
Algorithms and Resource Requirements

for Fundamental Problems

R. Ryan Williams

August 2007

CMU-CS-07-147

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Manuel Blum, Chair

Ryan O’Donnell

Steven Rudich

Russell Impagliazzo (UCSD)

Dieter van Melkebeek (U. Wisconsin-Madison)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

c©2007 Ryan Williams

This research was sponsored by the National Science Foundation under grant no. CCR-0122581 and fellowship

no. DGE-0234630. The views and conclusions contained in this document are those of the author and should not

be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.

government or any other entity.

Keywords: satisfiability, lower bounds, time-space tradeoffs, automated theorem-proving, ex-
act algorithms, maximum cut

to my parents

1

Abstract

We establish more efficient methods for solving interesting classes of NP-hard problems exactly, as
well as methods for proving limitations on how quickly those and other problems can be solved.

• On the negative side, we prove that a number of NP-hard problems cannot be solved too
efficiently by algorithms that only use a small amount of additional workspace. Building
on prior work in the area, we prove that the Boolean satisfiability problem and other hard
problems require Ω(n2 cos(π/7)−o(1)) ≥ Ω(n1.801) time to solve by any algorithm that uses
no(1) space. Stronger lower bounds are proved for solving quantified Boolean formulas with a
fixed number of quantifiers. Our results are essentially model-independent, in that they hold
for all reasonable random-access machine models. Furthermore, we present a formal proof
system that captures all prior time-space lower bounds for satisfiability (including our own),
and demonstrate how the search for better lower bounds can be automated, in not only our
particular setting but also other lower bounds that follow a certain high-level pattern. We
describe an implementation of an automated theorem prover and provide experimental results
which strongly suggest that further improvements on the above time lower bound will require
new tools and ideas.

• On the positive side, we give a general methodology for solving a large class of NP-hard
problems much faster than exhaustive search. In particular, for a problem in the class where
exhaustive search of all possible solutions takes Θ(N) time, our algorithm solves the problem
in O(N δ) time, for a universal constant δ < 0.792 that depends on the complexity of multi-
plying two matrices over a ring. We also provide theoretical evidence that a much larger class
of problems admits a similar type of algorithm.

To illustrate our results, consider the Max Cut problem, where one is given a graph G = (V,E)
and integer K, and one wishes to determine if G has a subset of vertices such that the number of
edges leaving the subset is at least K. The obvious algorithm for Max Cut runs in O(poly(n) · 2n)
time, where n = |V |. Despite the problem’s importance, no better algorithm was known for the
general case of Max Cut, prior to our work. Our results imply that Max Cut can be solved in
O(

√
3

n
) time but cannot be solved in O(n1.801) time and no(1) space.

i

ii

Acknowledgements

Any success I have had as a graduate student owes credit to my advisor, Manuel Blum. He is one
of the most generous people I have ever met, and he maintains an unwavering focus on the truly
important problems. He has helped me learn that optimism and bravery are paramount in research
(and life as well– but I’m being redundant). I owe many thanks to the rest of my thesis committee
(Ryan, Steven, Russell, and Dieter) too, for their all of their gracious help and penetrating insights
which improved this work tremendously.

Here at Carnegie Mellon, I’ve made many friends that I’m grateful to have been around. In
particular, if it were not for Virginia Vassilevska, I might have truly lost my mind at certain stages
of my thesis work. Her constant cheer and unconditional support kept me going. Maverick Woo
has been a great buddy since freshman year at Cornell – he and Manuel smooth-talked me into
Carnegie Mellon, and I’m so glad they did. I also thank Sue Ann, Himanshu, Pedro, Vlad, and
Mahim for tolerating me as an officemate, and Bubba Beasley for his camaraderie in watching
college football.

From the times of my undergraduate and M.Eng at Cornell, I am most grateful to Juris Hart-
manis for his highly influential mentoring, along with the dynamic duo of Carla Gomes and Bart
Selman for their wonderful support over the years. And whereas I am graduating, be it resolved
that everyone affiliated with Telluride House from 2000 to 2002 should take this acknowledgement
as an excuse to toast themselves, wherever they may be. Special thanks are due to Intergraph
Corporation for their use of me as a COBOL-ing Y2K summer intern– that experience drove me
to research as much as anything else.

Of course I should also mention my family– there, I just did. Seriously, I don’t know why Mom
and Dad let me go all the way to yankeefied Ithaca, New York for college, even with my skills of
persuasion (“no, it isn’t pronounced EYE-THACKA”), but their decision changed my life for the
better. My brother and sister have always been there for me, through the good, the bad, and the
XBox.

There are so many other people to thank, and with another hundred pages I would only have
listed a tiny fraction of them. (For instance, I can imagine that around page 79, I’d start thanking
the 2004 NCAA Football National Champions of Auburn University one by one, for their inspira-
tional perfect season that fictionally led me to prove Corollary 58 of my 4th paper, bla bla bla...)
Permit me to thank you all at once, and I sincerely hope you enjoy reading.

iii

iv

Contents

1 Introduction 1

1.1 Lower Bounds for Solving NP Problems . 2

1.2 Upper Bounds for Solving NP Problems . 3

1.3 Outline and Bibliographic Information . 5

2 Background 7

2.1 Asymptotics . 7

2.2 Boolean Formulas . 8

2.3 The Computational Model and Computational Problems 8

2.4 Complexity Classes . 10

2.4.1 Time Bounded Classes . 11

2.5 Complete Problems . 12

2.5.1 The Robust Completeness of Sat and Other NP Problems 13

2.5.2 Robust Completeness for Problems Outside of NP 17

3 Introduction to Time-Space Tradeoffs for NP 19

3.1 History of Time-Space Tradeoffs for Nondeterminism 20

3.2 Indirect Diagonalization . 21

3.2.1 The Alternation-Trading Scheme for Proving Lower Bounds 21

3.3 Prior Time-Space Lower Bounds and Their Tools . 22

3.3.1 Sat is not in DTISP[n
√

2−ε, no(1)] . 26

3.3.2 Sat is not in DTISP[nφ−ε, no(1)] . 26

3.4 Chapter Summary . 28

v

4 New Time-Space Tradeoffs for NP Problems 29

4.1 Sat is not in DTISP[n1.661, no(1)] . 31

4.1.1 Formalization . 32

4.2 Sat is not in DTISP[n1.732, no(1)] . 34

4.3 Sat is not in DTISP[n1.784, no(1)] . 38

4.4 Sat is not in DTISP[n2 cos(π/7)−ε, no(1)] . 42

4.4.1 An Extension to Non-Uniform Algorithms . 45

4.4.2 A Generalization to Lower Bounds for Quantified Boolean Formulas 46

4.4.3 On Further Improvements to Sat Lower Bounds 49

4.5 Chapter Summary . 51

5 Automated Search For Time Lower Bounds 53

5.1 Formalization of time-space lower bounds . 54

5.1.1 A normal form for alternation-trading proofs 56

5.1.2 Proof annotations . 58

5.1.3 Proof annotations for the lower bounds we have seen 60

5.2 Translating lower bounding into linear programming 62

5.3 Experimental Results . 64

5.4 Other Applications . 68

5.5 Chapter Summary . 69

6 Accelerated Algorithms For a Class of NP-Hard Problems 71

6.1 Prologue: The Next Two Chapters . 71

6.1.1 Notation . 72

6.2 Introduction . 72

6.2.1 Outline of our approach: Split and List . 73

6.3 Fast k-Clique Detecting and Counting . 74

6.4 General Algorithm for a Class of Optimization Problems 74

6.4.1 Main Algorithm . 76

6.5 Weighted Polynomial Constraint Problems on Boolean Variables 79

6.6 A Potential Application to Breaking a Class of Cryptosystems 83

6.7 Chapter Summary . 86

vi

7 On Accelerated Algorithms for Satisfiability 87

7.1 Good k-Dominating Set Algorithms Imply Accelerated Sat Algorithms 89

7.1.1 A Partial Converse: Using Sat to Solve k-Dominating Set 91

7.2 A Variant of 2-Sat Can Help Solve Sat . 93

7.3 A Variant on Horn-Sat Can Help Solve Sat . 95

7.4 Chapter Summary . 97

8 Epilogue: Future Work 99

vii

viii

Chapter 1

Introduction

Computational complexity theory is the formal study of how resource limitations affect compu-
tational ability, both negatively and positively. Its mathematical framework unites the elegance
of recursive function theory (which studies what can be computed in principle) with the highly
constrained reality of our world. The resources most widely considered are time and space, where
the primary questions are “what can be computed within a short amount of time?” and “what can
be computed with a small amount of storage?”.

Through years of research, practitioners of complexity theory have identified leagues of various
complexity classes that intuitively capture those problems which are solvable in an efficient amount
of time and space. Four central classes among these are P, NP, L, and PSPACE.

• For the resource of time, the class P contains those problems which can be solved by a
computer in polynomial time. That is to say, any input instance of the problem can be solved
in an amount of time that is not extravagantly longer than the length of the input itself.

• The class NP contains those problems whose solutions can be verified by a computer in
polynomial time. That is, if one is given the solution to a problem upfront, then the solution
can be efficiently verified as a valid one. It is easy to see that P ⊆ NP, since any problem that
can be solved in polynomial time can also have its solutions verified as correct in polynomial
time. The question of whether or not P = NP is among the most important problems in
mathematics– it is one of the seven Clay Math Millennium Problems, for which a solution
merits $1 million USD [CJW06]. It is widely believed that P 6= NP.

• For the resource of space, the class L (also known as LOGSPACE) contains those problems
which can be solved by a computer whose working storage size is roughly the logarithm of
the input size. Problems in L can be solved with very little extra storage, beyond that used
to house the input.

• Similarly, the class PSPACE contains those problems solvable by a computer with a polynomial-
sized working storage. PSPACE is the analogue of P in the space-bounded setting.

It is well-known that L ⊆ P ⊆ NP ⊆ PSPACE, but also that L 6= PSPACE. Therefore, we know
that either L 6= NP or P 6= PSPACE, but we do not know how to prove either of the two inequalities.

1

The L ? = NP and P ? = PSPACE problems are also major open problems in complexity theory, and
since most researchers believe P 6= NP, it is widely conjectured that both L 6= NP and P 6= PSPACE.

Each of the separation problems P ? = NP, L ? = NP, and P ? = PSPACE are fundamental to our
understanding of feasible computation. From time to time, it is sometimes said that despite their
past significance, these problems are no longer relevant from a practical standpoint, and amount to
mere puzzles for pure mathematicians. This viewpoint is badly mistaken. These problems form the
underpinning of all our shared knowledge about what is possible with computers and what is not.
Practically every prominent area of computer science has a share of expressive problems known as
NP-complete and PSPACE-complete problems, many of which are central to their area. A complete
problem in a class C has the remarkable property that every other problem in C can be efficiently
expressed as a special case of the complete problem. Therefore if an efficient algorithm exists for a
C-complete problem, then there is an efficient algorithm for every problem in C. A demonstration
that a problem is NP-complete or PSPACE-complete is strong evidence that the problem is difficult
to solve– for if not, then a major breakthrough would occur in complexity theory.

When a new area in computer science arises, one of the first orders of business is often to figure
out what’s NP-complete and what’s not. (We have personally experienced this in database research,
where a data privacy problem turned out to be unexpectedly NP-complete [MW05], forcing us to
design heuristic approximations for it.) The abundance of complete problems has forced thousands
of computer science workers to refine their research agendas in the hopes of working around them.
As purely mathematical problems, P vs NP and her relatives are already among the most celebrated
and sought-after. But as a computer science problem, P vs NP has attained the dual stature of
being both a fundamental physical law and an insurmountably unverifiable religious belief. No
patch of the computer science landscape can escape the long shadow it has cast, and yet we do not
have the slightest idea of how to prove that P 6= NP despite our firmest intuitions that it must be
true.

1.1 Lower Bounds for Solving NP Problems

The L versus NP question is not quite as famous as P vs NP, but it is still extremely important
for our understanding of the deep difference between proof verification versus proof generation. For
example, given a Boolean formula and an assignment to its variables, one can check if the assignment
makes the formula true, using only logarithmic space. However, the problem of devising such an
assignment from scratch (i.e. the satisfiability problem, abbreviated as Sat) requires at least the
power of NP. How difficult are these two problems, comparatively? With a realistic computing
model, the first problem can be solved in O(n · poly(log n)) time and O(log n) space. In contrast, a
precise classification of the time-space complexity of the second problem would settle the L vs NP
question.

We give some partial progress towards the separation of L and NP, building on the pioneering
work of others from the late 1990’s. Our main result is that Sat requires at least n2 cos(π/7)−ε ≥
n1.8019 time for any realistic algorithm that uses no(1) space, for all ε > 0. Therefore, there is
a substantial difference between the time-space complexity of checking if a particular assignment
makes a formula true, and checking if no assignment at all makes the formula true. (Note that
a full proof that L 6= NP would be equivalent to proving that Sat requires at least nk time and

2

O(log n) space, for all k > 1.) In fact, we can show a time-space tradeoff: for every a < 2 cos(π/7),
there is a b > 0 such that Sat cannot be solved in na time and nb space. This improves upon
previous results by Fortnow, Lipton, Van Melkebeek, and Viglas, who showed an nφ ≥ n1.618 time
lower bound in the same setting.

Our time-space lower bound for Sat holds for many other well-studied NP-complete problems
such as Vertex Cover, Hamilton Path, and Max 2-Sat. We also generalize our results to
prove new lower bounds for the Quantified Boolean Formula (QBF) problem on instances with
a fixed number of quantifiers, showing that quantified Boolean formulas with k quantifier blocks
require at least Ω(nk+1−εk) time to solve for any realistic algorithm using no(1) space, where εk → 0
as k → ∞. The overall proof strategy used is very general, and can be adapted to improve upon
superlinear time limitations for Sat on other computational models as well, such as off-line one-
tape Turing machines. (However, since the off-line one-tape machine is not considered to be a very
general computational model, these results will not be the main focus in this thesis.) Our high-level
strategy follows prior work in striving for proofs by contradiction: we show that one can apply an
ultra-efficient satisfiability algorithm to build new algorithms that we already know cannot exist in
computational complexity. Thus, while our approach yields negative results, the proofs of results
are algorithmic in nature. In this way we use old non-existence proofs to help us prove new ones.

For a long time, we believed that it should be possible to extend our ideas to prove an Ω(n2−ε)
time lower bound for solving Sat with no(1) space on a random access machine. Indeed, this was a
folklore conjecture among most researchers studying time-space tradeoffs. A quadratic time lower
bound is already known for multitape Turing machines with no(1) space (cf. Santhanam [San01]),
but that result crucially depends on the access limitations of tapes and does not generalize. However,
we now have evidence that any time lower bound better than ours will require substantially new
ideas. After countless days of failing to find a better lower bound than our n1.8019 result, we
discovered a way to efficiently formalize the high-level strategy taken by all prior results (including
our own), so that a computer program can automatically and feasibly find proofs of any lower bound
that falls within the existing framework. This framework includes a host of lower bound arguments,
including time limitations for solving problems on multitape machines, off-line one-tape machines,
and nondeterministic space-bounded RAMs.

We have implemented a small-scale version of a program that can automatically discover new
time lower bounds. Our computer experiments suggest a surprising and challenging conjecture:
that our Ω(n2 cos(π/7)−ε) lower bound is actually the best possible using the existing tools. In
particular, a variety of possible proof strategies (as formalized in our approach) all lead to lower
bound exponents below 1.8019, and exhaustive search of all proofs up to a certain length indicates
that the best possible proofs have a very similar form to our proof strategy achieving the 2 cos(π/7)
exponent. Therefore, to improve upon our work in this area, it appears that truly new ideas are
required– better results do not seem possible with the existing tools.

1.2 Upper Bounds for Solving NP Problems

In the second part of this thesis, we investigate the extent to which NP-complete problems can be
solved exactly. While the general consensus is that no polynomial time algorithms exist for these
problems, it is perhaps less clear that subexponential (2no(1)

time) algorithms do not exist. For some

3

problems, we know of no better algorithms than the trivial brute-force search that tries all possible
solutions. It is of great intellectual interest to know if solution enumeration is truly the best one can
do for NP problems in general, and indeed this question was one of the initial motivations for the
P vs NP question. However, just like the lower bound setting, it seems very difficult to find good
general methods– substantially better algorithms that work for a variety of hard problems. Our
notion of “substantially better” is the following: we define an accelerated algorithm for a problem
to be one that solves any instance of the problem in O(N δ) time for some δ < 1, where N is the
number of possible solutions. This is a much weaker requirement than showing P = NP – in that
case, we would be solving instances in O((logN)c) time – but the question of whether there are
accelerated algorithms for NP problems is still a mathematically deep one that has the potential for
practical impact. In the second half of this thesis, we report progress on the search for accelerated
algorithms for general NP-hard problems.

Our work in this direction is motivated by a general research question: computer science has
uncovered remarkably efficient algorithms for many problems in P, such as matrix multiplication,
integer/polynomial multiplication, and minimum spanning trees – what implications do these in-
genious algorithms have for solving NP-hard problems? Our approach is to reformulate an NP
problem in such a way that it becomes exponentially larger than before, but now solvable in time
polynomial in its new size. Then we apply a fast polynomial time algorithm to the new exponential-
size problem, obtaining an accelerated algorithm. For example, a trivial reformulation would be
to append a list of all possible solutions to the input– a solution can now be found in “polynomial
time” by checking each possible solution produced, but of course the resulting algorithm yields
no improvement over brute-force search. We use more intricate reductions combined with a poly-
nomial time problem having a surprisingly fast algorithm, matrix multiplication, the problem of
multiplying two n×n matrices over a ring. For years, people believed that the obvious O(n3) algo-
rithm for matrix multiplication was the fastest possible– that all possible pairs of rows and columns
had to be multiplied separately in Θ(n) time. This intuition was shattered with Strassen’s break-
through algorithm which uses only O(nlog2 7) ring operations [Str69]. The current fastest (ring)
matrix multiplication algorithm is by Coppersmith and Winograd [CW90] and runs in O(n2.376)
ring operations.

The main positive result of this work is that a large class of NP-hard problems can be solved
significantly faster than exhaustive search, by connecting the standard brute-force algorithm for
these problems to one that can be solved quickly with fast matrix multiplication. The “large
class” is called Weighted 2-CSP, and it consists of constraint satisfaction problems having at most
two variables per constraint, with small weights on the variables and constraints. The problem
includes many well-studied optimization problems as special cases, such as Max Cut, Max 2-Sat,
Sparsest Cut, and Min Bisection. We prove that, if there is a matrix multiplication algorithm
for N×N matrices that runs in O(Nω) time, then instances of Weighted 2-CSP with n variables
can be solved in O(poly(n) ·2ωn

3) time, whereas O(2n) is the runtime of exhaustive search. Hence, a
fast algorithm for an easy problem can be used to design accelerated algorithms for Max Cut, Max
2-Sat, Sparsest Cut, and Min Bisection, which are all difficult problems. Prior to our work,
none of the above four problems were known to have better worst case algorithms than the trivial
one. While our algorithms are still exponential, and rely on fast matrix multiplication algorithms
which are not yet practical, it is nevertheless intellectually interesting that something better than
solution enumeration is possible.

4

Finally, we study the question of whether there exists an accelerated algorithm for Sat for
formulas in conjunctive normal form. We give lines of attack that suggest that an accelerated Sat
algorithm may be possible, for formulas where the number of clauses is bounded by a polynomial
in the number of variables. Similar to the results of the previous paragraph, we give connections
between Sat and three polynomial time solvable problems, showing that if the polynomial time
problems have sufficiently faster algorithms, then Sat has an accelerated algorithm. One of these
problems is k-Dominating Set, which is to determine if a given graph contains a k-set S of vertices
such that every node is either in S or has a neighbor in S. We show that if there exists a k ≥ 3
and ε > 0 such that k-Dominating Set is in O(nk−ε) time, then Sat is in O

(
poly(m,n)2δεn

)

time, for some δε < 1. (It is known that, for k > 7, k-Dominating Set is in nk+o(1) time.) We
are currently developing an abstract notion of our reductions, in the hopes of defining a complexity
class that captures the underlying phenomenon.

1.3 Outline and Bibliographic Information

This thesis is structured as follows. The next chapter provides some background in computational
complexity. Chapter 3 introduces prior work on time-space tradeoffs, including their basic tools
and the style of argument used by them. Chapter 4 discusses our time-space lower bounds for Sat,
giving a chronological account of successively better time lower bounds for Sat and other hard
problems on random access machines with subpolynomial (no(1)) space. Most of the results in this
chapter appear in the papers [Wil05b, Wil07]. Preliminary versions of these papers appeared in the
20th and 22nd Annual IEEE Conference on Computational Complexity; both received the Ronald
V. Book Best Student Paper award. Chapter 5 describes our automated approach to proving lower
bounds, giving a formal model with which old lower bound proofs can be verified and new lower
bounds can be proved.

Chapter 6 turns to the task of finding accelerated algorithms for NP problems, deriving a general
method for solving Weighted 2-CSP and its variants, which capture practically any combinatorial
optimization problem whose constraints can be represented by degree-two polynomials. The results
in this chapter extend our prior work presented in [Wil05a]. A preliminary version was presented at
the 31st International Colloquium on Automata, Languages, and Programming, and received the
Best Student ICALP Paper award. Chapter 7 discusses the possibility of an accelerated algorithm
for Sat. Three plausible hypotheses are given, each of which would imply the existence of a Sat
algorithm substantially faster than brute-force search. The final chapter outlines an assortment of
future goals and directions for further work.

5

6

Chapter 2

Background

In this chapter, we review some basic facts from algorithms and complexity theory that are re-
quired for our work. Our treatment is neither intended to be completely rigorous, nor rigorously
complete. For further background, we invite the reader to try Papadimitriou’s Computational
Complexity [Pap94].

2.1 Asymptotics

We start with a quick review of some asymptotic notation. Assume f, g : N → N.

• f is O(g) if and only if there are c1, c2 ≥ 0 such that for all n ≥ 1, f(n) ≤ c1g(n)+ c2. Thus
f is “bounded from above” by g, modulo constants.

• f is Ω(g) if and only if g is O(f). So f is “bounded from below” by g.

• f is poly(g) if and only if there is a constant c ≥ 1 so that f is O(gc). For instance, n10 is
poly(n2).

• f is O∗(g) if and only if f is O(poly(n) ·g). In other words, the O∗ omits polynomial factors
from the runtime bound. This is a convenient notation for expressing exponential bounds.

Example. 2nn5 log n+ 1.9n is O∗(2n).

• f is o(g) if and only if limn→∞ f(n)/g(n) = 0.

Example. A function f is o(1) when limn→∞ f(n) = 0, and f is no(1) if f is O(nε) for all
ε > 0. The functions poly(log n), 2

√
log n, and (log n)log log n are all no(1), but n1/100 is not

no(1).

7

2.2 Boolean Formulas

The concept of a Boolean formula is central to our work. To ensure our notation is clear, we review
some elementary notions. For us, Boolean variables take the value either 0 or 1; as we consider finite
sets of Boolean variables, we typically name variables to be x1, . . . , xn for some positive integer n.

Three operators on variables are paramount: the NOT, AND, and OR operators, which are
written formally as ¬, ∧. and ∨, respectively.

Definition 2.2.1 We define the set of Boolean formulas over n variables inductively:

• For all i = 1, . . . , n, the variable xi is a formula.

• If φ and ψ are formulas, then ¬φ, (φ ∧ ψ), and (φ ∨ ψ) are also formulas.

The size of a Boolean formula is the total number of variables and occurrences of ¬, ∧, and ∨ in

the formula.

We extensively study special types of formulas. A literal is a formula of the form xi or ¬xi, for
some variable xi. A clause or disjunction of literals is a formula of the form (ℓ1 ∨ · · · ∨ ℓk) for some
literals ℓi. Similarly, a conjunction of literals is of the form (ℓ1 ∧ · · · ∧ ℓk).

An extremely convenient representation for Boolean formulas is conjunctive normal form, ab-
breviated as CNF. A Boolean formula is in CNF if and only if it is of the form

(c1 ∧ c2 ∧ · · · ∧ cm),

where the ci are clauses. That is, a CNF formula is an AND of ORs. It is well-known that every
function f : {0, 1}n → {0, 1} can be written in conjunctive normal form. However the size of this
representation is often exponential in the number of variables. If a formula is in CNF and has at
most k literals in each clause, we further say that the formula is in k-CNF.

Similarly, any Boolean function can be represented in disjunctive normal form (DNF), which is

(c1 ∨ c2 ∨ · · · ∨ cm),

where the ci are conjunctions (i.e. the formula is an OR of ANDs). As with CNF, the DNF
representation of a Boolean function can be exponential in the number of variables.

2.3 The Computational Model and Computational Problems

Throughout the thesis, we assume the random-access machine (a.k.a. RAM), to be the underlying
computational model. The RAM model is realistic and powerful, which makes it appealing to study
in the context of algorithms, since the design of efficient algorithms becomes easier as the strength
of the model increases. However in the context of lower bounds, RAM computations often become
considerably more difficult to analyze than Turing machines and other weaker models. We shall not
require a formal definition of a RAM, as our results hold under many perturbations of the model.
The salient features of the RAM that we need are:

8

• it accesses its input in a read-only fashion,

• it has an auxiliary working storage of registers that it accesses in a read-write fashion, and

• it can access an arbitrary bit of the input or working storage in O(1) time, independently of
the last location accessed.

The third requirement is the crucial difference between RAMs and weaker computational models.
The fact that a RAM can skip through its storage in constant time makes it very difficult to prove
limitations on RAMs, even for those that run in linear time in the length of the input. For example,
it is a celebrated open problem to determine if Sat, Vertex Cover, or Independent Set requires
asymptotically more than linear time on a RAM. Our inability to resolve even this problem is a
strong testament to the difficulty of the P vs NP question.

Since the above computational model is fixed throughout, all references to “algorithm” or “RAM”
refer to a procedure of the above type.

The notion of a computational problem is central to computer science. A decision problem is
a collection P of strings drawn from a subset S ⊆ {0, 1}∗. Since our primary focus shall be on
decision problems (rather than function problems, where the number of possible answers can be
larger than two), we refer to “decision problems” as merely “problems.” An instance of a problem
is just a string from S. A string x is a yes-instance if x ∈ P, and is a no-instance otherwise. We
typically take S = {0, 1}n, so that strings not in S are automatically no-instances. Intuitively, the
instances of a problem represent questions, and the questions contained in P are those with a yes
answer.

We define the solution of a problem by an algorithm as follows:

Definition 2.3.1 An algorithm A solves or decides P if for all x ∈ S,

• if x ∈ P then A(x) = 1, and

• if x /∈ P then A(x) = 0.

It is also common to say that algorithm A rejects x when A(x) = 0, and it accepts x when
A(x) = 1. Note the “output” of an algorithm solving a computational problem is a single bit, yes or
no. This limited choice of outputs is generally not a major issue; one can typically solve problems
whose solutions are of arbitrary length, given an algorithm for a corresponding computational
problem. Let us just give three examples of computational problems, defined by the yes-no questions
they address.

• Bit-Sum: given an input (a, b, i) where a, b are two n-bit numbers and i ∈ {1, . . . , n+ 1}, is
the ith bit of (a+ b) a 1?
This problem has a linear time algorithm: on inputs with n-bit numbers, the algorithm takes
O(n) steps. From such an algorithm, one can easily construct another algorithm that solves
the function problem of printing the sum of a+ b on input (a, b); for example, one could run
the Bit-Sum algorithm on (a, b, 1), (a, b, 2), (a, b, 3), etc.

9

• Triangle: given a graph G = (V,E) as an adjacency matrix, does it contain vertices u, v,w
such that {u, v}, {v,w}, {w, u} are edges?
Note that the input length is N = |V |2. By checking every triple of vertices, Triangle
can be solved in O(N3/2) steps. In Chapter 6, we use a faster algorithm for Triangle as a
stepping stone to building algorithms for harder-to-solve problems.

• Sat, the satisfiability problem: given a Boolean formula F in conjunctive normal form, is
there an assignment to the variables of F that makes the formula true?
As mentioned in the introduction, Sat is of paramount importance in modern computer
science. Unlike the above two problems, it is unlikely to have an algorithm that always
answers its question correctly in O(nc) steps, for any constant c ≥ 1. In Chapter 4, we prove
new limitations on how well Sat can be solved, and in Chapter 7, we introduce an attack
that may hold promise for finding better Sat algorithms in the future.

2.4 Complexity Classes

As mentioned in the Introduction, L, P, NP, and PSPACE are classes of computational problems,
defined by the amount of resources that an algorithm needs to successfully answer the questions
for a problem. L is the class of problems solvable by a RAM that (on all inputs of length n) stores
at most O(log n) bits in its auxiliary storage. For example, by using an algorithm that maintains
a binary counter, the following problem Ones is in L:

Ones = {(x, i)| the number of 1’s in x equals i}.

PSPACE is the class of problems that can be solved by a RAM that stores at most nk bits in its
auxiliary storage, for some constant k ≥ 1. P is the class of problems that can be solved in nk

steps for some constant k ≥ 1. NP is the class of problems for which the “yes” instances have
solutions that can be verified in nk steps for some k ≥ 1. More precisely, a problem P is in NP
when there is a polynomial time algorithm A and constant c ≥ 1 whereby x ∈ P if and only if there
is a y ∈ {0, 1}|x|c satisfying A(xy) = 1. Here, the y constitutes a proof that x is a “yes” instance of
the problem, and once y is known, the proof can be checked in polynomial time via A.

The class coNP is also of significance. A problem is contained in coNP if its complement is in
NP. (That is, for a coNP problem, the “no” instances have solutions that can be efficiently verified.)
The following inclusions are straightforward:

L ⊆ P
⊆ NP ⊆
⊆ coNP ⊆ PSPACE.

Hundreds of other complexity classes have been defined in the literature, many of which are actively
studied, each of which quantifies some aspect of resource-bounded computation.1 In this thesis we
focus primarily on the above five classes, along with some other intermediate classes of problems
lying between NP and PSPACE, namely the classes of the polynomial time hierarchy, written as ΣkP
and ΠkP for k ≥ 1. Intuitively, the problems in ΣkP and ΠkP are those for which the yes-instances
can be defined via logical sentences with k quantifiers, where each quantifier is over polynomially

1For an ongoing catalog of these classes, we invite the reader to do a web search for “Complexity Zoo”.

10

long strings and the predicate can be evaluated in polynomial time. The Σk classes start with
an existential quantifier, and the Πk classes start with a universal one. For example, consider the
problem of determining whether a given formula is as small as it can possibly be:

Formula Minimization: Given a Boolean formula F on n variables and an integer k, is there
a formula F ′ of size at most k that agrees with F on all 2n variable assignments?

This problem is in Σ2P, as the yes-instances can be defined with the sentence:

(∃ formula F ′ : |F ′| < k)(∀ x ∈ {0, 1}n)[F (x) = F ′(x)].

Despite our belief that normal algorithms cannot efficiently solve such problems, suppose we tried to
develop a hypothetical computational model that could solve ΣkP problems using only polynomial
time. Understanding this hypothetical model could give us insight into the difference between ΣkP
and P. To this end, we define a nondeterministic algorithm A′ for an NP problem to be a device
that on input x “guesses” a proof y ∈ {0, 1}|x|c and runs A(xy), where A is the polytime algorithm
guaranteed by the definition of NP. We say that A′ solves the problem if for all x there is a proper
y so that A(xy) = 1. That is, A′ accepts x if and only if there is a guess y that makes A accept xy.
(The above shows, at least informally, that Σ1P = NP.)

Similarly, one can define a co-nondeterministic algorithm A′ as one that accepts x if and only
if all guesses y make A accept. (This is tantamount to saying coNP = Π1P.) Combining the two,
we can also define algorithms that alternate between guessing nondeterministically (“existentially”)
and co-nondeterministically (“universally”) – we call such an algorithm an alternating machine,
and the problems solvable in polynomial time with a bounded number of alternations define the
classes of the polynomial hierarchy. For more details on nondeterminism, the polynomial hierarchy,
and alternating machines, the reader is invited to consult Papadimitriou [Pap94].

2.4.1 Time Bounded Classes

For each of the complexity classes discussed above, there is a counterpart that only considers fixed
polynomial time bounds:

• DTIME[t(n)], NTIME[t(n)], coNTIME[t(n)], ΣkTIME[t(n)] are the classes of problems that
can be solved in O(t(n)) steps by a (deterministic) algorithm, a nondeterministic algorithm,
a co-nondeterministic algorithm, and a Σk-algorithm, respectively.

• SPACE[s(n)] is the class of problems that can be solved using O(s(n)) auxiliary space.

• DTISP[t(n), s(n)] is the class of problems that can be solved by a single algorithm that takes
O(t(n)) time and uses O(s(n)) space.

In this thesis, we focus on the cases where t(n) and s(n) are both bounded by polynomials in n.
For this reason we shall not worry with issues like time and space constructibility (i.e. whether or
not the algorithm can efficiently count how many steps and space it is going to take, in advance).

11

2.5 Complete Problems

One of the most astounding phenomena in computer science is the abundance and pervasiveness
of complete problems. Intuitively speaking, a problem P is complete for a class of problems when
P is in the class, and every other problem in the class can be efficiently expressed as a special case
of P. Therefore, having an efficient algorithm for P is tantamount to having an efficient algorithm
for every problem in the class. A priori, a complete problem for NP might need to appear in a
very general form, and one would not always run into such expressive and powerful problems in
everyday practice. On the contrary it is precisely the opposite that is true. Complete problems
for NP and other classes spring up all over computer science. These problems constitute serious
challenges to everyone involved in computing, and it is their ubiquity that makes the P versus NP
question so important: either all of these problems can be solved in polynomial time, or none of
them.2

Definition 2.5.1 A problem P is NP-complete if

• P ∈ NP, and

• for every P ′ ∈ NP, there is a polynomial time algorithm A that given instances of P ′ outputs

an instance of P, with the property:

(∀ instances x)[x ∈ P ′ ⇐⇒ A(x) ∈ P].

A problem satisfying this second condition is called NP-hard.

That is, P is complete if it lies in NP, and for every other P ′ in NP there is an efficient way
to express instances of P ′ as instances of P. Below is a short list of some extensively studied
NP-complete problems from logic and graph theory.

• Bounded Halting Problem: given (〈A〉, x, 1k), where 〈A〉 is the code for an algorithm A
and k is an integer, is there a y ∈ {0, 1}k such that A(xy) = 1 in at most k steps?
This is a “canonical” complete problem, in that one can easily reduce any instance of a
problem P ′ in NP to a Bounded Halting Problem instance, by taking the algorithm A
for P ′ and setting k = |x|c for a suitably large constant c.

• Sat: given a Boolean formula F in conjunctive normal form, is there an assignment to the
variables of F that makes the formula true? In a seminal paper laying the groundwork for
NP-completeness, Cook [Coo71] showed that Sat is NP-complete.

2Along these lines, A. K. Dewdney eloquently states a good reason why P 6= NP seems so likely: “for all the

hundreds of NP-complete problems, the thousands of person-hours spent on their solution are, in a sense, cumulative,

as if all this time had been spent trying to discover a polynomial time algorithm for the satisfiability problem

alone.” [Dew81]

12

• k-Sat, for any constant k > 2: given a Boolean formula F in k-CNF, does the question
of the Sat problem hold for it? While k-Sat looks like a restriction of Sat, Karp [Kar72]
showed that k-Sat is NP-complete as well, along with the remaining problems on this list.
Interestingly, it is known that the 2-Sat problem is in P, and consequently is not known to
be NP-complete.

• Vertex Cover: given a graph G = (V,E) and integer K, is there a K-set S ⊆ V whereby
for every {u, v} ∈ E, at least one of u, v is in S? Intuitively, the subset S covers all edges in
G.

• Independent Set: given a graph G = (V,E) and integer K, is there a K-set S ⊆ V whereby
for every distinct pair u, v ∈ S, {u, v} /∈ E? Intuitively, each vertex in S is independent of
the others, in that there are no edges between them.

• Max Cut: given a graph G = (V,E) and integer K, is there a set S ⊆ V such that the
number of {u, v} ∈ E with u ∈ S and v /∈ S is at least K? In other words, we are asking
if there is a cut of the vertices into two parts so that the number of edges crossing the cut
S (from one part to the other) is at least K. The number of edges crossing a cut S is also
called the cut value of S.

• Max 2-Sat: given a Boolean formula F in 2-CNF and integer K, is there an assignment to
its variables that makes at least K clauses of F true? Notice that the formula F can be a
no-instance of 2-Sat, but (F,K) can be a yes-instance of Max 2-Sat for small enough K.
Garey, Johnson, and Stockmeyer [GJS76] proved that Max 2-Sat is NP-complete.

For a much larger list of NP-complete problems, the reader is invited to consult Garey and
Johnson’s classic text [GJ79]. The first part of this thesis presents time lower bounds on all the
above problems (and many other NP complete problems). The second part of the thesis presents
novel algorithms for Max Cut and Max 2-Sat, among others.

We remark in passing that for every NP-complete problem, there is a “complementary” co-NP-
complete problem. The complementary problem for Sat is Tautology: given a Boolean formula
in DNF, does it evaluate to true on every possible assignment?

2.5.1 The Robust Completeness of Sat and Other NP Problems

Our ability to prove limitations on solving specific NP-complete problems originates with a strength-
ening of Cook’s Theorem. Define

NQL :=
⋃

c≥0

NTIME[n · (log n)c] = NTIME[n · poly(log n)].

The letters in NQL stand for Nondeterministic Quasi-Linear time.

Definition 2.5.2 A problem P is robustly complete for NQL if, for every problem L ∈ NQL, there

is a random access machine ML and constant k such that:

13

• For all inputs x of length n and integers i = 1, . . . , kn log2 n, ML(x, i) outputs a bit, and runs

in O(poly(log n)) time and O(log n) space, simultaneously.

• x ∈ L iff ML(x, 1) ·ML(x, 2) ·ML(x, 3) · · ·ML(x, k|x| log2 |x|) ∈ P, where ‘·’ is concatenation.

We also refer to the machine ML as a robust reduction.

That is, for any problem in NQL, there is a quasilinear time reduction to problem P with the
property that each bit of the reduction can be computed in polylogarithmic time and logarithmic
space. Building on work of Gurevich-Shelah [GS89] and Schnorr [Sch78], Fortnow et al. proved
that Sat is robustly complete.

Theorem 2.5.1 (Fortnow-Lipton-Van Melkebeek-Viglas [FLvMV05]) Sat for formulas in

conjunctive normal form is robustly complete for NQL.

The robustness of Sat has the following significant corollary.

Corollary 2.5.1 Let t(n) be a polynomial. If NTIME[n] * DTISP[t(n), no(1)], then there is a c > 0

such that Sat /∈ DTISP[t(n) · (log t(n))c, no(1)].

That is to say, if one can show NTIME[n] * DTISP[t(n), no(1)], then one can name an explicit,
natural problem that is not in the class, modulo polylogarithmic factors. All lower bound proofs in
this line of work establish that NTIME[n] * DTISP[t(n), no(1)] for large t(n) = nc, concluding that
Sat is not solvable in nc−o(1) time and no(1) space.

Since our proofs will show results of the form NTIME[n] * DTISP[t(n), no(1)], our arguments
actually show that not only does Sat have such a time-space limitation, but any problem that
is robustly complete for NQL also is limited in an identical way. In work showing time lower
bounds for off-line one-tape machines, Van Melkebeek and Raz [vMR05] have stated that almost
all known NP-complete problems are robustly complete for NQL. Indeed, in a series of papers,
Dewdney [Dew81, Dew82] showed that a variety of NP-complete problems are also complete for NQL
under linear time reductions, and it appears very likely that all of his reductions can also be turned
into robust ones. For completeness of our presentation, we sketch proofs of robust completeness for
3-Sat, Vertex Cover, Independent Set, Max Cut, and Max 2-Sat, drawing from known
proofs in the literature. It turns out that natural reductions from Sat to these problems construct
“gadgets”, which are small sub-instances of the problem, in such a way that there is an explicit and
simple correspondence between the clauses and variables of the original formula and the gadgets in
the reduced instance.

Theorem 2.5.2 3-Sat on formulas with n variables and n·poly(log n) clauses is robustly complete

for NQL.

14

Proof. Due to Karp [Kar72]. The reduction in Theorem 2.5.1 can be made to output a pair (L,F),
where F is a CNF formula on m ≤ n · poly(log n) clauses, and L is a list of m integers, where L[i]
is the number of literals in the ith clause of F . Now consider the standard reduction from Sat to
3-Sat that takes the ith clause of literals ci = (ℓ1 ∨ . . . ∨ ℓL[i]) and produces the clause group

(ℓ1 ∨ ℓ2 ∨ y1
c), (¬y1

c ∨ ℓ3 ∨ y2
c), . . . , (¬yL[i]−4

c ∨ ℓL[i]−2 ∨ yL[i]−3
c), (¬yL[i]−3

c ∨ ℓL[i]−1 ∨ ℓL[i]),

where y1
c , y

2
c , . . ., y

L[i]
c are new variables. For example, when k = 5 the resulting clause group is

(ℓ1 ∨ ℓ2 ∨ y1
c), (¬y1

c ∨ ℓ3 ∨ y2
c), (¬y2

c ∨ ℓ4 ∨ ℓ5).
In order to efficiently produce the jth clause in the ith group of clauses, the reduction only

needs to read at most two literals from the ith clause of the formula F , and O(log n) bits from the
list L. With a reasonable encoding (e.g. encoding each literal with Θ(log n) bits), producing the
jth clause from the ith group can be done in poly(log n) time. �

Theorem 2.5.3 Vertex Cover is robustly complete for NQL.

Proof. Due to Garey and Johnson [GJ79]. We give a reduction from 3-Sat formulas F to Vertex
Cover instances GF , with the property that for all appropriate i and j, the ith edge and jth node
of GF can be computed in polylogarithmic time via random access to F .

Let F be a 3-CNF formula on n variables and m clauses. Without loss of generality, by
Theorem 2.5.2, m ≤ n · poly(log n) and the formula F has exactly three literals in each clause (if a
clause has fewer literals, we can always put an extra copy of the literal in the clause).

One classical reduction from 3-Sat to Vertex Cover [GJ79] produces a graph with 3m+ 2n
nodes: three (named u1

i , u
2
i , u

3
i) for each clause ci, and two (named vx and v¬x) for each variable x

of the formula. The edges in the graph are {vx, v¬x} for all variables x, and {uj
i , vℓ} for all i, j, ℓ

such that ℓ is the jth literal in clause i.

For example, for a formula (x1∨¬x2∨x3)∧(¬x1∨¬x4∨x6)∧· · · on n variables, the corresponding
graph is

{vx1 ,¬vx1}, . . . , {vxn , v¬xn}, {u1
1, vx1}, {u2

1, v¬x2}, {u3
1, vx3}, {u1

2, v¬x1}, {u2
2, v¬x4}, {u3

2, vx6},

Setting K = n + 2m, one can show that the constructed graph has a vertex cover of size K if
and only if the original formula is satisfiable. Computing each edge of the graph requires examining
only one clause, and the relevant indices can be computed in poly(log n) time. �

Corollary 2.5.2 Independent Set is robustly complete for NQL.

Proof. Use the same reduction as the previous theorem, but set K = (3m+2n)−(n+2m) = n+m.
As a graph G has a vertex cover of size ℓ if and only if G has an independent set of size n− ℓ, the
theorem follows. � F

Theorem 2.5.4 Max Cut is robustly complete for NQL.

15

Proof. The proof (which is folklore) proceeds in two steps. We first reduce 3-Sat to the problem
NAE 3-Sat (Not-All-Equal), where one is given a 3-CNF formula but the task is to provide a
satisfying assignment that assigns false to at least one literal in every clause. (So, every clause has
the property that not all of its literals are equally assigned.) The second step of the proof reduces
NAE 3-Sat to Max Cut. For simplicity we use the weighted version of Max Cut, where each
edge has a positive weight specified by poly(log n) bits, and the task is to find a cut of maximum
weight sum.

Consider a 3-Sat formula F with n variables and n · poly(log n) clauses. The reduction from
3-Sat to NAE 3-Sat takes each clause ci = (ℓ1 ∨ ℓ2 ∨ ℓ3) of F and adds the clauses

(ℓ1 ∨ ℓ2 ∨ vci), (¬vci ∨ ℓ3 ∨ w)

to a formula F ′, for new variables vci and a single universal variable w. Clearly, any clause in F ′

can easily be determined by reading a particular clause of F , encoded in O(log n) bits. Moreover,
the new instance has an assignment with one true literal and one false literal in every clause if and
only if the original formula is satisfiable. If the original F is satisfiable, then F ′ can be satisfied in
a NAE fashion by setting w to false, and vci to true iff ℓ1 and ℓ2 are both false. If F ′ is satisfiable
in a NAE fashion, then let the value of w is false (without loss of generality– if w is true, then flip
the values of all variables). The resulting formula’s satisfiability implies the satisfiability of F .

To reduce from NAE 3-Sat to Max Cut, given a formula F ′ with variables x1, . . . , xn·poly(log n),
make nodes vx1 , v¬x1 , . . . , vxn·poly(log n)

, v¬xn·poly(log n)
in a new graph G. Convert each clause (ℓ1 ∨

ℓ2 ∨ ℓ3) of F ′ into edges {vℓ1 , vℓ2}, {vℓ2 , vℓ3}, {vℓ3 , vℓ1} of G. These “clause edges” all have weight 1.
We also add the “variable edges” {vxi , v¬xi} for all i = 1, . . . , n · poly(log n), each having weight n2.
Under a reasonable encoding (where the number of variables can be determined in poly(log n) time,
etc.), each edge of G can be quickly determined by reading one clause of the original instance.

Finally, we claim that F ′ is a “yes” instance to NAE 3-Sat if and only if G has a cut of value
2m + n3, where m = n · poly(log n) is the number of clauses in F ′. Any maximum cut of G has
all the variable edges {vxi , v¬xi} crossing it, as the weight of any variable edge dominates the total
weight of all clause edges (for sufficiently large n). Therefore, the variable edges contribute n3 to
the weight of a maximum cut, and a maximum cut in G corresponds to a variable assignment in F ′.
A clause that has one literal false and one literal true corresponds to two edges crossing the cut, and
the all-false or all-true assignment to a clause corresponds to no edges crossing the cut. It follows
that k clauses are satisfied (under the NAE 3-Sat requirement) by the assignment corresponding
to a maximum cut if and only if the weight of edges crossing that cut is 2k+n3. Thus a maximum
cut in G corresponds to a satisfying assignment in F ′. �

Theorem 2.5.5 Max 2-Sat is robustly complete for NQL.

Proof. We reduce from 3-Sat, using Garey, Johnson, and Stockmeyer’s reduction [GJS76]. With-
out loss of generality, a given 3-CNF formula F has exactly three literals in each clause. Given
such a formula on m clauses, for each clause c = (ℓ1 ∨ ℓ2 ∨ ℓ3) of F we add the set of 2-CNF clauses

(ℓ1), (ℓ2), (ℓ3), (yc), (¬ℓ1 ∨ ¬ℓ2), (¬ℓ1 ∨ ¬ℓ3), (¬ℓ2 ∨ ¬ℓ3), (ℓ1 ∨ ¬yc), (ℓ2 ∨ ¬yc), (ℓ3 ∨ ¬yc)

to a new formula F ′, where yc is a new variable indexed by c. It is routine to verify that when the
clause c is satisfied by a given assignment, then 7 clauses in the above set can be satisfied by the

16

same assignment and the appropriate choice of yc. But when c is falsified by a given assignment,
then only 6 of the above clauses can be satisfied by any choice of yc. Therefore, determining the
maximum fraction of clauses that can be satisfied in F ′ tells us whether or not F is satisfiable: F
is satisfiable if and only if 7m clauses of F ′ can be satisfied simultaneously. Clearly, every clause
of F ′ is determined by reading only one clause of F , and so it can be computed in poly(log n) time
as in the previous constructions. �

2.5.2 Robust Completeness for Problems Outside of NP

Each level of the polynomial time hierarchy also has natural complete problems within it. For
instance, in Σ2P, there are complete problems where one tries to guess a minimum-sized structure,
and the test for equivalence is a coNP predicate. Consider the Formula Minimization problem
from the previous section, where one wants to know if a given formula F is the smallest one with
its functionality. When F is written in DNF, and the question is to determine if there is a DNF
F ′ of size K that agrees with F , then Formula Minimization is known to be Σ2P-complete, by
work of Umans [Uma01]. Here, our focus is on the collection of problems Σk-Sat for integers k ≥ 1,
defined as follows:

• For odd k, we are given a CNF formula F on k sets of variables X1, . . . ,Xk and are asked if
the first order sentence

(Q1X1) · · · (QkXk)F

is true, where Q1 = ∃, Qk = ∃, and each Qi is the quantifier opposite to Qi−1.

• For even k, we are given a DNF formula F on k sets of variables X1, . . . ,Xk and are asked if
the first order sentence

(Q1X1) · · · (QkXk)F

is true, where Q1 = ∃, Qk = ∀, and each Qi is the quantifier opposite to Qi−1.

We need to use different normal forms for the two cases because of the type of the kth quantifier:
a sentence of the form (∀x)F is trivial to check for validity, if F is a CNF. Likewise, it is trivial
to check that (∃x)F is valid, if F is a DNF. (Recall that the Tautology problem, which is the
“coNP version” of Sat, assumes that the formula is given in DNF.)

Meyer and Stockmeyer [MS72] showed that Σk-Sat is complete for ΣkP. Letting k > 1, if we
define ΣkQL := ΣkTIME[n ·poly(log n)], one can start asking which problems are robustly complete
for these new quasilinear time classes. The robust reduction for Sat (Theorem 2.5.1) goes through
in a straightforward way to show:

Theorem 2.5.6 Σk-Sat is robustly complete for ΣkQL.

Dieter van Melkebeek (private communication) has reported that Formula Minimization is
also robustly complete for Σ2QL.

Theorem 2.5.6 shows that every level of the polynomial time hierarchy has a natural complete
problem, namely that of determining the validity of sentences with a certain number of quantifier

17

blocks. More complete problems of this nature can be constructed from other NP-complete prob-
lems. Essentially these problems capture what happens when an NP complete problem is turned
into a two-player game, between one player that is trying to find a witness and another player that
is trying to eliminate witnesses. For example, Σ2-Sat can be viewed as the problem of determining
the optimal strategy for a one-round game between two players, where the first player tries to set
variables that turn the underlying DNF formula into a tautology, and the second player tries to set
variables that falsify the DNF.

18

Chapter 3

Introduction to Time-Space Tradeoffs

for NP

Rooted in work of Kannan [Kan83, Kan84] in the early 80’s, and initiated by Fortnow [For97] in
1997, an intriguing thread of lower bound research has yielded tangible progress on the famous
L ? = NP and NL ? = NP questions. While it is well-known that L 6= NP is equivalent to
NTIME[n] * DTISP[nk, log n] for all k ≥ 1, proving such a large lower bound on nondeterministic
linear time (and consequently, Sat) currently appears beyond our reach. Nevertheless, it is of
course still very interesting to ask what can be proven about the matter. In particular, we wish to
find the largest k for which the above separation provably holds.

Naturally, when one starts to consider fixed time bounds, the model of computation becomes a
possible issue. For example, Santhanam [San01] showed that Sat cannot be solved in n2−ε time and
no(1) space on multitape Turing machines, by reducing Palindromes to Sat and invoking an old
time-space tradeoff of [Cob66]. To illustrate this kind of proof technique, we briefly describe how
to extend Santhanam’s result to multitape Turing machines with multiple heads per tape. Babai,
Nisan, and Szegedy [BNS92] prove that the function Gk : {0, 1}kn → {0, 1} defined by

Gk(x1,1, . . . , x1,n, . . . , xk,1, . . . , xk,n) =

k∑

i=1

n∏

j=1

xi,j

 mod 2

cannot be computed in Ω(n2−ε) time and no(1) space on a k-head multitape Turing machine. One
can easily reduce the problem of computing Gk on a given input {xi,j} to a Sat instance on xi,j

with k auxillary variables. Let PARITY(b1, . . . , bk) be the 2k−1-clause CNF that is true if and only
if
∑

i bi = 1 mod 2. Then a Sat instance for computing Gk({xi,j}) is

PARITY(b1, . . . , bk) ∧
(

b1 ⇐⇒
n∧

i=1

x1,j

)

∧ · · · ∧
(

bk ⇐⇒
n∧

i=1

xk,j

)

≡ PARITY(b1, . . . , bk) ∧ (¬b1 ∨ x1,1) ∧ · · · ∧ (¬b1 ∨ x1,n) ∧ (b1 ∨ ¬x1,1 ∨ · · · ¬x1,n) · · · · · · .

19

The reduction can be made robust (even for multitape machines) using ideas from the previous
chapter.

The time-space lower bounds for multitape machines are interesting in their own right, but it
is clear that they reveal more about the restricted nature of tape access than about the inherent
difficulty of NP problems, since Palindromes and Gk are very easy in other realistic models.

Proposition 3.0.1 On random access machines, Palindromes and Gk can be computed by algo-

rithms running in O(n · poly(log n)) time and O(log n) space simultaneously.

A deeper and more difficult question is how one might prove a polynomial time lower bound
for random access machines in the space-restricted setting. Random access Turing machines are
appealing because they are simple to reason about, and are time-equivalent to many other random-
access models within polylogarithmic factors [PR81, GS89]. As we saw in the previous chap-
ter, Sat and other NP-complete problems have strong completeness properties in the random
access Turing machine model, so NTIME[n] * DTISP[nk,poly(log n)] implies that Sat is not in
DTISP[nk−o(1),poly(log n)]. Therefore, proving a polynomial time lower bound for NTIME[n] in
the random access model also implies a lower bound for a collection of well-studied NP-complete
problems.

3.1 History of Time-Space Tradeoffs for Nondeterminism

We now give a brief history of relevant results leading up to the current time-space tradeoffs for
nondeterministic time computation, focusing on those results which hold for random access models.

In 1984, Kannan [Kan84] proved the separation DTISP[n, o(n)] (NTIME[n]. His result was
stated for multitape Turing machines, but it works equally well for RAMs. Furthermore, he proved
that there is a universal constant k such that for all polynomials t(n), DTISP[t(n), o(t(n)1/k)] (
NTIME[t(n)]. Kannan’s proof used traditional simulation and diagonalization ideas. All later time-
space tradeoffs for Sat build upon his original idea, in a certain sense; we shall discuss that sense
later in more detail.

In 1997, Fortnow [For97] (following a strategy similar to Kannan) showed that Sat is not in
the intersection of NL and DTIME[n1+o(1)]. In particular,

NTIME[n] * NL ∩ DTIME[n1+o(1)].

Applying an efficient reduction from problems in NTIME[n] to Sat, Fortnow proved that either
Sat is not solvable in nondeterministic logspace, or Sat is not solvable in n1+o(1) time.

In 1999, Ajtai [Ajt02] studied the element distinctness problem: given a list of O(log n)-bit
strings, determine if all strings are different. He proved the following time-space tradeoff bound
for any random access machine with O(log n)-bit registers: for all k > 1 there is an ε > 0 such
that Element Distinctness cannot be solved in time kn with εn bits of memory. (Note that
the complement of Element Distinctness can be easily solved on a nondeterministic machine
that guesses two distinct registers and checks that they are the same.) Ajtai’s techniques were
combinatorial in nature, instead of being based on diagonalization.

20

Also in 1999, Lipton and Viglas [LV99] sharpened Fortnow’s results, considering the case where
both the time and space bounds are small. They proved for all c <

√
2 that

NTIME[n] * DTISP[nc, no(1)].

This implies that Sat cannot be solved in n
√

2−ε time and sub-polynomial (i.e. no(1)) space, for
all ε > 0. Shortly after Lipton and Viglas’ work appeared, Fortnow and Van Melkebeek [FvM00]
improved the time lower bound to Ω(nφ−ε) for all ε > 0, where φ ≈ 1.618 is the golden ratio. (The
journal version [FLvMV05] of this work merges the two results.) We shall present proofs of these
two lower bounds shortly.

3.2 Indirect Diagonalization

The lower bounds of Kannan, Fortnow, Lipton-Viglas, and Fortnow-Van Melkbeek were all proved
using a common strategy that has been coined “indirect diagonalization.” (We believe that Dieter
van Melkebeek was the originator of this term, in [vM04].) The idea behind an indirect diagonal-
ization lower bound is to assume the opposite of what one wants to prove, then use the algorithms
implied by this assumption to derive a contradiction with a known diagonalization result.

Many lower bound arguments from the past have followed a similar high-level pattern that
transcends the time-space tradeoff lower bounds above. We call this pattern the alternation-trading
scheme. A special case of this pattern was identified in a survey by Van Melkebeek [vM04] and in
Viglas’ thesis [Vig02].

3.2.1 The Alternation-Trading Scheme for Proving Lower Bounds

Let D[t(n)] denote a class of problems solved by some deterministic machine model running in time
t(n). Many lower bound arguments for nondeterministic time (and in general, alternating time)
follow a certain high-level scheme:

1. Assume (for contradiction) that NTIME[n] ⊆ D[nc].

2. Prove that for reasonable time functions t(n), D[t(n)] can be sped up by alternating machines.
More precisely, D[t(n)] ⊆ ΣℓTIME[f(t(n))] for some ℓ ≥ 1 and f(n) = o(n).

3. Prove using (1) that alternations in an alternating computation can be “removed”, at the cost
of a small slow down in time. For example, (1) implies Σ2TIME[n] ⊆ NTIME[nc], by converting
the co-nondeterministic part of the Σ2 computation into a deterministic computation.

4. Apply (1) and (2) in some sequence on a given complexity class, in such a way that one can
conclude a contradiction to a known time hierarchy theorem.

More details on the alternation-trading scheme will be elucidated in upcoming sections. We
believe the first example of a lower bound following the alternation-trading scheme was given by
Kannan [Kan83] in 1983, who showed that nondeterministic linear time on multitape machines is

21

not contained in deterministic n1.1 time on one-tape TMs. Since then, a number of lower bounds
on nondeterminism and alternation in various machine models [PPST83, Kan84, MS87, WL92,
For97, LV99, FvM00, Tou01] have followed this alternation-trading scheme, often in an implicit
manner. For example, the celebrated result of Paul, Pippenger, Szemeredi, and Trotter [PPST83]
that NTIME[n] 6= DTIME[n] for multitape machines can be said to follow the alternation-trading
scheme:

1. Assume NTIME[n] = DTIME[n].

2. Paul-Pippenger-Szemeredi-Trotter prove DTIME[t] ⊆ Σ4TIME[t/ log∗ t], for t(n) ≥ n log∗ n.

3. Item (1) implies that ΠkTIME[n] = coNTIME[n] = DTIME[n] for all k.

4. Therefore by padding, Π4TIME[t] = DTIME[t] ⊆ Σ4TIME[t/ log∗ t], a contradiction with the
alternating time hierarchy.

In the next sections and the following chapter, we give a detailed account of the research on
time-space lower bounds for nondeterminism on RAMs, beginning with the Ω(n

√
2) lower bound

of Lipton-Viglas and culminating in our Ω(n1.801) lower bound. The chapter after that shows how
to formalize the alternation-trading scheme so that further progress on alternation-trading lower
bounds can be feasibly automated.

3.3 Prior Time-Space Lower Bounds and Their Tools

In this remainder of this chapter, we describe the Lipton-Viglas and Fortnow-Van Melkebeek time-
space lower bounds on satisfiability, starting with the tools from complexity theory that they
employ.

A Class Separation. We require some well-known separation results, each of which are provable
by straightforward diagonalization. The following result uses the fact that a random-access machine
using k quantifiers in time t can be simulated by a machine using k quantifiers in time O(t), found
in Chandra and Stockmeyer’s original conference paper on alternation [CS76].

Theorem 3.3.1 (“No Complementary Speedup”) For all k ≥ 1 and time constructible t(n) ≥
n, ΣkTIME[t] * ΠkTIME[o(t)].

We call it the “No Complementary Speedup” Theorem, as it intuitively says that not all
bounded-alternation machines can be sped up by a “complementary” machine with the same num-
ber of alternations.

A “Slowdown” Lemma. A simple but useful proposition says that alternations can be removed
from a computation while slightly increasing the runtime, provided that there is a close time
relationship between classes with fewer alternations. We do not know of a reference for this lemma,
but its proof is elementary.

22

Lemma 3.3.1 (Slowdown Lemma) Let d > 1, let k and ℓ be non-negative integers with k > ℓ,

and let t(n) ≥ n be time constructible. If ΣℓTIME[n] ⊆ ΠℓTIME[nd], then

• ΣkTIME[t] ⊆ Σk−1TIME[td], and

• ΠkTIME[t] ⊆ Πk−1TIME[td].

Proof. First, observe that ΣℓTIME[n] ⊆ ΠℓTIME[nd] implies ΠℓTIME[n] ⊆ ΣℓTIME[nd]. So by
padding, any ℓ-quantifier machine M running in time t is equivalent to some ℓ-quantifier machine
N that runs in time td, but if M begins with an ∃ (resp. ∀) quantifier, then N begins with a ∀
(resp. ∃) quantifier.

Let M be a Σk machine with O(t) runtime. Without loss of generality, we may assume that
the state of M at the start of the (k − ℓ)th alternation is a special state q∗. Define a machine M∗

whose input is an input x to M and a tape configuration C of M :

M∗(x,C): Simulate M(x), starting from C and state q∗.

By assumption, M∗ has ℓ quantifiers, since M has k quantifiers and q∗ starts at the (k − ℓ)th

alternation (the beginning of the (k − ℓ+ 1)th quantifier). M∗ runs in O(t) time and takes inputs
of O(t) size.

The hypothesis implies that there is a machine N∗ that is equivalent to M∗, runs in O(td) time,
uses ℓ quantifiers, but begins each computation with the quantifier opposite to that with which M∗

begins. We now define a machine N :

N(x): Simulate M(x) until q∗ is reached.
Let C be the configuration of M(x) at this point. Simulate N∗(x,C).

It is easy to verify that L(N) = L(M), and that N runs in O(td) time. We claim that N uses
only k − 1 quantifiers. This follows from the fact that the last quantifier of M(x) prior to q∗ and
the first quantifier of N∗ are the same. Therefore, in N , no alternation occurs at state q∗. But N
and M still have the same number of alternations occurring prior to q∗ and after q∗, so N∗ has one
less alternation than M . �

Fortnow and Van Melkebeek’s Speedup Simulations. Along with trading alternations for
more time (via the slowdown lemma), we also need to trade time for alternations: that is, we reduce
the runtime of DTISP computations using alternating machines. Fortnow and Van Melkebeek’s
speedup simulations are crucial to some of our arguments.

Lemma 3.3.2 (Speedup Lemma of Fortnow-Van Melkebeek [FvM00], Theorem 5.1) For

every natural number k ≥ 2, and time constructible t, space constructible s, and b(n) such that

1 ≤ b(n) ≤ t(n),

DTISP[t, s] ⊆ ΣkTIME[k · b · s+ t/bk−1].

23

In particular, the first (k − 1) quantifier stages run in O(b · s) time each, and the last quantifier

stage guesses O(log b) bits, followed by a deterministic stage that takes input of length n + 2s and

runs in O(t/bk−1) time and O(s) space.

The case k = 2 was essentially proved by Kannan [Kan84]. The key idea of Lemma 3.3.2 is to
mimic the proof in Chandra, Kozen, and Stockmeyer [CKS81] (following Savitch’s theorem [Sav70])
that DTISP[t, s] ⊆ ATIME[s log t]. In the proof of DTISP[t, s] ⊆ ATIME[s log t], the alternating
simulation of a DTISP[t, s] machine M works by repeatedly guessing configurations “in the middle”
of the computation. Let us think of the input to an alternating simulation A as a triple 〈k,C,C ′〉,
where k is a positive integer and C and C ′ are configurations of M . A wishes to output yes iff,
when M is executed from C for 2k steps, its configuration becomes C ′. (Without loss of generality,
the runtime t is a power of two.) To do this, if k = 0 then A just simulates M from C for one step,
and checks if its configuration equals C ′. For k > 0, A existentially guesses a configuration C ′′,
which is supposed to be the configuration of M that occurs 2k−1 = 2k/2 steps after starting from
C; let us call this configuration C ′′. A universal quantifier then guesses a 0 or a 1. Finally, A calls
itself on 〈C,C ′′, k− 1〉 if 0 was written, and calls itself on 〈C ′′, C ′, k− 1〉 if 1 was written. It is easy
to see that this simulation works; a little analysis shows that its runtime is O(s log t) = O(s2).

The above machine A uses many alternations during its execution (O(log t), as a matter of fact).
To obtain a fast simulation of M that uses a constant number of alternations, one can existentially
guess many configurations at once, and universally check each one we guessed. This sacrifices the
O(s log t) runtime, but uses vastly fewer alternations.

Proof of Lemma 3.3.2. (Sketch) Fix a deterministic machine M using time t(n) and space s(n).
We first show how to simulate M in kbs+t/bk−1 time with 2(k−1) quantifiers (a Σ2(k−1)TIME[kbs+

t/bk−1] machine). Next, we show how the construction can be modified to use only k quantifiers,
i.e. we make a simulation in ΣkTIME[kbs+ t/bk−1].

We describe a machine N using 2(k − 1) quantifiers that simulates M below.

N(x): Let C0 and Ct+1 be the unique initial and accept
configurations of M(x).
Return Simulate(x,C0, Ct+1, k − 1).

Simulate(x,Ci, Cj , j):

If j = 0 then accept iff Ci leads to Cj in at most t/bk−1 steps on input x.

• Existentially guess machine configurations Cj
1 , . . ., C

j
b of M(x).

If Cj
1 6= Ci then reject.

If Cj
b 6= Cj then reject.

• Universally choose ij ∈ {1, . . . , b− 1} and return Simulate(x,Cj
ij
, Cj

ij+1, j − 1).

It is straightforward to verify that the procedure Simulate works analogously to the proof of
DTISP[t, s] ⊆ ATIME[s · log t], except that instead of guessing just the “midpoint” configuration C ′′,

24

we are guessing b− 1 “midpoint” configurations of M(x) before each recursive call. This increases
the runtime, but lowers the number of required alternations.

The machine N clearly has 2(k − 1) quantifiers, guessing O(b · s) bits existentially and O(log t)
bits universally between each recursive call, then (when k = 0) running for O(t/bk−1) deterministic
time and O(s) space on a RAM. Thus the procedure takes O(k · b · s+ t/bk−1) time overall. Notice
that the input to the deterministic part is x and two configurations, so it is of length n+ 2s.

How can we reduce the number of quantifiers to k? We exploit the fact that the computation
is deterministic, and therefore closed under complement. Rewrite Simulate to be a “negation” of
the above:

Simulate2(x,Ci, Cj , j):

If j = 0 then accept iff Ci leads to Cj on input x in at most t/bk−1 steps.

• Universally choose configurations Cj
1 , . . . , C

j
b of M(x).

If Cj
1 6= Ci then accept.

If Cj
b = Cj then accept.

• Existentially choose ij ∈ {1, . . . , b− 1}.
Return ¬Simulate2(x,Cj

ij
, Cj

ij+1, j − 1).

Intuitively, Simulate2 verifies that Ci leads to Cj by considering all sequences of configurations
where the first configuration is Ci, but the last one is not Cj . Simulate2 verifies that for any such
sequence, there are two adjacent configurations that do not lead from one to the other. Since all
sequences from Ci to some C ′

j 6= Cj fail to work, it must be that Ci leads to Cj. Clearly, Simulate2
runs in the same time bound and number of alternations as Simulate, but the quantifiers start with
a ∀ instead.

The final algorithm makes the two procedures mutually recursive: rewrite Simulate so that it
calls Simulate2, and vice-versa. Then, the number of quantifiers in N(x) becomes exactly k, where
the first (k− 1) quantifiers guess O(b · s) bits each, the last quantifier guesses O(log b) bits, and the
final deterministic phase runs in O(t/bk−1) time and O(s) space. �

Remark 3.3.1 Note that DTISP[t, s] ⊆ ΠkTIME[k · b · s + t/bk−1] follows immediately from the

closure of DTISP under complementation.

A significant instantiation of Lemma 3.3.2 is the following important corollary.

Corollary 3.3.1 For all integers k ≥ 2, DTISP[t, s] ⊆ ΣkTIME[(tsk−1)1/k]. In particular,

DTISP[t, to(1)] ⊆ ΣkTIME[t1/k+o(1)].

Proof. When b = (t/s)1/k, the overall runtime of the Lemma 3.3.2 simulation is minimized,
resulting in the corollary. �

25

3.3.1 Sat is not in DTISP[n
√

2−ε, no(1)]

Our study of lower bound arguments begins with a short description of Lipton and Viglas’ argument,
who showed that NTIME[n] is not contained in DTISP[n

√
2−ε, no(1)], for all ε > 0.

Theorem 3.3.2 NTIME[n] * DTISP[n
√

2−ε, no(1)] for all ε > 0.

Proof. If NTIME[n] ⊆ DTISP[n
√

2−ε, no(1)], then by padding and Corollary 3.3.1,

NTIME[n2] ⊆ DTISP[n2(
√

2−ε), no(1)] ⊆ Σ2TIME[n
√

2−ε+o(1)].

But by the Slowdown Lemma, we have that

NTIME[n2] ⊆ Σ2TIME[n
√

2−ε+o(1)] ⊆ NTIME[n(
√

2−ε)(
√

2−ε)+o(1)],

which contradicts Theorem 3.3.1 (“No Complementary Speedup”) when ε > 0. �

In later sections, we show how to recast the above argument in a simple way that lets us prove
better lower bounds by invoking the argument for multiple times.

3.3.2 Sat is not in DTISP[nφ−ε, no(1)]

Not long after the n
√

2 lower bound was proved, Fortnow and Van Melkebeek found an improvement
of the lower bound to nφ, where φ is the golden ratio. (For a detailed exposition of the two lower
bounds, please see the combined journal version of their papers [FLvMV05].) Here, we give an
alternative exposition of their lower bound. To simplify the presentation, we introduce some new
notation:

• Define DTS[t(n)] to be the class of problems solved by random access machines that run in
t(n)1+o(1) time and use t(n)o(1) workspace. In the following, t(n) is always a polynomial in n,
so to(1) is always no(1).

• Let C be a complexity class and f be a constructible function. Define (∃ f(n)) C to be the
class of problems solved by some nondeterministic machine N that, on input x, writes a
f(n)1+o(1) bit string y nondeterministically to a special tape, then feeds the input 〈x, y〉 to
a machine from class C. The class (∀ f(n)) C is defined similarly (with co-nondeterministic
machines).

Notice that the above notation avoids the inclusion of o(1) factors in exponents. As an example
of the notation in use, observe that Lemma 3.3.2 implies

DTS[nd] ⊆ (∃ nx)(∀ log n)DTS[nd−x], DTS[nd] ⊆ (∀ nx)(∃ log n)DTS[nd−x],

for any d ≥ x ≥ 0.

26

Lemma 3.3.3 For all k ≥ 0, if NTIME[n] ⊆ DTS[nc], then

DTS[n2+
∑k

i=1 ci
] ⊆ Π2TIME[nck+o(1)] ∩ Σ2TIME[nck+o(1)].

Proof. The base case is obvious, as DTS[n2] ⊆ Π2TIME[n1+o(1)]∩Σ2TIME[nck+o(1)]. The induction

hypothesis is that DTS[n2+
∑k

i=1 ci
] ⊆ Π2TIME[nck+o(1)]. By the Speedup Lemma (Lemma 3.3.2),

DTS[n2+
∑k+1

i=1 ci
] ⊆ (∀ nck+1

)(∃ log n)DTS[n2+
∑k

i=1 ci
].

The Speedup Lemma also states that the input to the DTS[n2+
∑k

i=1 ci
] part of the above class is

a pair of no(1) space configurations, along with an input x of length n. Applying the induction
hypothesis,

(∀ nck+1
)(∃ log n)DTS[n2+

∑k
i=1 ci

] ⊆ (∀ nck+1
)(∃ log n)Σ2TIME[nck+o(1)].

Since NTIME[n] ⊆ DTS[nc], it follows that Σ2TIME[n] ⊆ NTIME[nc] by the Slowdown Lemma, and
so

(∀ nck+1
)(∃ log n)Σ2TIME[nck+o(1)] ⊆ (∀ nck+1

)(∃ log n)NTIME[nck+1+o(1)],

which is contained in Π2TIME[nck+1+o(1)]. By swapping the roles of ∃ and ∀ in the above, similar

reasoning shows that DTS[n2+
∑k+1

i=1 ci
] ⊆ Σ2TIME[nck+1+o(1)]. �

Theorem 3.3.3 For all ε > 0, NTIME[n] * DTS[nφ−ε], where φ = 1.618 . . . is the golden ratio.

Proof. Assume NTIME[n] ⊆ DTS[nc] for some c < φ. Consider the class Σ2TIME[n2+
∑k

i=1 ci
], for

a parameter k > 1 to be determined later. By assumption and the Slowdown Lemma,

Σ2TIME[n2+
∑k

i=1 ci
] ⊆ NTIME[n2c+

∑k
i=1 ci+1

] ⊆ DTS[n2c2+
∑k

i=1 ci+2
].

By Lemma 3.3.3 and padding,

DTS[n2c2+
∑k

i=1 ci+2
] ⊆ Π2TIME[nck+2+o(1)].

A contradiction to the “No Complementary Speedup” Theorem (Theorem 3.3.1) follows, provided
that

2 +

k∑

i=1

ci > ck+2 ⇐⇒ 2/ck +

k∑

i=1

ci−k > c2 ⇐⇒ 2/ck +

k−1∑

j=0

1

cj
> c2

⇐⇒ 2/ck +
1 − 1

ck

1 − 1
c

> c2.

For k → ∞, observe that the above inequality becomes 1
1−1/c > c2, i.e.,

1 > c(c− 1).

However, c(c−1) < 1 holds for any c < φ. In particular, for any c < φ, one can choose a sufficiently
large k satisfying 2 +

∑k
i=1 c

i > ck+2. �

27

When one first sees the above proof (in particular, Lemma 3.3.3), it is difficult to find any
obvious weakness or sub-optimality in its steps. For this reason, the Ω(nφ−ε) time lower bound
stood as the best one known for five years. However there are weaknesses– in a sentence, the
significant weakness of the golden ratio lower bound is that not all of its steps actually use the
presumed Sat algorithm (NTIME[n] ⊆ DTISP[nc, no(1)]) to the greatest capacity, as we shall see in
the sequel.

3.4 Chapter Summary

We introduced the alternation-trading scheme for proving lower bounds, and presented some algo-
rithmic tools for manipulating small-space computations. Following the alternation-trading scheme,
we demonstrated two time lower bounds for solving many natural NP-complete problems on space-
bounded random access machines: the Ω(n

√
2) lower bound of Lipton and Viglas, and the Ω(nφ)

lower bound of Fortnow and Van Melkebeek.

28

Chapter 4

New Time-Space Tradeoffs for NP

Problems

In the previous chapter, we discussed an alternation-trading scheme for proving lower bounds by
indirect diagonalization, along with some tools used to carry out the scheme. Let D[t] be some
deterministic complexity class parameterized by a resource bound t. The alternation-trading scheme
proceeds as follows:

1. Assume NTIME[n] ⊆ D[nc].

2. Prove that for reasonable time bounds t(n), D[t(n)] can be sped up by alternating machines.

3. Prove using (1) that alternations in an alternating computation can be “removed”, at the
cost of a small slow down in time.

4. Apply (1) and (2) in some sequence on a given complexity class, so that one can conclude a
contradiction to a known time hierarchy theorem.

In this chapter, we describe four time-space lower bounds for Sat of our own design which
also follow the alternation-trading scheme. To give the reader a feeling of how our results came
about, our mode of presentation will be that of a chronologically ordered narrative, where each
successive lower bound introduces new observations that allow us to improve upon the weaknesses
of the previous bound. For those readers who are interested only in the final Ω(n1.801) lower bound
and are familiar with the previous chapter, it suffices to read Sections 4.2 and 4.4.

First, we develop an inductive argument that improves the time-space lower bound for solving
Sat (and other NP-complete problems) to Ω(n1.661) time for RAMs that use no(1) space. Our
induction derives

ΣkTIME[n] ⊆ ΠkTIME[nbk]

for a decreasing sequence {bk}. In the case where a contradiction does not hold for us, we still obtain
a relation between Σk and Πk, which is useful for deriving a relation between Σk+1 and Πk+1 and

29

higher levels of the polynomial hierarchy. The dichotomy of deriving either (a) a contradiction, or
(b) a better inclusion than before, is the leverage that allows us to improve the lower bounds. Thus
one may say that this kind of argument helps us improve upon item (3) in the alternation-trading
scheme.

Theorem 4.0.1 ([Wil05b]) Sat cannot be solved by random access machines using O(n1.661)

time and no(1) space.

Secondly, we boost the time lower bound to n1.7327, which is a bit larger than n
√

3. To do
this, we improve upon item (2) in the 4-step scheme. That is, we give an improved speedup of
DTS in Σ2TIME. (Recall from the previous chapter that DTS[t(n)] := DTISP[t(n), t(n)o(1)].) The
key behind our speedup is that it relies heavily on item (1), i.e. the assumption that NTIME[n] ⊆
DTISP[nc, no(1)]. The prior speedup results of this kind (Lipton-Viglas and Fortnow-Van Melkebeek)
did not utilize this assumption— in fact, their containments of DTS in ΣkTIME hold unconditionally.

Theorem 4.0.2 ([Wil05b]) Sat cannot be solved by random access machines using O(n1.7327)

time and no(1) space.

Thirdly, we show how to extend the inductive argument in the n1.7327 lower bound to obtain a
better speedup of DTS in ΣkTIME, whereby the improvement increases as k increases. This results
in a bound of Ω(n1.78). Finally, by combining the ideas of our work with the Ω(n1.618) lower bound
argument of Fortnow-Van Melkebeek, we obtain an Ω(n1.801) time lower bound for Sat. Our study
of these lower bound arguments culminates in the next chapter, where we present a formal proof
system that captures all these lower bound arguments, and design a computer program that can
systematically search for new proofs in a feasible way.

At this point, the casual reader may rightly wonder: why should we care? What difference
does it really make if Sat can’t be solved in n1.6 or n1.8 – the real question is whether or not it
can be solved in polynomial time, with no space restriction! While this is the question we would
all like to tackle, we have little idea of how to even get started with it. Our ultimate goal is
certainly not to fiddle with 0.2 factors in an exponent– it is to develop a deeper understanding of
indirect diagonalization lower bounds, both their capabilities and their limitations. There could
be a proof of L 6= NP that uses only classical techniques already known to us, and we do not yet
know how to rule out this possibility. (However, in the following chapter we do make progress on
a scaled-down version of this question.) Complaining that we should be studying the general P vs
NP problem instead of understanding the limits of existing techniques is putting the cart before the
horse. In the following chapter, our diligence brings us much more than just a minor improvement
on a known limitation– we are led to a formalization of the alternation-trading program for proving
lower bounds, not just for time-space tradeoffs but for other proofs following the alternation-trading
scheme.

30

4.1 Sat is not in DTISP[n1.661, no(1)]

Our first lower bound relies on a new inductive strategy that elaborates upon the alternation-trading
scheme, taking better advantage of the polynomial hierarchy in obtaining a contradiction. It is very
general and can be applied to improve upon several other time lower bounds as well [Wil05b] for
various restricted computational models. The main idea is to derive a sequence of inclusions between
complexity classes, where the derivation of each new inclusion uses all of the previous inclusions in
the sequence in a productive way.

Notice that, if nondeterministic time n can be simulated in deterministic time nc, then by
Lemma 3.3.1 it follows that ΣkTIME[t] ⊆ Σk−1TIME[tc]. A key observation behind our results is
that, if we further assume nondeterministic time n is in deterministic time nc and space no(1) for
c < 2, this not only implies that ΣkTIME[t] can be efficiently simulated by a Σk−1 machine, but
also that the runtime for this simulation is faster than tc. Moreover, as k increases, the implied
simulation gets faster for appropriately small c. This simulation can be used to improve item (3)
from the alternation-trading scheme (the “alternation removal”). We start by using items (1) and
(2) from the alternation-trading scheme to derive

Σ2TIME[n] ⊆ Π2TIME[nf2]

for a small constant f2. Essentially this means that an “OR of ANDs” at the bottom of the
configuration tree of an alternating machine can be switched with an “AND of ORs” of polynomial
size. If f2 < 1, then the above already contradicts a known time hierarchy theorem. This idea
already gives an alternative proof that NTIME[n] * DTISP[nc, no(1)] for c <

√
2. First, we assume

the contrary. Then by the machinery presented in the previous chapter,

Σ2TIME[n] ⊆ NTIME[nc] ⊆ DTS[nc2] (4.1)

⊆ Π2TIME[n
c2

2
+o(1)] ⊆ Π2TIME[o(n)], (4.2)

a contradiction. (The first inclusion follows from the Slowdown Lemma, the second follows by
assumption, and the third by Fortnow and Van Melkebeek’s simulation.)

Our major observation is that, even if f2 = c2/2 ≥ 1, we have not necessarily lost the battle.
Under the right conditions, this inclusion of Σ2 linear time in Π2 can be invoked to prove an even
better relationship between Σ3 and Π3, namely

Σ3TIME[n] ⊆ Π3TIME[nf3]

for some f3 < f2. To illustrate, consider if we let c ≥
√

2 in the above inclusion of Σ2 in Π2. Then
the resulting derivation

Σ2TIME[n] ⊆ Π2TIME[n
c2

2
+o(1)]

is not quite a contradiction, but it is at the very least a lemma that, in conjunction with Lemma 3.3.1,

implies ΣkTIME[n] ⊆ Σk-1TIME[n
c2

2
+o(1)], for all k ≥ 3. Provided that c < 2, this is stronger than

ΣkTIME[n] ⊆ Σk-1TIME[nc]. The lemma can then be used to get an even tighter inclusion for Σ3

in Π3, in particular

Σ3TIME[n] ⊆ Σ2TIME[n
c2

2
+o(1)] ⊆ DTS[n

c4

2] ⊆ Π3TIME[n
c4

6
+o(1)].

31

If c4 < 6, we have a contradiction. Otherwise, the above inclusion between Σ3 and Π3 can be used
to prove a relation between Σ4 and Π4.

In general, an inclusion of ΣkTIME[n] in ΠkTIME[nfk] for some fk’s can be proved by using
relations between all lower levels of the polynomial hierarchy. On the one hand, as long as each
derived exponent fk ≥ 1, then we may apply it to remove alternations from computations with
more quantifiers. On the other hand, if any derived exponent fk ever drops below 1, then we
know that the hypothesis assumed in step (1) of the alternation-trading scheme must be false,
as that contradicts a time hierarchy theorem. Suppose we derive Σ2TIME[n] ⊆ Π2TIME[nf2(c)],
Σ3TIME[n] ⊆ Π3TIME[nf3(c)], etc. Our construction and choice of c ensure that the sequence f2(c),
f3(c), f4(c), . . . eventually drops below 1. Moreover, the value of c such that the sequence drops
below 1 is larger than the lower bound exponents previously obtained. An inductive strategy for
improving lower bounds naturally arises: derive increasingly better Πk simulations of Σk using the
previous simulations obtained, and take c to be the largest constant that implies ΠkTIME[n] ⊆
ΣkTIME[o(n)] for some k. In many cases, this particular attack yields better lower bounds than
previous approaches, cf. [Wil05b].

4.1.1 Formalization

We now present a more formal exposition of the inductive strategy. The main theorem of this
section is the following.

Theorem 4.1.1 For every integer k ≥ 2 and real c ≥ 1 such that c < f(k),

NTIME[n] * DTS[nc],

where f(k) :=
∏k−1

j=1(1 + 1/j)1/2j
.

Let us first observe some properties of the f function.

Lemma 4.1.1 f(k) is monotone increasing and converges to a value greater than 1.661.

Proof of Lemma 4.1.1. As (1 + 1/j)1/2j
> 1 for all j, it is evident that f(k) is monotone

increasing. Observe that (1+1/j)1/2j ≤ exp(1
j·2j), so f(k) ≤ exp(

∑k−1
j=1

1
j·2j). As the sum

∑k−1
j=1

1
j·2j

converges, f(k) converges also. Computation of f(12) suffices to show f(k) > 1.661. �

Corollary 2.5.1, Theorem 4.1.1, and Lemma 4.1.1 immediately imply Theorem 4.0.1, i.e. the
n1.661 time-space lower bound for Sat.

We use the inductive argument described earlier to prove a relation between Σk and Πk for all
k ≥ 2, from which the theorem will follow. Define an expression e by the inductive definition

e(2) :=
c2

2
, e(k) :=

c2

k

(
k−1∏

i=1

e(i)

)

. (4.3)

32

Lemma 4.1.2 Assume NTIME[n] ⊆ DTS[nc] holds for some c ≥ 1, and let k ≥ 2 be an integer.

Then

ΣkTIME[n] ⊆ ΠkTIME[ne(k)+o(1)].

Proof. By induction on k. The case k = 2 is exactly the n
√

2 lower bound of equation (4.1). We
revisit it for completeness. Assuming NTIME[n] ⊆ DTS[nc],

Σ2TIME[n] ⊆ DTS[nc2] ⊆ Π2TIME[nc2/2+o(1)] = Π2TIME[ne(2)+o(1)],

where the last inclusion follows from Corollary 3.3.1.

Induction Hypothesis: Assume for all i ∈ {2, . . . , k − 1} that ΣiTIME[n] ⊆ ΠiTIME[ne(i)+o(1)].

We now prove the theorem for general k. The Slowdown Lemma (Lemma 3.3.1) and induction
hypothesis imply

ΣℓTIME[n] ⊆ Σℓ−1TIME[ne(ℓ−1)+o(1)], for ℓ ∈ {2, . . . , k − 1}.

If e(i) < 1 for some i ∈ {2, . . . , k− 1}, then we have a contradiction (ΣiTIME[n] ⊆ Π[i]TIME[o(n)]),
so ΣkTIME[n] ⊆ ΠkTIME[ne(k)+o(1)] holds vacuously. If e(i) ≥ 1 for all i, then by padding

ΣkTIME[n] ⊆ Σk−1TIME[ne(k−1)+o(1)]

⊆ Σk−2TIME[n(e(k−1)+o(1))(e(k−2)+o(1))] ⊆ · · · ⊆ Σ2TIME[n
∏k−1

i=2 (e(i)+o(1))].

But it is also the case that

Σ2TIME[n
∏k−1

i=2 (e(i)+o(1))] ⊆ NTIME[nc
∏k−1

i=2 (e(i)+o(1))]

⊆ DTS[nc2
∏k−1

i=2 (e(i)+o(1))] ⊆ ΠkTIME[n
c2

k

∏k−1
i=2 (e(i)+o(1))]

⊆ ΠkTIME[ne(k)+o(1)],

where the penultimate inclusion follows from Corollary 3.3.1 (Fortnow and Van Melkebeek’s simu-
lation), and the last inclusion follows by definition of e(k). �

We are finally ready to prove the Ω(n1.661) lower bound.

Proof of Theorem 4.1.1. Let k′ be the smallest integer such that c < f(k′); such a k′ exists
since f is monotonically increasing (Lemma 4.1.1). First, consider when k′ = 2. If NTIME[n] ⊆
DTISP[nc, no(1)], then Lemma 4.1.2 implies

Σ2TIME[n] ⊆ Π2TIME[ne(2)+o(1)] = Π2TIME[nc2/2+o(1)].

Now if c < 21/2 = (1 + 1/1)1/2 = f(2), then e(2) < 1. Therefore the above inclusion contradicts
the “No Complementary Speedup” Theorem (Theorem 3.3.1), and this concludes the base case.
Otherwise, observe that c ≥ 21/2 implies e(2) ≥ 1. In fact, the following relationship holds between
the expressions e and f .

Claim 1 For all i, e(i) ≥ 1 ⇐⇒ c ≥ f(i).

33

Proof of Claim 1. Recall that f(k) :=
∏k−1

j=1(1+1/j)1/2j
, and e(1) := 1, e(k) := c2

k

(
∏k−1

i=1 e(i)
)

.

First, we claim that e(i) = c2
i−1

i!
∏i−2

j=2(j!)2
i−j−2 follows from a proof by induction. The denominator can

be simplified further to get e(i) = c2
i−1

i·
∏i−1

j=2 j2i−j−1 .

For all i, let ci be the unique number in (1, 2) such that e(i) = 1 when c = ci, i.e. (ci)
2i−1

=
i ·∏i−1

j=2 j
2i−j−1

. It suffices to show that ci = f(i). Observe

(ci−1)
2i−1

= ((ci−1)
2i−2

)2 = (i− 1)2 ·
i−2∏

j=2

j2
i−j−1

by definition of ci−1. Hence

(
ci
ci−1

)2i−1

=
i ·∏i−1

j=2 j
2i−j−1

(i− 1)2
∏i−2

j=2 j
2i−j−1

= i/(i− 1),

so ci
ci−1

=
(

i
i−1

)1/2i−1

. Therefore

ci = (ci/ci−1)(ci−1/ci−2) · · · (c3/c2)c2

=
i∏

j=2

(

1 +
1

j − 1

) 1

2j−1

=
i−1∏

j=1

(

1 +
1

j

) 1

2j

= f(i).

�

Claim 1 and our choice of k′ implies that k′ is the smallest integer such that e(k′) < 1. Therefore
for all i ≤ k′ − 1 we have that e(i) ≥ 1, so Lemma 4.1.2 applies. Namely,

Σk′TIME[n] ⊆ Πk′TIME[ne(k′)+o(1)].

However, the above inclusion contradicts the “No Complementary Speedup” Theorem (Theo-
rem 3.3.1), since e(k′) < 1. This completes the proof of Theorem 4.1.1. �

4.2 Sat is not in DTISP[n1.732, no(1)]

The above lower bound can be improved upon, by finding an additional way to apply the assumption
NTIME[n] ⊆ DTISP[nc, no(1)] within the argument. At a high level, the n1.661 lower bound performs
the following moves:

• Start with ΣkTIME[n].

• Inductively apply inclusions to obtain ΣkTIME[n] ⊆ Σ2TIME[ne] for some e.

• Apply NTIME[n] ⊆ DTISP[ne, no(1)] twice to get Σ2TIME[ne] ⊆ DTISP[nec2, no(1)].

• Apply the kth root speedup to obtain DTISP[nec2, no(1)] ⊆ ΠkTIME[nec2/k, no(1)].

34

Every step of the argument uses the assumption that NTIME[n] ⊆ DTISP[nc, no(1)], except for
the last one. That is, Fortnow and Van Melkebeek’s result (Corollary 3.3.1 of the Speedup Lemma)
that DTISP[t, to(1)] ⊆ ΠkTIME[t1/k+o(1)] holds unconditionally, whereas all other inclusions derived
in the above actually depended on the assumption that NTIME[n] ⊆ DTISP[nc, no(1)]. Our next
lower bound carefully exploits this assumption to get

DTS[t] = DTISP[t, to(1)] ⊆ Π2TIME[t1/(2+δ)+o(1)],

for some δ > 0 that depends on the constant c. This new containment allows us to push the lower
bound above n

√
3.

Lemma 4.2.1 Let c ∈ (1, 2). Define the sequence d(1) := 2, d(k) := 1 + d(k−1)
c . If NTIME[n] ⊆

DTS[nc] then for all k ≥ 1,

DTS[nd(k)] ⊆ (∀n)(∃ log n)DTS[n] ⊆ Π2TIME[n1+o(1)].

Let us briefly outline how the proof of Lemma 4.2.1 goes. As the statement suggests, it is an
inductive argument, but of a different kind than before. First, we derive

NTIME[nℓ] ⊆ DTS[nℓc] ⊆ Π2TIME[n1+o(1)]

for some ℓ > 1. Then, this containment can be used to obtain DTS[nd] ⊆ Π2TIME[n1+o(1)], for
some d > 2 that depends on c. In turn, this DTS in Π2 simulation can be applied to obtain

NTIME[nℓ′] ⊆ Π2TIME[n1+o(1)]

for some ℓ′ > ℓ. That is, the two containments of DTS in Π2TIME and NTIME in Π2TIME can
mutually improve upon each other, and the amount of improvement that can be achieved depends
on the constant c.

Proof of Lemma 4.2.1. By induction on k. The k = 1 case is trivial since DTS[n2] ⊆
(∀ n)(∃ log n)DTS[n] holds unconditionally (Corollary 3.3.1 of the Speedup Lemma).

For the inductive step, assume NTIME[n] ⊆ DTS[nc] and DTS[nd(k)] ⊆ (∀ n)(∃ log n)DTS[n].
Observe that for c < 2, d(k) ≥ c, since by induction we have that d(k) = 1+d(k−1)/c ≥ 1+1 = 2.
By padding and the inductive hypothesis,

NTIME[nd(k)/c] ⊆ DTS[nd(k)] ⊆ (∀n)(∃ log n)DTS[n]. (4.4)

Now consider a Π2 simulation of DTS[n1+d(k)/c], where only O(n) bits (that is, n1−o(1) configurations
of the DTS machine) are guessed in the universal quantifier. (Formally, we are invoking the Speedup
Lemma, with b = n1−o(1).) Written in our class notation, the resulting simulation is expressed by
the inclusion:

DTS[n1+d(k)/c] ⊆ (∀ n)(∃ log n)DTS[nd(k)/c].

The (∃ log n)[· · ·] part in the above corresponds to an NTIME computation that takes an input
of O(n) bits (the input x, plus the list of configurations) and runs in nd(k)/c+o(1) time. By equa-
tion (4.4) above, this nondeterministic computation can be replaced with a Π2 computation running

35

in n1+o(1) time. Therefore DTS[n1+d(k)/c] ⊆ (∀ n)(∀ n)(∃ log n)DTS[n] = (∀ n)(∃ log n)DTS[n] ⊆
Π2TIME[n1+o(1)]. �

The lemma immediately implies a better way to simulate DTS in Π2 when we assume a sub-
quadratic algorithm for Sat.

Theorem 4.2.1 (Conditional Speedup) Let c ∈ (1, 2). If NTIME[n] ⊆ DTS[nc] then for all

ε > 0,

DTS
[

n
c

c−1
−ε
]

⊆ (∀ n)(∃ log n)DTS[n] ⊆ Π2TIME[n1+o(1)].

Observe that when ε > 1
c−1 , the theorem is trivial (c

c−1 − ε < 1).

Proof. First, note that for any c < 2, the sequence {d(k)}k∈N is monotone increasing. The proof is
by induction: d(3) = 1+2/c > 2 = d(2), and when d(k) > d(k−1), we have d(k+1) = 1+d(k)/c >
1 + d(k − 1)/c = d(k).

Secondly, {d(k)}k∈N converges to a constant, given by d∞ = 1 + d∞
c . Solving, we obtain

d∞ = c/(c− 1). Hence for any fixed ε > 0, there is a finite K such that d(K) ≥ c
c−1 − ε. Therefore

DTS
[

n
c

c−1
−ε
]

⊆ (∀ n)(∃ log n)DTS[n] ⊆ Π2TIME[n1+o(1)] by Lemma 4.2.1. �

The conditional speedup theorem arms us with an additional lower bound tool. Let us combine
Theorem 4.2.1 with the inductive argument from Section 4.1. We know that if NTIME[n] ⊆ DTS[nc],
then c ≥ 1.661 > φ. It follows that c2 > c/(c−1)−ε for all ε > 0. Now for all ε > 0 and sufficiently
small ε2 > 0, there is an ε1 > 0 such that

Σ2TIME[n] ⊆ DTS[nc2] ⊆ DTS[
(

nc2·(c−1
c

+ε1)
)c/(c−1)−ε

]

⊆ DTS[
(

nc(c−1)+ε2

)c/(c−1)−ε
]

⊆ Π2TIME[nc·(c−1)+ε2+o(1)],

where the penultimate inclusion follows by taking ε1 = ε2/c
2, and the last inclusion follows from

Theorem 4.2.1. Observe that this new inclusion of Σ2 linear time in Π2 time is superior to the
previously derived Σ2TIME[n] ⊆ Π2TIME[nc2/2+o(1)] inclusion, for all c < 2. More precisely, c(c −
1) < c2/2 for all c ∈ (1, 2). Notice that c(c−1) = 1 precisely when c is the golden ratio φ. Thus in a

sense, instead of having Lipton-Viglas’ n
√

2 lower bound as our base case, the above is an inclusion
that resembles Fortnow-Van Melkebeek’s nφ lower bound as a base case.

Proceeding inductively as in Section 4.1, we derive for all sufficiently small ε3 > 0 that

Σ3TIME[n] ⊆ Σ2TIME[nc·(c−1)+ε2+o(1)] ⊆ DTS[nc3·(c−1)+ε2c2]

⊆ Π3TIME[n
c3·(c−1)

3
+ε3+o(1)],

by setting ε2 = 3ε3/c
2.

36

Similarly, for all sufficiently small ε4 > 0 we obtain

Σ4TIME[n] ⊆ Σ3TIME[n
c3·(c−1)

3
+ε3+o(1)] ⊆ Σ2TIME[n

c4·(c−1)2

3
+c(c−1)ε3+o(1)]

⊆ DTS[n
c6·(c−1)2

3
+c3(c−1)ε3]

⊆ Π4TIME[n
c6·(c−1)2

12
+ε4+o(1)],

by setting ε4 = 4ε3/(c
3(c− 1)).

We can formally state the new relation between Σk and Πk for general k as follows. Define
g(2) := c(c− 1), and for k ≥ 3, define

g(k) :=
c3·2

k−3
(c− 1)2

k−3

k · (
∏k−1

i=3 i
2(k−1)−i

)
.

Observe that g(3) = c3(c− 1)/3 and g(4) = c3·2(c− 1)2/(4 · 3) = c6(c− 1)2/12.

Lemma 4.2.2 Assume NTIME[n] ⊆ DTS[nc], and let k ≥ 2 be an integer. Then

ΣkTIME[n] ⊆ ΠkTIME[ng(k)+o(1)].

Proof. By induction on k. �

Finally, we are in position to improve our previous lower bound for Sat (Theorem 4.0.1) to
Ω(n1.7327) time on subpolynomial space machines.

Proof of Theorem 4.0.2. By Corollary 2.5.1, it suffices for us to show NTIME[n] * DTS[n1.7327].
Assuming NTIME[n] ⊆ DTISP[nc, no(1)], we wish to find the largest c possible such that g(k) < 1
for some k. (Note that, as with the function f , the function g is also monotone decreasing.) By
Lemma 4.2.2, such a c implies that ΣkTIME[n] ⊆ ΠkTIME[o(n)], and therefore yields a contradiction
with the ‘No Complementary Speedup’ theorem. Observe that the function g(k) can be simplified
to

g(k) =
c3·2

k−3
(c− 1)2

k−3

k · (32k−4 · 42k−5 · 52k−6 · · · (k − 1))

=

(
c3(c− 1)

k2−k+3 · (32−1 · 42−2 · 52−3 · · · (k − 1)2−k+3)

)2k−3

.

Now, g(k) < 1 if and only if

g′(k) :=
c3(c− 1)

k2−k+3 · (32−1 · 42−2 · 52−3 · · · (k − 1)2−k+3)
< 1,

so it suffices to analyze the latter expression.

The denominator of g′(k) numerically converges to 3.81213 · · · as k → ∞. Therefore the
calculation of c reduces to finding the positive root of c3 · (c− 1) = 3.81213, or c ≈ 1.7327. �

37

There is still some slack that remains in our above lower bound. Notice that we used a condi-
tional speedup for DTS in Π2, but only applied the old unconditional speedup for DTS in Πk when
k ≥ 3. Mending this discrepancy, Diehl and Van Melkebeek [DvM06] observed that our Conditional
Speedup Theorem 4.2.1 also implies a conditional speedup for DTS in ΠkTIME, for all k ≥ 2.

Theorem 4.2.2 (General Conditional Speedup [DvM06]) If c < 2 satisfies NTIME[n] ⊆
DTS[nc], then for all k ≥ 1 and e < k + 1/(c − 1),

DTS[ne] ⊆ Σk+1TIME[n1+o(1)] ∩ Πk+1TIME[n1+o(1)].

Proof. (Sketch) The proof of Lemma 3.3.2 (Fortnow and Van Melkebeek’s speedup) implies that
any machine in DTS[ne] can be simulated by a machine N in ΣkTIME, where the k quantifiers of
N each guess n1+o(1) bits, followed by a deterministic time predicate R that runs in ne−(k−1) =
O(n1+1/(c−1)−ε) time for an ε > 0.

By our conditional speedup (Theorem 4.2.1), the predicate R can be simulated by a machine
M1 in Π2TIME[n1+o(1)], and also by a machine M2 in Σ2TIME[n1+o(1)]. If k is odd, R is replaced
in N with M1, otherwise R is replaced with M2. The resulting N has only one more alternation
and runs in n1+o(1) time. �

When one plugs in the above speedup in lieu of the unconditional speedup, the lower bound
exponent increases from 1.7327 to 1.759. For more details, cf. [DvM06].

4.3 Sat is not in DTISP[n1.784, no(1)]

While Diehl and Van Melkebeek’s argument makes greater use of the assumption NTIME[n] ⊆
DTISP[nc, no(1)] than the previous arguments, theirs is still not yet optimal. We show how to prove
even better conditional speedups for classes with more alternations, leading to a small improvement
in the lower bound.

Theorem 4.3.1 Sat is not in DTS[nc] for all c < 1.784.

We note in passing that it is not necessary to know the proof of Theorem 4.3.1 in order to
understand the final n2 cos(π/7) lower bound, so the reader interested purely in that result need not
read this section.

Our assortment of tools allows us to obtain

Σ2TIME[t] ⊆ (∃t)DTS[tc] by Slowdown (Lemma 3.3.1)

⊆ DTS[tc
2
] by Slowdown

⊆ (Σ3 ∩ Π3)TIME

[

t
c2

2+1/(c−1)
+o(1)

]

, by General Conditional Speedup (Theorem 4.2.2)

38

for time functions t such that tc
2 ≥ n2+1/(c−1). Just as we built upon an inclusion of NTIME in Π2

to derive a better speedup of DTS in Π2, our strategy is to build upon the above inclusion of Σ2 in
Π3 to inductively obtain a better conditional speedup theorem for DTS on machines that take at
least three alternations.

The first inductive step. These conditional speedups take the form of the proof in Lemma 4.2.1.
That is, we suppose DTS[ne] ⊆ Π3TIME[n1+o(1)] for all ε > 0, where e is as large as possible, and
try to show that DTS[ne′] is also in Π3TIME[n1+o(1)], for some e′ > e. Notice that from Theorem
4.2.2, we know that e ≥ 2 + 1/(c− 1) holds already.

Consider DTS[n1+e·(1+1/(c−1))/c2]. We wish to show that this class is in Π3TIME[n1+o(1)] as well.
Assuming that NTIME[n] ⊆ DTS[nc], we derive the following sequence:

DTS[n1+e· (1+1/(c−1))

c2] ⊆ (∀ n)(∃ log n)DTS[ne/c2·(1+1/(c−1))] by Speedup (Lemma 3.3.2)

⊆ (∀ n)(∃ ne/c2)(∀ log n)DTS[ne/c2] by Cond. Spdup (Thm 4.2.1) & padding

⊆ (∀ n)(∃ ne/c2)DTS[ne/c] by Slowdown (Lemma 3.3.1)

⊆ (∀ n)DTS[ne] by Lemma 3.3.1

⊆ Π3TIME[n1+o(1)] by assumption.

Notice that in the above, we require that e/c2 ≥ 1. This is true, so long as

c2 ≤ 2 + 1/(c − 1),

or c < 1.8019

Is the above simulation of DTS in Π3TIME any better than the general conditional speedup
of Theorem 4.2.2? For e = 2 + 1/(c − 1), one finds that 1 + e · (1 + 1/(c − 1))/c2 > e when
c2 < 2 + 1/(c − 1). Numerically, this occurs when c < 2 cos(π/7) ≈ 1.8019. (We will prove this
later.) In other words, the above simulation of DTS in Π3TIME is indeed an improvement over
Theorem 4.2.2, but only when c < 1.8019. Therefore this new speedup simulation is only effective
for proving lower bounds up to n2 cos(π/7). For now we shall not worry about this limitation, but
keep in the back of our mind that we must return to it in the future.

Since we started with the hypothesis DTS[ne] ⊆ Π3TIME[n1+o(1)], and concluded with the
inclusion DTS[n1+e/c2·(1+1/(c−1))] ⊆ Π3TIME[n1+o(1)], the implication naturally suggests an induc-
tive argument along the lines of our original conditional speedup (Theorem 4.2.1). Consider the
sequence defined by

e(1) := 2 + 1/(c− 1), e(k + 1) := 1 + e(k) · (1 + 1/(c− 1))/c2.

As in the n
√

3 lower bound, it is easy to prove that this sequence is increasing and convergent.

Claim 2 For c2 < 2 + 1/(c − 1), the sequence {ek} is monotone increasing, and converges to e∞

where e∞ = 1 + e∞ · (1 + 1/(c − 1))/c2. That is, e∞ = c(c−1)
c(c−1)−1 = 1 + 1

c(c−1)−1 .

39

Proof. The base case holds, since

e(2) > e(1) ⇐⇒ 1 +

(
2 + 1/(c− 1)

c2

)

· (1 + 1/(c− 1)) > 2 + 1/(c − 1)

⇐⇒
(

2 + 1/(c − 1)

c2

)

· (1 + 1/(c − 1)) > 1 + 1/(c − 1)

⇐⇒ 2 + 1/(c − 1) > c2.

For the induction step,

e(k + 1) > e(k) ⇐⇒ 1 +

(
e(k)

c2

)

· (1 + 1/(c − 1)) > 1 +

(
e(k − 1)

c2

)

· (1 + 1/(c − 1))

⇐⇒ e(k) > e(k − 1).

�

The claim immediately implies a new conditional speedup for DTS in ΣkTIME.

Lemma 4.3.1 (Speedup for Σ3) For all ε > 0, if there is c2 < 2+1/(c−1) such that NTIME[n] ⊆
DTS[nc], then

DTS
[

n
1+ 1

c(c−1)−1
−ε
]

⊆ Σ3TIME[n1+o(1)] ∩ Π3TIME[n1+o(1)].

The requirement on c in the lemma is equivalent to c < 1.8019 This curious constant will
arise in the next lower bound, where we show Ω(n1.8019) can actually be achieved.

Corollary 4.3.1 For all ε > 0, if there is c2 < 2 + 1/(c− 1) such that NTIME[n] ⊆ DTS[nc] then

DTS
[

n
k+ 1

c(c−1)−1
−ε
]

⊆ Σk+2TIME[n1+o(1)] ∩ Πk+2TIME[n1+o(1)].

Proof. Analogous to the proof of the General Conditional Speedup, i.e. Theorem 4.2.2. �

The Speedup for Σ3 Lemma leads to a better lower bound exponent, when one applies it to the
alternation-switching argument. For instance, the previous section shows that

Σ2TIME[n] ⊆ NTIME[nc] ⊆ DTS[nc2] ⊆ Π2TIME[nc2/(1+1/(c−1))+o(1)] = Π2TIME[nc(c−1)+o(1)],

therefore

Σ3TIME[n] ⊆ Σ2TIME[nc(c−1)+o(1)] ⊆ DTS[nc3(c−1)] ⊆ Π3TIME

[

n
c3(c−1)

1+1/(c(c−1)−1)
+o(1)

]

.

Let dk be such that ΣkTIME[n] ⊆ ΠkTIME[ndk+o(1)]. Then

ΣkTIME[n] ⊆ DTS
[

nc2
∏k−1

j=2 dj

]

⊆ ΠkTIME

[

n
c2

k−2+1/(c(c−1)−1)
·
∏k−1

j=2 dj+o(1)
]

.

40

From the above, it follows that d2 = c(c − 1), and dk = c2/(k − 2 + 1/(c(c − 1) − 1)) ·∏k−1
j=2 dj.

By substituting dk−1 (k ≥ 4) for its corresponding expression in dk, this can be rewritten as:

dk =
c4
(
∏k−2

j=2 dj

)(
∏k−2

j=2 dj

)

(k − 2 + 1/(c(c − 1) − 1))(k − 3 + 1/(c(c − 1) − 1))
= (dk−1)

2 · k − 2 + 1/(c(c − 1) − 1)

k − 3 + 1/(c(c − 1) − 1)
.

Solving for dk > 1 in the range c = (φ, 2), where φ is the golden ratio, one obtains c > 1.7802 when
d14 ≤ 1.

The next step. Similarly, it is possible to use what was derived above to prove a better inclusion
of Σ3 in Π4. Namely,

Σ3TIME[t] ⊆ Σ2TIME[tc(c−1)+o(1)] ⊆ (∃tc(c−1))DTS[tc
2(c−1)] ⊆ Π4TIME

[

t
c2(c−1)

2+1/(c(c−1)−1)
+o(1)

]

.

The above inclusion produces a better speedup of DTS in Π4∩Σ4. The induction proceeds similarly
as before: suppose DTS[ne] ⊆ Σ4TIME[n1+o(1)] ∩ Π4TIME[n1+o(1)]. Then

Σ3TIME[ne/(c3(c−1))] ⊆ DTS[ne] ⊆ Π4TIME[n1+o(1)].

Consider DTS[n1+e(1+1/(c(c−1)−1))/(c3(c−1))]. This class is contained in

(∃ n)(∀ log n)DTS[ne(1+1/(c(c−1)−1))/(c3(c−1))]

⊆ (∃ n)(∀ log n)(∀ ne/(c3(c−1)))(∃ ne/(c3(c−1)))(∀ log n)DTS[ne/(c3(c−1))],

which is contained in Π4TIME[n1+o(1)] by the above derivation. As before, we get a non-decreasing
sequence of exponents, which converges to e∞ = 1 + 1

c2(c(c−1)−1)−1
. Thus for all ε > 0,

DTS

[

n
1+ 1

c2(c(c−1)−1)−1
−ε
]

⊆ Π4TIME[n1+o(1)].

However, the above speedup is only an improvement over the speedup implied by Corollary 4.3.1
(that is, DTS[n2+1/(c(c−1)−1)−ε] ⊆ Π4TIME[n1+o(1)]) when c < 1.7859. Carrying out the alternation-
switching argument as before, for k ≥ 4,

ΣkTIME[n] ⊆ DTS[nc2·
∏k−1

j=2 dj] ⊆ ΠkTIME

n

c2

k−3+(1+ 1
c2(c(c−1)−1)−1

)
·
∏k−1

j=2 dj+o(1)

 .

Therefore dk ≤ c2

k−3+(1+ 1
c2(c(c−1)−1)−1

)
·∏k−1

j=2 dj ; that is,

dk ≤ d2
k−1

k − 3 + (1 + 1/(c2(c(c − 1) − 1) − 1))

k − 4 + (1 + 1/(c2(c(c − 1) − 1) − 1))
= d2

k−1 ·
(

1 +
1

k − 3 + 1/(c2(c(c− 1) − 1) − 1)

)

.

Assuming d9 ≥ 1, we find that c > 1.7829 . . ., using the above along with our previously derived
bounds on d2 and d3.

Since the above derived speedup of DTS in Π4 is only an improvement for c < 1.7859 . . ., our
lower bound on c cannot be improved by much more with this particular inductive extension. By
further argument along the same lines (but for higher levels of the polynomial hierarchy), one can
show the lower bound is at least nc time and no(1) space, where c ≥ 1.7843. We omit the details,
as the next section shows that one can prove an even better lower bound by taking a different
approach.

41

4.4 Sat is not in DTISP[n2 cos(π/7)−ε, no(1)]

In the previous section, when we developed the Speedup for Σ3 Lemma, we ran into an annoying
obstacle: our new speedup theorem only works for proving time lower bounds less than n2 cos(π/7),
or n1.8019. In this section we prove that this limitation can be fully reached: an Ω(n2 cos(π/7)−ε)
time lower bound is possible.

Theorem 4.4.1 For all c satisfying c3 − c2 − 2c+ 1 < 0, NTIME[n] * DTS[nc].

For the sake of mathematical curiosity, let us first make a few remarks about the constant
2 cos(π/7) = 1.8019 . . . and how it arises. Whereas the golden ratio is the unique solution in the
interval (1, 2) to the equation c2 = 1 + 1/(c − 1), our quantity is the unique solution in (1, 2) to
c2 = 2+1/(c−1). We can give a rough informal explanation for the origins of these equations. The
golden ratio lower bound effectively shows how to speed up a deterministic small-space computation
by a (1 + 1/(c − 1))th root, using two quantifiers. Removing these two quantifiers (to obtain a
deterministic computation again) multiplies the exponent by a factor of c2. If c2 < 1 + 1/(c − 1),
then the speedup exceeded the slowdown, hence the resulting deterministic computation runs faster
than the original– a contradiction. Our n2 cos(π/7) lower bound is more intricate, achieving a speedup
with two quantifiers by a (2 + 1/(c − 1))th root, by invoking a (1 + 1/(c − 1))th root speedup for
multiple times.

To give a trigonometric reason for the appearance of 2 cos(π/7), let us compute the roots of
the polynomial p(c) = c3 − c2 − 2c + 1. With a little foresight we let c = 2cos(u), and recall that
2 cos(x) = eix + e−ix. Plugging into p, we get

p(c) = (eiu + e−iu)3 − (eiu + e−iu)2 − 2(eiu + e−iu) + 1

= (e3iu + e−3iu) − (e2iu + e−2iu) + (eiu + e−iu) − 1,

after simplifying. Multiplying by e3iu, the above sum becomes

(e6iu + 1) − (e5iu + eiu) + (e4iu + e2iu) − e3iu,

which is

e6iu − e5iu + e4iu − e3iu + e2iu − eiu + 1 =
e7iu + 1

eiu + 1
.

For u 6= π, the roots of p are given by e7iu = −1, leading to the three equations:

e7u1i = eπi, e7u2i = e3πi, and e7u3i = e5πi.

So, the roots are c1 = 2cos(π/7), c2 = 2cos(3π/7), c3 = 2cos(5π/7), where only c1 is a positive
real.

The crux of the proof for Theorem 4.4.1 is in the following result, which is a subtle combination
of the golden ratio proof strategy of Fortnow et al. [FLvMV05] from Chapter 3.3 and our Conditional
Speedup Theorem (Theorem 4.2.1).

42

Theorem 4.4.2 Suppose c < 2 satisfies NTIME[n] ⊆ DTS[nc]. Then for all integers k ≥ 1, and

d < c/(c− 1),

DTS[nd+
∑k

i=1(c
2/d)i

] ⊆ Σ2TIME[n(c2/d)k+o(1)] ∩ Π2TIME[n(c2/d)k+o(1)].

We first show how Theorem 4.4.2 implies Theorem 4.4.1.

Proof of Theorem 4.4.1. Assuming NTIME[n] ⊆ DTS[nc] and Theorem 4.4.2,

Σ2TIME[nd+
∑k

i=1(c
2/d)i

] ⊆ NTIME[nc(d+
∑k

i=1(c2/d)i)] ⊆ DTS[nc2(d+
∑k

i=1(c
2/d)i)] ⊆ Π2TIME[nc2(c2/d)k+o(1)].

A contradiction with the “No Complementary Speedup” Theorem is reached (and therefore NTIME[n] *
DTS[nc]) precisely when

d+

k∑

i=1

(c2/d)i > c2 · (c2/d)k,

that is, when

c2 <

k∑

i=1

(
c2

d

)i−k

+ d · d
k

c2k
⇐⇒ c2 <

k−1∑

j=0

(
d

c2

)j

+ d ·
(
d

c2

)k

⇐⇒ c2 <
1 −

(
d
c2

)k

1 −
(

d
c2

) + d ·
(
d

c2

)k

(4.5)

Note that c2 ≥ d, since Fortnow et al. [FLvMV05] proved that c must be at least the golden
ratio, therefore c(c − 1) ≥ 1, i.e. c2 ≥ c/(c− 1) > d. Therefore 1 > (d/c2)k for all k ≥ 1, and

lim
k→∞

(d/c2)k = 0.

Hence for any ε > 0, one can set d = c/(c− 1)− ε and find a k such that ((c/(c− 1)− ε)/c2)k ≤ ε,
whereby the inequality (4.5) turns into

c2 <
1 − ε

1 − c/(c−1)−ε
c2

+ (c/(c − 1) − ε) · ε.

Simple algebraic manipulation yields the equivalent condition:

c2 − (c/(c − 1) − ε) < (1 − ε) + (c/(c − 1) − ε) · ε ·
(

1 − c/(c − 1) − ε

c2

)

Multiplying through by (c− 1), the condition becomes

c2(c− 1) − (c− ε(c− 1)) < ((c− 1) − ε(c− 1)) + (c− ε(c− 1)) · ε ·
(

1 − c/(c− 1) − ε

c2

)

⇐⇒ c3 − c2 − 2c+ 1 < (c− ε(c− 1)) · ε ·
(

1 − c/(c − 1) − ε

c2

)

− 2ε(c − 1) (4.6)

43

Now, as ε approaches 0, the RHS approaches 0. We arrive at the following condition implying a
contradiction:

c3 − c2 − 2c+ 1 < 0,

which is what we wanted to prove. That is, for any c satisfying c3 − c2 − 2c+1 < 0, one can choose
an ε > 0 such that c and ε satisfy inequality (4.6). �

Proof of Theorem 4.4.2. By induction on k. Suppose c < 2 satisfies NTIME[n] ⊆ DTS[nc].
Pick d such that c ≤ d < c/(c − 1). We only prove the containment for Σ2, as the proof for Π2 is
analogous.

For k = 0, the task is just to show DTS[nd] ⊆ Σ2TIME[n1+o(1)], which is precisely the Condi-

tional Speedup Theorem (Theorem 4.2.1). For the inductive step, start with DTS[nd+
∑k

i=1(c
2/d)i

].
Applying the Speedup Lemma (Lemma 3.3.2),

DTS[nd+
∑k

i=1(c
2/d)i

] ⊆ (∃ n(c2/d)k
)(∀ log n)DTS[nd+

∑k−1
i=1 (c2/d)i

],

where the DTS[· · ·] part of the Σ2 computation has input of length n+ no(1) (the original input x,
and two configurations). By the induction hypothesis,

(∃ n(c2/d)k
)(∀ log n)DTS[nd+

∑k−1
i=1 (c2/d)i

] ⊆ (∃ n(c2/d)k
)(∀ log n)Π2TIME[n(c2/d)k−1+o(1)].

Applying the Slowdown Lemma (Lemma 3.3.1) to the Π2 part (which takes input of length n+no(1)),

(∃ n(c2/d)k
)(∀ log n)Π2TIME[n(c2/d)k−1+o(1)] ⊆ (∃ n(c2/d)k

)(∀ log n)coNTIME[nc·(c2/d)k−1+o(1)].

Combining adjacent quantifiers of the same type,

(∃ n(c2/d)k
)(∀ log n)coNTIME[nc·(c2/d)k−1+o(1)] ⊆ (∃ n(c2/d)k

)coNTIME[nc·(c2/d)k−1+o(1)].

Now the input to the coNTIME part is O(n(c2/d)k
) ≤ O(nc·(c2/d)k−1

), since d ≥ c. Therefore the
Slowdown Lemma can be applied again to obtain

(∃ n(c2/d)k
)coNTIME[nc·(c2/d)k−1+o(1)] ⊆ (∃ n(c2/d)k

)DTS[nc2·(c2/d)k−1
].

But by the Conditional Speedup Theorem, the DTS part of the above class can be replaced with a
Σ2 computation, in particular

(∃ n(c2/d)k
)DTS[nc2·(c2/d)k−1

] ⊆ (∃ n(c2/d)k
)(∃ n(c2/d)k

)(∀ log n)DTS[n(c2/d)k
].

Finally,

(∃ n(c2/d)k
)(∃ n(c2/d)k

)(∀ log n)DTS[n(c2/d)k
] ⊆ (∃ n(c2/d)k

)(∀ log n)DTS[n(c2/d)k
]

by combining quantifiers. This completes the proof. �

Note the above argument can be extended to prove a time-space tradeoff for Sat:

Corollary 4.4.1 For all c < 2 cos(π/7) there is a d ∈ (0, 1) such that Sat is not in DTISP[nc, nd].

Proof. (Sketch) In the above proofs, one can replace the no(1) space bound by nd for a sufficiently
small d > 0. The sizes of quantifiers in the alternating simulations increase only by an additive
factor of qkd in the exponents, where qk is a constant that depends on the (finite) sequence of
speedup and slowdowns applied in the argument. �

44

4.4.1 An Extension to Non-Uniform Algorithms

A straightforward application of an observation by Tourlakis [Tou01] further yields a lower bound
on non-uniform algorithms for Sat. A non-uniform algorithm is a collection of algorithms, one
for each possible input length n. The notation C/f(n) denotes the class of problems solved by
non-uniform algorithms of type C whose program size for n bit inputs is f(n). More formally, we
define that L ∈ C/f(n) if there is a function A : N → Σ∗ such that |A(n)| = f(n) for all n, and

x ∈ L ⇐⇒ M(x,A(|x|)) accepts,

where M is an algorithm that solves a problem in class C. We say that M takes f(n) bits of advice
in such a situation, and A is the advice function for M .

Corollary 4.4.2 NTIME[n] * DTISP[n1.801, no(1)]/no(1).

One implication of the corollary is that Sat cannot be solved by any collection of deterministic
n1.801 time and no(1) space non-uniform algorithms, where the algorithm for n bit inputs can be
described in no(1) bits.

Proof. (Sketch) We outline how all of the tools developed carry over to the non-uniform setting.

• First, we argue that a non-uniform extension to the “No Complementary Speedup” Theorem
holds; that is,

ΣkTIME[nℓ] * ΠkTIME[nℓ−ε]/n (4.7)

for all k ≥ 1, ℓ > 1 and ε > 0. Tourlakis [Tou01] describes a diagonalization method,
attributed to Rackoff, that proves the case k = 1, i.e. NTIME[nℓ] * coNTIME[nℓ−ε]/n.
The diagonalizing NTIME[nℓ] machine M has the following behavior: on input x, it non-
deterministically simulates N|x|(x, x) and complements its outcome, where Ni is the ith co-

nondeterministic algorithm that runs in nℓ−ε time and takes n bits of advice.

Suppose N ′ is a coNTIME[nℓ−ε] machine that takes n bits of advice and solves the same
problem as M . Let i be such that L(N ′) = L(Ni), and let A be the advice function for N ′.
Note that |A(|x|)| = |x|, by assumption, so |A(i)| = i. Therefore

M(A(i), A(i)) accepts (as a nondeterministic algorithm)
⇐⇒ N|A(i)|(A(i), A(i)) rejects (as a co-nondeterministic algorithm)

⇐⇒ Ni(A(i), A(i)) rejects.

Therefore L(M) 6= L(Ni) = L(N ′), a contradiction. Our observation is simply that the above
argument works irrespective of the number of quantifiers in the alternating algorithm– it
works equally well for ΣkTIME[nℓ] algorithms versus ΠkTIME[nℓ−ε]/n algorithms.

• Secondly, if NTIME[n] ⊆ DTISP[nc, no(1)]/no(1), then NTIME[nℓ] ⊆ DTISP[ncℓ, no(1)]/no(1), by
a padding argument.

• Thirdly, we claim that if NTIME[n] ⊆ DTISP[nc, no(1)]/no(1), then it follows that ΣkTIME[nℓ] ⊆
Σk−1TIME[ncℓ]/no(1), for any ℓ ≥ 1. This is effectively a non-uniform version of the Slowdown
Lemma, and it has an analogous proof to that lemma.

45

• Fourthly, we have DTISP[nk, no(1)]/no(1) ⊆ ΣkTIME[n1+o(1)]/no(1) ∩ ΠkTIME[n1+o(1)]/no(1),
which is a non-uniform version of Fortnow and Van Melkebeek’s simulation with a practically
identical proof. (The simulating alternating machine simply uses the same advice function
that the deterministic machine used.)

With the four above ingredients, one can derive non-uniform analogues for all of our lower bounds.
For instance, when NTIME[n] ⊆ DTISP[nc, no(1)]/no(1) the third and fourth points above can be
used to infer for any k ≥ 1 that

Σ2TIME[nk] ⊆ NTIME[nck]/no(1) ⊆ DTS[nkc2]/no(1) ⊆ Π2TIME[nkc2/2]/no(1),

so for c <
√

2 this is a contradiction to (4.7). �

4.4.2 A Generalization to Lower Bounds for Quantified Boolean Formulas

As first observed by Fortnow and Van Melkebeek, the alternation-trading scheme for proving lower
bounds against nondeterminism extends naturally to lower bounds against alternating computa-
tions. Since alternating polynomial time is equal to polynomial space (AP = PSPACE [CKS81]),
we know that ATIME[n] * DTS[nk, no(1)] for every k ≥ 1, otherwise SPACE[n] ⊆ ATIME[n2] ⊆
SPACE[no(1)] by Savitch’s theorem [Sav70], contradicting the space hierarchy theorem. So we al-
ready have a polynomial time lower bound for the general quantified Boolean formula problem
(QBF) in our time and space bounded setting.

The more interesting question is: how large can the lower bounds be when we restrict ourselves
to solving quantified Boolean formulas where the number of quantifier blocks is a fixed constant?
Recall that Σk-Sat is the problem of solving a QBF with k quantifier blocks (i.e. deciding the truth
of Σk sentences in first-order Boolean logic). Building on Fortnow and Van Melkebeek [FvM00] who
showed that Σk-Sat requires Ω(nk−ε) time on no(1)-space machines, we prove time lower bounds
for Σk-Sat of the form Ω(nk+1−εk) on the same model, where εk ∈ (0, 1) is a small constant that
approaches 0 as k approaches infinity. Our results follow a similar pattern to the n2 cos(π/7) lower
bound for Sat: we first argue that Σk-Sat is “robustly complete” in the appropriate sense, then
prove that ΣkTIME[n] * DTS[nc] for appropriate constants c > 1, by interleaving a conditional
speedup theorem with a “Fortnow-Van Melkebeek-like” argument. Let us recall the result of Fort-
now et al., mentioned in Chapter 2:

Theorem 4.4.3 (Fortnow-Lipton-Van Melkebeek-Viglas [FLvMV05]) For all k ≥ 1, Σk-

Sat is robustly complete for ΣkQL.

Our generalized statement of time lower bounds for quantified Boolean formulas is:

Theorem 4.4.4 For all k ≥ 1, Σk-Sat requires Ω(nc) time on no(1) space RAMs, where c3/k −
c2 − 2c+ k < 0.

The remainder of this section proves Theorem 4.4.4. As our argument follows the style of
other proofs, we keep the proof exposition at a more informal level. The main tool we need is a

46

generalization of our Conditional Speedup Theorem (Theorem 4.2.1) that works for assumptions
of the form “ΣkTIME[n] ⊆ DTS[nc]”.

Theorem 4.4.5 (Conditional Speedup for the Polynomial Hierarchy) If the containment

ΣkTIME[n] ⊆ DTS[nc] holds for some c > k, then for all d satisfying c ≤ d < c
c−k ,

DTS[nd] ⊆ Σk+1TIME[n1+o(1)] ∩ Πk+1TIME[n1+o(1)].

Note the above generalizes the original Conditional Speedup Theorem (Theorem 4.2.1), as it
shows Σ1TIME[n] = NTIME[n] ⊆ DTS[nc] implies

DTS[nc/(c−1)−ε] ⊆ Σ2TIME[n1+o(1)] ∩ Π2TIME[n1+o(1)].

Proof. Similar to the proof of the Conditional Speedup Theorem. We show that if DTS[nd] ⊆
Σk+1TIME[n1+o(1)]∩Πk+1TIME[n1+o(1)] then DTS[n1+dk/c] ⊆ Σk+1TIME[n1+o(1)]∩Πk+1TIME[n1+o(1)]
as well. This process converges when d = 1 + dk/c, or d = c/(c − k).

We start by invoking the Speedup Lemma (Lemma 3.3.2) to show that

DTS[n1+dk/c] ⊆ (∃ n)(∀ log n)DTS[ndk/c, no(1)].

Applying the speedup theorem for k more times, we obtain

DTS[n1+dk/c] ⊆ (∃ n)(∀ log n) (∀ nd/c) · · · (Q nd/c)
︸ ︷︷ ︸

k−1

(¬Q log n)DTS[nd/c]

for some Q ∈ {∃,∀}, where ¬Q is opposite to Q. Since ΣkTIME[n] ⊆ DTS[nc],

(∃ n) (∀ nd/c) · · · (Q nd/c)(¬Q log n)
︸ ︷︷ ︸

k

DTS[nd/c] ⊆ (∃ n)DTS[nd].

Finally, since DTS[nd] ⊆ Σk+1TIME[n1+o(1)] ∩ Πk+1TIME[n1+o(1)],

(∃ n)DTS[nd] ⊆ Σk+1TIME[n1+o(1)].

An analogous argument shows that DTS[n1+dk/c] ⊆ Πk+1TIME[n1+o(1)]. �

Theorem 4.4.6 If ΣkTIME[n] ⊆ DTS[nc], then for all ℓ ≥ 1 and d satisfying c ≤ d < c/(c− k),

DTS[n
d+
∑ℓ

i=1

(
c2

dk

)i

] ⊆ Σk+1TIME[n

(
c2

dk

)ℓ
+o(1)

] ∩ Πk+1TIME[n

(
c2

dk

)ℓ
+o(1)

].

Proof. By induction on ℓ. The case ℓ = 0 is immediate, by the previous theorem. For the inductive

step, suppose DTS[n
d+
∑ℓ

i=1

(
c2

dk

)i

] ⊆ Σk+1TIME[n

(
c2

dk

)ℓ
+o(1)

]. First, the Speedup Lemma implies

DTS[n
d+
∑ℓ+1

i=1

(
c2

dk

)i

] ⊆ (∃ n
(

c2

dk

)ℓ+1

)(∀ log n)DTS[n
d+
∑ℓ

i=1

(
c2

dk

)i

],

47

where the input to the DTS part has length n + 2no(1). By the induction hypothesis, the above is
contained in

(∃ n
(

c2

dk

)ℓ+1

)(∀ log n)Πk+1TIME[n

(
c2

dk

)ℓ
+o(1)

].

Applying ΣkTIME[n] ⊆ DTS[nc] to the Σk part of the Πk+1TIME class, the above lies in

(∃ n
(

c2

dk

)ℓ+1

)(∀ log n)(∀ n
(

c2

dk

)ℓ

)DTS[n
c
(

c2

dk

)ℓ

].

If c < k, we already have a contradiction, because ΣkTIME[nk] ⊆ DTS[nkc] ⊆ ΠkTIME[nc] by the
kth root speedup of DTS in Σk (Corollary 3.3.1 of the Speedup Lemma).

If c ≥ k, the kth root speedup of DTS in Σk can be applied to show that the above class is
contained in

(∃ n
(

c2

dk

)ℓ+1

)(∀ log n)(∀ n
(

c2

dk

)ℓ

)ΠkTIME[n
c
k
·
(

c2

dk

)ℓ
+o(1)

] = (∃ n
(

c2

dk

)ℓ+1

)ΠkTIME[n
c
k
·
(

c2

dk

)ℓ
+o(1)

].

Note (c2

dk)ℓ+1 ≤ c
k · (c2

dk)ℓ, because d ≥ c. Applying the assumption ΣkTIME[n] ⊆ DTS[nc] again
results in the class

(∃ n
(

c2

dk

)ℓ+1

)DTS[n
c2

k
·
(

c2

dk

)ℓ

].

Finally, since d(c2

dk)ℓ+1 = c2

k · (c2

dk)ℓ, the Conditional Speedup Theorem for Σk (Theorem 4.4.5)
applies, and the above class is in

(∃ n
(

c2

dk

)ℓ+1

)Σk+1TIME[n
c2

dk
·
(

c2

dk

)ℓ
+o(1)

] = Σk+1TIME[n

(
c2

dk

)ℓ+1
+o(1)

].

An analogous argument proves the containment for Πk+1TIME[n

(
c2

dk

)ℓ+1
+o(1)

]. �

Set Kℓ = d+
∑ℓ

i=1

(
c2

dk

)i
, for ℓ ≥ 1. We claim (the proof is straightforward) that

(
c2

dk

)ℓ

≤ Kℓ

(

1 − dk

c2
− εℓ

)

,

for a small constant εℓ > 0 satisfying limℓ→∞ εℓ = 0. We deduce the chain:

Σk+1TIME[nKℓ] ⊆ (∃ nKℓ)DTS[ncKℓ]

⊆ (∃ nKℓ)ΣkTIME[n(c/k)Kℓ] ⊆ DTS[n(c2/k)Kℓ] ⊆ Πk+1TIME[n(c2/k)Kℓ(1− dk
c2

−εℓ)].

For sufficiently large Kℓ, a contradiction with the “No Complementary Speedup” Theorem is
reached when c2

k (1 − dk
c2

) < 1. Recalling that d < c/(c − k), the condition simplifies to pk(c) =
c3/k − c2 − 2c+ k < 0.

Notice when k = 1 we obtain precisely the lower bound exponent for Sat. We numerically
determined the lower bound exponent for larger values of k; the results are in Table 4.1. As the
evidence suggests, at least one root of the polynomial pk gradually approaches k+ 1 as k increases
unboundedly; therefore the lower bound exponent for Σk-Sat approaches k + 1.

Proposition 4.4.1 limk→∞ pk(k + 1) = 0. In particular, for all k, pk(k + 1 − 1/k) < 0 and

pk(k + 1) > 0.

48

Problem Time Lower Bound Exponent

Sat n1.801

Σ2-Sat n2.903

Σ3-Sat n3.942

Σ4-Sat n3.962

Σ10-Sat n100.991

Σ100-Sat n100.999902

Table 4.1: Time lower bounds for Σk-Sat on Small Space RAMs.

Proof. Algebraic manipulation gives

pk(k + 1) = 1/k > 0

and

pk(k + 1 − 1/k) = 3/k3 − 1 − 1/k − 1/k2 − 1/k4 < −1/k4 < 0,

for all k ≥ 1. �

4.4.3 On Further Improvements to Sat Lower Bounds

How far can the alternating-trading scheme be pushed? Can we achieve a quadratic time lower
bound for Sat on random access machines that use no(1) space? As demonstrated above, there
are many counterintuitive ways to “speed up” a deterministic time computation when one assumes
the existence of a fast Sat algorithm. In the next chapter we address the apparent abundance
of possible arguments, and show how one can systematically search for new lower bounds via
computer. For now, it is interesting to note that one component of the lower bound arguments is
actually optimal already, at least in some cases. Recall the speedup simulation of Lemma 3.3.2,
which states that for all time bounds t(n) ≥ n, DTS[t(n)] ⊆ ΣkTIME[t(n)1/k]. The following shows
that this theorem is optimal, in the sense that deterministic linear time cannot be sped up any
faster with k alternations.

Theorem 4.4.7 For all ε > 0,

DTS[n] * ΣkTIME[n1/k−ε].

Recall the Conditional Speedup Theorem says that if NTIME[n] ⊆ DTS[nc] for c < 2, then for
all ε > 0 we have DTS[nc/(c−1)−ε] ⊆ Σ2TIME[n1+o(1)] ∩ Π2TIME[n1+o(1)]. However, if c < 2 then
there is an ε > 0 such that c/(c − 1) − ε > 2. Thus, if Sat had a subquadratic algorithm, then
we could speed up superquadratic DTS algorithms to Σ2 linear time. We consider this to be an
unlikely possibility, given Theorem 4.4.7. However, it is beyond our capabilities at the present time
to prove that such a speedup is not possible.

49

Proof of Theorem 4.4.7. Consider the decision problem Parity, of computing whether the
parity of n bits is odd. Clearly Parity is in DTS[n]. We show using a standard construction that if

Parity is in ΣkTIME[n1/k−ε], then the problem can be solved with depth k+1 circuits of 2O(n1/k−ε)

size, contradicting H̊astad’s [Has86] celebrated circuit lower bound for Parity.

Consider a ΣkTIME[n1/k−ε] machine M . Without loss of generality, suppose M guesses n1/k−ε

bits in each alternation. Let M ′ be the “deterministic part” of M , i.e. a deterministic random
access machine that runs in O(n1/k−ε) time on k auxiliary n1/k−ε-bit strings in addition to the
input.

For each integer n, if k is odd (repectively, even), let Dn be a 2O(kn1/k−ε)-size DNF (respectively,
CNF) formula that is equivalent to M ′ on all n bit inputs with k auxiliary inputs of n1/k−ε. Make
a tree-like circuit Cn of depth k, with an OR at the output gate (and alternating AND/ORs at

each depth), and precisely 2n1/k−ε
fan-in at every gate that is not a leaf. (Note that if k is odd, the

bottom level of gates are ORs; otherwise, the bottom level are ANDs.) Label each of the 2n1/k−ε

wires fanning into a gate with a unique n1/k−ε bit string. Label each leaf of the tree with the k
labels on the wires that are traversed on the path from the output gate to that leaf. Now replace
each leaf with a copy of Dn, where the k auxiliary inputs to a copy of Dn are the label of that leaf.
Finally, feed the n bit input for the circuit Cn, to the input of each copy of Dn.

We claim that the circuit Cn simulates M exactly on all n-bit inputs. Moreover, the depth of
Cn is k + 1, and its size is 2O(kn1/k−ε). Thus, Parity has depth-(k + 1) circuits of 2O(kn1/k−ε) size,
a contradiction. �

The above proof also shows that if one can show an exponential lower bound for depth-three
circuits that solve problems in NTIME[n], then our desired quadratic time lower bound would be
immediate.

Corollary 4.4.3 Suppose for every ε > 0 there is a problem Lε ∈ NTIME[n] that cannot be recog-

nized by depth-three circuits of size 2O(n1−ε)). Then NTIME[n] * DTS[n2−ε] for all ε > 0.

Proof. Prove the contrapositive: if NTIME[n] ⊆ DTS[n2−ε], then using the proof of Theorem 4.4.7
one can construct uniform depth-three circuits of size 2O(n1−ε) for every problem in NTIME[n]. �

Unfortunately, it is only known how to prove exponential lower bounds for depth-three circuits
in restricted cases, e.g. when the fan-in of gates at the lowest level is bounded by a small function
of n such as o(log log n) or o(log n) (cf. [IPZ01, CIP06]). In order for these lower bounds to be
useful for us, this fan-in would need to be at least n1−ε.

In the next chapter, we take a unifying approach to all lower bound proofs that follow the
alternation-trading scheme, and formalize the task of proving better lower bounds. This formaliza-
tion leads us into the realm of automated theorem proving, in which we find hard evidence that the
Ω(n2 cos(π/7)) time lower bound is actually the best possible that can be achieved with the current
tools.

50

4.5 Chapter Summary

We proved a series of increasing time lower bounds for solving many natural NP-complete problems
on space-bounded random access machines, starting with an Ω(n1.6616) lower bound and culminating
in an Ω(n2 cos(π/7)−ε) lower bound. The method extends naturally to lower bounds for the same
problems on non-uniform RAMs with program size no(1). Larger lower bounds are possible for
complete problems in higher levels of the polynomial hierarchy, such as the Σk-Sat problem for
k ≥ 2.

51

52

Chapter 5

Automated Search For Time Lower

Bounds

Recall that a large class of time lower bounds follow an alternation-trading scheme:

1. Assume e.g. that Sat can be solved in n1.8 time and no(1) space.

2. Define a notion of speedup, or “trading time for alternations”, in which a deterministic time
t class is shown to be contained in an alternating time o(t) class, and the function in the o(·)
depends on the model and the number of alternations used.

3. Define a notion of slowdown, or “trading alternations for time”, in which some alternations
from an alternating time t class can be “removed”, at a low time cost. This item uses the
assumption that one is trying to contradict, e.g. that Sat is in n1.8 time and no(1) space.

4. Use some combination of (1) and (2) to show that C[t] is contained in C[t1−ε], for some ε > 0
and some complexity class C[t] parameterized by a time bound t.

While the overall strategy behind these lower bounds is certainly principled, the proofs them-
selves have an “ad-hoc” feel to them. Speedups and slowdowns are applied in carefully contrived
ways, and one gets a sense that the space of all possible proofs would be rather difficult (if not
impossible) to systematically explore. In this chapter, we show how to turn the informal alternation-
trading scheme into a sound formal proof system, so that the search for new lower bounds becomes
a feasible problem that computers themselves can help us attack. Informally speaking, the “hard
work” in the proofs can be replaced by a computer search that solves a series of linear programming
problems, each solvable in polynomial time [Kha79, Kar84]. Our formal proof system captures every
previous lower bound proof of this kind, including our own.

The key to our approach is that we separate the discrete choices in an alternation-trading proof
from the continuous, real-valued choices. Discrete choices consist of choosing whether to apply a
speedup or slowdown at a given step, and which complexity class C to try to use in the contradiction.
We show how to restrict the number of possible discrete choices that need to be made by writing

53

proofs in a certain normal form. For example, one consequence of the normal form is that it
suffices to consider just C = DTS[t]. The real-valued choices come from the speedup step: one must
guess how to split up the runtime of a DTS class using quantifiers, and there are infinitely many
choices one could make for this split. However, once all the discrete choices are made, it turns out
that with some care we can formulate the remaining real-valued problem as an instance of linear
programming, which can then be efficiently solved.

Unfortunately, we cannot efficiently search the space of all possible proofs. The number of
discrete choices increases exponentially with the number of lines in the proof, although the expo-
nential increase is not horrendous (it is O(2n/n3/2) for n-line proofs, with small hidden constants).
With our normal form simplifications and linear programming reduction, we can search a rather
substantial portion of the proof space. For example, it is a feasible task to search over all proofs of
up to 24 lines for the best possible lower bounds. From those results, we can restrict the discrete
search space much further and work over a space of much longer proofs using a heuristic search.

Having done so, we report a rather surprising conclusion: that the Ω(n2 cos(π/7)) lower bound
from the previous chapter appears to be optimal among alternation-trading proofs. We have found
no proof that is better than n1.8019, and nothing to suggest that there might be a better overall
strategy than that taken by the n1.8019 bound. As the number of lines increases, a clear pattern
emerges: any short proof that mimics our Ω(n2 cos(π/7)) proof achieves a very good lower bound
with respect to others of similar length, and as the proof length increases, more and more of these
1.801-like proofs achieve roughly the same bound, numerically. That is, 1.801-like proofs appear to
dominate the proofs that are not 1.801-like, but no 1.801-like proof completely dominates over the
others that are 1.801-like; we witness what seems to be a “convergence” of all the best proofs to a
single uniform type: the Ω(n2 cos(π/7)) proof.

5.1 Formalization of time-space lower bounds

Let us first formalize the style of proofs that have been under consideration. Every lower bound
proof applied a sequence of “speedup theorems” and “slowdowns” in some order. (There is also
the “extra” step of combining like quantifiers, e.g. (∃ n)(∃ n)DTS[n] ⊆ (∃ n)DTS[n], but that can
be integrated into the speedup step.) To do this properly, we need to introduce new notation. We
write an alternating complexity class in the form

(Q1 n
a1)b2(Q2 n

a2) · · ·bk (Qk n
ak)bk+1DTS[nak+1]

to mean that the input to the ith quantifier block is of length O(nbi), and the input to the DTS
computation has length O(nbk+1). (Note the first quantifier always has input of length n.) We also
assume without loss of generality that adjacent quantifiers are of opposite types, e.g. if Q1 is ∃ then
Q2 is ∀. In our formalization it shall be crucial to keep track of the input lengths to quantifiers,
since the golden ratio and 2 cos(π/7) time lower bounds rely on the nice properties of input sizes
granted by the Speedup Lemma (Lemma 3.3.2).

Definition 5.1.1 Let c > 1. An alternation-trading proof for c is a list of complexity classes of

the form

(Q1 n
a1)b2(Q2 n

a2) · · ·bk (Qk n
ak)bk+1DTS[nak+1],

54

where k is a non-negative integer, and ai > 0, bi ≥ 1 for all i. (When k = 0, the class is

deterministic.) The items of the list are called lines of the proof. Each line is obtained from the

previous line by applying either a speedup rule or a slowdown rule. More precisely, if the ith line

is

(Q1 n
a1)b2(Q2 n

a2) · · ·bk (Qk n
ak)bk+1DTS[nak+1],

then the (i+ 1)st line has one of three possible forms:

1. (Speedup Rule)

(Qk n
x)max{x,1}(Qk+1 n)1DTS[nak+1−x],

for some x ∈ (0, ak+1), provided that k = 0 (i.e. the ith line is a deterministic class).

2. (Speedup Rule)

(Q1 n
a1)b2(Q2 n

a2) · · ·bk (Qk n
max{ak ,x})max{x,bk+1}(Qk+1 n)bk+1DTS[nak+1−x],

for some x ∈ (0, ak+1), provided that k > 0.

3. (Slowdown Rule)

(Q1 n
a1)b2(Q2 n

a2) · · ·bk−1 (Qk−1 n
ak−1)bkDTS[nc·max{ak+1,ak,bk}].

We say that an alternation-trading proof shows NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2 if its first

line is A1 and its last line is A2.

The first two rules are just a syntactic formulation of the Speedup Lemma, where the DTS part
of the sped-up computation only reads two guessed configurations– so the input it reads is different
from the input read by the innermost quantifier. In particular, the second rule follows since

(Q1 n
a1)b2(Q2 n

a2) · · ·bk (Qk n
ak)bk+1DTS[nak+1]

⊆ (Q1 n
a1)b2(Q2 n

a2) · · ·bk (Qk n
ak)bk+1(Qk n

x)max{bk+1,x}(Qk+1 n)bk+1DTS[nak+1]

⊆ (Q1 n
a1)b2(Q2 n

a2) · · ·bk (Qk n
max{ak ,x})max{bk+1,x}(Qk+1 n)bk+1DTS[nak+1].

Note that for k = 0, the first Speedup Rule adds two quantifiers to the line, and for k > 0, the
second Speedup Rule adds one new quantifier to the line. It is vital to observe that each application
of a Speedup Rule introduces a new real-valued parameter x that must be determined.

The third rule is a syntactic formulation of the Slowdown Lemma, where we assume that
NTIME[n] ⊆ DTS[nc], and use it to remove a quantifier.

The justification for the definition of alternation-trading proof comes directly from the proofs
of the Speedup Lemma and the Slowdown Lemma. Due to these, alternation-trading proofs are
sound, in that an alternation-trading proof of NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2 implies the truth
of that implication.

55

5.1.1 A normal form for alternation-trading proofs

All lower bound proofs following the alternation-trading scheme effectively use the assumption
NTIME[n] ⊆ DTS[nc] to derive a contradiction to a time hierarchy theorem, namely the “No
Complementary Speedup” Theorem that ΣkTIME[t(n)] * ΠkTIME[t(n)1−ε] for some k, t(n) ≥ n,
and ε > 0. It turns out to be sufficient to derive ΣkTIME[t(n)] ⊆ ΠkTIME[t(n)] and obtain
an absurdity from that. To consider all possible ways to derive a time hierarchy contradiction
(at least, between alternating, nondeterministic, and deterministic classes), we consider the most
general setting of deriving a contradiction from complementary alternating classes.

Definition 5.1.2 We say that A1 and A2 are complementary alternating classes if A1 is the com-

plement of A2.

Every known time lower bound following the alternation-trading scheme proves that NTIME[n] ⊆
DTS[nc] implies A1 ⊆ A2, for some complementary alternating classes A1 and A2.

We now introduce a restriction to the space of alternation-trading proofs we consider, calling
it a “normal form.” Our intent is to show that any lower bound provable with complementary
alternating classes can also be proved with a normal form proof, so it suffices for us to explore
normal form proofs.

Definition 5.1.3 Let c ≥ 1. An alternation-trading proof for c is in normal form if

• The first and last lines are DTS[na] and DTS[na′
] respectively, for some a ≥ a′.

• No other lines are DTS classes.

First we show that a normal form proof for c implies that NTIME[n] * DTS[nc].

Lemma 5.1.1 Let c ≥ 1. If there is an alternation-trading proof for c in normal form having at

least two lines, then NTIME[n] * DTS[nc].

Proof. Let P be an alternation-trading proof for c in normal form. We consider two cases.

• Suppose a > a′. In this case, NTIME[n] ⊆ DTS[nc] implies DTS[na] ⊆ DTS[na−δ] for some
δ > 0. By translation, DTS[na] ⊆ DTS[na−δ] implies

DTS[na2/(a−δ] ⊆ DTS[na] ⊆ DTS[na−δ],

and DTS[na·(a/(a−δ))i
] ⊆ DTS[na−δ] for all i ≥ 0. Since δ > 0, this implies DTS[nL] ⊆

DTS[na−δ] for all L ≥ a− δ. Therefore, if NTIME[n] ⊆ DTS[nc] then for all L ≥ a,

NTIME[nL] ⊆ DTS[nLc] ⊆ DTS[na−δ] ⊆ coNTIME[na−δ],

a contradiction to the “No Complementary Speedup” theorem.

56

• Suppose a = a′. Let A be a line in P with a positive number of alternations. (Such a line
must exist since P has at least two lines.) The proof P shows that NTIME[n] ⊆ DTS[nc]
implies DTS[na] ⊆ A ⊆ DTS[na′

], so A = DTS[na].

Since DTS[na] is closed under complement,

A = A′, (5.1)

where A′ is the complement of A. Without loss of generality, assume A = (∃nδ)B and
A′ = (∀nδ)B′ for some δ > 0 and complementary classes B and B′. It is easy to see that

A′ = (∀nδ)A′ and A = (∃nδ)A. (5.2)

Now consider the class DTS[nδ⌈k
δ
⌉] ⊇ DTS[nk], for arbitrary k ≥ 1. By the Speedup Lemma

(Lemma 3.3.2) and the fact that DTS[nε] ⊆ A′ for some ε > 0,

DTS[nk] ⊆ DTS[nδ⌈k
δ
⌉] ⊆ (∃ nδ)(∀ nδ) · · · (∃ nδ)(∀ nδ)

︸ ︷︷ ︸

⌈k/δ⌉

A′.

Applying equations (5.1) and (5.2), we have

(∃ nδ)(∀ nδ) · · · (∃ nδ)(∀ nδ)A′

= (∃ nδ)(∀ nδ) · · · (∃ nδ)A′

= (∃ nδ)(∀ nδ) · · · (∃ nδ)A

= (∃ nδ)(∀ nδ) · · ·A
= · · · = (∃ nδ)(∀ nδ)A′ = (∃ nδ)A′ = (∃ nδ)A = A.

Therefore DTS[nk] ⊆ A, for every k ≥ 1. Hence NP ⊆ DTS[nO(1), no(1)] ⊆ A. But by applying
a slowdown step for a finite number of times to A, there is an alternation-trading proof that
A ⊆ DTS[nK] for a constant K. It follows that NP ⊆ A ⊆ DTS[nK] ⊆ coNTIME[nK],
contradicting the “No Complementary Speedup Theorem.” So NTIME[n] * DTS[nc] in this
case as well.

�

We now prove that any alternation-trading proof showing NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2

for complementary alternating classes A1 and A2 can be converted into an analogous normal form
proof. As mentioned earlier, every time-space lower bound known in this area falls in this category.
Therefore, to find good lower bounds that build on the existing tools, it suffices for us to search for
good normal form proofs.

Theorem 5.1.1 Let A1 and A2 be complementary. If there is an alternation-trading proof P for c

that shows (NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2), then there is a normal form proof for c, of length

at most that of P .

57

Proof. Consider an alternation-trading proof P for c, written as

P = A1, C1, . . . , Ck, A2.

Define the dual proof P ’ by
P ′ = A2,¬C1, . . . ,¬Ck, A1,

where the notation ¬C denotes the unique complementary alternating class for C, i.e. every ‘∀’ in
C is replaced with ‘∃’, and vice-versa. Note that P ′ is an alternation-trading proof if and only if P
is one.

Since the quantifiers of the first and last line of P are different, there must be a line Ci = DTS[na]
for some a.

• Suppose there is only one deterministic class in P ; call it Ci. Then

P ′′ = Ci, Ci+1, . . . Ck, A2,¬C1, . . . ,¬Ci

is also an alternation-trading proof, obtained by piecing together the appropriate lines from
P and P ′. However, Ci = ¬Ci, since DTS[na] is closed under complement. Hence P ′′ is in
normal form: its first and last lines are DTS classes, and no intermediate class is a DTS class.

• Suppose there are k ≥ 2 different DTS classes in P . Write P as:

P = A1, . . . ,DTS[na1], . . . ,DTS[na2], . . . , . . . ,DTS[nak], . . . , A2.

There are two cases:

- If there is an i ∈ [k] satisfying ai ≥ ai+1, we are done: simply take P ′′ to be the sequence
of lines from DTS[nai] and DTS[nai+1] to be the normal form proof.

- If ai < ai+1 for every i, then set P ′′ = DTS[nak], . . . , A2, . . . ,DTS[na1], where the classes
in the first “. . .” in P ′′ are taken directly from P , and the classes in the second “. . .” in
P ′′ are gotten by taking the lines A2, . . . ,DTS[na1] in P ′. P ′′ is in normal form since
ak > a1.

�

N.B. From here on, we assume that all alternation-trading proofs under discussion
are in normal form.

5.1.2 Proof annotations

Different lower bound proofs result in quite different sequences of speedups and slowdowns. To
illustrate this, we look at the notion of a proof annotation, which makes the differences between
the lower bounds cleanly visible.

Definition 5.1.4 A proof annotation for an alternation-trading proof of ℓ lines is the unique (ℓ−1)-

bit vector A that has A[i] = 1 (respectively, A[i] = 0) if the ith line is obtained by a speedup

(respectively, a slowdown), for all i = 1, . . . , ℓ− 1.

58

By definition, an (ℓ−1)-bit proof annotation corresponds to a proof strategy for an ℓ-line proof.
For a normal form alternation-trading proof with ℓ lines, its proof annotation A must have A[1] = 1,
and A[ℓ − 1] = 0. In fact, A[ℓ − 2] = 0 as well – otherwise the last line would have at least one
quantifier. Thus every proof annotation begins with a 1 and ends with two 0’s.

How many possible proof annotations are there? Thanks to the use of normal form, the number
of possible annotations is closely related to the number of well-balanced strings over parentheses.
For a string x = x1 · · · xℓ−1 with xi ∈ Σ, we define x[i..j] := xixi+1 · · · xj for i ≤ j.

Definition 5.1.5 Let n > 0 be an integer and x ∈ {(,)}n. x is well-balanced if

• for all i = 1, . . . , n− 1, the number of (’s in x[1..i] is greater than the number of)’s, and

• the number of (’s in x equals the number of)’s in x.

The well-balanced strings are also called the Dyck words. Intuitively, the definition of well-
balanced just means that each left parenthesis “matches” with a right parenthesis. Recall that the
kth Catalan number is C(k) = 1

k+1

(
2k
k

)
. A well-known fact in combinatorics states that the number

of well-balanced strings of a given length can be counted with the Catalan numbers.

Fact 1 The number of well-balanced strings of length 2k is C(k).

Proposition 5.1.1 Let ℓ > 3 be even. The number of possible annotations for proofs of ℓ lines is

C(ℓ/2 − 1).

Proof. Consider an (ℓ− 1)-bit vector A = [1, . . . , 0]. The first 1 introduces two quantifiers in line
1 of the corresponding proof. All subsequent 1’s introduce only one quantifier. All 0’s remove one
quantifier. So in order for A to count as a proof annotation, it must be that the number of 1’s in
any prefix of A is greater than (or equal to) the number of 0’s, up to the last line, in which the
number of 0’s becomes the number of 1’s plus one. (Recall that in normal form, only the first and
last lines of a proof are DTS classes.)

Given these observations, it is not hard to see that every proof annotation can be expressed
as a well-balanced string of the form (x)y, where x and y are well-balanced strings such that
|x| + |y| = ℓ − 4, corresponding to the bit vector [1, x′, 0, y′, 0], where x′ and y′ are the strings
gotten by replacing ‘(’ with ‘1’ and ‘)’ with ‘0’ in x and y, respectively. But the number of such
well-balanced strings is C(ℓ/2 − 1), for even ℓ > 3: every well-balanced string of length ℓ − 2 can
be written in the form (x)y, where |x| + |y| = ℓ− 4, and by the fact, the number of such strings is
precisely C(ℓ/2 − 1). �

Corollary 5.1.1 Let ℓ > 3 be even. The number of possible annotations for proofs of ℓ lines is

Θ(2ℓ/ℓ3/2).

59

Proof. By the previous proposition, the number is

C((ℓ/2) − 1) =
2

ℓ

(
ℓ− 2

ℓ/2 − 1

)

= Θ

(
1

ℓ
· 2ℓ

ℓ1/2

)

,

where the last equality follows from a standard estimate. �

That is, the number of n-bit proof annotations is only a poly(n)-fraction of the total number
of n-bit strings.

5.1.3 Proof annotations for the lower bounds we have seen

By unraveling their arguments, it is straightforward (and enlightening) to discern what proof anno-
tations are used by the lower bounds from the previous two chapters. Note that a proof annotation
in itself does not determine the proof entirely– each application of a speedup rule introduces a
new real-valued parameter x that must be set to some value. The problem of determining optimal
values for these parameters shall be tackled in the next section.

The n
√

2 lower bound (Chapter 3, Section 3.3.1) This proof is gotten by using the only
possible three-bit proof annotation: [1, 0, 0].

The other lower bounds are all inductive arguments, corresponding to an infinite sequence of
proof annotations of increasing length.

The nφ lower bound of Fortnow-Van Melkebeek (Chapter 3, Section 3.3.2). Their
argument starts from DTS, performs a sequence of speedups, then a sequence of slowdowns to
reach DTS again. So the corresponding proof annotations are:

[1, 0, 0], [1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0], [1, . . . , 1, 0, . . . , 0, 0], . . .

That is, many speedups are applied, followed by many slowdowns.

The nφ lower bound via the Conditional Speedup Theorem (Chapter 4, Section 4.2).
An alternative argument for the same exponent invokes our conditional speedup theorem to put
DTS[nc/(c−1)−ε] in Σ2TIME[n1+o(1)], then perform two slowdowns on the Σ2 class. This argument
corresponds to the sequence:

[1, 0, 0], [1, 0, 1, 0, 0], [1, 0, 1, 0, 1, 0, 0], [1, 0, 1, 0, . . . , 1, 0, 0], . . .

That is, the proof performs speedups and slowdowns in alternation.

Our n1.6616 lower bound (Chapter 4, Section 4.1). Recall this lower bound proves that
Σ2TIME[n] ⊆ Π2TIME[nc2/2], then Σ3TIME[n] ⊆ Π3TIME[nc4/6], etc. That is, the first annotation
is A1 = [0, 0, 1], the second annotation is A2 = [0, 0, 1, 0, 0, 1, 1], and the kth annotation is given by

Ak = Ak−1 • · · · • A1 • [0, 0, 1, . . . , 1
︸ ︷︷ ︸

k

],

60

where ‘•’ represents concatenation. Putting these annotations in normal form (Theorem 5.1.1), the
sequence becomes

[1, 0, 0], [1, 1, 0, 0, 1
︸ ︷︷ ︸

A1

, 0, 0], [1, 1, 1, 0, 0, 1, 0, 0, 1, 1
︸ ︷︷ ︸

A2

, 0, 0, 1
︸ ︷︷ ︸

A1

, 0, 0], . . . , [1, . . . , 1
︸ ︷︷ ︸

k

]•Ak−1•· · ·•A1•[0, 0], . . .

Our n
√

3 lower bound (Chapter 4, Section 4.2). The annotation for the n
√

3 lower bound
is obtained by combining the Conditional Speedup annotation and the n1.6616 annotation. Now
A1 = [0, 0, 1, 0, 1, . . . , 0, 1], but Ak is defined just as before. The resulting sequence (in normal
form) is

[1, 0, . . . , 1, 0, 0], [1, 1, 0, 0, 1, . . . , 0, 1
︸ ︷︷ ︸

A1

, 0, 0], [1, 1, 1, 0, 0, 1, . . . , 0, 1, 0, 0, 1, 1
︸ ︷︷ ︸

A2

, 0, 0, 1, . . . , 0, 1
︸ ︷︷ ︸

A1

, 0, 0], . . .

Our n1.78 lower bound (Chapter 4, Section 4.3). The first annotation here is the same as

the n
√

3 lower bound, but the annotation that simulates DTS in Π3 changes, from merely [1, 1] to
the annotations

S1 = [1, 1, 0, 1, 0, . . . , 1, 0, 1
︸ ︷︷ ︸

cond. speedup

, 0, 0, 1, 1], and Sℓ = [1, 1, 0, 1, 0, . . . , 1, 0, 1
︸ ︷︷ ︸

cond. speedup

, 0, 0] • Sℓ−1.

Now Ak changes to become

Ak = Ak−1 • · · · • A1 • [0, 0, 1, . . . , 1
︸ ︷︷ ︸

k−2

] • Sℓ,

for some sufficiently large ℓ. Substituting Sℓ into the normal form sequence for n
√

3, the sequence
is

[1, 0, . . . , 1, 0, 0],

Sℓ • [0, 0, 1, . . . , 0, 1
︸ ︷︷ ︸

A1

, 0, 0],

[1] • Sℓ • (A1 • [0, 0] • Sℓ)
︸ ︷︷ ︸

A2

•A1 • [0, 0],

[1, 1] • Sℓ •A3 • A2 •A1 • [0, 0], . . .

Our n2 cos(π/7) lower bound (Chapter 4, Section 4.4). Recall that this lower bound combines
the nφ argument of Fortnow et al. with the nφ argument via our Conditional Speedup Theorem.
The resulting annotation reflects this directly. Let A1.618 = [1, 0, 1, 0, . . . , 1, 0, 0], where the . . .
contain some finite number of repetitions of 1, 0. This is precisely the sequence from the Conditional
Speedup Theorem lower bound. The sequence of proof annotations for our n2 cos(π/7) bound is given

61

by:

[1, 0, 1, 0, . . . , 1, 0, 0],

[1, 1, 0, 1, 0, . . . , 1, 0, 0
︸ ︷︷ ︸

A1.618

, 1, 0, 1, 0, . . . , 1, 0, 0
︸ ︷︷ ︸

A1.618

],

[1, 1, 1, 0, 1, 0, . . . , 1, 0, 0
︸ ︷︷ ︸

A1.618

, 1, 0, 1, 0, . . . , 1, 0, 0
︸ ︷︷ ︸

A1.618

, 1, 0, 1, 0, . . . , 1, 0, 0
︸ ︷︷ ︸

A1.618

], . . .

That is, the proof performs many speedups, then a sequence of slowdown-speedup alternations,
then two consecutive slowdowns, repeating this until the original sequence of speedups has been
cancelled out.

5.2 Translating lower bounding into linear programming

We have defined alternation-trading proofs, given a nice normal form for them, and have shown
how the strategies of prior lower bounds can be expressed succinctly in terms of proof annotations.
A potential plan for finding new lower bounds is to try searching over all proof annotations to see
which is best. However, in order for this plan to be sensible, we need a way to efficiently determine
the best proof that can be obtained with a given annotation. We now describe how to take any
proof annotation A and constant c > 1, and formulate an instance of linear programming that has
a feasible solution if and only if there is an alternation-trading proof of NTIME[n] * DTS[nc] that
follows the steps of annotation A.

Let A be a proof annotation of ℓ bits and let c > 1. Let m be the maximum number of
quantifiers in any line of A; note m can be computed in linear time by reading the bits of A. The
corresponding linear programming instance has variables ai,j , bi,j , and xi, for all i = 0, . . . , ℓ − 1
and j = 1, . . . ,m.1 Intuitively,

ai,j is the exponent for the runtime of the jth quantifier block in the class on the ith line,

and

bi,j is the exponent for the input to the jth quantifier block of the class on the ith line.

The variable xi is only defined if the ith line was obtained by a speedup step, and it represents the
(real-valued) choice of an exponent in a quantifier block. For example:

• If the kth line of a proof is DTS[na], the corresponding constraints for that line are

ak,0 = a, bk,1 = 1, (∀k > 0) ak,i = bk,i = 0.

• If the kth line of a proof is (∃ nb)bDTS[na], then

ak,0 = a, bk,1 = b, ak,1 = b, bk,1 = 1, (∀k > 1) ak,i = bk,i = 0.

We now describe the constraints of the linear programming instance.

1We start the numbering of lines at 0, so that at the ith line it follows that i rules have been applied.

62

Initial constraints. For the 0th and (ℓ− 1)th lines, we have the constraints

a0,1 ≥ 1, b0,1 = 1, (∀k > 1) a0,k = b0,k = 0, and

aℓ,1 ≥ 1, bℓ,1 = 1, (∀k > 1) aℓ,k = bℓ,k = 0,

representing the classes DTS[na0,1] and DTS[naℓ−1,0], respectively. The constraint a0,1 ≥ aℓ−1,1 is
also included, to ensure that the proof is in normal form. The first line of a proof is always an
application of the first Speedup Rule, being

(Q1n
x)max{x,1}(Q2 n)1DTS[na−x].

The corresponding LP constraints for the first line are:

a1,1 ≥ a0,1 − x1, b1,1 = 1,
a1,2 = 1, b1,2 ≥ x1, b1,2 ≥ 1,

b1,3 = 1, a1,3 = x3

(∀ k : 4 ≤ k ≤ m) a1,k = b1,k = 0.

Speedup Rule constraints. For the ith line where i > 1 and A[i] = 1, the constraints are

ai,1 ≥ 1, ai,1 ≥ ai−1,1 − xi, bi,1 = bi−1,1

ai,2 = 1, bi,2 ≥ xi, bi,2 ≥ bi−1,1,
ai,3 ≥ ai−1,2, ai,3 ≥ xi, bi,3 ≥ bi−1,2

(∀ k : 4 ≤ k ≤ m) ai,k = ai−1,k−1, b1,k = bi−1,k−1.

These constraints express that
· · · b2(Q2 n

a2)b1DTS[na1]

in the ith line is replaced with

· · · b2(Q2 n
max{a2,x})max{x,b2}(Q1 n)b1DTS[nmax{a1−x,1}]

in the (i+ 1)st line, where Q1 is opposite to Q2.

Slowdown Rule constraints. For the ith line where A[i] = 0, the constraints are

ai,1 ≥ c · ai−1,1, ai,1 ≥ c · bi−1,2, ai,1 ≥ c · ai−1,2, bi,1 = bi−1,2

(∀ k : 2 ≤ k ≤ m− 1) ai,k = ai−1,k+1, bi,k = bi−1,k+1

ai,m = bi,m = 0.

These express the replacement of

· · · b2(Q1n
a2)b1DTS[na1]

in the ith line with
· · · b2DTS[nc·max{a1,a2,b2}]

in the (i+ 1)st line.

This concludes the description of the linear program.

63

5.3 Experimental Results

Armed with the above formulation, we wrote proof search routines in Maple 10, exploiting the fast
Optimization package of Maple. Thanks to built-in procedures, our code is quite short – under a
few hundred lines. For large proof annotations (exceeding 100 lines), we used the freeware lp solve

package to solve the corresponding linear program.2 Our routines include the following:

• list2LP: Takes a proof annotation as input and outputs a set of constraints corresponding to
the relevant LP instance. This routine performs the translation given in the previous section.

• proofproduce: Takes a solution to a LP instance (given as a set of assignments to variables)
and prints a line-by-line human-readable proof.

• binarysearch: Takes a proof annotation and range (c1, c2) as input, and prints a human-
readable proof as well as the largest c ∈ (c1, c2) (within nine digits of precision) such that an
nc lower bound could be proved for the given annotation.

• randomadmiss: Takes an integer k and outputs a random k-bit proof annotation, drawn
uniformly at random over all such annotations. (Random bits are obtained using the Blum-
Blum-Shub generator [BBS86].) To perform the sampling, we adapted a simple method for
producing random well-balanced strings, given by Arnold and Sleep [AS80].

• writeLP: Takes an LP instance and filename and writes the LP to the *.lp file format, used
by lp solve.

After writing the routines, our first objective was to verify the lower bounds that we knew to
hold, such as the n1.8019 result. The goal here was to ensure that our choice of parameters in the
1.8019 proof were tight. We tested a 424-line LP corresponding to an annotation following the
1.8019 bound, and found that it was feasible for c = 1.8017 but infeasible for 1.8018; moreover, its
choice of parameters mimicked ours. In contrast, we found that the choices of parameters in our
n1.6616, n1.732, and n1.784 lower bound proofs were not optimal for those proof annotations; however,
the optimal choices did not yield an improvement over n1.8019.

Our second objective was to search as much of the space of proof annotations as we could,
looking for interesting patterns. For all even-numbered k from 2 to 26, we conducted an exhaustive
search over all valid proof annotations with k lines. The best proof annotations for each k are
given in the below table. For k > 26 we have not exhaustively searched the space of all proofs,
but we have searched by random uniform sampling (> 40, 000 samples) over all proof annotations
– these rows in the following table are marked with an asterisk (∗). For those rows with multiple
annotations, we checked the annotations to two more decimal places to further verify that the
obtained lower bounds are the same.

2The lp solve package is an open source simplex-based linear programming solver. It is maintained by a commu-

nity on Yahoo Groups: http://groups.yahoo.com/group/lp solve.

64

#Lines Best Proof Annotation(s) L.B. ∆

4 [1, 0, 0] 1.4142 0

6 [1, 0, 1, 0, 0] 1.5213 0.1071

[1, 1, 0, 0, 0]

8 [1, 1, 0, 0, 1, 0, 0] 1.6004 0.0791

10 [1, 1, 0, 0, 1, 0, 1, 0, 0] 1.633315 0.032915

[1, 1, 0, 1, 0, 0, 1, 0, 0]

[1, 1, 1, 0, 0, 0, 1, 0, 0]

12 [1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0] 1.6635 0.0302

14 [1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0] 1.6871 0.0236

16 [1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0] 1.699676 0.012576

[1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0]

[1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0]

18 [1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0] 1.7121 0.0125

20 [1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0] 1.7232 0.0111

22 [1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.7322 0.0090

24 [1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.737851 0.005651

[1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0]

[1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0]

26 [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.7437 0.005849

28* [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.7491 0.0054

30* [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.7537 0.0046

32* [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0] 1.7577 0.0040

34* [1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0] 1.760632 0.002932

[1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]

[1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]

The ∆ of a row is the difference between the lower bound exponent of that row and the exponent
of the previous row.

Before we analyze the above table, let us first note that the proofs produced by the above
annotations bear strong similarities to those in our 1.801 lower bound. To give a small example,
the best 14-line proof (establishing an Ω(n1.6871) time lower bound) is output as:

65

0, "DTS[n^5.275587925]"

1, "(E n^1.853485593)(A n^1.)DTS[n^3.422102331]"

2, "(E n^1.853485593)(A n^1.422102331)(E n^1.)DTS[n^2.000000001]"

3, "(E n^1.853485593)(A n^1.422102331)(E n^1.000000001)(A n^1.000000000)DTS[n^1.]"

4, "(E n^1.853485593)(A n^1.422102331)(E n^1.000000001)DTS[n^1.687100000]"

5, "(E n^1.853485593)(A n^1.422102331)DTS[n^2.846306408]"

6, "(E n^1.853485593)(A n^1.423153204)(E n^1.000000000)DTS[n^1.423153204]"

7, "(E n^1.853485593)(A n^1.423153204)DTS[n^2.401001771]"

8, "(E n^1.853485593)DTS[n^4.050730087]"

9, "(E n^1.853485593)(A n^1.000000000)DTS[n^2.197244494]"

10, "(E n^1.853485593)DTS[n^3.706971186]"

11, "(E n^1.853485593)(A n^1.000000000)DTS[n^1.853485593]"

12, "(E n^1.853485593)DTS[n^3.127015544]"

13, "DTS[n^5.275587925]"

(Note that the LP actually returns numbers to 18 decimal places– the proof-printing routine
truncates them to make the presentation legible.) The above 14-linear applies three speedups in
a row, then slowly removes the quantifiers by performing a restricted version of our conditional
speedup theorem (alternating speedups and slowdowns).

Turning back to the results of the table, we see a strong correlation between later rows of the
table and earlier ones. For example, there is a tie for best annotation at 10, 16, 24, and 34 lines,
among three annotations that differ only in three of their bits. To develop a greater understanding
of what is happening, let us introduce some abbreviations in the annotation. Where an annotation
contains the string (10)k 0, we put the symbol k, for k ≥ 1. Where an annotation contains the
string 11000, we just put 0. The following table emerges:

66

#Lines Best Proof Annotation(s) L.B. ∆
4 1 1.4142 0
6 2 1.5213 0.1071

0
8 1 2 1.6004 0.0791
10 1 1 2 1.633315 0.032915

1 2 1
1 0 1

12 1 1 1 1 1 1.6635 0.0302
14 1 1 1 1 2 1.6871 0.0236
16 1 1 1 2 2 1.699676 0.012576

1 1 2 1 2
1 1 0 1 2

18 1 1 1 1 1 1 2 1.7121 0.0125
20 1 1 1 1 1 2 2 1.7232 0.0111
22 1 1 1 1 1 2 3 1.7322 0.0090
24 1 1 1 1 2 2 3 1.737851 0.005651

1 1 1 2 1 2 3
1 1 1 0 1 2 3

26 1 1 1 1 1 1 1 2 3 1.7437 0.005849
28* 1 1 1 1 1 1 2 2 3 1.7491 0.0054
30* 1 1 1 1 1 1 2 3 3 1.7537 0.0046
32* 1 1 1 1 1 1 2 3 4 1.7577 0.0040
34* 1 1 1 1 1 2 2 3 4 1.760632 0.002932

1 1 1 1 2 1 2 3 4
1 1 1 1 0 1 2 3 4

The pattern is evident: for an optimal annotation that ends with a non-zero k, a longer optimal
annotation can be obtained by adding either a k or k+1 to the end, and a 1 at the beginning.
(There are of course some restrictions– there are no more than three consecutive 1’s, no more than
two consecutive 2’s, etc.) Unfortunately, we do not yet know how to prove that all of the best
proofs must have this behavior, but it would be rather extraordinary if this pattern deviated at
some later point.

We have solved the corresponding LP for many proof annotations, including those annotations
used by our previous time lower bounds, with no success beyond the 2 cos(π/7) bound. The
above table suggests that it should suffice for us to examine those proof annotations of the form
1 · · · 1 0 1 2 3 4 · · ·; however, these annotations also do not lead to a better bound. To illustrate,
for the 424-line proof annotation denoted by the sequence

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2 3 4 · · · 17 18 19,

experiments with lp solve revealed that the optimal exponent is only in the interval [1.80175, 1.8018).

These empirical results point strongly to the following conjecture:

Conjecture 5.3.1 There is no alternation-trading proof that NTIME[n] * DTS[nc], for any c >

2 cos(π/7) ≈ 1.8019.

67

One should not be discouraged by the possible truth of the conjecture, although at present we
have little idea of how to prove it. For one, it was already believed that alternation-trading proofs
of time lower bounds for Sat had limitations– in particular, a quadratic time lower bound appears
to be the best one could do. Secondly, the above conjecture forces us to rethink our whole approach.
In order to significantly exceed the current bound, it appears that we cannot expect to rearrange
the existing ingredients– we must find ways to mix in additional complexity-theoretic components.
If this is true, it is very valuable knowledge. Perhaps we could use randomness as well as alternation
to perform interesting “speedups” of DTS, where the addition of randomness allows us to obtain
new types of proof-by-contradiction. Perhaps we can find a better way to “slowdown”, removing
alternations more efficiently than the simple Slowdown Lemma. There are plenty of tools out there;
the challenge is to find those that can better sharpen our understanding of time lower bounds.

5.4 Other Applications

The approach of using proof annotations combined with linear programming can be applied to
other polynomial-strength time lower bounds that are provable by the alternation-trading scheme–
any argument that uses its own version of “speedup” and “slowdown” theorems is a potential
application. We are still in the early stages of deducing the consequences that our work has for
these other lower bound problems, but we do not see any serious impediment to formalizing them
in a similar way. For an example of some new results obtained with our theorem prover, we state
some new time-space tradeoff lower bounds for solving Sat, obtained by adapting the LP with
different speedup rules. The following table gives time-space pairs for which our theorem prover
has shown that no Sat algorithm can satisfy both time and space requirements simultaneously.
(The proof annotation used is a sufficiently large one from the 1.801 lower bound– experimentation
suggested that this annotation was the best possible, independently of the space bound.)

Time Space

n1.06 n.9

n1.17 n.75

n1.24 n.666

n1.36 n.5

n1.51 n.333

n1.58 n.25

n1.7 n.1

n1.75 n.05

Based on the results of this table, we conjecture that the time-space product for any algorithm
solving Sat is at least Ω(n2 cos(π/7)), and the product is minimized when the space is as small as
possible.

68

5.5 Chapter Summary

We introduced a new formalism for proving time-space lower bounds in the alternation-trading
framework. In this formalism, once a desired time lower bound exponent c and a sequence of
proof rules are both fixed, the problem of finding a proof that uses the rules to obtain a time
lower bound Ω(nc) can be posed as a linear programming instance, solvable in polynomial time.
This result, combined with a normal form theorem for alternation-trading proofs, makes it feasible
to search through the space of all possible alternation-trading proofs for new time lower bounds.
Implementing a small-scale theorem prover, we discovered overwhelming empirical evidence that the
Ω(n2cos(π/7)) time lower bound of the previous chapter is actually optimal for the current framework.
In principle, the linear-programming-based approach is general enough that it can be applied to a
variety of settings for which we do not yet know the best lower bounds attainable.

69

70

Chapter 6

Accelerated Algorithms For a Class of

NP-Hard Problems

6.1 Prologue: The Next Two Chapters

In the previous chapters, we presented a series of concrete limitations for solving hard problems
under time and space constraints. We found that Sat, Vertex Cover, Max Cut, and other
problems require at least n1.8 time when no(1) space is used. Still, we cannot yet rule out the
possibility that Sat can be solved in O(n) time, when O(n) space is allowed!1 Indeed, the extent
to which NP-hard problems are hard to solve remains largely undetermined. We do not know an
Ω(n ·poly(log n)) time lower bound for Sat on RAMs, yet the best algorithm we know for Sat can
only be shown to take O(2n−n/ log n) time(!). That is to say, there is an enormous chasm between
our knowledge of what computational resources are required to solve NP-hard problems and what
resources are sufficient. In this chapter and the sequel, we examine the other side of complexity
theory’s coin, studying the possibility for efficient algorithms for some NP-hard problems. For some
problems, it intuitively appears that the best one can do is examine every candidate solution, but
this intuition has been shown to fail in many scenarios. The fledgling development of exponential
time algorithms in recent years has indicated that for many hard problems, something substantially
faster than brute-force search can be done, even in the worst case. While these algorithms are still
exponential and are therefore impractical for large instances, some do work reasonably well in
practice, and the existence of better algorithms gives hope that further progress is possible.

Over the last decade and a half, a tremendous amount of literature has been devoted to finding
algorithms for hard problems that are exponentially faster than brute-force search. Most results
present algorithms that run in O∗(2δt) time for some δ < 1, whereas O∗(2t) is the runtime of a näıve

1For some restricted computational models, this possibility can be ruled out. In the off-line one-tape Turing

machine model, Van Melkebeek and Raz [vMR05] showed an Ω(n1+δ)-style time lower bound for Sat. Moreover,

they use an alternation-trading argument, so our lower bound framework from the previous chapter can be applied

to improve their lower bound.

71

brute-force search.2 While such algorithms are typically called “exact” or “improved exponential”
algorithms, these names are often considered confusing to non-practitioners. For the purposes of
concrete and unambiguous terminology, we shall call them accelerated algorithms. A surprising
number of difficult problems have been shown to exhibit accelerated algorithms. To cite a repre-
sentative list of papers at this point would inevitably (and unintentionally) omit significant results;
however, we find the engaging surveys by Woeginger [Woe03, Woe04] to be fairly comprehensive.

While the overall work on accelerated algorithms has remarkably flourished, researchers have
still been unable to find any accelerated algorithms for some fundamental problems, after prolonged
effort. Some regularly cited examples in the literature are Max-2-Sat, Max Cut, and Sat (for
general CNF formulae). We study the first two problems and some of their relatives in the following
sections, giving novel accelerated algorithms for these problems. In the chapter that follows, we
discuss the prospects for an accelerated algorithm for Sat, showing how better algorithms for some
polynomial time solvable problems entail better Sat algorithms.

6.1.1 Notation

Here we quickly introduce some notation used in this half of the thesis. Define [n] := {1, . . . , n} and
[n]+ := [n] ∪ {0}. The names x1, . . . , xn are reserved for variables over a finite domain D. Partial
assignments a to variables of V are given by a sequence of variable assignments xi1 := v1, xi2 :=
v2, . . . , xik := vk, where ij ∈ [n], vj ∈ D, and k ≥ 1. For a given Boolean formula F and subset
of variables S, let F [S = a] denote the formula obtained by substituting the partial assignment
a for the variables of S. For a clause c, define vars(c) ⊆ {x1, . . . , xn} to be the set of variables
that appear in c. Throughout, ω refers to the smallest real number such that for all ε > 0, matrix
multiplication over a ring can be performed in O(nω+ε) ring operations.

6.2 Introduction

In this chapter, we present a novel accelerated algorithm for exactly solving (in fact, counting
solutions to) constraint satisfaction optimization problems with at most two variables per constraint,
along with some generalizations. The algorithm can count the number of optima in Max 2-Sat
and Max Cut instances in O(m32ωn/3) time, where ω < 2.376 is the matrix product exponent
over a ring. Our construction shows that improvement in the runtime exponent of either k-clique
solution (even when k = 3) or matrix multiplication over GF(2) would consequently improve the
runtime exponent for solving these optimization problems.

There has been notable theoretical interest in discovering accelerated algorithms for Max-2-
Sat and structurally similar problems. Unlike problems such as Vertex Cover and k-Sat, where
analysis of branch-and-bound techniques (with or without randomness) has sufficed for improving
the näıve time bounds (e.g. [Rob86, PPSZ05, DGHKKPRS02]), the Max-Sat problem has been
surprisingly difficult to attack. Prior work has only found algorithms for special cases, such as
sparse instances [NR00, CK04, Wil03, DW06] or approximate solutions [Hir03, DGHK01, LLZ02].
Substantial work has gone into finding exact algorithms for Max 2-Sat [BR99, MR99, Hir00,

2Recall that the O∗ notation suppresses polynomial factors.

72

GN00, KK06] and Max Cut [KF02, SS03, KMRR05, SS06], but our general algorithm scheme is
the only one known to solve the two problems in 2δn time (for some universal δ < 1) on all possible
instances.

6.2.1 Outline of our approach: Split and List

Most exact algorithms for NP-hard problems in the literature involve either a case analysis of a
branch-and-bound strategy (e.g. [GHNR03]), repeated random choice of assignments (e.g. [PPSZ05]),
or local search (e.g. [Sch99]). Our design departs from these approaches, and applies a form of dy-
namic programming akin to earlier algorithms from the 70’s [HS74, SS81]. We call this dynamic
programming strategy the split-and-list approach. The basic idea is to split up the problem instance
into parts, enumerate (or list) all possible solutions for the individual parts separately, then give an
interesting way to combine the parts so that a global solution can be efficiently found. Typically the
number of parts is chosen to be a small constant so that a polynomial time algorithm can combine
them. The downside to choosing a small number of parts is that each part must be relatively large
with respect to the input size, thus the list of possible solutions to each part will be (exponentially)
large.

Example. The general paradigm of split-and-list was first used to solve the Subset Sum problem
in O∗(2n/2) time [HS74]. In this problem, one is given a set S of n integers and a target integer
T , and is asked if there is a subset of S whereby

∑

x∈S x = T . A split-and-list algorithm for the
problem is obtained by first splitting the list of integers into two parts of ⌈n/2⌉ and ⌊n/2⌋ integers
respectively, and listing all possible subsets of the two parts (having 2⌈n/2⌉ and 2⌊n/2⌋ subsets,
respectively). For one of the lists (call it L), associate each subset s in L with a key ks =

∑

x∈S x.
Sort L by its keys. Now for every subset s′ in the other list, compute the sum of integers in s′ as
k′ and binary search in L for a subset s with key value ks = T − k′. If such an s is ever found,
return s ∪ s′; otherwise, return that there is no solution. It is easy to see that this algorithm takes
only O∗(2n/2) time (where the O∗ hides the cost of addition, and an O(n) factor resulting from the
sorting of a 2n/2 length list). This split-and-list algorithm exponentially reduces Subset Sum to
a problem that is in O(n log n) time: given a list of numbers and a target, determine if there is a
pair of numbers that sum to the target.

Our approach to solving Max 2-Sat and its relatives bares some similarities to the above
canonical example. We split the set of n variables into k partitions (for k ≥ 3) of (roughly) equal
size, and list the 2n/k variable assignments for each partition. From these k2n/k assignments, we
build a graph with weights on its nodes and edges, arguing that an optimum weight k-clique in the
graph corresponds to an optimum solution to the original instance. The weights are eliminated using
a polynomial reduction, and a fast k-clique algorithm on undirected graphs yields the accelerated
algorithm.

73

6.3 Fast k-Clique Detecting and Counting

We first review an algorithm by Nesetril and Poljak [NP85] for detecting if a graph has a k-clique
in less than nk steps.

Theorem 6.3.1 ([NP85]) Let r ∈ Z+. Then 3r-clique on undirected graphs is solvable in O(nωr)

time.

Proof. First consider the case k = 3. Given G = (V,E) with n = |V |, let A(G) be its adjacency
matrix. Recall that tr(M), the trace of a matrix M , is the sum of the diagonal entries. The
quantity tr(A(G)3) is computable in two matrix multiplications, and it is easy to see that tr(A(G)3)
is non-zero if and only if there is a triangle in G. (This observation was first made by Itah and
Rodeh [IR78].) For 3r-cliques when r > 1, build a graph Gr = (Vr, Er) where Vr is the collection
of all r-cliques in G, and Er = { {c1, c2} : c1, c2 ∈ Vr, c1 ∪ c2 is a 2r-clique in G}. Observe that
each triangle in Gr corresponds to a unique 3r-clique in G. Therefore tr(A(Gr)

3) 6= 0 if and only
if there is a 3r-clique in G, which is determined in O(nωr) time. To find an explicit 3r-clique given
that one exists, take an i such that A(Gr)

3[i, i] 6= 0, and try all 2r-sets of vertices to extend the
r-clique denoted by i to a 3r-clique. This takes O(n2r) time. �

In fact, the above approach may be used to count the number of k-cliques as well. Let Ck(G)
be the set of k-cliques in G, and Gr be as defined in the previous proof.

Proposition 6.3.1 For all r ≥ 1, tr(A(Gr)
3) =

(3r
r

)(2r
r

)
· |C3r(G)|.

Proof. Consider the case r = 1. In tr(A(G)3), each triangle {vi, vj , vk} is counted once for each
vertex v (say, vi) in the triangle, times the two paths traversing the triangle starting from that v
(for vi, they are vi → vj → vk → vi and vi → vk → vj → vi). Similar reasoning shows that each
3r-clique is counted

(3r
r

)(2r
r

)
times in tr(A(Gr)

3), as
(3r

r

)(2r
r

)
is the number of ways to partition a

3r-set into an ordered sequence of three r-sets. �

Observe that the above can be easily generalized to directed graphs, when we define a k-clique
in a directed graph to be a k-set of nodes {v1, . . . , vk} where the edge (vi, vj) appears for all i 6= j.

6.4 General Algorithm for a Class of Optimization Problems

In this section, we show how a very general problem (that we call the Weighted 2-Constraint
Satisfaction Problem) has an accelerated algorithm, by a reduction to the k-clique counting
algorithm of the previous section. In later sections, we present an extension of this result to
constraints that are representable by degree-two polynomials.

Problem: Weighted 2-CSP

Input: Integers Kv,Ke ∈ [nℓ]+ for a fixed integer ℓ > 0 independent of the input, a finite domain
D, and functions

wi : D → [nℓ]+, ∀i = 1, . . . , n, w(i,j) : D ×D → [nℓ]+, ∀i, j = 1, . . . , n, i 6= j.

74

Output: A variable assignment a = (a1, . . . , an) ∈ Dn satisfying

n∑

i=1

wi(ai) = Kv,
∑

i,j

w(i,j)(ai, aj) = Ke.

We define
∑n

i=1 wi(ai) to be the variable weight of assignment a, and
∑

i,j w(i,j)(ai, aj) to be
the pair weight of assignment a. The name “weighted 2-CSP” comes from the fact that each weight
function is a constraint on at most two variables, and the objective is to satisfy certain equations
involving those constraints. We also consider the counting version of the weighted problem.

Problem: Count 2-CSP

Input: Same as above.

Output: The number A of variable assignments that satisfy the above output conditions.

Weighted 2-CSP is easily seen to be NP-complete. Below are a few important examples of
NP-complete problems that can be effectively solved using an oracle for Weighted 2-CSP, and
polynomial time overhead. All of the below problems have received substantial attention in the
computer science literature.

• Vertex Cover/Independent Set: Set D = {0, 1}. Given G = (V,E), assume without
loss of generality that V := [n]. Set wi(xi) := 1 for all i, Ke := |E|, and

w(i,j)(xi, xj) :=

{

1 if (i, j) ∈ E and (xi ∨ xj) is true,

0 otherwise.

Now binary search for the minimum Kv such that there is an assignment with variable weight
Kv and pair weight Ke; this corresponds to finding the minimum size of a vertex cover for G.
Independent Set can be formulated similarly.

• Max 2-Sat: Set D := {0, 1}. Given a 2-CNF formula F on variables x1, . . . , xn, set wi(xi) :=
0 and Kv := 0. For all i < j define

w(i,j)(xi, xj) =
∑

c∈F : vars(c)⊆{xi,xj}
c(xi, xj);

that is, w(i,j)(xi, xj) is the sum of clauses c in F such that vars(c) ⊆ {xi, xj}, and c is satisfied
by the given assignment to xi and xj. Note w(i,j)(xi, xj) ∈ [4n2]+, since the total number of
distinct clauses is at most 4n2. Binary search for the maximum Ke ∈ [4n2] whereby there is
a variable assignment with pair weight Ke; this corresponds to finding the maximum number
of satisfiable clauses in F .

• Max Cut: Set D := {0, 1}. Given a directed graph G = (V,E), assume without loss of
generality that V = [n]. Set wi(xi) := 0 for all i, and

w(i,j)(xi, xj) :=

{

xi XOR xj if (i, j) ∈ E,

0 otherwise.

75

Finally, set Kv := 0. To find a maximum cut, binary search for the largest value of Ke ∈
[n(n− 1)] such that there is a variable assignment with that pair weight– this is a weighted 2-
CSP instance. Note the above reduction can be trivially modified to accommodate undirected
graphs as well.

• Min Bisection: In this problem, we are given a directed graph (V,E) where n = |V | is even,
and we wish to find a S ⊆ V such that |S| = n/2 and the cut value of S is minimized. To
reduce this problem to a weighted 2-CSP, the setup is the same as for Max Cut, except one
sets wi(ai) := ai for all i and Kv := n/2. To find a minimum bisection, binary search for the
smallest Ke ∈ [n(n − 1)] so that there is a variable assignment with variable weight exactly
Kv and pair weight exactly Ke.

• Sparsest Cut: Here we are given a directed graph (V,E) and wish to find a cut S ⊆ V that

minimizes the ratio δ(S)
|S||V −S| , where δ(S) is the cut value of S. To reduce the problem to a

weighted 2-CSP, solve the weighted 2-CSP instance for Min Bisection over all O(n3) ways
to assign Kv ∈ [n] and Ke ∈ [n(n − 1)]. From these instances, build a n2 × n Boolean table
T that has T [i, j] = 1 iff there is a cut with i nodes on one side, having cut value j. Using T ,
compute the minimum ratio j

i·(n−i) over those (i, j) satisfying T [i, j] = 1; this is the sparsest
cut, by definition.

It is evident that Weighted 2-CSP is capable of succinctly expressing many interesting prob-
lems. While Vertex Cover and Independent Set were known to admit accelerated algorithms
(the fastest known, to our knowledge, is Robson’s O(1.1889n) algorithm [Rob86]), the other four
problems were not known to have accelerated algorithms. In the next section, we give an accel-
erated algorithm for Count 2-CSP, yielding accelerated algorithms for the above problems and
more.

6.4.1 Main Algorithm

For k ∈ Z+, define κ(k) to be the smallest real number such that the number of k-cliques in a
given n-node graph can be computed in O(nκ(k)) time. One may think of κ(k) as the “k-clique
exponent”, similar to the matrix multiplication exponent ω. Note that Theorem 6.3.1 states that
κ(3r) ≤ ωr, for all constants r.

Theorem 6.4.1 Let k(n) ≥ 3 be a monotone non-decreasing function such that k(n) can be com-

puted in nO(1) time. Then Count 2-CSP instances with weights in [nℓ]+ are solvable in

nO(ℓ·k(n)2) · (k(n)d
n

k(n))κ(k(n)) time,

where n is the number of variables, and d is the domain size.

Corollary 6.4.1 The number of optima for a given Max 2-Sat, Max Cut, Min Bisection, or

Sparsest Cut instance can be determined in O∗(1.732n) time, and an optimal assignment can be

found in O∗(1.732n) time.

76

Proof of Corollary 6.4.1. Set d = 2 and k = 3, and use the aforementioned reductions
from Weighted 2-CSP to these problems. Explicit assignments/cuts can be found using self-
reducibility, increasing the runtime by only an O(n) factor. �

Unfortunately, the best known k-clique algorithms do not improve the runtime of Corollary 6.4.1
when k > 3. For example, the best known 9-clique algorithm uses Theorem 6.3.1, and runs in O(n3ω)
time– so the improvement in the exponent over the obvious O(n9) algorithm is a factor of ω/3, just
as in the 3-clique case. Finding a 9-clique algorithm that runs in O(n3ω−δ) for some δ > 0 would
immediately give an improvement to Corollary 6.4.1.

Proof of Theorem 6.4.1. We reduce the problem to counting k-cliques in a large graph. Assume
without loss of generality that n is divisible by k. Let C be a given instance of Weighted 2-CSP.

Step 1: Build a graph (Split and List).

Arbitrarily split the n variables of C into sets P1, P2, . . ., Pk with n/k variables each. For each
Pi, make a list Li of all dn/k possible assignments to the variables of Pi. Construe the elements
of L1, . . . , Lk as nodes of a k-partite complete directed graph G = (V,E), having dn/k nodes per
partition and arcs between every pair of nodes from different parts (in both directions). For a
vertex v ∈ Lℓ for some ℓ ∈ [k], let av denote the partial assignment to which v refers, and let av

i be
the assignment to variable xi in Lℓ.

Step 2: Weight nodes and edges accordingly.

Define a weight function W : V ∪ E → Z as follows:

• For ℓ ∈ [k] and v ∈ Lℓ (ℓ ∈ [k]), W (v) :=
∑

xi∈Pℓ
wi(a

v
i) +

∑

xi,xj∈Pℓ
wi(a

v
i , a

v
j).

• For ℓ, ℓ′ ∈ [k], ℓ 6= ℓ′, and u ∈ Lℓ, v ∈ Lℓ′ , W (u, v) :=
∑

xi∈Pℓ,xj∈Pℓ′
w(i,j)(a

u
i , a

v
j).

3

Let Ck = {v1, . . . , vk} be a k-clique in G. Define the edge-weight of Ck to be We(Ck) :=
∑

i,j∈[k],i6=j W (vi, vj), and the node-weight of Ck to be Wv(Ck) =
∑k

i=1W (vi).

Claim 3 The number of k-cliques with node-weight Kv and edge-weight Ke in G is equal to Count

2-CSP(C), i.e., the number of variable assignments for C with variable weight Kv and pair weight

Ke.

To prove this claim, let a be an assignment to the variables of C, and suppose that a has
pair and variable weight Ke and Kv, respectively. Clearly, there exist unique vertices vi ∈ Li for
i = 1, . . . , k such that a = av1av2 · · · avk , i.e. the assignment a corresponds to a particular clique

3As an example, consider the case where we merely want to solve Max Cut. The v ∈ Li denote all 2n/k possible

cuts with a distinct “left” and “right” side on the subgraph of n/k vertices Pi. Every W (v) is the number of edges

crossing the “sub-cut” defined by the node v, and W (u, v) is the number of edges crossing from one side of the cut

defined by u to the opposite side of the cut defined by v.

77

Ca = {v1, . . . , vk} in G. Since every variable appears in exactly one part, we have

Wv(Ck) =

k∑

i=1

W (vi)

=

k∑

i=1

∑

xi′∈Pi

wi′(a
vi
i′)

=

n∑

i′=1

wi′(ai′),

which is precisely the variable weight of a. Similarly,

We(Ca) =
∑

i,j∈[k], i6=j

W (vi, vj)

=
∑

i,j∈[k], i6=j

∑

xi′∈Pi,xj′∈Pj

w(i′,j′)(a
vi
i′ , a

vj

j′)

=
∑

i′,j′∈[n], i′ 6=j′

w(i′,j′)(ai′ , aj′),

which is just the pair weight of a. Therefore Wv(Ca) = Kv, and We(Ca) = Ke. Since there is
a one-to-one correspondence between k-cliques in G and assignments to C, and because k-cliques
with node and edge weight Kv and Ke correspond to assignments with variable and pair weight Kv

and Ke, the claim is proved.

Step 3: Reduce the weighted graph to a collection of unweighted graphs.

A problem remains in our above construction. We would like to count k-cliques in the above
graph with particular node and edge weights, but the clique-counting algorithm of Theorem 6.3.1
only works on unweighted graphs. We can remove this difficulty and tack on a multiplicative factor
that is polynomial in nℓ, but exponential in k. Let Tv be the set of k-tuples (j1, . . . , jk) where each
ji ∈ [nℓ]+ and

∑k
i=1 ji = Kv. Let Te be the set of k(k − 1)-tuples of the form

(i1,2, i2,1, i1,3, i3,1 . . . , i1,k−1, ik−1,1, i2,3, i3,2, . . . , ik−1,k, ik,k−1)

where each ij,l ∈ [nℓ]+, and
∑

a,b : a6=b ia,b = Ke. For each choice of tuple (j1, . . . , jk) ∈ Tv and
({ia,b}) ∈ Te, construct a unweighted directed graph G({ia,b},j1,...,jk) that contains a subset of the
nodes and edges of G, namely:

• For v ∈ La1 , put node v in G({ia,b},j1,...,jk) if and only if W (v) = ja1 .

• Out of those u ∈ La1 and v ∈ La2 that were put into G({ia,b},j1,...,jk) (with a1 6= a2), put edge
(u, v) in G({ia,b},j1,...,jk) if and only if W (u, v) = ia1,a2 .

Intuitively, the above rules “screen” the edges and nodes of the graph G, and only include them in
G({ia,b},j1,...,jk) if they have a prescribed weight.

Now, each k-clique counted in G({ia,b},j1,...,jk) is a k-clique of edge weight Ke and node weight
Kv in G, by construction. Moreover, for each pair of tuples ({ia,b}) and (j1, . . . , jk), the graph

78

G({ia,b},j1,...,jk) represents a distinct collection of such cliques in G. Hence the total number of
k-cliques counted over all graphs G({ia,b},j1,...,jk) is the number k-cliques in G with edge weight Ke

and node weight Kv.

Recall that G has kdn/k nodes. By iterating over all tuples (j1, . . . , jk) ∈ Tv and ({ia,b}) ∈ Te,
constructing the relevant G({ia,b},j1,...,jk), and counting its k-cliques in O((kdn/k)κ(k)) time, Count

2-CSP can be computed in O(|Te| · |Tv | · (kdn/k)κ(k)) time. The cardinalities of Tv and Te are
bounded from above by (Kv)

k−1 ≤ (nℓ + 1)k−1 and (Ke)
k2−k ≤ (nℓ + 1)k

2−k, respectively. One can
easily enumerate each tuple in Te and Tv in O(poly(n)) amortized time. Therefore the runtime of

the procedure for Count 2-CSP is at most nO(ℓk(n)2) · (k(n)d
n

k(n))κ(k(n)). �

Sampling Solutions. The above algorithm can be used to randomly sample solutions to a given
weighted 2-CSP problem.

Corollary 6.4.2 After O∗(2ωn/3) preprocessing, one can generate a uniform random sample from

the set of solutions to a Weighted 2-CSP instance having variable weight exactly Kv and pair

weight exactly Ke, in O∗(22n/3) time.

For example, in O∗(2ωn/3) time, one can produce a maximum cut, chosen uniformly at random
over all maximum cuts.

Proof. The preprocessing phase consists of just running the algorithm from the previous theorem
with k = 3, saving the results of each matrix multiplication performed by the triangle counting
subroutine. Let N be the total number of solutions to the weighted 2-CSP instance. For a graph
G({ia,b},j1,j2,j3) as defined in Theorem 6.4.1, let N({ia,b},j1,j2,j3) be the total number of k-cliques in
it. We have that

∑
N({ia,b},j1,j2,j3) = N .

To randomly sample a solution, select graph G({ia,b},j1,j2,j3) from the collection of unweighted

graphs with probability
N({ia,b},j1,j2,j3)

N , and then pick a triangle from the selected graph uniformly
at random, and return the variable assignment corresponding to it. To pick a triangle, let A be
the adjacency matrix of the selected graph. For each edge (i, j), determine the number of triangles
that contain the pair i, j by reading A2[i, j] (which was computed in the preprocessing phase). Pick

the edge (i, j) with probability A2[i,j]
∑

(i,j) is an edge A2[i,j] . Out of those vertices adjacent to both i and j,

pick one uniformly at random. The resulting edge and vertex pair is a uniform random triangle. �

6.5 Weighted Polynomial Constraint Problems on Boolean Vari-

ables

The algorithm as stated in the previous section only works when the weight functions under con-
sideration are functions of at most two variables. In the following, we describe an extension of the
algorithm that works for a class of weight functions on possibly more than two Boolean variables,
namely polynomials of degree two.

79

Definition 6.5.1 A polynomial p(x1, . . . , xn) is multilinear if p is a sum of terms of the form

cxd1
1 · · · xdn

n , where c ∈ R and di ∈ {0, 1} for all i.

The following is well-known folklore.

Theorem 6.5.1 Every Boolean function f has a unique representation as a multilinear polynomial

of the form f : {0, 1}n → {0, 1}.

Proof. Write the function f in disjunctive normal form, ensuring that no two conjunctions in
the disjunction can be true simultaneously. Then, replace the ORs with addition, ANDs with
multiplication, and every ¬xi with the expression (1− xi). The resulting polynomial is multilinear
and it is easy to check that f(a) = 1 when f(a) is true, and f(a) = 0 when f(a) is false. The
polynomial f is unique, because if f ′ is a polynomial that agrees with f on all points in {0, 1}n,
then f ≡ f ′. (The proof is by induction on the number of variables– in particular, any nonzero
polynomial cannot be zero on all points in {0, 1}n.) �

With the above characterization, it makes sense to define the degree of a Boolean function.

Definition 6.5.2 Let f be a Boolean function. Then deg(f) is the degree of the unique multilinear

polynomial that represents f from {0, 1}n to {0, 1}.

We define the problem Weighted Degree-Two CSP as follows. The setup of Weighted
Degree-Two CSP is about the same as Weighted 2-CSP, except that instead of just two-
variable weight functions, we allow for degree-two polynomials.

Problem: Weighted Degree-Two CSP

Input: A set of degree-two polynomials S = {p1(x1, . . . , xn), . . . , pm(x1, . . . , xn)} such that m =
poly(n), pi : {0, 1}n → {0, 1}, a weight function wi : {0, 1} → [poly(n)]+ for i = 1, . . . , n, and
integers Kv,Kp ∈ [poly(n)]+.

Output: A variable assignment a = (a1, . . . , an) ∈ {0, 1}n satisfying
∑

iwi(ai) = Kv and
∑

j pj(a) =
Kp.

This problem is a generalization of Weighted 2-CSP over Boolean-valued weight functions,
since every two-variable Boolean function can be represented by a degree two polynomial, via
Theorem 6.5.1. The main result of this section is:

Theorem 6.5.2 Weighted Degree-Two CSP is solvable in O∗(2ωn/3) time.

Ostensibly, it is not clear if Theorem 6.5.2 says anything new– are there any Boolean functions
on three or more variables that have degree two? The answer is yes. Three examples of this
phenomenon are the not-all-equals predicate on three variables, the selector predicate on three
variables, and the “sort” predicate on four variables, each defined as follows:

80

• The Boolean function NAE(x1, x2, x3) = 1 if and only if there are i 6= j such that xi 6= xj. The
polynomial representation for this function is NAE(x1, x2, x3) = x1+x2+x3−x1x2−x1x3−x2x3.
Note this polynomial is Boolean-valued when x1, x2, and x3 are drawn from {0, 1}.

• SEL(x1, x2, x3) = 1 if and only if the predicate “if x1 then x2 else x3” is true. We have
SEL(x1, x2, x3) = x1x2 + x3 − x1x3.

• SORT(x1, x2, x3, x4) = 1 if and only if the bit string x1x2x3x4 is sorted, in either ascending
or descending order. That is, SORT is true iff it is given one of the eight strings 0000, 0001,
0011, 0111, 1111, 1110 1100, 1000. Interestingly, it can be verified that SORT(x1, x2, x3, x4) =
1 − x2 − x3 + x1x2 − x1x4 + x2x3 + x3x4.

Thus, a corollary of Theorem 6.5.2 is that optimization problems such as Max NAE-3-Sat
and Max SEL-3-Sat (defined with respect to the above functions) have accelerated algorithms.
It turns out that a degree two polynomial representing a Boolean function depends on at most four
variables. In particular, the following can be shown.

Theorem 6.5.3 (Nisan-Szegedy [NS94]) Let p be a degree d polynomial representing a Boolean

function. Then p depends on at most d2d−1 of its variables.

It follows that Weighted Degree-Two CSP does not include Boolean constraint satisfaction
problems that depend on more than four variables.

Proof of Theorem 6.5.2. We shall just describe how to modify the proof of Theorem 6.4.1 to
accommodate polynomials instead of 2-constraints. The construction of the graph remains basically
the same as before, but the weighting scheme needs some changes.

Write each polynomial pi in a given Weighted Degree-Two CSP instance as:

pi(x1, . . . , xn) = ci,0 +
∑n

j=1 ci,j · xi +
∑

j1<j2
ci,j1,j2 · xj1xj2,

where each ci,j , ci,j,k ∈ R.

We use the same definition of nodes and edges from Theorem 6.4.1, except now the edges are
undirected. Weights are added to the edges and nodes of the constructed graph G according to
these rules:

• On a node v from list Lℓ, put two kinds of weight: W1(v) =
∑

xi∈Pℓ
w(av

i) and W2(v) =
∑m

i=1

(
∑

xj1
,xj2

∈Pℓ
ci,j1,j2 · av

j1
· av

j2
+
∑

xj∈Pℓ
ci,j · av

j

)

. Effectively, W2(v) is the contribution

of the partial assignment av to the sum of all degree-one and degree-two terms with variables
from Pℓ, and W1(v) is the contribution of av to the variable weight.

• On an edge {u, v} where u is from Lℓ1 and v is from Lℓ2 , put the weight W (u, v) =
∑m

i=1

∑

xj1
∈Pℓ1

,xj2
∈Pℓ2

ci,j1,j2 · au
j1

· av
j2

. Thus the edge weight {u, v} is the contribution of

the partial assignments au and av to the sum of all degree-two terms with one variable from
Pℓ1 and one variable from Pℓ2 .

81

Now for each polynomial pj, all of its terms other than the degree-zero coefficients are counted
by either an edge or node weight. The following claim is straightforward; its proof resembles that
of Claim 3.

Claim 4 There is a one-to-one correspondence between k-cliques {v1, . . . , vk} in G satisfying

k∑

i=1

W1(vi) = Kv,

m∑

j=1

aj,0 +
∑

{vi,vj}
W (vi, vj) +

k∑

i=1

W2(vi) = Kp,

and variable assignments a ∈ {0, 1}n with

n∑

i=1

wi(ai) = Kv,

m∑

j=1

pj(a) = Kp.

As in Theorem 6.4.1, we cannot apply the fast k-clique counting algorithm directly to the
weighted graph G; it is necessary to eliminate the weights in some manner. The node and edge
weights can be eliminated by applying additional observations.

Claim 5 Let p be a degree two polynomial representing a Boolean function on n variables. Then

the degree zero coefficient of p is in {0, 1}, the degree one coefficients are in {−1, 0, 1}, and the

degree two coefficients are in {−2,−1, 0, 1, 2}.

Proof. By induction on n. Clearly the degree zero coefficient must be 0 or 1, since p(0, . . . , 0)
equals it. When n = 0, the claim is trivial. Assume the claim holds for degree two polynomials on
n− 1 variables. Given a degree-two polynomial p representing a Boolean function, write it as

p(x1, . . . , xn−1, xn) = xnq(x1, . . . , xn−1) + (1 − xn)r(x1, . . . , xn−1),

where r = p(x1, . . . , xn−1, 0) and q = p(x1, . . . , xn−1, 0) are degree two polynomials. Write q and r
as

q = cq0 +

n∑

i=1

cqixi +
∑

i6=j

cqijxixj

and

r = cr0 +

n∑

i=1

crixi +
∑

i6=j

crijxixj .

Since r = p(x1, . . . , xn−1, 0) and q = p(x1, . . . , xn−1, 0) are degree two Boolean functions on n − 1
variables, the claim holds for q and r by induction. Hence cq0, c

r
0 ∈ {0, 1}, cqi , cri ∈ {−1, 0, 1} for all

82

i, and cqij , c
r
ij ∈ {−2,−1, 0, 1, 2} for all i and j. We can express p as:

p = xnq + (1 − xn)r

=
∑

i6=j

(cqij − crij)xixjxn

+

n−1∑

i=1

(cqi − cri)xixn +
∑

i6=j

crijxixj

+ (cq0 − cr0)xn +

n−1∑

i=1

crixi

+ cr0.

Note cqij = crij for all i, j, since p is of degree two. Since cqi , c
r
i ∈ {−1, 0, 1} for all i, it follows that

cqi − cri ∈ {−2,−1, 0, 1, 2}. Since cq0, c
r
0 ∈ {0, 1}, it follows that cq0 − cr0 ∈ {−1, 0, 1}. This completes

the proof. �

Claim 6 The number of possible weights for any node or edge is at most 4m(n2 + 1) + 1.

Proof. By the previous claim, the coefficient for any monomial in a polynomial pi is in the range
{−2,−1, 0, 1, 2}. The weight of any node or edge is just the sum of some subset of coefficients from
some subset of the polynomials: every variable is either 0 or 1, so every monomial evaluates to
either its coefficient or 0. Since there are

(
n
2

)
+ n+ 1 ≤ n2 + 1 monomials and m polynomials, the

value of any such sum is an integer in the range [−2m(n2 + 1), 2m(n2 + 1)], so the weight of any
node or edge is an integer in that range. The claim follows since there are 4m(n2 + 1) + 1 integers
in the range. �

Therefore, the number of all possible weight combinations for the nodes and edges of a k-clique
is at most (4m(n2 + 1) + 1)k

2 ≤ poly(n), when k is fixed. For each such combination, we can set
up an unweighted k-clique instance as in the proof of Theorem 6.4.1, performing k-clique detection
for each unweighted instance in O∗(2ωn/3) time. It follows that Weighted Degree-Two CSP
can be solved in O∗(2ωn/3). �

The above algorithm can also be extended to problems where the possible assignments vary
over non-Boolean (e.g. ternary) domains. We chose to restrict ourselves to the Boolean case due
to its naturalness and simplicity.

6.6 A Potential Application to Breaking a Class of Cryptosystems

As we have seen, our framework for solving weighted constraint problems is quite general. In this
section, we extend it even further, assuming that a certain variant of the k-Clique problem can be
solved more efficiently than brute force search. More precisely, we show how an improved algorithm
for a problem called Edge-Weight k-Clique can be used to solve Multivariate Quadratic
Equations (abbreviated as Mqs) with an accelerated algorithm. In the Mqs problem, one is given

83

a set of m equations over n variables that take values from a finite field F , where each equation is
of the form

p(x1, . . . , xn) = 0

for a degree-two polynomial p. The task is to find an assignment (x1, . . . , xn) ∈ Fn that satisfies
every equation. Mqs is somewhat different from Weighted Degree-Two CSP, and possibly
more difficult, because the cardinality of the range of some p(x1, . . . , xn) in an Mqs instance is not
necessarily bounded by a polynomial in n.

Several very important cryptosystems have been designed under the assumption that Mqs is in-
tractable, even in the average case. In particular, the security of the Advanced Encryption Standard
(AES) or Rijndael cipher (used by the U.S. Government to encrypt highly sensitive data) [Lan04]
and the Hidden Field Equations (HFE) public key cryptosystem depend on the intractability of
Mqs [Pat95]. The basic idea behind these systems is to encrypt a string b1 · · · bn of n bits by
picking n random quadratic polynomials p1(x1, . . . , xn), . . . , pn(x1, . . . , xn) and send the quadratic
equations p1(x1, . . . , xn) = p1(b1, . . . , bn) as the encrypted message. In this proposal, encryption is
simple, but decryption is presumably very difficult– we also have to hide some kind of trapdoor
among the equations, otherwise even the intended recipient cannot decrypt the message efficiently.
The cryptosystems designed around Mqs employ various methods to “embed” a trapdoor into the
system of equations. An accelerated algorithm for Mqs gives a way to attack these cryptosystems
in a way that is much faster than brute-force search.

To our knowledge, there are no known accelerated algorithms for Mqs, though some practical
algorithms hold some promise that Mqs can be attacked [KS99, CKPS00]. We show that an
accelerated algorithm for Mqs does exist, based on the following plausible conjecture. We define
Edge-Weight k-Clique to be the problem where one is given an edge-weighted undirected graph
with weights drawn from a finite field F of 2Θ(b) elements, and is asked if there is a k-clique whose
total sum of edge weights (there are

(k
2

)
of them) is exactly zero over F . Our conjecture is that

this problem can be solved faster than brute-force search.

Conjecture 6.6.1 There is a δ ∈ (0, 1) and some k ≥ 3 such that Edge-Weight k-Clique is in

O(poly(b) · nδk) time over a field F of 2Θ(b) elements.

Observe the trivial algorithm can be implemented to run in O(b · nk) time. A compelling
property of the above conjecture is that it is known to hold in some interesting special cases.

• If the weights are restricted to the nodes instead of the edges, then some of our recent work
shows that the conjecture indeed holds [VW06]. That is, the Node-Weight k-Clique

problem where the weights are integers in [−2b, 2b] can be solved in O(b ·n 3+ω
2) time, and our

method can be adapted to work for finite fields as well.

• If the graph structure is removed from the problem, and we are merely looking for k numbers
that sum to zero, each one from three different lists of size n, then the conjecture holds– this
is the well-known k-Sum problem from computational geometry [GO95] which can be easily
solved in O(b · n⌈k/2⌉) time.

If the conjecture is true, then we can use the weighted k-clique algorithm to solve Mqs.

84

Theorem 6.6.1 Conjecture 6.6.1 implies that Mqs has a randomized accelerated algorithm, for

any finite field F .

We establish Theorem 6.6.1 in the following paragraphs, showing how to solve Mqs instances
with m equations (Mqs) and n variables over field F in poly(m, |F |) · |F |nω/3 time, a significant
improvement over brute-force search which would require Θ(poly(m, |F |) · |F |n). The idea is to
randomly reduce Mqs to the problem of determining whether a sum of degree-two polynomials has
a zero solution, then reduce that problem to edge-weighted k-clique. We use a randomization trick
that has been employed in other contexts, such as string matching [Kal02] and probabilistically
checkable proofs [Sud92].

Definition 6.6.1 Let K be an extension field of F , and let r = (r1, . . . , rm) ∈ Km. Define

Pr(x1, . . . , xn) :=

m∑

i=1

ri · pi(x1, . . . , xn).

Claim 7 Let K be a (finite) extension field of F , and let a = (a1, . . . , an) ∈ Fn. Then over the

uniform distribution for elements r ∈ Km:

• (∀i ∈ [m])[pi(a1, . . . , an) = 0] =⇒ Prr∈Km[Pr(a1, ..., an) = 0] = 1.

• (∃i ∈ [m])[pi(a1, . . . , an) 6= 0] =⇒ Prr∈Km[Pr(a1, ..., an) 6= 0] = 1 − 1/|K|.

Proof. First, if pi(a1, . . . , an) = 0 for all i, then clearly Pr(a1, . . . , an) = 0 for any choice of r ∈ Km.
To prove the contrapositive, we need to show that if there is an i ∈ [m] such that pi(a) 6= 0, then
∑

i ripi(a) 6= 0 with high probability.

For a fixed i ∈ [m], define si(a) =
∑

j : j 6=i rjpj(a). We wish to determine the probability that
Pr(a) = ripi(a) + si(a) = 0. For a fixed assignment a, if pi(a) 6= 0, then there is a unique r′i ∈ K
such that r′i = −si(a)/pi(a). Thus Pr(a) = si(a) + ripi(a) = 0 with probability 1/|K|, when the ri
are chosen uniformly at random. �

Theorem 6.6.2 Let K be a (finite) extension field of F satisfying |K| ≥ |F |npoly(n). Then for

all variable assignments a = (a1, . . . , an) ∈ Fn,

• (∀i ∈ [m])[pi(a1, . . . , an) = 0] =⇒ Prr∈Km[Pr(a1, ..., an) = 0] = 1, and

• (∃i ∈ [m])[pi(a1, . . . , an) 6= 0] =⇒ Prr∈Km[Pr(a1, ..., an) 6= 0] ≤ 1 − 1/(poly(n)).

Proof. The first bullet is clearly true. By taking a union bound over all |F |n possible assignments
and invoking the previous claim,

Pr[There exists an assignment a s.t. (∃i ∈ [m])[pi(a) 6= 0] and Pr(a) = 0] ≤ |F |n
|K| ≤ 1/poly(n).

85

The theorem follows. �

Therefore, we have randomly reduced the problem of solving an instance of Mqs to the problem
of finding an assignment a ∈ Fn satisfying Pr(a) =

∑m
i=1 ripi(a) = 0 over the extension field

K. Notice that this problem is similar to an instance of Weighted Degree-Two CSP with
Kp = 0, Kv = 0, the degree-two polynomials qi(x) = ripi(x), and no node weights– except that
the ranges of the polynomials qi are not of poly(n) size. Indeed, the ri coefficients are from K,
which has cardinality at least |F |npoly(n). However, by a construction similar to the proof of
Theorem 6.5.2, the problem of satisfying Pr(a) = 0 can be reduced to Edge-Weighted k-Clique,
and an O(poly(b)nδk) algorithm for Edge-Weighted k-Clique translates to an O(poly(n)dδn)
algorithm for Mqs. Briefly, the reduction works by

• splitting the set of variables into k parts and listing the |F |n/k partial assignments for each
part,

• building a complete k partite graph where the nodes are the partial assignments, and

• putting weights on edges {u, v} corresponding to the portion of Pr to which the partial
assignments au and av contribute.

Then one searches for a k-clique with edges that sum to 0 when evaluated over the field K, which
we take to have |F |npoly(n) elements.

6.7 Chapter Summary

In this chapter, we gave accelerated algorithms for solving and counting optimal solutions for a
large class of NP-complete problems and counting problems, via reductions that exploit fast matrix
multiplication. We also showed that a better algorithm for solving a certain edge-weighted k-clique
problem would imply a breakthrough in solving multivariate quadratic equations.

An interesting open problem from our work is how one might extend our algorithm scheme to
work for k-CSPs, when k ≥ 3. The most straightforward generalization to k-CSPs results in a
reduction to the problem of finding a hyperclique on k nodes in a weighted hypergraph with edges
having cardinality up to k. However, there no known accelerated algorithms for finding a k-clique
in a hypergraph with k-edges, where k > 2 [Yus06]. It is conjectured that matrix multiplication
can be done in O(n2+o(1)) time, and in our investigation of 3-CSPs, it appears a 23n/4 bound might
be possible (although at present we do not know how to construct such an algorithm). On the basis
of this evidence, we conclude this chapter with an algorithmic conjecture:

Conjecture 6.7.1 For all k ≥ 2, Max-k-Sat is in O∗(2n(1− 1
k+1

)) time.

86

Chapter 7

On Accelerated Algorithms for

Satisfiability

In the previous chapter, we discussed a general accelerated algorithm scheme that could be applied
to a variety of difficult problems. However, we still do not know of accelerated algorithms for
certain key problems that are widely studied in computer science. The most famous of these is
the “original” NP-complete problem: the satisfiability problem for Boolean formulas in conjunctive
normal form, i.e. Sat. Satisfiability is so ubiquitous that an entire conference on theory and
applications of the problem is held annually1. Recently, a sequence of papers has given algorithms
for Sat with O∗(2n−o(n)) runtime [Pud98, Sch03, DHW04, DW05a, DW05b, DHW05]. The current
best, by Dantsin, Hirsch, and Wolpert [DHW05], is a deterministic algorithm that runs in

O∗
(

2
n
(

1− 1
ln(m/n)+O(ln ln m)

))

time,

where n is the number of variables, and m is the number of clauses. When the instances are
required to have a linear number of clauses (that is, m ≤ cn for a fixed constant c), Arvind and
Schuler [AS03] proved that Sat can be solved in 2δcn time for some δc < 1; however, δc converges
to 1 as c goes to infinity. Building on this work, Calabro, Impagliazzo, Paturi [CIP06] have very
recently proven an intriguing duality between the solvability of Sat instances with small clause
“width” and those with small clause “density”:

• there is a constant δ1 < 1 such that for all k ≥ 3, k-Sat is in 2δ1n time, if and only if

• there is a constant δ2 < 1 such that for all c ≥ 1, Sat is in 2δ2n time on formulas where
m ≤ cn.

It does not appear that the current approaches for Sat algorithms will lead directly to an
accelerated, O∗(2δn) time bound, when the instances are allowed to have poly(n) clauses. The

1The ‘International Conference on Theory and Applications of Satisfiability Testing’. See

http://www.satisfiability.org/

87

most related reference is the aforementioned work [CIP06]; a corollary of it is that in order to solve
Sat instances with f(n) clauses in 2δn time, it suffices to find such an accelerated algorithm for
(c log f(n))-Sat instances with f(n) clauses for all constants c ≥ 1. Thus it is known that we may
restrict ourselves to looking for a (c log n)-Sat accelerated algorithm.

On the other hand, while many researchers are skeptical that an accelerated algorithm for Sat
exists, we have not found much evidence for this skepticism. Results of Impagliazzo and Paturi

[IP01] imply that if a O∗(2δn) algorithm for Sat exists, then a O∗(2δ(1− 1
e·k)) algorithm for k-Sat

exists. But this in itself is not truly evidence; for example, if δ = .99, the implied k-Sat algorithm
is only an improvement over the known O∗((2 − 2

k+1)n) algorithm when k > 107. The lesson here
is that a modest improvement over 2n for Sat would not appear to be earth-shattering.

We have spent a great deal of time attempting to either find an accelerated algorithm for Sat,
or give interesting evidence against its possibility. In particular, we seek an algorithm that runs in
poly(m) · 2δn time for some δ < 1. We present three algorithmic hypotheses, all of which seem to
be reasonable, given the current state of knowledge. Two of the hypotheses exploit the fact that
certain important special cases of Sat are solvable in polynomial time. The hypotheses are:

1. There exist k ≥ 3 and ε ∈ (0, k) such that k-Dominating Set is in O(nk−ε) time, where n
is the number of nodes. (In k-Dominating Set, one is given a graph and is asked if there
is a set S of k nodes such that every node is either in S or in the neighborhood of S. An
O(nk+o(1)) algorithm is known, for k > 7.)

2. For some ε > 0, 2-Sat+2Clauses is in O((m+n)2−ε) time, where m and n are the number
of clauses and variables, respectively. (In 2-Sat+2Clauses, one is given a 2-CNF formula
with two additional clauses of arbitrary length, and is asked if the formula is satisfiable. An
O(mn+ n2) algorithm is known.)

3. There is a k ≥ 2 such that Horn-Sat+kClauses is in O((n +m)k−ε) time. (In the Horn-
Sat+kClauses problem, one is given a Horn formula with two additional clauses of arbitrary
length, and is asked if the formula is satisfiable. A Horn formula has the property that every
clause contains at most one positive literal. A trivial O(nk(m+n)) time algorithm is known.)

We prove that if any of the hypotheses are true, then Sat has an accelerated algorithm of the
form poly(m) · 2δn. Therefore, one should either believe in the existence of an accelerated Sat
algorithm, or disbelieve all the hypotheses. While our reductions are all rather simple, they are
nevertheless compelling results that connect the solvability of Sat with polynomial time solvable
problems. As in the previous chapter, our main approach is the split-and-list paradigm: we split
up a problem instance into a constant number of subproblems, list the possible solutions for each
subproblem, and build some connections between subproblems (in a logical or graphical structure).
This maneuver exponentially increases the problem size, but the task of combining subproblems to
get a global solution is drastically easier than the original problem. We argue that if a sufficiently
good algorithm exists for any of the above three problems, we can use that algorithm to efficiently
combine subproblem solutions and solve Sat much faster.

88

7.1 Good k-Dominating Set Algorithms Imply Accelerated Sat

Algorithms

Our first hypothesis concerns the time complexity of k-Dominating Set. In Parameterized Com-
plexity, k-Dominating Set is one of the canonical W[2]-complete problems [DF99]. Given an
undirected graph on n nodes and m edges, the task is to find a k-set S of nodes whereby every
node of the graph is either in S, or is incident to a node in S. For a long time, the best algorithm
known for solving k-Dominating Set was the obvious O(nk+1) algorithm that tries all k-sets. Fast
matrix multiplication can slightly improve this time bound. The following was recently observed
by Eisenbrand and Grandoni [EG04], and independently by the author.

Consider the special case of 2-dominating set. Take the Boolean adjacency matrix A of the
graph G, complement it (flip 1’s to 0’s, and 0’s to 1’s) and multiply the resulting matrix with its

transpose, i.e. compute B = A ·AT
.

Proposition 7.1.1 G has a 2-dominating set ⇐⇒ For some i and j, B[i, j] = 0.

Proof. Let M [i, :] denote the ith row of M and M [:, j] denote the jth column of M . Let V = [n]
be the vertices of G. Then

{i, j} is a 2-dominating set ⇐⇒ (A ∨ I)[i, :] ∨ (A ∨ I)[j, :] = 1, the all-1’s vector

⇐⇒ 〈(A ∨ I)[i, :], (A ∨ I)[j, :]〉 = 0

⇐⇒ 〈(A ∨ I)[i, :], (A ∨ I)T
[:, j]〉 = 0

⇐⇒ B[i, j] = 0.

�

Therefore, 2-Dominating Set can be solved in O(nω) time, where ω < 2.376 is the matrix
multiplication exponent [CW90]. To generalize the algorithm to k-Dominating Set, let v1, . . . , vn

be a list of the vertices, and S1, . . . , S(n
k/2)

be a list of all k/2-sets of the vertices. Define an
(n
k/2

)
×n

Boolean matrix Ak, where

Ak[i, j] = 0 ⇐⇒ vj is dominated by Si.

Then, the product Bk = Ak × AT
k is an

(n
k/2

)
×
(n
k/2

)
matrix, where Bk[i, j] = 0 iff Si ∪ Sj is a

dominating set.

Proposition 7.1.2 For k ≥ 7, k-Dominating Set can be solved in nk+o(1) time.

Proof. Coppersmith [Cop97] gave an algorithm for multiplying a n×n.294 matrix with a n.294 ×n
matrix in n2+o(1) ring operations. The productBk = Ak×AT

k is essentially a product of an N×N2/k

matrix with a N2/k × N matrix, for N =
(n
k/2

)
. But 2/k ≤ 0.294 when k ≥ 7, so Coppersmith’s

algorithm can be applied. �

The above method is almost Ω(n) faster than the trivial algorithm, but still essentially requires
examining every possible k-set of vertices. A prominent open problem in parameterized algorithmics

89

is whether or not a time bound even a bit better than nk is possible for k-Dominating Set. This
open problem is our first hypothesis.

Hypothesis 7.1.1 There is a k ≥ 3 and ε ∈ (0, k) such that k-Dominating Set is in O(nk−ε)

time.

We know of no results or conjectures in Parameterized Complexity directly suggesting that
Hypothesis 7.1.1 may be false. Surprising algorithms have been found for hard parameterized
problems in the past. For example, the W[1]-complete problem k-Clique has an O(n.793k) algo-
rithm [FK97, IR78, NP85]. However, if one believes that an improvement for k-Dominating Set
is possible, then one must believe that an accelerated algorithm for Sat exists.

Theorem 7.1.1 Hypothesis 7.1.1 implies that Sat has an accelerated algorithm of the form poly(m)·
2δn.

A weaker connection between k-Dominating Set and Sat has been recently established in
the literature. We give its formal statement:

Theorem 7.1.2 (Chen et al. [CHKX04], Theorem 5.3) Unless FPT = W[1], k-Dominating

Set is not in f(k)no(k) time for any function f .

It is not necessary to know the meaning of the classes FPT and W[1]; to define them would take
us too far afield. What is important to know is the following implication: if FPT = W[1] holds, then
k-Sat can be solved in 2o(n) time. Therefore, Theorem 7.1.2 shows that if k-Dominating Set is
solvable in no(k) time, then k-Sat has a 2o(n) time algorithm. However, this result does not say
anything a priori about the complexity of Sat. The aforementioned result of Calabro, Impagliazzo,
and Paturi implies that, if k-Sat has a 2o(n) algorithm for all k, then Sat has a 2o(n) algorithm
when m ≤ cn, for all constants c.2 Yet, as far as we know, it is consistent with current knowledge
that k-Sat has a 2o(n) algorithm for all k, yet Sat does not have an accelerated algorithm on
instances with a polynomial (or larger) number of clauses.

Theorem 7.1.1 is a special case of the following lemma, which generalizes an NP-hardness
reduction from Sat to Dominating Set.

Lemma 7.1.1 Suppose there is an integer k ≥ 3 and function f , such that k-Dominating Set is

solvable in O(nf(k)) time. Then Sat is in O
(

(m+ k2
n
k)f(k)

)

time.

Proof of Lemma 7.1.1. Fix k ≥ 3. Let F be a CNF formula with n variables; we build a
corresponding graph GF . Without loss of generality, assume k divides n. Partition the set of its
variables into k parts of n/k size each. For each part, make a list of all 2n/k partial assignments to
variables in that part. Each partial assignment shall correspond to a node in GF .

2More precisely, the implication is that for all ε > 0, there is an algorithm Aε that solves Sat in 2εn time.

90

Make each of the k parts a clique, so there are k disjoint 2n/k-cliques with O(22n/k) edges. Now
add m more nodes, one for each clause, and place an edge from a partial assignment node to a
clause node iff the partial assignment satisfies the clause. Finally, for each partial assignment clique,
add a dummy node that has edges to all nodes in that clique, but no edges to clause nodes or any
other clique.

Consider a k-dominating set S in GF . Note that no clause node is in S, otherwise some dummy
node would not be dominated. Suppose S has two (or more) partial assignment nodes from the
same clique. Then there is some clique for which S chose no node; but then S does not dominate
its dummy node. Therefore, the collection of partial assignments corresponding to the nodes of S
is some satisfying variable assignment, since all clause nodes are dominated.

The total number of nodes is k2n/k +m+ k, so the lemma follows. �

Proof of Theorem 7.1.1. Let f(k) = k − ε in Lemma 7.1.1. �

The above result can be rephrased in terms of the k Set Cover problem. Here, one is given a
collection C of n sets over a universe of size m, and the task is to find a S ⊆ C so that |S| = k and
every element of the universe is contained in some set of S. By associating the set Sv = N(v)∪{v}
with each vertex of a graph G = ({v1, . . . , vn}, E), and setting the universe to be {v1, . . . , vn}, a k
set cover for the collection {Sv1 , . . . , Svn} is a k-dominating set for G. Thus an immediate corollary
of Theorem 7.1.1 is the following.

Theorem 7.1.3 If there is k ≥ 2, k Set Cover can be solved in O(nk−ε) time for a collection of

n sets over a universe of size poly(log n), then Sat has an accelerated algorithm on instances with

poly(n) clauses.

7.1.1 A Partial Converse: Using Sat to Solve k-Dominating Set

An intriguing question is whether or not a converse to Theorem 7.1.1 holds. That is, does the
existence of a good Sat algorithm imply the existence of a good k-Dominating Set algorithm?
One would like a method that encodes any graph into a small CNF formula, whereby an assignment
to k log n variables satisfies the formula iff the graph has a k dominating set. We can prove a partial
converse of this type. First we define a variant on Sat:

Problem: Cnf-Sat-S

Input: A pair (F, S), where F is a Boolean CNF formula and S is a subset of F ’s variables.

Output: An assignment a to the variables of S such that F [S = a] is a satisfiable Horn formula.

That is, in Cnf-Sat-S, we wish to find an assignment to the variables of S so that, after
plugging in variables, satisfiability of the remaining formula can be decided in linear time. Cnf-
Sat-S is perhaps more difficult than Sat in terms of exact algorithms, in that we are only allowed
to set variables within a certain subset (other variables are out of our control), and the assignment
we find must not only extend to a satisfying assignment for the formula, but also extend trivially
to a satisfying assignment. On the other hand, this problem can be solved efficiently when |S| is

91

small: if |S| = k, then Cnf-Sat-S is in O((m+ n) · 2k) time.3 We show that a time improvement
in solving this problem with respect to |S| implies a better dominating set algorithm, by succinctly
encoding the k-dominating set problem in a Boolean formula.

Theorem 7.1.4 If Cnf-Sat-S is in O(f(m + n) · 2δ|S|) time for some δ ∈ (0, 1) and function f ,

then k-Dominating Set is in O(f(kn2) · nδk) time.

Notice that for any δ < 1 and constant c > 1, nc+δk ∈ O(nk−ε) for sufficiently large k and
sufficiently small ε > 0. So if f is a polynomial in the above, then the implication is indeed an
improved dominating set algorithm for large enough k.

Proof of Theorem 7.1.4. Let G = (V,E) be given and let n = |V |. We will set up a formula
FG. Define a set of variables S = {x1,1, . . . , x1,log n, x2,1, . . . , x2,log n, . . . , xk,1, . . . , xk,log n}. These
variables will represent the binary encoding of a dominating set– specifying an assignment to the
O(k log n) variables of S will be equivalent to specifying a k-set of vertices in G. For j ∈ [k] and
i ∈ [n], let vj,i be kn variables representing the n vertices in the graph G. Informally, we’ll have
vj,i = 1 if and only if the jth vertex in the candidate dominating set does not dominate the ith
vertex of G.

The clauses of FG check that the k-set guessed by S is indeed dominating. Define x1
i,j := xi,j,

and x0
i,j := ¬xi,j. Fix a vertex u ∈ V in the following. Let b1b2 · · · blog n be a binary encoding of u.

Define the neighborhood N(u) := {v | {u, v} ∈ E}. Let us index the elements of V −N(u) as

V −N(u) = {ui1 , . . . , uin−deg(u)
}.

Then for all j = [k] and d = 1, . . . , n− deg(u), add the clause:

(x1−b1
j,1 ∨ · · · ∨ x1−blog n

j,log n ∨ vj,id)

to FG. Intuitively, this clause says that the idth vertex is not dominated by the jth vertex in the
candidate dominating set. Note there are O(kn2) clauses of this kind, one for each possible setting
of j, u, and d. For all vertices i = 1, . . . , n, add the clause

(¬v1,i ∨ ¬v2,i ∨ · · · ∨ ¬vk,i)

to FG. These clauses stipulate that at least one of the k vertices in the candidate dominating set
must dominate the ith vertex, for all i. This completes the description of FG.

Observe that once all of the variables in S are set to values (say, an assignment a), all remaining
clauses in FG are either of the form (x) or (¬x ∨ ¬y ∨ · · · ∨ ¬z). That is, the remaining formula is
Horn, and thus satisfiability for it can be determined in linear time.

We claim that the Horn formula FG[S = a] is satisfiable if and only if a denotes a dominating
set of G. First, since every clause in FG[S = a] is either a positive literal or a collection of negative
literals, observe that FG[S = a] is unsatisfiable if and only if the clauses (v1,i),(v2,i), . . ., (vk,i)

appear in FG[S = a], for some i = 1, . . . , n. A clause (vj,i) appears iff the literals x1−b1
j,1 , . . .,

3In the terminology of parameterized complexity theory, one would say that Cnf-Sat-S is fixed parameter tractable

with respect to the parameter S.

92

x
1−blog n

j,log n are set false and (x1−b1
j,1 ∨ · · · ∨ x1−blog n

j,log n ∨ vj,i) is a clause in FG. But x1−b1
j,1 , . . ., x

1−blog n

j,log n

are false iff the jth vertex in the set S has binary encoding b1b2 · · · blog n, and the above clause is
in FG iff the vertex with binary encoding b1b2 · · · blog n does not have the ith vertex as a neighbor.
Therefore the clauses (v1,i),(v2,i), . . ., (vk,i) appear in FG[S = a] iff for all j = 1, . . . , n, the jth
vertex in S does not have the ith vertex as a neighbor, i.e. the set S is not dominating.

Hence the pair (F, {xi,j | i ∈ [k], j ∈ [n]}) is an instance of Cnf-Sat-S with |S| = O(k log n)
and |F | = O(kn2). From the above discussion, it follows that a satisfying assignment to S is
equivalent to a dominating set in the graph. �

7.2 A Variant of 2-Sat Can Help Solve Sat

2-Sat is the well-studied restriction of Sat to instances with at most two literals per clause, and
is known to be solvable in linear time [APT79]. One possible direction for achieving an accelerated
algorithm for Sat is to try reducing the problem to 2-Sat in some interesting way. As we do not
believe P = NP, this reduction should be exponential, but hopefully not terribly exponential (e.g.
it might create a formula of 2(1−ε)n total size for some ε > 0). If such a reduction existed, the linear
time algorithm for 2-Sat would imply an accelerated Sat algorithm.

The results in this section are inspired by this direction. We present a minor generalization
of 2-Sat, which we call 2-Sat+2Clauses. This problem admits a straightforward quadratic
(O(mn + n2)) time algorithm. We prove that if it has a sub-quadratic time algorithm, then Sat
has an accelerated algorithm, via a “mildly exponential” reduction.

Define an instance of 2-Sat+2Clauses to be a 2-sat instance, conjoined with at most two
additional clauses of arbitrary length. For example,

(¬x1∨x4)∧ (x2∨¬x3)∧ (x5∨x6)∧ (x1∨x2∨x3∨x4∨x5∨x6)∧ (¬x1∨¬x2∨¬x3∨¬x4∨¬x5∨¬x6)

is a 2-Sat+2Clauses instance. Such “mixed” instances have been studied in the past, especially
in the average-case setting (cf. [MZKBT99]) where one analyzes the solvability of randomly chosen
formulas.

Let us first give a simple quadratic time algorithm for solving this problem.

Theorem 7.2.1 2-Sat+2Clauses is in O(mn+n2) time, where n is the number of variables and

m is the total number of clauses.

Proof. Let F be an instance and C1, C2 be its two arbitrary-size clauses. Construct a directed
graph G of clauses of F − C1 − C2, where each node of G is a literal and there is an edge ℓi → ℓj
iff (¬ℓi ∨ ℓj) ∈ F − C1 − C2.

First, some preprocessing is performed on G. Compute the transitive closure of G in O(mn+n2)
time using standard techniques (cf. [CLRS01], pp.632-633). More precisely, construct a Boolean
matrix M where M [i, j] = 1 ⇐⇒ ℓi → ℓj in this time, for literals ℓi and ℓj. If there is a variable
x such that x→ ¬x and ¬x→ x then return unsatisfiable.

93

Now we run a O(n2) algorithm that examines the clauses C1 and C2, using M . For every pair
of literals ℓi, ℓj from C1 and C2 respectively, observe that (ℓi ∧ ℓj) is equivalent to ¬(¬ℓi ∨ ¬ℓj) =
¬(ℓi → ¬ℓj). Thus for each such pair, we look up in O(1) time if (ℓi → ¬ℓj) in M . If the
corresponding entry is a 1, then we try the next pair, otherwise return satisfiable. If all pairs of
literals have been exhausted without satisfaction, return unsatisfiable. �

Our second hypothesis is that the time complexity of 2-Sat+2Clauses can be slightly improved
upon.

Hypothesis 7.2.1 For some ε > 0, 2-Sat+2Clauses is in O((m+ n)2−ε) time.

We have less intuition concerning the truth of Hypothesis 7.2.1, compared to our intuitions
about Hypothesis 1. At any rate, we do not know of a good reason to rule it out. If one could
show that solving 2-Sat+2Clauses requires computing a transitive closure, that would be good
evidence against Hypothesis 7.2.1; but this possibility seems unlikely to us. For some evidence that
the hypothesis may be true, consider the related problem of 2-Sat+3Clauses (with the obvious
definition). Using fast matrix multiplication, 2-Sat+3Clauses can be solved in O(mn+nω) time.
(Essentially, one computes the transitive closure as before, but in order to determine if there are
literals ℓi, ℓj, ℓk from each of the three clauses such that (ℓi∧ℓj∧ℓk) is consistent with the transitive
closure graph, we set up a triangle-finding problem using the transitive closure edges.)

Theorem 7.2.2 Hypothesis 7.2.1 implies that Sat has an accelerated algorithm of the form poly(m)·
2δn.

Proof. We show how to transform a CNF formula F into an (exponentially sized) 2-Sat+2Clauses
instance F ′. In particular, if F has n variables and m clauses, then F ′ has O(2n/2 +m+n) variables
and O(m2n/2 +mn) clauses. This immediately implies the theorem.

The variables of F ′ will be of the form xS , where S is a proposition that is either a conjunction
of literals in F , or a disjunction of literals in F . Intuitively, we want xS to be true if and only if S
is true. We therefore have ¬xS ⇐⇒ x(¬S), which we capture by having the clauses

(xS ∨ x(¬S)) ∧ (¬xS ∨ ¬x(¬S))

for every proposition S in the below.

We split the set of variables arbitrarily into two parts of roughly n/2 size each. For both parts,
list all the possible 2n/2 partial assignments P to the variables of that part. We think of each P as
a conjunction of n/2 literals, so for example the partial assignment

y1 = 1, y2 = 0, y3 = 1

corresponds to the conjunction
y1 ∧ ¬y2 ∧ y3.

For each P , make two variables xP and x(¬P) in F ′. Let P1, . . . , P2n/2 and Q1, . . . , Q2n/2 be the
partial assignments of the first and second part, respectively. The two arbitrary size clauses in F ′

are:
(xP1 ∨ · · · ∨ xP

2n/2
) and (xQ1 ∨ · · · ∨ xQ

2n/2
).

94

Now we show how the remaining clause structure of F can be represented using 2-CNF clauses. For
each clause C of F , let C1 (C2) be the disjunction of literals in C involving variables from the first
(second) part, respectively. Make variables xC1 , x(¬C1), xC2 , and x(¬C2), and include the clause

xC1 ∨ xC2 .

Finally, we relate the clause variables to the partial assignment variables. For each variable yi of
F , we have the variables xyi and x¬yi in F ′. For every Ci of the form (yi ∨D), F ′ has the clause

x(¬Ci) → x¬yi .

For every partial assignment P that sets yi = 1, F ′ has

xP → xyi .

Similar clauses are introduced between negative literals ¬yi, and the partial assignments and clauses
involving them. For every partial assignment P that falsifies a clause Ci, F

′ has

xP → x(¬Ci).

We now prove that F ′ is satisfiable iff F is satisfiable. It is not hard to see that, if F is satisfiable
by assignment a, then F ′ is satisfied by setting xS = 1 if and only if the proposition S is satisfied
by a.

The other direction (F ′ is satisfiable implies F is satisfiable) is a little more involved. First, we
claim that if xPj = 1 for an n/2-variable partial assignment Pj , then for all j 6= i, xPi = 0. Let y
be a variable in which Pi and Pj differ in assignment. Without loss of generality, xPj → xy and
xPi → x¬y → ¬xy, therefore only one of xPi and xPj can be true for all i 6= j.

Suppose there is a satisfying assignment to F ′, and it sets xP = 1 and xQ = 1, where P (Q)
is a partial assignment for the variables in the first (respectively, second) part. We claim that the
variable assignment obtained by P and Q satisfies F . For suppose this assignment falsified a clause
C, and C1 (C2) is the disjunction of literals in C involving variables from the first (respectively,
second) part. Then by definition, xP → x(¬C1) and xQ → x(¬C2). But the satisfying assignment
to F ′ sets xP = 1 and xQ = 1, thus x(¬C1) ∧ x(¬C2) is satisfied by the assignment, and hence
(¬xC2) ∧ (¬xC2) is also satisfied. However, the satisfying assignment to F ′ also satisfies the clause
(xC1 ∨ xC2) in F ′. This is a contradiction. �

Notice that if we combined the O(mn + n2) algorithm for 2-Sat+2Clauses and the above
reduction, we would only obtain an O(m2n) algorithm for Sat, which is not much of an improvement
over brute force search.

7.3 A Variant on Horn-Sat Can Help Solve Sat

Similar to 2-Sat, the Horn-Sat problem is another restriction of Sat that is known to be solvable
in linear time [DG84]. An instance of Horn-Sat is a CNF formula with at most one non-negative
literal per clause. Horn-Sat is considered to be a more powerful restriction of Sat than 2-Sat,

95

since Horn-Sat is P-complete and 2-Sat is NL-complete. Somewhat analogous to the previous
section, we will show that better algorithms for an extension of Horn-Sat imply better algorithms
for Sat. Owing to the power of Horn-Sat, the result we prove here is more general.

For a constant k ≥ 2, we define Horn-Sat+kClauses to be a CNF of a Horn formula conjoined
with k additional disjunctions of arbitrary size. Clearly, an instance of this problem can be solved
in O(nk · (m+ n)) time, where n is the number of variables and m is the number of clauses.

Hypothesis 7.3.1 There is a k such that Horn-Sat+kClauses is in O((n+m)k−ε) time.

Theorem 7.3.1 Hypothesis 7.3.1 implies that Sat has an accelerated algorithm of the form poly(m)·
2δn.

We must admit that we are less certain in the truth of Hypothesis 7.3.1, compared to the
previous two hypotheses, since the “gap” between the runtime of the best algorithm we know and
the time bound we would like is larger than the other two cases. The proof of is similar to the one
for 2-Sat+2Clauses, but with a few modifications.

Proof. (Sketch) Let F be a CNF of n variables and m clauses. Divide the set of n variables into k
equal-sized parts, and form all possible 2n/k assignments for the variables in each part. For each of
the k2n/k partial assignments a, we make an “assignment variable” xa for it in the new formula. For
each part i = 1, . . . , k, we make an “assignment clause”, which is the disjunction of all assignment
variables from part i.

For each literal ℓ in F , we make a “literal variable” xℓ in the new formula, and clauses

(¬xa ∨ xℓ)

for each literal ℓ implied by a partial assignment a. Thus an xa implies exactly n/k variables of
type xℓ. We also make clauses

(¬xℓ ∨ ¬x¬ℓ),

forbidding two opposing literal variables to both be true. (For this reason, at most one assignment
variable from an assignment clause can possibly be true.)

For each clause C from F , define Ci to be the restriction of C to variables from part i. Each
clause C from F will have 2k “clause variables” in the new formula. In particular, for each part,
there are two clause variables xCi and x¬Ci , representing Ci. A clause C in F is represented by the
Horn clause

(¬x¬C1 ∨ · · · ∨ ¬x¬Ck−1
∨ xCk

).

Suppose Ci = (ℓ1 ∨ · · · ∨ ℓj). Then the corresponding Horn clauses are made:

(¬x¬ℓ1 ∨ ¬x¬ℓj
∨ x¬Ci), (¬xℓ1 ∨ xCi), . . . , (¬xℓj

∨ xCi).

Finally, we make clauses forbidding both xCi and x¬Ci :

(¬xCi ∨ ¬x¬Ci).

We claim that this new formula is satisfiable iff F is satisfiable. Namely, the chosen partial assign-
ment variables from each of the k assignment clauses correspond to a satisfying assignment for F .
�

96

7.4 Chapter Summary

In this chapter, we showed how improvements in the runtime of several polynomial time solvable
problems would lead to an accelerated algorithm for satisfiability in conjunctive normal form. Our
reductions are exponential-sized ones, and therefore somewhat unorthodox, but they build on
the split-and-list approach from the previous chapter. To complement these results, it would be
interesting if one could find more concrete evidence for the impossibility of an improved Cnf-Sat
algorithm.

97

98

Chapter 8

Epilogue: Future Work

In this thesis, we have studied both the limitations and possibilities for computers solving difficult
and fundamental computational problems. On the one hand, we found new time lower bounds
for solving NP-complete problems on space-bounded random access machines; on the other, we
found accelerated algorithms for a large class of NP-complete problems. Below we summarize some
specific problems for further work in this area that we believe are interesting.

1. Further Directions for Lower Bounds:

• Prove that NTIME[n] * DTISP[n2−ε, log n] for all ε > 0, under the random-access model.
A weaker goal is to simply improve upon the best time lower bound we have obtained so
far. Recall that our best result is that NTIME[n] * DTISP[n2 cos(π/7)−ε, no(1)], and that
our automated proof search strongly suggests that an improvement on this lower bound
will require truly new ideas and techniques.

• Our experiments indicate that there a fundamental limitation on what lower bounds can
be proved with the “alternation-trading scheme” for indirect diagonalization in the stan-
dard sense, and this limitation is related to the amount of speedup involved. However,
we do not know yet how to prove that this limitation is indeed inevitable, and we cannot
rule out the idea of using a new, unforseen time hierarchy theorem to prove better lower
bounds by indirect diagonalization. What kinds of lower bounds would not be provable
using this method, even in the presence of new and improved time hierarchies? General
theoretical results along these lines would be very interesting, considering the widespread
use of the alternation-trading scheme in proving time lower bounds.

• Can the alternation-trading arguments be extended to lower bounds for problems not
based in nondeterminism? For example, can better time-space lower bounds be found for
the Majority Sat problem? (In this problem, one must determine if a given Boolean
formula is satisfied by at least 1/2 of its assignments.) Very recently, we have made some
progress on this question, proving time-space lower bounds for counting the number of
satisfying assignments to a Boolean formula modulo an integer [Wil07].

99

2. Further Directions for Algorithms:

• Find an accelerated algorithm for Max Cut and Max 2-Sat that does not require fast
matrix multiplication. A more combinatorial approach would be enlightening. Along
these lines, it would be interesting to improve the space usage of our algorithm for
Weighted 2-CSP. Currently, O(1.74n) time and O(22n/3) ≤ O(1.588n) space are re-
quired. A very interesting open question is if there is a O(1.9n) time algorithm for these
problems that uses only polynomial space. This question would have a positive answer
if one could find an algorithm for solving the k-Clique problem that uses logarithmic
space and nk−δ time for some δ > 0.

• Generalize the accelerated algorithm for Max 2-Sat to get an accelerated algorithm for
Max k-Sat, for any positive integer k. Our current formulation would require one to
give a more efficient algorithm for finding a constant-sized hyperclique in a hypergraph.
However, no general results are known for this problem, to our knowledge. We conjecture

that for all k ≥ 2, Max k-Sat is in O∗(2n(1− 1
k+1

)) time, based on the conjecture that
matrix multiplication is in n2+o(1) time.

• Find a nk−δ algorithm for k-Dominating Set, for some k ≥ 3 and some δ > 0. As
proved in Chapter 7, this would yield an accelerated algorithm for Sat. Alternatively,
find weaker algorithmic hypotheses that would also imply an accelerated Sat algorithm,
or give stronger evidence that no such algorithm exists.

100

Bibliography

[AGN01] J. Alber, J. Gramm, and R. Niedermeier. Faster exact algorithms for hard problems: a
parameterized point of view. Discrete Mathematics 229:3–27, Elsevier, 2001.

[AS80] D. B. Arnold and M. R. Sleep. Uniform random generation of balanced parenthesis strings.
ACM Transactions on Programming Languages and Systems 2(1):122–128, 1980.

[AS03] V. Arvind and R. Schuler. The quantum query complexity of 0-1 knapsack and associated
claw problems. In Proceedings of International Symposium on Algorithms and Computation
(ISAAC), Springer LNCS:168–177, 2003.

[APT79] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Information Processing Letters 8(3):121–123, 1979.

[Ajt02] M. Ajtai. Determinism versus Nondeterminism for Linear Time RAMs with Memory Re-
strictions. Journal of Computer and System Sciences 65:2–37, 2002.

[BNS92] L. Babai, N. Nisan, and M. Szegedy. Multiparty Protocols, Pseudorandom Generators for
Logspace, and Time-Space Trade-Offs. Journal of Computer and System Sciences 45(2):
204–232, 1992.

[BR99] N. Bansal and V. Raman. Upper bounds for Max-Sat: Further Improved. In Proceedings
of International Symposium on Algorithms and Computation (ISAAC), Springer LNCS
1741:247–258, 1999.

[BBS86] L. Blum, M. Blum, and M. Shub. A Simple Unpredictable Pseudo-Random Number Gen-
erator. SIAM Journal on Computing 15:364–383, 1986.

[CIP06] C. Calabro, R. Impagliazzo, and R. Paturi. A Duality between Clause Width and Clause
Density for SAT. In IEEE Conference on Computational Complexity (CCC), 252–260, 2006.

[CJW06] J. Carlson, A. Jaffe, and A. Wiles (eds). The Millennium Prize Problems. American
Mathematical Society, 2006.

[CKS81] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM
28(1):114–133, 1981.

[CK04] J. Chen and I. A. Kanj. Improved exact algorithms for Max-Sat. Discrete Applied Math-
ematics, 142(1-3), 17–27, 2004.

101

[CHKX04] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Linear FPT Reductions and Computational
Lower Bounds. In Proceedings of ACM Symposium on Theory of Computing (STOC), 212–
221, 2004.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
2nd Edition, MIT Press, 2001.

[CS76] A. K. Chandra and L. J. Stockmeyer. Alternation. In Proceedings of IEEE Symposium on
Foundations of Computer Science (FOCS) 98–108, 1976.

[Cob66] A. Cobham. The recognition problem for the set of perfect squares. In IEEE Symposium
on Switching and Automata Theory (SWAT), 78–87, 1966.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of ACM Sym-
posium on Theory of Computing (STOC), 151–158, 1971.

[Coo88] S. A. Cook. Short Propositional Formulas Represent Nondeterministic Computations. In-
formation Processing Letters 26(5): 269-270 (1988)

[CW90] D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progressions.
Journal of Symbolic Computation 9(3):251–280, 1990.

[Cop97] D. Coppersmith. Rectangular Matrix Multiplication Revisited. Journal of Complexity
13:42–49, 1997.

[CKPS00] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In Proceedings of International
Conference on the Theory and Application of Cryptographic Techniques (EUROCRYPT),
Springer LNCS 1807, 392–407, 2000.

[CL07] A. Czumaj and A. Lingas. Finding a Heaviest Triangle is not Harder than Matrix Mul-
tiplication. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),
986–994, 2007.

[DGHK01] E. Dantsin, M. Gavrilovich, E. A. Hirsch, and B. Konev. MAX-SAT approximation
beyond the limits of polynomial-time approximation. Annals of Pure and Applied Logic
113(1-3): 81–94, 2001.

[DGHKKPRS02] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,
P. Raghavan, and U. Schoening. A Deterministic (2 − 2/(k + 1))n Algorithm for k-SAT
Based on Local Search. Theoretical Computer Science 289(1):69–83, 2002.

[DHW04] E. Dantsin, E. A. Hirsch, and A. Wolpert. Algorithms for SAT based on search in
Hamming balls. In Proceedings of Symposium on Theoretical Aspects of Computer Science
(STACS 2004), Springer LNCS 2996, 141–151, 2004.

[DW05a] E. Dantsin and A. Wolpert. Derandomization of Schuler’s Algorithm for SAT. In Pro-
ceedings of Conference on Theory and Applications of Satisfiability Testing (SAT 2004),
Springer LNCS 3542, 80–88, 2005.

102

[DW05b] E. Dantsin and A. Wolpert. An improved upper bound for SAT. In Proceedings of Con-
ference on Theory and Applications on Satisfiability Testing (SAT 2005), Springer LNCS
3569, 400–407, 2005.

[DHW05] E. Dantsin, E. A. Hirsch, and A. Wolpert. Clause Shortening Combined with Pruning
Yields a New Upper Bound for Deterministic SAT Algorithms. Electronic Colloquium on
Computational Complexity, Report 102, 2005.

[DW06] E. Dantsin and A. Wolpert. MAX-SAT for formulas with constant clause density can be
solved faster than in O(2n) time. In Proceedings of Conference on Theory and Applications
of Satisfiability Testing, Springer LNCS 4121:266–276, 2006.

[Dew81] A. K. Dewdney. Fast Turing reductions between problems in NP. University of Western
Ontario DCS Technical Reports #68–75, 1981.

[Dew82] A. K. Dewdney. Linear time transformations between combinatorial problems. Interna-
tional Journal of Computer Mathematics 11:91–110, 1982.

[DvM06] S. Diehl and D. van Melkebeek. Time-Space Lower Bounds for the Polynomial-Time
Hierarchy on Randomized Machines. SIAM Journal on Computing 36: 563-594, 2006.

[DG84] W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. Journal of Logic Programming 1(3):267–284, 1984.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[EG04] F. Eisenbrand and F. Grandoni. On the Complexity of Fixed Parameter Clique and Dom-
inating Set. Theoretical Computer Science 326(1-3):57–67, 2004.

[FK97] U. Feige and J. Kilian. On Limited versus Polynomial Nondeterminism. Chicago Journal
of Theoretical Computer Science, 1997.

[For97] L. Fortnow. Nondeterministic Polynomial Time Versus Nondeterministic Logarithmic
Space: Time-Space Tradeoffs for Satisfiability. In Proceedings of IEEE Conference on Com-
putational Complexity (CCC), 52–60, 1997.

[FvM00] L. Fortnow and D. van Melkebeek. Time-Space Tradeoffs for Nondeterministic Compu-
tation. In Proceedings of IEEE Conference on Computational Complexity (CCC), 2–13,
2000.

[FLvMV05] L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-Space Lower Bounds
for Satisfiability. Journal of the ACM 52(6):835–865, 2005.

[GO95] A. Gajentaan and M. H. Overmars. On a class of o(n2) problems in computational geometry.
Computational Geometry 5:165–185, 1995.

[GJS76] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems.
Theoretical Computer Science 1:237–267, 1976.

[GJ79] M. Garey and D. Johnson. Computers and intractability: a guide to the theory of NP-
completeness. W.H. Freeman, San Francisco, 1979.

103

[GN00] J. Gramm and R. Niedermeier. Faster exact solutions for MAX2SAT. In Proceedings of
Italian Conference on Algorithms and Complexity (CIAC), Springer LNCS 1767:174–186,
2000.

[GS89] Y. Gurevich and S. Shelah. Nearly linear time. Logic at Botik ’89, Springer LNCS 108–118,
1989.

[GHNR03] J. Gramm, E.A. Hirsch, R. Niedermeier and P. Rossmanith. Worst-case upper bounds
for MAX-2-SAT with application to MAX-CUT. Discrete Applied Mathematics 130(2):139–
155, 2003.

[Has86] J. H̊astad. Computational limitations for small depth circuits. PhD Thesis, MIT Press,
1986.

[HS74] E. Horowitz and S. Sahni. Computing partitions with applications to the knapsack problem.
Journal of the ACM 21:277–292, 1974.

[Hir00] E. A. Hirsch. A 2m/4-time Algorithm for MAX-2-SAT: Corrected Version. Electronic Col-
loquium on Computational Complexity Report TR99-036, 2000.

[Hir03] E. A. Hirsch, Worst-case study of local search for MAX-k-SAT. Discrete Applied Mathe-
matics 130(2):173–184, 2003.

[IP01] R. Impagliazzo and R. Paturi. On the Complexity of k-SAT. Journal of Computer and
System Sciences 62(2):367–375, 2001.

[IPZ01] R. Impagliazzo, R. Paturi, and F. Zane. Which Problems Have Strongly Exponential Com-
plexity? Journal of Computer and System Sciences 63(4): 512–530, 2001.

[IR78] A. Itai and M. Rodeh. Finding a Minimum Circuit in a Graph. SIAM Journal on Computing
7(4):413–423, 1978.

[Kal02] A. Kalai. Efficient Pattern-Matching with Don’t Cares. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), 655–656, 2002.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Com-
putations, 85–103, 1972.

[Kan83] R. Kannan. Alternation and the power of nondeterminism. In Proceedings of ACM Sym-
posium on Theory of Computing (STOC), 344–346, 1983.

[Kan84] R. Kannan. Towards Separating Nondeterminism from Determinism. Mathematical Sys-
tems Theory 17(1):29–45, 1984.

[Kar84] N. Karmarkar. A new polynomial time algorithm for linear programming. Combinatorica
4:373–395, 1984.

[Kha79] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademia Nauk
SSSR, 1093–1096, 1979.

104

[KS99] . A. Kipnis and A. Shamir. Cryptanalysis of the HFE Public Key Cryptosystem by Re-
linearization. In Proceedings of Annual International Cryptology Conference (CRYPTO)
Springer LNCS 1666:19–30, 1999.

[KMRR05] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. Algorithms Based on the Treewidth
of Sparse Graphs. In Proceedings of Workshop on Graph Theoretic Concepts in Computer
Science (WG), Springer LNCS 3787:385–396, 2005.

[KK06] A. Kojevnikov and A. S. Kulikov. A New Approach to Proving Upper Bounds for MAX-2-
SAT. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms, 11–17, 2006.

[KF02] A. S. Kulikov and S. S. Fedin. A 2|E|/4-time Algorithm for MAX-CUT. Zapiski nauchnyh
seminarov POMI No.293, 129–138, 2002.

[Lan04] S. Landau. Polynomials in the nations service: using algebra to design the Advanced
Encryption Standard. American Mathematical Monthly 89–117, February 2004.

[LLZ02] M. Lewin, D. Livnat, and U. Zwick. Improved rounding techniques for the MAX 2-SAT
and MAX DI-CUT problems. In Proceedings of Integer Programming and Combinatorial
Optimization (IPCO), 67–82, 2002.

[LV99] R. J. Lipton and A. Viglas. On the Complexity of SAT. In Proceedings of IEEE Symposium
on Foundations of Computer Science (FOCS), 459–464, 1999.

[MR99] M. Mahajan and V. Raman. Parameterizing above Guaranteed Values: MAXSAT and
MAXCUT. Journal of Algorithms 31(2):335–354, 1999.

[MS87] W. Maass and A. Schorr. Speed-Up of Turing Machines with One Work Tape and a Two-
Way Input Tape. SIAM Journal on Computing 16(1):195–202, 1987.

[vM04] D. van Melkebeek. Time-Space Lower Bounds for NP-Complete Problems. In G. Paun,
G. Rozenberg, and A. Salomaa (eds.), Current Trends in Theoretical Computer Science
265–291, World Scientific, 2004.

[vMR05] D. van Melkebeek and R. Raz. A Time Lower Bound for Satisfiability. Theoretical Com-
puter Science 348(2-3):311–320, 2005.

[MS72] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squar-
ing requires exponential space. In Proceedings of IEEE Symposium on Switching and Au-
tomata Theory (SWAT), 125–129, 1972.

[MW05] A. Meyerson and R. Williams. On the Complexity of Optimal K-Anonymity. In Proceedings
of ACM Symposium on Principles of Database Systems (PODS), 2004.

[MZKBT99] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. 2+p-SAT:
Relation of Typical-Case Complexity to the Nature of the Phase Transition. Random Struc-
tures and Algorithms 15:414–440, 1999.

[NP85] J. Nesetril and S. Poljak. On the complexity of the subgraph problem. Commentationes
Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

105

[NR00] R. Niedermeier and P. Rossmanith. New upper bounds for maximum satisfiability. Journal
of Algorithms 26:63–88, 2000.

[NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Com-
putational Complexity 4(4):301–313, 1994.

[PR81] W. Paul and R. Reischuk. On time versus space II. Journal of Computer and System
Sciences 22:312–327, 1981.

[PPST83] W. Paul, N. Pippenger, E. Szemeredi, and W. Trotter. On determinism versus nonde-
terminism and related problems. In Proceedings of IEEE Symposium on Foundations of
Computer Science (FOCS), 429–438, 1983.

[PPSZ05] R. Paturi, P. Pudlak, M. E. Saks, and F. Zane. An improved exponential-time algorithm
for k-SAT. Journal of the ACM 52(3):337–364, 2005.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Pat95] J. Patarin. Cryptoanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt’88.
In Proceedings of the Annual International Cryptology Conference (CRYPTO), 248–261,
1995.

[Pud98] P. Pudlak. Satisfiability – algorithms and logic. In Proceedings of the International Sym-
posium on Mathematical Foundations of Computer Science (MFCS), Springer LNCS 1450,
129–141, 1998.

[RRR98] V. Raman, B. Ravikumar, and S. Srinivasa Rao. A Simplified NP-Complete MAXSAT
problem. Information Processing Letters 65:1–6, 1998.

[Rob86] M. Robson. Algorithms for maximum independent sets. Journal of Algorithms, 7(3):425–
440, 1986.

[RN02] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (2nd ed.) Prentice
Hall, 2002.

[San01] R. Santhanam. Lower bounds on the complexity of recognizing SAT by Turing machines.
Information Processing Letters 79(5):243–247, 2001.

[Sav70] W. J. Savitch. Relationships Between Nondeterministic and Deterministic Tape Complex-
ities. Journal of Computer and System Sciences 4(2):177–192, 1970.

[Sch78] C. Schnorr. Satisfiability is quasilinear complete in NQL. Journal of the ACM 25(1):136–
145, 1978.

[SS81] R. Schroeppel and A. Shamir. A T=O(2n/2), S=O(2n/4) Algorithm for Certain NP-
Complete Problems. SIAM Journal on Computing 10(3):456–464, 1981.

[Sch99] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In
Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), 410–
414, 1999.

106

[Sch03] R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive normal
form. Journal of Algorithms 54(1):40–44, 2005.

[SS03] A. Scott and G. Sorkin. Faster Algorithms for MAX CUT and MAX CSP, with Polynomial
Expected Time for Sparse Instances. In Proceedings of International Workshop on Random-
ization and Approximation Techniques in Computer Science (RANDOM), Springer LNCS
2764:382–395, 2003.

[SS06] A. Scott and G. Sorkin. Solving Sparse Random Instances of Max Cut and Max 2-CSP in
Linear Expected Time. Combinatorics, Probability and Computing 15:281–315, 2006.

[Str69] V. Strassen. Gaussian Elimination is Not Optimal. Numerische Mathematik 13:354–356,
1969.

[Sud92] M. Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of Approxima-
tions. PhD Thesis, University of California at Berkeley, 1992.

[Tou01] I. Tourlakis. Time-Space Tradeoffs for SAT on Nonuniform Machines. Journal of Computer
and System Sciences 63(2):268–287, 2001.

[Uma01] C. Umans. The Minimum Equivalent DNF Problem and Shortest Implicants. Journal of
Computer and System Sciences 63(4):597–611, 2001.

[VW06] V. Vassilevska and R. Williams. Finding a maximum weight triangle in n3−δ time, with
applications. In Proceedings of ACM Symposium on Theory of Computing (STOC), 225–
231, 2006.

[Vig02] A. Viglas. On Hardness and Lower Bounds in Complexity Theory. PhD Thesis, Princeton
University, Technical Report TR-644-02, January 2002.

[WL92] J. Wang and L. Longpre. Nondeterministic and Alternating Computations. Proceedings of
IEEE International Conference on Computing and Information (ICCI), 88–91, 1992.

[Wil03] R. Williams. On Computing k-CNF Formula Properties. Theory and Applications of Sat-
isfiability Testing, Springer LNCS 2919:330–340, 2004.

[Wil05a] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science 348(2-3):357–365, 2005.

[Wil05b] R. Williams. Inductive Time-Space Lower Bounds for SAT and Related Problems. Com-
putational Complexity 15:433–470, 2007.

[Wil07] R. Williams. Time-Space Tradeoffs for Counting NP Solutions Modulo Integers. In Pro-
ceedings of the IEEE Conference on Computational Complexity (CCC), 70–82, 2007.

[Woe03] G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combinatorial
Optimization - Eureka! You shrink!, Springer LNCS 2570:185–207, 2003.

[Woe04] G. J. Woeginger. Space and time complexity of exact algorithms: some open problems.
In Proceedings of the International Workshop on Parameterized and Exact Computation
(IWPEC 2004), Springer LNCS 3162, 281–290, 2004.

107

[Yus06] R. Yuster. Finding and counting cliques and independent sets in r-uniform hypergraphs.
Information Processing Letters 99(4):130–134, 2006.

[Zwi98] U. Zwick, Approximation algorithms for constraint satisfaction problems involving at most
three variables per constraint Proceedings of ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 201–210, 1998.

108

