenge. Nonetheless, rectifying these flaws at the
protocol level is important so that users need not limit their activities in order to protect
their location privacy. By measuring the magnitude with which each flaw contributes to
the implicit identifier problem, our study provides insight into the proper trade-offs to
make when correcting these design flaws in future wireless protocols. We describe how
future protocols should address these problems in the next chapter. In the short term, our
study may give guidance to individuals that are willing to pro-actively hide their identity
in existing wireless networks.

2.7.2 Study Limitations

In our measurement analysis, we relied on wireless traces with durations of at most several
days. In addition, we did not examine wireless traffic from some common environments
such as hotspots. We do not believe our analysis would be substantially altered in these
environments because most of the implicit identifiers we examined are generated “auto-
matically” by applications running on a device rather than due to particular user behavior.
In addition, our longer-term study of SSIDs suggests that at least one implicit identifier
is stable over time. This matches our intuition that re-configuration of user devices and
applications, which can change the implicit identifiers a device exhibits, occurs rarely.
Nonetheless, it would still be useful to complement our study with a longer-term study of
wireless traffic from users in more diverse environments to validate these conjecture and
to understand how implicit identifiers may evolve over time. Such a study would aid in
understanding whether pseudonym schemes may be sufficient to mitigate tracking threats
at longer time scales and different types of locations.
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Chapter 3

Mitigating Eavesdropping Threats

Identifiers and addresses have always played important roles in network protocols. For
example, the structure of IP addresses is critical to scalable IP routing. In addition, ap-
plication layer discovery protocols such as DNS expose identifiers in order to support
rendezvous between clients and services. Identifiers in IP, transport, and application layer
protocols pose privacy threats to users when eavesdroppers can intercept messages being
routed in the middle of networks, e.g., by ISPs or on LANs where link layer traffic is
unencrypted. For example, these eavesdroppers can track when a user is online and de-
termine which parties are communicating. A number of defenses have been developed
to guard against these traffic analysis attacks, such as mix networks [49] and cover traf-
fic [68, 121, 161], but they are heavy-weight and incur substantial performance penalties.
Fortunately, wired networks can be protected with physical security and link layer encryp-
tion, and only powerful adversaries that collude with ISPs can carry out eavesdropping
attacks in the middle of the network.

Wireless link-layer protocols, however, are much more vulnerable to weak adversaries
because anyone can eavesdrop on communications from devices nearby using only com-
modity hardware. Although link-layer encryption such as WPA can obscure identifiers
in IP, transport, and application layer protocols, link-layer protocols such as 802.11 and
Bluetooth expose identifiers themselves. Two types of identifiers play important roles in
these protocols also:

• device/service identifiers: Device and service identifiers typically persist over long
time scales (months, years, or longer) and are transmitted when devices try to set
up connections. The process of service discovery and rendezvous, such as with an
available access point (AP), requires a service to announce its existence with an
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explicit, recognizable identifier or for a client to probe for it (e.g., a network’s SSID
and/or BSSID in 802.11). Either way, the process relies on the transmission of a
service name explicitly.

• connection identifiers: Connection identifiers or addresses are used to identify mes-
sages sent by the two devices participating in a connection. Thus, they must persist
for at least the duration of a connection. A destination address (802.11) or connec-
tion identifier (WiMAX) allows a device to decide whether it is the destination of
a message by using a simple compare operation. Mechanisms such as ARP that
translate between addresses at different layers rely on identifiers that persist for the
duration of a connection.

In the previous chapter, we showed that users can often be tracked even when MAC
addresses periodically changed. This is because eavesdroppers can still observe temporary
addresses and network names in transmissions in addition to other traffic properties that
serve as implicit identifiers. Concealing specific fields, such as MAC addresses, leaves
open the possibility of tracking and inventorying by other fields that have not been pro-
tected. Furthermore, because sequences of encrypted packets within a session remain
linked by a connection identifier, side-channels can reveal sensitive information about
their contents. For example, a distinct pattern of packet sizes and timings is sometimes
sufficient to identify the keys a user types [147], the web pages he views [150], the videos
he watches [142], the languages he speaks [171], and the applications he runs [172]. In this
chapter, we present the first design and prototype of a wireless protocol that conceals all
explicit information that can be used as identifiers, including device identifiers, connection
identifiers, and all other explicit message fields.

The obvious difficulty with simply removing identifiers is that they play key roles in
the efficient operation of existing protocols. For example, a connection identifier allows
a device to decide whether it is the destination of a message by using a simple compare
operation. Mechanisms such as ARP that translate between addresses at different layers
rely on identifiers that persist for significant periods of time. And the process of service
discovery and rendezvous, such as with an available access point (AP), requires a service
to announce its existence with an explicit, recognizable identifier or for a client to probe
for it. Either way, the process relies on the transmission of a service name explicitly.

This chapter presents SlyFi, an 802.11-like protocol that encrypts entire packets to
remove explicit identifiers while retaining efficiency comparable to 802.11 with WPA. No
explicit information in SlyFi messages can be used by third parties to link them together.
We show that all features that rely on identifiers—service discovery, packet filtering, and
address binding—can be supported without exposing them. Different mechanisms are
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used for service discovery and subsequent data transfers, but in both cases a device can
determine whether it is the recipient of a message with lightweight table look-ups. We have
implemented SlyFi on commodity 802.11 NICs and our experiments show that SlyFi’s
performance impact is modest. In particular, we show that a SlyFi client can discover
and associate with services even faster than 802.11 with WPA using PSK authentication.
SlyFi’s overhead results in a throughput degradation that is only slightly greater than that
of WPA with CCMP encryption (10% vs. 3%).

Chapter outline. Section 3.1 discusses the limitations of previous pseudonym proposals.
Section 3.2 presents the requirements of a solution and an overview of SlyFi. Section 3.3
presents the design of two main mechanisms it uses, while Section 3.4 discusses practical
details and our prototype implementation. Section 3.5 demonstrates SlyFi’s security prop-
erties formally and Section 3.6 analyzes SlyFi’s robustness to different types of attacks.
Section 3.7 presents performance evaluation results. Section 3.8 concludes this chapter.

3.1 Related Work

A number of proposals have argued for obscuring identifiers in network protocols at differ-
ent layers of the protocol stack. These proposals advocate for three types of pseudonyms:
unilateral pseudonyms, negotiated pseudonyms, cryptographically generated pseudonyms.

Unilateral pseudonyms. Some wireless protocol identifiers can be changed over time
without altering the functionality of a wireless protocol. For example, in 802.11, MAC
addresses serve as connection identifiers (source and destination addresses), but persist for
the lifetime of a device’s network interface hardware. These identifiers can be changed
by a device without negotiating with any other party [67, 84, 170]. In other words, they
can be implemented by a client without AP support. We analyzed the limitations of using
unilateral MAC address pseudonyms for 802.11 in Chapter 2. This solution is insufficient
because service identifiers and connection identifiers (e.g., SSIDs) remain exposed, re-
vealing implicit identifiers. Moreover, each client will have to establish a new connection
with an AP each time they change their MAC address, disrupting end-to-end connections
at higher layers.

Negotiated pseudonyms. One way to change connection identifiers more frequently is
to have both ends of a connection (e.g., the client and the AP) periodically negotiate a
new pseudonym. For example, GSM’s connection identifier for a client, the Temporary
Mobile Subscribed Identifier (TMSI), can be refreshed periodically by the base station.
Negotiated pseudonyms can also be used to make device identifiers, such as a GSM mobile
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phone’s International Mobile Subscriber Identity (IMSI), more ephemeral. In GSM, a
mobile phone typically must transmit its globally unique IMSI in the clear to identify itself
to a base station before it can establish a connection. Once a mobile has been authenticated,
however, it can negotiate a new IMSI pseudonym to identify itself the next time it tries to
establish a connection with the GSM network [73].

Explicitly negotiated pseudonyms would still pose two problems for common wireless
protocols such as 802.11 and Bluetooth. First, because both ends of a connection must
reliably agree on the new pseudonym before it can be used, at least one pair of messages
must be exchanged. This would add substantial overhead if very frequent pseudonym
changes are desired (e.g., on a per-message basis). Second, when used in discovery and
rendezvous, at least one party to the rendezvous may transmit the same pseudonym mul-
tiple times (e.g., [48]). This is because discovery must involve probes for a service or
announcements from the service, and because neither the client or the service can negoti-
ate a new pseudonym until they rendezvous again, any probes or announcements that do
not elicit a response must be repeated with the same pseudonym. This enables eavesdrop-
pers to track at least one party. This is not a significant concern in GSM because base
stations do not care about location privacy; thus, they can authenticate themselves to a
mobile phone before the phone reveals its own identity. However, in 802.11 and Blue-
tooth, both the client and service may be personal mobile devices (e.g., a mobile phone
communicating with a laptop), so both parties require location privacy.

One way to mitigate these problems is to negotiate multiple pseudonyms for each de-
vice pair and use one per message. A number of proposed RFID protocols use this solu-
tion. RFID protocols involve wireless readers and tags, where the role of tags is to identify
themselves (e.g., with a serial number) to readers that query them. No other information
except a tag’s device identifier is transmitted, so RFID protocols are comparable to basic
discovery protocols in 802.11 and Bluetooth. To protect a tag’s identifier from unautho-
rized readers, researchers have proposed storing a pseudonym table on tags and authorized
readers [124, 87], so that a tag can emit a different identifier from the table each time it
is queried. One problem with this approach is that, once all pseudonyms in the table are
exhausted, any new message must repeat a pseudonym. Thus, due to the overhead of stor-
ing a table per device pair, this approach is impractical when the number of messages sent
between renegotiations is large (e.g., for high volume data transfers) or can be unbounded
(e.g., for generic discovery messages).

Cryptographic pseudonyms. A number of cryptographic schemes have been proposed
to generate pseudonyms without explicit negotiation for each pseudonym change. These
schemes typically use pseudorandom sequences or public key cryptography.
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Arkko et al. [10] and Lindqvist et al. [108] argue for replacing explicit identifiers at all
layers of the network stack to improve privacy. Arkko et al. propose replacing identifiers
in messages with cryptographically secure pseudorandom sequences, where each message
contains a new element from the sequence. For example, for a sender and receiver that
share a symmetric key, Arkko et al. show how identifiers in TCP can be replaced with
pseudorandom sequences. Pseudorandom sequences, such as pseudorandom functions
(PRFs) constructed using cryptographic hash functions and pseudorandom permutations
(PRPs) constructed using symmetric block ciphers, play an important role in most cryp-
tographic pseudonym schemes that use symmetric keys, including SlyFi. There are two
main research questions in how to incorporate pseudorandom sequences into network pro-
tocols: how do senders and receivers synchronize these sequences, and, since a receiver
must store one symmetric key per potential sender, how can they scalably maintain and
lookup these keys?

Pseudorandom sequence schemes have been proposed for use in a number of specific
protocols. Some proposed RFID protocols [87, 163, 89] use pseudorandom sequences to
compute the table of pseudonyms, mentioned above, on the fly. However, these proto-
cols disagree on how synchronization of sequences on readers and tags should be done.
Cox et al. [46] uses pseudorandom sequences for an application-level discovery protocol.
Singelée and Preneel [144] propose using pseudorandom sequences to replace connection
identifiers in Bluetooth. Armknecht et al. [11] propose using them in encrypted 802.11
headers. Linqvist et al. [107] propose a pseudonym-based discovery protocol that avoids
the synchronization problem by having the client include a nonce value in its probe that is
used to derive the cryptographic pseudonym in a service’s response.

While each of these proposals address particular components of wireless protocols,
none of them are complete, leaving out important functions such as either service discov-
ery, authentication, data transport, higher-layer binding, etc. Some also have performance
deficiencies. For example, the scheme proposed by Cox et al. uses a hash-chain that
evolves with real time to compute a pseudorandom sequence. Thus, a device that is asleep
for a while would have to compute every intermediate address before obtaining the current
address to use. This application-layer protocol tolerates this extra expense because its ad-
dresses change very infrequently. A fundamental problem with Linqvist et al.’s approach
is that it requires one party to try every key it has to decode a message. Therefore it is in-
efficient when a receiver has many keys and receives packets not destined for it, e.g., when
it sees competing background traffic. Similarly, the scheme proposed by Armknecht et
al. requires a receiver to try every key it has to decode packets with no matching address.
Therefore, this scheme can be inefficient in real environments.

Cryptographic schemes based on public key cryptography have also been proposed
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10 ms 100 ms 1 sec 1 min 1 hr
SIGCOMM 2004 1.4 3.2 7.6 24.7 80.1

OSDI 2006 4.6 9.0 20.6 60.8 221.3
UCSD 2006 2.4 7.1 17.9 76.6 176.6

Table 3.1: Mean number of devices that send or receive 802.11 data packets at different
time intervals at two conferences (SIGCOMM [138], OSDI [40]) and one office building
(UCSD [43]). Intervals with no data packets are ignored. UCSD has observations from
multiple monitors.

to protect identifiers in discovery and rendezvous messages. For example, Abadi and
Fournet [1] present a public key scheme for private authenticated discovery. Practical
implementations of these schemes in wireless protocols are inefficient, however, due to
the high overhead of public key cryptography. We compare pseudonym schemes based on
symmetric and public key cryptography in greater technical depth in Section 3.3.1.

In addition to the limitations enumerated above, very few of these cryptographic pseudonym
proposals have been implemented (only [46], to our knowledge). Thus, SlyFi is the first to
show that real devices that can implement these proposals in a practical manner. Practical
implementations are important to understand economic feasibility and deployability.

3.2 Problem and Solution Overview

Our goal is to build a wireless link layer protocol that allows clients and services to com-
municate without exposing identifiers to third parties. This section outlines the threat
model we consider. We then discuss our security requirements and the challenges in meet-
ing them and present an overview of SlyFi, an efficient identifier-concealing link layer
protocol based on 802.11.

3.2.1 Threat Model

Attack. The previous section outlined three types of attacks enabled by low-level iden-
tifiers not obscured by existing security mechanisms: the inventorying, tracking, and pro-
filing of users and their devices. Users can be subjected to these attacks without their
knowledge because an adversary can carry them out without being visibly or physically
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present. In addition, users are vulnerable even when using the best existing security prac-
tices, such as WPA. Thus, these attacks violate common assumptions about privacy. The
effectiveness of these attacks is dependent on an adversary’s ability to link packets sent at
different times to the same device. The easiest way for adversaries to link packets is by
observing the same low-level identifier in each.

Thus, our goal is to limit two forms of linkability: First, information should not be pro-
vided in individual packets that explicitly links the packets to the identities of the sender
or intended receiver. Second, to prevent the profiling, fingerprinting, and tracking of se-
quences of related packets, packets from the same sender should not be linkable to each
other, irrespective of whether any one of them may be linked explicitly to its source. In
other words, when there are k potential devices and an adversary observes a packet, he
should only be able to infer that the packet is from (or to) one of those k devices, not
which one. Profiling a device’s packet sequences would be more difficult even at short
timescales if many devices are active simultaneously. Table 3.1, which shows the average
number of active devices observed at different time intervals, shows that there are indeed
many simultaneously active devices in three 802.11 traces.

Potential Victims. The aforementioned attacks are damaging to both wireless clients,
such as laptops, and wireless services, such as APs, particularly since the distinction be-
tween client and service devices is becoming increasingly blurred; e.g., a client game
station sometimes provides wireless service to others as an ad hoc AP. Thus, we want to
limit the linkability of packets transmitted by both clients and services.

We assume that clients and services have (possibly shared) cryptographic keys prior
to communication. These keys can be obtained in the same way as in existing secure
802.11 and Bluetooth networks. For example, devices can leverage traditional credentials
from trusted authorities (e.g., for RADIUS authentication) or bootstrap symmetric keys
using out-of-band pairing techniques [152]. We believe that most private services will be
known beforehand (e.g., a home 802.11 AP) and can bootstrap keys using these methods.
Nonetheless, in previous work [129] we also proposed methods to privately bootstrap keys
with unknown services by leveraging transitive trust relationships.

The mere possession of cryptographic keys does not immediately yield satisfactory
solutions, however, as clients and services have limited computational resources. As a
consequence, solutions should not enable denial of service attacks that exploit this limita-
tion. For example, simply encrypting the entirety of a packet is not sufficient if a receiver
can not quickly determine whether it is the intended recipient or not. This is because an ad-
versary would then be able to exhaust a device’s computational resources by broadcasting
“junk” packets that the device would expend a non-trivial amount of resources to discard.
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Adversary. We are concerned with limiting the packet linking ability of eavesdroppers,
i.e., parties other than the original sender or intended recipient of those packets. For exam-
ple, packets sent between an 802.11 client and an 802.11 AP are exposed to anyone within
radio range, but only the client and service should be able to link them together. We are
not concerned with preventing the service from linking together the client’s packets (or
vice versa), as techniques used to hide a client’s identity from a service in wired networks
(e.g., [50]) are also applicable in wireless networks.

We assume adversaries have commodity 802.11 radios and are able to observe all trans-
mitted packets, but they are not privy to the cryptographic keys that clients and services
have prior to communication. As with most practical systems, we assume that adversaries
are computationally bounded and thus can not successfully attack standard cryptosystems
such as RSA, ElGamal, and AES.

Limitations. SlyFi’s removal of low-level identifiers makes it much more difficult for
third parties to link packets together or to a particular user, thus improving privacy. Nonethe-
less, packet sizes, packet timings, and physical layer information may still sometimes act
as side channels that link packets together. We briefly discuss SlyFi’s resilience to these
types of attacks in Section 3.6, but a thorough analysis is outside the scope of this disser-
tation. However, without explicit identifiers linking together packets, it becomes a more
difficult probabilistic task to separate the transmissions of different sources. Such attacks
are less accessible as they usually require sophisticated attackers [153] or non-commodity
hardware [131].

We note that packet sizes and timing can be hidden using well-known packet padding
and cover traffic techniques that make all packets appear uniform. These techniques can
be applied at the network layer, so SlyFi complements them by encapsulating their output
packets in an identifier-free link layer. The primary disadvantage of these existing tech-
niques is that they must add significant overhead to ensure that all side-channels are hidden
(e.g., by padding all packets to the maximum packet length). We discuss these trade-offs
and the circumstances under which such overhead might be needed in Section 3.6.

3.2.2 Security Requirements

We want to be able to deliver a message from A to B without identifiers, but still ensure
that B can verify it was sent by A. More specifically, consider a procedure F that computes
c← F (A, B, p), where A and B are the identities of the sender and recipient, respectively,
p is the original message payload, and c is the result which A transmits. (Shared crypto-
graphic key state is an additional, implicit input to F , but we omit it here for brevity.) We

52



want F to have the following four properties. We denote security properties in this chapter
using small caps.

STRONG UNLINKABILITY. To protect against tracking and profiling attacks, a sequence
of packets should not be linkable. More formally, any party other than A or B that receives
c1 = F (A, B, p1) and c2 = F (A, B, p2) should not be able to determine that the sender or
receiver of c1 or c2 are the same. In particular, this implies that c1 and c2 must not contain
consistent identifiers. We note that some packet types, such as discovery messages, are less
vulnerable to short-term profiling and thus only need to be unlinkable at coarser timescales
to prevent long-term tracking. Consequently, we outline a relaxed version of this property
in Section 3.3.3 to efficiently handle these packets.

AUTHENTICITY. To restrict the discovery of services to authorized clients and prevent
spoofing and man-in-the-middle attacks, recipients should be able to verify a message’s
source. More formally, B should be able to verify that A was the author of c and that it
was constructed recently (to prevent replay attacks).

CONFIDENTIALITY. No party other than A or B should be able to determine the contents
of p. In contrast to existing wireless confidentiality schemes, not even fields and addresses
in the header should be decipherable by third parties.

MESSAGE INTEGRITY. Finally, as with existing 802.11 security schemes, receivers should
be able to detect if messages were tampered with by third parties. More formally, B should
be able to derive p from c and verify that it was not altered after transmission.

We give more formal definitions for these properties in Section 3.5.

3.2.3 Challenges

The principal approach to concealing 802.11 client identities has been to use MAC address
pseudonyms [67, 84]. Pseudonym proposals do not meet our strong unlinkability require-
ment because all packets sent under one pseudonym are trivially linkable. Moreover, the
use of pseudonyms does not conceal other information in headers, such as capabilities,
that can be used to link packets together [127]. Furthermore, the proposals focus on data
delivery alone, and do not address important network functions, such as authentication and
service discovery.

Prior approaches are limited because meeting all our security requirements while main-
taining important wireless functionality is nontrivial. Consistent destination addresses al-
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low devices to quickly filter messages intended for others so efficient data transport is
difficult without them. Moreover, cryptographic authenticity is difficult to provide without
identifiers. Message recipients typically need to know which cryptographic key to use to
verify a message, and it is hard to tell the recipient which one without explicitly identi-
fying it. Finally, removing identifiers completely from the process of service discovery is
hard because wireless clients and services typically rendezvous by broadcasting an agreed
upon identifier. A service might be willing to expose its identifier through announcements
to save potential clients from having to expose it in probes. No such straightforward solu-
tion exists to conceal both client and service identities.

3.2.4 System Overview

In light of the shortcomings of existing solutions, we introduce the SlyFi protocol that
meets our security requirements using two identity-concealing mechanisms, Tryst and
Shroud, while providing functionality similar to 802.11. Before describing these mech-
anisms, we first give an overview of SlyFi in this section.

The SlyFi link layer is designed to replace 802.11 for managed wireless connectivity
between clients and APs. The privacy protecting mechanisms of the protocol explicitly
protect all bits transmitted by the link layer. A client wishing to join and send data to a
SlyFi network sends a progression of messages similar to 802.11 (Figure 3.1). Instead
of sending these messages in the clear, they are encapsulated by the two identity-hiding
mechanisms we describe in Section 3.3.

A client first transmits probes, encapsulated by Tryst, to discover nearby APs it is au-
thorized to use. A probe is encrypted such that: 1) only the client and the networks named
in the probe can learn the probe’s source, destination, and contents, and 2) messages encap-
sulated for a particular SlyFi AP sent at different times cannot be linked by their contents.
An AP that receives a probe verifies that it was created by an authorized user and sends
an encrypted reply, indicating its presence to that client. If the client wishes to establish
a link to the AP, it sends an authentication request, also encapsulated by Tryst, containing
session information including keys for subsequent data transmission, which are used to
bootstrap Shroud. Obviously, SlyFi APs cannot send clear-text beacons if they wish to
protect service identities. However, they may do so if they wish to announce themselves
publicly. Such a public announcement could immediately be followed by a confidential
authentication request from an interested client, and thus would not compromise client
privacy.

After a link has been established by an authentication response, Shroud is used to con-
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Figure 3.1: The SlyFi protocol.

ceal the addresses and contents of future messages delivered on the link. An eavesdropper
can not use the contents of any two messages protected by Shroud to link them to the same
sender or receiver.

Both Tryst and Shroud essentially encrypt the entire contents of each message, includ-
ing addresses normally found in the header. The essential differences between them arise
due to the different requirements of discovery, link establishment, and data transfer.
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3.3 Identifier-Free Mechanisms

Identifiers are used in wireless protocols for two general functions: 1) as a handle by
which to discover a service and establish a link to it, and 2) to address packets on a link
and allow unintended recipients to ignore packets efficiently. Tryst and Shroud address
each of these functions, respectively. To motivate our mechanisms, we first describe two
straw man mechanisms that meet our security requirements, but are inefficient. We then
discuss Tryst and Shroud, which are enabled by minor relaxations of these requirements
or additional assumptions made possible by their intended uses. We conclude the section
by discussing how SlyFi can still support other protocol functions, such as higher layer
binding.

To illustrate each mechanism we consider the scenario when A sends a message p to
B. Each mechanism consists of three key elements: the bootstrapping of cryptographic
keys that the sender and receiver require to compute the procedure F (described in Sec-
tion 3.2.2); the construction of c ← F (A, B, p) by the sender; and the message filtering
by a receiver to determine if c is intended for him.

3.3.1 Straw Man: Public Key Mechanism

We first sketch public key, a mechanism based on a protocol that Abadi and Fournet [1]
prove meet the aforementioned security requirements.

Bootstrapping. This mechanism assumes that A and B each have a public/private key
pair and each have the public keys of the other.

Construction. We sketch this mechanism here, but refer the reader to the first protocol
discussed in [1] for details. To provide authenticity, A digitally signs the statement s =
{A, B, T} where T is the current time. A message header is constructed as an encryption
of s and the digital signature, using B’s public key. By using a public key encryption
scheme that does not reveal which key is used, such as ElGamal [24], identities of neither
sender nor intended recipient are revealed.1 In addition, this achieves strong unlinkability
because the ElGamal encryption scheme is randomized so each encrypted header appears
random. The payload can be encrypted via conventional means (e.g., as described later in
Section 3.3.3).

1In practice, we would still use RSA for faster signatures; we just require each party to have both ElGamal
and RSA key pairs.
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Message filtering. When B receives a message, he will attempt to decrypt this header. If
the decryption fails (i.e., the result does not include the statement {j, B, T}, for a known
identity j), the message is not intended for B and can be discarded. If decryption succeeds,
B then checks the signature and the time to verify that the message was recently generated
by j before accepting it.

Although this protocol achieves the security properties we desire, it is slow because it
uses public key cryptography. In particular, on AP and consumer electronics hardware, a
single private key decryption can take over 100 milliseconds—several orders of magnitude
greater than the time required to transmit the message (see Section 3.7). Since B must
attempt to decrypt the header for every message he receives whether he is the intended
recipient or not, he can be backlogged just by processing ambient background traffic. One
way to avoid this overhead would be to use a public key protocol only for infrequently
occurring messages, such as 802.11 probes. These messages can be used to exchange a
symmetric key for future messages. One problem with this approach is that it still leaves
receivers susceptible to denial-of-service attacks: anyone can broadcast “junk” probes and
force receivers to become back-logged processing them. Moreover, we find that in practice
even non-adversarial 802.11 probe traffic can be large enough to back log receivers (see
Figure 3.9).

3.3.2 Straw Man: Symmetric Key Mechanism

Next we sketch symmetric key, a similar mechanism based on symmetric keys that ad-
dresses this pitfall.

Bootstrapping. This mechanism assumes that A and B share a symmetric key.

Construction. Using symmetric keys shared only between A and B, we can use a con-
struction intuitively similar to public key. A encrypts the statement s using symmetric
encryption such as AES-CBC. We can omit A and B from s since it is implied by the use
of their symmetric key. A then computes a message authentication code (MAC) over the
encrypted value so B can verify its authenticity. A random initialization vector (IV) is
used so that the resulting cipher text and MAC appear random and thus are unlinkable to
any other message.

Message filtering. Upon receipt of a message, B verifies the MAC in the header using the
same key A used to construct the message. If the MAC does not verify, then this message
is not for B and he can discard it.

Of course, since the message does not indicate to B which key was used to generate
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Symbol Definition

I The length of each Tryst time interval.

T, T0, Ti Respectively, the current time, the time Tryst keys were boot-
strapped, and the start of time interval i: T0 + i · I .

kp A one-time use key for encrypting a payload.

kEnc
AB , kMAC

AB , kaddr
AB Long-term keys to encrypt, MAC, and compute addresses for

Tryst messages sent from A to B.

kEnc
s:AB, kMAC

s:AB , kaddr
s:AB Session keys to encrypt, MAC, and compute addresses for Shroud

messages sent from A to B.

AESk (b) Encipher single 128-bit block b with key k using the AES cipher.

AES-CTR2k (i, m) Encrypt m with symmetric key k and 128 bit IV i using the AES
cipher in CTR2 mode [139].

AES-CMACk (m) Construct 128-bit message authentication code (MAC) of m with
key k using AES-CMAC [148].

SHA1128 (m) Return first 128 bits of a cryptographic hash of m.

Table 3.2: Cryptographic terminology used in Section 3.3.3–Section 3.4. All keys are 128
bits.

the MAC—indeed it cannot, or it will no longer be unlinkable—and B has a symmetric
key for each client from whom he can receive messages, B must try all these keys to verify
the MAC. There is locality when keys are used (e.g., A may know that he expects a reply
from B after sending a message to him) so we can sort keys in most-recently-used order,
but, for messages not intended for B, he must try all keys before discarding them. Thus,
filtering is inefficient for clients or APs that have many keys.

3.3.3 Discovery and Binding: Tryst

We now describe Tryst, the mechanism we use for transmitting discovery and binding
messages such as 802.11 probes and authentication messages. Tryst builds upon the sym-
metric key straw man, but leverages the following properties of these messages in order
to enable efficient message processing:
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Figure 3.2: Tryst packet format.

Infrequent Communication. Individual devices send discovery and binding
messages infrequently. For example, 802.11 clients send probes only when
they are searching for an AP and send authentication messages only at the
beginning of a session or when roaming between APs.

Narrow Interface. Unlike data packets, which can contain arbitrary contents,
there are very few different messages that are used for discovery and bind-
ing. Thus, it is unlikely that their evolution at short time scales exposes many
sensitive side channels of information when individual messages are not de-
cipherable. It is only the ability to link these messages together at long time
scales (e.g., hours or days) that threatens location privacy.

Based on these two observations, we define a relaxed version of the strong unlinkability
property:

LONG-TERM UNLINKABILITY. Let t(m) be the time a message m was generated. Any
party other than A or B that receives c1 = F (A, B, p1) and c2 = F (A, B, p2) should not be
able to determine that the sender or receiver of c1 or c2 were the same if |t(c2)−t(c1)| > I ,
for some time interval I . In practice, I would be several minutes and may be different for
each client-service relationship.

Tryst achieves this relaxed form of unlinkability, which is sufficient for discovery and
binding messages because very few are likely to be generated during any given interval I .
Even if an adversary is able to force multiple discovery messages to be generated during
one interval, e.g., by jamming the channel to force all clients to reassociate, the ability to
link them together is unlikely to be threatening.

For clarity, we list the cryptographic terminology we use in the subsequent description
in Table 3.2.

Bootstrapping. Similar to symmetric key, A and B each have symmetric keys kEnc
AB , kMAC

AB , kaddr
AB

for constructing messages from A to B (and another set of keys for B to A). They also
remember the time they exchanged these keys as T0.
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Temporary unlinkable addresses. A client A and a service B that share a symmetric
key can independently compute the same sequence of unlinkable addresses and thus will
at any given time know which address to use to send messages to the other. Specifically:

addri
AB = AESkaddr

AB
(i) , where i = b(T − T0)/Ic

In other words, addri
AB is a function of the ith time interval after key negotiation. The

crucial property we leverage is that, without knowledge of k, it is intractable for an adver-
sary to distinguish a set of address values {AESk (j1) , AESk (j2) , . . . , AESk (jn)} from
random bits.2 As a consequence, for any two values AESk1 (i1) and AESk2 (i2) where
i1 6= i2, it is intractable for a third party to determine whether k1 = k2, even if i1 and i2
are known. Thus, these addresses are unlinkable without knowledge of kaddr

AB .

In practice, B computes addri
AB once at time Ti = T0 + i · I . B maintains a hash table

containing the addresses for messages he might receive. At time Ti, he clears the table and
inserts the key-value pair (addri

jB , j) for each identity j he has keys for, so that he can
anticipate messages sent with these addresses and determine that he should use j’s keys to
process them. When A wants to send a message to B at time T , he also computes addri

AB.
Section 3.4.1 discusses how we deal with clock skew.

Construction. Tryst(A, B, p) is computed as follows (Figure 3.2):

1. Generate a random key kp.

2. header ← {s, mac}, where:

s = {addri
AB, AESkEnc

AB
(kp)},

mac = AES-CMACkMAC
AB

(s) .

header proves to B that A is the sender and B the receiver because only A and
B have kEnc

AB and kMAC
AB . Moreover, it proves to B that it was constructed near the

current time T because addri
AB is a cryptographic function of T . This provides

authenticity.

To third parties, mac appears to be random because it is computed over the encryp-
tion of random key kp, so neither it nor the encipherment of kp can link it to other
messages. addri

AB is sent “in the clear” and will be used in all messages sent dur-
ing time interval Ti, but addri1

AB and addri2
AB for any i1 6= i2 are unlinkable, thus

providing long-term unlinkability.

2We make the standard assumptions that AES is a good pseudorandom permutation and that n ≤ 264.
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3. ctext← {etext, emac}, where:

etext = AES-CTR2kp1

(
0128, p

)
,

emac = AES-CMACkp2 (etext) .

kp1 and kp2 are pseudo-random keys derived from kp (e.g., kp1 = kp and kp2 =
SHA1128 (kp)). ctext is an encryption of the payload p along with a MAC which,
given kp, verifies that the payload was not altered during transmission. We derive
two keys from kp so that different keys are used for encryption and MAC. Since kp

is random, ctext will be different from previous messages even when an identical
payload p was sent before. (Note that since key kp is only used once, the IV 0128 is
still a nonce for that key’s “session.”)

4. c← {header, ctext}.

A more formal demonstration of Tryst’s security properties can be found in Section 3.5.

The overhead (64–80 bytes per message) is acceptable since discovery and binding
messages are sent infrequently.

Message filtering. Upon reception of such a message, B simply checks his hash table to
determine if he has an address addri

AB. If he does, it will be associated with the keys for
A, which can be used to verify and decrypt the header. If not, he can discard the message.
Once header is decrypted, he obtains kp, which can be used to decrypt and verify ctext
to retrieve the original p. In contrast to the straw man mechanisms, this protocol enables
devices to discard messages not intended for them efficiently, using hash table lookups
instead of costly cryptographic operations.

3.3.4 Data Transport: Shroud

Tryst is insufficient for identifier-free data transport because data messages are neither in-
frequent nor do they have a narrow interface. Thus, to defend against side-channel analy-
sis, we want strong unlinkability rather than just long-term unlinkability. Shroud maintains
this property efficiently by leveraging a key assumption about data transport:

Connected Communication. Whereas discovery messages are often sent at
times when they will not be received, data messages are only sent after a link
has been established. Thus, a sender and receiver can assume that, barring
message loss, their messages will be received by their intended recipient.
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In effect, this assumption enables Shroud to compute a sequence of unlinkable addresses
on a per packet basis, as we will describe shortly.

Bootstrapping. We bootstrap Shroud with random session keys kaddr
s:AB, kEnc

s:AB, kMAC
s:AB for

messages from A to B. These keys are exchanged in SlyFi’s authentication messages (see
Figure 3.1) and thus are protected by Tryst.

Per-packet unlinkable addresses. The only design choice in Tryst that sacrifices strong
unlinkability is the use of the same addri

AB for all packets during time interval i. Thus,
we can essentially use Tryst, provided that we can compute addresses addri

AB per packet
rather than per time interval. To do this in Shroud, addri

AB is computed as a function of
the ith transmission since link establishment:

addri
AB = AESkaddr

s:AB
(i) , where i = transmission number

Since a connection has been established, B will receive every packet sent by A on this link
barring message loss, and, hence, B only needs to compute address i + 1 after the receipt
of message i; i.e., B computes the address he expects in the next message.

Of course, message loss in wireless networks is common, so we would like to be able
to tolerate the loss of w consecutive losses for some w. Thus, on receipt of message i, a
receiver computes the (i + 1)th to (i + w)th addresses and inserts them all into its hash
table (removing all addresses j ≤ i). Note that, except for the first message received (e.g.,
the association request or reply in SlyFi), which requires the computation of w addresses,
only one additional address needs to be computed for each subsequent packet sent to B,
unless there are message losses; B performs no address computation for packets destined
for other devices that it overhears. Section 3.4.2 discusses how we choose w and perform
link layer retransmissions.

To avoid the overhead of storing these addresses, an alternative design would be to use
the same address until a message transmission is successful. However, this approach is
problematic when each message is only transmitted a small number of times before giving
up, as in 802.11. In these circumstances, the same address can be used on many distinct
consecutive packets, which violates strong unlinkability. This is particularly problematic
because an adversary that actively jams a channel can cause the loss of packets, forcing a
sender to use the same address for many consecutive packets.

Construction. With per-packet unlinkable addresses, we could use the Tryst construction
and achieve the desired security properties and filter packets efficiently. However, we can
make additional optimizations. Shroud(A, B, p) is computed as follows (Figure 3.3):

1. header ← addri
AB.
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header = addri
AB etext = AES-CTR2kEnc

s:AB
(header, p) emac = AES-CMACkMAC

s:AB
(header, etext)

16 bytes variable 16 bytes

Figure 3.3: Shroud packet format.

Unlike in Tryst, no Shroud address will ever appear in two different messages; thus
no one can successfully record and replay them. As a consequence, addri

AB itself
proves to B that A sent the message to B and that it was message transmission i,
which B expects. This provides authenticity. Each message will have a different
address and addresses are strongly unlinkable.

2. ctext← {etext, emac}, where:

etext = AES-CTR2kEnc
s:AB

(header, p) ,

emac = AES-CMACkMAC
s:AB

(header, etext) .

In Tryst, we use a random key to perform the encryption to ensure that the encrypted
payload and MAC are unlinkable to previous messages even if their contents are the
same. Since each Shroud address is different and is used only once, header effec-
tively serves as a nonce that we can use as an IV to the encryption of the payload.
This ensures that etext is unlinkable to previous messages even if their contents
are the same and we use the same key kEnc

s:AB for encryption. Similarly, we include
header in the computation of emac to ensure that it is unlinkable to previous mes-
sages even if p is null.

3. c← {header, ctext}.

A more formal demonstration of Shroud’s security properties can be found in Section 3.5.

We note that addri
AB implies the three Ethernet addresses in p so they can be removed,

saving 18 bytes. Therefore, Shroud’s additional 16 bytes of overhead can, in practice, be
a net savings of 2 bytes.

Message filtering. As in Tryst, B determines whether a message is for him by looking
up addri

AB in the hash table containing his precomputed addresses. In fact, since the
address is located in the same position in both Tryst and Shroud packets, there is no need
to distinguish the two message types and a single hash table can be shared by both. The
value associated with each address key in the hash table will indicate whether it should be
demultiplexed to Tryst or Shroud.
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3.3.5 Other Protocol Functions

Tryst and Shroud make the crucial elements of a link layer protocol—discovery, binding,
and data transport—identifier-free, but other protocol functions must be supported as well.
In this section, we explain how SlyFi can support these functions without introducing
identifiers.

Broadcast. Shroud supports identifier-free broadcast transmissions in managed mode.
Broadcasted frames are encrypted with a key and sequence number that are shared by the
AP and all clients on the local network. As in 802.11’s managed mode, a client forwards
frames to the AP that it wishes the AP to broadcast. In Shroud, the transmission to the
AP is protected by the per-client shared key used for unicast transmissions. (A client
optionally may divulge his identity to all associated stations by including his source ad-
dress.) Upon reception at the AP, the frame is decrypted and then re-encrypted with the
shared broadcast key. The shared key and current sequence number are managed by the
AP and conveyed to each of its clients during association. Although SlyFi currently does
not support broadcast key revocation, we believe we can apply a scheme similar to that of
802.11i [80]; this is is a topic of future work.

Binding to higher layer identifiers. There is often a need to bind higher layer names to
link layer addresses. For example, ARP binds Ethernet addresses to IP addresses. Obvi-
ously, we do not want to have to re-establish this binding for every Shroud address change.
Instead, we have the AP negotiate with each client a pseudonym address that remains con-
sistent for that session, but that is not sent in actual messages. The client informs the AP
of its IP to pseudonym binding whenever its IP address changes. Thus, the AP can answer
all ARPs.

Announcement. Beacons are broadcasted in the clear to announce an 802.11 AP. While
SlyFi does not prevent beacons, an AP that wants to hide its presence obviously cannot
use them. To discover APs in SlyFi, a client must have the necessary Tryst keys to probe
for it. We do not believe this is a hindrance, since existing secure 802.11 networks already
require secure out-of-band channels to exchange keys before association.

Time synchronization. Beacons are also used to convey timestamps so that clients and
APs can synchronize their clocks. With synchronized clocks, clients need only turn on
their radios at designated times to receive packets when operating in low power modes.
Since only clients on the local network need to synchronize their clocks, this information
can be encrypted using the broadcast encryption key described above.
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Roaming. Clients sometimes use probes or beacons after association to search for better
APs to roam to. Using Tryst to send these probes might be expensive if a client sends
them frequently. However, these APs are usually in the same administrative domain and
thus could share a broadcast key, which could be used to encrypt these messages instead of
using Tryst. In addition, Shroud session state could be migrated between APs in advance,
similar to how WPA pre-authentication is performed.

Coexistence. Our implementation of SlyFi can coexist with normal 802.11 devices be-
cause we encapsulate SlyFi messages in management frames that normal 802.11 devices
ignore (see Section 3.4.3). The medium access protocol is unchanged.3 Thus, SlyFi can
be deployed incrementally. In a mixed environment, a SlyFi-enabled client can first search
for a SlyFi-enabled AP using Tryst probes. If no such AP is found, then a client willing to
fall-back to a normal 802.11 AP can listen for beacons and associate normally.

3.4 Implementation Details

This section discusses practical considerations involved in implementing Tryst, Shroud,
and our SlyFi prototype.

3.4.1 Tryst: Practical Considerations

Clock skew. In practice A and B will not have perfectly synchronized clocks. To allow
for clock skew up to k · I between devices, B should anticipate the addresses that may be
used for any messages sent in the time range [Ti−k, Ti+k] at time Ti. Thus, he also inserts
(or keeps) addri−k

jB , addri−k+1
jB , . . . , addri+k

jB into the table for all identities j for which he
has keys. Note that messages sent by A will still only use the address addri

jB for one time
interval of length I . B will simply accept messages with that address for longer.

Scoped broadcast. A client may want to send the same discovery message to multi-
ple services (e.g., to discover any one of them). To do this, A constructs one header
for each intended recipient, but includes the same kp in each header; e.g., he sends
{header1, . . . , headerN, ctext}. Hence, any party that can interpret any one header can
obtain kp and decrypt the payload. However, each party can only interpret the header
intended for them, so the identities of the other parties remain obscured. One problem

3 We do not yet support RTS/CTS because our software implementation is not fast enough to perform
filtering at the timescale required, but we note that RTS/CTS is rarely used in actual managed networks.
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with this approach is that a legitamite receiver can not tell where ctext begins in the mes-
sage. To discover it, he could try verifying cmac starting from every block offset after his
header. Alternatively, we could encrypt N within each header itself (at the cost of another
16 byte block per header).

Forward security. One concern is that kaddr
AB is stored for a long time and if it is compro-

mised, an adversary could compute the addresses of all messages that A ever sent to B.
We mitigate this risk by computing a new key each day using a forward-secure pseudo-
random bit generator [22]; i.e., the key for day j: k

addr(j)
AB ← SHA1128

(
k

addr(j−1)
AB

)
. Both

A and B discard the old key and use the new key for computing addresses. The address
computation remains the same, but an adversary that obtains k

addr(j)
AB would only be able

to compute addresses for days j and after.

Public services . Mutual confidentiality is not always required. For example, 802.11 APs
at hotspots are immobile and public and do not need to hide their presense to eavesdroppers—
indeed, they want to be discovered so that clients will pay to use them. Although Tryst
can still be used in these circumstances, it will hinder the discovery of public services that
clients do not yet know about; clients would have to discover the existence of these APs
through out-of-band means and exchange a key (e.g., by asking the hotstop owner). Futher-
more, large networks of public hotspots, such as AT&T Wi-Fi and T-Mobile Hotspots, may
have hundreds of thousands or millions of registered clients. Using Tryst, they would need
to compute and store new addresses for each of these clients every time interval T , which
may be burdensome.

When the service does not need to hide its presence during discovery, it can, instead,
use a variant that publically authenticates the service and only conceals the identity of
the client. For example, JFKi [7], a protocol originally designed for IPSec key exchange,
can be used in place of Tryst to establish a session key for Shroud. The basic idea is
that, because the service is public, it can announce and authenticate its identity using a
certificate chain (as in SSL). With judicious use of nonces, a client can use the standard
Diffie-Hellman protocol to exchange a key with the service without revealing its identity
to anyone except the service.

3.4.2 Shroud: Practical Considerations

Choosing w. w determines the number of consecutive packet losses Shroud can endure.
In practice, burst losses of more than 50 packets are extremely rare on usable links [136]
so we use w = 50. A larger burst loss will result in a higher level timeout and require re-
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establishing the link. The overhead required to maintain these addresses is not prohibitive;
even a heavily loaded AP with 256 clients (the max supported by the standard MadWifi
driver [110]) requires only 1MB. Most clients, which only have one association at a time,
could easily check message addresses in hardware with no more delay or energy than
existing NICs. We show in Section 3.7.4 that even software filtering incurs little overhead.

Acknowledgments. Every unicast 802.11 data packet is acknowledged by the receiver to
manage message loss. In principle, link-layer acknowledgments can simply acknowledge
the address of the received Shroud packet, since the sender knows the last address used.
However, our current implementation is in software and thus is unable to send this ack
within the 16 microseconds allotted to it. Therefore, we currently use software acks that
selectively acknowledge cumulative windows of data packets. Each acknowledgment and
message retry is processed anew by Shroud.

3.4.3 Prototype Implementation

We implemented SlyFi in C++ using the Click Modular Router [94], incorporating Tryst
and Shroud with its existing 802.11 implementation (which is by the authors of Roofnet [140]).
Since existing 802.11 NICs will not send frames without proper 802.11 headers, each Tryst
or Shroud message is encapsulated in an “anonymous” 802.11 header, i.e., one with con-
stant fields and addresses. NICs are placed in promiscuous mode so that they receive
all these frames and perform filtering in software. We use the cryptographic routines in
libgcrypt [106] and ran our software as a Linux kernel module.

We note that the following evaluation section uses a SlyFi implementation that is
slightly different from the protocol we described in the previous sections. This variant,
described in [63], uses CBC mode rather than CTR2 mode to encrypt message payloads
(see Table 3.2). CTR2 mode is uses the same number of AES operations, has less message
overhead, can be computed in parallel, and is provably secure. Therefore, the results we
present for SlyFi in the following section are (slightly) conservative.

3.5 Formal Security Analysis

In this section, we define and demonstrate SlyFi’s confidentiality and unlinkability prop-
erties (outlined in Section 3.2.2) with more formal rigor. We omit a more detailed analysis
of the authenticity and message integrity properties because both Tryst and Shroud make
standard usage of CMAC to authenticate and maintain the integrity of the message payload
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(etext), so they are directly dependent on the security of CMAC [83]. More specifically,
we show in this section that the output of Tryst’s and Shroud’s encapsulation functions are
indistinguishable from random bits to a computationally bounded adversary. This property
implies confidentiality and unlinkability.

3.5.1 Preliminaries

We use the standard definitions of security properties and proof model pioneered in the
work of Bellare and Rogaway [20, 23, 139, 25]. The reader is referred to this body of
work for in-depth coverage of these definitions and the security proof framework. We also
list the definitions relevant to our security analysis in this section.

We use the standard definitions of random functions, permutations, random bits, and
nonce-based encryption schemes, which are defined as follows [2, 32, 139]:

• Rand(D,R) is the family of pseudorandom functions from D → R.

• Perm(D,R) is the family of permutations from D → R.

• $n is a sequence of n random bits.

• Π(n) = (K, E ,D) is a nonce-based encryption scheme where K = {0, 1}n is the
set of keys, E : K × N ×M → C is the set of encryption functions, D : K ×
N × C → M is the set of decryption functions,M is the set of plaintexts, C is the
set of ciphertexts, and N = {0, 1}n is the set of all nonces. We call n the security
parameter of the encryption scheme. Each member of Π(n) is distinguished by a
key in K.

• E
R← E denotes the uniformly random selection of an element E from the set E .

Encapsulation functions. We define an encapsulation function, a generalization an en-
cryption function, as follows: F (n, l, k) is a family of encapsulation functions D1 ×D2 ×
. . . × Dl → R if k inputs Di1, . . . ,Dik = {0, 1}n, 1 ≤ k < l. We call these inputs the
function’s keys. Each member of F is distinguished by fixing its keys. We call k · n the
security parameter of the encapsulation function family. For brevity, we often use F to
refer to F (n, l, k) when the parameters are clear from context. Note that a nonce-based
encryption function family E is an instance of F (n, 3, 1).
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For brevity, we use f
R← F to denote FK1...Kk

where K1
R← Di1, . . . , Kk

R← Dik and
Di1, . . . ,Dik are F ’s keys. In other words, f is a member of F that is selected by randomly
selecting each of F ’s keys.

Security properties. We are interested in showing that the Tryst and Shroud encapsula-
tion functions in SlyFi are ENCAP-IND$-CPA-secure, a property that we define below.
Intuitively, a function that is ENCAP-IND$-CPA-secure means that its outputs are indis-
tinguishable from random sequence of bits of the same lengths (i.e., $|tryst(...)| for tryst),
given that the adversary is computationally bounded but can choose all the inputs and ob-
serve all the outputs. ENCAP-IND$-CPA is practically identical to IND$-CPA (indistin-
guishability from random bits under a chosen plaintext attack), another common property
in the literature that we define below. The only difference is that ENCAP-IND$-CPA
refers to an arbitrary encapsulation function whereas IND$-CPA refers to an encryption
scheme. We distinguish these two properties for clarity (Lemma 6 shows that IND$-CPA
implies ENCAP-IND$-CPA for the encryption function). These properties imply the
standard notions of confidentiality and key-indistinguishability [139] (key-indistinguishability
is synonymous with unlinkability — an adversary can not link a message to a particular
encryption key).

Adversaries, oracles, and security games. In the following definitions, we consider the
following standard experiment or “game.” A chosen plaintext probabilistic polynomial
time adversary A is given access to one of two oracle functions (e.g., one that is our
encapsulation function or one that returns truly random bits). We use Aoracle(·) to denote
that the adversary A is given the oracle oracle(·). The adversary does not know which
oracle he was given but it can make q queries to it and spend t time computing. In addition,
the total size of all queries submitted may not exceed σ. (t, q, σ) are the resource bounds on
the adversary. We use only (t, σ) to describe the resource bounds of adversaries attacking
block ciphers, which have fixed sized inputs and outputs; we omit the number of queries q
since q = O(σ).

The adversary’s goal is to to determine which oracle it was given; it returns 0 if it thinks
it is the first, and 1 if it thinks it is the second. We want to minimize an adversary A’s
advantage Advprop

F (A), a measure of how likely that it guesses correctly when attacking
security property prop of encryption scheme F . We use the notation Advprop

F (t, q, σ) to
denote the maximal advantage of all adversaries that spend up to t time computing and
make q queries with total size σ. We define an adversary’s advantage more formally below.

This game corresponds to the scenario where an eavesdropper observes all packets sent
and wants to determine whether they are random bits or actual Tryst and Shroud packets.
This is a strictly easier problem than trying to decrypt them or to link them to a particular
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key (i.e., sender or receiver). Therefore, if an adversary can not distinguish, it also can not
decrypt or link packets. Moreover, we consider a strong adversary that is able to determine
the inputs (e.g., plaintext payloads) of all packets sent. Therefore, this game represents a
strictly more powerful adversary than one would probably encounter in practice. The
purpose of considering such an adversary is to show that our schemes are secure even with
minimal assumptions about the adversary.

Useful definitions. We enumerate relevant security definitions and lemmas below.

Definition 3.5.1 (ENCAP-IND$-CPA) Let F (n, m, k) be a family of encapsulation func-
tions D1 × D2 × . . . × Dl → R, and let A be a an algorithm that takes an oracle and
returns a bit. Define

AdvENCAP-IND$-CPA
F (A)

def
= Pr

[
f

R← F : Af(·,...,·) = 1
]
−

Pr
[
f

R← F : A$|f(·,...,·)|
= 1

]

We say an encapsulation function family F (n, l, k) with k keys is ENCAP-IND$-CPA-
secure if AdvENCAP-IND$-CPA

F (A) ≤ ε(k · n) for all adversaries A, where ε(k · n) is negli-
gible.4

Definition 3.5.2 (IND$-CPA) [2, 139] Let Π(n) = (K, E ,D) be a nonce-based encryp-
tion scheme, n be the security parameter, and let A be a nonce-respecting chosen plaintext
attack adversary. A nonce-respecting adversary is one that does not submit any query
(N, ·) after submitting a query (N, M), N ∈ N . Define

AdvIND$-CPA
Π(n) (A)

def
= Pr

[
k

R← K : AEk(·)(n) = 1
]
−

Pr
[
k

R← K : A$|Ek(·)|
(n) = 1

]

We say an encryption scheme family Π(n) is IND$-CPA-secure if AdvIND$-CPA
Π(n) (A) ≤

ε(n) for all adversaries A, where ε(n) is negligible.

4A function ε(n) is negligible if for every polynomial P (·) there exists an N such that for all integers
n > N , ε(n) < P (n).
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Definition 3.5.3 (IND$-CPA’) Let Π(n) = (K, E ,D) be a nonce-based encryption scheme,
n be the security parameter, and let A be a random-nonce chosen plaintext attack adver-
sary. A random-nonce adversary is one that selects N

R← N for each query (N, M) that
it submits. Define

AdvIND$-CPA′

Π(n) (A)
def
= Pr

[
k

R← K : AEk(·)(n) = 1
]
−

Pr
[
k

R← K : A$|Ek(·)|
(n) = 1

]

Definition 3.5.4 (prf) [32] Let F : D → R be a family of functions where R = {0, 1}n
for n ≥ 1, and let A be an algorithm that takes an oracle and returns a bit. Then

Advprf
F (A)

def
= Pr[f

R← F : Af(·) = 1]− Pr[ρ
R← Rand(D,R) : Aρ(·) = 1]

Definition 3.5.5 (prp) [32] Let F : D → R be a family of functions R = {0, 1}n for
n ≥ 1, and let A be an algorithm that takes an oracle and returns a bit. Then

Advprp
F (A)

def
= Pr[f

R← F : Af(·) = 1]− Pr[π
R← Perm(D,R) : Aπ(·) = 1]

Lemma 1 (PRF/PRP Switching) [32] Fix n ≥ 1. Let A be an adversary that asks at most
q queries. Then∣∣∣Pr[π

R← Perm(D,R) : Aπ(·) = 1]− Pr[ρ
R← Rand(D,R) : Aρ(·) = 1]

∣∣∣ ≤ q(q − 1)

2n+1

where D = R = {0, 1}n for n ≥ 1.

3.5.2 Security of Each Part

We first show that each constituent part of the Tryst and Shroud encapsulation functions
are ENCAP-IND$-CPA- or IND$-CPA-secure. Note that each part itself is also an en-
capsulation function. In the next section, we demonstrate how to describe the security of
the combination of these parts.

Security of addr. Define NO[F ] as shown in Figure 3.4. That is, we can think of
a function family F : K × M → {0, 1}n, such as a block cipher, as a nonce-based
encryption function NO[F ] : K × N ×M → {0, 1}n where NO[F ]K throws away the
second argument and just enciphers the nonce (andN =M). Obviously, we can’t extract
M from the result, so the decryption function is empty.
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Algorithm NO[F ].EncryptK(N, M):
return FK(N)

Algorithm NO[F ].DecryptK(C):
return ?

Figure 3.4: “Nonce-only” function NO[F ].

Lemma 2 (IND$-CPA for addr) Let F be a family of functions K × M → {0, 1}n.
Assume that all IND$-CPA adversaries are nonce-respecting. Then

AdvIND$-CPA
NO[F ] (t, q, σ) ≤ Advprf

F (t′, q, σ)

where t′ = t + O(σ).

Proof Sketch Suppose we have an IND$-CPA adversary A attacking NO[F ]. We
construct a prf adversary B attacking F as follows:

1. When A makes a query (N, M) to its oracle, pass N to B’s oracle.

2. When A outputs b, B outputs b.

Note that, from the perspective of A, B simply implements NO[F ], where F is A’s
oracle.

Advprf
F (B) = Pr[k

R← K : ANO[F ]k(·,·) = 1]− Pr[ρ
R← Rand(M, {0, 1}n) : ANO[ρ](·,·) = 1]

= Pr[k
R← K : ANO[F ]k(·,·) = 1]− Pr[ρ

R← Rand(M, {0, 1}n) : Aρ(·) = 1]

= Pr[k
R← K : ANO[F ]k(·,·) = 1]− Pr[ρ

R← Rand(M, {0, 1}n) : A$|NO[F ]k(·,·)|
= 1]

= AdvIND$-CPA
NO[F ] (A)

The third equality can be shown as follows: A is nonce-respecting so each query it submits
to ρ(·) will be different. Moreover, the range of F is {0, 1}n so outputs of NO[F ]k(·, ·)
are all of length n. Therefore, the behavior of ρ(·) is indistinguishable from $|NO[F ]k(·,·)|.

Security of enckey. The following Lemma shows enckey is IND$-CPA-secure.

Lemma 3 (IND$-CPA for enckey) Assume that all IND$-CPA′ adversaries are random-
nonce adversaries and all IND$-CPA adversaries are nonce-respecting. Then

AdvIND$-CPA′

NO[F ] (t, q, σ) ≤ AdvIND$-CPA
NO[F ] (t′, q, σ) +

q(q − 1)

2n+1

where t′ = t + O(σ).
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Proof Sketch If IND$-CPA′ adversary A never submits the same query twice, then it
is nonce-respecting and has at most the same advantage as the best nonce-respecting ad-
versary. The likelihood that it submits the same query twice is at most q(q−1)

2n+1 (the birthday
bound).

Security of mac and emac. The following Lemma from Iwata et al. [83] shows that
CMAC is prf-secure. By Lemma 2, it is also IND$-CPA-secure if the input is different
each time.

Lemma 4 (prf for CMAC) [83] Let E : K × {0, 1}n → {0, 1}n be the underlying block
cipher in CMAC (a.k.a. XCBC). Then

Advprf
CMAC(t, q, σ) ≤ 3σ2

2n
+ Advprp

E (t′, σ)

where t′ = t + O(σ).

Security of etext. The following Lemma from Rogaway [139] shows that CTR2 mode
encryption is IND$-CPA-secure.

Lemma 5 (IND$-CPA for etext) [139] Let E : K×{0, 1}n → {0, 1}n be the underlying
block cipher in CTR2. Let n, σ ≥ 1. Then

AdvIND$-CPA
CTR2 (t, q, σ) ≤ σ2

2n
+ Advprp

E (t′, σ)

where t′ = t + O(σ).

Note that although we always use 0128 as the IV in Tryst’s encryption of the payload
p, we use a different encryption key each time. Therefore, the protocol is still nonce-
respecting in that the IV is only used once per encryption key.

Combining components. Finally, the following two Lemmas demonstrate how to de-
scribe the security when combining IND$-CPA-secure and ENCAP-IND$-CPA-secure
constituent parts.

Lemma 6 (IND$-CPA⇒ ENCAP-IND$-CPA) Let Π(n) = (K, E ,D) be an encryption
scheme. Assume that all ENCAP-IND$-CPA and IND$-CPA adversaries are nonce-
respecting. Then

AdvENCAP-IND$-CPA
E (t, q, σ) ≤ AdvIND$-CPA

Π(n) (t′, q, σ)

where t′ = t + O(σ).
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Algorithm FC[f1, . . . , fm](D11, . . . , D1k, . . . , Dm1, . . . , Dmk):
return f1(D11, . . . , D1k)‖ . . . ‖fm(Dm1, . . . , Dmk)

Figure 3.5: Encapsulation function “combiner” FC[F1, . . . , Fm]

Proof Sketch Suppose we have an ENCAP-IND$-CPA adversary A attacking E . Con-
struct an IND$-CPA adversary B attacking Π(n) as follows:

1. When A asks a query to its oracle, pass it to B’s oracle.

2. When A outputs bit b, output b.

B’s oracle is the same as A’s oracle (an encryption function chosen randomly from E ,
or a random sequence of bits of the same length). Therefore B will answer correctly if and
only if A answers correctly.

Let F1(n, l1, k1), . . . , Fm(n, lm, km) be encapsulation function families such that Fi :
Di1 × . . . × Dik → Ri. Define a encapsulation function family FC[F1, . . . , Fm] as in
Figure 3.5, where each distinct member of FC[F1, . . . , Fm] is defined by choosing one
function in each family Fi. That is, a function FC[f1, . . . , fm] simply comprises one func-
tion f1 ∈ F1, f2 ∈ F2, etc., takes as input all the inputs of each fi, and returns the
concatenation of the result of each. The members of FC[f1, . . . , fm] are distinguished by
the combined keys of all its components. Therefore, it has

∑m
i li inputs and its security

parameter is n ·
∑m

i ki.

Lemma 7 (ENCAP-IND$-CPA Combiner) Let F1(n, l1, k1), . . . , Fm(n, lm, km) be en-
capsulation function families such that Fi : Di1 × . . .×Dili → Ri. Then

AdvENCAP-IND$-CPA
FC[F1,...,Fm] (t, q, σ) ≤

m∑
i

AdvENCAP-IND$-CPA
Fi

(t′, q, σ)

where t′ = t + O(σ).

Proof Sketch We prove this claim using induction on m.

Base case. FC[f1] = f1. Therefore, AdvENCAP-IND$-CPA
FC[F1] (t, q, σ) = AdvENCAP-IND$-CPA

F1
(t, q, σ).

Inductive case. Assume the inductive hypothesis:

AdvENCAP-IND$-CPA
FC[F1,...,Fm] (t, q, σ) ≤

m∑
i

AdvENCAP-IND$-CPA
Fi

(t′, q, σ)
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We want to show the following:

AdvENCAP-IND$-CPA
FC[F1,...,Fm+1] (t, q, σ) ≤

m+1∑
i

AdvENCAP-IND$-CPA
Fi

(t′, q, σ)

Suppose we have an ENCAP-IND$-CPA adversary B attacking FC[F1, . . . , Fm+1].
To prove the above claim, we construct two ENCAP-IND$-CPA adversaries from B: A1

attacks Fm+1 and A2 attacks the inductive hypothesis.

Adversary A1:

1. For i ∈ {1, . . . ,m} construct fi
R← Fi.

2. When B makes an oracle query (D1,1, . . . , D1,l1 , . . . , Dm+1,1, . . . , Dm+1,lm+1), pass
(Dm+1,1, . . . , Dm+1,lm+1) to A1’s oracle to obtain the result o.
Return f1(D1,1, . . . , D1,l1)‖ . . . ‖fm(Dm,1, . . . , Dm,lm)‖o.

3. When B outputs bit b, output b.

Note that in the case where A1’s oracle is fm+1, this adversary implementsFC[F1, . . . , Fm+1]
as the oracle for B. Therefore, A1 has the following advantage:

AdvENCAP-IND$-CPA
Fm+1

(A1) = Pr
[
f1

R← F1, . . . , fm+1
R← Fm+1 : BFC[f1,...,fm+1] = 1

]
−

Pr
[
f1

R← F1, . . . , fm+1
R← Fm+1 : BFCR[f1,...,fm+1] = 1

]
whereFCR[f1, . . . , fm+1] is a function that takes (D1,1, . . . , D1,l1 , . . . , Dm+1,1, . . . , Dm+1,lm+1)
returns $|f1(D1,1,...,D1,l1

)|‖ . . . ‖$|fm(Dm,1,...,Dm,lm )|‖fm+1(Dm+1,1, . . . , Dm+1,lm+1).

Adversary A2:

1. Construct fm+1
R← Fm+1.

2. When B makes an oracle query (D1,1, . . . , D1,l1 , . . . , Dm+1,1, . . . , Dm+1,lm+1), pass
(D1,1, . . . , D1,l1 , . . . , Dm,1, . . . , Dm,lm) to A2’s oracle to obtain the result o.
Return o‖$|fm+1(Dm+1,1,...,Dm+1,lm+1

)|.

3. When B outputs bit b, output b.
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Note that in the case where A2’s oracle is $|FC[F1,...,Fm]|, this adversary implements $|FC[F1,...,Fm+1]|.
Therefore, A2 has the following advantage:

AdvENCAP-IND$-CPA
FC[F1,...,Fm] (A2) = Pr

[
f1

R← F1, . . . , fm+1
R← Fm+1 : BFCR[f1,...,fm+1] = 1

]
−

Pr
[
f1

R← F1, . . . , fm+1
R← Fm+1 : B$|FC[f1,...,fm+1]|

= 1
]

where FCR[f1, . . . , fm+1] is defined above.

We then have:

AdvENCAP-IND$-CPA
FC[F1,...,Fm+1] (B) = Pr

[
f1

R← F1, . . . , fm+1
R← Fm+1 : BFC[f1,...,fm+1] = 1

]
−

Pr
[
f1

R← F1, . . . , fm+1
R← Fm+1 : B$|FC[f1,...,fm+1]|

= 1
]

= Pr
[
f1

R← F1, . . . , fm+1
R← Fm+1 : BFC[f1,...,fm+1] = 1

]
−

Pr
[
f1

R← F1, . . . , fm+1
R← Fm+1 : BFCR[f1,...,fm+1] = 1

]
+

Pr
[
f1

R← F1, . . . , fm+1
R← Fm+1 : BFCR[f1,...,fm+1] = 1

]
−

Pr
[
f1

R← F1, . . . , fm+1
R← Fm+1 : B$|FC[f1,...,fm+1]|

= 1
]

= AdvENCAP-IND$-CPA
Fm+1

(A1) + AdvENCAP-IND$-CPA
FC[F1,...,Fm] (A2)

≤
m+1∑

i

AdvENCAP-IND$-CPA
Fi

(t′, q, σ)

The first equality is by the definition of ENCAP-IND$-CPA. The second equality is due
to the addition and subtraction of the same quantity. The third equality is by substitution
with the adversaries’ advantages shown above. The final inequality is by the inductive
hypothesis.

3.5.3 Security of Tryst and Shroud

Finally, in this section, we show how to describe the security of the Tryst and Shroud
encapsulation functions, which are combinations of functions described in the previous
section.

Theorem 3.5.1 (ENCAP-IND$-CPA for tryst) Let tryst : K×N ×M be the encapsu-
lation function described in Section 3.3.3, where N is the value enciphered to create the
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address addr andM is the plaintext payload. If SHA1128 (·) is a random oracle, then

AdvENCAP-IND$-CPA
tryst (t, q, σ) ≤ 9σ2

2n
+ 5 · Advprp

AES(t
′, σ)

where t′ = t+O(σ) for any adversary that makes at most one query per time interval (i.e.,
chooses different N ∈ N for each query).

Proof Sketch We analyze an adversary’s advantage by determining its maximal ad-
vantage of attacking each individual part of the output: addr = addri

AB, enckey =
AESkEnc

AB
(kp), mac = AES-CMACkMAC

AB
(s), etext = AES-CTR2kp1 (0128, p), and emac =

AES-CMACkp2 (etext). Note that the secret key input the encryption scheme in each of
these parts is different (kp1 and kp2 are random if SHA1128 (·) is a random oracle). There-
fore, each component is selected randomly from their respective encryption function fam-
ilies. Thus, we can use Lemma 7 to obtain a bound on the advantage the adversary has on
the tryst function as a whole.

If an adversary makes at most one query per time interval, then the addr part of the
output is an instance ofNO[AES] because the nonce input will be different each time. By
Lemma 2 and Lemma 6, an IND$-CPA adversary’s advantage attacking the addr part is
at most Advprf

AES(t, q) ≤ Advprp
AES(t, q) + q(q−1)

2n+1 (by Lemma 1).

The enckey part is an instance ofNO[AES] where each input is random. By Lemma 3,
the ENCAP-IND$-CPA adversary’s advantage attacking the enckey part is at most
AdvIND$-CPA

NO[AES] (t, q) + q(q−1)
qn+1 . By applying Lemma 2, Lemma 6, and Lemma 1 as before,

we obtain that the advantage is at most Advprp
AES(t, q) + q(q−1)

2n .

The mac part is an instance of CMAC. By Lemma 4, the prf adversary’s advantage at-
tacking the mac part is at most 3σ2

m

2n +Advprp
AES(t̄, σm) where σm is the sum of the sizes of the

inputs to CMAC and t̄ = t+O(σm). The output size is the same for all inputs and all inputs
are different, so the prf property becomes indistinguishable from the ENCAP-IND$-CPA
property and this is also a bound on the ENCAP-IND$-CPA advantage of attacking the
mac part.

The etext part is an instance of CTR2. By Lemma 5, the IND$-CPA adversary’s
advantage is at most σ2

p

2n + Advprp
AES(t

′, σp) where σp is sum of the sizes of plaintexts p and
t̂ = t+O(σp). By Lemma 6, this is also the bound on the ENCAP-IND$-CPA advantage
of attacking the etext part.

The emac part is an instance of CMAC. By Lemma 4, the prf adversary’s advantage
attacking the mac part is at most 3(σp)2

2n + Advprp
AES(t̂, σp) where σp is sum of the sizes of
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plaintexts |p| and t̂ = t + O(σp). The output size is the same for all inputs, so the prf
property becomes indistinguishable from the ENCAP-IND$-CPA property and this is
also a bound on the ENCAP-IND$-CPA advantage of attacking the mac part.

The tryst encapsulation function is just a concatenation of the aforementioned parts, so
by Lemma 7, an ENCAP-IND$-CPA adversary’s advantage attacking tryst is at most the
sum of the aforementioned advantages:

2 · Advprp
AES(t, q) + Advprp

AES(t̄, σm) + 2 · Advprp
AES(t̂, σp) +

1.5 · q(q − 1)

2n
+

3σ2
m

2n
+

4σ2
p

2n

≤ 5 · Advprp
AES(t

′, σ) + 9 · σ
2

2n

where σ is the sum of the sizes of all input to the tryst function (i.e., the length of each
packet) and t′ = t + O(σ).

Tryst takes 4 = O(1) keys, and the bound given by Theorem 3.5.1 is clearly negligible
in 4n assuming that Advprp

AES(t
′, q, σ) is also negligible in n (i.e., AES is a good random

permutation). Thus, Tryst is ENCAP-IND$-CPA-secure if we limit the adversary to one
query per time interval. However, note that we only require this limitation in order to make
the adversary nonce-respecting for the addr part of the Tryst function. Therefore, if we
consider all parts of the Tryst function except the addr part, Tryst is ENCAP-IND$-CPA-
secure even without this restriction. This result is intuitively obvious since the addr is fixed
for each time interval so multiple queries would result in the same addr, which is clearly
not random.

Theorem 3.5.2 (ENCAP-IND$-CPA for shroud) Let shroud : K × N ×M be the en-
capsulation function described in Section 3.3.4, whereN is the value enciphered to create
the address addr andM is the plaintext payload. Then

AdvENCAP-IND$-CPA
shroud (t, q, σ) ≤ 5σ2

2n
+ 3 · Advprp

AES(t
′, σ)

where t′ = t + O(σ) for any nonce-respecting adversary (i.e., chooses different N ∈ N
for each query).

The proof is similar to the proof for Theorem 3.5.1, so we omit the details here. The
only significant difference is that we do not limit the adversary to one query per time
interval because the nonce input to addr is different for each packet in Shroud.

Shroud takes 3 = O(1) keys, and the bound given by Theorem 3.5.2 is clearly negligi-
ble in 4n assuming that Advprp

AES(t
′, σ) is also negligible in n. Thus, Shroud is ENCAP-IND$-CPA-

secure.
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3.6 Robustness Against Attacks

SlyFi is designed to achieve unlinkability, confidentiality, authenticity, and message in-
tegrity under the threat model described in Section 3.2.1: we assume scenarios where
adversaries are passive eavesdroppers, they are not privy to any of the secret keys shared
between senders and receivers, they cannot gain much useful information from timing and
physical layer side-channels, and there are a sufficient number of honest senders trans-
mitting simultaneously. The empirical results we presented in Section 3.2.1 (in addition
to subsequent work [18, 19]) demonstrate that these assumptions are reasonable in many
circumstances. In this section, we discuss the resilience of SlyFi to more powerful adver-
saries when these assumptions are relaxed.

3.6.1 Replay and Active Attacks

An adversary can replay a Tryst message for up to k · I time units after it was initially sent
and the receiver will still process it. This is because the receiver must account for k · I
units of clock skew. If the receiver is present during the replay, then it will respond with
a Tryst probe response. Without additional information, the adversary can not determine
that this message is a response to his probe, but even if he can, it does not explicitly reveal
any information about the receiver.

However, if an adversary knows the sender or intended recipient of a Tryst probe,
the presence or absence of a reply may reveal additional information. For example, an
adversary can replay a probe at another location to see if the recipient responds. However,
these attacks can only be performed for the short time interval that an address is valid
and can be mitigated by simple countermeasures. For example, since an adversary cannot
distinguish the content of a response from any other message, if random delays were added
to probe responses, an adversary might lose them in the noise of frequent background
traffic. In addition, receivers can cache valid probe and authentication requests that they
receive for the duration they are valid and ignore replays of those messages. We did not
implement these countermeasures since these attacks assume adversaries already know the
sender or intended recipient of a message, which can not be learned from the message’s
contents alone.

Shroud messages that are replayed will not be processed by the receiver because each
address is only valid for a single message.
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3.6.2 Denial-of-Service Attacks

Wireless is a broadcast medium and the unlicensed nature of the 802.11 spectrum makes
it easy for an adversary to jam a channel by broadcasting “junk.” Junk messages will
interfere with valid messages sent and devices that receive junk messages may be forced
to process them. An important metric for measuring how susceptible a wireless protocol
is to such denial-of-service attacks is the amount of energy an adversary has to spend
to prevent a receiver from receiving useful messages [69]. In this respect, SlyFi is no
more susceptible to denial-of-service attacks than 802.11 because, as we demonstrate in
Section 3.7, it can process all messages that it receives, adversarial or otherwise, at the
maximum wireless bit rate. We note that this is in contrast to the straw men protocol we
described in Section 3.3.1. Junk messages can interfere with valid SlyFi messages, but the
same is true for 802.11 messages.

3.6.3 Logical Layer Side-Channel Attacks

To achieve strong unlinkability, SlyFi assumes that an adversary can not distinguish the
packets belonging to different packet streams sent simultaneously. In practice, some side-
channels, such as packet sizes and the time when packets are sent may hint at the packet
stream each packet belongs to. Nonetheless, since the majority of side-channel attacks
on short term packet linkability require a relatively large number of linked packets to be
effective (e.g., [142, 171, 172]), we believe that Shroud will still make such attacks much
more difficult to carry out in environments with many overlapping packet streams.

In scenarios where there is only one transmitter, there will obviously be no ambient
traffic to mask that transmitter’s packet stream. In Section 3.2.1, we described evidence
that may packet streams do overlap in practice, so we believe that these scenarios are rare.
In scenarios where packet sizes and timing may be sufficiently distinguishing to perform
side channel attacks, existing countermeasures such as packet padding and cover traffic can
complement SlyFi and prevent these attacks (albeit at significantly higher cost). Deciding
when to employ these additional countermeasures is an important area of future work.

3.6.4 Physical Layer Side-Channel Attacks

Radio fingerprints at the physical layer may be detected by adversaries with special equip-
ment [16, 36, 70, 143]. SlyFi does not conceal these fingerprints in Tryst or Shroud pack-
ets. However, we believe that such equipment, such as high precision signal analyzers
that cost tens of thousands of dollars, are out of reach of casual eavesdroppers and do not
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expect large scale surveillance networks constructed using them soon. We also believe
that concealing these fingerprints with hardware modifications is not technically difficult
(e.g., Brik et al. [36] used fixed calibration errors to fingerprint wireless cards, so insert-
ing randomized noise to these errors would mask the fingerprints). However, doing so
would likely add to the cost of wireless devices, so a thorough understanding of the eco-
nomic trade-offs is a crucial topic of future work to determining whether deploying such
countermeasures at scale is practical.

More accessible physical layer information such as signal strength may also some-
times act as side channels that link messages together at short time scales. However, these
implicit identifiers are typically less distinguishing than logical layer fingerprints. For
example, Tao et al. [153] and Bahl and Padmanabhan [12] show that signal strength mea-
surements from multiple locations can be used to distinguish the rough locations where
they originated. Therefore, when devices are stationary, they can approximately distin-
guish the messages sent by each one. Nonetheless, Bauer et al. [18, 19] find that, while
using multiple signal strength measurements to distinguish messages sources can be mod-
erately accurate, the error rate is sufficiently high that certain side-channel attacks (e.g.,
[105]) have much lower success rates (e.g., 50% vs. 95%). Moreover, collecting sufficient
signal strength measurements requires multiple monitoring points and their accuracy can
be reduced by varying a client’s transmit power [18, 19].

3.6.5 Tryst Key Compromise

Tryst secret keys are bootstrapped through an out-of-band mechanism that we assume is
secure. As with 802.11 WPA today, a secret password may be used to derive these keys.
The strength of Tryst’s security would then depends on the strength of the password, which
may be weak if it is defined by a human. One way to limit the window of vulnerability to
weak passwords is to use keys derived from the password only for the first Tryst probe and
response. These messages can contain new truly random keys used for future discovery
attempts (using different keys for each receiver). This will ensure that an adversary that
compromises the initial key can only compromise the confidentiality and unlinkability of
messages if they overhear the first Tryst probe and response. More generally, a sender and
receiver can renegotiate keys each time they engage in a session.

If a secret key is compromised in some other manner (e.g., if an adversary extracts it
from one of the devices manually), Tryst can not protect the confidentiality or unlinkability
of future messages. However, the confidentiality and unlinkability of messages transmit-
ted on previous days remains protected because Tryst uses a forward-secure random bit
generator to change keys each day (see Section 3.4.1).

81



3.6.6 Shroud Key Compromise

Shroud session keys are less likely to be compromised because they will only be used
for short time periods and need not be resident on long term storage. Moreover, they are
randomly generated. To reduce the likelihood of compromise even further, senders and re-
ceivers can periodically renegotiate new Shroud keys during a session in a manner similar
to WPA. If a set of Shroud keys are compromised, the confidentiality and unlinkability of
the session that those keys are protecting are lost.

3.6.7 Adversarial Senders and Receivers

SlyFi does not protect users if they do not trust the device that they are communicating
with (e.g., if a user does not trust the AP he is using or vis versa). In such scenarios, users
could instead associate with untrusted devices anonymously, as users do at open 802.11
APs today if they change their MAC address. To protect the information they transmit
through untrusted devices, users would have to rely on existing heavy-weight measures,
such as encrypting and tunneling all traffic through a trusted VPN or mix network. SlyFi
is an optimization to these solutions when both ends of the wireless link trust each other.

3.7 Performance Evaluation

We evaluate two key areas. First, we examine how quickly we can discover and set up a
link with Tryst. A quick link establishment improves usability both by reducing the delay
before communication can begin and by preventing noticeable interruptions when roaming
between APs. Second, we examine the performance penalty incurred when using Shroud
to deliver data traffic. In general, we find that SlyFi performs comparably to 802.11 using
WPA and substantially out-performs the straw man mechanisms we discussed.

3.7.1 Comparison Protocols

We compare our SlyFi implementation to the following baseline protocols and alternatives:

wifi-open. The baseline implementation of 802.11 without WEP or WPA in Click. SlyFi
uses the same components, simply encapsulating the original packets where needed, allow-
ing us to make a direct comparison to a software implementation without our mechanisms.
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wifi-open-driver. The 802.11 implementation in the MadWifi driver/firmware [110].
We compare to this second baseline since wifi-open has additional overhead when used
for data transport, which we discuss in Section 3.7.4. Neither wifi-open nor wifi-open-
driver meet any of our security requirements.

wifi-wpa. A baseline implementation of 802.11 with WPA, which provides authentica-
tion, message integrity, and confidentiality, but not unlinkability as messages still include
Ethernet addresses and network names. We use the standard WPA client and AP imple-
mentations on Linux [77], which run on top of wifi-open-driver, so wifi-wpa does not
incur the overhead mentioned above. We run wifi-wpa using PSK user authentication
and CCMP encryption. PSK is the most widely used standard in small private networks.
CCMP is comparable to SlyFi’s payload encryption, as both are built around AES. How-
ever, wifi-wpa performs AES operations using dedicated hardware on the 802.11 NIC,
while SlyFi performs it in software. To compensate, we also evaluate SlyFi with simu-
lated hardware we discuss in Section 3.7.4.

public key. The straw man alternative to Tryst for discovery and link setup discussed in
Section 3.3.1.

symmetric key. The other straw man alternative to Tryst discussed in Section 3.3.2.
public key and symmetric key still use Shroud once a link is established (i.e., they only
replace Tryst in Figure 3.1).

armknecht. A previous 802.11 frame encryption proposal [11] that is an alternative
to Shroud for data transport.5 Like Shroud, armknecht computes per-packet addresses,
but only for the next packet it expects, so it would perform comparably when there is
no packet loss or competing traffic. However, a receiver that receives a message without
one of its known addresses performs a number of cryptographic operations comparable to
symmetric key before discarding it. This is because it treats a packet it does not have an
address for as an indication of potential loss and uses these operations to try to recover
from it. In contrast, Shroud simply precomputes more addresses to manage loss.

3.7.2 Setup

We deploy these protocols on a number of Soekris net4801 low-power devices [146].
These devices have hardware comparable to common 802.11 APs and embedded con-
sumer devices. While laptops have more powerful hardware, we demonstrate that our

5Our implementation uses AES as the cipher.
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mechanisms are usable even on more constrained devices. In our experiments, we desig-
nate each device as either an AP or a client.

Each device has a 266 Mhz 586-class Geode processor, 256 MB of RAM, 1 GB of
flash storage, and one CM9 Atheros 802.11a/b/g miniPCI card. Each device runs a min-
imal version of Linux 2.6.16.13. 802.11 frames are sent and received from a raw 802.11
radiotap device created by the standard MadWifi driver. We operate on 802.11a channel 40
to avoid interference from more common 802.11b/g devices. To make a fair comparison,
management frames in all protocols are transmitted at the base rate (6Mbps), as is dictated
by the 802.11 standard, while data frames are transmitted at the peak rate (54Mbps).

3.7.3 Discovery and Link Setup Performance

To evaluate how long a client would need wait before it can start transferring data, we
measure the link setup time, defined as the delay between when a client begins probing for
APs and when it can deliver packets on the established link. In all the protocols except for
wifi-wpa, packets can be delivered once an association response message is received (see
Figure 3.1). wifi-wpa has an additional key negotiation phase after association.

The parameters that impact link setup time are: the number of client accounts on an
AP, the number of networks that each client probes for, and the amount of background
probing traffic that is overheard by APs and clients. Our results show that, in contrast to
public key and symmetric key, Tryst has faster link setup times than wifi-wpa and scales
as gracefully as wifi-open when varying each of these parameters. Moreover, the cost of
periodically computing addresses is trivial. Unless otherwise indicated, each data point
presented in this section is the mean of 30 trials.

Keys per service. An AP maintains one key for each client it has an account for, and the
total number of keys can impact link setup time. Real networks manage various numbers of
client accounts; e.g., home networks will likely have less than a dozen, while the wireless
network at the Intel Research lablets, a fairly small organization, has 721. Carnegie Mellon
University’s wireless network, which may be representative of a large organization, has
36,837 at the time of this writing.

Figure 3.6 shows the link setup time for a client that sends one probe in search of a
nearby AP as we vary the number of keys per AP. Before each probe, the AP has its keys
sorted in random order, and thus, the performance of the symmetric key protocol degrades
with the number of keys, since it must check a discovery message against all keys until
it finds one that successfully validates the MAC on the header. The other protocols have
setup times that are independent of the number of keys per AP. Note however, that the
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Figure 3.6: Association delay as the number of keys per AP varies. The client probes for
1 AP. Error bars indicate one standard deviation.

public key protocol is still more expensive than all the others, even when the AP has
10,000 keys. Furthermore, although Tryst imposes some overhead over the wifi-open
protocol, it has link setup times that are less than wifi-wpa and that, at ∼15 ms, are below
the variance in Internet round trip times.

Probes per client. Since private APs cannot send beacons, a client may need to probe
for several different networks to figure out which one is present. In 802.11, these probes
usually contain the names of networks with which the client has previously associated.
Figure 3.7 shows a cumulative distribution function of the number of unique network
names probed for by clients in three wireless traces (described in Table 3.1). While most
users probe for a small number of networks, at least 4% of users in all traces probe for
more than 10 and some probe for more than 100.6 Therefore, it is important that link setup
time does not grow substantially with the number of probes.

Figure 3.8 shows the link setup time as a function of the number of different probes
a client sends, which are sent as fast as possible. The number of keys per AP is fixed at

6Users in the SIGCOMM trace probed for more networks because each SIGCOMM AP had a different
network name and the network often was unavailable, prompting clients to send probes for names deeper
into their list of networks. We ignored broadcast and random network names.
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Figure 3.7: CDF of the number of unique network names probed for by each client in three
empirical 802.11 traces.

500. For a fair comparison, Tryst sends a separate message for each probe instead of using
scoped broadcast (discussed in Section 3.3.3). We omit the line for wifi-wpa because the
standard probing behavior is different and incurs more delays. If it also sent probes as fast
as possible, it would have scaling behavior similar to the wifi-open line since the probes
they send are the same.

Although all protocols scale with the number of probes sent, as there is overhead in
processing them and limited bandwidth in the medium, the slopes of the two straw man
protocols are steeper, indicating that they incur more overhead per probe. The slopes of
the Tryst and wifi-open lines are similar, and both have setup times of at most ∼50 ms
even when clients send 50 probes.

Performance breakdown. Table 3.3 shows the breakdown of link setup time for clients
that send 5 probes and APs with 500 keys. The public key protocol spends most of its
time in the first two phases, since it must process most public key encryptions, decryptions,
and signature checks here. These operations are two orders of magnitude slower than the
symmetric key analogs. Nonetheless, the symmetric key protocol still spends significant
time in the probing phase, because when the AP first receives a probe, it may try to verify
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Figure 3.8: Link setup time as the number of probes each client sends varies. The AP has
500 keys. Error bars indicate one standard deviation.

probing openauth associate wpa-key total
public key 886.1 895.2 146.2 NA 1927.6
symmetric key 120.2 8.6 6.9 NA 135.6
tryst 3.3 5.1 6.2 NA 14.5
wifi-open 1.4 1.5 2.2 NA 5.1
wifi-wpa 0.1 6.9 0.8 57.5 65.3

Table 3.3: Breakdown of link setup time for a client that probes for 5 different networks
and an AP with 500 keys. Times are in milliseconds. Each phase corresponds to re-
quest/response messages in Figure 3.1, except wpa-key, which involves 2 round trips after
association to derive session keys in wifi-wpa.

the MAC with all its keys. Subsequent phases are faster because both the client and the
AP re-sort their keys in MRU order, so the expected number of keys they must try before
finding the right one decreases appreciably.

Tryst has similar performance to the symmetric key protocol during the last three
phases because the number of cryptographic operations is identical. However, the first
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Figure 3.9: CDF of background probe and authentication messages observed each second
where discovery was taking place in each of three 802.11 traces. We only count times
when there was at least one probe (i.e., times when discovery was taking place).

phase is much faster because the AP looks up the address in a hash table to determine
which key to use to verify the message. The open authentication and association phases
take slightly longer because they involve computing the initial w Shroud addresses. Even
when performing these operations, in addition to standard 802.11 processing, the time it
takes for SlyFi using Tryst to setup a link is less than 10 ms more than that of wifi-open,
which provides no authentication or confidentiality. Moreover, it is faster than wifi-wpa.7

Note that if a client did not know the particular wireless frequency a network was
located on, it would spend more time in the probing phase because it would have to wait
on each channel to see if a probe response arrives. This waiting time is configured to be
20–200 ms in 802.11.

Background probing traffic. The previous experiments assumed no ambient background
traffic during the link setup process. However, due to the ad hoc nature of real wireless
deployments, stations and APs often overhear messages that are not destined for them. For

7We note that wifi-wpa incurs an unnecessary delay in the open authentication phase, but since the bulk
of the time is spent in wpa-key for key computation and exchange, removing this delay would not change
the ranking of the total link setup times.

88



 0

 10

 20

 30

 40

 50

 60

 0  200  400  600  800  1000

lin
k 

se
tu

p 
fa

ilu
re

s 
(%

)

background message rate (pkts/sec)

public key
symmetric key

tryst
wifi-open

Figure 3.10: Percentage of 100 link setup attempts that fail to complete within 30 seconds
as we vary the rate of background probe traffic not destined for the target AP. The client
probes for one AP and the AP has 500 keys.

example, Figure 3.9 shows the rate of probe requests, responses, and authentication mes-
sages observed by one monitoring point.8 Although the ambient message rate is generally
fairly low, there are times when the rate is over 100 messages per second, due to many
clients performing discovery at once. Thus, it is crucial that clients and APs be able to
discard these messages quickly.

To evaluate how well SlyFi can manage background probe and authentication mes-
sages, we examine a client’s link setup time as a function of such traffic. To do this, we
introduce a third machine that sends background messages at a specified rate destined nei-
ther for the client or the AP. These background messages are encapsulated in the protocols
we compare, but we precompute them so that their generation is able to maintain the spec-
ified rate. Each protocol queues up to 10 messages (drop tail) if it is busy processing and
each client request is retransmitted once per second. We consider a link setup attempt to
fail if it does not complete in 30 seconds. The client probes once for an AP with 500 keys.9

8The UCSD trace merged observations from multiple monitoring points, so it observes more traffic at
any given time. The OSDI trace contains more users than the SIGCOMM trace and thus observed a higher
rate of traffic.

9Note that in this experiment, the client and AP drivers ran in user level, rather than in the kernel, be-
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Figure 3.11: Link setup time for successful attempts as we vary the rate of background
probe traffic not destined for the target AP. Error bars indicate one standard deviation.

Figure 3.10 shows the percentage of link setup attempts that failed. Due to the pro-
cessing required by the public key and symmetric key protocols in order to determine
whether a message is destined for the receiver, each begins to fail when the background
message rate grows. No attempts fail when using Tryst or wifi-open. We omit the line for
wifi-wpa because its message retry behavior is different. Figure 3.11 shows the link setup
times for the attempts that succeeded. Note that while the symmetric key protocol is able
to cope with message rates of up to 100 messages/second before it begins to fail, its link
setup times grow to several seconds, and impact perceived performance, even when the
rate is 50 messages/second.

Contention for the medium causes Tryst, wifi-open, and wifi-wpa to each have link
setup times that grow slightly as the background message rate increases, but their scaling
behavior is gradual and roughly consistent. Tryst’s ability to discard background messages
quickly enables it to scale gracefully. This property is important not only for dealing with
ambient discovery traffic, but also for mitigating the impact of malicious denial of service
attacks. With the public key and symmetric key protocols, a malicious device only needs

cause when the straw man protocols become overloaded with message processing, the Linux kernel became
unresponsive to experimental commands. This imposes a slight overhead on message processing, but is
insubstantial compared to each protocol’s relative performance.
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# keys 1 10 50 100 500 1000 10,000

time (msec) 0.08 0.49 2.3 4.7 24 47 800

Table 3.4: The mean time to update Tryst addresses for a single time interval as we vary
the number of keys.

to send a small number of messages to prevent a client from setting up a link.

Address update time. At the beginning of each time interval, a Tryst node precomputes
the message addresses it expects to receive to enable quick message filtering. Table 3.4
shows the time it takes to compute these addresses and update the hash table as we increase
the number of keys a device holds. A node computes two addresses per time interval, per
key (one for probes and one for authentication messages). Clients, which are unlikely
to have more than 100 keys, would spend only a few milliseconds each time interval to
update addresses, and time intervals would likely be at least several minutes. Even APs
with 10,000 clients would spend less than 1 second.

3.7.4 Data Transport Performance

We now examine how well Shroud performs at delivering data packets. We begin with a
description of micro-benchmarks that break down how long Shroud takes to send, filter,
and receive packets. Then we present an analysis of packet delivery latency and throughput
when a SlyFi client and AP are communicating in isolation. Finally, we look at perfor-
mance in the face of background traffic, and present results describing achievable through-
put both as the number of clients managed by the AP and the amount of competing traffic
varies.

Simulated hardware encryption. Shroud’s cryptography operations are implemented in
software, which adversely affects performance. To understand how Shroud would perform
with hardware support, we simulate the processing times of that hardware. As a result, we
provide measurements both for the software-only version, shroud-sw, as well as for the
version with hardware simulation, shroud-hw.

Since both wifi-wpa and Shroud use AES to encrypt and MAC packets, we use wifi-
wpa’s processing times as an estimate for shroud-hw.10 We estimate wifi-wpa’s cryp-

10wifi-wpa uses AES counter mode for payload encryption and AES-CBC for MAC computation, while
Shroud uses AES-CBC mode for payload encryption and CMAC (a relative of AES-CBC mode) for the
MAC. Counter mode is parallelizable, while AES-CBC is not.
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send filter receive
sw hw sw hw sw hw

update addrs

(max message loss) 15 14 NA NA 2047 2003 (50)
(no message loss) 15 14 NA NA 119 117 (1)

process etext 951 16 NA NA 1541 16
process emac 740 16 NA NA 740 16
Shroud total 1821 120 32 32 3290 290
Click total 1913 215 144 144 3402 407

Table 3.5: Breakdown of processing times (see Section 3.3.4) for 1500 byte packets for
shroud-sw (sw) and shroud-hw (hw). All times are in microseconds. Numbers in paren-
theses are numbers of address computations.

tographic processing time (including I/O) as the difference in round trip ping delays be-
tween wifi-wpa and wifi-open-driver. Measurements suggest the time to encrypt a 1500
byte ICMP packet is ∼16 usec and the time to encrypt a payload-free packet is ∼14 usec.
I/O overhead dominates, but there is a small linear scaling factor as the packet size in-
creases. Neither encryption nor MAC computation are parallelizable in Shroud, whereas
CCMP’s encryption may be parallelized in hardware. Thus, we conservatively estimate
that shroud-hw would take 14 usec to encrypt a pair of addresses and 32 usec to encrypt
and MAC packet payloads. To simulate these times, we modify our code to idle-wait for
these times instead of computing the cryptographic operations in software. We note that
shroud-hw still includes the actual software processing time of all non-AES operations.

Micro-benchmarks. Table 3.5 breaks down the time to send, filter, and receive Shroud
messages. On a busy network, a packet received by a client is often intended for someone
else, so filtering packets quickly is imperative. The filter column shows that shroud-hw’s
filtering time (32 usecs) is much faster than the theoretical minimum packet transmission
time in 802.11a for a 1500 byte packet (∼225 usecs), suggesting that a receiver could filter
packets faster than the medium could supply them.

Sender-side processing of a 1500 byte packet, shown in the send column (215 usec),
also edges out the time to transmit it, and thus, shroud-hw should be capable of support-
ing 802.11a’s line speed. Receiver-side processing (the receive column) from the radio
takes 407 usec, which is greater than the theoretical time to transmit, but still reasonable,
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Figure 3.12: Throughput comparison of UDP packets when transmitting at 54 Mbps for
30 seconds. Each point is the average of 50 runs.

since 802.11 rates in practice are much slower (e.g., see Figure 3.12). When packets are
lost, additional address computations must be performed after a reception. A reception
following the maximum 49 packet burst loss (for w = 50) requires Shroud to compute and
update 50 new addresses. This takes 2003 usec compared to 117 usec for a single address
update (the case with no loss).

The cryptographic operations are much slower when implemented in software than
they are in hardware, and thus the performance of shroud-sw is significantly below line
speed. Regardless, we present these results to characterize our proof-of-concept imple-
mentation that can be used today to protect privacy. Obviously, an engineering effort is
required to make use of hardware cryptography.

Throughput and latency. Figure 3.12 shows achievable throughput for shroud-hw,
shroud-sw, wifi-open, and wifi-open-driver, measured using iperf. Shroud is imple-
mented in Click, so wifi-open provides a baseline against which to evaluate its perfor-
mance. While wifi-open (802.11 implemented in Click) performs worse than wifi-open-
driver (the native driver implementation), the throughput degradation of shroud-hw is
comparable to wifi-wpa relative to their respective baselines. Optimizing wifi-open is a
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Figure 3.13: Comparison of round trip times of ICMP ping messages for variously sized
packets. Each point is the average of 1000 pings; pings that experienced link-layer packet
loss, or re-keying delays (in the case of wifi-wpa), were removed.

subject for future work. When sending 1500 byte packets, shroud-hw degrades wifi-open
performance by only 1.44 Mbps compared to the 0.71 Mbps degradation from running
wifi-wpa. Since both Shroud and wifi-wpa use some non-parallelizable cryptographic
operations, the relative performance degradation increases with packet size. shroud-
sw experiences a much larger drop in throughput, but still provides a functional link
(3.73 Mbps).

Figure 3.13 presents round trip time measurements using ping. For 1500 byte pack-
ets, two packet payload encryptions and decryptions take∼60 usec in wifi-wpa and∼130 usec
in shroud-hw; the extra time is due to address encryption. We believe the sudden marked
increase in shroud-sw between 300 and 400 byte packets is due to an inefficiency in the
Click runtime.11

Background traffic. Shroud’s design is motivated by the requirement that background
traffic must be filtered efficiently. To study how well Shroud filters packets, we run an
experiment in which a client, C1, sends packets as fast as possible to an access point, AP1.

11Short packets get through the Click data path without a context switch from the OS, while longer packets
do not.

94



 0

 2

 4

 6

 8

 10

 12

 0  20  40  60  80  100

th
ro

ug
hp

ut
 (

M
b/

s)

number of keys in ap

shroud-hw

shroud-sw

armknecht-hw

armknecht-sw

Figure 3.14: Effect of association set size on achievable throughput when exposed to
5 Mbps of background traffic for Shroud’s and armknecht’s software implementation
and hardware simulation. Each run is 30 seconds; each point is the average of 50 runs.

Nearby, we generate background traffic by having another client, C2 send traffic to another
AP, AP2. We measure the throughput at AP1. Since the number of keys AP1 manages (i.e.,
number of associations) and the amount of background traffic both affect throughput, we
vary both independently.

Figure 3.14 shows throughput measured at C1 for both the software implementation
and hardware simulation of Shroud and armknecht, as the number of keys at AP1 is
varied. Since Shroud can filter background packets with just a hash table lookup, its
achievable throughput is independent of the number of keys. However, armknecht’s per-
formance gets progressively worse as the number of keys increases. This is because clients
and APs running armknecht must try every key they have before discarding background
packets.

Figure 3.15, which shows throughput achieved as a function of the competing flow
rate, depicts a similar effect. As the amount of background traffic increases, through-
put decreases for both Shroud and armknecht, but considerably more so for armknecht.
E.g., with 10 Mbps of background traffic, throughput is 31% lower for shroud-hw than
it is with no competing traffic, but it is 72% lower for armknecht-hw. This reduction re-
sults from a combination of two effects: First, background traffic reduces the availability
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Figure 3.15: Effect of background traffic on achievable throughput from a client to an
AP. The APs association set includes 50 keys. Each run is 30 seconds; each point is the
average of 50 runs.

of the channel, as is evident in the throughput reduction (26%) of our baseline, wifi-open,
which performs no cryptographic operations. This affects Shroud and armknecht simi-
larly. Second, background traffic requires work to filter, which is much more expensive in
armknecht.

3.8 Summary and Discussion

This chapter presented the design and evaluation of SlyFi, an identifier-free 802.11 link
layer that obfuscates all transmitted bits, including addresses. The primary contribution
of SlyFi is the development of two mechanisms, Tryst and Shroud, that can perform this
obfuscation on existing link layer protocols without sacrificing efficiency or important
protocol functions. For example, SlyFi can still perform efficient discovery, link establish-
ment, and data transport, and higher layer name binding. Our evaluation showed that SlyFi
performs comparably to WPA and performs substantially better than previously proposed
techniques.
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3.8.1 Discussion

We note that there are four important areas that merit further attention when SlyFi-like pro-
tocols are deployed more widely: private bootstrapping, large-scale broadcast discovery,
wireless fault diagnosis, and side-channel concealment in practice.

Bootstrapping shared keys remains a manual process. In both existing secure wireless
protocols and in SlyFi, an important challenge is how to bootstrap the symmetric or public
keys that are necessary before two devices are able to rendezvous and authenticate each
other for the first time. Existing bootstrapping techniques for key establishment typically
fall into the category of pairing [152], i.e., having users of the devices use an out-of-band
channel to exchange secrets. In many circumstances these techniques are either cumber-
some and hinder usability or are inapplicable because no such out-of-band channel exists
(e.g., if the user can not physically identify the other device). Therefore, it would be useful
to develop automated key establishment techniques that do not require user intervention.
We discuss some initial directions in this area in Chapter 5.

SlyFi does not yet support efficient large-scale broadcast discovery. We described in
Section 3.4.1 how Tryst can use a single packet to discover multiple parties, but the size of
this packet scales linearly with the number of parties. Atypical clients that want to discover
the presence of hundreds or thousands of services confidentially will incur substantial
message overhead with either protocol described above. To reduce this overhead in a
presence sharing application, Cox et al. [46] propose sharing a single key with cliques
of mutually trusting friends. However, this makes changing trust relationships difficult
because it requires global agreement among the members of a clique. This is particularly
difficult for mobile devices that are often offline.

One attractive option is a class of encryption protocols that enable a sender to broadcast
a message that has size sub-linear in the number of authorized recipients, but can still only
be decrypted by those recipients [55, 119]. Both public and symmetric key variants exist.
These protocols are made possible by the additional assumption that no more than m
revoked receivers collude or no more than r receivers are ever revoked. However, these
protocols require key state and message overhead that are both super-linear in either m or
r, and therefore would only be more efficient when the number of services a client wants
to discover is larger. Moreover, their current instantiations reveal the sender’s identity and
relationships (e.g., because they include the list of revoked devices). It is an open problem
whether they can be made private [17].

Alternatively, one could reduce the number of services a client attempts to discover
by ruling out services that are unlikely to be present based on context and location (e.g.,
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using GPS). Nonetheless, it is important that using context does not inadvertently expose
identity or relationships (e.g., discovery in different contexts should not noticeably change
the number of discovery messages sent, lest message volume be used as a fingerprint).

SlyFi may require novel fault diagnosis techniques. By concealing all bits in trans-
mitted messages, SlyFi potentially makes diagnosing faults in wireless networks more
difficult because any eavesdropping device, including those used for network monitoring,
requires the appropriate shared keys in order to interpret any packets on the network. For
example, in some scenarios, bootstrapped keys may need to be entered manually into the
devices by humans, which is an error-prone process. Distinguishing an erroneous en-
try from a broken network is more difficult with SlyFi because, from an eavesdropper’s
perspective, the pattern of packets observed is not easily distinguishable. There is a funda-
mental trade-off between the ease of diagnosing configuration errors using eavesdropping
equipment and the amount of information that is concealed from malicious eavesdroppers.
The appropriate trade-off to make will become more apparent when SlyFi-like protocols
are used more often in practice.

SlyFi does not always conceal all side-channels. SlyFi mitigates the effectiveness of
side-channels, such as packet sizes and timing, because different message streams overlap
in practice, making it difficult to distinguish them. Initial work by Bauer et al. [18, 19]
suggests that this traffic mixing does make some known side-channel attacks more diffi-
cult to carry out, even if physical layer information such as RSSI, is taken into account.
Nonetheless, a more thorough analysis of how accurately eavesdroppers may still be able
to detect users’ fingerprints would shed light on whether additional countermeasures, such
as cover traffic, are needed in practice. In addition, we still lack an empirical understand-
ing of how often different traffic streams overlap in less dense environments, such as small
hotspots — we only studied dense wireless environments such as conferences and office
buildings. If there are not very many streams overlap in such environments or if they are
easily distinguishable using physical layer information, then additional countermeasures
against side-channel attacks will be required. Nonetheless, we note that all wireless en-
vironments are becoming denser due to the continued proliferation of wireless devices.
Thus, in the near future, the qualitative aspects of mixing wireless traffic, rather than the
quantity of wireless streams, may be more important to study.
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Chapter 4

Mitigating Threats from Crowd-sourced
Location-based Systems

SlyFi conceals identifiers from eavesdroppers during the processes of rendezvous and
communication. However, users may still need to report location information and their
identities to LBSes. In particular, to locate public Wi-Fi APs to use in the first place (e.g.,
when visiting a new area), users may have to query a hotspot directory service such as Ji-
Wire [85]. Hotspot APs, of course, are immobile and public, so they are unlikely to desire
location privacy—indeed, most want to be found so users will pay to use them. However,
the users that use them likely do.

Although the location masking techniques described in Section 1.3 can be used to
obscure a user’s location in queries to hotspot directories, many of these directories rely
on user recorded reports in order to populate them (e.g., Hotspotr). Furthermore, users
report that some APs block applications [174] and have poorer than advertised end-to-
end performance [51], so selecting the best commercial AP is not always straightforward.
Thus, it may be useful for these directories to incorporate user-submitted measurements on
APs as a crowd-sourced LBS. This would enable users to evaluate commercial APs before
paying for access.

In this chapter we answer two primary questions:

1. Are crowd-sourced hotspot directory services useful? That is, are such directory
services even necessary?

2. How can we build them so that users’ location privacy is respected, yet fraudulent
reports are limited?
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We address the first question by presenting the first measurement study of commercial
APs in hotspot settings. Previous war-driving studies [71, 122] performed Wi-Fi mea-
surements from streets or sidewalks, whereas we measure APs from the perspective of a
typical Wi-Fi user who is inside an establishment. Our study examines the end-to-end per-
formance and application support of all visible APs at 13 hotspot locations in Seattle over
the course of 1 week. We find that there is indeed a wide range of AP performance even
among APs very close to each other. Since there is currently no way for a user to determine
which AP would be best to run his applications before paying for access, a crowd-sourced
hotspot directory that collected performance measurements from users would indeed be
useful for AP location and selection.

To address the second question, we present Wifi-Reports, a collaborative service that
provides clients with historical information to improve AP selection. Wifi-Reports has
two main uses: First, it provides users with a hotspot database similar to JiWire but where
APs are annotated with performance information. Second, it enables users to more effec-
tively select among APs visible at a particular location. Wireless clients that participate in
Wifi-Reports automatically submit reports on the APs that they use. Reports include met-
rics such as estimated back-haul capacity, ports blocked, and connectivity failures. Using
submitted reports, the service generates summary statistics for each AP to predict its end-
to-end performance. Obtaining accurate user-submitted reports poses two challenges:

(1) Location privacy: As we have already suggested, a user should not have to reveal
that he used an AP to report on it. Otherwise he would implicitly reveal a location that he
visits. Users may be reluctant to participate in Wifi-Reports if their identities can be linked
to their reports. At the same time, however, a few users should not be able to significantly
skew an AP’s summary statistics because some may have an incentive to submit fraudulent
reports, e.g., to promote APs that they own. One way to meet these conflicting goals
is to assume the existence of a trusted authority that is permitted to link users to their
reports in order to detect fraud (e.g., in the way that eBay manages user reputations).
For good reason, users, privacy groups, and governments are becoming increasingly wary
about malicious or accidental disclosures of databases that can track large numbers of
people [168]. Therefore, we present a report submission protocol that tolerates a few
misbehaving users and does not require the disclosure of location related information to
anyone, including the Wifi-Reports service. Our protocol leverages blind signatures to
ensure that the service can regulate the number of reports that each user submits, but
cannot distinguish one user’s reports from another’s.

(2) Location context: Physical obstructions and the distance between a client and an AP
affect the quality of the wireless channel. Therefore, we must take location context into ac-
count when estimating AP performance or our estimates will not be accurate. We describe
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how measurements can be categorized by the different wireless channel conditions under
which they were performed. We also describe how to index and retrieve reports based on
location without requiring additional equipment such as GPS.

We have implemented the key components of Wifi-Reports and used our measure-
ment study to simulate how well it would work. Our results suggest that even if a user is
only selecting among APs at a single location, Wifi-Reports performs close to optimal in
more cases than existing techniques such as best-signal-strength and best-open-AP [122]
because it provides information on commercial APs that cannot be tested beforehand.
We show that Wifi-Reports’ summary statistics predict performance accurately enough to
make correct relative comparisons between different APs, despite performance variability
due to competing traffic. For example, it predicts AP throughput and response time to
within a factor of 2 at least 75% of the time. Since different APs’ median throughputs
and response times differ by up to 50× and 10×, respectively, this prediction accuracy
enables Wifi-Reports to select the best AP more often in more locations than any previous
AP selection approach. Moreover, unlike previous AP selection approaches, Wifi-Reports
enables users to examine the characteristics of APs that not in radio range, which is useful
when users are mobile.

Although we presented our reporting protocol in the context of a hotspot directory ser-
vice, it is applicable to crowd-sourced recommender systems more generally. Nonetheless,
we note that there are two important limitations. First, the protocol’s practicality is depen-
dent on the ability to group items being voted on into subsets that are reasonably small
and not revealing. Second, the protocol can not be applied when collaborative filtering is
required. We discuss these limitations in greater detail in Section 4.7.

Chapter outline. Section 4.1 presents the results of our measurement study. Section 4.2
presents an overview of Wifi-Reports’ design. Section 4.3 describes how it preserves
privacy and mitigate fraud. Section 4.4 describes how it distinguish client locations. Sec-
tion 4.5 presents an evaluation of Wifi-Reports. Section 4.6 describes protocols similar to
Wifi-Reports’ reporting protocol and Section 4.7 concludes this chapter.

4.1 Measurement Study

We conducted a measurement study to determine whether existing AP selection algorithms
are sufficient to choose an AP that meets a user’s needs. We sought answers to three
questions that illustrate whether this choice is obvious and whether it can be improved
with Wifi-Reports.
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Diversity. Is there diversity in terms of end-to-end performance and application support
of different hotspots’ APs? The more diversity, the more likely a user will choose a hotspot
with substantially suboptimal performance when selecting randomly from a hotspot direc-
tory.

Rankability. Is the best choice of AP at a particular location always obvious? If the best
APs do not have any observable traits in common, then AP selection algorithms that use
the same metric to rank APs at all locations will sometimes pick suboptimal APs.

Predictability. Is end-to-end performance predictable enough so that historical informa-
tion would be useful?

Our study examined hotspots around University Avenue, Seattle, WA, near the Uni-
versity of Washington. We believe this area is representative of commercial districts with
multiple Wi-Fi service providers. It is less likely to be representative of areas that only
have a single Wi-Fi service provider, such as in many airports. However, since users
don’t have a choice of AP providers in those environments, selecting a provider to use is
straightforward. Wifi-Reports could, however, still help a user decide if purchasing access
is worthwhile. Figure 4.1 shows the hotspot locations where we performed measurements,
which included those listed in JiWire’s database and some additional sites known to us.

All locations are single-room coffee or tea shops. Most APs we measured are not open.
In addition to each hotspot’s official AP, the APs of hotspots nearby are also usually visi-
ble. APs of the free public seattlewifi network are sometimes visible at all locations. APs
belonging to the University of Washington network are sometimes visible due to prox-
imity to campus buildings, though these were never the best performing at any location.
Our study offers a lower bound on the number and diversity of APs, as more may become
available.

4.1.1 Setup

Infrastructure. To emulate a typical user of Wifi-Reports, we collected measurements
with a commodity laptop with an Atheros 802.11b/g miniPCI card attached to the laptop’s
internal antennas. We implemented a custom wireless network manager for associating to
APs and performing measurements after association. Our implementation is based on the
Mark-and-Sweep war driving tool [71].

Methodology. During each measurement trial at a location, we emulate a typical connec-
tion attempt by scanning for visible APs. We then attempt to associate and authenticate
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Figure 4.1: Measured hotspot locations near University Avenue, Seattle, WA

with each AP found (identified by its unique BSSID). If successful, we run our battery of
measurement tests before moving on to the next AP. We manually obtain authentication
credentials, if necessary (e.g., through a purchase). Since many Wi-Fi drivers do not list
APs with low signal-to-noise (SNR) ratios, we only attempt to connect to APs when they
appear with an SNR > 10 dB.1

We performed measurements at typical seating locations in each hotspot. Although
the exact same location was not used for all measurements in a hotspot, Section 4.4 shows
how well we can distinguish performance at different locations.

1One physical AP at each starbucks advertised two virtual APs. Since we did not find any service
differentiation between these virtual APs after login, we only include one of them in our study. They exist
because Starbucks hotspots are migrating from T-Mobile to AT&T Wi-Fi.
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Figure 4.2: (a) The success rate of different APs (i.e., how often we could connect
and access the Internet when each AP was visible). Each point represents one AP
visible at each location. (b) A box-plot of the measured TCP download through-
put through each APs. Note the logarithmic scale. (c) A box-plot of the time to
fetch http://www.google.com using each AP. The measurements for each AP are
grouped by the hotspot location where they were taken, shown on the x-axis. The symbol
above each box indicates whether the AP can be accessed for free (O) or not ($). The
box for the official AP at each hotspot is a solid color and its symbol is in a larger font.
The APs in all graphs are sorted by their median TCP download throughput. Most of the
non-free APs at tullys 2 are University of Washington APs in a building across the street.

Time frame. Previous studies measured each AP at a single point in time [71, 122].
Since we want to know whether AP characteristics are predictable, we performed 8 to 13
measurements at each location (with the exception of yunnie bubble tea, where we only
performed 6 trials). These measurements were taken during 7 week days in October 2008.
On each day, at each location, we performed 1-2 measurements at different times of the
day, so we have at least one measurement during each 2 hour time-of-day between 9AM
and 6PM (or a narrower time window if the hotspot opened later or closed earlier).
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4.1.2 Results

Basic connectivity. Figure 4.2(a) shows the fraction of times we were able to obtain
connectivity from each AP at each location (i.e., association and authentication succeeds,
we are able to obtain a DHCP address, and able to fetch www.google.com; we retry
each step up to 3 times and for up to 30 seconds on failure). We only count times when
the AP was visible in a network scan. The symbol above each point indicates whether the
AP can be accessed for free (O) or not ($). The box for the official AP at each hotspot is
shown in a solid color and its symbol is in a larger font.2

As expected, most (10 of 13) official hotspot APs were successful 100% of the time.
However, some, such as the ones at tullys 1 and cafesolstice, failed several times. These
were all DHCP failures and frequent users of cafesolstice say that the AP has always had
DHCP problems. However, it would be difficult to detect these problems automatically
because even to attempt to access the network, a user has to obtain a WPA password from
the cashier. Although unofficial APs visible at hotspots tend to fail with higher regularity
due to wireless loss, a few in most (8 of 13) locations succeed whenever they were visible
in our network scan. Thus, even this very basic connectivity metric suggests that there is
diversity.

TCP throughput. Adequate throughput is important for many applications, such as
streaming video or VoIP. Figure 4.2(b) shows a box-plot of the TCP download throughput
achieved through each AP (i.e., the bar in the middle of each box indicates the median;
the ends of each box indicate the first and third quantiles; and whiskers indicate the mini-
mum and maximum). Note the logarithmic scale. We measured throughput over the final
five seconds of a ten-second transfer from a high bandwidth server under our control to
estimate each AP’s sustained throughput after TCP slow start. We do not count the times
when we failed to associate with the AP or when TCP timed out during establishment (the
failure rate above suggests how often this occurs), so we have fewer measurements for
some APs than for others.

First, we note that there is a significant range in available capacities across different
hotspot locations. Median capacities range from less than 100 Kbps (yunnie) to over 5
Mbps (starbucks 1 and oasis). There is variability in each AP’s throughput measure-
ments, which is attributable mostly to wireless loss or contention (similar UDP throughput
measurements had less variability), but the variation at most APs is much smaller than this
wide performance range. Therefore, there is diversity in AP capacity, and throughput is

2cafesolstice has 2 official APs because it changed APs in the middle of our measurement period.
However, both APs suffered from basic connectivity problems.
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predictable enough to distinguish them.

Second, we observe that there is also a significant range in capacities among APs
visible from a single location. As expected, most (9 of 13) official hotspot APs have
the highest median throughputs at their respective locations. However, this is not true
at tullys 1, yunnie, starbucks 1, and tullys 2, where better APs were available from
an apartment building next door, the public seattlewifi network, a store next door, and a
nearby hotel, respectively. Indeed, at starbucks 1 and yunnie, an unofficial AP always
gave significantly more throughput than the official one when visible. Recall that these
comparisons only include measurements when we were able to successfully pay for and
obtain Internet connectivity, so a user without historical information would have to pay
before discovering this.

Response time. Low network latency is another important attribute for interactive ap-
plications such as web browsing. To estimate the latency a typical web browser would
experience, we measured the response time to one of the most popular web sites. Fig-
ure 4.2(c) shows a box-plot of the time to fetch http://www.google.com. Fetch
time includes the time to perform a DNS lookup, which is dependent on the DNS server
each AP’s DHCP server assigns us.3 Since Google’s homepage is only 6KB, fetch time is
dominated by latency rather than transfer time. We do not count the times when associa-
tion failed.

Just as we saw with TCP throughput, there is diversity in response time, which ranges
from less than 100 ms to several seconds. Response times of more than 1 second are
typically noticeable by an end-user. As expected, most (10 of 13) official APs have the
lowest median latency at their respective hotspot locations, but this is not true at tullys
1, yunnie, and cafeontheave. Only the disparity between the best and official APs at
tullys 1 is large enough to be noticeable, but even smaller differences may impact more
sensitive applications, such as VoIP. In addition, in some cases the AP with the lowest
and least variable response time is not the same as the AP with the highest throughput
(e.g., at starbucks 1), so ranking is dependent on application requirements. Finally, all
official APs, except the one at sureshot, provide predictable response times (first and
third quantiles within a factor of 2). At least one unofficial AP at each location is just as
predictable.

Port blocking. To determine if an AP blocked or redirected certain application ports, we
sent 3 probes to each port on a measurement server under our control. For UDP ports,
each probe consisted of 44-byte request and response datagrams, while for TCP ports,

3The CNAME and A DNS records for www.google.com have a TTLs of 1 week and 1 day, respec-
tively, so they are almost always already cached at the DNS server.
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each probe tried to establish a connection and download ∼32 bytes of data (in order to
check for port redirection). We tested common application ports including: FTP, NTP,
SSH, NetBIOS, SMTP, IMAP, SSL, VoIP (SIP), STUN, common VPN ports, World of
Warcraft, Counterstrike, Gnutella, and Bittorrent. To account for packet loss, we conclude
that a port is blocked only if it was never reachable in any of our measurements.

All APs blocked NetBIOS, most likely because they are configured to do so by default.
Three APs blocked non-DNS packets on port 53 and only one (bookstore’s official AP)
blocked more ports: all non-privileged TCP ports and all UDP ports except DNS and NTP.
Nonetheless, this is useful information, as common applications such as VPNs, VoIP, and
games would not function.

Summary. With respect to diversity, we find that there is significant diversity in AP
throughput and latency. With respect to rankability, the official AP is not the best choice
at 30% of hotspot locations, so ranking APs is not always obvious. Finally, with respect
to predictability, there is variability in performance over time, but this variability is much
smaller than the range of different APs’ performance, so historical information should be
predictable enough to compare APs. Therefore, our results suggest that a collaborative
reporting service may improve AP selection.

4.1.3 Discussion

Why not just use official APs? One might ask whether historical information is really
necessary if the official AP is usually the best at 70% of locations. First, in Section 4.5.1,
we show that historical information can get us the best AP in the remaining 30%. Second,
as hotspot density increases, scenarios like these will likely become more common. Third,
many users will be willing to move to find better APs and, without historical information,
it is not obvious how to determine where to move to. Finally, if a user is not in range of
any APs, he needs historical information to determine where to find a good one.

Other selection factors. In practice, users will likely take other factors into account
besides AP performance and application support, such as cost and venue. Although these
factors are important and reports in Wifi-Reports can include such information, they are
also subjective, so we focus our evaluation on AP performance. In particular, we focus
on download capacity and latency since these metrics are important for most applications.
Our focus demonstrates Wifi-Reports’ ability to help users make more informed decisions
about which APs to use, whether they take cost and venue into account or not.
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4.2 Wifi-Reports Overview

Wifi-Reports is a recommendation system [5]. Users rate the services they use and sub-
mit these ratings to a report database where they are summarized. Other users download
summarized ratings to evaluate services that they are considering. In Wifi-Reports, the
users are wireless clients, services are APs, and ratings are key-value pairs of measured
performance metrics.

4.2.1 Challenges

In contrast to previous recommendation systems, Wifi-Reports faces two unique chal-
lenges:

Location privacy. By reporting the use of an AP, a user implicitly reveals a location
where he has been with an accuracy that is sufficient to identify sensitive places [129].
Thus, users may not be willing to participate in Wifi-Reports if their identities can be
linked to their reports. A single user’s reports must not even be linkable to each other,
otherwise they are vulnerable to inference attacks [27, 64]. Nevertheless, we still want to
limit the influence of malicious users that submit fraudulent reports, which is a common
problem in recommendation systems [162, 176].

Location context. Clients will typically search for summaries by location (e.g., “all APs
in Seattle”), and the location of a client with respect to an AP will affect its measured
performance due to different wireless channel conditions. Since we would like clients to
generate reports automatically, location context must be determined automatically.

4.2.2 System Tasks

The operation of Wifi-Reports consists of three main tasks (Figure 4.3). We present an
overview of these tasks here. The next two sections describe how they can be done while
addressing the challenges discussed above.

Measure and report. Clients measure and submit reports on APs that they use. For ex-
ample, suppose a client attempts to connect to the Internet using AP X . If the connection
fails (i.e., association, DHCP, or all TCP connections fail), the client generates the report
{ap=X, SNR=20dB, date=11/14/2008, connectivity=false}.4 If the connection succeeds,

4X refers to the AP’s BSSID and a hash of its signing key described in Section 4.3.
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Figure 4.3: Wifi-Reports components and typical tasks.

then the client software estimates performance metrics based on the user’s network traffic
or using active measurements when the connection is idle.5 When measurement com-
pletes, it generates the report {ap=X, SNR=20dB, date=11/14/2008, connectivity=true,
tcp bw down=100kbps, google resp time=500ms, . . .}.

When the client has Internet connectivity again, it contacts an account authority to
obtain the right to report on X , e.g., by receiving a credential. It sends this report along
with the credential to a report database. An account authority is necessary to prevent
a single malicious client from submitting an unbounded number of fraudulent reports.
However, to preserve the location privacy of honest clients, neither the account authority
nor the report database should learn that the client used AP X . We describe the novel
protocol we use to address this problem in Section 4.3.

Download and index. The database generates summary statistics for each AP by sum-
marizing the values for each key. To be robust against some fraudulent values, we use
summary functions that are not significantly skewed by a small fraction of outliers. For
example, median is used for real-value attributes (e.g., throughput), plurality voting for
multinomial attributes (e.g., port blocking), and average for probability attributes with

5A number of techniques and tools exist to estimate bandwidth [134] and response time [79]. These
techniques are outside the scope of this dissertation, but the measurements we used can be implemented as
an anonymous speed test.
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{0, 1} inputs (e.g., basic connectivity). In addition, a summary indicates the number of
reports that it summarizes as an estimate of its robustness (i.e., a user will pay more heed
to a summary of 10 different reports than a summary of just 1 report). A client may choose
to ignore summaries with too few reports to mitigate the impact of erroneous reports by
early adopters.

Before traveling, a user downloads and caches the summary statistics of all APs in the
cities that he expects to visit. In practice, client software would update this cache whenever
it has connectivity, similar to the iPass [82] client. To find a suitable hotspot, reports are
shown to a user on a map. In order to facilitate this operation, reports must be search-able
by geographic location. Unfortunately, we cannot rely on GPS because many wireless
clients are not equipped with it and it is often does not work indoors. We describe existing
techniques that we leverage to obtain coarse geographic coordinates in Section 4.4.1.

Predict locally. Finally, when a user sits down at a cafe, he typically wants to find the
best AP that is visible. Although the client will have downloaded summaries for these APs
earlier, the expected performance of each AP depends on the wireless channel conditions
between the client and the AP. For example, conditions will vary based on the observed
signal-to-noise ratio (SNR). Therefore, the client must apply a filter to the summaries to
obtain an accurate prediction for the current conditions. We describe how a client can
perform this filtering in Section 4.4.2.

4.3 Location Privacy

This section describes a novel report submission protocol that ensures location privacy
and limited influence, properties that we define below. Define U to be the set of all users
that participate in Wifi-Reports, S to be the current set of all APs, u = submitter(R) to be
the user that submitted report R, and s = target(R) be the AP that R reports on. Suppose
C ⊂ U is the largest set of colluding malicious users that try to violate any user’s location
privacy or to influence an AP’s summary.

Location privacy. To preserve location privacy, we must satisfy three conditions. (1) No
one, not even the account authority or report database, should be able to link any report to
its submitter; i.e., no one should be able to guess submitter(Ri) with probability greater
than 1

|U\C| , for all reports Ri. (2) No one should be able link any two reports together
unless they were submitted by the same user for the same AP; i.e., no one should be able
to guess whether submitter(Ri) = submitter(Rj) with probability greater than 1

|U\C| , for
all Ri, Rj where submitter(Ri) 6= submitter(Rj) or target(Ri) 6= target(Rj). (3) A user
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should not have to reveal the target of a report in order to obtain the right to submit the
report; i.e., after obtaining the right to submit Rk+1, the account authority should not be
able to guess target(Rk+1) with probability greater than 1

|S| . In practice, achieving this
third condition may be too expensive, so we later relax it by restricting S to all APs in a
city rather than all APs.

Limited influence. To limit the influence of dishonest users, exactly one report from each
user who has submitted a report on AP s should be used to compute the summary statistics
for s. To ensure that this condition is satisfied, any two reports submitted by the same user
for the same AP must be linked; i.e., for all Ri, Rj where submitter(Ri) = submitter(Rj)
and target(Ri) = target(Rj), anyone should be able to verify that submitter(Ri) =
submitter(Rj). When computing each summary, the database first summarizes each in-
dividual user’s reports and then computes a summary over these summaries. This ensures
that malicious users have at most |C| votes on the final summary.

We may also want to limit the rate at which these users can submit reports on any AP.
For example, we may want to prevent a malicious user from reporting on a large number of
APs that he has never actually visited. We discuss how to achieve this additional property
at the end of Section 4.3.3.

4.3.1 Threat Model

Users’ location privacy should be protected from malicious users, the account authority,
and report databases. To meet this goal, we don’t assume any restrictions on the behavior
of malicious users, but we make a few practical assumptions about the account authority
and report databases.

Account authority. A challenge for recommendation systems is how to prevent malicious
users from out-voting honest users, e.g., by using botnets or Sybil attacks to obtain many
fake identities. Wifi-Reports, as with most existing recommendation systems, assumes that
a central account authority can limit these large-scale attacks. For example, the authority
can require a credential that is hard to forge, such as a token credit card payment or the
reception of an SMS message on a real cell phone. These defenses are not perfect, but
are enough of a deterrent that existing recommender systems work well in practice. These
heuristics may also be supplemented by Sybil detection schemes (e.g., [175]). Thus, we
assume that these mechanisms are sufficient to bound the number of malicious users to
a small fraction of the total number of users. Section 4.5.3 shows that our system can
limit the influence of this small number of malicious users. We assume that the account
authority is honest but curious; that is, it may try to reveal information about users, but
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it does not violate our protocol. We discuss how selfish violations can be detected in the
next two sections. Since the account authority is a high profile entity, we believe that the
legal implications of violations are sufficient deterrents to prevent them.

Report databases. Users have to trust the report database to summarize reports correctly.
To distribute this trust, we assume that there are multiple databases and that most are
honest (e.g., do not delete reports prematurely). Honest users submit reports to all the
databases and download summary statistics from all databases, using the report on each
AP that the majority of databases agree upon. We note that the existence of a single
honest database can be used to audit all databases, because any valid report that exists
should exist on all the databases, and reports are independently verifiable (see the protocol
below). Independent verifiability also means that each database can periodically check the
others to discover and obtain reports that it is missing. We assume that users learn about
the list of report databases in an out-of-band manner; e.g., it may be distributed with the
software.

A report database can link reports if they are submitted from the same IP address.
Therefore, we assume that users submit reports through a mix network such as Tor [49]
and that the mix achieves its goal, i.e., no one can infer the source IP address of the sender’s
messages.

4.3.2 Straw Man Protocols

Anonymize reports. One approach might be to have users simply submit reports to the
databases via a mix network. This means that all reports are unlinkable, thus providing
location privacy. However, this protocol does not provide limited influence because a
database can not distinguish when one user submits many reports on an AP versus when
many users submit one report each on the AP.

Authenticate reports. For this reason, nearly all existing recommender systems today
rely on a trusted central authority that limits each real user to a single account. We can
limit influence with an authority A as follows: When a user ui wants to submit a report R
on AP sj , it authenticates itself to A (e.g., with a username/password) and then sends R
to A. A checks if ui has previously submitted any reports on sj and, if so, deletes them
from the report databases before adding the new one. A explicitly remembers the user that
submitted each report. If A is the only one allowed to add and remove reports from the
report databases, this protocol provides limited influence because each user is limited to
one report. However, it fails to provide location privacy with respect to A. Indeed, A must
remember which reports each user submitted to prevent multiples.
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4.3.3 Blind Signature Report Protocol

To achieve both location privacy and limited influence, Wifi-Reports uses a two phase
protocol. We sketch this protocol here: First, when user ui joins Wifi-Reports, the account
authority A provides him with a distinct signed “token” Kij for each AP sj ∈ S. By using
a blind signature [21], no one, including A, can link Kij to the user or to any other Kij′ .
This ensures location privacy. However, anyone can verify that A signed Kij and that it
can only be used for sj . GENTOKEN describes this step in detail below. Second, to submit
a report R on AP sj , ui uses the token Kij to sign R, which proves that it is a valid report
for sj . ui publishes R to each report database anonymously via the mix network. Since
ui only has one token for sj , all valid reports that ui submits on sj will be linked by Kij .
This ensures limited influence. SUBMITREPORT describes this step in detail below.

Preliminaries. The RSA blind signature scheme [21] is a well known cryptographic
primitive that we use in our protocol. Let blind(K, m, r) and unblind(K, m, r) be the
RSA blinding and unblinding functions using RSA public key K, message m, and ran-
dom blinding factor r (we use 1024-bit keys and values). Let sign(K−1, m) be the RSA
signature function using RSA private key K−1, and let verify(K, m, x) be the RSA verifi-
cation function, which accepts the signature x if and only if x = sign(K−1, m). Let H(m)
be a public pseudorandom hash function (we use SHA-512). We leverage the following
equivalence:

sign(K−1, m) = unblind(K, sign(K−1, blind(K, m, r)), r)

That is, blinding a message, signing it, and then unblinding it results in the signature of
the original message.

Blind signatures have two important properties. (1) Blindness: without knowledge of r,
m̄ = blind(K, m, r) does not reveal any information about m. (2) Unforgeability: suppose
we are given valid signatures (x1, x2, . . . , xk) for each of (m1, m2, . . . ,mk), respectively,
where mi = H(m̂i). Without the secret key K−1, it is infeasible to forge a new signature
xk+1 = sign(K−1, H(m̂k+1)) for any m̂k+1 6= m̂i for all i, under the assumption that the
known-target or chosen-target RSA-inversion problems are hard [21]. However, anyone
can check whether verify(K, H(m̂i), xi) accepts.

Protocol description. Our protocol has two phases: GENTOKEN and SUBMITREPORT,
described below. For now, assume that the set of APs S is fixed and public knowledge.
We describe later how APs enter and leave this set.

GENTOKEN(ui, sj). The GENTOKEN phase is used by user ui to obtain a token to
report on AP sj and ui only performs it once per sj in ui’s lifetime. sj identifies an
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AP by BSSID as well as a hash of A’s signing key for that AP (see below), i.e., sj =
{bssidj, H(bssidj|Mj)}. We assume that ui and A mutually authenticate before engaging
in the following protocol (e.g., with SSL and a secret passphrase).

A : {M, M−1}, {Mj, M
−1
j } ∀sj ∈ S,

msigj ← sign(M−1, H(bssidj|Mj)) ∀sj ∈ S

ui : M, Mj, msigj, {Kij, K
−1
ij }, r

R←{0, 1}1024

ui : b← blind(Mj, H(Kij), r) (4.1)
ui → A : "sig-request", sj, b (4.2)

A : sig′ij ← sign(M−1
j , b) (4.3)

A→ ui : "sig-reply", sig′ij (4.4)
ui : sigij ← unblind(Mj, sig

′
ij, r) (4.5)

The lines before step 4.1 show items that are obtained before the protocol begins. A
has a single master RSA key pair M, M−1 and has generated a different signing RSA key
pair Mj, M

−1
j for each sj . H(bssidj|Mj) is signed by the authority’s master key so that

others can identify Mj as a signing key for bssidj . M , Mj , and msigj are publicly known
(e.g., given to users and databases by A when they join). ui generates a new reporting
key pair Kij, K

−1
ij and a 1024-bit random value r. After step 4.2, A checks whether it has

already sent a sig-reply message to ui for sj . If so, it aborts, otherwise it continues.
After step 4.5, ui checks that verify(Mj, H(Kij), sigij) accepts. At completion, ui saves
Kij , K−1

ij , and sigij for future use.

This exchange can be described as follows: A authorizes the reporting key Kij for use
on reports for sj by blindly signing it with sj’s signing key M−1

j . By blindness, A does not
learn Kij , only that the client now has a key for sj . Thus, no one can link Kij to user ui or
to any Kil, l 6= j. {Kij, sigij} is the token that ui attaches to reports on sj . When a report
is signed with K−1

ij , this token proves that the report is signed with an authorized signing
key. Since A only allows each user to perform GENTOKEN once per AP, each user can
only obtain one authorized reporting key for sj . By unforgeability, even if multiple users
collude, they cannot forge a new authorized reporting key.

SUBMITREPORT(ui, sj, R). This phase is used by user ui to submit a report R on AP sj

after a token for sj is obtained. Let {D1, . . . , Dm} be the m independent databases. R is
submitted to each Dk as follows.

Dk : M, Mj ∀sj ∈ S

ui : rsig ← sign(K−1
ij , H(R)) (4.6)

ui → Dk : "report", sj, Kij, sigij, R, rsig (4.7)
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The message in step 4.7 is sent through a mix network so it does not explicitly reveal its
sender. After step 4.7, Dk checks that verify(Mj, H(Kij), sigij) and verify(Kij, H(R), rsig)
both accept. If any of these checks fail, the report is invalid and is discarded. In other
words, ui anonymously publishes a report R signed using K−1

ij . By including {Kij, sigij},
anyone can verify that the signature is generated using a key signed by M−1

j , i.e., a key
that A authorized to report on sj during the GENTOKEN phase.

Anonymizing GENTOKEN. This protocol achieves limited influence and prevents each
report from being linked to any user or any other report. However, if a user engages in
GENTOKEN(ui, sj) only when it reports on sj , then it reveals to A that it is reporting on
sj . In order to satisfy the third condition of our location privacy requirement, that A cannot
guess the AP with probability greater than 1

|S| , ui would have to perform GENTOKEN on
all s ∈ S before submitting any reports so that A cannot infer which tokens were used.

When performing GENTOKEN on all APs is too expensive, we relax this condition
as follows. We allow A to infer that the AP is in a smaller set Ŝ ⊂ S. Determining an
appropriate set Ŝ is a trade-off between more location privacy and less time spent perform-
ing GENTOKEN operations. We have users explicitly choose a region granularity they are
willing to expose (e.g., a city). When reporting on an AP, they perform GENTOKEN on
all APs in this region. We believe this small compromise in location privacy is acceptable
since users already volunteer coarse-grained location information to online services (e.g.,
to get localized news) and IP addresses themselves reveal as much. In Section 4.5, we
show that using the granularity of a city is practical.6

Handling AP churn. To support changes in the set of APs S, A maintains S as a dynamic
list of APs. Any user can request that A add an AP identified by BSSID and located
via beacon fingerprint (see Section 4.4.1). A generates a new signing key pair and its
signature {Mj, M

−1
j }, msigj ← sign(M−1, H(bssidj|Mj)), and the new AP is identified

by sj = {bssidj, H(bssidj|Mj)}. Mj and msigj are given to the user and he submits them
along with the first report on sj to each report database. AP addition is not anonymous,
as the user must reveal the AP to A, so Wifi-Reports will initially depend on existing
hotspot and war driving databases and altruistic users to populate S. However, over time
we believe that owners of well-performing APs will be incentivized to add themselves
because otherwise they will not receive any reports. An AP is removed from S if it is
not reported on in 3 months (the report TTL, see below) and A sends a revocation of
their signing keys to each database. Users can thus obtain new signing public keys and

6An alternative solution is to perform GENTOKEN on a random subset of n APs in addition to the target
AP. However, since a user will likely submit reports on multiple correlated APs (e.g., APs in the same city),
A can exploit correlations to infer the APs actually reported on.
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revocations from each database.

We take three steps to limit the impact of nonexistent or mislocated APs that malicious
users may add. (1) When searching for APs on a map, the client report cache filters out
APs that only have a small number of recent reports; these APs require more “locals” to
report on them before distant users can find them. (2) After a sufficient number of reports
are submitted, reported locations are only considered if a sufficient number are near each
other, and the centroid of those locations is used. (3) A rate limits the number of additions
each user can make.

Handling long-term changes. AP performance can change over time due to back-haul
and AP upgrades. However, these changes typically occur at timescales of months or more.
Thus, reports have a time-to-live (TTL) of 3 months. Databases discard them afterward.
Determining the most appropriate TTL is a trade-off between report density and staleness
and is a subject of future work.

Handling multiple reports. Our protocol allows ui to submit multiple reports on sj ,
which can be useful if they are from different vantage points or reflect changes over time;
however, each report on sj will be linked by the key Kij . To ensure limited influence, a
database needs to summarize each user’s reports on sj before computing a summary over
these individual summaries. For simplicity, it computes an individual user’s summary as
just the most recent report from that user that was taken in the same channel conditions
(see Section 4.4.2).7 As a consequence, there is no need for an honest user to submit a new
report on sj unless the last one it submitted expired or if sj’s performance substantially
changed. This approach also allows a client to mitigate timing side-channels (discussed
below) by randomly dating his reports between now and the date in his last report on sj

without changing sj’s summary statistics.8

Rate limiting reports. As mentioned earlier, it may also be desirable to limit the rate
at which an individual user can submit reports, say, to at most t reports per week. This
can be accomplished with a straight forward extension of the SUBMITREPORT stage of
the protocol: A keeps count of the number of reports that each user submits this week.
Before submission of report = {sj, Kij, sigij, R, rsig} (step 4.7), user ui sends h =

7A more sophisticated summarization algorithm might use the mean or median values of all a user’s
reports, weighted by report age. We leave the comparison of summary functions to future work as we do not
yet know how many reports real users would submit on each AP.

8If the owner of Kij is ever exposed, then an adversary learns some approximate times when ui used sj .
If ui knows this, he can prevent any further disclosures by proving to A that he revoked Kij and obtaining a
new token for sj using GENTOKEN; i.e., ui can send {"revoke", ui,Kij , ksig} to A and the databases,
where ksig ← sign(K−1

ij ,H("revoke"|ui|Kij)), which proves that ui has Kij’s secret key and that Kij

(and all reports signed with it) is revoked.
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blind(M, H(report), r) to A. If ui has not already exceeded t reports this week, A sends
lsig′ = sign(M−1, h) back to ui, and ui unblinds lsig′ to obtain lsig = sign(M−1, H(report)).
lsig is included in the report submitted to the report databases and is verified to be correct
by recipients. The user would submit the report to the database at a random time after
obtaining lsig, so A would only be able to infer that it was requested by some user in the
recent past, but not which one.

10-20 would be reasonable values for t; analysis of Wi-Fi probes shows most clients
have not used more than 20 APs recently [63]. This approach only adds 4 ms of computa-
tional overhead on A per report submitted (see Section 4.5.2).

4.3.4 Discussion

BSSID spoofing. One obvious concern is that some APs can change their BSSID identi-
ties. For example, a poorly performing AP might spoof the BSSID of a good AP to hijack
its reputation. Ideally, each AP would have a public key pair to sign its beacons. APs could
then be identified by the public key instead of BSSID to prevent spoofing. In 802.11, APs
can offer this signature and its public key as part of a vendor-specific information element
or as part of 802.1X authentication. Without public key identities, we can still mitigate
spoofing with two techniques: First, if an AP masquerades as another AP that is geo-
graphically far away, then reports on each will be summarized separately as distinct APs
and users will treat them as such. Second, if an AP attempts to spoof one that is nearby, the
distribution of beacon SNRs that users receive will likely have two distinct modes. This at
least enables users (and the original AP) to detect spoofing, though resolution requires ac-
tion in the “real world” since the 802.11 protocol cannot distinguish the two APs. Finally,
laws against device fraud (e.g., [57]) may be a sufficient deterrent in practice.

Eclipse attacks. If A only reveals sj to a single user ui, A will know that any report for
sj is submitted by ui. Therefore, ui’s view of the set of APs S is obtained from the report
databases rather than from A. Recall that the identity of sj = {bssidj, H(bssidj|Mj)} is
added to each database when sj is added to S. Because a malicious database colluding
with A could tie bssid to a different signing key Mj′ , clients only consider AP identities
that the majority of report databases agree upon.

Side-channel attacks. Side-channels exposed in reports may potentially link reports if
the adversary has additional information. For example, if only one user visits an AP on a
given day, the AP can infer that any report with a timestamp on that day is from that user.
If a user submits many reports on APs at a time when most users rarely submit reports,
the receiving database may infer from the submissions’ timing that they are linked. Since
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we add a small amount of noise to timestamps and submission times, we believe we can
defeat most of these attacks in practice without significantly degrading accuracy.

4.4 Location Context

This section describes how Wifi-Reports obtains geographic coordinates for reports and
how summary statistics are filtered by wireless channel condition.

4.4.1 Geographic Positioning

To obtain coarse geographic coordinates for APs, we leverage previous work on beacon
“fingerprints.” The set of Wi-Fi beacons and their signal strengths observed from a location
can be used to obtain geographic coordinates with a median accuracy of 25 meters when
paired with a sufficiently dense war driving database [101]. Existing war driving databases
are sufficient to facilitate this task (e.g., Skyhook [145] is used to geolocate iPods). Thus,
Wifi-Reports clients include estimated coordinates in reports. To generate the location
estimate in summary statistics for each AP, the database uses the centroid of all reported
positions that are close together (e.g., within two city blocks). Although these positions
may be off by tens of meters, we believe that they are sufficiently accurate for locating
areas of connectivity on a map. Network names can be correlated with business names
to improve accuracy (e.g., from Google Maps), but doing this is outside the scope of this
dissertation. We note that coordinates are only needed to allow clients to search for AP
summary statistics by location.

4.4.2 Distinguishing Channel Conditions

Wireless performance differs based on channel conditions, which vary based on fine-
grained location and environmental conditions. The loss rate of a wireless channel is
roughly inversely proportional to the SNR, barring interference from other stations or
multi-path interference [86]. The most obvious approach is to use summary statistics
that only consider the k reports with SNR values closest to the currently observed SNR.
However, this approach has two problems. First, it requires users to download a differ-
ent summary for each possible SNR value for each AP. Second, it may not be possible to
choose an appropriate k: if k is too large, summaries will consider many irrelevant reports;
too small and summaries become vulnerable to outliers and fraud.

118



Fortunately, the continuum of SNR values can be partitioned into three ranges with
respect to wireless loss: a range where clients experience near 100% loss, a range where
clients experience intermediate loss, and a range where clients experience near 0% loss [86].
Therefore, Wifi-Reports categorizes reports based on these three channel conditions. In
other words, clients measure the median SNR of beacons sent by their AP. Reports are
annotated with this median SNR. When a client makes a local prediction about an AP, it
considers only previous reports taken in the same SNR range. In practice, the database
creates one summary for each of the three ranges for each AP, so the client does not need
to download all the reports for an AP.

Since measured SNR depends on the AP’s transmit power, these three SNR ranges may
be different for each AP. We estimate these ranges as follows: Typical scenarios exhibit an
intermediate loss range of 10 dB [86], so we exhaustively search for the “best” 10 dB range
that satisfies the expected loss rates. Specifically, let t> be the mean measured throughput
of reports taken with SNR larger than the 10 dB range, t= be the average throughput of
reports with SNR in the 10 dB range, and t< be the average throughput of reports with SNR
smaller than the 10 dB range. We find the 10 dB range that maximizes (t>−t=)+(t=−t<),
or the differences between the mean throughput in the three ranges.9 We assume that
reports of connectivity failures experienced 100% loss (i.e., have throughput of 0). Finally,
if t< < 0.75 · t=, we likely only have measurements in one of the 100% or 0% loss ranges,
so we put all measurements in a single range.

Figure 4.4 shows the estimated ranges for several APs in our measurement study that
were visible from multiple locations. We note that we do not need the distinguishing
algorithm to work perfectly to obtain accurate predictions. There is already measurement
noise within a single loss region due to TCP’s sensitivity to loss. Thus, very inaccurate
summaries typically only arise due to mixing reports in the 0% loss region with the 100%
loss region so it usually suffices to estimate these regions within 10 dB. Clients could also
directly measure wireless loss, either by observing other users’ traffic [160] or by actively
probing each AP.

4.4.3 Discussion

Client calibration. We use SNR to differentiate wireless channel conditions, but the
reported SNR may have a bias due to manufacturing defects in Wi-Fi NICs. Therefore,

9When we have more than a few samples (i.e., ≥ 5), we use the median rather than the mean because it
is more robust to outliers. Since the distribution of noise is likely Gaussian, the median is likely to be close
to the mean.
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Figure 4.4: Estimated 100%, intermediate, and 0% loss regions for three APs in our mea-
surement study.

different clients need to calibrate their reported SNR values. Previous work suggests that
most of this error may be eliminated using a locally computed offset [86]. Reported SNR
values for most cards after self-calibration may vary by 4 dB, a bias unlikely to affect our
algorithm’s accuracy significantly because the transitions between each SNR range are
not sharply defined. To further improve accuracy, we can leverage existing self-calibration
techniques that determine the biases of sensors (e.g., [14]). Implementing a distributed
calibration algorithm is the subject of future work.

Other environmental factors. To improve prediction accuracy further, existing tech-
niques can be used to measure and take into account other environmental factors that
cause variation, such as multi-path interference and wireless contention [151, 160]. How-
ever, we found that contention is rare in our measurement study, so prediction accuracy is
good even discounting these factors (see Section 4.5).

User and AP mobility. To localize reports, we currently assume that users and APs
are stationary. If users are mobile, performance may change over time; we can detect
user mobility by changing SNR values. Our current set of active measurements are short-
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lived and can thus be associated with the SNR values observed when they are measured.
Geolocating these mobile APs (e.g., those on a train) in a manner that makes sense is an
area of future work.

4.5 Evaluation

We evaluate the utility and practicality of Wifi-Reports using our measurement study (see
Section 4.1) and our implementation of the reporting protocol (see Section 4.3). This
section presents our evaluation of three primary questions:

• Some APs’ performance changes over time and at different locations. Are reports
accurate enough to improve AP selection?

• Our reporting protocol provides location privacy at the cost of token generation over-
head. Can Wifi-Reports provide users with a reasonable amount of location privacy
with practical token generation overheads?

• A determined attacker may be able to trick the account authority into giving it a few
accounts or collude with his friends to submit multiple fraudulent reports on an AP.
How tolerant are summaries to such attacks?

4.5.1 AP Selection Performance

Setup. We use our measurement study to simulate two scenarios: First, we evaluate
the scenario where a user chooses which hotspot to go to physically based upon the
predicted performance of all hotspots nearby. In this scenario, a user is primarily in-
terested in prediction accuracy; i.e., we want predict(s)/actual(s) to be close to 1 for
each AP s, where predict(s) is the predicted performance (e.g., throughput) of s and
actual(s) is the actual performance of s when it is used. Second, we evaluate the sce-
nario where the physical location is fixed (e.g., the user is already sitting down at a
cafe) but the user wants to choose the AP that maximizes performance. This situation
is comparable to the traditional AP selection problem [122, 151, 160]; i.e., given the
set of visible APs V = {s1, s2, . . . , sn}, we want a selection algorithm select(·) that
maximizes actual(select(V )), where s = select(V ) is the AP we choose. In this sce-
nario, a user is primarily interested in relative ranking accuracy; e.g., for throughput,
we would like to maximize actual(select(V ))/ maxs∈V (actual(s)). In Wifi-Reports
select(V ) = argmaxs∈V (predict(s)).
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Figure 4.5: CDF prediction accuracy for (a) TCP download throughput and (b) Google
fetch time over all trials on all official APs at their respective hotspots. Note the logarith-
mic scale on the x-axis.

We simulate these scenarios using our measurement study as ground truth. That is,
we assume that after the user selects an AP s to use, actual(s) is equal to one of our
measurements of s. We evaluate performance over all our measurement trials. To simulate
the predict(s) that would be generated by Wifi-Reports, we assume that all measurement
trials except those for APs currently under consideration, are previously submitted reports.
The reports for s are summarized to generate predict(s). This assumption implies that
reports are generated by users that visit locations and select APs in a uniformly random
manner. This is more likely to be the case when there are not yet enough reports in the
system to generate any predictions. By counting devices associated with each AP in our
measurement study, we observed that some users do currently use suboptimal APs. Thus,
we believe that such reports would be obtained when bootstrapping new APs in Wifi-
Reports.

Prediction accuracy. Figure 4.5 shows CDFs of prediction accuracy over all trials of of-
ficial hotspot APs for TCP download throughput and Google response time. The x-axis in
each graph shows the ratio of the predicted value over the actual achieved value. Values at
1 are predicted perfectly, values less than 1 are underestimates, and values more than 1 are
overestimates. We compare three approaches for generating summary statistics. history-
oracle shows the accuracy we would achieve if each summary summarizes only reports
taken at the same hotspot location as the location under consideration; this requires an “or-
acle” because we would not automatically know the logical location where measurements
are taken in practice. wifi-reports shows the accuracy when using Wifi-Reports’ SNR fil-
ter before summarizing reports (see Section 4.4). history-all shows the accuracy when we
summarize all reports to generate a prediction, regardless of the location where they were
taken (e.g., even if the user is at Starbucks, the prediction includes reports of the same AP
taken across the street).
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In this graph, we focus on official APs, where we are sure to have some measurements
in the 0% loss region, to better illustrate the impact of different channel conditions. Users
in this scenario are more likely to desire a comparison of the 0% loss predictions rather
than predictions in all three wireless channel conditions since they are choosing where to
go. If an association or connection fails, we mark that trial as having 0 throughput and
infinite response time. Recall that the summary function is median.

The graphs show that history-all underestimates TCP bandwidth and overestimates
Google fetch time more often than history-oracle. This is because by including reports
taken in the intermediate and near-100% loss regions, the median will generally be lower.
In contrast, wifi-reports performs about as accurately as history-oracle, demonstrating
that our SNR filter works well when we have some measurements in the 0% loss region.
Furthermore, we note that at least 75% of predictions for both metrics are within a fac-
tor of 2 of the achieved value, while Figure 4.2 shows that the difference in the median
throughputs and response times of official APs can be up to 50× and 10×, respectively.
Therefore, most predictions are accurate enough to make correct relative comparisons.

Ranking accuracy. We now examine the scenario when a user is choosing between
APs at a single location. Figure 4.6(a) and (b) show box-plots of achieved throughput
and response time, respectively, when using one of several AP selection strategies to try
to achieve the best performance at each location. best-open simulates Virgil [122], an
algorithm that associates with and probes all open APs before selecting the best one. best-
snr simulates the most common algorithm of picking the AP with the highest SNR value.
This algorithm works well when wireless channel quality is the limiting factor. official
simulates using the “official” AP of each location. We expect this algorithm to work well
since we showed in Section 4.1 that the official AP is the best at most locations. Obviously
this approach would not work at locations without an official AP. history-all simulates
Wifi-Reports without the SNR filter. wifi-reports simulates Wifi-Reports. history-all
and wifi-reports only generate a prediction for an AP if we have at least 2 reports to
summarize; if no predictions for any AP are generated, they fall back to selecting the
official AP. Finally, optimal shows the best performance achievable.

best-open performs the worst overall, failing to achieve any connections at tullys 1,
starbucks 1, and cafeontheave since no open APs were visible. best-open performs
better than all other algorithms only at yunnie, where most of the APs were open. We
note that best-open is qualitatively different than the other selection algorithms because
it cannot select any closed AP; we include it only to demonstrate that restricting the choice
of APs to open ones often results in substantially suboptimal performance. Furthermore,
best-open also has more overhead (linear in the number of open APs visible) than the
others because it must actively test each AP.
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Figure 4.6: (a) Box-plot of achieved TCP download throughput when using each of five
AP selection algorithms at each location. Note the logarithmic scale. Missing boxes
for the best-open algorithm are at 0. (b) Box-plot of the achieved response time of
http://www.google.com using each of five AP selection algorithms at each loca-
tion. The whiskers that extend to the top of the graph actually extend to infinity (i.e., the
fetch failed). missing boxes for the best-open algorithm are also at infinity. Each group
of boxes are ordered in the same order as the key at the top.

history-all again demonstrates the need for the SNR filter. Without the SNR filter,
Wifi-Reports would achieve poorer performance than official or best-snr at least 25% of
the time at tullys 1, trabant, and cafeontheave.

In contrast, wifi-reports achieves performance closest to optimal for both metrics in all
cases except for two. It achieves worse TCP throughput than best-open once at yunnie
and worse response time than best-snr or official once at cafeontheave. In each of
these cases, the AP chosen by wifi-reports experienced an association or DHCP failure.
However, a real client would quickly fall back to the second best AP chosen by wifi-
reports, which was the optimal one. Furthermore, wifi-reports is able to achieve higher
bandwidth more of the time than all other algorithms at yunnie and starbucks 1 and better
response time more of the time than all other algorithms at tullys 1 and cafeontheave.
Thus, it performs strictly better in more locations when compared with each of the other
approaches individually.

Finally, we note that unlike all other approaches, Wifi-Reports enables users to rank
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mean min max std dev description
Server 58.918 33.18 421.26 59.056 generate key
Server 3.979 3.87 6.29 0.222 sign
Client 95.517 18.00 560.45 47.364 generate key
Client 0.150 0.14 22.21 0.222 verify
Client 0.058 0.03 1.43 0.134 unblind
Client 0.006 0.00 1.88 0.027 hash
Client 0.003 0.00 1.88 0.019 blind

Table 4.1: Microbenchmarks of cryptographic processing times. All keys are 1024 bit
RSA keys and SHA-512 is used as the hash function. All values in milliseconds with a
resolution of 10 microseconds. 1000 trials were executed.

APs that are nearby but not visible. This is useful when users are willing to move to obtain
better connectivity.

4.5.2 Report Protocol Performance

We implemented our reporting protocol (Section 4.3) in software to evaluate its practical-
ity. We present measurements of its processing time, total token fetch time, and message
volume using workloads derived from actual AP lists. We focus on the token generation
phase (GENTOKEN) since, given a desired level of location privacy, its performance de-
pends on actual densities of APs. The report submission phase (SUBMITREPORT) runs in
constant time per report and uses standard fast RSA primitives.

Setup. We emulate a client that obtains the right to report on APs while at home (e.g.,
before or after traveling). Our client has a 2.0 GHz Pentium M and our account authority
server used one 3.4GHz Xeon processor (the software is single threaded). Both run Linux
and all cryptography operations used openssl 0.9.8. The bottleneck link between the client
and server is the client’s cable Internet connection (6 Mbps down, 768 kbps up). The round
trip time from client to server is 144 ms.

Processing time. Table 4.1 presents microbenchmarks of each step of the protocol. All
times are in milliseconds. The most heavyweight steps are the generation of 1024 bit RSA
keys by both the client (Kij) and server (Mj).10 However, both keys can be generated
anytime beforehand so these operations need not be executed inline in the GENTOKEN

10The standard deviation for key generation is high because the algorithm has a random number of itera-
tions.
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protocol. The remaining steps must happen inline, but have very low processing times. A
server can sign a blinded message in under 4 ms, so it can process about 250 tokens per
second, while a client can perform the verification and unblinding steps in roughly 0.2 ms,
or 5000 times per second.

Token fetch time. A user who wants to obscure his locations within a region must perform
GENTOKEN on all APs in that region. Figure 4.7 shows the end-to-end time to fetch tokens
for all APs in each of the ten cities that JiWire [85] reports to have the most APs (as of
November 15, 2008). JiWire lists commercial APs that service providers or users have
manually added, which parallels how most APs are added to Wifi-Reports. Nonetheless,
some commercial hotspots may not be listed by JiWire, so this graph serves to establish
a lower bound for cities with many APs. Since a user can fetch these tokens at any time
before submitting a report, even the longest delay, 5.5 seconds for all of New York, is
completely practical. Even obtaining tokens for several cities at once is practical since
each client only does this once in its lifetime.

WiGLE [167] is a database of all APs that war drivers have overheard, including both
commercial and private APs. Figure 4.8, presents fetch times for all WiGLE APs in a
32 km square centered at each city. Since most APs listed are not intended to be used by the
public (e.g., home APs) and WiGLE does not filter out erroneous or stale measurements,
this graph serves as a loose upper bound on fetch times. Even so, the worst fetch time
(Seattle) is 20 minutes. Since a client can batch sig-request messages for multiple
APs, a reasonable approach would be to request all tokens and then retrieve them at a later
time. In addition, by choosing a region granularity of less than a city, a client can achieve
much better delay and still mask his locations to a reasonable extent. Figure 4.9 shows the
CDF of number of WiGLE APs in 1km2 areas in each of the cities. Most cells in all cities
have fewer than 188 APs, which only takes about 1 second to fetch, and no cell has more
than 7400, which only takes about 30 seconds to fetch. Since commercial areas in most
cities are not spread out, most will be covered by a small number of cells. Finally, we note
that the server can parallelize the generation of each token to improve performance.

Message volume. A request for tokens transmits 173 bytes per token, while the response
transmits 529 bytes per token. Therefore, our protocol is CPU-bound on the server even
for a client on a cable modem. For example, it takes our client 8.7 minutes to send all
requests for Seattle APs on WiGLE and 3.4 minutes to receive the replies (these latencies
are included in the token fetch times reported above).

Admission rate and server cost. We next estimate the rate at which users can join given
limited server resources. To simulate “average” American users joining the system, we
assume that each user requests all tokens from one of the cities shown in Figure 4.7, chosen
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Figure 4.7: Time to acquire the right to report on all APs listed by JiWire in ten cities.
The cities presented are the ten with the most APs, according to JiWire as of November
15, 2008.

at random weighted by each city’s population (according to 2007 U.S. census data [158]).
While a user may request more, the authority rate limits each user to prevent denial-of-
service attacks.

Suppose the authority has x CPUs. For JiWire APs, it can admit 27,455x new users per
day. For example, if the authority has 100 CPUs, it can admit the entire population of these
cities in 5.6 days. How much would this overhead cost over a system that stores reports
without privacy? If deployed on Amazon’s EC2 [9], this would only cost about 0.02 cents
per user for CPU and bandwidth resources. For all WiGLE APs, the authority can admit
165x new users per day and the overhead cost would be about 2.6 cents per user. This one-
time cost is a very small fraction of the $5+ each user would have to spend to use most
commercial APs just for one day. There are also recurring costs incurred for computing
tokens for new APs that are added and, if enabled, signing reports for rate limiting (see the
end of Section 4.3.3). However, these costs are also trivial. For example, even if 10 new
hotspots appear in each city every week and every user submits 10 new reports per week,
the recurring cost would only be about 0.02 cents per user per year.
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Figure 4.8: Time to acquire the right to report on all APs listed by WiGLE in 32 km x
32 km squares centered on each of ten cities.

4.5.3 Resistance to Fraud

Summary values are robust to fraudulent reports that try to boost or degrade an AP’s value
because we use summary functions that are resilient to outliers. However, since there is
variability in honest reports as well, a small number fraudulent reports may still be able to
degrade prediction accuracy, e.g., by shifting the median higher or lower.

Setup. We consider the same scenario as in Section 4.5.1. To evaluate the extent that
fraudulent reporting can degrade accuracy, we simulate an adversary that tries to boost
the predicted TCP download throughput of an AP by submitting reports that claim the
AP achieves 54 Mbps, the maximum theoretically possible in 802.11g. In this evaluation
users only consider each AP’s 0%-loss summary, so we assume that each adversarial user
submits one report with SNR in the middle of this range. Although he could submit more,
they would not change the summary since only one report per user is used. We vary
the power of the adversary by varying the number of users that collude to submit these
fraudulent reports. A typical AP would also have many honest reports. Therefore, we
simulate each AP with 100 reports total: x are the fraudulent reports described above and
100 − x are honest reports that are randomly sampled (with replacement) from our ∼10
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Figure 4.9: CDF of the number of APs listed by WiGLE in each 1 km2 region of a 32 km
x 32 km grid centered on each of ten cities.

actual measurements per AP. Note that even if the total number of reports is different, our
results still hold on expectation if the ratio of fraudulent to total reports remains the same.
The remainder of our simulation setup is identical to Section 4.5.1. For comparison to
Figure 4.5(a), we again focus on official APs.

Accuracy. Figure 4.10 shows Wifi-Reports’ prediction accuracy on official APs as we
vary the percentage of fraudulent reports. Negligible degradation of accuracy is observed
when up to 10% of reports are fraudulent. Even with 30% of fraudulent reports, most
predictions are still correct within a factor of 2. However, when 50% of reports are fraud-
ulent, most predictions are gross overestimates. This result is expected since the median
function is not robust to 50% or more outliers larger than the actual median.

Discussion. We note that even if an adversary is successful in luring honest clients to a
poor AP, those clients will submit reports that correct the summary statistics. Successful
fraud attacks that degrade a good AP’s reputation (or contract its 0%-loss SNR range)
are harder to correct because honest users may be dissuaded from using that AP. However,
since cost, venue, and other external factors will influence selections in practice, we believe
some honest users will eventually report on these APs and correct their summary statistics.
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4.6 Related Work

Wifi-Reports is related to four areas of previous work: recommender systems, collabora-
tive sensing, AP selection, and electronic cash/secure voting protocols.

Recommender systems. Previous proposals for reputation-based AP location systems,
such as Salem et al. [141], do not protect contributors’ location privacy. Moreover, Salem
et al.’s protocol assumes APs can predict their performance and it does not address vary-
ing wireless channel conditions. Of course, having users report on items or services to
ascertain their value is a well known idea (e.g., for a survey see [5]). For example, Broad-
band reports [37] rates ISPs using user-reported speed tests (e.g., [149]) that measure their
back-haul capacities. However, Broadband reports takes few measures to prevent fraud.
This may be because, unlike the identity of an AP, it is difficult to forge the IP address that
identifies the ISP in a speed test. Furthermore, it is relatively easy to limit sybil attacks [52]
because a user is identified by an IP address, which is hard to spoof while maintaining the
necessary TCP connection for reporting.

Some recommendation systems use collaborative filtering (CF) (e.g., [162, 176]) to
identify users that submit many bad reports. However, these techniques require that all
reports from the same user are linked and thus do not protect privacy, which is important
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when location information is at stake. Some proposed CF techniques can limit the ex-
posure of this information by using secure multi-party voting [38, 39]. However, these
techniques require all users to be simultaneously online to update summary statistics, and
thus are impractical for services that have many users and continuous submission of re-
ports.

Collaborative sensing. A number of recent proposals use mobile devices as collaborative
sensor networks (e.g., [96, 4]), but they do not address the unique challenges of AP mea-
surement and reporting. Anonysense [45] is one such platform that ensures that reports are
anonymous by using a mix network. However, Anonysense relies on a trusted computing
base (TCB) to prevent fraudulent reports and cannot prevent non-software based tamper-
ing (e.g., disconnecting a radio antenna) nor fraudulent reports from clients that collude
with APs without a TCB. These attacks are simple to carry out to modify wireless mea-
surements. Nonetheless, the Wifi-Reports measurement client could also leverage a TCB
to mitigate fraud even more.

[122, 151, 160] argue for metrics other than signal strength for ranking access points,
but only consider metrics that can be instantaneously measured by a single client. We
showed in Section 4.5 that leveraging historical information out-performs direct measure-
ment [122] because it isn’t always possible to test an AP before use. In addition, Wifi-
Reports is the only system that enables users to evaluate APs that are not in range, such as
when searching for an AP in a hotspot database. Nonetheless, our work is complementary
to [151] and [160], which can better estimate the quality of the wireless channel when it is
the performance bottleneck.

Electronic cash and secure voting. Wifi-Reports uses blind signatures in a manner
similar to well-known electronic cash [42, 41] (e-cash) and secure voting [60] (e-voting)
protocols. However, unlike traditional e-cash protocols where a user has multiple tokens
that can be spent on any service, a user of our reporting protocol has a single token per
service that can only be used for that service. Traditional e-voting protocols typically
assume that all users vote (e.g., report) on all candidates (e.g., APs) before tallying the
votes, whereas reports are continuously tallied in Wifi-Reports but a precise count is not
necessary. As a consequence, our reporting protocol is simpler than traditional e-cash
and e-voting protocols, but, like these protocols, it relies on an account authority and
distributed talliers (e.g., report databases) to prevent attacks.
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4.7 Summary and Discussion

This chapter presented Wifi-Reports, a service that improves AP selection by leveraging
historical information about APs contributed by users. A system like Wifi-Reports is im-
portant because our measurement study, the first of commercial APs, showed that there is
substantial diversity in AP performance, even among those close by. Wifi-Reports can han-
dle reports submitted at different locations, protects users’ location privacy, and is resilient
to a small fraction of fraudulent reports. The central contribution of Wifi-Reports’ design
is to demonstrate how crowd-sourced LBSes can make user-submitted reports unlinkable,
yet also ensure that each user has limited influence in summarized results.

4.7.1 Discussion

Although we presented our reporting protocol in the context of a hotspot directory service,
it is applicable to crowd-sourced recommender systems more generally. The protocol can
be applied to other collaborative reporting services by replacing the set of APs, S, with
the set of items being reported on. Nonetheless, we note that there are two important
limitations. First, the protocol’s practicality is dependent on our ability to group items
into subsets that are reasonably small and not revealing. Second, the protocol can not be
applied when collaborative filtering is required.

Reasonably sized subsets. Users in Wifi-Reports can fetch tokens in a practical amount
of time because we presumed that they are willing to reveal a coarse grain region that
they have visited (e.g., a city) and that each of these regions does not contain more than a
million APs. If the set of items that a user has to fetch to obtain sufficient privacy is larger
than several million, then the cost of generating tokens becomes prohibitive. Therefore,
an important challenge when applying this protocol to other crowd-sourced recommender
systems is how to subdivide the set of items into subsets of reasonable size and that have
appropriate privacy semantics.

Collaborative filtering. In contrast to plain query-based LBSes and crowd-sourced LB-
Ses, collaborative filtering (CF) services help users by finding users with similar interests.
For example, a dating site might try to match users that have been to similar places. CF
services that match users based on location history actually need to link a user’s location
samples together to function using existing collaborative filtering techniques. For exam-
ple, techniques to prevent sybil attacks and fraud in such systems, such as DSybil [176],
actually rely on tracking the history of each user’s votes or reports. Although some pro-
posed CF techniques for peer-to-peer systems can limit the exposure of user histories by
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using dimensionality reduction and secure multi-party voting [38, 39], these techniques
are difficult to apply when clients which are not always online. Thus, designing appro-
priate privacy models and mechanisms for CF services is a final important area of future
work.
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Chapter 5

Conclusions and Future Work

Remember that the primary threat to location privacy comes from the collection of lo-
cation traces, i.e., a set of location samples known to be from the same device or user.
Eavesdroppers and crowd-sourced LBSes can collect these traces when we use existing
wireless protocols because they can link a user’s identity to the locations that he visits.
We conclude this dissertation with a summary of how our work limits the ability of these
parties to link identities to locations. We then discuss some open problems that remain.

5.1 Summary

This dissertation made the following thesis: Existing protocols and techniques that wire-
less devices use to discover and communicate with each other pose risks to users’ location
privacy. It is, however, possible to redesign these protocols and techniques to substantially
mitigate location privacy threats without degrading their functionality or practicality.

Recall that the usage model of wireless protocols such as 802.11 typically has four
phases: select, rendezvous, communicate, and report. Our work shows that existing
link layer protocols reveal implicit identifiers during the rendezvous and communication
phases even when pseudonym schemes to mask unique identifiers in those protocols (e.g.,
MAC addresses in 802.11) are employed. In addition, we showed that crowd-sourced
Wi-Fi directory services are highly useful, but currently do not protect the anonymity of
user reports because they need to limit the number of fraudulent reports that malicious
users can submit. Thus, these services can currently link our identities to our locations
during the reporting phase. Although previous work showed how using coarse grain or
noisy location queries can be used to conceal our identity during the selection phase, these
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techniques can not be applied to crowd-sourced LBSes.

In light of these shortcomings, we showed that we can build link layer protocols that
conceal all transmitted bits with comparable efficiency and functionality as existing pro-
tocols. For example, SlyFi can replace 802.11 with very little degradation in performance
if both ends of a communication support it. Concealing all transmitted bits eliminates
all explicit identifiers and makes it substantially more difficult for eavesdroppers to detect
implicit identifiers during the rendezvous and communication phases. Furthermore, we
showed that we can build location-based recommender systems, such as Wi-Fi directory
services, that preserve the anonymity of user-submitted reports and limit the number of
fraudulent reports a single user can submit, thereby concealing our identity during the
reporting phase. Wifi-Reports shows that a privacy-preserving hotspot directory service
would be practical today.

5.2 Contributions

This dissertation made contributions in answering three principle questions:

Are simple pseudonym protocols sufficient to prevent location tracking by
eavesdroppers?

No

Can we build complete and practical link-layer protocols that conceal all
identifiers?

Yes

Can we build practical crowd-sourced LBSes for wireless service location
in a manner than preserves both privacy and accountability?

Yes

5.2.1 Implicit Identifier Tracking Threats in Practice

Central Insight. To our knowledge, we are the first to show with empirical evidence
that design considerations beyond eliminating explicit identifiers, such as unique MAC
addresses, must be addressed to protect anonymity in wireless networks. This is because,
even without a unique address, other characteristics of users’ 802.11 traffic can identify
them implicitly and track them with high accuracy. An example of such an implicit iden-
tifier is the SSID (i.e., network name) of access points that his laptop tries to discover.
In a population of several hundred users, the set of these SSIDs might be unique to one
individual; thus, the mere observation of this IP address would indicate the presence of
that user.
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Key Results. We identified four previously unrecognized implicit identifiers that re-
main even when previously proposed MAC address pseudonym schemes are applied: net-
work destinations, network names advertised in 802.11 probes, differing configurations of
802.11 options, and sizes of broadcast packets that hint at their contents. The later three
of these implicit identifiers remain even when link-layer encryption is employed. Further-
more, we developed an automated procedure to identify users. This procedure allows us to
quantify how much information implicit identifiers, both alone and in combination, reveal
about several hundred users in three empirical 802.11 traces. Our evaluation using this
technique shows that many of these users emit highly discriminating implicit identifiers,
and, thus, even a small sample of network traffic can identify them more than half (56%) of
the time in public networks, on average. Moreover, we will almost never mistake them as
the source of other network traffic (1% of the time). Since adversaries will obtain multiple
traffic samples from a user over time, this high accuracy in traffic classification enables
them to track many users with even higher accuracy in common wireless networks. For
example, an adversary can identify 64% of users with 90% accuracy when they spend a
day at a busy hot spot that serves 25 concurrent users each hour. Even if the hot spot
employed link-layer encryption, 31% of users can be still identified with 90% accuracy.

5.2.2 Practical Identifier-free Link Layer Protocols

Central Insight. To address the implicit identifier problem, we developed SlyFi, a link
layer protocol that reveals no transmitted bits to eavesdroppers. The obvious difficulty
with simply removing all explicit fields is that they play key roles in the efficient opera-
tion of existing protocols. For example, a connection identifier allows a device to decide
whether it is the destination of a message by using a simple compare operation. Our
central contribution is a set of two efficient primitives for constructing service discovery
protocols and subsequent data transfer protocols that conceal all transmitted bits. These
primitives leverage assumptions about the rendezvous and communication phases of the
wireless protocol to synchronize cryptographically secure pseudorandom sequences. As
a consequence, in both cases a device can determine whether it is the recipient of a mes-
sage with lightweight table look-ups. We demonstrate that all wireless protocol features
that rely on identifiers—service discovery, packet filtering, and address binding—can be
supported without exposing them.

Key Results. We have implemented SlyFi on commodity 802.11 NICs and our exper-
iments show that SlyFi’s performance impact is modest, as it uses only cryptographic
operations already used by WPA. In particular, we showed that a SlyFi client can discover
and associate with services even faster than 802.11 with WPA using PSK authentication.
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SlyFi’s overhead results in a throughput degradation that is only slightly greater than that
of WPA with CCMP encryption (10% vs. 3%).

5.2.3 Privacy-preserving Crowd-sourced Location-based Systems

Central Insight. SlyFi only protects communication sent between devices that already
trust each other. To support improved discovery of new public wireless services, such
as 802.11 APs, we need hotspot directories that accept user submitted reports and sum-
marize them (e.g., a crowd-sourced LBS). For example, if users report the bandwidth of
APs that they use, the hotspot directory can list the median bandwidth of all APs to help
users select among them. However, in order to preserve location privacy, a user should not
have to reveal that he used an AP to report on it. Otherwise he would implicitly reveal a
location that he visits. At the same time, however, a few users should not be able to sig-
nificantly skew an AP’s summary statistics because some may have an incentive to submit
fraudulent reports, e.g., to promote APs that they own. Our central contribution is a report
submission protocol that tolerates a few misbehaving users and does not require the disclo-
sure of location related information to anyone, including the LBS. Our protocol leverages
blind signatures to ensure that the service can regulate the number of reports that each
user submits, but cannot distinguish one user’s reports from another’s. To demonstrate
the practicality of this protocol we presented the design, implementation, and evaluation
of Wifi-Reports, a hotspot directory service that implements this protocol. Although we
presented this reporting protocol in the context of a hotspot directory service, it is also
applicable to some other location-based collaborative recommender systems.

Key Results. We conduct the first study that examine the attributes of commercial en-
crypted and “pay-for-access” APs in the wild. Our results suggest that hotspot recom-
mender systems would have enormous utility because there is a large range in AP perfor-
mance. For example, different APs’ median throughputs and response times differ by up
to 50× and 10×, respectively. We show that Wifi-Reports can predict AP throughput and
response time to within a factor of 2 at least 75% of the time. Moreover, we show that
Wifi-Reports generates accurate summary statistics for each AP even if 10% of that AP’s
users collude to promote it.
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5.3 Future Work

A number of important questions about location privacy in the context of wireless proto-
cols and services remain. In this section, we outline several open problems and suggest
some initial directions for solutions where possible.

5.3.1 Private Key Distribution for Device Discovery

In both existing secure wireless protocols and in SlyFi, an important challenge is how
to bootstrap the symmetric or public keys that are necessary before two devices are able
to rendezvous and authenticate each other for the first time. This bootstrapping phase is
typically done out-of-band between the selection and rendezvous phases of the wireless
usage model. The two traditional classes of key establishment mechanisms, pairing and
certificates, can be used in some scenarios, but may also be insufficient to establish keys
in many useful service discovery settings. In this section, we outline the challenges and
some initial solutions for key establishment protocols that conceal device identities [129].

Challenges. Pairing [152] refers to the techniques used to establish keys on two personal
devices that a user wants to connect together (e.g., Bluetooth peripherals). Pairing mecha-
nisms usually involve the physical exchange of some secret, such as a verbally exchanged
passkey, or the use of an out-of-band channel, such as direct physical contact. These mech-
anisms assume that users of the devices can identify them physically, which is often not the
case (e.g., when trying to find an 802.11 AP). Moreover, all these mechanisms assume that
a client already knows the specific service it wants to discover. Ironically, this assumption
means that to use pairing, users have to discover services before their devices can discover
them, which defeats the purpose of “automatic” service discovery. Service discovery is
often useful because it enables users to find services they do not yet know about (two such
scenarios are described below).

Public wireless services, such as infrastructure APs, can advertise certificates signed
by trusted authorities (e.g., VeriSign) to prove their authenticity to clients. This is the
trust model we use for public hotspots in Wifi-Reports. However, private services can
not offer certificates to unknown clients without violating their own privacy. Similarly,
clients can not privately offer proof of identity before authenticating a service. Even pre-
distribution of certificates via out-of-band channels is difficult because mobile devices are
often disconnected.

Initial solutions. Devices in two mutually trusted domains can often assume bilateral
trust. For example, if Alice and Bob are friends, they may allow all their current and
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future devices to discover each other. They might naı̈vely try to achieve this either by
sharing a single private key among all devices in one domain, or by exchanging all their
device keys. However, the former approach compromises all the devices if even one is
stolen, and the later approach does not enable the discovery of new devices that Alice and
Bob obtain after the key exchange.

To establish keys automatically in this scenario, we can leverage anonymous identity
based encryption [3] (AIBE), a public key encryption scheme primarily used for confi-
dential email. Using AIBE, Alice can assign a different private key to each device and
Bob can encrypt a discovery message to that device using a human-readable string as the
encryption key and a publicly known encryption algorithm. This string is chosen based
on an agreed upon naming convention (e.g., Alice.iPhone can be the encryption key for
Alice’s iPhone) but a message encrypted with it hides both the key and the recipient. A
trusted authority provides Alice with the private decryption key, ensuring that only she can
decrypt messages encrypted with keys beginning with Alice (i.e., a unique user name she
uses with this authority). The authority also publicly publishes the encryption algorithm,
which is the same for all its users (i.e., the same algorithm is used whether the key is
Alice.iPhone, or Alice.Zune, or Charlie.iPhone, etc.).

For example, suppose Bob and Alice each purchase a new iPhone, each preloaded with
AIBE private keys. Bob configures his iPhone to trust (the string) Alice and Alice config-
ures hers to trust Bob (e.g., by adding each string to their respective address books). If
Bob and Alice are nearby, their iPhones could discover each other and use 802.11 to con-
nect their calls, without first needing to exchange keys (indeed, Bob need not even know
that Alice has an iPhone). To do this, Bob’s iPhone simply sends a discovery message
encrypted using the string Alice.iPhone and only Alice’s iPhone can receive it.

Two mutually trusted devices may also be willing to trust each other’s relations. For
example, Bob’s iPhone may permit all 802.11 APs that Alice’s iPhone uses to discover
it. Similarly, some of these APs may permit Alice’s friends to discover them. Bob might
naı̈vely attempt to bootstrap keys for these APs by having Alice give him all their public
keys. However, this approach does not work for new APs that Alice uses after this key
exchange, and it forces Alice to reveal all her AP relations to Bob.

Instead, we can leverage a private social proximity test [58] to automatically establish
keys in this scenario. This test enables Bob’s iPhone to send a message that can only be
read by devices that Alice has allowed to trust her friends, without having to explicitly tell
Bob about any of them. Note that Bob will still learn about Alice’s relationship with an
AP when he discovers it. However, Alice, who must agree to use this mechanism, may be
willing to permit this revelation.
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Discussion. Although neither of these mechanisms provide absolute confidentiality as
they require additional trust assumptions, they are only used when devices attempt to dis-
cover others with which they have not established keys. A symmetric key can then be
exchanged for subsequent rendezvous attempts using SlyFi. Thus, an important research
challenge is to determine how to limit the use of these mechanisms to those circumstances
for which they are truly needed. For example, in the case of 802.11, clients generally
prefer known APs to unknown ones. Thus, these mechanisms are not needed when known
APs are present.

Finally, the rapid evolution of service discovery scenarios means that we do not yet
have a clear picture of all use cases. Emerging scenarios may require access based on
capabilities that these mechanisms do not support. For example, a wireless network may
want to be visible only to clients in a specific physical area. Private key establishment
mechanisms for these scenarios are an important area of future work.

5.3.2 Concealing Higher-layer Explicit Identifiers

In this dissertation, we focused on concealing link-layer identifiers and those exposed to
LBSes. However, identifiers that remain in IP and application layer protocols may still be
observed by some entities during the communication phase of the wireless usage model.
The most prominent example of these identifiers are application-level service identifiers
used in application-level service discovery. Windows, Mac OS X, and Linux operating sys-
tems use service discovery protocols such as NetBIOS, UPnP SSDP, SLP, and Multicast
DNS (mDNS) to discover other devices and services on the same local network. User-
level applications such as iTunes and iChat use service discovery to find other instances
of the same application on the local network. These protocols function in the same way
as link-layer rendezvous protocols (i.e., using either probes or announcements). Although
eavesdroppers that are not on an encrypted local network can not observe such identifiers,
users may not always trust all devices on the local network either (e.g., at a hotspot). For-
tunately, the same primitive we used to conceal identifiers in link-layer rendezvous (Tryst)
can be used to conceal identifiers in higher-layer discovery protocols. Doing so is mostly
an engineering challenge. However, there is also a research challenge in bootstrapping the
symmetric keys necessary to use Tryst. This is a more important challenge for applica-
tion layer discovery protocols because they are often used to support “zero-configuration”
networking, and requiring manual key exchange would hinder ease-of-use. We proposed
some initial solutions to the key exchange problem above.
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5.3.3 Concealing Physical Layer Implicit Identifiers

In addition to higher-layer explicit identifiers, lower-layer implicit identifiers at the physi-
cal layer that are exposed during the rendezvous and communication phases of the wireless
usage model may be detected by adversaries with special equipment [16, 36, 70, 143]. We
believe that such equipment, such as signal analyzers that cost tens of thousands of dol-
lars, are out of reach of casual eavesdroppers and do not expect large scale surveillance
networks constructed using them soon. However, the cost of such equipment will invari-
ably come down as it is commoditized. Therefore, it is also important to begin to develop
countermeasures to conceal physical layer fingerprints as well. We believe that such con-
cealment is not technically difficult with hardware modifications (e.g., Brik et al. [36]
used fixed calibration errors to fingerprint wireless cards, so inserting randomized noise to
these errors would mask the fingerprints). However, doing so would likely add to the cost
of wireless devices, so a thorough understanding of the economic trade-offs is crucial to
determining whether deploying such countermeasures at scale is practical.
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