
Predicting Protein Folding Kinetics via
Temporal Logic Model Checking

Christopher James Langmead∗†,
Sumit Kumar Jha∗

May 2007
CMU-CS-07-132

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA 15213.
† Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA 15213

E-mail: cjl@cs.cmu.edu

This research is supported by a Young Pioneer Award from the Pittsburgh Lifesciences Greenhouse and a CA-
REER award from the U.S. Department of Energy.

Keywords: protein folding, model checking, temporal logic

Abstract

We present a novel approach for predicting protein folding kinetics using techniques from the field
of model checking. This represents the first time model checking has been applied to a problem in
the field of structural biology. The protein’s energy landscape is encoded symbolically using Bi-
nary decision diagrams and related data structures. Questions regarding the kinetics of folding are
encoded as formulas in the temporal logic CTL. Model checking algorithms are then used to make
quantitative predictions about the kinetics of folding. We show that our approach scales to state
spaces as large as 1023 when using exact algorithms for model checking. This is at least 14 orders
of magnitude larger than the number of configurations considered by comparable techniques. Fur-
thermore, our approach scales to state spaces at least as large as 1032 unique configurations when
using approximation algorithms for model checking. We tested our method on 19 test proteins.
The quantitative predictions regarding folding rates for these test proteins are in good agreement
with experimentally measured values, achieving a correlation coefficient of 0.87.

1 Introduction
In the world of proteins, form usually follows function. Consequently, proteins are often studied
in terms of their atomic-resolution structures. A detailed analysis of an enzyme’s active site, for
example, may reveal the mechanism by which it catalyzes a given reaction. Protein structures are
not static, however, and conformational changes often play important functional roles. Moreover,
large-scale conformational changes are also associated with a number of diseases, most notably
the prion-related diseases. For these reasons, and others, it is interesting to study how a given
protein moves between conformations. Such examinations may provide valuable insights into
basic biology and pathology, as well as to the design of therapeutic or preventative interventions
for certain classes of disease.

In this paper, we focus on what is typically the largest conformational change a protein will ex-
hibit — folding. By folding we refer to the act of moving from a completely denatured form to the
so-called native configuration. Unfortunately, there is no experimental technology that can provide
atomic-resolution detail into the entire process of folding (or any other large-scale conformational
change, for that matter). For this reason, computational methods are used to study large-scale con-
formational changes, including folding. Our work builds on prior research on the protein unfolding
problem. In contrast to the well-known protein folding problem, the unfolding problem assumes
that the native structure is already known. The computational challenge is to find low energy path-
ways between the unfolded and folded states. More specifically, we consider the Gō theory of
(un)folding [12] wherein the folding process is driven by the formation of native contacts between
residues (i.e, those present in the native structure). Non-native interactions deemed negligible, and
are therefore ignored. Obviously, this is a highly simplified theory of folding. Nevertheless, this
theory has been shown capable of making accurate quantitative predictions regarding the kinetics
of folding (e.g., [1, 8, 11, 16]).

Like previous algorithms for Gō-like theories, our algorithms operate on finite-state models
of the protein’s energy landscape. The primary contribution of our work lies in the observation
that finite-state models of folding can be formally analyzed using techniques from the field of
model checking [10]. Model checking refers to a family of algorithms for automatically verifying
dynamic properties of concurrent reactive processes. Historically, model checking has been used
to verify the correctness and safety of circuit designs, communications protocols, device drivers,
and other classes of software. More recently, model checking algorithms have been introduced
for analyzing the properties of stochastic systems. Such model checking algorithms for stochastic
systems have been used in the field of systems biology to verify properties of biochemical and
regulatory networks (e.g., [15]). To our knowledge, however, model checking has not been applied
to any problem within the field of structural biology. This paper is the first to do so.

There are three primary advantages of a model-checking approach to studying protein folding
pathways: First, model checking algorithms compute over symbolic representations of finite state
models, not explicit representations. The computational complexity of model checking algorithms
is polynomial in the size of the encoding of the finite-state model. Thus, if a given finite-state
model can be compressed, extremely large state spaces can be considered. Unfortunately, finding
a minimal encoding for an arbitrary finite-state model is NP-hard. However, good heuristics for
finding compact encodings exist. For example, model checking algorithms have been able to verify

1

properties of systems having more than 1020 states since 1990 [7], and have been applied to systems
with as many as 10120 states [5, 6]. In this paper, we show that using exact algorithms for model
checking, energy landscapes with as many as 1023 states are tractable. This is at least 14 orders of
magnitude larger than has been attempted by comparable algorithms for studying protein folding
pathways. We also show that energy landscapes with at least 1032 states are tractable when using
approximation algorithms for model checking. Second, model checking relies on formulas in a
temporal logic to express precise queries about the behavior of the finite-state model. Temporal
logics are very expressive and can be used to ask many questions of interest to protein folding.
Third, model checking algorithms are exact; they are not simply a means for sampling or simulating
the behavior of a system. There are, however, finite-state models that are too large for traditional
model checking algorithms. For these, we use an algorithm for performing approximate model
checking [19] which provides a guarantee on the quality of the computed result.

The organization of this paper is as follows: In Section 2, we define our model of protein
folding. In Section 3, we briefly discuss model checking, and demonstrate how to encode the
protein folding problem in a form suitable for model checking. In Section 4, we report the results
of applying our method to 19 proteins and show that our quantitative predictions of folding rates
are well-correlated with experimental values. We conclude with a discussion of ongoing work in
applying model checking to the study of protein folding pathways.

2 A Simplified Model of Protein (Un)Folding
In this section we describe our model of protein folding; it is identical to that used in [16] and very
similar to those reported elsewhere [1, 8, 11].

The thermodynamics of folding is governed by the Gibbs free-energy: ∆G = ∆E − T∆S.
Here, E is the energy (in kcal mole−1) of inter-residue interactions (e.g., hydrogen bonds, hy-
drophobic interactions, etc), S is the configurational entropy (in kcal mole−1 K−1), and T is the
absolute temperature (in Kelvin). Free energy is a balance between the stabilizing contributions of
inter-residue interactions and the loss of configurational entropy as the protein folds.

Definitions: Let P = 〈a1, a2, ..., an〉 be a protein with n amino acids (aka residues) and m atoms.
Let C ⊂ R3m be the set of possible configurations/embeddings of P such that each Ci ∈ C is
consistent with the laws of physics. Let CF ∈ C be the native configuration of P as determined by,
say, X-ray crystallography. Following [16] we define a contact as two non-hydrogen atoms from
two different residues that are within 4 Å of each other1. Contacts between residues (i, i± 1) and
(i, i± 2) are ignored because they tend to be present in every configuration of P . A contact map,
M, is an n × n matrix where element M(i, j) is the number of contacts between residues i and j.
We define a separate contact strength map, MS , that is the same size as M but whose elements are
obtained by mapping the elements of M as follows: 1-5 contacts 7→ 1; 6-10 contacts 7→ 2; 11-15
contacts 7→ 3; 16-20 contacts 7→ 4. Intuitively, MS classifies contacts as being weak, medium,
strong, or very strong.

11 Å = 10−10m.

2

The model assumes that folding is driven by the formation of the native contacts, and that non-
native interactions are negligible. Therefore, the state space of the protein can be modeled using
a binary string, B ∈ {0, 1}n. Here, B(i) is 0 if the ith residue is completely unfolded and 1 if
it is folded. There is an entropic penalty for each 1 in B which must be compensated for by the
stabilizing energies of the native contacts. In particular, if B(i) = B(j) = 1, then we assume that
the contacts between residues i and j (if any) are formed, and that the energy of that interaction
can be used to offset the entropic penalty.

Under this model, there are 2n possible states. Let BU be the bit string containing all 0’s, and let
BF be the bit string of all 1’s. BU and BF correspond to the unfolded and folded states, respectively.
Every other bit string corresponds to a partially folded state. Each state can be mapped to its free
energy as follows:

G(B) =
n∑
i

n∑
j>i

MS(i, j)B(i)B(j)α− T

n∑
i

B(i)β (1)

where α is the strength of a single contact and β is the entropic penalty for folding a single residue
2. The Boltzmann factor (i.e., weight) for any given configuration is a function of its energy, the
gas constant (R) and the temperature, T; it is given by: w(B) = exp (−G(B)/RT). Since we are
only interested in changes in free energy (i.e., ∆G), we arbitrarily set G(BU) = 0.

A protein’s energy landscape is constructed by applying Eq. 1 to every possible configuration.
In this paper, it can be thought of as an n-dimensional discrete function. Computationally, our
task is to find a low-energy path (or a set of paths) between BU and BF in the energy landscape.
Thus, we must define a set of allowable transitions. Under the model, state s can only transition to
those states that are similar. In practice, this means that transition are only allowed between pairs
of states whose bit vector representations have small Hamming distance. In this paper, we allow
transitions between pairs of states with Hamming distance 1. A toy example of the model for a
3-residue protein is shown in Figure 1.

2.1 Kinetics
The reaction kinetics of folding are described in terms of an energy profile along a chosen reaction
coordinate. A reaction coordinate is a projection of the energy landscape onto one of lower-
dimension. The energy profile tracks the total energy for each position along the reaction coor-
dinate. Given an appropriately chosen reaction coordinate, one can make quantitative predictions
regarding the rate of folding from the energy profile. There are a number of potentially relevant
reaction coordinates from which to chose when studying protein folding including radius of gy-
ration, solvent accessible area, number of folded residues, and so forth. Following Muñoz and
Eaton [16], we will use the number of folded residues (i.e., the number of 1’s in B) as our reaction
coordinate.

For each position 0 ≤ k ≤ n, there are
(

n
k

)
binary strings, each with its own energy. Let

Bk = {B ∈ {0, 1}n |
∑n

i=1 B(i) = k} be the set of bit strings with k 1’s and n − k 0’s.

2See [16] for more details on contact energies and entropic penalties.

3

000
(0)

001
(1)

010
(2)

100
(1)

011
(-1)

101
(2)

110
(-1)

111
(-2)

Figure 1: A toy example of the protein folding model. This finite-state model corresponds to a
3-residue protein. The state variables and the energy (in parens) are placed inside each node. The
state labeled 000 is the unfolded state; the state labeled 111 is the folded state. In our experiments,
we considered proteins with between 16 and 107 residues.

The Boltzman-weighted total energy for each position k along the reaction coordinate is Gk =
−RT ln(

∑
b∈Bk

w(b)). The energy profile for FKBP-12 is shown in Figure 2. In theory, it is
possible to construct the energy profile by explicitly enumerating all 2n binary strings. In prac-
tice, it is common to sample from the set of possible configurations. The algorithms reported in
[1, 8, 11, 16], for example, operate on state space ranging in size from 104 to 109 configurations.
In contrast, we seek to consider the entire space of binary strings by adopting symbolic techniques
from the field of model checking.

We note that because the Boltzmann weight of a configuration is exponentially related to the
negative energy of its configuration, we can compute an upper bound for each Gk by considering
only the smallest-energy configurations for each k. It is these low-energy configurations we iden-
tify via model checking. Specifically, we seek to find the energy of the lowest-energy configuration
for each k.3 We will denote the lowest energy as G̃k.

Given the value of G̃k for all 0 ≤ k ≤ n, there are a number of ways to predict folding rates.
Under a transition-state theory, for example, the folding rate, k ∝ k0 exp(−∆G‡/RT) where k0 is
a constant and ∆G‡ = argmaxk G̃k − G̃0. In this paper, we use a more accurate way to predict the
folding rate in terms of the rate of decay of the average number of folded residues starting from
the folded state [16].

3It may be noted that our technique can be used to identify c lowest-energy configurations, for arbitrary integer c.
For ease of presentation, we only consider the case of c=1 in this paper.

4

Path length

Figure 2: Energy profile for FKBP-12, as computed by our method.

3 Model Checking
The field of model checking was born from a need to formally verify the correctness of hardware
designs. Since its inception in 1981, it has expanded to encompass a wide range of techniques for
formally verifying finite-state transition systems, including those with stochastic behavior. Model
checking algorithms are simultaneously theoretically very interesting and very useful in practice.
Significantly, they have become the preferred method for formal verification in industrial settings
over traditional verification methods like theorem proving, which often need guidance from an
expert human user. A complete discussion of model checking theory and practice is beyond the
scope of this paper. The interested reader is directed to [10] for a detailed treatment of the subject.

3.1 Modeling Concurrent Systems
Let AP be a set of atomic propositions. An atomic proposition, a, is a Boolean predicate referring
to some property of the system. A Kripke strucutre, M , over AP is a tuple, M = (S, S0, R, L).
Here, S is a finite set of states, S0 ⊆ S is the set of initial states, R ⊆ S × S is a total transition
relation between states, and L : S 7→ 2AP is a labeling function that labels each state with the set
of atomic propositions that are true in that state. Variations on the basic Kripke structure exist. For
example, if the system is stochastic, then we replace the transition relation, R, with a stochastic
transition matrix, T where element T (i, j) contains either a transition rates (for continuous-time
Markov models) or a transition probability (for discrete-time Markov models).

5

3.1.1 Application to Energy Landscapes

The Kripke structure used in this paper closely follows the model of protein folding described in
Section 2. The set of states, S, is isomorphic to the set of n-bit binary strings. The set of initial
states, S0, corresponds to (BU). The transition relation, R, allows transitions between pairs of
states whose bit-vector representations have Hamming distance 1.

The labeling function, L, maps each state to an energy and works as follows: Recall that Bk is
the set of bit strings where k bits are 1 and n− k bits are 0. In this paper, our atomic propositions
are generally of the form: “is the minimum energy of B ∈ Bk = c?”. An interesting property of
proteins is that that the energies of folding are bounded to a relatively small, constant-size range. In
particular, the difference between G(BU) and G(BF) is generally 1 to 10 kcal mol−1. The energy
barrier which separates the unfolded and folded states is also typically 10 kcal mol−1 or smaller
at room temperature. Indeed, the energy barrier must be small, or else folding won’t occur. Thus,
the domain of possible energies is, in effect, bounded by a constant of around 20 kcal mol−1. This
range is not related to the size of the protein. The set of possible states, on the other hand, is
exponential in the size of the protein. Due to the discrete nature of our energy function and the
fixed precision of the parameters α and β in Eq. 1, we can then apply the pigeonhole principle and
conclude that the number of unique energy values is also constant. This will ultimately lead to a
very efficient representation of the labeling function, as discussed in the next section.

In summary, assuming a Gō-like model of folding, we have shown that a protein’s energy
landscape can be encoded as a Kripke structure. In the model checking literature, Kripke structures
are not represented explicitly, but rather symbolically. In the next section we discuss techniques
for representing Kripke structures symbolically.

3.2 Symbolic Encodings of Kripke Structures
The basis for symbolic encodings of Kripke structures, which ultimately facilitated industrial appli-
cations of model checking, is the reduced ordered Binary Decision Diagrams (BDDs) introduced
by Bryant [4]. BDDs are directed acyclic graphs that symbolically and compactly represent binary
functions, f : {0, 1}n 7→ {0, 1}. While the idea of using decision trees to represent boolean for-
mulae arose directly from Shannon’s expansion for Boolean functions, two key extensions made to
it were the use of a fixed variable ordering and the sharing of sub-graphs. The first extension made
the data structure canonical while the second one allowed for compression in its storage. A third
extension, also introduced in [4], is the development of an algorithm for applying Boolean oper-
ators to pairs of BDDs, as well as an algorithm for composing the BDD representations of pairs
of functions. Briefly, if f and g are Boolean functions, the algorithms implementing operators
APPLY(f ,g,op) and COMPOSE(f ,g) compute directly on the BDD representations of the functions
in time proportional to O(|f ||g|), where |f | is the size of the BDD encoding f . BDDs can be gen-
eralized to Multi-terminal BDDs (MTBDD) [9], which encode discrete, real-valued functions of
the form f : {0, 1}n 7→ R. Significantly, MTBDDs can be used to encode real-valued vectors and
matrices, and algorithms exist for performing matrix addition and multiplication over MTBDDs
[9]. These algorithms play an important role in several model checking algorithms for stochastic
systems [3].

6

3.2.1 Application to Energy Landscapes

As previously mentioned, we can encode energy landscapes using Kripke structures. It follows,
therefore, that energy landscapes can be encoded symbolically using a combination of BDDs and
MTBDDs. In particular, the transition relation, R, and the labeling function, L, can be encoded
using BDDs and MTBDDs, respectively.

In practice, the construction of the BDDs and MTBDDs is done automatically from a high-
level language describing the finite-state system and its behavior. Here, we use the specification
formalism of reactive modules [2] as provided in the model checking tool PRISM [13]. Briefly, each
residue is modeled as a separate two-state process (i.e., folded or unfolded). Residues change state
asynchronously, and only one residue is allowed to change at any given time (thereby enforcing
the Hamming-distance rule). The set of possible states of the system corresponds exactly to the set
of n-bit strings. The set of allowable transitions is ultimately encoded as a BDD and the labeling
function is encoded as a MTBDD.

3.3 Temporal Logics
Temporal logic is a formalism for describing behaviors in finite-state systems. They have been
used since 1977 to reason about the properties of concurrent programs [18]. There are a number
of different temporal logics from which to chose, and different logics have different expressive
powers. In this paper, we use a small subset of the Computation Tree Logic (CTL). CTL formulae
can express properties of computation trees. The root of a computation tree corresponds to the set
of initial states (i.e., S0) and the rest of the (infinite) tree corresponds to all possible paths from the
root. A complete discussion of CTL and temporal logics is beyond the scope of this paper. The
interested reader is directed to [10] for more information.

The syntax of CTL is given by the following minimal grammar:

φ ::= a | true | (¬φ) | (φ1 ∨ φ2) | EXφ | E[φ1Uφ2]

Here, a ∈ AP , is an atomic proposition (e.g., “does state s have energy c?”); “true” is a Boolean
constant; ¬ and ∨ are the normal logical operators; E is the existential path quantifier (i.e., “there
exists some path from the root in the computation tree”); and X and U are temporal operators
corresponding to the notions of “in the next state” and “until”, respectively. Given these, additional
operators can be derived. For example, “false” can be derived from “¬true” and the universal
quantifier, AXφ, can be defined as ¬EX¬φ.

Given some path π = 〈π[0], π[1], . . . 〉 through the computation tree, the semantics of a CTL
formula are defined recursively:

π |= a iff a ∈ L(π[0])

π |= true, ∀π

π |= ¬φ iff π 6|= φ

π |= φ1 ∨ φ2 iff π |= φ1 or π |= φ2

7

π |= EXφ iff π[1] |= φ

π |= E[φ1Uφ2] iff ∃i ≥ 0, π[i] |= φ2 ∧ ∀j < i, π[j] |= φ1

Here, the notation“π |= α” means that π satisfies α.

3.3.1 Application to Protein Folding

Clearly, CTL formulas can express a rich set of properties concerning reachability (e.g., “will
the protein end up in a particular configuration?”) and/or the logical ordering of events (e.g.,
“will the second residue fold before the first one?”). Numerous extensions to CTL exist which
facilitate questions regarding explicit timings (e.g., “will the protein fold within t milliseconds?”)
or likelihoods (e.g., “what is the probability that the protein fold within t milliseconds?”). In
this paper, we only consider CTL formulas of the following form: let akc ∈ AP be an atomic
proposition that asks “does the state s have k folded residues and have energy c?”, the CTL formula
E[true U a] asks “Is there a path from S0 to some other state, s ∈ S, such that s |= a?” To find
the minimum energy state for fixed k, we can perform a binary search over different values of c.4

Recall, that we argued that the range of energies is bounded by a constant and that the number of
unique energy values is also constant. Therefore, the cost of the binary search is O(1).

3.4 Model Checking Algorithms
Having defined a Kripke structure and the CTL formula, we can then use existing model checking
algorithms for verifying the formula, given a symbolic encoding of the Kripke structure. A model
checking algorithm takes a Kripke structure, M = (S, S0, R, L), and a temporal logic formula,
φ, and finds the set of states in S that satisfy φ: {s ∈ S | M, s |= φ}. The complexity of model
checking algorithms varies with the temporal logic and the operators used. For kinds of formulas
used in this paper (i.e., E[φ1Uφ2]), an explicit state model checking algorithm requires time linear
in the size of the finite-state model and in the length of the formula ([10] p 35-36).

Of course, for very large state spaces, even linear time is unacceptable. Symbolic model check-
ing algorithms operate directly on BDD/MTBDD encodings of the Kripke structure and CTL for-
mula. Briefly, the temporal operators of CTL can be characterized in terms of fixpoints. Let
P(S) be the powerset of S. A set S ′ ⊆ S is a fixpoint of a function τ : P(S) 7→ P(S) if
τ(S ′) = S ′. Symbolic model checking algorithms define an appropriate function, based on the
formula, and then iteratively find the fixpoint of the function. This is done using set operations
that operate directly on BDDs/MTBDDs. The fixpoint of the function corresponds exactly to
{s ∈ S | M, s |= φ}. The interested reader is encouraged to read [10], ch. 6 for more details.

Explicit-state and symbolic model checking algorithms are exact. There are also approximation
algorithms for model checking algorithms (e.g., [19]), which employ sampling techniques and
hypothesis testing. Such algorithms provide guarantees, in terms of the probability of the property
being true, and can scale to much larger state spaces. These do not use BDDs/MTBDDs, but rather

4In our experiments, we make use of extensions to CTL provided in the tool PRISM that allows one to ask for the
minimum energy value directly. Therefore, we do not perform an explicit binary search.

8

operate on the high-level language description of the finite-state model (see Sec. 3.2). We explored
the use of both exact and approximate algorithms for model checking in our experiments.

4 Experiments and Results
We replicated the experiments of Muñoz and Eaton [16] who made predictions on 19 proteins5

The largest protein in that set, FKBP-12 (PDB id 1FKB), has 107 residues. Muñoz and Eaton
consider state spaces in the range of size O(103) to O(109) states. In contrast, we have successfully
performed exact model checking on state spaces of size 276 ≈ 1023 using 2GB of memory on a
single processor of a 4-node cluster. The time taken for these experiments is shown in Table 1.
For proteins up to 74 residues, the longest runtime was under 30 minutes. Then, there is a jump
to almost 7 hours for a 76-residue protein. The increase in time is due to thrashing of virtual
memory. In general, The computation time is dominated by the time to construct the MTBDD.
The actual cost of performing the model checking is under 90 seconds. Both load time and model
checking time are correlated with the length of the protein for proteins up to 74 residues, with
a correlations of 0.77 and 0.78, respectively, (p = .02). However, these are not monotonically
related to length. No significant correlations between load times, model checking time and actual
folding rates were observed. We also ran experiments with an approximation algorithm for model
checking [19]. These all completed in under 11 minutes. The time to perform approximate model
checking is strongly correlated with protein length (R = 0.97, p � 0.001). The largest state space
we considered using the approximation algorithm has 2107 ≈ 1032 states.

Figure 2 shows one sample energy profile computed using model checking for the protein
FKBP-12. Using the technique described in [16] for transforming the free-energy profile into a
quantitative prediction of folding time, we predicted the folding times for each of the 19 pro-
teins. The correlations between the logarithms of the predicted folding rates and the experimen-
tally measured values [14] are shown in Figure 3. The correlation coefficient between predicted
and experimental values is 0.87. By comparison, Muñoz and Eaton achieve correlation coefficients
between 0.83 and 0.87 on the same proteins, depending on which approximation was used. Plaxco
and co-workers developed a simple method for predicting folding rates based on contact order (a
length-normalized average sequential distance between contacting residues) [17]. Their correla-
tion coefficient on 18 of the 19 proteins studied in this paper was 0.64. The mean absolute error of
our predictions is 1.55. In comparison, the mean errors reported for two different techniques on a
similar, but not identical, set of proteins in [8] was 2.77 and 3.42, respectively.

5 Conclusions and Future Work
We have presented an approach to predict the rate of folding using techniques from the field of
model checking. We believe this paper represents the first application of model checking to a
problem in structural biology. The key advantages of this approach are that it scales to extremely

5The PDB ids of the 19 proteins are: 1APS, 1COA, 1CSP, 1FKB, 1FNF, 1HDN, 1LMB, 1MJC, 1NYF, 1PBA,
1PGB, 1PKS, 1SHG, 1SRL, 1TEN, 1URN, 2ABD, 2AIT, 2PTL.

9

Correlation between predicted and experimental folding rates (k)

Experimental log10(k)

Pr
ed

ic
te

d
lo

g 1
0(

k)

Figure 3: Scatter plot of log predicted (y-axis) and actual (x-axis) folding rates. The correlation
coefficient is 0.87, p � 0.001

large state spaces and that it is exact. In terms of accuracy, our predictions of folding rate are
well-correlated with experimentally determined values. However, it remains to be seen whether
such levels of accuracy can be obtained when analyzing significantly larger proteins.

There are numerous extensions to this work that we intend to pursue. First, we have only
begun to explore the kinds of queries that can be encoded in temporal logics. Second, a more
thorough analysis of the relationship between the answers obtained via exact and approximate
model checking is necessary. Finally, our model does not actually include any stochastic behavior.
We have developed stochastic variants of our model of folding and we intend on applying model
checking algorithms for stochastic systems to these. A comparison between the stochastic and
non-stochastic techniques is planned.

Acknowledgments
We thank Dr. Edmund Clarke for helpful discussions on this topic. This research was supported by a U.S.
Department of Energy Career Award (DE-FG02-05ER25696), and a Pittsburgh Life-Sciences Greenhouse
Young Pioneer Award to C.J.L.

10

MTBDD Build MC Time Approximate MC
PDB Id Residues Time (seconds) (seconds) Time (seconds)
1PGB 16 0.269 0.027 29.39
1SRL 56 313.546 18.083 188.69
1SHG 57 452.684 34.767 194.48
1NYF 58 712.788 64.882 195.41
1COA 64 1331.58 110.99 226.80
1CSP 67 973.664 6.57 248.75
1MJC 69 1963.879 86.139 267.32
2AIT 74 1753.331 85.205 318.15
1PKS 76 24647.21 10.55 319.61
2PTL 78 - - 328.98
1PBA 81 - - 335.82
1HDN 85 - - 388.19
2ABD 86 - - 378.94
1LMB 87 - - 373.36
1TEN 90 - - 415.54
1FNF 91 - - 447.37
1URN 96 - - 485.32
1APS 98 - - 511.56
1FKB 107 - - 611.59

Table 1: Performance Statistics. MC = model checking. Column 3 indicates whether exact
or approximate model checking was used. MTBDD build times are only relevant to exact MC
because approximate MC does not use MTBDDs. The approximation error bound was set to 1%
of the energy for these experiments.

References
[1] E. Alm and D. Baker. Prediction of protein-folding mechanisms from free-energy landscapes

derived from native structures. Proc. Natl. Acad. Sci., 96(20):11305–11310, 1999.

[2] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design: An
International Journal, 15(1):7–48, 1999.

[3] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan. Symbolic
model checking for probabilistic processes. In Proc. 24th International Colloquium on Au-
tomata, Languages and Programming (ICALP’97), pages 430–440, 1997.

[4] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, 35(8):677–691, 1986.

[5] J.R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned transi-
tion relations. Proc. 1991 Conf. on VLSI, pages 49–58, 1991.

11

[6] J.R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic model
checking for sequential circuit verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 3(4):401–424, 1993.

[7] J.R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. Proc. Fifth Ann. IEEE Symposium on Logic in Computer
Science, pages 428–439, 1990.

[8] T. H. Chiang, M. S. Apaydin, D. L. Brutlag, D. Hsu, and J. C. Latombe. Predicting Exper-
imental Quantities in Protein Folding Kinetics using Stochastic Roadmap Simulation. Pro-
ceedings of the 2006 ACM International Conference on Research in Computational Molecu-
lar Biology (RECOMB), pages 410–424, 2006.

[9] E.M. Clarke, M. Fujita, P. C. McGeer, J.C.-Y. Yang, and X. Zhao. Multi-terminal binary de-
cision diagrams: An efficient datastructure for matrix representation. IWLS ’93 International
Workshop on Logic Synthesis, 1993.

[10] E.M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge, MA,
1999.

[11] S. O. Garbuzynskiy, A. V. Finkelstein, and O. V. Galzitskaya. Outlining folding nuclei in
globular proteins. J. Mol. Biol., 336:509–525, 2004.

[12] N. Gō and H. Taketomi. Studies on protein folding, unfolding and fluctuations by computer
simulation. IV. Hydrophobic interactions. Int J Pept Protein Res, 13(5):447–461, 1979.

[13] A Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic veri-
fication of probabilistic systems. In H. Hermanns and J. Palsberg, editors, Proc. 12th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’06), volume 3920, pages 441–444, 2006.

[14] SE. Jackson. How do small single-domain proteins fold? Fold. Des., 3(4):R81–R91, 1998.

[15] M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, J. Heath, and E. Gaffney. Simula-
tion and verification for computational modelling of signalling pathways. pages 1666–1675,
2006.

[16] Munoz, V. and Eaton, W. A. A simple model for calculating the kinetics of protein folding
from three-dimensional structures. Proc. Natl. Acad. Sci., 96(20):11311–11316, 1999.

[17] K. W. Plaxco, K. T. Simon, and D. Baker. Contact order, transition state placement and the
refolding rates of single domain proteins. J. Mol. Biol., 277(4):985–994, 1998.

[18] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE. Foundations
of Computer Science (FOCS), pages 46–57, 1977.

12

[19] Håkan L. S. Younes and Reid G. Simmons. Probabilistic verification of discrete event sys-
tems using acceptance sampling. In Proceedings of the 14th International Conference on
Computer Aided Verification, volume 2404, pages 223–235, Copenhagen, Denmark, July
2002. Springer.

13

	1 Introduction
	2 A Simplified Model of Protein (Un)Folding
	2.1 Kinetics

	3 Model Checking
	3.1 Modeling Concurrent Systems
	3.1.1 Application to Energy Landscapes

	3.2 Symbolic Encodings of Kripke Structures
	3.2.1 Application to Energy Landscapes

	3.3 Temporal Logics
	3.3.1 Application to Protein Folding

	3.4 Model Checking Algorithms

	4 Experiments and Results
	5 Conclusions and Future Work

