
Combinatorial and algebraic tools
for optimal multilevel algorithms

Ioannis Koutis

CMU-CS-07-131

May 2007

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Gary Miller, Chair

Alan Frieze
John Lafferty

Daniel Spielman, Yale University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2007 Ioannis Koutis

This research was supported in part by the National Science Foundation under grants CCR-9902091, CCR-
9706572, ACI 0086093, CCR-0085982 and CCR-0122581

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of the U.S. Government.

Keywords: Spectral graph theory, Combinatorial linear algebra, Combinatorial scien-
tific computing, Linear systems, Laplacians, Planar graphs

For my parents, Andreas and Triantafyllia.
Για τoυς γoνείς µoυ, Aνδ%έα και T%ιανταϕυλλιά.

Abstract

This dissertation presents combinatorial and algebraic tools that enable
the design of the first linear work parallel iterative algorithm for solving linear
systems involving Laplacian matrices of planar graphs. The major departure
of this work from prior suboptimal and inherently sequential approaches is
centered around: (i) the partitioning of planar graphs into fixed size pieces
that share small boundaries, by means of a local ”bottom-up” approach that
improves the customary ”top-down” approach of recursive bisection, (ii) the
replacement of monolithic global preconditioners by graph approximations
that are built as aggregates of miniature preconditioners.

In addition, we present extensions to the theory and analysis of Steiner
tree preconditioners. We construct more general Steiner graphs that lead to
natural linear time solvers for classes of graphs that are known a priori to have
certain structural properties. We also present a graph-theoretic approach to
classical algebraic multigrid algorithms. We show that their design can be
recast as the construction of Steiner graph preconditioners. This observation
makes algebraic multigrid amenable to a combinatorial approach that provides
natural graph-theoretical goals and provably fast parallel algorithms for the
design of the two-level scheme.

Acknowledgements

I would like to thank my advisor Gary Miller. His insights, knowledge, support and
constant availability made this dissertation possible.

I also wish to thank my committee members; John Lafferty for introducing me to
some great research topics; Alan Frieze for valuable discussions and for encouraging me
to submit my first paper; Daniel Spielman for very helpful conversations and his feedback
that helped me improve this dissertation. Dan’s work kept coming up and influencing me
in almost all of my seemingly unrelated research efforts.

Overcoming the difficulties that I encountered throughout the years took some self-
confidence. I feel that I owe a great part of it to my undergraduate advisor, Stratis Gal-
lopoulos. Faculty, staff and colleagues that affected me positively include Lenore Blum,
Sharon Burks, Christos Faloutsos, Peter Lee and Dave Tolliver.

I am thankful to many friends, including Umut Acar, Nikhil Bansal, Costas Bartzis,
Costas Bekas, Panos Chrysanthis, Sotiris Damouras, Morgan Designa, Christos Faloutsos,
Jill de Grove, Alex Groce, Stavros Harizopoulos, Nikos Hardavellas, Dimitris Gerogior-
gis, Evangelos Katsamakas, Hyang-Ah Kim, Dimitris Margaritis, Nissan 240SX, Ioanna
Pagani, Elena Raptis, Kivanc Sabirli, Giorgos Sapountzis, Bianca Schroeder, Mohamed
Sharaf, Sean Slattery, but especially to Costas Chrysafinos, Spiros Papadimitriou, Stratos
Papadomanolakis and Spiros Tsavachidis, and my cousins Alexandros and Christina Tzat-
sou.

The most important people in my life are my family; my sister Eleni and my parents
Andreas and Fyllio. Almost fifteen years since I left my home in Larisa, I still wish I could
bend space and see them everyday.

vi

Contents

1 Overview 1

2 Background and prior work 5

2.1 Linear Algebra Guide . 5

2.2 Graph theory . 8

2.2.1 Edge separators . 9

2.2.2 Vertex separators . 9

2.2.3 Graphs, electrical networks and Laplacians 11

2.3 Direct linear system solvers . 13

2.3.1 The graph theory connection . 14

2.3.2 Cholesky factorization . 14

2.3.3 Parallel Cholesky factorization 16

2.3.4 Exploiting the graph theory connection 17

2.3.5 General direct solvers . 19

2.4 Iterative linear system solvers . 19

2.4.1 Richardson’s iteration . 20

2.4.2 Multigrid algorithms . 21

2.4.3 Basic iterative methods . 24

2.4.4 Preconditioning . 24

2.4.5 Combinatorial Preconditioners for SDD matrices 26

2.4.6 Support theory - The role of the Splitting Lemma 27

vii

3 Planar Graph Partitioning 29

3.1 Neighborhoods and their cores . 30

3.2 An outline of the algorithm . 32

3.3 Computing the set
of independent neighborhoods . 34

3.4 Decomposition into Voronoi Regions . 35

3.5 Decomposition into Voronoi-Pair Regions 41

3.6 Splitting a Voronoi Pair . 43

4 Planar Preconditioner and Solver 45

4.1 The solver . 45

4.1.1 Two-level preconditioned Chebyshev 46

4.1.2 Recursive Preconditioned Chebyshev 46

4.1.3 The complexity of the solver . 47

4.2 Planar preconditioner . 47

4.2.1 Sequential complexity . 48

4.2.2 Parallel Complexity . 49

4.2.3 Implementation and practicality notes 50

5 Edge separators
and Steiner preconditioners 51

5.1 An illustrative example . 52

5.2 Laminar decompositions and Steiner graphs 53

5.3 Steiner graphs and linear time solvers
for uniform d-dimensional model grids 55

5.4 Additions to the theory of Support trees 57

5.4.1 Laminar decompositions with guarantees 57

5.4.2 A new bound for laminar Steiner trees 59

5.5 Planar multiway edge separators . 61

viii

6 Spectral inequalities for multiway cuts 67
6.1 Relative perturbation theory for Laplacians 68

6.1.1 Related work . 68

6.1.2 Perturbation bounds . 68

6.2 Optimality of the bounds . 70

6.2.1 Graph definitions - the pair (A,B) 70

6.2.2 Eigenvalues and eigenspaces of A,B 71

6.2.3 The eigenvalues of (A2, B2) - and some questions 73

6.3 Spectral inequalities for multiway cuts 73

7 Multigrid algorithms:
A combinatorial approach 77
7.1 ResidualCorrection: A general framework 78

7.1.1 Simple transformations are ResidualCorrection 80

7.2 The multigrid algorithm . 81

7.2.1 The hierarchy of graphs . 81

7.2.2 The two-level scheme . 83

7.2.3 Recursion . 83

7.3 Multigrid convergence analysis . 84

7.3.1 Some Lemmas . 85

7.3.2 κ(Â, B̂+)-convergence . 86

7.3.3 When and why κ(Â, B̂+) is not sufficient 88

7.3.4 κ(Â2, B̂2
+)-convergence . 89

7.4 Multigrid based on edge separators . 91

7.5 Multigrid based on vertex separators . 93

Bibliography 97

ix

x

Abstract

This dissertation presents combinatorial and algebraic tools that enable
the design of the first linear work parallel iterative algorithm for solving linear
systems involving Laplacian matrices of planar graphs. The major departure
of this work from prior suboptimal and inherently sequential approaches is
centered around: (i) the partitioning of planar graphs into fixed size pieces
that share small boundaries, by means of a local ”bottom-up” approach that
improves the customary ”top-down” approach of recursive bisection, (ii) the
replacement of monolithic global preconditioners by graph approximations
that are built as aggregates of miniature preconditioners.

In addition, we present extensions to the theory and analysis of Steiner
tree preconditioners. We construct more general Steiner graphs that lead to
natural linear time solvers for classes of graphs that are known a priori to have
certain structural properties. We also present a graph-theoretic approach to
classical algebraic multigrid algorithms. We show that their design can be
recast as the construction of Steiner graph preconditioners. This observation
makes algebraic multigrid amenable to a combinatorial approach that provides
natural graph-theoretical goals and provably fast parallel algorithms for the
design of the two-level scheme.

Acknowledgements

I would like to thank my advisor Gary Miller. His insights, knowledge, support and
constant availability made this dissertation possible.

I also wish to thank my committee members; John Lafferty for introducing me to
some great research topics; Alan Frieze for valuable discussions and for encouraging me
to submit my first paper; Daniel Spielman for very helpful conversations and his feedback
that helped me improve this dissertation. Dan’s work kept coming up and influencing me
in almost all of my seemingly unrelated research efforts.

Overcoming the difficulties that I encountered throughout the years took some self-
confidence. I feel that I owe a great part of it to my undergraduate advisor, Stratis Gal-
lopoulos. Faculty, staff and colleagues that affected me positively include Lenore Blum,
Sharon Burks, Christos Faloutsos, Peter Lee and Dave Tolliver.

I am thankful to many friends, including Umut Acar, Nikhil Bansal, Costas Bartzis,
Costas Bekas, Panos Chrysanthis, Sotiris Damouras, Morgan Designa, Christos Faloutsos,
Jill de Grove, Alex Groce, Stavros Harizopoulos, Nikos Hardavellas, Dimitris Gerogior-
gis, Evangelos Katsamakas, Hyang-Ah Kim, Dimitris Margaritis, Nissan 240SX, Ioanna
Pagani, Elena Raptis, Kivanc Sabirli, Giorgos Sapountzis, Bianca Schroeder, Mohamed
Sharaf, Sean Slattery, but especially to Costas Chrysafinos, Spiros Papadimitriou, Stratos
Papadomanolakis and Spiros Tsavachidis, and my cousins Alexandros and Christina Tzat-
sou.

The most important people in my life are my family; my sister Eleni and my parents
Andreas and Fyllio. Almost fifteen years since I left my home in Larisa, I still wish I could
bend space and see them everyday.

xii

Chapter 1

Overview

Solving a system of n linear equations over n variables is one of the fundamental numerical
problems. The computational complexity for a general matrix of equations is Ω(n2). The
presently best known upper bound matches the complexity of matrix multiplication. Vast
improvements are possible when the matrix has special properties, for example sparsity
and positive definiteness. Structured matrices are quite common in scientific computing
applications. Naturally, a great deal of research efforts in computational mathematics has
focused on the design of efficient solvers for restricted classes of matrices.

A fairly special but important class of matrices is the class of Laplacians of combina-
torial graphs. Graph Laplacians are intimately connected with random walks on graphs.
Their eigenvalue decomposition is rich in information related to the cut structure of the
graph. Not surprisingly, some of the best known algorithms for data segmentation encode
the data and their relationship as a weighted affinity graph and reduce the segmentation
problem to that of the computation of a small number of Laplacian eigenvectors. In turn,
the computation of eigenvectors can be reduced to a small number of solutions of linear
systems involving Laplacians.

Applications of Laplacians include general clustering problems [NJW01], collabora-
tive filtering [FPS05], or the solution to systems that arise when applying the finite element
method to solve elliptic partial differential equations [BHV04]. Somewhat paradoxically,
the seemingly most restricted case of two and three dimensional weighted rectangular
grids is probably the most important in the applied world. A prominent example are al-
gorithms for the segmentation of medical images [Gra06], [TM06]. Every day, physicians
and laboratory technicians evaluate thousands of such images. This is a task which is
not only resource consuming, but often impossible for humans. For example, very slight
differentiations in the scans coming from a particular person can be crucial for a medi-

1

cal evaluation, but may be invisible to the human eye. Consequently, the medical field
increasingly relies to software for image segmentation. The images generated by current
equipment give rise to graphs with close to one billion nodes. Given the amount of images
that must be analyzed, this represents an enormous computational task, and a great theoret-
ical challenge for algorithm designers; while the image segmentation algorithms produce
impressive results their practicality relies on the existence of fast Laplacian solvers.

It has been known for more than 30 years that Laplacians of very structured sparse
graphs that arise in the discretization of certain partial differential equations can be solved
in time linear in the number of variables. This is striking; the system can be solved in
time proportional to the time required just to read the set of equations in the memory.
A particularly appealing question presents itself; is there an optimal algorithm for more
general Laplacians?

This dissertation presents an optimal algorithm for the class of weighted planar Lapla-
cians. Although several time-efficient parallel algorithms for the solution of linear systems
have been described, they do asymptotically more work than the fastest sequential algo-
rithm. In contrast, our algorithm has a work efficient parallel version. Our result is the
culmination of sequence of recent advances in the construction of combinatorial precondi-
tioners. Interestingly, as is the case with the practical importance of Laplacians, the recent
advances in the design of solvers emanate from their tight connections with random walks,
graph cuts, and electrical networks. In Chapter 2 we expose some basic aspects of these
connections, and we review prior work.

The major departure of our work from prior approaches is a miniaturization of the pre-
conditioner construction, based on the fact that planar graphs can be decomposed into fixed
size edge-disjoint components with small boundaries. In Chapter 3 we give a linear work
parallel algorithm for computing the decomposition. In contrast with previous approaches
that construct the decomposition by recursively applying bisection, our algorithm works
in a local fashion. In Chapter 4 we show how the decomposition enables the construction
of the preconditioners that are used in the optimal solver.

In Chapter 5 we present extensions to the theory of Steiner graph preconditioners. We
extend the construction and analysis of Steiner trees to more general Steiner graphs. We
show that for classes of graphs that have a priori certain structural properties -including
but not limited to grids with self-similarity properties- Steiner graphs lead to natural linear
time algorithms. We also present a linear work parallel algorithm for decomposing a
weighted planar graph into vertex-disjoint clusters, such that the subgraph induced by
each cluster has high conductance and a relatively light connection to its exterior, and we
discuss the existence of similar decompositions for general graphs.

2

We build Chapter 6 around the observation that when a pair (A,B) of positive defi-
nite matrices has a small condition number, the eigenspaces of B are expected to provide
good approximations to the eigenspaces of A. We formalize this notion by developing
the appropriate relative spectral perturbation theory for the pair (A,B). We show that
the perturbation bounds are tight even when A and B are Laplacians. We also apply the
perturbation results in the context of the Steiner support preconditioners, giving theorems
that relate the structure of the eigenvectors of the normalized Laplacian of a graph with
the vertex-disjoint multi-way decompositions of Chapter 5.

In Chapter 7 we show that the design of classical algebraic multigrid (AMG) algo-
rithms for Laplacians can be recast as the construction of graph preconditioners with
Steiner vertices. The analysis of the two-level scheme can thus be reduced to the anal-
ysis of the condition number for the pair of the graph A and the Schur complement B
of the Steiner preconditioner. These observations makes AMG algorithms amenable to
a combinatorial approach that provides natural graph-theoretical goals and provably fast
parallel algorithms for the design of the two-level scheme.

3

4

Chapter 2

Background and prior work

When A is a n× n symmetric positive definite matrix, the solution to the system Ax = b
is unique and it can be computed exactly, for example via Gaussian elimination. This
almost trivial mathematical statement leads immediately to an obvious algorithmic ques-
tion. Given a matrix A how fast an exact or an approximate solution can be computed?
Although this might at first seem as a relatively shallow question, it is in fact so interesting
and so important that has motivated and sustained related research for several decades.
Two broad classes of algorithms have been developed. Direct algorithms compute exact
solutions, whereas iterative algorithms compute a sequence of approximate solutions that
converge monotonically to the exact solution. This dissertation as well as many other fruit-
ful approaches to the problem of solving linear systems, is based upon a combination of
algebraic and combinatorial tools, for which we present the necessary background.

2.1 Linear Algebra Guide

Throughout this thesis we make use of several basic linear algebra facts. To make our
presentation complete we catalogue -mostly without proofs- the most relevant and useful
definitions and lemmas. We assume that the reader is familiar with undergraduate linear
algebra. There are several excellent books where the reader can find the proofs and a more
complete treatment, among else [SS90, Bha97, HJ85, HJ91].

Definition 2.1.1. [range and null space] Let A ∈ Rn×k be any matrix. The vector space
N (A) = {w : Aw = 0} is called the null space ofA. The vector spaceR(A) = {Aw,w ∈
Rk} is called the range of A.

5

Lemma 2.1.2. [fundamental theorem of linear algebra] Let A ∈ Rn×k be any matrix.
We haveR(A) = N⊥(AT) and thus Rn = R(A) +N (AT).

Definition 2.1.3. [generalized eigenvalues] Let A,B be a pair of matrices. If Ax =
λBx, λ is an eigenvalue of the pair (A,B) with eigenvector x. We denote by Λ(A,B) the
set of eigenvalues of the pair (A,B). In the special case B = I , we denote by Λ(A) the
eigenvalues of A.

Lemma 2.1.4. If A,BT are matrices of dimensions n× k the matrices AB and BA have
the same non-zero eigenvalues.

Lemma 2.1.5. [similarity transformation] If X is an invertible matrix, then Λ(A) =
Λ(X−1AX).

A symmetric matrix A is called semi-positive definite if xTAx ≥ 0 for all vectors
x. It is strictly positive definite when the inequality holds strictly. A symmetric matrix
A is diagonally dominant (SDD) if Ai,i ≥

∑
j 6=i |Ai,j| for all i. Every SDD matrix is

semi-positive definite. The product xTAx and the quotient xTAx/xTBx are often called
Rayleigh. Very often we will be using positive definite matrices that have common null
spaces. When this is the case we will assume that the matrices act only on their range and
treat them as strictly positive definite matrices in order to simplify our notation and make
the discussion more intuitive. For example, we will denote by A−1 the matrix B which
satisfies ABx = BAx = x for all x ∈ R(A).

Lemma 2.1.6. [generalized eigenvalues properties] Let A,B be positive definite ma-
trices. The pair (A,B) has n real eigenvalues that are positive. If λmin, λmax denote the
minimum and maximum generalized eigenvalues respectively, we have

λmin(A,B) = min
x

xTAx

xTBx

λmax(A,B) = max
x

xTAx

xTBx

From this we have λmax(A,B) = 1/λmin(B,A), and for all full invertible matrices G
Λ(A,B) = Λ(GTAG,GTBG). The eigenvalues of (A,B) are identical to the eigenvalues
of B−1A. By Lemma 2.1.4, it can be seen that λ(A,B) = λ(B−1, A−1).

6

A case which requires special treatment is when N (B) ⊆ N (A). In this case all the
generalized eigenvalues of (A,B) are finite and in particular

λmax(A,B) = max
x∈R(A)

xTAx

xTBx
.

Definition 2.1.7. [support] The support σ(A,B) of a matrix A by a matrix B is defined
by

σ(A,B) = min{t ∈ R : xT (τB − A)x ≥ 0 for all x and all τ ≥ t}

For a catalogue of properties of the support we refer the reader to [BH03].

Lemma 2.1.8. [splitting lemma] Let A =
∑

iAi and B =
∑

iBi where Ai, Bi are
positive definite matrices. Then

λmax(A,B) ≤ max
i
λmax(Ai, Bi).

Lemma 2.1.9. IfA andB are positive definite matrices and for all vectors x, (xTAx)/(xTBx) ≤
c, then (xTArx)/(xTBrx) ≤ cr, for all r ≤ 1.

Proof. See [Bha97], Theorem V.1.9. �

Definition 2.1.10. [spectral radius] The spectral radius ρ(A) of a matrix A with real
eigenvalues is the maximum over the absolute values of its eigenvalues.

Lemma 2.1.11. [radius sub-additivity] For any two symmetric matrices A,B, we have
ρ(A+B) ≤ ρ(A) + ρ(B).

Lemma 2.1.12. [radius sub-multiplicativity] Let A and B be symmetric matrices. If B
is semi-positive definite, ρ(BA) ≤ ρ(B)ρ(A).

Proof. By Lemma 2.1.4 we have ρ(BA) = ρ(B1/2AB1/2). For any unit vector x, let
y = B1/2x. By Lemma 2.1.6 we have |yTy| ≤ ρ(B). We have

ρ(B1/2AB1/2) = max
x

∣∣xTB1/2AB1/2x
∣∣ ≤ |yTy| ∣∣∣∣yTAyyTy

∣∣∣∣ ≤ |yTy|ρ(A).

The last inequality follows again from lemma 2.1.6. �

7

Definition 2.1.13. [A-norm] If A is a positive definite matrix, we define the A-inner
product by

(u, v)A = uTAv

the A-norm
‖u‖2A = (u, u)A

and the corresponding matrix norm

‖M‖A = max
u6=0

‖Mu‖A
‖u‖A

.

Lemma 2.1.14. [singular values] The singular value decomposition of an arbitrary ma-
trix A is given by its factorization A = UTΣV , where Σ is a diagonal matrix with positive
values that are the singular values ofA, and U, V are orthonormal matrices whose columns
are respectively the left and right singular vectors of A. For the maximum singular value
σmax(A) of A we have

σmax(A) = σmax(A
T) = max

‖x‖2=‖y‖2=1
|xHAy| = max

‖x‖2=1
‖Ax‖2 = ρ1/2(AAT).

2.2 Graph theory

A weighted graph G = (V,E,w) on a set of n vertices V is a set of edges E ∈ V × V
along with a positive weight function w : e ∈ E → R+. When w(e) = 1 for all e ∈ E we
will say that the graph is unweighted. We define the volume of a vertex u as the sum of
weight of the edges that are incident to e.

d(u) =
∑
e∈u×V

w(e)

and its degree deg(u) as the number of edges incident to u. We extend the definition to the
volume of a set of vertices A as

vol(A) =
∑
u∈A

d(u).

We define the capacity cap(x, y) to be equal to 0 if (x, y) 6∈ E and equal to w((x, y))
otherwise. We extend the definition to pairs of sets in the natural way

cap(X, Y) =
∑

x∈X,y∈Y

cap(x, y).

8

2.2.1 Edge separators

A k-way edge separator consists of edges whose removal partitions the vertices of the
graph into k disjoint clusters. The sparsity of a 2-way edge cut into sets X and V −X is
given by the ratio

φ(X) =
cap(X, V −X)

min{vol(X), vol(V −X)}
.

The sparsest cut is the edge cut that achieves the minimum sparsity over all possible cuts.
The sparsity of the sparsest cut in G is called the conductance of G and we will denote
it by φG. A family of graphs is called expander if the conductance of each member
of the family is bounded by the same constant which is independent from n. We will
often abuse terminology and call a graph an expander if it is understood to what family
it belongs to. It is known that a random unweighted d-regular graph is an expander with
high probability [AS00]. The computation of the sparsest cut is arguably one of the most
important algorithmic problems. Several heuristics have been developed, among else the
widely used in practice software package METIS [KK98].

The first algorithm with provable guarantees for the sparsest cut was the spectral
method which produces a cut with sparsity at most φ1/2

G , and -as we shall see more
extensively- it is based on the computation of the second eigenvector of the normalized
Laplacian [Chu97]. Spectral methods are also widely used in practice [PSL90, HL95].
The theoretical guarantees provided by the spectral algorithm cannot be improved be-
yond the φ1/2

G bound even if the algorithm is allowed to use several higher eigenvectors
[GM95, GM98]. The complexity of the spectral algorithm follows closely the com-
plexity of solving a linear system with the Laplacian of the graph, which currently is
O(mpolylog(n)), where m is the number of edges in the graph [ST03, ST04, EEST05].

The first polynomial time algorithm for computing a cut of sparsity within a factor
independent from φG was given by Leighton and Rao [LR99]. Their algorithm finds a
cut with sparsity at most O(φG log n). More recently a polynomial time algorithm that
finds a cut with sparsity at most O(φG

√
log n) was given in [ARV04]. The running time

of the algorithm was improved to Õ(n2) in [AHK04]. A faster Õ(m + min{n/φG, n1.5})
algorithm with an O(log2 n) approximation guarantee was described in [KRV06].

2.2.2 Vertex separators

A k-way vertex separator S is a set of vertices that decomposes the edges of the graph
G = (V,E) into k disjoint components that communicate only through vertices of S.
The boundary of a given component is defined as its intersection with S, while the rest of

9

the vertices are the interior of the component. Vertex separators are often treated in the
literature with respect to weights assigned to vertices. In our setting we uniformly assume
that vertices have unit weights, and our statements for vertex separators are independent
from the weight function w of the given graph.

Now, let S be a 2-way vertex cut into the sets of edges X and E−X . Let V [X] denote
the set of vertices ofG that are not in S and touch an edge inX . Without loss of generality,
assume that |V [X]| ≤ |V [E − X]|. The size of the cut is |S|, its cut ratio is defined as
|S|/|V [X]|, and its balance as |V [X]|/n. We say that a 2-way separator is balanced if its
balance is at least 1/4. We say that a graph G has a family of f(n)-separators, if every
subgraph H of G, has a balanced separator of size f(|H|).

A considerable part of this dissertation addresses the problem of computing multi-
way separators for planar graphs. A graph is called planar if it can be embedded on the
surface of a sphere, in other words if it can be drawn on the plane without edge crossings.
Research on the problem of computing a small balanced vertex separator for planar graphs
goes back to the planar separator theorem of Lipton and Tarjan [LT79]. They showed that
every planar graph has a balanced 2-way vertex separator of size O(

√
n), which can be

constructed in linear time. Several generalizations for graphs of bounded genus as well as
improvements in the constants have been reported, among else in [GHT84, Mil86a].

Spectral methods provably compute separators with cut ratio at most O(1/
√
n) for

(unweighted) bounded degree planar graphs [ST96], and at most O(
√
g/n) for bounded

degree graphs of genus g [Kel04]. The spectral algorithm does not require the computation
of an embedding of the graph which is a common step for the other algorithms. This
becomes very important for graphs of bounded genus whose embedding requires time with
an exponential dependence on g [Moh99]. The disadvantage of the spectral algorithm is
that the separators are not in general balanced.

As first observed by Frederickson [Fre87], the recursive application of the planar sepa-
rator theorem reveals that a planar graph has a small n/k-way vertex separator that decom-
poses the graph into components of size at most k, such that every component has O(

√
k)

boundary vertices in average. This was generalized (with the appropriate adjustments
on the average boundary size) to classes of graphs that have families of small separators
[KST01]. Both approaches are constructive and provided that there is an f(n)-time algo-
rithm for the computation of a balanced 2-way separator, they yield an O(f(n) log(n/k))
algorithm for the construction of the decomposition.

Parallel algorithms for the computation of balanced 2-way vertex separators for planar
graphs were studied by Gazit and Miller [GM87]. They gave an O(log2 n) time algorithm
with work complexity O(n1+c) for any fixed c > 0. The algorithm can be modified to

10

find a slightly suboptimal O(
√
n log n) separator by doing O(n log2 n) work. The algo-

rithm of Gazit and Miller can be used to parallelize the existing sequential algorithms,
but with an extra log2 n factor for the total work of the algorithm, and a suboptimal size
for the boundaries of the components in the partition. We note that there is an O(n) time
algorithm for constructing a full tree of separators for a planar graph [Goo95]. However,
the separators constructed in [Goo95] are subtly different from the separators needed in
[Fre87] or [KST01]. More importantly, the parallel version of this algorithm requires the
computation of BFS tree for the graph. Currently known parallel algorithms for the com-
putation of a BFS tree require at least n2 work, and their improvement is a long standing
open problem.

The work in this dissertation addresses the problem of decomposing a planar graph into
components of size at most k such that every component has O(

√
k) boundary vertices in

average, for a fixed constant k. We give a linear work O(log n) time parallel algorithm.

2.2.3 Graphs, electrical networks and Laplacians

Given an arbitrary numbering of the vertices of the graph, we define the adjacency matrix
AG of a graph G as AG(i, j) = cap(i, j). Let DG be the diagonal matrix containing the
volumes of the vertices of G, that is DG(i, i) = di and DG(i, j) = 0 for i 6= j. We
define the Laplacian of G as the matrix LG = DG − AG. We also define the normalized
Laplacian as the matrix NG = D

−1/2
G LGD

−1/2
G . If G1 = (V,E,w1) and G2 = (V,E,w2)

and G = (V,E,w1 + w2), we have

LG = LG1 + LG2 . (2.1)

There is a one-to-one correspondence between Laplacians and graphs, and because of
that, we will drop subscripts whenever it is possible. It can be seen that Laplacians cor-
responding to connected graphs are semi-positive definite, with the constant vector 1 as
their common null space.

The edge-incidence matrix Γ is defined as the |V |×|E|matrix with rows correspond-
ing to vertices and edges corresponding to columns. For a column k corresponding to an
edge between vertices i, j we let Γ(i, k) = 1 and Γ(j, k) = −1. If D is the matrix of the
volumes of the vertices of the graph then its Laplacian satisfies L = ΓDΓT . Using this, it
can be seen that

xTLx =
∑
i 6=j

w(i, j)(xi − xj)2

The algebraic approach has been indispensable to the derivation of several graph the-
oretical results that are covered in at least three advanced monographs [Big94, CDS98,

11

RG97]. In the rest of this subsection we review some of the most relevant aspects to this
dissertation. Consider the lazy random walk on the graph, where a particle at vertex i:
(i) stays in i with probability, or (ii) follows edge e with probability w(e)/2d(i). The ma-
trix whose ith row contains these transition probabilities is simply 1/2(I − D−1L). This
straightforward connection has been used extensively to discover and prove properties of
random walks [Lov93]. A closely related connection can be established with electrical
networks [DS00]. A graph can be viewed as an electrical network where each edge with
weight cap(i, j) corresponds to a resistance ri,j = 1/cap(i, j). The close relationship of
the two models is highlighted by the fact that the average commute time between vertices
i, j which is the expected time for a random walk starting from i to return to i after having
visited j, is equal to 2V ol(V)R(i, j), where R(i, j) is the effective resistance between i
and j in the corresponding electrical network [Lov93]. Then, considering a vector x as
voltages applied to the nodes of the network, Ax is the vector of residual flows on the
vertices. Concretely, if Li is the ith row of the Laplacian, the residual flow at vertex i is
given by

ri = Lix =
∑

j:(j,i)∈E

cap(i, j)(xi − xj) (2.2)

The product xTLx is the power dissipation in the electrical network for the voltages given
by x.

It can be easily derived that λmax(L) ≤ 2 maxv d(v) and λmax(N) ≤ 2. The constant
eigenvalues of the normalized Laplacian are almost trivial from a combinatorial point of
view. However the opposite side of the spectrum is rich in combinatorial information about
the given graph. Fiedler observed that the positive and negative components of the second
eigenvector of LG correspond to two connected components of vertices in G [Fie73]. His
work eventually led to the spectral method for the computation of a sparse cut in a graph.
If x is any unit norm vector with xTNx = α, then an edge cut with sparsity α can be
found as follows: Let Xi be the set of the largest i entries of x. The sparsest cut among
the n 2-way cuts defined by Xi, for i = 1, . . . , n has sparsity at most α. The Cheeger
inequality [Chu97] gives

λ2(NG) ≥ φ2
G/2. (2.3)

The spectral method for computing a sparse cut computes the eigenvector x2 correspond-
ing to λ2. From the Cheeger inequality it follows that the cut computed from x2 has
sparsity at most (2φG)1/2. As we shall see, in practice a 2-approximate eigenvector of the
second eigenvector, that is a vector x such that xTNx/xTx ≤ 2λ2, is easier to compute.

12

2.3 Direct linear system solvers

Consider a system of equations with the matrix

10 1 1 1 1
1 5 0 0 0
1 0 5 0 0
...

...
...

...
...

1 0 0 5 0
1 0 0 0 5

(2.4)

The matrix is sparse, it has only O(n) non-zero elements. It can be described by the
list of its non-zero entries. Most of the times, a programmer who would want to code up
Gaussian elimination would be inclined to implement it in its usual form: ”at the ith step
subtract a multiple of the ith row from the rows below it so that all the elements of the ith

column below the diagonal are zeroed-out”. After just one elimination step this is how the
matrix looks in terms of its non-zero structure:

∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
...

...
...

...
...

0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

Obviously, something went wrong; although we started with a matrix with O(n) non-zero
entries, we ended up with a matrix that has O(n2) non-zero entries. This is the problem of
fill; eliminating variables, causes entries which were zero to become non-zero. However,
in the above example we can do better; renaming the variables (for example switching the
place of x1 and x5) changes the matrix of the system to:

5 0 0 0 1
0 5 0 0 1
0 0 5 0 1
...

...
...

...
...

0 0 0 5 1
1 1 1 1 10

(2.5)

Now, if we apply Gaussian elimination, it can be seen that the problem of fill disappears
completely. The number of non-zero entries in the matrix never exceeds O(n). There-

13

fore, it appears that the usual Gaussian elimination algorithm is not optimal. Before its
application we need to compute a good ordering of the variables.

2.3.1 The graph theory connection

Although along its course Gaussian elimination may cancel a non-zero entry and restore
a zero entry, this will clearly be a coincidence due to the specific values of the non-zero
entries in A. It is not hard to see that if we apply the algorithm to almost every matrix with
the non-zero structure of A, when an entry of the matrix becomes non-zero, it will stay
non-zero until the termination of the algorithm.

The non-zero structure of a symmetric matrix can be captured naturally by GA, the
graph of the matrix A. The graph of the matrix has n vertices and vertices i, j are joined
by an edge if and only if A(i, j) 6= 0. For example, GA for our example is a star with n−1
leaves and one center node. The definition of a graph for a given matrix is quite appealing;
it suggests the idea of using graph theoretic tools in our effort to compute a good ordering
for the elimination. The slight problem in this approach is that the Gaussian elimination
as shown above destroys the symmetry of the matrix. Fortunately, we can work around
this problem by making use of special properties of positive matrices that give rise to the
Cholesky factorization.

2.3.2 Cholesky factorization

From an algebraic point of view, Gaussian elimination can be used to drive the factoriza-
tion of A in the form A = LDU , where L and U are lower and upper triangular matrices
with 1 in the diagonal, and D is a diagonal matrix matrix. Once the LDU decomposition
is computed, the upper and lower triangular matrices can be inverted easily, and thus the
solution to Ax = b can be computed without too much additional work.If A is symmetric,
we furthermore have U = LT . WhenA is positive definite, the decompositionA = LDLT

enjoys special properties and its very simple rewriting to A = (LD1/2)(LD1/2)T is known
as Cholesky factorization. In the rest of this thesis we will call the LDLT factorization a
Cholesky factorization. A full exposition and proofs for the Cholesky factorization can be
found in [GL96].

Let A be a n × n be a positive definite matrix, and let Im denote the m ×m identity

14

matrix. We can write

A =

(
d1 vT1
v1 B1

)
=

(
1 0

v1/d1 In−1

)(
d1 0
0 B1 − (v1v

T
1)/d1

)(
1 vT1 /d1

0 In−1

)
= L1A1L

T
1 ,

A1 =

 d1 0 0
0 d2 vT2
0 v2 B2

=

 1 0 0
0 1 0
0 v2/d2 In−2

 1 0 0
0 1 0
0 0 B2 − (v2v

T
2)/d2

 1 0 0
0 1 vT2 /d2

0 0 In−2

 .

A consequence of the fact that A is positive definite is that d1 > 1 and B1 − (v1v
T
1)/d1 is

positive definite. Therefore the process may continue recursively until we get

A = L1 . . . Ln−m

(
D 0
0 Q

)
LTn−m . . . L

T
1 .

where Q is an m ×m positive definite matrix. If m = n we recover the Cholesky factor-
ization, whereas if m < n we will call the product a partial Cholesky factorization.

It is very instructive to review the process using the graph theoretical connection. Let
G(A) = (V,E). Consider the first step

A =

(
d1 vT1
v1 B1

)
=

(
1 0

v1/d1 In−1

)(
d1 0
0 B1 − (v1v

T
1)/d1

)(
1 vT1 /d1

0 In−1

)
.

This step can be viewed as the elimination of the first vertex v1 from the graph of A.
Let N(v1) denote the set of neighbors of v1 in G(A). The number of non-zero entries in
the lower triangular matrix LT1 is equal to |N(v1)|. We now focus on G(B) = G(B1 −
(v1v

T
1)/d1). This is a graph on V − v1. It is well known and can be verified easily that this

graph consists of the edges of the subgraph of G(A) induced by V −v1, plus the complete
graph on the vertices of N(v1). Therefore, from a graph theoretical point of view, the
fill in the matrix is just the extra edges that are added on V − v1 among the neighbors of
v1. Going back to our example in equation 2.4, the elimination of the center vertex in a

15

star graph creates the complete graph on the leaves of the star. On the contrary, when we
eliminate a leaf as in equation 2.5, we get another star with n− 2 leaves.

Having seen the graph theoretical interpretation of a variable elimination, we are now
ready to completely abandon the algebraic language and switch to graph theoretical lan-
guage. We will use interchangeably A and G(A). We will view each step of the Cholesky
factorization process, as a vertex elimination that simply produces a new graph and a lower
triangular matrix for the factorization. To summarize our discussion so far, we state a key
lemma:

Lemma 2.3.1. Eliminating a vertex v from a graph A creates a complete graph on the
neighbors of v in A. In particular, if v is a vertex of degree 1 or 2, its elimination decreases
the number of edges in the graph by at least 1.

Assume now that we have a partial Cholesky factorization

A = L

(
D 0
0 B

)
LT

. The system then can be solved as:

x = L−T
(
D−1 0

0 B−1

)
L−1b

The matrices L−1 and L−T are not formed explicitly. In practice the vectors L−1u and
L−Tu are computed via backward and forward substitution, with a number of operations
proportional to the number of non-zero entries in L [SS90].

2.3.3 Parallel Cholesky factorization

Assume that the edges of the graph can be partitioned by a vertex separator into disjoint
sets. Algebraically, this means that the matrix A can be written as

∑
iAi with the matrices

Ai having common non-zero entries only along the diagonal of A. Furthermore assume
that we would like to construct the Cholesky factorization with respect to the elimination
of vertices only in the interior of the Ai’s. By Lemma 2.3.1, the elimination process for
the vertices in the interior of Ai depends only the graph induced by the edges in Ai and
the elimination order in Ai. Hence for all i, the elimination of the interior vertices of
Ai gives a local Schur complement Bi which can be computed ”locally”, as a function
of Ai. Algebraically, the global Schur complement B will be

∑
iBi, and we can write

16

L =
∏

i LAi
, where LAi

corresponds to the elimination of the nodes in Ai, and can be
constructed independently from the other LAi

’s. Algorithmically, the vectors L−1u and
L−Tu are computed via backward and forward substitution that involves only locally the
variables corresponding to the vertices of each Ai. Both in the computation of the Schur
complement and in the substitution we need to compute sums on the vertex boundaries,
where the summands come from the neighboring clusters of edges. The sums can be
computed in parallel time O(log n), and the total work is proportional to the total number
of non-zero entries in L.

2.3.4 Exploiting the graph theory connection

In view of Lemma 2.3.1, it can be seen that elimination of a vertex v of degree 3 and more
from A may create fill, unless the neighbors of v are already joined in A. So, before we
start worrying about fill, we can at least greedily eliminated vertices of degree 1 and 2
from the starting graph A = (V,E), since no extra edges are introduced into the graph.
Let us formally state a slight variance of this algorithm. Let S be subset of V .

Eliminate(A, S): Greedily apply the following rules when possible:
(a) If v 6∈ S has degree 1 remove v and its adjacent edge.
(b) If v 6∈ S has degree 2 remove v and connect its neighbors with an edge.

In fact it is not hard to see that Eliminate works perfectly for trees, and in fact rule
(a) is enough.

Lemma 2.3.2. When the graph of a matrix A is a tree, the solution to the system Ax = b
can be computed in O(n), by greedy elimination of vertices of degree 1.

It is interesting to ask how many vertices we can eliminate from a given graph before
we get stuck with a graph where every vertex has degree at least 3. The following folklore
Lemma due probably to Vaidya [Vai91] and used in several algorithms and articles (e.g.
[Che01, ST04]), provides a bound.

Lemma 2.3.3. Algorithm Eliminate returns a graph C with at most 4(|S| + |E| −
|V |+ 1) nodes. In addition if A is planar then C is also planar.

After we are left with a graph where every vertex has degree at least 3, computing
a good order becomes a more difficult problem. Computing the order that produces the

17

minimum fill-in is an NP-complete problem [Yan81]. Even if we settle with a polyloga-
rithmic approximation for the fill the best known algorithms for computing a good order
require time that exceeds kmn, where k is the optimal fill value and m is the number of
edges in the graph [NSS98]. This time bound almost always exceeds the complexity of
solving the system with other known methods. In fact, the best ordering does not provide
any asymptotic improvement over an arbitrary ordering for almost every sparse matrix
[Duf74, LRT79].

However, the situation is different when the graph is known a priori to have special
structural properties, as it is the case with most applications. Consider the case of a two
dimensional square grid with n vertices. Eliminating vertices at distant areas of the grid
causes the introduction of only local and relatively isolated extra edges. Exploiting this
locality was the central idea in the pioneering work of Alan George on nested dissection
[Geo73], that showed that any positive definite system whose matrix is the square grid can
be solved in time O(n1.5). The square grid shares with every planar graph with n vertices
the property that it can be split into two roughly equal sized parts by removing

√
n vertices.

In general a class of graphs is said to have a family of nc separators, when every graph of
the class can be divided in two roughly equal sized parts by removing nc vertices. Lipton
Rose and Tarjan observed that this is the key property needed for a good ordering and
extended this work to graphs that have families of small vertex separators [LRT79]. They
showed that any matrix whose graph that has a family of nc separators can be solved in
time O(n1+c), provided that the tree of separators can be computed within the same time
bound. As a result, using algorithms for computing the separator trees, planar graphs and
graphs of bounded genus can be solved in time O(n1.5) [LT79, GHT84]. Improvements
are possible also for several other classes of graphs [GT87], for example d-dimensional
grids. Due to more recent results, the general class of d-dimensional well shaped meshes
can be solved in time O(n1+(d−1)/d) [EMT93]. The nested dissection algorithms for these
classes of graphs remain the best known algorithms to date.

The availability of parallel computers and large distributed systems has motivated re-
search on parallel algorithms for solving the linear systems, and in particular on work-
efficient parallel versions of the best known sequential algorithms. Pan and Reif intro-
duced parallel nested dissection which achieved an O(log3 n) time complexity, with total
work at most O(n1+c log2 n), provided that the algorithm is given the tree of nc-separators
for the graph.

We close this section by mentioning that the computation of good orderings has been
central in numerous theoretical and applied articles (e.g. [BMMR97, BMM99]), as well
as in the development of robust linear system solvers such as the frontal and multi-frontal
linear solvers for systems that may be indefinite and un-symmetric (e.g. [DR83]). In

18

addition, graph separators have been used to reduce the communication costs in parallel
implementations for sparse matrix multiplication [GGKK94].

2.3.5 General direct solvers

As noted in the previous Section, the graph theoretical connection does not yield an im-
provement to the asymptotical complexity of Cholesky factorization for general positive
definite matrices. Conjugate gradients is widely regarded as an iterative algorithm be-
cause it uses only matrix-vector multiplications, and it computes a converging sequence
of approximate solutions. However, it is also a direct solver because it recovers the exact
solution to the system after n steps [Dem97]. Each step has complexity O(m), where m
is the number of edges of the graph of the system, hence its total complexity is O(mn).
This is the best known algorithm for m < n1.376. When m > n1.376 the best algorithm
(that works for general systems of equations) uses formulas that are provided through the
Coppersmith-Winograd algorithm for matrix multiplication [CW90], the last paper in a
sequence of Strassen-like approaches that was initiated in the celebrated work of Strassen
[Str69].

2.4 Iterative linear system solvers

Iterative algorithms for the solution of linear systems are procedures that generate a se-
quence of approximate solutions xt and corresponding errors et = A−1b− xt. We say that
an iterative method converges if limt→0 ‖et‖ = 0. Typically, iterative algorithms target
very large sparse matrices where the cost of direct methods is prohibitive, both in terms
of time and space. Although it is not always clear whether iterative methods can reduce
the time complexity, they at least can address the space complexity which is a very impor-
tant problem because typically large memory usage translates to heavier use of very slow
types of memory. Of course, the m non-zero entries of A provides obviously a minimal
requirement for the time complexity. Iterative algorithms keep the space requirement low
by keeping in the memory a small number of vectors and strive for fast convergence by
using only matrix-vector multiplications withA, and vector additions. Although this looks
like a rather small repertoire of available operations, it leads -in some instances at least- to
asymptotically nearly optimal or optimal time complexity.

19

2.4.1 Richardson’s iteration

Suppose we pick an arbitrary initial approximation x0 to the solution of the systemAx = b.
For the discussion in this subsection we need only assume that A is an arbitrary full-
rank matrix with possibly complex eigenvalues. We would like to update x0 with a better
approximation x1 using only computationally inexpensive (with respect to the input size)
operations: vector additions and one matrix-vector multiplication with A. At the very
least we must preserve x0 if we were extremely lucky to start with x0 = A−1b. Perhaps
the simplest iteration with these properties is known as Richardson’s iteration:

xt = (I − A)xt−1 + b. (2.6)

Observe that the solution x satisfies x = xt−1 +et−1. Of course et−1 is not available. What
is readily available is the residual at time t − 1 which is defined as rt−1 = b − Axt−1.
The residual can be seen as an easy to compute ”approximate” form of error. A different
derivation of Richardson’s iteration is based on a residual correction approach. Form the
new approximation as the sum combination of the current approximation and the residual:

xt = xt−1 + rt−1 = xt−1 + b− Axt−1 = (I − A)xt−1 + b.

So, this leads to another derivation of equation 2.6. The only stationary point of the itera-
tion is the solution of the system. But does it always compute a better approximation xt ?
For this we need to express the error et = xt−A−1b after the first iteration, in terms of the
error et−1 = xt−1 − A−1b in the beginning. A simple algebraic manipulation shows that
et = (I − A)et−1. This implies that if we start with an initial error e0 and apply the same
iteration t times we get

et = (I − A)te0. (2.7)

To analyze the behavior of the error we will use the spectral decomposition of A. Let λi,
for i = 1, . . . , n be the eigenvalues of A, with |λi| ≤ |λi+1|, and Axi = λixi, where the
vectors xi are normalized. We have

e0 =
∑
i=1

aixi ⇒

et =
∑
i=1

(1− λi)taixi (2.8)

Clearly if for all i we have |1 − λi| < 1, then all the coefficients in the expression of et
converge to 0 as t increases, and we say that Richardson’s iteration converges. If |λi| > 1
for some i, the method diverges. However, provided that we have an upper bound c|λn|
for |λn|, we can change the system to Bx = |cλn|−1b, where B = |cλn|−1A. Then, all

20

the eigenvalues of the new matrix B have magnitude less than 1 and Richardson’s method
converges.

How fast does Richardson’s iteration converge? Let us formalize the question. Having
fixed A, we define the norm nA : nA(x) =

∑
i a

2
i when x =

∑
i aixi. Clearly, the speed of

convergence is determined by the eigenvalue of B of smallest magnitude, which is equal
to |λ1|/|cλn|. The number κ(A) = |λn|/|λ1| is known as the spectral condition number
of A. It can be seen that even when λn is known exactly, t = κ(A) ln(1/ε) iterations are
needed so that nA(et) ≤ εnA(e0).

2.4.2 Multigrid algorithms

Let us focus again on positive definite matrices, and more specifically on normalized
Laplacians. Let E be a 3-regular unweighted expander with n vertices. Assume that
we want to solve the system 0.5NEx = b. Formally, NE has a null space - the constant
vector. However we can restrict all our vectors orthogonal to the constant vector, and view
NE as a positive definite matrix with smallest eigenvalue equal to λ2(NE). The maximum
eigenvalue ofNE is 1, and by the Cheeger inequality, λ2(NE) is a constant, independent of
the size of the graph. Hence a constant number of iterations are enough to halve the error.
This is impressive given that expanders are exactly the kind of graphs that are tough for
Cholesky factorization for any ordering of the variables. On the other hand it is not hard
to come up with a bad example. Let An be the normalized Laplacian of the cycle graph
on n vertices. In this case we have λ2(An) = 1/n2, and Richardson’s iteration requires
O(n2) iterations which translate to an O(n3) complexity before the error gets reduced by
a factor of 2. Observe that An can be solved in linear time by the Cholesky factorization,
with respect to any ordering of the variables.

However we should not yet abandon Richardson’s method. After all, we know that
its application does reduce the error corresponding to constant eigenvalues - the high fre-
quency of An. The idea then is to use a different algorithm for the elimination of the low
frequency error. This idea is the main principle behind multigrid algorithms. We give a
short introduction to the basic notions of multilevel methods. For a more thorough intro-
ductory exposition we refer the reader to the excellent tutorial by Briggs et. al. [BHM00].

Graph theoretically, very small sets of neighboring vertices in An are expanders and
thus after some applications of the Richardson’s iteration the error will not differ by much
among neighboring vertices. Hopefully then the reduction of the high frequency error can
be viewed as a local smoothing of the error. Let xt be the approximate solution after t
Richardson’s iterations. Now consider the residual r = b − Anxt. The solution of the

21

system is equal to A−1
n b = xt + A−1

n r. The observation that iteration 2.6 smoothes the
error locally, leads to the idea of replacing A−1

n by the ”coarse” graph A−1
n/2, and forming a

new approximate solution as follows:

0. Let r = b− Axt;
1. Form a projection r′ = RT

project(r), where r′ ∈ Rn/2;
2. Find y′ = A−1

n/2r
′.

3. Lift y′ to y = Rprojeect(y
′) where y ∈ Rn.

4. Return xt+1 = xt + y.

The hope is that the exact inversion ofAn/2 will reduce sufficiently the part of the error
not dealt with by smoothing. In case et+1 = xt+1 − A−1

n b contains high frequency error,
the situation can be rectified easily by a few more steps of post-smoothing.

Without going into the details here let us not that one of the most elementary aspects
of the multigrid analysis is the matrix that describes the error reduction associated with
this correction step:

M = I −RprojectA
−1
n/2R

T
project (2.9)

We present a derivation of this matrix in Chapter 7.

Up to this point we have a two-level algorithm since we use only An and An/2. Of
course, the exact computation of A−1

n/2r
′ is itself a difficult task. The natural solution

is recursion; instead of solving exactly for An/2, apply the same algorithm to it. The
definition of the multigrid algorithm is then the following:

MG(An, b, x0)
1. Do t steps of xj = (I − An)xj−1 + b;
2. Form a projection r′ = RT

project(b− Axt), where r′ ∈ Rn/2;
3. Let yj = MG(An/2, r

′, yj−1);
4. Lift y′ = y1 or y2 to y = Rproject(y

′) where y ∈ Rn;
5. xt+1 := xt + y.
6. Do t steps of xj = (I − An)xj−1 + b

The structure of the recursive calls of MG resembles a ”V” and the algorithm is also
known as the V-cycle. Historically, multigrid methods were developed to deal with matri-
ces corresponding to underlying differential operators, whose discretizations give natural
hierarchies of ’grids’ with certain repeated properties, or ’regularities’. Hence the name
multigrid.

The first paper on multigrid was written in 1964 by Fedorenko [Fed64]. Then in 1977,
Brandt wrote a seminal paper that popularized multigrid and made it practical [Bra77].

22

In the late 70s Hackbusch and Nicolaides gave the first proofs of optimal convergence
for certain PDEs (e.g [Hac78, Nic78]). From then on, the field of multigrid exploded,
resulting in hundreds of experimental and theoretical papers. Currently there is a vast
literature on multigrid, including more than 3500 related references, and about 25 free
software packages. The Copper Mountain Conferences on Multigrid Methods have been
held biennially since 1983. For a more complete picture we refer to the several available
books [Wes04, Bra93, TSO00, Sha03]. Ultimately, all the proofs of convergence that
have appeared in the literature rely heavily upon the elliptic geometry of the underlying
differential operators that allow the construction of self-similar grids, and the appropriate
choice of the projection operator and the smoothing iteration.

Very often the classical multigrid approach is referred to as Geometric multigrid to
make a distinction with Algebraic multigrid (AMG) which was introduced as an effort to
generalize the principles of multigrid to general weighted graphs for which no geometric
information/discretization is given a priori [BMR84]. While in geometric multigrid the
two-level scheme is explicitly suggested by the choices in the discretization of the differ-
ential operators, the corresponding problem is a major problem in AMG. At a high level,
the usual AMG approach consists of: (i) the choice of a subset of the variables that form
the second level graph often called the ”coarse” grid (ii) the assignment of each ”fine” grid
point to a small number of coarse grid points, (iii) the choice of interpolation/projection
operators that transform vectors in the coarse space to vectors in the fine space, and vice-
versa [Bra86, BHM00]. In general, the algorithms for performing these steps are mostly
based in heuristics, with no guarantees on the running time and the size of the second level
graph. Although the algorithm is quite successful in practice for SDD matrices arising in
applications with a markedly scientific computing/discretization flavor, there is little the-
ory and its convergence properties are not well understood [CFH+00]. In particular, there
are absolutely no guarantees for the complexity and convergence of the V-cycle for the
Laplacian of an arbitrarily weighted square grid on the plane.

In Chapter 7 we show that the design of AMG algorithms for Laplacians can be re-
cast as the construction of graph preconditioners with Steiner vertices. This observa-
tion makes AMG algorithms amenable to a combinatorial approach that provides natural
graph-theoretical goals and solutions for the design of the two-level scheme. The analysis
of the two-level scheme can in turn be reduced to the analysis of the condition number for
the pair of the graph A and the Schur complement B of the Steiner preconditioner. We
show that for Steiner preconditioners that are constructed from edge separators, κ(A,B)
is not a sufficiently strong property to guarantee the convergence of the multigrid V -cycle,
precisely because of the tightness of the perturbation bounds of Chapter 6. We introduce a
stronger notion of graph approximation, the condition number κ(Â2, B̂2), where Â, B̂ are

23

normalized versions of A,B, and we show that it guarantees convergence of the V-cycle.
Furthermore, driven by this new graph approximation measure, we propose Steiner pre-
conditioners that are based on vertex separators on a properly modified linear system, and
we give linear work parallel algorithms for their construction in the planar case.

2.4.3 Basic iterative methods

There are several iterative methods [Axe94]. In this subsection we list only the asymptotic
convergence rates of methods that specialize to positive definite matrices. We state the
convergence properties in term of the A-norm (see equation 2.1.13). The steepest descent
algorithm requires t = κ(A) ln(1/ε) iterations so that ‖et‖A ≤ ε ‖e0‖A. It does not require
the knowledge of an upper bound for λmax(A). The Conjugate Gradients (CG) algorithm
requires t =

√
κ(A) ln(2/ε) so that ‖et‖A ≤ ε ‖e0‖A. CG can be much faster when the

eigenvalues of A fall in a small number of very tight clusters. In fact the worst case
complexity of CG is derived by upper-bounding it with that of the Chebyshev iteration.
Chebyshev iteration requires bounds that localize the eigenvalues of A whereas CG does
not.

2.4.4 Preconditioning

As we saw in subsection 2.4.1 a simple multiplication by a scalar is enough to change the
spectrum of the matrix so that Richardson’s iteration converges. Of course multiplication
by a scalar has just a scaling effect to the eigenvalues of the matrix. Multiplication by
matrices can alter completely its spectrum and make it more favorable for the application
of some iterative method. This is the idea of preconditioning; transforming the system
Ax = b to

B−1Ax = B−1b (2.10)

where B is the preconditioner. Given that A is positive definite, the new matrix B−1A
won’t be in general symmetric, and this may be potentially a problem for the applica-
tion of CG and the Chebyshev method. Fortunately, when B is positive definite, a little
algebraic manipulation can transform these algorithms so that they implicitly operate on
B−1/2AB−1/2, only with matrix-vector multiplications with A and B−1. For the details
we refer to [Axe94]. The convergence behavior of the new system in the A-norm is then
determined by the condition number of the pair (A,B), defined as

κ(A,B) = λmax(A,B)λmax(B,A)

24

.

In our discussion in this dissertation we will be using the preconditioned Chebyshev
method for analysis purposes. Following [ST06], we will view preconditioned Chebyshev
as a function with the following specifications:

x =PrecondChebyshev(A, b, fB(·), λ̃min(A,B), λ̃max(A,B), t)

where fB(z) = B−1z, λ̃min(A,B), λ̃max(A,B) are approximations to the corresponding
eigenvalues of (A,B) and t is the number of iterations. From our discussion so far, we get
that when t = κ1/2(A,B) ln(2/ε) the error satisfies ‖et‖A ≤ ε ‖e0‖A.

Obviously the complexity of the algorithm depends on the definition of B. For exam-
ple, if B = A the algorithm obviously converges in one step but the computation of B−1z
is just our original problem. Thus the design of the preconditioner should strive to satisfy
two contradicting goals: (i) The condition number κ(A,B) must be small (ii) The matrix
B must have a relatively inexpensive partial Cholesky factorization.

In contrast to the direct methods where the sparsity pattern of A can always be used to
derive a good elimination order, the construction of a good preconditioner is an issue that
in general depends subtly on the given matrix. Several preconditioners that depend on the
matrix in straightforward generic ways have been proposed. For example:

1. B = D where D is the Laplacian of A, gives the Jacobi method. Letting B contain
blocks along the diagonal of A gives the more general block Jacobi algorithm.

2. B = D+Lwhere L is the lower triangular part ofA gives the Gauss-Seidel method,
used only with iterations that don’t require the preconditioner to be symmetric.

3. B = (D + L)D−1(D + LT) is an instance of SSOR also known as symmetric
successive overelaxation.

Although these preconditioners may work very well for certain matrices, they give no
general guarantees. As an example let A be the Laplacian of the wagon-wheel graph
consisting of a star and a cycle on n nodes. It can be verified that κ(A) = Θ(n). On the
other hand, the eigenvalues of D−1A are those of the normalized Laplacian. The wagon-
wheel is an expander hence the eigenvalues of D−1A are constant so κ(A,D) = O(1).
On the contrary Jacobi’s method for the Laplacian of the 2-dimensional square grid does
not yield any improvement since the smallest eigenvalue of the normalized Laplacian is
O(1/n), asymptotically equal to the smallest eigenvalue of the Laplacian.

25

2.4.5 Combinatorial Preconditioners for SDD matrices

Perhaps the first systematic approach to the construction of preconditioners for a fairly
general class of matrices is due to Vaidya [Vai91, Che01]. Vaidya, inspired by the one-
to-one correspondence of Laplacians and graphs, proposed preconditioning the Laplacian
of a given graph with the Laplacian of a spanning subgraph. If A,B are Laplacians and
D is a positive diagonal matrix an easy application of the splitting Lemma 2.1.8 shows
that κ(A + D,B + D) ≤ κ(A,B). Hence Vaidya’s approach applies to the more general
class of symmetric diagonally dominant matrices with negative entries. Gremban showed
that the solution of a system with a SDD matrix with positive off-diagonal entries can be
reduced to the solution of a SDD system with only twice the size as the original and with
non-positive off-diagonal entries [Gre96]. Hence Vaidya’s preconditioners apply to the
general class of SDD matrices.

Initially, Vaidya showed that taking the preconditioner B to be the maximum weight
spanning tree (MST) gives κ(A,B) ≤ nm, where m is the number of edges in the graph.
This was far from trivial, because it showed that the preconditioning of Laplacians is
possible independently from the graph weights. He then proposed an algorithm for adding
edges to the tree and he proved that it yields an O(n1.75) time algorithm for any bounded-
degree weighte graphs and a O(n1.2) algorithm for weighted planar graphs. Joshi [Jos97]
and Reif [Rei98] observed that in the partial Cholesky factorization

B = L

(
D 0
0 C

)
LT

where D is a diagonal, the matrix C is a Laplacian if B is a Laplacian. In other words,
the class of Laplacians is closed under elimination of vertices. In particular, adjusting the
greedy elimination of degree 1 and 2 for Laplacians, gives the following algorithm:

B = Eliminate(A, S ⊆ V): Greedily apply the following rules when possible:
(a) If w 6∈ S has degree 1 remove w and its adjacent edge from the graph A.
(b) If w 6∈ S has degree 2 and is connected to vertices u and v, remove w
and connect its neighbors with an edge of weight (w−1(u,w) + w−1(v, w))−1.

In view of Lemma 2.3.3 adding a sublinear number vertices to the spanning tree still
gives a graph B that has many degree 1 and 2 vertices. After their elimination the graph C
will be smaller thanB, but it might still be quite big for a direct method. However because
of the fact that C is a graph it is possible to use recursion. Joshi [Jos97] analyzed recursive
algorithms for simple model problems while Reif analyzed a constant depth recursive

26

algorithm and improved the bound for constant degree planar graphs to O(n1+β) for any
β > 0 [Rei98] .

The theory behind the application of Vaidya’s approach to matrices with non-positive
off diagonals is presented in [BGH+06]. An algebraic extension of Vaidya’s techniques
was given by Boman and Hendrickson [BH03], and based on this extension they observed
that the low-stretch spanning trees of Alon, Karp, Peleg and West [AKPW95] has condi-
tion number at most O(m+ n2O(

√
logn log logn)). This reduced the complexity of the solver

to O(m1.5+o(1)). Spielman and Teng [ST03] demonstrated a way of carefully adding edges
to the low-stretch spanning trees. This yielded a method that requires O(m1.31) time.
Then, by (i) improving the algorithm for adding edges, (ii) giving an O(mpolylog(n))
sparsification algorithm and (iii) presenting a careful analysis of the recursive precondi-
tioned Chebyshev method with a super-constant number of levels, they showed that gen-
eral graphs can be solved in time O(m2O(

√
logn log logn)) [ST04, ST06]. Finally, by replac-

ing the trees of [AKPW95] with lower-stretch spanning trees, Elkin, Emek, Spielman and
Teng improved the performance of the algorithm to O(n log2 log log n) for planar graphs
and to O(mpolylog(n)) for general graphs [EEST05].

In a separate thread of work, Gremban and Miller [Gre96] considered a different kind
of graph-based preconditioner. They introduced additional vertices called Steiner vertices
and they demonstrated that a graph preconditioner need not be of the same size as the
graph represented by A. Gremban and Miller presented and analyzed support tree precon-
ditioners for regular d-dimensional unweighted grids. Their tree B for the d-dimensional
grid satisfies κ(A,B) = O(dn1/d log n). Miller and Richter showed that the condition
number of any spanning subgraph of the square grid is Ω(n1−e) for all e > 0, thus proving
the superiority of the Steiner tree preconditioners for this graph [MR04]. Maggs et. al.
developed new tools for analyzing general support trees [MMP+05]. They also showed
that Räcke’s hierarchical decomposition of graphs [R0̈2, BKR03] gives support trees that
guarantee an O(n log4 n) condition number. In this dissertation we present additions to
the theory of Steiner support preconditioners, that extend the analysis of [MMP+05] to
more general Steiner support graphs that are derived from the Steiner trees, and show that
Steiner preconditioners also yield linear time algorithms when used in recursive solvers,
for families of graphs that are known a priori to have certain structural properties.

2.4.6 Support theory - The role of the Splitting Lemma

The progress in the analysis as well as in the design of combinatorial preconditioners has
been built around the fact that Laplacians are closed under addition. The idea is to split
the graph A and the preconditioner B into smaller graphs A =

∑
iAi and B =

∑
iBi, so

27

that the support σmax(Ai, Bi) (see definition 2.1.7) : (i) is easy to analyze, (ii) has a good
bound. Then the bound for λmax(A,B) follows from the Splitting Lemma (Lemma 2.1.8).

Historically, the construction of subgraph preconditioners via the computation of a tree
and its subsequent enrichment with a few edges was driven by the fact that the splitting
is analyzable and actually dictated by the tree. Let us be more concrete; assuming that B
is a spanning tree of a given graph A, the difficult part is to analyze λmax(A,B) because
we trivially have xTAx > xTBx. In the splitting, the graphs Ai are the edges of A and
Bi must be the unique path in B that goes between the endpoints of Ai, because any other
subgraph of B has infinite support with Ai. In this simple case the support σ(Ai, Bi) turns
out to be easy to analyze. It can be verified that it is equal to the ratio of the resistance
of Ai over the effective resistance between the endpoints of Bi. So, if Bi is a relatively
long path, it must consist of heavy (relative to Ai) edges in order for σ(Ai, Bi) to have
a good bound. This led Vaidya to propose the MST preconditioner, and to the eventual
replacement of the MST by a low-stretch tree.

While the low-stretch trees are still indispensable to the nearly linear algorithm of
Spielman and Teng for general graphs, the fixation with the construction of a monolithic
global preconditioner has been the main barrier to obtaining optimal parallel algorithms
at least for the class of planar graphs. The novel idea in our work is to bypass the con-
struction of the global low stretch tree for the given graph, by exploiting the combinatorial
structure of the underlying unweighted graph. As we discussed in Section 3 every planar
graph has small vertex separators that partitions the graph into constant size components.
We compute the partition and then, a proper ”miniature” preconditioner is constructed in-
dependently for each of these pieces. The global preconditioner will be the aggregation of
the miniature preconditioners. Its quality is bounded above via the Support Lemma, by the
quality of the worst among the miniature preconditioners. We give the details in Chapter
4.

28

Chapter 3

Planar Graph Partitioning

It is known that multi-way planar vertex separators with small boundaries can be con-
structed in O(n log n) time [Fre87, KST01]. This upper bound is sufficient in applications
where the construction of the separator is not the dominant complexity term. However,
in the case of the solution of planar Laplacians, the developments presented in Chapter
4 show the possibility of an optimal linear time algorithm, provided that the multiway
separator can be constructed in linear time. In this Chapter we resolve this question, by
presenting a linear work,O(log n) parallel time algorithm for the computation of the multi-
way separator. We present the algorithm in the Concurrent Read Exclusive Write - Parallel
Random Access Memory (CREW-PRAM) model. In this model, processors are allowed
to read but not to write simultaneously the same memory address [Pap94]. The algorithm
adapts and improves an algorithm of Gazit and Miller [GM87].

Let A = (V,E) be a graph, and W be a vertex separator that decomposes the edges
into disjoint sets E =

⋃m
i=1Ei. Let Ai = (Vi, Ei) be the graph induced on Ei, and let

Wi = W ∩ Vi. The total boundary cost is defined as
∑m

i=1 |Wi|. This Chapter presents a
proof for the following Theorem.

Theorem 3.0.1. Every planar graph with n nodes has a vertex separator W with total
boundary cost O(n/

√
k), that decomposes the edge set into disjoint clusters of size O(k).

The separator can be constructed in the CREW PRAM model with O(nk log2 k) work in
O(k log n) parallel time, or in O(kn) sequential time.

Our algorithm computes a set S of O(n/
√
k) edges, that -on the planar embedding

of the graph- can be thought as boundaries delimiting components of size O(k). Each
edge of S is the boundary of at most two such components. By assigning each edge of S

29

arbitrarily to one of its neighboring components we get a decomposition of the edges E
into disjoint components of size O(k). The vertices incident to S will be the separator W .
Then, each node of S is incident to a number of components equal to the number of edges
incident to it in S. Hence, the total cost of the boundary will be O(n/

√
k). The algorithm

is based on an algorithm of Gazit and Miller [GM87]. It runs in O(k log n) parallel time,
doing at most O(nk log2 k) work.

Throughout this section we let Ḡ be a triangulation of G. Given the embedding of G,
the triangulation can be computed easily with linear work in O(log n) time. Thus every
edge in Ḡ is either an edge in G or an added edge. The separator will be the boundary
between a partition of the faces of Ḡ, consisting of O(n/

√
k) edges.

There are two natural graphs to define on the set of faces F̄ of Ḡ. The first is where
we connect two faces if they share an edge, the geometric dual, denoted by Ḡ∗. In the
second, the face intersection graph, we connect two faces if they share a vertex. Note
that the face intersection graph is not in general planar, while the dual is planar. We say
that a set of faces in F̄ are edge/vertex connected if the corresponding induced graph in
the geometric dual/face intersection graph is connected.

3.1 Neighborhoods and their cores

We define the vertex distance dist(f, f ′) between two faces f and f ′ to be one less than
the minimum number of faces on a vertex connected path from f to f ′. Since the faces
are triangular, dist(f, f ′) is equal to the length of the shortest path from a vertex of f to
a vertex of f ′, plus one. Thus two distinct faces that share a vertex are at vertex distance
one. A d-radius vertex connected ball centered at a face f ∈ F̄ , denote Bd(f), is the set
of all faces at distance at most d from f . That is, Bd(f) = {f ′ ∈ F̄ | dist(f, f ′) ≤ d}. By
induction on the radius of the ball, one can show that a ball forms a set of edge connected
faces. We are now ready to give the definition of a k-neighborhood, and some of its
consequences.

Definition 3.1.1. The k-neighborhood of a face f ∈ F̄ Nk(f) will consist of k faces
defined as follows:

1. The ball Bd(f) where d is the maximum d such |Bd(f)| ≤ k.

2. The faces at distance d + 1 from f are picked so that they form an edge connected
set of faces, and Nk(f) remains edge connected and of size k.

30

We call faces at a given distance from f a layer and those at distance d+ 1 the partial
layer. We define d + 1 to be the radius of Nk(f). By definition, the boundary of the last
full layer, is a simple cycle. Since the partial layer is edge connected to the last full layer,
the boundary of Nk(f) is also a simple cycle.

For each face we construct its k-neighborhood. The neighborhood of a face f that is
incident to a node v of degree at least k, will have only a partial layer. The partial layer can
be constructed by taking the first k edges going in a clockwise fashion around v. In order
to simplify our presentation, if a face is incident to more than one nodes of degree more
than k, we will construct one k-neighborhood per each such node, as described above. So,
a given face may generate up to three neighborhoods.

Lemma 3.1.2. The number of neighborhoods containing any given face is O(klog k+2).

Proof. We seek to bound the size of the set C of faces whose neighborhoods contain
a given face f ′. The neighborhoods are edge connected. If f ′ ∈ N , there is an edge
connected path of faces from f ′ to the center of N . There are at most 6k neighborhoods
of radius r = 1 that may contain f ′. Every neighborhood of radius r ≥ 2 that contains f ′

includes in its full layers at least one of 18k given faces that surround f ′. So, from now
on, we may assume that the neighborhoods are full balls.

We claim that C is an edge connected set of faces. To see why, let f ∈ C, with
N(f) = Br(f). Let h be the edge-incident face on the path from f to f ′. We must have
f ′ ∈ Br−1(h). Let I(f) be the set of faces at distance 1 from f . We have Br(f) =⋃
g∈I(f)Br−1(g). Since h ∈ I(f), this implies that the radius of N(h) is at least r − 1.

Hence f ′ ∈ N(h), and h ∈ C.

We will find a set B of (2k)log k+1 neighborhoods that cover all the faces in C. To
form B we will be removing, in rounds, sets of neighborhoods from C. We start with
N(f ′) = B0. Assume that in the tth round we removed a set Bt. We will let Bt+1, be the
neighborhoods of the faces that have not been covered in previous rounds, and are edge-
incident to the faces in Bt. Hence |Bt+1| ≤ 2k|Bt|. Let rt be the minimum radius over the
neighborhoods in Bt. To go from f ∈ Bt to f ′ the path must go through rt−1 layers of
a neighborhood N in Bt−1, before it reaches the center of N . By an inductive argument,
this gives that rt ≥

∑t−1
i=0 ri ≥ 2t−1. This implies that after d ≤ log k + 1 rounds, the

process must stop because rd becomes greater than k, meaning that all neighborhoods in
Bd have radius greater than k, which is the maximum possible by definition. So, |C| ≤
3
∑d

i=1 |Bt| = O(klog k+2). �

The critical fact is that each k-neighborhood Nk(f) has a set Cf of core faces.

31

Lemma 3.1.3. Let Nk(f) be a neighborhood of radius r. There exists a ball, B = Br′(f)
such that 2(r − r′) + |∂B| ≤

√
2k + 4. We call Br′(f) the core of Nk(f).

Proof. The proof follows by a standard pigeon hole argument used by Lipton and
Tarjan [LT79]. We give the proof for completeness. Let bi be the size of the boundary
of ball Bi(f), and fi be the number of faces in the ith level of Nk(f). We will discard
the partial layer in Nk(f) and one full level, and we will show that the core lies inside
Br−2(f). More precisely, we will show that 2((r − 2)− r′) + |∂B| ≤ 2

√
k + 1. Since all

the layers are full we can apply Lemma 5 in [Mil86b]. Thus there exists a r′ such that

2((r − 2)− r′) + |∂B| ≤ 2
√
b (3.1)

where b =
∑r−2

i=0 bi. Using the fact that Ḡ is triangulated we know that b0 = 3, f0 = 1,
and bi + bi−1 = fi for 0 < i < r. Thus:

k − 1 ≥ f0 + · · ·+ fr−1

= f0 + b0 + 2b1 + · · ·+ 2br−2 + br−1

= 1− 3 + br−1 + 2b0 + 2b1 + · · ·+ 2br−2

≥ 2b− 1

(3.2)

Here we used the fact that br ≥ 1. Substituting above, we get

2(r − r′) + |∂B| ≤ 2
√
b+ 4 ≤

√
2k + 4 (3.3)

�

Lemma 3.1.4. If Nk(f1) and Nk(f2) have at least one vertex in common and P is any
shortest path in Ḡ from the boundary of f1 to the boundary of f2, then the exposed part of
P , that is the number of edges exterior to Cf1 ∪ Cf2 is at most

√
2k + 4.

3.2 An outline of the algorithm

With the introduction of the neighborhoods and their cores, we are ready to restate our
goal for the rest of this section. We aim to find a set P of O(n/k) paths or incisions,
with the following properties: (i) the removal of P disconnects the graph into pieces of
size O(k), (ii) the two endpoints of each incision P ∈ P are faces whose neighborhoods
touch, so that Lemma 3.1.4 applies to P . Then, for every incision P with end faces f1, f2,

32

we will include in the final separator S: (i) the boundaries of the cores Cf1 and Cf2 , and
(ii) the exposed part of P . One way to think of this, is that we first find the incisions, and
then we add the cores of their end points on top of them. Finally, we return to the graph
the interior of all the cores. It then becomes clear that the final separator decomposes the
graph into pieces of size O(k). Furthermore, by Lemma 3.1.3 the number of edges added
in S per incision, is at most 2(

√
2k + 4). Hence, the total number of edges in the final

separator is O(n/
√
k).

N

a.
N

N

N

N

N

N

N
N N

N
b.

N

N
N

N

N
N

N

N

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
���� ���

���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

N

N

N

c.

N

N
N

N
N

Figure 3.1: Steps of the algorithm.

We now give a short outline of the algorithm. The first step is to obtain maximal a set I
of at most n/k face-disjoint neighborhoods in Ḡ. We will call this the set of independent
neighborhoods. The maximality of the set of independent neighborhoods will provide a
good ”covering” of the graph, in the sense that the neighborhood of every face exterior to
I , intersects at least one neighborhood in I . This step is shown schematically in Figure 3.1a
and it is described formally in section 3.3. In the second step, we assign each exterior face
to one of the neighborhoods in I , in order to decompose the graph into edge-connected
Voronoi regions of faces, each consisting of the faces assigned to one neighborhood.
This step is depicted in Figure 3.1b and described in Section 3.4. The edges between the
Voronoi regions form a planar graph that will be called the Voronoi boundary graph. The
nodes in the Voronoi boundary graph with degree greater than 2 will be called Voronoi
nodes. The next step will be to further decompose the graph into Voronoi-Pair regions,
by finding paths between the neighborhoods and the surrounding Voronoi nodes. Two of
the Voronoi-Pair regions are highlighted in Figure 3.1c. We give the details in Section 3.5.
Finally, we separately split each Voronoi-Pair region, as described in Section 3.6.

33

3.3 Computing the set
of independent neighborhoods

We say that two neighborhoods are independent if they share no faces of F̄ . Our goal will
be to compute a maximal set I of independent neighborhoods. It is easy to compute I in
O(kn) sequential time. The purpose of this section is to show that I can be computed in
O(k log n) parallel time, doing O(nk log2 k) work in the CREW PRAM model.

For the rest of this section let us denote with |G| the number of edges of a graph G.
We define the containment graph B0 to be the bipartite graph with the left side nodes
corresponding to neighborhoods, and the right side nodes corresponding to faces. Any
given neighborhood is joined with the k faces it contains. By construction, |B0| ≤ 3kn.
We also define the neighborhood conflict graph N(B0), by letting nodes correspond to
neighborhoods, and edges joining neighborhoods that intersect. By Lemma 3.1.2, every
neighborhood intersects with most O(klog k) neighborhoods. Thus |N(B0)| = O(klog kn).

We will use a modification of Luby’s algorithm [Lub86]. Let us first briefly describe
the algorithm. Assume that the input graph has n nodes. The algorithm consists of a
number of rounds. The algorithm maintains an (initially empty) independent set I of
nodes, which have been removed from the graph along with their neighbors. In every
round: (i) Each node in the graph independently picks a random number in (1, n4). (ii) If
a node has a bigger number than its neighbors, it joins I . (iii) The nodes that join the I and
their neighbors remove themselves from the graph. The process continues until the graph
is empty. Luby showed that with high probability one round of the algorithm reduces the
number of edges in the graph by a constant fraction. Thus the algorithm terminates with a
Maximum Independent Set (MIS) after O(log n) rounds.

We now describe a simulation of the tth round of Luby’s algorithm. Recall that we start
with the set of neighborhoods that have not been removed from the graph, and their faces.
We can as above define the current corresponding containment graph Bt and the current
neighborhood conflict graph N(Bt). The simulation will be done in k steps. At any step:
(i) Each neighborhood is active or inactive. Initially, each neighborhood is active. If a
neighborhood becomes inactive, it stays inactive for the rest of the round. (ii) Each face
is owned by one neighborhood. Initially, one of the (up to) three neighborhoods that have
a given center face owns it. The other two become inactive. (iii) Each face f keeps the
value vf of the neighborhood that owns it, and each neighborhood keeps a list LN of the
faces that it has owned during the previous steps.

Each neighborhood N pics a random number vN in (1, n4), and computes a breadth
first search (BFS) spanning tree of its geometric dual. The tree will be connected since

34

the neighborhood is edge connected. At each step, each active neighborhood N picks one
face f ′ from LN , that is edge connected with a face f 6∈ LN , and f ∈ N . This is always
possible since every neighborhood is edge connected, and it can be done in constant time
using the BFS for N . Then N checks if it still owns f ′. If not, N becomes inactive. If
yes, N sends to f the value vN as a request to own f , and adds f to LN . Note that at any
point there will be only three neighborhoods that request from f to own it, so this step
can be performed in constant time, without a concurrent write. So, f receives at most 3
neighborhood values, compares them with vf and keeps the largest, which becomes the
new vf . After the k steps are completed, every active neighborhood N reads the values
of its faces, and if any face has value bigger than vN , N becomes inactive. We are left
with a set of still active neighborhoods each of which owns all its faces. Then, every one
of these neighborhoods joins the I and marks its faces for deletion. All these writes are
independent. Then, every neighborhood reads the values from its faces, and if it finds a
face that has been marked for deletion, it removes itself from the containment graph Bt,
and so it doesn’t take part in the subsequent rounds of the algorithm. It is easy to see that
the total work of the round is O(|Bt|), and the parallel time complexity is O(k).

The correctness of the algorithm follows from the fact that all the neighborhoods that
remain active until the end are independent by construction. A neighborhood can become
inactive only if it intersects a neighborhood with higher index. So, if a neighborhood has
the biggest index among all the neighborhoods it intersects, it will stay active, and will
join I . Thus the algorithm adds to I a superset of the neighborhoods that Luby’s algorithm
would add if run on Ni(B). So with high probability we get a constant reduction 1/c of
the number of edges of N(Bt). Recall that |N(B0)| = O(klog kn), so for a proper d =
O(log2 k), |N0(B)|/cdk = O(n). Also, it is clear that |Bt| < |N(Bt)|, and |B0| ≤ 3kn.
Hence, the total work is

∑
t=0

|Bt| =
dk∑
t=0

|Bt|+
∑

t=dk+1

|Bt| ≤
dk∑
t=1

|B0|+
∑

t=dk+1

|N(B0)|/cdkct−dk = O(k log2 kn).

3.4 Decomposition into Voronoi Regions

The goal of this section is to decompose the graph into edge connected Voronoi regions,
each corresponding to one of the neighborhoods in I . At a high level, the natural approach
is to find the nearest neighborhood of each exterior face f , and assign f to it. However,
an exterior face may have several nearest independent neighborhoods. Simply breaking
ties does not guarantee the edge connectedness of the Voronoi regions. We shall instead
decompose faces that have more than one nearest neighborhood into more triangular faces,

35

and then assign these new faces to neighborhoods.

Let f be an exterior face. Let ∂N denote the faces on the boundary of a neighborhood
N . We define dist(f,N) = mina∈∂N dist(f, a), and dist(f) = minN∈I dist(f,N).

Lemma 3.4.1. Let f be an exterior face of radius r. Then r ≥ dist(f). Also, if
N(a) ∈ I is such that dist(f,N(a)) = dist(f) then N(a) and N(f) share at least one
vertex. Finally, if v is any vertex of f , every path that starts at v and has length at most
dist(f)− 1, is contained in N(f).

Proof. Since f is not in I , there must be a face f with N(a) ∈ I , such that
N(f) ∩ N(a) 6= ∅. Let f ′ be face in the intersection. Then dist(f) ≤ dist(f, f ′) ≤ r.
If dist(f,N(a)) = l ≤ r − 1, then N(a) must contain a face in the lth layer of N(f) and
this face is included in N(f) by definition. If dist(f,N(a)) = r and N(f) ∩ N(a) = ∅,
then N(a) must contain a face which touches a face in the (r − 1)th layer of f . For the
last claim, note that dist(f)− 1 ≤ r − 1. So, all the faces that share edges with the given
path are at distance at most r − 1 from f . Hence they are included in N(f), by definition.
�

We now describe the algorithm. In what follows, every exterior face f will compute
a labeling of each of its vertices, of the form d[a], where d will be a distance, and a the
index of a neighborhood in I . The labeling will be local, and so no concurrent writes are
needed.

1. Recall that Ḡ is embedded and thus every vertex knows a clockwise arrangement
of its edges. Given a root vertex v and an incident face f of reference, the left-
most path between v and any vertex w is well defined. One can easily compute a
”leftmost” BFS tree, that provides the leftmost shortest paths starting from v. For
each neighborhood N(f), and every vertex v on the boundary of f , we compute the
unique leftmost and rightmost BFS trees, rooted on v, with respect to f .

2. Each neighborhood N(a) ∈ I marks all its faces with the index of a.

3. If a vertex v is on the boundary of some N ∈ I , it marks itself with 0 and submits
clockwise the marks to its unmarked surrounding faces, so that the faces that receive
the same mark are contiguous. This can be done in O(log n) time with O(n) total
work. In this way, every exterior face f receives up to 3 marks through its vertices.
If f receives a through vertex v, it labels v with 0[a]. Finally if f has received at
least one mark, it labels with 1 each vertex that has not been marked with a 0.

36

4. By Lemma 3.4.1, to find the nearest neighborhood of an exterior face f , it is enough
to consider the nodes in N(f) that are marked with 0. First, we label each vertex
v of f with the distance of the 0 vertex nearest to v, plus one. This is by definition
equal to dist(f). Let us call the vertices labelled with dist(f) critical for f . For
each critical vertex v of f , we find the preferred path P , defined as the leftmost
path that (i) starts in v, (ii) reaches a vertex w in a neighborhood N ∈ I , (iii) has
length dist(f) − 1. Lemma 3.4.1 implies that P is contained in N(f), and thus it
can be found in O(k) time, by using the BFS computed in the first step. The face
that lies anticlockwise (with respect to w) of the last edge of P has already labelled
v with 0[a], for some a. Then, f labels v with dist(f)[a].

d+1

d+1
b

a

d [a]

d [b]

a
d+1

a

d [a]d+1

d [a]

d [a]

a

a

d+1

d+1

d+1

d+1 d+1

c
c a

a

b

d+1

d [b]

b

d [a]d [c] d+1

d+1

a
a

b b

a
a

d [b]

d+1

d [a]d [a]

a d+1

a
aa

a

d+1

d [a]d [a] d+1

d [a]

a

Figure 3.2: Breaking exterior faces.

5. Note that the distance labels computed for three vertices by the same face can differ
by at most 1. Then, one can verify that the exterior vertices can be classified to six
different cases with respect to the type of labels that they have computed for their
vertices. These cases are shown in Figure 3.2. The base case is when the exterior
face has only one critical vertex. In each other case we introduce extra nodes and
edges (shown as boxes in Figure 3.2), so that every new face becomes a base case,
and is marked with the corresponding nearest neighborhood. After splitting all the
non-base faces (generating base faces in Ḡ′), we split the base faces of Ḡ so that
Ḡ′ triangulated. This can be done without concurrent writes by having the faces
communicate through the edges. We end up with a graph Ḡ′, where every exterior
face is triangular and has only one critical vertex.

37

All the faces assigned to a given neighborhood in N(a) ∈ I will be called the Voronoi
Region of a. We claim that the above construction produces Voronoi regions that are
edge connected. Before we proceed to prove this claim, we need to prove the following
key lemma.

Lemma 3.4.2. All the faces that share a vertex v compute the same distance label for v.

Proof. Suppose f1 and f2 share a vertex v that is critical for both f1 and f2. Then, f1

and f2 label v with dist(f1) and dist(f2) respectively. We need to show that dist(f1) =
dist(f2). Assume without loss of generality, that dist(f1) > dist(f2). Then, there is a
neighborhood N ∈ I such that d(f1, N) = dist(f2), which gives dist(f1) ≤ d(f1, N) =
dist(f2) < dist(f1), a contradiction.Consider now the case when v is critical for f1 but
not for f2. Then, f1 labels v with dist(f1) and f2 with dist(f2) + 1. We need to show
that dist(f1) = dist(f2) + 1. Note that dist(f1) − 1 ≤ dist(f2) ≤ dist(f1). So, assume
for the sake of contradiction that dist(f2) = dist(f1). We know that there is a path P of
length dist(f1) − 1 = dist(f2) − 1 from v to a vertex marked with 0. By Lemma 3.4.1,
P is included in N(f2), and thus f2 must have labeled v with dist(f2), a contradiction.
The remaining case is when two faces f1 and f2 touch on a vertex v that is not critical
for neither face. Then f1 and f2 label v with dist(f1) + 1 and dist(f2) + 1 respectively.
We need to show that dist(f1) = dist(f2). Without loss of generality, let us assume that
dist(f2) ≥ dist(f1). Then dist(f1) ≤ dist(f2) ≤ dist(f1) + 1. There is a path P of
length dist(f1) from v to a node marked with 0. If dist(f2) = dist(f1) + 1, Lemma 3.4.1
implies that P is contained in N(f2). Hence, f2 must compute the label dist(f2) for v, a
contradiction. Thus dist(f2) = dist(f1). �

The above lemma ensures that the last step of the algorithm is always possible. To see
why, observe that every non-base case face splits into triangular faces. The graph will be
triangulated if and only if an edge is split by both the faces that share it. A face splits its
edges that join vertices with equal labels. So, two adjacent faces have both subdivided their
common edge in Step 5, unless one of them is a base case face, which can be subdivided
in the last step.

Lemma 3.4.3. The Voronoi regions are edge connected.

Proof. By construction each neighborhood is edge connected. So, it will suffice
to show that for every exterior face f ′ ∈ Ḡ′ that belongs to the Voronoi region associated
with N(a), there is an edge connected path from f ′ to a face of N(a). Let v be the critical

38

vertex of f ′, and f be the parent face of f ′ in Ḡ. It must be the case that v was labeled
with dist(f)[a] by f in Step 4.

If dist(f) = 1, then v is on the boundary of N(a). Step 2 ensures that there is an edge
connected sequence of exterior faces surrounding v, that all marked v with 1[a]. The face
on the one end of the sequence shares an edge with N(a). By the way we split the faces of
Ḡ, all the faces of Ḡ′ that are generated inside the faces in the sequence, are labeled with
a. This provides the edge connected path from f ′ to N(a).

Now assume dist(f) > 1. Let P the preferred path. By construction, the face g on
the left of the last edge of P has marked w with 0[a]. Now assume that v is not in the last
edge of P , and let v1 be the vertex after v in P . We will consider the face f1 ∈ Ḡ on the
left of P that includes the edge (v, v1), and the faces of Ḡ between f and f1 that touch
v, as shown in Figure 3.3. We show that these faces label v and v1 with dist(f)[a] and
dist(f1)[a] respectively.

w

P1 P

f

v1

w1 a

b
 g

dist(f)[a]v

dist(f1)[a]

f1
t

Figure 3.3: Getting one step closer to N(a).

Recall that Lemma 3.4.2 shows that the distance labels are independent of the faces.
We first show that the labels of all vertices on the arc between f and f1 must be at least
equal to dist(f). Assume for the sake of contradiction that one of these vertices, say t, is
labeled with dist(f) − 1. This means that there is a path P1 of length dist(f) − 2 from t
to a vertex marked with 0. The path (v, t) + P1 has length dist(f)− 1. Thus P is not the
preferred path. This is a contradiction. We know already that v is critical for f . Since all
the nodes of the faces between f and f1, excluding f1, are labeled with at least dist(f), v
is critical for them as well. Therefore, each of these faces uses independently exactly the
same definition to compute the label of v in Step 4, and so the label is consistently [a].

It is easy to see that dist(f1) = dist(f)−1. Since all the other vertices of f1 are labeled
with dist(f), v1 must be labeled with dist(f1). The neighborhood label computed for v1

39

by f1 is computed by considering the last edge of the leftmost path of length dist(f) − 2
starting from v1. It is clear that this path is the segment of P after v1, and thus the label is
[a].

By applying this argument inductively, it follows that the set of all the faces F on the
left of P , mark the vertices of P with [a]. Finally consider all the faces of Ḡ′ that were
generated by splitting the faces of F . First note that, by the way we split the faces of
Ḡ, these faces form an edge connected path from f ′ ∈ Ḡ′ to the face g′ ∈ Ḡ′ that was
generated inside g. Since dist(g′) = 1, we know that there is an edge connect path from
it to N(a). The concatenation of the two paths forms an edge connected path from f ′ to
N(a). �

Lemma 3.4.4. The set of preferred paths that reach a given N ∈ I can be used to form a
BFS spanning tree of the Voronoi region of N . We call this the preferred BFS tree of the
Voronoi region. Every node can find its ancestor and children in the tree in O(log n) time
with O(n) work.

Proof. The proof of Lemma 3.4.3 implies that if a vertex v is critical for a face f , all
the vertices on the preferred path P that goes from v back to the boundary of N(a), are
critical for the faces that share vertices with P . Furthermore, by construction, P cannot
be crossed by any other preferred path from a critical vertex to N(a). Thus the paths from
the critical vertices back to the boundary of N(a), together with a BFS tree of N form a
BFS tree. All the faces have at least one critical vertex, and every vertex that has not been
marked as critical by any face, can attach itself to the tree through one of its incident faces.
�

Lemma 3.4.5. Each Voronoi region contains O(klog k) faces.

Proof. If f is a face that was assigned to a given Voronoi region Va, N(f) must inter-
sect at least one face b ∈ B, where B is the set of faces that are incident to the boundary
of N(a). By Lemma 3.1.2, it is enough to bound the size of B. The faces of B contained
in N(a) are less than k, and so we concentrate on the faces on the exterior of N(a). There
are up to k faces that share an edge with the boundary of N(a). Now consider all the faces
which are incident only to a single vertex v on the boundary of N(a). There may exist a
set M ⊆ I , that contains faces incident to v. By construction, the faces incident to v that
are assigned to N(a) are exactly those between N(a) and the first neighborhood N ′ ∈M ,
walking in a clockwise fashion around v. By assumption, those faces are not contained
in any neighborhood in I . Their number can’t be more than k, because by construction,

40

there is a k-neighborhood N ′′ that includes k of them. The assumption implies that N ′′

does not intersect any neighborhood in I , which contradicts the maximality of I . Using
the fact that there are at most k vertices on the boundary of N(a), this implies that there
are at most O(k2) faces in B. �

3.5 Decomposition into Voronoi-Pair Regions

To simplify our notation, we will be denoting Ḡ′ by Ḡ. We have decomposed the graph
into at most n/k Voronoi regions. Their boundaries are edges of Ḡ. Despite the fact that
these regions are edge-connected sets of faces, their boundaries may be not connected. In
general, every connected region can be decomposed into a collection of simple boundary
cycles, where the faces exterior to one cycle are edge-disjoint to those of another cycle.
See [Mil86b] for a more complete discussion. Let C denote the set of boundary cycles
of all the Voronoi regions. Any pair of boundary cycles in C, corresponding to different
Voronoi regions, can share a path, a single vertex, or no vertices at all. We say that a
cycle in C is non-trivial if it shares a path with at least one other cycle in C. The vertices
where non-trivial cycles intersect have degree at least 3. We call these vertices the Voronoi
nodes. Thinking of the simple paths between the Voronoi nodes as edges, we get a planar
graph which we call the Voronoi boundary graph, denoted by GI . The graph GI will
not be in general connected when the regions have disconnected boundaries. We can think
of GI as a set of connected components, where each but one connected component lies
inside one face of another connected component. To see this formally, pick an arbitrary
”outer” face fo of Ḡ. To simplify our discussion we assume without loss of generality that
the boundary of the region that contains fo is connected. Every region Vg has a unique
external boundary cycle that lies closer to f0. The faces enclosed by the boundary of
each non-trivial internal cycle boundary of Vg form a connected component of Ḡ. This
boundary is the outer face of a connected component Gc of GI . Each of the other faces
of Gc correspond to the external boundary cycle of exactly one Voronoi region. It can be
seen that the number of faces of GI is equal to the number of Voronoi regions that have a
non-trivial external boundary.

A topological picture of a Voronoi region with a disconnected boundary is shown in
Figure 3.4. Searching faces out from f , the boundary of Vf is initially connected, until
it reaches a saddle point, where it disconnects into two or more connected simple cycles.
There are paths from f to the saddle points that form a collection of simple cycles and
decompose Vf into Voronoi subregions with simple cycle boundaries. Consider any given
subregion VfA

. Any point on the boundary of VfA
can be reached via a shortest path from

41

ccc

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

f

v1 v2

A B

g

g

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

v1

v2

f

Figure 3.4: A Voronoi region and a Voronoi-Pair region.

f , that lies in VfA
. Provided that we are given k ≥ 3 vertices on the boundary of VfA

, we
can decompose VfA

into k regions. The boundary of each of these smaller regions consists
of one path on the boundary of VfA

, and two shortest paths from its endpoints back to
f . So, any segment along the boundary between two different Voronoi regions Vf , Vg, is
reachable from both regions through shortest paths that lie inside the two subregions of
Vf , Vg that share the given cycle, as depicted in Figure 3.4. This forms what we call a
Voronoi-Pair region.

Based on the above discussion we construct the set P of incisions and the final separa-
tor S, as described in Section 3.2. First, for each Voronoi region Vf we add shortest paths
from f to the saddle points. This decomposes Vf into connected components with simple
boundaries. Then, we pick three arbitrary vertices on every trivial cycle in C. Let V1 be
the set of those vertices, and V2 be the Voronoi nodes. Finally, for each Voronoi region Vf
we add to P the shortest paths from f to each point of its boundary which is in V1 ∪ V2.
There are at least two such points on each boundary cycle, and each Voronoi subregion is
decomposed into half-Voronoi pairs. Those are coupled with half-Voronoi pairs inside the
adjacent region Vg, and thus the graph is decomposed into Voronoi-Pair regions.

Lemma 3.5.1. The number of paths added to P is at most 6n/k.

Proof. Let α be the number of trivial external boundary cycles, and β be the num-
ber of non-trivial external cycles. We have α + β ≤ n/k. Let f, v, e, p be the number
faces, vertices, edges, and connected components of GI . We have β = f . The number
of paths to the saddle points is at most 2p + 2α. Fix a connect component Gc of GI .
Let fi,c be the sizes of the faces of GI . The total number of paths in P that are inci-
dent to Gc is

∑
i fi,c = 2ec. The number of paths to the points in V1 is at most 3α. Hence,

|P| ≤ 5α+2p+2
∑

c ec = 5α+2p+2e. From Euler’s formula, we have β = 1+p+e−v.

42

Since 6v ≤ 4e, we have 6β = 6 + 6p + 6e − 6v ≥ 6 + 6p + 2e > 2p + 2e. So,
|P| ≤ 5α + 6β ≤ 6n/k. �

At the end of the previous section, every edge knows on which boundary it lies, and
can compute its neighboring edges on it. Then, every boundary component between two
Voronoi regions can decide if it is a trivial cycle or a segment with two endpoints. If it
is a trivial cycle, it arbitrarily breaks itself in three segments. For the computation of the
shortest paths between say, f and v1, v2 in Figure 3.4, we will use the preferred BFS tree
of the Voronoi region of f . By construction, Lemma 3.1.4 applies to those paths. So, each
path in P , and the corresponding exposed part in S can be computed easily, and will be
marked. It is not hard to see that all the required computations can be done in O(log n)
time with O(n) work.

3.6 Splitting a Voronoi Pair

Let V denote the set of Voronoi-Pair regions. By Lemma 3.4.5, the size of each V ∈ V is
bounded by O(klog k). We can run Frederickson’s algorithm [Fre87] on the geometric dual
of each V , to add to the separator O(|V |)/

√
k edges that disconnect V into pieces of size

O(k). The total number of edges added to S will be
∑

V ∈V O(|V |)/
√
k = O(n/

√
k). The

total work will be
∑

V ∈V O(|V | log |V |) ≤ n log2 k. The algorithm can be run indepen-
dently on each V , so the parallel time is O(klog k).

Alternatively, we can decompose the Voronoi pairs without invoking another separator
algorithm. We give a sketch of the algorithm. Let Vf and Vg be the two Voronoi regions
in the pair, and Tf , Tg be their preferred BFS trees. Given a segment between two vertices
w1, w2 of the boundary, we define the weight of [w1, w2] to be the total number of the
nodes contained between the paths from w1, w2 to their common ancestors, in Tf and Tg
respectively. We will decompose the boundary into non-overlapping segments, such that:
(i) every segment consisting of one edge has weight larger than 2k, (ii) every segment
of weight less than k lies between two segments of weight larger than k, (iii) all other
segments have weight between k and 2k. Let V3 be the set of the endpoints of these
segments. We add to P the shortest paths from the vertices in V3 to f and g. Since the
diameter of the trees is O(k), this decomposition can be done in O(k + log n) time with
linear work. The total number of paths added to P is O(n/k), by construction. We are left
with the segments consisting of only one edge, whose weight can be up to O(klog k). Let
M be the component defined by one such segment. We separately focus on each half of
M . As implied by the proof of Lemma 3.4.3, along with the preferred BFS TM , we have
implicitly computed a preferred spanning tree T ∗M of the geometric dual of M . The paths

43

of faces in T ∗M lie along paths of TM , by construction. We will use parallel tree contraction,
to find the k-critical nodes of T ∗M in O(k) time, with O(|T ∗M |) work (see [RMMM93] for
definitions and details). The number of critical nodes is O(|M |/k). We will add to S the
faces corresponding to the critical nodes. This will decompose M into O(|M |/k) pieces
(called in [RMMM93] the k-bridges) of size at most O(k). The vertices contained in each
of these bridges are delimited by three paths in TM . We will add these paths to P . The
total number of paths added to P in this step is O(n/k) and the total work is O(kn).

44

Chapter 4

Planar Preconditioner and Solver

This Chapter presents a linear work parallel iterative algorithm for solving linear systems
involving Laplacians of planar graphs. Concretely, se show the following Theorem.

Theorem 4.0.1. If Ax = b, where A is the Laplacian of any weighted planar graph with
n vertices, there is an algorithm that produces a vector x̄ such that ||x − x̄||A ≤ ε ‖x‖A,
in O(n1/6+c log(1/ε)) parallel time, doing O(n log(1/ε)) work, where c is any positive
constant.

The result also applies to symmetric diagonally dominant matrices of planar structure
via the reduction of Gremban [Gre96]. The best previously known algorithm has com-
plexity O(n log2 log log n) and it is not known how to parallelize it [EEST05]. One of the
key ingredients of the solver is the algorithm for partitioning the planar graph into pieces
of size at most k. In order to achieve the sublinear complexity, the parallel solver must
operate on pieces with size bigger than those needed in the sequential version. Because of
the complexity associated with the partitioning algorithm, there is a factor of O(k) loss in
the total work of the parallel algorithm over that of the sequential algorithm, where k is
the smallest piece size for which the sequential algorithm achieves its guarantee. We give
the details in Section 4.2.2.

4.1 The solver

Given the the systemAx = b, our goal is to compute a vector x̄ such that the error x̄−x sat-
isfies ‖x̄− A−1b‖A ≤ ε ‖A−1b‖A. Formally, we describe an algorithm with the following
template.

45

x̄ = Solve(A, b, ε,H(A))

The solver uses an hierarchy H(A) = {Ai, Bi}, i = 1, . . . , r of graphs and their
preconditioners. Ai and Bi are two graphs with the same number of vertices and Ai+1 =
Eliminate(Bi, Si) where Si is a (potentially empty) set of vertices in Bi. We let

Bi = Li

(
Di 0
0 Ai+1

)
LTi

be the partial Cholesky factorization of Bi. Also, we let Πi denote the dim(Ai+1) ×
dim(Ai) matrix for which for all x, Πix consists of the last dim(Ai+1) coordinates of x.
Similarly let Φi denote the (dim(Ai)− dim(Ai+1))× dim(Ai) matrix for which for all x,
Φix consists of the first dim(Ai)− dim(Ai+1) coordinates of x.

Without loss of generality we will assume that for all i we have λmin(Ai, Bi) = 1.
Let κ = maxi κ(Ai, Bi). We define the hierarchy condition as τH = 5

√
κ lnκ, where

κ = maxi κ(Ai, Bi) and the size reduction factor ofH as µH = maxi |Ai|/|Ai+1|.

4.1.1 Two-level preconditioned Chebyshev

Following our discussion in section 2.4.4, the preconditioned Chebyshev iteration for A1

with preconditioner B1 gives the following definition for Solve, which satisfies the error
reduction requirement.

Solve(A, b, ε, {A1, B1}):
Return x̄ = PrecondChebyshev(A1, b, fB1(·), 1, κ,

√
κ ln(2ε−1))

where fB1(z) = B−1
1 z. The partial Cholesky factorization of B1 can be exploited to

compute B−1
1 z as follows:

fB1(z) = L−T1

(
D−1

1 0
0 A−1

2

)
L−1

1 z

= L−T1 ((ΦT
1D
−1
1 Φ1 + ΠT

1A
−1
2 Π1)L

−1
1 z.

4.1.2 Recursive Preconditioned Chebyshev

Computing A−1
2 z in the one-shot preconditioned Chebyshev algorithm is an expensive

operation. This leads to the idea of computing an approximate solution to the system

46

A2w = z. The natural idea is to use recursively the Preconditioned Chebyshev iteration,
in combination with the hierarchy H = {Ai, Bi}. Of course the fact that the solution is
now approximate, has an impact on the number of iterations required for convergence.
However the impact is not severe; in [ST04] it was shown that the following recursive
algorithm obtains the required approximation:

Solve(Ai, b, ε,H):
If i = r then return A−1

r b else
return x̄ = PrecondChebyshev(Ai, b, fBi

(·), 1, κ, 5
√
κ lnκ ln(2ε−1))

where

fBi
(z) = L−Ti ΦTD−1

1 ΦL−1
i z + L−Ti ΠT

i Solve(Ai+1,ΠiL
−1
i z, 2/e)).

4.1.3 The complexity of the solver

Theorem 4.1.1. LetH(A) be a hierarchy of graphs with condition τH and size reduction
factor µH. If the hierarchy satisfies

τH/µH = (hierarchy condition)/(size reduction factor) < 1/2

then the complexity of Solve(A, b, ε) is O(τH|A| ln ε−1).

Proof. Let H = {Ai, Bi} for i = 1, . . . , r. We will let |Ar| be a constant, so that
the corresponding systems are solved in constant time. By an easy induction, the to-
tal number of calls to Solve with input Ai for i > 1, is τ i. For each call of Solve at
level i, the amount of work is O(τH|Ai|) = O(τH|A|/mi). The total amount of work is
O(τH|A|

∑
i(τH/µH)i) = O(τH|A|). The proof is completed by noting that the number of

calls to Solve with input A1 is τH ln ε−1. �

4.2 Planar preconditioner

The following theorem is an adaption of theorem Ultra-Sparsify of [ST04], based on the
construction of the lower-stretch spanning tree in [EEST05].

47

Theorem 4.2.1. [Monolithic Ultra-Sparsify] Let A be a planar graph with n nodes and
k be an integer. One can find a subgraph B of A, with n−1+mO(log2 n log log n) edges,
such that κ(A,B) ≤ n/m. B can be constructed in time O(n log2 n).

We prove the following stronger version.

Theorem 4.2.2. [Miniaturization Ultra-Sparsify] Every planar graph A with n nodes
has a subgraph B such that: (i) κ(A,B) ≤

√
k, (ii) B can be reduced via greedy Gaussian

elimination of degree 1 and 2 vertices to a planar graph C with O(n log3 k/
√
k) nodes.

Given the decomposition of Theorem 3.0.1, the embedded graphs B,C can be constructed
with O(n log2 k) work, in O(k log n) parallel time.

Proof. Assume we are given the partition of Theorem 3.0.1. Let A = {Ai} be the
components of the partition, and Wi = Ai ∩W . We have

∑
i |Wi| = O(n/

√
k), and thus∑

i |Ai| ≤ 2n.

Every edge of A is contained in at least one Ai, and in at most two; if it is contained
in two, each cluster gets half of its weight. In this way, we get A =

∑
iAi. We let

Bi be the subgraph of Ai constructed by setting |Ai|/m =
√
k in Theorem 4.2.1. We

have |Bi| = |Ai| − 1 + |Ai|O(log3 k/
√
k), and κ(Ai, Bi) =

√
k. The preconditioner will

be B =
∑

iBi. By Lemma 2.1.8, we get κ(A,B) =
√
k. To obtain the partial Cholesky

factorizationB = L[I, 0; 0;C]LT , we will be greedily removing degree one and two nodes
in the interior of each Ai independently. Concretely, let Ci = Eliminate(Bi,Wi) so that
C =

∑
iCi. The algorithm Eliminate is given in Section 2.4.5. By Lemma 2.3.3 we

have |Ci| ≤ 4(|Wi|+ |Ai| log3 k/
√
k), which gives |C| ≤

∑
i |Ci| = O(n log3 k/

√
k).

Each Bi can be constructed independently in time O(|Ai| log2 k) using Theorem 4.2.1.
Hence, the total work for the construction of B is

∑
i |Ai| log2 k = O(n log2 k). Further-

more, as discussed in Section 2.3.3, since there are no edges between the graphs Ai, the
matrix L can be written as a product L =

∏
i Li, where each Li can be computed indepen-

dently from the partial Cholesky factorization of Ai in time O(k). This finishes the proof.
�

4.2.1 Sequential complexity

The hierarchy is constructed by applying recursively Theorem 4.2.2. The theorem allow
us to pick a value k that satisfies τH/µH = 1/2 for a constant t. The time to construct the
hierarchy is T =

∑
iO((k+log2 k)n/µiH) = O(kn). In comparison, using the monolithic

48

preconditioner provided by Theorem 4.2.1, the least τH for which τH/µH < 1/2 can be
achieved is in the order of O(log2 n log log n).

4.2.2 Parallel Complexity

Let us now turn our attention to the potential for parallelism in algorithm Solve. By Theo-
rems 3.0.1 and 4.2.2, the hierarchy of graphs can be constructed in O(k log2 n) time with
O(nk log2 k) work. At any point of time, the total memory needed by the algorithm is
O(n), since for each i we need to store a graph of size O(n/ti) and a constant number
of vectors of size n/ti. One Chebyshev iteration consists only of a constant number of
sparse matrix-vector multiplications and vector additions. Using n processors, the vector
operations can be performed in time O(1), and the matrix-vector multiplication in time
O(log n) with work linear in the size of the vector. Both the sequential and the parallel al-
gorithms make the same number of Chebyshev iterations, and thus the total parallel work
is proportional to the total sequential work, for a fixed value of k.

The Chebyshev iterations have to be performed sequentially, so the dominating factor
in the time complexity of the parallel algorithm is the total number of Chebyshev iterations
which is dominated by theO(tr) iterations done at the bottom of the hierarchy. Letm = tc.
Given that |Ar| is constant, we have r ≤ logm n, and tr = O(n1/c). The algorithm
of Spielman and Teng can achieve a c arbitrarily close to 2, though at the expense of
the total work done by the algorithm. For example, ignoring log log n terms, if we set
n/m = log8 n in Theorem 4.2.1, we get t = log4 n and m = log6 n, thus c = 3/2.
Observe that the parallel time complexity is up to a polylog(n) factor equal to n1/c even
when we use nearly n1−1/c processors. Theorem 4.2.2 also guarantees that c can be taken
arbitrarily close to 2, while the total work remainsO(n) with only a larger hidden constant.

We can improve the number of Chebyshev iterations while keeping the amount of
work linear, by stopping the recursion at a higher level. For simplicity, in the following
discussion we omit inverse polylogarithmic factors in the size of Ar and polylogarithmic
factors in the parallel time complexity. Let |Ar| = nα. We have r = (1 − α) logk n,
and tr = n(1−α)/c. To solve the systems in Ar we will use the parallel nested dissection
algorithm of Pan and Reif [PR93]. The algorithm requires as input a tree of small vertex
separators for Ar. This can be constructed one time, with o(n) work, and in n(1−α)/c time
using Klein’s algorithm [Kle93]. Then, the algorithm obtains a one-time factorization of
Ar in polylog(n) time, withO(n3α/2) work, which is linear if a = 2/3. Then, every system
in Ar can be solved in polylog(n) time, with O(nα) work. The total amount of work for
solving the systems in Ar is O(n(1−α)/cnα) = o(n). Hence the parallel time complexity
approachesO(n1/6) as c approaches 2, and the algorithm can use onlyO(n5/6) processors.

49

4.2.3 Implementation and practicality notes

We believe that besides the theoretical improvement, our method can lead to more prac-
tical implementations. An appealing characteristic of the miniaturization approach is the
fact that it disconnects the problem of the existence of a good preconditioner from its con-
struction. For example, in this paper, we use the preconditioners of Spielman and Teng for
the construction of the mini preconditioners. However, without giving the details here, let
us note that we can substitute them entirely with the Steiner support trees introduced in
[Gre96] and analyzed in [MMP+05], affecting only the hidden constant in the total work
of the algorithm. Steiner trees are provably better for many natural families of graphs
[MR04, MMP+05]. A major obstacle in their applicability as preconditioners was that the
algorithm for their construction is polynomial in the size of the graph. This is no longer a
problem.

The increased hidden constant in the construction of the preconditioner may actually
be desirable. In most applications, one is interested in solving many linear systems with
a given Laplacian. The preconditioners depend only on the given graph, hence they are
constructed a single time. In those situations, it makes sense to spend more time on the
construction of the preconditioners. This is because their quality affects the running time
for every system that is solved; to guarantee fast convergence, the solver must do a certain
number of iterations. Otherwise the convergence can be arbitrarily slow. Apart from
the extra time for the design of the miniature preconditioner, one can also spend extra
time for measuring its quality. With a global preconditioner, one has to assume the worst
case theoretical guarantee for the quality of the preconditioner. This guarantee may be too
pessimistic, but there is no way to decide quickly if this is indeed the case. In our approach,
the actual quality can be measured easily, and the corresponding parameters in the solver
can be adjusted accordingly. Testing the quality of the preconditioner is also useful when
a fast algorithm for constructing the preconditioner is good on typical instances, but may
occasionally fail, as it is the case with algorithms for constructing Steiner trees. Failure
instances can be detected, and the more expensive accurate algorithm will be run only on
them.

Finally, we note that the idea of using small separators has also been used in nested
dissection [LRT79], which uses the full tree of separators of the given graph. Our algo-
rithm cannot avoid computing a number of decompositions, even in the case that the given
graph has a directly available tree of separators. The reason is that after the preconditioner
undergoes the reduction to the smaller graph which does not inherit the tree of separators
from the original graph. So, the use of the decomposition algorithm seems to be necessary
even when the original system corresponds to a weighted square grid.

50

Chapter 5

Edge separators
and Steiner preconditioners

Given a graph A with n vertices, a Steiner support graph S is a graph with n vertices
corresponding to the vertices of A (called the A-vertices) and m extra or Steiner vertices.
Gremban and Miller showed that Steiner graphs can be used as preconditioners [Gre96].
The analysis of their quality can be reduced to the analysis of the generalized eigenvalues
of the pair (A,B) where B is the Schur complement with respect to the Steiner vertices of
S. We will call B the effective preconditioner.

Gremban used the fact that σ(A, S) = σ(A,B) (proposition 6.1 in [BH03]) to give
easy bounds on σ(A,B). In the other direction, bounding the support σ(B,A) is a dif-
ficult task because not only B is dense, but in general it doesn’t have a closed analytic
expression. For very regular graphs like the unweighted d-dimensional grid, Gremban
actually calculated closed analytic expressions and proved bounds on σ(B,A). More gen-
erally, until the paper of Maggs et. al [MMP+05] it was not known whether there is a good
Steiner tree preconditioner. However, their analysis concerns only Steiner trees. In this
Chapter we present a way for analyzing the support for more general Steiner graphs. For
certain cases of trees, the new bound strengthens the bounds of [MMP+05]. The analysis
is quite simple, and has an impact on the practical design of solvers for graphs which a
priori have certain nice properties.

The presentation is based on the following characterization of σ(B,A), shown in
[MMP+05].

Lemma 5.0.3. If S is a Steiner graph for A and BS is Schur complement with respect to

51

the elimination of the Steiner vertices of S, we have

σ(BS, A) = max
x

min
y

((
x
y

)T
S

(
x
y

))
/xTAx

where y ∈ Rm.

Lemma 5.0.4. [Steiner support transitivity] Let S ′, S be Steiner graphs for A, with the
same number of vertices. Also, let BS′ , BS be the Schur complements with respect to the
elimination of the Steiner vertices of S ′, S. We have

σ(BS, A) ≤ σ(S, S ′)σ(B′S, A).

Proof. Lemma 5.0.3 implies that for all vectors x ∈ Rn there is a vector yx ∈ Rm

such
(x|yx)TS ′(x|yx) ≤ σ(B′S, A)(xTAx).

By the definition of σ(S, S ′) this implies that for all vectors x, we have

(x|yx)TS(x|yx) ≤ σ(S, S ′)σ(B′S, A)(xTAx).

Then, Lemma 5.0.3 implies directly the bound on σ(BS, A). �

In the following, to simplify our notation, whenever it is understood that S is a Steiner
graph of A, we will denote σ(BS, A) by σ(S,A).

5.1 An illustrative example

Let A2n be the cycle graph with 2n vertices, and let the support graph S be the graph
consisting of the quotient cycle graph An attached to the 2n leaves as shown in Figure 5.1.
We are interested in bounding σ(S,A2n). The technique that we present here is easy but it
hasn’t appeared elsewhere. One can observe that σ(S,A2n) = σ(S+A2n, A2n)−1. As an
intermediate step in bounding σ(S+A2n, A2n), we will bound σ(S+A2n, S+A2n−An).
The graphs S+A2n and S+A2n−An are shown in Figure 5.2. Every edge of the quotient
An can be supported by the obvious shortest path in S + A2n − An which has effective
resistance 2. The supporting paths are disjoint, hence σ(An, S + A2n − An) ≤ 2 and

σ(S + A2n, S + A2n − An) = σ((S + A2n − An) + An, S + A2n − An)

≤ σ(S + A2n − An, S + A2n − An) + S(An, S + A2n − An)

≤ 3.

52

..1 1 1 1

1
2 2 2 2

1

2 2

1

...............................

Figure 5.1: A support analysis example.

1

1
2 2 22 2

1

...............................

2

1 1 1 1

1

2 2 22 2

...............................

2

1 1 1 1

Figure 5.2: The graphs S + A2n and S + A2n − An.

Now computing the effective preconditioner with respect to S +A2n−An is easy, and we
directly get σ(S + A2n − An, A2n) ≤ 2. Combining the above inequalities and using the
Steiner support transitivity, we have

σ(S,A2n) = σ(S + A2n, A2n)− 1

≤ σ(S + A2n, S + A2n − An)σ(S + A2n − An, A2n)− 1 ≤ 5.

5.2 Laminar decompositions and Steiner graphs

A laminar decomposition of a given graph G = (V,E,w) is a collectionH = H0, . . . Hl

of l partitions of the vertices of G into disjoint clusters, with the property that each cluster
in Hi is a proper subset of a cluster in the Hi−1. We will refer to Hi as the ith level of
the decomposition. By definition, every cluster at level i − 1 is partitioned to its children
clusters in level i. We let H0 = V and level l contain the vertices of G as singletons.

53

A laminar decomposition H naturally defines a tree TH = (VT , ET , wT). The ith level
of TH consists of vertices corresponding (one-to-one) to the subsets in the ith level of H .
For each vertex t of the tree we denote by Vt ⊆ V the set of vertices it corresponds to. A
vertex t is connected to its parent vertex in TH with an edge of weight out(Vt). All the
Steiner trees that we present in this Chapter as well as the trees of [MMP+05] follow this
definition, and we will call them laminar Steiner trees.

Given a graph G = (V,E,w), a set S ⊆ V and a laminar decomposition H for S, we
define the local Cheeger constant of S ⊂ V as the ratio

γ(S) = min
T⊆S

cap(S − T, T)

out(T)
. (5.1)

and the its restriction to H by

γH(S) = min
T∈H

cap(S − T, T)

out(T)
. (5.2)

The local Cheeger constant was introduced and studied recently by Chung in [Chu07], but
has also been used in [BKR03] where it is called the precondition property. We will
denote the local Cheeger constant of a given set S by γ(S).

We now describe a way for constructing more general Steiner graphs.

Definition 5.2.1. [Quotient and Steiner graph] Let P be an edge cut, i.e. a partitioning
of the vertices of the graph A into disjoint sets Vi, i = 1, . . . ,m. Let Ai be the graph
induced by the vertices in Vi. We let Hi be a laminar decomposition of Ai and Ti be the
corresponding laminar Steiner tree. We define the quotient graph Q on the set of the
roots of the trees Ti, by letting w(ri, rj) = cap(Vi, Vj). We define the Steiner graph with
respect to P , as SP = Q+

∑m
i=1(γHi

(Ai))
−1Ti.

Theorem 5.2.2. Let P be an edge cut, and S be the Steiner graph with respect to P . If
h = maxi height(Ti) we have σ(A, S) ≤ 2h+ 1 and

σ(S,A) ≤ (2h+ 2)(1 + max
i

(
(γHi

(Pi))
−1σ(Ti, Ai))

)
.

Proof. The key observation to bound the support numbers is what we will call the
sufficient capacity property: every non-root vertex t in S is connected to the upper level
with capacity at least equal to out(Vt), because every laminar Steiner tree is multiplied
by (γHi

(Pi))
−1. To bound σ(A, S) we embed A onto S by routing each edge e of A

54

via the shortest (with respect to the number of hops) path p(e) in S that goes between
the endpoints of e. The length of the path is at most 2h + 1. The sufficient capacity
property ensures that the congestion of each edge of S in the embedding is at most 1.
To bound σ(S,A) we will apply the technique we illustrated in Section 5.1. We observe
that σ(S,A) = σ(S + A,A) − 1. Consider again an edge e whose associated path p(e)
in S uses the edge (ri, rj) in Q. We route w(e) units from (ri, rj) through p(e). Doing
this for every edge e of A defines an embedding of Q into S + A − Q. The dilation of
the embedding is 2h + 1 and the sufficient capacity property ensures that the congestion
is 1. This proves that σ(S + A, S + A − Q) ≤ 2h + 2. Finally, σ(S + A − Q,A) =
σ(S − Q,A) + 1. The graph S − Q consists of the disjoint trees (γ(Pi))

−1Ti, hence
σ(S − Q,A) ≤ maxi σ((γHi

(Pi))
−1Ti, Ai) = maxi(γHi

(Pi))
−1σ(Ti, Ai). Combining

these bounds, and using the Steiner support transitivity, we get

σ(S,A) = σ(S + A,A)− 1

≤ σ(S + A, S + A−Q)σ(S + A−Q,A)− 1

≤ (2h+ 2)(1 + max
i

(γHi
(Pi))

−1σ(Ti, Ai))− 1.

�

Remark. The intention behind the multiplication of Ti by (γHi
(Pi))

−1 is to ensure the
sufficient capacity property. In practice we only need to separately scale the edges of S
so that each edge has congestion exactly 1. This won’t have an impact on the bound for
the maximum generalized eigenvalue but it may be have practical consequences especially
when the Steiner graph is used in preconditioned Conjugate Gradients.

5.3 Steiner graphs and linear time solvers
for uniform d-dimensional model grids

We apply the theory developed in the previous section to uniform d-dimensional meshes.
Our following discussion for the n×n square grid (denoted by A) extends easily to higher
dimensions. We let the edge separator P be the natural partitioning of the vertices into
k × k squares. For each k × k square Ai, we let Ti be the star graph with edge weights
equal to 4, We construct the Steiner graph Sk as described in the previous section. It is
clear that σ(A, Sk) ≤ 3. In order to analyze σ(Ti, Ai) we state the following general
theorem.

Theorem 5.3.1. LetA be a graph whose vertices have volumes a1 ≤ a2 . . . ≤ an. Then if

55

S is the star graph with n edges with weights a1 ≤ a2 . . . ≤ an, we have σ(S,A) ≤ 4/φ2
A,

where φA is the conductance of A.

Proof. By definition we have σ(S,A) = σ(B,A) where B is the Schur complement
with respect to the elimination of the root of D. The edges weights for B are given by
bi,j = aiaj/

∑
k ak [Gre96]. For the volume bi of the vertex i in B, we have

bi = ai

∑
j 6=i ak∑
ak

= ai

(
1− ai∑

ak

)
≥ ai/2

So, if DG denotes the diagonal of the Laplacian G, we have xTDBx ≥ xTDAx/2.

σ(B,A) = max
x

xTBx

xTAx
= max

x

xTDAx

xTAx

xTBx

xTDAx

≤ 2 max
x

xTDAx

xTAx

xTBx

xTDBx
≤ 2λmax(D

−1
B B)λ−1

min(D−1
A A)

We have λmin(D−1
A A) ≥ φ2

A/2 by Cheeger inequality, and λmax(D−1
A A)x ≤ 2. This

completes the proof. �

Using now the fact that the conductance of the k × k square grid is 1/k, we have
σ(Ti, Ai) = O(k2).

Let us now describe briefly the application of the Steiner graphs in the recursive pre-
conditioned Chebyshev algorithm we described in Section 4.1.2. When using Sk as a
preconditioner for A, the algorithm requires the solution of a system with Sk. After ob-
taining a partial Cholesky factorization of Sk by eliminating the leaves of Sk we recursively
call the Chebyshev algorithm to solve a system in the quotient Q. We note that Q is the
n/k × n/k grid with weights equal to k. The process can be continued recursively to give
a hierarchy H = {Ai, Bi} of graphs and preconditioners where each Ai is a square grid
and |Ai|/|Ai+1| ≤ k2 while κ(Ai, Bi) = O(k2). We can properly scale the graphs in H
so that λmin(A,B) = 1, and plug them in the algorithm Solve of section 4.1.2. Theorem
4.1.1 bounds the running time of Solve by O(kn) for a sufficiently large constant k.

The theory of Section 5.2 and the construction of this section are applicable to any fam-
ily of graphs that possess similar regularities and self-similarities that are known a priori,
or more generally are decomposable into small clusters that have a bounded local Cheeger
constant. Much of the research in geometric multigrid has been devoted to extending its
analysis to families of grids that deviate from the model d-dimensional grid. Our analy-
sis provides linear time algorithms for several of these families, and strict running time

56

bounds for cases that are quite possibly problematic for the geometric multigrid theory,
such as grids with holes or missing corners. We note that we can speed up the solver by
a constant, if we use as a preconditioner for each Ai not the star graph, but the natural
quadtree that was analyzed by Gremban [Gre96], which satisfies the much stronger bound
σ(Ti, Ai) = O(k). More generally, one should always use as a building block of the pre-
conditioner the trees analyzed in [MMP+05] which always guarantee a condition number
at most proportional to the number of vertices of Ai. This can be crucial for convergence,
for example in the case of the line: preconditioning segments of the line of size k with the
star graph, gives a hierarchyH that does not satisfy the requirement of Theorem 4.1.1, be-
cause κ(Ai, Bi) = O(k2) and |Ai|/|Ai+1| = k. In contrast, preconditioning the segments
with the binary tree gives a hierarchy with κ(Ai, Bi) = O(k) and |Ai|/|Ai+1| = k. For
less regular graphs, constructing better tree preconditioners also increases the flexibility
for absorbing larger local Cheeger constants and varying weights in the quotient part of
the Steiner graph.

5.4 Additions to the theory of Support trees

In this Chapter we provide additional tools for analyzing the trees of [BKR03] that were
demonstrated to be effective preconditioners in [MMP+05].

5.4.1 Laminar decompositions with guarantees

Assume we are given a laminar decomposition H = {Hi}, for i = 0, . . . , l, of a graph G.
The level 0 set is V while level l contains singletons. We say that an edge e of G is cut
on level l ≥ 1 if both endpoints of e are contained in the same l − 1 level cluster, but in
different l level clusters. For any set X , we define the weight function wl(X) as

wl(X) =
∑

e ∈ X × V
level(e) ≤ l

c(e).

Informallywl(X) is the capacity leavingX at level l. By definition, ifH is a level l cluster,
we have wl(H) = out(H). Let H be a level i cluster that is furthermore divided into level
i + 1 sub-clusters H1, . . . , Hk. Let G[H] denote the graph induced by the vertices in H .
Now contract the nodes in each cluster of G[H] to form a graph XH with k vertices, and
edge weights equal to the total capacity of the edges between the clusters of G[H]. We
call XH the contraction of G[H] and we denote by φ(XH) its conductance. We define the

57

contraction conductance of the laminar decompositionH as

φH = min
H∈H

φ(XH).

We define a Concurrent Multicommodity Flow (CMCF) problem for every cluster H
at level i < l. The problem consists of one commodity d(u, v) for each pair of vertices u
and v of H . The demand for d(u, v) is given by

dem(u, v) :=
wi+1(u) · wi+1(v)

wi+1(H)
. (5.3)

Note that dem(u, v) for level l, depends on the weight function wl+1. The throughput
fraction of a solution to a CMCF problem is the minimum over all commodities, of the
fraction of the commodity’s demand that is met by the solution. A cut of the subgraph
induced by a cluster H is a partition of H in to subsets A and B = H−A. The sparsity of
the CMCF problem on H is defined as φ = minA

cap(A,B)
dem(A,B)

where dem(A,B) is the demand
of the CMCF problem that is separated by the cut. Räcke et.al. [BKR03] described an
algorithm which -using an oracle that approximates a sparsest cut of given CMCF problem
within σ- constructs a laminar decompositionH with the following guarantees:

• Each clusterH ∈ H satisfies the throughput property: the throughput for the CMCF
problem in H is Ω(1/(σ2 log n)).

• Each cluster H ∈ H satisfies the precondition property

min
T⊆H,|T |≤3/4|H|

cap(H − T, T)

out(T)
= Ω(1/(σ log n)).

• H consists of O(log n) levels.

We will denote by HBKR the laminar decomposition of [BKR03]. We are now ready to
prove a basic property ofHBKR.

Theorem 5.4.1. The contraction conductance ofHBKR is Ω(1/(σ3 log2 n)).

Proof. LetH be a level i cluster that is furthermore divided into level i+1 sub-clusters
H1, . . . , Hk. LetX be the contraction ofG[H]. Let c(Hi) denote the total incident capacity
of the node corresponding toHi inX . SinceH satisfies the precondition property, we have

c(Hi) = cap(Hi, H −Hi) ≥ Ω(
1

σ log n
)wl+1(Hi)

58

and

vol(X) =
∑
i

c(Hi) ≥ Ω(
1

σ log n
)
∑
i

wl+1(Hi) ≥ Ω(
1

σ log n
)wl+1(H).

Consider an arbitrary partition of X into sets A and B = X − A. We have

dem(A,B) =
∑

u∈A,v∈B

wl+1(u) · wl+1(v)

wl+1(H)

=

(∑
u∈Awl+1(u)

) (∑
v∈B wl+1(v)

)
wl+1(H)

≥ vol(A)vol(B)

σ log n · vol(X)

Using the last inequality, we get

φ(X) ≥ cap(A,B)

min{vol(A), vol(B)}
≥ cap(A,B)

2vol(A)vol(B)/vol(X)
≥ 1

2σ log n

cap(A,B)

dem(A,B)
.

By the throughput property, we also have

cap(A,B)

dem(A,B)
≥ qmin = Ω(1/(σ2 log n)).

Hence, φ(X) = Ω(1/(σ3 log2 n)). �

5.4.2 A new bound for laminar Steiner trees

The generalO(n log3 n) bound of [MMP+05] for the support number σ(T,A) of the graph
A and the laminar Steiner tree T for HBKR is up to the log factors optimal for general
graphs. However there are cases where this upper bound does not capture the actual value
of σ(T,A). For example, assuming σ = 1, if the laminar decomposition contains only one
level the graph is an expander. Then, Theorem 5.3.1 shows that σ(T,A) is constant. In
this section we give a bound on σ(T,A) in terms of the depth d of the tree, the contraction
conductance φH and the restricted local Cheeger constant γH. Thus the following Theorem
directly implies a better bound for laminar Steiner trees corresponding to a bounded depth
HBKR.

Theorem 5.4.2. Let H = {H1, . . . , Hd} be a laminar decomposition with contraction
conductance φH, restricted local Cheeger constant γH and depth d. Let T be the associated
laminar Steiner tree. We have σ(T,G) ≤ (1 + 16/(γHφ

2
H))d.

59

Proof. We construct a sequence of graphs G0, . . . , Gd. Gi is constructed by con-
tracting the clusters at level i, so Gd = G and G0 is a single vertex. The laminar support
tree T has d levels and by construction the weight of the edge connecting a level i vertex
to its parent is equal to the total incident weight of the corresponding vertex in Gi. Let Ti
denote the edges of T that are below level i. By Lemma 5.0.3, we have

σ(T,G) ≤ σ(T +
d−1∑
j=1

Gj, G).

We bound the latter quantity by using the technique of Section 5.1 d times, for each pair
of consecutive levels in the hierarchy. More formally, we use induction to show that for
all i < d, we have

σ(Ti +
d∑
j=i

Gj, G) ≤ (1 + 16/(γHφ
2
H))d−i.

We first consider the base case j = d − 1, where we need to bound σ(Td−1 + Gd−1). Let
Hd−1 = V1, . . . , Vk be the partitioning of the vertices at level d − 1. By the assumption
for the contraction conductance, for all i, the graph Ai induced by Vi has Cheeger constant
bounded below by φH, and local Cheeger constant bounded below by γH. Let Si denote
the star graph with edge weights equal to the volumes of the vertices in Ai. By definition,
we have

Td−1 +Gd−1 � Gd−1 + γ−1
H

∑
i

Si.

By the Cheeger inequality we have σ(Si, Ai) ≤ 4/φ2
H

and thus applying Theorem 5.2.2
gives σ(Td−1 +Gd−1, G) ≤ 16/(γHφ

2
H). This completes the proof for the base case.

For the induction, we note that -similarly to the base case- applying Theorem 5.2.2
gives

σ(Ti − Ti+1 +Gi, Gi+1) ≤ 16/(γHφ
2
H).

By using this and the Steiner support transitivity, we have

σ(Ti +
d∑
j=i

Gi, G) = σ(Ti − Ti+1 +Gi + Ti+1 +
d∑

j=i+1

Gi, G)

≤ (1 + 16/(γHφ
2
H))σ(Ti+1 +

d∑
j=i+1

Gi, G).

The claim follows by the inductive hypothesis. �

60

5.5 Planar multiway edge separators

Let P be a partition of the vertices of a graph G = (V,E,w) into disjoint sets Vi, i =
1, . . . , k and let Gi denote the graph induced by the vertices in Vi. We call n/k the vertex
reduction factor of P . We call P a (φ, γ)-decomposition if the conductance of each Gi is
bounded below by φ and for each vertex v ∈ Vi, cap(v, Vi)/vol(v) ≥ γ. We allow some
of the Vi’s to be singletons in which case we define the conductance of Gi to be equal
to 2. We call P a (φloc, γavg) decomposition if

∑
i

∑
v∈Vi

cap(v, Vi)/vol(v) ≥ γ and the
conductance of each Gi is bounded below by φ.

Spielman and Teng considered the problem of computing a (φ, γavg)-decomposition
for unweighted graphs [ST04]. They note that there is no nearly linear time algorithm
for computing such a decomposition with good guarantees. Kannan et.al. analyzed the
recursive application of any given algorithm for approximating the sparsest cut [KVV04].
While they showed that it obtains a good approximation to the optimal (φloc, γavg) -
decomposition of a given graph, they didn’t prove guarantees that are independent from the
instance. The laminar decomposition HBKR gives a sequence of graphs Gi and partitions
Pi, such that Gi+1 is the contraction of the vertices of Gi with respect to the clusters in Pi.
The discussion in the previous section implies that every Pi is a (1/(σ3 log2 n), 1/(σ log n))-
decomposition for Gi, where σ is the approximation factor obtained by an algorithm for
the computation of the sparsest cut. The vertex reduction factor is constant in average, but
there are no guarantees for the reduction factor between G1 and G2.

In this section we consider a variant of (φ, γ)-decompositions. For each Gi we intro-
duce a vertex on each edge leaving Gi. If Wi is the set of newly introduced vertices for
Gi, we say that P is [φ, ρ]-decomposition if the closure graph Go

i induced by the vertices
in Vi ∪Wi has conductance bounded below by φ and the vertex reduction factor of P is
at least ρ. By definition, Go

i is Gi with additional degree one vertices hanging off of it.
Therefore, any edge cut in Gi induces a sparser cut in Go

i , and thus the conductance of
Gi must be lower bounded by φ. Also note that if Gi contains two vertices v1, v2 such
that cap(vi, Vi)/vol(vi) ≤ φ, the conductance of Go

i is less than φ; this can be seen by
considering the edge cut consisting of the edges incident to v1, v2 in Gi. Hence there can
be no more than one vertex violating the γ constraint, if γ < φ. So a [φ, ρ]-decomposition
is ”almost” a (φ, γ) decomposition with the additional guarantee for the vertex reduction
factor. In Chapter 7 we will see that [φ, ρ]-decompositions are useful in multigrid algo-
rithms. Typically, we will be interested in minimizing the product φρ. We first consider
the problem for trees.

Theorem 5.5.1. Trees have a [1/2, 6/5]-decomposition that can be computed with linear
work in O(log n) parallel time.

61

Proof. If the tree contains 2 or 3 vertices the decomposition consists of only one clus-
ter. The basic step of the algorithm is to compute the 3-critical vertices of the given
tree T , using the algorithm of Miller and Reif. For the definitions we refer the reader
to [RMMM93]. This step can be done with linear work in O(log n) parallel time. Let us
now describe the decomposition P of T into disjoint sets of vertices. Assuming that T has
n vertices, the number of 3 critical vertices is at most 2n/3. Although we will allow criti-
cal vertices to be singletons in P , we will not allow non-critical vertices to be singletons.
This implies that after the contraction of the clusters the tree will have at most 2n/3 +n/6
vertices, which gives (asymptotically) the reduction factor. We start by forming a cluster
per critical vertex, each containing initially only the critical vertex. The 3-critical vertices

3

v

1 2

Figure 5.3: External 3-bridge with possible attachments.

decompose the edges of T into connected 3-bridges of two types. External 3-bridges
contain only one critical vertex and internal 3-bridges contain two critical vertices. Each
external 3-bridge is formed by the critical vertex v which is the shared root of a number
of trees Ti. The 3 possible cases of Ti are depicted in Figure 5.3, where the black vertex is
the critical vertex. In cases 1,3 we form clusters with the non-critical vertices and we add
them to P . The closure of these clusters has conductance 1. We also add to the cluster of
v its attached leaves (case 2).

An internal 3-bridge that contains two critical vertices contains at most 2 non-critical
vertices. In Figure 5.4 we give the three possible 3-bridges of this type. In case 2, we form
a cluster for the two non-critical vertices, the conductance of its closure is obviously 1. In
case 3, we assign the non-critical vertex v to the cluster of the adjacent critical node which
has the heaviest connection to v. Finally for case 2 we have the following subcases: (i)
if e2 < e1 and e2 < e3, we assign v1, v2 to the clusters of their adjacent critical vertices,
otherwise (ii) we form a cluster with v1, v2 and we add it to P . The closure of the cluster
has conductance at least 1/2.

We are left with the clusters of the critical vertices which we add to P . By the con-
struction in the previous step, the closure of each cluster has the critical vertex v as a
root shared by a number of edges and at most two paths of the form (v, u1, u2), where

62

v2

Case1

e1

e2

e3

v1

Case2

v

Case3

Figure 5.4: The possible internal 3-bridges.

w(v, u1) ≥ w(u1, u2). It is then easy to see that the conductance of the closure is at least
1/2. �

Theorem 5.5.2. Planar graphs have an [φ, ρ]-decomposition such that φρ is constant. The
decomposition can be constructed with linear work in O(log n) parallel time.

Proof. Let A = (V,E,w) be any planar graph, and B be the subgraph constructed in
Theorem 4.2.2. The graph B contains a subset W of O(n log3 k/k) vertices that cannot be
eliminated by the greedy Gaussian elimination of degree 1 and 2 vertices.

......
w1 w2v

...... TiTv

w

T1

Ti

Figure 5.5: The organization of B-vertices that are greed-eliminated.

The vertices in V −W either (i) lie on a path between two vertices w1, w2 ∈ W , or
(ii) they belong to trees that are attached to the rest of B through a vertex in w ∈ W or
through a vertex v ∈ V −W of the first kind. This is illustrated in Figure 5.5.

In the following we describe an algorithm to construct P , a [φ, ρ]-decomposition of
B, with φ > 1/4 and ρ constant. We first construct an edge cut C. Consider the path p
between w1, w2 ∈ W including w1 and w2. Let e be an arbitrary edge of smallest weight
among the edges of p. We include e in C. This decomposes V into disjoint trees each
containing a unique vertex w ∈ W .

63

We will decompose each tree Tw independently. We describe the process for a given
Tw. The removal of w disconnects Tw into a set of single vertices R and a number of non-
trivial trees Ti with roots ti. We form the cluster w ∪ R and we add it to P . The closure

w
Ti

T1

t1

ti

r1

r2 ri

.....

...

Figure 5.6: Computing a tree decomposition.

graph of w∪R is a star, so its conductance is 1. Now let T ′i = Ti+(ti, w) and compute Pi,
the [1/2, 6/5]-decomposition of each T ′i . Each Pi includes exactly one cluster containing
w. We remove w from its cluster and we add the cluster to P , along with the rest of the
clusters of Pi. By construction, all clusters that are added to P are vertex disjoint. If the
cluster of w in some Pi contains only two vertices, then T ′i must have at least 4 vertices,
and Pi has at least 2 non-singleton clusters. This shows that we have a constant reduction
in the number of vertices of Ti. In the worst case the vertices of W remain as singletons in
P , but since |W | is a constant fraction of n, the vertex reduction factor of P is constant.

It remains to show that the closure of the clusters in P have conductance at least 1/4.
The clusters that are not incident to an edge in C satisfy the constraint by construction.
However we have boundary clusters each of which contains exactly one vertex which is
incident to some edge in C.

e1

w w1v

......Tv

e

Figure 5.7: The boundary cluster

Assume that a cluster U contains a vertex v which is a adjacent to e ∈ C, and let TU
be the tree induced by U . Recall that e is the lightest edge on a path between w and some

64

w1 ∈ W . This scenario is depicted in Figure 5.7. Let T ′U denote the closure of TU restricted
in Tw. By construction the conductance of T ′U is at least 1/2. We also have T oU = T ′U + e.
Note that T ′U contains e1. Hence the volume of v in T oU is at most two times its volume in
T ′U . Hence adding e in T ′U can decrease its conductance by at most a factor of 2.

We finally claim that P is a [1/4k, ρ]-decomposition for A. Let A[Vi], B[Vi] be the
graphs induced by the cluster Vi ∈ P inA andB respectively. Now note that λmax(A,B) ≤
k. Let ev be the vector which has a single non-zero entry corresponding to the vertex v.
We have eTvAev = volA(v), and similarly for B. It follows that the volume of v in A is at
most k times its volume in B. Taking the closure B[Vi]

o only adds extra leaves in A[Vi]
o.

Since the conductance of B[Vi]
o is at least 1/4, we get that the conductance of A[Vi]

o is at
least 1/4k.

The graph B can be constructed with linear work in O(log n) time. The segments
between the vertices of W have size at most k2. Their decomposition can be done in
parallel and with linear work per segment. �

Remarks. The essential ingredients in the proof of the above theorem is the size of W ,
and the fact that the volume of the vertices in A and B are within some fixed amount.
For example, instead of using the preconditioner B of Theorem 4.2.2, we could have
used a weaker construction B where each miniature preconditioner is just the Maximum
Spanning Tree of the corresponding component. This would decrease the φ by a factor of
k. Also, we don’t need the strong vertex separators of Theorem 3.0.1, and we can substitute
them with separators whose boundary size is within some constant of the interior size, so
that |W | is a constant factor of n. This can affect the parameter ρ by at most a constant
factor.

65

66

Chapter 6

Spectral inequalities for multiway cuts

What is the effect on the spectrum of the Laplacian A a graph if we multiply its edge
weights by a constant factor? Although we can in principle write the perturbed Laplacian
B as B = A + E where E is the perturbation matrix, applying the classical additive
spectral perturbation theory [SS90] does not yield interesting bounds on the spectrum of
B. The reason is that the additive theory has been developed mainly to deal with ”small”
ε-perturbations to the matrix; the eigenvalues of E can be big comparing to those of A.
Clearly, we need a different notion of ”relative” perturbation.

In this Chapter we study the relationship between the eigenvalues and eigenspaces of
two positive definite matrices in terms of the generalized eigenvalues of the pair (A,B).
We give a slight generalization of a bound of Mathias and Veselić [MV98] on the angles
between their eigenspaces. We also prove a new simple but in certain cases stronger bound.
We then focus on Laplacians and we show that the bounds are optimal up to a constant. We
use this to demonstrate that the condition number of the pair (A2, B2) can be arbitrarily
bad comparing to the condition number of (A,B).

We next apply the perturbation bounds to the pair of a graph A and the Schur com-
plement of a Steiner graph B which is derived from a multi-way edge separator of A, that
disconnects the graphs into vertex disjoint expanders that are more strongly connected to
their interior relative to their exterior. This yields spectral inequalities that characterize the
distance of any low frequency eigenvectors to a subspace of vectors with a nice description
directly derivable from the partitioning of the vertices defining the edge separator.

67

6.1 Relative perturbation theory for Laplacians

6.1.1 Related work

There have been several papers on eigenvalue and eigenvector perturbations bounds that
involve a perturbation of the matrix which is bounded in some relative sense (see for exam-
ple [BD90, EI95, MV98, Li98, Li99] and the references therein). As noted in [MV98], the
proofs are usually complicated and are expressed in terms of the ’relative gap’ between
the eigenvalues, i.e. a relative distance of the unperturbed eigenvalue to the rest of the
spectrum. In this type of bounds one does not care about eigenvectors corresponding to
distant eigenvalues. In contrast, the work of Mathias and Veselić [MV98] provides such
bounds. We give a generalization of their bounds, as well as a new bound which is tighter
for larger perturbations.

6.1.2 Perturbation bounds

Let A,B be positive definite matrices. We let λ1 ≤ . . . ≤ λn denote the eigenvalues of A
and µ1 ≤ . . . ≤ µn denote the eigenvalues of B. Let κmax and κmin denote λmax(A,B)
and λmin(A,B). We therefore have λmax(B,A) = 1/κmin and λmin(B,A) = 1/κmax.
The following eigenvalue bound is well known and easy to prove. We include it here for
completeness.

Theorem 6.1.1. We have λi ≤ κmaxµi and λi ≥ κminµi.

The estimates of Mathias and Veselić [MV98] on the relationship between the eigenspaces
ofA andB are stated in term of a quantity η, which is defined as

∥∥B−1/2(A−B)B−1/2
∥∥

2
.

They assume that η < 1, in which case we have the inequalities∥∥B−1/2(A−B)B−1/2
∥∥

2
≤ η∥∥(I +B−1/2(A−B)B−1/2)−1

∥∥
2
≤ (1− η)−1.

These inequalities are used in their proofs. Note however that using Lemma 2.1.6 we get

Λ(A,B) = Λ(B + A−B,B) = Λ(I +B−1/2(A−B)B−1/2, I)

from which it follows that∥∥B−1/2(A−B)B−1/2
∥∥

2
≤ max{κmax − 1, 1− κmin}∥∥(I +B−1/2(A−B)B−1/2)−1

∥∥
2

= κ−1
min

68

Substituting these new inequalities directly into the proof of [MV98], yields the following
theorem.

Theorem 6.1.2. Let AX = ΛX and BY = MY be the eigenvalue decompositions of A
andB. That is Λ,M are diagonal matrices containing the eigenvalues andX, Y are unitary
matrices whose columns are the corresponding eigenspaces of A and B respectively. Let
S = X∗Y . Then for any j and for any set S not containing j we have(∑

i∈S

|sij|2
)1/2

≤ max
i∈S

λ
1/2
i µ

1/2
j

|λi − µj|
max{κmax − 1, 1− κmin}

κ
1/2
min

and in particular,

|sij| ≤
λ

1/2
i µ

1/2
j

|λi − µj|
max{κmax − 1, 1− κmin}

κ
1/2
min

.

As shown in [MV98] the bound is asymptotically optimal when κmax, κmin → 1, hence
it is not possible to improve it for ”small” relative perturbations. However, we now show
that it is possible to obtain a bound which is stronger when κmax and 1/κmin are relatively
large.

Theorem 6.1.3. Let X ,Y be invariant subspaces of A and B respectively. Let the
columns of X and Y be the normalized eigenvectors that span X and Y respectively. We
haveAX = XΛX , BY = YMY , where ΛX ,MY are diagonal matrices containing the cor-
responding eigenvalues. Let y ∈ Y and x ∈ X be unit vectors. Suppose mint (ΛX)t,t = λi,
maxt (MY)t,t = µj , and mint (MY)t,t = µi, maxt (ΛX)t,t = λj . Then, we have

(xTy)2 ≤ min{κmax
µj
λi
,

1

κmin

λj
µi
}

Proof. Let y be an arbitrary unit vector inY , with y = u+v, where u ∈ X and v ∈ X⊥,
with ‖u‖22 + ‖v‖22 = 1. By using the A-orthogonality of u, v, and positive definiteness, we
have

yTAy = uTAu+ vTAv ≥ uTAu ≥ ‖u‖2 λi

By definition, we have yTBy ≤ µj , and using Lemma 2.1.6 we have

κmax ≥
yTAy

yTBy
≥ ‖u‖

2 λi
µj

. (6.1)

69

Now let x′ denote u/‖u‖2. It is easy to see that

x′ = arg max
x∈X

xTy

and that ‖u‖22 = (x′Ty)2. Combining this with equation 6.1 proves the first inequality. The
second inequality follows from the first by interchanging the roles of A and B and noting
that λmax(B,A) = 1/λmin(A,B). �

6.2 Optimality of the bounds

In this Section we study the optimality of the bound in 6.1.3 with respect to the ratio λi/µj .
In particular, we want to establish optimality for varying values of the ratio when the
generalized eigenvalues κmin, κmax are fixed. Consider the following two positive definite
matrices:

A =

(
1/n 0
0 1

)
(6.2)

B = (1 + 1/n)−1

(
1 −1/

√
n

1/
√
n 1

)(
1/n 0
0 1

)(
1 −1/

√
n

1/
√
n 1

)T
It is not hard to verify that λmax(A,B), λmax(B,A) < 4. On the other hand, the vectors
x = [1, 0]T and y = (1 + 1/n)1/2[−1/

√
n, 1]T are normalized eigenvectors of A and B

respectively, corresponding to eigenvalues 1/n and 1. The bound of 6.1.3 gives |xTi yj| ≤
O(1/

√
n), which is within a constant of the actual inner product. So, for general positive

matrices the bound is optimal up to a constant with respect to the ratio of the eigenvalues.
Does this remain true if we restrict the pair (A,B) to be Laplacians? We show that the
answer is positive.

6.2.1 Graph definitions - the pair (A,B)

We will demonstrate the optimality of the bound with a pair of Laplacians (A,B) which
we define here. Let An be the cycle of n nodes, where n is a multiple of 4. The vertices in
An are ordered in the natural way; consecutive vertices take consecutive numbers. Let R
be the n× (n/2) matrix, with all its elements equal to zero, with the exception R2j−1,j =
R2j,j = 1 for each 1 ≤ j ≤ n/2. It is not hard to verify that Q = RTAR is the Laplacian
of Cn/2. We now define a Laplacian S on 3n/2 vertices

S =

(
2I −2R
−2RT Q+ 4I

)
.

70

The graph S is the support graph constructed in section 5.1. The Schur complement of
S with respect to Q + 4I is -as noted in Section 2.4.5- a Laplacian and it is given by
B = 2I − 2R(Q+ 4I)−1(2R)T . This will be the second graph B. It is interesting to note
that the matrix B has no zero entries. From the discussion in section 5.1 we have

λmax(A,B) ≤ 3 and λmax(B,A) ≤ 5. (6.3)

6.2.2 Eigenvalues and eigenspaces of A,B

Eigenvectors and eigenvalues of B. It is easy to see that 2 is an eigenvalue of B with
multiplicity n/2. The corresponding eigenspace is N (RT).

Eigenvectors and eigenvalues of A. Let n be a multiple of 4, and Cn be the Laplacian
of the cycle of size n, with eigenvalues λ0 ≤ . . . ≤ λn−1. Let ω = exp(2πi/n) be the
nth primitive root of unity. The Fourier transform matrix is given by Fjk = wjk, for
j, k ∈ [0, n− 1]. It is known and easy to show that F diagonalizes any circulant matrix of
size n (for instance, see [Big94]). In particular, F diagonalizesCn. The simple eigenvalues
of Cn are 0, 4 with corresponding eigenvectors F0, Fn/2. All the other eigenvalues have
multiplicity 2, and the jth pair corresponds to the eigenspace generated by Fj, Fn−j . In the
rest of this section we will let µj = λ2j−1 = λ2j . It can be verified that

µj = 2− ωj − ω−j = 2− 2Re (exp(2πi/n)) = 2− 2 cos(2πj/n) = 4 sin2(πj/n)

Let Sj = (Fn−j +Fj)/2 and Sn−j = i(Fn−j −Fj)/2, for 1 ≤ j ≤ n/2− 1. The following
expressions can be easily verified.

Sj(k) = cos(2πkj/n) 0 ≤ k ≤ n− 1

Sn−j(k) = sin(2πkj/n)

Using the orthogonality of the Fj’s, we have STj Sn−j = 0, and thus

span({Fj, Fn−j}) = span ({Sj, Sn−j})

Hence the vectors Sj, Sn−j are eigenvectors of A.

Expressing eigenspaces of B in terms of those of A. LetH = Null(R) be the subspace
of Rn consisting of vectors w such that w(2k) = −w(2k+1) for 1 ≤ k ≤ n/2. Obviously,
the dimension of H is n/2. Let 2Hn/2 = Fn/2, and

2Hj = µ
1/2
j Sj − µ1/2

n/2−jSn/2+j 1 ≤ j ≤ n/4

2Hn/4+j = µ
1/2
j Sn−j − µ1/2

n/2−jSn/2−j 1 ≤ j < n/4

71

We claim that the vectors Hj , 0 ≤ j ≤ n/2 form an orthogonal basis forH. Orthogonality
follows from the orthogonality of the Sj’s. It remains to show that for each j, t we have
Hj(2t) = −Hj(2t + 1). It is easy to check this for j = n/2. Now, note that µj =

sin(πj/n) and µ1/2
n/2−j = sin(π/2− πj/n) = cos(πj/n). For 1 ≤ j ≤ n/4, and using the

trigonometric identity sin(a+ b) = sin a cos b+ cos a sin b we have

Hj(2t) = sin(
πj

n
) cos(

4πjt

n
)− cos(

πj

n
) sin(

4π(n/2− j)t
n

)

= sin(
πj

n
) cos(

4πjt

n
) + cos(

πj

n
) sin(

4πjt

n
)

= sin(
4πjt+ πj

n
)

and

Hj(2t+ 1) = sin(
πj

n
) cos(

2πj

n
2t+

2πj

n
)− cos(

πj

n
) sin(

4π(n/2− j)t
n

+
2π(n/2− j)

n
)

= sin(
πj

n
) cos(

2πj

n
2t+

2πj

n
)− cos(

πj

n
) sin(π − 2πj

n
2t− 2πj

n
)

= sin(
πj

n
) cos(−2πj

n
2t− 2πj

n
) + cos(

πj

n
) sin(−2πj

n
2t− 2πj

n
)

= sin(−4πjt+ πj

n
)

The same property can be shown similarly for the vectors Hj for n/4 ≤ j ≤ n/2. We are
now ready to state the main result of this section.

Theorem 6.2.1. Theorem 6.1.3 is optimal up to a factor of 5.

Proof. We take the Laplacians A and B as defined above. We may without loss of
generality assume that the vectors Sj have unit norm. Let x = Sj and y = 2Hi/ ‖2Hi‖2.
The vectors x, y are eigenvectors corresponding to eigenvalues µj and 2 respectively. We
have

(xTy)2 = µi/ ‖2H1‖22 =
2

‖2Hj‖22

µi
2
.

Using equation 6.3, Theorem 6.1.3 gives

(xTy)2 ≤ λmax(B,A)
µi
2
≤ 5

µi
2

The Theorem follows by noting that ‖2Hj‖22 < 2. �

72

6.2.3 The eigenvalues of (A2, B2) - and some questions

Although one can use the analytic expressions for the eigenvalues and eigenvectors of
A2, B2 to verify directly that λmax(A2, B2) = Θ(n2), the fact that the maximum general-
ized eigenvalue of (A2, B2) is unbounded can be viewed as a consequence of the optimality
of the bound for (A,B), as the following corollary shows.

Corollary 6.2.2. We have λmax(A2, B2) = Ω(n2).

Proof. As in the proof of Theorem 6.2.1, let x = S1 and y = 2H1/ ‖2H1‖2. The
vectors x, y are eigenvectors corresponding to eigenvalues µ1 = O(1/n2) and 1/2 respec-
tively. Theorem 6.1.3 applied to the pair (A2, B2) gives

(xTy)2 ≤ λ(B2, A2)4µi
2

However, we already know that (xTy)2 ≥ µi/2. This implies that λ(B2, A2) ≥ µ−1
i /8.

�

It is interesting to observe the difference between the example in equation 6.2 and the
proof of Theorem 6.2.1. The optimality of the bound for general positive matrices can be
shown via a family of 2× 2 times controlling the size of the smallest eigenvalue 1/n. We
haven’t been able to do the same for Laplacians, and because of that we used graphs of
increasing size to show the optimality.

We pose two related questions. LetA,B be graphs on n. LetDA be the diagonal matrix
containing the vertex volumes of A, and let Ã = D

−1/2
A AD

−1/2
A , B̃ = D

−1/2
A BD

−1/2
A .

Question 1: Is the bound of Theorem 6.1.3 for the pair (Ã, B̃) optimal for all possible
values of the ratio λi/µj for a given n ?

Question 2: Is the maximum eigenvalue of the pair (Ã, B̃) independent from λmin(Ã) and
only a function of n and κ(Ã, B̃) ?

In Chapter 7, we will see that these questions are related to the V -cycle multigrid
algorithms.

6.3 Spectral inequalities for multiway cuts

Let P be an edge separator, i.e. a partitioning of a given graph A into m disjoint clusters
of vertices Pi, i = 1 . . . ,m. In this section we denote the normalized Laplacian of A by

73

Â. To state the inequality, we need to define several auxiliary graphs and matrices that are
derived from A and P .

(i). The cluster membership matrix R. Column j of R corresponds to cluster j and
R(i, j) = 1 if and only if node i of A is contained in cluster j.

(ii). The quotient graph Q. Q has one node per cluster of A, and the weight Q(i, j) is
equal to the total capacity between clusters i and j in G. Algebraically, it is not hard to
verify that

Q = RTAR. (6.4)

(iii). The Steiner graph S. We construct S as follows. If cluster i contains mi nodes,
we attach mi leaves to the ith node of Q. The weights of the new edges are equal to the
degrees of the corresponding nodes in G. So, S has n leaves and m internal vertices.
Algebraically,

S =

(
D −V
−V T Q+DQ

)
where D are the volumes of the vertices of A, V = DR, and DQ = RTDR.

(iv). The approximation graph B. We define B as the Schur complement of S with
respect to the elimination of the internal vertices.

B = D − V (Q+DQ)−1V T .

(v). The normalized approximation B̂. We let

B̂ = D−1/2BD−1/2 = I −D1/2R(Q+DQ)−1RTD1/2. (6.5)

We are now ready to give a spectral characterization for (φ, γ)-decompositions that we
defined and discussed in Section 5.5. For completeness, we re-define the decomposition
with a slightly different terminology here. Let P be an edge separator that disconnects the
vertex set V into disjoint sets Vi. For all i and v ∈ Pi, we denote by out(v)[in(v)] the total
weight of the edges incident to v that leave [stay inside] Pi. We define the local separation
γP of P , as the least number γ for which all v ∈ G satisfy γin(v) ≥ out(v). Let Ai denote
the graph induced by the vertices in Pi and let φi be its conductance. We define the local
conductance as φP = mini φi.

Theorem 6.3.1. Let P be a an edge separator with local conductance φP and local sepa-
ration γP . Let y be any vector in N (RTD1/2), and x be any unit vector which is a linear
combination of vectors of Â corresponding to eigenvalues smaller than λi. We have

(xTy)2 ≤ 16γφ2λi.

74

Hence there is a unit vector z ∈ R(D1/2R) such that

(xT z)2 ≥ 1− 16γφ2λi.

Proof. An application of Theorem 5.2.2 in combination with Theorem 5.3.1 to the
pair of graphs (A,B) gives λmax(B,A) ≤ 16γφ2. By Lemma 2.1.6 we have λmax(B,A) =
λmax(B̂, Â). Note thatN (RTD1/2) is an eigenspace of B̂ with eigenvalue 1. Then, apply-
ing Theorem 6.1.3 to (B̂, Â) gives

(xTy)2 ≤ λmax(B,A)λi ≤ 16γφ2λi

Note now that if y is the projection of x into N (RTD1/2) and z is its projection into
R(D1/2R), we have x = y + z, with yT z = 0. From this, we get ‖z‖2 = (xT z)2 and
‖y‖2 = (xTy)2. Since ‖z‖2 + ‖y‖2 = 1 the second claim follows. �

75

76

Chapter 7

Multigrid algorithms:
A combinatorial approach

The algorithms of Spielman and Teng [ST04], as well as our planar solver presented in
Chapter 4 are based on the recursive preconditioned Chebyshev algorithm. The choice
of the Chebyshev iteration over Richardson’s iteration is motivated by the much faster
convergence of the former with respect to the condition number of the system. Given the
superior properties of the Chebyshev iteration it seems that the analysis of the recursive
Richardson’s iteration could at best be left as an interesting exercise. We show that it is
much more.

Throughout this Chapter for all symmetric matrices B we will define B−1 to be any
matrix C that satisfies CBx = BCx = x for all x ∈ R(B). In Section 6.3 we undertook
an analysis of matrices that are involved in the two-level scheme; the Steiner graph S,
the quotient Q, and the preconditioner B, along with its normalization B̂+. However, to
analyze Richardson’s method preconditioned by B we need to understand the properties
of the matrix I −B−1A, which leads us to seek an expression for B−1. Using the notation
of Section 6.3, Gremban [Gre96] observed that if x and y satisfy

S

(
x
y

)
=

(
b
0

)
then x satisfies Bx = b. The Cholesky factorization of S gives(

D −V
−V T Q+DQ

)
=

(
I 0
−RT I

)(
D 0
0 Q

)(
I −R
0 I

)
⇒

(7.1)

77

(
D −V
−V T Q+DQ

)−1

=

(
I R
0 I

)(
D−1 0

0 Q−1

)(
I 0
RT I

)
(7.2)

Using the expression for the inverse of S we get that for all b we have

x = (D−1 +RQ−1RT)b.

Since for all b we have x = B−1b, we get

B−1 = D−1 +RQ−1RT .

We then observe that for the normalization B̂+ = D−1/2BD−1/2 we have

B̂−1
+ = D1/2B−1D1/2 = I +D1/2RQ−1RTD1/2.

The expression for the inverse of the normalized preconditioner comes strikingly close to
one of the fundamental operators in multigrid analysis, the two level operator, a form of
which we already have seen in equation 2.9: M = I − RprojectA

−1
n/2R

T
project. This obser-

vation, along with the fact that κ(A,B) = κ(Â, B̂+) where Â is the normalized Lapla-
cian, suggests a combinatorial approach for constructing as well for analyzing algebraic
multigrid for Laplacians; the construction of the second level graph is reduced to the con-
struction of a Steiner preconditioner, which makes the analysis of the two-level operator
amenable to support theory tools.

We obtain an exact characterization of the two-level error in terms of the condition
number κ(A,B). We show that for Steiner preconditioners that are constructed from edge
separators, a bounded κ(A,B) is not a sufficiently strong property to guarantee the con-
vergence of the multigrid V -cycle, precisely because of the tightness of the perturbation
bounds of Chapter 6. On the positive side, we use the progress in the analysis of the two-
level error to show that fast convergence is possible for more complicated multigrid cycles
for certain model problems, such as those we considered in Chapter 5. We then introduce
a stronger notion of graph approximation, the condition number κ(Â2, B̂2), where Â, B̂
are normalized versions of A,B, and we show that it guarantees convergence of the V-
cycle. Furthermore, driven by this new graph approximation measure, we propose Steiner
preconditioners that are based on vertex separators on a properly modified linear system,
and have the stronger condition number bounded at least in a local sense.

7.1 ResidualCorrection: A general framework

In this section we review general tools that will be helpful in the analysis of multigrid. Our
review is based on the presentation of [TSO00].

78

Our goal is to solve the linear system Ax = b, where A is a symmetric matrix. In
this section we will assume that we are given another symmetric matrix B−1, of which we
can think as an ”approximation” of A−1. We consider the following general iteration for
approximating the solution of the system.

ResidualCorrection(A,M, b, ν, x1) :=
r = b− Axm; xm+1 = xm +B−1r; m = 1, . . . , ν − 1.

This iteration obtains a new approximation by correcting the current iterate byB−1r where
r is the residual. When B = I the iteration is equivalent to Richardson’s iteration. Alter-
natively, if M = I −B−1A, we equivalently have

ResidualCorrection(A,M, b, ν, x1) :=
xm+1 = Mxm +B−1b; m = 1, . . . , ν − 1.

We will call M is the iteration operator. It can be seen that the effect of each iteration
on the error em is given by the following equation, which actually provides yet another
alternative definition.

ResidualCorrection(A,M, b, ν, x1) :=
em+1 = Mem; m = 1, . . . , ν − 1.

For the composition of instances of ResidualCorrection (RC for short), we have

RC(A,M, b, 1,RC(A,M, b, ν, x1)) = RC(A,Mν , b, 1, x1)

RC(A,M2, b, 1,RC(A,M1, b, 1, x1)) = RC(A,M2M1, b, 1, x1)

Note that if x1 = 0, we have x2 = (I −M)A−1b. Using the composition properties
of RC we also have xν+1 = (I −Mν)A−1b. When we know that x1 = 0, we will call
(I −Mν)A the approximate inverse of A. The rate of convergence of RC is characterized
by the spectral radius ρ(M) of M , which is the maximum over the absolute values of the
eigenvalues of M .

We conclude this Section with a Lemma useful for the calculation of the operator of a
given iteration.

Lemma 7.1.1. If an instance of RC is such that for all b the iteration satisfies x2 =
(I −M)A−1b when x1 = 0, the matrix M is the iteration operator.

Proof. LetM ′ be the iteration operator. By definition, we have e2 = M ′e1 for all error
vectors e1. When x1 = 0, we have e1 = A−1b. Since x2 = (I−M)A−1b for all b, we have
e2 = Me1 for all e1. Hence M ′ = M . �

79

7.1.1 Simple transformations are ResidualCorrection

Obviously a direct solver can be seen as RC with B = A. Let A = GTCG where G is an
invertible matrix. Let M be the iterator operator of an instance of RC for C. Consider the
following iteration for the solution of the system Ax = b.

xnew = G−1 ·RC(C,M,G−T b, 1, Gxold)

By definition, we know that there is matrix B−1 such that

xnew = G−1 ·RC(C,M,G−T b, 1, Gxold)

= xold +G−1B−1(G−T b− CGxold)
= xold +G−1B−1(G−T b−G−TAG−1Gxold)

= xold +G−1B−1G−T (b− Axold).

The last equality shows that the proposed iteration for A is also an instance of RC. Using
the properties of RC, it is not hard to see that if xold = 0, we have xnew = G−1(I −
M)C−1G−T b = (I − G−1MG)A−1b. By Lemma 7.1.1, the iteration operator is M ′ =
G−1MG. Since M ′ is a similarity transformation of M we have ρ(M ′) = ρ(M).

We now consider what we will call partial Cholesky expansion . Let

C = GT

(
A 0
0 D

)
G

where D is a diagonal matrix, G is invertible and A,C are positive definite. Assume that
we have a RC procedure for C, with iterator operator M , such that MC−1 is symmetric.
Let the dimensions of A,C be n and m respectively. Let Π be the m×n matrix which has
the n × n identity in its top left corner, and zero everywhere else. Note that ΠTΠ = In.
Consider the following iteration for the solution of the system Ax = b.

xnew = ΠTG ·RC(C,M,GTΠb, 1, G−1Πxold)

By definition, we know that there is matrix B−1 such that

xnew = ΠTG ·RC(C,M,GTΠb, 1, G−1Πxold)

= xold + ΠTGB−1(GTΠb− CG−1Πxold)

= xold + ΠTGB−1GTΠ(b− Axold).

80

The last equality shows that the proposed iteration for A is also an instance of RC. In the
case where xold = 0, we have

xnew = ΠTG(I −M)G−1

(
A−1 0

0 D−1

)
Πb

= ΠT Im

(
A−1b

0

)
− ΠTGMG−1

(
A−1b

0

)
= (I − ΠTGMG−1Π)A−1b

Hence, by Lemma 7.1.1 the operator for the proposed iteration is M ′ = ΠTGMG−1Π.
We have

M ′A−1 = ΠTGMC−1CG−1ΠA−1 = ΠTGMC−1GT

(
A 0
0 I

)
ΠA−1 = ΠTGMC−1GTΠ.

By assumptionMC−1 is symmetric, soM ′A−1 is symmetric. Using also the last equation,
we have

ρ(M ′) = max |λ(M ′A−1, A−1)| = max
x

∣∣∣∣xTM ′A−1x

xTA−1x

∣∣∣∣
= max

x

∣∣∣∣xTΠTGMC−1GTΠx

xTΠTGB−1GTΠx

∣∣∣∣
≤ max

y

∣∣∣∣yTMC−1y

yTC−1y

∣∣∣∣ = ρ(M).

7.2 The multigrid algorithm

Given the the system Ax = b the graph A = (V,E,w), our goal is to describe an instance
of RC with an iteration operator M and study the spectral radius of M .

7.2.1 The hierarchy of graphs

The algorithm will operate on a hierarchy of graph Laplacians H(A) = {Ai, Aoi , Si, Bi},
i = 1, . . . , r, where each two consecutive levels satisfy the following requirements:

1. The graph Aoi is constructed by substituting each edge e ∈ Eo ⊆ E by two edges of
weight 2w(e). Hence Aoi is a partial Cholesky expansion of Ai, where

Aoi = GT

(
Ai 0
0 D

)
G

81

for some diagonal D. We also let Π be the associated projection matrix defined in
section 7.1.1. In general Eo may be an empty set, in which case Aoi = Ai.

2. Si is a Steiner graph for Aoi , with a set of n + m vertices, n vertices corresponding
to the vertices of Aoi and m < n Steiner vertices. Bi is the Schur complement of Si
with respect to the elimination of the Steiner vertices.

3. The graph Ai+1 has m < n vertices, and Ai+1 = RTAoiR, where R is the n × m
restriction matrix. We call Ai+1 the quotient graph of Ai. We also require that
Ai+1 is the Schur complement of Aoi with respect to the elimination of the non-
Steiner vertices of Aoi and that B−1

i = D−1 + RA−1
i+1R

T where D is the diagonal of
Ai.

We will denote by µH the size reduction factor maxi |Ai|/|Ai+1|, and by τH = (4κ lnκ)1/2,
κH = maxi λmax(Ai, Bi) the hierarchy condition.

For any fixed i, we will use the following matrices and notation: D = 2diag(Aoi), the
normalized Laplacian Â = D−1/2AoiD

−1/2, the quotient Q = Ai+1, the normalized
preconditioner B̂+ with B̂−1

+ = 2I +D1/2RQ−1RTD1/2 and B̂−1 = D1/2RQ−1RTD1/2.
A key role in the multigrid analysis is played by the eigenvalue decomposition of B̂−1Â.

Lemma 7.2.1. The eigenvalues of I − B̂−1Â are
(i) 1, with corresponding eigenspace N (RTD1/2Â), and
(ii) 0, with corresponding eigenspaceR(D1/2R).

Proof. By the fundamental theorem of linear algebra,N (RTD1/2) andR(D1/2R) are
orthogonal and span Rn. That is, (q, u) = 0 whenever q ∈ R(D1/2R), and RTD1/2u = 0.
Equivalently, (q, Âu) = 0 whenever q ∈ R(D1/2R) and RTD1/2Âu = 0. This means
that R(D1/2R) and N (RTD1/2Â) are Â-orthogonal, and thus they also span Rn. Part (i),
holds by definition. For part (ii), let y = D1/2Rw. By using the algebraic definition of the
quotient we have

B̂−1Ây = D1/2RQ−1RTD1/2D−1/2AD−1/2D1/2Rw

= D1/2RQ−1RTARw

= D1/2Rw = y.

�

Corollary 7.2.2. The eigenvalues of I − Â1/2B̂−1Â1/2 are
(i) 1, with corresponding eigenspace N (RTD1/2Â1/2), and
(ii) 0, with corresponding eigenspaceR(Â1/2D1/2R).

82

7.2.2 The two-level scheme

We first state a two-level scheme.

MGk(Ai, b, x,H) :=
0. If i = r return x = A−1

i b;
1. Let b′ = GTΠb;
2. Return x = ΠTGMGo

k(Aoi , b
′, G−1Πx,H);

where,

MGo
k(Aoi , b, x,H) :=

1. Q = Ai+1 = RTAoiR;
D = 2diagonal(Ao);
Â = D−1/2AoiD

−1/2;
B̂−1 = D1/2RQ−1RTD1/2;

2. z = D1/2x;
3. Repeat t times z := (I − Â)z +D−1/2b;
4. r := D−1/2b− Âz;
5. z := z + B̂−1r;
6. Repeat t times z := (I − Â)z +D−1/2b;
7. Return x = D−1/2z.

The reader can think of t as a small function of the dimension of A. Steps 3 − 6 in
MGo

k solve the normalized system Âz = D−1/2b and consist of three different instances
of RC for Â. Steps 3 and 6 are Richardson’s iterations, while steps 3 − 4, implement a
step preconditioned with B̂. Steps 2 and 7 can be seen to be a simple change of variables,
as discussed in the previous section. Using the properties of composition of instances of
RC we can fully describe the iteration matrix of the two-level MGo

k.

M o
k,k+1 = D−1/2(I − Â)t(I − B̂−1Â)(I − Â)tD1/2. (7.3)

7.2.3 Recursion

Step 5 in the two level MGo
k is in general expensive, and the natural idea is to try recursion.

In particular, we will replace step 5 with

5. Let w = 0;
Repeat τ times w = MGk+1(Ak+1, R

TD1/2r, w,H);
z := z + cD1/2Rw;

83

Theorem 7.2.3. MGk and MGo
k are instances of RC with iteration operators Mk and

M o
k respectively, such that MkA

−1
k and M o

kA
o −1
k are symmetric, and ρ(Mk) ≤ ρ(M o

k).

Proof. We aim now to prove that MGk is an instance of RC, for which it is enough
to show that there is an iteration operator Mk. We use induction. The inductive hypothesis
is that (i) MGk+1 is an instance of RC, hence it has an iteration operator Mk+1, and (ii)
Mk+1A

−1
k+1 is symmetric. At level r of the recursion, we solve the system exactly and

thus Mr = 0. Consider now the two-level operator for MGo
k given in equation 7.3. The

key observation is that we do not have the exact inversion A−1
k+1R

TD1/2r, but rather the
approximate inverse, which by the inductive hypothesis is given by

(I −M τ
k+1)A

−1
k+1R

TD1/2r

Then, by substituting in equation 7.3 we have

M o
k = D−1/2(I − Â)t(I −D1/2R(I −M τ

k+1)A
−1
k+1R

TD1/2Â)(I − Â)tD1/2

= M o
k,k+1 +D−1/2(I − Â)tD1/2RM τ

k+1A
−1
k+1R

TD1/2Â(I − Â)tD1/2. (7.4)

We haveAo −1
k = D−1/2Â−1D−1/2. Using this and the inductive hypothesis thatMk+1A

−1
k+1,

it is easy to see that M o
kA

o −1
k is also symmetric. The definition of MGk is a partial

Cholesky expansion instance as described in section 7.1, hence it is an instance of RC
and it has an iteration operator Mk. Given that M o

kA
o −1
k is symmetric, the discussion in

section 7.1 shows directly that MkA
−1
k is also symmetric, and that ρ(Mk) ≤ ρ(M o

k). �

Remarks. When τ = 1 the algorithm is known as the V -cycle, and when τ = 2 as the
W -cycle. The V -cycle is quite interesting from a complexity perspective, for two reasons:
(i) The parallel complexity of the algorithm is O(r log n), (ii) More importantly, the total
work is at most O(tr|A|) where r is the number of levels. As we will see in more detail
later, for all other values of τ , the complexity of the algorithm is uncontrollable unless the
size of the graphs in the hierarchy decreases sufficiently fast. The need for this geometric
decrease is the major problem in the nearly-linear time algorithms of Spielman and Teng.

7.3 Multigrid convergence analysis

The complexity analysis of the recursive preconditioned Chebyshev method, presented in
Chapter 4, is based on a uniform upper bound on κ(Â, B̂+) for every two levels, along
with a sufficiently fast geometric decrease in the size of the graphs in the hierarchy. We

84

show that the weak uniform upper bound on κ(Â, B̂+) is not sufficient to guarantee fast
convergence of the V -cycle, in the sense that increasing the number of smoothings t, es-
sentially does not improve the effectiveness of the two-level algorithm. We will show that
the underlying reason is the tightness of the spectral perturbation bounds for of Chapter 6
for (Â, B̂+). This led us to seek stronger spectral inequalities between the subspaces of
(Â, B̂+). Such inequalities are implied by a strong uniform upper bound on κ(Â2, B̂2

+)

-which as we saw in Chapter 6 is not implied by the κ(Â, B̂+) bound. Indeed, we show
that a uniform κ(Â2, B̂2

+) bound guarantees the convergence of the V-cycle with only one
smoothing.

The presentation in this Section is inspired from the analysis in [McC84]. Analogues
of both the uniform κ(Â, B̂+) and κ(Â2, B̂2

+) bounds have been used in the multigrid
literature, for example the M1 and M2 measures in [BCF+00, CFH+03]. A variant of M2

was used in [McC84] to prove the optimal convergence of multigrid under the full elliptic
regularity assumption. Our contribution is the adjustment of known convergence results in
the context of our Steiner graph framework for multigrid.

7.3.1 Some Lemmas

Equation 7.4 expresses the iteration operator Mk as a sum of two terms, one related to the
two-level method and one recursive term. This along with the fact that ρ(Mk) ≤ ρ(M o

k),
enables the use of inductive arguments for the analysis of ρ(M o

k). In the following, to
simplify notation, we will denote M o

k by Mk.

To make our presentation easier for readers that are accustomed to thinking in terms
of the Euclidean norm we will deviate from the usual multigrid notation and analyze the
spectral norm of the symmetric matrix Â1/2D1/2MkD

−1/2Â−1/2. We note that, using the
symmetry of the involved matrices we have

ρ2(Â1/2D1/2MkD
−1/2Â−1/2) = ρ(Â−1/2D−1/2MkAMkD

−1/2Â−1/2)
= ρ(MkAMkA

−1) [by Lemma 2.1.4]
= ρ(A−1/2MkAMkA

−1/2) [by Lemma 2.1.4]
= maxx |x

TMkAMkx
xTAx

|
= ‖Mk‖2A .

Both the analysis with the weak and strong uniform assumptions require the analysis of
the recursive term.

Lemma 7.3.1. Let K = Â1/2D1/2RM τ
k+1A

−1
k+1R

TD1/2Â1/2.
We have ρ(K) ≤ ρ(M τ

k+1).

85

Let Z = Â1/2D1/2R, Âk = D
−1/2
k AkD

−1/2
k where Dk is the diagonal of Ak and M̃ τ

k =

Âk
1/2
D1/2M τ

kD
−1/2Âk

−1/2
. We have

ρ(K) = ρ
(
ZM τ

k+1A
−1
k+1Z

T
)

= ρ
(
M τ

k+1A
−1
k+1Z

TZ
)

[by Lemma 2.1.4]

= ρ
(
M τ

k+1D
−1/2
k+1 Â

−1
k+1D

−1/2
k+1 Z

TZ
)

= ρ
(
Â

1/2
k+1D

1/2
k+1M

τ
k+1D

−1/2
k+1 Â

−1/2
k+1 Â

−1/2
k+1 D

−1/2
k+1 Z

TZD
−1/2
k+1 Â

−1/2
k+1

)
[similarity]

= ρ
(
M̃ τ

k+1Â
−1/2
k+1 D

−1/2
k+1 Z

TZD
−1/2
k+1 Â

−1/2
k+1

)
≤ ρ

(
M τ

k+1

)
ρ
(
Â
−1/2
k+1 D

−1/2
k+1 Z

TZD
−1/2
k+1 Â

−1/2
k+1

)
[by Lemma 2.1.12]

= ρ
(
M τ

k+1

)
ρ
(
ZD

−1/2
k+1 Â

−1
k+1D

−1/2
k+1 Z

T
)

[by Lemma 2.1.4]

= ρ(M τ
k+1)ρ

(
B̂−1Â

)
[by Lemma 2.1.4]

= ρ(M τ
k+1). [by Lemma 7.2.1]

7.3.2 κ(Â, B̂+)-convergence

We let

M̃k = Â1/2D1/2MkD
−1/2Â−1/2

˜Mk,k+1 = Â1/2D1/2Mk,k+1D
−1/2Â−1/2

S = I − Â1/2B̂−1Â1/2

and K be as defined in Lemma 7.3.1. We start with a recursive characterization of ρ(Mk).

Theorem 7.3.2. ρ(Mk) ≤ ρ(Mk,k+1) + (1− ρ(Mk,k+1))ρ(Mk+1)
τ .

Proof. We wish to bound ρ(Mk) = ρ(M̃k). Let xt denote (I − Â)tx. We have

ρ(M̃k) = max
‖x‖2=1

(
xTt Sxt + xTt Kxt

)
Note that, by Lemma 7.2.2 we have N (K) = N⊥(S). Hence if xTt Sxt = a, xTt Kxt ≤
(1− a)ρ(K). By Lemma 7.3.1 we have ρ(K) < ρ(Mk+1) < 1, hence

ρ(M̃k) ≤ ρ(Mk,k+1) + (1− ρ(Mk,k+1))ρ(Mk+1)
τ .

86

�

To characterize the two-level convergence we use the M1-measure of [BCF+00].

Lemma 7.3.3. Let Π be any projection matrix onto R(D1/2R). Assume that for all
x 6= 0, we have

M1(Π, x) =
xT (I − Π)2x

xT Âx
≤M.

Then,

ρ((I − Â)S(I − Â)) =
∥∥∥(I − Â)(I − B̂−1Â)(I − Â)

∥∥∥
Â
≤ 1− 1/M

Proof. In [BCF+00] it was shown that∥∥∥(I − Â)(I − B̂−1Â)
∥∥∥
Â
≤ (1− 1/M)1/2

assuming that
∥∥∥Â∥∥∥ = 1 as it is the case in our setting. It can be shown [McC84] that∥∥∥(I − Â)(I − B̂−1Â)

∥∥∥
Â

=
∥∥∥(I − Â)(I − B̂−1Â)(I − Â)

∥∥∥1/2

Â

�

Corollary 7.3.4. We have ρ(Mk,k+1) ≤ 1− 1/(2λmax(B̂+, Â)).

Proof. For all x we have

M1(Π, x) =
xT (I − Π)2x

xT Âx
≤ λmax(B̂+, Â)

xT (I − Π)2x

xT B̂+x

Recall that B̂+ is the Schur complement of the Steiner graph with respect to the elimination
of the internal vertices and it is of the form B̂+ = (I−X)/2 whereN (X) = N (RTD1/2)
and X is positive. Since B̂+ is positive we must have λmax(X) ≤ 1. By combining these
facts we get

xT B̂+x =
1

2

(
xT (I − Π)2x+ xTΠ2x− xTΠXΠx

)
≥ 1

2
(xT (I − Π)2x).

Hence M1(Π, x) ≤ 2λmax(B̂+, Â) and the proof follows from Lemma 7.3.3. �

We are now ready to give the analogue of the convergence Theorem 4.1.1 for multigrid.

87

Theorem 7.3.5. LetH(A) be a hierarchy of graphs with condition τH and size reduction
factor µH. If we take t = 1 and τ = τH in the statement of the multigrid algorithm, we
have ρ(Mk) ≤ 1− 1/κ, where κ = 2 maxi λ(Bi, Ai). If in addition the hierarchy satisfies

τ 2
H/µH = (hierarchy condition)2/(size reduction factor) < 1/2

the complexity of MG(A, b, x,H(A)) is O(τ |A|).

Proof. We use induction on k. By Lemma 7.3.4 we know that ρ(Mk,k+1) < 1−1/κ for
some fixed κ. Assume inductively that ρ(Mk+1) < 1− 1/(2κ). Then, taking τ = 4κ lnκ
gives (1 − ρ(Mk,k+1))ρ(Mk+1)

τ ≤ 1/(2κ) and ρ(Mk) < 1 − 1/(2κ). The complexity
statement follows by an easy inductive argument similar to that of the proof of Theorem
4.1.1. �

Remark 1. Note that the definition of hierarchy condition is roughly similar to that in
Chapter 4. Comparing then Theorems 7.3.5 and 4.1.1, highlights the difference of the two
approaches in terms of the condition versus size reduction requirements.

Remark 2. Recall that that one run of MG reduces theA-norm of the error by a factor
of ρ(Mk). According to our discussion in Section 7.1, if ρ(Mk) < 1 − 1/(2k), roughly
2k ln ε−1 repetitions of MG are required to make reduce the A-norm of the error by a
factor of ε.

7.3.3 When and why κ(Â, B̂+) is not sufficient

Let us for the sake of simplicity assume that κ(Â, B̂+) is a constant. Consider the two
level operator

M̃k = (I − Â)t(I − Â1/2B̂−1Â1/2)(I − Â)t.

We have ρ(M̃k) = maxx x
TM̃kx > xT2 M̃kx2 where x2 is the first non-trivial eigenvector

of A, normalized to have unit norm. Provided that λ2 is small, the effect of (I − Â)t is
negligible for any reasonably small value of t, and thus we have

xT2 M̃kx2 ' xT2 (I − Â1/2B̂−1Â1/2)x2 = max
z∈N (RTD1/2Â1/2)

(
xT2 z

zT z
)2

where the last equality follows from Lemma 7.2.2. Let z = Â−1/2w wherew is an arbitrary
unit norm in N (RTD1/2) and thus an eigenvector of B̂+ with eigenvalue 1/2. We have

zT z = wT Â−1w =
wT Â−1w

wT B̂−1
+ w

(wT B̂−1
+ w) ≤ 2λmin(Â−1, B̂−1

+) = O(1).

88

On the other hand,
xT2 z = λ

−1/2
2 (xT2w)

and Theorem 6.1.3 guarantees only that xT2w ≤ O(λ
1/2
2). If this bound is asymptotically

matched by a lower bound, we get that (xT2 z)/(zT z) is lower bounded by a constant for
any reasonably small value of t.

Not surprisingly, to give a more specific example we will use the graphs (A,B) defined
in Section 6.2.1 and used to show the optimality of Theorem 6.1.3. Recall that the Steiner
graph S of the cycle graph A is constructed by grouping consecutive vertices of A into
n/2 disjoint groups. It is easy to verify that the quotient graph Q is the Schur complement
of A with respect to the elimination of the non-Steiner vertices and Q = RTAR, where R
is the restiction/indicator matrix for the partitioning of the vertices. It can be seen then that
the matrices satisfy all the two-level requirements for the hierarchy. By using the analytic
expressions for the eigenvectors and eigenvalues of Â, B̂+ we get

xT2 M̃kx2 ≥
1

2
(1− 2/n2)2t.

So, increasing the number of smoothings t, essentially does not affect the two-level con-
vergence quality.

It seems that a better two-level convergence requires a spectral inequality stronger than
that provided by Theorem 6.1.3 when κ(Â, B̂+) is bounded. It is not hard to see that the
same theorem provides stronger inequalities when κ(Â2, B̂2

+) is bounded. Indeed, it can be
shown that if κ(Â2, B̂2

+) is bounded, increasing the number of smoothings to t, decreases
the spectral radius roughly by a factor of t. This can be used to give a convergence bound
on the basis of Theorem 7.3.2, by adjusting properly the size of t and making the two-
level error sufficiently small. In the following Section we use ideas from [McC84] to
show that a bound on κ(Â2, B̂2

+) actually implies a stronger two-level condition that leads
to convergence with just t = 1 smoothing.

Remark. In Section 6.2.3 we mention that it is open whether the optimality bounds
are optimal for the full range of the spectrum of the normalized Laplacian. If it is not,
then the argument of this section might be an indication that the V-cycle has stronger error
reduction properties for the very low frequency components of the error.

7.3.4 κ(Â2, B̂2
+)-convergence

We start by showing that a multiplicative bound on the Rayleigh quotients for (Â2, B̂2
+)

implies an additive bound on the Rayleigh quotients for (Â−1, B̂−1). Concretely, we have

89

Lemma 7.3.6. ρ(Â−1 − B̂−1) ≤ 2λ
1/2
max(B̂2

+, Â
2)(2 + λ

1/2
max(Â2, B̂2

+)).

Proof. Let M = Â−1 − B̂−1. We note that ρ(M) = λ
1/2
max(M2). We concentrate on

λ(M2). We have

ρ(M2) = ρ
(

(Â−1 − B̂−1)2
)

= ρ
(

(I − B̂−1Â)Â−2(I − ÂB̂−1)
)

≤ λmax(Â−2, B̂−2
+)ρ

(
(I − B̂−1Â)B̂−2

+ (I − ÂB̂−1)
)

Recall that B̂−2
+ = 4(I + B̂−1)2 = 4(I + 2B̂−1 + B̂−2). By Lemma 7.2.1, the null

space of the matrix I − B̂−1A is R(D1/2R). Notice in addition that for all vectors y,
B̂−1y ∈ R(D1/2R). Hence (I − B̂−1A)B̂−1 = 0 and

ρ(M2) ≤ 4λmax(Â−2, B̂−2
+)ρ

(
(I − B̂−1Â)(I − ÂB̂−1)

)
= 4λmax(Â−2, B̂−2

+)σ2
max

(
I − B̂−1Â

)
Using the fact that I − B̂−1Â = I − B̂−1

+ Â− Â, we have

σmax(I − B̂−1Â) ≤ 1 + σmax(Â) + σmax(B̂−1
+ Â) ≤ 2 + λ1/2

max(Â2, B̂2
+).

Using Lemma 2.1.6 completes the proof. �

The rest of this section follows ideas from [McC84].

Corollary 7.3.7. Let T be the projection matrix ontoN (RTD1/2Â1/2) and S = I−T , be
the projection matrix ontoR(Â1/2D1/2R). Let x be an arbitrary vector and x̄ = (I− Â)x.
We have

‖x̄‖2 ≤ α ‖Tx‖2 + ‖Sx‖2 (7.5)

where α = 1− 1/
(

2λ
1/2
max(B̂2

+, Â
2)(2 + λ

1/2
max(Â2, B̂2

+))
)

.

Proof. Using the fact that for all x we have ‖x‖2 = ‖Tx‖2 + ‖Sx‖2, equation 7.5
holds if and only if ‖x‖2 − ‖x̄‖2 ≥ (1− α) ‖Tx‖2. From this we get

a = 1− inf
x

‖x‖2 − ‖x̄‖2

‖Tx‖2
.

90

By Lemma 7.2.2, we have T 2 = T = I − Â1/2B̂−1Â1/2. We also have

‖x‖2 − ‖x̄‖2 = xTx− xT (I − Â)2x = xT (I − (I − Â)2)x = xT (2Â− Â2)x ≥ xT Âx.

Combining the above and using Lemma 2.1.6, we have

‖x‖2 − ‖x̄‖2

‖Tx‖2
≥ xT Âx

xT (I − Â1/2B̂−1Â1/2)x

≥ λmin(Â, I − Â1/2B̂−1Â1/2) = λmin(I, Â−1 − B̂−1)

The proof is completed by invoking Lemma 7.3.6. �

We conclude this section with a characterization of the convergence of the full V -cycle.

Theorem 7.3.8. Let Mk be as defined in equation 7.4, with t = τ = 1. We have
ρ2(Mk) ≤ α where α is the constant in Corollary 7.3.7.

Proof. Let M̃k = Â1/2D1/2MkD
−1/2Â−1/2. We have ρ(Mk) = ρ(M̃k), by the similar-

ity transformation. Assume for induction that ρ2(Mk−1) ≤ α. Let T = I − Â1/2B̂−1Â1/2

and K = Â1/2D1/2RMk+1A
−1
k+1R

TD1/2Â1/2. Note that K is symmetric, T 2 = T, TK =
0, ST = 0 and SK = KS = K. Using these facts and applying Corollary 7.3.7, we have

ρ2(M̃k) = max
‖x‖=1

∥∥∥M̃kx
∥∥∥2

≤
∥∥∥(I − Â)(T +K)x

∥∥∥2

≤ α ‖Tx‖2 + ‖Kx‖2

= α ‖Tx‖2 + ‖K‖2 ‖Sx‖2

= α ‖Tx‖2 + ρ2(Mk−1) ‖Sx‖2

≤ α(‖Tx‖2 + ‖Sx‖2) = α.

�

7.4 Multigrid based on edge separators

The discussion in this Section requires an understanding of the constructions in Section
5.3, and generalizes the construction we considered in the beginning of this Chapter. We

91

are concerned with multigrid schemes constructed from Steiner graphs based on edge
separators, such as those constructed and discussed in Chapter 5. An example for the line
graph is depicted in Figure 7.1.

1

2 2 22 22

1 1 1 1

2 2

.............

1 1 1 1

1 1.............

1

Figure 7.1: Multigrid based on edge separators.

Consider a laminar decomposition H = {H1, . . . , Hd} of a given graph A, where Hd

contains the vertices of A as singletons. Recall that by definition, the sets of the ith level
of the decomposition, are grouped into sets in its (i− 1)th level. We construct the Steiner
graph S by taking the laminar Steiner tree described in Section 5.2, removing its vertices
corresponding to sets contained in the decompositions above the lth level, and connecting
the roots of the remaining trees to form the quotient graph Q. Let Ri−1

i be the matrix with
rows corresponding to sets in Hi and columns corresponding to the sets in Hi−1. For all
j, k we defineRi−1

i (j, k) = 0, unless the jth set ofHi is contained in the kth set ofHi−1, in
which case we letRi−1

i (j, k) = 1. IfR = Rd−1
d Rd−2

d−1 . . . R
l
l+1. By an inductive argument, It

can be seen thatQ = RTAR. It can be also verified that the Schur complementB of S with
respect to the elimination of the non-Steiner vertices, satisfies B−1 = D−1 + RQ−1RT .
Thus the definition of the Steiner graph satisfies the requirements set in Section 7.2.1 for
the two-level operators.

We give two concrete examples for model meshes. In the 1D-case, the line graph, the
hierarchy of preconditioners described in Section 5.3 has condition O((k log k)1/2) and
reduction factor k. These values do not satisfy the requirements of Theorem 7.3.5. Thus
we cannot hope that multigrid based on edge separators can work in the general case.
However, for the 2D-case, the square grid, the hierarchy has condition O((k log k)1/2) and
reduction factor k2. Hence for a large enough constant k it satisfies the requirements of
Theorem 7.3.5. The relationship between the hierarchy condition and the reduction factor
becomes more favorable for grids on higher dimensions.

From a practical point of view, for given 2D or 3D instances one should examine the
possibility of using Steiner preconditioners in combination with multigrid, before resorting
to the Chebyshev method which has more relaxed requirements but in general requires

92

more recursive calls and has higher space and time complexity that the two Richardson’s
iterations required (per visit) on each level of the hierarchy.

7.5 Multigrid based on vertex separators

In the algebraic multigrid terminology, disjoint clusterings of the variables are known
as ”aggregates” corresponding to ”supernodes” in the second level graph. The fact that
the V-cycle -with the simple 0 − 1 restriction operators R considered in the previous
section- does not converge has led to multigrid algorithms based on ”smoothed aggre-
gation”. In those algorithms the restriction (or prolongator) R is ”tentative” and the final
restriction/prolongator operator is constructed by applying a smoothing operator S to R.
If A is the given matrix, the second level matrix Q is constructed as Q = (SR)TA(SR),
which in general may have more edges than A [VBM01].

The usual AMG approach consists of the following steps: (i) the choice of a subset
of the variables that form the second level graph often called the ”coarse” grid (ii) the
assignment of each ”fine” grid point to a small number of coarse grid points to which
they depend strongly, (iii) the choice of interpolation/projection operators that transform
vectors in the coarse space to vectors in the fine space, and vice-versa. In general, the
algorithms for performing these steps are mostly based in heuristics whose computational
costs ”cannot be predicted precisely” [Bra86, BHM00].

Although the AMG heuristics are commonly viewed as a selection of coarse variables
whose values are kept by the restriction/interpolation operators between the fine and the
coarse grid, it can be also viewed as an partition of the fine grid vertices to overlapping
clusters of vertices. This motivates us to consider multigrid derived from Steiner graphs
based on vertex separators, or disjoint clusters of strongly dependent edges, that is ex-
panders. The simple Steiner preconditioner for the line is shown in Figure 7.2.

1

1 1 1 1
.............

1 1

1 1 1 122 1 2 1 1 2

Figure 7.2: Multigrid based on vertex separators.

We now formally describe the two-level operators based on disjoint clusters of edges,
such that the graph induced by each cluster is an expander. Let P be a [φ, ρ]-decomposition

93

of a given graph C = (V,E,w) into disjoint sets Vi, i = 1, . . . ,m, as defined in Section
5.5. We define the graph A, by replacing every edge e of C with two edges, each having
weight 2w(e). We construct a Steiner preconditioner for A.

The separator P defines a vertex separator P ′ that disconnects the edge set of A into
disjoint sets Ei. LetAi be the graph induced by the edges in Ei. Also, let φ = maxi φ(Ai),
where φ(Ai) denotes the conductance of Ai. Let Si be the star graph with leaves corre-
sponding to the vertices of Ai. We let the Steiner graph S be S =

∑m
i=1 Si. Note that S

is a bipartite graph, with edges joining only Steiner with non-Steiner vertices. If Bi is the
Schur complement of Si with respect to the elimination of the cener vertex, the precondi-
tioner is given by B =

∑m
i=1Bi. The quotient graph Q of S after the elimination of the

non-Steiner vertices consists of m vertices, each corresponding to a set in the partition P ,
and Qij = cap(Vi, Vj). This can be verified algebraically, or by using the electric analogy
and the fact that between the roots of Si and Sj we have a set of resistors connected in
parallel. Note that every vertex of A belongs to either one or two subgraphs Ai. We define
the n×m restriction matrix R as follows: (i) if vertex i belongs to Ai only, R(i, j) = 1,
(ii) if vertex i belongs to Aj and Ak, R(i, j) = 1/2 and R(i, k) = 1/2, (iii) if vertex i does
not touch Aj , R(i, j) = 0. If D is the diagonal matrix with the vertex volumes in A and
DS is the diagonal matrix with the volumes of the centers of the stars, we have

S =

(
D −DR

−RTD DS

)
The partial Cholesky factorization LDLT of the non-Steiner vertices of S gives

S =

(
I 0
−RT I

)(
D 0
0 Q

)(
I −R
0 I

)
.

Repeating the derivation of equation 7.1 shows that B−1 = D−1 + RQ−1RT . Viewing A
as an electrical network, the jth column of AR is the vector of the residual flows when the
voltages are set to 1 on the interior vertices of Aj , to 1/2 on its boundary vertices and to 0
on the remaining vertices. Using this it can be seen that we have

Q = RTAR. (7.6)

Thus the definition of the Steiner graph satisfies the requirements set in Section 7.2.1 for
the two-level operators.

The preconditioners of this section are markedly different than those considered in
Section 7.4. It can be seen that we have Â =

∑
i Âi =

∑
iD
−1/2
i AiD

−1/2
i and B̂+ =∑

i B̂i =
∑

iD
−1/2
i BiD

−1/2
i , where Ai, Bi are expanders on the same set of vertices, with

94

(up to a factor of 2) equal vertex volumes, contained in Di. This implies that for all i,
κ(Âi

2
, B̂i

2
) = O(φ4). This can be shown by using the Cheeger inequality as in the proof

of Theorem 5.3.1. Although this does not imply that κ(Â2, B̂2
+) is bounded, it may be a

first step towards a better understanding of the success and the limitations of the V -cycle.
In future research we intend to explore the theoretical and practical potential of multigrid
based on vertex separators, constructed from [φ, ρ]-decompositions.

95

96

Bibliography

[AHK04] Sanjeev Arora, Elad Hazan, and Satyen Kale. O(
√

(log n)) approximation
to SPARSEST CUT in O(ñ2) time. In FOCS, 45th Symposium on Founda-
tions of Computer Science (FOCS 2004), pages 238–247, 2004. 2.2.1

[AKPW95] Noga Alon, Richard Karp, David Peleg, and Douglas West. A graph-
theoretic game and its application to the k-server problem. SIAM J. Comput.,
24(1):78–100, 1995. 2.4.5

[ARV04] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geo-
metric embeddings and graph partitioning. In STOC ’04: Proceedings of
the 36th Annual ACM Symposium on Theory of Computing, pages 222–231,
2004. 2.2.1

[AS00] Noga Alon and Joel H. Spencer. The Probabilistic Method. John Wiley and
Sons, inc, 2000. 2.2.1

[Axe94] Owe Axelsson. Iterative Solution Methods. Cambridge University Press,
New York, NY, 1994. 2.4.3, 2.4.4

[BCF+00] M. Brezina, A. J. Clerly, R.D. Falgout, V. E. Henson, J.E. Jones, T. A.
Manteuffel, S. F. McCormick, and J. W. Ruge. Algebraic multigrid based
on element interpolation (AMGe). SIAM Journal on Scientific Computing,
22(5):1570–1592, 2000. 7.3, 7.3.2, 7.3.2

[BD90] Jesse Barlow and James Demmel. Computing accurate eigensystems of
scaled diagonally dominant matrices. SIAM Journal on Numerical Analy-
sis, 27(3):762–791, 1990. 6.1.1

[BGH+06] Marshall Bern, John R. Gilbert, Bruce Hendrickson, Nhat Nguyen, and
Sivan Toledo. Support-graph preconditioners. SIAM J. Matrix Anal. Appl.,
4:930–951, 2006. 2.4.5

97

[BH03] Erik G. Boman and Bruce Hendrickson. Support theory for preconditioning.
SIAM J. Matrix Anal. Appl., 25(3):694–717, 2003. 2.1, 2.4.5, 5

[Bha97] Rajendra Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997. 2.1,
2.1

[BHM00] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A multi-
grid tutorial: second edition. Society for Industrial and Applied Mathemat-
ics, 2000. 2.4.2, 2.4.2, 7.5

[BHV04] Erik G. Boman, Bruce Hendrickson, and Stephen A. Vavasis. Solving ellip-
tic finite element systems in near-linear time with support preconditioners.
CoRR, cs.NA/0407022, 2004. 1

[Big94] Norman Biggs. Algebraic Graph Theory. Cambdridge University Press,
1994. 2.2.3, 6.2.2

[BKR03] Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A practical
algorithm for constructing oblivious routing schemes. In Proceedings of
the Fifteenth Annual ACM Symposium on Parallel Algorithms, pages 24–33,
2003. 2.4.5, 5.2, 5.4, 5.4.1

[BMM99] Claudson F. Bornstein, Bruce M. Maggs, and Gary L. Miller. Tradeoffs
between parallelism and fill in nested dissection. In SPAA, pages 191–200,
1999. 2.3.4

[BMMR97] Claudson F. Bornstein, Bruce M. Maggs, Gary L. Miller, and R. Ravi. Paral-
lelizing elimination orders with linear fill. In FOCS, pages 274–283, 1997.
2.3.4

[BMR84] A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid (AMG) for
sparse matrix equations. In D. J. Evans, editor, Sparsity and Its Applications.
Cambridge University Press, Cambridge, 1984. 2.4.2

[Bra77] A. Brandt. Multi–level adaptive techniques (MLAT) for partial differential
equations: ideas and software. In J. R. Rice, editor, Mathematical Software
III, pages 277–318. Academic Press, New York, 1977. 2.4.2

[Bra86] A. Brandt. Algebraic multigrid theory: The symmetric case. Appl. Math.
Comput., 19:23–56, 1986. 2.4.2, 7.5

[Bra93] James H. Bramble. Multigrid Methods. Chapman and Hall, 1993. 2.4.2

98

[CDS98] D.M Cvetkovic, M. Doob, and H. Sachs. Spectra of Graphs. Johann Am-
brocious Barch, 1998. 2.2.3

[CFH+00] Andy Cleary, Rob Falgout, Van Emden Henson, Jim Jones, Tom Manteuf-
fel, Steve McCormick, Jerry Miranda, and John Ruge. Robustness and
scalability of algebraic multigrid. SIAM Journal of Scientific Computing,
21(5):1886–1908, 2000. 2.4.2

[CFH+03] T. Chartier, R. D. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. Mc-
Cormick, J. Ruge, and P. S. Vassilevski. Spectral AMGe (ρAMGe). SIAM J.
Sci. Comput., 25(1):1–26, 2003. 7.3

[Che01] Doron Chen. Analysis, implementation, and evaluation of Vaidya’s pre-
conditioners. Master’s thesis, School of Mathematical Sciences, Tel-Aviv
University, 2001. 2.3.4, 2.4.5

[Chu97] F.R.K. Chung. Spectral Graph Theory, volume 92 of Regional Conference
Series in Mathematics. American Mathematical Society, 1997. 2.2.1, 2.2.3

[Chu07] Fan Chung. Random walks and local cuts in graphs. Linear Algebra and its
applications, 423(1):22–32, 2007. 5.2

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arith-
metic progressions. Journal Symbolic Comp., 9(3):251–280, March 1990.
2.3.5

[Dem97] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997. 2.3.5

[DR83] Iain Duff and John Reid. The multifrontal solution of indefinite sparse sym-
metric linear systems. ACM Trans. Math. Softw., 9:302–325, 1983. 2.3.4

[DS00] Peter G. Doyle and J. Laurie Snell. Random walks and electric networks,
2000. 2.2.3

[Duf74] Iain Duff. On the number of nonzeros added when Gaussian elimination
is performed on sparse random matrices. Math. Comp., 28:219–230, 1974.
2.3.4

[EEST05] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng.
Lower-stretch spanning trees. In Proceedings of the 37th Annual ACM Sym-
posium on Theory of Computing, pages 494–503, 2005. 2.2.1, 2.4.5, 4, 4.2

99

[EI95] Stanley C. Eisenstat and Ilse C. F. Ipsen. Relative perturbation techniques for
singular value problems. SIAM Journal on Numerical Analysis, (6):1972–
1988, 1995. 6.1.1

[EMT93] David Eppstein, Gary L. Miller, and Shang-Hua Teng. A deterministic linear
time algorithm for geometric separators and its applications. In Symposium
on Computational Geometry, pages 99–108, 1993. 2.3.4

[Fed64] R. P. Fedorenko. The speed of convergence of one iterative process. Z.
Vycisl. Mat. i. Mat. Fiz., 4:559–563, 1964. Also in U.S.S.R. Comput. Math.
and Math. Phys., 4 (1964), pp. 227–235. 2.4.2

[Fie73] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J.,
23(98):298–305, 1973. 2.2.3

[FPS05] Francois Fouss, Alain Pirotte, and Marco Saerens. A novel way of comput-
ing similarities between nodes of a graph, with application to collaborative
recommendation. In ACM International Conference on Web Intelligence,
pages 550–556, 2005. 1

[Fre87] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs,
with applications. SIAM J. Comput., 16(6):1004–1022, 1987. 2.2.2, 3, 3.6

[Geo73] Alan George. Nested dissection of a regular finite element mesh. SIAM
Journal on Numerical Analysis, 10:345–363, 1973. 2.3.4

[GGKK94] Ananth Grama, Anshul Gupta, Vipin Kumar, and George Karypis. Intro-
duction to Parallel Computing: Design and Analysis of Algorithms. Ben-
jamin/Cummings Publishing Company, Redwood City, CA, 1994. 2.3.4

[GHT84] John R. Gilbert, Joan P. Hutchinson, and Robert Endre Tarjan. A separator
theorem for graphs of bounded genus. J. Algorithms, 5(3):391–407, 1984.
2.2.2, 2.3.4

[GL96] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, 3d edition, 1996. 2.3.2

[GM87] Hillel Gazit and Gary L. Miller. A parallel algorithm for finding a separator
in planar graphs. In 28th Annual Symposium on Foundations of Computer
Science, pages 238–248, 1987. 2.2.2, 3, 3

100

[GM95] Stephen Guattery and Gary L. Miller. On the performance of spectral graph
partitioning methods. In SODA, pages 233–242, 1995. 2.2.1

[GM98] Stephen Guattery and Gary L. Miller. On the quality of spectral separators.
SIAM J. of Matrix Analysis and Applications, 19(3):701–719, July 1998.
2.2.1

[Goo95] Michael T. Goodrich. Planar separators and parallel polygon triangulation.
J. Comput. Syst. Sci., 51(3):374–389, 1995. 2.2.2

[Gra06] Leo Grady. Random walks for image segmentation. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 2(11):1768–1783, 2006. 1

[Gre96] Keith Gremban. Combinatorial Preconditioners for Sparse, Symmetric, Di-
agonally Dominant Linear Systems. PhD thesis, Carnegie Mellon University,
Pittsburgh, October 1996. CMU CS Tech Report CMU-CS-96-123. 2.4.5,
4, 4.2.3, 5, 5.3, 7

[GT87] John R. Gilbert and Robert E. Tarjan. The analysis of a nested dissection
algorithm. Numerische Mathematik, 50(4):377–404, 1987. 2.3.4

[Hac78] W. Hackbusch. On the multigrid method applied to difference equations.
Computing, 20:291–306, 1978. 2.4.2

[HJ85] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge Uni-
versity Press, 1985. 2.1

[HJ91] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cam-
bridge University Press, Cambridge, 1991. 2.1

[HL95] B. Hendrickson and R. Leland. An improved spectral graph partitioning
algorithm for mapping parallel computations, 1995. 2.2.1

[Jos97] Anil Joshi. Topics in Optimization and Sparse Linear Systems. PhD thesis,
University of Illinois at Urbana Champaing, 1997. 2.4.5

[Kel04] Jonathan A. Kelner. Spectral partitioning, eigenvalue bounds, and circle
packings for graphs of bounded genus. In STOC ’04: Proceedings of the
thirty-sixth annual ACM symposium on Theory of computing, pages 455–
464, New York, NY, USA, 2004. ACM Press. 2.2.2

101

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392,
1998. 2.2.1

[Kle93] Philip N. Klein. On Gazit and Miller’s parallel algorithm for planar separa-
tors: Achieving greater efficiency through random sampling. In SPAA, pages
43–49, 1993. 4.2.2

[KRV06] Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning using
single commodity flows. In STOC ’06: Proceedings of the thirty-eighth an-
nual ACM symposium on Theory of computing, pages 385–390, New York,
NY, USA, 2006. ACM Press. 2.2.1

[KST01] Marcos A. Kiwi, Daniel A. Spielman, and Shang-Hua Teng. Min-max-
boundary domain decomposition. Theor. Comput. Sci., 261(2):253–266,
2001. 2.2.2, 3

[KVV04] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good,
bad and spectral. J. ACM, 51(3):497–515, 2004. 5.5

[Li98] Ren-Cang Li. Relative perturbation theory: I. eigenvalue and singular value
variations. SIAM Journal on Matrix Analysis and Applications, 19(4):956–
982, 1998. 6.1.1

[Li99] Ren-Cang Li. Relative perturbation theory: II. eigenvalue and singular value
variations. SIAM Journal on Matrix Analysis and Applications, 20(2):471–
492, 1999. 6.1.1

[Lov93] László Lovász. Random walks on graphs: A survey. Combinatorics., Paul
Erdős is Eighty (2):1–46, 1993. 2.2.3

[LR99] Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-
cut theorems and their use in designing approximation algorithms. J. ACM,
46(6):787–832, 1999. 2.2.1

[LRT79] R.J. Lipton, D. Rose, and R.E. Tarjan. Generalized nested dissection. SIAM
Journal of Numerical Analysis, 16:346–358, 1979. 2.3.4, 4.2.3

[LT79] R. J. Lipton and R. E. Tarjan. A planar separator theorem. SIAM Journal of
Applied Mathematics, 36(2):177–189, April 1979. 2.2.2, 2.3.4, 3.1

102

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM J. Comput., 15(4):1036–1053, 1986. 3.3

[McC84] S. F. McCormick. Multigrid methods for variational problems: further re-
sults. SIAM J. Numer. Anal., 21:255–263, 1984. 7.3, 7.3.2, 7.3.3, 7.3.4

[Mil86a] Gary L. Miller. Finding small simple cycle separators for 2-connected planar
graphs. J. Comput. Syst. Sci., 32(3):265–279, 1986. 2.2.2

[Mil86b] Gary L. Miller. Finding small simple cycle separators for 2-connected planar
graphs. Journal of Computer and System Sciences, 32(3):265–279, June
1986. invited publication. 3.1, 3.5

[MMP+05] Bruce M. Maggs, Gary L. Miller, Ojas Parekh, R. Ravi, and Shan Le-
ung Maverick Woo. Finding effective support-tree preconditioners. In Pro-
ceedings of the 17th Annual ACM Symposium on Parallel Algorithms, pages
176–185, 2005. 2.4.5, 4.2.3, 5, 5.2, 5.3, 5.4, 5.4.2

[Moh99] Bojan Mohar. A linear time algorithm for embedding graphs in an arbitrary
surface. SIAM J. Discrete Math., 12(1):6–26, 1999. 2.2.2

[MR04] Gary L. Miller and Peter C. Richter. Lower bounds for graph embeddings
and combinatorial preconditioners. In Proceedings of the sixteenth Annual
ACM Symposium on Parallel Algorithms, pages 112–119, 2004. 2.4.5, 4.2.3

[MV98] Roy Mathias and Krešimir Veselić. A relative perturbation bound for positive
definite matrices. Linear Algebra and its applications, 270:315–321, 1998.
6, 6.1.1, 6.1.2, 6.1.2

[Nic78] R. A. Nicolaides. On the observed rate of convergence of an iterative method
applied to a model elliptic difference equation. Math. Comp., 32:127–133,
1978. 2.4.2

[NJW01] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm, 2001. 1

[NSS98] Assaf Natanzon, Ron Shamir, and Roded Sharan. A polynomial approxima-
tion algorithm for the minimum fill-in problem. In STOC ’98: Proceedings
of the thirtieth annual ACM symposium on Theory of computing, pages 41–
47, New York, NY, USA, 1998. ACM Press. 2.3.4

103

[Pap94] Christos Papadimitriou. Computational Complexity. Addison-Wesley, Read-
ing, MA, 1994. 3

[PR93] Victor Y. Pan and John H. Reif. Fast and efficient parallel solution of sparse
linear systems. SIAM J. Comput., 22(6):1227–1250, 1993. 4.2.2

[PSL90] Alex Pothen, Horst D. Simon, and Kan-Pu Liou. Partitioning sparse matrices
with eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11(3):430–452,
1990. 2.2.1

[R0̈2] Harald Räcke. Minimizing congestion in general networks. In Proceedings
of the 43rd Symposium on Foundations of Computer Science, pages 43–52.
IEEE, 2002. 2.4.5

[Rei98] John Reif. Efficient approximate solution of sparse linear systems. Comput-
ers and Mathematics, with Applications, 36(9):38–52, 1998. 2.4.5

[RG97] Gordon Royle and Chris Godsil. Algebraic Graph Theory. Graduate Texts
in Mathematics. Springer Verlag, 1997. 2.2.3

[RMMM93] Margaret Reid-Miller, Gary L. Miller, and Francesmary Modugno. List rank-
ing and parallel tree contraction. In John Reif, editor, Synthesis of Parallel
Algorithms, pages 115–194. Morgan Kaufmann, 1993. 3.6, 5.5

[Sha03] Y. Shapira. Matrix-Based Multigrid : Theory and Applications. Numerical
Methods and Algorithms. Springer, 2003. 2.4.2

[SS90] G.W. Stewart and Ji-Guang Sun. Matrix Perturbation Theory. Academic
Press, Boston, 1990. 2.1, 2.3.2, 6

[ST96] Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works: Pla-
nar graphs and finite element meshes. In FOCS, pages 96–105, 1996. 2.2.2

[ST03] Daniel A. Spielman and Shang-Hua Teng. Solving Sparse, Symmetric,
Diagonally-Dominant Linear Systems in Time 0(m1.31). In FOCS ’03: Pro-
ceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science, page 416. IEEE Computer Society, 2003. 2.2.1, 2.4.5

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving linear systems. In
Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
pages 81–90, June 2004. 2.2.1, 2.3.4, 2.4.5, 4.1.2, 4.2, 5.5, 7

104

[ST06] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for
preconditioning and solving symmetric, diagonally dominant linear systems,
2006. 2.4.4, 2.4.5

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathe-
matic., 13:354–356, 1969. 2.3.5

[TM06] David Tolliver and Gary L. Miller. Graph partitioning by spectral round-
ing: Applications in image segmentation and clustering. In 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2006), pages 1053–1060, 2006. 1

[TSO00] Ulrich Trottenberg, Anton Schuller, and Cornelis Oosterlee. Multigrid. Aca-
demic Press, 1st edition, 2000. 2.4.2, 7.1

[Vai91] Preadeep M. Vaidya. Solving linear equations with symmetric diagonally
dominant matrices by constructing good preconditioners. A talk based on
this manuscript, October 1991. 2.3.4, 2.4.5

[VBM01] Petr Vanek, Marian Brezina, and Jan Mandel. Convergence of alge-
braic multigrid based on smoothed aggregation. Numerische Mathematik,
88(3):559–579, 2001. 7.5

[Wes04] Pieter Wesseling. An Introduction to Multigrid Methods. R.T. Edwards, Inc.,
2nd edition, 2004. 2.4.2

[Yan81] Mihalis Yannakakis. Computing the minimum fill-in is NP-complete. SIAM
Journal of Algebraic and Discrete Mathematics, 2(1):77–79, 1981. 2.3.4

105

	1 Overview
	2 Background and prior work
	2.1 Linear Algebra Guide
	2.2 Graph theory
	2.2.1 Edge separators
	2.2.2 Vertex separators
	2.2.3 Graphs, electrical networks and Laplacians

	2.3 Direct linear system solvers
	2.3.1 The graph theory connection
	2.3.2 Cholesky factorization
	2.3.3 Parallel Cholesky factorization
	2.3.4 Exploiting the graph theory connection
	2.3.5 General direct solvers

	2.4 Iterative linear system solvers
	2.4.1 Richardson's iteration
	2.4.2 Multigrid algorithms
	2.4.3 Basic iterative methods
	2.4.4 Preconditioning
	2.4.5 Combinatorial Preconditioners for SDD matrices
	2.4.6 Support theory - The role of the Splitting Lemma

	3 Planar Graph Partitioning
	3.1 Neighborhoods and their cores
	3.2 An outline of the algorithm
	3.3 Computing the set of independent neighborhoods
	3.4 Decomposition into Voronoi Regions
	3.5 Decomposition into Voronoi-Pair Regions
	3.6 Splitting a Voronoi Pair

	4 Planar Preconditioner and Solver
	4.1 The solver
	4.1.1 Two-level preconditioned Chebyshev
	4.1.2 Recursive Preconditioned Chebyshev
	4.1.3 The complexity of the solver

	4.2 Planar preconditioner
	4.2.1 Sequential complexity
	4.2.2 Parallel Complexity
	4.2.3 Implementation and practicality notes

	5 Edge separators and Steiner preconditioners
	5.1 An illustrative example
	5.2 Laminar decompositions and Steiner graphs
	5.3 Steiner graphs and linear time solvers for uniform d-dimensional model grids
	5.4 Additions to the theory of Support trees
	5.4.1 Laminar decompositions with guarantees
	5.4.2 A new bound for laminar Steiner trees

	5.5 Planar multiway edge separators

	6 Spectral inequalities for multiway cuts
	6.1 Relative perturbation theory for Laplacians
	6.1.1 Related work
	6.1.2 Perturbation bounds

	6.2 Optimality of the bounds
	6.2.1 Graph definitions - the pair (A,B)
	6.2.2 Eigenvalues and eigenspaces of A,B
	6.2.3 The eigenvalues of (A2,B2) - and some questions

	6.3 Spectral inequalities for multiway cuts

	7 Multigrid algorithms: A combinatorial approach
	7.1 ResidualCorrection: A general framework
	7.1.1 Simple transformations are ResidualCorrection

	7.2 The multigrid algorithm
	7.2.1 The hierarchy of graphs
	7.2.2 The two-level scheme
	7.2.3 Recursion

	7.3 Multigrid convergence analysis
	7.3.1 Some Lemmas
	7.3.2 (,+)-convergence
	7.3.3 When and why (,+) is not sufficient
	7.3.4 (2,+2)-convergence

	7.4 Multigrid based on edge separators
	7.5 Multigrid based on vertex separators

	Bibliography

