
A Cost Semantics for Self-Adjusting

Computation

Ruy Ley-Wild1 Umut A. Acar2

Matthew Fluet2

July 2008
CMU-CS-08-141

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1Carnegie Mellon University
2Toyota Technological Institute at Chicago

Keywords: self-adjusting computation, cost semantics

Abstract

Self-adjusting computation is an evaluation model in which programs can respond efficiently
to small changes to their input data by using a change-propagation mechanism that updates
computation by re-building only the parts affected by changes. Previous work has proposed
language techniques for self-adjusting computation and showed the approach to be effective
in a number of application areas. However, due to the complex semantics of change propaga-
tion and the indirect nature of previously proposed language techniques, it remains difficult
to reason about the efficiency of self-adjusting programs and change propagation.
In this paper, we propose a cost semantics for self-adjusting computation that enables rea-
soning about its effectiveness. As our source language, we consider a direct-style λ-calculus
with first-class mutable references and develop a notion of trace distance for source programs.
To facilitate asymptotic analysis, we propose techniques for composing and generalizing con-
crete distances via trace contexts (traces with holes). We then show how to translate the
source language into a self-adjusting target language such that the translation (1) preserves
the extensional semantics of the source programs and the cost of from-scratch runs, and (2)
ensures that change propagation between two evaluations takes time bounded by their rel-
ative distance. We consider several examples and analyze their effectiveness by considering
upper and lower bounds.

1 Introduction

In many applications it can be important or even necessary to efficiently update the output
of a computation as the input undergoes small changes over time. This problem, broadly
known as incremental computation, has been studied extensively in both the algorithms and
programming languages communities.

In the algorithms community, researchers devised algorithms that are optimized to take
advantage of specific small input changes. Over the course of hundreds of papers (see Chiang
and Tamassia 1992; Eppstein et al. 1999; Agarwal et al. 2002 for surveys), important ad-
vances have been made. Those results show that it is often possible to update computations
asymptotically faster (often by a linear factor) than re-computing from scratch. However,
incremental algorithms can be difficult to design and analyze, especially for sophisticated
problems (e.g., 3D motion simulation (Guibas 1998)). These algorithms can also be difficult
to implement and use, because of inherent complexity and non-compositionality.

Over the same period of time, the programming languages community has made signifi-
cant progress on run-time and compile-time approaches to incremental computation (e.g., De-
mers et al. 1981; Pugh and Teitelbaum 1989; see Ramalingam and Reps 1993 for a survey).
The goal of this line of work is to derive incremental programs from static programs automat-
ically or semi-automatically. The idea is to maintain certain information during an execution
that can be used to efficiently update the output after changes to the input. Recent work
on self-adjusting computation (e.g., Acar et al. 2006b,a; Ley-Wild et al. 2008) proposed a
general-purpose change-propagation mechanism that can closely match asymptotic perfor-
mance bounds achieved by algorithmic techniques. Self-adjusting computation has been
shown to be effective in various applications (e.g., Acar et al. 2004, 2006a,c, 2008c,b). For
example, recent work (Acar et al. 2008b) proposed a solution to simulating moving convex
hulls in 3D, a problem that has resisted ad hoc approaches for a decade (Guibas 1998).

Reasoning about the effectiveness of self-adjusting programs, however, remains difficult.
In particular, there is no cost model for self-adjusting computation. Previous applica-
tions of the approach often give only experimental results to illustrate performance gains
(e.g., Acar et al. 2006a,c, 2008b). Giving asymptotic bounds requires integrating change
propagation into the algorithm by considering a low-level machine model akin to the RAM
model (e.g., Acar et al. 2004). As a result, the bounds derived do not directly apply to the
code as written. More importantly, the approach does not provide a source-level reasoning
mechanism. The main difficulty in reasoning about a self-adjusting program is understand-
ing how the program responds to changes to its data. One reason for this is the complexity
of the update mechanism; another is the nature of previously proposed linguistic techniques.

To see the first difficulty, consider executing a program with some input and later chang-
ing the input. In self-adjusting computation, as the program executes, information about the
execution (such as data and control dependencies) is recorded. After the input is changed,
the output is updated by performing change propagation to find the parts of the computa-
tion affected by the change, using the recorded dependence information and updating stale
computation by re-executing code. When re-executing code, change propagation may reuse
previous computations with a form of computation memoization. Since change-propagation

1

σs; es

translation
��

⇓s

cs
// vs; T s

translation
��

σt; et ⇓t

ct∈O(cs)
// vt; T t

consistency

σt; T t
0

yt
// vt; T t

T s
1

translation
��

oo
	s

ds
//_______ T s

2

translation
��

T t
1

oo
	t

dt∈O(ds)
//_______ T t

2

T t
1

oo yt

dt
//_______ T t

2

Figure 1: The left diagram illustrates the correspondence between the source and target from-
scratch runs and the consistency of change propagation in the target. The right diagram
illustrates the correspondence between distance in the source and target, and the time for
change propagation in the target.

re-executes parts of the program code and reuses other parts of the execution, it is hard to
reason about its complexity. In particular, the user may need to reason about the contexts in
which sub-expressions are evaluated to distinguish changed and unchanged data, which can
be difficult even with limited forms of computation reuse techniques such as lazy evaluation
(e.g., Wadler and Hughes 1987; Sands 1990a,b).

Other difficulties arise from the nature of the previously proposed linguistic facilities.
These approaches require the programmer to mark all data that change over time and iden-
tify their dependencies, delimit the static scope of the operation that reads changeable data
(essentially identifying control dependencies), and apply memoization by carefully consider-
ing whether the data dependencies are local or non-local (Acar et al. 2006a). Depending on
the choice of the scope for the primitives and the use of memoization, the programmer may
observe drastically different performance.

In this paper, we propose a cost semantics for self-adjusting computation. We consider a
natural source language, give a cost semantics for the language, and develop techniques for
reasoning about the similarity of executions. We then show techniques for compiling source
programs into a self-adjusting target language that preserves both the extensional (meaning)
and the intensional (cost) semantics of the source programs. By offering a natural, high-
level source language, we eliminate the burden of restructuring a program for self-adjusting
computation. By offering a cost semantics and a translation mechanism, we provide realistic
source-level reasoning techniques that guarantee performance.

Figure 1 illustrates our approach. Our source language is a λ-calculus with first-class
references. Its cost semantics evaluates expressions (es) in the context of stores (σs) in the
usual way, and produces a trace of the evaluation (T s) and a step count (cs). We quantify the
similarity between evaluations of source programs with a trace distance (T s

1 	s T s
2 = ds states

that the distance between the traces T s
1 and T s

2 is ds). Intuitively, the trace distance measures
the “edit distance” between evaluations. To give an effective distance, we show that it suffices
to record function calls and store operations in the trace. We don’t record complete stores or
evaluation contexts.1 Since our language is stateful, recording complete stores would lead to

1For some time, we thought that evaluation contexts, which describe how results are used, were necessary.

2

G`1→1::`3

G`3→3::`n

G`n→nil Pnil↑`
′
n

mapA (`n) ⇓ `′n Pc::`′n↑`3

mapA (`3) ⇓ `c Pa::`c↑`a

mapA (`1) ⇓ `a

G`1→1::`2

G`2→2::`3

G`3→3::`n

G`n→nil Pnil↑`
′
n

mapA (`n) ⇓ `′n Pc::`′n↑`c

mapA (`3) ⇓ `c Pb::`c↑`b

mapA (`2) ⇓ `b Pa::`b↑`a

mapA (`1) ⇓ `a

Figure 2: The abstract derivations for executions of mapA with inputs [1,3] (top) and
[1,2,3] (bottom).

a distance measure that overestimates distance significantly; requiring evaluation contexts
would make reasoning cumbersome. To enable proving asymptotic bounds on distance, in
addition to just concrete evaluations, we develop a notion of trace contexts, which are traces
with holes that can be filled with other traces. We prove that, under certain conditions,
distance is additive under substitution: the distance between traces obtained via substitution
into two contexts is the same the distance between the substituted traces themselves plus
the distance between the contexts.

We compile the source language into a self-adjusting target language. The target language
has mutable modifiable references and is in continuation-passing style; its syntax combines
ideas from recent work on imperative self-adjusting computation (Acar et al. 2008a) and on
compiling self-adjusting programs (Ley-Wild et al. 2008). Evaluation of a target expression
(et) takes place in the context of a store (σt) and yields a value (vt) and a trace (T t). The
semantics includes a change-propagation mechanism (yt) that can replay a trace from a
previous run (e.g., T t

0) in a store (σt) to produce a value and a trace that are consistent with
a from-scratch execution, while reusing the work from the initial trace (T t

0). We give a cost
semantics for the target language that counts steps of evaluation (but not steps of change
propagation). As in the source, we define a distance for traces (t) and bound the time
for change propagation by the distance between the computation traces before and after
propagation.

We connect the source and target languages by providing a compilation mechanism that
translates source programs into target programs. The adaptive cps (ACPS) translation ex-
tends recent work (Ley-Wild et al. 2008) to support imperative references and yields prov-
ably efficient self-adjusting programs. In particular, we prove the following properties of the
translation (cf., Figure 1).

We use evaluation contexts to prove our meta-theoretic results, but they are not necessary for source-level
reasoning.

3

• Extensional semantics: The translation preserves the evaluation of source programs
(top left square).

• Intensional semantics: The translation preserves the asymptotic cost of from-scratch
runs (top left square).

• Consistency of change propagation. Change propagation (in the target) preserves
the extensional semantics of from-scratch runs (bottom left square).

• Trace distances. Translated programs have asymptotically the same trace distance
as their source (top right square).

• Change propagation time. Time for change propagation (in the target) coincides
with source trace distance (right diagram).

To prove the first two properties, we generalize a folklore theorem about cps to show that
an ACPS-compiled program preserves the evaluation and asymptotic complexity of a source
program. The ACPS translation is more complicated than the standard translation because it
threads continuations through the store. We give a simple, structural proof of the consistency
of change propagation by casting it as a full replay mechanism. This simplification is made
possible by the translation itself—earlier work had to use step-indexed logical relations for
capturing the correspondence between stateful programs (Acar et al. 2008a). We prove the
fourth property by establishing a relation between the traces of the source and the target
programs. This property also bounds the time for change propagation (the last property) by
showing that change propagation in the target takes time proportional to the target distance.

There are several properties of trace distance that we would like to note. First, trace
distance is a relation. By defining it relationally, we allow the approach to apply to any
concrete implementation technique consistent with the semantics: our main theorems state
that our translation can match any source distance computed relationally. Second, trace
distance is sensitive to the choice of locations. This is because trace distance compares con-
crete evaluations. Previous implementations of self-adjusting computations can often choose
locations to minimize the trace distance. Since our theorems can match any distance com-
puted, they apply to existing implementations. The problem of whether an implementation
can efficiently achieve the minimum possible distance is not well understood: this is unde-
cidable in general but these impossibility results typically involve programs that don’t arise
in practice.

2 An Overview of Derivation Distances

We give a high-level overview of derivation distance and contexts. As a simple example, we
consider a map function.

Our source language is a λ-calculus with references. This language is general-purpose
(Turing-complete) and expressive: it allows writing both structured programs (e.g., itera-
tive divide-and-conquer list algorithms) as well as unstructured programs (e.g., graph algo-

4

rithms). In this language, we can define linked lists and implement a map function for them
as follows.

datatype ’a cell = nil | :: of ’a * ’a list

withtype ’a list = ’a cell ref

fun map (f : ’a -> ’b) (l : ’a list) : ’b list =

case !l of

nil => ref nil

| h::t => let mt = map f t in ref ((f h)::mt) end

This essentially-standard implementation of map with pointer-based lists is actually self-
adjusting: using the techniques described in this paper (Section 6), we can compile it to a
self-adjusting program. The resulting self-adjusting program can be run with some input
list. Afterwards, any of the contents of the references can be changed and the output can be
updated via change propagation. For example, consider a specialization mapA of map that
maps integers to letters of the alphabet. Consider running mapA with input [1,3] to obtain
[a,c] and then changing the input to [1,2,3] by writing a new cons cell into the first tail
pointer. After this change, we can run change change propagation to update the output to
[a,b,c].

How fast would we expect change propagation be after inserting an element into the
input? Intuitively, we only need to translate the new integer into a letter, which requires
constant time, but we also need to find the right place to insert the element in the output—it
is not clear how much time that would take.

Derivation Distance. We develop techniques for reasoning about the effectiveness of
change propagation by using derivation distance.2 The idea is to compare the evaluation
derivations of a program with two different, typically similar, inputs and compute the “edit
distance” between these derivations. But what should the distance between evaluations be?
Comparing evaluation derivations directly yields coarse distances. To see this, consider com-
paring the derivation for the evaluation of mapA with inputs [1,3] and [1,2,3]. Since these
inputs are represented in the store and since the store is threaded through the derivation,
all of derivation steps will be different—stores won’t match. Thus the distance between the
derivations would be linear in the size of the input—far larger than the constant that we
expect.

To realize the similarity between the derivations, we exclude the store from the derivations
and include the store operations instead. (P stands for put (allocation); G stands for get
(dereference).) Figure 2 shows the derivations of mapA with inputs [1,3] and [1,2,3]. The
differences between the derivations are highlighted: the two derivations differ only at steps

2In Section 3, we represent derivations with traces and formally define trace distance. Here, we use
derivations because they are more intuitive.

5

that operate on the element 2, which is what differs between the two runs. Note that the dif-
ference remains the same even if we add more elements to these lists (e.g., [. . .,0,1,3,4,. . .]
and [. . .,0,1,2,3,4,. . .]).

Of course, it is possible to make the “distance” between derivations arbitrarily small
when we suppress arbitrary parts of the derivation. We prove that this distance is in fact
realistic by describing how source programs may be compiled (Section 6) to a target language
(Section 5) with provable efficiency.

Derivation Contexts. To reason about the asymptotic complexity bounds for distance,
we need to compute distance for all (appropriately changed) inputs. This is difficult with the
distance described above, which requires two concrete executions. To facilitate asymptotic
analysis, we use derivation contexts (Section 3). A derivation context is a derivation with

one or more holes in it. We write
`e⇓v for a hole that expects an evaluation of e ⇓ v. We can

obtain a derivation from a derivation context by substituting a derivation for a hole. As an
example, consider the derivation, shown below, of mapA applied to the list [α1, . . . , αm]@2

where 2 represents an unspecified list. In the derivation `i (resp. oi) denotes the reference
to the cons cell containing input αi (resp. output for βi), and βi denotes the character to
which αi is mapped. Given this derivation context, we can substitute the list [1,3] for 2

and obtain the derivation for that input by substituting the derivation of [1,3] (shown in
Figure 2) in place of the hole.3

G`1→α1::`2

G`m→αm::`2

mapA(`2)⇓o2h
Pβm::o2↑om

...
mapA (`2) ⇓ o2 Pβ1::o2↑o1

mapA (`1) ⇓ o1

Let D1[2] and D2[2] be derivation contexts and let D′1 and D′2 be derivations. We
prove that the distance between D1[D

′
1] and D2[D

′
2] is the sum of the distances between

D1[2] and D2[2] and between D′1 and D′2, for suitably-shaped contexts. This result enables
generalizing concrete distances to arbitrary inputs. For example, the above two analyses
can be generalized and combined to show that the distance between derivations of mapA

with inputs that differ by one element is constant. This allows us to also derive asymptotic
complexity bounds, which is generally difficult with concrete cost semantics (Section 4).

3 The Source Language (Src)

The Src language is a simply-typed, call-by-value λ-calculus with recursive functions and
ML-style references. The language also includes natural numbers for didactic purposes and
can easily be extended with products, sums, recursive types, etc., but we omit them as they
provide no additional insight. Although Src has no operational support for self-adjusting

3Note that not all substitutions yield well-formed derivations. In particular, the choice of locations needs
to be consistent.

6

;σ; v ⇓ σ; v; ε; 0
E ;σ; ez ⇓ σ′; v′;T ; c

E ;σ; caseNzero ez (x .es) ⇓ σ′; v′;T ; c

E ;σ; {vn / x} es ⇓ σ′; v′;T ; c
E ;σ; caseN (succ vn) ez (x .es) ⇓ σ′; v′;T ; c

E [2 ex];σ; ef ⇓ σf ; fun f .x .e;Tf ; cf

E [(fun f .x .e′) 2];σf ; ex ⇓ σx; vx;Tx; cx

E ;σx; {vx / x} {fun f .x .e / f } e ⇓ σ′; v′;T ; c

E ;σ; ef ex ⇓ σ′; v′;Tf ·Tx·(M(fun f .x .e) vx⇓v′
E(`) (T)·ε); cf + cx + 1 + c

` /∈ dom(σ) σ′ = σ] {` 7→ v}
E ;σ;put v ⇓ σ′; `; Pv↑`

E ·ε; 1
` ∈ dom(σ) σ(`) = v

E ;σ;get ` ⇓ σ; v; G`→v
E ·ε; 1

` ∈ dom(σ) σ′ = σ[` 7→ v]
E ;σ; set ` v ⇓ σ′; zero; S`←v

E ·ε; 1

Figure 3: Src evaluation E ; σ; e ⇓ σ′; v′; T ′; c.

computation (i.e., a mechanism for updating a computation under input changes), its dy-
namic semantics produces an execution trace that can be used to quantify similarities be-
tween runs as a distance. Src programs can be compiled into Tgt programs (see Sections 5
and 6), whose semantics include a change propagation judgement that realizes updates and
asymptotically matches Src distances.

The syntax of Src is given below, which defines types τ , expressions e, and values v, using
metavariables f and x for identifiers and ` for locations.

τ ::= nat | τx → τ | τ ref
e ::= v | caseN vn ez (x.es) | ef ex | put v | get v` | set v` v
v ::= x | zero | succ v | fun f.x.e | `

The dynamic semantics of memoizing functions fun f.x.e is instrumented to identify opportu-
nities for computation reuse. The reference primitives and scrutinee of caseN are restricted
to value forms for technical simplicity. This restriction can be avoided with syntactic sugar,
for example the unrestricted dereference form get e` can be defined as (fun f.x.getx) e`.

3.1 Static, Dynamic, and Cost Semantics

The (standard, hence omitted) typing judgement Σ; Γ ` e : τ ascribes the type τ to the
expression e in the store and variable typing contexts Σ and Γ. Figure 3 gives the dynamic
and cost semantics of Src. The large-step evaluation relation E ; σ; e ⇓ σ′; v′; T ; c reduces
expression e in store σ to value v′ in updated store σ′ and yields an execution trace T and a
cost c. The trace internalizes the shape of an evaluation derivation and will be used to identify
the similar computations. The cost internalizes the size of a trace and will be used to relate

7

the constant slowdown due to compiling Src programs to Tgt programs. For the present
time, we suggest that the reader ignore the highlighted evaluation context E component; it
is crucial for relating Src and Tgt distances (see Section 6), but is not necessary for reasoning
about Src distance.

We distinguish active computation as work that may be used to identify similarities and
differences in computation. Evaluation of reference primitives and application of memoizing
functions yield active computation. Case-analysis and (in the presence of sums, products,
etc.) other forms of β-reduction are considered passive computation. An evaluation deriva-
tion internalizes its size in a cost c as a natural number that quantifies active work. We do
not explicitly quantify passive work because it is always bounded by a constant multiple of
active work. Intuitively, since a Src program can only perform a bounded amount of compu-
tation between function calls, memoizing function actions suffice to account for all passive
work; including actions for passive work (e.g., case-analysis) would give a more accurate
measure but isn’t necessary for calculating asymptotic time complexity or distance. This
property is formalized in section Section 3.2.

A trace T is an interleaving of actions that internalizes the shape of an evaluation deriva-
tion:

As ::= Pv↑`
E | G`→v

E | S`←v
E

A ::= As | M
vf vx⇓v
E (T)

T ::= ε | A·T

Actions A serve as markers for active work and consist of store actions and memoizing
function actions. Store actions As include allocation (P), dereference (G), and update (S),
which are labeled with the location ` and value v involved in each operation. A memoizing

function action M
vf vx⇓v
E (T) is labeled with a function vf , argument vx, and result v; the

delimited trace T identifies the body of the function application for reuse; as in the dynamic
semantics, the highlighted evaluation context E can be ignored.

Traces facilitate identifying the similarities and differences between different runs of a
program. More specifically, since store mutation is the only kind of observable side effect in
Src, reference primitives uniquely determine the control flow of a closed program. Thus, by
recording them in the trace, we can identify where program runs differ. Since memoizing
functions identify explicitly similar computations by matching arguments to function calls,
they can be used to identify where program runs perform similar computations. Therefore
actions in traces are necessary and sufficient to isolate the similarities and differences between
program runs.

Returning to the dynamic semantics (Figure 3), evaluation extends the trace and incre-
ments the cost counter according to the kind of reduction. Cost grows in lock-step with the
trace and could be defined as the “size” of the trace, but we keep it explicit to relate the
intensional semantics of the Src and Tgt languages. A value reduces to itself, produces an
empty trace, and has no cost. A case-analysis reduces according to the branch prescribed by
the scrutinee; the trace and cost are unchanged, since, as noted above, case-analysis incurs
only passive work.

A function application reduces the function ef and argument ex to values and then eval-

8

uates the redex. An application concatenates the function, argument, and redex traces to
represent the sequencing of work; the redex trace is delimited by the memoizing function
action to identify the scope of the function call; the cost of the traces are added and incre-
mented by a unit of work for the β-reduction.

A reference allocation extends the store with a fresh location that is initialized with the
specified value and returns the location. A dereference returns the location’s value. An
update changes the location’s contents and returns zero. In each case, the trace is the
singleton action corresponding to the primitive, and the work is 1.

3.2 Derivation Size and Cost

In this section we show that the cost of an evaluation derivation, which quantifies active
work, also bounds passive work. Formally, we show that cost bounds the size of a derivation,
which includes both active and passive work, by a multiplicative factor that depends on the
program and store.

We inductively define the size of a Src evaluation derivation D with evaluation sub-
derivations D1, . . . , Dn to be |D| = 1 +

∑
i∈1..n |Di|. Furthermore, we define the spread of an

expression to capture the amount of work done up to a function application. We inductively
define the local spread 〈e〉 of a Src evaluation expression e to be the longest path from the
root of an expression to a leaf expression or function application.

〈v〉 = 1

〈caseN vn ez (x .es)〉 = 1 + max{〈ez〉, 〈es〉}
〈ef ex〉 = 1

〈put v〉 = 1

〈get vl〉 = 1

〈set vl v〉 = 1

We define the global spread 〈〈e〉〉 := maxe′�e〈e〉 of a Src evaluation expression e to be the
maximum local spread of the subexpressions e′ of e (e′ � e). We extend the definition
to a store and expression as 〈〈σ, e〉〉 = maxe′∈rng σ,e〈〈e′〉〉 and to an evaluation derivation as
〈〈E ; σ; e ⇓ σ′; v′; T ; c〉〉 = 〈〈σ, e〉〉. Next, we establish several lemmas and show the size of a
derivation is bounded by its cost times the global spread of a derivation.

Lemma 1
For any e, 〈{v / x} e〉 = 〈e〉,

Proof: By induction on the expression e. �

Lemma 2
If D :: E ; σ; e ⇓ σ′; v′; T ; c, then 〈〈σ′, v′〉〉 ≤ 〈〈σ, e〉〉.

Proof: By induction on the derivation D. �

9

Lemma 3
If D :: E ; σ; e ⇓ σ′; v′; T ; c with evaluation subderivations Di (i ∈ 1..n), then 〈〈Di〉〉 ≤ 〈〈D〉〉
(i ∈ 1..n).

Proof: By induction on the derivation D. �

Theorem 4
Fix D :: E ; σ; e ⇓ σ′; v′; T ; c, then |D| ≤ 〈e〉+ 3c〈〈D〉〉.

Proof: By induction on the derivation D.

Case value.

D :: ; σ; v ⇓ σ; v; ε; 0 derivation
|D| = 1 ≤ 1 = 〈v〉+ 3(0)〈〈D〉〉 arithmetic

Case caseZ (caseS is analogous).

D :: E ; σ; caseNzero ez (x .es) ⇓ σ′; v′; T ; c derivation
D′ :: E ; σ; ez ⇓ σ′; v′; T ; c subderivation
|D′| ≤ 〈ez〉+ 3c〈〈D′〉〉 i.h.
〈〈D′〉〉 ≤ 〈〈D〉〉 Lemma 3
|D| = 1 + |D′| ≤ 1 + 〈ez〉+ 3c〈〈D′〉〉 ≤ 〈caseN vn ez (x .es)〉+ 3c〈〈D〉〉 arithmetic

Case app.

D :: E ; σ; ef ex ⇓ σ′; v′; Tf ·Tx·(M(fun f .x .e) vx⇓v′
E(`) (T)·ε); cf + cx + 1 + c derivation

Df :: E [2 ex]; σ; ef ⇓ σf ; fun f .x .e; Tf ; cf subderivation
Dx :: E [(fun f .x .e′) 2]; σf ; ex ⇓ σx; vx; Tx; cx subderivation
D′ :: E ; σx; {vx / x} {fun f .x .e / f } e ⇓ σ′; v′; T ; c subderivation
|Df | ≤ 〈ef〉+ 3cf〈〈Df〉〉 i.h.
|Dx| ≤ 〈ex〉+ 3cx〈〈Dx〉〉 i.h.
|D′| ≤ 〈{vx / x} {fun f .x .e / f } e〉+ 3c′〈〈D′〉〉 i.h.
〈〈Df〉〉, 〈〈Dx〉〉, 〈〈D′〉〉 ≤ 〈〈D〉〉 Lemma 3
〈ef〉, 〈ex〉, 〈{vx / x} {fun f .x .e / f } e〉 ≤ 〈〈D〉〉 consequence
|D| = 1 + |Df |+ |Dx|+ |D′|

≤ 1 + (〈ef〉+ 3cf〈〈Df〉〉) + (〈ex〉+ 3cx〈〈Dx〉〉) + (〈{vx / x} {fun f .x .e / f } e〉+ 3c′〈〈D′〉〉)
≤ 1 + 3(cf + cx + 1 + c′)〈〈D〉〉
= 〈ef ex〉+ 3(cf + cx + 1 + c′)〈〈D〉〉 arithmetic

Case put (get and set are analogous).

10

ε � ε = 〈0, 0〉
search/nil

T1 	 T2 = d T ′1 � T ′2 = d′

Mvf vx⇓v1

E1(`) (T1)·T ′1 � Mvf vx⇓v2

E2(`) (T2)·T ′2 = 〈1, 1〉+ d + d′
search/synch

T1·T ′1 � T2 = d

Mvf vx⇓v
E(`) (T1)·T ′1 � T2 = 〈1, 0〉+ d

search/memo/L

T1 � T2·T ′2 = d

T1 � Mvf vx⇓v
E(`) (T2)·T ′2 = 〈0, 1〉+ d

search/memo/R

T1 � T2 = d

As·T1 � T2 = 〈1, 0〉+ d
search/store/L

T1 � T2 = d

T1 � As·T2 = 〈0, 1〉+ d
search/store/R

ε	 ε = 〈0, 0〉
synch/nil

T1 	 T2 = d

As·T1 	As·T2 = d
synch/store

T1 � T2 = d

T1 	 T2 = d
synch/search

T1 	 T2 = d T ′1 	 T ′2 = d′

Mvf vx⇓v
E(`) (T1)·T ′1 	 Mvf vx⇓v

E(`) (T2)·T ′2 = d + d′
synch/memo

Figure 4: Src (simple) search distance T1 � T2 = d (top) and synchronization distance
T1 	 T2 = d (bottom).

D :: E ; σ;put v ⇓ σ′; `; Pv↑`
E ·ε; 1 derivation

|D| = 1 ≤ 〈put v〉+ 3(1)〈〈D〉〉 arithmetic

�

Corollary 5
Fix D :: E ; σ; e ⇓ σ′; v′; T ; c, then |D| ≤ (1 + 3c)〈〈D〉〉.

Proof: Immediate from 〈e〉 ≤ 〈〈D〉〉 and Theorem 4. �

3.3 Trace Distance

Consider running a single program under two different stores: intuitively, the executions
will be identical up to the first differing store primitive (viz. the run of mapA on the prefix
. . .,0,1 from Section 2), after which the traces may correspond to different subprograms
(e.g., because an allocation produced different locations or a read found different values).
In terms of traces, they will have a common prefix up to the first differing store action.

11

Conservatively, the only similarity between two runs would be the common prefix. Memoizing
functions, however, enable recognizing similar computations that occur after two runs have
diverged (viz. the run of mapA on the postfix 3,4,. . .) because they identify the trace of the
same function applied to the same argument. Nevertheless, even if two computations result
from the same function application, they may also have different traces and return different
results due to interactions with the store. More generally, comparing two traces alternates
between searching for a point where traces align (i.e., memoizing function application) and
synchronizing the two similar traces until they again differ (i.e., store actions). These two
complementary ways of scanning traces suggest two corresponding ways for quantifying the
distance of two runs. The synchronization distance optimistically assumes the two runs are
identical and have distance zero. The search distance pessimistically assumes the two runs
are distinct and have distance proportional to the size of both runs. Since the work common
to both runs may be interspersed throughout the two traces, intuitively, the distance between
two runs combines the synchronization distance of the common work and the search distance
of the leftover work.

Distance is formally captured by the search distance T1 � T2 = d and synchronization
distance T1 	 T2 = d judgements (given in Figure 4), defined by structural induction on
the two traces. The search mode can switch to synchronization if it encounters similar
program fragments (as identified by memoizing application actions), and the synchronization
mode must switch to search mode if the trace actions differ at some point. Intuitively, the
trace distance measures the symmetric difference between two traces (i.e., the size of trace
segments that don’t occur in both traces). Concretely, we quantify distance d = 〈c1, c2〉
between traces T1 and T2 as a pair of costs, where c1 is the amount of work in T1 that isn’t
shared with T2 and c2 is the amount of work in T2 that isn’t shared with T1. We let d + d′

denote pointwise addition for distance.
Since traces approximate the shape of an evaluation derivation, trace distance approx-

imates a (higher-order) distance judgement on evaluation derivations that quantifies the
dis/similarities between two runs (modulo the stores). The dynamic semantics of Tgt has
nondeterministic allocation and memoization in order to avoid committing to an implemen-
tation; consequently, the definition of Src trace distance is a relation, but we will show that
any distance derivable for Src programs is preserved in Tgt (Corollary 16).

The search distance T1 � T2 = d accounts for traces that don’t match, but switches
to synchronization mode if it can align memoization actions. The search distance between

empty traces is zero. Upon simultaneously encountering memoization actions M
vf vx⇓v1

E1 (T1)·T ′1
and M

vf vx⇓v2

E2 (T2)·T ′2 of the same function vf and argument vx (search/synch rule), the search
distance can switch to synchronizing the bodies T1 and T2, while separately searching for
further synchronization of the tails T ′1 and T ′2. The cost of the synchronization and search
are added to the cost of 1 for the memoization match in each trace.

Finally, skipping an action in search mode incurs a cost of 1 in addition to the distance
between the tail of the trace (search/memo rules and search/store rules).

Turning to the synchronization distance, the T1 	 T2 = d judgement attempts to struc-
turally match the two traces. Identical work in both traces incurs no cost, but synchro-

12

nization returns to search mode either nondeterministically or when work cannot be reused
because traces don’t match. Synchronization mode is only meant to be used on traces
generated by the evaluation of the same expression under (possibly) different stores.

The synchronization distance between empty traces is zero. Encountering identical store
actions allows distance to remain in synchronization mode without cost (synch/store rule).
Synchronizing a memoization action (synch/memo rule) requires the function call (function
vf and argument vx) and return (result v) to match; this allows the bodies as well as the
tails to be synchronized separately and their distance compounded. Note that even if the
bodies don’t match completely and return to search mode, memoizing functions provide a
degree of isolation because tails can be matched independently. Synchronization falls back
to search mode (synch/search rule) nondeterministically or necessarily when the actions
are distinct (e.g., because store or memo actions don’t match).

Observe that the definition of synchronization distance is quasi-symmetric: T1 	 T2 =
〈c1, c2〉 iff T2 	 T1 = 〈c2, c1〉; similarly for search distance. Furthermore, note that distance
of Src programs is defined by induction on the two traces: both judgements traverse traces
left-to-right either matching work or accounting for skipping it. This means that common
work consists of a subsequence of actions that appears in both traces, which precludes re-
ordering work. For example, comparing runs Mf x⇓a()·Mg y⇓b()· and Mg y⇓b()·Mf x⇓a()· can
only synchronize one of the calls, the other call must be skipped. This restriction avoids hav-
ing to search for permutations for matching computations and simplifies the implementation
requirements of Tgt; however, this limitation obviously hinders the efficiency of self-adjusting
computation for certain classes of computations.

3.4 Trace Contexts

In order to reason compositionally about distance, we define a trace context T to be a trace
with a hole; the formalization to multi-holed contexts is straightforward and omitted for
reasons of space.

T ::= 2 | As·T | Mvf vx⇓v
E (T)·T | Mvf vx⇓v

E (T)·T

Trace context distances T1 � T2 = d and T1 	 T2 = d are obtained by lifting distance
on traces to trace contexts, extended with the following rules for holes (in the multi-hole
analogue, holes are uniquely labeled and labels must also coincide):

2 � 2 = 〈0, 0〉 2	2 = 〈0, 0〉

By requiring holes to coincide when comparing trace contexts, we can reason separately
about context and trace distance, and then combine the results. Intuitively, the identity the-
orem for traces means a common suffix subcomputation incurs no cost. The identity theorem
for trace contexts and the substitution theorem show that a common prefix computation does
not affect distance either: provided the hole in both trace contexts is immediately bounded
by a memoization action of the same function and argument, context and trace distance can
be combined additively. The identity theorems are proved by induction on the subject trace
T or trace context T .

13

Theorem 6 (Identity for Traces)
For any trace T , T 	 T = 〈0, 0〉.

Proof: By induction on the trace T . �

Theorem 7 (Identity for Trace Contexts)
For any trace context T ,

T [M
vf vx⇓v
E (2)·T]	T [M

vf vx⇓v
E (2)·T] = 〈0, 0〉.

Proof: By induction on the trace context T . �

Theorem 8 (Substitution)
If T1[M

vf vx⇓v1

E1 (2)·T1] � T2[M
vf vx⇓v2

E2 (2)·T2] = d
and T ′1 	 T ′2 = d′,

then T1[M
vf vx⇓v1

E1 (T ′1)·T1] � T2[M
vf vx⇓v2

E2 (T ′2)·T2] = d + d′.

If T1[M
vf vx⇓v1

E1 (2)·T1]	T2[M
vf vx⇓v2

E2 (2)·T2] = d
and T ′1 	 T ′2 = d′,

then T1[M
vf vx⇓v1

E1 (T ′1)·T1]	T2[M
vf vx⇓v2

E2 (T ′2)·T2] = d + d′.

Proof: By simultaneous induction on the first derivation of each statement. �

3.5 Trace Distance, Revisited

The rules of Figure 4 are useful for high level reasoning, but aren’t rich enough to demonstrate
a correspondence with Tgt trace distance. We present an alternate rule system that subsumes
the above system and serves as an intermediary for proving the preservation of distance under
compilation.

Failure Actions. The search/synch rule separately synchronizes the bodies and searches
the tails when it encounters matching memoizing actions. While this rule is useful, it pre-
cludes memoization between one body and another tail; for example, it doesn’t allow splitting
T1 as T11·T12 and synchronizing T11 with a prefix of T2 and searching T12 against the rest of
T2. The näıve rule

T1·T ′1 	 T2·T ′2 = d

Mvf vx⇓v1

E1(`1) (T1)·T ′1 � Mvf vx⇓v2

E2(`2) (T2)·T ′2 = 〈1, 1〉+ d

would allow splitting both traces, but it is unsound because it may fully synchronize T1·T ′1
with T2·T ′2, even though the trace concatenation may not have been generated the same
expression, violating the well-formedness of synchronization distance. We remedy this by
introducing the failure action F

⇓v
E(`) to explicitly force synchronization mode to switch back

to search mode; it is labeled by a result v, an evaluation context E and location `, which are
needed for technical reasons but can be ignored when reasoning about Src distance:

14

T1·F⇓vE(`)·T
′
1 � T2 = d

Mvf vx⇓v
E(`) (T1)·T ′1 � T2 = 〈1, 0〉+ d

search/memo’/L

T1 � T2·F⇓vE(`)·T
′
2 = d

T1 � Mvf vx⇓v
E(`) (T2)·T ′2 = 〈0, 1〉+ d

search/memo’/R

T1 � T2 = d

F⇓vE(`)·T1 � T2 = d
search/fail/L

T1 � T2 = d

T1 � F⇓vE(`)·T2 = d
search/fail/R

T1·F⇓v1

E1(`1)·T
′
1 	 T2·F⇓v2

E2(`2)·T
′
2 = d

Mvf vx⇓v1

E1(`1) (T1)·T ′1 � Mvf vx⇓v2

E2(`2) (T2)·T ′2 = 〈1, 1〉+ d
search/synch’

Figure 5: Additional rules for Src (simple) distance with explicit failure.

A ::= · · · | F⇓vE(`)
The revised system is obtained by removing the search/synch and search/memo rules

from Figure 4 and adding the rules in Figure 5.
The new search/memo’ rules insert an explicit failure action between the body and tail

of a memoization action, and still incur a cost of 1 for failing to match. The search/fail
rules allow search to skip a failure action without cost. Observe that, in Figure 4, a trace is
subjected to synchronization if it is delimited by a memoization action and failure actions
never occur in the scope of a memoization action, so failure actions never appear in synchro-
nization mode. Therefore the search/memo’ and search/fail rules subsume the (replaced)
search/memo rules: any distance derivable from the failure-free deductive system is also
derivable from the system with explicit failure.

The search/synch’ rule identifies matching function applications and switches to syn-
chronizing the concatenation of the body, failure action, and tail. Since there are no new
synchronization distance rules, leading failure actions force synchronization to switch to
search (only the synch/search rule applies). Therefore the search/synch’ rule enables
synchronizing part of T1 with T2 and then searching the remainder of T1 against T ′2 (after
encountering the failure action between T2 and T ′2). The search/synch’ rule subsumes the
(replaced) search/synch rule.

Precise Distance. Since Src actions are translated into multiple Tgt actions (Section 6),
the simple Src distance presented above uses amortization to avoid exact accounting and to
simplify reasoning. We define a variant of Src’s distance relation with precise accounting for
memoization at function call and return points.

The original Src distance and the new precise Src distance and presented simultaneously
in Figure 6. The T1 � T2 = d; df , bo, do and T1 	 T2 = d; df , bo, do judgements include the
simple distance d, an auxiliary distance df that counts the number of failure actions in each
trace, a boolean flag bo indicating if synchronization ran to completion, and the precise

15

ε � ε = 〈0, 0〉; 〈0, 0〉, false, 〈0, 0〉
search/nil

T1 	 T2 = d; 〈0, 0〉, , do

T ′1 � T ′2 = d′; d′f , b
′
o, d
′
o

Mvf vx⇓v1

E1(`) (T1)·T ′1 � Mvf vx⇓v2

E2(`) (T2)·T ′2 = 〈1, 1〉+ d + d′; d′f , b
′
o, 〈4, 4〉+ do + d′o

search/synch

T1·F⇓v1

E1(`1)·T
′
1 	 T2·F⇓v2

E2(`2)·T
′
2 = d; df + 〈2, 2〉, bo, do

Mvf vx⇓v1

E1(`1) (T1)·T ′1 � Mvf vx⇓v2

E2(`2) (T2)·T ′2 = 〈1, 1〉+ d; df , bo, 〈2, 2〉+ do

search/synch’

T1·F⇓vE(`)·T
′
1 � T2 = d; df + 〈2, 0〉, bo, do

Mvf vx⇓v
E(`) (T1)·T ′1 � T2 = 〈1, 0〉+ d; df , bo, 〈2, 0〉+ do

search/memo’/L

T1 � T2·F⇓vE(`)·T
′
2 = d; df + 〈0, 2〉, bo, do

T1 � Mvf vx⇓v
E(`) (T2)·T ′2 = 〈0, 1〉+ d; df , bo, 〈0, 2〉+ do

search/memo’/R

T1 � T2 = d; df , bo, do

F⇓vE(`)·T1 � T2 = d; df + 〈1, 0〉, bo, 〈2, 0〉+ do

search/fail/L

T1 � T2 = d; df , bo, do

T1 � F⇓vE(`)·T2 = d; df + 〈0, 1〉, bo, 〈0, 2〉+ do

search/fail/R

T1 � T2 = d; df , bo, do

As·T1 � T2 = 〈1, 0〉+ d; df , bo, 〈1, 0〉+ do
search/store/L

T1 � T2 = d; df , bo, do

T1 � As·T2 = 〈0, 1〉+ d; df , bo, 〈0, 1〉+ do
search/store/R

ε	 ε = 〈0, 0〉; 〈0, 0〉, true, 〈0, 0〉
synch/nil

T1 	 T2 = d; df , bo, do

As·T1 	As·T2 = d; df , bo, do
synch/store

T1 	 T2 = d; 〈0, 0〉, bo, do

T ′1 	 T ′2 = d′; d′f , b
′
o, d
′
o

Mvf vx⇓v
E(`) (T1)·T ′1 	 Mvf vx⇓v

E(`) (T2)·T ′2 = d + d′; d′f , b
′
o, do + (if bo then 〈0, 0〉 else 〈2, 2〉) + d′o

synch/memo

T1 � T2 = d; df , bo, do

T1 	 T2 = d; df , bo, do
synch/search

Figure 6: Src (simple and precise) search distance T1 � T2 = d; df , bo, do (top) and synchro-
nization distance T1 	 T2 = d; df , bo, do (bottom).

16

distance do. The traces T1, T2 and the auxiliary distance df can be read as inputs to the
distance judgements, while the simple distance d, flag bo, and precise distance do are outputs.

Note that Src traces initially do not contain failure actions, and the number of fail-
ure actions introduced by trace distance is bounded by the original distance (cf. rules
search/memo’ and search/synch/flat). Therefore the following theorem shows that the
original Src distance bounds the precise Src distance by a constant factor. The precise
Src distance will be related to Tgt distance, thus showing that the original Src distance is
preserved in Tgt.

Lemma 9
If T1 	 T2 = 〈0, 0〉; 〈0, 0〉, bo, ,
then T1 	 T2 = 〈0, 0〉; 〈0, 0〉, true, .

Proof: By induction on the distance derivation. �

Theorem 10 (Src simple/precise soundness)
1. Assume T1 � T2 = d; df , bo, do.

If d = 〈0, 0〉,
then df = do,
else 6 · d + df ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 and do ≥ d.

2. Assume T1 	 T2 = d; df , bo, do,
If d = 〈0, 0〉,
then df = do,
else 6 · d + df ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 and do ≥ d.

Proof: By simultaneous induction on the distance derivation of each statement.
We show the cases for search/synch, search/synch’, search/memo’/L, and synch/memo.

The remaining cases follow by straightforward induction and arithmetic.

Case search/synch.

Subcase d, d′ = 〈0, 0〉.

do = 〈0, 0〉 i.h.(2) on D1

d′o = d′f i.h.(1) on D2

6 · (〈1, 1〉+ d + d′) + d′f ≥ (〈4, 4〉+ do + d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d = 〈0, 0〉 6= d′.

do = 〈0, 0〉 i.h.(2) on D1

6 · d′ + d′f ≥ d′o + if b′o then 〈0, 0〉 else 〈2, 2〉 i.h.(1) on D2

6 · (〈1, 1〉+ d + d′) + d′f = 〈6, 6〉+ (6 · d′ + d′f)
≥ 〈4, 4〉+ d′o + if b′o then 〈0, 0〉 else 〈2, 2〉

17

= (〈4, 4〉+ do + d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d 6= 〈0, 0〉 = d′.

6 · d + 〈0, 0〉 ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D1

d′o = d′f i.h.(1) on D2

6 · (〈1, 1〉+ d + d′) + d′f = 〈6, 6〉+ (6 · d) + d′f
≥ 〈4, 4〉+ (do + if bo then 〈0, 0〉 else 〈2, 2〉) + d′f
= (〈4, 4〉+ do + d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d, d′ 6= 〈0, 0〉.

6 · d + 〈0, 0〉 ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D1

6 · d′ + d′f ≥ d′o + if b′o then 〈0, 0〉 else 〈2, 2〉 i.h.(1) on D2

6 · (〈1, 1〉+ d + d′) + d′f = 〈6, 6〉+ (6 · d) + (6 · d′ + d′f)
≥ 〈4, 4〉+ (do + if bo then 〈0, 0〉 else 〈2, 2〉) + (d′o + if b′o then 〈0, 0〉 else 〈2, 2〉)
≥ (〈4, 4〉+ do + d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

All subcases.

do ≥ d i.h.(2) on D1

d′o ≥ d′ i.h.(1) on D2

〈4, 4〉+ do + d′o ≥ 〈1, 1〉+ d + d′ arithmetic

Case search/synch’.

Subcase d = 〈0, 0〉.

df + 〈2, 2〉 = do i.h.(2) on D1

6 · 〈1, 1〉+ d + df = 〈4, 4〉+ (df + 〈2, 2〉))
≥ (〈2, 2〉+ do) + if bo then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d 6= 〈0, 0〉.

6 · d + (df + 〈2, 2〉) ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D1

6 · (〈1, 1〉+ d) + df = 〈4, 4〉+ (6 · d + (df + 〈2, 2〉))
≥ (〈2, 2〉+ do) + if bo then 〈0, 0〉 else 〈2, 2〉 arithmetic

18

All subcases.

do ≥ d i.h.
〈2, 2〉+ do ≥ 〈1, 1〉+ d arithmetic

Case search/memo’/L (search/memo’/R is symmetric).

Subcase d = 〈0, 0〉.

df + 〈0, 2〉 = do i.h.(2) on D1

6 · 〈1, 0〉+ d + df = 〈4, 0〉+ (df + 〈0, 2〉)
≥ (〈2, 0〉+ do) + if bo then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d 6= 〈0, 0〉.

6 · d + (df + 〈2, 0〉) ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 i.h.
6 · (〈1, 0〉+ d) + df = 〈4, 0〉+ (6 · d + df + 〈2, 0〉)

≥ (〈2, 0〉+ do) + if bo then 〈0, 0〉 else 〈2, 2〉 arithmetic

All subcases.

do ≥ d i.h.
〈2, 0〉+ do ≥ 〈1, 0〉+ d arithmetic

Case synch/memo.

Subcase d, d′ = 〈0, 0〉.

〈0, 0〉 = do i.h.(2) on D1

d′f = d′o i.h.(2) on D2

bo = true wlog by Lemma 9 on D1

b′o = true wlog by Lemma 9 on D2

d′f = (do + (if bo then 〈0, 0〉 else 〈2, 2〉) + d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d = 〈0, 0〉 6= d′.

〈0, 0〉 = do i.h.(2) on D1

6 · d′ + d′f ≥ d′o + if b′o then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D2

bo = true wlog by Lemma 9 on D1

6 · (d + d′) + d′f = 6 · d′ + d′f
≥ d′o + if b′o then 〈0, 0〉 else 〈2, 2〉

≥ (do + if bo then 〈0, 0〉 else 〈2, 2〉+ d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

19

Subcase d 6= 〈0, 0〉 = d′.

6 · d + 〈0, 0〉 ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D1

d′f = d′o i.h.(2) on D2

b′o = true wlog by Lemma 9 on D2

6 · (d + d′) + d′f ≥ (do + if bo then 〈0, 0〉 else 〈2, 2〉) + d′f
≥ (do + if bo then 〈0, 0〉 else 〈2, 2〉+ d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

Subcase d, d′ 6= 〈0, 0〉.

6 · d + 〈0, 0〉 ≥ do + if bo then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D1

6 · d′ + d′f ≥ d′o + if b′o then 〈0, 0〉 else 〈2, 2〉 i.h.(2) on D2

6 · (d + d′) + d′f ≥ (do + if bo then 〈0, 0〉 else 〈2, 2〉) + (d′o + if b′o then 〈0, 0〉 else 〈2, 2〉)
≥ (do + if bo then 〈0, 0〉 else 〈2, 2〉+ d′o) + if b′o then 〈0, 0〉 else 〈2, 2〉 arithmetic

All subcases.

do ≥ d i.h.
d′o ≥ d′ i.h.
do + if bo then 〈0, 0〉 else 〈2, 2〉+ d′o ≥ d + d′ arithmetic

�

Evaluation Contexts. The evaluation contexts E in Src evaluation and traces are neces-
sary for relating Src and Tgt traces in Section 6, but can be ignored when reasoning about Src
evaluation and distance (in the deductive systems with and without failure). An evaluation
context is built up throughout evaluation (Figure 3) to capture the shape of the surrounding
evaluation derivation, up to the nearest memoizing function application:

E ::= 2 | E ex | vf E

The language restriction on the occurrence of expressions avoids explicit forms for case-
analysis or reference manipulation. The evaluation of a memoizing function application
extends the context for evaluating the function and argument expressions, but resets the
context for evaluating the redex; passive β-reduction (e.g., case-analysis) passes the context
unchanged. The accumulated context is used to label the actions with the current context
and is used by the ACPS trace translation to reify the continuation.

Intuitively, contexts help identify if computation after a memoizing function application
can be reused. The search/synch rule ignores the contexts of each trace, the search/memo
rules pass the context and result to the failure action. The synch/store and synch/memo

20

rules formally require the contexts to be identical. Since synchronization begins at memoizing

actions M
vf vx⇓v1

E1 (T1) and M
vf vx⇓v2

E2 (T2) (cf., search/synch), the bodies T1 and T2 result from
the evaluation of the same expression in the same reset context (cf., application evaluation)
but under (possibly) different stores. Synchronization distance inductively preserves the
property that the two traces being compared result from the same expression in the same
context. In particular, the evaluation contexts and results match in the synch/memo rule,
so the property holds for the tails justifying why they can be synchronized independently of
the bodies. Therefore, contexts in synchronization mode are necessarily equal, and can be
ignored when reasoning about Src distance.

T0 	 T0 = 0 Pb::`c↑`b ·Pa::`b↑`a � Pa::`b↑`a = 〈2, 1〉
M `3⇓`c (T0)·Pb::`c↑`b ·Pa::`b↑`a � M `3⇓`c (T0)·Pa::`c↑`a = 〈3, 2〉

G`2→2::`3 ·A2⇓b·M `3⇓`c (T0)·Pb::`c↑`b ·Pa::`b↑`a � M `3⇓`c (T0)·Pa::`c↑`a = 〈5, 2〉
M `2⇓`b (G`2→2::`3 ·A2⇓b·M `3⇓`c (T0)·Pb::`c↑`b)·Pa::`b↑`a � M `3⇓`c (T0)·Pa::`c↑`a = 〈7, 3〉

G`1→1::`2 ·A1⇓a·M `2⇓`b (G`2→2::`3 ·A2⇓b·M `3⇓`c (T0)·Pb::`c↑`b)·Pa::`b↑`a 	 G`1→1::`3 ·A1⇓a·M `3⇓`c (T0)·Pa::`c↑`a = 〈8, 4〉
M `1⇓`a (G`1→1::`2 ·A1⇓a·M `2⇓`b (G`2→2::`3 ·A2⇓b·M `3⇓`c (T0)·Pb::`c↑`b)·Pa::`b↑`a) � M `1⇓`a (G`1→1::`3 ·A1⇓a·M `3⇓`c (T0)·Pa::`c↑`a) = 〈9, 5〉

Figure 7: Trace distance between mapA [1,2,3] and mapA [1,3].

4 Examples

We consider several examples to show how trace distance can be used to analyze the sensitiv-
ity of programs to small changes in their input. We say that a program is O(f(n))-sensitive
or O(f(n))-stable for an input change if the distance between the traces of that program is
O(f(n)) for inputs related by that change. In our analysis, we consider two kinds of changes:
insertions/deletions that relate lists that differ by the existence of an element (e.g., [1,3]
and [1,2,3]) and replacements that relate inputs that differ by the value of one element
(e.g., [1,2,3] and [1,7,3]). We start with the map example that we considered informally
(Section 2) and analyze its sensitivity to an insertion into/deletion from the input by com-
paring its traces. When convenient, we visualize traces as derivations and analyze their
relative distance under a replacement.

In our analysis, we consider two kinds of bounds: upper bounds and lower bounds. Our
upper bounds state that the distance between the traces of a program with inputs related
by some change can be asymptotically bounded by some function of the input size under the
assumption that locations allocated in the computation (or mentioned in the trace) can be
chosen to match nicely. Without the ability to match locations, it is not possible to prove
interesting upper bounds, because two runs of the program can differ by as much as the
size of the traces if their locations are chosen from disjoint sets. As we discuss in Section 7,
an implementation can often match locations, sometimes with programmer guidance. Our
lower bounds state that the distance between traces of a program with inputs related by
some change cannot be asymptotically smaller than a function of input size regardless of

21

how we choose locations. Such lower bounds suggest but do not prove a lower bound on the
running time for change propagation (Section 7).

Our analyses fit into one of the following patterns. Sometimes, we start with two con-
crete inputs and show a bound on the distance between traces with these inputs. We then
generalize this bound to arbitrary inputs using the identity and substitution theorems (The-
orems 6 and 8). Other times, using the identity and the substitution theorems, we write

fun reduce f id l =

let fun red r l =

case !l of

nil => ref r

| h::t => red (f(h,r)) t

in red id l end

fun reducePair f id l =

let fun comp l =

case !l of

nil => ref nil

| a::t => case !t of

nil => ref (a::ref nil)

| b::u => ref (f(a,b)::(comp u))

fun rec l =

if !(lenLT (l,2)) then case !l of

nil => id

| h:: => h

else rec (comp l)

in rec l end

fun msort l =

if !(lenLT (l,2)) then l

else let (a,b) = partition l

sa = msort a

sb = msort b

in merge (sa,sb) end

fun filter f l =

case !l of

nil => ref nil

| h::t => if (f h) then h::(filter f t)

else filter f t

Figure 8: Code for the examples.

22

a recursive formula for the distance between the traces of the program with inputs related
by some change, and solve this formula to establish the bound. When analyzing our exam-
ples and using the identity and the substitution theorems, we ignore contexts, because, as
noted in Section 3, they are not needed for analysis. We use the distance and the composi-
tion theorems in the informal style of traditional algorithmic analysis, because we have no
meta-logical framework for reasoning about asymptotic properties of self-adjusting programs
(Section 7).

Figure 8 shows the code for list-reduction and merge-sort (see Section 2 for the code of
map). The list-reduce and merge-sort implementations use several functions, whose code we
omit for brevity. The lenLT(l,i) function returns (in a reference) true iff the length of the
list l is less than the integer i. The partition function evenly splits a list into two and
merge combines two sorted lists. All of these functions are O(1)-sensitive to replacements
on average (for merge, we need to average over all permutations of the input to obtain this
bound). To focus on the main ideas, we omit the analysis of these utility functions here,
which are similar to that of the map function discussed below.

4.1 Map

Recall the mapA function from Section 2. We analyze the sensitivity of mapA to an inser-
tion/deletion more precisely by using trace distance. Figure 7 shows the derivation of the
trace distance for mapA with inputs L = [1,2,3] and L’ = [1,3]. We consider deriva-
tions where the input locations are `1, `2, `3, `4 and the output locations are `a, `b, `c, `n.
In the derivations we use the notation M `⇓`′(T) as a shorthand for the memoization action
MmapA `⇓`′(T). Similarly we write Ax⇓y as a shorthand for the memoization action Mf x⇓y() of
the function f mapping integer x to letter y, whose subtrace (body) we leave unspecified
and assume to be of length constant (it contributes one to the distance). We define the

tail trace T0 common to both executions as G`3→3::`4·A3⇓c·M `4⇓`n(G`4→nil·Pnil↑`n)·Pc::`d↑`c .
When deriving the distance, we combine consecutive applications of the same rule and use
the fact that the synchronization distance between a trace and itself is 〈0, 0〉.

Having derived a constant bound for this example, we can generalize the result to obtain
an asymptotic bound for a change in one element in the middle of an arbitrary list. Consider
the traces T1 and T2 for mapA(L1) and mapA(L2) where L1 = [x] and L2 = nil. The
distance between them is trivially constant for any x. We will now use the substitution
theorem to generalize this result to arbitrary lists by showing how to extend the inputs lists
with identical prefixes and suffixes without affecting the constant bound.

We consider extending the input with the same suffix. We start by replacing each of
the sub-traces of the form M ⇓ () for the rightmost call to mapA in T1 and T2 with a hole
to obtain the trace contexts T1 and T2. Let L3 be any list and let T3 be the trace for
mapA(L3). Note that the traces T1[T3] and T2[T3] are the traces for mapA(L1@L3) and
mapA(L2@L3). By the identity theorem, the distance between T3 and itself is 〈0, 0〉. Since T3

starts with memoization action of the form M `i⇓`α(. . .), we can apply the substitution theorem,
so the distance between T1[T3] and T2[T3] is equal to the distance between T1[M

`i⇓`α(2)]

23

and T3[M
`i⇓`α(2)], which is constant. Thus, we are able to append any suffix to L1 and L2

without increasing their distance.
Symmetrically, we can extend these lists with the same prefix. To see this, let L0 be a list

and consider its trace T0 with mapA. Now define the trace context T0 as the context obtained
by replacing the rightmost sub-trace in T0 of the form M ⇓ () with a hole. Now, substitute
into this trace the traces T1[T3] and T2[T3] (i.e., T0[T1[T3]] and T0[T2[T3]]). By the identity
and the substitution theorems, the distance is equal to distance between of T1[T3] and T2[T3],
which is constant.

Thus, we can generalize concrete examples to other lists by prepending and append-
ing arbitrary lists, essentially obtaining any two lists related by an insertion/deletion. We
conclude that mapA is constant sensitive for an insertion into/deletion from its input.

4.2 Reduce

The list-reduce function reduces a list to a value by applying a given binary operator with a
specified identity element to the elements of the list. The standard accumulator-based im-
plementation, reduce: (’a * ’a -> ’a) -> ’a -> ’a list -> ’a ref shown in Fig-
ure 8, is not amenable to self-adjusting computation, because the distance can be as large
as linear. To see this note that all intermediate updates of the accumulator depend on the
previously-seen elements. Thus replacing the first element will prevent all derivation steps
from matching, causing the distance to be linear in the size of the input (in the worst case).

Figure 8 shows another implementation for list-reduce, called reducePair. This im-
plementation applies the function comp repeatedly until the list is reduced to contain at
most one element. Function comp pairs the elements of the input list from left to right and
applies f to each pair reducing the size of the input list by half. Thus, comp is called a
logarithmic number of times. Using the shorthand chk(`) ⇓ v for derivations of the form
lenLT(`) ⇓ b Gb→v, the derivations for reducePair can be represented with the following
derivation context.

chk(`) ⇓ F

comp(`)⇓`1h rec(`1)⇓r1h

rec(`) ⇓ r1

reducePair (f, id, `) ⇓ r1

To analyze the sensitivity of reducePair for a replacement operation, consider evaluating
reducePair with two lists related by a replacement. The recursive case for the derivations
both fit the derivation context given above. Note that the derivations for comp are related
by a replacement. Since a replacement in the input causes the output of comp to change
by a replacement as well, the recursive calls to rec are related by a replacement as well.
Furthermore, since the derivation for comp and rec both start with memoized functions, we
can apply the substitution theorem assuming that the comp returns its output in the same
location. More precisely, we can write the sensitivity of rec to a replacement for an input
size of n as

∆rec(n) =

{
∆rec(n/2) + ∆comp(n/2) if n > 1

1 otherwise

24

Since comp uses one element of the input to produce one element of the output, it is relatively
easy to show that is is O(1) sensitive to replacement when f is O(1) (i.e., ∆comp(m) ∈ O(1)
for any m). By straightforward arithmetic, we conclude that ∆rec(n) ∈ O(log n). Since
reducePair simply calls rec this implies that reducePair has logarithmic sensitivity to a
replacement.

4.3 Merge sort

We analyze the sensitivity of the merge-sort algorithm to replacement operations. The
recursive case for the derivations of msort with inputs that differ in one element, fit the
following derivation context (function names are abbreviated).

len(`)⇓bh
Gb→F

part(`)⇓(`a,`b)h ms(`a)⇓`ch ms(`b)⇓`dh mg(`c,`d)⇓`′h

ms (`) ⇓ `′

The derivation starts with a check for the length of the list being greater than one. In the
recursive case, the list has more than one element so the lenLT function returns false.
Thus, we partition the input lists into two lists `a and `b of half the length, sort them to
obtain `c and `d, and merge the sorted lists. Since both evaluations can be derived from
this context, the distance between the derivations is the distance between the derivations
substituted for the holes in the context.

Consider the derivations substituted for each hole. Since lenLT and part are called with
the input, the derivations for lenLT(`1) (and part(`1)) are related by replacement. As a
result, one of `a or `b are also related by replacement. Thus only one of the derivations ms(`a)
or ms(`b) are related by replacement and the other pair is identical. Consequently mg(`c, `d)
derivations are related by replacement. Since all contexts belong to memoized function calls,
we can apply the substitution theorem by assuming that all related and identical functions
calls in both evaluations return their results in the same locations. Thus, we can write the
sensitivity of msort as ∆msort(n) = 2∆msort(n/2) + ∆partition(n) + ∆merge(n). It

is easy to show that partition and lenLT functions are O(1) sensitive to replacements.
Similarly, we can show that merge is O(1) sensitive to replacements on average, if we take
the average over all permutations of the input list. Thus, we obtain

∆msort(n) =

{
∆msort(n/2) + 1 if n > 1
1 otherwise

This recurrence trivially is bounded by 1 + 4c log n, so we conclude that msort is O(log n)-
sensitive to replacement operations.

4.4 Filter

As an example of another program that is not naturally stable we consider a standard list
filter function filter, whose code is shown in Figure 8, for which we prove that there are
inputs whose traces are separated by a linear distance in the size of the inputs regardless

25

of the choice of locations. In other words, we will prove a lower bound for the sensitivity
of filter. The reason for which filter is not stable is similar to that of the conventional
implementation of reduce (Section 4.2), but more subtle because it is primarily determined
by the choice of locations rather than the computation being performed.

To see why filter can be highly sensitive, it suffices to consider a specialization, which
we call filter0, that only keeps the nonzero elements. For example, with input lists L
= [0,0,0] and L′ = [0,0,1], filter0 returns nil and [1], respectively. Since we are
interested in proving a lower bound only, we can summarize traces by including function
calls and put operations only—the omitted parts of the trace will affect the bound by a
constant factor assuming that the filtering functions takes constant time. In particular,
using the shorthand M `⇓`′(T) for the memoization action Mfilter0 `⇓`′(T), the traces for filter
with L and L′ are respectively:

M `1⇓`n(M `2⇓`n(M `3⇓`n(M `4⇓`n(Pnil↑`n)))), and

M `1⇓`a(M `2⇓`a(M `3⇓`a(M `4⇓`n(Pnil↑`n)·P1::`n↑`a))).

Note that the distance between these two traces is greater than 3—the length of the input—
because in the second trace three memoization actions return the location `a holding [1],
whereas in the first trace `n is returned. Since these locations are different, the memoization
actions do not match and contribute to the distance. This example does not lead to a lower
bound, however, because we can give two traces for the considered inputs for which the
distance is one, e.g.,:

M `1⇓`n(M `2⇓`n(M `3⇓`n(M `4⇓`n(Pnil↑`n)))), and

M `1⇓`n(M `2⇓`n(M `3⇓`n(M `4⇓`′n(Pnil↑`
′
n)·P1::`′n↑`n))).

The idea is to choose the locations in such a way that the traces overlap maximally. It
is not difficult to generalize this example for arbitrary lists of the form [0,. . .,0,0] and
[0,. . .,0,1].

We obtain the worst-case inputs by modifying this example to prevent location choices
from reducing the distance arbitrarily. Consider parameterized lists of the form L1(n) =
[(0)n,0,(0)n] and L2(n) = [(0)n,1,(0)n], where 0n denotes n repeated 0’s. We will
show that the distance between traces for any two such inputs is at least n + 1 and thus
linear in the size of the input, 2n+1. For example, the traces for L1(1)= [0,0,0] and L2(1)
= [0,1,0] have the form:

M `1⇓`n(M `2⇓`n(M `3⇓`n(M `4⇓`n(Pnil↑`n)))), and

M `1⇓`a(M `2⇓`a(M `3⇓`n(M `4⇓`n(Pnil↑`n))·P1::`n↑`a)).

These traces have distance greater than 2. Regardless of how we change the locations
this distance will not decrease because the return locations of n memoization actions before
and after the occurrence of 1 will have to differ. Thus, regardless of which location the other

26

trace chooses to store the empty list, at least half the calls will have a differing location.
We can generalize this example with n = 3 to arbitrary lists by using our identity and
substitution theorems as we did for the map example. Since the approach is essentially the
same as with map, we leave it out here. Thus, we conclude that filter is Ω(n)-sensitive to
a replacement.

This example implies that a self-adjusting computation can do poorly with this imple-
mentation of filter. As with reduce, however, we can give a stable implementation of
filter by using a compress function similar to comp of reducePair that applies the filter
function to half of the remaining unfiltered elements. We can show that this implementation
of filter is O(log n) sensitive under suitable choice of locations.

5 The Target Language (Tgt)

The Tgt language is a simply-typed, call-by-value λ-calculus with natural numbers and re-
cursive functions, extended with modifiable references and a memoization primitive. The
language is self-adjusting: its semantics includes evaluation and change-propagation judge-
ments that can be used to reduce expressions to values and adapt computations to input
changes. Tgt extends the read-only modifiables of (Ley-Wild et al. 2008) with imperative
update, a cost semantics for evaluation and change propagation, and a notion of trace dis-
tance.

The syntax of Tgt is given below, which defines types τ , expressions e, values v, and
adaptive commands κ, using metavariables f and x for identifiers and ` for locations.

τ ::= nat | τx → τ | τ mod | res
e ::= v | caseN vn ez (x.es) | ef vx

v ::= x | κ | zero | succ v | fun f.x.e | `
κ ::= putk v vk | getk v` vk | setk v` v vk | memo e | halt v

λ x.e
def= fun f.x.e with f /∈ FV(e)

Tgt enforces a continuation-passing style (cps) discipline to help identify opportunities for
reuse and computations for re-execution. Adaptive store commands have an explicit con-
tinuation vk identifying the computation that follows the command. The cps discipline
also restricts a function application ef vx to have a value argument. Modifiables τ mod
are mutable references with adaptive store commands putk, getk, and setk for allocation,
dereference, and update. The type res is an opaque answer type, while halt is a continuation
that injects a final value into the res type.

5.1 Static, Dynamic, and Cost Semantics

Figure 9 gives a fragment of the static semantics of Tgt. The typing judgement Σ; Γ ` e : τ
ascribes the type τ to the expression e in the store and variable typing contexts Σ and Γ;
the omitted rules are standard.

Figure 10 gives the dynamic semantics. Evaluation uses and produces a trace T as a
sequence of adaptive (store and memo) actions A, ending in a halt action:

27

Σ; Γ ` v : τ
Σ; Γ ` vk : τ mod → res

Σ; Γ ` putk v vk : res

Σ; Γ ` vl : τ mod
Σ; Γ ` vk : τ → res

Σ; Γ ` getk vl vk : res

Σ; Γ ` vl : τ mod
Σ; Γ ` v : τ
Σ; Γ ` vk : nat → res

Σ; Γ ` setk vl v vk : res

Σ; Γ ` e : res
Σ; Γ ` memo e : res

Σ; Γ ` v : τ

Σ; Γ ` halt v : res

Figure 9: Tgt typing Σ; Γ ` e : τ (fragment).

v ⇓ v

ez ⇓ v

caseNzero ez (x .es) ⇓ v

{vn / x} es ⇓ v

caseN (succ vn) ez (x .es) ⇓ v

ef ⇓ fun f .x .e
{vx / x} {fun f .x .e / f } e ⇓ v

ef vx ⇓ v

e ⇓ κ

Ṫ ;σ;κ ⇓K T ′;σ′; v′; d′

Ṫ ;σ; e ⇓E T ′;σ′; v′; d′
|Ṫ | = c

Ṫ ;σ;halt v ⇓K Hv;σ; v; 〈c, 1〉

` /∈ dom(σ) σl = σ] {` 7→ v}
Ṫ ;σl; vk ` ⇓E T ′;σ′; v′; d′

Ṫ ;σ;putk v vk ⇓K Pv↑`
vk ·T ′;σ′; v′; 〈0, 1〉+ d′

` ∈ dom(σ) σ(`) = v

Ṫ ;σ; vk v ⇓E T ′;σ′; v′; d′

Ṫ ;σ;getk ` vk ⇓K G`→v
vk

·T ′;σ′; v′; 〈0, 1〉+ d′

` ∈ dom(σ) σl = σ[` 7→ v]
Ṫ ;σl; vk zero ⇓E T ′;σ′; v′; d′

Ṫ ;σ; setk ` v vk ⇓K S`←v
vk

·T ′;σ′; v′; 〈0, 1〉+ d′

Ṫ ;σ; e ⇓E T ′;σ′; v′; d′

Ṫ ;σ;memo e ⇓K Me·T ′;σ′; v′; 〈0, 1〉+ d′
memo/miss

T ; e m
; Te; c Te;σ y T ′;σ′; v′; d′

T ;σ;memo e ⇓K Me·T ′;σ′; v′; 〈c, 1〉+ d′
memo/hit

Figure 10: Tgt reduction e ⇓ v and evaluation Ṫ ; σ; κ ⇓K T ′; σ′; v′; d′ and Ṫ ; σ; κ ⇓E

T ′; σ′; v′; d′.

As ::= Pv↑`
vk | G`→v

vk
| S`←v

vk

A ::= As | Me

T ::= Hv | A·T
Ṫ ::= ◦ | T

28

` /∈ dom(σ) σl = σ] {` 7→ v}
T ;σl y T ′;σ′; v′; d′

Pv↑`
vk ·T ;σ y Pv↑`

vk ·T ′;σ′; v′; d′
put/reuse

` ∈ dom(σ) σ(`) = v
T ;σ y T ′;σ′; v′; d′

G`→v
vk

·T ;σ y G`→v
vk

·T ′;σ′; v′; d′
get/reuse

` ∈ dom(σ) σl = σ[` 7→ v]
T ;σl y T ′;σ′; v′; d′

S`←v
vk

·T ;σ y S`←v
vk

·T ′;σ′; v′; d′
set/reuse

T ;σ y T ′;σ′; v′; d′

Me·T ;σ y Me·T ′;σ′; v′; d′
memo/reuse

Hv;σ y Hv;σ; v; 〈0, 0〉

dT e = κ T ;σ;κ ⇓K T ′;σ′; v′; d′

T ;σ y T ′;σ′; v′; d′
change

Figure 11: Tgt change propagation Ṫ ; σ y σ′; v′; T ; d′.

The large-step evaluation relation Ṫ ; σ; e ⇓E T ′; σ′; v′; d′ (resp. Ṫ ; σ; k ⇓K T ′; σ′; v′; d′)
reduces the expression e (resp. the adaptive command κ) under the store σ, yielding the
value v′ and the updated store σ′; evaluation also takes an (optional) reuse trace Ṫ from
a previous run, and produces an execution trace T ′ for the current run and a pair of costs
d′ = 〈c, c′〉 for work c discarded from the reuse trace and new work c′ performed for the
current run. The auxiliary evaluation relation e ⇓ v′ reduces an expression e to a value v′,
independent of the store.

The halt v command yields a computation’s final value, with a cost of 1 for the current
run and a cost c = |Ṫ | for work discarded from the reuse trace Ṫ , where the cost of an
optional trace is:

| ◦ | = 0 |Hv| = 1 |A·T | = 1 + |T |

An adaptive store command uses the store (putk, getk, and setk rules) and delivers the
result to the continuation; the trace is extended with the corresponding store action labeled
by the location, value, and continuation involved, and incurs a cost of 1 for the current run.
A memoized expression memo e in Tgt has no special behavior when evaluated from scratch
(memo/miss rule): it evaluates the body e and extends the trace with a memo action Me,
incurring a cost of 1 for the current run. The memo/hit rule exploits the reuse trace and
switches to change propagation. The memoization judgement T ; e

m
; Te; c finds a trace Te

that corresponds to a previous run of e (under a (possibly) different store), incurring a cost
c for discarding the prefix of T up to Te:

Me·T ; e m
; T ; 1

T ; e m
; Te; c

A·T ; e m
; Te; 1 + c

The change propagation relation T ; σ y T ′; σ′; v′; d′ (given in Figure 11) replays the
execution trace T under the store σ, yielding the value v′ and the updated store σ′, with
an updated execution trace T ′ and a pair of costs d′ = 〈c, c′〉 for work c discarded from T
and new work c′ performed for T ′. A halt action can be replayed without cost to obtain the

29

(unchanged) final value. An adaptive action can be replayed without cost if the action is
consistent with the current store (reuse rules), the tail of the trace can be recursively change
propagated and then extended with the same action. However, if a store action is inconsistent
with the store (e.g., a specific location can’t be allocated), then change propagation must
switch back to evaluation. Since adaptive actions capture their continuation, a trace T can
be reified back into an adaptive command dT e that represents the rest of the computation:

dPv↑`
vk ·T e = putk v vk dMe·T e = memo e

dG`→v
vk

·T e = getk ` vk dHve = halt v
dS`←v

vk
·T e = setk ` v vk

Thus, change propagation can reify and re-evaluate an inconsistent trace T (change rule),
while keeping the trace T for possible reuse later. Note that the reified putk (resp. getk)
forgets the (stale) location (resp. value). The change rule does not, however, require the
action to be inconsistent; this nondeterminism intentionally avoids committing to particular
allocation and memoization policies.

5.2 Consistency of Change Propagation

Suppose we have a Tgt program e such that Σ; · ` e : res and an initial store σ1 such that
` σ1 : Σ] Σ1. We can evaluate e under the store σ1 and no reuse trace, yielding the initial
result v′1 and a trace T ′1: ◦; σ1; e ⇓E T ′1; σ

′
1; v
′
1; d
′
1. After this initial evaluation, we can consider

another store σ2 such that ` σ2 : Σ]Σ2 and update the output of the evaluation with respect
to this store by applying change propagation to T ′1 under the store σ2: T ′1; σ2 y T ′2; σ

′
2; v
′
2; d
′
2.

The consistency of change propagation asserts that the result and trace obtained by change
propagation are identical to those obtained by evaluation (recall the bottom left square of
Figure 1). We prove this consistency property for Tgt by giving a simple structural proof.

Theorem 11 (Consistency of Change propagation)
If ◦; σ1; e ⇓E T ′1; σ

′
1; v
′
1; and T ′1; σ2 y T ′2; σ

′
2; v
′
2; ,

then ◦; σ2; e ⇓E T ′2; σ
′
2; v
′
2; .

If ◦; ; ⇓E T ′1; ; ; and T ′1; σ2; e ⇓E T ′2; σ
′
2; v
′
2; ,

then ◦; σ2; e ⇓E T ′2; σ
′
2; v
′
2; .

Proof: The theorem must be strengthened with analogous statements for the ⇓K relation.
By simultaneous induction on the second derivation of each statement. Proved in Twelf. �

Recent work gave a similar consistency theorem, but with a different language (Acar
et al. 2008a). Compared to that work, our proof is dramatically simpler. We achieve this
by casting change propagation as a full replay mechanism that can re-allocate locations. In
previous work, it was not possible to express change propagation as a full replay mechanism—
change propagation could not re-allocate locations allocated in a previous run. This required
arguing that the results obtained by change propagation and evaluation are isomorphic by
using step-indexed logical relations.

30

Hv1 � Hv2 = 〈1, 1〉
T1 	 T2 = d

Me·T1 � Me·T2 = 〈1, 1〉+ d

T1 � T2 = d

A·T1 � T2 = 〈1, 0〉+ d

T1 � T2 = d

T1 � A·T2 = 〈0, 1〉+ d

Hv 	 Hv = 〈0, 0〉
T1 	 T2 = d

A·T1 	A·T2 = d

T1 � T2 = d

T1 	 T2 = d

Figure 12: Tgt trace search distance T1�T2 = d (top) and synchronization distance T1	T2 =
d (bottom).

5.3 Trace Distance

Reasoning about computation reuse achieved by change propagation is difficult. In this
section, we introduce a notion of trace distance and show that the cost of change propagation
may be bounded by the distance between the input and the result traces. The definition of
distance is similar to the source at a high level. Indeed, in Section 6 we show that they are
asymptotically the same.

As in Src, we define a search distance T1 � T2 = d that accounts for differences between
traces until it finds matching memoization actions, at which point it can use the synchro-
nization distance T1 	 T2 = d that accounts for reuse between traces until they differ, at
which point it must return to the search distance. The distance d = 〈c1, c2〉 quantifies the
cost c1 of work in T1 that isn’t shared with T2 and the cost c2 of work in T2 that isn’t shared
with T1.

The search distance (given in Figure 12) between halt actions is 1 for each action, ir-
respective of the value returned. Two identical memo actions incur a cost of 1 each, but
afford the possibility of switching from search to synchronization mode. Skipping an action
incurs a cost of 1 for the corresponding trace and forces distance to remain in search mode.
Note that these last two rules allow memo actions to remain in search mode; identical memo
actions are never forced to synchronize.

Synchronization distance, as in Src, is only meant to be used on traces generated by the
evaluation of the same expression under (possibly) different stores (though, there exists a
synchronization distance between any two traces). The synchronization distance between
halt actions is 〈0, 0〉, and assumes both actions return the same value. Identical adaptive
actions match without cost and allow distance to continue synchronizing the tail. Synchro-
nization may return to search mode, either nondeterministically or because adaptive actions
don’t match. Just as Src distance, Tgt distance judgements are quasi-symmetric and induce
a ternary relation due to the nondeterminism of memo matching.

In light of the dynamic semantics, trace distance can be given an asymmetrical opera-
tional interpretation: the distance is the amount of work that must be discarded from one
run and executed to produce the other run. (Intuitively, the asymmetry arises from the fact

31

that discarding work, while not free, is cheaper than performing work.) In particular, search
distance has an operational analogue realized by evaluation, while synchronization distance
is realized by change propagation. A distance 〈c1, c2〉 between traces T1 and T2 intuitively
means there is cost c1 for discarding unusable work from the reuse trace T1 and cost c2 for
performing new work for T2, but any common work that can be reused is free. This relation
between distance and the dynamic semantics is formally captured by the following theorem
(recall the bottom right diagram of Figure 1).

Theorem 12 (Dynamic semantics coincides with distance)
If ◦; σ1; e1 ⇓E T ′1; σ

′
1; v
′
1; and ◦; σ2; e2 ⇓E T ′2; σ

′
2; v
′
2; ,

then T ′1 � T ′2 = d iff T ′1; σ2; e2 ⇓E T ′2; σ
′
2; v
′
2; d.

If ◦; σ1; e ⇓E T ′1; σ
′
1; v
′
1; and ◦; σ2; e ⇓E T ′2; σ

′
2; v
′
2; ,

then T ′1 	 T ′2 = d iff T ′1; σ2 y T ′2; σ
′
2; v
′
2; d.

Proof: The theorem must be strengthened with analogous statements for the ⇓K judgement.
By simultaneous induction on the second derivation of each statement. Proved in Twelf. �

6 Translation

Program Translation. The adaptive primitives of Src programs are used to guide an
adaptive continuation-passing style (ACPS) transformation into equivalent Tgt programs
(given in Figure 13). The type translation Jτ sK = τ t preserves the nat type, converts the
function type to take a continuation argument, and converts the reference type to a mod-
ifiable type. The expression and value translations JesK vt

k = et and JvsK = vt (the former
using the Tgt value vt

k as an explicit continuation) are standard cps conversions for natural
numbers, while reference primitives are translated into Tgt adaptive store commands with an
explicit continuation vk. The value translations (except for functions) are straightforward.
The halt expression is not in the image of the translation, but it can be used as an initial
identity continuation id = λ x.haltx for evaluating a cps-converted program. The metavari-
able y is used to distinguish identifiers introduced by the translation. The type translation is
extended pointwise to Src store and variable typing contexts Σ and Γ; the value translation
is extended pointwise to Src stores σ.

The cps discipline in Tgt facilitates identifying the scope of an adaptive store action as the
rest of the computation, so change propagating an inconsistent store action will re-execute
the tail of the trace. Memoizing a function, however, in the presence of (possibly differ-
ent) continuations and store mutation is subtle and crucially relies on two ideas: threading
continuations through the store, and using explicit memo operations before and after the
function body. First, the translation treats the continuation as changeable data by threading
it through the store during the function call (viz. putk in the function body and getk in
the continuation). This effectively shifts the continuation to the store, so the function call
can memo match on its argument even if its continuation differs (provided the same location
is used to store the continuation as in the previous run). After the function body is change

32

JnatK = nat
Jτx → τK = JτxK → (JτK → res) → res

Jτ refK = JτK mod

JvK vk = vk JvK
JcaseN vn ez (x .es)K vk = caseN JvnK (JezK vk) (x . JesK vk)

Jef exK vk = JefK (λ yf . JexK (λ yx.(yf yx) vk))
Jput vK vk = putk JvK vk

Jget vlK vk = getk JvlK vk

Jset vl vK vk = setk JvlK JvK vk

JxK = x
JzeroK = zero

Jsucc vK = succ JvK
J`K = `

Jfun f .x .eK =
fun f .x .λ yk.

putk (λ yr.memo (yk yr))
(λ yl.memo (JeK (λ yr.getk yl (λ yk.yk yr))))

Figure 13: Type translation Jτ sK = τ t (top) and term translations JesK vt
k = et and JvsK = vt

(bottom).

propagated without cost, the (new) continuation will be resumed by reading it from the store
and passing it the memoized result. Second, the translation inserts memo commands at the
function call and return points in an attempt to isolate reuse of the function body separately
from reuse of the rest of the computation. Thus the continuation can memo match if the
result is the same, even if the function body had to re-execute due to an inconsistent store
interaction.

The correctness and efficiency of the translation is captured by the fact that well-typed Src
programs are compiled into (statically and dynamically) equivalent well-typed Tgt programs
with the same asymptotic complexity for initial runs (i.e., Tgt evaluation with an empty reuse
trace). Type preservation is standard and elided for reasons of space. More importantly,
the evaluation and asymptotic cost of from-scratch runs of Src programs is preserved by
compilation (recall the top right diagram of Figure 1).

Theorem 13 (Translation preserves extensional/intensional)
If D1 :: E ; σ0; e0 ⇓ σ1; v1; T ; c0,
and D2 :: ◦; Jσ1K] σk; vk Jv1K ⇓E σ2; v2; Tk; 〈 , c1〉,
then ◦; Jσ0K] σk; Je0K vk ⇓E σ2] σe; v2; T

′; 〈 , c2〉
and c0 + c1 ≤ c2 ≤ 4c0 + c1 whence c2 ∈ Θ(c0 + c1).

Proof: By induction on the first derivation. The cost bounds are elided in the proof, they
can be obtained by inspecting the trace translation. We show the interesting case of app,
the remaining cases are straightforward.

Case D1 is app.

33

D1 :: ; σ0; e1 e2 ⇓ σ′′′0 ; v; ; assumption
v1 := fun f .x .e abbreviation
e′ := {v1 / f } {v2 / x} e abbreviation
D11 :: ; σ0; e1 ⇓ σ′0; v1; ; subderivation
D12 :: ; σ′0; e2 ⇓ σ′′0 ; v2; ; subderivation
D13 :: ; σ′′0 ; e

′ ⇓ σ′′′0 ; v; ; subderivation
D2 :: ◦; σk] Jσ′′′0 K ; vk JvK ⇓E ; σ′; v′; assumption
D` :: ` /∈ dom σ′ ⊇ dom σk] Jσ′′′0 K fresh location, lemma
k′w := λ yr.memo (vk yr) abbreviation
σl := [` 7→ k′w] abbreviation
D′2 :: ◦; (σk] Jσ′′′0 K)] σl; vk JvK ⇓E ; σ′] σl; v

′; frame lemma on D2, D`

k′r := λ yr.getk ` (λ k3.k3 yr) abbreviation
D′′2 :: ◦; (σk] σl)] Jσ′′′0 K ; kr JvK ⇓E ; σ′] σl; v

′; rules getk, memo on D′2
E3 :: ◦; (σk] σl)] Jσ′′0K ; Je′K k ′r ⇓E ; (σ′] σl)] σe; v; i.h. on D13, D′′2
kw := λ yr.memo (k1 yr) abbreviation
kr := λ yr.getk yk (λ k3.k3 yr) abbreviation
E ′3 :: ◦; σk] Jσ′′0K ;putk k ′w (λ yk.memo (Je′K kr)) ⇓K ; σ′] (σl] σe); v

′;
rules putk, memo on E3

k′2 := λ yx.(Jv1K yx) vk abbreviation
E ′′3 :: ◦; σk] Jσ′′0K ; k ′2 Jv2K ⇓E ; σ′] (σl] σe); v

′; rule red on E ′3
E2 :: ◦; σk] Jσ′0K ; Je2K k ′2 ⇓E ; σ′] (σl] σe)] σ2; v

′; i.h. on D12, E ′′3
k2 := λ yx.(yf yx) vk abbreviation
k1 := λ yf . Je2K k2 abbreviation
E ′2 :: ◦; σk] Jσ′0K ; k1 Jv1K ⇓E ; σ′] (σl] σe] σ2); v

′; rule red on E2

E1 :: ◦; σk] Jσ0K ; Je1K k1 ⇓E ; σ′] (σl] σe] σ2] σ1); v
′; i.h. on D11, E ′2

E ′1 :: ◦; σk] Jσ0K ; JeK vk ⇓E ; σ′] (σl] σe] σ2] σ1); v
′; rule red on E1

�

The store σk accounts for locations free in the continuation vk, while the store σe ac-
counts for locations allocated for (the continuations of) memoizing functions. Instantiating
this theorem with the identity continuation vk = id, we have that evaluation of a Src pro-
gram coincides with (from-scratch) Tgt evaluation of its ACPS-translation. Furthermore, the
adaptive work c2 ∈ Θ(c0) in Tgt is proportional to the active work c0 in Src, because the
work of the identity continuation is constant. This means that the translation preserves the
asymptotic complexity of from-scratch runs.

Trace Translation. The Tgt trace of an ACPS-compiled Src program is richer than its Src
counterpart because Tgt traces have explicit continuations and the ACPS translation intro-
duces administrative redices, threads continuations through the store, and inserts memoiza-
tion at function call and return points. The Src dynamic semantics and distance, however,
are sufficiently instrumented to translate Src traces into equivalent Tgt traces. An explicit

34

Src evaluation context E is sufficient to reify the current continuation JEK vk relative to an
initial Tgt continuation vk:

J2K vk = vk

JE exK vk = JEK (λ yf . JexK (λ yx.(yf yx) vk))
Jvf EK vk = JEK (λ yx.(JvfK yx) vk)

Moreover, since active Src actions are instrumented with their local evaluation context, we
can give a trace translation JT sK vt

k T t
k of Src trace T s using the vt

k as an initial continuation
(to extend the local context E of actions) and suffix T t

k. The translation of the empty trace
and store actions is straightforward:

JεK vk Tk = Tkr
Pv↑`
E ·T

z
vk Tk = P

JvK↑`
JEK vk

·(JT K vk Tk)
q
G`→v
E ·T

y
vk Tk = G

`→JvK
JEK vk

·(JT K vk Tk)
q
S`←v
E ·T

y
vk Tk = S

`←JvK
JEK vk

·(JT K vk Tk)

Since a failure action is inserted at a function’s return point, it is translated to the trace
that follows the evaluation of a function body (cf., ACPS function translation):r

F⇓vE(`)·T
′
z

vk Tk = G`→kw
ka

·M((JEK vk) JvK)·(JT ′K vk Tk)
where kw = λ yr.memo ((JEK vk) yr)

ka = λ yk.yk JvK

Note that kw is the memoizing version of the original continuation that was written to the
store before the evaluation of the body and ka is the continuation of the getk command that
fetches the memoizing version of original continuation.

The translation of a memoizing function action must account for writing the memoizing
version of the original continuation to the store before memoizing on the evaluation of the
body: r

M
(fun f .x .e) vx⇓v
E(`) (T)·T ′

z
vk Tk = Pkw↑`

km
·M(Je′K kr)·(JT K kr Tr)

where kw = λ yr.memo ((JEK vk) yr)
km = λ yl.memo (Je′K (λ yr.getk yl (λ yk.yk yr)))
e′ = {fun f .x .e / f } {vx / x} e
kr = λ yr.getk ` (λ yk.yk yr)
Tr =

r
F⇓vE(`)·T

′
z

vk Tk

Note that kr is the continuation that fetches and invokes the memoizing version of the
original continuation; this is the continuation that is passed to the body. The body of the
memoizing function action is translated with respect to kr and Tr, which is the translation
of a failure action. Trace translation is syntax-directed, except for the choice of locations for
continuations of memoizing functions; below we specify how these locations are chosen.

Given the trace translation, Theorem 13 can be strengthened to show that the if the
continuation vk is of the form JEK v′k, then the Tgt evaluation trace T ′ is JT K vk Tk. Finally,
Src distance may be related to Tgt distance by trace translation (recall top right diagram of
Figure 1).

35

Theorem 14 (Src precise/Tgt distance soundness)
Assume T t

k1 	 T t
k2 = 〈 , c′1〉, T t

k1 � T t
k2 = 〈 , c′2〉.

If T1 � T2 = , b, 〈 , c〉 (precise),
then (JT1K vt

k T t
k1) � (JT2K vt

k T t
k2) = 〈 , c′′〉

and c′′ = c + if b then c′1 else c′2.
If T1 	 T2 = , , 〈 , c〉 (precise),
then (JT1K vt

k1 T t
k1)	 (JT2K vt

k2 T t
k2) = 〈 , c′′〉

and c′′ = c + if b then c′1 else c′2.

Proof: We preprocess the precise Src distance derivation by assigning matching fresh lo-
cations to memoization actions that synchronize, these are used by the trace translation for
continuations (this is always possible because stores and traces are finite). Next, we proceed
by induction on the (instrumented) precise Src distance derivation, using the trace transla-
tion to build an equivalent Tgt distance derivation. �

Corollary 15 (Src simple/Tgt distance soundness)
Assume T t

k1 	 T t
k2 = 〈 , c′1〉, T t

k1 � T t
k2 = 〈 , c′2〉.

If T1 � T2 = 〈 , c〉 (simple),
then (JT1K vt

k T t
k1) � (JT2K vt

k T t
k2) = 〈 , c′′〉

and c ≤ c′′ ≤ 6c + max{c′1, c′2}.
If T1 	 T2 = 〈 , c〉 (simple),
then (JT1K vt

k1 T t
k1)	 (JT2K vt

k2 T t
k2) = 〈 , c′′〉

and c ≤ c′′ ≤ 6c + max{c′1, c′2}.

Proof: By Theorems 10 and 14. �

Corollary 16 (Src/Tgt distance soundness)
Let T t

idi be the identity continuation trace for Ti (i ∈ {1, 2}).
If T1 � T2 = 〈 , c〉,
then (JT1K idT t

id1) � (JT2K idT t
id2) = 〈 , c′′〉 and c′′ ∈ Θ(c).

If T1 	 T2 = 〈 , c〉,
then (JT1K idT t

id1)	 (JT2K idT t
id2) = 〈 , c′′〉 and c′′ ∈ Θ(c).

Proof: The search distance T t
id1�T t

id2 and synchronization distance T t
id1	T t

id2 between the
identity continuation traces are constant, therefore the asymptotic bound c′′ ∈ Θ(c) follows
by Corollary 15. �

Note that since Src and Tgt distance are quasi-symmetric, an analogous results hold of the
left component of distance. This means that change propagation has the same asymptotic
time-complexity as trace distance. The converse of the theorem does not hold: a distance
may be derivable of Tgt traces which does not correspond to any derivable Src distance.
This incompleteness is to be expected because memoization of a function call and return in
Tgt need not match in lock-step, whereas the synch/memo (resp. synch/search) Src rule
requires both (resp. neither) to match in lock-step.

36

7 Discussion

We briefly remark on some limitations of our approach.

Incompleteness. Soundness of the translation guarantees that any distance derivable in
Src is also (up to a constant factor) derivable in Tgt. However, the Tgt proof system exhibits
more possible distances: in Src, memoization requires matching both the function call and
return points, while the ACPS translation into Tgt distinguishes memoization at the call
and the return. Therefore, there are more opportunities for switching between search and
synchronization in Tgt and there may be more distance values derivable in Tgt than in Src.
For example, in Tgt a function call memoization can miss (i.e., remain in search mode)
while the return can match (i.e., switch from search to synchronization mode), which is not
possible in Src. Consequently, any upper bound found using Src distance is preserved by
compilation, but lower bound arguments on a Src program are not necessarily lower bounds
on the Tgt distance.

Nondeterminism. The dynamic semantics and distance of Src and Tgt programs are non-
deterministic due to the freedom in choosing locations as well as deciding when memoization
matches. This avoids having to commit to a particular implementation, but also means
that any upper bound derived using the nondeterministic semantics may not be realized by
a particular implementation. In order for an implementation to realize an upper bound on
distance, the allocation and memoization policies used in deriving the distance must coincide
with those of the implementation. In previous work (Ley-Wild et al. 2008), we proposed both
user-specified and compiler-generated mechanisms for defining allocation and memoization
policies, which suffice for realizing the bounds derived in our examples. Ultimately, it would
be useful to develop compilation and run-time techniques to automatically minimize the
distance between the computations by considering all possible policies.

Meta-logic. The proof system for distance applies to concrete traces, while in our examples
we use it to reason schematically over classes of contexts and input changes. To fully formalize
the examples, we would need a meta-logic that permits quantification over contexts and
classes of input changes, and can express asymptotic bounds. Such a meta-logic could
be extended with theorem-proving capabilities which could automate finding bounds on
distance.

8 Related Work

We briefly review previous work on incremental computation and cost semantics.

Incremental and Self-Adjusting Computation Incremental computation has been
studied extensively since the early 80’s. We briefly mention a few approaches here and
refer the reader to the survey by Ramalingam and Reps (1993) and some recent papers

37

(e.g., Ley-Wild et al. 2008) for a more detailed set of references. Effective early approaches
to incremental computation either use dependence graphs (Demers et al. 1981; Reps 1982;
Yellin and Strom 1991) or memoization (e.g., Pugh and Teitelbaum 1989; Abadi et al. 1996;
Heydon et al. 2000). Self-adjusting computation generalized dependence graphs techniques
by introducing dynamic dependence graphs (Acar et al. 2006b), which enables a change
propagation algorithm update the structure of the computation based on data modifica-
tions, and combining them with memoization (Acar et al. 2006a). Recent work showed
that the approach can be generalized to support imperative updates (side effects to mem-
ory) (Acar et al. 2008a). Ley-Wild et al 2008 described how to incorporate a version of the
compilation technique used in this paper for a pure source language into an existing compiler
(MLton). That paper did not consider mutable references and provided no cost semantics
or effectiveness guarantees.

Researchers proposed several implementations of self-adjusting computation. Carls-
son (2002) present a Haskell implementation of the initial proposal to self-adjusting com-
putation (Acar et al. 2006b). Shankar and Bodik 2007 use a variant of self-adjusting com-
putation techniques for the purpose of incremental invariant checking. Cooper and Kr-
ishnamurthi (Cooper and Krishnamurthi 2006) adapt the initial proposal for self-adjusting
computation (Acar et al. 2006b) to support Functional Reactive Programming (Elliott and
Hudak 1997). Both approaches are similar to an alternative formulation of self-adjusting
computation based on tracking dependences at the granularity of function calls and memory
locations that is described in the first authors thesis (Acar 2005). Shankar and Bodik’s ap-
proach is further specialized for incremental invariant checking and is unsound in the general
case: change propagation does not preserve the intensional (performance) and extensional
(input-output behavior) semantics with respect to from-scratch runs. These implementations
all assume purely functional programming (except for the mutator) and often require support
from a higher-order language (e.g., ML, Haskell, Scheme). Recent work made some progress
on giving an implementation of self-adjusting computation in lower-level languages, C in
particular (Hammer and Acar 2008).

Self-adjusting computation has been applied, in several incarnations, to a number of prob-
lems from a reasonably broad set of application domains such as motion simulation (Acar
et al. 2006c, 2008b), machine learning (Acar et al. 2007), and other algorithmic prob-
lems (Acar et al. 2004, 2005, 2006a). It is possible to analyze the performance of change
propagation for a particular problem by using algorithmic analysis techniques. For example,
earlier work (Acar et al. 2004) analyzed the performance of change propagation for tree con-
traction problem. Most applications of self-adjusting computation, however, evaluated the
effectiveness of the approach experimentally (e.g., Acar et al. 2006a). The examples that we
consider in this paper confirm these experimental findings.

Cost Semantics This work builds on previous work on profiling or cost semantics for
reasoning about resource requirements of programs. The idea of instrumenting evaluations
to generate cost information goes back to the early 90s (Sands 1990a; Rosendahl 1989).
The approach has been shown to be particularly important in high-level languages such as

38

lazy (e.g., Sands 1990a,b; Sansom and Jones 1995) and parallel languages (e.g., Blelloch
and Greiner 1995, 1996; Spoonhower et al. 2008) where it is particularly difficult to relate
execution time to the source code. The idea of having a cost semantics construct a trace
resembles the techniques used for evaluation of parallel programs (Blelloch and Greiner 1996;
Spoonhower et al. 2008). The structure and use of our traces, however, differs significantly
from those used in parallel languages: we record store actions and compute distances, whereas
they work in a pure setting and use traces to reason about parallelism. In the context of
incremental computation, we know of no other work that offers a source-level cost semantics
for reasoning about effectiveness of incremental update mechanisms.

9 Conclusion

Due to its complex semantics and the nature of previously proposed linguistic facilities, rea-
soning about the effectiveness of self-adjusting programs has been difficult, forcing previous
work to resort to experimental validation.

This paper gives a high-level cost semantics for self-adjusting computation. The approach
enables programming in a familiar setting, λ-calculus with first-class references, and compil-
ing such programs into self-adjusting programs. The user can determine the responsiveness
of compiled self-adjusting programs by computing a kind of “edit distance” between traces
of source programs. These traces consists of function calls and individual store operations.
The user need not reason about evaluation contexts or global state. These results are made
possible by (1) a compilation mechanism that can translate ordinary code into self-adjusting
code while preserving its efficiency, and (2) by techniques for matching evaluation contexts
appropriately without exposing them to the user for source-level reasoning.

A common limitation of cost semantics-based approaches to performance analysis is that
they often apply only to concrete evaluations. We show that this need not be the case
by providing techniques for generalizing trace distances of concrete evaluations to arbitrary
inputs, composing trace distances, and by reasoning with trace contexts. For illustrative
purposes, we derive asymptotic bounds for several examples. We expect these results to lead
to a more formal and precise reasoning of effectiveness of self-adjusting programs as well as
profiling tools that can infer concrete and perhaps asymptotic complexity bounds.

References

Mart́ın Abadi, Butler W. Lampson, and Jean-Jacques Lévy. Analysis and Caching of De-
pendencies. In Proceedings of the International Conference on Functional Programming
(ICFP), pages 83–91, 1996.

Umut A. Acar. Self-Adjusting Computation. PhD thesis, Department of Computer Science,
Carnegie Mellon University, May 2005.

39

Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L. Vittes, and Maverick Woo. Dy-
namizing static algorithms with applications to dynamic trees and history independence.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2004.

Umut A. Acar, Guy E. Blelloch, and Jorge L. Vittes. An experimental analysis of change
propagation in dynamic trees. In Workshop on Algorithm Engineering and Experimenta-
tion (ALENEX), 2005.

Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan. An experimental
analysis of self-adjusting computation. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2006a.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming.
ACM Transactions on Programming Languages and Systems (TOPLAS), 28(6):990–1034,
2006b.

Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Jorge L. Vittes. Kinetic Al-
gorithms via Self-Adjusting Computation. In Proceedings of the 14th Annual European
Symposium on Algorithms (ESA), pages 636–647, September 2006c.

Umut A. Acar, Alexander Ihler, Ramgopal Mettu, and Özgür Sümer. Adaptive Bayesian
Inference. In Neural Information Processing Systems (NIPS), 2007.

Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative self-adjusting computa-
tion. In Proceedings of the 25th Annual ACM Symposium on Principles of Programming
Languages (POPL), 2008a.

Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Duru Türkoğlu. Robust Kinetic
Convex Hulls in 3D. In Proceedings of the 16th Annual European Symposium on Algorithms
(ESA), September 2008b.

Umut A. Acar, Alexander Ihler, Ramgopal Mettu, and Özgür Sümer. Adaptive Inference on
General Graphical Models. In Uncertainty in Artificial Intelligence (UAI), 2008c.

Pankaj K. Agarwal, Leonidas J. Guibas, Herbert Edelsbrunner, Jeff Erickson, Michael Isard,
Sariel Har-Peled, John Hershberger, Christian Jensen, Lydia Kavraki, Patrice Koehl, Ming
Lin, Dinesh Manocha, Dimitris Metaxas, Brian Mirtich, David Mount, S. Muthukrishnan,
Dinesh Pai, Elisha Sacks, Jack Snoeyink, Subhash Suri, and Ouri Wolefson. Algorithmic
issues in modeling motion. ACM Comput. Surv., 34(4):550–572, 2002.

Guy Blelloch and John Greiner. Parallelism in sequential functional languages. In FPCA ’95:
Proceedings of the seventh international conference on Functional programming languages
and computer architecture, pages 226–237, 1995. ISBN 0-89791-719-7.

Guy E. Blelloch and John Greiner. A provable time and space efficient implementation of
nesl. In ICFP ’96: Proceedings of the first ACM SIGPLAN international conference on
Functional programming, pages 213–225. ACM, 1996.

40

Magnus Carlsson. Monads for Incremental Computing. In Proceedings of the 7th ACM
SIGPLAN International Conference on Functional programming (ICFP), pages 26–35.
ACM Press, 2002.

Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry. Proceedings
of the IEEE, 80(9):1412–1434, 1992.

Gregory H. Cooper and Shriram Krishnamurthi. Embedding Dynamic Dataflow in a Call-by-
Value Language. In Proceedings of the 15th Annual European Symposium on Programming
(ESOP), 2006.

Alan Demers, Thomas Reps, and Tim Teitelbaum. Incremental Evaluation of Attribute
Grammars with Application to Syntax-directed Editors. In Proceedings of the 8th Annual
ACM Symposium on Principles of Programming Languages, pages 105–116, 1981.

Conal Elliott and Paul Hudak. Functional Reactive Animation. In ICFP ’97: Proceedings
of the second ACM SIGPLAN international conference on Functional programming, pages
263–273. ACM, 1997.

David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Dynamic graph algorithms. In
Mikhail J. Atallah, editor, Algorithms and Theory of Computation Handbook, chapter 8.
CRC Press, 1999.

Leonidas J. Guibas. Kinetic data structures: a state of the art report. In WAFR ’98:
Proceedings of the third workshop on the algorithmic foundations of robotics, pages 191–
209, 1998.

Matthew Hammer and Umut A. Acar. Memory Management for Self-Adjusting Computa-
tion. In The 2008 International Symposium on Memory Management, 2008.

Allan Heydon, Roy Levin, and Yuan Yu. Caching Function Calls Using Precise Dependencies.
In Proceedings of the 2000 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 311–320, 2000.

Ruy Ley-Wild, Matthew Fluet, and Umut A. Acar. Compiling self-adjusting programs with
continuations. In Proceedings of the International Conference on Functional Programming
(ICFP), 2008.

William Pugh and Tim Teitelbaum. Incremental computation via function caching. In
Proceedings of the 16th Annual ACM Symposium on Principles of Programming Languages,
pages 315–328, 1989.

G. Ramalingam and T. Reps. A Categorized Bibliography on Incremental Computation. In
Proceedings of the 20th Annual ACM Symposium on Principles of Programming Languages
(POPL), pages 502–510, 1993.

41

Thomas Reps. Optimal-time incremental semantic analysis for syntax-directed editors.
In Proceedings of the 9th Annual Symposium on Principles of Programming Languages
(POPL), pages 169–176, 1982.

Mads Rosendahl. Automatic complexity analysis. In FPCA ’89: Proceedings of the fourth
international conference on Functional programming languages and computer architecture,
pages 144–156. ACM, 1989.

David Sands. Calculi for Time Analysis of Functional Programs. PhD thesis, University of
London, Imperial College, September 1990a.

David Sands. Complexity analysis for a lazy higher-order language. In ESOP ’90: Proceedings
of the 3rd European Symposium on Programming, pages 361–376. Springer-Verlag, 1990b.

Patrick M. Sansom and Simon L. Peyton Jones. Time and space profiling for non-strict,
higher-order functional languages. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 355–366, 1995.

Ajeet Shankar and Rastislav Bodik. DITTO: Automatic Incrementalization of Data Struc-
ture Invariant Checks (in Java). In Proceedings of the ACM SIGPLAN 2007 Conference
on Programming language Design and Implementation (PLDI), 2007.

Daniel Spoonhower, Guy E. Blelloch, Robert Harper, and Phillip B. Gibbons. Space pro-
filing for parallel functional programs. In Proceedings of the International Conference on
Functional Programming (ICFP), 2008.

Philip Wadler and R. J. M. Hughes. Projections for strictness analysis. In Proc. of Functional
programming languages and computer architecture, pages 385–407. Springer-Verlag, 1987.

D. M. Yellin and R. E. Strom. INC: A Language for Incremental Computations. ACM
Transactions on Programming Languages and Systems, 13(2):211–236, April 1991.

42

A Twelf Proofs
[sources.cfg]

cost.elf

dist.elf

loc.elf

src-syntax.elf

src-store.elf

src-store-lemmas.elf

src-storety.elf

tgt-syntax.elf

tgt-syntax-lemmas.elf

tgt-trace-len.elf

tgt-store.elf

tgt-store-lemmas.elf

tgt-storety.elf

tgt-static.elf

tgt-dynamic.elf

tgt-dynamic-lemmas.elf

tgt-trace-wf.elf

tgt-memo-excl.elf

tgt-memo-incl.elf

tgt-cp-consistent.elf

tgt-trace-diff.elf

tgt-cp-cost.elf

43

[cost.elf]

cost : type. %name cost C.

c/z : cost.

c/s : cost -> cost.

%abbrev c/0 = c/z.

%abbrev c/1 = c/s c/z.

c/eq : cost -> cost -> type.

%mode c/eq *C1 *C2.

c/eq# : c/eq C C.

%worlds () (c/eq _ _).

c/sum : cost -> cost -> cost -> type. %name c/sum Dcsum.

%mode c/sum +C1 +C2 -C3.

c/sum/z : c/sum c/z C C.

c/sum/s : c/sum (c/s C1) C2 (c/s C3) <- c/sum C1 C2 C3.

%worlds () (c/sum _ _ _).

%total C (c/sum C _ _).

%abbrev c/sum/0 = c/sum/z.

%abbrev c/sum/1 = (c/sum/s (c/sum/z)).

44

[dist.elf]

dist : type. %name dist D.

d : cost -> cost -> dist.

%abbrev d/0,0 = d c/0 c/0.

%abbrev d/0,1 = d c/0 c/1.

%abbrev d/1,0 = d c/1 c/0.

%abbrev d/1,1 = d c/1 c/1.

d/eq : dist -> dist -> type.

%mode d/eq *D1 *D2.

d/eq# : d/eq D D.

%worlds () (d/eq _ _).

d/let : dist -> dist -> type.

%mode d/let +D1 -D2.

d/let# : d/let D D.

%worlds () (d/let _ _).

d/let/ceq=> : c/eq C1 C1’ -> c/eq C2 C2’ -> d/let (d C1 C2) (d C1’ C2’) -> type.

%mode d/let/ceq=> +Dceq1 +Dceq2 -Ddlet.

- : d/let/ceq=> c/eq# c/eq# d/let#.

%worlds () (d/let/ceq=> _ _ _).

%total {} (d/let/ceq=> _ _ _).

d/sum : dist -> dist -> dist -> type. %name d/sum Ddsum.

%mode d/sum +D1 +D2 -D3.

d/sum/# : d/sum (d C1L C1R) (d C2L C2R) (d C3L C3R)

<- c/sum C1R C2R C3R

<- c/sum C1L C2L C3L.

%worlds () (d/sum _ _ _).

%total D (d/sum D _ _).

%abbrev d/sum/0,0 = (d/sum/# c/sum/0 c/sum/0).

%abbrev d/sum/0,1 = (d/sum/# c/sum/0 c/sum/1).

%abbrev d/sum/1,0 = (d/sum/# c/sum/1 c/sum/0).

%abbrev d/sum/1,1 = (d/sum/# c/sum/1 c/sum/1).

d/qsym : dist -> dist -> type. %name d/qsym Ddqsym.

d/qsym/# : d/qsym (d CL CR) (d CR CL).

d/sum&qsym=>sum

: d/sum D1 D2 D3

-> d/qsym D1 D1’

-> d/qsym D2 D2’

-> d/qsym D3 D3’

-> d/sum D1’ D2’ D3’

-> type.

%mode d/sum&qsym=>sum +Ddsum +Dqsym1 +Dqsym2 +Dqsym3 -Ddsum’.

- : d/sum&qsym=>sum (d/sum/# DcsumL DcsumR) d/qsym/# d/qsym/# d/qsym/# (d/sum/# DcsumR DcsumL).

%worlds () (d/sum&qsym=>sum _ _ _ _ _).

%total {} (d/sum&qsym=>sum _ _ _ _ _).

d/sum/split

: d/sum d/1,1 D1X D2

-> d/sum d/1,0 D1X D1

-> d/sum d/0,1 D1 D2

-> type.

%mode d/sum/split +Ddsum11 +Ddsum10 -Ddsum01.

- : d/sum/split (d/sum/# c/sum/1 c/sum/1) (d/sum/# c/sum/1 c/sum/0) (d/sum/# c/sum/0 c/sum/1).

%worlds () (d/sum/split _ _ _).

%total {} (d/sum/split _ _ _).

45

d/sum/shuff

: d/sum d/1,0 DX D1

-> d/sum d/0,1 DX D2

-> d/sum d/0,1 D1 D3

-> d/sum d/1,0 D2 D3

-> type.

%mode d/sum/shuff +Ddsum10 +Ddsum01 -Ddsum01’ -Ddsum10’.

- : d/sum/shuff (d/sum/# c/sum/1 c/sum/0) (d/sum/# c/sum/0 c/sum/1)

(d/sum/# c/sum/0 c/sum/1) (d/sum/# c/sum/1 c/sum/0).

%worlds () (d/sum/shuff _ _ _ _).

%total {} (d/sum/shuff _ _ _ _).

d/sum/splitA

: d/sum d/1,1 D1X D2

-> d/sum d/1,0 D1X D1

-> d/sum d/0,1 D1 D2

-> type.

%mode d/sum/splitA +Ddsum11 -Ddsum10 -Ddsum01.

- : d/sum/splitA (d/sum/# c/sum/1 c/sum/1) (d/sum/# c/sum/1 c/sum/0) (d/sum/# c/sum/0 c/sum/1).

%worlds () (d/sum/splitA _ _ _).

%total {} (d/sum/splitA _ _ _).

d/sum/splitB

: d/sum d/1,1 D1X D2

-> d/sum d/0,1 D1X D1

-> d/sum d/1,0 D1 D2

-> type.

%mode d/sum/splitB +Ddsum11 -Ddsum01 -Ddsum10.

- : d/sum/splitB (d/sum/# c/sum/1 c/sum/1) (d/sum/# c/sum/0 c/sum/1) (d/sum/# c/sum/1 c/sum/0).

%worlds () (d/sum/splitB _ _ _).

%total {} (d/sum/splitB _ _ _).

d/sum/combineA

: d/sum d/0,1 D1 D2

-> d/sum d/1,0 D1X D1

-> d/sum d/1,1 D1X D2

-> type.

%mode d/sum/combineA +Ddsum01 +Ddsum10 -Ddsum11.

- : d/sum/combineA (d/sum/# c/sum/0 c/sum/1) (d/sum/# c/sum/1 c/sum/0) (d/sum/# c/sum/1 c/sum/1).

%worlds () (d/sum/combineA _ _ _).

%total {} (d/sum/combineA _ _ _).

d/sum/combineB

: d/sum d/1,0 D1 D2

-> d/sum d/0,1 D1X D1

-> d/sum d/1,1 D1X D2

-> type.

%mode d/sum/combineB +Ddsum10 +Ddsum01 -Ddsum11.

- : d/sum/combineB (d/sum/# c/sum/1 c/sum/0) (d/sum/# c/sum/0 c/sum/1) (d/sum/# c/sum/1 c/sum/1).

%worlds () (d/sum/combineB _ _ _).

%total {} (d/sum/combineB _ _ _).

46

[loc.elf]

loc : type. %name loc L.

loc/z : loc.

loc/s : loc -> loc.

loc/enum : loc -> type. %name loc/enum Dloc.

%mode loc/enum -L.

- : loc/enum loc/z.

- : loc/enum (loc/s L)

<- loc/enum L.

%worlds () (loc/enum _).

47

[src-syntax.elf]

%% types

src/ty : type. %name src/ty T.

src/ty/nat : src/ty.

src/ty/arr : src/ty -> src/ty -> src/ty.

src/ty/box : src/ty -> src/ty.

%% expressions and values

src/exp : type. %name src/exp E.

src/val : type. %name src/val V.

%

src/exp/val : src/val -> src/exp.

%

src/val/zero : src/val.

src/val/succ : src/val -> src/val.

src/exp/case : src/val -> src/exp -> (src/val -> src/exp) -> src/exp.

%

src/val/fun : (src/val -> src/val -> src/exp) -> src/val.

src/exp/app : src/exp -> src/exp -> src/exp.

%

src/exp/put : src/val -> src/exp.

src/exp/set : src/val -> src/val -> src/exp.

src/exp/get : src/val -> src/exp.

src/val/loc : loc -> src/val.

48

[src-store.elf]

src/valopt : type. %name src/valopt VO.

src/valopt/none : src/valopt.

src/valopt/some : src/val -> src/valopt.

src/store : type. %name src/store S.

src/store/nil : src/store.

src/store/cons : src/valopt -> src/store -> src/store.

src/store/freshfor : loc -> src/store -> type. %name src/store/freshfor Dfsh.

%mode src/store/freshfor +L +S.

src/store/freshfor/nil

: src/store/freshfor _ src/store/nil.

src/store/freshfor/cons/none

: src/store/freshfor loc/z (src/store/cons src/valopt/none _).

src/store/freshfor/cons/some

: src/store/freshfor (loc/s L) (src/store/cons _ S)

<- src/store/freshfor L S.

src/store/bind : src/store -> loc -> src/val -> src/store -> type. %name src/store/bind Dbnd.

%mode src/store/bind +S +L +V -S’.

src/store/bind/z/nil

: src/store/bind src/store/nil loc/z V (src/store/cons (src/valopt/some V) src/store/nil).

src/store/bind/z/cons

: src/store/bind (src/store/cons _ S) loc/z V (src/store/cons (src/valopt/some V) S).

src/store/bind/s/cons

: src/store/bind (src/store/cons VO’ S) (loc/s L) V (src/store/cons VO’ S’)

<- src/store/bind S L V S’.

%abbrev src/store/sing = [L:loc][V:src/val][S:src/store] src/store/bind src/store/nil L V S.

src/store/lookup : src/store -> loc -> src/val -> type. %name src/store/lookup Dlk.

%mode src/store/lookup +S +L -V.

- : src/store/lookup (src/store/cons (src/valopt/some V) _) loc/z V.

- : src/store/lookup (src/store/cons _ S) (loc/s L) V

<- src/store/lookup S L V.

src/store/put : src/store -> src/val -> loc -> src/store -> type. %name src/store/put Dp.

%mode src/store/put +S +V -L’ -S’.

src/store/put*

: src/store/put S V L S’

<- loc/enum L

<- src/store/freshfor L S

<- src/store/bind S L V S’.

src/store/set : src/store -> loc -> src/val -> src/store -> type. %name src/store/set Ds.

%mode src/store/set +S +L +V -S’.

src/store/set*

: src/store/set S L V S’

<- src/store/bind S L V S’.

src/store/get : src/store -> loc -> src/val -> type. %name src/store/get Dg.

%mode src/store/get +S +L -V.

src/store/get*

: src/store/get S L V

<- src/store/lookup S L V.

src/valopt/subset : src/valopt -> src/valopt -> type.

%mode src/valopt/subset +VO1 +VO2.

src/valopt/subset/none

: src/valopt/subset src/valopt/none _.

src/valopt/subset/some

: src/valopt/subset (src/valopt/some V) (src/valopt/some V).

49

src/store/subset : src/store -> src/store -> type.

%mode src/store/subset +S1 +S2.

src/store/subset/nil

: src/store/subset src/store/nil _.

src/store/subset/cons/none

: src/store/subset (src/store/cons VO1 S1) (src/store/cons VO2 S2)

<- src/valopt/subset VO1 VO2

<- src/store/subset S1 S2.

src/valopt/disjoint : src/valopt -> src/valopt -> type.

%mode src/valopt/disjoint +VO1 +VO2.

src/valopt/disjoint/none/none

: src/valopt/disjoint src/valopt/none src/valopt/none.

src/valopt/disjoint/none/some

: src/valopt/disjoint src/valopt/none (src/valopt/some _).

src/valopt/disjoint/some/none

: src/valopt/disjoint (src/valopt/some _) src/valopt/none.

src/store/disjoint : src/store -> src/store -> type.

%mode src/store/disjoint +S1 +S2.

src/store/disjoint/nil/nil

: src/store/disjoint src/store/nil src/store/nil.

src/store/disjoint/nil/cons

: src/store/disjoint src/store/nil (src/store/cons _ _).

src/store/disjoint/cons/nil

: src/store/disjoint (src/store/cons _ _) src/store/nil.

src/store/disjoint/cons/cons

: src/store/disjoint (src/store/cons VO1 S1) (src/store/cons VO2 S2)

<- src/valopt/disjoint VO1 VO2

<- src/store/disjoint S1 S2.

src/valopt/union : src/valopt/disjoint VO1 VO2 -> src/valopt -> type.

%mode src/valopt/union +Ddisj -VO.

src/valopt/union/none/none

: src/valopt/union src/valopt/disjoint/none/none src/valopt/none.

src/valopt/union/none/some

: src/valopt/union (src/valopt/disjoint/none/some : src/valopt/disjoint _ (src/valopt/some V)) (src/valopt/some V).

src/valopt/union/some/none

: src/valopt/union (src/valopt/disjoint/some/none : src/valopt/disjoint (src/valopt/some V) _) (src/valopt/some V).

src/store/union : src/store/disjoint S1 S2 -> src/store -> type.

%mode src/store/union +Ddisj -S.

src/store/union/nil/nil

: src/store/union src/store/disjoint/nil/nil src/store/nil.

src/store/union/nil/cons

: src/store/union (src/store/disjoint/nil/cons : src/store/disjoint _ (src/store/cons VO S)) (src/store/cons VO S).

src/store/union/cons/nil

: src/store/union (src/store/disjoint/cons/nil : src/store/disjoint (src/store/cons VO S) _) (src/store/cons VO S).

src/store/union/cons/cons

: src/store/union (src/store/disjoint/cons/cons DdisjS DdisjV) (src/store/cons VO S)

<- src/valopt/union DdisjV VO

<- src/store/union DdisjS S.

src/store/alloc : {S} src/store/freshfor L S -> type.

%mode src/store/alloc +S -Dfsh.

src/store/alloc/nil

: src/store/alloc src/store/nil (src/store/freshfor/nil : src/store/freshfor loc/z _).

src/store/alloc/cons/none

: src/store/alloc (src/store/cons src/valopt/none _) src/store/freshfor/cons/none.

src/store/alloc/cons/some

: src/store/alloc (src/store/cons (src/valopt/some _) S) (src/store/freshfor/cons/some Dfsh)

<- src/store/alloc S (Dfsh : src/store/freshfor L _).

50

%worlds () (src/store/alloc _ _).

%total {S} (src/store/alloc S _).

51

[src-store-lemmas.elf]

src/store/eq : src/store -> src/store -> type. %name src/store/eq DeqS.

src/store/eq/nil

: src/store/eq src/store/nil src/store/nil.

src/store/eq/cons

: src/store/eq (src/store/cons VO S1) (src/store/cons VO S2)

<- src/store/eq S1 S2.

src/store/refl : {S} src/store/eq S S -> type.

%mode src/store/refl +S -DeqS.

- : src/store/refl src/store/nil src/store/eq/nil.

- : src/store/refl (src/store/cons V S) (src/store/eq/cons DeqS)

<- src/store/refl S DeqS.

%worlds () (src/store/refl _ _).

%total {S} (src/store/refl S _).

src/store/bind=>src/store/eq :

src/store/bind S L V S1’ ->

src/store/bind S L V S2’ ->

src/store/eq S1’ S2’ ->

type.

%mode src/store/bind=>src/store/eq +Dbnd1 +Dbnd2 -DeqS.

- : src/store/bind=>src/store/eq

src/store/bind/z/nil

src/store/bind/z/nil

(src/store/eq/cons src/store/eq/nil).

- : src/store/bind=>src/store/eq

src/store/bind/z/cons

src/store/bind/z/cons

(src/store/eq/cons DeqS)

<- src/store/refl S DeqS.

- : src/store/bind=>src/store/eq

(src/store/bind/s/cons Dbnd1)

(src/store/bind/s/cons Dbnd2)

(src/store/eq/cons DeqS)

<- src/store/bind=>src/store/eq Dbnd1 Dbnd2 DeqS.

%worlds () (src/store/bind=>src/store/eq _ _ _).

%total {Dbnd1} (src/store/bind=>src/store/eq Dbnd1 _ _).

src/store/bind=>src/store/eq :

src/store/eq S1 S2 ->

src/store/bind S1 L V S1’ ->

src/store/bind S2 L V S2’ ->

src/store/eq S1’ S2’ ->

type.

%mode src/store/bind=>src/store/eq +DeqS +Dbnd1 +Dbnd2 -DeqS’.

- : src/store/bind=>src/store/eq

_

src/store/bind/z/nil

src/store/bind/z/nil

(src/store/eq/cons src/store/eq/nil).

- : src/store/bind=>src/store/eq

(src/store/eq/cons DeqS)

src/store/bind/z/cons

src/store/bind/z/cons

(src/store/eq/cons DeqS).

- : src/store/bind=>src/store/eq

(src/store/eq/cons DeqS)

(src/store/bind/s/cons Dbnd1)

(src/store/bind/s/cons Dbnd2)

(src/store/eq/cons DeqS’)

<- src/store/bind=>src/store/eq DeqS Dbnd1 Dbnd2 DeqS’.

%worlds () (src/store/bind=>src/store/eq _ _ _ _).

52

%total {Dbnd1} (src/store/bind=>src/store/eq _ Dbnd1 _ _).

src/store/put=>src/store/eq :

src/store/eq S1 S2 ->

src/store/put S1 V L’ S1’ ->

src/store/put S2 V L’ S2’ ->

src/store/eq S1’ S2’ ->

type.

%mode src/store/put=>src/store/eq +DeqS +Dp1 +Dp2 -DeqS’.

src/store/put=>src/store/eq*

: src/store/put=>src/store/eq

DeqS

(src/store/put* Dbnd1 _ _)

(src/store/put* Dbnd2 _ _)

DeqS’

<- src/store/bind=>src/store/eq DeqS Dbnd1 Dbnd2 DeqS’.

%worlds () (src/store/put=>src/store/eq _ _ _ _).

%total {Dp1} (src/store/put=>src/store/eq _ Dp1 _ _).

src/store/set=>src/store/eq :

src/store/eq S1 S2 ->

src/store/set S1 L V S1’ ->

src/store/set S2 L V S2’ ->

src/store/eq S1’ S2’ ->

type.

%mode src/store/set=>src/store/eq +DeqS +Ds1 +Ds2 -DeqS’.

src/store/set=>src/store/eq*

: src/store/set=>src/store/eq

DeqS

(src/store/set* Dbnd1)

(src/store/set* Dbnd2)

DeqS’

<- src/store/bind=>src/store/eq DeqS Dbnd1 Dbnd2 DeqS’.

%worlds () (src/store/set=>src/store/eq _ _ _ _).

%total {Ds1} (src/store/set=>src/store/eq _ Ds1 _ _).

53

[src-storety.elf]

src/tyopt : type. %name src/tyopt VO’.

src/tyopt/none : src/tyopt.

src/tyopt/some : src/ty -> src/tyopt.

src/storety : type. %name src/storety ST.

src/storety/nil : src/storety.

src/storety/cons : src/tyopt -> src/storety -> src/storety.

src/storety/bind : src/storety -> loc -> src/ty -> src/storety -> type.

%mode src/storety/bind +S +L +T -S’.

- : src/storety/bind src/storety/nil loc/z T (src/storety/cons (src/tyopt/some T) src/storety/nil).

- : src/storety/bind (src/storety/cons _ ST) loc/z T (src/storety/cons (src/tyopt/some T) ST).

- : src/storety/bind (src/storety/cons TO’ ST) (loc/s L) T (src/storety/cons TO’ ST’)

<- src/storety/bind ST L T ST’.

src/storety/lookup : src/storety -> loc -> src/ty -> type.

%mode src/storety/lookup +ST +L -T.

- : src/storety/lookup (src/storety/cons (src/tyopt/some T) _) loc/z T.

- : src/storety/lookup (src/storety/cons _ ST) (loc/s L) T

<- src/storety/lookup ST L T.

src/storety/write : src/storety -> loc -> src/ty -> src/storety -> type.

%mode src/storety/write +ST +L +V -ST’.

- : src/storety/write ST L V ST’

<- src/storety/bind ST L V ST’.

%

src/storety/read : src/storety -> loc -> src/ty -> type.

%mode src/storety/read +S +L -T.

- : src/storety/read ST L T

<- src/storety/lookup ST L T.

54

[tgt-syntax.elf]

%% types

tgt/ty : type. %name tgt/ty T.

tgt/ty/nat : tgt/ty.

tgt/ty/arr : tgt/ty -> tgt/ty -> tgt/ty.

tgt/ty/mod : tgt/ty -> tgt/ty.

tgt/ty/res : tgt/ty.

%abbrev tgt/ty/cont = [T:tgt/ty] (tgt/ty/arr T tgt/ty/res).

%% expressions / values / conts

tgt/exp : type. %name tgt/exp E.

tgt/val : type. %name tgt/val V.

tgt/cont : type. %name tgt/cont K.

%

tgt/val/cont : tgt/cont -> tgt/val.

tgt/exp/val : tgt/val -> tgt/exp.

%

tgt/val/zero : tgt/val.

%abbrev tgt/exp/zero = tgt/exp/val tgt/val/zero.

tgt/val/succ : tgt/val -> tgt/val.

tgt/exp/case : tgt/val -> tgt/exp -> (tgt/val -> tgt/exp) -> tgt/exp.

%

tgt/val/fun : (tgt/val -> tgt/val -> tgt/exp) -> tgt/val.

%abbrev tgt/val/lam = [E:tgt/val -> tgt/exp] (tgt/val/fun ([_] E)).

%abbrev tgt/exp/lam = [E:tgt/val -> tgt/exp] (tgt/exp/val (tgt/val/lam E)).

tgt/exp/app : tgt/exp -> tgt/val -> tgt/exp.

%abbrev tgt/val/let = [E:tgt/val][Ebody:tgt/val -> tgt/val] (tgt/exp/app (tgt/exp/val (tgt/val/lam ([x] tgt/exp/val (Ebody x)))) E).

%

tgt/cont/put : tgt/val -> tgt/val -> tgt/cont.

%abbrev tgt/val/put = [V:tgt/val][Vk:tgt/val] (tgt/val/cont (tgt/cont/put V Vk)).

%abbrev tgt/exp/put = [V:tgt/val][Vk:tgt/val] (tgt/exp/val (tgt/val/put V Vk)).

tgt/cont/set : tgt/val -> tgt/val -> tgt/val -> tgt/cont.

%abbrev tgt/val/set = [Vl:tgt/val][V:tgt/val][Vk:tgt/val] (tgt/val/cont (tgt/cont/set Vl V Vk)).

%abbrev tgt/exp/set = [Vl:tgt/val][V:tgt/val][Vk:tgt/val] (tgt/exp/val (tgt/val/set Vl V Vk)).

tgt/cont/get : tgt/val -> tgt/val -> tgt/cont.

%abbrev tgt/val/get = [V:tgt/val][Vk:tgt/val] (tgt/val/cont (tgt/cont/get V Vk)).

%abbrev tgt/exp/get = [V:tgt/val][Vk:tgt/val] (tgt/exp/val (tgt/val/get V Vk)).

tgt/val/loc : loc -> tgt/val.

%abbrev tgt/exp/loc = [L:loc] (tgt/exp/val (tgt/val/loc L)).

%

tgt/cont/memo : tgt/exp -> tgt/cont.

%abbrev tgt/val/memo = [E:tgt/exp] (tgt/val/cont (tgt/cont/memo E)).

%abbrev tgt/exp/memo = [E:tgt/exp] (tgt/exp/val (tgt/val/memo E)).

tgt/cont/halt : tgt/val -> tgt/cont.

%abbrev tgt/val/halt = [V:tgt/val] (tgt/val/cont (tgt/cont/halt V)).

%abbrev tgt/exp/halt = [V:tgt/val] (tgt/exp/val (tgt/val/halt V)).

%% actions

tgt/sact : type. %name tgt/sact As.

tgt/sact/put : tgt/val -> loc -> tgt/val -> tgt/sact.

tgt/sact/set : loc -> tgt/val -> tgt/val -> tgt/sact.

tgt/sact/get : loc -> tgt/val -> tgt/val -> tgt/sact.

tgt/act : type. %name tgt/act A.

tgt/act/sact : tgt/sact -> tgt/act.

%abbrev tgt/act/put = [V:tgt/val][L:loc][Vk:tgt/val] tgt/act/sact (tgt/sact/put V L Vk).

%abbrev tgt/act/set = [L:loc][V:tgt/val][Vk:tgt/val] tgt/act/sact (tgt/sact/set L V Vk).

%abbrev tgt/act/get = [L:loc][V:tgt/val][Vk:tgt/val] tgt/act/sact (tgt/sact/get L V Vk).

tgt/act/memo : tgt/exp -> tgt/act.

%% traces

tgt/tr : type. %name tgt/tr T.

tgt/tr/halt : tgt/val -> tgt/tr.

55

tgt/tr/cons : tgt/act -> tgt/tr -> tgt/tr.

tgt/tro : type. %name tgt/tro TO.

tgt/tro/none : tgt/tro.

tgt/tro/some : tgt/tr -> tgt/tro.

56

[tgt-syntax-lemmas.elf]

%% types

tgt/ty/eq : tgt/ty -> tgt/ty -> type.

tgt/ty/eq* : tgt/ty/eq T T.

tgt/ty/eq/arr : tgt/ty/eq T11 T21 ->

tgt/ty/eq T12 T22 ->

tgt/ty/eq (tgt/ty/arr T11 T12) (tgt/ty/arr T21 T22) ->

type.

%mode tgt/ty/eq/arr +Deq1 +Deq2 -Eeq.

- : tgt/ty/eq/arr tgt/ty/eq* tgt/ty/eq* tgt/ty/eq*.

%worlds () (tgt/ty/eq/arr _ _ _).

%total {} (tgt/ty/eq/arr _ _ _).

tgt/ty/eq/mod : tgt/ty/eq T1 T2 ->

tgt/ty/eq (tgt/ty/mod T1) (tgt/ty/mod T2) ->

type.

%mode tgt/ty/eq/mod +Deq -Eeq.

- : tgt/ty/eq/mod tgt/ty/eq* tgt/ty/eq*.

%worlds () (tgt/ty/eq/mod _ _).

%total {} (tgt/ty/eq/mod _ _).

tgt/ty/eq/cont : tgt/ty/eq T1 T2 ->

tgt/ty/eq (tgt/ty/cont T1) (tgt/ty/cont T2) ->

type.

%mode tgt/ty/eq/cont +Deq -Eeq.

- : tgt/ty/eq/cont tgt/ty/eq* tgt/ty/eq*.

%worlds () (tgt/ty/eq/cont _ _).

%total {} (tgt/ty/eq/cont _ _).

%% expressions

tgt/exp/eq : tgt/exp -> tgt/exp -> type.

%mode tgt/exp/eq *E1 *E2.

tgt/exp/eq* : tgt/exp/eq E E.

%worlds () (tgt/exp/eq _ _).

%% values

tgt/val/eq : tgt/val -> tgt/val -> type.

%mode tgt/val/eq *V1 *V2.

tgt/val/eq* : tgt/val/eq V V.

%worlds () (tgt/val/eq _ _).

%% continuations

tgt/cont/eq : tgt/cont -> tgt/cont -> type.

%mode tgt/cont/eq *K1 *K2.

tgt/cont/eq* : tgt/cont/eq K K.

%worlds () (tgt/cont/eq _ _).

tgt/val/eq=>cont/eq : tgt/val/eq (tgt/val/cont K1) (tgt/val/cont K2) ->

tgt/cont/eq K1 K2 ->

type.

%mode tgt/val/eq=>cont/eq +DeqV -DeqK.

- : tgt/val/eq=>cont/eq tgt/val/eq* tgt/cont/eq*.

%worlds () (tgt/val/eq=>cont/eq _ _).

%total {} (tgt/val/eq=>cont/eq _ _).

57

[tgt-trace-len.elf]

%% trace lengths

tgt/trlen : tgt/tr -> cost -> type.

%name tgt/trlen Dtrlen.

%mode tgt/trlen +T -C.

tgt/trlen/halt

: tgt/trlen (tgt/tr/halt _) (c/s c/z).

tgt/trlen/cons

: tgt/trlen (tgt/tr/cons _ T) (c/s C)

<- tgt/trlen T C.

%worlds () (tgt/trlen _ _).

%total T (tgt/trlen T _).

tgt/trlen/wit : {T:tgt/tr} tgt/trlen T C -> type.

%mode tgt/trlen/wit +T -Dtrlen.

- : tgt/trlen/wit (tgt/tr/halt _) tgt/trlen/halt.

- : tgt/trlen/wit (tgt/tr/cons _ T) (tgt/trlen/cons Dtrlen)

<- tgt/trlen/wit T Dtrlen.

%worlds () (tgt/trlen/wit _ _).

%total T (tgt/trlen/wit T _).

tgt/trolen : tgt/tro -> cost -> type.

%name tgt/trolen Dtrolen.

%mode tgt/trolen +TO -C.

tgt/trolen/none

: tgt/trolen tgt/tro/none c/z.

tgt/trolen/some

: tgt/trolen (tgt/tro/some T) C

<- tgt/trlen T C.

%worlds () (tgt/trolen _ _).

%total {} (tgt/trolen _ _).

tgt/trolen/wit : {TO:tgt/tro} tgt/trolen TO C -> type.

%mode tgt/trolen/wit +TO -Dtrolen.

- : tgt/trolen/wit tgt/tro/none tgt/trolen/none.

- : tgt/trolen/wit (tgt/tro/some T) (tgt/trolen/some Dtrlen)

<- tgt/trlen/wit T Dtrlen.

%worlds () (tgt/trolen/wit _ _).

%total {} (tgt/trolen/wit _ _).

58

[tgt-store.elf]

%{ WARNING: this file is automatically generated }%

tgt/valopt : type. %name tgt/valopt VO.

tgt/valopt/none : tgt/valopt.

tgt/valopt/some : tgt/val -> tgt/valopt.

tgt/store : type. %name tgt/store S.

tgt/store/nil : tgt/store.

tgt/store/cons : tgt/valopt -> tgt/store -> tgt/store.

tgt/store/freshfor : loc -> tgt/store -> type. %name tgt/store/freshfor Dfsh.

%mode tgt/store/freshfor +L +S.

tgt/store/freshfor/nil

: tgt/store/freshfor _ tgt/store/nil.

tgt/store/freshfor/cons/none

: tgt/store/freshfor loc/z (tgt/store/cons tgt/valopt/none _).

tgt/store/freshfor/cons/some

: tgt/store/freshfor (loc/s L) (tgt/store/cons _ S)

<- tgt/store/freshfor L S.

tgt/store/bind : tgt/store -> loc -> tgt/val -> tgt/store -> type. %name tgt/store/bind Dbnd.

%mode tgt/store/bind +S +L +V -S’.

tgt/store/bind/z/nil

: tgt/store/bind tgt/store/nil loc/z V (tgt/store/cons (tgt/valopt/some V) tgt/store/nil).

tgt/store/bind/z/cons

: tgt/store/bind (tgt/store/cons _ S) loc/z V (tgt/store/cons (tgt/valopt/some V) S).

tgt/store/bind/s/cons

: tgt/store/bind (tgt/store/cons VO’ S) (loc/s L) V (tgt/store/cons VO’ S’)

<- tgt/store/bind S L V S’.

%abbrev tgt/store/sing = [L:loc][V:tgt/val][S:tgt/store] tgt/store/bind tgt/store/nil L V S.

tgt/store/lookup : tgt/store -> loc -> tgt/val -> type. %name tgt/store/lookup Dlk.

%mode tgt/store/lookup +S +L -V.

- : tgt/store/lookup (tgt/store/cons (tgt/valopt/some V) _) loc/z V.

- : tgt/store/lookup (tgt/store/cons _ S) (loc/s L) V

<- tgt/store/lookup S L V.

tgt/store/put : tgt/store -> tgt/val -> loc -> tgt/store -> type. %name tgt/store/put Dp.

%mode tgt/store/put +S +V -L’ -S’.

tgt/store/put*

: tgt/store/put S V L S’

<- loc/enum L

<- tgt/store/freshfor L S

<- tgt/store/bind S L V S’.

tgt/store/set : tgt/store -> loc -> tgt/val -> tgt/store -> type. %name tgt/store/set Ds.

%mode tgt/store/set +S +L +V -S’.

tgt/store/set*

: tgt/store/set S L V S’

<- tgt/store/bind S L V S’.

tgt/store/get : tgt/store -> loc -> tgt/val -> type. %name tgt/store/get Dg.

%mode tgt/store/get +S +L -V.

tgt/store/get*

: tgt/store/get S L V

<- tgt/store/lookup S L V.

tgt/valopt/subset : tgt/valopt -> tgt/valopt -> type.

%mode tgt/valopt/subset +VO1 +VO2.

tgt/valopt/subset/none

: tgt/valopt/subset tgt/valopt/none _.

tgt/valopt/subset/some

: tgt/valopt/subset (tgt/valopt/some V) (tgt/valopt/some V).

59

tgt/store/subset : tgt/store -> tgt/store -> type.

%mode tgt/store/subset +S1 +S2.

tgt/store/subset/nil

: tgt/store/subset tgt/store/nil _.

tgt/store/subset/cons/none

: tgt/store/subset (tgt/store/cons VO1 S1) (tgt/store/cons VO2 S2)

<- tgt/valopt/subset VO1 VO2

<- tgt/store/subset S1 S2.

tgt/valopt/disjoint : tgt/valopt -> tgt/valopt -> type.

%mode tgt/valopt/disjoint +VO1 +VO2.

tgt/valopt/disjoint/none/none

: tgt/valopt/disjoint tgt/valopt/none tgt/valopt/none.

tgt/valopt/disjoint/none/some

: tgt/valopt/disjoint tgt/valopt/none (tgt/valopt/some _).

tgt/valopt/disjoint/some/none

: tgt/valopt/disjoint (tgt/valopt/some _) tgt/valopt/none.

tgt/store/disjoint : tgt/store -> tgt/store -> type.

%mode tgt/store/disjoint +S1 +S2.

tgt/store/disjoint/nil/nil

: tgt/store/disjoint tgt/store/nil tgt/store/nil.

tgt/store/disjoint/nil/cons

: tgt/store/disjoint tgt/store/nil (tgt/store/cons _ _).

tgt/store/disjoint/cons/nil

: tgt/store/disjoint (tgt/store/cons _ _) tgt/store/nil.

tgt/store/disjoint/cons/cons

: tgt/store/disjoint (tgt/store/cons VO1 S1) (tgt/store/cons VO2 S2)

<- tgt/valopt/disjoint VO1 VO2

<- tgt/store/disjoint S1 S2.

tgt/valopt/union : tgt/valopt/disjoint VO1 VO2 -> tgt/valopt -> type.

%mode tgt/valopt/union +Ddisj -VO.

tgt/valopt/union/none/none

: tgt/valopt/union tgt/valopt/disjoint/none/none tgt/valopt/none.

tgt/valopt/union/none/some

: tgt/valopt/union (tgt/valopt/disjoint/none/some : tgt/valopt/disjoint _ (tgt/valopt/some V)) (tgt/valopt/some V).

tgt/valopt/union/some/none

: tgt/valopt/union (tgt/valopt/disjoint/some/none : tgt/valopt/disjoint (tgt/valopt/some V) _) (tgt/valopt/some V).

tgt/store/union : tgt/store/disjoint S1 S2 -> tgt/store -> type.

%mode tgt/store/union +Ddisj -S.

tgt/store/union/nil/nil

: tgt/store/union tgt/store/disjoint/nil/nil tgt/store/nil.

tgt/store/union/nil/cons

: tgt/store/union (tgt/store/disjoint/nil/cons : tgt/store/disjoint _ (tgt/store/cons VO S)) (tgt/store/cons VO S).

tgt/store/union/cons/nil

: tgt/store/union (tgt/store/disjoint/cons/nil : tgt/store/disjoint (tgt/store/cons VO S) _) (tgt/store/cons VO S).

tgt/store/union/cons/cons

: tgt/store/union (tgt/store/disjoint/cons/cons DdisjS DdisjV) (tgt/store/cons VO S)

<- tgt/valopt/union DdisjV VO

<- tgt/store/union DdisjS S.

tgt/store/alloc : {S} tgt/store/freshfor L S -> type.

%mode tgt/store/alloc +S -Dfsh.

tgt/store/alloc/nil

: tgt/store/alloc tgt/store/nil (tgt/store/freshfor/nil : tgt/store/freshfor loc/z _).

tgt/store/alloc/cons/none

: tgt/store/alloc (tgt/store/cons tgt/valopt/none _) tgt/store/freshfor/cons/none.

tgt/store/alloc/cons/some

: tgt/store/alloc (tgt/store/cons (tgt/valopt/some _) S) (tgt/store/freshfor/cons/some Dfsh)

60

<- tgt/store/alloc S (Dfsh : tgt/store/freshfor L _).

%worlds () (tgt/store/alloc _ _).

%total {S} (tgt/store/alloc S _).

61

[tgt-store-lemmas.elf]

%{ WARNING: this file is automatically generated }%

tgt/store/eq : tgt/store -> tgt/store -> type. %name tgt/store/eq DeqS.

tgt/store/eq/nil

: tgt/store/eq tgt/store/nil tgt/store/nil.

tgt/store/eq/cons

: tgt/store/eq (tgt/store/cons VO S1) (tgt/store/cons VO S2)

<- tgt/store/eq S1 S2.

tgt/store/refl : {S} tgt/store/eq S S -> type.

%mode tgt/store/refl +S -DeqS.

- : tgt/store/refl tgt/store/nil tgt/store/eq/nil.

- : tgt/store/refl (tgt/store/cons V S) (tgt/store/eq/cons DeqS)

<- tgt/store/refl S DeqS.

%worlds () (tgt/store/refl _ _).

%total {S} (tgt/store/refl S _).

tgt/store/bind=>tgt/store/eq :

tgt/store/bind S L V S1’ ->

tgt/store/bind S L V S2’ ->

tgt/store/eq S1’ S2’ ->

type.

%mode tgt/store/bind=>tgt/store/eq +Dbnd1 +Dbnd2 -DeqS.

- : tgt/store/bind=>tgt/store/eq

tgt/store/bind/z/nil

tgt/store/bind/z/nil

(tgt/store/eq/cons tgt/store/eq/nil).

- : tgt/store/bind=>tgt/store/eq

tgt/store/bind/z/cons

tgt/store/bind/z/cons

(tgt/store/eq/cons DeqS)

<- tgt/store/refl S DeqS.

- : tgt/store/bind=>tgt/store/eq

(tgt/store/bind/s/cons Dbnd1)

(tgt/store/bind/s/cons Dbnd2)

(tgt/store/eq/cons DeqS)

<- tgt/store/bind=>tgt/store/eq Dbnd1 Dbnd2 DeqS.

%worlds () (tgt/store/bind=>tgt/store/eq _ _ _).

%total {Dbnd1} (tgt/store/bind=>tgt/store/eq Dbnd1 _ _).

tgt/store/bind=>tgt/store/eq :

tgt/store/eq S1 S2 ->

tgt/store/bind S1 L V S1’ ->

tgt/store/bind S2 L V S2’ ->

tgt/store/eq S1’ S2’ ->

type.

%mode tgt/store/bind=>tgt/store/eq +DeqS +Dbnd1 +Dbnd2 -DeqS’.

- : tgt/store/bind=>tgt/store/eq

_

tgt/store/bind/z/nil

tgt/store/bind/z/nil

(tgt/store/eq/cons tgt/store/eq/nil).

- : tgt/store/bind=>tgt/store/eq

(tgt/store/eq/cons DeqS)

tgt/store/bind/z/cons

tgt/store/bind/z/cons

(tgt/store/eq/cons DeqS).

- : tgt/store/bind=>tgt/store/eq

(tgt/store/eq/cons DeqS)

(tgt/store/bind/s/cons Dbnd1)

(tgt/store/bind/s/cons Dbnd2)

(tgt/store/eq/cons DeqS’)

<- tgt/store/bind=>tgt/store/eq DeqS Dbnd1 Dbnd2 DeqS’.

62

%worlds () (tgt/store/bind=>tgt/store/eq _ _ _ _).

%total {Dbnd1} (tgt/store/bind=>tgt/store/eq _ Dbnd1 _ _).

tgt/store/put=>tgt/store/eq :

tgt/store/eq S1 S2 ->

tgt/store/put S1 V L’ S1’ ->

tgt/store/put S2 V L’ S2’ ->

tgt/store/eq S1’ S2’ ->

type.

%mode tgt/store/put=>tgt/store/eq +DeqS +Dp1 +Dp2 -DeqS’.

tgt/store/put=>tgt/store/eq*

: tgt/store/put=>tgt/store/eq

DeqS

(tgt/store/put* Dbnd1 _ _)

(tgt/store/put* Dbnd2 _ _)

DeqS’

<- tgt/store/bind=>tgt/store/eq DeqS Dbnd1 Dbnd2 DeqS’.

%worlds () (tgt/store/put=>tgt/store/eq _ _ _ _).

%total {Dp1} (tgt/store/put=>tgt/store/eq _ Dp1 _ _).

tgt/store/set=>tgt/store/eq :

tgt/store/eq S1 S2 ->

tgt/store/set S1 L V S1’ ->

tgt/store/set S2 L V S2’ ->

tgt/store/eq S1’ S2’ ->

type.

%mode tgt/store/set=>tgt/store/eq +DeqS +Ds1 +Ds2 -DeqS’.

tgt/store/set=>tgt/store/eq*

: tgt/store/set=>tgt/store/eq

DeqS

(tgt/store/set* Dbnd1)

(tgt/store/set* Dbnd2)

DeqS’

<- tgt/store/bind=>tgt/store/eq DeqS Dbnd1 Dbnd2 DeqS’.

%worlds () (tgt/store/set=>tgt/store/eq _ _ _ _).

%total {Ds1} (tgt/store/set=>tgt/store/eq _ Ds1 _ _).

63

[tgt-storety.elf]

%{ WARNING: this file is automatically generated }%

tgt/tyopt : type. %name tgt/tyopt VO’.

tgt/tyopt/none : tgt/tyopt.

tgt/tyopt/some : tgt/ty -> tgt/tyopt.

tgt/storety : type. %name tgt/storety ST.

tgt/storety/nil : tgt/storety.

tgt/storety/cons : tgt/tyopt -> tgt/storety -> tgt/storety.

tgt/storety/bind : tgt/storety -> loc -> tgt/ty -> tgt/storety -> type.

%mode tgt/storety/bind +S +L +T -S’.

- : tgt/storety/bind tgt/storety/nil loc/z T (tgt/storety/cons (tgt/tyopt/some T) tgt/storety/nil).

- : tgt/storety/bind (tgt/storety/cons _ ST) loc/z T (tgt/storety/cons (tgt/tyopt/some T) ST).

- : tgt/storety/bind (tgt/storety/cons TO’ ST) (loc/s L) T (tgt/storety/cons TO’ ST’)

<- tgt/storety/bind ST L T ST’.

tgt/storety/lookup : tgt/storety -> loc -> tgt/ty -> type.

%mode tgt/storety/lookup +ST +L -T.

- : tgt/storety/lookup (tgt/storety/cons (tgt/tyopt/some T) _) loc/z T.

- : tgt/storety/lookup (tgt/storety/cons _ ST) (loc/s L) T

<- tgt/storety/lookup ST L T.

tgt/storety/write : tgt/storety -> loc -> tgt/ty -> tgt/storety -> type.

%mode tgt/storety/write +ST +L +V -ST’.

- : tgt/storety/write ST L V ST’

<- tgt/storety/bind ST L V ST’.

%

tgt/storety/read : tgt/storety -> loc -> tgt/ty -> type.

%mode tgt/storety/read +S +L -T.

- : tgt/storety/read ST L T

<- tgt/storety/lookup ST L T.

64

[tgt-static.elf]

tgt/ofvar : tgt/val -> tgt/ty -> type.

%mode tgt/ofvar +V *T.

% ST |- E : T

tgt/ofexp : tgt/storety -> tgt/exp -> tgt/ty -> type.

%mode tgt/ofexp +ST +E *T.

% ST |- V : T

tgt/ofval : tgt/storety -> tgt/val -> tgt/ty -> type.

%mode tgt/ofval +ST +V *T.

% ST |- K

tgt/ofcont : tgt/storety -> tgt/cont -> type.

%mode tgt/ofcont +ST +K.

tgt/ofval/var :

tgt/ofval ST V T

<- tgt/ofvar V T.

tgt/ofval/cont :

tgt/ofval ST (tgt/val/cont K) tgt/ty/res

<- tgt/ofcont ST K.

tgt/ofexp/val :

tgt/ofexp ST (tgt/exp/val V) T

<- tgt/ofval ST V T.

tgt/ofval/zero :

tgt/ofval ST tgt/val/zero tgt/ty/nat.

tgt/ofval/succ :

tgt/ofval ST (tgt/val/succ V) tgt/ty/nat

<- tgt/ofval ST V tgt/ty/nat.

tgt/ofexp/case :

tgt/ofexp ST (tgt/exp/case VN EZ FS) T

<- tgt/ofval ST VN tgt/ty/nat

<- tgt/ofexp ST EZ T

<- ({x} (tgt/ofvar x tgt/ty/nat) ->

tgt/ofexp ST (FS x) T).

tgt/ofval/fun :

tgt/ofval ST (tgt/val/fun FF) (tgt/ty/arr TX T)

<- ({f} (tgt/ofvar F (tgt/ty/arr TX T)) ->

{x} (tgt/ofvar x TX) ->

tgt/ofexp ST (FF f x) T).

tgt/ofexp/app :

tgt/ofexp ST (tgt/exp/app EF VX) T

<- tgt/ofexp ST EF (tgt/ty/arr TX T)

<- tgt/ofval ST VX TX.

tgt/ofcont/put :

tgt/ofcont ST (tgt/cont/put V VK)

<- tgt/ofval ST V T

<- tgt/ofval ST VK (tgt/ty/cont (tgt/ty/mod T)).

tgt/ofcont/set :

tgt/ofcont ST (tgt/cont/set VL V VK)

<- tgt/ofval ST VL (tgt/ty/mod T)

<- tgt/ofval ST V T

<- tgt/ofval ST VK (tgt/ty/cont tgt/ty/nat).

tgt/ofcont/get :

tgt/ofcont ST (tgt/cont/get VL VK)

<- tgt/ofval ST VL (tgt/ty/mod T)

<- tgt/ofval ST VK (tgt/ty/cont T).

tgt/ofval/loc :

tgt/ofval ST (tgt/val/loc L) (tgt/ty/mod T)

<- tgt/storety/read ST L T.

tgt/ofcont/memo :

tgt/ofcont ST (tgt/cont/memo E)

<- tgt/ofexp ST E (tgt/ty/res).

tgt/ofcont/halt :

tgt/ofcont ST (tgt/cont/halt V)

<- tgt/ofval ST V T.

65

[tgt-dynamic.elf]

%% memo relation

tgt/memo : tgt/tr -> tgt/exp -> tgt/tr -> cost -> type.

%name tgt/memo Dmemo.

%mode tgt/memo +T +E -T’ -C’.

tgt/memo/hit

: tgt/memo (tgt/tr/cons (tgt/act/memo E) T) E T c/1.

tgt/memo/miss

: tgt/memo (tgt/tr/cons _ T) E T’ (c/s C’)

<- tgt/memo T E T’ C’.

%% reify relation

tgt/reify : tgt/tr -> tgt/cont -> type.

%name tgt/reify Dreify.

%mode tgt/reify +T -E’.

tgt/reify/put

: tgt/reify (tgt/tr/cons (tgt/act/put V L VK) T) (tgt/cont/put V VK).

tgt/reify/set

: tgt/reify (tgt/tr/cons (tgt/act/set L V VK) T) (tgt/cont/set (tgt/val/loc L) V VK).

tgt/reify/get

: tgt/reify (tgt/tr/cons (tgt/act/get L V VK) T) (tgt/cont/get (tgt/val/loc L) VK).

tgt/reify/memo

: tgt/reify (tgt/tr/cons (tgt/act/memo E) T) (tgt/cont/memo E).

tgt/reify/halt

: tgt/reify (tgt/tr/halt V) (tgt/cont/halt V).

%worlds () (tgt/reify _ _).

%total {} (tgt/reify _ _).

%% reduction

tgt/red : tgt/exp ->

tgt/val ->

type.

%name tgt/red Dr.

%mode tgt/red +E -V.

tgt/red/val

: tgt/red (tgt/exp/val V) V.

tgt/red/case-zero

: tgt/red (tgt/exp/case tgt/val/zero EZ FS) V

<- tgt/red EZ V.

tgt/red/case-succ

: tgt/red (tgt/exp/case (tgt/val/succ VN) EZ FS) V

<- tgt/red (FS VN) V.

tgt/red/app

: tgt/red (tgt/exp/app EF VX) V

<- tgt/red EF (tgt/val/fun FFE)

<- tgt/red (FFE (tgt/val/fun FFE) VX) V.

%% evalulation

tgt/evalE : tgt/tro -> tgt/store -> tgt/exp ->

tgt/tr -> tgt/store -> tgt/val -> dist ->

type.

%name tgt/evalE DevE.

%mode tgt/evalE +TO +S +E -T’ -S’ -V’ -D’.

tgt/evalK : tgt/tro -> tgt/store -> tgt/cont ->

tgt/tr -> tgt/store -> tgt/val -> dist ->

type.

%name tgt/evalK DevK.

%mode tgt/evalK +TO +S +K -T’ -S’ -V’ -D’.

%% change propagation

tgt/cp : tgt/tr -> tgt/store ->

tgt/tr -> tgt/store -> tgt/val -> dist ->

66

type.

%name tgt/cp Dcp.

%mode tgt/cp +T +S -T’ -S’ -V’ -D’.

tgt/evalE/red

: tgt/evalE TO S E T’ S’ V’ D’

<- tgt/red E (tgt/val/cont K)

<- tgt/evalK TO S K T’ S’ V’ D’.

tgt/evalK/put

: tgt/evalK TO S (tgt/cont/put V VK)

(tgt/tr/cons (tgt/act/put V L VK) T’) S’ V’ D’

<- tgt/store/put S V L Sl

<- tgt/evalE TO Sl (tgt/exp/app (tgt/exp/val VK) (tgt/val/loc L))

T’ S’ V’ DX

<- d/sum d/0,1 DX D’.

tgt/evalK/set

: tgt/evalK TO S (tgt/cont/set (tgt/val/loc L) V VK)

(tgt/tr/cons (tgt/act/set L V VK) T’) S’ V’ D’

<- tgt/store/set S L V Sl

<- tgt/evalE TO Sl (tgt/exp/app (tgt/exp/val VK) (tgt/val/zero))

T’ S’ V’ DX

<- d/sum d/0,1 DX D’.

tgt/evalK/get

: tgt/evalK TO S (tgt/cont/get (tgt/val/loc L) VK)

(tgt/tr/cons (tgt/act/get L V VK) T’) S’ V’ D’

<- tgt/store/get S L V

<- tgt/evalE TO S (tgt/exp/app (tgt/exp/val VK) V)

T’ S’ V’ DX

<- d/sum d/0,1 DX D’.

tgt/evalK/memo/miss

: tgt/evalK TO S (tgt/cont/memo E) (tgt/tr/cons (tgt/act/memo E) T’) S’ V’ D’

<- tgt/evalE TO S E T’ S’ V’ DX

<- d/sum d/0,1 DX D’.

tgt/evalK/memo/hit

: tgt/evalK (tgt/tro/some T) S (tgt/cont/memo E) (tgt/tr/cons (tgt/act/memo E) T’) S’ V’ D’

<- tgt/memo T E Te C

<- tgt/cp Te S T’ S’ V’ DX

<- d/sum (d C c/1) DX D’.

tgt/evalK/halt

: tgt/evalK TO S (tgt/cont/halt V) (tgt/tr/halt V) S V D’

<- tgt/trolen TO C

<- d/let (d C c/1) D’.

tgt/cp/put/reuse

: tgt/cp (tgt/tr/cons (tgt/act/put V L VK) T) S

(tgt/tr/cons (tgt/act/put V L VK) T’) S’ V’ D’

<- tgt/store/put S V L Sl

<- tgt/cp T Sl T’ S’ V’ D’.

tgt/cp/set/reuse

: tgt/cp (tgt/tr/cons (tgt/act/set L V VK) T) S

(tgt/tr/cons (tgt/act/set L V VK) T’) S’ V’ D’

<- tgt/store/set S L V Sl

<- tgt/cp T Sl T’ S’ V’ D’.

tgt/cp/get/reuse

: tgt/cp (tgt/tr/cons (tgt/act/get L V VK) T) S

(tgt/tr/cons (tgt/act/get L V VK) T’) S’ V’ D’

<- tgt/store/get S L V

<- tgt/cp T S T’ S’ V’ D’.

tgt/cp/memo/reuse

: tgt/cp (tgt/tr/cons (tgt/act/memo E) T) S

(tgt/tr/cons (tgt/act/memo E) T’) S’ V’ D’

<- tgt/cp T S T’ S’ V’ D’.

tgt/cp/halt/reuse

: tgt/cp (tgt/tr/halt V) S (tgt/tr/halt V) S V d/0,0.

tgt/cp/change

67

: tgt/cp T S

T’ S’ V’ D’

<- tgt/reify T K

<- tgt/evalK (tgt/tro/some T) S K T’ S’ V’ D’.

68

[tgt-dynamic-lemmas.elf]

tgt/red-det

: tgt/red E V1

-> tgt/red E V2

-> tgt/val/eq V1 V2

-> type.

%mode tgt/red-det +Dr1 +Dr2 -Deq.

tgt/red-det/app

: tgt/val/eq (tgt/val/fun FEE1) (tgt/val/fun FEE2)

-> tgt/val/eq VX1 VX2

-> tgt/red (FEE1 (tgt/val/fun FEE1) VX1) V1

-> tgt/red (FEE2 (tgt/val/fun FEE2) VX2) V2

-> tgt/val/eq V1 V2

-> type.

%mode tgt/red-det/app +DeqF +DeqX +DrA1 +DrA2 -Deq.

- : tgt/red-det

(tgt/red/val)

(tgt/red/val)

tgt/val/eq*.

- : tgt/red-det

(tgt/red/case-zero Dr1)

(tgt/red/case-zero Dr2)

Deq

<- tgt/red-det Dr1 Dr2 Deq.

- : tgt/red-det

(tgt/red/case-succ Dr1)

(tgt/red/case-succ Dr2)

Deq

<- tgt/red-det Dr1 Dr2 Deq.

- : tgt/red-det

(tgt/red/app DrA1 (DrF1 : tgt/red EF (tgt/val/fun FEE1)))

(tgt/red/app DrA2 (DrF2 : tgt/red EF (tgt/val/fun FEE2)))

Deq

<- tgt/red-det DrF1 DrF2 DeqF

<- tgt/red-det/app DeqF tgt/val/eq* DrA1 DrA2 Deq.

- : tgt/red-det/app

tgt/val/eq*

tgt/val/eq*

DrA1

DrA2

Deq

<- tgt/red-det DrA1 DrA2 Deq.

%worlds () (tgt/red-det _ _ _) (tgt/red-det/app _ _ _ _ _).

%total (DrA Dr) (tgt/red-det Dr _ _) (tgt/red-det/app _ _ DrA _ _).

tgt/evalE=>evalK

: tgt/evalE tgt/tro/none _ E T’ S’ V’ D’

-> tgt/evalK tgt/tro/none _ K’ T’ S’ V’ D’

-> type.

%mode tgt/evalE=>evalK +DevE -DevK’.

tgt/evalE=>evalK/red

: tgt/evalE=>evalK (tgt/evalE/red DevK _) DevK.

%worlds () (tgt/evalE=>evalK _ _).

%total {} (tgt/evalE=>evalK _ _).

%reduces DevK’ < DevE (tgt/evalE=>evalK DevE DevK’).

tgt/evalK=>evalE

: tgt/evalK tgt/tro/none _ K (tgt/tr/cons A’ T’) S’ V’ D’

-> tgt/evalE tgt/tro/none _ E’ T’ S’ V’ DX

-> d/sum d/0,1 DX D’

-> type.

%mode tgt/evalK=>evalE +DevK -DevE’ -Ddsum.

tgt/evalK=>evalE/put

: tgt/evalK=>evalE (tgt/evalK/put Ddsum DevE _) DevE Ddsum.

69

tgt/evalK=>evalE/set

: tgt/evalK=>evalE (tgt/evalK/set Ddsum DevE _) DevE Ddsum.

tgt/evalK=>evalE/get

: tgt/evalK=>evalE (tgt/evalK/get Ddsum DevE _) DevE Ddsum.

tgt/evalK=>evalE/memo-miss

: tgt/evalK=>evalE (tgt/evalK/memo/miss Ddsum DevE) DevE Ddsum.

%worlds () (tgt/evalK=>evalE _ _ _).

%total {} (tgt/evalK=>evalE _ _ _).

%reduces DevE < DevK (tgt/evalK=>evalE DevK DevE Ddsum).

tgt/evalE=>evalE

: tgt/evalE tgt/tro/none _ E (tgt/tr/cons A’ T’) S’ V’ D’

-> tgt/evalE tgt/tro/none _ E’ T’ S’ V’ DX

-> d/sum d/0,1 DX D’

-> type.

%mode tgt/evalE=>evalE +DevE -DevE’’ -Ddsum.

tgt/evalE=>evalE/-

: tgt/evalE=>evalE DevE DevE’’ Ddsum

<- tgt/evalE=>evalK DevE DevK’

<- tgt/evalK=>evalE DevK’ DevE’’ Ddsum.

%worlds () (tgt/evalE=>evalE _ _ _).

%total {} (tgt/evalE=>evalE _ _ _).

%reduces DevE’’ < DevE (tgt/evalE=>evalE DevE DevE’’ Ddsum).

tgt/evalK=>evalK

: tgt/evalK tgt/tro/none _ K (tgt/tr/cons A’ T’) S’ V’ D’

-> tgt/evalK tgt/tro/none _ K’ T’ S’ V’ DX

-> d/sum d/0,1 DX D’

-> type.

%mode tgt/evalK=>evalK +DevK -DevK’’ -Ddsum.

tgt/evalK=>evalK/-

: tgt/evalK=>evalK DevK DevK’’ Ddsum

<- tgt/evalK=>evalE DevK DevE’ Ddsum

<- tgt/evalE=>evalK DevE’ DevK’’.

%worlds () (tgt/evalK=>evalK _ _ _).

%total {} (tgt/evalK=>evalK _ _ _).

%reduces DevK’’ < DevK (tgt/evalK=>evalK DevK DevK’’ Ddsum).

tgt/evalE&act=>evalE

: tgt/evalE (tgt/tro/some T) S E T’ S’ V’ DX

-> {A: tgt/act} tgt/evalE (tgt/tro/some (tgt/tr/cons A T)) S E T’ S’ V’ D’

-> d/sum d/1,0 DX D’

-> type.

%mode tgt/evalE&act=>evalE +DevE +A -DevE’ -Ddsum.

tgt/evalK&act=>evalK

: tgt/evalK (tgt/tro/some T) S K T’ S’ V’ DX

-> {A: tgt/act} tgt/evalK (tgt/tro/some (tgt/tr/cons A T)) S K T’ S’ V’ D’

-> d/sum d/1,0 DX D’

-> type.

%mode tgt/evalK&act=>evalK +DevK +A -DevK’ -Ddsum.

- : tgt/evalE&act=>evalE (tgt/evalE/red DevK Dr) A

(tgt/evalE/red DevK’ Dr) Ddsum

<- tgt/evalK&act=>evalK DevK A DevK’ Ddsum.

- : tgt/evalK&act=>evalK (tgt/evalK/put DdsumP DevE Dp) A

(tgt/evalK/put DdsumP’ DevE’ Dp) Ddsum’

<- tgt/evalE&act=>evalE DevE A DevE’ Ddsum

<- d/sum/shuff Ddsum DdsumP DdsumP’ Ddsum’.

- : tgt/evalK&act=>evalK (tgt/evalK/set DdsumS DevE Ds) A

(tgt/evalK/set DdsumS’ DevE’ Ds) Ddsum’

<- tgt/evalE&act=>evalE DevE A DevE’ Ddsum

<- d/sum/shuff Ddsum DdsumS DdsumS’ Ddsum’.

- : tgt/evalK&act=>evalK (tgt/evalK/get DdsumS DevE Dg) A

70

(tgt/evalK/get DdsumS’ DevE’ Dg) Ddsum’

<- tgt/evalE&act=>evalE DevE A DevE’ Ddsum

<- d/sum/shuff Ddsum DdsumS DdsumS’ Ddsum’.

- : tgt/evalK&act=>evalK (tgt/evalK/memo/miss DdsumM DevE) A

(tgt/evalK/memo/miss DdsumM’ DevE’) Ddsum’

<- tgt/evalE&act=>evalE DevE A DevE’ Ddsum

<- d/sum/shuff Ddsum DdsumM DdsumM’ Ddsum’.

- : tgt/evalK&act=>evalK (tgt/evalK/memo/hit (d/sum/# DcsumL DcsumR) Dcp Dmemo) A

(tgt/evalK/memo/hit (d/sum/# (c/sum/s DcsumL) DcsumR) Dcp (tgt/memo/miss Dmemo)) d/sum/1,0.

- : tgt/evalK&act=>evalK (tgt/evalK/halt d/let# (tgt/trolen/some Dtrlen)) A

(tgt/evalK/halt d/let# (tgt/trolen/some (tgt/trlen/cons Dtrlen))) d/sum/1,0.

%worlds ()

(tgt/evalE&act=>evalE _ _ _ _)

(tgt/evalK&act=>evalK _ _ _ _).

%total {(DevE DevK)}

(tgt/evalE&act=>evalE DevE _ _ _)

(tgt/evalK&act=>evalK DevK _ _ _).

71

[tgt-trace-wf.elf]

%% trace well-formedness

tgt/trwf : tgt/tr -> type.

%name tgt/trwf Dtrwf.

tgt/trwf*

: tgt/trwf T

<- tgt/evalE tgt/tro/none S E T S’ V’ D’.

tgt/trwf/tl

: tgt/trwf (tgt/tr/cons _ T)

-> tgt/trwf T

-> type.

%mode tgt/trwf/tl +Dtrwf -Etrwf.

- : tgt/trwf/tl

(tgt/trwf* (tgt/evalE/red (tgt/evalK/put _ DevE _) _))

(tgt/trwf* DevE).

- : tgt/trwf/tl

(tgt/trwf* (tgt/evalE/red (tgt/evalK/set _ DevE _) _))

(tgt/trwf* DevE).

- : tgt/trwf/tl

(tgt/trwf* (tgt/evalE/red (tgt/evalK/get _ DevE _) _))

(tgt/trwf* DevE).

- : tgt/trwf/tl

(tgt/trwf* (tgt/evalE/red (tgt/evalK/memo/miss _ DevE) _))

(tgt/trwf* DevE).

%worlds () (tgt/trwf/tl _ _).

%total {} (tgt/trwf/tl _ _).

tgt/trwf/memo=>evalE

: tgt/trwf T

-> tgt/memo T E T’ C

-> tgt/evalE tgt/tro/none _ E T’ _ _ _

-> type.

%mode tgt/trwf/memo=>evalE +Dtrwf +Dmemo -DevE.

- : tgt/trwf/memo=>evalE

(tgt/trwf* (tgt/evalE/red (tgt/evalK/memo/miss _ DevE) _))

(tgt/memo/hit)

DevE.

- : tgt/trwf/memo=>evalE

Dtrwf

(tgt/memo/miss Dmemo)

DevE

<- tgt/trwf/tl Dtrwf Dtrwf’

<- tgt/trwf/memo=>evalE Dtrwf’ Dmemo DevE.

%worlds () (tgt/trwf/memo=>evalE _ _ _).

%total Dmemo (tgt/trwf/memo=>evalE _ Dmemo _).

tgt/trowf : tgt/tro -> type.

%name tgt/trowf Dtrowf.

tgt/trowf/none

: tgt/trowf (tgt/tro/none).

tgt/trowf/some

: tgt/trowf (tgt/tro/some T)

<- tgt/trwf T.

72

[tgt-memo-excl.elf]

tgt/memo-excl/trwf&memo=>evalE

: tgt/trwf T

-> tgt/memo T E T’ _

-> tgt/evalE tgt/tro/none S E T’ S’ V’ _

-> type.

%mode tgt/memo-excl/trwf&memo=>evalE +Dtrwf +Dmemo -EevE.

- : tgt/memo-excl/trwf&memo=>evalE

(tgt/trwf* (tgt/evalE/red (tgt/evalK/memo/miss _ DevE) _))

(tgt/memo/hit)

DevE.

- : tgt/memo-excl/trwf&memo=>evalE

Dtrwf

(tgt/memo/miss Dmemo)

EevE

<- tgt/trwf/tl Dtrwf Etrwf

<- tgt/memo-excl/trwf&memo=>evalE Etrwf Dmemo EevE.

%worlds () (tgt/memo-excl/trwf&memo=>evalE _ _ _).

%total Dmemo (tgt/memo-excl/trwf&memo=>evalE _ Dmemo _).

tgt/memo-excl/trowf&evalE=>evalE

: tgt/trowf TO

-> tgt/evalE TO S E T’ S’ V’ _

-> tgt/evalE tgt/tro/none S E T’ S’ V’ _

-> type.

tgt/memo-excl/trowf&evalK=>evalK

: tgt/trowf TO

-> tgt/evalK TO S K T’ S’ V’ _

-> tgt/evalK tgt/tro/none S K T’ S’ V’ _

-> type.

tgt/memo-excl/evalE&cp=>evalE

: tgt/evalE tgt/tro/none S1 E T1’ S1’ V1’ _

-> tgt/cp T1’ S2 T2’ S2’ V2’ _

-> tgt/evalE tgt/tro/none S2 E T2’ S2’ V2’ _

-> type.

tgt/memo-excl/evalK&cp=>evalK

: tgt/evalK tgt/tro/none S1 K T1’ S1’ V1’ _

-> tgt/cp T1’ S2 T2’ S2’ V2’ _

-> tgt/evalK tgt/tro/none S2 K T2’ S2’ V2’ _

-> type.

%mode tgt/memo-excl/trowf&evalE=>evalE +Dtrowf +DevE -EevE.

%mode tgt/memo-excl/trowf&evalK=>evalK +Dtrowf +DevK -EevK.

%mode tgt/memo-excl/evalE&cp=>evalE +DevE +Dcp -EevE.

%mode tgt/memo-excl/evalK&cp=>evalK +DevK +Dcp -EevK.

- : tgt/memo-excl/trowf&evalE=>evalE

Dtrowf

(tgt/evalE/red DevK Dr)

(tgt/evalE/red EevK Dr)

<- tgt/memo-excl/trowf&evalK=>evalK Dtrowf DevK EevK.

- : tgt/memo-excl/trowf&evalK=>evalK

Dtrowf

(tgt/evalK/put _ DevE Du)

(tgt/evalK/put d/sum/0,1 EevE Du)

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf DevE EevE.

- : tgt/memo-excl/trowf&evalK=>evalK

Dtrowf

(tgt/evalK/set _ DevE Ds)

(tgt/evalK/set d/sum/0,1 EevE Ds)

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf DevE EevE.

- : tgt/memo-excl/trowf&evalK=>evalK

Dtrowf

73

(tgt/evalK/get _ DevE Dr)

(tgt/evalK/get d/sum/0,1 EevE Dr)

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf DevE EevE.

- : tgt/memo-excl/trowf&evalK=>evalK

Dtrowf

(tgt/evalK/memo/miss _ DevE)

(tgt/evalK/memo/miss d/sum/0,1 EevE)

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf DevE EevE.

- : tgt/memo-excl/trowf&evalK=>evalK

(tgt/trowf/some Dtrwf)

(tgt/evalK/memo/hit _ Dcp Dmemo)

(tgt/evalK/memo/miss d/sum/0,1 EevE)

<- tgt/memo-excl/trwf&memo=>evalE Dtrwf Dmemo EevE’

<- tgt/memo-excl/evalE&cp=>evalE EevE’ Dcp EevE.

- : tgt/memo-excl/trowf&evalK=>evalK

Dtrowf

(tgt/evalK/halt d/let# _)

(tgt/evalK/halt d/let# tgt/trolen/none).

- : tgt/memo-excl/evalE&cp=>evalE

(tgt/evalE/red DevK Dr)

Dcp

(tgt/evalE/red EevK Dr)

<- tgt/memo-excl/evalK&cp=>evalK DevK Dcp EevK.

- : tgt/memo-excl/evalK&cp=>evalK

(tgt/evalK/put _ DevE _)

(tgt/cp/put/reuse Dcp Du)

(tgt/evalK/put d/sum/0,1 EevE Du)

<- tgt/memo-excl/evalE&cp=>evalE DevE Dcp EevE.

- : tgt/memo-excl/evalK&cp=>evalK

(tgt/evalK/put _ DevE Dp)

(tgt/cp/change DevK Dreify)

EevK

<- tgt/memo-excl/trowf&evalK=>evalK (tgt/trowf/some (tgt/trwf* (tgt/evalE/red (tgt/evalK/put d/sum/0,1 DevE Dp) tgt/red/val)))

DevK EevK.

- : tgt/memo-excl/evalK&cp=>evalK

(tgt/evalK/set _ DevE _)

(tgt/cp/set/reuse Dcp Dw)

(tgt/evalK/set d/sum/0,1 EevE Dw)

<- tgt/memo-excl/evalE&cp=>evalE DevE Dcp EevE.

- : tgt/memo-excl/evalK&cp=>evalK

(tgt/evalK/set _ DevE Ds)

(tgt/cp/change DevK Dreify)

EevK

<- tgt/memo-excl/trowf&evalK=>evalK (tgt/trowf/some (tgt/trwf* (tgt/evalE/red (tgt/evalK/set d/sum/0,1 DevE Ds) tgt/red/val)))

DevK EevK.

- : tgt/memo-excl/evalK&cp=>evalK

(tgt/evalK/get _ DevE _)

(tgt/cp/get/reuse Dcp Dr)

(tgt/evalK/get d/sum/0,1 EevE Dr)

<- tgt/memo-excl/evalE&cp=>evalE DevE Dcp EevE.

- : tgt/memo-excl/evalK&cp=>evalK

(tgt/evalK/get _ DevE Dg)

(tgt/cp/change DevK Dreify)

EevK

<- tgt/memo-excl/trowf&evalK=>evalK (tgt/trowf/some (tgt/trwf* (tgt/evalE/red (tgt/evalK/get d/sum/0,1 DevE Dg) tgt/red/val)))

DevK EevK.

- : tgt/memo-excl/evalK&cp=>evalK

(tgt/evalK/memo/miss _ DevE)

(tgt/cp/memo/reuse Dcp)

(tgt/evalK/memo/miss d/sum/0,1 EevE)

<- tgt/memo-excl/evalE&cp=>evalE DevE Dcp EevE.

- : tgt/memo-excl/evalK&cp=>evalK

(tgt/evalK/memo/miss _ DevE)

74

(tgt/cp/change DevK Dreify)

EevK

<- tgt/memo-excl/trowf&evalK=>evalK (tgt/trowf/some (tgt/trwf* (tgt/evalE/red (tgt/evalK/memo/miss d/sum/0,1 DevE) tgt/red/val)))

DevK EevK.

- : tgt/memo-excl/evalK&cp=>evalK

(tgt/evalK/halt d/let# _)

tgt/cp/halt/reuse

(tgt/evalK/halt d/let# tgt/trolen/none).

- : tgt/memo-excl/evalK&cp=>evalK

((tgt/evalK/halt Ddlet Dtrolen): tgt/evalK _ S _ _ S V’ _)

(tgt/cp/change DevK Dreify)

EevK

<- tgt/memo-excl/trowf&evalK=>evalK

(tgt/trowf/some (tgt/trwf* (tgt/evalE/red ((tgt/evalK/halt Ddlet Dtrolen): tgt/evalK _ S _ _ S V’ _) tgt/red/val)))

DevK EevK.

%worlds ()

(tgt/memo-excl/trowf&evalE=>evalE _ _ _)

(tgt/memo-excl/trowf&evalK=>evalK _ _ _)

(tgt/memo-excl/evalE&cp=>evalE _ _ _)

(tgt/memo-excl/evalK&cp=>evalK _ _ _).

%total {(DevE1 DevK2 Dcp3 Dcp4) (DevE1 DevK2 DevE3 DevK4)}

(tgt/memo-excl/trowf&evalE=>evalE Dtrowf1 DevE1 EevE1)

(tgt/memo-excl/trowf&evalK=>evalK Dtrowf2 DevK2 EevK2)

(tgt/memo-excl/evalE&cp=>evalE DevE3 Dcp3 EevE3)

(tgt/memo-excl/evalK&cp=>evalK DevK4 Dcp4 EevK4).

75

[tgt-memo-incl.elf]

tgt/memo-incl/evalE

: tgt/evalE tgt/tro/none S E T’ S’ V’ _

-> {TO: tgt/tro} tgt/evalE TO S E T’ S’ V’ D’

-> type.

tgt/memo-incl/evalK

: tgt/evalK tgt/tro/none S K T’ S’ V’ _

-> {TO: tgt/tro} tgt/evalK TO S K T’ S’ V’ D’

-> type.

%mode tgt/memo-incl/evalE +DevE +TO -EevE.

%mode tgt/memo-incl/evalK +DevK +TO -EevK.

- : tgt/memo-incl/evalE

(tgt/evalE/red DevK Dr)

TO

(tgt/evalE/red EevK Dr)

<- tgt/memo-incl/evalK DevK TO EevK.

- : tgt/memo-incl/evalK

(tgt/evalK/put _ DevE Dp)

TO

(tgt/evalK/put d/sum/0,1 EevE Dp)

<- tgt/memo-incl/evalE DevE TO EevE.

- : tgt/memo-incl/evalK

(tgt/evalK/set _ DevE Ds)

TO

(tgt/evalK/set d/sum/0,1 EevE Ds)

<- tgt/memo-incl/evalE DevE TO EevE.

- : tgt/memo-incl/evalK

(tgt/evalK/get _ DevE Dg)

TO

(tgt/evalK/get d/sum/0,1 EevE Dg)

<- tgt/memo-incl/evalE DevE TO EevE.

- : tgt/memo-incl/evalK

(tgt/evalK/memo/miss _ DevE)

TO

(tgt/evalK/memo/miss d/sum/0,1 EevE)

<- tgt/memo-incl/evalE DevE TO EevE.

- : tgt/memo-incl/evalK

(tgt/evalK/halt d/let# _)

TO

(tgt/evalK/halt d/let# Dtrolen)

<- tgt/trolen/wit TO Dtrolen.

%worlds ()

(tgt/memo-incl/evalE _ _ _)

(tgt/memo-incl/evalK _ _ _).

%total (DevE1 DevK2)

(tgt/memo-incl/evalE DevE1 _ _)

(tgt/memo-incl/evalK DevK2 _ _).

76

[tgt-cp-consistent.elf]

tgt/cp-consistent/trowf&evalE&cp=>evalE*

: tgt/trowf TO

-> tgt/evalE TO _ E T1’ _ _ _

-> tgt/cp T1’ S2 T2’ S2’ V2’ _

-> tgt/evalE tgt/tro/none S2 E T2’ S2’ V2’ _

-> type.

tgt/cp-consistent/trowf&evalK&cp=>evalK*

: tgt/trowf TO

-> tgt/evalK TO _ K T1’ _ _ _

-> tgt/cp T1’ S2 T2’ S2’ V2’ _

-> tgt/evalK tgt/tro/none S2 K T2’ S2’ V2’ _

-> type.

%mode tgt/cp-consistent/trowf&evalE&cp=>evalE* +Dtrowf +DevE +Dcp -EevE.

%mode tgt/cp-consistent/trowf&evalK&cp=>evalK* +Dtrowf +DevK +Dcp -EevK.

- : tgt/cp-consistent/trowf&evalE&cp=>evalE* Dtrowf DevE Dcp EevE

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf DevE DevE’

<- tgt/memo-excl/evalE&cp=>evalE DevE’ Dcp EevE.

- : tgt/cp-consistent/trowf&evalK&cp=>evalK* Dtrowf DevK Dcp EevK

<- tgt/memo-excl/trowf&evalK=>evalK Dtrowf DevK EevK’

<- tgt/memo-excl/evalK&cp=>evalK EevK’ Dcp EevK.

%worlds ()

(tgt/cp-consistent/trowf&evalE&cp=>evalE* _ _ _ _)

(tgt/cp-consistent/trowf&evalK&cp=>evalK* _ _ _ _).

%total {}

(tgt/cp-consistent/trowf&evalE&cp=>evalE* _ _ _ _)

(tgt/cp-consistent/trowf&evalK&cp=>evalK* _ _ _ _).

% ---

% ---

% ---

tgt/cp-consistent/evalE&evalE=>cp

: tgt/exp/eq E1 E2

-> tgt/evalE tgt/tro/none S1 E1 T1’ _ _ _

-> tgt/evalE tgt/tro/none S2 E2 T2’ S2’ V2’ _

-> tgt/cp T1’ S2 T2’ S2’ V2’ _

-> type.

tgt/cp-consistent/evalK&evalK=>cp

: tgt/cont/eq K1 K2

-> tgt/evalK tgt/tro/none S1 K1 T1’ _ _ _

-> tgt/evalK tgt/tro/none S2 K2 T2’ S2’ V2’ _

-> tgt/cp T1’ S2 T2’ S2’ V2’ _

-> type.

%mode tgt/cp-consistent/evalE&evalE=>cp +DeqE +DevE1 +DevE2 -Dcp.

%mode tgt/cp-consistent/evalK&evalK=>cp +DeqK +DevK1 +DevK2 -Dcp.

- : tgt/cp-consistent/evalE&evalE=>cp

tgt/exp/eq*

(tgt/evalE/red DevK1 Dr1)

(tgt/evalE/red DevK2 Dr2)

Dcp

<- tgt/red-det Dr1 Dr2 DeqV

<- tgt/val/eq=>cont/eq DeqV DeqK

<- tgt/cp-consistent/evalK&evalK=>cp DeqK DevK1 DevK2 Dcp.

- : tgt/cp-consistent/evalK&evalK=>cp

tgt/cont/eq*

(tgt/evalK/put _ DevE1 _)

(tgt/evalK/put _ DevE2 Dp)

(tgt/cp/change (tgt/evalK/put d/sum/0,1 DevE2’ Dp) tgt/reify/put)

<- tgt/memo-incl/evalE DevE2 _ DevE2’.

77

- : tgt/cp-consistent/evalK&evalK=>cp

tgt/cont/eq*

(tgt/evalK/set _ DevE1 _)

(tgt/evalK/set _ DevE2 Ds)

(tgt/cp/change (tgt/evalK/set d/sum/0,1 DevE2’ Ds) tgt/reify/set)

<- tgt/memo-incl/evalE DevE2 _ DevE2’.

- : tgt/cp-consistent/evalK&evalK=>cp

tgt/cont/eq*

(tgt/evalK/get _ DevE1 _)

(tgt/evalK/get _ DevE2 Dg)

(tgt/cp/change (tgt/evalK/get d/sum/0,1 DevE2’ Dg) tgt/reify/get)

<- tgt/memo-incl/evalE DevE2 _ DevE2’.

- : tgt/cp-consistent/evalK&evalK=>cp

tgt/cont/eq*

(tgt/evalK/memo/miss _ DevE1)

(tgt/evalK/memo/miss _ DevE2)

(tgt/cp/memo/reuse Dcp)

<- tgt/cp-consistent/evalE&evalE=>cp

tgt/exp/eq*

DevE1

DevE2

Dcp.

- : tgt/cp-consistent/evalK&evalK=>cp

tgt/cont/eq*

(tgt/evalK/halt d/let# _)

(tgt/evalK/halt d/let# _)

(tgt/cp/halt/reuse).

%worlds ()

(tgt/cp-consistent/evalE&evalE=>cp _ _ _ _)

(tgt/cp-consistent/evalK&evalK=>cp _ _ _ _).

%total (DevE DevK)

(tgt/cp-consistent/evalE&evalE=>cp _ DevE _ _)

(tgt/cp-consistent/evalK&evalK=>cp _ DevK _ _).

% ---

% ---

% ---

tgt/cp-consistent/trowf&evalE&trowf&evalE=>cp*

: tgt/trowf TO1

-> tgt/evalE TO1 S1 E T1’ S1’ V1’ _

-> tgt/trowf TO2

-> tgt/evalE TO2 S2 E T2’ S2’ V2’ _

-> tgt/cp T1’ S2 T2’ S2’ V2’ _

-> tgt/cp T2’ S1 T1’ S1’ V1’ _

-> type.

tgt/cp-consistent/trowf&evalK&trowf&evalK=>cp*

: tgt/trowf TO1

-> tgt/evalK TO1 S1 K T1’ S1’ V1’ _

-> tgt/trowf TO2

-> tgt/evalK TO2 S2 K T2’ S2’ V2’ _

-> tgt/cp T1’ S2 T2’ S2’ V2’ _

-> tgt/cp T2’ S1 T1’ S1’ V1’ _

-> type.

%mode tgt/cp-consistent/trowf&evalE&trowf&evalE=>cp* +Dtrowf1 +DevE1 +Dtrowf2 +DevE2 -Dcp2 -Dcp1.

%mode tgt/cp-consistent/trowf&evalK&trowf&evalK=>cp* +Dtrowf1 +DevK1 +Dtrowf2 +DevK2 -Dcp2 -Dcp1.

- : tgt/cp-consistent/trowf&evalE&trowf&evalE=>cp* Dtrowf1 DevE1 Dtrowf2 DevE2 Dcp2 Dcp1

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf1 DevE1 DevE1’

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf2 DevE2 DevE2’

<- tgt/cp-consistent/evalE&evalE=>cp tgt/exp/eq* DevE1’ DevE2’ Dcp2

<- tgt/cp-consistent/evalE&evalE=>cp tgt/exp/eq* DevE2’ DevE1’ Dcp1.

78

- : tgt/cp-consistent/trowf&evalK&trowf&evalK=>cp* Dtrowf1 DevK1 Dtrowf2 DevK2 Dcp2 Dcp1

<- tgt/memo-excl/trowf&evalK=>evalK Dtrowf1 DevK1 DevK1’

<- tgt/memo-excl/trowf&evalK=>evalK Dtrowf2 DevK2 DevK2’

<- tgt/cp-consistent/evalK&evalK=>cp tgt/cont/eq* DevK1’ DevK2’ Dcp2

<- tgt/cp-consistent/evalK&evalK=>cp tgt/cont/eq* DevK2’ DevK1’ Dcp1.

%worlds ()

(tgt/cp-consistent/trowf&evalE&trowf&evalE=>cp* _ _ _ _ _ _)

(tgt/cp-consistent/trowf&evalK&trowf&evalK=>cp* _ _ _ _ _ _).

%total {}

(tgt/cp-consistent/trowf&evalE&trowf&evalE=>cp* _ _ _ _ _ _)

(tgt/cp-consistent/trowf&evalK&trowf&evalK=>cp* _ _ _ _ _ _).

% ---

% ---

% ---

79

[tgt-trace-diff.elf]

tgt/trdE : tgt/tr -> tgt/tr -> dist -> type.

%name tgt/trdE DtrdE.

%mode tgt/trdE +T1 +T2 -D.

tgt/trdCP : tgt/tr -> tgt/tr -> dist -> type.

%name tgt/trdCP DtrdCP.

%mode tgt/trdCP +T1 +T2 -D.

tgt/trdE/halt-halt

: tgt/trdE (tgt/tr/halt _) (tgt/tr/halt _) d/1,1.

tgt/trdE/memo

: tgt/trdE

(tgt/tr/cons (tgt/act/memo E) T1)

(tgt/tr/cons (tgt/act/memo E) T2)

D+

<- tgt/trdCP T1 T2 D

<- d/sum d/1,1 D D+.

tgt/trdE/cons-*

: tgt/trdE

(tgt/tr/cons _ T1)

T2

D+

<- tgt/trdE T1 T2 D

<- d/sum d/1,0 D D+.

tgt/trdE/*-cons

: tgt/trdE

T1

(tgt/tr/cons _ T2)

D+

<- tgt/trdE T1 T2 D

<- d/sum d/0,1 D D+.

tgt/trdCP/halt

: tgt/trdCP (tgt/tr/halt V) (tgt/tr/halt V) d/0,0.

tgt/trdCP/reuse

: tgt/trdCP

(tgt/tr/cons A T1)

(tgt/tr/cons A T2)

D

<- tgt/trdCP T1 T2 D.

tgt/trdCP/change

: tgt/trdCP T1 T2 D

<- tgt/trdE T1 T2 D.

%worlds () (tgt/trdE _ _ _) (tgt/trdCP _ _ _).

%total {(T11 T21) (T12 T22)}

(tgt/trdE T21 T22 _)

(tgt/trdCP T11 T12 _).

tgt/trdE/qsym : tgt/trdE T1 T2 D12 -> tgt/trdE T2 T1 D21 -> d/qsym D12 D21 -> type.

%mode tgt/trdE/qsym +DtrdE -DtrdE’ -Dqsym.

tgt/trdCP/qsym : tgt/trdCP T1 T2 D12 -> tgt/trdCP T2 T1 D21 -> d/qsym D12 D21 -> type.

%mode tgt/trdCP/qsym +DtrdCP -DtrdCP’ -Dqsym.

- : tgt/trdE/qsym tgt/trdE/halt-halt tgt/trdE/halt-halt d/qsym/#.

- : tgt/trdE/qsym (tgt/trdE/memo Ddsum DtrdCP) (tgt/trdE/memo Ddsum’ DtrdCP’) d/qsym/#

<- tgt/trdCP/qsym DtrdCP DtrdCP’ Dqsym

<- d/sum&qsym=>sum Ddsum d/qsym/# Dqsym d/qsym/# Ddsum’.

- : tgt/trdE/qsym (tgt/trdE/cons-* Ddsum DtrdE) (tgt/trdE/*-cons Ddsum’ DtrdE’) d/qsym/#

<- tgt/trdE/qsym DtrdE DtrdE’ Dqsym

<- d/sum&qsym=>sum Ddsum d/qsym/# Dqsym d/qsym/# Ddsum’.

- : tgt/trdE/qsym (tgt/trdE/*-cons Ddsum DtrdE) (tgt/trdE/cons-* Ddsum’ DtrdE’) d/qsym/#

<- tgt/trdE/qsym DtrdE DtrdE’ Dqsym

<- d/sum&qsym=>sum Ddsum d/qsym/# Dqsym d/qsym/# Ddsum’.

80

- : tgt/trdCP/qsym tgt/trdCP/halt tgt/trdCP/halt d/qsym/#.

- : tgt/trdCP/qsym (tgt/trdCP/reuse DtrdCP) (tgt/trdCP/reuse DtrdCP’) Dqsym

<- tgt/trdCP/qsym DtrdCP DtrdCP’ Dqsym.

- : tgt/trdCP/qsym (tgt/trdCP/change DtrdE) (tgt/trdCP/change DtrdE’) Dqsym

<- tgt/trdE/qsym DtrdE DtrdE’ Dqsym.

%worlds () (tgt/trdE/qsym _ _ _) (tgt/trdCP/qsym _ _ _).

%total {(T11 T21)} (tgt/trdE/qsym T21 _ _) (tgt/trdCP/qsym T11 _ _).

tgt/trdE/*-memo=>/res : tgt/tr -> tgt/exp -> tgt/tr -> dist -> type.

tgt/trdE/*-memo=>/res/memo-hit

: tgt/memo T1 E T0 C0

-> tgt/trdCP T0 T2 D’

-> d/sum (d C0 c/1) D’ D’’

-> tgt/trdE/*-memo=>/res T1 E T2 D’’.

tgt/trdE/*-memo=>/res/memo-miss

: tgt/trdE T1 T2 D’

-> d/sum d/0,1 D’ D’’

-> tgt/trdE/*-memo=>/res T1 E T2 D’’.

tgt/trdE/*-memo=>/cons-*

: {A1:tgt/act} {T1:tgt/tr} {E2:tgt/exp} {T2:tgt/tr} {CL:cost} {CR:cost}

tgt/trdE/*-memo=>/res T1 E2 T2 (d CL CR)

-> tgt/trdE/*-memo=>/res (tgt/tr/cons A1 T1) E2 T2 (d (c/s CL) CR)

-> type.

%mode tgt/trdE/*-memo=>/cons-* +A1 +T1 +E2 +T2 +CL +CR +R -R’.

- : tgt/trdE/*-memo=>/cons-* A1 T1 E2 T2 CL CR

(tgt/trdE/*-memo=>/res/memo-hit Dmemo DtrdCP (d/sum/# DcsumL DcsumR))

(tgt/trdE/*-memo=>/res/memo-hit (tgt/memo/miss Dmemo) DtrdCP (d/sum/# (c/sum/s DcsumL) DcsumR)).

- : tgt/trdE/*-memo=>/cons-* A1 T1 E2 T2 CL CR

(tgt/trdE/*-memo=>/res/memo-miss DtrdE (d/sum/# c/sum/z DcsumR))

(tgt/trdE/*-memo=>/res/memo-miss (tgt/trdE/cons-* d/sum/1,0 DtrdE) (d/sum/# c/sum/z DcsumR)).

%worlds () (tgt/trdE/*-memo=>/cons-* _ _ _ _ _ _ _ _).

%total {} (tgt/trdE/*-memo=>/cons-* _ _ _ _ _ _ _ _).

tgt/trdE/*-memo=>

: tgt/trdE T1 (tgt/tr/cons (tgt/act/memo E) T2) D

-> tgt/trdE/*-memo=>/res T1 E T2 D

-> type.

%mode tgt/trdE/*-memo=> +DtrdE -R.

- : tgt/trdE/*-memo=>

(tgt/trdE/memo Ddsum DtrdCP)

(tgt/trdE/*-memo=>/res/memo-hit tgt/memo/hit DtrdCP Ddsum).

- : tgt/trdE/*-memo=>

(tgt/trdE/*-cons Ddsum DtrdE)

(tgt/trdE/*-memo=>/res/memo-miss DtrdE Ddsum).

- : tgt/trdE/*-memo=>

(tgt/trdE/cons-* d/sum/1,0 DtrdE : tgt/trdE (tgt/tr/cons A T1) (tgt/tr/cons (tgt/act/memo E) T2) (d (c/s CL) CR))

R’

<- tgt/trdE/*-memo=> DtrdE R

<- tgt/trdE/*-memo=>/cons-*

A T1 E T2 CL CR

R

R’.

%worlds () (tgt/trdE/*-memo=> _ _).

%total DtrdE (tgt/trdE/*-memo=> DtrdE _).

tgt/trdE/halt-*=>eq&len

: tgt/trdE (tgt/tr/halt _) T2 (d C1 C2)

-> c/eq c/1 C1

-> tgt/trlen T2 C2

-> type.

%mode tgt/trdE/halt-*=>eq&len +DtrdE -Dceq -Dtrlen.

- : tgt/trdE/halt-*=>eq&len (tgt/trdE/halt-halt) c/eq# (tgt/trlen/halt).

- : tgt/trdE/halt-*=>eq&len (tgt/trdE/*-cons d/sum/0,1 DtrdE) Dceq (tgt/trlen/cons Dtrlen)

<- tgt/trdE/halt-*=>eq&len DtrdE Dceq Dtrlen.

81

%worlds () (tgt/trdE/halt-*=>eq&len _ _ _).

%total DtrdE (tgt/trdE/halt-*=>eq&len DtrdE _ _).

tgt/trdE/*-halt=>len&eq

: tgt/trdE T1 (tgt/tr/halt _) (d C1 C2)

-> tgt/trlen T1 C1

-> c/eq c/1 C2

-> type.

%mode tgt/trdE/*-halt=>len&eq +DtrdE -Dtrlen -Dceq.

- : tgt/trdE/*-halt=>len&eq (tgt/trdE/halt-halt) (tgt/trlen/halt) c/eq#.

- : tgt/trdE/*-halt=>len&eq (tgt/trdE/cons-* d/sum/1,0 DtrdE) (tgt/trlen/cons Dtrlen) Dceq

<- tgt/trdE/*-halt=>len&eq DtrdE Dtrlen Dceq .

%worlds () (tgt/trdE/*-halt=>len&eq _ _ _).

%total DtrdE (tgt/trdE/*-halt=>len&eq DtrdE _ _).

tgt/trdE/len=>halt-*

: tgt/trlen T2 C

-> {V:tgt/val} tgt/trdE (tgt/tr/halt V) T2 (d c/1 C)

-> type.

%mode tgt/trdE/len=>halt-* +Dtrlen +V -DtrdE.

- : tgt/trdE/len=>halt-* (tgt/trlen/halt) _ (tgt/trdE/halt-halt).

- : tgt/trdE/len=>halt-* (tgt/trlen/cons Dtrlen) _ (tgt/trdE/*-cons d/sum/0,1 DtrdE)

<- tgt/trdE/len=>halt-* Dtrlen _ DtrdE.

%worlds () (tgt/trdE/len=>halt-* _ _ _).

%total Dtrlen (tgt/trdE/len=>halt-* Dtrlen _ _).

tgt/trdE/len=>*-halt

: tgt/trlen T1 C

-> {V:tgt/val} tgt/trdE T1 (tgt/tr/halt V) (d C c/1)

-> type.

%mode tgt/trdE/len=>*-halt +Dtrlen +V -DtrdE.

- : tgt/trdE/len=>*-halt (tgt/trlen/halt) _ (tgt/trdE/halt-halt).

- : tgt/trdE/len=>*-halt (tgt/trlen/cons Dtrlen) _ (tgt/trdE/cons-* d/sum/1,0 DtrdE)

<- tgt/trdE/len=>*-halt Dtrlen _ DtrdE.

%worlds () (tgt/trdE/len=>*-halt _ _ _).

%total Dtrlen (tgt/trdE/len=>*-halt Dtrlen _ _).

tgt/trdE/consAs-*

: tgt/trdE (tgt/tr/cons (tgt/act/sact _) T1) T2 DX

-> tgt/trdE T1 T2 D

-> d/sum d/1,0 D DX

-> type.

%mode tgt/trdE/consAs-* +DtrdE -DtrdE’ -Ddsum.

- : tgt/trdE/consAs-* (tgt/trdE/cons-* Ddsum DtrdE) DtrdE Ddsum.

- : tgt/trdE/consAs-* (tgt/trdE/*-cons Ddsum DtrdE) (tgt/trdE/*-cons DdsumX DtrdE’) Ddsum’’

<- tgt/trdE/consAs-* DtrdE DtrdE’ Ddsum’

<- d/sum/combineA Ddsum Ddsum’ DdsumZ

<- d/sum/splitB DdsumZ DdsumX Ddsum’’.

%worlds () (tgt/trdE/consAs-* _ _ _).

%total DtrdE1 (tgt/trdE/consAs-* DtrdE1 _ _).

tgt/trdE/*-consAs

: tgt/trdE T1 (tgt/tr/cons (tgt/act/sact _) T2) DX

-> tgt/trdE T1 T2 D

-> d/sum d/0,1 D DX

-> type.

%mode tgt/trdE/*-consAs +DtrdE -DtrdE’ -Ddsum.

- : tgt/trdE/*-consAs (tgt/trdE/*-cons Ddsum DtrdE) DtrdE Ddsum.

- : tgt/trdE/*-consAs (tgt/trdE/cons-* Ddsum DtrdE) (tgt/trdE/cons-* DdsumX DtrdE’) Ddsum’’

<- tgt/trdE/*-consAs DtrdE DtrdE’ Ddsum’

<- d/sum/combineB Ddsum Ddsum’ DdsumZ

<- d/sum/splitA DdsumZ DdsumX Ddsum’’.

%worlds () (tgt/trdE/*-consAs _ _ _).

82

%total DtrdE1 (tgt/trdE/*-consAs DtrdE1 _ _).

tgt/trdE/consAs-consAs

: tgt/trdE (tgt/tr/cons (tgt/act/sact _) T1) (tgt/tr/cons (tgt/act/sact _) T2) DX

-> tgt/trdE T1 T2 D

-> d/sum d/1,1 D DX

-> type.

%mode tgt/trdE/consAs-consAs +DtrdE -DtrdE’ -Ddsum.

- : tgt/trdE/consAs-consAs (tgt/trdE/*-cons Ddsum DtrdE) DtrdE’ DdsumX

<- tgt/trdE/consAs-* DtrdE DtrdE’ Ddsum’

<- d/sum/combineA Ddsum Ddsum’ DdsumX.

- : tgt/trdE/consAs-consAs (tgt/trdE/cons-* Ddsum DtrdE) DtrdE’ DdsumX

<- tgt/trdE/*-consAs DtrdE DtrdE’ Ddsum’

<- d/sum/combineB Ddsum Ddsum’ DdsumX.

%worlds () (tgt/trdE/consAs-consAs _ _ _).

%total {} (tgt/trdE/consAs-consAs _ _ _).

tgt/trdE/memo&trdCP&sum=>trdE

: tgt/memo T1 E T0 C0

-> tgt/trdCP T0 T2 D’

-> d/sum (d C0 c/1) D’ D’’

-> tgt/trdE T1 (tgt/tr/cons (tgt/act/memo E) T2) D’’

-> type.

%mode tgt/trdE/memo&trdCP&sum=>trdE +Dmemo +DtrdCP +Dsum -DtrdE.

- : tgt/trdE/memo&trdCP&sum=>trdE (tgt/memo/hit) DtrdCP Ddsum (tgt/trdE/memo Ddsum DtrdCP).

- : tgt/trdE/memo&trdCP&sum=>trdE (tgt/memo/miss Dmemo) DtrdCP (d/sum/# (c/sum/s DcsumL) DcsumR) (tgt/trdE/cons-* d/sum/1,0 DtrdE)

<- tgt/trdE/memo&trdCP&sum=>trdE Dmemo DtrdCP (d/sum/# DcsumL DcsumR) DtrdE.

%worlds () (tgt/trdE/memo&trdCP&sum=>trdE _ _ _ _).

%total Dmemo (tgt/trdE/memo&trdCP&sum=>trdE Dmemo _ _ _).

83

[tgt-cp-cost.elf]

tgt/cp-cost/trwf&evalE&trdE=>evalE

: tgt/trwf T1’

-> tgt/evalE tgt/tro/none S2 E T2’ S2’ V2’ _

-> tgt/trdE T1’ T2’ D

-> tgt/evalE (tgt/tro/some T1’) S2 E T2’ S2’ V2’ D

-> type.

tgt/cp-cost/trwf&evalK&trdE=>evalK

: tgt/trwf T1’

-> tgt/evalK tgt/tro/none S2 K T2’ S2’ V2’ _

-> tgt/trdE T1’ T2’ D

-> tgt/evalK (tgt/tro/some T1’) S2 K T2’ S2’ V2’ D

-> type.

tgt/cp-cost/trwf&evalK&trdE=>evalK/memo

: tgt/trwf T1’

-> tgt/evalK tgt/tro/none S2 K (tgt/tr/cons (tgt/act/memo E) T2’) S2’ V2’ _

-> tgt/trdE T1’ (tgt/tr/cons (tgt/act/memo E) T2’) D -> tgt/trdE/*-memo=>/res T1’ E T2’ D

-> tgt/evalK (tgt/tro/some T1’) S2 K (tgt/tr/cons (tgt/act/memo E) T2’) S2’ V2’ D

-> type.

tgt/cp-cost/evalE&evalE&trdCP=>cp

: tgt/exp/eq E1 E2

-> tgt/evalE tgt/tro/none S1 E1 T1’ _ _ _

-> tgt/evalE tgt/tro/none S2 E2 T2’ S2’ V2’ _

-> tgt/trdCP T1’ T2’ D

-> tgt/cp T1’ S2 T2’ S2’ V2’ D

-> type.

tgt/cp-cost/evalK&evalK&trdCP=>cp

: tgt/cont/eq K1 K2

-> tgt/evalK tgt/tro/none S1 K1 T1’ _ _ _

-> tgt/evalK tgt/tro/none S2 K2 T2’ S2’ V2’ _

-> tgt/trdCP T1’ T2’ D

-> tgt/cp T1’ S2 T2’ S2’ V2’ D

-> type.

%mode tgt/cp-cost/trwf&evalE&trdE=>evalE +Dtrwf +DevE +DtrdE -DevE’.

%mode tgt/cp-cost/trwf&evalK&trdE=>evalK +Dtrwf +DevK +DtrdE -DevK’.

%mode tgt/cp-cost/trwf&evalK&trdE=>evalK/memo +Dtrwf +DevK +DtrdE +R -DevK’.

%mode tgt/cp-cost/evalE&evalE&trdCP=>cp +DeqE +DevE1 +DevE2 +DtrdCP -Dcp.

%mode tgt/cp-cost/evalK&evalK&trdCP=>cp +DeqK +DevK1 +DevK2 +DtrdCP -Dcp.

- : tgt/cp-cost/trwf&evalE&trdE=>evalE

Dtrwf

(tgt/evalE/red DevK Dr)

DtrdE

(tgt/evalE/red DevK’ Dr)

<- tgt/cp-cost/trwf&evalK&trdE=>evalK Dtrwf DevK DtrdE DevK’.

- : tgt/cp-cost/trwf&evalK&trdE=>evalK

Dtrwf

(tgt/evalK/put _ DevE Dw)

DtrdE

(tgt/evalK/put Ddsum’ DevE’ Dw)

<- tgt/trdE/*-consAs DtrdE DtrdE’ Ddsum’

<- tgt/cp-cost/trwf&evalE&trdE=>evalE Dtrwf DevE DtrdE’ DevE’.

- : tgt/cp-cost/trwf&evalK&trdE=>evalK

Dtrwf

(tgt/evalK/set _ DevE Dw)

DtrdE

(tgt/evalK/set Ddsum’ DevE’ Dw)

<- tgt/trdE/*-consAs DtrdE DtrdE’ Ddsum’

<- tgt/cp-cost/trwf&evalE&trdE=>evalE Dtrwf DevE DtrdE’ DevE’.

- : tgt/cp-cost/trwf&evalK&trdE=>evalK

Dtrwf

(tgt/evalK/get _ DevE Dw)

DtrdE

84

(tgt/evalK/get Ddsum’ DevE’ Dw)

<- tgt/trdE/*-consAs DtrdE DtrdE’ Ddsum’

<- tgt/cp-cost/trwf&evalE&trdE=>evalE Dtrwf DevE DtrdE’ DevE’.

- : tgt/cp-cost/trwf&evalK&trdE=>evalK

(Dtrwf : tgt/trwf T1’)

((tgt/evalK/memo/miss

Ddsum

(DevE : tgt/evalE tgt/tro/none S2 E T2’ S2’ V2’ _))

: tgt/evalK tgt/tro/none S2 (tgt/cont/memo E) (tgt/tr/cons (tgt/act/memo E) T2’) S2’ V2’ _)

(DtrdE : tgt/trdE T1’ (tgt/tr/cons (tgt/act/memo E) T2’) D)

(DevK’

: tgt/evalK (tgt/tro/some T1’) S2 (tgt/cont/memo E) (tgt/tr/cons (tgt/act/memo E) T2’) S2’ V2’ D)

<- tgt/trdE/*-memo=> DtrdE R

<- tgt/cp-cost/trwf&evalK&trdE=>evalK/memo Dtrwf (tgt/evalK/memo/miss Ddsum DevE) DtrdE R DevK’.

- : tgt/cp-cost/trwf&evalK&trdE=>evalK/memo

Dtrwf

(tgt/evalK/memo/miss _ DevE)

DtrdE (tgt/trdE/*-memo=>/res/memo-hit Dmemo DtrdCP’ Dsum)

(tgt/evalK/memo/hit Dsum Dcp Dmemo)

<- tgt/trwf/memo=>evalE Dtrwf Dmemo DevE’

<- tgt/cp-cost/evalE&evalE&trdCP=>cp tgt/exp/eq* DevE’ DevE DtrdCP’ Dcp.

- : tgt/cp-cost/trwf&evalK&trdE=>evalK/memo

Dtrwf

(tgt/evalK/memo/miss _ DevE)

DtrdE (tgt/trdE/*-memo=>/res/memo-miss DtrdE’ Ddsum’)

(tgt/evalK/memo/miss Ddsum’ DevE’)

<- tgt/cp-cost/trwf&evalE&trdE=>evalE Dtrwf DevE DtrdE’ DevE’.

- : tgt/cp-cost/trwf&evalK&trdE=>evalK

Dtrwf

(tgt/evalK/halt d/let# _)

DtrdE

(tgt/evalK/halt Ddlet (tgt/trolen/some Dtrlen))

<- tgt/trdE/*-halt=>len&eq DtrdE Dtrlen Dceq

<- d/let/ceq=> c/eq# Dceq Ddlet.

- : tgt/cp-cost/evalE&evalE&trdCP=>cp

tgt/exp/eq*

(tgt/evalE/red DevK1 Dr1)

(tgt/evalE/red DevK2 Dr2)

DtrdCP

Dcp

<- tgt/red-det Dr1 Dr2 DeqV

<- tgt/val/eq=>cont/eq DeqV DeqK

<- tgt/cp-cost/evalK&evalK&trdCP=>cp DeqK DevK1 DevK2 DtrdCP Dcp.

- : tgt/cp-cost/evalK&evalK&trdCP=>cp

tgt/cont/eq*

(tgt/evalK/put _ DevE1 _)

(tgt/evalK/put _ DevE2 Dp)

(tgt/trdCP/reuse DtrdCP)

(tgt/cp/put/reuse Dcp Dp)

<- tgt/cp-cost/evalE&evalE&trdCP=>cp tgt/exp/eq* DevE1 DevE2 DtrdCP Dcp.

- : tgt/cp-cost/evalK&evalK&trdCP=>cp

tgt/cont/eq*

(tgt/evalK/put _ DevE1 _)

(tgt/evalK/put _ DevE2 Dp)

(tgt/trdCP/change DtrdE)

(tgt/cp/change (tgt/evalK/put DdsumPX DevE’’ Dp) tgt/reify/put)

<- tgt/trdE/consAs-consAs DtrdE DtrdE’ DdsumP’

<- tgt/cp-cost/trwf&evalE&trdE=>evalE (tgt/trwf* DevE1) DevE2 DtrdE’ DevE’

<- tgt/evalE&act=>evalE DevE’ _ DevE’’ DdsumP’’

<- d/sum/split DdsumP’ DdsumP’’ DdsumPX.

- : tgt/cp-cost/evalK&evalK&trdCP=>cp

tgt/cont/eq*

(tgt/evalK/set _ DevE1 _)

85

(tgt/evalK/set _ DevE2 Ds)

(tgt/trdCP/reuse DtrdCP)

(tgt/cp/set/reuse Dcp Ds)

<- tgt/cp-cost/evalE&evalE&trdCP=>cp tgt/exp/eq* DevE1 DevE2 DtrdCP Dcp.

- : tgt/cp-cost/evalK&evalK&trdCP=>cp

tgt/cont/eq*

(tgt/evalK/set _ DevE1 _)

(tgt/evalK/set _ DevE2 Ds)

(tgt/trdCP/change DtrdE)

(tgt/cp/change (tgt/evalK/set DdsumPX DevE’’ Ds) tgt/reify/set)

<- tgt/trdE/consAs-consAs DtrdE DtrdE’ DdsumP’

<- tgt/cp-cost/trwf&evalE&trdE=>evalE (tgt/trwf* DevE1) DevE2 DtrdE’ DevE’

<- tgt/evalE&act=>evalE DevE’ _ DevE’’ DdsumP’’

<- d/sum/split DdsumP’ DdsumP’’ DdsumPX.

- : tgt/cp-cost/evalK&evalK&trdCP=>cp

tgt/cont/eq*

(tgt/evalK/get _ DevE1 _)

(tgt/evalK/get _ DevE2 Dg)

(tgt/trdCP/reuse DtrdCP)

(tgt/cp/get/reuse Dcp Dg)

<- tgt/cp-cost/evalE&evalE&trdCP=>cp tgt/exp/eq* DevE1 DevE2 DtrdCP Dcp.

- : tgt/cp-cost/evalK&evalK&trdCP=>cp

tgt/cont/eq*

(tgt/evalK/get _ DevE1 _)

(tgt/evalK/get _ DevE2 Dg)

(tgt/trdCP/change DtrdE)

(tgt/cp/change (tgt/evalK/get DdsumPX DevE’’ Dg) tgt/reify/get)

<- tgt/trdE/consAs-consAs DtrdE DtrdE’ DdsumP’

<- tgt/cp-cost/trwf&evalE&trdE=>evalE (tgt/trwf* DevE1) DevE2 DtrdE’ DevE’

<- tgt/evalE&act=>evalE DevE’ _ DevE’’ DdsumP’’

<- d/sum/split DdsumP’ DdsumP’’ DdsumPX.

- : tgt/cp-cost/evalK&evalK&trdCP=>cp

tgt/cont/eq*

(tgt/evalK/memo/miss _ DevE1)

(tgt/evalK/memo/miss _ DevE2)

(tgt/trdCP/reuse DtrdCP)

(tgt/cp/memo/reuse Dcp)

<- tgt/cp-cost/evalE&evalE&trdCP=>cp tgt/exp/eq* DevE1 DevE2 DtrdCP Dcp.

- : tgt/cp-cost/evalK&evalK&trdCP=>cp

tgt/cont/eq*

(tgt/evalK/memo/miss DdsumM1 DevE1)

(tgt/evalK/memo/miss DdsumM2 DevE2)

(tgt/trdCP/change DtrdE)

(tgt/cp/change DevK tgt/reify/memo)

<- tgt/cp-cost/trwf&evalK&trdE=>evalK

(tgt/trwf* (tgt/evalE/red (tgt/evalK/memo/miss DdsumM1 DevE1) tgt/red/val))

(tgt/evalK/memo/miss DdsumM2 DevE2)

DtrdE

DevK.

- : tgt/cp-cost/evalK&evalK&trdCP=>cp

tgt/cont/eq*

(tgt/evalK/halt d/let# _)

(tgt/evalK/halt d/let# _)

(tgt/trdCP/halt)

(tgt/cp/halt/reuse).

- : tgt/cp-cost/evalK&evalK&trdCP=>cp

tgt/cont/eq*

(tgt/evalK/halt d/let# _)

(tgt/evalK/halt d/let# Dtrolen)

(tgt/trdCP/change DtrdE)

(tgt/cp/change (tgt/evalK/halt d/let# (tgt/trolen/some tgt/trlen/halt)) tgt/reify/halt).

%worlds ()

(tgt/cp-cost/trwf&evalE&trdE=>evalE _ _ _ _)

(tgt/cp-cost/trwf&evalK&trdE=>evalK _ _ _ _)

86

(tgt/cp-cost/trwf&evalK&trdE=>evalK/memo _ _ _ _ _)

(tgt/cp-cost/evalE&evalE&trdCP=>cp _ _ _ _ _)

(tgt/cp-cost/evalK&evalK&trdCP=>cp _ _ _ _ _).

%total (DevEevalE DevKevalKMemo DevKevalK DevEcp DevKcp)

(tgt/cp-cost/trwf&evalE&trdE=>evalE _ DevEevalE _ _)

(tgt/cp-cost/trwf&evalK&trdE=>evalK/memo _ DevKevalKMemo _ _ _)

(tgt/cp-cost/trwf&evalK&trdE=>evalK _ DevKevalK _ _)

(tgt/cp-cost/evalE&evalE&trdCP=>cp _ _ DevEcp _ _)

(tgt/cp-cost/evalK&evalK&trdCP=>cp _ _ DevKcp _ _).

tgt/cp-cost/trowf&evalE&trowf&evalE&trdE=>evalE&evalE*

: tgt/trowf TO1

-> tgt/evalE TO1 S1 E1 T1’ S1’ V1’ _

-> tgt/trowf TO2

-> tgt/evalE TO2 S2 E2 T2’ S2’ V2’ _

-> tgt/trdE T1’ T2’ D12

-> tgt/evalE (tgt/tro/some T1’) S2 E2 T2’ S2’ V2’ D12

-> d/qsym D12 D21

-> tgt/evalE (tgt/tro/some T2’) S1 E1 T1’ S1’ V1’ D21

-> type.

%mode tgt/cp-cost/trowf&evalE&trowf&evalE&trdE=>evalE&evalE* +Dtrowf1 +DevE1 +Dtrowf2 +DevE2 +DtrdE12 -DevE2’ -Dqsym -DevE1’.

- : tgt/cp-cost/trowf&evalE&trowf&evalE&trdE=>evalE&evalE* Dtrowf1 DevE1 Dtrowf2 DevE2 DtrdE12 DevE2’ Dqsym DevE1’

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf1 DevE1 EevE1

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf2 DevE2 EevE2

<- tgt/cp-cost/trwf&evalE&trdE=>evalE (tgt/trwf* EevE1) EevE2 DtrdE12 DevE2’

<- tgt/trdE/qsym DtrdE12 DtrdE21 Dqsym

<- tgt/cp-cost/trwf&evalE&trdE=>evalE (tgt/trwf* EevE2) EevE1 DtrdE21 DevE1’.

%worlds () (tgt/cp-cost/trowf&evalE&trowf&evalE&trdE=>evalE&evalE* _ _ _ _ _ _ _ _).

%total {} (tgt/cp-cost/trowf&evalE&trowf&evalE&trdE=>evalE&evalE* _ _ _ _ _ _ _ _).

tgt/cp-cost/trowf&evalE&trowf&evalE&trdCP=>cp&cp*

: tgt/trowf TO1

-> tgt/evalE TO1 S1 E T1’ S1’ V1’ _

-> tgt/trowf TO2

-> tgt/evalE TO2 S2 E T2’ S2’ V2’ _

-> tgt/trdCP T1’ T2’ D12

-> tgt/cp T1’ S2 T2’ S2’ V2’ D12

-> d/qsym D12 D21

-> tgt/cp T2’ S1 T1’ S1’ V1’ D21

-> type.

%mode tgt/cp-cost/trowf&evalE&trowf&evalE&trdCP=>cp&cp* +Dtrowf1 +DevE1 +Dtrowf2 +DevE2 +DtrdCP12 -Dcp2’ -Dqsym -Dcp1’.

- : tgt/cp-cost/trowf&evalE&trowf&evalE&trdCP=>cp&cp* Dtrowf1 DevE1 Dtrowf2 DevE2 DtrdCP12 Dcp2’ Dqsym Dcp1’

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf1 DevE1 EevE1

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf2 DevE2 EevE2

<- tgt/cp-cost/evalE&evalE&trdCP=>cp tgt/exp/eq* EevE1 EevE2 DtrdCP12 Dcp2’

<- tgt/trdCP/qsym DtrdCP12 DtrdCP21 Dqsym

<- tgt/cp-cost/evalE&evalE&trdCP=>cp tgt/exp/eq* EevE2 EevE1 DtrdCP21 Dcp1’.

%worlds () (tgt/cp-cost/trowf&evalE&trowf&evalE&trdCP=>cp&cp* _ _ _ _ _ _ _ _).

%total {} (tgt/cp-cost/trowf&evalE&trowf&evalE&trdCP=>cp&cp* _ _ _ _ _ _ _ _).

% ---

% ---

% ---

tgt/cp-cost/trwf&evalE&evalE=>trdE

: tgt/trwf T1’

-> tgt/store/eq S21 S22

-> tgt/exp/eq E1 E2

-> tgt/evalE tgt/tro/none S21 E1 T2’ S2’ V2’ _

-> tgt/evalE (tgt/tro/some T1’) S22 E2 T2’ S2’ V2’ D

-> tgt/trdE T1’ T2’ D

-> type.

tgt/cp-cost/trwf&evalK&evalK=>trdE

: tgt/trwf T1’

87

-> tgt/store/eq S21 S22

-> tgt/cont/eq K1 K2

-> tgt/evalK tgt/tro/none S21 K1 T2’ S2’ V2’ _

-> tgt/evalK (tgt/tro/some T1’) S22 K2 T2’ S2’ V2’ D

-> tgt/trdE T1’ T2’ D

-> type.

tgt/cp-cost/evalE&evalE&cp=>trdCP

: tgt/store/eq S21 S22

-> tgt/exp/eq E1 E2

-> tgt/evalE tgt/tro/none S1 E1 T1’ _ _ _

-> tgt/evalE tgt/tro/none S21 E2 T2’ S2’ V2’ _

-> tgt/cp T1’ S22 T2’ S2’ V2’ D

-> tgt/trdCP T1’ T2’ D

-> type.

tgt/cp-cost/evalK&evalK&cp=>trdCP

: tgt/store/eq S21 S22

-> tgt/cont/eq K1 K2

-> tgt/evalK tgt/tro/none S1 K1 T1’ _ _ _

-> tgt/evalK tgt/tro/none S21 K2 T2’ S2’ V2’ _

-> tgt/cp T1’ S22 T2’ S2’ V2’ D

-> tgt/trdCP T1’ T2’ D

-> type.

%mode tgt/cp-cost/trwf&evalE&evalE=>trdE +Dtrwf +DeqS +DeqE +DevE +DevE’ -DtrdE.

%mode tgt/cp-cost/trwf&evalK&evalK=>trdE +Dtrwf +DeqS +DeqK +DevK +DevK’ -DtrdE.

%mode tgt/cp-cost/evalE&evalE&cp=>trdCP +DeqS +DeqE +DevE1 +DevE2 +Dcp -DtrdCP.

%mode tgt/cp-cost/evalK&evalK&cp=>trdCP +DeqS +DeqK +DevK1 +DevK2 +Dcp -DtrdCP.

- : tgt/cp-cost/trwf&evalE&evalE=>trdE

Dtrwf

DeqS

tgt/exp/eq*

(tgt/evalE/red DevK Dr)

(tgt/evalE/red DevK’ Dr’)

DtrdE

<- tgt/red-det Dr Dr’ DeqV

<- tgt/val/eq=>cont/eq DeqV DeqK

<- tgt/cp-cost/trwf&evalK&evalK=>trdE Dtrwf DeqS DeqK DevK DevK’ DtrdE.

- : tgt/cp-cost/trwf&evalK&evalK=>trdE

Dtrwf

DeqS

tgt/cont/eq*

(tgt/evalK/put _ DevE Dp)

(tgt/evalK/put DdsumP DevE’ Dp’)

(tgt/trdE/*-cons DdsumP DtrdE’)

<- tgt/store/put=>tgt/store/eq DeqS Dp Dp’ DeqS’

<- tgt/cp-cost/trwf&evalE&evalE=>trdE Dtrwf DeqS’ tgt/exp/eq* DevE DevE’ DtrdE’.

- : tgt/cp-cost/trwf&evalK&evalK=>trdE

Dtrwf

DeqS

tgt/cont/eq*

(tgt/evalK/set _ DevE Ds)

(tgt/evalK/set DdsumS DevE’ Ds’)

(tgt/trdE/*-cons DdsumS DtrdE’)

<- tgt/store/set=>tgt/store/eq DeqS Ds Ds’ DeqS’

<- tgt/cp-cost/trwf&evalE&evalE=>trdE Dtrwf DeqS’ tgt/exp/eq* DevE DevE’ DtrdE’.

- : tgt/cp-cost/trwf&evalK&evalK=>trdE

Dtrwf

DeqS

tgt/cont/eq*

(tgt/evalK/get _ DevE Dg)

(tgt/evalK/get DdsumG DevE’ Dg’)

(tgt/trdE/*-cons DdsumG DtrdE’)

<- tgt/cp-cost/trwf&evalE&evalE=>trdE Dtrwf DeqS tgt/exp/eq* DevE DevE’ DtrdE’.

- : tgt/cp-cost/trwf&evalK&evalK=>trdE

88

Dtrwf

DeqS

tgt/cont/eq*

(tgt/evalK/memo/miss _ DevE)

(tgt/evalK/memo/miss DdsumM DevE’)

(tgt/trdE/*-cons DdsumM DtrdE’)

<- tgt/cp-cost/trwf&evalE&evalE=>trdE Dtrwf DeqS tgt/exp/eq* DevE DevE’ DtrdE’.

- : tgt/cp-cost/trwf&evalK&evalK=>trdE

Dtrwf

DeqS

tgt/cont/eq*

(tgt/evalK/memo/miss _ DevE2)

(tgt/evalK/memo/hit Dsum Dcp Dmemo)

DtrdE

<- tgt/memo-excl/trwf&memo=>evalE Dtrwf Dmemo DevE1

<- tgt/cp-cost/evalE&evalE&cp=>trdCP DeqS tgt/exp/eq* DevE1 DevE2 Dcp DtrdCP

<- tgt/trdE/memo&trdCP&sum=>trdE Dmemo DtrdCP Dsum DtrdE.

- : tgt/cp-cost/trwf&evalK&evalK=>trdE

Dtrwf

DeqS

tgt/cont/eq*

(tgt/evalK/halt d/let# _)

(tgt/evalK/halt d/let# (tgt/trolen/some Dtrlen))

DtrdE

<- tgt/trdE/len=>*-halt Dtrlen _ DtrdE.

- : tgt/cp-cost/evalE&evalE&cp=>trdCP

DeqS

tgt/exp/eq*

(tgt/evalE/red DevK1 Dr1)

(tgt/evalE/red DevK2 Dr2)

Dcp

DtrdCP

<- tgt/red-det Dr1 Dr2 DeqV

<- tgt/val/eq=>cont/eq DeqV DeqK

<- tgt/cp-cost/evalK&evalK&cp=>trdCP DeqS DeqK DevK1 DevK2 Dcp DtrdCP.

- : tgt/cp-cost/evalK&evalK&cp=>trdCP

DeqS

tgt/cont/eq*

(tgt/evalK/put _ DevE1 _)

(tgt/evalK/put _ DevE2 Dp)

(tgt/cp/put/reuse Dcp Dp’)

(tgt/trdCP/reuse DtrdCP)

<- tgt/store/put=>tgt/store/eq DeqS Dp Dp’ DeqS’

<- tgt/cp-cost/evalE&evalE&cp=>trdCP DeqS’ tgt/exp/eq* DevE1 DevE2 Dcp DtrdCP.

- : tgt/cp-cost/evalK&evalK&cp=>trdCP

DeqS

tgt/cont/eq*

(tgt/evalK/put DsumP1 DevE1 Dp1)

(tgt/evalK/put DsumP2 DevE2 Dp2)

(tgt/cp/change DevK’ tgt/reify/put)

(tgt/trdCP/change DtrdE’)

<- tgt/cp-cost/trwf&evalK&evalK=>trdE

(tgt/trwf* (tgt/evalE/red (tgt/evalK/put DsumP1 DevE1 Dp1) tgt/red/val))

DeqS

tgt/cont/eq*

(tgt/evalK/put DsumP2 DevE2 Dp2)

DevK’

DtrdE’.

- : tgt/cp-cost/evalK&evalK&cp=>trdCP

DeqS

tgt/cont/eq*

(tgt/evalK/set _ DevE1 _)

(tgt/evalK/set _ DevE2 Ds)

89

(tgt/cp/set/reuse Dcp Ds’)

(tgt/trdCP/reuse DtrdCP)

<- tgt/store/set=>tgt/store/eq DeqS Ds Ds’ DeqS’

<- tgt/cp-cost/evalE&evalE&cp=>trdCP DeqS’ tgt/exp/eq* DevE1 DevE2 Dcp DtrdCP.

- : tgt/cp-cost/evalK&evalK&cp=>trdCP

DeqS

tgt/cont/eq*

(tgt/evalK/set DsumS1 DevE1 Ds1)

(tgt/evalK/set DsumS2 DevE2 Ds2)

(tgt/cp/change DevK’ tgt/reify/set)

(tgt/trdCP/change DtrdE’)

<- tgt/cp-cost/trwf&evalK&evalK=>trdE

(tgt/trwf* (tgt/evalE/red (tgt/evalK/set DsumS1 DevE1 Ds1) tgt/red/val))

DeqS

tgt/cont/eq*

(tgt/evalK/set DsumS2 DevE2 Ds2)

DevK’

DtrdE’.

- : tgt/cp-cost/evalK&evalK&cp=>trdCP

DeqS

tgt/cont/eq*

(tgt/evalK/get _ DevE1 _)

(tgt/evalK/get _ DevE2 Dg)

(tgt/cp/get/reuse Dcp Dg’)

(tgt/trdCP/reuse DtrdCP)

<- tgt/cp-cost/evalE&evalE&cp=>trdCP DeqS tgt/exp/eq* DevE1 DevE2 Dcp DtrdCP.

- : tgt/cp-cost/evalK&evalK&cp=>trdCP

DeqS

tgt/cont/eq*

(tgt/evalK/get DsumG1 DevE1 Dg1)

(tgt/evalK/get DsumG2 DevE2 Dg2)

(tgt/cp/change DevK’ tgt/reify/get)

(tgt/trdCP/change DtrdE’)

<- tgt/cp-cost/trwf&evalK&evalK=>trdE

(tgt/trwf* (tgt/evalE/red (tgt/evalK/get DsumG1 DevE1 Dg1) tgt/red/val))

DeqS

tgt/cont/eq*

(tgt/evalK/get DsumG2 DevE2 Dg2)

DevK’

DtrdE’.

- : tgt/cp-cost/evalK&evalK&cp=>trdCP

DeqS

tgt/cont/eq*

(tgt/evalK/memo/miss _ DevE1)

(tgt/evalK/memo/miss _ DevE2)

(tgt/cp/memo/reuse Dcp)

(tgt/trdCP/reuse DtrdCP)

<- tgt/cp-cost/evalE&evalE&cp=>trdCP DeqS tgt/exp/eq* DevE1 DevE2 Dcp DtrdCP.

- : tgt/cp-cost/evalK&evalK&cp=>trdCP

DeqS

tgt/cont/eq*

(tgt/evalK/memo/miss DdsumM1 DevE1)

(tgt/evalK/memo/miss DdsumM2 DevE2)

(tgt/cp/change DevK’ tgt/reify/memo)

(tgt/trdCP/change DtrdE’)

<- tgt/cp-cost/trwf&evalK&evalK=>trdE

(tgt/trwf* (tgt/evalE/red (tgt/evalK/memo/miss DdsumM1 DevE1) tgt/red/val))

DeqS

tgt/cont/eq*

(tgt/evalK/memo/miss DdsumM2 DevE2)

DevK’

DtrdE’.

- : tgt/cp-cost/evalK&evalK&cp=>trdCP

DeqS

tgt/cont/eq*

90

(tgt/evalK/halt _ _)

(tgt/evalK/halt _ _)

(tgt/cp/halt/reuse)

(tgt/trdCP/halt).

- : tgt/cp-cost/evalK&evalK&cp=>trdCP

DeqS

tgt/cont/eq*

(tgt/evalK/halt _ _)

(tgt/evalK/halt _ _)

(tgt/cp/change _ tgt/reify/halt)

(tgt/trdCP/change tgt/trdE/halt-halt).

%worlds ()

(tgt/cp-cost/trwf&evalE&evalE=>trdE _ _ _ _ _ _)

(tgt/cp-cost/trwf&evalK&evalK=>trdE _ _ _ _ _ _)

(tgt/cp-cost/evalE&evalE&cp=>trdCP _ _ _ _ _ _)

(tgt/cp-cost/evalK&evalK&cp=>trdCP _ _ _ _ _ _).

%total (DevEevalE DevKevalK DevEcp DevKcp)

(tgt/cp-cost/trwf&evalE&evalE=>trdE _ _ _ DevEevalE _ _)

(tgt/cp-cost/trwf&evalK&evalK=>trdE _ _ _ DevKevalK _ _)

(tgt/cp-cost/evalE&evalE&cp=>trdCP _ _ _ DevEcp _ _)

(tgt/cp-cost/evalK&evalK&cp=>trdCP _ _ _ DevKcp _ _).

tgt/cp-cost/trowf&evalE&trowf&evalE&evalE=>trdE*

: tgt/trowf TO1

-> tgt/evalE TO1 S1 E1 T1’ S1’ V1’ _

-> tgt/trowf TO2

-> tgt/evalE TO2 S2 E2 T2’ S2’ V2’ _

-> tgt/evalE (tgt/tro/some T1’) S2 E2 T2’ S2’ V2’ D12

-> tgt/trdE T1’ T2’ D12

-> type.

%mode tgt/cp-cost/trowf&evalE&trowf&evalE&evalE=>trdE* +Dtrowf1 +DevE1 +Dtrowf2 +DevE2 +DevE’ -DtrdE.

- : tgt/cp-cost/trowf&evalE&trowf&evalE&evalE=>trdE* Dtrowf1 DevE1 Dtrowf2 DevE2 DevE’ DtrdE

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf1 DevE1 EevE1

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf2 DevE2 EevE2

<- tgt/store/refl _ DeqS

<- tgt/cp-cost/trwf&evalE&evalE=>trdE (tgt/trwf* EevE1) DeqS tgt/exp/eq* EevE2 DevE’ DtrdE.

%worlds () (tgt/cp-cost/trowf&evalE&trowf&evalE&evalE=>trdE* _ _ _ _ _ _).

%total {} (tgt/cp-cost/trowf&evalE&trowf&evalE&evalE=>trdE* _ _ _ _ _ _).

tgt/cp-cost/trowf&evalE&trowf&evalE&cp=>trdCP*

: tgt/trowf TO1

-> tgt/evalE TO1 S1 E T1’ S1’ V1’ _

-> tgt/trowf TO2

-> tgt/evalE TO2 S2 E T2’ S2’ V2’ _

-> tgt/cp T1’ S2 T2’ S2’ V2’ D12

-> tgt/trdCP T1’ T2’ D12

-> type.

%mode tgt/cp-cost/trowf&evalE&trowf&evalE&cp=>trdCP* +Dtrowf1 +DevE1 +Dtrowf2 +DevE2 +Dcp’ -DtrdCP.

- : tgt/cp-cost/trowf&evalE&trowf&evalE&cp=>trdCP* Dtrowf1 DevE1 Dtrowf2 DevE2 Dcp’ DtrdCP

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf1 DevE1 EevE1

<- tgt/memo-excl/trowf&evalE=>evalE Dtrowf2 DevE2 EevE2

<- tgt/store/refl _ DeqS

<- tgt/cp-cost/evalE&evalE&cp=>trdCP DeqS tgt/exp/eq* EevE1 EevE2 Dcp’ DtrdCP.

%worlds () (tgt/cp-cost/trowf&evalE&trowf&evalE&cp=>trdCP* _ _ _ _ _ _).

%total {} (tgt/cp-cost/trowf&evalE&trowf&evalE&cp=>trdCP* _ _ _ _ _ _).

91

