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Abstract

Signature-based defense systems are one of the most papeitéectures for defending against exploits
of vulnerabilities. At the heart of a signature-based defesystem is the signature generation mechanism.
Since manual signature generation tends to be slow andmone, we need automatic signature generation
techniques.

In this paper, we present the first practical approach famaatically creating vulnerability signatures which
recognize different exploit variants of a vulnerabilitgeedless of the execution path they take. Vulnerability
signatures are based on the semantics of the vulnerabilttyei program itself, thus are more accurate than
other types of signatures. A key limitation of previous \arbility signature generation approaches is that
they were only able to demonstrate signature generatioa $angle program path that an exploit may take
to exploit a vulnerability. However, there may be multiplgram paths which an exploit can take to the
vulnerability, resulting in unacceptably many false nagtif only one path is covered by the signature. We
address this shortcoming by presenting and implementuigntques for automatically generating practical
vulnerability signatures which cover multiple paths. Byeong multiple paths, our signatures have lower
false negatives than previous approaches, while stillaniaeing zero false positives.

1This paper was originally submitted to CCS 2007, and is ctiyén draft form. Please contact the authors for later ioers
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1 Introduction

New vulnerabilities are constantly being discovered aiided by attackers to compromise systems. Today,
it is not uncommon for a new vulnerability to be discovered asploited in the wild before the vendor
and the public learns about it. One of the most popular aretefe defense mechanisms against attacks
is signature-based input filtering (a.k.a. content-badéetifig). Signature-based input filtering matches
program inputs against a signature, where an input thatheatthe signature is considered as an exploit,
and an input that does not match the signature is considerbdragn by the signature-based filter.

At a high level, the heart of a signature-based defensemyistsignature generation. As manual sig-
nature generation is usually too slow and error prone to fectdfe, we need techniques fautomatic
signature generation. The challenge is to create autorsigii@ture generation techniques that gaar-
anteethe accuracy of their generated signatures. Signatureamcis typically measured in terms of false
positives, which are benign inputs that the signature atéi are exploits, and false negatives, which are
exploit inputs that the signature indicates are benignn&iges with high false negatives are undesirable
since they may not block a sufficient number of different eitplfor the same vulnerability. Signatures
with false positives block legitimate traffic, which in sorseenarios may be worse than missing exploits.
In addition, the signature generation algorithm shouldast o reduce the window of vulnerability, and to
defend against fast-propagating worm outbreaks.

Although numerous signature-based defense systems hanelmposed [7,11,12,14-16,22,24,26,28],
signature generation is not a solved problem. Most previgisature generation work can generally be
categorized as either pattern-extraction-based or vaihiléy-based. The pattern-extraction-based approach
infers a signature by extracting out common patterns in af§pbtential) exploit samples [11,12,14,16,22].
Since this approach relies on training data provided by acioak attacker, and typically leverages little
or no semantic knowledge about the vulnerability, sigregugenerated using this approach cannot provide
useful accuracy guarantees; hence they may generatewigmatith arbitrarily high false positive and false
negative rates. Indeed, recent research has shown thataakeatcan often fool these approaches into
generating highly inaccurate signatures [17,19].

Vulnerability-based signature generation has been rigcpriposed to address the deficiencies of the
pattern-extraction-based approach [5—7]. Vulnerabb#ged signature generation generates signatures based
on the vulnerability itself (instead of exploit samplesy; lBasing the signature generation on the vulnerabil-
ity, we can make stronger guarantees about signature agcurar example, previous work shows how to
generate vulnerability signatures which have zero fals#tiges, i.e., guarantesoundnes§s—7]. However,
previously implemented vulnerability-signature genieratmethods only detected attacks that caused the
vulnerable program to follow a particular program path [507 were of theoretical interest [6]. As a result,
exploit variations that cause the vulnerable program tofokven a slightly different program path would
evade the generated signature. This is a severe shortcoasngany vulnerabilities can be exploited via
several program paths.

For example, consider a vulnerable URL decoding proceduseweb server. This procedure may be
called in a variety of contexts, e.g., to decode URLs as daahdHTTP “POST” procedure and decoding
URLSs using the HTTP “GET” procedure. A vulnerability in theRU decoding could then be exploited
along two different paths: one going from “POST” to the URIcdeing, and one from “GET” to the URL
decoding. Considering either path leads to a sound signabut may miss exploits along the other code
path. Worse, for many vulnerable programs, many exploigtians that cause the server to follow different
program paths can be generated by simply varying the nuntdength of protocol fields, thus changing
the number of times that a particular loop executes.



One may think that handling multiple paths to a vulnerapibta straight-forward extension of the single
path case. However, this is not the case: in real programprésznce of loops often results in an infinite
number of paths to the vulnerability point. As a result, epteting each path one-by-one is impossible.
Brumleyet al.[5] propose that a vulnerability signature can be generayatodeling the vulnerability as a
whole, in a language with the same expressiveness as theaga@f the vulnerability, hence allowing the
signature to contain loops. While this approach could bel tisegenerate signatures that never have false
positives or false negatives, the authors describe thieapp as only of theoretical interest as a basis for
measuring the accuracy of other signature classes. Therdas is of theoretic interest is such a signature
could recognize all exploits, but would not necessarilymetfor benign inputs. Thus, handling multiple
paths in a practical way was previously an unsolved problem.

Overall, creating multiple-path signatures poses manjlariges which previous work does not suffi-
ciently address, including:

e No previously implemented approach can guarantee thapamissafe i.e. that it will notexploit the
vulnerability. The only previouslproposedapproach [5] that may do so may not retwnrFE until
the exiting the entire program. This solution is impradt&iace some programs are not designed to
terminate, such as network servers.

e Whether a vulnerability is exploited often depends not amynetwork input, but also on additional
state external to the vulnerable program, such as configorfies. While this seems obvious, to our
knowledge no previous work in sound signature generaticineages this issue.

e Much of the processing in the vulnerable program is irreldéta whether or not a vulnerability is
exploited, and does not need to be considered in generatbtsifhatures. We show that even with
limited static analysis, VSM signatures can be generatatdcdn be evaluated very efficiently. There
are several more sophisticated static analysis technitipascould be used to greatly improve the
performance of generated VSM signatures.

In this work, we design and implement a method for automiyicgenerating error-free vulnerability
signatures that are practical and cover multiple execygaihs, using only a vulnerable binary program and
a vulnerability specification. We call these signatuveinerability State Machine signaturégSM signa-
tures). Our techniques address the challenges and isstuasresolved by previous work. For example,
since deciding whether a signature with loops will halt islecidable, we develop techniques based on the
principle thathe next best thing to always being right is knowing when toiathat you don’t knowHence,
rather than simply matching or not matching an input as idnna traditional signature, a VSM signature
may returnEXPLOIT, SAFE, or UNKNOWN. Differentiating between inputs that must be safe, andethos
that cannot be accurately classified enables signaturesksfd¢o enact comprehensive and flexible security
policies. For example, a filtering application may allowuitgclassified asAFE to pass, but apply further
analysis to inputs classified asikNOwWN. We call any signature type that provides this type of guaen
anerror-free ternary signature
Contributions In particular, our contributions are as follows:

e We proposeerror-free ternary signatureswhich are the first kind of signature that are guaranteed to
never return an incorrect answandto always return an answer. At a high level, ternary sigrstur
guarantee the meaning of both inputs matching the signéitareexploits) and also inputeot match-
ing the signature, i.e., whether they are really benign ke.signature cannot guarantee it is benign
or malicious. Binary signatures typically do not typicaityake such guarantees for both safe and
malicious traffic.

e We design and implement a method for automatically gemagatulnerability State Machine signa-
tures (VSM signatures), a type of error-free ternary sigreatgiven only a vulnerable binary program
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and a vulnerability specification. In addition to the thdimad guarantees provided by all error-free
ternary signatures, we show that in practice VSM signathese the following additional properties:
— Rarely returnruNkNOWN for exploit inputs for many vulnerabilities.
— Rarely returnruNKNOWN for safe inputs for many vulnerabilities.
— Take very little time to process and classify each input.

e We have implemented the first system which generates sounerability signatures over multi-
ple paths. We perform end-to-end tests on three vulnetiabjliand macro-benchmarks on over 90
programs.

2 Problem Definition

In this section we present definitions for terms used in theaieder of the paper.

2.1 Error-free Ternary Signature Definition

A traditional vulnerability (or exploit) signature takes mput, and produces a binary output; typically the
signature “matches”, signifying that the input is an exiploi doesn’t match.

Most previous approaches provide no accuracy guarantedsngithe output of the signature a hint at
best. Some previous approaches guarastemdnessmeaning that when the signature matches an input,
that input is guaranteed to be an exploit. However, no ptshoimplemented approach provides any
guarantee about the meaning of the signature not matchingpat) i.e., an input that does not match may
still be an exploit.

In this work, we propose signatures that can classify antiapuan exploit with guaranteed accuracy,
and unlike previous approaches, can classify an inpaaBewith guaranteed accuracy.

For such a signature to be possible, we must address tworhemal issues. First, the problem of
deciding whether an input will exploit a particular vulnitéy is reducible to the halting problem [5], and
is hence undecidable [10]. As a result, all previous sigesteither may classify non-exploits as exploits,
may classify exploits as non-exploits, or may not halt. Wdrads this problem by instead allowing the
signature to return a third classificationNkNOWN. While one can trivially create a signature that meets
these requirement®.g. by returninguNnkNOWN for all inputs, the challenge is to create signatures that
rarely returnUNKNOWN.

The second issue is that a particular input may be an exploé fulnerable program running on a host
with one state, but beafewhen running on a host with a different state. For examplexghoit may only
be effective against a server with a particular configuratiption enabled. Therefore, it is only possible to
accurately classify an input as an exploit or as seté respect to a particular external stat&Ve address
this problem by parameterizing the signature by the extestade. That is, the signature takes both an
input, and an external state, and determines whether thi¢ispn exploit for a host running the vulnerable
program with the given state.

Definition: Vulnerability specification Thevulnerability specificatior{v,, v.) is a concise specification of
a vulnerability [5, 6] consisting of a distinguishedInerability pointv,, where the vulnerable program
may “go wrong”, andrzulnerability conditionv,. that specifies what “going wrong” is. We say that a program
with vulnerability (v,, v.) is exploitedwhen it reaches,, in a state that satisfies the predicate

The vulnerability specification is what determines a singlmerability in a program.

Definition: Error-free ternary signature An error-free ternary signatug® is a function

S(i,X) — {EXPLOIT, SAFE, UNKNOWN }
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wherei is an input, and: is an external state. An error-free ternary signature mstexPLOIT only when
the vulnerable programmustbe exploited if executing givehand; returnssAre only when the vulnerable
programcannotbe exploited if executing givenand:; and always returns an answer in finite time.(
halts).

2.2 The Signature Generation Problem

In this work, we address the problem of howatatomaticallygenerate error-free ternary signatures. As with
previous work, we assume we are given the prograrand the vulnerability specificatiofv,, v.) [5-7].
One way to obtain this information is from an exploit detecio many casegv,, v.) is easily identified
directly from the security violation detected by such d&iec

Formally, an error-free ternary signature generationrélym is given as input a vulnerable program
and a vulnerability specificatiofv,, v.), and produces an error-free ternary signattire

In addition to the formal guarantees provided by error-tezrary signatures, there are several additional
goals:

e They should be efficient to evaluate.

e They should returexPLOIT for most inputs that would exploit the vulnerability, inding polymor-
phic variations.

e They should returisAFE for most inputs that cannot exploit the vulnerability.

3 Our signature generation approach

Our approach consists of building the signatS§réy constructing a model of the vulnerability in the pro-
gram using program analysis techniques. We call the sigemtiwe generat¥ulnerability State Machine
signatures(VSM signatures). The high-level idea of this approach & the signature models the pro-
gram’s vulnerability directly, thus we can guarantee ognature’s accuracy with respect to the vulnera-
bility. The beauty of the approach is that we need not haveaséminformation about the program; we
can use semantic-preserving transformations on the progsalf to automatically extract the model of the
specific vulnerability, given the vulnerability specifiat. This approach allows us to generate guaranteed
error-free signatures: ifS returnsexpLOIT for an input, then the input would exploit the vulnerabilignd

if S returnsAFE, then the input is benign.

The signature faithfully replicates the behavior of thenauhbility by faithfully modeling the parts
of the program that are relevant to the vulnerability. Thaest in the signatures model are derived from
the program itself, e.g., if the program evaluates an iostvao on which the vulnerability is dependent,
the signature will have a corresponding statement whichicagps the effects of that instruction. At the
vulnerability point,S checks if the vulnerability condition would be satisfiedd&rso, transition to a special
EXPLOIT state. At each place in the model where it can guaranteedhbatxploit state is unreachable
(i.e., corresponding to a state in the program at which tlogiam could not possibly be exploited), the
model transitions to theAFE state. This correspondence between the signatures mati¢heprogram’s
vulnerability is what makes our signatures error-free.alfyn we ensure that the signature always returns
an answer by constructing it to retuUNKNOWN in cases where it may not be possible to retsinFe or
EXPLOIT. Therefore, VSM signatures satisfy the criteria of an efree ternary signature.

The Core ChallengesThere are several core challenges in creating a practiaat-feee ternary signature
generation algorithm that produces useful VSM signature.

The core challenges are as follows:



e Correctly replicate the relevant semantics of the origpragram to ensure that the signature is error-
free.

e Ensure that the signature returns an answer, and does sickly @s possible, while minimizing how
often the signature returnsNKNOWN.

e Ensure that the signature is of finite, reasonable sizegwhithimizing how often the signature returns
UNKNOWN.

Generation steps.Our approach for signature generation consists of theviahig steps:

1. Model the progranP to anexecution state model/, which models the semantics £f

2. Augment)/ to returnexpLOIT for cases when the vulnerability,, v.) would be exploited by an
input.

3. AugmentM to returnsAFE for cases when the vulnerability,, v.) cannot be exploited by an input.

4. CompileM into a VSM signatureS that is guaranteed to halt, and which can be efficiently extatii

Given an inputi and external stat&, we can then evaluate the signat@é;, >) on an inputi to
determine whetheris an exploit, benign, or cannot be accurately classified oypder the external state.
We describe each of the signature generation steps below.

3.1 Translate program to execution state machine

We first build anexecution state moddESM) M that preserves and models the semantics of the program
P. We write the ESM in our signature language (Section 4.1 @tecution state machine is represented
as a graply = (V, E'), where each node il is a statement in the signature language, which replichtes t
effects of an instruction, and each edgén,, n2) is labeled with a predicate The predicate must be true

to make the transition from, to no. For example, if2; is a conditional jump based on conditiemvith true
jump targetn, and false jump targets, then there will be an edg&(nq,n2) with labelc and E(nq, n3)

with label —c. Note system calls and calls to library functions are tratesl as calls to externally defined
functions at this stage.

To handle cases where we cannot or do not represent evenplpas®86) instruction ofP in our sig-
nature language, or cannot accurately represent the ¢diainoin A/ (such as with indirect jumps), we
introduce the unknown state,, r..wn- We add edges td/ such that whenever control reaches such an
instruction, we transition t@.,,known-

Note that this step does not depend on the vulnerability ikp&tion, and hence may be done as a
preprocessing step, before any vulnerability is known hig point, M/ models the semantics of the program
P.

3.2 Determine when to returnEXPLOIT

Next, we augmenfi/ by adding arexXPLOIT state represented by.,,.;;, and at a high level, add edges
such that if the vulnerability would be exploited on an input transitions ton.,pieit.

To augmentV/, we first locate the node i/ that corresponds to the vulnerability pointin the original
programP. Letn, represent this node. For each edge that transitions to therability point, E(n;, n,)
with predicate labet, we replace the labelwith ¢ A —v.. This step ensures that only inputs which do not
satisfy the vulnerability condition transition tg,. We then add a transitioB (n;, nezpi0i) With predicate
¢ Ave. The final result is\/ such thatV/ transitions tar.,,.;: Wwhen the vulnerability condition is satisfied.

At this point M recognizes exploits of the vulnerability, but cannot yetedmine when an input is
benign.



3.3 Determine when to returnSAFE

Next, we augmend/ to transition tosAFEe for inputs which cannot exploit the vulnerability. We addazla
nsqfe COrresponding to the safe state. We then add edies, n,.) to transfer control tav, ;. when we
can determine that it is impossible for the execution on tkerginput to reach the vulnerability poinf,
such that the vulnerability condition. is satisfied.

Adding these edges in such a way tiétis sound, while reaching,, . for as many non-exploit inputs
as possible, as quickly as possible, is one of the challgrigsues that we address in this work. We leave
the details of our approach to Section 4.3.

3.4 Generating the Final Signature

The last step is to generate the final VSM signature from tigen@mted execution state model. We first
ensure thaf\/ will terminate on all inputs by analyzing all loops in the gram, and adding transitions to
transfer control to the unknown statg,,....» iN cases where it may otherwise never terminate. We then
perform optimizations o/, and compilel into S, which can be evaluated directly on inputs. We compile
by translating from the signature language to an executabtuage, and by linking external function calls
to actual implementations.

Note that we do not link against external functions or systalts directly; we link againsttub functions
which take appropriate action by either calling the reatfiom, or simulating external behavior the signature
should not replicate (see Section 4.4.4).

The output of this step is an executable VSM signatsire

3.5 Signature Evaluation

Signature evaluatio§ (i, 3) consists of running on the input;, and an external state. Note it is impor-
tant to distinguish between the original program and theatigre: evaluating the signature corresponds to
simulatingpart of the execution of the program. For example, in ouratigre language we model memory
as a hash-table: given a 32-bit integer, we return an 8-tggar, which corresponds in the program to an
8-bit read from memory at a 32-bit address location. Thusemory write in the original program is simply
a hash-table update in the signature. As a result, an unkboff@r-overflow vulnerability in the original
program may cause data (i.e., a hash-table entry) isithalatedmemory to be overwritten, but does not
and cannot overwrite data outside of the hash-table itself.

Informally %, the operational semantics of the signature language d@l@ass. The evaluation state
of a signature at any point is described dfn, A), wheren specifies a node in the graph (i.e., is like a
program counter), and specifies the current values of all memory and variables. ¥genbat an initial
statep(ng, Ag) (e.9., all variables and memoriesAy, are initialized to zero). Optionally, we need not begin
atng, as discussed in Section 4.5.2. The machine transitions @, A1) — ¢(n2, Ag) if executing the
statement at node; with values fromA; satisfied the edge predicate labdbr £ (n;,ns). For example, if
ny is the statemerift v, = 0 then jmp( ns) else jmp( ns3), we lookup the current value of in
A1, and transition tou, if the value is zero, else transition 1. The new state of values in variables and
memories after executing; is in As.

Calls to external functions are redirected to the approgséub function. The stub function has access
both to the external state and the current internal stat®. For example, the stub function for a web
server vulnerability may contain which files exist on theveerwhile the internal state contains the current

1The full signature language and formal operational serosuatie specified in [2].



*(v1) 1= valuy := *(v2)|v = c|v := v] Vg
| V= g |’U =l | label ; | nop|halt
|[imp ¢|ijmp v |if o jmp ¢ else jmp 4,

Figure 1: A representative part of the signature language.

request. A stub function will need both pieces of informatio order to return the appropriate value, e.g.,
to determine whether a file specifiedAnexists inX.

4 Design and Implementation

We now describe the design and implementation details df s@p from Section 3.

4.1 Translate program to execution state machine

The first step is to model the given progrdprto a semantically equivalent execution state maddelin our
system, the given program is an IA-32 binary. 1A-32 progrdrage a number of complexities that make
them difficult to analyze, including single instruction i instructions that implicitly read and set registers
not directly referenced, and instructions whose semadgpgnd upon the operand values.

We address this challenge by first translating the programarsemantically equivalent program in our
signature language, summarized in Figure 1. The languag®de, making analysis such as rewriting jump
targets in the model, yet expressive enough so that we céy gaaslate x86 assembly into the language.
In Figure 1,v denotes variableg, denotes constants, ands a binary operatoe +, —, *, mod, <<, >>.
The language has assignment, storés;() = ), loads ¢; = x(r2)), and control flow either as a direct
jump to a known labet, or to a computed location vignp .

We create the nodes 8f by first using an off-the-shelf disassembler to parse tharkiprogramP into
code segments, and to disassemble each statement. Wedthgate each disassembled x86 instruction into
the semantically equivalent sequence of statements ingnatsire language. Each statement then becomes
a node inM.

The next challenge we must address is to add edgés ia accurately represent the control flow.ef
While most instructions simply transfer control to the niestruction, or to a statically determined address,
x86 instructions may transfer control to an address thatngpeited dynamically at run time.

The most common type of indirect jump in 1A-32 programs istée instruction, which uses a return
address previously stored on the stack, usually byctile instruction that called the function containing
theret . In our implementation, we assume that the program obeyadhmal stack discipline in which
functions return to their caller. We use standard techrmdoédentify functions in the 1A-32 binary program
(e.g., use IDA-Pro’s built-in feature to extract functioaumdaries, look for function prologues, etc), and
resolve the possible destinations of te¢ instructions accordingly.

For other types of indirect jumps, such as those which arize fusing a function pointer, we can
potentially resolve targets using register value anallgig, 23]. Indirect jump targets which cannot be
resolved will go touNKNOWN. Our experiments show the number of indirect jumps (othentht ) can
be small (Section 5.5.2).



4.2 Determine when to returnEXPLOIT

We assume we are given the vulnerability paiptexpressed as an instruction addresg’jrand the vul-
nerability conditionv, expressed as a predicate in our signature language. We ¢heaexploit node
Nexploit: aNd add the corresponding edges\fosuch that whenever the program would have transferred to
the vulnerability pointy, in a state such that the vulnerability conditionwould be satisfied)/ transfers
control to the exploit node..,.::, adding the appropriate edge predicate labels as desénilssttion 3.2.

4.3 Return SAFE when unexploitable

We next find states i/ from whichn,,.;: (the EXPLOIT state) is unreachable, and rewrité to transfer

t0 ngqfe (SAFE State) orm,pinown (UNKNOWN state). Our goal is for most non-exploit inputs to drive
execution of M to the SAFE state rather than theNKNOWN state, and forM to transfer to thesAFE
state with as little processing as possible for non-exphgtits. We accomplish these goals by performing
reachability analysis, and modifyiny to transfer control to the AFE state when it is no longer possible to
reach theeXPLOIT or UNKNOWN states.

Reachability analysis computes all paths which start atesoauler; and terminate at a node;. Con-
sider this analysis for computing all paths which can reaefEkPLOIT staten.,,;,;; from the start node
of M. Reachability analysis is done via the following algorithiirst, we create a back-edge from, ;.
to the start nodeyy. Adding this back-edge creates a cyclelii Assumingn..pi.i; iS reachable at all,
then there is a path fromy to n.,p0i:; the back-edge completes the cycle. The case where theogiath
from ng t0 neapi0i IS degenerative, since it signifies that no input could expraét the vulnerability inA/.
Second, we compute the strongly connected component (S@@)aph containingic,p.;.. The SCC by
definition contains all nodes reachable framto n..,.::, thus for all (reachable) nodesg not in the SCC,
there is no path fromy, to ne.pi0i: (€lse there would be a path fromg to ny, 10 negpi0i, @ndny, would be in
the SCC).

We call the set of nodes and edges contained inside an SCikid tteechop We compute the union of
the chops from\V/’s start stateq to nqp0i (the EXPLOIT state), and fromug to 17y, known (the UNKNOWN
state). Since thexPLOIT andUNKNOWN states are unreachable from any node not in this chop, wéeewr
the destination of every edgé(n;,n;) wheren; is not in the chop and; is as E(n;, n.s.). Edges
E(n;,n;) whenn; is not in the chop and, is can be removed from/ all together (since there must not be
a path fromng to n;, elsen; would have been in the chop, is unreachable).

The above algorithm was first proposed for signature credtyoBrumleyet al. [5]. Unfortunately, this
algorithm leaves out many details relevant to creatingtmalcsignatures, such as exactly what graptbf
the chop is performed on. Up to now, we have not describedgaigchow functions inP are represented
in M. As it turns out, how functions are representediincan significantly affect the overall signature
generation and evaluation time.

Each functionf in the program induces a subgraphiifi i.e., the control flow graph of is a subgraph
of M. Each subgraph CF& M has a distinguished entry point for the function. In additiove can make it
so all functions have exactly one canonical exit point. Tlsthobvious thing to do is create a “super-graph”
which link up call sites off with the callee’s entry points, and link up the return exi¢siof the callee with
the next instruction after the call site. For exampldyaf() with entry node 10 and exit node 11 is called
by foo() on line 4 in the program, we add an edge10) and(11,5) to M.

On the surface, this solutions looks good since it links Ulesato callee’s. The main problem is that it
is notcontext-sensitiveThe lack of context-sensitivity results in including manghe chop than necessary.
To see this, suppose a functiorelevant() also callsbar() . Then the chop cycle contaifgr()

8



foo() , andirrelevant() . This is a well-known problem in compiler research where |tk of
context-sensitivity results in unnecessary pollutionhia analysis.

The fix is to add to the chop algorithm context sensitivity Isattwe can distinguish between different
call sites. A calling context can be uniquely representethikyentire call stack. The string of call sites on
a stack is referred to ascall string [1]. In the previous example, we have two call strinfo,bar and
irrelevant,bar . We build up the call strings for the program by symbolicakecuting call/returns in
the program, up to recursion.

We computeM’s graph in a context sensitive manner (up to recursion) dag®n the call strings.
If a function is called in 3 different contexts, there will bieree copies of the function id/. Although
duplicating nodes does increase the initial model size umexperience it usually reduces the chop size
because we do not include impossible call/return relakigrssin the chop.

At this point we have a context-sensitive graph\in with an edge t&xpLOIT for transitions that must
exploit the original program, teAFEefor transitions that cannot exploit the original programg aNKNOWN
for transitions from which we cannot determine for certain.

4.4 Generate final signature

The last step is to compil@/ to an executable signatueg, which we ultimately evaluate inputs on to
determine if they arsAFE, EXPLOIT, Of UNKNOWN.

4.4.1 Ensure termination

The original programP cannot be guaranteed to terminate. Indeed, for networlesgrmon-termination is
the norm rather than the exception. Many network applicatmperate in a loop that indefinitely accepts and
processes connections. We implement two techniques toestisat M/ terminates on all inputsbounded
iteration, andsubprogram analysis

Bounded iteration We modify our modelM to guarantee that it terminates on all inputs by performing
bounded iterationUsing this technique, we first identify loops that may notrtimate. For each back-edge
E(n;,ni00p), We set a limitl; for the number of times that the loop may iterate. We then tepttee model

to increment the iteration count for that loop every time llaek-edge is traversed, and to transfer control
to UNKNOWN if the limit is exceeded.

This is a fairly straight-forward process. The only questieft is how many times to allow loops to
iterate before returning NKNOWN. If we select too few, the VSM signature may retwtRKNOWN on
inputs that it would have eventually classified successfuflwe select too many, the signature will waste
time looping on inputs that it will never be able to classificsessfully.

We have found the only common non-terminating loops that axe lencountered in practice are server
request-processing loops. We currently identify such $om@anually, and limit the number of times it may
iterate toone We expect that this type of loop could usually be found aatiically with some simple
analysis.

For other loops, we try to find an upper bound on the numbeleddtions. If we cannot determine the
maximum number automatically, a default threshold is usegractice, we have found we did not need to
analyze other loops. The reason is most loops happen iribideyl functions (e.g.strcpy , sprintf
etc.), which terminate by convention, and are not modeletthensignature itself. If subsequent common
idioms using infinite loops are identified, we may again usgribics to identify those idioms, and bound
the number of iterations appropriately.



Subprogram analysis While we have found bounded iteration to be sufficient to emghat the VSM
signature returns an answer in a timely manner, it has thertumiate drawback of returningNKNOWN
for non-exploit inputs for applications that implement ivitie accept loops, when the vulnerability point is
reachable from inside the loop.

We observe that as a practical consideration, we typicadigtwo determine whether the vulnerable pro-
gram will be exploitedvhile processing the given inputot whether it camverbe exploited. Additionally,
we observe that a program is typically done processing aut iwpen it loops to accept a new connection.

Therefore, we propose an alternative solution of creatiegtSM signature with respect to teabpro-
gramof interest. In this case, the subprogram of interestsmgleiteration of the accept loop. Since no
loop exists in this subprograrexPLOIT is unreachable after processing the input, at which poamv8M
signature returnsArFe. Subprogram analysis is performed simply by deleting edgdse execution state
machine before performing the reachability analysis desdrin Section 4.3.

This solution is not perfect, as some vulnerabilities maigtex which a malicious input is not fully
processed until some later point after processing othemexiions in the accept loop. In this case, an input
that is safe with respect to a single iteration of the loop matybe safe with respect to the entire program.
Such cases may be detected by performing dependence arialgisiect whether the input has further effect
on the program after the first iteration of the loop.

4.4.2 Optimizations: Dead-code elimination

We can simplify the VSM signature generated so that is smbileemovingdead codecode that has no
effect on the final output oEXPLOIT, SAFE, or UNKNOWN. Smaller models both evaluate faster, and are
faster to compile in the next step. Much of the processindpéndriginal programP may be dead code in
M. For example P may spend some processing determining its response to anke®@guest, which has
no effect on whether the given vulnerability is exploitechot. This code may be safely removed frah

We currently perform dead-code elimination on scalar \dei®, which removes some unnecessary pro-
cessing. We expect that much more dead-code could be etedify performing dead-code elimination
on memory, which is more challenging due to the need for poialias analysis. We may also be able to
eliminate calls to external functions whose output doesaffett the vulnerability, which has the additional
benefit of the VSM signature not requesting irrelevant exkstate. To do this, we would also need sum-
maries for functions that take pointer arguments, spawfyne memory range that they may read from and
write to.

4.4.3 Compile to native code

When creating the initial VSM signature, we translate the8Aprogram to our own signature language, as
described in Section 4.1. We provide a compiler for the gigmalanguage which takes as input a model,
and outputs a C program. We can then leverage existing C ¢tenmpd perform additional optimizations
and produce the final executable.

Translating our language into C is straight-forward. Th& @omplication is how memory access in
the original IA-32 program are converted from our signatareguage to C programs such that all access
are valid. As mentioned, we treat memory as a hashtable vgiega an address, we return a value. This
memory representation is incompatible with that which mdgfunctions expect. To solve this problem, we
provide stubs which translate between the signature lagyggsianemory representation and native code, and
link against these stubs. However, one advantage of ouoapipis we need not worry about unknown buffer
overflows in the original program, since they are not traeslas real buffer overflows in the signature. In
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future work, we hope to eliminate the translation at compitee while still retaining the additional safety
and abstraction advantages.

4.4.4 Resolve external function calls

During linking, we link calls to external functions to outubs. If the called external function does not
operate on the external state, then our stubs in turn calsadtual external function, i.e., the signature
calls the stub (which performs any necessary translatimms 6ur memory scheme), then the stub calls the
external function.

In order to prevent unnecessary side-effects such as waima reading files, function stubs for system
calls and for functions that operate on input or other extiestate must instead replicate the semantics of
the original call while operating on the inplbr external stat® provided at evaluation time. As a concrete
example, our function stustat which returns a value specified . Note that these function stubs are
not specific to a signature or vulnerability, and hence nexy loe written once for a given library function
or system call.

In our current implementation, stubs that require inputxbemal state that is not present block execution
of M, and notify the caller of what input or state is necessanottinue. This allows us to supply the input
and external state in an on-demand fashion. This is comefoe a number of reasons. In particul&f
can begin executing on the first packet of a network connectiiomay reach a decision based on the first
packet alone, or may notify the caller that it needs more;daa it cannot make a classification without
processing the next packet.

4.5 Signature Evaluation

Once compiled, the signature is an executable piece of ¢@dddakes an input, an external stat&, and
accurately returns eith&xpPLOIT, SAFE, Of UNKNOWN.

A final step is to obtain the appropriate external state. Maulperabilities are independent of any
state external to the vulnerable program, in which casedsd®d matter what external state is used when
evaluating the signature. In Section 4.4.2 we describe heway be able to detect such cases automatically,
and remove the VSM signatures requests for external state.

However, there are some vulnerabilities for which the statelevant. For example, a server may only
be vulnerable if a particular option is enabled in a confiarafile, or if a particular file exists. In these
cases a VSM signature must be evaluated in the context ofc#ispxternal state.

4.5.1 Selecting and obtaining external state

Unlike previous signature approaches, our VSM signatuaks hot only an inpui, but also an external
stateX.. What external state to use depends on the precise queséibthe VSM signature user wishes to
answer. If they wish to determine whether an input will exXptmmehost running a vulnerable program,
they can use an external state that is known to be vulnerkhey wish to determine whether an input will
exploit aspecifichost, or any host with a particular configuration (as in a ngadanetwork), they can use
the corresponding external state.

In either case, the external state can generally be obtaintunatically, either as a preprocessing step
or on-demand at run time, e.g., for our experiments, we nbththe necessary state from our host systems.
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4.5.2 Additional Improvements: Preprocessing

As described so far, the VSM signature may perform an arlgimount of processing before actually read-
ing the input. However, given some fixed external state (asried in Section 4.5.1), the VSM signature
will always reach the same nodewhere input is initially read, with the same register and rognstateA.

Rather than re-performing this processing for every irpobe evaluated, we take a snapshot of the state
A of the actual progran® at the point corresponding to nodewhile running in a vulnerable configuration.
When evaluating the VSM signature, we then begin executiooden, with state VSM signature, rather
than at the actual program start.

This optimization may be performed after the VSM signatuae been created, using a hook to specify
an alternative starting node and stateA. As an additional optimization, we perform this steefore
translating the prograr® to the execution state machifné. As a result, there is no need to incorporate any
part of P into M that cannot execute after node This optimization not only improves matching time of
the resulting signature, but also improves the signataeand generation time.

5 Implementation and Evaluation

5.1 Implementation

Our implementation is divided into two components. The fa@iponent is a translation engine which
interfaces directly with the x86 binary and is responsillearsing the binary (we currently support Win-
dows PE and Linux ELF), reading in the assembly, and liftigydssembly to our signature language. This
component is written in C/C++, and is about 16,500 lines adegavith about 1/3 of the lines of code geared
towards parsing the binary and interfacing with the disadders, and the other 2/3 translating to the sig-
nature language. The second component is an analysis emdiiah is written in OCaml. It performs the
model creation, the compiler from the signature languag€,tand the other analyses and optimizations
discussed in Section 4. The total code size for the analgsigponent is about 28,000 of code.

5.2 Evaluation

We implemented and evaluated our approach on Linux opgrayistem. Our evaluation was performed on
a 3.2GHz Pentium 4 computer with 3GB memory. We measure &wakiation metrics: VSM signature
accuracy, VSM signature matching speed, and VSM signaemergtion speed.

We perform in-depth evaluation on three vulnerable sern&r®httpd (web server), ghttpd (web server),
and passlogd (syslog message sniffer). We then performetdorb@nchmarks to measure overall model
generation time on 98 additional binaries from the Linuxectits-6.9 package.

5.3 In-Depth Analysis

We perform an in-depth evaluation of our techniques usingetivulnerable servers: ATPhttpd, ghttpd, and
passlogd.

We use the subprogram technique described in Section 4.4diltl the VSM signatures with respect
to the accept loop, and the preprocessing technique deddnlSection 4.5.2 to begin evaluating the VSM
signature at the point where the input is read. Externak siats unnecessary for all but the ATPhttpd
vulnerability, for which we used external state from a knevuinerable host.
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For each vulnerable server, we provide a qualitative detson of the vulnerability and the generated
VSM signature, and evaluate the accuracy of our VSM sigeatarboth exploit inputs and safe inputs. For
completeness, we also include the time to generate each \@idtare and to match each VSM signature
against exploit and safe inputs. These results are taludatte further explained in Sections 5.3.4 and 5.4
respectively.

5.3.1 ATPhttpd

ATPhttpd is a small web server written in C [21]. ATPhttpdsien 0.4b has a stack-smashing vulnerability.
When the file specified in the URL of a '"GET’ request is not fouAdPhttpd generates an error message
including the requested URL, using an incorrect bounds lchéthis vulnerability can be exploited by
requesting a file name that does not exist on the servergetrithe error-handling routine, which is long
enough to overflow the error-message buffer.

For this vulnerability, we defined the vulnerability spezition as follows. The vulnerability point is the
call tosprintf ~ from the functionhttp _send _error . The vulnerability condition is that the parameters
supplied tosprintf  will result in a long enough error message to overwrite thieetable stack frame’s
frame pointer.

Our techniques generated a VSM signature in 1.585 secordsadcept loop contains no unanalyzed
indirect jumps, and no unbounded loops. As a result, it Gostao UNKNOWN node, and is hence guaran-
teed to returrsAFE or EXPLOIT for every input.

We evaluated the VSM signature on both malicious and bemigats. The VSM signature requires the
result of astat system call to determine whether the requested file exisesrédblved this external state
by using a known-vulnerable configuration in which no regeediles exist.

We evaluated the VSM signature using attacks from the vabikity disclosure [20], for which the VSM
signature returnedxpPLOIT. We also manually varied the attack payload to confirm thatBM signature
also returnExpPLOIT for other attack variants. The VSM signature took an averdg80113 seconds to
return an answer for ea®@xPLOIT input.

We also evaluated the VSM signature on synthetically géeérbenign HTTP requests. The VSM
signature returnedArEe for such requests. The VSM signature took an average of 98@donds to return
an answer for each benign input.

5.3.2 ghttpd

Ghttpd, a web-server written in C, contains a stack-basedflow in version 1.4.3 [25]. Similarly to AT-
Phttpd, ghttpd is vulnerable to excessively long 'GET’ resfs. It calls a logging functiobog on every re-
qguest, which fails to check the boundary of its local bufféxew creating the log message ususgrintf

The vulnerability can be exploited using completely sefganaultiple execution paths, due to some error
checking that occurs before callihgg .

The vulnerability specification for this vulnerability hassimilar form to that ofATPhttpd . The
vulnerability point is the call tarsprintf insideLog. The vulnerability condition is that the parameters
passed tovsprintf will cause it to generate a message long enough to overlatgs stack frame
pointer.

Our techniques generated a VSM signature in 1.193 secondsinAthe generated VSM signature
contains no loops nor unresolved indirect jumps. As a rasglhntains no transitions to theNKNOWN
node, and hence returesPLOIT or SAFE for all inputs.
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Attack | Compute VSM signature VSM signature to C| Compile Signaturg Total Time
ATPhttpd 0.676 s 0.029 s 0.88s 1.585s

ghttpd 0.549 s 0.034 s 0.61s 1.193s
passlogd 0.273 s 0.008 s 0.05s 0.332s

Table 1: Signature generation performance

We evaluated the VSM signature using attacks generatecelsxibioit program from [25]. We modified
the exploit program to create attacks that have varyingtlendhave randomly generated shell code, and
cause different execution paths to be followed in the vidbgity. The VSM signature successfully returned
exPLOIT for all of these attack variations, with an average evatuatime of .00025 seconds. Note that
previous vulnerability signature approaches that modsl arsingle execution path would not have been
able to detect these variations.

We also evaluated the VSM signature on synthetically geeérbenign HTTP requests. The VSM
signature returnedArE for all such requests, with an average evaluation time d¥168 seconds.

5.3.3 passlogd

Passlogd is an all purpose sniffer used to capture syslogages. The vulnerability in passlogd is a stack-
based buffer overflow. When copying a log level field in thection sl _parse , passlogd fails to check
the buffer boundary when searching for a delimiting, resulting in a stack overflow [9].

The vulnerability point for this program is an assignmeatesinent inside| _parse : level[j] =
pkt[i] . The vulnerability condition is that the address calculatg the expressiotevel[j] is the
address ofl _parse ’s frame pointer.

Our techniques generated a VSM signature in 0.332 seconalikelhe previous vulnerabilities, the
VSM signature contains several loops whose maximum iterattannot be statically determined, including
the copy loop where the vulnerability is located. As a resbk VSM signatureloescontain transitions to
the UNKNOWN state, due to the bounded iteration transformation desdiito Section 4.4.1.

We evaluated the VSM signature using exploit code from [8 again generated variations by ran-
domizing the shell code and by altering the length of the tinpilne VSM signature returneeixPLOIT for
all such variations, with an average evaluation time of 7W0&econds.

We evaluated the VSM signature on benign inputs obtainedbyerting messages frofvar/log/messages
on our desktop machines to syslog format. The VSM signaemamedsAFe for all such inputs, with an
evaluation time of .00220 seconds. The benign inputs warestcted from the filédvar/log/messages
We converted the log messages back to syslog format andadedlthem with our signature. Again, the
signature had perfect accuracy with no transitions taJtheNOWN state.

5.3.4 VSM signature Generation Time

We measured the time to generate VSM signatures for our thrieerable programs. Figure 1 shows
our results. We use CPU time (user time and system time) anétec of performance evaluation. The
column “Compute VSM signature” shows the time to compute I8 signature from the binary; the
column “VSM signature to C” shows the time to convert the V3ghature signature to C code; the column
“Compile Signature” shows the time to compile C signaturte imative code. The results show signature
generation is fast.

14



Matching Benign (sec) Matching Attacks (sec
ATPhttpd 0.00015 0.00113
ghttpd 0.000165 0.00025
passlogd 0.00220 0.00270
passlogd 0.00003 0.00051

Table 2: Signature matching performance

5.4 VSM signature Matching Time

We measured the matching performance of our signature othadicious inputs and on benign inputs.
In each case, for inputwe executeS (i, X), and verified the correct result (eithexPLOIT or SAFE) was
returned. The external statewas obtained from a vulnerable configuration for ATPhttpd] & unneeded
for the other vulnerabilities. We report the average of 100@%s on each input. The results are shown in
Table 2. The “Matching attacks” shows the matching time aacitrequests, which were generated from
publicly available exploits [9, 20, 25] and hand-craftediaats. The column “Matching benign” shows the
matching time on benign requests for synthetically geeérataffic (HTTP requests for the web-servers,
and syslog messages from passlogd). When possible, we attnimialicious and benign requests which
exercised multiple code paths.

Signature matching is overall reasonably fast. Howevenweee surprised passlogd took longer than
previous examples, since it was a less complex program laveva manually inspected our VSM signa-
ture to determine why passlogd is slower than ATPhttpd artbdh It turns out that passlogd initializes
about 5,000 bytes to zero in a loop, and the memory derefeseinom this loop were resulting in worse
performance due to our treatment of memory accesses. Wilpcban external state with all bytes already
zeroed, and began executing the program after initiatinaths described in Section 4.5.2. We show the
performance numbers as passlogd

One interesting thing we observe is matching benign traffi@$ significantly less time than attack
traffic. On average, evaluating a benign request takes dmytab5% as much time as attack requests.
The reason for this is that the generated VSM signatureng®iFE as soon as the vulnerability point is
unreachable, as described in Section 4.3, i.e., in gertkealpngest execution path is to tagPLOIT state.
Hence, safe inputs often require significantly less pranggstan exploit inputs.

5.5 Macro-benchmarks

In order to get a better idea how our techniques work on maifgreint programs, we performed measure-
ments on the 98 Linux binaries from the coreutils package réfert these numbers to give a feel of what
our overall signature generation time is on other types mdutes.

5.5.1 Initial Model Creation Time

Since creating the end-to-end measurements indicate teatireg the initial model dominates the total

signature generation time, we performed a benchmark to@&ddmg creating the context-sensitive VSM

signature of the program in our signature language on a laug®oer of other programs. Note that we are
not creating a signature for a vulnerability, but measutiow long it takes to compute the initial model.

This benchmark gives a rough idea how our signature genarsyistem scales with binary size.
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File Size vs. Performance
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Figure 2: Macro-benchmark showing the time to create araimitodel for 98 programs of varying size.

Figure 2 shows our results. We were able to analyze all 98ranag, Each took less than 30 seconds
to analyze. Two programs, sha512sum and sha384sum, tooka$tetimes with about 26 seconds, mainly
because one functiordigest _file , was called in many different contexts, increasing the obshe
callstring analysis described in Section 4.3. If we remdwese two outliers, the generation time for the
remaining coreutils binaries ranges from .311 to 4.99 sggowith an average 1.18 seconds.

5.5.2 Indirect Jump Analysis

We also analyzed the number of indirect jumps in the initialdels created for the coreutils programs.
Indirect jumps can arise from the use of function pointerdyaramically generated code. When an indirect
jump is encountered during signature evaluation (not gogmét instructions), we returdNKNOWN, thus
the number of indirect jumps is a metric of how many potergiths may classify an input aanKNOWN.
(Recall during our end-to-end test, no indirect jumps weeduated, and we never returnedlKNOWN.)

We found on average 2.39 indirect calls (not counting rétte instruction) per program. The small
number of indirect jumps supports the idea that there ang fesv control flow edges we cannot account
for precisely and result iDNKNOWN being returned. Integrating alias analysis such as [3,]4@2®solve
these few remaining indirect jumps into our infrastructtegmains future work.

6 Limitations and Future Work

While we are currently able to accurately build signatumsniany programs. However, there are several
things we do not address, and leave as future work:

e We currently only consider sequential execution. We do notently model asynchronous events such
as threads executing in the same address space, callbaokednasynchronously by the operating
system, etc. As a result, we do not focus on vulnerabilitresrey from asynchronous events such as
deadlock. Generating accurate signatures for such codsmeran open problem.

e We only model code that is present statically in the givergpam,i.e., we do not model dynamically
generated code. VSM signatures generated from prograrhgythamically generate code will still
be correct, but will returuNkKNOWN if and when control transfers to the dynamically generatetec

e Applications which rely heavily on modifying external ®ae.g., databases, pose unique challenges.
For example, how should we model external state updatesuitiuplicating the side effects? We
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leave this as future work.

e We manually generate stub code at this time. In many caseuld automatically generate stub
code by analyzing the actual library binary, or provide massistance to the user who writes the
stubs. Note that the stubs only need to be written once; ia.gyr experiments we used the same
stubs for all vulnerable applications.

e We currently generate signatures that determine whetharpan will exploit a vulnerable program
in the context of a particular external state. Another igéng problem is to determine whetreer
external state existsuch that a given input will exploit a vulnerable program.miay be possible
to answer this question using our generated VSM signatyresing model-checking techniques to
execute on a symbolic external state.

7 Related Work

Signature GenerationSeveral automatic signature generation mechanisms havedoeposed which take
several examples of an exploit, and extract common patterase as a signature [11,12, 14,16, 22]. While
these work well for some attacks, they may be defeated bynpmiyhism [8, 16] or by direct attacks against
the algorithms [17,19]. Hamsa [14] provides a false negatiwund over the exploit inputs in its training
data, but not over the program vulnerability itself.

Other approaches select which patterns to use in the signiayuapplying some heuristics to available
semantic information [15, 18, 28], which helps reduce tkk af false negatives.

Several researchers have proposed signatures that modéeaability to provide accuracy guaran-
tees [5, 6, 26]. These approaches have either required thaspacifying protocols [26], handled only a
single code path [5, 7], or were more theoretical and did atatidish how to distinguiseAFEandexpLOIT
in practice [5, 6].

Binary Analysis We perform binary analysis of executables to create sigesitun particular, we assume
the binary can be disassembled correctly and, at a minimam,cceate a control flow graph. Previous
work has shown these assumptions to be reasonable [13]. &Ve veriant of traditional program slicing
techniques [27], which would benefit from data dependenayars. Dependency analysis for assembly in
our experience needs good memory access analysis to bé. uadiuture work, we plan on incorporating
memory access analysis such as in [3, 4, 23].

8 Conclusion

We presented the first practical approach for creating vabikty signatures which capture multiple pro-
gram paths an exploit may take. Our signatures are guathtbelee error-free, i.e., when the signature
returnssAFE, the input is safe, when the signature retuex$LOIT, the input is a real exploit. We also
show that adding a third stateNKNOWN, is useful for making vulnerability signatures practicat feal
programs. Previous techniques which covered multiplespattre of theoretic interest, and did not guar-
antee even basic properties like termination $aiFE inputs. We also implemented our techniques, and
measured the performance of real end-to-end studies foerable programs, as well as performed larger-
scale macro-benchmarks. Our experiments indicate ourtiggs are efficient to create (creation takes
about a second) and evaluate, can recognize many diffexpluits, even those which would take different
code paths to reach the original vulnerability.
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