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Abstract

Generating human motion that appears natural is a long standing problem
in character animation. Researchers have explored many different approaches
including physics-based simulation, optimization, and data-driven methods
such as motion graphs and motion interpolation. One major difficulty in ap-
plying most of these approaches is the lack of an implementable definition
of what it means for motion to be natural or human-like. In this thesis, we
explore two techniques to fill this gap. The first technique creates a natural-
ness measure for quantifying natural human motion. The second technique
involves a statistical analysis of human motion to compute aggregate statis-
tics that are needed to guide animation algorithms for human figures toward
natural looking solutions.

A naturalness measure should be useful in verifying that a motion editing
operation has not destroyed the naturalness of a motion capture clip or that a
synthetic motion transition is within the space of those seen in natural human
motion. To develop such a measure, we argue that the evaluation of natural-
ness is not intrinsically a subjective criterion imposed by a human observer
but is, instead, an objective measure that can be computed from a large set
of representative motions. We base our approach on a statistical analysis of a
large motion database. Using positive training data only, the system learns a
set of statistical models that represent the motion of individual joints, limbs,
and the whole body. Each model produces a score for the naturalness of the
test motion and these scores are then combined into an aggregate score to clas-
sify the input motion as natural or unnatural. We present ROC curves of the
performance of these techniques on a broad set of test sequences and compare
the results to human performance in a user study.

Aggregate statistics about the properties of human motion are needed to
guide animation algorithms to generate natural looking motion. We compute
and report a variety of statistics for joint angle range of motion, joint veloc-
ities, and dimensionality reduction using a large and representative motion
capture database. We also develop new techniques for identifying motion
synergies and summarizing motion in a visually intuitive way.



vi



Acknowledgments

I am extremely grateful to my advisor Jessica Hodgins. Without her guidance and tremen-
dous support, the thesis would not be possible. She guided me through every aspect of my
graduate study. She not only taught me how to do research, but also helped me improve
my writing skills, speaking skills, and communication skills.

I would like to thank other members in my thesis committee - Alexei Efros, Nancy Pol-
lard and James Rehg for their valuable suggestions on my research work. Their comments
and feedbacks greatly helped improve my thesis.

I would like to thank Paul Heckbert who gave me a lot of support when I started my
PhD journey in CMU. I would like to thank Hanspeter Pfister who was always a great
mentor when I worked in MERL. I should also thank Sharon Burks who helped me a lot
to handle all kinds of issues during my PhD study. I also thank my fellow colleagues
in CMU’s graphics group, as well as many others in CSD, RI, and LTI, for making my
student life in CMU so enjoyable.

Finally, I should express my deepest gratitude to my family. I owe a great deal to
my wife Wei. Without her love, encouragement, and support, it is impossible for me
complete this long journey. I also thank my dearest son Billy who brought me a lot of
happy moments during my PhD years. They supported me to pursue my own goals with
confidence, to progress with sweat and hard work, and to face and overcome obstacles
with courage.

vii



viii



Contents

1 Introduction 1

1.1 Quantifying Natural Human Motion. . . . . . . . . . . . . . . . . . . . 3

1.2 Exploring the Statistics of Natural Human Motion. . . . . . . . . . . . . 6

1.3 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Quantifying Natural Human Motion. . . . . . . . . . . . . . . . . . . . 9

2.2 Exploring the Statistics of Natural Human Motion. . . . . . . . . . . . 12

3 Natural Human Motion Classifier 17

3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Mixture of Gaussians. . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Switching Linear Dynamic Systems. . . . . . . . . . . . . . . . 25

3.2.4 Naive Bayes (Baseline Method). . . . . . . . . . . . . . . . . . 26

3.2.5 User Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Exploring the Statistics of Natural Human Motion 35

4.1 Motion Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



4.1.1 Reference Skeleton. . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Joint Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Dimensionality Reduction. . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Human Motion Synergies. . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Motion Summarization. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Conclusion 67

Bibliography 71

x



List of Figures

1.1 Examples from our test set of motions. The upper two images are natural
(cleaned and but otherwise unaltered motion capture data). The lower
two images are unnatural (badly edited and incompletely cleaned motion).
Joints that are marked in red-yellow were detected as having unnatural
motion. Frames for these images were selected by the method presented
in [4] and discussed in Chapter 3.. . . . . . . . . . . . . . . . . . . . . . 4

1.2 Sequences of different behaviors (boxing, run-to-leap, cartwheel, and bal-
let) are summarized in still images.. . . . . . . . . . . . . . . . . . . . . 8

3.1 The three hierarchical groups of features. (a) At the lowest level each joint
and its velocity form a feature group. Each feature group is illustrated
as a green circle. The white circle represents the group of features from
the root segment (linear velocity and angular velocity). (b) The next level
consists of sets of joints grouped as limbs. (c) At the highest level, all the
joints are combined into one feature group (without velocity information).22

3.2 The ROC curves for each statistical model and for the human subjects in
our user study. The circle on each curve represents the equal error rate.
The area under the ROC curve is given in parentheses.. . . . . . . . . . 27

3.3 ROC curves for each of the 26 HMM and the combined ensemble HMM.
The HMM for the individual joints are shown in red, for limbs in green,
and for the full body in blue. The lowest curve corresponds to the right
wrist which also causes the curve for the right arm to be low.. . . . . . . 29

3.4 Response of the ensemble of HMM to the positive and the negative testing
data. Each row shows the responses of all 26 models to a particular testing
sequence. The intensity of the color (red to yellow) indicates a decreasing
score (more unnatural). Each column corresponds to a single ensemble,
grouped as follows: A-joints, B-limbs, and C-full-body (see Figure3.1). . 31

xi



3.5 Two examples from our negative test set of motions. Both of them are
unnatural motions. The sequence on the left is badly edited motion. The
sequence on the right is incompletely cleaned. Joints that are marked in
red-yellow (red is unnatural and yellow is most unnatural) were detected
as having unnatural motion. Our scheme does not pinpoint the period of
time when the unnatural motion happens.. . . . . . . . . . . . . . . . . 32

4.1 The reference human skeleton. A local coordinate system is established at
the end of the inboard bone for each joint. The movement of the outboard
bone is represented as an orientation with respect to this local coordinate
system creating a hierarchical structure.. . . . . . . . . . . . . . . . . . 37

4.2 The limits and distributions of joint angles, angular velocities and angular
accelerations. The color value of the bar on the right is proportional to
the log of the number of entries in each bin. The bin sizes are 0.015 rads,
0.165 rads/sec and 3.00 rads/sec.. . . . . . . . . . . . . . . . . . . . . . 42

4.3 The limits and distributions of the joint angles for three behavior-specific
data sets: walking, running and swing dancing. The color value of the bar
on the right is proportional to the log of the number of entries in each bin.
The bin size is 0.03 rads.. . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 The range of motion for each joint in the torso.. . . . . . . . . . . . . . 55

4.5 The range of motion for each joint in the head joint group.. . . . . . . . 56

4.6 The range of motion for each joint in the two arms. We only illustrate
the range of swing motion for elbows and wrists because twist (Y) is not
defined for these joints in our motion database. We only show the twist
distribution for the two forearms joints because only twist (Y) is defined
for these 1-DOF joints.. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 The range of motion for each joint in the legs. We only illustrate the
range of swing motion for the knees (1-DOF joints) and the ankles (2-
DOF joints) because the twist (Y) is not defined for these joints in our
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 The mean pose of the entire data set. The computation is based on the
XYZ fixed angle representation.. . . . . . . . . . . . . . . . . . . . . . 59

xii



4.9 The 42 PCA bases for the entire motion data set. Each basis consists of
42 coefficients that correspond to the 42 joint angles in a pose. We take
the absolute value of each coefficient in each basis for this visualization so
that the intensity is proportional to the magnitude.. . . . . . . . . . . . 59

4.10 The first six eigenposes of the entire motion database using the XYZ fixed
angles. In each row, we show the mean pose (middle column) and the pose
as the values of the first six bases are increased.. . . . . . . . . . . . . . 60

4.11 PCA compression comparison based for three data sets.. . . . . . . . . . 61

4.12 The similarity matrix for the entire database. Each element of the matrix
is the pairwise mutual information between two joint angles. The joint
angles in each group share the same color in the bar underneath the matrix.62

4.13 The similarity matrix for a walking data set.. . . . . . . . . . . . . . . . 62

4.14 The similarity matrix for a forward jumping data set.. . . . . . . . . . . 63

4.15 Summary images for the full database.. . . . . . . . . . . . . . . . . . 63

4.16 Summary images for different behaviors. The images in the first row are
rendered from the front and those in the second row are generated from
the side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.17 The summary images for individual sequences of motion: dancing, phys-
ical activities, and pantomime. We show a front and a side view for each
sequence.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.18 Summary images for stylized walking motions.. . . . . . . . . . . . . . 66

xiii



xiv



List of Tables

3.1 The percentage of each type of testing data that was classified correctly by
each classification method (using the point on the ROC curve with equal
error rate). The number of test sequences for each type of motion is given
in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 The DOFs of each joint in each joint group. The joint angle IDs represent
the ordering for the joint angles in the pose vector used in the statistical
analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 The limits of the joint angles, the angular velocities and the angular accel-
erations for the 42 joint angles in the torso, head, arm and leg joint group.
The limits shown are Minimum, Maximum, 1-percentile-Minimum and
99-percentile-Maximum.. . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 The parameters (µ andσ ) of Gaussian distributions fit to the joint angles,
angular velocities and angular accelerations of the 42 joints in the torso,
head, arm and leg joint group.. . . . . . . . . . . . . . . . . . . . . . . 44

4.4 The absolute joint angle difference between the left and right joints in the
mean pose. Because the ASF skeleton has asymmetric local coordinate
systems for the limbs on opposite sides of the sagittal plane, we negate
these joint angles before taking the absolute difference.. . . . . . . . . . 48

xv



xvi



Chapter 1

Introduction

Human motion generation plays an important role in the game and movie industry, where

artists or animators need to produce high quality animation for human characters. How-

ever, it is impossible to generate high quality human motion fully by hand because human

motion contains many degrees of freedom, which must be coordinated in natural and phys-

ically consistent patterns to generate compelling motion. In practice, artists or animators

employ semi-automatic methods such as keyframing techniques and inverse kinematics to

facilitate this process. However, these methods are time consuming because a significant

amount of user input is required and creating a good set of key poses manually is quite

challenging. Animators have to evaluate the motion quality by hand, checking whether the

motion is “in character” and free of unnatural elements.

Animation researchers have developed automatic motion generation procedures to re-

duce the human input required to create an appealing animated sequence. Many different

approaches have been proposed, but they can be divided roughly into three categories:

physics-based simulation, optimization, and data-driven methods. Physics-based simula-

tion relies on a set of physical laws for automatic motion synthesis. Building a complete

physical structure of a human model and the corresponding control system is very chal-

lenging and the physical structure is usually simplified or overly constrained to allow for
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stable solutions. Automatic motion synthesis can also be formulated as an optimization

problem, a search problem guided by an objective function. However, the search for a

natural solution can easily fail because of local minima in the search space or because

the objective function does not correctly characterize the naturalness of human motion.

More recently, data-driven approaches have been developed that reuse captured motion

data to generate variations. For example, a graph structure called a motion graph can be

generated by connecting pairs of similar poses (creating new transitions) in the original

motion capture clips. By searching the motion graph, we can generate motions that meet

the user’s constraints. Interpolating similar poses or motion sequences is another data-

driven approach to generate variations of existing clips. These two approaches produce

good results as long as the new transitions and the interpolation operation do not the break

the “naturalness” embedded in the original motion clips.

Although naturalness is the key to the successful generation of realistic human an-

imation, one major difficulty in applying all of these approaches is the lack of an im-

plementable definition of what it means for motion to be natural or human-like. In this

thesis, we explore two techniques to fill this gap. The first technique creates a naturalness

measure for quantifying natural human motion. A naturalness measure should be useful

in verifying that a motion editing operation has not destroyed the naturalness of a motion

capture clip or that a synthetic motion transition is within the space of those seen in natural

human motion. To develop such a measure, we argue that the evaluation of naturalness is

not intrinsically a subjective criterion imposed by a human observer but is, instead, an ob-

jective measure that can be computed from a large set of representative motions. We base

our approach on a statistical analysis of a large motion database that contains a variety

of natural human behaviors. The second technique is a statistical analysis of human mo-

tion. These statistics can be used to guide animation algorithms for human figures toward

natural looking solutions. They have not been comprehensively reported previously. We

believe the set of statistics and the insight gleaned from them will allow others to create

significantly better algorithms for generating natural human motion.

For both approaches, we employ the Carnegie Mellon motion capture database (mo-
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cap.cs.cmu.edu), the largest publicly available motion capture database. The data are rep-

resentative as it contains 4 hours of many different behaviors captured from 34 different

subjects. We give an overview of these two approaches in the next two sections.

1.1 Quantifying Natural Human Motion

Data-driven approaches to human motion synthesis have been a focus of attention for the

past ten years. Much of the research in this area has been on techniques for adapting

captured motion data to new situations. Motion capture data can be reordered in time [3,

32, 33], similar motions can be interpolated [72, 52, 31], motion can be edited [16], and

new motions can be generated by combining motions for individual limbs [29]. Models of

human motion can also be used to synthesize new motion [9, 36].

Each of these techniques employs heuristics or models that attempt to restrict the out-

put of the algorithms to natural-looking motion, but no single naturalness measure exists to

assess the quality of the output. In this work, we explore whether it is possible to provide

such a measure.

How can we quantify what it means for a sequence of human motion to appear natural?

One approach is to propose a set of heuristic rules that govern the movement of various

joints. If a given sequence violates any of the rules, it is judged to be unnatural. For

example, a character’s motion could be tested for angular momentum conservation in flight

or violation of the friction cone when the foot is in contact. This bottom-up approach will

likely have difficulty with the more stylistic elements of human motion, because a motion

can be physically correct without appearing natural.

A second approach is to develop a set of perceptual metrics that provide guidelines for

the flaws that people are likely to notice [50, 43, 22, 48]. For example, Reitsma and Pollard

measured the sensitivity of users to changes in horizontal and vertical velocity [50]. Taken

together, such studies could provide a set of guidelines to assess whether a given motion

will be perceived as natural.
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Figure 1.1: Examples from our test set of motions. The upper two images are natural

(cleaned and but otherwise unaltered motion capture data). The lower two images are

unnatural (badly edited and incompletely cleaned motion). Joints that are marked in red-

yellow were detected as having unnatural motion. Frames for these images were selected

by the method presented in [4] and discussed in Chapter 3.

A third approach is to train a classifier to distinguish between natural and unnatural

movement based on human-labeled, ground-truth data [29, 69]. For example, Wang and

Bodenheimer used an optimization approach to find weights for a transition metric that

best matched the judgments of sequences by users as to which sequences were natural and

which were not. We use an alternative take on this approach and assume that the learning

algorithm will be trained only on positive (natural) examples of the motion. We make this

assumption because natural motions are readily available from commercial motion capture

systems. Negative (unnatural) examples, on the other hand, are precious because each

must be hand labeled by a person. As a consequence of this scarcity, the negative examples
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that would be required for training do not exist. A further concern is that the characteristics

of these negative examples are likely to be specific to the adaptation method that generated

them and not representative of unnatural motions in general. We will demonstrate that

using our approach, a variety of motions can be assessed using models that have been

trained on a large corpus of positive examples (Figure1.1).

Our approach to this problem is based on the assumption that the evaluation of natu-

ralness is an objective measure imposed by the data as a whole. Simply put, motions that

we have seen repeatedly are judged natural, whereas motions that happen very rarely are

not. Humans are good at this type of evaluation because they haveseen a lot of data. The

amount of collected motion capture data has grown rapidly over the past few years and we

believe that there is now an opportunity for a computer to analyze a lot of data, resulting

in a successful method for evaluating naturalness.

We model the naturalness of human motion by training different statistical modelsonly

on positive data — natural human motions. We explore the performance of mixture of

Gaussians (MoG), hidden Markov models (HMM), and switching linear dynamic systems

(SLDS) on this problem. We also propose anensemble modelto attack this problem. This

approach first hierarchically decomposes human motion into its constituent parts (individ-

ual joints, limbs, and full body), then builds a statistical model of each one using existing

machine learning techniques and finally combines these models into an ensemble model

for classification of the motion as natural or unnatural. We also implement a Naive Bayes

(NB) model for a baseline comparison. We test these techniques on motion capture data

held out from a database, keyframed motions, edited motions, motions with noise added,

and synthetic motion transitions. We present the results as receiver operating characteristic

(ROC) curves and compare the results to the judgments made by subjects in a user study.

This approach is discussed in detail in Chapter 3.
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1.2 Exploring the Statistics of Natural Human Motion

The statistics of natural human motion play an important role in understanding and study-

ing human motion in animation, ergonomics, and biomechanics. These statistics can be

computed individually from a single subject and behavior or as aggregate statistics com-

puted from many subjects performing a variety of behaviors. In this thesis, we present

statistics computed for various classes of behaviors. These statistics include limits and

distributions on joint angles, angular velocities and accelerations which characterize the

range of human motion. We also present the mean pose and eigenposes computed us-

ing principal component analysis (PCA), a statistical analysis of human motion synergies,

and motion summary images which expose the characteristics of natural human behaviors

in a visually informative way. We believe statistical quantities computed from a large,

representative database will allow efficient synthesis of more natural motion by provid-

ing better priors and more accurate constraints. These statistics should become a useful

reference source for the implementation of existing algorithms and the development of

new animation algorithms. We also hope that they will provide insight into natural human

motion and verify some common heuristic assumptions.

Some of these statistics serve as important priors or constraints in animation algo-

rithms. For example, joint angle limits have been widely used in such applications as

motion editing [76, 14], motion retargeting [15, 60], and motion capture [68]. These

parameters are also used to restrict the search space for optimization in inverse kinemat-

ics (IK) [76] and trajectory optimization [54]. Joint torque limits are used in IK sys-

tems [34] and physics-based motion synthesis algorithms [26, 25, 54, 58, 60]. Princi-

pal component analysis has been used as a preprocessing step in many animation algo-

rithms [9, 36, 6, 18, 54, 13] because the resulting mean pose and the eigenposes char-

acterize the distribution of natural human poses and provide important priors for these

algorithms.

Although they have often been used, these statistics have not been systematically re-

ported in the animation literature. For example, even though PCA has been widely used
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in character animation, general statistics such as the mean pose and eigenposes of natural

human motion have not been reported. Although different orientation representations are

employed when PCA is used in animation, the impact of these different representations

on the performance of PCA compression has not been carefully explored. Some of the

statistics used in previous work come from trial-and-error experience [60, 68] or from

small motion capture databases [36, 54, 38]. Statistics reported in biomechanics and er-

gonomics studies are sometimes appropriate although these statistics often apply only to a

single behavior such as walking or running [74, 42].

In addition to systematically reporting statistics that are known to be of use in ani-

mation algorithms, we also develop new techniques for identifying motion synergies and

summarizing motion in a visually intuitive way. Human motion synergies identify joints

that exhibit a strong coordination. The topic has not been quantitatively analyzed in either

biomechanics or character animation mainly because a clear and computable definition for

the coordination of joint movements is not available. In this thesis, we provide a statistical

definition to quantify the coordination by computing statistical dependency (measured by

mutual information [44]) between joint movements. Summarizing motion in a still image

might allow more rapid browsing of motion libraries. Existing techniques can only sum-

marize a single sequence of motion [4] but as motion capture databases become larger, we

would like to be able to expose the characteristics of classes of natural human behaviors in

a visually informative way. We are inspired by the techniques of artist Jason Salavon [30]

and merge sequences of images to create intuitive representations of motion sequences

ranging from individual behaviors to a database with four hours of motion(Figure1.2).

1.3 Organization

In the next chapter, we discuss related work. We describe the details of our data-driven

approach to quantifying natural human motion in Chapter 3. In Chapter 4, we present and

analyze a number of statistics of natural human motion. Finally, we discuss the contribu-
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Figure 1.2:Sequences of different behaviors (boxing, run-to-leap, cartwheel, and ballet)

are summarized in still images.

tions of this thesis and conclude with a discussion of future work in Chapter 5.
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Chapter 2

Background

In this chapter, we give an overview of motion synthesis and analysis work that are related

to the naturalness of human motion. These work cover a broad range of research areas

such as character animation, biomechanics, computer vision, and art. We first discuss the

work most closely related to quantifying natural human motion and then to the statistics

of natural human motion.

2.1 Quantifying Natural Human Motion

Even though there is no a clear definition for the naturalness of human motion, many

algorithms for synthesizing and editing human motion have been designed with the goal

of restricting their output to natural human motion. We use many of these techniques to

generate the positive and negative testing examples for the classifier described in Chapter

3. We briefly review this work and then discuss related problems in other disciplines.

One early technique aimed at allowing naive users to create natural looking motion is

the use of modulated sine waves and stochastic noise [47]. This approach was based on

the hypothesis that many natural human motions can be characterized as sinusoidal waves

and stochastic noise. We test our classifier on both positive and negative sequences that
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are similar in that sinusoidal noise has been added to motion capture data.

Many motion editing techniques have been proposed, each with a set of optimization

criteria intended to ensure that the resulting motion is natural (see, for example [16, 58]).

In these works, a natural motion capture clip usually served as the basis of motion editing

operations. The edited motion has to satisfy the new constraints (kinematic constraints,

for example) provided by the user while maintaining the naturalness. The naturalness is

usually measured by how similar the new motion are to the original motion capture clip,

which is presented as an objective function in these optimization problem [16, 58]. Some

of these techniques have been adapted into commercial software, and we use Maya to

perform editing on motion capture data to generate part of our negative test set.

Motion graphs create new animations by resequencing pieces of motion capture data.

The naturalness of the resulting motion depends largely on the quality of the motion tran-

sitions. Several algorithms have been proposed for creating natural transitions [33, 32, 3].

The quality of motion transitions are usually determined by the similarity of the two pose

states. The pose state variable could include joint angles, angular velocities, or angular

accelerations. TheL2 distance metric has been widely used to compute the similarity be-

tween two sets of pose state variables. A small distance usually allows for a smooth and

natural transitions in these approaches. We use synthetic motion transitions, both good

and bad, as part of the test set in our experiments.

Wang and Bodenheimer [69] used optimization to tune the weights of a transition met-

ric based on example transitions classified by a human viewer as good or bad. As it is

tedious to label these transitions manually, only a small number of example transitions (16

good transitions and 26 bad transitions) were used in the process. They made several as-

sumptions to make the optimization process tractable. For example, they did not consider

how changes in the blending algorithm would affect the naturalness for a given distance

metric. They also studied the optimal duration for a transition given a previously learned

distance measure [70].

Limb transplant creates new motions by combining limb motions from different mo-
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tion clips. It can used to generalize the motion in an available database. However, there

is no guarantee that the generated motion looks natural. Ikemoto and Forsyth [29] used an

SVM to classify a synthesized motion as “looks human” or “does not look human.” Their

approach was quite effective for this problem, but it is a supervised learning approach

and therefore requires a relatively large number of positive and negative training exam-

ples specific to limb transplant. More recently, Ikmoto and colleagues [28] applied logistic

regression to carefully chosen features to score motion transitions in the context of multi-

way motion blending. They chose features such as footstrike and acceleration information

because they observed that these features were related to errors in bad motion transitions.

All of these approaches can be used to detect specific error in unnatural human motion as

the positive and negative training examples used in these approaches were generated by

a specific application. In contrast, our goal is to use unsupervised learning to construct a

measure that can be trained only on positive examples and that works for motion produced

by a variety of motion editing algorithms. Besides providing a classifier to classify natural

and unnatural motion, our approach can also identify specific parts (joint or limb) that

demonstrate unnatural motion if the whole motion sequence is classified as unnatural.

The question of how to quantify human motion is also related to research that has been

performed in a number of fields other than computer graphics. For example, researchers

interested in speaker identification have looked at the problem of deciding whether a par-

ticular speaker produced a segment based on a corpus of data for that speaker and for

others [11]. Classifying natural vs. unnatural images for fraud detection is similarly re-

lated to our problem [12].

Closer to our problem is the work of Troje [64] who was interested in identifying fea-

tures of a human walk that can be used to label it as male or female. He reduced the

dimensionality of the dataset as we do, with PCA, and then fit sinusoids to the resulting

components. This approach is specific to a cyclic motion such as walking and would not

easily generalize to our very large, heterogeneous database. However, the performance of

his classifier was better than that of human subjects on a point light visualization of the

walking motion.
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Researchers working in activity recognition have looked at detection of unusual activ-

ities, which is similar to our problem in that an adequate negative training set would be

difficult to collect. As a result, most approaches have focused on unsupervised learning.

For example, Zhong and his colleagues [77] used an unsupervised learning approach to

detect unusual activity in video streams of human motion. Hara and his colleagues [21]

took motion detector data acquired from an intelligent house, performed vector quanti-

zation, and estimated the probability of a sequence of sensor data with a HMM. Hamid

and his colleagues [20] used clustering of event n-grams to identify and explain anom-

alous activities. More recently, Boiman and Irani [8] formulated the problem of detecting

usual or unusual activities as the problem of composing the new observed visual data us-

ing spatio-temporal patches extracted from previous video data. Regions in the observed

video which cannot be composed using large continuous chunks of data from a large set

of video examples are regarded as suspicious.

2.2 Exploring the Statistics of Natural Human Motion

Although statistics about human motion are widely used in animation algorithms, they

have been published more often in the biomechanics literature than in the animation lit-

erature. In biomechanics, these statistics are sometimes computed based on a coordinate

system that consists of three predefined planes: sagittal, transverse and frontal [74, 42].

Although this coordinate system is commonly used for human gait analysis in biomechan-

ics and has been used for walking motion synthesis in character animation [59], it has

not been adapted for more complex and fully three dimensional behaviors (dancing, for

example). Moreover, in biomechanics, these statistics are generally computed for specific

behaviors or joints and averaged across a group of subjects, which limits their use in ani-

mation where we need to synthesize a wide variety of behaviors. For example, Winter [74]

analyzed and reported kinematic walking data measured in the sagittal plane.

Researchers have modeled joint angle limits as they are critical for understanding the
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human workspace [1]. In these studies, the joint angle of each degree of freedom (DOF)

is usually bound to a range between a maximum and a minimum value and each DOF

is assumed to be able to take on all values in its range independent of the values of the

other DOFs. This simple representation has been widely adopted in computer anima-

tion [76, 14, 15, 54, 60]. It is also used in anatomy-based joint models for ergonomic

tests, athletic training, surgery planning and surgery simulation. For example, Maciel and

colleagues [39] constructed an anatomy-based knee joint by discretizing the sliding curve

of the human knee and attaching a local coordinate system at each discrete point to de-

scribe a three DOF joint movement at that point. They limited the range of each DOF

independently.

Joint angle limits can also be modeled as a joint sinus cone where the apex of the cone

is located at the joint center and the cone bounds the movements of two DOFs of a joint,

such as abduction/adduction and flexion/extension of the humerus at the shoulder. Joint

sinus cones provide more accurate physiological limits on limb circumduction than inde-

pendent bounds for each joint DOF [40, 73, 41]. An implicit surface can also be used

to model joint angle limits. For example, Herda and colleagues [23] used quaternions to

represent rotations for 3-DOF joints such as the shoulder. Then using data from an optical

motion capture system, they fit an implicit surface to the three imaginary components of

these quaternions and used that surface as a joint limit. Each of these different represen-

tations determine a configuration space for the joint and the more anatomically accurate

representations find a tighter, more accurate description of the space. However, “hard”

joint angle limits do not provide information about the likelihood of a joint angle configu-

ration, which is closely related to the naturalness of a joint angle configuration [51] or the

“comfort” of joint configurations for task-driven motion generation [34].

PCA has been widely used in character animation [9, 36, 6, 18, 54, 65, 13]. Be-

cause there are multiple representations for orientations, researchers have chosen differ-

ent representations including Euler angles [9, 54, 65], quaternions [6] and exponential

maps [36, 18, 13] when PCA was applied to the motion data.

Although the notion of “synergies” has an intuitive meaning in biomechanics and char-
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acter animation, it lacks a rigorous and computable definition. The eigenposes found by

PCA analysis have been used to represent synergies. For example, they were used for

designing human motor control strategies in robotics [19] and for analyzing complex hand

manipulation in biomechanics [61]. However, PCA analysis on human poses does not aim

to identify the coordination between joint movements but rather represent human poses as

a compact linear combination of a few eigenposes (via additions and subtractions). The

coordination of joint movements in these eigenposes may not reflect the real coordination

observed in the movements of these joints. As a result, PCA analysis cannot explicitly

identify groups of joints that exhibit coordination in their motions. Identifying such joint

groups has an application in quantifying natural human motion in animation [51] and hu-

man motion simulation and control [26].

As observed by Sakamoto and colleagues [55], iconic or image-based motion or pos-

ture representation could provide an intuitive user interface for browsing or navigating a

large motion database. Assa and colleagues [4] summarized a single motion sequence in

one image by compositing images of representative poses. We present a general approach

that can visualize motions in a large database in one image. Our technique of motion sum-

marization was inspired by artist Jason Salavon [30]. Each of his works utilizes 100 unique

commemorative photographs culled from the internet for averaging. The final composi-

tions are arrived at using both the mean. Based on a similar idea, Torralba and Oliva [63]

visualized different categories of natural images by exposing the regularities in the inten-

sity patterns across all the images in the same category. In each category, they used some

images constrained to have a particular object at one scale present in the image. In this

work, appropriate alignments of objects in the source images is important for exposing

regularities. As the alignment process for real images require significant amount of user

input, only 100 images were usually used in these work. In our work, we choose to av-

erage synthetic silhouettes of human poses as the alignment is an automatic process for

synthetic images so that we can summarize a large number of poses in a database. Fur-

thermore, instead of visualizing the mean image directly, we visualize the log density of

the mean image to explore the subtleties of pose distribution in a database. Our work is
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also related to motion-history images (MHIs) where a sequence of pose silhouettes in a

video is summarized in a image and used as a motion template for activity recognition [7].

The main difference is that the image intensity of MHI encodes the recency of the motion

rather than the silhouette distribution for the whole sequence.

15



16



Chapter 3

Natural Human Motion Classifier

In this chapter, we discuss our work on classifying human motion as natural or unnatural.

Our basic assumption is that naturalness can be defined by a motion capture database that

contains a variety of natural behaviors. Motions that similar to those in the database are

regarded as natural. Similarity can be measured by statistical models that are learned

from the database. In our work, we explore the performance of three classes of statistical

machine learning techniques when trained on a large database of motion capture data and

tested on sequences of unnatural and natural motion from a number of different sources.

Because the validity of these results depends heavily on the training and testing datasets,

we first describe those datasets and then explain the statistical techniques and show their

performance.

3.1 Data

The training database consisted of 1289 trials (422,413 frames or about 4 hours) and in-

cluded motions from 34 different subjects performing a variety of behaviors. Those be-

haviors included locomotion (42%: 5% jumping, 3% running, and 33% walking), physical

activities (16%: basketball, boxing, dance, exercise, golf, martial arts), interacting with the
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environment (7%: rough terrain, playground equipment), two subjects interacting (6%),

and common scenarios (29%: cleaning, waiting, gestures).

The motion was captured with a Vicon motion capture system of 12 MX-40 cam-

eras [67] at 120Hz and then downsampled to 30Hz. The subjects wore 41 markers, the

three dimensional (3D) positions of which were located by the cameras. Using an automat-

ically obtained skeleton for the user, the motion was further processed to the ASF/AMC

format, which includes absolute root position and orientation, and the relative joint angles

of 18 joints. These joints are the head, thorax, upper neck, lower neck, upper back, lower

back, and left and right humerus, radius, wrist, femur, tibia, and metatarsal.

For the experiments reported here, we converted each frame of raw motion data to a

high-dimensional feature vector of angles and velocities. For the root segment, we com-

pute the angular velocity and the linear velocity (in the root coordinate system of each

frame). For each joint, we compute the angular velocity. The velocities are computed as a

central difference between the joint angle of the position on the previous frame and on the

next frame. As a result, both joint angles and their velocities can be represented by unit

quaternions (four components each). The complete set of joint angles and velocities, to-

gether with the root’s linear velocity (three components) and angular velocity (quaternion,

four components), form a 151-dimensional feature vector for each frame. The quaternions

are transformed to be on one-half of the 4D sphere to handle the duplicate representation

of quaternions. If the orientation of a joint crosses to the other half-sphere, we choose

the alternative representation for that quaternion and divide the motion sequence at the

boundary to create two continuous sequences. Fortunately this problem occurs relatively

rarely in natural human motion because of human joint limits.

We generated a number of different test sets in an effort to span the space of natural and

unnatural motions that might be generated by algorithms for producing human motion.

Unlike our training data, the testing suite contains both positive (natural) and negative

(unnatural) examples.

The negative testing sequences were obtained from a number of sources:
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• Edited motions. Alias/Wavefront’s Maya animation system was used to edit mo-

tion capture sequences to produce negative training examples. The editing was per-

formed on either a joint or a limb using inverse kinematics.

• Keyframed motions. These motions were keyframed by an animator with significant

Maya experience but limited keyframing experience.

• Noise. Noise has been used to generate human motion [47] and to improve the qual-

ity of captured motion by adding variation. We generate both positive and negative

testing examples by varying the amount of noise and relying on a human observer

to assess the naturalness of the motion.

• Motion transitions. These motions were computed using a commonly accepted met-

ric for transitions (maintain contact constraints and keep the sum of the squared

changes in joint angles below a threshold). Transitions above a high threshold and

below a low threshold were then classified as good or bad by a human viewer. We

included bad motion transitions in our negative test set.

• Insufficiently cleaned motion capture data. In the process of cleaning, motion cap-

ture data is transformed from the 3D marker locations to relative joint angles using

a model of the subject’s skeleton. For most marker sets, this process is accom-

plished through the use of inverse kinematics. If the markers have not been placed

carefully or the kinematic chain is near a singularity, this process may result in un-

natural motion (for example, knees that do not fully extend or swing out to the side

if significantly bent).

The negative, or unnatural, testing set consisted of 170 trials (27774 frames or 15 minutes).

The positive testing set consisted primarily of motion capture data that was held out

from the database. Additional positive testing data were created by adding noise to these

motions and by generating motion transitions that were judged good by an expert human

viewer. The natural motions consisted of 261 trials (92377 frames or 51 minutes).
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3.2 Approach

The input data for our models, motion capture data, is a multivariate time series consist-

ing of vectors of features (joint angles and velocities) sampled at discrete time instants.

From this perspective, a model for natural motion must capture probabilistic dependencies

between features across time. We construct this model in three steps. First, we select a

statistical model to describe the variation in the data over time. We investigate three rela-

tively standard techniques: mixtures of Gaussians (MoG), hidden Markov models (HMM)

and switching linear dynamic systems (SLDS). Associated with each model is a set of

model parameters and a likelihood function that measures the probability that an input

motion sequence could be generated by the model. Second, we fit the model parameters

using a corpus of natural human motion as training data. Third, given a novel input motion

sequence, we compute a score which can be interpreted as a measure of naturalness.

By thresholding the naturalness score we obtain a classifier for natural motion. There

are two types of classification errors: false positives (the classifier predicts natural when

the motion is unnatural) and false negatives (the opposite case). By varying the threshold

we can create a trade-off between these two types of errors. TheROC curvefor a classifier

summarizes its performance as a function of the threshold setting [66] (see Figures3.2

and3.3 for examples). Each threshold choice corresponds to an operating point on the

ROC curve. By comparing the area under the ROC curve, we can measure the relative

performance of a set of classifiers without the need to choose a particular threshold. In

practice, the choice of operating point on the ROC curve will be dictated by the application

requirements and will be assessed using a set of positive and negative examples that were

not used for training.

We could construct a single statistical model of naturalness using the full 151-dimensional

input feature vector for training. However, learning an accurate model for such a high-

dimensional feature vector is difficult, even with a (relatively) large amount of training

data. Therefore, we hierarchically decomposed the full body motion into its constituent

parts and train anensembleof statistical models, each responsible for modeling a particu-
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lar part: joints, limbs, or the whole body. Given an input sequence, these smaller models

would produce a set of likelihood scores and an ensemble rule would be used to combine

these scores into a single naturalness measure. The ensemble approach has three potential

advantages over creating a single model based on the complete feature vector:

• One potential problem in learning the parameters of statistical models is overfitting,

which occurs when a model has excessive capacity relative to the amount of avail-

able training data. When overfitting occurs, the trained models do not generalize

well during testing because they are excessively tuned to the training data set. The

ensemble approach gives us flexibility in controlling the capacity of the individual

models to prevent overfitting. In particular it allows us to control the degree of

coupling between features in the model.

• In some motion sequences, the patterns of unnatural motion may be confined to a

small set of joint angles. These cases can be difficult to detect with a single statisti-

cal model, because the small set of features with unnatural motion will be swamped

by the majority of the features which are exhibiting natural motion. The ensem-

ble approach avoids this problem because our method of combining the statistical

models looks for an unnatural classification byany of the models, not an average

classification of unnaturalness.

• The ensemble approach makes it possible to examine small groups of joints and

identify the ones most strongly associated with the unnatural motion. This property

should make it possible to provide guidance to the animator about what elements of

the motion deserve the most attention.

We designed groups of features to capture dependencies between joints at different

scales. Each group of features forms a feature vector that is associated with a single model

in the ensemble. Specifically, given the input 151-dimensional feature vector, we define a

set of 26 smaller feature vectors by combining joint angles and joint velocities into groups

of features (figure3.1). At the lowest level, we create an 8-D feature vector from each of
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(a) (b) (c)

Figure 3.1:The three hierarchical groups of features. (a) At the lowest level each joint

and its velocity form a feature group. Each feature group is illustrated as a green circle.

The white circle represents the group of features from the root segment (linear velocity

and angular velocity). (b) The next level consists of sets of joints grouped as limbs. (c) At

the highest level, all the joints are combined into one feature group (without velocity in-

formation).
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the 18 basic joints (angle and velocity). Another feature vector is created for the linear

and the angular velocity of the root segment (seven features). To represent the aggregate

motion of parts of the body, we assign a feature vector to each of the limbs: two arms

(each three joints; 24 features), two legs (each three joints; 24 features), the head-neck

group (head, upper neck, lower neck; 24 features) and the torso/root group (thorax, upper

back, lower back, plus root; 31 features). Finally, at the top level, we define a feature

vector representing the full body pose (rotation angles for all 18 joints but no velocities; 72

features). For the models created using HMM and SLDS, the feature vectors that comprise

each of these feature groups are first processed with PCA (99% variance kept for the full-

body model, 99.9% variance kept for the smaller models) to reduce the dimensionality.

Given an ensemble of models, we generate a naturalness measure for a motion se-

quenceD of lengthT by first computing a scoresi for each model, where the model has

parametersθi :

si =
logP(D | θi)

T
(3.1)

The scores for each model will generally not be in the same range. Therefore we must

normalize the scores before they can be combined. For each model, we compute the mean

µi and standard deviationσi of the scores for the training data (after eliminating a small

percentage of the high and low scores to reduce the effect of outliers). The final score for

sequenceD is then computed as follows:

s= min
i

(
si−µi

σi

)
, i = 1,2, . . . ,26 (3.2)

We choose the minimum (worst) normalized score from among thesi because we assume

that the entire motion should be labeled as unnatural if any of its constituent feature groups

have a bad score.

We now describe the three statistical models used in our experiments, as well as a

baseline method and a user study used for validating our results.
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3.2.1 Mixture of Gaussians

We first experimented with a mixture of Gaussians (MoG) model because of its simplicity.

The probability density of each feature vector was estimated using a mixture of 500 Gaus-

sians, each with a spherical covariance. In this rudimentary representation, the dynamics

of human motion are only encoded through the velocity components of the feature vector.

As the result, this model is quite weak at modeling the dynamics of human movement.

3.2.2 Hidden Markov Models

Next, we experimented with a hidden Markov model (HMM) [49], because it explicitly

encodes dynamics (change over time) and has been shown to work extremely well in other

time-series domains such as speech recognition. In a HMM, the distribution of the body

poses (and velocities) is represented with a mixture of Gaussians. In general, each hidden

state in a HMM indexes a particular mixture density, and transitions between hidden states

encode the dynamics of the data. Given positive training examples, the parameters of the

HMM can be learned using the Expectation-Maximization (EM) algorithm. The parame-

ters consist of the probabilities in a state transition matrix for the hidden state, an initial

state distribution, and mixture density parameters. In the general case, this set of parame-

ters includes mixture weights for each hidden state and the mean vectors and covariance

matrices of the Gaussians.

For the full body HMM, we used a model with 180 hidden states. For the other feature

groups comprising the ensemble of HMM, we used only 60 hidden states because the

feature vectors were much smaller. Each hidden state in the HMM was modeled as a

single Gaussian with a diagonal covariance matrix.
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3.2.3 Switching Linear Dynamic Systems

A switching linear dynamic system (SLDS) model can be viewed as a generalization of

a HMM in which each switching state is associated with a linear dynamic system (LDS)

instead of a Gaussian distribution over the output space [46]. In a HMM, each switching

state defines a “region” in the output space (e.g, poses and velocities), where the mean

vector determines the location of the region and the covariance matrix determines its ex-

tent. In contrast, each LDS component in an SLDS model defines a family of trajectories

with linear dynamics. We used a second-order auto-regressive (AR) model in our exper-

iments. In this model, trajectories begin at an initial state that is described by a mixture

of Gaussians. As the trajectory evolves, the state of the motion at timet is described by a

linear combination of the state values at timest−1 andt−2 and the addition of Gaussian

noise. By switching between these LDS components, the SLDS can model a system with

nonlinear, non-Gaussian dynamics using a set of simple building blocks. Note that our

application of SLDS does not require a separate measurement process, because we model

the motion directly in the feature space.

Closely related to our SLDS model is the motion texture model [36]. The primary

difference is that the motion texture approach confines each LDS element to a “texton”

that is constrained to begin and end at specific keyframes, whereas we adopt the classical

SLDS framework where transitions between LDS models can occur at each time step.

As in the HMM case, the SLDS model parameters are estimated using the EM al-

gorithm. However, a key difference is that exact inference in hybrid dynamic models

like SLDS is generally intractable [35]. We employed an approximate Viterbi infer-

ence algorithm which computes an approximation to the highest probability switching

sequence [46].

Given a new motion sequence, we compute a score that corresponds to the log likeli-

hood of the data under the SLDS model. This score is the sum of the log likelihoods for

each frame of data. Per-frame scores depend on the cost of switching between models and

the size of the one-step-ahead error between the model’s prediction and the actual feature
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vector.

For the full body SLDS, we used an SLDS model with 50 switching states. For the

other groups of features comprising the ensemble model, we used five switching states

each. We used diagonal covariance matrices for the noise process.

3.2.4 Naive Bayes (Baseline Method)

To establish a baseline for the other experiments, we also implemented a simple marginal

histogram probability density estimator based on the Naive Bayes (NB) model. Assum-

ing that the components of our 151-dimensional feature vector are independent (which

is clearly wrong), we computed 1D marginal histograms for each feature over the entire

training database. Each histogram had 300 buckets. Given this model, we estimated the

score of a new testing sequence by summing over the log likelihoods of each of the 151

features for each frame and then normalizing the sum by the length of the motion sequence.

Note that this method captures neither the dependencies between different features (even

those comprising a single joint angle), nor the temporal dependencies between features at

different frames (although velocities do provide some measure of dynamics). As expected,

this method does not perform particularly well, but we included it as a baseline with which

to compare the other, more complicated approaches.

3.2.5 User Study

To evaluate our results, we performed a user study approved by Institutional Review Board

(IRB) of Carnegie Mellon University. Twenty-nine male subjects and twenty-five female

subjects with different backgrounds and races were obtained by university-wide advertis-

ing.

We randomly selected and rendered 118 motion sequences from our testing set (ap-

proximately half from the positive testing set and half from the negative testing set). We

showed the rendered videos to subjects in two segments with a 10 minute break between
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Figure 3.2: The ROC curves for each statistical model and for the human subjects in our

user study. The circle on each curve represents the equal error rate. The area under the

ROC curve is given in parentheses.

the segments. Each segment contained half the sequences in a random order and the or-

dering of the presentation of the two segments was randomized between subjects. After

watching each motion, the subjects wrote their judgment about the naturalness of the mo-

tion (yes or no). The total length of the study (including the break) was about 30 minutes.

For comparison with the statistical models, the results of the user study are summarized in

Section3.3.
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Method Positive Test Bad Motion Edited Keyframed Noise Transition Area Under Number of

Set (261) Capture (37) (60) (11) (30) (32) ROC Parameters

Naive Bayes 0.69 0.75 0.73 0.80 0.76 0.40 0.75 45,600

MoG 0.71 0.86 0.97 1.00 0.37 0.28 0.78 76,000

Ensemble MoG 0.74 0.89 0.80 1.00 0.80 0.40 0.88 201,000

HMM 0.72 0.78 1.00 1.00 0.53 0.22 0.78 21,087

Ensemble HMM 0.82 0.89 0.78 1.00 0.83 0.75 0.91 43,272

SLDS 0.76 0.78 0.75 1.00 0.43 1.00 0.87 333,150

Ensemble SLDS 0.82 0.76 0.82 1.00 0.67 0.97 0.90 159,340

Human Subjects 0.93 0.75 1.00 0.81 1.00 0.92 0.97 NA

Table 3.1: The percentage of each type of testing data that was classified correctly by

each classification method (using the point on the ROC curve with equal error rate). The

number of test sequences for each type of motion is given in parentheses.

3.3 Experiments

We trained the statistical models on the database of four hours of human motion and tested

them on a set of 261 natural and 170 unnatural motions. Figure3.2shows the ROC curves

for each method. The ROC curve for the user study was computed by varying the threshold

for the number of subjects who must mark a motion as natural for it to be labeled as natural.

The testing set for the human subjects was only 118 of the 431 testing motions to prevent

fatigue.

Table3.1 gives the area under the ROC curve for each method. For the single full-

body models (151 features), SLDS had the best performance, followed by HMM and

MoG. Each ensemble of 26 models performed better than the single model that used the

same statistical technique. This improvement occurs largely because the smaller statistical

models and our method of combining their scores makes the ensemble more sensitive to

unnatural motion of a single joint than a single statistical model. The ensemble of HMM

had the largest area under the ROC curve, although the performance of all three ensemble

methods was similar. The human subjects performed significantly better than any of the

methods, indicating that it may well be possible to develop better methods.
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Figure 3.3:ROC curves for each of the 26 HMM and the combined ensemble HMM. The

HMM for the individual joints are shown in red, for limbs in green, and for the full body

in blue. The lowest curve corresponds to the right wrist which also causes the curve for

the right arm to be low.

Table3.1 also gives the percentage of the testing data that were classified correctly

for each category of the test set and each model. The threshold setting for each classi-

fier corresponds to the point of equal error rate on the ROC curve (see Figure3.2). This

point on the ROC curve is where the percentage of false positives equals the percentage

of false negatives. Bad motion capture data was not easy for most of the classifiers to

detect with only the ensemble of MoG and of HMM having success rates near 90%. The

human subjects were also not particularly good at detecting those errors, perhaps because

the errors were generally of short duration and the subjects did not have experience with

the process of capturing or cleaning motion capture data. All of the methods were able
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to correctly classify more than 70% of the edited motions as unnatural, and MoG, HMM,

and the human subjects had a success rate of over 95% on those motions. The keyframed

motions were small in number and were largely classified correctly as unnatural by all

methods and the human subjects. The addition of sinusoidal noise was more difficult for

most of the methods to detect with only ensemble MoG and ensemble HMM achieving

scores near 80%. The human subjects, on the other hand, could easily discriminate these

motions, scoring 100%. Motions with bad transitions were the most difficult type to iden-

tify for all of the methods, with the exception of SLDS and ensemble of SLDS. During a

bad transition, the velocities change due to blending in a way that is locally smooth, but

is inconsistent with the dynamics of the initial and final motion. We hypothesize that the

good performance of the SLDS models can be attributed to their ability to correctly model

longer-term temporal properties.

Table3.1also describes the number of parameters in each of the models. These para-

meters are the degrees of freedom that the model can exploit in fitting the data and provide

a crude measure of the representational resources of the models. The ensemble of MoG

and of SLDS have many more parameters than the ensemble of HMM but produce slightly

inferior performance. This discrepancy is perhaps a sign that these more complex models

may be overfitting the training data.

Figure3.3 further explores the performance of the ensemble of HMM. Each type of

model is shown in a different color: single joints, limbs, and full body. As expected, the

ensemble model that is computed by combining the scores of the individual HMM has

significantly better performance than any single HMM. The individual HMM are fairly

tightly bunched indicating that each potentially has value in the computation of the overall

score.

One advantage of the ensemble approach is that it can be used not only to detect un-

natural motions but also to localize problem areas among the joints. This property is

illustrated in Figure3.3 where the color of a block indicates whether a particular HMM

found each motion to be natural (black) or unnatural (red to yellow). In order to detect

unnatural motion in an individual joint or limb, we compare the normalized score from
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Figure 3.4:Response of the ensemble of HMM to the positive and the negative testing

data. Each row shows the responses of all 26 models to a particular testing sequence.

The intensity of the color (red to yellow) indicates a decreasing score (more unnatural).

Each column corresponds to a single ensemble, grouped as follows: A-joints, B-limbs,

and C-full-body (see Figure3.1).

the corresponding smaller model with the threshold that gives the equal error rate for the

31



Figure 3.5:Two examples from our negative test set of motions. Both of them are unnat-

ural motions. The sequence on the left is badly edited motion. The sequence on the right is

incompletely cleaned. Joints that are marked in red-yellow (red is unnatural and yellow is

most unnatural) were detected as having unnatural motion. Our scheme does not pinpoint

the period of time when the unnatural motion happens.

ensemble classifier. Joints that are below threshold are flagged as unnatural and rendered

with a color that is proportional to the score. Two unnatural motions are visualized in Fig-

ure3.5with the joints that were detected as unnatural shown in red-yellow. By localizing

problem areas to particular joints or limbs, we found errors in our previously published

database that had not been noticed when the data was cleaned and processed.

Our user study produced a true positive rate of 93% and a 7% false positive rate. The

subjects were drawn from a variety of disciplines and had not spent any significant time

studying human motion data so it is perhaps not surprising that their classification did

not agree completely with that of the authors when they assembled the testing database.

Informal interviews with the subjects indicated that they were sometimes confused by

the absence of objects that the character should have been interacting with (a box that

was stepped onto, for example). If the semantics of the motion was not clear, they were

likely to label it as unnatural. The subjects also missed some errors in the motion, most

commonly those of short duration.
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The training time for each of these statistical methods was significant, ranging from a

few hours for the simpler methods to several days for the ensemble methods. The testing

time is not long however, we were able to test the entire set of motions in 20 minutes.

3.4 Discussion

The quality of our measures is likely dependant on the quality of the motion database

of positive examples used to train them. Motions that are quite distant from those in

the training set will be easily judged unnatural even if they are in fact natural. In our

experiments, we have seen that unusual motions that have little in common with other

motions in the database are sometimes labeled unnatural. For example, we have only a

few examples of falling in the motion database and examples of that behavior were judged

as unnatural by our measures. On the other hand, we have also seen evidence that the

measures do generalize. For example, our testing set included walking while picking up a

coffee mug from a table. This motion was judged natural by most of the methods although

based on a visual inspection, the closest motions in the training data set were a two arm

reach while standing, walking, and sweeping with a broom.

Negative examples often bear the imprint of the algorithm used to create them. For

example, carelessly edited motions might evidence unbalanced postures or foot sliding if

inverse kinematics was not used to maintain the foot constraints. Similarly, motions that

include bad transitions often have significant discontinuities in velocity as the algorithm

attempts to blend between two distant poses with differing velocities. We have attempted

to address this concern by testing on a wide variety of common errors: motions that were

aggressively edited in a commercial animation package, motions that were keyframed by

an inexperienced animator, badly cleaned motion capture data, bad (and good) transitions,

and motions with synthetic noise added. A larger variety of negative training examples

would allow a more rigorous assessment of competing techniques.

Despite our attempt to span the space of motion errors with our negative testing set,
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other common errors may not be reliably detected. For example, our methods will likely

not detect very short errors because the score on a motion is computed as an aggregate

over an entire sequence of motion. The magnitude of the error caused by a single glitch in

the motion will be reduced by the high percentage of good, natural motion in the sequence.

We could potentially reduce this problem by only computing naturalness scores for short

sequences. For a longer sequence, we could first divide it into short sub-sequences, then

evaluate the naturalness score for each sub-sequence individually, and finally take the min-

imum as the score for the original sequence. This approach could also help improve joint

error identification in time. Specific sub-sequences of joint motion can also be flagged as

unnatural if their scores are below the common threshold that gives equal error rate for the

ensemble classifier.

Our measures are also not very effective at detecting otherwise natural motion that has

been slowed down by a factor of two. Such a slow-down is sometimes difficult for human

observers to detect as well, particularly for behaviors that do not include a flight phase to

provide decreased gravity as a reference. We believe that our methods do not perform well

on these motions because the poses and lower velocities seen in these motions are “natural”

in the sense that they would be seen in such natural behaviors as slow walks. Furthermore,

the HMM have self-loops that allow slower motions to pass without significant penalty.

Even though SLDS is powerful, its performance is not better than that of the HMM on

these examples. The reason could be that the approximate inference of this complex model

can easily get stuck in local minima.

Our approach to measuring the naturalness of a motion via ensembles of smaller mod-

els was quite successful. However, it is likely that the methods could be improved, given

that human observers perform significantly better on our test set. In the approach reported

here, we used our knowledge about the synergies of human motion to pick appropriate

feature groups. We expect that feature selection from among a larger set of features might

produce better results.
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Chapter 4

Exploring the Statistics of Natural

Human Motion

In this chapter, we discuss our work on exploring the statistics of natural human motion.

We introduce the motion data and their representations in our statistical analysis in the

next section. In Section4.2, we present statistics on the range of joint motion. We look at

different aspects of dimensionality reduction in Section4.3and develop a statistical analy-

sis method to identify joint angles that have synergies in human motion in Section4.4.

In Section4.5, we develop summary images to intuitively represent motion data sets in

a single image. Finally, we discuss the insights gleaned from these statistics in the last

section.

4.1 Motion Data

Our analysis is based on a large and representative motion capture database. The database

contains more than four hours of motions captured from 34 different subjects performing a

variety of behaviors such as locomotion (42%), common scenarios such as daily activities

(29%), physical activities (16%), interacting with the environment (7%) and two subjects
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interacting (6%). For comparison, we also perform some of our analysis using behavior-

specific data sets: walking, running, forward jumping and swing dancing.

All the motions were captured with a Vicon motion capture system with 12 MX-40

cameras [67]. The motion was captured at 120Hz and then downsampled to 30Hz. The

subjects wore 41 markers, the 3D positions of which were located by the cameras. The

skeleton of the user is obtained automatically from a subject calibration process ( “T” pose,

motorcycle pose, and joint range of motion capture) and stored in the ASF format. Each

motion is cleaned (gaps are filled, marker correspondence problems are fixed) and then

the motion is converted from 3D marker locations (C3D format) to AMC, the joint angle

format.

This pipeline is a standard one for processing motion capture data. However, this

marker set and processing has several flaws which may affect the statistics that we wish to

compute. First, 41 markers are not complete in that there are not enough markers to form

an independent coordinate system for each body part. Therefore the processing of the

data includes assumptions about the placement of markers (at the joint axis or along a line

between two joints, for example) and the motion is constrained to a simplified skeleton

when it is converted to the AMC format. For example, the knee is modeled as a simple

1-DOF joint but the axis of rotation of the human knee depends on the joint angle [39].

Motion outside of the DOFs in the ASF skeleton we use might occur due to muscle or skin

movement relative to the skeleton, off-axis joint motion, or noise in the capture of the 3D

location of the markers. A data set based on a more complete marker set would be better

for our statistical analysis, however, such a data set is not available.

We first discuss the reference skeleton which is based on the ASF file format. We then

introduce Euler angles, the joint orientation representation used in the AMC file format.

We finally compare Euler angles to other joint orientation representations.
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Figure 4.1: The reference human skeleton. A local coordinate system is established at

the end of the inboard bone for each joint. The movement of the outboard bone is repre-

sented as an orientation with respect to this local coordinate system creating a hierarchical

structure.

4.1.1 Reference Skeleton

The human skeleton for our motion data is based on VICON’s ASF file format (Figure4.1).

However, in this chapter, we do not use the joint names in the ASF/AMC file format but

instead use more common and hopefully more intuitive names. The skeleton used in the

Carnegie Mellon database has 18 joints, which can be classified into four groups. The

torso joint group includes the lower back, upper back and thorax. The head joint group

includes the lower neck, upper neck and head. The arm joint group includes the shoulder,
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elbow, wrist, and hand for the left and right arms. The leg joints group includes the hip,

knee, and foot for the left and right legs. Based on the ASF file format, all the joints

are organized in a hierarchical tree structure with the root node located at the lower back.

Each body part has two joints (aside from the end effectors). Following the convention

used in character animation, we call a joint the inboard joint if it is closer to the root and

the outboard joint otherwise. Each joint connects two body parts except for the lower neck

and lower back which connects three bones. Similarly, we call a body part inboard if it

is closer to the root in the hierarchy and outboard if it is further from the root. A local

coordinate system is anchored at the end of the inboard bone of each joint (Figure4.1).

Because our motion data were captured from 34 different subjects, we have 34 dif-

ferent skeletons which have the same DOF but different limb lengths. We simplify the

analysis by using only one reference skeleton. The limb length variations may influence

the results of statistical analysis, however, the impact should be minor as our analysis uses

only relative joint angles, a representation which is not particularly sensitive to the skele-

ton size variations found in adult humans. For example, the inter-subject variance has been

shown to be extremely small for the range of motion at the shoulder joint [71].

We follow the AMC convention and represent the joint angles using the XYZ fixed

angle representation or equivalently the Euler angle representation ZYX. The 42 DOFs

are described in Table4.1. The body configuration at each frame is represented as a 42-

dimensional pose vector in our statistical analysis. The Euler angles used in the ASF/AMC

format are only one possible representation for joint angles. Other common representa-

tions are unit quaternions and exponential maps and we use these representations in some

of our experiments to understand the effect of representation on the computed statistics.

Euler angles are often preferred because they are intuitive. They are widely used in

robotics where the physical design of the hardware usually prevents problems with gimbal

lock. Although singularities will always exist in any 3D parametrization of orientation, we

can carefully design the reference skeleton so that the range of joint angles seen in natural

human motion avoids the singularities as much as possible. The strategy was used in the

ASF/AMC file format and it is quite successful for all joints except for the shoulder.
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Joint Group Name Joint Name Number of DOFs Joint Angle ID

Torso Lower Back 3 (X, Y, Z) 1-3

Upper Back 3 (X, Y, Z) 4-6

Thorax 3 (X, Y, Z) 7-9

Head Lower Neck 3 (X, Y, Z) 10-12

Upper Neck 3 (X, Y, Z) 13-15

Head 3 (X, Y, Z) 16-18

Arm Right Shoulder 3 (X, Y, Z) 19-21

Right Elbow 1 (X) 22

Right Forearm 1 (Y) 23

Right Wrist 1 (X) 24

Left Shoulder 3 (X, Y, Z) 25-27

Left Elbow 1 (X) 28

Left Forearm 1 (Y) 29

Left Wrist 1 (X) 30

Leg Right Hip 3 (X, Y, Z) 31-33

Right Knee 1 (X) 34

Right Ankle 2 (X, Z) 35-36

Left Hip 3 (X, Y ,Z) 37-39

Left Knee 1 (X) 40

Left Ankle 2 (X, Z) 41-42

Table 4.1:The DOFs of each joint in each joint group. The joint angle IDs represent the

ordering for the joint angles in the pose vector used in the statistical analysis.

Unit quaternions are located on a hypersphere inR4 calledS3 and are free of singu-

larities. The representation is particularly suited for animation applications that are based

on motion interpolation as the interpolation metric is well defined inS3. One redundancy

exists in this representation because theantipodal symmetryof the unit quaternion allows

any unit quaternionq and its negative−q to represent the same orientation. We preprocess

the data to remove discontinuities caused by this redundancy by choosing a single hemi-

sphere inS3 and then mapping all joint angles to this hemisphere. We first compute the

approximate mean orientation from the data using a fast approach [45] and then use the
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approximate mean as a reference quaternion to map all joint orientations to the single

hemisphere centered at this reference point inS3.

Exponential and logarithmic mappings take vectors inR3 into unit quaternions inS3

and vice versa. More specifically, the logarithmic mapping takes a unit quaternionq into

a point,log(q), in the tangent space (R3) at the identity point,I , thus providing a 3D pa-

rameterization of orientation. The local linearity in 3D makes this representation suitable

for animation applications that are based on additive motion editing operations. A log

map can take each orientation in SO(3) to an infinite number of points inR3. We follow

the technique of Yahia and Gagalowicz [75] and limit the magnitude of the log map to

|log(q)| ≤ π so that we can obtain a one-to-one mapping. Any 3D vector in the tangent

space describes the axis and magnitude of a 3-DOF orientation.

The distance metric used for each orientation representation plays a key role in the

statistical analysis. The Euclidean distance metric, which is commonly used with Euler

angles, is problematic because it does not reflect the correct distance—the shortest rotation

between any two orientations (the geodesic distance inS3). This property may cause

problems with common operations in statistical analysis such as interpolation or averaging

between distant orientations. The spherical linear interpolation or slerp, introduced to the

graphics community by Shoemake [57] can correctly interpolate between two quaternions.

For exponential and logarithmic mappings, the Euclidean distance metric in the tangent

space only approximates the geodesic distance metric inS3. If the orientations are far from

the reference point of the tangent space (the identity point) or close to the singularities

(at orientations with rotation magnitude of2nπ (for n = 1,2,3, ...)), this approximation

will not be accurate. On the other hand, this problem is reduced if the distribution of

orientations is compact as they are for most human joints. In this case, we can set the

reference point (p) of the tangent space as the approximate mean orientation of the data.

Then we can map a unit quaternionq into the tangent space at a locationp by rotating the

hypersphere to alignp with the identity and then taking the logarithm (log(p−1q)).

In this chapter, we compute the basic joint statistics based on Euler angle representa-

tions because that is the most common representation in animation algorithms. We also
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compare Euler angles to other representations for some of the statistics as we compute.

For example, we test different joint angle representations to understand their effects on the

compression performance of PCA.

4.2 Joint Statistics

Based on the full motion capture database, we compute statistical quantities for joint an-

gles, angular velocities and angular accelerations. With the XYZ fixed angle represen-

tation, we can compute the limits and the 1D distributions of the joint angles, the angu-

lar velocities, and the angular accelerations (Figure4.2). The angular velocities and the

angular accelerations are computed from discrete joint angles using a central difference

approximation. Because differentiating will amplify noise, we apply a low-pass filter with

a five frame window to the original motion capture data at 120Hz before computing angu-

lar velocities and angular accelerations. In Figure4.2, we visualize the distributions (1D

histograms) of these statistical quantities using a color map whose value is proportional

to the log density of the distribution. We report the limits for the joint angles, the angular

velocities and the angular accelerations in Table4.2. Because the absolute limits may suf-

fer from outliers in the data, we report the minimum value in the 1st percentile of the data

and the maximum in the 99th percentile. We also fit Gaussian distributions to the data and

report these parameters in Table4.3.

We compare some of those statistics with these computed from a behavior-specific data

set. In Figure4.3, we visualize the distributions (1D histograms) of joint angles for typical

locomotions such as walking and running and complex behaviors such as swing dancing.

We compare these behavior-specific joint angle distributions (Figure4.3) with those com-

puted from the full database (Figure4.2) and observe that the range of joint movements

in each behavior is smaller than that of general human motion. We also find that the leg

joints exhibit similar joint angle distributions in these three behaviors, which may reflect

the fact that balancing is essential in all three behaviors. On the other hand, the arm joints
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Figure 4.2: The limits and distributions of joint angles, angular velocities and angular

accelerations. The color value of the bar on the right is proportional to the log of the

number of entries in each bin. The bin sizes are 0.015 rads, 0.165 rads/sec and 3.00

rads/sec.
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Joint Angle ID 01 02 03 04 05 06 07 08 09

Angle Min -0.74 -0.35 -0.41 -0.43 -0.48 -0.29 -0.43 -0.23 -0.53

Angle Min (1%) -0.40 -0.11 -0.19 -0.16 -0.15 -0.13 -0.24 -0.07 -0.14

Angle Max 1.42 0.31 0.48 0.56 0.43 0.33 0.66 0.21 0.40

Angle Max (99%) 0.73 0.14 0.18 0.25 0.19 0.16 0.22 0.09 0.17

Velocity Min -6.77 -2.74 -4.33 -1.64 -2.68 -2.43 -2.00 -1.76 -3.42

Velocity Min (1%) -0.84 -0.46 -0.97 -0.36 -0.63 -0.51 -0.44 -0.31 -0.64

Velocity Max 5.03 2.05 4.28 1.87 2.97 1.91 2.28 1.74 2.79

Velocity Max (99%) 0.92 0.47 0.98 0.36 0.64 0.50 0.40 0.32 0.63

Acceleration Min -104.95 -37.57 -93.27 -29.32 -51.59 -35.40 -52.58 -42.86 -61.78

Acceleration Min (1%) -12.06 -6.30 -15.90 -5.27 -8.09 -6.83 -7.59 -4.09 -9.50

Acceleration Max 110.23 37.28 83.93 33.93 49.12 38.37 41.62 30.37 78.85

Acceleration Max (99%) 12.57 6.18 16.00 5.35 7.93 6.91 7.31 4.02 9.49

Joint Angle ID 10 11 12 13 14 15 16 17 18

Angle Min -1.31 -0.48 -0.88 -0.81 -0.74 -0.73 -0.47 -0.36 -0.26

Angle Min (1%) -0.53 -0.34 -0.38 -0.31 -0.47 -0.34 -0.07 -0.24 -0.10

Angle Max 0.67 1.01 0.87 0.97 0.69 0.74 0.57 0.34 0.53

Angle Max (99%) 0.17 0.31 0.24 0.79 0.46 0.43 0.36 0.21 0.16

Velocity Min -4.66 -6.05 -4.78 -6.81 -8.28 -6.07 -2.87 -3.54 -2.18

Velocity Min (1%) -0.82 -0.94 -0.81 -1.13 -1.28 -0.94 -0.40 -0.64 -0.34

Velocity Max 5.12 5.26 5.14 6.42 7.02 6.07 3.18 3.32 2.03

Velocity Max (99%) 0.86 0.88 0.78 1.13 1.18 0.97 0.42 0.59 0.34

Acceleration Min -119.88 -105.90 -112.25 -165.48 -141.57 -121.23 -79.56 -65.30 -52.19

Acceleration Min (1%) -12.66 -9.35 -11.37 -14.00 -11.58 -12.64 -5.82 -6.20 -5.09

Acceleration Max 128.99 116.31 99.81 152.50 154.78 117.09 74.22 72.33 49.00

Acceleration Max (99%) 12.80 9.21 11.30 14.45 11.43 12.68 5.81 6.16 5.08

Joint Angle ID 19 20 21 22 23 24 25 26 27 28 29 30

Angle Min -2.20 -1.52 -3.04 -0.03 -1.57 -1.36 -2.59 -1.55 -1.53 -0.11 -1.57 -1.37

Angle Min (1%) -1.24 -0.85 -1.90 0.25 -1.29 -1.02 -1.23 -1.18 0.00 0.22 -0.72 -0.93

Angle Max 2.31 1.54 1.55 2.72 1.57 1.48 2.81 1.50 2.92 2.71 1.57 1.51

Angle Max (99%) 1.41 1.04 -0.02 2.44 0.79 0.42 1.41 0.75 1.94 2.36 1.33 0.37

Velocity Min -25.06 -15.86 -25.11 -25.76 -23.11 -18.18 -28.83 -13.89 -30.14 -23.79 -20.07 -22.31

Velocity Min (1%) -4.12 -3.49 -3.55 -4.50 -3.49 -2.25 -3.89 -3.15 -3.47 -4.02 -3.16 -2.15

Velocity Max 26.76 20.48 21.72 14.78 21.16 18.88 29.74 16.98 27.18 12.68 30.49 20.24

Velocity Max (99%) 4.34 3.55 3.58 4.04 3.57 2.36 4.17 3.23 3.37 3.68 3.08 2.17

Acceleration Min -497.87 -331.09 -519.01 -375.91 -456.49 -399.66 -499.27 -303.09 -509.22 -292.39 -460.72 -487.60

Acceleration Min (1%) -41.74 -40.02 -43.02 -45.18 -52.75 -37.62 -39.32 -41.53 -38.55 -38.59 -45.09 -36.91

Acceleration Max 443.08 350.93 506.97 476.01 396.09 349.84 471.26 342.64 495.82 508.10 462.77 325.94

Acceleration Max (99%) 41.38 42.40 41.40 47.99 48.58 36.65 39.32 37.25 41.27 41.67 50.28 36.08

Joint Angle ID 31 32 33 34 35 36 37 38 39 40 41 42

Angle Min -2.64 -1.35 -1.04 -0.88 -1.37 -1.20 -2.62 -0.80 -1.33 -0.95 -1.33 -1.06

Angle Min (1%) -1.60 -0.59 -0.10 -0.00 -0.65 -0.68 -1.56 -0.43 -0.63 -0.00 -0.63 -0.50

Angle Max 0.83 0.85 1.41 2.81 0.99 0.86 0.86 1.51 1.23 2.76 0.99 1.07

Angle Max (99%) 0.33 0.43 0.66 2.06 0.37 0.36 0.34 0.57 0.12 2.05 0.41 0.52

Velocity Min -11.67 -8.44 -8.66 -21.23 -16.01 -12.78 -12.25 -9.75 -11.75 -17.87 -13.82 -9.72

Velocity Min (1%) -3.64 -2.12 -1.99 -5.26 -3.52 -3.05 -3.54 -2.16 -1.91 -5.15 -3.67 -2.92

Velocity Max 10.36 9.92 9.45 17.75 17.81 11.37 10.92 8.35 10.34 16.94 15.21 10.50

Velocity Max (99%) 2.93 2.24 1.95 5.79 4.18 2.91 2.86 2.09 2.01 5.76 4.21 3.13

Acceleration Min -203.95 -223.43 -190.63 -366.32 -363.97 -275.82 -181.93 -201.89 -249.48 -365.65 -340.27 -270.18

Acceleration Min (1%) -37.16 -35.02 -24.31 -62.29 -78.29 -53.48 -36.76 -30.21 -29.13 -60.77 -81.30 -51.57

Acceleration Max 210.82 177.42 191.48 417.58 358.17 256.86 190.52 240.48 123.04 370.87 346.57 208.71

Acceleration Max (99%) 33.08 30.82 29.56 70.61 54.39 51.92 32.30 34.34 24.27 71.27 55.14 53.97

Table 4.2:The limits of the joint angles, the angular velocities and the angular accelera-

tions for the 42 joint angles in the torso, head, arm and leg joint group. The limits shown

are Minimum, Maximum, 1-percentile-Minimum and 99-percentile-Maximum.
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Joint Angle ID 01 02 03 04 05 06 07 08 09

Joint angleµ(rads) 0.14 0.01 -0.01 0.02 0.01 0.02 -0.06 0.01 0.03

Joint angleσ(rads) 0.20 0.04 0.08 0.08 0.06 0.05 0.08 0.03 0.06

Angular Vel.µ(rads/sec) 0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 0.00 -0.00

Angular Vel.σ(rads/sec) 0.30 0.16 0.34 0.12 0.22 0.17 0.15 0.11 0.22

Angular Acc.µ(rads/sec2) -0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00

Angular Acc.σ(rads/sec2) 4.34 2.19 5.36 1.83 2.83 2.33 2.60 1.45 3.30

Joint Angle ID 10 11 12 13 14 15 16 17 18

Joint angleµ(rads) -0.21 -0.03 -0.09 0.35 -0.04 0.05 0.17 -0.02 0.03

Joint angleσ(rads) 0.14 0.12 0.12 0.26 0.18 0.14 0.10 0.08 0.05

Angular Vel.µ(rads/sec) 0.00 -0.00 0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00

Angular Vel.σ(rads/sec) 0.28 0.29 0.26 0.37 0.40 0.32 0.14 0.19 0.11

Angular Acc.µ(rads/sec2) 0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00

Angular Acc.σ(rads/sec2) 4.37 3.25 4.00 4.86 4.14 4.45 2.06 2.14 1.81

Joint Angle ID 19 20 21 22 23 24 25 26 27 28 29 30

Joint angleµ(rads) -0.37 -0.01 -1.26 0.91 -0.10 -0.33 -0.41 -0.07 1.35 0.90 0.12 -0.30

Joint angleσ(rads) 0.54 0.37 0.36 0.52 0.40 0.25 0.51 0.36 0.36 0.53 0.39 0.21

Angular Vel.µ(rads/sec) 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.01 0.00 -0.00

Angular Vel.σ(rads/sec) 1.33 1.12 1.13 1.35 1.12 0.77 1.26 1.04 1.11 1.23 1.03 0.75

Angular Acc.µ(rads/sec2) 0.00 -0.00 0.00 -0.01 0.01 0.00 -0.00 -0.00 0.00 -0.01 -0.00 0.00

Angular Acc.σ(rads/sec2) 14.36 14.07 14.77 16.64 17.10 13.16 13.61 13.42 14.01 14.21 16.31 13.07

Joint Angle ID 31 32 33 34 35 36 37 38 39 40 41 42

Joint angleµ(rads) -0.35 -0.03 0.33 0.67 -0.23 -0.15 -0.35 0.01 -0.30 0.66 -0.22 0.03

Joint angleσ(rads) 0.37 0.19 0.16 0.42 0.20 0.20 0.37 0.18 0.15 0.41 0.20 0.21

Angular Vel.µ(rads/sec) -0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00

Angular Vel.σ(rads/sec) 1.16 0.73 0.67 1.79 1.22 0.97 1.14 0.71 0.66 1.77 1.25 1.00

Angular Acc.µ(rads/sec2) -0.00 0.00 0.00 -0.00 -0.01 -0.01 -0.00 0.00 0.00 0.01 0.00 -0.00

Angular Acc.σ(rads/sec2) 11.47 10.83 8.94 21.90 20.48 16.55 11.29 10.67 8.80 21.60 20.83 16.56

Table 4.3: The parameters (µ and σ ) of Gaussian distributions fit to the joint angles,

angular velocities and angular accelerations of the 42 joints in the torso, head, arm and leg

joint group.
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Figure 4.3: The limits and distributions of the joint angles for three behavior-specific

data sets: walking, running and swing dancing. The color value of the bar on the right is

proportional to the log of the number of entries in each bin. The bin size is 0.03 rads.
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show significantly different distributions. For example, swing dancing demonstrates the

largest range of arm motions, which illustrates the rich set of arm movements in this be-

havior. When we compare the joint angle distributions of the arms in running with those in

walking, we find most arm joints show a larger range of motion in walking than in running

except that the running motion demonstrates a larger range of motion in the elbow joints.

The key insight provided by these data is that the distributions of joint angles, angular

velocities and angular acceleration are better modeled by a Gaussian than by the uniform

distribution that is usually assumed. The Gaussian density function or its log form can be

used to generate a “soft” joint limit and replace the widely used “hard” limit. A “soft”

limit provides additional information about how likely or natural a joint configuration is,

which would be useful in quantifying natural human motion and in IK-based applications.

We also visualize the range of joint motion to better understand the workspace of each

limb. Visualizing the range of joint motion for a 1-DOF joint (hinge joint) or 2-DOF joint

(saddle joint) is straightforward but a 3-DOF joint (ball-and-socket joint) is more chal-

lenging. We employ a twist-and-swing parametrization [17, 5]. In this parametrization, a

3-DOF joint performs an axial motion (or twist) of the body part (1 DOF) and a spherical

motion (or swing) that determines the direction of the bone (2 DOFs). As the Y axis in the

local coordinate system of the reference skeleton is aligned along the principal axis of the

bone, we can first convert the XYZ fixed angle to a YXZ fixed angle and then take the first

component as the twist angle. After we factor out the twist component for 3-DOF joints,

we can compute its distribution (1D histogram). We use a 2D distribution (histogram) of X

and Z angles to visualize the range of the swing. We apply a similar method to the 1-DOF

or 2-DOF joints ignoring the missing DOFs.

We visualize the range of motion for joints in the torso, head, arms, and legs (Fig-

ures4.4–4.7). The range of joint motion is consistent with the common assumptions about

joint limits. For example, each joint in the torso or the head group has a small range of

motion, whereas the shoulder and hip joints have a much larger range of motion.

The range of motion for the twist components is generally small which is consistent

46



with previous assumptions [17]: The range of twist for the head and hip joints has a

symmetric distribution but the range of twist for the shoulder joints has an asymmetric

distribution, implying that people tend to work in front of their body rather than behind.

These results for the range of joint motion may provide useful insight for the develop-

ment of better algorithms for motion interpolation [53, 31]. The performance of motion

interpolation is affected by the distance between the point of interest and the nearby pose

examples. Given a fixed number of pose examples, the joints at the hip and shoulder are

more likely to have a sparse set of orientation examples than the head or torso joints be-

cause the shoulder and hip joints have a larger range of motion. If the orientation examples

are dense, we can safely choose any orientation representation for interpolation. On the

other hand, if the orientation examples are sparse, the performance will be sensitive to

errors introduced by the distance metric [17]. As a result, we should carefully choose

the orientation representation for the hip and shoulder joints. Euler angles could be a bad

choice but unit quaternions, equipped with the geodesic distance metric, are likely a better

choice [17]. Exponential maps are also better than Euler angles if the orientations are not

too far away from the reference point.

4.3 Dimensionality Reduction

Dimensionality reduction techniques have been widely used in character animation to re-

duce a high dimensional motion space to a lower dimensional subspace. For example, this

compact subspace can constrain the search space for optimization and potentially lead to

a more natural solution [54].

PCA is the most common dimensionality reduction method in the animation litera-

ture. However, the mean pose and the eigenposes of natural human motion have not been

reported in the literature, perhaps due to the lack of a large and representative motion cap-

ture database. We apply PCA analysis to the full database and compute the mean pose and

eigenposes based on the XYZ fixed angle representation. Figure4.8 illustrates the mean
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Joint Name Shoulder Elbow Forearm Wrist Hip Knee Ankle

DOFs X, Y, Z X Y X X, Y, Z X X, Z

Joint Angle Difference (rads) 0.037, 0.066, 0.101 0.012 0.021 0.037 0.005, 0.037, 0.030 0.012 0.017, 0.113

Table 4.4:The absolute joint angle difference between the left and right joints in the mean

pose. Because the ASF skeleton has asymmetric local coordinate systems for the limbs on

opposite sides of the sagittal plane, we negate these joint angles before taking the absolute

difference.

pose of the entire database from two views. Table4.4quantifies the symmetry of joints in

the mean pose. The mean pose shows left/right symmetry especially for the legs. Perhaps

this is because each leg shares the workload of balancing in most human motions. The

two arms show slightly more asymmetry, which may reflect the fact that most people are

right-handed and use that hand more.

We explored the effect of joint angle representation on the mean pose and found it was

robust to the representation. The mean poses computed based on Euler angles, quaternions

and exponential maps are visually similar. We also found that the mean pose was robust to

the behavior distribution. For example, the mean pose for our database with locomotion

excluded is similar to the one for the entire database.

Figure4.9visualizes the magnitudes of the 42 PCA bases for the entire database. These

PCA bases are sorted by the amount of variance in the data accounted for by each basis.

The first set of bases captures the coordination between the motion of the arm joints and

that of the leg joints. The second set of bases focuses mostly on the leg joints. The

last set of bases captures primarily the motion in the torso and the head joints. We were

surprised by the block layout of the matrix. We speculate that this is because of the strong

coordination between the flex/extend joints of the legs and the arms. At a lower magnitude,

we also see strong correlations between the back and neck DOF. We further explore these

synergies in the next section.

Figure4.10 illustrates the first six eigenposes, which capture 64% of the variance of

the entire motion data set. The pose variations captured by the first three eigenposes
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are symmetric whereas the 4th–6th eigenposes represent asymmetric pose variations. To

capture 95% of the variance, we need 22 dimensions are required, and 28 dimensions are

needed to capture 99% of the variance.

We also studied the effect of joint angle representation on the compression perfor-

mance of PCA. We first generated a full motion database for each joint angle representa-

tion. We then applied PCA to each database. We computed the average pose reconstruction

error as an indication of compression performance. When more eigenposes are included in

the pose reconstruction, the average pose reconstruction error decreases. For each frame in

the database, we converted the reconstructed pose based on a joint angle representation to

a virtual marker representation [2] so that the pose reconstruction error could be computed

as a distance between the reconstructed and true maker positions and was therefore inde-

pendent of the joint angle representation. In the virtual marker representation, the local

coordinate system of each body part is converted into a set of three virtual markers placed

at fixed positions [2]. Transforming from other representations into this virtual marker

representation is a lossless procedure. For the quaternion representation, we had to nor-

malize the reconstructed quaternions because the linear reconstruction does not guarantee

that the reconstructed pose vector consists of unit quaternions.

One standard preprocessing step for PCA analysis is to normalize the data by mean

and standard deviation so that each component of the data vector has the same range. We

generated a full motion database based on normalized Euler angles to evaluate the effect

of normalization on the compression performance of PCA.

We compare virtual markers, Euler angles, normalized Euler angles, exponential map,

and unit quaternions on three different data sets: the full database, one particular behavior

(swing dancing), and one motion sequence (swing dancing). We can draw several con-

clusions based on these graphs (Figure4.11). Virtual markers achieve the best compres-

sion performance when fewer than 35 eigenposes (99.9%data variance accounted for) are

used for pose reconstruction. The performance improvement is more significant for the

single behavior dataset of swing dancing. The reason why the virtual markers achieve

better performance might be because other representations demonstrate more nonlinearity
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in representing human motion. Normalized euler angles have the worst performance in

most cases. The curves in Figure4.11demonstrate that increasing the number of eigen-

poses does not always improve the performance. This unintuitive behavior is because we

compress in the particular representation being tested but measure the error in the virtual

marker space for consistency across all representations. Finally, Euler angles, exponen-

tial maps and quaternions have no significant difference in performance. When more than

35 eigenposes are used for pose reconstruction, both Euler angles and exponential maps

achieve better performance than virtual markers. Quaternions have a slightly worse per-

formance than Euler angles and exponential maps and the difference is greater at higher

dimensions (> 29).

Compression is only one possible metric and might not be the most important one

for computer animation. For example, the smoothness of the space is also important for

optimization algorithms and that also likely changes based on the representation.

4.4 Human Motion Synergies

Synergies represent coordination between the movements of a group of a few joints. In this

section, we present a new statistical approach to identify groups of joints that exhibit syn-

ergies. We compute a 42x42 similarity matrixm(i, j) that encodes the synergies between

any two joint angles by using mutual information to measure the statistical dependency

between each pair of joint anglesi and j. We then apply a segmentation algorithm to

divide the joints into groups that demonstrate synergies. We apply our algorithm to the en-

tire database and to behavior-specific data sets of walking and forward jumping in which

synergies can be easily observed.

The similarity matrix requires the computation of the mutual information between each

pair of joint angles. The mutual information of two random variables,X andY, is a quan-

tity that measures the mutual dependence of the two variables [44]. Intuitively, mutual

information measures the information aboutX that is shared byY. If X andY are indepen-
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dent, thenX contains no information aboutY and vice versa, so their mutual information

is zero. IfX andY are identical then all information conveyed byX is shared withY and

the mutual information is the same as the information conveyed byX (orY) alone, namely

the entropy ofX.

The mutual information of two random variablesX andY is defined as

I(X;Y) =
∫

Y

∫

X
p(x,y) log

p(x,y)
f (x)g(y)

dxdy, (4.1)

wherep is the joint probability density function (PDF) ofX andY, and f andg are the

marginal PDFs ofX andY respectively.I(X;Y) = 0 if and only if X and Y are independent

random variables. Mutual information is also nonnegative (I(X;Y) > 0) and symmetric

(I(X;Y) = I(Y;X)).

An alternative method for computing the similarity matrix would be to compute the

product-moment correlation coefficient between the joint angles. The product-moment

correlation coefficient measures how well a linear equation describes the relation between

two variables X and Y and can be obtained by dividing the covariance of these two vari-

ables by the product of their standard deviations [10]. However, the product-moment cor-

relation coefficient only handles linear dependency whereas mutual information handles

nonlinear dependency and other more general relationships.

We apply a segmentation algorithm to the similarity matrix and use normalized cut

to divide the joint angles into groups that demonstrate synergies [56]. Normalized cut

uses a criterion that measures both the total dissimilarity between the different groups as

well as the total similarity within the groups. It formulates the segmentation problem as a

generalized eigenvalue problem that allows an efficient optimization of this criterion.

Figure4.12illustrates the similarity matrix computed from the entire data set and the

grouping result (six groups) indicated by color in the color bar at bottom. As there is no

automatic rule for determining how many groups to use, we choose this number manually.

We find there are synergies between the left and right arm for the full database. Synergies

also exist between the left leg and right leg. The grouping result also shows a strong

dependance between the X angles in the head and torso joints and all the joint angles in
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the arm but not other components for the head and torso joints. This synergy might occur

because the torso is used for balance as the arms are moved fore and aft. The X angles

of the ankles are also grouped with the legs. Figure4.12also shows that joints that are

directly linked are likely to be grouped together. For example, the Y and Z angles of the

head joints (head, upper neck, lower neck) are grouped together.

Figure4.13illustrates the similarity matrix and four groups for a data set of forward

walking. The X angles of hip joints are grouped together with all the joint angles in the two

arms, which characterizes the typical fore/cft oscillation we can see in forward walking.

Only X angles from the hip joints are included in the group because in the walking rotation

around the X axis dominates the motion in these joints and the rotations around the other

two axes are very small and less cyclical.

Figure4.14illustrates the similarity matrix and four groups for a data set of forward

jumping. The similarity matrix shows a strong dependency between most joint angles

because the motion shows a strong coordination. The motions of the two arms are grouped

together as they show a strong interdependency in forward jumping.

This method can only identify synergies at the level of joint components because it

relies on mutual information computed between two joint angles (two DOFs) rather than

treating all the DOFs of a joint as a single entity. Although generalizations of mutual

information to more than two random variables have been proposed, a widely agreed on

definition has not yet emerged [62].

The proposed method can also be used to identify synergies in the motion of markers.

Given a group of markers that move in a coordinated fashion, we can pick one and use it

to predict the movements of the others. Motion estimation from a reduced marker set is

required for performance animation synergies and other motion tracking applications [37].

It is also useful in cleaning motion capture data, where the missing trajectory of one marker

can be inferred from the trajectory of the correlated markers.
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4.5 Motion Summarization

We would like to be able to provide intuition about the motion contained in a particular

sequence or database. We do this via summary images, which average a set of images

representing the motion. To generate the summary image, we render each pose excluding

global translation and yaw orientation in the sequence or database using a human-like

figure from a fixed viewpoint. We then compute the average of the resulting images and

take the logarithm of each pixel intensity. Finally we generate a color image by applying a

linear mapping from the logarithmic intensity of each pixel to a value in a color map. The

resulting image is expressive because it portrays the distribution of human poses in that

data set. The summary image is view dependent, so we show it from a front and a side

view.

We use summary images to illustrate the full motion database and several behavior-

specific data sets (Figure4.15-4.17). The summary images demonstrate the typical char-

acteristics of these behaviors. For example, the pitching in forward jumping and the arm

motion for swing dancing can be clearly observed in their summary images in Figure4.16.

We can also capture a sense of various styles of human walking (Figure4.18).

As the size of available libraries of motion data increase, it will become harder to

quickly explore a database. Navigation could be made easier by creating a hierarchy of

summary images allowing the user to focus on motion sequences which contain a lot of

upper body motion, for example.

4.6 Discussion

In this chapter, we explored the statistics of natural human motion and their applications in

algorithms for generating human motion. We reported a set of statistics about basic joint

motion, dimensionality reduction, human motion synergies and motion summarization

computed on a large and representative motion capture database. We expect these statistics
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will benefit such applications in character animation as motion editing, motion retargeting

and motion capture. Because our goal is to provide statistics that other researchers can

use, we have placed the raw numbers needed to create the images and graphs in this paper

online at http://graphics.cs.cmu.edu/projects/statistics/. The motion capture data is online

at http://mocap.cs.cmu.edu.

Although the human skeleton used in our motion data is widely used in character an-

imation, it contains fewer degrees of freedom than would be ideal. For example, the

skeleton only assigns one DOF to the joints at the knee and three DOFs to the joints at

the shoulder. Some natural human motions such as a shoulder shrug cannot be well mod-

eled by this skeleton. The number of joints might not be enough to accurately represent

the subtleties of human motion. For example, the anatomical structure of human back

has 33 vertebrae while our model has only 5. These approximations had an effect on the

computed statistics. For example, the back DOF likely had a wider range of motion than

they would have had if the motion had been apportioned across all of the vertebrae in a

complete model of the human back.

The motion capture data used in our statistical analysis are representative as they con-

tain a variety of behaviors from 34 different subjects. However, most of these subjects

are young and of a healthy weight and therefore are not representative of the population

overall. This limitation prevents us from comparing the statistics between different body

types or age groups.
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Figure 4.4: The range of motion for each joint in the torso.
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Figure 4.5:The range of motion for each joint in the head joint group.
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Figure 4.6:The range of motion for each joint in the two arms. We only illustrate the

range of swing motion for elbows and wrists because twist (Y) is not defined for these

joints in our motion database. We only show the twist distribution for the two forearms

joints because only twist (Y) is defined for these 1-DOF joints.
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Figure 4.7:The range of motion for each joint in the legs. We only illustrate the range

of swing motion for the knees (1-DOF joints) and the ankles (2-DOF joints) because the

twist (Y) is not defined for these joints in our dataset.
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Front view Side view

Figure 4.8: The mean pose of the entire data set. The computation is based on the XYZ

fixed angle representation.
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Figure 4.9: The 42 PCA bases for the entire motion data set. Each basis consists of 42

coefficients that correspond to the 42 joint angles in a pose. We take the absolute value of

each coefficient in each basis for this visualization so that the intensity is proportional to

the magnitude.
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Figure 4.10: The first six eigenposes of the entire motion database using the XYZ fixed

angles. In each row, we show the mean pose (middle column) and the pose as the values

of the first six bases are increased.
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Figure 4.11:PCA compression comparison based for three data sets.
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Figure 4.12:The similarity matrix for the entire database. Each element of the matrix is

the pairwise mutual information between two joint angles. The joint angles in each group

share the same color in the bar underneath the matrix.
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Figure 4.13:The similarity matrix for a walking data set.
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Figure 4.14:The similarity matrix for a forward jumping data set.

 Side viewFront view 

Figure 4.15: Summary images for the full database.
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 Forward walking Running  Jumping Swing dancing

Figure 4.16: Summary images for different behaviors. The images in the first row are

rendered from the front and those in the second row are generated from the side.
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 Arabesque dance Chicken dance  Lambada Salsa 

 Soccer  Cartwheel  Exercise Boxing

 Ballet 

 Run-to-leap

 Bear Chicken Monkey Snake  Teapot

Figure 4.17: The summary images for individual sequences of motion: dancing, physical

activities, and pantomime. We show a front and a side view for each sequence.
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Normal  Chicken Dinosaur Drunk man 

Graceful lady Old man  Sexy woman Strong man 

Happy Elated Afraid Sad

Figure 4.18: Summary images for stylized walking motions.
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Chapter 5

Conclusion

The thesis includes three major contributions. First, we demonstrated that an imple-

mentable definition for the naturalness of human motion. Naturalness could be defined

based on the statistical properties of a large and representative motion capture database.

We implemented several techniques to quantify natural human motion independent of any

specific motion source. We presented ROC curves to demonstrate the performance of

these techniques on a broad set of test sequences and compared the results to human per-

formance in a user study. Our ensemble method achieved the best performance among

these automatic methods. It first hierarchically decomposed human motion into its con-

stituent parts (individual joints, limbs, and full body), then built a statistical model of each

one using existing machine learning techniques, and finally combined these models into

an ensemble model for classification of the motion as natural or unnatural. Compared with

approaches that only employed a single statistical model, the ensemble method improved

the classification performance. It also located the bad section of the motion automatically,

thus facilitating the process of interactive motion editing.

Second, we explored the statistics of natural human motion via a comprehensive sta-

tistical analysis. Even though the aggregate statistics about properties of human motion

are needed to guide animation algorithms for human figures toward natural looking so-
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lutions, these statistics had not been comprehensively studied or reported. In this thesis,

we computed these statistics using a large and representative motion capture database and

provided insights into their use in character animation. We evaluated the effects of dif-

ferent joint angle representations on commonly used statistical algorithms such as linear

dimensionality reduction of human motion. We also presented a statistical definition for

synergies in human motion, which had not been rigorously defined in character animation

or biomechanics. Based on this definition, we presented a new algorithm for synergy iden-

tification in natural human motion. Finally, we proposed a method for summarizing and

visualizing a motion capture dataset, which should be useful for providing thumbnail im-

ages to aid in browsing and navigating a large motion capture database. All the resulting

statistics and insights should be useful in designing and implementing a large variety of

algorithms for character animation.

Finally, we contributed a substantial database of human motion and a testing set that

would enable others to apply their algorithms to the problem of quantifying natural human

motion: http://graphics.cs.cmu.edu/projects/natural/.

The thesis takes one step toward quantifying natural human motion in character ani-

mation by performing a series of statistical analyses on a large and representative motion

capture database. In this thesis, basic joint angle statistics (distributions of joint angles and

velocities) were regarded as the most important factor in characterizing the naturalness of

human motion. However, many other factors also play a role in defining natural human

motion. For example, statistical models of dynamical quantities (joint forces and joint

torques) could be employed for natural vs. unnatural motion classification or for guiding

the search of an optimizer. They can also be computed and reported for the synthesis

of natural human motion. Other factors may include local features related to a specific

artifact in unnatural human motions. For example, foot sliding is a visually perceptible

artifact. Such a specific artifact is not likely to be easily detected by a general statisti-

cal classifier but would require the detection of intended foot contacts [27]. These local

features could be included in a naturalness measure and used to improve algorithms for

animation generation and evaluation.
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The long term goal of quantifying natural human motion is to build an automatic nat-

uralness measure that will achieve a level of performance that is comparable to that of

humans. One approach to this problem is to better model what is perceptually important

about human motion. The animation community has begun to assemble data about the per-

ception of human motion. For example, the rendering style or appearance of the character

likely affects the perception of the naturalness of a human motion sequence [24]. People

are sensitive to physical errors in the character motion such as gravity [50] and changes

in limb length [22]. We would like to combine the results of these perceptual studies with

the statistical analysis of motion capture data to construct better classifiers and collect

additional statistics that are relevant for the generation of natural human motion.

Our motion capture database plays an important role in our statistical analysis of nat-

ural human motion. We choose the largest motion capture database (publicly available)

to perform our statistical analysis, which should make our statistical analysis more rep-

resentative and convincing. However, there are still limitations. For example, though the

database includes a variety of behaviors, any natural behavior would still be classified as

unnatural if the behavior is significantly different from what we have in our database. Be-

cause most of our motion capture subjects are young adults, the statistics we computed

from all these different behaviors mostly represent the motion characteristics of young

adults and would differ from statistics computed for heavier or old populations.

The results of our statistical analysis for quantifying natural human motion cannot be

used in all applications in character animation because “naturalness” may not always have

a single definition. For example, a “natural” motion for a cartoon character could violate

the laws of physics yet remain compelling and appealing. However, as long as we can

build a motion database containing the motion of a particular character, we should be able

to employ the same set of statistical analysis methods to quantify the “naturalness” of the

character’s motion and provide statistics that aid in the generation of motion that is natural

or appropriate for that character.
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