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Abstract

Problems of clustering data from pairwise similarity information are ubiquitous in Computer Science.
Theoretical treatments typically view the similarity information as ground-truth and then design algorithms
to (approximately) optimize various graph-based objective functions. However, in most applications, this
similarity information is merely based on some heuristic: the true goal is to cluster the points correctly rather
than to optimize any specific graph property. In this work, we initiate a theoretical study of the design of
similarity functions for clustering from this perspective. In particular, motivated by recent work in learning
theory that asks “what natural properties of a similarity function are sufficient to be able to learn well?” we
ask “what natural properties of a similarity function are sufficient to be able to cluster well?”

We develop a notion of the clustering complexity of a given property (analogous to notions of capac-
ity in learning theory), that characterizes its information-theoretic usefulness for clustering. We then analyze
this complexity for several natural game-theoretic and learning-theoretic properties, as well as design
efficient algorithms that are able to take advantage of them. We consider two natural clustering objectives:
(a) list clustering: analogous to the notion of list-decoding, the algorithm can produce a small list of
clusterings (which a user can select from) and (b) hierarchical clustering: the desired clustering is some
pruning of this tree (which a user could navigate). Our algorithms for hierarchical clustering combine recent
learning-theoretic approaches with linkage-style methods.

We also show how our algorithms can be extended to the inductive case, i.e., by using just a constant-
sized sample, as in property testing. The analysis here uses regularity-type results of [18] and [4].





1 Introduction

Clustering problems arise in many different fields, from data mining to computer vision to VLSI design to
computational biology. In the Algorithms literature, clustering is typically studied by posing some objective
function, suck as k-median, min-sum or k-means, and then developing algorithms for approximately opti-
mizing this objective given a data set represented as a weighted graph [13, 25, 21, 22]. That is, the graph
is viewed as “ground truth” and then one considers algorithms to optimize various objectives on this data.
On the other hand, for problems such as clustering documents by topic or clustering web-search results by
category, ground truth is really the unknown true topic or true category of each object. The construction of the
weighted graph is just done using a heuristic based on some knowledge of the general problem: for example,
cosine-similarity for clustering documents or a Smith-Waterman score in computational biology. In other
words, in many real-world applications the goal is really to produce a clustering that gets the data correct, not
necessarily to optimize some specific graph property.

In this work, we imagine a domain expert with a large set of data that she would like to cluster (perhaps
documents clustered by topic, or proteins clustered by function). Based on the task at hand, the domain
expert comes up with a pairwise similarity function K that is related to the desired goal. If this function were
extremely good, sayK(x, y) > 1/2 for all pairs x and y that should be in the same cluster, andK(x, y) < 1/2
for all pairs x and y that should be in different clusters, then she wouldn’t need the help of an additional
clustering algorithm: she could just use it to assign clusters directly.1 However, what if she cannot construct
a similarity function that is that good: what natural and much weaker properties would be sufficient for it to
still be useful for producing a good clustering? What kind of advice can we provide to the domain expert in
terms of desiderata for a similarity function?2 Moreover, given a property she believes her similarity function
has with respect to the ground truth, what algorithms would guarantee a low-error solution? In particular,
motivated by work on learning with kernel functions that asks “what natural properties of a given kernel (or
similarity) function are sufficient to allow one to learn well?” [7, 8, 36, 34, 20, 23, 1] we ask the question
“what natural properties of a similarity function are sufficient to allow one to cluster well?” Our approach can
be thought of as defining a PAC model for clustering, though the basic object of study, rather than a concept
class, is a property that effectively can be viewed as a set of (concept, distribution) pairs. We expand on this
further in Section 1.1.

The main reason there has not been so much work in this direction is that if one defines success as
outputting a close approximation to the correct clustering, then one needs very strong conditions to guarantee
this will occur. For example, suppose we weaken the above condition to simply require that all points x are
more similar to all points y from their cluster than to any points y from any other clusters. That is, for any
data point x, if we sort the data points y by decreasing similarity to x, then x’s cluster is some prefix of this
ordering. This is still a strong condition and yet it is not sufficient to guarantee one can produce even a good
approximation to the correct answer. For instance, in the example in Figure 1, there are multiple clusterings
consistent with this property (one with 2 clusters, two with 3 clusters, and one with 4 clusters). Even if one
is told the correct clustering has 3 clusters, there is no way for an algorithm to tell which of the two (very
different) possible solutions is correct. In fact, results of Kleinberg [26] can be viewed as effectively ruling
out a broad class of scale-invariant properties such as this one as being sufficient for producing the correct
answer.

In our work we get around this problem by considering two relaxations of the clustering objective that
are natural for many clustering applications. The first is as in list-decoding to allow the algorithm to pro-
duce a small list of clusterings such that at least one of them has low error. The second is to alternatively
allow the clustering algorithm to produce a tree (a hierarchical clustering) such that the correct answer is

1Correlation Clustering can be viewed as a relaxation that allows some pairs to fail to satisfy this condition, and the algorithms
of [10, 14, 38, 3] shows that this is sufficient to cluster well if the number of pairs that fail is small. Planted partition models [5, 30, 15]
allow for many failures so long as they occur at random. We will be interested in much more drastic relaxations, however.

2Of course, given some clustering algorithm A, one could simply tell the domain expert to create a graph structure such that
algorithm A will find the correct answer, but this is not particularly enlightening.

1



B D

CA

Figure 1: Suppose that K(x, y) = 1 if x and y belong to the same dark shaded region (A, B, C, or D), K(x, y) = 1/2
if x ∈ A and y ∈ B or if x ∈ C and y ∈ D, and K(x, y) = 0 otherwise. Even assuming that all points are more similar
to other points in their own cluster than to any point in any other cluster, there are still multiple consistent clusterings,
including two consistent 3-clusterings ({A,B, C ∪ D} and {A ∪ B, C, D}). However, there is a single hierarchical
decomposition such that any consistent clustering is a pruning of this tree.

(approximately) some pruning of this tree. For instance, the example in Figure 1 has a natural hierarchical
decomposition of this form. Both relaxed objectives make sense for settings in which we imagine the output
being fed to a user who will then decide what she likes best. For example, given a hierarchical clustering
of web-pages, a user could start at the top (a single cluster with all objects in it) and then “click” on any
cluster that is too broad to break it apart into its children in the tree (in fact, Yahoo directories are organized
this way). We then show that with these relaxations, a number of interesting, natural learning-theoretic and
game-theoretic properties can be defined that each are sufficient to allow an algorithm to cluster well.

1.1 Perspective

There has been significant work both in machine learning and theoretical computer science on defining and
comparing notions of what it means to produce a good clustering of a given set of data points – e.g, of a given
weighted graph or of a given set of points in Rn. That work is primarily focused on the objective function,
for example presenting graphs or sets of points in Rn for which one objective produces better-looking results
than another [12, 31, 32, 25], or on issues such as the stability of clustering algorithms [33, 9]. In this work
we flip the perspective around, viewing the problem as effectively one of learning from unlabeled data via
similarity functions. That is, our goal is to achieve low true error (an approximation to the correct clustering)
and we then ask what natural properties might we want a pairwise similarity function to satisfy that would
allow us to get at this ground truth, either by producing a tree such that some pruning is approximately correct
or through a small list of candidates.

Our approach can also be viewed as developing a PAC model for clustering. In the PAC model for learning
[39], the basic object of study is the concept class, and one asks what natural classes are efficiently learnable
and by what algorithms. In our setting, the basic object of study is the property, which can be viewed as a set
of concept-distribution pairs (i.e., the pairs for which the data and target concept satisfy the desired relation).
As with the PAC model for learning, we then ask what natural properties are sufficient to efficiently cluster
well (in either the tree or list models) and by what algorithms. Note that the more common approach in
clustering is to pick some specific algorithm (e.g., k-means, EM) and analyze conditions for that algorithm to
succeed. While there is also work in learning of that type (e.g., when does some heuristic like ID3 work well),
our interest is in understanding which properties are sufficient for clustering, and then ideally the simplest
algorithm to cluster given that property.

1.2 Connections to other related work

There has been substantial and continuing work in recent years in the machine learning community analyzing
the use of pairwise similarity functions (especially kernel functions) for learning [1, 7, 8, 20, 23, 36, 34].
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Much of this work examines properties that allow a similarity function to be useful for learning from labeled
examples. The clustering problem is more difficult because even in the relaxations we consider, the forms of
feedback allowed are much weaker.

There has also been significant work both in the algorithms and in the machine learning community on
learning mixtures of distributions for the case that examples lie in Rn [2, 6, 24, 41, 16]. This work, like
ours, has an explicit notion of a correct ground-truth clustering of the data points and to some extent can
be viewed as addressing the question: what properties of an embedding into Rn would allow a point set to
cluster well? However, unlike our focus, the types of assumptions made are distributional and in that sense
are much stronger than the types of properties we will be considering. Abstractly speaking, this view of
clustering parallels the “generative” classification setting [17], while the framework we propose parallels the
“discriminative” classification setting (i.e. the PAC model of Valiant [39] and the Statistical Learning Theory
framework of Vapnik [40]).

Another line of research related to ours is work on planted partitions in graphs [5, 30, 15]. This work also
has a notion of a “correct answer”, but as with the distributional models above, makes strong probabilistic
assumptions about the similarity function.

1.3 Our Results

Broadly speaking, we provide a general unified framework for analyzing what properties of a similarity func-
tion are sufficient to allow it to be useful for clustering, under different levels of relaxation of the clustering
objective. We illustrate our framework by analyzing several natural game-theoretic and learning-theoretic
classes of properties. Specifically:

• We consider a family of stability-based properties. For example, we show that a natural generalization
of the “stable marriage” property (no two subsets A ⊂ C, A′ ⊂ C ′ of clusters C, C ′ in the correct
clustering are both more similar on average to each other than to the rest of their own clusters) is
sufficient to produce a hierarchical clustering via a natural average-linkage algorithm (Theorems 6 and
9). Moreover, a significantly weaker notion of stability is also sufficient to produce a hierarchical
clustering, but requires a more involved algorithm (Theorem 8).

• We show that a weaker “average-attraction” property (which we show is provably not enough to produce
a single correct tree) is sufficient to produce a small list of clusterings (Theorem 3), and give several
generalizations to even weaker conditions that generalize the notion of large-margin kernel functions,
using and extending recent results in learning theory (Theorem 5).

• We define the clustering complexity of a given property (the minimum possible list length that can be
guaranteed by any algorithm) and provide both upper and lower bounds for the properties we consider.
This notion is analogous to notions of capacity in classification [11, 17, 40] and it provides a formal
measure of the inherent usefulness of a similarity function property.

• We also show how these algorithms can be extended to the inductive case, i.e., by using just a constant-
sized sample, as in property testing. While most of our algorithms extend in a natural way, for certain
properties their analysis requires more delicate arguments using regularity-type results of [18] and [4].

More generally, our framework provides a formal way to analyze what properties of a similarity function
would be sufficient to produce low-error clusterings, as well as what algorithms are suited for a given property.

2 Notation, Definitions, and Preliminaries

We consider a clustering problem (S, `) specified as follows. Assume we have a data set S of n objects, where
each object is an element of an abstract instance space X . Each x ∈ S has some (unknown) “ground-truth”
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label `(x) in Y = {1, . . . , k}, where we will think of k as much smaller than n. The goal is to produce a
hypothesis h : X → Y of low error up to isomorphism of label names. Formally, we define the error of h to
be err(h) = minσ∈Sk

[Prx∈S [σ(h(x)) 6= `(x)]]. We will assume that a target error rate ε, as well as k, are
given as input to the algorithm.

We will be considering clustering algorithms whose only access to their data is via a pairwise similarity
function K(x, x′) that given two examples outputs a number in the range [−1, 1].3 We will say that K is a
symmetric similarity function if K(x, x′) = K(x′, x) for all x, x′.

Our goal is to develop a set of natural properties sufficient for a similarity function K to be good for a
clustering problem (S, `) that (ideally) are intuitive, broad, and imply that such a similarity function results in
the ability to cluster well. As mentioned above, however, requiring an algorithm to output a single low-error
clustering rules out even quite strong properties. Instead we will consider two objectives that are natural if
one assumes the ability to get some limited additional feedback from a (human) expert or from an oracle.
Specifically, we consider the following two models:

1. List model: In this model, the goal of the algorithm is to propose a small number of clusterings such that
at least one has error at most ε. As in work on property testing, the list length should depend on ε and
k only, and be independent of n. This list would then go to a domain expert or some hypothesis-testing
portion of the system which would then pick out the best clustering.

2. Tree model: In this model, the goal of the algorithm is to produce a hierarchical clustering: that is, a
tree on subsets such that the root is the set S, and the children of any node S′ in the tree form a partition
of S′. The requirement is that there must exist a pruning h of the tree (not necessarily using nodes
all at the same level) that has error at most ε. In many applications (e.g. document clustering) this is
a significantly more user-friendly output than the list model. It effectively corresponds to a clustering
algorithm saying “I wasn’t sure how specific you wanted to be, so if any of these clusters are too broad,
just click and I will split them for you.” Note that any given tree has at most 22k prunings of size k [27],
so this model is at least as strict as the list model.

Transductive vs Inductive. Clustering is typically posed as a “transductive” problem in that we are asked
to cluster a given set of points S. We can also consider an inductive model in which S is merely a small
random subset of points from a much larger abstract instance space X , and our goal is to produce a hypothesis
h : X → Y of low error on X . For a given property of our similarity function (with respect to X) we can then
ask how large a set S we need to see in order for our list or tree produced with respect to S to induce a good
solution with respect to X . This is closely connected to the notion of sample complexity in learning [40], as
well as the notion of property testing [19]. For clarity, for most of this paper we will focus on the transductive
setting. In Appendix B we show how our algorithms can be adapted to the inductive setting.

Notation. We will denote the underlying ground-truth clusters as C1, . . . , Ck (some of which may be
empty). For x ∈ X , we use C(x) to denote the cluster C`(x) to which point x belongs. For A ⊆ X, B ⊆ X ,
let K(A,B) = Ex∈A,x′∈B[K(x, x′)]. We call this the average attraction of A to B. Let Kmax(A,B) =
maxx∈A,x′∈B K(x, x′); we call this maximum attraction of A to B. Given two clusterings g and h we define
the distance d(g, h) = minσ∈Sk

[Prx∈S [σ(h(x)) 6= g(x)]].
We are interested in natural properties that we might ask a similarity function to satisfy with respect to the

ground truth clustering. For example, one (strong) property would be that all points x are more similar to all
points x′ ∈ C(x) than to any x′ 6∈ C(x) – we call this the strict ordering property. A weaker property would
be to just require that points x are on average more similar to their own cluster than to any other cluster, that
is,K(x,C(x)−{x}) > K(x,Ci) for all Ci 6= C(x). We will also consider intermediate “stability” properties

3That is, the input to the clustering algorithm is just a weighted graph. However, we still want to conceptually viewK as a function
over abstract objects, much like the notion of a kernel function in learning theory.
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such as that for any two clusters Ci, Cj , for any A ⊂ Ci, B ⊂ Cj we have K(A,Ci − A) > K(A,B).
For properties such as these we will be interested in the size of the smallest list any algorithm could hope to
output that would guarantee that at least one clustering in the list has error at most ε. Specifically, we define
the clustering complexity of a property as:

Definition 1 Given a propertyP and similarity functionK, define the (ε, k)-clustering complexity of the pair
(P,K) to be the length of the shortest list of clusterings h1, . . . , ht such that any consistent k-clustering is
ε-close to some clustering in the list.4 That is, at least one hi must have error at most ε. The (ε, k)-clustering
complexity of P is the maximum of this quantity over all similarity functions K.

In the following sections we analyze the clustering complexity of several natural properties and provide
efficient algorithms to take advantage of such functions. To illustrate the definitions we start by analyzing the
strict ordering property in Section 3. We then analyze a much weaker average attraction property in Section 4
that has close connections to large margin properties studied in Learning Theory [1, 7, 8, 20, 23, 36, 34]. This
property is not sufficient to produce a hierarchical clustering, however, so we then turn to the question of how
weak a property can be and still be sufficient for hierarchical clustering, which leads us to analyze properties
motivated by game-theoretic notions of stability in Section 5.

3 A simple property: strict ordering

To illustrate the setup we begin with the simple strict ordering property mentioned in the introduction.

Property 1 The similarity function K satisfies the strict ordering property for the clustering problem (S, `)
if all x are strictly more similar to any point x′ ∈ C(x) than to every x′ 6∈ C(x).

Given a similarity function satisfying the strict ordering property, we can efficiently construct a tree such
that the ground-truth clustering is a pruning of this tree (Theorem 2). As mentioned earlier, a consequence
of this fact is a 2O(k) upper bound on the clustering complexity of this property. We begin by showing a
matching 2Ω(k) lower bound.

Theorem 1 For ε < 1
2k , the strict ordering property has (ε, k)-clustering complexity at least 2k/2.

Proof: The similarity function is a generalization of the picture in Figure 1. Specifically, partition the n
points into k subsets {R1, . . . , Rk} of n/k points each. Group the subsets into pairs {(R1, R2), (R3, R4), . . .},
and let K(x, x′) = 1 if x and x′ belong to the same Ri, K(x, x′) = 1/2 if x and x′ belong to two subsets in
the same pair, and K(x, x′) = 0 otherwise. Notice that in this setting there are 2

k
2 clusterings (corresponding

to whether or not to split each pair Ri ∪ Ri+1) that are consistent with Property 1 and differ from each other
on at least n/k points. Since ε < 1

2k , any given hypothesis clustering can be ε-close to at most one of these
and so the clustering complexity is at least 2k/2.

We now present the upper bound.

Theorem 2 Let K be a similarity function satisfying the strict ordering property. Then we can efficiently
construct a tree such that the ground-truth clustering is a pruning of this tree.

Proof: IfK is symmetric, then to produce a tree we can simply use bottom up “single linkage” (i.e., Kruskal’s
algorithm). That is, we begin with n clusters of size 1 and at each step we merge the two clusters C, C ′

maximizing Kmax(C, C ′). This maintains the invariant that at each step the current clustering is laminar with
respect to the ground-truth. Specifically, if the algorithm merges two clusters C and C ′, and C is strictly

4A clustering C is consistent if K has property P with respect to C.
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contained in some cluster Cr of the ground truth, then by the strict ordering property we must have C ′ ⊂ Cr

as well. If K is not symmetric, then single linkage may fail.5 However, in this case, the following “Boruvka-
ish” algorithm can be used. Starting with n clusters of size 1, draw a directed edge from each cluster C to
the cluster C ′ maximizing Kmax(C, C ′). Then pick some cycle produced (there must be at least one cycle)
and collapse it into a single cluster, and repeat. Note that if a cluster C in the cycle is strictly contained in
some ground-truth cluster Cr, then by the strict ordering property its out-neighbor must be as well, and so on
around the cycle. So this collapsing maintains laminarity as desired.

Note: Even though the strict ordering property is quite strong, a similarity function satisfying this property
can still fool a top-down spectral clustering approach. See Figure 2 in Appendix C.

4 A weaker property: average attraction

A much weaker property to ask of a similarity function is just that most points are noticeably more similar on
average to other points in their own cluster than to points in any other cluster. Specifically, we define:

Property 2 A similarity functionK satisfies the (ν, γ)-average attraction property for the clustering problem
(S, `) if a 1− ν fraction of examples x satisfy:

K(x,C(x)) ≥ K(x, Ci) + γ for all i ∈ Y, i 6= `(x).

This is a fairly natural property to ask of a similarity function. In addition, it also has a game-theoretic
interpretation: if one thinks of the data points as players in a game in which they each choose their own label
with payoff equal to their average attraction to others of the same label, then for ν = 0 this property says
that the similarity function should be such that the correct clustering is a γ-strict Nash equilibrium (a Nash
equilibrium where each player has at least γ-disincentive to deviate).

The following is a simple clustering algorithm that given a similarity function K satisfying the average
attraction property produces a list of clusterings of size that depends only on ε, k, and γ. Specifically,

Algorithm 1 Sampling Based Algorithm, List Model

Input: Data set S, similarity function K, parameters γ, ε > 0, k ∈ Z+; N(ε, γ, k), s(ε, γ, k).

• Set L = ∅.

• Repeat N(ε, γ, k) times

For k′ = 1, . . . , k do

Pick a set RS
k′ of random examples from S of size s(ε, γ, k).

Let h be the average-nearest neighbor hypothesis induced by the sets RS
i, i = 1, . . . , k′.

That is, for any point x ∈ S, define h(x) = argmaxi∈{1,...k′}[K(x,RS
i)]. Add h to L.

• Output the list L.

Theorem 3 Let K be a similarity function satisfying the (ν, γ)-average attraction property for the clustering

problem (S, `). Using Algorithm 1 with s(ε, γ, k) = 4
γ2 ln

(
8k
εδ

)
and N(ε, γ, k) =

(
2k
ε

) 4k
γ2 ln

(
8k
εδ

)
ln(1

δ ) we can

5Consider 3 points x, y, and z where the correct clustering is {{x}, {y, z}}. If K(x, y) = 1, K(y, z) = K(z, y) = 1/2, and
K(y, x) = K(z, x) = 0, then this is consistent with strict ordering and yet the algorithm will incorrectly merge x and y in its first
step.
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produce a list of at most k
O
(

k
γ2 ln

(
1
ε

)
ln

(
k
εδ

))
clusterings such that with probability 1− δ at least one of them

is (ν + ε)-close to the ground-truth.

Proof: See Appendix A.

Note that Theorem 3 immediately implies a corresponding upper bound on the (ε, k)-clustering complexity
of the (ε/2, γ)-average attraction property. We can also give a lower bound showing that the exponential
dependence on γ is necessary, and furthermore this property is not sufficient to cluster in the tree model:

Theorem 4 For ε < γ/2, the (ε, k)-clustering complexity of the (0, γ)-average attraction property is at least

max
k′≤k

k
′ 1
γ /k′!, and moreover this property is not sufficient to cluster in the tree model.

Proof: Consider 1
γ regions {R1, . . . , R1/γ} each with γn points. Assume K(x, x′) = 1 if x and x′ belong

to the same region Ri and K(x, x′) = 0, otherwise. Notice that in this setting all the k-way partitions of
the set {R1, . . . , R1/γ} are consistent with Property 2 and they are all pairwise at distance at least γn from
each other. Since ε < γ/2, any given hypothesis clustering can be ε-close to at most one of these and so the
clustering complexity is at least the sum of Stirling numbers of the 2nd kind

∑k
k′=1 S(1/γ, k′) which is at

least max
k′≤k

k′1/γ/k′!.

Note: In fact, the clustering complexity bound immediately implies one cannot cluster in the tree model since
for k = 2 the bound is greater than 1.

One can even weaken the above property to ask only that there exists an (unknown) weighting function
over data points (thought of as a “reasonableness score”), such that most points are on average more similar
to the reasonable points of their own cluster than to the reasonable points of any other cluster. This is a
generalization of the notion of K being a legal kernel function with the large margin property [7, 37, 40, 35].

Property 3 A similarity function K satisfies the (ν, γ)-average weighted attraction property for the cluster-
ing problem (S, `) if there exists a weight function w : X → [0, 1] such that a 1 − ν fraction of examples x
satisfy:

Ex′∈C(x)[w(x′)K(x, x′)] ≥ Kx′∈Cr [w(x′)K(x, x′)] + γ for all r ∈ Y, r 6= `(x).

Property 3 can, for instance, model a natural k-median style property, where we ask that each cluster contain
a non-negligible α fraction of plausible cluster centers (points x′ of weight 1) such that each data point is at
least β more similar to its own cluster centers than to those of any other cluster (in this case, γ = αβ).

If we have K a similarity function satisfying the (ν, γ)-average weighted attraction property for the clus-
tering problem (S, `), then we can again cluster well in the list model, but via a more involved clustering
algorithm which we present in Appendix A. Formally we can show that:

Theorem 5 Let K be a similarity function satisfying the (ν, γ)-average weighted attraction property for the

clustering problem (S, `). Using Algorithm 4 we can produce a list of at most k
Õ
(

k
εγ2

)
clusterings such that

with probability 1− δ at least one of them is ε + ν-close to the ground-truth.

We defer the proof of Theorem 5 to Appendix A. While the proof follows from ideas in [7] (in the context
of classification), we are able to get substantially better bounds by a more careful analysis and by taking
advantage of attribute-efficient learning algorithms with good L1-margin guarantees [28, 42].
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4.1 A Too-Weak Property

One could imagine further relaxing the average attraction property to simply require that for all Ci, Cj in the
ground truth we have K(Ci, Ci) ≥ K(Ci, Cj) + γ; that is, the average intra-cluster similarity is larger than
the average inter-cluster similarity. However, even for k = 2 and γ = 1/4, this is not sufficient to produce
clustering complexity independent of (or even polynomial in) n. In particular, suppose there are two regions
A,B of n/2 points each such that K(x, x′) = 1 for x, x′ in the same region and K(x, x′) = 0 for x, x′ in
different regions. However, suppose C1 contains 75% of A and 25% of B and C2 contains 25% of C1 and
75% of C2. Then this property is satisfied for γ = 1/4 and yet by classic coding results (or Chernoff bounds),
clustering complexity is clearly exponential in n for ε < 1/8. Moreover, this implies there is no hope in the
inductive (or property testing) setting.

5 Stability-based Properties

The properties in Section 4 are fairly general and allow construction of a list whose length depends only on
on ε and k (for constant γ), but are not sufficient to produce a single tree. In this section, we show that several
natural stability-based properties that lie between those considered in Sections 3 and 4 are in fact sufficient
for hierarchical clustering.

For simplicity, we focus on symmetric similarity functions. We consider the following relaxations of
Property 1 which are natural analogs of the “stable-marriage” property to clustering:

Property 4 The similarity function K satisfies the strong stability property for the clustering problem (S, `)
if for all clusters Cr, Cr′ , r 6= r′ in the ground-truth, for all A ⊂ Cr, for all A′ ⊆ Cr′ we have

K(A,Cr \A) > K(A,A′).

Property 5 The similarity function K satisfies the weak stability property for the clustering problem (S, `)
if for all Cr, Cr′ , r 6= r′, for all A ⊆ Cr, A′ ⊆ Cr′ , we have:

• If A ⊂ Cr and A′ ⊂ Cr′ then either K(A,Cr \A) > K(A,A′) or K(A′, Cr′ \A′) > K(A′, A).

• If A = Cr then K(A′, Cr′ \A′) > K(A′, A).

• If A′ = Cr′ then K(A, Cr \A) > K(A,A′).

We can interpret weak stability as saying that for any two clusters in the ground truth, there does not exist
a subset A of one and subset A′ of the other that are more attracted to each other than to the remainder of
their true clusters (with technical conditions at the boundary cases) much as in the classic stable-marriage
condition. Strong stability asks that both be more attracted to their true clusters. Note that if we take the
example from Figure 1 and set a small fraction of the edges inside each dark-shaded region to 0, then with
high probability this would still satisfy strong stability with respect to the natural clusters even though it
no longer satisfies strict ordering. We show now that strong stability is sufficient to produce a hierarchical
clustering and leave the proof for weak stability to Appendix A (see Theorem 9).

Theorem 6 Let K be a symmetric similarity function satisfying Property 4. Then we can efficiently construct
a binary tree such that the ground-truth clustering is a pruning of this tree.

Proof Sketch: We will show that Algorithm 2 (Average Linkage) will produce the desired result. Note that
the algorithm uses K(C, C ′) rather than Kmax(C, C ′) as in single linkage; in fact in Figure 3 (Appendix C)
we show an example satisfying this property where single linkage would fail.

We prove correctness by induction. In particular, assume that our current clustering is laminar with respect
to the ground truth clustering (which is true at the start). That is, for each cluster C in our current clustering
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Algorithm 2 Average Linkage, Tree Model

Input: Data set S, similarity function K.
Output: A tree on subsets.

• Begin with n singleton clusters.

• Repeat till only one cluster remains:

Find clusters C, C ′ in the current list which maximize K(C, C ′) and merge them into a single cluster.

• Output the tree with single elements as leaves and internal nodes corresponding to all the merges per-
formed.

and each Cr in the ground truth, we have either C ⊆ Cr, or Cr ⊆ C or C ∩ Cr = ∅. Now, consider a merge
of two clusters C and C ′. The only way that laminarity could fail to be satisfied after the merge is if one of
the two clusters, say, C ′, is strictly contained inside some ground-truth cluster Cr (so, Cr − C ′ 6= ∅) and yet
C is disjoint from Cr. Now, note that by Property 4, K(C ′, Cr − C ′) > K(C ′, x) for all x 6∈ Cr, and so in
particular we have K(C ′, Cr − C ′) > K(C ′, C). Furthermore, K(C ′, Cr − C ′) is a weighted average of the
K(C ′, C ′′) over the sets C ′′ ⊆ Cr − C ′ in our current clustering and so at least one such C ′′ must satisfy
K(C ′, C ′′) > K(C ′, C). However, this contradicts the specification of the algorithm, since by definition it
merges the pair C, C ′ such that K(C ′, C) is greatest.

While natural, Properties 4 and 5 are still somewhat brittle: in the example of Figure 1, for instance, if one
adds a small number of edges with similarity 1 going left to right then the properties are no longer satisfied for
the natural clusters (because pairs of elements connected by these edges will want to defect). We can make
the properties more robust by requiring that stability hold only for large sets. This will break the average-
linkage algorithm used above, but we can show that a more involved algorithm building on the approach used
in Section 4 will nonetheless find an approximately correct tree. For simplicity, we focus on broadening the
strong stability property, as follows (one should view s as small compared to ε/k in this definition):

Property 6 The similarity function K satisfies the (s, γ)-strong stability of large subsets property for the
clustering problem (S, `) if for all clusters Cr, Cr′ , r 6= r′ in the ground-truth, for all A ⊂ Cr, A′ ⊆ Cr′ with
|A|+ |A′| ≥ sn we have

K(A,Cr \A) > K(A,A′) + γ.

The idea of how we can use this property is we will first run an algorithm for the list model much like Algo-
rithm 1, viewing its output as simply a long list of candidate clusters (rather than clusterings). In particular, we

will get a list L of k
O
(

k
γ2 log 1

ε
log k

δf

)
clusters such that with probability at least 1−δ any cluster in the ground-

truth of size at least ε
4k is f -close to one of the clusters in the list. We then run a second “tester” algorithm that

is able to throw away candidates that are sufficiently non-laminar with respect to the correct clustering and
assembles the ones that remain into a tree. We present and analyze the tester algorithm, Algorithm 3, below.

Theorem 7 Let K be a similarity function satisfying the (s, γ)-strong stability of large subsets property for
the clustering problem (S, `). LetL be a list of clusters such that any cluster in the ground-truth of size at least
αn is f -close to one of the clusters in the list. Then using Algorithm 3 with parameters satisfying s + f ≤ g,
f ≤ gγ/10 and α > 5g + 2f we get a tree such that the ground-truth clustering is αk-close to a pruning of
this tree.

Proof Sketch: Let k′ be the number of “big” ground-truth clusters, i.e. the clusters of size at least αn;
without loss of generality assume that C1, ..., Ck′ are the big clusters.

9



Algorithm 3 Testing Based Algorithm, Tree Model.

Input: Data set S, similarity function K, parameters γ > 0, k ∈ Z+, f, g, s, α > 0. A list of clusters L
with the property that any cluster C in the ground-truth is f -close to one of them.
Output: A tree on subsets.

• Throw out all clusters of size at most αn. For every pair of clusters Cr, Cr′ in our list L of clusters that
are sufficiently “non-laminar” with respect to each other: i.e. we have |Cr \ Cr′ | ≥ gn, |Cr′ \ Cr| ≥ gn
and |Cr ∩ Cr′ | ≥ gn, compute K(Cr ∩Cr′ , Cr \Cr′) and K(Cr ∩Cr′ , Cr′ \Cr). Throw out whichever
one does worse: i.e., throw out Cr if the first similarity is smaller; throw out Cr′ is the second similarity
is smaller. Let L′ be the remaining list of clusters at the end of the process.

• Greedily sparsify the list L′ so that no two clusters are approximately equal (that is, choose a cluster,
throw out all that are approximately equal to it, and repeat). We say two clusters Cr, Cr′ are approxi-
mately equal if |Cr \ Cr′ | ≤ gn, |Cr′ \ Cr| ≤ gn and |Cr′ ∩ Cr| ≥ gn. Let L′′ be the list remaining.

• Construct a forest on the remaining listL′′. Cr becomes a child of Cr′ in this forest if Cr′ approximately
contains Cr, i.e. |Cr \ Cr′ | ≤ gn, |Cr′ \ Cr| ≥ gn and |Cr′ ∩ Cr| ≥ gn.

• Complete the forest arbitrarily into a tree.

Let C ′
1, ...,C ′

k′ be clusters in L such that d(Ci, C
′
i) is at most f for all i. By Property 6 and Lemma 1

(stated below), we know that after Step 1 (the “testing of clusters” step) all the clusters C ′
1, ...,C ′

k′ survive;
furthermore, one can show we have three types of relations between the remaining clusters. Specifically:

(a) Cr and Cr′ are approximately equal; this happens if |Cr \ Cr′ | ≤ gn, |Cr′ \ Cr| ≤ gn and |Cr′ ∩ Cr| ≥
gn.

(b) Cr and Cr′ are approximately disjoint; this happens if |Cr \ Cr′ | ≥ gn, |Cr′ \ Cr| ≥ gn and |Cr′ ∩ Cr| ≤
gn.

(c) Cr′ approximately contains Cr; this happens if |Cr \ Cr′ | ≤ gn, |Cr′ \ Cr| ≥ gn and |Cr′ ∩ Cr| ≥ gn.

Let L′′ be the remaining list of clusters after sparsification. It’s easy to show that there exists C ′′
1 , ..., C ′′

k′ in
L′′ such that d(Ci, C

′′
i ) is at most (f +2g), for all i. Moreover, all the elements in L′′ are either in the relation

“subset” or “disjoint”, and since all the clusters C1, ..., Ck′ have size at least αn, we also have that C ′′
i , C ′′

j

are in the relation “disjoint”, for all i, j, i 6= j. That is, in the forest we construct C ′′
i are not descendants of

one another. So, C ′′
1 , ..., C ′′

k′ indeed forms a pruning of this tree. This then implies that the ground-truth is
α · k-close to a pruning of this tree.

Lemma 1 Let K be a similarity function satisfying the (s, γ)-strong stability of large subsets property for the
clustering problem (S, `). Let C, C ′ be such that |C ∩ C ′| ≥ gn, |C \ C ′| ≥ gn and |C ′ \ C| ≥ gn. Let C∗

be a cluster in the underlying ground-truth such that |C∗ \ C| ≤ fn and |C \ C∗| ≤ fn. Let I = C ∩ C ′. If
s + f ≤ g and f ≤ gγ/10 , then K(I, C \ I) > K(I, C ′ \ I).

Proof: See Appendix A.

Theorem 8 Let K be a similarity function satisfying the (s, γ)-strong stability of large subsets property for
the clustering problem (S, `). Assume that s = O(ε2γ/k2). Then using Algorithm 3 with parameters α =
O(ε/k), g = O(ε2/k2), f = O(ε2γ/k2), together with Algorithm 1 we can produce a tree with the property
that the ground-truth is ε-close to a pruning of this tree. Moreover, the size of this tree is O(k/ε).
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Proof Sketch: First, we run Algorithm 1 get a list L of clusters such that with probability at least 1− δ any
cluster in the ground-truth of size at least ε

4k is f -close to one of the clusters in the list. We can ensure that

our list L has size at most k
O
(

k
γ2 log 1

ε
log k

δf

)

We then running Procedure 3 with parameters α = O(ε/k), g = O(ε2/k2), f = O(ε2γ/k2). We thus
obtain a tree with the guarantee that the ground-truth is ε-close to a pruning of this tree (see Theorem 7). To
complete the proof we only need to show that this tree has O(ε/k) leaves. This follows from the fact that all
leaves of our tree have at least αn points and the overlap between any two of them is at most gn (for a formal
proof see lemma 2).

To better understand the specifics of our properties and of the linkage-based algorithms, we present a few
interesting examples in Appendix C.

6 Inductive Setting

Our algorithms can also be extended to an inductive model in which S is merely a small random subset
of points from a much larger abstract instance space X , and clustering is represented implicitly through a
hypothesis h : X → Y . In the list model our goal is to produce a list of hypotheses, {h1, . . . , ht} such that
at least one of them has error at most ε. In the tree model we view each node in the tree as inducing a cluster
which is implicitly represented as a function f : X → {0, 1}. For a fixed tree T and a point x, we define
T (x) as the subset of nodes in T that contain x (the subset of nodes f ∈ T with f(x) = 1). We say that a tree
T has error at most ε if T (X) has a pruning f1, ..., fk′ of error at most ε.

Our specific results for this model appear in Appendix B. While most of our analyses can be adapted
in a reasonably direct way, adapting the average-linkage algorithm for the strong stability property while
maintaining its computational efficiency is substantially more involved, as it requires showing that sampling
preserves the stability property. See Theorem 11.

7 Conclusions and Open Questions

In this paper we provide a generic framework for analyzing what properties of a similarity function are suffi-
cient to allow it to be useful for clustering, under different levels of relaxation of the clustering objective. We
propose a measure of the clustering complexity of a given property that characterizes its information-theoretic
usefulness for clustering, and analyze this complexity for a broad class of properties, as well as develop
efficient algorithms that are able to take advantage of them.

Our work can be viewed both in terms of providing formal advice to the designer of a similarity function
for a given clustering task (such as clustering web-pages by topic) and in terms of advice about what algo-
rithms to use given certain beliefs about the relation of the similarity function to the clustering task. Abstractly
speaking, our notion of a property parallels that of a data-dependent concept class [40] (such as large-margin
separators) in the context of classification.

Our work also provides the first formal framework for analyzing clustering with limited (non-interactive)
feedback. A concrete implication of our work is a better understanding of when (in terms of the relation be-
tween the similarity measure and the ground-truth clustering) different hierarchical linkage-based algorithms
will fare better than others.

Open questions: It would be interesting to further explore and analyze other natural properties of similarity
functions, as well as to further explore and formalize other models of interactive feedback. In terms of specific
open questions, for the average attraction property (Property 2) we have an algorithm that for k = 2 produces
a list of size approximately 2O(1/γ2 ln 1/ε) and a lower bound on clustering complexity of 2Ω(1/γ). One natural
open question is whether one can close that gap. A second open question is that for the strong stability of

11



large subsets property (Property 6), our algorithm produces hierarchy but has running time substantially larger
than that for the simpler stability properties. Can an algorithm with running time polynomial in k and 1/γ
be developed? More generally, it would be interesting to determine whether these stability properties can be
further weakened and still admit a hierarchical clustering.
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A Proofs

Theorem 3 Let K be a similarity function satisfying the (ν, γ)-average attraction property for the clustering

problem (S, `). Using Algorithm 1 with s(ε, γ, k) = 4
γ2 ln

(
8k
εδ

)
and N(ε, γ, k) =

(
2k
ε

) 4k
γ2 ln

(
8k
εδ

)
ln(1

δ ) we can

produce a list of at most k
O
(

k
γ2 ln

(
1
ε

)
ln

(
k
εδ

))
clusterings such that with probability 1− δ at least one of them

is (ν + ε)-close to the ground-truth.
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Proof: We say that a ground-truth cluster is big if it has probability mass at least ε
2k ; otherwise, we say that

the cluster is small. Let k′ be the number of “big” ground-truth clusters. Clearly the probability mass in all
the small clusters is at most ε/2.

Let us arbitrarily number the big clusters C1, . . . , Ck′ . Notice that in each round there is at least a(
ε
2k

)s(ε,γ,k) probability that RS
i ⊆ Ci, and so at least a

(
ε
2k

)ks(ε,γ,k) probability that RS
i ⊆ Ci for all

i ≤ k′. Therefore the number of rounds
(

2k
ε

) 4k
γ2 ln

(
8k
εδ

)
ln(1

δ ) is large enough so that with probability at least
1 − δ/2, in at least one of the N(ε, γ, k) rounds we have RS

i ⊆ Ci for all i ≤ k′. Let us fix now one such
good round. We argue next that the clustering induced by the sets picked in this round has error at most ν + ε
with probability at least 1− δ.

Let Good be the set of x in the big clusters satisfying

K(x,C(x)) ≥ K(x,Cj) + γ for all j ∈ Y, j 6= `(x).

By assumption and from the previous observations, Prx∼S [x ∈ Good] ≥ 1− ν − ε/2. Now, fix x ∈ Good.
Since K(x, x′) ∈ [−1, 1], by Hoeffding bounds we have that over the random draw of RS

j , conditioned on
RS

j ⊆ Cj ,

Pr
RS

j

(∣∣∣Ex′∼RS
j [K(x, x′)]−K(x,Cj)

∣∣∣ ≥ γ/2
)
≤ 2e−2|RS

j |γ2/4,

for all j ∈ {1, . . . , k′}. By our choice of RS
j , each of these probabilities is at most εδ/4k. So, for any given

x ∈ Good, there is at most a εδ/4 probability of error over the draw of the sets RS
j . Since this is true for

any x ∈ Good, it implies that the expected error of this procedure, over x ∈ Good, is at most εδ/4, which by
Markov’s inequality implies that there is at most a δ/2 probability that the error rate over Good is more than
ε/2. Adding in the ν + ε/2 probability mass of points not in Good yields the theorem.

Theorem 9 Let K be a symmetric similarity function satisfying the weak stability property. Then we can
efficiently construct a binary tree such that the ground-truth clustering is a pruning of this tree.

Proof: As in the proof of theorem 6 we show that bottom-up average-linkage will produce the desired result.
Specifically, the algorithm is as follows: we begin with n clusters of size 1, and then at each step we merge
the two clusters C, C ′ such that K(C, C ′) is highest.

We prove correctness by induction. In particular, assume that our current clustering is laminar with respect
to the ground truth clustering (which is true at the start). That is, for each cluster C in our current clustering
and each Cr in the ground truth, we have either C ⊆ Cr, or Cr ⊆ C or C ∩Cr = ∅. Now, consider a merge of
two clusters C and C ′. The only way that laminarity could fail to be satisfied after the merge is if one of the
two clusters, say, C ′, is strictly contained inside some ground-truth cluster Cr′ and yet C is disjoint from Cr′ .

We distinguish a few cases. First, assume that C is a cluster Cr of the ground-truth. Then by definition,
K(C ′, Cr′ −C ′) > K(C ′, C). Furthermore, K(C ′, Cr′ −C ′) is a weighted average of the K(C ′, C ′′) over the
sets C ′′ ⊆ Cr′−C ′ in our current clustering and so at least one such C ′′ must satisfyK(C ′, C ′′) > K(C ′, C).
However, this contradicts the specification of the algorithm, since by definition it merges the pair C, C ′ such
that K(C ′, C) is greatest.

Second, assume that C is strictly contained in one of the ground-truth clusters Cr. Then, by the weak
stability property, either K(C,Cr − C) > K(C, C ′) or K(C ′, Cr′ − C ′) > K(C, C ′). This again contradicts
the specification of the algorithm as in the previous case.

Finally assume that C is a union of clusters in the ground-truth C1, . . . Ck′ . Then by definition,K(C ′, Cr′−
C ′) > K(C ′, Ci), for i = 1, . . . k′, and so K(C ′, Cr′ − C ′) > K(C ′, C). This again leads to a contradiction
as argued above.

Lemma 1 Let K be a similarity function satisfying the (s, γ)-strong stability of large subsets property for the
clustering problem (S, `). Let C, C ′ be such that |C ∩ C ′| ≥ gn, |C \ C ′| ≥ gn and |C ′ \ C| ≥ gn. Let C∗

be a cluster in the underlying ground-truth such that |C∗ \ C| ≤ fn and |C \ C∗| ≤ fn. Let I = C ∩ C ′. If
s + f ≤ g and f ≤ gγ/10 , then K(I, C \ I) > K(I, C ′ \ I).
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Proof: Let I∗ = I ∩ C∗. So, I∗ = C ∩ C ′ ∩ C∗. We prove first that

K(I, C \ I) > K(I∗, C∗ \ I∗)− γ/2. (1)

Since K(x, x′) ≥ −1, we have

K(I, C \ I) ≥ (1− p1)K(I ∩ C∗, (C \ I) ∩ C∗)− p1,

where 1 − p1 = |I∗|
|I| · |(C\I)∩C∗|

|C\I| . By assumption we have |I| ≥ gn, and also |I \ I∗| ≤ fn. That means
|I∗|
|I| = |I|−|I\I∗|

|I| ≥ g−f
g . Similarly, |C \ I| ≥ gn and |C \ I| ∩ C̄∗ ≤ |C \ C∗| ≤ gn. So, |(C\I)∩C∗|

|C\I| =
|C\I|−|(C\I)∩C̄∗|

|C\I| ≥ g−f
g . Let us denote by 1− p the quantity

(
g−f

g

)2
. We have:

K(I, C \ I) ≥ (1− p)K(I∗, (C \ I) ∩ C∗)− p. (2)

Let A = (C∗ \ I∗) ∩ C and B = (C∗ \ I∗) ∩ C̄. We have

K(I∗, C∗ \ I∗) = (1− α)K(I∗, A)− αK(I∗, B), (3)

where 1− α = |A|
|C∗\I∗| . Notice that

|(C \ I) ∩ C∗| = |(C \C ′)\ (C \ (C ′∩C∗))| ≥ |C \C ′|− |C \ (C ′∩C∗)| ≥ |C \C ′|− |C \C∗| ≥ gn−fn.

We also have |B| = |(C∗ \ I∗) ∩ C̄| ≥ |(C∗ \ C|. These imply that 1 − α = |A|
|A|+|B| = 1

1+
|B|
|A|

≥ g−f
g , and

furthermore α
1−α = −1 + 1

1−α ≤ f
g−f .

Equation (3) implies K(I∗, A) = 1
1−αK(I∗, C∗ \ I∗) − α1

1−α1
α1K(I∗, B) and since K(x, x′) ≤ 1, we

obtain:
K(I∗, A) ≥ K(I∗, C∗ \ I∗)− f

g − f
. (4)

Note that A = (C∗ \ I∗) ∩ C = (C∗ ∩ C) \ (I∗ ∩ C) = (C∗ ∩ C) \ I∗ and (C \ I) ∩ C∗ = (C ∩ C∗) \
(I ∩ C∗) = (C∗ ∩ C) \ I∗, so A = (C \ I) ∩ C∗. Overall, combining (2) and (4) we obtain: K(I, C \ I) ≥
(1− p)

[
K(I∗, C∗ \ I∗)− f

g−f

]
− p, so

K(I, C \ I) ≥ K(I∗, C∗ \ I∗)− 2p− (1− p)
f

g − f
.

We prove now that 2p+(1−p) f
g−f ≤ γ/2, which finally implies relation (1). Since 1−p =

(
g−f

g

)2
, we have

p = 2gf−f2

g2 , so 2p + (1− p) f
g−f = 22gf−f2

g2 + f(g−f)
g2 = 4f

g − 2
(

f
g

)2
+ f

g −
(

f
g

)2
= 5f

g − 2
(

f
g

)2
≤ γ/2,

since by assumption f ≤ gγ/10.
Our assumption that K is a similarity function satisfying the strong stability property with a threshold sn

and a γ-gap for our clustering problem (S, `), together with the assumption s + f ≤ g implies

K(I∗, C∗ \ I∗) ≥ K(I∗, C ′ \ (I∗ ∪ C∗)) + γ. (5)

We finally prove that
K(I∗, C ′ \ (I∗ ∪ C∗)) ≥ K(I, C ′ \ I)− γ/2. (6)

The proof is similar to the proof of statement (1). First note that

K(I, C ′ \ I) ≤ (1− p2)K(I∗, (C ′ \ I) ∩ C̄∗) + p2,
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where 1− p2 = |I∗|
|I| ·

|(C′\I)∩C̄∗|
|C′\I| . We know from above that |I

∗|
|I| ≥ g−f

g , and we can also show |(C′\I)∩C̄∗|
|C′\I| ≥

g−f
g . So 1− p2 ≥

(
g−f

g

)2
, and so p2 ≤ 2 g

f ≤ γ/2, as desired.
To complete the proof note that relations (1), (5) and (6) together imply the desired result, namely that

K(I, C \ I) > K(I, C ′ \ I).

Lemma 2 Let P1, ..., Ps be a quasi-partition of S such that |Pi| ≥ nν
k and |Pi ∩ Pj | ≤ gn for all i, j ∈

{1, . . . , s}, i 6= j. If g = ν2

5k2 , then s ≤ 2k
ν .

Proof: Assume for contradiction that s > L = 2k
ν , and consider the first L parts P1, ..., PL. Then(

nν
k − 2k

ν gn
)
2k

ν is a lower bound on the number of points that belong to exactly one of the parts Pi,
i ∈ {1, . . . , L}. For our choice of g, g = ν2

5k2 , we have
(
nν

k − 2k
ν gn

)
2k

ν = 2n − 4
5n. So 6

5n is a lower
bound on the number of points that belong to exactly one of the parts Pi, i ∈ {1, . . . , L}, which is impossible
since |S| = n. So, we must have s ≤ 2k

ν .

Algorithm 4 Sampling Based Algorithm, List Model

Input: Data set S, similarity function K, parameters γ, ε > 0, k ∈ Z+; d1(ε, γ, k, δ), d2(ε, γ, k, δ).

• Set L = ∅.

• Pick a set U = {x1, . . . , xd1} of d1 random examples from S, where d1 = d1(ε, γ, k, δ). Use U to
define the mapping ρU : X → Rd1 , ρU (x) = (K(x, x1),K(x, x2), . . . ,K(x, xd1)).

• Pick a set Ũ of d2 random examples from S where d2 = d(ε, γ, k, δ) and consider the induced set
ρU (Ũ).

• Consider all the (k + 1)d2 possible labellings of the set ρU (Ũ) where the k + 1st label is used to
throw out points in the ν fraction that do not satisfy the property. For each labelling use the Winnow
algorithm [28, 42] to learn a multiclass linear separator h and add the clustering induced by h to L.

• Output the list L.

Theorem 5 Let K be a similarity function satisfying the (ν, γ)-average weighted attraction property for
the clustering problem (S, `). Using Algorithm 4 with parameters d1 = O

(
1
ε

(
1
γ2 + 1

)
ln

(
1
δ

))
and d2 =

O
(

1
ε

(
1
γ2 ln d1 + ln 1

δ

) )
we can produce a list of at most k

Õ
(

k
εγ2

)
clusterings such that with probability 1− δ

at least one of them is ε + ν-close to the ground-truth.

Proof Sketch: For simplicity we describe the case k = 2. The generalization to larger k follows the standard
multi-class to binary reduction [40].

For convenience let us assume that the labels of the two clusters are {−1,+1} and without loss of gener-
ality assume that each of the two clusters has at least an ε probability mass. Let U be a random sample from
S of d1 = 1

ε

(
(4/γ)2 + 1

)
ln(4/δ) points. We show first that with probability at least 1 − δ, the mapping

ρU : X → Rd1 defined as
ρU (x) = (K(x, x1),K(x, x2), . . . ,K(x, xd1))

has the property that the induced distribution ρU (S) in Rd1 has a separator of error at most δ (of the 1 − ν
fraction of the distribution satisfying the property) at L1 margin at least γ/4.

First notice that d1 is large enough so that with high probability our sample contains at least d =
(4/γ)2 ln(4/δ) points in each cluster. Let U+ be the subset of U consisting of the first d points of true
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label +1, and let U− be the subset of U consisting of the first d points of true label −1. Consider the linear
separator w̃ in the ρU space defined as w̃i = `(xi)w(xi), for xi ∈ U− ∪ U+ and w̃i = 0 otherwise. We show
that, with probability at least (1 − δ), w̃ has error at most δ at L1 margin γ/4. Consider some fixed point
x ∈ S. We begin by showing that for any such x,

Pr
U

(
`(x)w̃ · ρU (x) ≥ d

γ

4

)
≥ 1− δ2.

To do so, first notice that d is large enough so that with high probability, at least 1− δ2, we have both:

|Ex′∈U+ [w(x′)K(x, x′)]−Ex′∼S [w(x′)K(x, x′)|`(x′) = 1]| ≤ γ

4

and
|Ex′∈U− [w(x′)K(x, x′)]−Ex′∼S [w(x′)K(x, x′)|`(x′) = −1]| ≤ γ

4
.

Let’s consider now the case when `(x) = 1. In this case we have `(x)w̃·ρU (x) = d(1
d

∑
xi∈U+

w(xi)K(x, xi)−
1
d

∑
xi∈U− w(xi)K(x, xi)), and so combining these facts we have that with probability at least (1 − δ2) the

following holds:

`(x)w̃ · ρU (x) ≥ d(Ex′∼S [w(x′)K(x, x′)|`(x′) = 1]− γ/4−Ex′∼S [w(x′)K(x, x′)|`(x′) = −1]− γ/4).

This then implies that `(x)w̃ · ρU (x) ≥ dγ/2. Finally, since w(x′) ∈ [−1, 1] for all x′, and since K(x, x′) ∈
[−1, 1] for all pairs x, x′, we have that ||w̃||1 ≤ d and ||ρU (x)||∞ ≤ 1, which implies

Pr
U

(
`(x)

w̃ · ρU (x)
||w̃||1||ρU (x)||∞ ≥ γ

4

)
≥ 1− δ2.

The same analysis applies for the case that `(x) = −1.
Lastly, since the above holds for any x, it is also true for random x ∈ S, which implies by Markov’s

inequality that with probability at least 1− δ, the vector w̃ has error at most δ at L1 margin γ/4 over ρU (S),
where examples have L∞ norm at most 1.

So, we have proved that if K is a similarity function satisfying the (0, γ)-average weighted attraction
property for the clustering problem (S, `), then with high probability there exists a low-error (at most δ)
large-margin (at least γ

4 ) separator in the transformed space under mapping ρU . Thus, all we need now to
cluster well is to draw a new fresh sample Ũ , guess their labels (and which to throw out), map them into the
transformed space using ρU , and then apply a good algorithm for learning linear separators in the new space
that (if our guesses were correct) produces a hypothesis of error at most ε with probability at least 1− δ. Thus
we now simply need to calculate the appropriate value of d2.

The appropriate value of d2 can be determined as follows. Remember that the vector w̃ has error at most δ
at L1 margin γ/4 over ρU (S), where the mapping ρU produces examples of L∞ norm at most 1. This implies
that the Mistake bound of the Winnow algorithm on new labeled data (restricted to the 1 − δ good fraction)
is O

(
1
γ2 ln d1

)
. Setting δ to be sufficiently small such that with high probability no bad points appear in the

sample, and using standard mistake bound to PAC conversions [29], this then implies that a sample size of
size d2 = O

(
1
ε

(
1
γ2 ln d1 + ln 1

δ

) )
is sufficient.

B Inductive Setting

In this section we consider an inductive model in which S is merely a small random subset of points from a
much larger abstract instance space X , and clustering is represented implicitly through a hypothesis h : X →
Y . In the list model our goal is to produce a list of hypotheses, {h1, . . . , ht} such that at least one of them
has error at most ε. In the tree model we assume that each node in the tree induces a part (cluster) which is
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implicitly represented as a function f : X → {0, 1}. For a fixed tree T and a point x, we define T (x) as the
subset of nodes in T that contain x (the subset of nodes f ∈ T with f(x) = 1). We say that a tree T has error
at most ε if T (X) has a pruning f1, ..., fk′ of error at most ε.

We analyze in the following, for each of our properties, how large a set S we need to see in order for our
list or tree produced with respect to S to induce a good solution with respect to X .

The average attraction property. The algorithms we have presented for our most general properties, the
average attraction property (Property 2) and the average weighted attraction property (Property 3) are inher-
ently transductive. The number of unlabeled examples needed are as specified by Theorems 3 and 5.

The strict ordering property. We can adapt the algorithm in Theorem 2 to the inductive setting as follows.
We first draw a set S of n = O

(
k
ε ln

(
k
δ

))
unlabeled examples. We run the algorithm described in Theorem 2

on this set and obtain a tree T on the subsets of S. Let Q be the set of leaves of this tree. We associate each
node u in T a boolean function fu specified as follows. Consider x ∈ X , and let q(x) ∈ Q be the leaf given
by argmaxq∈QK(x, q); if u appears on the path from q(x) to the root, then set fu(x) = 1, otherwise set
fu(x) = 0.

Note that n is large enough to ensure that with probability at least 1− δ, S includes at least a point in each
cluster of size at least ε

k . Remember that C = {C1, . . . , Ck} is the correct clustering of the entire domain. Let
CS be the (induced) correct clustering on our sample S of size n. Since our property is hereditary, Theorem 2
implies that CS is a pruning of T . It then follows from the specification of our algorithm and from the definition
of our strict ordering property that with probability at least 1 − δ the partition induced over the whole space
by this pruning is ε-close to C.

The strong stability of large subsets property. We can also naturally extend to the inductive setting
Algorithm 3 we have presented for the Property 6. The main difference in the inductive setting is that
we have to estimate (rather than compute) the |Cr \ Cr′ |, |Cr′ \ Cr|, |Cr ∩ Cr′ |, K(Cr ∩ Cr′ , Cr \ Cr′)
and K(Cr ∩ Cr′ , Cr′ \ Cr) for any two clusters Cr, Cr′ in the list L. We can easily do that with only
poly(k, 1/ε, 1/γ, 1/δ) log(|L|)) unlabeled points, where L is the input list in Algorithm 3 (whose size de-
pends on 1/ε, 1/γ and k only). Specifically, using a modification of the proof in Theorem 8 and standard
concentration inequalities (e.g. the McDiarmid inequality [17]) we can show that:

Theorem 10 Let K be a similarity function satisfying the (s, γ)-strong stability of large subsets property
for the clustering problem (S, `). Assume that s = O(ε2γ/k2). Then using Algorithm 3 with parameters
α = O(ε/k), g = O(ε2/k2), f = O(ε2γ/k2), together with Algorithm 1 we can produce a tree with the
property that the ground-truth is ε-close to a pruning of this tree. Moreover, the size of this tree is O(k/ε). We

use O
(

k
γ2 ln

(
k
εδ

) · (k
ε

) 4k
γ2 ln

(
k
εδ

)
ln(1

δ )
)

unlabeled points in the first phase and O
(

1
γ2

1
g2

k
γ2 log 1

ε log k
δf log k

)
unlabeled points in the second phase.

Note that each cluster is represented as a nearest neighbor hypothesis over at most k sets.

The strong stability property. We first note that we need to consider a variant of our property that has a
γ-gap.6 Specifically:

Property 7 The similarity function K satisfies the γ-strong stability property for the clustering problem
(D, `) if for all clusters Cr, Cr′ , r 6= r′ in the ground-truth, for all A ⊂ Cr, for all A′ ⊆ Cr′ we have

K(A,Cr \A) > K(A,A′) + γ.

6To see why this is necessary consider the following example. Suppose all K(x, x′) values are equal to 1/2, except for a special
single center point xi in each cluster Ci with K(xi, x) = 1 for all x in Ci. This satisfies strong-stability since for every A ⊂ Ci we
have K(A, Ci \A) is strictly larger than 1/2. Yet it is impossible to cluster in the inductive model.
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For this property, we could always run the algorithm for Theorem 10, though running time would be
exponential in k and 1/γ. We show here how we can get polynomial dependence on these parameters by
adapting Algorithm 2 to the inductive setting as in the case of the strict order property. However, the proof
here is substantially more involved.

Algorithmically, we first draw a set S of n unlabeled examples. We run the average linkage algorithm on
this set and obtain a tree T on the subsets of S. Let Q be the set of leaves of this tree. We associate each
node u in T a function fu (which induces a cluster) specified as follows. Consider x ∈ X , and let q(x) ∈ Q
be the leaf given by argmaxq∈QK(x, q); if u appears on the path from q(x) to the root, then set fu(x) = 1,
otherwise set fu(x) = 0.

We show in the following that for n = poly(k, 1/ε, 1/γ, 1/δ) we obtain a tree T which has a pruning
f1, ..., fk′ of error at most ε, . Remember that C = {C1, . . . , Ck} is the correct clustering of the entire domain.
Let CS = {C ′

1, . . . , C
′
k} be the (induced) correct clustering on our sample S of size n. As in the previous

arguments we assume that a cluster is big if it has probability mass at least ε
2k .

First, Theorem 11 below implies that with high probability the clusters C ′
i corresponding to the large

ground-truth clusters satisfy our property with a gap γ/2. It may be that C ′
i corresponding to the small

ground-truth clusters do not satisfy the property. However, a careful analysis of the argument in Theorem 6
shows that that with high probability CS is a pruning of the tree T . Furthermore since n is large enough we
also have that with high probability K(x,C(x)) is within γ/2 of K(x,C ′(x)) for a 1 − ε fraction of points
x. This ensures that with high probability, for any such good x the leaf q(x) belongs to C(x). This finally
implies that the partition induced over the whole space by the pruning CS of the tree T is ε-close to C.

We prove in the following that for a sufficiently large value of n sampling preserves stability.

Theorem 11 Let C1, C2, . . . , Ck be a partition of a set X with N elements such that for any S ⊆ Ci and any
x 6∈ Ci,

K(S, Ci \ S) ≥ K(S, x) + γ.

Let C ′
i be a random subset of n elements of Ci. Then, n = poly(1/γ, 1/δ) is sufficient so that with probability

1− δ, for any S ⊂ C ′
i and any x ∈ C ′ \ C ′

i,

K(S, C ′
i \ S) ≥ K(S, x) +

γ

2
.

In the rest of this section we sketch a proof which follows closely ideas from [18] and [4].
For a real matrix A, a subset of rows S and subset of columns T , let A(S, T ) denote the sum of all entries

of A in the submatrix induced by S and T . The cut norm ||A||C is the maximum of |A(S, T )| over all choices
of S and T .

We use two lemmas that are closely related to the regularity lemma but more convenient for our purpose.

Theorem 12 [18][Cut decomposition] For any m × n real matrix A and any ε > 0, there exist matrices
B1, . . . Bs with s ≤ 1/ε2 such that each Bl is defined by a subset Rl of rows of A and a subset Cl of columns
of A as Bl

ij = dl if i ∈ Rl and j ∈ Cl and Bl
ij = 0 otherwise, and W = A− (B1 + . . . + Bs) satisfies: for

any subset S of rows of A and subset T of columns of A,

|W (S, T )| ≤ ε
√
|S||T |||A||F ≤ ε

√
|S||T |mn||A||∞.

The proof is straightforward: we build the decomposition iteratively, if the current W violates the required
condition, we define the next cut matrix using the violating pair S, T and set entries in the induced submatrix
to be W (S, T )/|S||T |.

When A is the adjacency matrix of an n-vertex graph, we get |W (S, T )| ≤ εn
√
|S||T | ≤ εn2.
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Theorem 13 [4][Random submatrix] For ε, δ > 0, and any B be an N ×N real matrix with ||B||C ≤ εn2,
||B||∞ ≤ 1/ε and ||B||F ≤ n, let S be a random subset of the rows of B with q = |S| and H be the q × q
submatrix of B corresponding to S. For q > (c1/ε4δ5) log(2/ε), with probability at least 1− δ,

||H||C ≤ c2
ε√
δ
q2

where c1, c2 are absolute constants.

Proof: The proof follows essentially from Theorem 1 of [4]. We sketch it here. Fix C1, we’ll apply the
argument to each Ci separately. Fix also an integer 1 ≤ t ≤ |C1|. For a set S ⊆ C1 with |S| = t and a point
x ∈ C \ C1, we consider the function

f(S) =
1

t(|C1| − t)

∑

i∈S,j∈C1\S
K(i, j)− 1

t

∑

i∈S

K(i, x).

We can rewrite this as follows. Let A(i, j) = K(i, j)/t(|C1| − t) for i, j ∈ C1 and A(i, j) = −K(i, j)/t for
i ∈ C1, j ∈ C \ C1 and A(i, j) = 0 otherwise. We see that,

min f(S) = min{
∑

i,j∈C1

A(i, j)yi(1−yj)+
∑

i∈C1,j∈C\C1

A(i, j)yiyj | y ∈ {0, 1}|C|,
∑

i∈C1

yi = t,
∑

i∈C\C1

yi = 1}

The techniques of [4] show that this minimum is approximated by the minimum over a random subset of C.
In what follows, we sketch the main ideas.

Let A be the similarity matrix for C. Fix a cut decomposition B1, . . . Bs of A. Let W = A− (B1 + . . .+
Bs) and we have |W (S, T )| ≤ εN2 (Theorem 12).

For convenience, assume A is symmetric with 0− 1 entries. Then each Bl is also symmetric and induced
by some subset Rl of C with |Rl| ≥ ε1N . Let the induced cut decomposition for the sample A′ corresponding
to the sample C ′ be B′ = B′1 + B′2 + . . . + B′s and each B′i is induced by a set R′

i = Ri ∩C ′. By Theorem
13, we know that this induced cut decomposition gives a good approximation to A′(S, T ), i.e., if we set
W ′ = A′ −B′, then

|W ′(S, T )| ≤ 2c2εn
2.

We now briefly sketch the proof of Theorem 11. First, it holds for singletons subsets S with high probability
using a Chernoff bound. In fact, we get good estimates of K(x,Ci) for every x and i. This implies that the
condition is also satisfied for every subset of size at least γn/2. It remains to prove this for large subsets. To
do this, observe that it suffices to prove it using B′ as the similarity matrix rather than A′ (for a slightly larger
threshold).

The last step is to show that the condition is satisfied by B′ which is a sum of s cut matrices. There are
two ideas here: first, the weight in B of the edges of any cut of C is given by knowing only the sizes of
intersections of the shores of the cut with each of the subsets inducing the cut matrices. Next, the minimum
value attained by any set is approximated by a linear program and the sub-LP induced by a random subset of
variables has its optimum close to that of the full LP. Thus, the objective value over the sample is also large.

C Examples

Strict ordering and Spectral partitioning Figure 2 shows that it is possible for a similarity function to
satisfy the strict ordering property for a given clustering problem for which Theorem 2 gives a good algorithm,
but nonetheless to fool a straightforward spectral clustering approach.

Linkage-based algorithms and strong stability Figure 3 (a) gives an example of a similarity function that
does not satisfy the strict ordering property, but for large enough m, w.h.p. will satisfy the strong stability
property.7 However, single-linkage using Kmax(C, C ′) would still work well here. Figure 3 (b) extends

7This is because there are at most mk subsets A of size k, and each one has failure probability only e−O(mk).
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Figure 2: Consider 2k blobs B1, B2, . . . , Bk, B′
1, B

′
2, . . . , B

′
k of equal probability mass. Points inside the same blob

have similarity 1. Assume that K(x, x′) = 1 if x ∈ Bi and x′ ∈ B′
i. Assume also K(x, x′) = 0.5 if x ∈ Bi and x′ ∈ Bj

or x ∈ B′
i and x′ ∈ B′

j , for i 6= j; let K(x, x′) = 0 otherwise. Let Ci = Bi ∪ B′
i, for all i ∈ {1, . . . , k}. It is easy

to verify that the clustering C1, . . . , Ck is consistent with Property 1 (part (b)). However, for k large enough the cut of
min-conductance is the cut that splits the graph into parts {B1, B2, . . . , Bk} and {B′

1, B
′
2, . . . , B

′
k} (part (c)).

Figure 3: Part (a): Consider two blobs B1, B2 with m points each. Assume thatK(x, x′) = 0.3 if x ∈ B1 and x′ ∈ B2,
K(x, x′) is random in {0, 1} if x, x′ ∈ Bi for all i. Clustering C1, C2 does not satisfy Property 1, but for large enough
m, w.h.p. will satisfy Property 4. Part (b): Consider four blobs B1, B2, B3, B4 of m points each. Assume K(x, x′) = 1
if x, x′ ∈ Bi, for all i, K(x, x′) = 0.85 if x ∈ B1 and x′ ∈ B2, K(x, x′) = 0.85 if x ∈ B3 and x′ ∈ B4, K(x, x′) = 0
if x ∈ B1 and x′ ∈ B4, K(x, x′) = 0 if x ∈ B2 and x′ ∈ B3. Now K(x, x′) = 0.5 for all points x ∈ B1 and x′ ∈ B3,
except for two special points x1 ∈ B1 and x3 ∈ B3 for which K(x1, x3) = 0.9. Similarly K(x, x′) = 0.5 for all points
x ∈ B2 and x′ ∈ B4, except for two special points x2 ∈ B2 and x4 ∈ B4 for which K(x2, x4) = 0.9. For large enough
m, clustering C1, C2 satisfies Property 4. Part (c): Consider two blobs B1, B2 of m points each, with similarities within
a blob all equal to 0.7, and similarities between blobs chosen uniformly at random from {0, 1}.

this to an example where single-linkage using Kmax(C,C ′) fails. Figure 3 (c) gives an example where strong
stability is not satisfied and average linkage would fail too. However notice that the average attraction property
is satisfied and Algorithm 1 will succeed.
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