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Abstract

In this paper we generalize a result of Guruswami et. al [7], showing that in unlimited-supply combinatorial
auctions, a surprisingly simple mechanism that offers the same price for each item achieves revenue within
a logarithmic factor of the total social welfare for bidders with general valuation functions (not just single-
minded or unit-demand bidders as in [7]). We also extend this to the limited-supply setting for the special
case of bidders with additive valuations. These are both settings for which Likhodedov and Sandholm [9]
provide logarithmic approximations but via much more complex bundle-pricing mechanisms.
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1 Introduction

Consider a retailer with n goods for sale, each in unlimited supply, and m customers with unknown and
possibly highly complex valuation functions over these goods. The retailer would like to assign prices to
the goods to achieve revenue close to the total social welfare (the maximum revenue achievable if it were
possible to sell to each customer the bundle she values the most at exactly her valuation for it). Guruswami
et. al [7] show that in such a setting, namely an unlimited supply combinatorial auction, if customers are
unit-demand or single-minded then there exists a single price one can assign to all the items such that the
retailer achieves revenue within a logarithmic factor of the total social welfare (and furthermore this holds
in expectation if that price is chosen at random from an appropriate distribution). In this paper we generalize
the result of [7] by showing that the restriction to single-minded or unit-demand valuations is not required,
and that the result in fact holds for general (not even necessarily monotone) valuation functions. Note that
Likhodedov and Sandholm [9] give a more complex mechanism, based on virtual valuations, that achieves
a logarithmic approximation for bidders with general monotone valuation functions; however, the resulting
mechanism requires pricing bundles and is not necessarily a pricing of the individual items.

Related work: Revenue maximization auctions and algorithmic pricing problems have generated a great
deal of interest recently; for a comprehensive survey see the chapter “Profit Maximization in Mechanism
Design” of Hartline and Karlin in [10]. Note that much of the previous algorithmic and mechanism de-
sign work concerning combinatorial auctions in the context of revenue maximization has focused on item
pricing [1, 4, 3, 5, 7, 8].

In a limited supply setting (one copy of each item), Dobzinski, Nisan and Schapira [6] present a O(
√

n)-
approximation for the general case, and a O(log3(n))-approximation for the special case of submodular
bidders. We also note that Awerbuch, Azar and Meyerson [2] present a logarithmic competitive mechanism
for the case when the supply is limited, but large.

2 Notation and Definitions

We consider the following setting. We have a set J of n items and a set B of m bidders or customers. We
are in an unlimited supply setting, which means that the seller is able to sell any number of units of each
item, and they each have zero marginal cost to the seller.1

Each customer i has a private valuation vi(S) for each bundle S ⊆ J of items, which measures how
much receiving bundle S would be worth to that customer. This function could be quite complex (since there
are 2n possible bundles). We will not assume valuations are necessarily monotone (a monotone valuation is
one such that for all S ⊆ T , we have vi(S) ≤ vi(T ), also called the free disposal property), so the maximum
valuation for bidder i may occur at some S 6= J . The only assumptions we will make are that we are given
the value H = maxi,S vi(S), though we will relax this later, and that the empty set has zero value to all
bidders, i.e. vi(∅) = 0. A pricing scheme can be described by a vector p of prices on all possible subsets
of J . Given a price vector p, the utility that bidder i derives from bundle S is ui,p(S) = vi(S) − p(S),
and this measures the bidder’s satisfaction of having bought the bundle S at the price p(S). We define the
revenue achieved by a price vector p to be the revenue obtained if each bidder buys the bundle (which could
be empty) that maximizes her/his utility, i.e. the one with largest positive gap between its value to the bidder
and its total cost. So, any mechanism that chooses prices in a manner that is independent of the valuations

1Or if the items have some fixed marginal cost, we have subtracted that from all valuations and the seller may not sell any item
below cost.
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will by definition be incentive-compatible. We denote by Si,p the set of items that maximizes ui,p(S), i.e.,
Si,p = argmaxS⊆J ui,p(S).

We will consider pricing schemes of special types called item pricings and single fixed pricings. An
item pricing is a pricing scheme that assigns a separate price to each item, such that the price of a bundle is
just the sum of the prices of the items in it. So, an item pricing ~p is a price vector ~p = (p1, . . . , pn) ∈ R+

and the prices it induces on each bundle S ⊆ J are ~p(S) =
∑

j∈S pj . A single fixed pricing scheme is an
item pricing that assigns the same price to each item. So, a single fixed pricing is an item pricing of the type
~p = p1n, where p ∈ R+ and 1n = (1, ..., 1) is the n-dimensional vector with all 1-entries. For simplicity,
we will denote by ui,p the utility function of bidder i induced by the pricing vector ~p = p1n and by Si,p the
set of items that maximizes ui,~p(S) (i.e. ui,p := ui,~p(Si,p) and Si,p = arg maxS ui,~p(S) where ~p = p1n).

The goal of the seller is to set prices on items so as to maximize his revenue, i.e. the sum of the prices
of all the bundles sold, under the assumption that each bidder purchases the bundle maximizing her utility.
Our mechanisms will choose their price p independently from the valuations vi and so will be incentive-
compatible. In Section 4 we consider a limited supply setting, and so must also specify an allocation rule;
this will be incentive-compatible as well. We emphasize that our goal is to maximize revenue with an item
pricing. If bundle-pricing is allowed, then it is not difficult to see that for the case of unlimited supply one
can in fact achieve a logarithmic approximation by choosing a random price p and then pricing all bundles
at that price (i.e., charging an admissions fee after which all items are free, as is done with rides in an
amusement park).

3 The main result: A Logarithmic Approximation

We prove in this section that a single fixed pricing scheme achieves an O(log m + log n) approximation to
the total social welfare for bidders with general valuation functions. Such an approximation immediately
implies an approximation for the maximum revenue the seller can extract from the bidders.

3.1 Monotonicity of bundle sizes

We start with a simple lemma that is needed for our analysis, which states that by decreasing the price the
seller never sells fewer items. Specifically:

Lemma 1 Let p, p′ ∈ R such that p > p′. Then, for every bidder i,
∣∣Si,p′

∣∣ ≥ |Si,p|.

Proof: Let us fix a bidder i. Assume that |Si,p| = k. By definition, since Si,p is a set of items that maximizes
the bidder’s utility under the pricing vector ~p = p1n, for all subsets T ⊆ J we have:

ui,p(Si,p) = vi (Si,p)− p · k ≥ ui,p(T ) = vi(T )− p · |T |.

Assume now that p = p′ + ε, ε > 0, and let T be an arbitrary subset of J with |T | = k′, k′ < k. Then we
clearly have:

vi (Si,p)− p′ · k = vi (Si,p)− (p− ε) · k = vi (Si,p)− p · k + k · ε
> vi(T )− p · k′ + k′ · ε ≥ vi(T )− (p− ε) · k′ = vi(T )− p′ · |T |.

Therefore, for all subsets T ⊆ J with |T | = k′, k′ < k, we have:

ui,p′(Si,p) = vi (Si,p)− p′ · k > vi(T )− p′ · |T | = ui,p′(T ).
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This then implies that any set of items Si,p′ that maximizes bidder’s i utility under the pricing vector ~p′
satisfies

∣∣Si,p′
∣∣ ≥ |Si,p|, as desired.

3.2 Single Bidder Case

For clarity we start by presenting the case of a single bidder. Let us fix a bidder i, i ∈ {1, ..., n}. Let
H = Hi = maxS vi(S) be the maximum valuation of bidder i. Clearly, the profit we can extract from
bidder i is at most H . Recall that ui,p is the maximum utility the bidder can achieve under the pricing p1n,
i.e. ui,p = max

S⊆J
ui,p(S).

We will analyze the demand curve which is defined as follows: the horizontal axis measures the “market
price” (the price we set on all of the items) and the vertical axis measures how many items the bidder will
buy at each given market price. Note that Lemma 1 implies that this curve slopes down, as in Figure 1; in
other words the function F that specifies how many items F(p) our bidder buys under a fixed single price
~p = p1n is monotonically non-increasing.2

Let p0 = 0, p1, ..., pL ≤ H be such that F(pl) = F(p) for all p ∈ [pl, pl+1) and F(pl) < F(pl+1), for
all l; in other words, p0, ..., pL are all the relevant (transition) points on the demand curve. Let us denote by
nl = F(pl), for all l. (Note that since the number of items decreases with each pl, we have that L ≤ n.)

Figure 1: The demand curve. The horizontal axis measures the “market price” and the vertical axis measures
how many items the bidder will buy at each given market price.

We will prove next a fact which is essential to our analysis, namely that the maximal valuation H of our
bidder (which is also the maximum profit we can extract from the bidder) is at most the area under the F−
curve. Formally:

Lemma 2

H ≤
L−1∑

l=0

nl · (pl+1 − pl).

2In order to ensure that F well defined, when there are ties we assume that the bidder purchases the smallest bundle of maximum
utility. So, F(p) = min{|S| : ui,p(S) = ui,p}.
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Proof: When the prices changes from p01n to p11n our bidder switches from buying n0 items to buying n1

items. Since ui,pj = vi(Si,pj )− njpj , we have ui,p1 ≥ ui,p1(Si,p0) = ui,p0 − n0 · (p1− p0). In general, for
every l > 1, since under the pricing pl1n our bidder switches from buying nl−1 items to buying nl items,
we have

ui,pl
≥ ui,pl−1

− nl−1 · (pl − pl−1) .

So, summing all these up we obtain the desired result, namely that:

ui,p0 − ui,pL ≤ H ≤
L−1∑

l=0

nl · (pl+1 − pl).

Let us denote by q̃l = H
2l−1 , for l ≥ 1, l ∈ Z. 3 We will prove in the following that for any s, the area

under F is bounded above by O(
s∑

l=1

q̃l · F(q̃l) + nH/2s). Formally:

Lemma 3 For any s ≥ 1,

H ≤
L−1∑

l=0

nl · (pl+1 − pl) ≤ 2 ·
s∑

l=1

q̃l · F(q̃l) + n
H

2s
.

Proof: By Lemma 2 we have H ≤
L−1∑
l=0

nl · (pl+1 − pl). Now we can bound the sum as follows,

L−1∑

l=0

nl · (pl+1 − pl) =
L∑

l=1

(nl−1 − nl) · pl

=
∑

l:pl≥ H
2s

(nl−1 − nl) · pl +
∑

l:pl<
H
2s

(nl−1 − nl) · pl

≤
∑

l:pl≥ H
2s

(nl−1 − nl) · pl + n
H

2s

Consider the prices that fall in the range [q̃l, q̃l−1), and assume they are pj ≤ · · · ≤ pj+k. Clearly we have
that each price in the range is at most q̃l−1. Since

∑j+k
b=j (nb−1 − nb) = nj−1 − nj+k ≤ F(q̃l), we have,

H ≤
s∑

l=1

q̃l−1 · F(q̃l) + n
H

2s
= 2

s∑

l=1

q̃l · F(q̃l) + n
H

2s
,

as desired.

Let s = log (2n). Combining Lemma 2 and Lemma 3, we obtain:

H ≤ 4 ·
s∑

l=1

q̃l · F(q̃l). (1)

This implies that there exists a fixed price p ∈ {q̃l|l ∈ {1, ..., s}} which gives an O(log n)-approximation
for H . It also implies that:

3Note that pj increases with j while q̃l decreases with l.

4



Theorem 1 The RANDOM Mechanism (given below) with m = 1 bidders is truthful and 4 log (2n)-
competitive with respect to the total social welfare H .

Proof: The truthfulness of RANDOM is immediate. The desired competitive ratio follows from (1) and

from the fact that the expected profit of our mechanism is 1
s

s∑
l=1

q̃l · F(q̃l).

Mechanism 1 RANDOM
Input: m = number of bidders, n = number of items, H = max

i,S
(vi(S)).

Step 1 Let q̃l = H
2l−1 , for l ≥ 1, l ∈ Z, and let s = log(2nm)

Step 2 Pick a price q̃ uniformly at random in {q̃1, ..., q̃s} and price all items at q̃. I.e., output the allocation
and the payment determined by q̃1n.

3.3 The Multiple Bidders Case

We can now extend the results in the previous section to the multiple bidders case as follows:

Theorem 2 The RANDOM Mechanism is truthful and O (log (n) + log (m))-competitive with respect to
the total social welfare of the bidders.

Proof: The truthfulness of RANDOM is immediate. Let Hi = max
S

(vi(S)), and let Fi be the curve

corresponding to bidder i; so H = max
i

Hi. Let si = s − log(H/Hi), which is the effective index for the

i-th bidder.4 By Lemma 3, applied to bidder i, we have,

Hi ≤ 2 ·
s∑

l=1

q̃l · Fi(q̃l) + n
Hi

2si
= 2 ·

s∑

l=1

q̃l · Fi(q̃l) + n
H

2s
. (2)

Summing over all the bidders we have:

m∑

i=1

Hi ≤ 2 ·
m∑

i=1

s∑

l=1

q̃l · Fi(q̃l) + nm
H

2s
. (3)

Since
m∑

i=1
Hi ≥ H , s = log(2nm), combining (3) together with the fact that the expected profit of our

mechanism is
m∑

i=1

(
1
s

s∑
l=1

q̃l · Fi(q̃l)
)
, we get an approximation ratio of 4 log(2nm) = O(log n+ log m).

Note 1 Note that the O(log(m)) factor is attributed directly to the variation in Hi. Assume that Hi = H
for every bidder i. Then

∑m
i=1 Hi = mH and it is sufficient to set s = log(2n).

4For simplicity we assume that log(H/Hi) is integer.
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3.4 Removing the assumption of known H

We have assumed so far that the maximum valuation H (over all bidders and all bundles) is known to the
mechanism. One immediate generalization is that if instead we are just given an upper-bound H ′ on H ,
with the guarantee that H ′ ≤ αH for some given value α, then we can use s = log(2αmn) in mechanism
RANDOM and the result is an O(log n + log m + log α) approximation. In particular, this implies that if
we are simply given a polynomial upper bound H ′ on H , i.e., H ′ ≤ poly(m,n) × H , then we still get an
O(log n + log m) bound.

Alternatively, if we have no upper bound on H at all, but we assume at least that H ≥ 1, then select H ′

at random from the probability distribution where Pr[H ′ = 2i] = c
i log2 i

, for some constant c > 0. Now we
can run mechanism RANDOM with the selected H ′and the parameter s. The probability that RANDOM
selects a given price p = 2k is 1

s

∑s+k
i=k Pr[H ′ = 2i] ≥ c

(s+k) log2(s+k)
. This implies that the approximation

ratio, for s = log(2mn) and p ≤ H is O(log(nmH) log2(log(mnH))).

4 Limited supply setting for bidders with additive valuations

We extend the result in the previous section to the limited-supply setting for the special case of bidders
with additive valuations. This is also a setting for which Likhodedov and Sandholm [9] provide logarithmic
approximations but via much more complex bundle-pricing mechanisms. We analyze here the mechanism
RANDOM Limited Supply (given below).

Mechanism 2 RANDOM Limited Supply

Input: m = number of bidders, n = number of items, cj = number of copies of item j available, H =
max
i,S

(vi(S)).

Step 1 Let q̃l = H
2l−1 , for l ≥ 1, l ∈ Z, and let s = log(4nm)

Step 2 Pick a price q̃ uniformly at random in {q̃1, ..., q̃s}, and post the item pricing q̃1n.

Step 3 Arrange the bidders in an arbitrary order. Allow each in turn to purchase the bundle of highest
utility to them from whatever items still remain.

Theorem 3 The RANDOM Limited Supply Mechanism is truthful and O (log (n) + log (m))-competitive
with respect to the total social welfare of the bidders.

Proof: The truthfulness of RANDOM Limited Supply is immediate. Since all our bidders have additive
valuations, we can decompose each bidder’s valuation on a set S into a separate valuation vi({j}) for each
item j ∈ S, i.e. vi(S) =

∑
j∈S vi({j}), and so the bidder makes an independent decision on each item

whether to buy it or not. For any j, let us denote by Wj =
{
wj,1, ..., wj,cj

}
the “winners” of item j in the

optimal social welfare solution. So, the total social welfare is
n∑

j=1

[ cj∑
i=1

vwj,i({j})
]

.

Consider now a single item j, and let cj be the number of copies of j available. We know that by
picking a random price in the range {q̃1, ..., q̃s} our expected profit with respect to the set of winners
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wj,1, ..., wj,cj is at least 1
2(2+log(n)+log(m))

cj∑
i=1

vwj,i({j})− H
4n . Note that some other bidders not in the set of

winners Wj might end up buying item j in our mechanism, but certainly our expected profit is no less than
1

2(2+log(n)+log(m))

cj∑
i=1

vwj,i({j}) − H
4n . So, summing over all items, we obtain that our expected profit is at

least 1
2(2+log(n)+log(m))

n∑
j=1

[ cj∑
i=1

vwj,i({j})
]
− H

4 , which is at least 1
4(2+log(n)+log(m))

n∑
j=1

[ cj∑
i=1

vwj,i({j})
]
,

as desired.

5 Lower Bounds

It is interesting to note that we can potentially extract substantially more profit by using bundle pricing rather
than item prices. We can show a log(n) gap between the profit achievable by the best item pricing and the
best bundle pricing for the simple case of single minded bidders, even for the case when all bidders have
valuations 1. Specifically:

Theorem 4 There exists a log n gap between the profit achievable by best item pricing and the profit achiev-
able by the best bundle pricing, even for the case of single minded bidders when all valuations are 1.

Proof: Assume n = 2r items. All bidders will be single-minded with valuation 1 on their desired set. We
will have r + 1 sets B0, B1, . . . , Br of n bidders each, so m = (r + 1)n bidders total. The bidders in B0 all
want the entire set J = {1, . . . , n}. The bidders in B1 consist of n/2 who want the subset {1, . . . , n/2} and
n/2 who want the subset {n/2 + 1, . . . , n}. The bidders in B2 consist of n/4 who want {1, . . . , n/4}, n/4
who want {n/4+1, . . . , n/2}, n/4 who want {n/2+1, . . . , 3n/4}, and n/4 who want {3n/4+1, . . . , n},
and so on. Bidders in Br each want a distinct single item. Clearly there is a bundle-pricing that achieves
revenue (r + 1)n, namely just price all bundles at 1.

Next we show that any item pricing has revenue of at most 2n − 1. We do this by induction on n. The
base case (n = 1) is trivial. For the general case, first suppose the sum of all prices is at most 1. Then all
bidders purchase, but the revenue from bidders in B0 is at most n, the revenue from bidders in B1 is at most
n/2, the revenue from bidders in B2 is at most n/4 and so on, so the total revenue is at most 2n− 1. On the
other hand, suppose the sum of all prices is more than 1. Then we receive no revenue at all from bidders in
B0, and the problem splits into two problems of size n/2 of the exact same form. By induction, we can get
profit at most n− 1 from each, so again we get profit at most 2n− 1 in total.

6 Conclusions

In this paper we exhibit a surprisingly simple mechanism for unlimited-supply combinatorial auctions,
which offers the same price for each item and achieves revenue within a logarithmic factor of the total
social welfare for bidders with general valuation functions – which might not even satisfy the free disposal
property. This generalizes the prior work of Guruswami et. al [7], who have considered only the special
cases of single-minded and unit-demand bidders, as well the results of Likhodedov and Sandholm [9] who
have provided logarithmic approximations but via much more complex bundle-pricing mechanisms.
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