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Abstract

Signature-based defense systems are one of the most populararchitectures for defending against exploits
of vulnerabilities. At the heart of a signature-based defense system is the signature generation mechanism.
Since manual signature generation tends to be slow and error-prone, we need automatic signature generation
techniques.
In this paper, we present the first practical approach for automatically creating vulnerability signatures which
recognize different exploit variants of a vulnerability regardless of the execution path they take. Vulnerability
signatures are based on the semantics of the vulnerability in the program itself, thus are more accurate than
other types of signatures. A key limitation of previous vulnerability signature generation approaches is that
they were only able to demonstrate signature generation fora single program path that an exploit may take
to exploit a vulnerability. However, there may be multiple program paths which an exploit can take to the
vulnerability, resulting in unacceptably many false negatives if only one path is covered by the signature. We
address this shortcoming by presenting and implementing techniques for automatically generating practical
vulnerability signatures which cover multiple paths. By covering multiple paths, our signatures have lower
false negatives than previous approaches, while still guaranteeing zero false positives.

1This paper was originally submitted to CCS 2007, and is currently in draft form. Please contact the authors for later versions.
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1 Introduction

New vulnerabilities are constantly being discovered and utilized by attackers to compromise systems. Today,
it is not uncommon for a new vulnerability to be discovered and exploited in the wild before the vendor
and the public learns about it. One of the most popular and effective defense mechanisms against attacks
is signature-based input filtering (a.k.a. content-based filtering). Signature-based input filtering matches
program inputs against a signature, where an input that matches the signature is considered as an exploit,
and an input that does not match the signature is considered as benign by the signature-based filter.

At a high level, the heart of a signature-based defense system is signature generation. As manual sig-
nature generation is usually too slow and error prone to be effective, we need techniques forautomatic
signature generation. The challenge is to create automaticsignature generation techniques that canguar-
anteethe accuracy of their generated signatures. Signature accuracy is typically measured in terms of false
positives, which are benign inputs that the signature indicates are exploits, and false negatives, which are
exploit inputs that the signature indicates are benign. Signatures with high false negatives are undesirable
since they may not block a sufficient number of different exploits for the same vulnerability. Signatures
with false positives block legitimate traffic, which in somescenarios may be worse than missing exploits.
In addition, the signature generation algorithm should be fast to reduce the window of vulnerability, and to
defend against fast-propagating worm outbreaks.

Although numerous signature-based defense systems have been proposed [7,11,12,14–16,22,24,26,28],
signature generation is not a solved problem. Most previoussignature generation work can generally be
categorized as either pattern-extraction-based or vulnerability-based. The pattern-extraction-based approach
infers a signature by extracting out common patterns in a setof (potential) exploit samples [11,12,14,16,22].
Since this approach relies on training data provided by a malicious attacker, and typically leverages little
or no semantic knowledge about the vulnerability, signatures generated using this approach cannot provide
useful accuracy guarantees; hence they may generate signatures with arbitrarily high false positive and false
negative rates. Indeed, recent research has shown that an attacker can often fool these approaches into
generating highly inaccurate signatures [17,19].

Vulnerability-based signature generation has been recently proposed to address the deficiencies of the
pattern-extraction-based approach [5–7]. Vulnerability-based signature generation generates signatures based
on the vulnerability itself (instead of exploit samples). By basing the signature generation on the vulnerabil-
ity, we can make stronger guarantees about signature accuracy. For example, previous work shows how to
generate vulnerability signatures which have zero false positives, i.e., guaranteesoundness[5–7]. However,
previously implemented vulnerability-signature generation methods only detected attacks that caused the
vulnerable program to follow a particular program path [5,7], or were of theoretical interest [6]. As a result,
exploit variations that cause the vulnerable program to follow even a slightly different program path would
evade the generated signature. This is a severe shortcoming, as many vulnerabilities can be exploited via
several program paths.

For example, consider a vulnerable URL decoding procedure in a web server. This procedure may be
called in a variety of contexts, e.g., to decode URLs as part of an HTTP “POST” procedure and decoding
URLs using the HTTP “GET” procedure. A vulnerability in the URL decoding could then be exploited
along two different paths: one going from “POST” to the URL decoding, and one from “GET” to the URL
decoding. Considering either path leads to a sound signature, but may miss exploits along the other code
path. Worse, for many vulnerable programs, many exploit variations that cause the server to follow different
program paths can be generated by simply varying the number or length of protocol fields, thus changing
the number of times that a particular loop executes.
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One may think that handling multiple paths to a vulnerability is a straight-forward extension of the single
path case. However, this is not the case: in real programs thepresence of loops often results in an infinite
number of paths to the vulnerability point. As a result, enumerating each path one-by-one is impossible.
Brumleyet al. [5] propose that a vulnerability signature can be generatedby modeling the vulnerability as a
whole, in a language with the same expressiveness as the language of the vulnerability, hence allowing the
signature to contain loops. While this approach could be used to generate signatures that never have false
positives or false negatives, the authors describe this approach as only of theoretical interest as a basis for
measuring the accuracy of other signature classes. The reason this is of theoretic interest is such a signature
could recognize all exploits, but would not necessarily return for benign inputs. Thus, handling multiple
paths in a practical way was previously an unsolved problem.

Overall, creating multiple-path signatures poses many challenges which previous work does not suffi-
ciently address, including:

• No previously implemented approach can guarantee that an input issafe; i.e. that it will notexploit the
vulnerability. The only previouslyproposedapproach [5] that may do so may not returnSAFE until
the exiting the entire program. This solution is impractical since some programs are not designed to
terminate, such as network servers.

• Whether a vulnerability is exploited often depends not onlyon network input, but also on additional
state external to the vulnerable program, such as configuration files. While this seems obvious, to our
knowledge no previous work in sound signature generation addresses this issue.

• Much of the processing in the vulnerable program is irrelevant to whether or not a vulnerability is
exploited, and does not need to be considered in generated VSM signatures. We show that even with
limited static analysis, VSM signatures can be generated that can be evaluated very efficiently. There
are several more sophisticated static analysis techniquesthat could be used to greatly improve the
performance of generated VSM signatures.

In this work, we design and implement a method for automatically generating error-free vulnerability
signatures that are practical and cover multiple executionpaths, using only a vulnerable binary program and
a vulnerability specification. We call these signaturesVulnerability State Machine signatures(VSM signa-
tures). Our techniques address the challenges and issues left unresolved by previous work. For example,
since deciding whether a signature with loops will halt is undecidable, we develop techniques based on the
principle thatthe next best thing to always being right is knowing when to admit that you don’t know.Hence,
rather than simply matching or not matching an input as is done by a traditional signature, a VSM signature
may returnEXPLOIT, SAFE, or UNKNOWN. Differentiating between inputs that must be safe, and those
that cannot be accurately classified enables signature defenses to enact comprehensive and flexible security
policies. For example, a filtering application may allow inputs classified asSAFE to pass, but apply further
analysis to inputs classified asUNKNOWN. We call any signature type that provides this type of guarantee
anerror-free ternary signature.
Contributions In particular, our contributions are as follows:

• We proposeerror-free ternary signatures, which are the first kind of signature that are guaranteed to
never return an incorrect answer,and to always return an answer. At a high level, ternary signatures
guarantee the meaning of both inputs matching the signature(i.e., exploits) and also inputsnotmatch-
ing the signature, i.e., whether they are really benign vs. the signature cannot guarantee it is benign
or malicious. Binary signatures typically do not typicallymake such guarantees for both safe and
malicious traffic.

• We design and implement a method for automatically generating Vulnerability State Machine signa-
tures (VSM signatures), a type of error-free ternary signature, given only a vulnerable binary program
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and a vulnerability specification. In addition to the theoretical guarantees provided by all error-free
ternary signatures, we show that in practice VSM signatureshave the following additional properties:

– Rarely returnUNKNOWN for exploit inputs for many vulnerabilities.
– Rarely returnUNKNOWN for safe inputs for many vulnerabilities.
– Take very little time to process and classify each input.

• We have implemented the first system which generates sound vulnerability signatures over multi-
ple paths. We perform end-to-end tests on three vulnerabilities, and macro-benchmarks on over 90
programs.

2 Problem Definition

In this section we present definitions for terms used in the remainder of the paper.

2.1 Error-free Ternary Signature Definition

A traditional vulnerability (or exploit) signature takes an input, and produces a binary output; typically the
signature “matches”, signifying that the input is an exploit, or doesn’t match.

Most previous approaches provide no accuracy guarantees, making the output of the signature a hint at
best. Some previous approaches guaranteesoundness, meaning that when the signature matches an input,
that input is guaranteed to be an exploit. However, no previously implemented approach provides any
guarantee about the meaning of the signature not matching aninput; i.e., an input that does not match may
still be an exploit.

In this work, we propose signatures that can classify an input as an exploit with guaranteed accuracy,
and unlike previous approaches, can classify an input assafewith guaranteed accuracy.

For such a signature to be possible, we must address two fundamental issues. First, the problem of
deciding whether an input will exploit a particular vulnerability is reducible to the halting problem [5], and
is hence undecidable [10]. As a result, all previous signatures either may classify non-exploits as exploits,
may classify exploits as non-exploits, or may not halt. We address this problem by instead allowing the
signature to return a third classification:UNKNOWN. While one can trivially create a signature that meets
these requirements,e.g. by returningUNKNOWN for all inputs, the challenge is to create signatures that
rarely returnUNKNOWN.

The second issue is that a particular input may be an exploit for a vulnerable program running on a host
with one state, but besafewhen running on a host with a different state. For example, anexploit may only
be effective against a server with a particular configuration option enabled. Therefore, it is only possible to
accurately classify an input as an exploit or as safewith respect to a particular external state. We address
this problem by parameterizing the signature by the external state. That is, the signature takes both an
input, and an external state, and determines whether the input is an exploit for a host running the vulnerable
program with the given state.
Definition: Vulnerability specification Thevulnerability specification(vp, vc) is a concise specification of
a vulnerability [5, 6] consisting of a distinguishedvulnerability pointvp where the vulnerable programP
may “go wrong”, andvulnerability conditionvc that specifies what “going wrong” is. We say that a program
with vulnerability (vp, vc) is exploitedwhen it reachesvp in a state that satisfies the predicatevc.

The vulnerability specification is what determines a singlevulnerability in a program.
Definition: Error-free ternary signature An error-free ternary signatureS is a function

S(i,Σ) → {EXPLOIT, SAFE, UNKNOWN}
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wherei is an input, andΣ is an external state. An error-free ternary signature returns EXPLOIT only when
the vulnerable programmustbe exploited if executing giveni andΣ; returnsSAFE only when the vulnerable
programcannotbe exploited if executing giveni andΣ; and always returns an answer in finite time (i.e.,
halts).

2.2 The Signature Generation Problem

In this work, we address the problem of how toautomaticallygenerate error-free ternary signatures. As with
previous work, we assume we are given the programP and the vulnerability specification(vp, vc) [5–7].
One way to obtain this information is from an exploit detector; in many cases(vp, vc) is easily identified
directly from the security violation detected by such detectors.

Formally, an error-free ternary signature generation algorithm is given as input a vulnerable programP ,
and a vulnerability specification(vp, vc), and produces an error-free ternary signatureS.

In addition to the formal guarantees provided by error-freeternary signatures, there are several additional
goals:

• They should be efficient to evaluate.
• They should returnEXPLOIT for most inputs that would exploit the vulnerability, including polymor-

phic variations.
• They should returnSAFE for most inputs that cannot exploit the vulnerability.

3 Our signature generation approach

Our approach consists of building the signatureS by constructing a model of the vulnerability in the pro-
gram using program analysis techniques. We call the signatures we generateVulnerability State Machine
signatures(VSM signatures). The high-level idea of this approach is that the signature models the pro-
gram’s vulnerability directly, thus we can guarantee our signature’s accuracy with respect to the vulnera-
bility. The beauty of the approach is that we need not have semantic information about the program; we
can use semantic-preserving transformations on the program itself to automatically extract the model of the
specific vulnerability, given the vulnerability specification. This approach allows us to generate guaranteed
error-freesignatures: ifS returnsEXPLOIT for an input, then the input would exploit the vulnerability, and
if S returnSAFE, then the input is benign.

The signature faithfully replicates the behavior of the vulnerability by faithfully modeling the parts
of the program that are relevant to the vulnerability. The states in the signatures model are derived from
the program itself, e.g., if the program evaluates an instruction on which the vulnerability is dependent,
the signature will have a corresponding statement which replicates the effects of that instruction. At the
vulnerability point,S checks if the vulnerability condition would be satisfied, and if so, transition to a special
EXPLOIT state. At each place in the model where it can guaranteed thatthe exploit state is unreachable
(i.e., corresponding to a state in the program at which the program could not possibly be exploited), the
model transitions to theSAFE state. This correspondence between the signatures model and the program’s
vulnerability is what makes our signatures error-free. Finally, we ensure that the signature always returns
an answer by constructing it to returnUNKNOWN in cases where it may not be possible to returnSAFE or
EXPLOIT. Therefore, VSM signatures satisfy the criteria of an error-free ternary signature.
The Core ChallengesThere are several core challenges in creating a practical error-free ternary signature
generation algorithm that produces useful VSM signature.

The core challenges are as follows:
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• Correctly replicate the relevant semantics of the originalprogram to ensure that the signature is error-
free.

• Ensure that the signature returns an answer, and does so as quickly as possible, while minimizing how
often the signature returnsUNKNOWN.

• Ensure that the signature is of finite, reasonable size, while minimizing how often the signature returns
UNKNOWN.

Generation steps.Our approach for signature generation consists of the following steps:

1. Model the programP to anexecution state modelM , which models the semantics ofP .
2. AugmentM to returnEXPLOIT for cases when the vulnerability(vp, vc) would be exploited by an

input.
3. AugmentM to returnSAFE for cases when the vulnerability(vp, vc) cannot be exploited by an input.
4. CompileM into a VSM signatureS that is guaranteed to halt, and which can be efficiently evaluated.

Given an inputi and external stateΣ, we can then evaluate the signatureS(i,Σ) on an inputi to
determine whetheri is an exploit, benign, or cannot be accurately classified byS under the external stateΣ.

We describe each of the signature generation steps below.

3.1 Translate program to execution state machine

We first build anexecution state model(ESM)M that preserves and models the semantics of the program
P . We write the ESM in our signature language (Section 4.1). The execution state machine is represented
as a graphg = (V,E), where each node inV is a statement in the signature language, which replicates the
effects of an instruction, and each edgeE(n1, n2) is labeled with a predicatec. The predicatec must be true
to make the transition fromn1 to n2. For example, ifn1 is a conditional jump based on conditionc with true
jump targetn2 and false jump targetn3, then there will be an edgeE(n1, n2) with label c andE(n1, n3)
with label¬c. Note system calls and calls to library functions are translated as calls to externally defined
functions at this stage.

To handle cases where we cannot or do not represent every possible (x86) instruction ofP in our sig-
nature language, or cannot accurately represent the control flow in M (such as with indirect jumps), we
introduce the unknown statenunknown. We add edges toM such that whenever control reaches such an
instruction, we transition tonunknown.

Note that this step does not depend on the vulnerability specification, and hence may be done as a
preprocessing step, before any vulnerability is known. At this point,M models the semantics of the program
P .

3.2 Determine when to returnEXPLOIT

Next, we augmentM by adding anEXPLOIT state represented bynexploit, and at a high level, add edges
such that if the vulnerability would be exploited on an input, M transitions tonexploit.

To augmentM , we first locate the node inM that corresponds to the vulnerability pointvp in the original
programP . Let np represent this node. For each edge that transitions to the vulnerability point,E(ni, np)
with predicate labelc, we replace the labelc with c ∧ ¬vc. This step ensures that only inputs which do not
satisfy the vulnerability condition transition tonp. We then add a transitionE(ni, nexploit) with predicate
c∧ vc. The final result isM such thatM transitions tonexploit when the vulnerability condition is satisfied.

At this point M recognizes exploits of the vulnerability, but cannot yet determine when an input is
benign.
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3.3 Determine when to returnSAFE

Next, we augmentM to transition toSAFE for inputs which cannot exploit the vulnerability. We add a node
nsafe corresponding to the safe state. We then add edgesE(ni, nsafe) to transfer control tonsafe when we
can determine that it is impossible for the execution on the given input to reach the vulnerability pointvp

such that the vulnerability conditionvc is satisfied.
Adding these edges in such a way thatM is sound, while reachingnsafe for as many non-exploit inputs

as possible, as quickly as possible, is one of the challenging issues that we address in this work. We leave
the details of our approach to Section 4.3.

3.4 Generating the Final Signature

The last step is to generate the final VSM signature from the augmented execution state modelM . We first
ensure thatM will terminate on all inputs by analyzing all loops in the program, and adding transitions to
transfer control to the unknown statenunknown in cases where it may otherwise never terminate. We then
perform optimizations onM , and compileM intoS, which can be evaluated directly on inputs. We compile
by translating from the signature language to an executablelanguage, and by linking external function calls
to actual implementations.

Note that we do not link against external functions or systemcalls directly; we link againststub functions
which take appropriate action by either calling the real function, or simulating external behavior the signature
should not replicate (see Section 4.4.4).

The output of this step is an executable VSM signatureS.

3.5 Signature Evaluation

Signature evaluationS(i,Σ) consists of runningS on the inputi, and an external stateΣ. Note it is impor-
tant to distinguish between the original program and the signature: evaluating the signature corresponds to
simulatingpart of the execution of the program. For example, in our signature language we model memory
as a hash-table: given a 32-bit integer, we return an 8-bit integer, which corresponds in the program to an
8-bit read from memory at a 32-bit address location. Thus, a memory write in the original program is simply
a hash-table update in the signature. As a result, an unknownbuffer-overflow vulnerability in the original
program may cause data (i.e., a hash-table entry) in thesimulatedmemory to be overwritten, but does not
and cannot overwrite data outside of the hash-table itself.

Informally 1, the operational semantics of the signature language are asfollows. The evaluation state
of a signature at any point is described byφ(n,∆), wheren specifies a node in the graph (i.e., is like a
program counter), and∆ specifies the current values of all memory and variables. We begin at an initial
stateφ(n0,∆0) (e.g., all variables and memories in∆0 are initialized to zero). Optionally, we need not begin
atn0, as discussed in Section 4.5.2. The machine transitions from φ(n1,∆1) → φ(n2,∆2) if executing the
statement at noden1 with values from∆1 satisfied the edge predicate labelc for E(n1, n2). For example, if
n1 is the statementif v1 = 0 then jmp( n2) else jmp( n3) , we lookup the current value ofv1 in
∆1, and transition ton2 if the value is zero, else transition ton3. The new state of values in variables and
memories after executingn1 is in ∆2.

Calls to external functions are redirected to the appropriate stub function. The stub function has access
both to the external stateΣ and the current internal state∆. For example, the stub function for a web
server vulnerability may contain which files exist on the server, while the internal state contains the current

1The full signature language and formal operational semantics are specified in [2].
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∗(v1) := v2|v1 := ∗(v2)|v := c|v := v1 ⋄ v2

| v := ¬v1 |v :=!v1 | label li | nop |halt
| jmp ℓ | ijmp v | if v jmp ℓ1 else jmp ℓ2

Figure 1: A representative part of the signature language.

request. A stub function will need both pieces of information in order to return the appropriate value, e.g.,
to determine whether a file specified in∆ exists inΣ.

4 Design and Implementation

We now describe the design and implementation details of each step from Section 3.

4.1 Translate program to execution state machine

The first step is to model the given programP to a semantically equivalent execution state modelM . In our
system, the given program is an IA-32 binary. IA-32 programshave a number of complexities that make
them difficult to analyze, including single instruction loops, instructions that implicitly read and set registers
not directly referenced, and instructions whose semanticsdepend upon the operand values.

We address this challenge by first translating the program into a semantically equivalent program in our
signature language, summarized in Figure 1. The language issimple, making analysis such as rewriting jump
targets in the model, yet expressive enough so that we can easily translate x86 assembly into the language.
In Figure 1,v denotes variables,c denotes constants, and⋄ is a binary operator∈ +,−, ∗, mod, <<,>>.
The language has assignment, stores (∗(r1) = r2), loads (r1 = ∗(r2)), and control flow either as a direct
jump to a known labelℓ, or to a computed location viaijmp .

We create the nodes ofM by first using an off-the-shelf disassembler to parse the binary programP into
code segments, and to disassemble each statement. We then translate each disassembled x86 instruction into
the semantically equivalent sequence of statements in our signature language. Each statement then becomes
a node inM .

The next challenge we must address is to add edges inM to accurately represent the control flow ofP .
While most instructions simply transfer control to the nextinstruction, or to a statically determined address,
x86 instructions may transfer control to an address that is computed dynamically at run time.

The most common type of indirect jump in IA-32 programs is theret instruction, which uses a return
address previously stored on the stack, usually by thecall instruction that called the function containing
the ret . In our implementation, we assume that the program obeys thenormal stack discipline in which
functions return to their caller. We use standard techniques to identify functions in the IA-32 binary program
(e.g., use IDA-Pro’s built-in feature to extract function boundaries, look for function prologues, etc), and
resolve the possible destinations of theret instructions accordingly.

For other types of indirect jumps, such as those which arise from using a function pointer, we can
potentially resolve targets using register value analysis[3, 4, 23]. Indirect jump targets which cannot be
resolved will go toUNKNOWN. Our experiments show the number of indirect jumps (other than ret ) can
be small (Section 5.5.2).
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4.2 Determine when to returnEXPLOIT

We assume we are given the vulnerability pointvp expressed as an instruction address inP , and the vul-
nerability conditionvc expressed as a predicate in our signature language. We create the exploit node
nexploit, and add the corresponding edges toM such that whenever the program would have transferred to
the vulnerability pointvp in a state such that the vulnerability conditionvc would be satisfied,M transfers
control to the exploit nodenexploit, adding the appropriate edge predicate labels as describedin Section 3.2.

4.3 Return SAFE when unexploitable

We next find states inM from whichnexploit (theEXPLOIT state) is unreachable, and rewriteM to transfer
to nsafe (SAFE state) ornunknown (UNKNOWN state). Our goal is for most non-exploit inputs to drive
execution ofM to the SAFE state rather than theUNKNOWN state, and forM to transfer to theSAFE

state with as little processing as possible for non-exploitinputs. We accomplish these goals by performing
reachability analysis, and modifyingM to transfer control to theSAFE state when it is no longer possible to
reach theEXPLOIT or UNKNOWN states.

Reachability analysis computes all paths which start at some nodeni and terminate at a nodenj. Con-
sider this analysis for computing all paths which can reach theEXPLOIT statenexploit from the start noden0

of M . Reachability analysis is done via the following algorithm: First, we create a back-edge fromnexploit

to the start noden0. Adding this back-edge creates a cycle inM . Assumingnexploit is reachable at all,
then there is a path fromn0 to nexploit; the back-edge completes the cycle. The case where there is no path
from n0 to nexploit is degenerative, since it signifies that no input could ever exploit the vulnerability inM .
Second, we compute the strongly connected component (SCC) subgraph containingnexploit. The SCC by
definition contains all nodes reachable fromn0 to nexploit, thus for all (reachable) nodesnk not in the SCC,
there is no path fromnk to nexploit (else there would be a path fromn0 to nk to nexploit, andnk would be in
the SCC).

We call the set of nodes and edges contained inside an SCC is called thechop. We compute the union of
the chops fromM ’s start staten0 to nexploit (theEXPLOIT state), and fromn0 to nunknown (theUNKNOWN

state). Since theEXPLOIT andUNKNOWN states are unreachable from any node not in this chop, we rewrite
the destination of every edgeE(ni, nj) wherenj is not in the chop andni is asE(ni, nsafe). Edges
E(nj , ni) whennj is not in the chop andni is can be removed fromM all together (since there must not be
a path fromn0 to nj, elsenj would have been in the chop,nj is unreachable).

The above algorithm was first proposed for signature creation by Brumleyet al. [5]. Unfortunately, this
algorithm leaves out many details relevant to creating practical signatures, such as exactly what graph ofM

the chop is performed on. Up to now, we have not described precisely how functions inP are represented
in M . As it turns out, how functions are represented inM can significantly affect the overall signature
generation and evaluation time.

Each functionf in the program induces a subgraph inM , i.e., the control flow graph off is a subgraph
of M . Each subgraph CFG∈ M has a distinguished entry point for the function. In addition, we can make it
so all functions have exactly one canonical exit point. The most obvious thing to do is create a “super-graph”
which link up call sites off with the callee’s entry points, and link up the return exit sites of the callee with
the next instruction after the call site. For example, ifbar() with entry node 10 and exit node 11 is called
by foo() on line 4 in the program, we add an edge(4, 10) and(11, 5) to M .

On the surface, this solutions looks good since it links up callers to callee’s. The main problem is that it
is notcontext-sensitive. The lack of context-sensitivity results in including morein the chop than necessary.
To see this, suppose a functionirrelevant() also callsbar() . Then the chop cycle containsbar() ,

8



foo() , and irrelevant() . This is a well-known problem in compiler research where thelack of
context-sensitivity results in unnecessary pollution in the analysis.

The fix is to add to the chop algorithm context sensitivity so that we can distinguish between different
call sites. A calling context can be uniquely represented bythe entire call stack. The string of call sites on
a stack is referred to as acall string [1]. In the previous example, we have two call strings:foo,bar and
irrelevant,bar . We build up the call strings for the program by symbolicallyexecuting call/returns in
the program, up to recursion.

We computeM ’s graph in a context sensitive manner (up to recursion) based upon the call strings.
If a function is called in 3 different contexts, there will bethree copies of the function inM . Although
duplicating nodes does increase the initial model size, in our experience it usually reduces the chop size
because we do not include impossible call/return relationships in the chop.

At this point we have a context-sensitive graph inM , with an edge toEXPLOIT for transitions that must
exploit the original program, toSAFE for transitions that cannot exploit the original program, andUNKNOWN

for transitions from which we cannot determine for certain.

4.4 Generate final signature

The last step is to compileM to an executable signatureS, which we ultimately evaluate inputs on to
determine if they areSAFE, EXPLOIT, or UNKNOWN.

4.4.1 Ensure termination

The original programP cannot be guaranteed to terminate. Indeed, for network servers, non-termination is
the norm rather than the exception. Many network applications operate in a loop that indefinitely accepts and
processes connections. We implement two techniques to ensure thatM terminates on all inputs:bounded
iteration, andsubprogram analysis.
Bounded iteration We modify our modelM to guarantee that it terminates on all inputs by performing
bounded iteration. Using this technique, we first identify loops that may not terminate. For each back-edge
E(ni, nloop), we set a limitli for the number of times that the loop may iterate. We then update the model
to increment the iteration count for that loop every time theback-edge is traversed, and to transfer control
to UNKNOWN if the limit is exceeded.

This is a fairly straight-forward process. The only question left is how many times to allow loops to
iterate before returningUNKNOWN. If we select too few, the VSM signature may returnUNKNOWN on
inputs that it would have eventually classified successfully. If we select too many, the signature will waste
time looping on inputs that it will never be able to classify successfully.

We have found the only common non-terminating loops that we have encountered in practice are server
request-processing loops. We currently identify such loops manually, and limit the number of times it may
iterate toone. We expect that this type of loop could usually be found automatically with some simple
analysis.

For other loops, we try to find an upper bound on the number of iterations. If we cannot determine the
maximum number automatically, a default threshold is used.In practice, we have found we did not need to
analyze other loops. The reason is most loops happen inside library functions (e.g.,strcpy , sprintf ,
etc.), which terminate by convention, and are not modeled inthe signature itself. If subsequent common
idioms using infinite loops are identified, we may again use heuristics to identify those idioms, and bound
the number of iterations appropriately.
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Subprogram analysisWhile we have found bounded iteration to be sufficient to ensure that the VSM
signature returns an answer in a timely manner, it has the unfortunate drawback of returningUNKNOWN

for non-exploit inputs for applications that implement infinite accept loops, when the vulnerability point is
reachable from inside the loop.

We observe that as a practical consideration, we typically want to determine whether the vulnerable pro-
gram will be exploitedwhile processing the given input, not whether it caneverbe exploited. Additionally,
we observe that a program is typically done processing an input when it loops to accept a new connection.

Therefore, we propose an alternative solution of creating the VSM signature with respect to thesubpro-
gram of interest. In this case, the subprogram of interest is asingle iteration of the accept loop. Since no
loop exists in this subprogram,EXPLOIT is unreachable after processing the input, at which point the VSM
signature returnsSAFE. Subprogram analysis is performed simply by deleting edgesin the execution state
machine before performing the reachability analysis described in Section 4.3.

This solution is not perfect, as some vulnerabilities may exist in which a malicious input is not fully
processed until some later point after processing other connections in the accept loop. In this case, an input
that is safe with respect to a single iteration of the loop maynot be safe with respect to the entire program.
Such cases may be detected by performing dependence analysis to detect whether the input has further effect
on the program after the first iteration of the loop.

4.4.2 Optimizations: Dead-code elimination

We can simplify the VSM signature generated so that is smaller by removingdead codecode that has no
effect on the final output ofEXPLOIT, SAFE, or UNKNOWN. Smaller models both evaluate faster, and are
faster to compile in the next step. Much of the processing in the original programP may be dead code in
M . For example,P may spend some processing determining its response to a network request, which has
no effect on whether the given vulnerability is exploited ornot. This code may be safely removed fromM .

We currently perform dead-code elimination on scalar variables, which removes some unnecessary pro-
cessing. We expect that much more dead-code could be eliminated by performing dead-code elimination
on memory, which is more challenging due to the need for pointer alias analysis. We may also be able to
eliminate calls to external functions whose output does notaffect the vulnerability, which has the additional
benefit of the VSM signature not requesting irrelevant external state. To do this, we would also need sum-
maries for functions that take pointer arguments, specifying the memory range that they may read from and
write to.

4.4.3 Compile to native code

When creating the initial VSM signature, we translate the IA-32 program to our own signature language, as
described in Section 4.1. We provide a compiler for the signature language which takes as input a model,
and outputs a C program. We can then leverage existing C compilers to perform additional optimizations
and produce the final executable.

Translating our language into C is straight-forward. The only complication is how memory access in
the original IA-32 program are converted from our signaturelanguage to C programs such that all access
are valid. As mentioned, we treat memory as a hashtable wheregiven an address, we return a value. This
memory representation is incompatible with that which external functions expect. To solve this problem, we
provide stubs which translate between the signature language’s memory representation and native code, and
link against these stubs. However, one advantage of our approach is we need not worry about unknown buffer
overflows in the original program, since they are not translated as real buffer overflows in the signature. In
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future work, we hope to eliminate the translation at compiletime while still retaining the additional safety
and abstraction advantages.

4.4.4 Resolve external function calls

During linking, we link calls to external functions to our stubs. If the called external function does not
operate on the external state, then our stubs in turn calls the actual external function, i.e., the signature
calls the stub (which performs any necessary translations from our memory scheme), then the stub calls the
external function.

In order to prevent unnecessary side-effects such as writing and reading files, function stubs for system
calls and for functions that operate on input or other external state must instead replicate the semantics of
the original call while operating on the inputi or external stateΣ provided at evaluation time. As a concrete
example, our function stubstat which returns a value specified inΣ. Note that these function stubs are
not specific to a signature or vulnerability, and hence need only be written once for a given library function
or system call.

In our current implementation, stubs that require input or external state that is not present block execution
of M , and notify the caller of what input or state is necessary to continue. This allows us to supply the input
and external state in an on-demand fashion. This is convenient for a number of reasons. In particularM

can begin executing on the first packet of a network connection. It may reach a decision based on the first
packet alone, or may notify the caller that it needs more data; i.e., it cannot make a classification without
processing the next packet.

4.5 Signature Evaluation

Once compiled, the signature is an executable piece of code that takes an inputi, an external stateΣ, and
accurately returns eitherEXPLOIT, SAFE, or UNKNOWN.

A final step is to obtain the appropriate external state. Manyvulnerabilities are independent of any
state external to the vulnerable program, in which case it doesn’t matter what external state is used when
evaluating the signature. In Section 4.4.2 we describe how we may be able to detect such cases automatically,
and remove the VSM signatures requests for external state.

However, there are some vulnerabilities for which the stateis relevant. For example, a server may only
be vulnerable if a particular option is enabled in a configuration file, or if a particular file exists. In these
cases a VSM signature must be evaluated in the context of a specific external state.

4.5.1 Selecting and obtaining external state

Unlike previous signature approaches, our VSM signatures take not only an inputi, but also an external
stateΣ. What external state to use depends on the precise question that the VSM signature user wishes to
answer. If they wish to determine whether an input will exploit somehost running a vulnerable program,
they can use an external state that is known to be vulnerable.If they wish to determine whether an input will
exploit aspecifichost, or any host with a particular configuration (as in a managed network), they can use
the corresponding external state.

In either case, the external state can generally be obtainedautomatically, either as a preprocessing step
or on-demand at run time, e.g., for our experiments, we obtained the necessary state from our host systems.
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4.5.2 Additional Improvements: Preprocessing

As described so far, the VSM signature may perform an arbitrary amount of processing before actually read-
ing the input. However, given some fixed external state (as described in Section 4.5.1), the VSM signature
will always reach the same noden where input is initially read, with the same register and memory state∆.

Rather than re-performing this processing for every inputi to be evaluated, we take a snapshot of the state
∆ of the actual programP at the point corresponding to noden, while running in a vulnerable configuration.
When evaluating the VSM signature, we then begin execution at noden, with state VSM signature, rather
than at the actual program start.

This optimization may be performed after the VSM signature has been created, using a hook to specify
an alternative starting noden and state∆. As an additional optimization, we perform this stepbefore
translating the programP to the execution state machineM . As a result, there is no need to incorporate any
part ofP into M that cannot execute after noden. This optimization not only improves matching time of
the resulting signature, but also improves the signature size and generation time.

5 Implementation and Evaluation

5.1 Implementation

Our implementation is divided into two components. The firstcomponent is a translation engine which
interfaces directly with the x86 binary and is responsible for parsing the binary (we currently support Win-
dows PE and Linux ELF), reading in the assembly, and lifting the assembly to our signature language. This
component is written in C/C++, and is about 16,500 lines of code, with about 1/3 of the lines of code geared
towards parsing the binary and interfacing with the disassemblers, and the other 2/3 translating to the sig-
nature language. The second component is an analysis engine, which is written in OCaml. It performs the
model creation, the compiler from the signature language toC, and the other analyses and optimizations
discussed in Section 4. The total code size for the analysis component is about 28,000 of code.

5.2 Evaluation

We implemented and evaluated our approach on Linux operating system. Our evaluation was performed on
a 3.2GHz Pentium 4 computer with 3GB memory. We measure threeevaluation metrics: VSM signature
accuracy, VSM signature matching speed, and VSM signature generation speed.

We perform in-depth evaluation on three vulnerable servers: ATPhttpd (web server), ghttpd (web server),
and passlogd (syslog message sniffer). We then performed macro-benchmarks to measure overall model
generation time on 98 additional binaries from the Linux coreutils-6.9 package.

5.3 In-Depth Analysis

We perform an in-depth evaluation of our techniques using three vulnerable servers: ATPhttpd, ghttpd, and
passlogd.

We use the subprogram technique described in Section 4.4.1 to build the VSM signatures with respect
to the accept loop, and the preprocessing technique described in Section 4.5.2 to begin evaluating the VSM
signature at the point where the input is read. External state was unnecessary for all but the ATPhttpd
vulnerability, for which we used external state from a known-vulnerable host.
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For each vulnerable server, we provide a qualitative description of the vulnerability and the generated
VSM signature, and evaluate the accuracy of our VSM signature on both exploit inputs and safe inputs. For
completeness, we also include the time to generate each VSM signature and to match each VSM signature
against exploit and safe inputs. These results are tabulated and further explained in Sections 5.3.4 and 5.4
respectively.

5.3.1 ATPhttpd

ATPhttpd is a small web server written in C [21]. ATPhttpd version 0.4b has a stack-smashing vulnerability.
When the file specified in the URL of a ’GET’ request is not found, ATPhttpd generates an error message
including the requested URL, using an incorrect bounds check. This vulnerability can be exploited by
requesting a file name that does not exist on the server, to trigger the error-handling routine, which is long
enough to overflow the error-message buffer.

For this vulnerability, we defined the vulnerability specification as follows. The vulnerability point is the
call tosprintf from the functionhttp send error . The vulnerability condition is that the parameters
supplied tosprintf will result in a long enough error message to overwrite the vulnerable stack frame’s
frame pointer.

Our techniques generated a VSM signature in 1.585 seconds. The accept loop contains no unanalyzed
indirect jumps, and no unbounded loops. As a result, it contains noUNKNOWN node, and is hence guaran-
teed to returnSAFE or EXPLOIT for every input.

We evaluated the VSM signature on both malicious and benign inputs. The VSM signature requires the
result of astat system call to determine whether the requested file exists. We resolved this external state
by using a known-vulnerable configuration in which no requested files exist.

We evaluated the VSM signature using attacks from the vulnerability disclosure [20], for which the VSM
signature returnedEXPLOIT. We also manually varied the attack payload to confirm that the VSM signature
also returnsEXPLOIT for other attack variants. The VSM signature took an averageof .00113 seconds to
return an answer for eachEXPLOIT input.

We also evaluated the VSM signature on synthetically generated benign HTTP requests. The VSM
signature returnedSAFE for such requests. The VSM signature took an average of .00015 seconds to return
an answer for each benign input.

5.3.2 ghttpd

Ghttpd, a web-server written in C, contains a stack-based overflow in version 1.4.3 [25]. Similarly to AT-
Phttpd, ghttpd is vulnerable to excessively long ’GET’ requests. It calls a logging functionLog on every re-
quest, which fails to check the boundary of its local buffer when creating the log message usingvsprintf .
The vulnerability can be exploited using completely separate multiple execution paths, due to some error
checking that occurs before callingLog .

The vulnerability specification for this vulnerability hasa similar form to that ofATPhttpd . The
vulnerability point is the call tovsprintf insideLog . The vulnerability condition is that the parameters
passed tovsprintf will cause it to generate a message long enough to overwriteLog ’s stack frame
pointer.

Our techniques generated a VSM signature in 1.193 seconds. Again, the generated VSM signature
contains no loops nor unresolved indirect jumps. As a resultit contains no transitions to theUNKNOWN

node, and hence returnsEXPLOIT or SAFE for all inputs.
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Attack Compute VSM signature VSM signature to C Compile Signature Total Time
ATPhttpd 0.676 s 0.029 s 0.88 s 1.585 s

ghttpd 0.549 s 0.034 s 0.61 s 1.193 s
passlogd 0.273 s 0.008 s 0.05 s 0.332 s

Table 1: Signature generation performance

We evaluated the VSM signature using attacks generated by the exploit program from [25]. We modified
the exploit program to create attacks that have varying lengths, have randomly generated shell code, and
cause different execution paths to be followed in the vulnerability. The VSM signature successfully returned
EXPLOIT for all of these attack variations, with an average evaluation time of .00025 seconds. Note that
previous vulnerability signature approaches that model only a single execution path would not have been
able to detect these variations.

We also evaluated the VSM signature on synthetically generated benign HTTP requests. The VSM
signature returnedSAFE for all such requests, with an average evaluation time of .000165 seconds.

5.3.3 passlogd

Passlogd is an all purpose sniffer used to capture syslog messages. The vulnerability in passlogd is a stack-
based buffer overflow. When copying a log level field in the function sl parse , passlogd fails to check
the buffer boundary when searching for a delimiting ’>’, resulting in a stack overflow [9].

The vulnerability point for this program is an assignment statement insidesl parse : level[j] =
pkt[i] . The vulnerability condition is that the address calculated by the expressionlevel[j] is the
address ofsl parse ’s frame pointer.

Our techniques generated a VSM signature in 0.332 seconds. Unlike the previous vulnerabilities, the
VSM signature contains several loops whose maximum iterations cannot be statically determined, including
the copy loop where the vulnerability is located. As a result, the VSM signaturedoescontain transitions to
theUNKNOWN state, due to the bounded iteration transformation described in Section 4.4.1.

We evaluated the VSM signature using exploit code from [9], and again generated variations by ran-
domizing the shell code and by altering the length of the input. The VSM signature returnedEXPLOIT for
all such variations, with an average evaluation time of .00270 seconds.

We evaluated the VSM signature on benign inputs obtained by converting messages from/var/log/messages
on our desktop machines to syslog format. The VSM signature returnedSAFE for all such inputs, with an
evaluation time of .00220 seconds. The benign inputs were converted from the file/var/log/messages .
We converted the log messages back to syslog format and evaluated them with our signature. Again, the
signature had perfect accuracy with no transitions to theUNKNOWN state.

5.3.4 VSM signature Generation Time

We measured the time to generate VSM signatures for our threevulnerable programs. Figure 1 shows
our results. We use CPU time (user time and system time) as themetric of performance evaluation. The
column “Compute VSM signature” shows the time to compute theVSM signature from the binary; the
column “VSM signature to C” shows the time to convert the VSM signature signature to C code; the column
“Compile Signature” shows the time to compile C signature into native code. The results show signature
generation is fast.
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Matching Benign (sec) Matching Attacks (sec)
ATPhttpd 0.00015 0.00113

ghttpd 0.000165 0.00025
passlogd 0.00220 0.00270
passlogd∗ 0.00003 0.00051

Table 2: Signature matching performance

5.4 VSM signature Matching Time

We measured the matching performance of our signature both on malicious inputs and on benign inputs.
In each case, for inputi we executeS (i, Σ), and verified the correct result (eitherEXPLOIT or SAFE) was
returned. The external stateΣ was obtained from a vulnerable configuration for ATPhttpd, and is unneeded
for the other vulnerabilities. We report the average of 1000runs on each input. The results are shown in
Table 2. The “Matching attacks” shows the matching time on attack requests, which were generated from
publicly available exploits [9, 20, 25] and hand-crafted variants. The column “Matching benign” shows the
matching time on benign requests for synthetically generated traffic (HTTP requests for the web-servers,
and syslog messages from passlogd). When possible, we sent both malicious and benign requests which
exercised multiple code paths.

Signature matching is overall reasonably fast. However, wewere surprised passlogd took longer than
previous examples, since it was a less complex program overall. We manually inspected our VSM signa-
ture to determine why passlogd is slower than ATPhttpd and ghttpd. It turns out that passlogd initializes
about 5,000 bytes to zero in a loop, and the memory dereferences from this loop were resulting in worse
performance due to our treatment of memory accesses. We provided an external state with all bytes already
zeroed, and began executing the program after initialization, as described in Section 4.5.2. We show the
performance numbers as passlogd∗ .

One interesting thing we observe is matching benign traffic takes significantly less time than attack
traffic. On average, evaluating a benign request takes only about 55% as much time as attack requests.
The reason for this is that the generated VSM signature returns SAFE as soon as the vulnerability point is
unreachable, as described in Section 4.3, i.e., in general,the longest execution path is to theEXPLOIT state.
Hence, safe inputs often require significantly less processing than exploit inputs.

5.5 Macro-benchmarks

In order to get a better idea how our techniques work on many different programs, we performed measure-
ments on the 98 Linux binaries from the coreutils package. Wereport these numbers to give a feel of what
our overall signature generation time is on other types of binaries.

5.5.1 Initial Model Creation Time

Since creating the end-to-end measurements indicate that creating the initial model dominates the total
signature generation time, we performed a benchmark to see how long creating the context-sensitive VSM
signature of the program in our signature language on a largenumber of other programs. Note that we are
not creating a signature for a vulnerability, but measuringhow long it takes to compute the initial model.
This benchmark gives a rough idea how our signature generation system scales with binary size.
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Figure 2: Macro-benchmark showing the time to create an initial model for 98 programs of varying size.

Figure 2 shows our results. We were able to analyze all 98 programs. Each took less than 30 seconds
to analyze. Two programs, sha512sum and sha384sum, took themost times with about 26 seconds, mainly
because one function,digest file , was called in many different contexts, increasing the costof the
callstring analysis described in Section 4.3. If we remove these two outliers, the generation time for the
remaining coreutils binaries ranges from .311 to 4.99 seconds, with an average 1.18 seconds.

5.5.2 Indirect Jump Analysis

We also analyzed the number of indirect jumps in the initial models created for the coreutils programs.
Indirect jumps can arise from the use of function pointers ordynamically generated code. When an indirect
jump is encountered during signature evaluation (not counting ret instructions), we returnUNKNOWN, thus
the number of indirect jumps is a metric of how many potentialpaths may classify an input asUNKNOWN.
(Recall during our end-to-end test, no indirect jumps were evaluated, and we never returnedUNKNOWN.)

We found on average 2.39 indirect calls (not counting theret instruction) per program. The small
number of indirect jumps supports the idea that there are very few control flow edges we cannot account
for precisely and result inUNKNOWN being returned. Integrating alias analysis such as [3, 4, 23] to resolve
these few remaining indirect jumps into our infrastructureremains future work.

6 Limitations and Future Work

While we are currently able to accurately build signatures for many programs. However, there are several
things we do not address, and leave as future work:

• We currently only consider sequential execution. We do not currently model asynchronous events such
as threads executing in the same address space, callbacks invoked asynchronously by the operating
system, etc. As a result, we do not focus on vulnerabilities arising from asynchronous events such as
deadlock. Generating accurate signatures for such code remains an open problem.

• We only model code that is present statically in the given program,i.e., we do not model dynamically
generated code. VSM signatures generated from programs that dynamically generate code will still
be correct, but will returnUNKNOWN if and when control transfers to the dynamically generated code.

• Applications which rely heavily on modifying external state, e.g., databases, pose unique challenges.
For example, how should we model external state updates without duplicating the side effects? We
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leave this as future work.
• We manually generate stub code at this time. In many cases we could automatically generate stub

code by analyzing the actual library binary, or provide moreassistance to the user who writes the
stubs. Note that the stubs only need to be written once; e.g.,in our experiments we used the same
stubs for all vulnerable applications.

• We currently generate signatures that determine whether aninput will exploit a vulnerable program
in the context of a particular external state. Another interesting problem is to determine whetheran
external state existssuch that a given input will exploit a vulnerable program. Itmay be possible
to answer this question using our generated VSM signatures by using model-checking techniques to
execute on a symbolic external state.

7 Related Work

Signature GenerationSeveral automatic signature generation mechanisms have been proposed which take
several examples of an exploit, and extract common patternsto use as a signature [11,12,14,16,22]. While
these work well for some attacks, they may be defeated by polymorphism [8,16] or by direct attacks against
the algorithms [17, 19]. Hamsa [14] provides a false negative bound over the exploit inputs in its training
data, but not over the program vulnerability itself.

Other approaches select which patterns to use in the signature by applying some heuristics to available
semantic information [15,18,28], which helps reduce the risk of false negatives.

Several researchers have proposed signatures that model a vulnerability to provide accuracy guaran-
tees [5, 6, 26]. These approaches have either required manually specifying protocols [26], handled only a
single code path [5,7], or were more theoretical and did not establish how to distinguishSAFE andEXPLOIT

in practice [5,6].
Binary Analysis We perform binary analysis of executables to create signatures. In particular, we assume
the binary can be disassembled correctly and, at a minimum, can create a control flow graph. Previous
work has shown these assumptions to be reasonable [13]. We use a variant of traditional program slicing
techniques [27], which would benefit from data dependency analysis. Dependency analysis for assembly in
our experience needs good memory access analysis to be useful. In future work, we plan on incorporating
memory access analysis such as in [3,4,23].

8 Conclusion

We presented the first practical approach for creating vulnerability signatures which capture multiple pro-
gram paths an exploit may take. Our signatures are guaranteed to be error-free, i.e., when the signature
returnsSAFE, the input is safe, when the signature returnsEXPLOIT, the input is a real exploit. We also
show that adding a third state,UNKNOWN, is useful for making vulnerability signatures practical for real
programs. Previous techniques which covered multiple paths were of theoretic interest, and did not guar-
antee even basic properties like termination forSAFE inputs. We also implemented our techniques, and
measured the performance of real end-to-end studies for vulnerable programs, as well as performed larger-
scale macro-benchmarks. Our experiments indicate our signatures are efficient to create (creation takes
about a second) and evaluate, can recognize many different exploits, even those which would take different
code paths to reach the original vulnerability.
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