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Abstract

This paper presents an automated, online approach to anomaly detection in high-content screening assays for
pharmaceutical research. Online detection of anomalies is attractive because it offers the possibility of im-
mediate corrective action, early termination, and redesign of assays that may require many hours or days to
execute. The proposed approach employs assay-specific image processing within an assay-independent frame-
work for distributed control, machine learning, and anomaly reporting. Specifically, we exploit coarse-grained
parallelism to distribute image processing over several computing nodes while efficiently aggregating sufficient
statistics across nodes. This architecture also allows us to easily handle geographically-distributed data sources.
Our results from two applications, adipocyte quantitation and neurite growth estimation, confirm that this online
approach to anomaly detection is feasible, efficient, and accurate.
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1 Introduction
The science of anomaly detection plays an increasingly important role in pharmaceutical research organi-

zations, both as a research tool and as a process control tool. In research, experiments are designed to sys-
tematically explore a large space of parameters and to detect rare outcomes that merit deeper investigation. In
process control, anomaly detection is used to explore and discover metrics and methods that lead to more formal
quality-control measures.

High-content screening (HCS) refers to those biological assays that run with a high degree of automation,
contain large numbers of parallel experiments (typically 104–106), and primarily generate image data for further
analysis. For example, so-called silencing RNA (siRNA) experiments may simultaneously use up to 30,000
RNAs to investigate the knock-down of every known gene [6, 5]. Anomalies, in this instance, may be those
genes that cause unusual or important phenotypes that are characteristic of a specific disease. Large chemical
libraries may substitute for siRNA-induced changes in pathway fluxes in treated cells, leading to anomalies in
cell morphology or more deliberate fluorescence readouts. The same readouts used for finding differences in
cell functions may also hint about the quality of the experiments themselves. For example, a loss of reagent
potency may lead to patterns in the cell expression that are anomalous in a different and systematic manner.

In this paper, we describe an automated, online approach to anomaly detection in HCS assays. The term
“online” refers to an approach that naturally lends itself to data processing and anomaly reporting in a continuous
manner, while an HCS assay is still in progress. This is in contrast to approaches that defer anomaly detection
until the completion of the assay. Online anomaly detection is attractive because it offers the possibility of early
corrective action or early termination and redesign of assays that may run continuously for many hours or days.

Our approach uses assay-specific image processing within an assay-independent framework for distributed
control, machine learning and anomaly reporting. This clean separation of assay-specific and assay-independent
aspects of anomaly detection is made possible by our use of the OpenDiamond platform for distributed search [9,
1]. The image processing is performed by code components called searchlets that execute on servers close to the
points of data collection. For each image of cells in a well, a searchlet generates a list of quantitative descriptors
that are assay-specific. For example, in one assay, the total number of cells in a well, the average diameter of
cells in that well, and the number of malformed cells in the well might all be descriptors. It is the values of
these descriptors that define the data ranges over which anomaly detection is performed. One can thus view
the descriptors as defining the universe of discourse over which anomaly detection is performed. Our approach
is friendly to parallel processing, since the compute-intensive image analysis, generation of descriptors and
statistics local to wells may be performed in parallel without coordination. It is only the summation and global
analysis of this information, which is a computationally lightweight task, that needs to be serialized.

2 Background and Related Work
Anomaly detection is a broad concept, with applications ranging from network intrusion detection [3] to

autonomous inspection of power plants [8]. While there has been work in anomaly detection for biomedical and
pharmaceutical applications [4, 13], we are not aware of any work on detecting anomalies in an online setting
across a large and growing collection of high-resolution images distributed across multiple computers.

Online learning is highly adaptive and highly scalable, and is implemented by an incremental algorithm that
sweeps through a sequence of data items only once. On each data item, the learner makes a prediction and
receives feedback so that training and testing take place at the same time. By its very nature, online anomaly
detection is more susceptible to errors since early reports of anomalies are necessarily based on smaller samples
of observed data. In spite of this intrinsic limitation, online detection seems to be an unavoidable choice when
dealing with very large datasets and/or when the datasets are rapidly changing. There are a number of simple
but robust online learning algorithms [14, 17, 15] that work well even when no statistical assumptions are
made about the process producing the observed data. Many of these algorithms benefit from the early work of
Littlestone [11, 12], and Vovk [16].
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3 A Framework For Anomaly Detection
To enable anomaly screening at interactive speed, the adaptive learning algorithm has to be embedded in an

efficient distributed infrastructure for compute-intensive tasks. Our anomaly detection framework is based on
the OpenDiamond platform [9]. This is an open-source platform for distributed search of complex data that we
have extended to support online anomaly detection. The platform is domain-independent: assay-specific aspects
of user interaction and image processing are isolated within an OpenDiamond application. Each application
defines a set of descriptors that determines the types of anomalies that are detectable. An anomaly is statistical
outlier with respect to the descriptor set.

For each descriptor, the OpenDiamond platform maintains a compact set of statistics, namely, the mean and
standard deviation accumulated in the form of the count, sum, and sum of squares. A compact data representa-
tion is needed for performance: the size of the descriptor data must be constant with respect to the number of
images processed. For online anomaly detection, an initial estimate of each descriptor is created by processing a
number of images determined by a configurable priming count. These initial images are not subject to anomaly
detection, but may be revisited and reprocessed later in the session. Descriptor statistics accumulated during a
session can be saved and reused for future examinations of the data set.

As mentioned earlier, the OpenDiamond platform supports image processing on data servers through code
components called searchlets. The searchlet is logically part of an application, the remainder of which runs on a
client for user interaction. Descriptor statistics are calculated by the searchlet as part of image processing. The
searchlet examines the existing descriptor statistics to determine if an image is anomalous, and if so, it writes
additional data called attributes that indicate the nature and extent of the anomaly. The OpenDiamond platform
conveys anomalous images along with their attributes to the client.

Our framework is well suited for parallel computation in that the OpenDiamond platform supports distribu-
tion of data and processing over a set of servers. Each server processes a subset of the data independently of
other servers. A risk of this approach is that the descriptor statistics may differ substantially across servers, lead-
ing to non-uniform detection results compared to a single server. In addition, more images are needed to prime
the descriptor statistics. We address these issues by sharing the priming count and descriptor statistics across
servers. The client coordinates this sharing by periodically collecting, aggregating, and distributing the data
across servers. The time to perform sharing is typically less than the time to process a single image; therefore,
the time lag for shared data is small. The sharing period is configurable; the work in this paper used a sharing
period of 5 seconds. In this way, anomaly detection applications realize the benefits of parallel processing with
no loss of statistical accuracy.

An important aspect of the framework is its ability to accomodate a wide variety of implementation methods
for image processing. For example, the searchlet code for adipocyte images, described in section 4.1, is imple-
mented in C++. In contrast, the searchlet code for neurite images, described in section 4.2, is implemented as a
collection of ImageJ macros [2]. This diversity demonstrates the flexibility and extensibility of the framework.

4 Applications
We have validated our framework by applying it to two different problems: adipocyte quantitation and

neurite growth estimation.

4.1 Detecting Anomalies in Adipocyte Images

Adipocytes, or fat cells, serve as reservoirs of energy in humans and are tightly regulated both in size and
number. Significant alteration in body mass involves changes in both adipocyte size and number. In the field of
lipid research, techniques are needed to locate and quantitate adipocytes in large repositories of cell microscopy
images.
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(a) Normal (b) Anomalous

Figure 1: Example Adipocyte Images

4.1.1 Data Collection
This work is based on high-resolution images of unfixed live adipocytes in suspension. Example images

are shown in Figure 1. A live adipocyte suspension was prepared using collegenase to separate the cells from
adipose tissue. A small drop of the suspension was placed on a slide with a circular ridge of silicone grease.
The cells typically floated to the top of the drop, where they could be viewed on a Nikon Diaphot microscope
and photographed with a 14-megapixel Kodak DCS Pro14n digital camera.

4.1.2 Image Processing
Because adipocytes in suspension are typically circular, they are located in the images by searching for

elliptical objects. Quantitation is semi-automated; an investigator defines a reference adipocyte that takes into
account variations in cell size, shape, and focus.

Adipocytes are located as follows. First, an image pyramid is built by scaling down the high-resolution
images to enable efficient detection of large features. Then, a Canny-style edge detector is applied that uses
color contrast gradients rather than grayscale contrast. The resulting binary edge images are used as input to an
ellipse extraction algorithm that can locate overlapping and partially occluded cells [10]. The results from all
pyramid levels are merged and duplicate detections are eliminated. Finally, statistics such as the cell count and
cell size distribution are generated. Further details on locating adipocytes can be found in Goode et al. [7].

Anomalies in the adipocyte images are detected based on the cell count, the fraction of the image covered by
cells, and the first four statistical moments of cell size and shape (eccentricity). Figure 2 shows an application
for detecting anomalies in adipocyte images based on the framework described in Section 3. The user selects
descriptors on the left panel, configures the priming count, and starts the search. Anomalous images are shown
as the search progresses. In the example shown, approximately 3% of the 1697 images searched were declared
anomalous.

4.2 Detecting Anomalies in Neurite Images

Cells of the central nervous system, such as neurons and oligodendrocytes, have neurite processes that are
involved in the synaptic function of nerves. Many human cognitive diseases cause or result in the degradation
of neuronal cell health. In vitro imaging assays using cell culture models can utilize the status of neurites as a
surrogate measure of cell health. The ability to measure neurite outgrowth enables identification of compounds
and/or siRNAs that influence cell health or survival; increased neurite number and length correspond to in-
creased cell health. In typical cell microscopy images (Figure 3), neurites appear as low-contrast linear features
branching from high-contrast neuron bodies.

4.2.1 Data Collection
This work uses neuronal stem cells, which have the ability to differentiate into cells of the central nervous

system (neurons, astrocytes and oligodendrocytes). As these undifferentiated neuronal stem cells undergo the
differentiation process, they extend neurites. The length of the neurites is a measure of the differentiation state.
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Figure 2: Screenshot of Anomaly Detection Application

Neuronal stem cells were routinely cultured in the undifferentiated state using a defined growth media con-
taining RHB-A media (Stem Cell Sciences; Cambridge, UK), supplemented with FGF2 and EGF (Peprotech;
Rocky Hill, NJ). To image undifferentiated neuronal stem cells, cells were seeded on uncoated 384 well plates
in growth media. After 24 hours, cells were fixed in a final solution of 4% paraformaldehyde. To image differ-
entiated neuronal lineages, cells were seeded on Laminin coated 384 well plates in growth media for the first 24
hours. After 24 hours, media was changed to differentiation media which was similar to that of growth media,
but only supplemented with low amounts of FGF2. Media was changed every 2 days for the entire differentia-
tion period. Differentiation periods took place over 1–3 weeks, followed by fixation with 4% paraformaldehyde.
Brightfield images were captured on an ImageXpress Micro (Molecular Devices, Sunnyvale, CA) using a 10x
Nikon Plan Fluor DL objective.

4.2.2 Image Processing

Anomalies in neurite images are evidenced by differences between expected and observed attributes, such
as numbers, shapes, or density of neurites. Specifically, we characterize anomalies according to the following
criteria: total number of neurites observed in the image; the aggregate lengths of these neurites; the number of
cells (identified by cell bodies) detected in the image; the average size (area in pixels) occupied by such cells;
the ratio of neurites to cell bodies; the total area of the image occupied by neurites; and ratio neurite area to
neural cell body area.

The image processing required to extract these attributes is summarized as follows. First, we identify and
mask out pixels corresponding to cell bodies. This is accomplished by a straightforward adaptive thresholding
procedure that exploits the fact that cell bodies correspond to high-intensity regions in the image. Once the cell
bodies have been masked out, the relatively low contrast between neurite pixels and the background becomes
can be enhanced so as to segment them. A series of classical image processing steps (morphological filtering
followed by connected components analysis) then produces a usable set of neurites. Neurites can still occasion-
ally be oversegmented into multiple components, but our experiments indicate that this bias is not sufficiently
severe as to impair the detection of anomalies. Finally, we compute statistics from the extracted neurites and
neural cell bodies.
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(a) Undifferentiated cells (b) Segmented undiff. image

(c) Differentiated cells (d) Segmented diff. image

Figure 3: Examples from the neurite growth domain. Two conditions from the same well are
shown (temporally spaced): undifferentiated cells (a) and differentiated cells (c). The
segmented versions of those images are shown in (b) and (d), respectively; detected
neurites are evident as bright linear features, cell bodies as dark spots.

5 Evaluation
We compare our online distributed approach against traditional anomaly detection, both in terms of accuracy

and speed, on each of our two application domains.
Our first set of experiments (Figure 4) explores how the size of the priming set affects accuracy. We char-

acterize accuracy both in terms of false positives (normal images incorrectly flagged as anomalous) and false
negatives (anomalous images that were missed). We define ground truth to be the output of a two-pass offline
anomaly detection system that gathers statistics over the entire data set in the first pass and identifies anomalies
in the second pass. The priming set in our approach consists of those images that are used to seed the initial
parameter estimates (the priming set is distributed across servers). The reported accuracy is measured on the
remaining images in the dataset. The adipocyte dataset contains 1697 images and the neurite dataset contains
1062 images. For neurites, where the data is stratified into several different “normal” distributions, we perform
anomaly detection independently for each case (e.g., undifferentiated cells, differentiated cells). Consistent with
our expectations, the accuracy of the system improves quickly with the size of the priming set; this is important
since in practice the priming set should be as small as possible.

The second set of experiments confirms that anomaly detection can be distributed over multiple com-
pute/storage nodes without loss of accuracy. Although no single node can access the entire dataset, the sharing
of descriptor statistics enables each node to build sufficiently accurate models for anomaly detection. We see no
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Figure 4: Accuracy of online anomaly detection improves quickly with the size of the priming set

loss of accuracy in our 8-node distributed system; this is also true with greater numbers of nodes. Our approach
is very amenable to parallelism and we observe near-linear scaling of performance with the number of nodes in
the system (results not shown due to space limitations).

6 Conclusion
In the future, we plan to extend our work to larger image repositories and to other types of HCS images.

We also plan to relax the assumption that the distribution of non-anomalous data is Gaussian in each feature
dimension. This will enable our framework to operate with more sophisticated distributions such as mixtures-
of-Gaussians and non-parametric representations such as histograms.

In closing, this work has presented an automated, online approach to anomaly detection in high-content
screening assays for pharmaceutical research. This approach employs assay-specific image processing within
an assay-independent framework for distributed control, machine learning, and anomaly reporting. Our results
confirm that this online approach to anomaly detection is feasible, efficient, and accurate.
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