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Abstract

Nominal subtyping (or user-defined subtyping) and structural subtyping each have their own strengths
and weaknesses. Nominal subtyping allows programmers to explicitly express design intent, and,
when types are associated with run time tags, enables run-time “type” tests (e.g., downcasts) and exter-
nal/multimethod dispatch. On the other hand, structural subtyping is flexible and compositional, allow-
ing unanticipated reuse. To date, nearly all object-oriented languages fully support only one subtyping
paradigm or the other.

In this paper, we describe a core calculus for a language that combines the key aspects of nominal and
structural subtyping in a unified framework. Our goal is to combine the flexibility of structural subtyping
while still allowing static typechecking of external methods. We prove type safety for this language and
illustrate its practical utility through several examples which are not easily expressed in other languages.
Our work provides a clean foundation for the design of future languages that enjoy the benefits of both
nominal and structural subtyping.
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1 Introduction

In the research community, structural subtyping is considered a clean and theoretically pleasing account
of subtyping. However, the most widely used object-oriented languages provide little or no support for
structural subtyping, relying instead on user-defined nominal subtyping. Each kind of subtyping has its
merits, but no existing language combines the two in a uniform way.

Nominal subtyping allows the programmer to express and enforce design intent explicitly. A program-
mer’s defined subtyping hierarchy serves as checked documentation that specifies how the various parts
of a program are intended to work together. Explicit specification also has the advantage of preventing
“accidental” subtyping relationships, such as the standard example of cowboy.draw() and circle.draw().
Nominal subtyping also allows recursive types to be easily and transparently defined, since recursion can
simply go through the declared names. Another advantage is that error messages are usually much more
comprehensible, since (for the most part) every type in a type error is one that the programmer has defined
explicitly. Finally, and most importantly, nominal subtyping is necessary for run-time subtyping tests (such
as downcasts) as well as external and multimethod dispatch.

On the other hand, structural subtyping is often more expressive than nominal subtyping. It is composi-
tional and intrinsic, existing outside of the mind of the programmer. This has the advantage of supporting
unanticipated reuse—programmers don’t have to plan for all possible reuse scenarios. Additionally, struc-
tural subtyping is often more notationally succinct. Programmers can concisely express type requirements
without having to define an entire subtyping hierarchy. In nominal systems, situations can arise which
require multiple inheritance or an unnecessary proliferation of types; in a structural system, the required
subtyping properties just arise naturally from a few simple axioms. Finally, structural subtyping is far su-
perior in contexts where the structure of the data is of primary importance, such as in data persistence or
distributed computing. In contrast, nominal subtyping can lead to unnecessary versioning problems: if
some class C is modified to C′, C′ objects cannot be sent to a distributed process with the original definition
C, even if C′ is a strict extension of C.

We believe that external dispatch and multimethods are essential constructs for modular and extensible
object-oriented programming. External dispatch allows methods to be added to existing classes and mul-
timethods permit method dispatch to depend on any subset of arguments to a function. As many have
observed (for instance, [6, 7, 18]), in the absence of external dispatch, one must resort to unwieldy double-
dispatch code (such as the “Visitor” design pattern [13]), which, aside from being difficult to understand,
forces programmers to plan ahead for this kind of extensibility and further makes it difficult to add new
subclasses.

Consequently, our aim is to create a language with a uniform object model that retains the expressive
and compositional nature of structural subtyping while permitting external and multimethod dispatch. We
present a core calculus, in the style of [14, 10, 1, 5], for a language called Unity, which we believe achieves
this goal.

In Unity, an object type is a record type tagged with a “brand.”1 Brands induce the “nominal subtyping”
relation, which we call “sub-branding.” (The name “brand” is borrowed from Strongtalk [3], which in turn
borrowed it from Modula-3 [19].) Brands are “nominal” in that the user defines the sub-brand relationship,
like the subclass relation in languages like Java, Eiffel, and C++.

When a brand β is defined, the programmer lists the minimum fields that any objects tagged with β
must include. In other words, if the user defines the brand Point as having the fields (x : int, y : int),
then any value tagged with Pointmust include at least the labels x and y (with int type)—but it may also
contain additional fields. Subtyping takes into account both the nominal sub-brand relationship and the
usual structural subtyping relationship (width and depth) on records.

To integrate these two relationships, brand extension is constrained: the associated record types must
be subtypes. In other words, a brand β can be declared as a sub-brand of θ only if β’s associated
record type is a subtype of θ’s record type. As an example, suppose the brand 3DPoint is defined as

1Note that record “types” are not actually types in the true sense, as they do not classify any values—they occur only as part of
object types.
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3DPoint(x : int, y : int, z : int). 3DPoint can be declared as a sub-brand of Point, since (x : int,
y : int, z : int) is a sub-record of (x : int, y : int). However, a brand 1DPoint(x : int) cannot be a sub-
brand of Point (since it lacks the y field), nor can FloatingPoint(x : float, y : float) (since float is not
a subtype of int).

Brands allow external dispatch through a case construct that performs tag analysis. This construct allows
new methods to be written over existing class hierarchies.

To simplify our model and to focus on the core issues, our calculus requires that the entire brand hier-
archy be stated at the start of the program. For similar reasons, the calculus also requires that all branches
of the case expression be given at once; later extensions would require modifying the code directly. We
expect that techniques similar to those of EML [18] would allow us to remove these restrictions in further
refinements of our language. (Semantically, each branch of the case expression can be viewed as a separate
branch of an external method; such branches need not be textually adjacent.)

The contributions of this paper are as follows:

• a language design, Unity, that provides user-defined and structural subtyping relationships in a novel
and uniform way. Unity combines the flexibility of external dispatch with the conceptual clarity of
width and depth subtyping.

• a formalization of the design of Unity, along with proofs of type safety (Section 3).

• examples that illustrate the expressiveness and flexibility of the language (Section 2). We contrast
Unity with other languages in Section 2.1.

2 Examples

The following examples introduce Unity and illustrate the flexibility that comes from the combination of
structural subtyping and external methods.

2.1 Example 1: a window toolkit

Figure 1 contains a code excerpt for a windowing system and illustrates the novel features of Unity. The
brand Window is the top-level type; its fields have been abbreviated by γ. By default, a window does not
have a scrollbar. The brands Textbox and StaticText extend Window, and also do not scroll by default.
The type Window(γ, s: Scrollbar) represents a window that does have a scrollbar; the scroll function
applies to any such window. For this example, we assume that the implementation of scroll only needs to
access the scrollbar field and the fields in γ.

Let us assume that in a non-scrolling textbox the user can only enter a fixed number of characters.
Consequently, we define the brand ScrollingTextbox in order to change textbox functionality—in par-
ticular, the behavior of the insertChar function. Note that ScrollingTextbox(...) is a subtype of
Window(γ, s: Scrollbar), so the scroll function can be applied to objects of this type without any addi-
tional modification.

If other sub-brands of Window (such as StaticText) do not need to change their existing behavior when a
scrollbar is added, no new sub-brands need be defined. Scrolling functionality can be added to these types
by including a Scrollbar field, and the scroll function is then applicable. Since a textbox that scrolls
allows the user to enter more text than the window size permits, a new sub-brand had to be defined so that
its case in insertChar could be overridden.

The subtyping relationships induced by these brand definitions are shown below the code listing in
Figure 1. Note that, interestingly, ScrollingTextbox(. . .) is a subtype of both Window(γ, s : Scrollbar)
and of Textbox(. . .), but there is no multiple inheritance involved.
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abstract brand Window (γ)

concrete brand Textbox (γ, currentPos : int)
extends Window

concrete brand StaticText (γ, text : string)
extends Window

concrete brand ScrollingTextbox

(γ, currentPos : int, s : Scrollbar)
extends Textbox

fun scroll ( w : Window(γ, s : Scrollbar) ) : unit =
... // code that performs the scrolling operation

fun insertChar (t : Textbox(· · · ), c : Char) : unit =
case t of

| Textbox =>

... // insert a character only if it will fit in the window

| ScrollingTextbox =>

... // insert the character, scrolling if necessary

Subtyping relationships

Window (γ, s : Scrollbar) ≤ Window (γ)

Textbox (. . . ) ≤ Window (γ)
ScrollingTextbox (. . . ) ≤ Textbox (. . . )
ScrollingTextbox(. . . ) ≤ Window(γ, s : Scrollbar)

StaticText(. . . ) ≤ Window (γ)
StaticText(. . . , s : Scrollbar) ≤ Window(γ, s : Scrollbar)

Figure 1: Unity code for a windowing system with textboxes, static text, and scrollbars. The metavariable
γ denotes additional fields that would be present in an actual code. Nominal subtyping allows the brand
ScrollingTextbox to change the behavior of insertChar through tag dispatch, while structural subtyping
allows the scroll function to apply to any window with an s : Scrollbar field.

This example illustrates the two kinds of extensibility that Unity provides: structural extension and brand
extension.

• Structural extension can be used to create a new type that adds fields to an existing brand, without
defining new behavior for the resulting type. So, a Scrollbar can be added to a StaticText object without
defining a new brand, as the existing functionality of the static text box does not need to change if a
scrollbar is added.

• Brand extension creates a new brand that can be used in dispatch; as a consequence, programs can
define new behavior for the newly defined brand. Here, ScrollingTextbox is defined as an extension of
Textbox because the behavior of insertChar is different depending on whether or not the text box
has a scrollbar attached to it.

Comparison to other systems

Java. In Java-like languages, expressing this example would be unwieldy. A common way to express
the necessary constraints would involve first defining two interfaces, IWindow and IScrollableWindow.
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Window

StaticText

ScrollingTextbox

Textbox

(a) The windowing example as implemented
in Unity. Depicted here are the brands that
must be defined in order to obtain the desired
subtyping relationships.

IWindow

IScrollableWindow

ScrollingWindow

Window

ScrollingStaticText

StaticText

ScrollingTextbox

Textbox

(b) The same example implemented in Java. Dashed rectangles are
interfaces; solid rectangles are classes. Dashed lines indicate the
implements relationship and solid lines indicate extends.

Figure 2: For the windowing example, the user-defined subtyping relationships necessary in Unity vs.
those necessary in Java.

(Since Java interfaces cannot include fields, the scrollbar field would actually have to be a getScrollbar()
method in IScrollableWindow.) Any window class that wished to allow the possibility of adding a scroll-
bar, even without changing any other functionality, would have to define a subclass that also implemented
IScrollableWindow. In this example, we would define the classes ScrollingWindow, ScrollingTextbox,
and ScrollingStaticText, though only ScrollingTextbox needs to change any functionality; see the class
diagram Figure 2(b). Contrast this with the brand structure of the Unity program depicted in Figure 2(a).

Presumably, the Java equivalent of the scroll function would be a static function of some helper class
and would take an object of type IScrollableWindow. Of course, if a programmer defined a new scrolling
window class with the correct getScrollbar() method, but forgot to implement IScrollableWindow, the
scroll function could not be used on objects of that class. (This situation often arises in Java programs,
particularly when one wishes to use library code that is not even aware of the interface that it should be
declared to implement.)

There are also some oddities in the Java example. The Java class ScrollingWindow is semantically anal-
ogous to the Unity type Window(γ, s: Scrollbar), but ScrollingTextbox and ScrollingStaticText
are not subclasses of ScrollingWindow, while the corresponding Unity types are subtypes of Window(γ,
s: Scrollbar). This illustrates the lack of expressiveness that is inherent in languages that require the
programmer to name all relevant subtyping relationships.

Traits. A language with traits [23, 24, 20] would provide a much cleaner solution than Java, but would
ultimately lack the expressiveness of Unity’s structural subtyping. This is due to the fact that traits are
mainly designed to solve issues of implementation inheritance (especially multiple inheritance), which is
largely orthogonal to the issues we are considering.

Structural subtyping. A language with support for structural subtyping (e.g., O’Caml [16], PolyTOIL
[4], etc.) would elegantly express all of the desired subtyping relationships, but these languages al-
low only internal dispatch—that is, all methods must be defined inside the class definition. In our lan-
guage, insertChar can be an external method; it need not reside inside the definitions of Textbox and
ScrollingTextbox. It would be decidedly non-trivial to add support for external dispatch or multimeth-
ods to these types of languages.
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Moby. The language MOBY is in many ways similar to Unity, as it supports structural subtyping and a va-
riety of tag subtyping through its inheritance-based subtyping mechanism [11, 12]. This allows expressing
many useful subtyping constraints, but MOBY’s class types are not integrated with object types in the same
way as in Unity. For instance, in MOBY, it is not possible to express the constraint that an object should have
a particular class and should have some particular fields (that are not defined in the class itself). Addition-
ally, the object-oriented core of MOBY supports only internal dispatch rather than external or multimethod
dispatch.

MOBY does include “tagtypes” that are very similar to our brands. These can be used to support down-
casts or to encode multimethods, but they are orthogonal to class and object types.

Cecil. Cecil [6] would allow expressing all of the necessary relationships (though new classes do need
to be defined for ScrollingWindow and ScrollingStaticText), as it has a very powerful—but very
complex—type system. To write the scroll function, a programmer would have to use bounded quan-
tification and a “where” clause constraint, the latter being typechecked via a constraint solver. That is, in
words, the argument to scrollwould have type:

for all T where
T <: Window and signature getScrollbar(T) : Scrollbar

Cecil also fully supports multimethod dispatch. Although Unity is strictly less expressive than Cecil, its
advantage lies in unifying structural typing with external dispatch in a simpler, more uniform way.

2.2 Example 2 : AST nodes in an IDE

Suppose we have an integrated development environment that includes an editor and a compiler. The top
portion of Figure 3 contains an excerpt of a simplified version of the code for such a system. Here, the
brands PlusNode, Num and Var define a simple abstract syntax tree. Using structural subtyping, AST nodes
with additional information can be created, such as a node with a loc field specifying the file location of
the code corresponding to the node. Additional functions are available for such nodes, such as the function
highlightNode that highlights a node’s source code in the text editor.

Note that we did not define a new brand for AST nodes that include file location information. Whether
or not a node contains file information, functions that operate over AST nodes do not need to change their
behavior, so in this case structural subtyping suffices.

Suppose now that the programmer wishes to add “debug” versions of these AST nodes that contain ad-
ditional information to be output when compiling in debug mode. For example, a DebugNum has a Location
field, while DebugVar includes a Location field as well as a string representation of the variable name. The
newly added code is listed in the bottom portion of Figure 3.

Since each of these brands have been defined as extensions, they may also customize the behavior of
compile to output this additional information when compiling. Additionally, since all of the Debug* brands
have a Location field, the function highlightNode can be used on objects of this type.

This example again illustrates the expressiveness that is gained by combining nominal and structural
subtyping; highlightNode makes use of additional structural information, while compile relies on tag
dispatch to behave differently in different situations.

3 Formal System

The grammar for our language, Unity, is displayed in Figure 4. To define brands, the brand construct is
used. A brand can be either abstract or concrete; in the former case, objects tagged with that brand cannot
be created, similar to Java’s abstract classes. We use the metavariables β and θ to range over brand names.

When a brand is defined, a name is given for it, as well as a list of zero or more (label : type) pairs; these
are the labels that must be given values when objects of that brand are created. As previously mentioned,
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Initial version of the code:

abstract brand AstNode() extends Top

concrete brand PlusNode ( n1 : AstNode(), n2 : AstNode() ) extends AstNode

concrete brand Num ( val : int ) extends AstNode

concrete brand Var ( s : Symbol) extends AstNode

// highlight the text corresponding to ‘node’ in the text editor,
// using the location specified by the ‘loc’ field
fun highlightNode ( node : AstNode(loc : Location) ) : unit = ...

// compile code to an output stream
fun compile ( node : AstNode(), out : OutStream ) : unit =

case node of

| plus as PlusNode => compilePlus(plus, out);

| num as Num => ...

| var as Var => ...

New code for including debug information for some AST nodes:

// AST nodes with debug information
concrete brand DebugPlusNode ( n1 : AstNode, n2 : AstNode, loc : Location ) extends PlusNode

concrete brand DebugNum ( val : int, loc : Location ) extends Num

concrete brand DebugVar ( s : Symbol, loc : Location, varName : string ) extends Var

// compile code to an output stream, outputing additional information for Debug* nodes
fun compile ( node : AstNode(), out : OutStream ) : unit =

case node of

| plus as PlusNode => compilePlus(plus, out);

| ...

// for the debug code, output the file location. for DebugVar, also the variable name
| dplus as DebugPlusNode => compilePlus(dplus, out); outputLocation(out, dplus.loc)

| dnum as DebugNum => ...

| dvar as DebugVar => ...

Figure 3: Example 2: AST nodes in an IDE. The top portion is the code before changes to add debug
information to the AST. The function highlightNode makes use of structural information, the external
dispatch in compile changes its behavior for the declared Debug* sub-brands. (We assume here that the
newly defined brands have been defined in the preamble of the source program, along with the original
brands.)

we informally call this list of label-and-type pairs a record “type.” The metavariable γ ranges over these
record types. The abbreviation ` : τ denotes `i : τi

i∈1..n and ` = v denotes `i = vi
i∈1..n.

If β is a brand name, then β̂ is the tag value corresponding to β. In other words, β(γ) is a type, and β̂ is
its run-time analogue.

As previously stated, the brand subtree must be given in full at the start of the program; this restriction is
imposed by the grammar. Note our language currently allows only single inheritance; supporting multiple
inheritance is the subject of our future work.

The rest of the language is similar to the standard lambda calculus with records and variants. For ease
of presentation, we have not included recursive functions. The expression β̂(` = e) creates an object that is
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Modifiers m ::= abstract | concrete

Programs p ::= e | m brand β(` : τ) extends β in p
Expressions e ::= () | x | λx :τ. e | e e

| β̂(` = e) | e.`

| case e of {xi as β̂i ⇒ ei
i∈1..n}

Types τ ::= unit | τ → τ | β(` : τ) | τ ∧ τ

Values v ::= () | β̂(` = v) | λx :τ. e

Contexts Γ ::= ∅ | Γ, x : τ

Σ ::= ∅ | Σ, m β(` : τ) extends β

∆ ::= ∅ | ∆, β̂ extends β̂

Conventions

β̂ ≡ tag value corresponding to β

fieldsΣ (β) = γ if β(γ) extends β′ ∈ Σ

Figure 4: Grammar for Unity

tagged with β̂. The expression e.` projects the label with name ` from the expression e.
The case analysis construct is superficially similar to that of ML-like languages. In each branch, the

bound variable xi represents the scrutinee at a more precise type; the details of typing objects is explained
in Section 3.1.

Our language does not directly include iso-recursive types, but many uses of recursive types can be
expressed using the brand mechanism. For example, to define streams, we can write:

abstract brand Stream extends Top

concrete brand S(hd : int, tail : Stream)

extends Stream

For lists:
abstract brand List() extends Top

concrete brand Cons(hd : int, tail : List())

extends List

concrete brand Nil() extends List

Our language includes a limited form of intersection types. Our motivation for including these is to
increase the expressiveness of the case statement, which we describe in detail in Section 3.1.2.

Σ is the subtyping context; it stores the user-declared sub-branding relationships. ∆ is the correspond-
ing run-time context. ∆ contains a strict subset of the information in Σ—it does not contain whether a
brand is abstract or concrete, and it does not keep track of the record type ` : τ associated with each brand.
We assume that Σ and ∆ each always contain information about the root of the sub-brand tree, which
we call Top (similar to Object in Java). In other words, we have concrete Top() extends Top ∈ Σ and
T̂op extends T̂op ∈ ∆.

Our theorems and judgements assume that all contexts are well-formed, defined as follows:

Definition 3.1 (Well-formed context).
The context Σ is well-formed, iff the following conditions hold:
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Intersection on records

(`i : τi
i∈1..n, γ′) ∧ (`i : τ′i

i∈1..n, γ′′)
def=(

`i : (τi ∧ τ′i )
i∈1..n, γ′, γ′′

)
where the labels `i, γ′ and γ′′ are mutually exclusive.

Definition of covers

β̂i
i∈1..n coversΣ β(γβ)

def=

∀θ . Σ ` θ v β and concrete θ(γθ) ∈ Σ ⇒
Σ ` θ(γθ), β(γβ) disjoint or ∃j ∈ 1..n. Σ ` θ v β j

Figure 5: Auxiliary definitions

1. there is exactly one entry for each brand β.

2. if β(γ) extends θ ∈ Σ, then Σ ` γ <: fieldsΣ θ.

3.1 Static Semantics

Here we describe the subtyping and typing judgements shown in Figures 6 and 7.

3.1.1 Subtyping rules

Subtyping comprises three parts: the sub-brand judgement (v), the sub-record judgement (<:) and the
subtype judgement proper (≤). The last is shown in Figure 6, with auxiliary definitions in Figure 5. The
first two judgements are not on types, but on the two components of object types, brands and records. The
sub-brand judgement is the reflexive, transitive closure of the declared extends relation. The sub-record
judgement is standard depth and width subtyping on records, using the subtype (≤) judgement for depth
subtyping. The rules for these judgements appear in Appendix A.2.

The subtype judgement (≤) ties together the sub-brand and sub-record judgements. This is achieved
by the rule SUB-NAME: it states that an object type β1(γ1) is a subtype of β2(γ2) when β1 is a sub-brand of
β2 (β1 v β2) and γ1 is a sub-record of γ2 (γ1 <: γ2). There are additional conditions that β1(γ1) ok and
β2(γ2) ok, which ensures that these are valid types. The relevant ok rule here is:

Σ ` (`i : τi
i∈1..n) <: fieldsΣ β Σ ` τi ok (i∈1..n)

Σ ` β(`i : τi
i∈1..n) ok

The full ok judgement appears in Appendix A.1.
Our language includes a limited form of intersection types, à la Davies and Pfenning; the rules SUB-∧R,

SUB-∧L1 and SUB-∧L2 are borrowed from their work [9]. Our language also allows distribution on intersec-
tions of object types, via the rules SUB-BRAND-∧L1 and SUB-BRAND-∧L2. These rules increase the expressive-
ness of the system. For example, if we assume the definitions of Point and 3DPoint from the introduction,
these rules allow us to conclude: Point(x : int, y : int, c : color) ∧ 3DPoint(x : int, y : int, z : int)
≤ 3DPoint(x : int, y : int, z : int, c : color). Note that these rules make use of the definition of inter-
section on record types shown in Figure 5.

The remaining subtyping rules are the standard reflexivity, transitivity, and function subtyping rules.
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Σ ` τ1 ≤ τ2

Σ ` τ ≤ τ
(SUB-REFL)

Σ ` τ1 ≤ τ2 Σ ` τ2 ≤ τ3

Σ ` τ1 ≤ τ3
(SUB-TRANS)

Σ ` σ1 ≤ τ1 Σ ` τ2 ≤ σ2

Σ ` τ1 → τ2 ≤ σ1 → σ2
(SUB-FUNC)

Σ ` β1 v β2 Σ ` γ1 <: γ2 Σ ` β1(γ1) ok Σ ` β2(γ2) ok
Σ ` β1(γ1) ≤ β2(γ2)

(SUB-NAME)

Σ ` τ ≤ σ1 Σ ` τ ≤ σ2

Σ ` τ ≤ σ1 ∧ σ2
(SUB-∧R)

Σ ` τ1 ≤ σ

Σ ` τ1 ∧ τ2 ≤ σ
(SUB-∧L1)

Σ ` τ2 ≤ σ

Σ ` τ1 ∧ τ2 ≤ σ
(SUB-∧L2)

Σ ` β1 v β2

Σ ` β1(γ1) ∧ β2(γ2) ≤ β1(γ1 ∧ γ2)
(SUB-BRAND-∧L1)

Σ ` β2 v β1

Σ ` β1(γ1) ∧ β2(γ2) ≤ β2(γ1 ∧ γ2)
(SUB-BRAND-∧L2)

Figure 6: Subtyping rules for Unity

3.1.2 Typing rules

Full typing rules appear in Figure 7. Most of these are standard rules for a simply-typed lambda calculus
with subtyping; the novel rules are TP-BRAND-INTRO, TP-NEW-OBJ and TP-CASE.

TP-BRAND-INTRO lets a program introduce new brands as extensions of previous brands, provided that
the associated record types are in the appropriate sub-record relationship. The condition Σ ` Top(γ) ok
ensures that the record γ is well-formed.

The rule TP-NEW-OBJ ensures that values of object type that are tagged β̂ meet the requirements of the
brand β as defined in the define brand construct. Only brands that are concrete may be used to create object
values.

The TP-CASE rule illustrates the novel aspects of our system. It is similar in syntax to the “case” con-
structs of ML-like languages, but its function is to perform dispatch on brand tags. In contrast to ML, for
instance, the order in which branches appear does not affect execution; the most specific branch is always
selected. The TP-CASE rule ensures that such a branch will always exist.

The first three premises of the rule are fairly simple; brand tags may not be repeated, and each must be
a sub-brand of the scrutinee’s brand. The covers condition ensures that there is a branch for every concrete
sub-brand of β. Since the brand hierarchy is fixed at the start of the program, when the case statement is
typechecked, all possible sub-brands are known.

The covers condition also allows the programmer to omit impossible branches. These can occur when
the record type of the scrutinee is incompatible with the record type of a concrete sub-brand of β. It may
not be immediately obvious why this might occur, given our restrictions on defining brands and creating
objects. But this situation can arise when structural subtyping is used. For example, suppose our system
included the base types int and color, and that these types are disjoint from one another (that is, there are
no values that have both type int and color). Suppose also that the scrutinee was a Point that for some
reason had a z field of type color; i.e., Point(x : int, y : int, z : color). In such a case, the programmer
may leave omit the branch for 3DPoint—even though 3DPoint v Point—since the scrutinee’s structural
type is incompatible with the record type of 3DPoint.
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Γ | Σ ` p : τ

β1 /∈ Σ Σ ` Top(γ) ok
Σ ` γ <: fieldsΣ β2 Γ | Σ, m β1(γ) extends β2 ` p : τ′ Σ ` τ′ ok

Γ | Σ `m brand β1(γ) extends β2 in p : τ′
(TP-BRAND-INTRO)

Γ | Σ ` e : τ

x : τ ∈ Γ
Γ | Σ ` x : τ

(TP-VAR)
Γ ` () : unit

(TP-UNIT)
Γ, x : τ1 | Σ ` e : τ2

Γ | Σ ` λx :τ1. e : τ1 → τ2
(TP-FUN)

Γ | Σ ` e1 : τ1 → τ2 Γ | Σ ` e2 : τ1

Γ | Σ ` e1 e2 : τ2
(TP-APP)

Γ | Σ ` e : σ Σ ` σ ≤ τ

Γ | Σ ` e : τ
(TP-SUBS)

concrete β(γ) ∈ Σ Σ ` (`i : τi) i∈1..n <: γ Γ | Σ ` ei : τi (i∈1..n)

Γ | Σ ` β̂(`i = ei
i∈1..n) : β(`i : τi

i∈1..n)
(TP-BRAND-CONS)

Γ | Σ ` e : β(`i : τi
i∈1..n)

Γ | Σ ` e.`k : τk
(TP-PROJ)

Γ | Σ ` e : β(γ) {β̂k
k∈1..n} distinct

Σ ` βi v β (i∈1..n) Σ ` β̂k
k∈1..n covers β(γ) Γ, xi : βi(γ ∧ fieldsΣ βi) | Σ ` ei : τ (i∈1..n)

Γ | Σ ` case e of {xj as β̂ j ⇒ ej
j∈1..n} : τ

(TP-CASE)

Figure 7: Typing rules for Unity’s programs p and expressions e. Auxiliary definitions appear in Figure 5.
Note: a program consisting entirely of an expression is typechecked using the Γ | Σ ` e : τ judgement.

Formally, covers achieves this effect by making use of the disjoint judgement. This judgement, pre-
sented in full in Appendix A.1, has the following property:

Lemma 3.1 (Disjoint types). If Σ ` τ1, τ2 disjoint and ∅ | Σ ` v : τ1, then ∅ | Σ 0 v : τ2.

In the example from above, we have Σ ` Point(x : int, y : int, z : color), 3DPoint(x : int,
y : int, z : color) disjoint.

The final premise of TP-CASE is probably the most interesting. For simplicity, let us first ignore the
intersection that appears in the binding added to Γ so that it reads:

Γ, xi : βi(fieldsΣ βi) | Σ ` ei : τ (for i ∈ 1..n).

So, in each branch, the scrutinee is bound to a variable xi with a more precise type. In particular, it will have
the tag β̂i and the fields defined for βi in Σ. But, this rule would not allow the programmer to make use of
the additional structural information that may be known about the scrutinee—it has the fields γ, which (a)
may contain more fields than fieldsΣ β, or (b) may refine one or more of the types in fieldsΣ β.

Consequently, to retain as much typing information as possible, the type of xi is instead βi(γ ∧
fieldsΣ βi). This uses the definition of intersection of records as defined in Figure 5 (distinct labels are
concatenated; for common labels, the intersection of the associated types is taken).

For example, assuming the definitions of Point and 3DPoint from above, consider the following pro-
gram:
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λe : Point(x : int, y : int, c : color).
case e of

p1 as Point => ...

p3 as 3DPoint => bar(p3)

The variable p3 has type 3DPoint(x : int, y : int, z : int, c : color). It may initially appear that
this does not lead to a substantial increase in expressiveness, since the fields of the scrutinee are in scope;
in this example, p3.c is equivalent to e.c. However, suppose that the argument to bar must have type
3DPoint(..., c : color). If the type of p3 did not include the color field, a new 3DPoint object could
be created with the integer fields of p3 and the color field of e, but this could change the behavior of the
program. Based on the semantics of the language, we know that tag(p3) v tag(3DPoint); if it is a strict sub-
brand (e.g. 3DSubPoint), then this information would be lost if a new object were created (i.e., the program
would have to create a 3DSubPoint object, rather than a 3DPoint).

Therefore, including this intersection type in the premise of the case rule strictly increases the expres-
siveness of the language; we expect that it will be even more relevant in a language extension that includes
a form of row polymorphism [21].

3.2 Dynamic Semantics

The full evaluation rules appear in Appendix A. Most are standard; the interesting ones are highlighted in
Figure 8.

select∆(θ̂, β̂i
i∈1..n)

def= j ∈ 1..n,

where ∆ ` θ̂ v β̂ j

and ∀k ∈ 1..n . ∆ ` θ̂ v β̂k ⇒ ∆ ` β̂ j v β̂k

m brand β1(γ) extends β2 in p | ∆ 7−→ p | ∆, (β̂1 extends β̂2)
(E-BRAND-DECL)

select∆(θ̂, β̂i
i∈1..n) = k

case θ̂(` = v) of {xi as β̂i ⇒ ei
i∈1..n} 7−→∆ [ θ̂(` = v) /xk ] ek

(E-CASE2)

Figure 8: Selected evaluation rules

E-BRAND-DECL adds information from the brand declaration to the run-time subtyping context ∆. Note
that the information about the brand’s associated record γ is not included, since structural subtyping rela-
tionships have no effect on a program’s execution. Sub-branding relationships do need to be retained since
they affect the dispatch in the evaluation of the case expression.

The E-CASE2 rule handles evaluation of case expressions by appealing to the auxiliary definition of the
partial function select∆. This function returns the index of the most specific matching tag, if one exists. In
words, select∆(θ̂, β̂i

i∈1..n) returns the index j of a β̂ j that is the least upper bound (i.e., the smallest super-
brand) of θ̂. The proof of the progress theorem for this case shows that for well-typed programs, select∆ is
always uniquely defined.

3.3 Type safety

In this section, we describe the key lemmas and interesting cases needed to prove type safety via the stan-
dard theorems of progress and preservation.

Due to the fact that our language includes both intersection types and subtyping, the usual lemmas
have to be stated very carefully. For example, the typing inversion lemma is as follows:
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Lemma 3.2 (Inversion of the typing judgement).

1. If Γ | Σ ` λx :τ1. e : σ and Σ ` σ ≤ σ1 → σ2 then Σ ` σ1 ≤ τ1 and Γ, x : τ1 | Σ ` e : σ2.

2. If Γ | Σ ` θ̂(`i = ei
i∈1..n) : σ and Σ ` σ ≤ β(kj : τj

j∈1..m) then for some σi
i∈1..n we have:

(a) Γ | Σ ` θ̂(`i = ei
i∈1..n) : θ(`i : σi

i∈1..n) and Γ | Σ ` ei : σi

(b) Σ ` (`i : σi
i∈1..n) <: fieldsΣ θ

(c) Σ ` θ v β

(d) Σ ` (`i : σi
i∈1..n) <: (kj : τj

j∈1..m)

Note that the lemma includes premises such as e : σ and σ ≤ σ1 → σ2, rather than the simpler e :
σ1 → σ2; this is due to the presence of intersection types. (Since the expression could have type e.g.,
σ1 → σ2 ∧ σ′1 → σ′2, stating the lemma in terms of subtypes simplifies its proof, as this type is a subtype of,
for instance, σ1 → σ2.)

Similarly, one of the cases in the canonical forms lemma is stated as:

If ∅ | Σ ` v : σ and Σ ` σ ≤ β(γ), v is of the form θ̂(`i = vi).

It would be very difficult to prove a more “standard” canonical forms lemma, since objects need not have
types of the form β(γ); their types may contain one or more intersections (i.e. β1(γ1) ∧ β2(γ2) ∧ · · · ).

The type safety theorems make use of a consistency requirement between the static subtyping context
and the run-time subtyping context.

Definition 3.2 (Models relation on contexts).
The context Σ models ∆, written Σ ` ∆, if |Σ| = |∆| and for every

m β1(γ1) extends β2 ∈ Σ

we have
β̂1 extends β̂2 ∈ ∆.

The progress theorem not only requires that the program be well-typed under a subtyping context Σ,
but also that it be evaluated under run-time context ∆ consistent with Σ, i.e., one such that Σ ` ∆:

Theorem 3.1 (Progress [programs]). If ∅ | Σ ` p : τ, for some τ and Σ, then one of the following cases
holds:

1. p is a value

2. for ∆ such that Σ ` ∆, there exist p′ and ∆′ such that p | ∆ 7−→ p′ | ∆′.

The bulk of the proof follows standard techniques. The most interesting case follows from the following
lemma:

Lemma 3.3 (Case statement exhaustiveness).

If ∅ | Σ ` θ̂(`j = vj
j∈1..m) : β(γ) and Σ ` β̂i

i∈1..n covers β(γ) and Σ ` ∆, then select∆(θ̂, β̂i
i∈1..n) is

defined.

Proof. (Sketch). By typing inversion, we know that θ is concrete and that θ̂(` = v) : θ(` : τ), for some τ.
From the definition of covers, either θ(` : τ), β(γ) disjoint, or there is at least one matching branch for θ.
The former cannot hold since that would mean that one value has two types that are disjoint. So it suffices
to show that there is exactly one matching branch. However, the only way that two matching branches
could occur would be if there were multiple inheritance, which is disallowed by the grammar.
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As with progress, the preservation theorem must account for the run-time subtyping context ∆.

Theorem 3.2 (Preservation [programs]).
If Γ | Σ ` p : τ and Σ ` ∆ and p | ∆ 7−→ p′ | ∆′, then there exists a Σ′ such that Σ′ ` ∆′ where
Γ | Σ′ ` p′ : τ.

The proof proceeds by induction on typing derivations and appeals to the standard substitution lemma.
(Due to the presence of subtyping and intersection types, it is very difficult to prove this theorem by the
more usual induction on the one-step evaluation derivation.) The interesting case is the E-CASE2 subcase of
TP-CASE. Here, we know

Γ, xk : βk(γ ∧ fieldsΣ βk) | Σ ` ek : τ

and

θ̂(` = v) : β(γ).

It suffices to show θ̂(` = v) : βk(γ ∧ fieldsΣ βk); the result then follows from the substitution lemma. To
show this, we make use of the following lemma:

Lemma 3.4. If Σ ` θ v β then Σ ` fieldsΣ θ <: fieldsΣ β.

This formally proves that sub-branding implies structural subtyping on the associated record types.
The remainder of the preservation proof is straightforward. Full proofs of both theorems (and auxiliary

lemmas) are provided in the companion technical report [17].

4 Related Work

The languages that are the most similar to Unity are Cecil [6] and Moby [11]; we compared Unity to these
in Section 2. Cecil offers greater expressive power over Unity, but at the cost of a much more complex
type system that includes constraint solving. Moby includes structural subtyping and an inheritance-based
subtyping that is similar to our sub-branding, but as its primary goal is to combine modules and objects, it
does not arrive at the same combination of features as Unity does.

MultiJava [7, 8] and EML [18] both include support for modular typechecking of external methods and
multimethods; previous work had performed a whole-program analysis. We intend to build on the EML’s
techniques when we extend Unity to allow brand definitions to occur anywhere in the program. Lee and
Chambers [15] have extended EML to include support for parameterized modules.

Strongtalk [3] presents a structural type system for Smalltalk and also supports named subtyping re-
lationships (from which we borrowed the name “brand”), but these are not combined in the type system.
Additionally, since it is a type system for Smalltalk, it supports only the single dispatch model.

Cω’s [2] main subtyping model is nominal, though it does support depth subtyping—but not width
subtyping—for “anonymous structs,” which are similar to our records. Following C#, Cω also has a single
dispatch model.

OML [22] is similar to our work in that it has declared subtyping (via objtype) along with structural
subtyping. However, there are a number of notable differences. In particular, OML wished to retain ML-
style type inference and therefore places constraints on the subtyping relation. Additionally, depth subtyp-
ing is not permitted during objtype extension, and there is no support allow for modular extensibility of
methods.

5 Summary and Future Work

We have presented a core calculus that combines nominal and structural subtyping and provided proofs of
type safety. We have also described the utility of our system through a series of examples.
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There are a number of extensions we would like to make. As previously mentioned, we wish to allow
brand extension to occur anywhere in the program, and new branches to be added to external methods
without modifying existing code.

We also plan on adding parametric polymorphism and row polymorphism [21]. The latter would
greatly add to the expressiveness of our system. First, it would increase the utility of the intersection in
the types of bound variables in the branches of the case typing rule; the additional information contained
in a row variable could then be retained in case branches. In addition, it would allow for more expressive
recursive types. Recall that in the List example from Section 3, the definition of Conswas:

concrete brand Cons(hd : int, tail : List())

extends List

In our current language, it would not be possible to describe a list where every Cons element also con-
tains, for example, a color field, without defining new brands for this purpose. This is because the type
of tail above is simply List(), and there is no way of specifying that for a particular Cons object, its tail
has the same “extra fields” that it does. Row polymorphism would allow the programmer to express this
constraint without having to define brands such as ColorList, ColorCons and ColorNil.
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A Formal System

A.1 Typing

Definition A.1 (Covering definition).

β̂i
i∈1..n coversΣ β(γβ)

def=

∀θ . Σ ` θ v β and concrete θ(γθ) ∈ Σ ⇒
Σ ` θ(γθ), β(γβ) disjoint or ∃j ∈ 1..n. Σ ` θ v β j

Definition A.2 (Intersection on γ).

(`i : τi
i∈1..n, γ′) ∧ (`i : τ′i

i∈1..n, γ′′)
def=(

`i : (τi ∧ τ′i )
i∈1..n, γ′, γ′′

)
where the labels `i, γ′ and γ′′ are mutually exclusive.

Well-formed judgement

τ ok

Σ ` unit ok
Σ ` τ1 ok Σ ` τ2 ok

Σ ` τ1 → τ2 ok
Σ ` (`i : τi

i∈1..n) <: fieldsΣ β Σ ` τi ok (i∈1..n)

Σ ` β(`i : τi
i∈1..n) ok

Disjoint judgement

τ1, τ2 disjoint

Σ ` unit, τ1 → τ2 disjoint
DIS-UNIT1

Σ ` unit, β(γ) disjoint
DIS-UNIT2

Σ ` τ1 → τ2, β(γ) disjoint
DIS-ARROW

Σ ` τ1, τ2 disjoint
Σ ` τ1, τ1 ∧ τ2 disjoint

DIS-∧R1

Σ ` τ1, τ2 disjoint
Σ ` τ1, τ2 ∧ τ1 disjoint

DIS-∧R2
Σ ` τ, τ′ disjoint

Σ ` β1(. . . , ` : τ, . . .), β2(. . . , ` : τ′, . . .) disjoint
DIS-REC1

Σ ` β1 6v β2 Σ ` β2 6v β1

Σ ` β1(γ1), β2(γ2) disjoint
DIS-REC2

Σ ` τ1, τ2 disjoint
Σ ` τ2, τ1 disjoint

DIS-SYM

Typing rules

Γ | Σ ` p : τ

β1 /∈ Σ Σ ` Top(γ) ok
Σ ` γ <: fieldsΣ β2 Γ | Σ, m β1(γ) extends β2 ` p : τ′ Σ ` τ′ ok

Γ | Σ `m brand β1(γ) extends β2 in p : τ′
(TP-BRAND-INTRO)
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Γ | Σ ` e : τ

x : τ ∈ Γ
Γ | Σ ` x : τ

(TP-VAR)
Γ ` () : unit

(TP-UNIT)
Γ, x : τ1 | Σ ` e : τ2

Γ | Σ ` λx :τ1. e : τ1 → τ2
(TP-FUN)

Γ | Σ ` e1 : τ1 → τ2 Γ | Σ ` e2 : τ1

Γ | Σ ` e1 e2 : τ2
(TP-APP)

Γ | Σ ` e : σ Σ ` σ ≤ τ

Γ | Σ ` e : τ
(TP-SUBS)

concrete β(γ) ∈ Σ Σ ` (`i : τi) i∈1..n <: γ Γ | Σ ` ei : τi (i∈1..n)

Γ | Σ ` β̂(`i = ei
i∈1..n) : β(`i : τi

i∈1..n)
(TP-NEW-OBJ)

Γ | Σ ` e : β(`i : τi
i∈1..n)

Γ | Σ ` e.`k : τk
(TP-PROJ)

Γ | Σ ` e : β(γ) {β̂k
k∈1..n} distinct

Σ ` βi v β (i∈1..n) Σ ` β̂k
k∈1..n covers β(γ) Γ, xi : βi(γ ∧ fieldsΣ βi) | Σ ` ei : τ (i∈1..n)

Γ | Σ ` case e of {xj as β̂ j ⇒ ej
j∈1..n} : τ

(TP-CASE)

A.2 Subtyping

A.2.1 Sub-brand judgement

Σ ` β1 v β2

m β1(γ) extends β2 ∈ Σ
Σ ` β1 v β2

(SUB-BRAND-DECL)
Σ ` β v β

(SUB-BRAND-REFL)

Σ ` β1 v β2 Σ ` β2 v β3

Σ ` β1 v β3
(SUB-BRAND-TRANS)

A.2.2 Sub-record judgement

Σ ` γ1 <: γ2

Σ ` γ <: γ
(SUB-REC-REFL)

Σ ` γ1 <: γ2 Σ ` γ2 <: γ3

Σ ` γ1 <: γ3
(SUB-REC-TRANS)

`i : τi
i∈1..n is a permutation of `j : τj

j∈1..n

Σ ` `i : τi
i∈1..n <: `j : τj

j∈1..n (SUB-REC-PERM)

Σ ` `i : τi
i∈1..n <: `j : τj

j∈1..m, n > m
(SUB-REC-WIDTH)

for each i, Σ ` σi ≤ τi

Σ ` `i : σi
i∈1..n <: `i : τi

i∈1..n (SUB-REC-DEPTH)
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A.2.3 Subtype judgement

Σ ` τ1 ≤ τ2

Σ ` τ ≤ τ
SUB-REFL

Σ ` τ1 ≤ τ2 Σ ` τ2 ≤ τ3

Σ ` τ1 ≤ τ3
SUB-TRANS

Σ ` β1 v β2 Σ ` γ1 <: γ2 Σ ` β1(γ1) okΣ ` β2(γ2) ok
Σ ` β1(γ1) ≤ β2(γ2)

(SUB-NAME)

Σ ` σ1 ≤ τ1 Σ ` τ2 ≤ σ2

Σ ` τ1 → τ2 ≤ σ1 → σ2
(SUB-FUNC)

Σ ` τ ≤ σ1 Σ ` τ ≤ σ2

Σ ` τ ≤ σ1 ∧ σ2
(SUB-∧R)

Σ ` τ1 ≤ σ

Σ ` τ1 ∧ τ2 ≤ σ
(SUB-∧L1)

Σ ` τ2 ≤ σ

Σ ` τ1 ∧ τ2 ≤ σ
(SUB-∧L2)

Σ ` β1 v β2

Σ ` β1(γ1) ∧ β2(γ2) ≤ β1(γ1 ∧ γ2)
(SUB-BRAND-∧L1)

Σ ` β2 v β1

Σ ` β1(γ1) ∧ β2(γ2) ≤ β2(γ1 ∧ γ2)
(SUB-BRAND-∧L2)

A.3 Evaluation

Definition A.3 (Matching case).

select∆(θ̂, β̂i
i∈1..n)

def= j ∈ 1..n,

where ∆ ` θ̂ v β̂ j

and ∀k ∈ 1..n . ∆ ` θ̂ v β̂k ⇒ ∆ ` β̂ j v β̂k

Evaluation Relation

p | ∆ 7−→ p′ | ∆′

m brand β1(γ) extends β2 in p | ∆ 7−→ p | ∆, (β̂1 extends β̂2)
(E-BRAND-DECL)

e 7−→∆ e′

e | ∆ 7−→ e′ | ∆
(E-EXPR)
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e 7−→∆ e′

e1 7−→∆ e′1
e1 e2 7−→∆ e′1 e2

(E-APP1)
e2 7−→∆ e′2

v1 e2 7−→∆ v1 e′2
(E-APP2)

(λx :τ. e) v 7−→∆ [ v/x ] e
(E-APP-ABS)

e 7−→∆ e′

e.` 7−→∆ e′.`
(E-PROJ1)

β̂(`i = vi
i∈1..n).`k 7−→∆ vk

(E-PROJ2)

ei 7−→∆ e′i
β̂(`1 = v1, . . . , `i−1 = vi−1, `i = ei, . . . ) 7−→∆ β̂(. . . , `i = e′i , . . . )

(E-BRAND-CONS)

e 7−→∆ e′

case e of {· · · } 7−→∆ case e′ of {· · · }
(E-CASE1)

select∆(θ̂, β̂i
i∈1..n) = k

case θ̂(` = v) of {xi as β̂i ⇒ ei
i∈1..n} 7−→∆ [ θ̂(` = v) /xk ] ek

(E-CASE2)

B Type safety proofs

Definition B.1 (Well-formed context).
The context Σ is well-formed, iff the following conditions hold:

1. there is exactly one entry for each brand β.

2. if β(γ) extends θ ∈ Σ, then Σ ` γ <: fieldsΣ θ.

Definition B.2 (Models relation on contexts).
The context Σ models ∆, written Σ ` ∆, if |Σ| = |∆| and for every

m β1(γ1) extends β2 ∈ Σ

we have
β̂1 extends β̂2 ∈ ∆

Lemma B.1 (Inversion of the sub-record relation).
If Σ ` (`i : τi

i∈1..n) <: (kj : σj
j∈1..m), then {kj

j∈1..m} ⊆ {`i
i∈1..n} (` includes at least the labels in k ) and

Σ ` τi ≤ σj for each common label `i = kj.

Proof. Straightforward induction on the sub-record derivation.

Lemma B.2 (Subtyping and intersection for record types).
The following rule is admissible:

Σ ` γ <: γ1 Σ ` γ <: γ2

Σ ` γ <: γ1 ∧ γ2

Proof. Follows from the definition of intersection on record types and sub-record inversion (Lemma B.1).

Lemma B.3 (Inversion of subtyping).

1. If τ1 → τ2 ≤ σ1 → σ2, then Σ ` σ1 ≤ τ1 and Σ ` τ2 ≤ σ2.

2. If Σ ` β1(γ1) ≤ β2(γ2), then Σ ` β1 v β2 and Σ ` γ1 <: γ2 and Σ ` β1(γ1) ok and Σ ` β2(γ2) ok.
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Proof. By induction on the subtyping derivation, with case analysis of the final rule used. Vacuous cases
have been omitted.

1. Function type

case SUB-REFL. Result is immediate.

case SUB-TRANS. We have τ1 → τ2 ≤ τ′1 → τ′2 and τ′1 → τ′2 ≤ σ1 → σ2. By the induction hypothesis,
τ′1 ≤ τ1 and τ2 ≤ τ′2 and σ1 ≤ τ′1 and τ′2 ≤ σ2. The result then follows from SUB-TRANS.

2. Brand type

case SUB-REFL. Result is immediate from SUB-BRAND-REFL and SUB-REC-REFL.

case SUB-TRANS. We have β1(γ1) ≤ β′1(γ′1) and β′1(γ′1) ≤ β2(γ2). By the induction hypothesis,
β1 v β′1 and β′1 v β2 and γ1 <: γ′1 and γ′1 <: γ2 and β2(γ2) ok. The result then follows from
SUB-BRAND-TRANS, SUB-REC-TRANS and SUB-NAME.

case SUB-NAME. Result is immediate.

Lemma B.4 (Inversion of the typing judgement).

1. If Γ | Σ ` λx :τ1. e : σ and Σ ` σ ≤ σ1 → σ2 then Σ ` σ1 ≤ τ1 and Γ, x : τ1 | Σ ` e : σ2.

2. If Γ | Σ ` θ̂(`i = ei
i∈1..n) : σ and Σ ` σ ≤ β(kj : τj

j∈1..m) then for some σi
i∈1..n we have:

(a) Γ | Σ ` θ̂(`i = ei
i∈1..n) : θ(`i : σi

i∈1..n) and Γ | Σ ` ei : σi

(b) Σ ` (`i : σi
i∈1..n) <: fieldsΣ θ

(c) Σ ` θ v β

(d) Σ ` (`i : σi
i∈1..n) <: (kj : τj

j∈1..m)

Proof. For each part, we proceed by induction on the typing derivation, with case analysis of the final rule
used. Vacuous cases have been omitted.

1. Γ | Σ ` λx :τ1. e : σ

case TP-FUN. σ = τ1 → τ2
By SUB-TRANS, τ1 → τ2 ≤ σ1 → σ2; by subtype inversion (Lemma B.3), σ1 ≤ τ1 and τ2 ≤ σ2. By
the rule’s premise, Γ, x : τ1 | Σ ` e : τ2, and the result follows from TP-SUBS.

case TP-SUBS. We have λx :τ1. e : τ and τ ≤ σ. By SUB-TRANS, τ ≤ σ1 → σ2 and the result follows
from the induction hypothesis.

2. Γ | Σ ` θ̂(`i = ei
i∈1..n) : σ

case TP-NEW-OBJ. σ = θ(`i : σi
i∈1..n).

Conclusions (a) and (b) follow from the premises of TP-NEW-OBJ. By subtype inversion
(Lemma B.3), θ v β and (`i : σi

i∈1..n) <: (kj : τj
j∈1..m), which proves conclusions (c) and (d).

case TP-SUBS. Result follows from SUB-TRANS and the induction hypothesis.

Lemma B.5 (Canonical forms). Suppose ∅ | Σ ` v : σ and Σ ` σ ≤ τ.

1. If τ = unit then v = ().

2. If τ = τ1 → τ2 then v is of the form λx :τ11. e.

20



3. If τ = β(γ) then v is of the form θ̂(`i = vi).

Proof.

1. Immediate from typing judgement.

2. By induction on the typing derivation. There are two possible cases for the final rule used:

case TP-FUN. Immediate.

case TP-SUBS. Result follows from SUB-TRANS and the induction hypothesis.

3. By induction on the typing derivation. There are two possible cases for the final rule used:

case TP-NEW-OBJ. Immediate.

case TP-SUBS. Result follows from SUB-TRANS and the induction hypothesis.

Lemma B.6. If Σ ` ∆ then Σ ` β1 v β2 iff ∆ ` β̂1 v β̂2.

Proof. Immediate from the definition of Σ ` ∆.

Lemma B.7. If Σ ` τ1, τ2 disjoint, then Σ 0 τ1 ≤ τ2 and Σ 0 τ2 ≤ τ1.

Proof. By induction on Σ ` τ1, τ2 disjoint. We will prove only Σ 0 τ2 ≤ τ1, the other direction is symmetric.

case DIS-UNIT1, DIS-UNIT2, DIS-ARROW. Immediate.

case DIS-∧R1. τ1, τ2 disjoint τ1, τ1 ∧ τ2 disjoint.
By the induction hypothesis, τ2 6≤ τ1. Suppose τ1 ∧ τ2 ≤ τ1. Then, by SUB-∧L2, τ2 ≤ τ1, which is a
contradiction.

case DIS-∧R2. Similar to above.

case DIS-REC1. τ, τ′ disjoint β1(. . . , ` : τ, . . .), β2(. . . , ` : τ′, . . .) disjoint
By the induction hypothesis, τ 6≤ τ′. Suppose β1(. . . , ` : τ, . . .) ≤ β2(. . . , ` : τ′, . . .). Then, by subtype
inversion, (. . . , ` : τ, . . .) <: (. . . , ` : τ′, . . .). By sub-record inversion (Lemma B.1), τ ≤ τ′, which is a
contradiction.

case DIS-REC2. β1 6v β2 β2 6v β1 β1(γ1), β2(γ2) disjoint
Suppose β1(γ1) ≤ β2(γ2). Then β1 v β2, which is a contradiction.

case DIS-SYM. Immediate.

Lemma B.8 (Disjoint types).
If Σ ` τ1, τ2 disjoint and ∅ | Σ ` v : τ1, then ∅ | Σ 0 v : τ2.

Proof. By induction on the derivation Σ ` τ1, τ2 disjoint.

case DIS-UNIT1. τ1 = unit, τ2 = σ1 → σ2. Result is immediate from canonical forms lemma.

case DIS-UNIT2, DIS-ARROW. Similar to above.
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case DIS-∧R1. By the induction hypothesis, ∅ | Σ 0 v : τ2. Suppose that v : τ1 ∧ τ2. By SUB-∧L2, τ1 ∧ τ2 ≤ τ2
and by TP-SUBS, v : τ2, which is a contradiction.

case DIS-∧R2. Similar to above.

case DIS-REC1. σ1, σ2 disjoint τ1 = β1(. . . , ` : σ1, . . .) τ2 = β2(. . . , ` : σ2, . . .)
By canonical forms, v is of the form θ̂(. . . , k = v1, . . .). By typing inversion on v : τ1 then sub-record
inversion, we have v1 : σ1. By the induction hypothesis, 0 v1 : σ2. But, by inversion on v : τ2, we
have v1 : σ2, which is a contradiction.

case DIS-REC2. τ1 = β1(γ1) β1(γ1), β2(γ2) disjoint β1 6v β2 β2 6v β1
By canonical forms, v has the form θ̂(` = v). By inversion on v : τ1 we have θ v β1. Suppose that
v : β2(γ2). By inversion, θ v β2. Since the sub-branding relation is a tree (no multiple inheritance),
we must have either β1 v β2 or β2 v β1, which is a contradiction.

case DIS-SYM. By the induction hypothesis, Γ | Σ 0 v : τ1, which is a contradiction.

Lemma B.9 (Case statement exhaustiveness).

If ∅ | Σ ` θ̂(`j = vj
j∈1..m) : β(γ) and Σ ` β̂i

i∈1..n covers β(γ) and Σ ` ∆, then select∆(θ̂, β̂i
i∈1..n) is

defined.

Proof. From the form of the typing judgement, we know that θ must be concrete. By typing inversion
(Lemma B.4), θ v β, and vj : τj

j∈1..m, for some τj. From the definition of covers, it follows that either
θ(` : τ), β(γ) disjoint or for some j ∈ 1..n, Σ ` θ v β j.

We know from Lemma B.8 that it is not the case that θ(` : τ), β(γ) disjoint, since θ̂(` = v) has both these
types; therefore, the second condition must hold. By the definition of select, to prove the result, we must
produce some k ∈ 1..n where θ̂ v β̂k and ∀i ∈ 1..n . θ̂ v β̂i ⇒ β̂k v β̂i (in other words, β̂k is the most
specific match for θ̂).

From above, Σ ` θ v β j and from Lemma B.6, ∆ ` θ̂ v β̂ j. It now suffices to show that either β̂ j is the
most specific match for θ̂ (and is therefore j is the result of select), or that most specific match does exist (in
other words, there is a total order on the branches).

Let us suppose that ∃a ∈ 1..n such that ∀i ∈ 1..n β̂i 6v β̂a and θ̂ v β̂a, but β̂ j 6v β̂a (in other words, β̂ j is
not the most specific match for θ̂, β̂a is a candidate match for θ̂, and no subtype of β̂a exists in β̂i

i∈1..n). Then
one of two cases holds: either β̂ j and β̂a are unrelated, or β̂a v β̂ j.

The first case is impossible: since θ̂ v β̂ j, β̂ j and β̂a could only be unrelated if θ were to have two
immediate parents. This is disallowed by the grammar. In the second case, we simply take a, rather than j,
as the result of select.

Theorem B.1 (Progress [expressions]). If ∅ | Σ ` e : τ, for some τ and Σ, then one of the following cases
holds:

1. e is a value

2. for ∆ such that Σ ` ∆, there exists e′ such that e 7−→∆ e′.

Proof. By induction on the typing derivation ∅ | Σ ` e : τ.

case TP-UNIT, TP-FUN. Immediate.
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case TP-APP. e = e1e2, e1 : τ1 → τ2.
By the induction hypothesis, either e1 is a value or it can take a step, similarly for e2.
If e1 is a value and e2 can take a step, then E-APP2 applies.
If e1 is a value and e2 is a value, then E-APP-ABS applies, since by canonical forms (Lemma B.5), e1 is a
lambda.
If e1 can take a step, then the rule E-APP1 applies.

case TP-SUBS. Result follows from induction hypothesis.

case TP-NEW-OBJ. e = β̂(`i = ei
i∈1..n) ei : τi

i∈1..n

By the induction hypothesis, each ei is a value or it steps to some e′i . If any ei takes a step, then
E-BRAND-CONS applies. If they are all values, then e is also a value.

case TP-PROJ. e = e1.`k e1 : β(` : τ)
By the induction hypothesis, either e1 is a value or it steps to some e′. If it is a value, then by canonical
forms it has the form β̂1(k = v) and E-PROJ2 applies. If it steps to e′, then E-PROJ1 applies.

case TP-CASE. e = case e1 of {β̂i = ei}
By the induction hypothesis, either e1 takes a step or it is a value. If it steps, the rule E-CASE1 applies.
If it is a value, then by canonical forms, it has the form θ̂(` = v). By Lemma B.9, a matching case exists
and therefore E-CASE2 applies.

Theorem B.2 (Progress [programs]). If ∅ | Σ ` p : τ, for some τ and Σ, then one of the following cases
holds:

1. p is a value

2. for ∆ such that Σ ` ∆, there exist p′ and ∆′ such that p | ∆ 7−→ p′ | ∆′.

Proof. By the grammar, either p is an expression or it is a brand declaration. In the former case, the result
follows from the progress theorem for expressions (Theorem B.1) and the rule E-EXPR. Otherwise, the rule
E-BRAND-DECL applies.

Lemma B.10 (Substitution).
If Γ, x : σ | Σ ` e1 : τ and Γ | Σ ` e2 : σ then Γ | Σ ` [ e2/x ] e1 : τ.

Proof. Straightforward induction on typing derivations.

Lemma B.11.
If Σ ` θ v β then Σ ` fieldsΣ θ <: fieldsΣ β.

Proof. By induction on θ v β, with case analysis of the final rule used.

case SUB-BRAND-DECL. m θ(γ) extends β ∈ Σ, where γ = fieldsΣ θ
Since Σ is well-formed, we have Σ ` γ <: fieldsΣ β, which is the required result.

case SUB-BRAND-REFL. Immediate.

case SUB-TRANS. θ v θ′ θ′ v β. By the induction hypothesis, fieldsΣ θ <: fieldsΣ θ′ and fieldsΣ θ′ <:
fieldsΣ β. By SUB-REC-TRANS, fieldsΣ θ <: fieldsΣ β, which is the required result.

Theorem B.3 (Preservation [expressions]).
If Γ | Σ ` e : τ and Σ ` ∆ and e 7−→∆ e′, then Γ | Σ ` e′ : τ.
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Proof. By induction on Γ | Σ ` e : τ.

case TP-VAR, TP-UNIT, TP-FUN. Vacuous; e does not evaluate.

case TP-APP. e1 : τ1 → τ2 e2 : τ1 e1 e2 : τ2
There are 3 possible evaluation rules that apply:

case E-APP1 By the induction hypothesis, if e1 7−→∆ e′1, then e′1 : τ1 → τ2. The result then follows
from TP-APP.

case E-APP2. Result follows from the induction hypothesis and TP-APP.

case E-APP-ABS. λx :σ. e v : τ1
By typing inversion, τ1 ≤ σ and Γ, x : σ | Σ ` e : τ. By TP-SUBS, v : σ, and the result follows from
the substitution lemma (Lemma B.10).

case TP-SUBS. e : σ σ ≤ τ
By the induction hypothesis, e′ : σ and the result follows from TP-SUBS.

case TP-NEW-OBJ. The only evaluation rule that applies is E-BRAND-CONS. We have ek 7−→∆ e′k. By the
induction hypothesis, ek : τk. The result then follows from TP-NEW-OBJ.

case TP-PROJ. e : β(ki : τi
i∈1..n)

There are two possible evaluation rules that apply:

case E-PROJ1. Result follows from the induction hypothesis and TP-PROJ.

case E-PROJ2. β̂(`j = vj
j∈1..m).`k 7−→∆ vk

By typing inversion, we have (`j : τj
j∈1..m) <: (ki : τi

i∈1..n). By sub-record inversion, vk : τk,
which is the required result.

case TP-CASE. e = case e1 of xi as β̂i ⇒ ei
Two possible evaluation rules apply:

case E-CASE1. The result follows from the induction hypothesis and TP-CASE.

case E-CASE2.
From the premise of TP-CASE we have:
Γ, xk : βk(γ ∧ fieldsΣ βk) | Σ ` ek : τ θ̂(` = v) : β(γ)

It suffices to show that θ̂(` = v) : βk(γ ∧ fieldsΣ βk). From this, the result follows from the
substitution lemma (Lemma B.10).

By typing inversion (Lemma B.4) on θ̂(` = v) : β(γ), we have (for some σ):

· θ̂(` = v) : θ(` : σ)
· ` : σ <: γ

· ` : σ <: fieldsΣ θ.

By Lemma B.11, we have fieldsΣ θ <: fieldsΣ βk; by SUB-REC-TRANS, ` : σ <: fieldsΣ βk. By
Lemma B.2, ` : σ <: (γ ∧ fieldsΣ βk). From the definition of select, ∆ ` θ̂ v β̂k. Then, since
Σ ` ∆, we apply Lemma B.6 to obtain Σ ` θ v βk. Applying SUB-NAME yields θ(` : σ) ≤
βk(γ ∧ fieldsΣ βk), which is the required result.

Theorem B.4 (Preservation [programs]).
If Γ | Σ ` p : τ and Σ ` ∆ and p | ∆ 7−→ p′ | ∆′, then there exists a Σ′ such that Σ′ ` ∆′ where
Γ | Σ′ ` p′ : τ.
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Proof. By the grammar, p is either an expression or a brand declaration. If it is an expression, then the
result follows from the preservation theorem for expressions (Theorem B.3). Otherwise, p has the form
m brand β1(γ) extends β2 in p2. By E-BRAND-DECL, p | ∆ 7−→ p2 | ∆′, where ∆′ = ∆, (β̂1 extends β̂2). By a
straightforward inversion on TP-BRAND-INTRO, we have the following:

Γ | Σ, m β1(γ) extends β2 ` p2 : τ (1)
β1 6∈ Σ (2)

Σ ` γ <: fieldsΣ β2. (3)

Let Σ′ = Σ, m β1(γ) extends β2. By (2) and (3) and the fact that Σ is well-formed, we know that Σ′ is also
well-formed. This gives us Γ | Σ′ ` p2 : τ. Finally, by Definition B.2, we have Σ′ ` ∆′, which completes the
proof.
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