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Abstract

Real-world planning problems often feature multiple sources of uncer-
tainty, including randomness in outcomes, the presence of adversarial agents,
and lack of complete knowledge of the world state. This thesis describes algo-
rithms for four related formal models that can address multiple types of uncer-
tainty: Markov decision processes, MDPs with adversarial costs, extensive-
form games, and a new class of games that includes both extensive-form
games and MDPs as special cases.

Markov decision processes can represent problems where actions have
stochastic outcomes. We describe several new algorithms for MDPs, and then
show how MDPs can be generalized to model the presence of an adversary
that has some control over costs. Extensive-form games can model games with
random events and partial observability. In the zero-sum perfect-recall case,
a minimax solution can be found in time polynomial in the size of the game
tree. However, the game tree must “remember” all past actions and random
outcomes, and so the size of the game tree grows exponentially in the length
of the game. This thesis introduces a new generalization of extensive-form
games that relaxes this need to remember all past actions exactly, producing
exponentially smaller representations for interesting problems. Further, this
formulation unifies extensive-form games with MDP planning.

We present a new class of fast anytime algorithms for the off-line computa-
tion of minimax equilibria in both traditional and generalized extensive-form
games. Experimental results demonstrate their effectiveness on an adversarial
MDP problem and on a large abstracted poker game. We also present a new
algorithm for playing repeated extensive-form games that can be used when
only the total payoff of the game is observed on each round.
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Chapter 1

Introduction

The goal of this thesis is to design powerful modeling frameworks and general purpose, ef-
ficient algorithms for reasoning about uncertain environments. We draw upon techniques
from the theory of Markov decision processes (MDPs) and partially observable MDPs
(POMDPs), reinforcement learning, online learning (experts and bandit algorithms), and
game theory in purist of this goal. This section introduces the major topics and results of
the thesis, and broadly places the work in the context of other research. Detailed discus-
sions of related work as well as most citations will be deferred to the relevant chapters.
Figure (1.1) summarizes the principal problem models we will consider.

Our investigation into planning takes root in a fertile body of previous work, for plan-
ning problems have inspired a rich tradition in both AI and operations research. Simple
problems like the shortest path problem gave way to the broad field of (deterministic) AI
planning, which includes general-purpose search algorithms like A∗ as well as algorithms
for specialized but higher dimensional STRIPS-style problems [Russell and Norvig, 2003,
Blum and Furst, 1997, Weld, 1999]. Researchers realized early on that purely determin-
istic planning would not be sufficient for many problems of real-word interest. Markov
decision processes (MDPs) were one of the earliest formulations of planning problems
with uncertainty. Books by Bellman [1957] and Howard [1960] brought greater exposure
to the framework, and MDPs continue to make regular appearances in the AI and planning
literature.

Markov decision processes MDPs can be used to represent a wide array of planning
problems. Generally, they model uncertainty by describing the effect of a particular action
as a distribution over possible outcomes, rather than assuming a single deterministic out-
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Deterministic 
Planning
(classic AI)

MDPs with
Adversarial

Costs

MDPs
(stochastic 
outcomes)

Matrix and 
Convex Games
(single decision)

Extensive-form Games
(sequence of decisions)

Unifying EFGs and 
MDPs:

Convex EFGs

Figure 1.1: Relationships between problem models considered in this thesis. Arrows point
to more general models; MDPs with adversarial costs and Convex EFGs are introduced in
this thesis.

come. We refer to this type of uncertainty as outcome uncertainty (sometimes also called
action uncertainty). In Chapter 2, we describe the MDP model more thoroughly, and
discuss several new algorithms that offer advantages over previously known techniques.
These algorithms are particularly effective for solving problems that have relatively few
stochastic states and where only a small fraction of the state-space is relevant. Both of
these are common characteristics of real-world problems.

Zero-sum game theory The MDP model assumes that the uncertainty in the world is
stochastic, that is, that the uncertainty over outcomes is defined by some probability dis-
tribution, even if that distribution is not initially known. This approach is valid in many
cases: stochastic models can effectively describe sensor noise, wheel-slippage on a mobile
robot, the arrival of jobs for a computing cluster—in fact, the list could go on for pages, as
modern research in AI is full of clever uses of stochastic modeling and probability theory.
But, consider a game of chess: as we contemplate our move, we will have uncertainty
about what response our opponent will make. Accurately modeling this response with
a probability distribution would essentially require a complete model of our opponent’s
thought process, something that is not typically available! Instead, a more plausible ap-
proach is to attempt to select a move so that no matter what our opponent does we win
(assuming such a move exists).
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Game theory offers a variety of zero-sum models that capture this type of worst-case
reasoning. The term zero-sum implies there are two players and that at the end of the game
the payoff to one player is the negative of the payoff to the other player—that is, the payoffs
sum to zero. This captures a purely adversarial model of interaction, since we can imagine
the payoff as a value that one player has to pay to another player. Most common two-player
games played by people are in fact zero-sum. However, it is worth emphasizing that the
value of considering zero-sum games comes not from the ability to model parlor games.
Rather, our interest is in using the tools of zero-sum game theory to reason about types of
uncertainty where stochastic models are not available. In particular, we can reason about
the worst-case over a set of potential eventualities, rather than reasoning in expectation
about these possibilities given a fixed probability distribution.

This kind of strictly worse-case analysis can be overly pessimistic—in many situations
there are extremely unlikely events1 that may dramatically sway our plans if we assume
an adversary is free to force one of these events to happen. One of the advantages of the
models of uncertainty introduced in this thesis is that they provide a great deal of flexibility
to interpolate between stochastic and adversarial models of uncertainty. As a first example
of this approach, we consider MDPs where an opponent has some control over the costs
of actions taken by the player planning in the MDP.

MDPs with adversary-controlled costs While MDPs can model outcome uncertainty,
they cannot directly model domains with only partially observable state, unknown dynam-
ics, or the presence of adversarial or cooperative agents. We describe several new algo-
rithms for planning in more general environments without sacrificing the relative computa-
tional tractability of standard MDPs. These algorithms efficiently find plans that minimize
the expected total worst-case cost of reaching a goal state when an adversary may choose
any of a number of cost models. For example, we can find a solution to a stochastic
shortest path problem that minimizes the maximum expected cost over a set of different
edge-cost scenarios. A novel formulation as a linear program (LP) is sufficient to show
that these problems can be solved in polynomial time. However, experiments demonstrate
that directly solving the linear program is too slow for realistically-sized problems, even
when using state-of-the-art commercial solvers. To address this, we present a transfor-
mation that allows the use of any MDP solver as a subroutine, producing over an order
of magnitude speedup. We describe this model and its LP formulation in Chapter 3, and
present our faster algorithms in Chapter 5.

1Even if we have no way of probabilistically quantifying “extremely unlikely.”
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Extensive-form games Partially observable stochastic games (POSGs) are the gold
standard for modeling uncertain planning problems. They can directly handle most types
of uncertainty: partial observability, noisy observations, random events, uncertain out-
comes, and other agents. It is extremely difficult to come up with a planning problem that
can not be modeled in some way as a POSG; unfortunately, it is equally challenging to find
realistic problems where solving any POSG representation is computationally feasible.

For this reason, we do not consider fully general POSGs in this thesis work; however,
we will be quite concerned with the closely related class of extensive-form games. EFGs
can model all of the types of uncertainty that can be modeled by POSGs, with an important
caveat: while POSGs can have a general state model where cycles are possible (states can
be revisited), states in an EFG are always structured in a directed tree, and so cycles are
not possible (no state is ever visited twice in the course of a game). Intuitively, a state in
an EFG corresponds to a complete history of past actions and events in a POSG. Thus, the
size of the game-tree for an EFG can be exponential in the size of a POSG representation
of the same game.

Why constrain ourselves to a formulation that may entail an exponential penalty in
representation size? Because EFGs can be solved in polynomial time in the size of the
game tree (in the perfect-recall, zero-sum case—we fully introduce these restrictions in
Chapter 3). Rather than attack the provably hard problem of solving general POSGs, we
instead look to leverage the relative computational tractability of EFGs. We do this in two
ways: we generalize the model in a way that allows many interesting games to be modeled
exponentially more compactly than was previously possible, and we design fast algorithms
that solve both standard EFGs and our generalization very quickly.

Convex extensive-form games Convex extensive-form games (CEFGs) generalize
EFGs by replacing the usual small set of discrete actions with arbitrary one-shot two-
player convex games—we fully describe the formulation in Chapter 4. Under some
reasonable assumptions, CEFGs can be solved as a single convex optimization problem
of polynomial-size in the representation of the game tree. This model can represent tra-
ditional extensive-form and matrix (normal form) games as well as MDPs and MDPs
with adversary-controlled costs. (In fact, an MDP with adversary controlled costs can be
modeled as a single node in the game tree of a CEFG, as can an arbitrary matrix game).
The central advantage of the CEFG framework is that it can provide exponentially smaller
representations of many interesting planning problems and sequential games. In addition
to developing the theory necessary for efficient computation with CEFGs, we motivate
the work by providing a high-level view of some interesting games that can be solved or
approximated using CEFGs.

4



Game Class Abbreviation Reference
matrix (normal form) games - Section 3.1
convex games CG Section 3.1
stochastic (Markov) games SG Section 3.5
extensive-form games EFG Section 3.2
convex stochastic games CSG Section 3.5
convex extensive-form games CEFG Section 4.1

Table 1.1: Game models considered.

Convex games Matrix games, extensive-form games, convex extensive-form games,
MDPs, and MDPs with adversary-controlled costs are all instances of the deceptively sim-
ple yet extremely expressive class of convex games. Though the concept of convex games
is not at all new [see Dresher and Karlin, 1953], hopefully this thesis will help highlight
theoretical and algorithmic properties of convex games that make the framework a power-
ful tool for modern computer science. We will fully consider the class of convex games in
Chapter 3.

In addition to the examples listed above, we show that the the normal-form stage games
in a stochastic game can be replaced with general convex games; these convex stochastic
games (CSGs) can be solved in the discounted case by minimax value iteration. By using
the convex game representation of an extensive-form game, we can embed EFGs as the
stage games of a CSG, creating a class of tractable partially observable stochastic games.
The key feature of this class is that the periods of partial observability are of bounded
duration. Figure (1.1) summarizes the types of games considered in this thesis, along with
the abbreviations used and the section where the class is first discussed.

Algorithms for convex games For convex games, it is typical to have fast best-response
oracles that find an optimal response to a fixed opponent strategy. This is the case for
EFGs, where a linear-time dynamic programming algorithm can calculate a best response;
and for MDPs with adversary-controlled costs, where standard MDP algorithms can be
used to calculate a best response.

In Chapter 5, we present new anytime algorithms for solving convex games that lever-
age such fast best-response oracles. Our principal approach is to use oracles for both
players to build a model of the overall game that is used to identify search directions; the
algorithm then does an exact minimization in this direction via a specialized line search.

We test our algorithms on both a simplified version of Texas Hold’em poker repre-
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sented as an extensive-form game, and a sensor-placement / observation-avoidance game
modeled as an MDP with adversary controlled costs. For the poker game, our algorithm
approximated the exact value of this game within $0.30 (the maximum pot size is $310.00)
in a little over 2 hours, using less than 1.5GB of memory; finding a solution with compara-
ble bounds using a state-of-the-art interior-point linear programming algorithm took over 4
days and 25GB of memory. Our algorithms also demonstrate several orders of magnitude
better performance on the adversarial MDP problem.

The online problem MDPs and extensive-form game models are useful when we have
at least a partial model (either adversarial or stochastic) of the environment in which we
wish to plan. However, such models are not easily available in many cases of interest.
For problems where such a model is not available, no-regret algorithms can provide a
reasonable framework for decision making.

Chapter 6 presents an algorithm for a general online (repeated) decision problem,
where on each timestep a strategy from a convex set must be chosen without knowledge
of the current cost (objective) function. Our algorithm guarantees performance almost
as good as the best fixed solution in hindsight, while making no assumptions about the
nature of the costs in the world and receiving information only about the outcomes of
the decisions actually made, not potential alternatives. Previous results for this problem
were limited to oblivious adversaries that make all decisions in advance; the algorithm we
discuss was the first to also handle the case of an adaptive adversary.

This algorithm can be applied to a wide range of problems, for example, it can be used
to play repeated convex games. Against a fully rational opponent, our no-regret algorithm
will asymptotically perform as well as the minimax strategy, and against an arbitrary ad-
versary the algorithm will do at least as well as the best fixed strategy in hindsight—which
can be much better than the minimax value of the game if the opponent is not, in fact, fully
adversarial.

6



Chapter 2

Algorithms for Planning in Markov
Decision Processes

2.1 Introduction

Markov decision processes (MDPs) provide a framework for planning in domains where
actions have uncertain outcomes. MDPs generalize deterministic planning problems like
the shortest path problem that can be solved with Dijkstra’s algorithm or A∗ as well as
the more structured deterministic problems tackled by AI planning [Cormen et al., 1990,
Russell and Norvig, 2003, Weld, 1999, Blum and Furst, 1997]. After briefly introducing
the MDP framework, we present two lines of research that lead to fast new algorithms for
solving MDPs.

In the first, we study the problem of computing the optimal value function for a Markov
decision process with positive costs. Computing this function quickly and accurately is a
basic step in many schemes for deciding how to act in stochastic environments. There are
efficient algorithms which compute value functions for special types of MDPs: for deter-
ministic MDPs with S states and A actions, Dijkstra’s algorithm runs in time O(AS log S).
And, in single-action MDPs (Markov chains), standard linear-algebraic algorithms find the
value function in time O(S3), or faster by taking advantage of sparsity or good condition-
ing. Algorithms for solving general MDPs can take much longer: we are not aware of any
speed guarantees better than those for comparably-sized linear programs. We present a
family of algorithms which reduce to Dijkstra’s algorithm when applied to deterministic
MDPs, and to standard techniques for solving linear equations when applied to Markov
chains. More importantly, we demonstrate experimentally that these algorithms perform
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well when applied to MDPs which “almost” have the required special structure. This work
was originally presented in [McMahan and Gordon, 2005a,b].

MDPs for real-world problems often have intractably large state spaces. In the second
line of work presented in this chapter, we consider solving such large problems when only
a partial policy to get from a fixed start state to a goal is needed. In this situation, restricting
computation to states relevant to this task can make much larger problems tractable. We
introduce a new algorithm, Bounded Real-Time Dynamic Programming (BRTDP), which
can produce partial policies with strong performance guarantees while only touching a
fraction of the state space, even on problems where other algorithms would have to visit
the full state space. To do this, Bounded RTDP maintains both upper and lower bounds
on the optimal value function. The performance of Bounded RTDP is greatly aided by the
introduction of a new technique to efficiently find suitable upper (pessimistic) bounds on
the value function; this technique can also be used to provide informed initialization to a
wide range of other planning algorithms. This is an extended treatment of the research
originally described in [McMahan et al., 2005].

2.2 Markov Decision Processes

We briefly review the MDP formulation and introduce the notation we will use for the
work presented in this chapter. The problem of finding an optimal policy in an MDP can
be formulated with respect to several possible objective functions: expected total reward,
expected discounted reward, and average reward [Puterman, 1994]. In this chapter, we
restrict ourselves to the expected total reward criteria; we assume non-negative costs and
the existence of an absorbing goal state to ensure a finite optimal value function. This
formulation is sometimes called the stochastic shortest path problem.

We represent a stochastic shortest path problem with a fixed start state as a tupleM =
(S, A, P, c, s, g), where S is a finite set of states, s ∈ S is the start state, g ∈ S is the goal
state, A is a finite action set, c : S×A→ R+ is a cost function, and P gives the dynamics;
we write P a

xy for the probability of reaching state y when executing action a from state x.
Since g is an absorbing goal state we have c(g, a) = 0 and P a

g,g = 1 for all actions a. The
set succ(x, a) = {y ∈ S | P a

xy > 0, y 6= g} contains all possible possible successors of
state x under action a, except that the goal state is always excluded. Similarly, pred(x) is
the set of all state-action pairs (y, b) such that taking action b from state y has a positive
chance of reaching state x.

A stationary policy is a function π : S → A. A policy is proper if an agent following
it from any state will eventually reach the goal with probability 1. We make the standard
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assumption that at least one proper policy exists forM, and that all improper policies have
infinite expected total cost at some state [Bertsekas and Tsitsiklis, 1996]. For a proper
policy π, we define the value function of π as the solution to the set of linear equations:

vπ(x) = c(x, π(x)) +
∑
y∈S

P π(x)
xy vπ(y).

It is straightforward to verify that vπ(x) is exactly the expected cost of reaching the goal
by following π.

If v ∈ R|S| is an arbitrary assignment of values to states, we define Q values with
respect to v by

Qv(x, a) = c(x, a) +
∑
y∈S

P a
xyv(y).

It is well-known that there exists an optimal (minimal) value function v?, and it satisfies
Bellman’s equations at all non-goal states x and for all actions a:

v∗(x) = min
a∈A

Q∗(x, a)

Q∗(x, a) = c(x, a) +
∑

y∈succ(x,a)

P a
xyv

∗(y).

We can write these equations more compactly as v?(x) = mina∈A Qv?(x, a). For an arbi-
trary v, we define the (signed) Bellman error of v at x by bev(x) = v(x)−mina∈A Qv(x, a),
the difference between the left-hand-side and right-hand-side of the Bellman equations. A
greedy policy with respect to some value function v, greedy(v), is a policy that satisfies

greedy(v, x) ∈ argmin
a∈A

Qv(x, a).

We say a policy π is optimal if vπ(x) = v∗(x) for all x. It follows that a greedy policy with
respect to v∗ is optimal. In this way, the problem of finding an optimal policy reduces to
that of finding the optimal value function.

To simplify notation, we have omitted the possibility of discounting. A discount factor
γ can be introduced indirectly, however, by reducing P a

xy by a factor of γ for all y 6= g and
increasing P a

xg accordingly, where g is the absorbing goal state.

For more details on the MDP formulation, consult Puterman [1994] or Bertsekas
[1995]. We now turn to algorithms for the stochastic shortest path problem. Note that
we do not assume the existence of a fixed start state s in Section 2.3, but this assumption
will be central to Bounded Real-Time Dynamic Programming, introduced in Section 2.4.
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2.3 Approaches based on Prioritization
and Policy Evaluation

Many algorithms for planning in Markov decision processes work by maintaining esti-
mates v and Q of v∗ and Q∗, and repeatedly updating the estimates to reduce the difference
between the two sides of the Bellman equations (called the Bellman error). For example,
value iteration (VI) repeatedly loops through all states x performing backup operations at
each one:

for all actions a do
Q(x, a)← c(x, a) +

∑
y∈succ(x,a) P a

xyv(y)
end for
v(x)← mina∈A Q(x, a)

On the other hand, Dijkstra’s algorithm carefully schedules1 expansion operations at
each state x instead:

v(x)← mina∈A Q(x, a)
for all (y, b) ∈ pred(x) do

Q(y, b)← c(y, b) +
∑

x′∈succ(y,b) P b
yx′v(x′)

end for

For good recent references on value iteration and Dijkstra’s algorithm, see [Bertsekas,
1995] and [Cormen et al., 1990].

Any sequence of backups or expansions is guaranteed to make v and Q converge to
the optimal v∗ and Q∗ so long as we visit each state infinitely often. Of course, some
sequences will converge much more quickly than others. A wide variety of algorithms
have attempted to find good state-visitation orders to ensure fast convergence. For ex-
ample, Dijkstra’s algorithm is guaranteed to find an optimal ordering for a deterministic
positive-cost MDP; for general MDPs, algorithms like prioritized sweeping [Moore and
Atkeson, 1993], generalized prioritized sweeping [Andre et al., 1998], RTDP [Barto et al.,
1995], LRTDP [Bonet and Geffner, 2003b], Focussed Dynamic Programming [Ferguson
and Stentz, 2004], and HDP [Bonet and Geffner, 2003a] all attempt to compute good or-
derings.

Algorithms based on backups or expansions have an important disadvantage, though:
they can be slow at policy evaluation in MDPs with even a few stochastic transitions. For

1We deffer a full discussion of Dijkstra’s algorithm to Section 2.3.1.
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0.010.99 Goal

Figure 2.1: A Markov chain for which backup-based methods converge slowly. Each
action costs 1.

example, in the Markov chain of Figure 2.1 (which has only one stochastic transition), the
best possible ordering for value iteration will only reduce Bellman error by 1% with each
five backups. To find the optimal value function quickly for this chain (or for an MDP
which contains it), we turn instead to methods which solve systems of linear equations.

The policy iteration algorithm alternates between steps of policy evaluation and policy
improvement. If we fix an arbitrary policy and temporarily ignore all off-policy actions, the
Bellman equations become linear. We can solve this set of linear equations to evaluate our
policy, and set v to be the resulting value function. Given v, we compute a greedy policy
π = greedy(v). Fixing this greedy policy gives another set of linear equations, which
can be solved to compute an improved policy. Policy iteration is guaranteed to converge
so long as the initial policy has a finite value function. Within the policy evaluation step
of policy iteration methods, we can choose any of several ways to solve our set of linear
equations [Press et al., 1992]. For example, we can use Gaussian elimination, sparse
Gaussian elimination, or biconjugate gradients with any of a variety of preconditioners.
We can even use value iteration, although as mentioned above value iteration may be a
slow way to solve the Bellman equations when we are evaluating a fixed policy.

Of the algorithms discussed above, no single one is fast at solving all types of Markov
decision process. Backup-based and expansion-based methods work well when the MDP
has short or nearly deterministic paths with little chance of cycling, but can converge
slowly in the presence of noise and cycles. On the other hand, policy iteration evaluates
each policy quickly, but may spend work evaluating a policy even after it has become
obvious that another policy is better.

This section describes three new algorithms which blend features of Dijkstra’s algo-
rithm, value iteration, and policy iteration. In Section 2.3.1, we describe Improved Pri-
oritized Sweeping. IPS reduces to Dijkstra’s algorithm when given a deterministic MDP,
but also works well on MDPs with stochastic outcomes. In Section 2.3.2, we develop
Prioritized Policy Iteration, by extending IPS by incorporating policy evaluation steps.
Section 2.3.3 describes Gauss-Dijkstra Elimination (GDE), which interleaves policy eval-
uation and prioritized scheduling more tightly. GDE reduces to Dijkstra’s algorithm for
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main():
queue.clear()
(∀x) closed(x)← false
(∀x) v(x)←M
(∀x, a) Q(x, a)←M
(∀a) Q(goal, a)← 0
closed(goal)← true
(∀x) π(x)← undefined
π(goal) = arbitrary
update(goal)
while (not queue.isempty()) do

x← queue.pop()
closed(x)← true
update(x)

end while

update(x):
v(x)← Q(x, π(x))
for all (y, b) ∈ pred(x) do

Qold ← Q(y, π(y)) (or M if π(y) undefined)
Q(y, b)← c(y, b) +

∑
x′∈succ(y,b) P b

yx′v(x′)

if ( (not closed(y)) and Q(y, b) < Qold) ) then
pri← Q(y, b) (∗)
π(y)← b
queue.decreasepriority(y, pri)

end if
end for

Figure 2.2: Dijkstra’s algorithm, in a notation which will allow us to generalize it to
stochastic MDPs. The variable “queue” is a priority queue which returns the smallest
of its elements each time it is popped. The constant M is an upper bound on the value of
(distance to) any state.

deterministic MDPs, and to Gaussian elimination for policy evaluation. In Section 2.3.5,
we experimentally demonstrate that these algorithms extend the advantages of Dijkstra’s
algorithm to “mostly” deterministic MDPs, and that the policy evaluation performed by
PPI and GDE speeds convergence on problems where backups alone would be slow.

2.3.1 Improved Prioritized Sweeping

Dijkstra’s algorithm is shown in Figure 2.2. Its basic idea is to keep states on a priority
queue, sorted by how urgent it is to expand them. The priority queue is assumed to support
operations queue.pop(), which removes and returns the queue element with numerically
lowest priority; queue.decreasepriority(x, p), which puts x on the queue if it wasn’t there,
or if it was there with priority > p sets its priority to p, or if it was there with priority < p
does nothing; and queue.clear(), which empties the queue.

In deterministic Markov decision processes with positive costs, it is always possible
to find a new state x to expand whose value we can set to v∗(x) immediately. So, in
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Figure 2.3: An MDP whose best state ordering is impossible to determine using only local
properties of the states. Arcs which split correspond to actions with stochastic outcomes;
for example, taking action b from state 1 reaches G with probability 0.5 and 2 with proba-
bility 0.5.

these MDPs, Dijkstra’s algorithm touches each state only once while computing v∗, and is
therefore by far the fastest way to find a complete policy.

An optimal ordering for backups or expansions is an ordering of the states such that
for all states x, the value v∗(x) can be determined using only v∗(y) for states y which
come before x in the ordering. In MDPs with stochastic outcomes, there need not exist an
optimal ordering. Even if there exists such an ordering (i.e., if there is an acyclic optimal
policy), we might need to look at non-local properties of states to find it: Figure 2.3 shows
an MDP with four non-goal states (numbered 1–4) and two actions (a and b). In this MDP,
the optimal policy is acyclic with ordering G3214. But, after expanding the goal state,
there is no way to tell which of states 1 and 3 to expand next: both have one deterministic
action which reaches the goal, and one stochastic action that reaches the goal half the time
and an unexplored state half the time. If we expand either one we will set its policy to
action a and its value to 10; if we happen to choose state 3 we will be correct, but the
optimal action from state 1 is b and v∗(1) = 13/2 < 10.

Several algorithms, most notably prioritized sweeping [Moore and Atkeson, 1993] and
generalized prioritized sweeping [Andre et al., 1998], have attempted to extend the priority
queue idea to MDPs with stochastic outcomes. These algorithms give up the property of
visiting each state only once in exchange for solving a larger class of MDPs. However,
neither of these algorithms reduce to Dijkstra’s algorithm if the input MDP happens to be
deterministic. Therefore, they potentially take far longer to solve a deterministic or nearly-
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deterministic MDP than they need to. In the next section, we discuss what properties
an expansion-scheduling algorithm needs to have to reduce to Dijkstra’s algorithm on
deterministic MDPs.

Generalizing Dijkstra

We will consider algorithms which replace the line (∗) in Figure 2.2 by other priority
calculations that maintain the property that when the input MDP is deterministic with
positive edge costs an optimal ordering is produced. If the input MDP is stochastic, a single
pass of a generalized Dijkstra algorithm generally will not compute v∗, so we will have to
run multiple passes. Each subsequent pass can start from the value function computed by
the previous pass (instead of from v(x) = M like the first pass), so multiple passes will
cause v to converge to v∗. (Likewise, we can save Q values from pass to pass.) We now
consider several priority calculations that satisfy the desired property.

Large Change in Value The simplest statistic which allows us to identify completely-
determined states, and the one most similar in spirit to prioritized sweeping, is how much
the state’s value will change when we expand it. In line (∗) of Figure 2.2, suppose that we
set

pri← d(v(y)−Q(y, b)) (2.1)

for some monotone decreasing function d : R → R. Any state y with closed(y) = false
(called an open state) will have v(y) = M in the first pass, while closed states will have
lower values of v(y). So, any deterministic action leading to a closed state will have lower
Q(y, b) than any action which might lead to an open state. And, any open state y which has
a deterministic action b leading to a closed state will be on our queue with priority at most
d(v(y)−Q(y, b)) = d(M −Q(y, b)). So, if our MDP contains only deterministic actions,
the state at the head of the queue will the open state with the smallest Q(y, b)—identical
to Dijkstra’s algorithm.

Note that prioritized sweeping and generalized prioritized sweeping perform backups
rather than expansions, and use a different estimates of how much a state’s value will
change when updated. Namely, they keep track of how much a state’s successors’ values
have changed and base their priorities on these changes weighted by the corresponding
transition probabilities. This approach, while in the spirit of Dijkstra’s algorithm, does
not reduce to Dijkstra’s algorithm when applied to deterministic MDPs. Wiering [1999]
discusses the priority function (2.1), but he does not prescribe the uniform pessimistic ini-
tialization of the value function which is given in Figure 2.2. This pessimistic initialization
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is necessary to make (2.1) reduce to Dijkstra’s algorithm. Other authors (for example Diet-
terich and Flann [1995]) have discussed pessimistic initialization for prioritized sweeping,
but only in the context of the original non-Dijkstra priority scheme for that algorithm.

One problem with the priority scheme of equation (2.1) is that it only reduces to Di-
jkstra’s algorithm if we uniformly initialize v(x) ← M for all x. If instead we pass in
some nonuniform v(x) ≥ v∗(x) (such as one which we computed in a previous pass of our
algorithm, or one we got by evaluating a policy provided by a domain expert), we may not
expand states in the correct order in a deterministic MDP.2 This property is somewhat un-
fortunate: by providing stronger initial bounds, we may cause our algorithm to run longer.
So, in the next few subsections we will investigate additional priority schemes which can
help alleviate this problem.

Low Upper Bound on Value Another statistic which allows us to identify completely-
determined states x in Dijkstra’s algorithm is an upper bound on v∗(x). If, in line (∗) of
Figure 2.2, we set

pri← m(Q(y, b)) (2.2)

for some monotone increasing function m(·), then any open state y which has a determinis-
tic action b leading to a closed state will be on our queue with priority at most m(Q(y, b)).
(Note that Q(y, b) is an upper bound on v∗(y) because we have initialized v(x) ← M for
all x.) As before, in a deterministic MDP, the head of the queue will be the open state with
smallest Q(y, b). But, unlike before, this fact holds no matter how we initialize v (so long
as v(x) > v∗(x)): in a deterministic positive-cost MDP, it is always safe to expand the
open state with the lowest upper bound on its value.

High Probability of Reaching Goal Dijkstra’s algorithm can also be viewed as building
a set of closed states, whose v∗ values are completely known, by starting from the goal state
and expanding outward. According to this intuition, we should consider maintaining an
estimate of how well-known the values of our states are, and adding the best-known states
to our closed set first.

2We need to be careful passing in arbitrary v(x) vectors for initialization: if there are any optimal but
underconsistent states (states whose v(x) is already equal to v∗(x), but whose v(x) is less than the right-
hand side of the Bellman equation), then the check Q(y, b) < v(y) will prevent us from pushing them on
the queue even though their predecessors may be inconsistent. So, such an initialization for v may cause
our algorithm to terminate prematurely before v = v∗ everywhere. Fortunately, if we initialize using a v
computed from a previous pass of our algorithm, or set v to the value of some policy, then there will be no
optimal but underconsistent states, so this problem will not arise.
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For this purpose, we can add extra variables pgoal(x, a) for all states x and actions a,
initialized to 0 if x is a non-goal state and 1 if x is a goal state. Let us also add variables
pgoal(x) for all states x, again initialized to 0 if x is a non-goal state and 1 if x is a goal
state.

To maintain the pgoal variables, each time we update Q(y, b) we can set

pgoal(y, b)←
∑

x′∈succ(y,b)

P b
yx′pgoal(x

′)

And, when we assign v(x)← Q(x, a) we can set

pgoal(x)← pgoal(x, a)

(in this case, we will call a the selected action from x). With these definitions, pgoal(x) will
always remain equal to the probability of reaching the goal from x by following selected
actions and at each step moving from a state expanded later to one expanded earlier (we
call such a path a decreasing path). In other words, pgoal(x) tells us what fraction of our
current estimate v(x) is based on fully-examined paths which reach the goal.

In a deterministic MDP, pgoal will always be either 0 or 1: it will be 0 for open states,
and 1 for closed states. Since Dijkstra’s algorithm never expands a closed state, we can
combine any decreasing function of pgoal(x) with any of the above priority functions with-
out losing our equivalence to Dijkstra. For example, we could use

pri← m(Q(y, b), 1− pgoal(y)) (2.3)

where m is a two-argument monotone function.3

In the first sweep after we initialize v(x) ← M , priority scheme (2.3) is essentially
equivalent to schemes (2.1) and (2.2): the value Q(x, a) can be split up as

pgoal(x, a)QD(x, a) + (1− pgoal(x, a))M

where QD(x, a) is the expected cost to reach the goal assuming that we follow a decreasing
path. That means that a fraction 1 − pgoal(x, a) of the value Q(x, a) will be determined
by the large constant M , so state-action pairs with higher pgoal(x, a) values will almost
always have lower Q(x, a) values. However, if we have initialized v(x) in some other
way, then equation (2.1) no longer reduces to Dijkstra’s algorithm, while equations (2.2)
and (2.3) are different but both reduce to Dijkstra’s algorithm on deterministic MDPs.

3A monotone function with multiple arguments is one which always increases when we increase one of
the arguments while holding the others fixed.
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This general technique can be thought of as tracking the probability of reaching the
goal (versus reaching a history where no action is specified) under a particular non-
stationary partial policy. In addition to providing a method for scheduling in our gen-
eralizations of Dijkstra’s algorithm, we will use a similar approach to help schedule
row-elimination operations in an application of Gaussian elimination to solving MDPs
(Section (2.3.3)), as well as to produce high-quality upper bounds on the optimal value
function in order to initialize the Bounded RTDP algorithm (Section (2.4.2)).

All of the Above Instead of restricting ourselves to just one of the priority functions
mentioned above, we can combine all of them: since the best states to expand in a deter-
ministic MDP will win on any one of the above criteria, we can use any monotone function
of all of the criteria and still behave like Dijkstra in deterministic MDPs. For example, we
can take the sum of two of the priority functions, or the product of two positive prior-
ity functions; or, we can use one of the priorities as the primary sort key and break ties
according to a different one.

We have experimented with several different combinations of priority functions; the
experimental results we report use the priority functions

pri1(x, a) =
Q(x, a)− v(x)

Q(x, a) + 1
(2.4)

and
pri2(x, a) = 〈1− pgoal(x), pri1(x, a)〉 (2.5)

The pri1 function combines the value change criterion (2.1) with the upper bound crite-
rion (2.2). It is always negative or zero, since 0 < Q(x, a) ≤ v(x). It decreases when
the value change increases (since 1/Q(x, a) is positive), and it increases as the upper
bound increases (since 1/x is a monotone decreasing function when x > 0, and since
Q(x, a)− v(x) ≤ 0).

The pri2 function uses pgoal as a primary sort key and breaks ties according to pri1.
That is, pri2 returns a vector in R2 which should be compared according to lexical ordering
(e.g., (3, 3) < (4, 2) < (4, 3)).

Sweeps vs. Multiple Updates

The algorithms we have described so far in this section must update every state once
before updating any state twice. We can also consider a version of the algorithm which
does not enforce this restriction; this multiple-update algorithm simply skips the check “if
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not closed(y)” which ensures that we don’t push a previously-closed state onto the priority
queue. The multiple-update algorithm still reduces to Dijkstra’s algorithm when applied to
a deterministic MDP: any state which is already closed will fail the check Q(y, b) < v(y)
for all subsequent attempts to place it on the priority queue.

Experimentally, the multiple-update algorithm is faster than the algorithm which must
sweep through every state once before revisiting any state. Intuitively, the sweeping algo-
rithm can waste a lot of work at states far from the goal before it determines the optimal
values of states near the goal.

In the multiple-update algorithm we are always effectively in our “first sweep,” and so
since we initialize uniformly to a large constant M we can reduce to Dijkstra’s algorithm
by using priority pri1 from equation (2.4). The resulting algorithm is called Improved
Prioritized Sweeping; its update method is listed in Figure 2.4.

As is typical for value-function based methods, we declare convergence when the max-
imum Bellman error (over all states) drops below some preset limit ε. This is implemented
in IPS by an extra check that ensures all states on the priority queue have Bellman error
at least ε; when the queue is empty it is easy to show that no such states remain. Similar
methods are used for our other algorithms.

2.3.2 Prioritized Policy Iteration

The Improved Prioritized Sweeping algorithm works well on MDPs which are moder-
ately close to being deterministic. Once we start to see large groups of states with strongly
interdependent values, there will be no expansion order which will allow us to find a good
approximation to v∗ in a small number of visits to each state. The MDP of Figure 2.1 is
an example of this problem: because there is a cycle which has high probability and visits
a significant fraction of the states, the values of the states along the cycle depend strongly
on each other.

To avoid having to expand states repeatedly to incorporate the effect of cycles, we will
turn to algorithms that occasionally do some work to evaluate the current policy. When
they do so, they will temporarily fix the current actions to make the value determination
problem linear. The simplest such algorithm is policy iteration, which alternates between
complete policy evaluation (which solves an S × S system of linear equations in an S-
state MDP) and greedy policy improvement (which picks the action which achieves the
minimum on the right-hand side of Bellman’s equation at each state).

We will describe two algorithms which build on policy iteration. The first algorithm,
called Prioritized Policy Iteration, is the subject of the current section. PPI attempts to
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update(x):
v(x)← Q(x, π(x))
for all (y, b) ∈ pred(x) do

Qold ← Q(y, π(y)) (or M if π(y) undefined)
Q(y, b)← c(y, b) +

∑
x′∈succ(y,b) P b

yx′Q(x′, π(x′))

if (Q(y, b) < Qold) then
pri← (Q(y, b)− v(y))/(Q(y, b) + 1)
π(y)← b
if (|v(y)−Q(y, b)| > ε) then

queue.decreasepriority(y, pri)
end if

end if
end for

Figure 2.4: The update function for the Improved Prioritized Sweeping algorithm. The
main function is the same as for Dijkstra’s algorithm. As before, “queue” is a priority
min-queue and M is a very large positive number.

improve on policy iteration’s greedy policy improvement step, doing a small amount of
extra work during this step to try to reduce the number of policy evaluation steps. Since
policy evaluation is usually much more expensive than policy improvement, any reduction
in the number of evaluation steps will usually result in a better total planning time. The
second algorithm, which we will describe in the Section 2.3.3, tries to interleave policy
evaluation and policy improvement on a finer scale to provide more accurate Q and pgoal

estimates for picking actions and calculating priorities on the fringe.

Pseudo-code for PPI is given in Figure 2.5. The main loop is identical to regular pol-
icy iteration, except for a call to sweep() rather than to a greedy policy improvement
routine. The policy evaluation step can be implemented efficiently by a call to a sophisti-
cated linear solver; such a solver can take advantage of sparsity in the transition dynamics
by constructing an explicit LU factorization [Duff et al., 1986], or it can take advantage
of good conditioning by using an iterative method such as stabilized biconjugate gradi-
ents [Barrett et al., 1994]. In either case, we can expect to be able to evaluate policies
efficiently even in large Markov decision processes.

The policy improvement step is where we hope to beat policy iteration. By performing
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main():
(∀x) v(x)←M , vold(x)←M
v(goal)← 0, vold(goal)← 0
while (true) do

(∀x) π(x)← undefined
∆← 0
sweep()
if (∆ < tolerance) then

declare convergence
end if
(∀x) vold(x)← v(x)
v ← evaluate policy π(x)

end while

sweep():
(∀x) closed(x)← false
(∀x) pgoal(x)← 0
closed(goal)← true
update(goal)
while (not queue.isempty()) do

x← queue.pop()
closed(x)← true
update(x)

end while

update(x):
for (all ((y, a) ∈ pred(x)) do

if (closed(y)) then
Q(y, a)← c(y, a) +

∑
x′∈succ(y,a) P a

yx′v(x′)
∆← max(∆, v(y)−Q(y, a))

else
for all actions b do

Qold ← Q(y, π(y)) (or M if π(y) undefined)
Q(y, b)← c(y, b) +

∑
x′∈succ(y,b) P b

yx′v(x′)
pgoal(y, b)←

∑
x′∈succ(y,b) P b

yx′pgoal(x′) + P b
yg

if (Q(y, b) < Qold) then
v(y)← Q(y, b)
π(y)← b
pgoal(y)← pgoal(y, b)
pri← 〈1− pgoal(x), (v(y)− vold(y))/v(y)〉
queue.decreasepriority(y, pri)

end if
end for

end if
end for

Figure 2.5: The Prioritized Policy Iteration algorithm. As before, “queue” is a priority
min-queue and M is a very large positive number.

a prioritized sweep through state space, so that we examine states near the goal before
states farther away, we can base many of our policy decisions on multiple steps of look-
ahead. Scheduling the expansions in our sweep according to one of the priority functions
previously discussed insures PPI reduces to Dijkstra’s algorithm: when we run it on a
deterministic MDP, the first sweep will compute an optimal policy and value function,
and will never encounter a Bellman error in a closed state. So ∆ will be 0 at the end of
the sweep, and we will pass the convergence test before evaluating a single policy. On
the other hand, if there are no action choices then PPI will not be much more expensive
than solving a single set of linear equations: the only additional expense will be the cost
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of the sweep. If B is a bound on the number of outcomes of any action, then this cost is
O((BA)2S log S), typically much less expensive than solving the linear equations (assum-
ing B, A << S). For PPI, we chose to use the pri2 schedule from equation (2.5). Unlike
pri1 (equation (2.4)), pri2 forces us to expand states with high pgoal first, even when we
have initialized v to the value of a near-optimal policy.

In order to guarantee convergence, we need to set π(x) to a greedy action with respect
to v before each policy evaluation. Thus in the update(x) method of PPI, for each state
y for which there exists some action that reaches x, we re-calculate Q(y, b) values for all
actions b. In IPS, we only calculated Q(y, b) for actions b that reach x. The extra work
is necessary in PPI because the stored Q values may be unrelated to the current v (which
was updated by policy evaluation), and so otherwise π(x) might not be set to a greedy
action. Other Q-value update schemes are possible,4 and will lead to convergence as long
as they fix a greedy policy. Note also that extra work is done if the loops in update are
structured as in Figure 2.5; with a slight reduction in clarity, they can be arranged so that
each predecessor state y is backed up only once.

One important additional tweak to PPI is to perform multiple sweeps between policy
evaluation steps. Since policy evaluation tends to be more expensive, this allows a better
tradeoff to be made between evaluation and improvement via expansions.

A potentially important optimization is to restrict the policy evaluations to a subset of
the states. By fixing a reduced set of states (called an envelope [Dean et al., 1995]) which
contains mostly “important” states, we can hope to gain most of the benefits of policy
evaluation at a fraction of the cost. There are many ways to pick an envelope; for example,
the LAO* algorithm [Hansen and Zilberstein, 2001] is one popular approach.

2.3.3 Gauss-Dijkstra Elimination

The Gauss-Dijkstra Elimination algorithm continues the theme of taking advantage of both
Dijkstra’s algorithm and efficient policy evaluation, but it interleaves them at a deeper
level.

Gaussian Elimination and MDPs Fixing a policy π for an MDP produces a Markov
chain and a vector of costs c. If our MDP has S states (not including the goal state), let P π

be the S ×S matrix with entries (P π)xy = P
π(x)
xy for all x, y 6= goal. Finding the values of

4 For example, we experimented with only updating Q(y, b) when P b
yx > 0 in update and then doing

a single full backup of each state after popping it from the queue, ensuring a greedy policy. This approach
was on average slower than the one presented above.
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the MDP under the given policy reduces to solving the linear equations

(I − P π)v = c

To solve these equations, we can run Gaussian elimination and backsubstitution on the
matrix (I − P π). Gaussian elimination calls rowEliminate(x) (defined in Figure 2.6,
where Θ is initialized to P π and w to c) for all x from 1 to S in order,5 zeroing out the
subdiagonal elements of (I−P π). Backsubstitution calls backsubstitute(x) for all x from
S down to 1 to compute (I−P π)−1c. In Figure 2.6, Θx· denotes the x’th row of Θ, and Θy·
denotes the y’th row. We show updates to pgoal(x) explicitly, but it is easy to implement
these updates as an extra dense column in Θ.

To see why Gaussian elimination works faster than Bellman backups in MDPs with
cycles, consider again the Markov chain of Figure 2.1. While value iteration reduces
Bellman error by only 1% per sweep on this chain, Gaussian elimination solves it exactly
in a single sweep. The starting (I − P π) matrix and c vector are:

1 0 0 0 −0.99 −0.01
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0

 ,


1
1
1
1
1


(for clarity, we have shown −pgoal(x) as an additional column separated by a bar). The

first call to rowEliminate changes row 2 to:[
0 1 0 0 −0.99 −0.01

]
,
[
2
]

We can interpret this modified row 2 as a macro-action: we start from state 2 and execute
our policy until we reach a state other than 1 or 2. (In this case, we will end up at the
goal with probability 0.01 and in state 5 with probability 0.99.) Each subsequent call to
rowEliminate zeros out one of the −1s below the diagonal and defines another macro-
action of the form “start in state i and execute until we reach a state other than 1 through
i.” After four calls we are left with

1 0 0 0 −0.99 −0.01
0 1 0 0 −0.99 −0.01
0 0 1 0 −0.99 −0.01
0 0 0 1 −0.99 −0.01
0 0 0 −1 1 0

 ,


1
2
3
4
1


5Using the Θ representation causes a few minor changes to the Gaussian elimination code, but it has the

advantage that (Θ, w) can always be interpreted as a Markov chain which is has the same value function as
the original (Pπ, c). Also, for simplicity we will not consider pivoting; if π is a proper policy then (I −Θ)
will always have a nonzero entry on the diagonal.
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The last call to rowEliminate zeros out the last subdiagonal element (in line (1)), setting
row 5 to: [

0 0 0 0 0.01 −0.01
]
,
[
5
]

(2.6)

Then it divides the whole row by 0.01 (line (2)) to get:[
0 0 0 0 1 −1

]
,
[
500
]

(2.7)

The division accounts for the fact that we may visit state 5 multiple times before our
macro-action terminates: equation (2.6) describes a macro-action which has a 99% chance
of self-looping and ending up back in state 5, while equation (2.7) describes the macro-
action which keeps going after a self-loop (an average of 100 times) and only stops when
it reaches the goal.

At this point we have defined a macro-action for each state which is guaranteed to
reach either a higher-numbered state or the goal. We can immediately determine that
v∗(5) = 500, since its macro-action always reaches the goal directly. Knowing the value
of state 5 lets us determine v∗(4), and so forth: each call to backsubstitute tells us the
value of at least one additional state.

Note that there are several possible ways to arrange the elimination computations in
Gaussian elimination. Our example shows row Gaussian elimination,6 in which we elim-
inate the first k − 1 elements of row k by using rows 1 through k − 1; the advantage of
using this ordering for GDE is that we need not fix an action for state x until we pop it
from the priority queue and eliminate its row.

Gauss-Dijkstra Elimination Gauss-Dijkstra elimination combines the above Gaussian
elimination process with a Dijkstra-style priority queue that determines the order in which
states are selected for elimination. The main loop is the same as the one for PPI, except that
the policy evaluation call is removed and sweep() is replaced by GaussDijkstraSweep().
Pseudo-code for GaussDijkstraSweep() is given in Figure 2.6.

When x is popped from the queue, its action is fixed to a greedy action. The outcome
distribution for this action is used to initialize Θx·, and row elimination transforms Θx· and
w(x) into a macro-action as described above. If Θx,goal = 1, then we fully know the state’s
value; this will always happen for the |S|th state, but may also happen earlier. We do
immediate backsubstitution when this occurs, which eliminates some non-zeros above the
diagonal and possibly causes other states’ values to become known. Immediate backsub-
stitution ensures that v(x) and pgoal(x) are updated with the latest information, improving

6This sequence is called the Doolittle ordering when used to compute a LU factorization.
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main():
(∀x) v(x)←M
v(goal)← 0
while (true) do

(∀x) π(x)← undefined
GaussDijkstraSweep()
if ((max L1 bellman error) < toler-
ance) then

declare convergence
end if

end while

GaussDijkstraSweep():
while (not queue.empty()) do

x← queue.pop()
π(x)← arg mina Q(x, a)

(∀y) Θxy ← P
π(x)
xy

w(x)← c(x, π(x))
rowEliminate(x)
v(x)← (Θx·) · v + w(x)
F = {x}
if (Θx,goal = 1) then

backsubstitute(x)
end if
(∀y ∈ F ) update(y)

end while

backsubstitute(x):
for each y such that Θyx > 0 do

pgoal(x)← pgoal(x) + Θyx

w(y)← w(y) + Θyxv(x)
Θyx ← 0
if (pgoal(y) = 1) then

backsubstitute(y)
F ← F ∪ {y}

end if
end for

rowEliminate(x):
for (y from 1 to x-1) do

w(x)← w(x) + Θxyw(y)
Θx· ← Θx· + ΘxyΘy· (1)
pgoal(x)← pgoal(x) + Θxypgoal(y)
Θxy ← 0

end for
w(x)← w(x)/(1−Θxx)
Θx· ← Θx·/(1−Θxx) (2)
Θxx ← 0
pgoal(x)← pgoal(x)/(1−Θxx)

Figure 2.6: Gauss-Dijkstra Elimination. The update(y) method is the same one used for
PPI, but with the pri2 priority function.

our priority estimates for states on the queue and possibly saving us work later (for ex-
ample, in the case when our transition matrix is block lower triangular, we automatically
discover that we only need to factor the blocks on the diagonal). Finally, all predeces-
sors of the state popped and any states whose values became known are updated using
the update() routine for PPI (in Figure 2.5). However, for GDE we use the pri2 priority
function.

Since S can be large, Θ will usually need to be represented sparsely. Assuming Θ is
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stored sparsely, GDE reduces to Dijkstra’s algorithm in the deterministic case; it is easy to
verify the additional matrix updates require only O(S) work. In a general MDP, initially it
takes no more memory to represent Θ than it does to store the dynamics of the MDP, but
the elimination steps can introduce many additional non-zeros. The number of such new
non-zeros is greatly affected by the order in which the eliminations are performed. There
is a vast literature on techniques for finding such orderings; Duff et al. [1986] provides
a good introduction. One of the main advantages of GDE seems to be that for practical
problems, the prioritization criteria we present produce good elimination orders as well as
effective policy improvement.

Our primary interest in GDE stems from the wide range of possibilities for enhanc-
ing its performance; even in the naive form outlined it is usually competitive with PPI.
We anticipate that doing “early” backsubstitution when states’ values are mostly known
(high pgoal(x)) will produce even better policies and hence fewer iterations. Further, the
interpretation of rows of Θ as macro-actions suggests that caching these actions may yield
dramatic speed-ups when evaluating the MDP with a different goal state. The useful-
ness of macro-actions for this purpose was demonstrated by Dean and Lin [1995]. A
convergence-checking mechanism such as those used by LRTDP and HDP [Bonet and
Geffner, 2003a,b] could also be used between iterations to avoid repeating work on por-
tions of the state space where an optimal policy and value function are already known. The
key to making GDE widely applicable, however, probably lies in appropriate thresholding
of values in Θ, so that transition probabilities near zero are thrown out when their contri-
bution to the Bellman error is negligible. Our current implementation does not do this, so
while its performance is good on many problems, it can perform poorly on problems that
generate lots of fill-in.

2.3.4 Incremental Expansions

In describing IPS, PPI, and GDE we have touched on a number of methods of updating
v and Q values. In summary: Value iteration iteration repeatedly backs up states in an
arbitrary order. Prioritized sweeping backs up states in an order determined by a priority
queue. PPI and GDE also pop states from a priority queue, but rather than backing up the
popped state, they backup up all of its predecessors. IPS pops states from a priority queue,
but instead of fully backing up the predecessors of the popped state x, it only recomputes
Q values for actions that might reach x.

Here we provide a more thorough accounting of the expansion mechanism used by
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IPS. Suppose we are given an initial upper bound vold on v∗. Then, we can define Q by

Q(x, a) = c(x, a) +
∑

y

P a
xyvold(y)

and then vnew by vnew(x) = mina Q(x, a). Note that rather than storing vnew we can simply
store Q and π(x), the greedy policy with respect to vold. Our goal in an expansion operation
is to set vold(x) ← vnew(x), and then update Q so it reflects this change, and then update
vnew so that again vnew(x) = mina Q(x, a). Perhaps the easiest way to ensure this property
is via a full expansion of the state x:

vold(x)← Q(x, π(x))
for all (y, b) ∈ pred(x) do

Q(y, b)← c(y, b) +
∑

x′∈succ(y,b) P b
yx′vold(x

′)

if (Q(y, b) < Q(y, π(y))) then
π(y)← b

end if
end for

Doing such a full expansion requires O(B) work per predecessor state-action pair. We can
accomplish the same task with O(1) work if we assume without loss of generality7 (∀x, a)
P a

xx = 0, and perform an incremental expansion:

∆(x)← Q(x, π(x))− vold(x)
for all (y, b) ∈ pred(x) do

Q(y, b)← Q(y, b) + P b
yx∆(x)

if (Q(y, b) < Q(y, π(y))) then
π(y)← b

end if
end for
vold(x)← Q(x, π(x))

However, when doing a full expansion, we have a better option for calculating Q(y, b) than
the one given above. We can update Q(y, b) using Q(x′, π(x′)) in place of vold(x

′), and

7Suppose P a
xx > 0. There exists an optimal stationary policy, so if a is selected and a self-loop occurs,

it is safe to assume that action a is selected again, until a new state is reached. In expectation this will take
1/(1 − P a

xx) trials, so in a pre-processing step we replace a with action a′, which is equivalent to taking a
until a new state is reached: we have c(x, a′) = c(x, a)/(1 − P a

xx), with transition probabilities given by
setting P a′

xx = 0, and normalizing P a
xy for all y 6= x.
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update(x):
for all (y, b) ∈ pred(x) do

Qtemp ← c(y, b) +
∑

x′∈succ(y,b) P b
yx′v(x′)

if (Qtemp < v(y)) then
pri← (Qtemp − v(y))/(Qtemp + 1)
π(y)← b
if (|v(y)−Qtemp| > ε) then

queue.decreasepriority(y, pri)
end if
v(y)← Qtemp

end if
end for

Figure 2.7: The update function for the Improved Prioritized Sweeping algorithm, im-
plemented with a single value-function array v and a temporary variable Qtemp.

this may offer a tighter upper bound because Q(x′, π(x′)) ≤ v(x′) when we pessimisti-
cally initialize. In our experiments, this method proved superior to doing incremental
expansions, and it is the method used by Improved Prioritized Sweeping (see Figure 2.4
for the code). However, on certain problems incremental expansions may give superior
performance. IPS based on incremental expansions tends to do more updates (at lower
cost) and so priority queue operations account for a larger fraction of its running times.
Thus, fast approximate priority queues might offer a significant advantage to incremental
IPS implementations.

One final implementation note. Our pseudocode for IPS and PPI indicates that Q
values for all actions are stored. While this is necessary if incremental expansions are
performed, we do full expansions so the extra storage is not required. It is sufficient to store
a single value for each state, which takes the place of Qold and v in the pseudocode; newly
calculated Q(y, b) values can be replaced by a temporary variable Qt; the value is only
relevant if it causes v(y) to change, in which case we immediately assign v(y) the value of
the temporary for Q(y, b) rather than waiting until y is popped from the queue. Figure (2.7)
shows this modification to the original IPS update method given in Figure (2.4).

27



2.3.5 Experimental Results

We implemented IPS, PPI, and GDE and compared them to VI, Prioritized Sweeping,
and LRTDP. All algorithms were implemented in Java 1.5.0 and tested on a 3Ghz Intel
machine with 2GB of main memory under Linux.

Our PPI implementation uses a stabilized biconjugate gradient solver with an incom-
plete LU preconditioners as implemented in the Matrix Toolkit for Java [Heimsund, 2004].
No native or optimized code was used; using architecture-tuned implementations of the
underlying linear algebraic routines could give a significant speedup.

For LRTDP we specified a few reasonable start states for each problem. Typically
LRTDP converged after labeling only a small fraction of the the state space as solved, up
to about 25% on some problems.

Experimental Domain

We describe experiments in a discrete 4-dimensional planning problem that captures many
important issues in mobile robot path planning. Our domain generalizes the racetrack
domain described previously in [Barto et al., 1995, Bonet and Geffner, 2003b,a, Hansen
and Zilberstein, 2001]. A state in this problem is described by a 4-tuple, s = (x, y, dx, dy),
where (x, y) gives the location in a 2D occupancy map, and (dx, dy) gives the robot’s
current velocity in each dimension. On each time step, the agent selects an acceleration
a = (ax, ay) ∈ {−1, 0, 1}2 and hopes to transition to state (x + dx, y + dy, dx + ax, dy +
ay). However, noise and obstacles can affect the actual result state. If the line from (x, y)
to (x+dx, y+dy) in the occupancy grid crosses an occupied cell, then the robot “crashes,”
moving to the cell just prior to the obstacle and losing all velocity. (The robot does not
reset to the start state as in some racetrack models.) Additionally, the robot may be affected
by several types of noise:

• Action Failure With probability fp, the requested acceleration fails and the next
state is (x + dx, y + dy, dx, dy).

• Local Noise To model the fact that some parts of the world are more stochastic
than others, we mark certain cells in the occupancy grid as “noisy,” along with a
designated direction. When the robot crosses such a cell, it has a probability f` of
experiencing an acceleration of magnitude 1 or 2 in the designated direction.

• One-way passages Cells marked as “one-way” have a specified direction (north,
south, east, or west), and can only be crossed if the agent is moving in the indicated
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|S| fp f` % determ O notes
A 59,780 0.00 0.00 100.0% 1.00 deterministic
B 96,736 0.05 0.10 17.2% 2.17 |A| = 1
C 11,932 0.20 0.00 25.1% 4.10 fh = 0.05
D 10,072 0.10 0.25 39.0% 2.15 cycle
E 96,736 0.00 0.20 90.8% 2.41
F 21,559 0.20 0.00 34.5% 2.00 large-b
G 27,482 0.10 0.00 90.4% 3.00

Table 2.1: Test problems sizes and parameters.

direction. Any non-zero velocity in another direction results in a crash, leaving the
agent in the one-way state with zero velocity.

• High-velocity noise If the robot’s velocity surpasses an L2 threshold, it incurs a
random acceleration on each time step with probability fh. This acceleration is
chosen uniformly from {−1, 0, 1}2, excluding the (0, 0) acceleration.

These additions to the domains allow us to capture a wider variety of planning problems. In
particular, kinodynamic path planning for mobile robots generally has more noise (more
possible outcomes of a given action as well as higher probability of departure from the
nominal command) than the original racetrack domain allows. Action failure and high-
velocity noise can be caused by wheels slipping, delays in the control loop, bumpy terrain,
and so on. One-way passages can be used to model low curbs or other map features that
can be passed in only one direction by a wheeled robot. And, local noise can model a
robot driving across sloped terrain: downhill accelerations are easier than uphill ones.

Table 2.1 summarizes the parameters of the test problems we used. The “% determ”
column indicates the percentage of (s, a) pairs with deterministic outcomes; our imple-
mentation uses a deterministic transition to apply the collision cost, so all problems have
some deterministic transitions. The O column gives the average number of outcomes for
non-deterministic transitions. All problems have 9 actions except for (B), which is a pol-
icy evaluation problem. Problem (C) has high velocity noise, with a threshold of

√
2 + ε.

Figure 2.8 shows the 2D world maps for most of the problems.

To construct larger problems for some of our experiments, we consider linking copies
of an MDP in series by making the goal state of the ith copy transitions to the start state
of the (i + 1)st copy. We indicate k serial copies of an MDP M by Mk, so for example 22
copies of problem (G) is denoted (G22).
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Figure 2.8: Some maps used for test experiments; maps are not drawn to the same scale.
Problem (E) uses the same map as (B). Problem (G) uses a smaller version of map (B).
Special states (one-way passages, local noise) are indicated by light grey symbols; contact
the authors for full map specifications.

Experimental Results

Effects of Local Noise First, we considered the effect of increasing the randomness
f` and fp for the fixed map (G), a smaller version of (B). One-way passages give this
complex map the possibility for cycles. Figure 2.9 shows the run times (y-axis) of several
algorithms plotted against fp. The parameter f` was set to 0.5fp for each trial.

These results demonstrate the catastrophic effect increased noise can have on the per-
formance of VI. For low-noise problems, VI converges reasonably quickly, but as noise
is increased the expected length of trajectories to the goal grows, and VI’s performance
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Figure 2.9: Effect of local noise on solution time. The leftmost data point is for the
deterministic problem. Note that PPI-4 exhibits almost constant runtime even as noise is
increased.

degrades accordingly. IPS performs somewhat better overall, but it suffers from this same
problem as the noise increases. However, PPI’s use of policy evaluation steps quickly
propagates values through these cycles, and so its performance is almost totally unaffected
by the additional noise. PPI-4 beats VI on all trials. It wins by a factor of 2.4 with
fp = 0.05, and with fp = 0.4 PPI-4 is 29 times faster than VI.

The dip in runtimes for LRTDP is probably due to changes in the optimal policy, and
the number and order in which states are converged. Confidence intervals are given for
LRTDP only, as it is a randomized algorithm. The deterministic algorithms were run
multiple times, and deviations in runtimes were negligible.

Number of Policy Evaluation Steps Policy iteration is an attractive algorithm for MDPs
where policy evaluation via backups or expansions is likely to be slow. It is well known
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that policy iteration typically converges in few iterations. However, Figure 2.10 shows that
our algorithms can greatly reduce the number of iterations required. In problems where
policy evaluation is expensive, this can provide a significant overall savings in computation
time.

The number of iterations that standard policy iteration takes to converge depends on the
initial policy. We experimented with initializing to the uniform stochastic policy,8 random
policies that at least give all states finite value, and an optimal policy for the deterministic
relaxation of the problem.9 The choice of initial policy rarely changed the number of
iterations by more than 2 or 3, and in almost all cases initializing with the policy from the
deterministic relaxation gave the best performance. Policy iteration was initialized in this
way for the results in Figure 2.10.

We compare policy iteration to PPI, where we use either 1,2, or 4 sweeps of Dijkstra
policy improvement between iterations. We also ran GDE on these problems. Typically it
required the same number of iterations as PPI, but we hope to improve upon this perfor-
mance in future work.

Q-value Computations Our implementation are optimized not for speed but for ease of
use, instrumentation, and modification. We expect our algorithms to benefit much more
from tuning than value iteration. To show this potential, we compare IPS, PS, and VI on
the number of Q-value computations (Q-comps) they perform. A single Q-comp means
iterating over all the outcomes for a given (s, a) pair to calculate the current Q value. A
backup takes |A| Q-comps, for example. We do not compare PPI-4, GDE, and LRTDP
based on this measure, as they also perform other types of computation.

IPS typically needed substantially fewer Q-comps than VI. On the deterministic prob-
lem (A), VI required 255 times as many Q-comps as IPS, due to IPS’s reduction to Dijk-
stra’s algorithm; VI made 7.3 times as many Q-comps as PS. On problems (B) through (F),
VI on average needed 15.29 times as many Q-comps as IPS, and 5.16 times as many as PS.
On (G22) it needed 36 times as many Q-comps as IPS. However, these large wins in num-
ber of Q-comps are offset by value iteration’s higher throughput: for example, on problems
(B) through (F) VI averaged 27,630 Q-comps per millisecond, while PS averaged 4,033

8This is a poor initialization not only because it is an ill-advised policy, but also because it often produces
a poorly-conditioned linear system that is difficult to solve

9This is the policy chosen by an agent who can choose the outcome of each action, rather than having
an outcome sampled from the problem dynamics. This policy and its value function can be computed by
any shortest path algorithm or A∗ if a heuristic is available. Note that this policy is different than the greedy
policy with respect to the value function of the deterministic relaxation, which need not even be a proper
policy. We will discuss this issue in greater depth in Section (2.4.1).
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Figure 2.10: Number of policy evaluation steps.

and IPS averaged 3,393. PS and IPS will always have somewhat more overhead per Q-
comp than VI. However, replacing the standard binary heap we implemented with a more
sophisticated algorithm or with an approximate queuing strategy could greatly reduce this
overhead, possibly leading to significantly improved performance.

Figure 2.11 compares the number of Q-comps required to solve serially linked copies
of problem (D): the x-axis indicates the number of copies, from (D1) to (D8). VI still
has competitive run-times because it performs Q-comps much faster. On (D8) it averages
41,360 Q-comps per millisecond, while PS performs only 4,453 and IPS only 3,871.

Overall Performance of Solvers Figure 2.12 shows a comparison of the run-times of
our solvers on the various test problems. Problem (G22) has 623,964 states, showing that
our approaches can scale to large problems.10 On (G22), the stabilized biconjugate gra-

10This experiment was run on a different (though similar) machine than the other experiments, a 3.4GHz
Pentium under Linux with 1GB of memory.
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Figure 2.11: Comparison of number of Q-computations performed by IPS, PS, and VI to
solve serially-linked copies of problem (D).

dient algorithm failed to converge on the initial linear systems produced by PPI-4, so we
instead used PPI where 28 initial sweeps were made (so that there was a reasonable policy
to be evaluated initially), and then 7 sweeps were made between subsequent evaluations.
We also found that adding a pass of standard greedy policy improvement after the sweeps
improved performance. These changes roughly balanced the time spent on sweeping and
policy improvement. In future work we hope to develop more principled and automatic
methods for determining how to split computation time between sweeps and policy evalu-
ation. We did not run PS, LRTDP, or GDE on this problem.

Generally, our algorithms do best on problems that are sparsely stochastic (only have
randomness at a few states) and also on domains where typical trajectories are long relative
to the size of the state space. These long trajectories cause serious difficulties for methods
that do not use an efficient form of policy evaluation. For similar reasons, our algorithms
do better on long, narrow domains rather than wide open ones; the key factor is again the

34



A  (4.37s) B  (76.00s) C  (5.55s) D  (28.15s) E  (90.75s) F  (3.80s) G22  (675.12s)
0

0.2

0.4

0.6

0.8

1

Problem

Fr
ac

to
n 

of
 lo

ng
es

t t
im

e
PPI−4
IPS
GDE
VI
LRTDP
PS

Figure 2.12: Comparison of a selection of algorithms on representative problems. Prob-
lem (A) is deterministic, and Problem (B) requires only policy evaluation. Results are
normalized to show the fraction of the longest solution time taken by each algorithm. On
problems (B) and (E), the slowest algorithms were stopped before they had converged.
LRTDP is not charged for time spent calculating its heuristic, which is negligible in all
problems except (A).

expected length of the trajectories versus the size of the state space.

Value iteration backed up states in the order in which states were indexed in the inter-
nal representation; this order was generated by a breadth-first search from the start state
to find all reachable states. While this ordering provides better cache performance than
a random ordering, we ran a minimal set of experiments and observed that the natural
ordering performs somewhat worse (up to 20% in our limited experiments) than random
orderings. Despite this, we observed better than expected performance for value itera-
tion, especially as it compares to LRTDP and Prioritized Sweeping. For example, on the
large-b problem (F), [Bonet and Geffner, 2003a] reports a slight win for LRTDP over
VI, but our experiments show VI being faster.

Also, GDE’s performance is typically close to or better than that of PPI-4, except on
problem (B), where GDE fails due to moderately high fill in. These results are encour-
aging because GDE already sometimes performs better than PPI-4, and currently GDE is
based on a naive implementation of Gaussian elimination and sparse matrix code. The
literature in the numerical analysis community shows that more advanced techniques can
yield dramatic speedups (see, for example, [Gupta, 2002]).
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2.3.6 Discussion

The success of Dijkstra’s algorithm has inspired many algorithms for MDP planning to
use a priority queue to try to schedule when to visit each state. However, none of these
algorithms reduce to Dijkstra’s algorithm if the input happens to be deterministic. And,
more importantly, they are not robust to the presence of noise and cycles in the MDP.
For MDPs with significant randomness and cycles, no algorithm based on backups or
expansions can hope to remain efficient. Instead, we turn to algorithms which explicitly
solve systems of linear equations to evaluate policies or pieces of policies.

We have introduced a family of algorithms—Improved Prioritized Sweeping, Prior-
itized Policy Iteration, and Gauss-Dijkstra Elimination—which retain some of the best
features of Dijkstra’s algorithm while integrating varying amounts of policy evaluation.
We have evaluated these algorithms in a series of experiments, comparing them to other
well-known MDP planning algorithms on a variety of MDPs. Our experiments show that
the new algorithms can be robust to noise and cycles, and that they are able to solve many
types of problems more efficiently than previous algorithms could.

For problems which are fairly close to deterministic or with only moderate noise and
cycles, we recommend Improved Prioritized Sweeping. For problems with fast mixing
times or short average path lengths, value iteration is hard to beat and is probably the
simplest of all of the algorithms to implement. For general use, we recommend the Pri-
oritized Policy Iteration algorithm. It is simple to implement, and can take advantage of
fast, vendor-supplied linear algebra routines to speed policy evaluation. All of these ap-
proaches are most appropriate when the agent may visit a large fraction of the state space,
either because the agent’s start state is unknown or because reaching the goal requires vis-
iting much of the state space. In the next section, we consider problems where a fixed
start state is known, and it is possible (with high probability) to reach the goal while only
visiting a small fraction of the state space.

2.4 Bounded Real-Time Dynamic Programming

In this section we consider the problem of finding a policy in a Markov decision process
with a fixed start state s, a fixed zero-cost absorbing goal state g, and non-negative costs.
An arbitrary distribution over initial states can be modeled by adding an imaginary start
state with a single action that produces the desired distribution. Perhaps the simplest
algorithm for this problem is value iteration, which solves for an optimal policy on the full
state space. Many realistic problems, however, are too large for such an approach and often
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only a small fraction of the the state space is relevant to the problem of reaching g from s.
This fact has inspired the development of a number of algorithms that focus computation
on states that seem to be most relevant to finding an optimal policy from s. Such algorithms
include Real-Time Dynamic Programming (RTDP) [Barto et al., 1995], Labeled-RTDP
(LRTDP) [Bonet and Geffner, 2003b], LAO? [Hansen and Zilberstein, 2001], Heuristic
Search/DP (HDP) [Bonet and Geffner, 2003a], Envelope Propagation (EP) [Dean et al.,
1995], and Focused Dynamic Programming (FP) [Ferguson and Stentz, 2004].

Many of these algorithms use heuristics (lower bounds on the optimal value function)
and/or sampled greedy trajectories to focus computation. In this section, we introduce
Bounded RTDP (BRTDP), which is based on RTDP and uses both a lower bound and
sampled trajectories. Unlike RTDP, however, it also maintains an upper bound on the
optimal value function, which allows it to focus on states that are both relevant (frequently
reached under the current policy) and poorly understood (large gap between upper and
lower bound). Further, acting greedily with respect to an appropriate upper bound allows
BRTDP to make anytime performance guarantees.

Finding an appropriate upper bound to initialize BRTDP can greatly impact its perfor-
mance. One of the contributions of this work is an efficient algorithm for finding such an
upper bound. Nevertheless, our experiments show that BRTDP performs well even when
initialized naively.

We evaluate BRTDP on two criteria: off-line convergence, the time required to find an
approximately optimal partial policy before any actions are taken in the real world; and
anytime performance, the ability to produce a reasonable partial policy at any time after
computation is started.

Our experiments show that when run off-line, BRTDP often converges much more
quickly than LRTDP and HDP, which are known to have good off-line convergence proper-
ties. In fact, the gap in offline performance between BRTDP and competing algorithms can
be arbitrarily large because of differences in how they check convergence. HDP, LRTDP,
and LAO? (and most other algorithms of which we are aware11) have convergence guaran-
tees based on achieving small Bellman residual on all states reachable under the current
policy, while BRTDP only requires a small residual on states reachable with significant
probability. Let fπ(y) be the expected number of visits to state y given that the agent starts
at s and executes policy π. We say an MDP has dense noise if all policies have many
nonzero entries in fπ. For example, planning problems with action errors have fπ > 0

11After the initial submission of this work, it was pointed out that our exploration strategy is similar to
that of the HSVI algorithm Smith and Simmons [2004]; since HSVI is designed for POMDPs rather than
MDPs, the forms of the bounds that it maintains are different from ours, and its backup operations are much
more expensive.
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for all reachable states. (Action errors mean that, with some small probability, we take a
random action rather than the desired one.) Dense noise is fairly common, particularly in
domains from robotics. For example, Gaussian errors in movement will make every state
have positive probability of being visited. Gaussian motion-error models are widespread,
e.g. Ng et al. [2004]. Unpredictable motion of another agent can also cause large num-
bers of states to have positive visitation probability; an example of this sort of model is
described by Roy et al. [2004].

For HDP or LRTDP to converge on problems with dense noise, they must do work that
is at least linear in the number of nonzero entries in fπ, even if most of those entries are
almost zero. BRTDP’s bounds allow it to make performance guarantees on MDPs with
dense noise without doing work linear in the number of states reachable under its greedy
policy, potentially making it arbitrarily faster than HDP, LRTDP, and LAO?.

When used as an anytime algorithm, a suitably-initialized BRTDP consistently out-
performs a similarly initialized RTDP (which is known to have good anytime properties).
Without any initialization information, BRTDP is competitive with RTDP and sometimes
better. Furthermore, given reasonable initialization assumptions, BRTDP will always re-
turn a policy with provable performance bounds. We know of no other MDP algorithms
with this property.

In the next section we establish notation and define concepts needed to describe our
algorithm. We then propose an algorithm for finding a monotone upper bound in time lin-
ear in the size of the state space. Section 2.4.3 explains BRTDP in detail and Section 2.4.4
describes different initialization scenarios and associated guarantees. In section 2.4.5 we
formalize our notions of off-line convergence and anytime performance, and demonstrate
that BRTDP can outperform existing algorithms on both of these tasks.

2.4.1 Basic Results

We will again work with value functions. Recall that the Bellman error for a value func-
tion v at a state x is given by bev(x) = v(x)−mina∈A Qv(x, a). We are particularly inter-
ested in monotone value functions: v is monotone optimistic (a monotone lower bound) if
∀x, bev(x) ≤ 0 and monotone pessimistic (monotone upper bound) if ∀x, bev(x) ≥ 0.
We use the following two theorems, which can be proved using techniques from [Bertsekas
and Tsitsiklis, 1996, Sec. 2.2].

Theorem 2.4.1. If v is monotone pessimistic, then v is an upper bound on v?. Similarly, if
v is monotone optimistic, then v is a lower bound on v?.
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Figure 2.13: An MDP where the greedy policy with respect to vd, the values from the
deterministic relaxation, is improper. Costs are c(x, a) = 1 and c(x, b) = 10.

Theorem 2.4.2. Suppose vu is a monotone upper bound on v?. If π is the greedy policy
with respect to vu, for all x, vπ(x) ≤ vu(x).

No analog to Theorem 2.4.2 exists for a greedy policy based on a lower bound v`,
monotone or otherwise: such a policy may be arbitrarily bad. Consider an arbitrary
stochastic shortest path problem M = (S, A, P, c, s, g), and consider the values found
by solvingMd, the deterministic relaxation ofM. That is, inMd the planner can choose
any outcome of any action from each state, rather than choosing an action and then facing
a stochastic outcome. It is easy to show that the optimal values vd for Md are a mono-
tonic lower bound on v?. Further, Md is deterministic, so it can be solved via A∗ or
Dijkstra’s algorithm. However, greedy(vd) need not even be proper. Consider the MDP
shown in Figure 2.13, and suppose c(x, a) = 1 and c(x, b) = 10. Then, vd(x) = 10,
and so Qvd

(x, a) = 11 and Qvd
(x, b) = 19 and the greedy policy with respect to vd thus

always selects action a. This observation is important because RTDP, LRTDP, HDP, and
LAO? are often initialized to vd, and they select actions greedily with respect to their value
functions. Thus, initially these algorithms may produce arbitrarily bad stationary policies.

A proper policy, however, can always be extracted from vd. In order for x to get a
value vd(x) there must exist some y ∈ S and a ∈ A satisfying P a

xy > 0 and vd(x) =
c(x, a) + vd(y). Then, it is not hard to show that we can construct a proper policy πd by
setting πd(x) = a for any such a; if there are multiple such actions, it is natural to pick the
one with highest P a

xy.

In summary, monotone lower bounds can have arbitrarily bad greedy policies, but
greedy policies for monotone upper bounds do at least as well as the bound. Thus, we
believe (and our experimental results demonstrate) that there is significant advantage to
having an anytime algorithm that returns a policy that is greedy with respect to a monotone
upper bound on the value function. The intuition is that if we have not finished planning
and must return some non-optimal plan to be executed, it is wise to be pessimistic about re-
gions of the state space where we haven’t done much work. However, during the planning
phase (that is, in simulation), being optimistic about relatively unexplored regions is bene-
ficial. Thus, BRTDP gains an advantage by maintaining both an upper and lower bound on
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the value function. The question of how to efficiently compute an initial monotone upper
bounds is addressed in the next section.

2.4.2 Monotonic Upper Bounds in Linear Time

Our planning algorithm, BRTDP, is described below in Section 2.4. It can be initialized
with any upper and lower bounds vu and v` on v?, and provides performance guarantees if
vu and v` are monotone. So, we need to compute monotone bounds vu and v` efficiently.
This section describes how to do so assuming we can afford to visit every state a small
number of times; Section 2.4.4 describes looser bounds which don’t require visiting all of
S. As noted above, we can initialize v` to the value of the deterministic relaxationMd;
so, the remainder of this section deals with vu.

For any proper policy π, the value function vπ is a monotone upper bound. A proper
policy can be found reasonably quickly, for example by computing πd from the determin-
istic relaxation. Unfortunately, directly solving the linear system to evaluate π requires
aboutO(|S|3) time in the worst case.12 This is the fastest technique currently in the litera-
ture of which we are aware. We introduce a new algorithm, which we call Dijkstra Sweep
for Monotone Pessimistic Initialization (DS-MPI), which can compute a monotone upper
bound in O(|S| log |S|) time.

Suppose we are given a policy π along with pgoal, w ∈ R|S|
+ that satisfy the following

property: if we execute π from x until some fixed but arbitrary condition13 is met, then
w(x) is an upper bound of the expected cost of the execution from x until the stopping
condition is met, and pgoal(x) is a lower bound on the probability the current state is the
goal when execution is stopped. If pgoal(x) > 0 and w(x) is finite for all x, we can use this
information to derive an upper bound on v∗. We first informally motivate this derivation;
then, we present a theorem that shows that with some additional conditions on w and pgoal

we can derive a monotone upper bound. Finally, we give an efficient algorithm for finding
the necessary w and pgoal.

Imagine executing π, starting from some state x, up until the stopping condition is
met. This costs at most w(x) in expectation, and with probability at least pgoal(x) we
reach the goal. But, suppose we don’t reach the goal, and instead arrive at some other
state y. We have made no assumptions about π, and so y might be the “worst” state in the

12For some particular problems, sparse linear solvers or iterative methods may offer better performance.
13For example, we might execute π for t steps; or execute π until we reach a state in some subset of S.

Formally, π can be an arbitrary (history-dependent) policy, and the stopping condition can be an arbitrary
function Θ. If H is the set of all possible histories (trajectories), then Θ : H → {0, 1}, where θ(h) = 1
implies stopping; Θ need only ensure that every trajectory stops after a finite number of steps
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MDP. Nevertheless, we can re-start our execution of π from y, paying an additional w(y)
in expectation, and reaching the goal with probability at least pgoal(y). We can continue
repeating this process, and because (∀x) pgoal(x) > 0, we will eventually reach the goal.

We can upper bound the expected cost in this process by explicitly considering an
adversary that after each execution of π (up to the stopping condition) gets to teleport the
planning agent to an arbitrary state y with probability 1−pgoal(x); with probability pgoal(x),
the process ends. We model this interactions as an MDP for the adversary: there is a single
non-goal state, and one action for each state in the original problem, corresponding to the
destination of the teleportation. We can solve this single-state MDP by computing the
optimal value

λ1 = max
x∈S

w(x)

pgoal(x)
.

It follows that in the original MDPM, for all x, v?(x) ≤ λ1. For any particular x, we
also have v?(x) ≤ w(x) + (1 − pgoal(x))λ1: the value of a state can’t be any worse than
following π until the stopping condition is met (and paying w(x)), and then ending up at
the worst state in the MDP with probability 1− pgoal(x), which has value no greater than
λ1. Further, if we are given some Z ∈ R such that v?(x) ≤ Z for all x, then we can use
Z in place of λ1 and still have an upper bound by the same argument. However, without
further assumptions,vu (based on λ1 or Z) need not be monotonic.

The next theorem generalizes this idea by showing how it can also be used to find a
monotone upper bound, if w and pgoal each satisfy certain (monotonicity-like) conditions.

Theorem 2.4.3. Suppose pgoal and w satisfy the conditions given above for some policy π.
Further, suppose for all x, there exists an action a such that either

(I) pgoal(x) <
∑
y∈S

P a
xypgoal(y)

or

(II) w(x) ≥ c(x, a) +
∑
y∈S

P a
xyw(y) and

pgoal(x) =
∑
y∈S

P a
xypgoal(y).

Define λ(x, a) by

λ(x, a) =
c(x, a) +

∑
y∈S P a

xyw(y)− w(x)∑
y∈S P a

xypgoal(y)− pgoal(x)
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when case (I) applies, and let λ(x, a) = 0 when case (II) applies, and λ(x, a) = ∞
otherwise. Then, if we choose λ = maxx∈S mina∈A λ(x, a) the value function vu(x) =
w(x) + (1− pgoal(x))λ is a finite monotonic upper bound on v?.

Proof. It is sufficient to show that all Bellman errors for vu are positive, that is,

(∀x) vu(x)−min
a∈A

[
c(x, a) +

∑
y∈S

P a
xyvu(y)

]
≥ 0.

Plugging in the definition of vu from above gives

(∀x) w(x) + (1− pgoal(x))λ ≥ min
a∈A

[
c(x, a) +

∑
y∈S

P a
xy

(
w(y) + (1− pgoal(y))λ

)]
.

We need to show that this inequality holds for all x given λ as defined by the theo-
rem. It is sufficient to show the inequality holds for at least one action, so fix some
a′ ∈ argmina λ(x, a). By assumption λ(x, a′) is finite and hence either condition (I)
or (II) applies. For case (I), we can solve the above inequality for λ, and arrive at
λ ≥ λ(x, a′). This condition is satisfied given our choice a′ and the definition of λ from
the theorem. If case (II) holds, any λ ≥ 0 will satisfy the above inequality. It follows that
vu monotone.

Now we will show how to construct the necessary w, pgoal, and corresponding π. The
idea is simple: suppose state x1 has an action a such that P a

x1g > 0. Then, we can set
w(x1) = c(x1, a) and pgoal(x1) = P a

x1g. Now, consider some state x2 that has an action
a2 such that p = (P a2

x2g + P a2
x2x1

)pgoal(x1) > 0. Then, we can set pgoal(x2) equal to p, and
w(x2) = c(x2, a2) + P a2

x2g0 + P a2
x2x1

w(x1). We can now select x3 to be any state with an
action that has positive probability of reaching g, x1, or x2, and we will be able to assign
it a positive pgoal. The policy π corresponding to pgoal and w is given by π(xi) = ai, and
the stopping condition ends a trajectory whenever a transition from xi to xj occurs with
j ≥ i. The pgoal and w values we compute are exact values, not bounds, for this policy and
stopping condition.

To complete the algorithm, it remains to give a method for determining what state to
select next when there are multiple possible states. We propose the greedy maximization
of pgoal(xk): having fixed x1, . . . , xk−1, select (xk, ak) to maximize

∑
i<k P ak

xkxi
pgoal(xi). If

there are multiple states that achieve the same pgoal(xk), we choose the one that minimizes∑
i<k P ak

xkxi
w(xi). Figure (2.14) gives the pseudocode for calculating pgoal and w; the

queue is a min priority queue (with priorities in R2 which are compared according to
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Initialization:
∀(x, a), p̂goal(x, a)← 0; ∀a, p̂goal(g, a)← 1
ŵ(x, a)← c(x, a)
pgoal, w initialized arbitrarily
∀x, π(x)← undefined; π(g)← (arbitrary action)
∀x, pri(x)←∞, closed(x)← false

Sweep:
queue.enqueue(goal, 0)
while not queue.empty() do

x← queue.pop()
closed(x)← true
w(x)← ŵ(x, π(x))
pgoal(x)← pgoal(x, π(x))
for all (y, a) s.t.(P a

yx > 0) and (not closed(y)) do
ŵ(y, a)← ŵ(y, a) + P a

yxw(x)
p̂goal(y, a)← p̂goal(y, a) + P a

yxpgoal(x)
pri← 〈1− p̂goal(y, a), ŵ(y, a)〉
if pri < pri(y) then

pri(y)← pri
π(y)← a
queue.decreaseKey(y, pri(y))

end if
end for

end while

Figure 2.14: The DS-MPI procedure.

lexical order), and p̂goal and ŵ are analogous to the Q values for v. After applying the
sweep procedure, one can apply Theorem 2.4.3 to construct vu.

In fact, condition (I) or (II) will always hold for action ak, and so it is sufficient to
set λ = maxxi∈S λ(xi, ai). To see this, consider the (xk, ak) selected by DS-MPI, after
x1, . . . , xk−1 have already been popped (i.e., fin(xi) = true, i < k). Then, pgoal(xk) =∑

i<k P ak
xkxi

pgoal(xi). At completion, all states x have pgoal(x) > 0, and so the only way
pgoal(xk) can equal

∑
y∈S P ak

xkypgoal(y) is if all outcomes y ∈ succ(xk, ak) were closed
when pgoal(xk) was set. This implies that

∑
i<k P ak

xkxi
w(xi) =

∑
y∈S P ak

xkyw(y), and so
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w(y) = c(x, a) +
∑

y∈S P xk
xkyw(y) and condition (II) holds. Otherwise, condition (I) must

hold for (xk, ak). Additional backups of w and pgoal will preserve these properties, so if
extra computation time is available or the pgoal values calculated initially are too small,
additional sweeps will tighten the upper bound.

If the dynamics are deterministic, then we can always pick (xk, ak) so pgoal(xk) = 1,
and so our scheduling corresponds to that of Dijkstra’s algorithm. This sweep is similar
to the policy improvement sweeps done by the Prioritized Policy Iteration (PPI) algorithm
described in Section 2.3. The primary differences are that the PPI version assumes it is
already initialized to some upper bound and performs full Q updates, while this version
performs incremental updates.

The running time of DS-MPI isO(|S| log |S|) (assuming a constant number of actions
and outcomes) if a standard binary heap is used to implement the queue. However, an un-
scheduled version of the algorithm will still produce a finite (though possibly much looser)
upper bound, so this technique can be run in O(|S|) time. If no additional information is
available, then this performance is the best possible for arbitrary MDPs: in general it is
impossible to produce an upper bound on any state without doing O(|S|) work, since we
must consider the cost at each reachable state.

2.4.3 Bounded RTDP

The pseudocode for Bounded RTDP is given in Algorithm 2.15. BRTDP has four primary
differences from RTDP.

• It maintains upper and lower bounds vu and v` of v?, rather than just a lower bound.
When a policy is requested in an anytime manner (i.e., before convergence), the
policy greedy(vu) is returned; v` helps guide exploration in simulation.

• When trajectories are sampled in simulation, the outcome distribution is biased to
prefer transitions to states with a large gap (vu(x)− v`(x)).

• BRTDP maintains a list of the states on the current trajectory, and when the trajec-
tory terminates backups are done in reverse order along the stored trajectory.

• Trajectories terminate when they reach a state that has a “well-known” value, rather
than when they reach the goal.

We assume BRTDP is initialized so that vu is an upper bound, and v` is a lower bound. We
defer a justification of this assumption to the next section.
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Main loop:
while (vu(s)− v`(s)) > α do

runSampleTrial()
end while

runSampleTrial:
x← s
traj← (empty stack)
while true do

traj.push(x)
vu(x)← mina Qvu(x, a)
a← argmina Qv`

(x, a)
v`(x)← Q(x, a)
∀y, b(y)← P a

xy(vu(y)− v`(y))
B ←

∑
y b(y)

if(B < (vu(s)− v`(s))/τ) then break
x← sample from distribution b(y)/B

end while
while not traj.empty() do

x← traj.pop()
vu(x)← mina Qvu(x, a)
v`(x)← mina Qv`

(x, a)
end while

Figure 2.15: The bounded RTDP algorithm.

Like RTDP, BRTDP performs backups along sampled trajectories that begin from s.
From an arbitrary state x on the trajectory a greedy action a is selected with respect to v`.
Let b(y) = P a

xy(vu(y) − v`(y)), and let B =
∑

y∈S b(y). Then, BRTDP samples the next
state on the trajectory according to the distribution that assigns prob(y) = b(y)/B.

The value of the goal state is known to be zero, and so we assume vu(g) = v`(g) = 0
initially (and hence always). This implies that b(g) = 0, and so our trajectories will never
actually reach the goal. It is natural to end trajectories when a “known” state is reached.
For BRTDP, “known” corresponds to states with small gap. However, the smaller the gap
the less likely we are to reach the state, so we instead look at the expected gap under
the greedy action with respect to the unbiased transition probabilities. The normaliz-
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ing constant B has exactly this interpretation, so we terminate the trajectory when B is
small. We experimented with both constant thresholds and dynamic ones, and the differ-
ent choices have relatively minor impacts on performance. We found the adaptive criterion
B ≤ (vu(s) − v`(s))/τ , where τ > 1 is a constant (say from 10 to 100), to be as good as
anything. Figure 2.15 gives the complete pseudocode for the algorithm.

A convergence proof for BRTDP must be very different from the standard one for
RTDP. Proving the convergence of RTDP typically relies on the claim that all states reach-
able under the greedy policy are backed up infinitely often in the limit [Bertsekas and
Tsitsiklis, 1996]. In the face of dense noise, this implies convergence will require visit-
ing the full state space. We take convergence to mean vu(s) − v`(s) ≤ α for some error
tolerance α, and BRTDP can achieve this (given a good initialization) without visiting the
whole state space even with dense noise. A detailed proof can be formed by establish-
ing that: (1) vu and v` remain upper and lower bounds on v?, (2) trajectories have finite
expected lengths, and (3) every trajectory has a positive probability of increasing v` or
decreasing vu.

2.4.4 Initialization Assumptions and Performance Guarantees

We assume that at the beginning of planning, the algorithm is givenM, including s. As
mentioned in Section 2.4.2, if this is the only information available, then on arbitrary
problems it may be necessary to consider the whole state space to prove any performance
guarantee.

LRTDP, HDP, and LAO? can converge on some problems without visiting the whole
state space. This is possible if there exists an E ⊂ S such that some approximately optimal
policy π has fπ(y) > 0 only for y ∈ E, and further, a tight lower bound on s can be proved
by only considering states inside E and possibly a lower bound provided at initialization.
While some realistic problems have this property, many do not, including those with dense
noise. The question, then, is what is the minimal amount of additional information that
might allow convergence guarantees while only visiting a small fraction of S on arbitrary
problems. We propose that the appropriate assumption is that an achievable upper bound
(v0

u, π
0) is known; here v0

u is some upper bound (it need not be monotone) on vπ0 (and
hence v?), where π0 is known. Such a pair is almost always available trivially, for example,
by letting v0

u(x)← Z where Z is some worst-case cost of system failure, and letting π0(x)
be the sit-and-wait-for-help action, or something similar. Even such trivial information
may be enough to allow convergence while visiting a small fraction of the state space.14.

14This raises the issue of risk-sensitivity in planning. A one in a million chance of a million dollar failure

46



S vπd
(s) vu(s) vπ′(s) v?(s) vd(s)

A 21559 29 63 32 23 19
B 21559 1.3e10 26.9 20.1 19.9 19.0
C 6834 15283 1642 485 176 52
D 6834 7662 182.1 117.1 116.7 63.0

Table 2.2: Test problems sizes and start-state values.

It is easiest to see how to use (v0
u, π

0) via a transformation. Consider M ′ = (S, A ∪
{φ}, P̃ , c̃, s, g), where φ is a new action that corresponds to switching to π0 and following
it indefinitely. This action has P̃ φ

xg = 1.0 and costs c̃(x, φ) = v0
u(x); for all other actions,

P̃ = P and c̃ = c. We know v0
u ≥ vπ0 ≥ v?, and so adding the action φ does not change

the optimal values, so solvingM′ is equivalent to solvingM. Suppose we run BRTDP on
M′, but extract the current upper bound vt

u before convergence; then, vt
u need not be mono-

tone forM, though it will be forM′. We show how to construct a policy forM using
only vt

u that achieves the values vt
u. At a state where vt

u(x) ≥ mina∈A Qvt
u
(x, a), we play

the greedy action, and the performance guarantee follows from the standard monotonic-
ity argument. Suppose, however, we reach a state x where vt

u(x) < mina∈A Qvt
u
(x, a).

Then, it is not immediately clear how to achieve this value. However, we show that
in this case vt

u(x) = v0
u(x), and so we can switch to π0 to achieve the value. Sup-

pose vt−1
u was the value function just before BRTDP backed up x most recently. Then,

BRTDP assigned vt
u(x) ← mina∈A∪φ Qvt−1

u
(x, a). Since v0

u is monotone (for M′, on
which BRTDP is running), Qvt−1

u
(x, a) ≥ Qvt

u
(x, a), and so the only way we could have

vt
u(x) < mina∈A Qvt

u
(x, a) is if the auxiliary action φ achieved the minimum, implying

vt
u(x) = v0

u(x).

Thus, we conclude that via this transformation it is reasonable to assume BRTDP is
initialized with monotone upper bound, implying that at any point in time BRTDP can re-
turn a stationary policy with provable performance guarantees. This policy will be greedy
in M′, but may be non-stationary on M as it may fall back on π0. This potential non-
stationary behavior is critical to providing a robust suboptimal policy.

2.4.5 Experimental Results

We test BRTDP on two discrete domains. The first is the 4-dimensional racetrack do-
main, described in [Barto et al., 1995, Bonet and Geffner, 2003b,a, Hansen and Zilber-

might be acceptable in an expected sense, but it might be preferable to pay $2 for insurance.

47



stein, 2001]. Problems (A) and (B) are from this domain, and use the large-b racetrack
map [Bonet and Geffner, 2003a]. Problem (A) fixes a 0.2 probability of getting the zero
acceleration rather than the chosen control, similar to test problems from the above refer-
ences. Problem (B) uses the same map, but uses a dense noise model where with a 0.01
probability a random acceleration occurs. Problems (C) and (D) are from a 2D gridworld
problem, where actions correspond to selecting target cells within a Euclidean distance of
two (giving 13 actions). Both instances use the same map. In (C), the agent accidentally
targets a state up to a distance 2 from the desired target state, with probability 0.2. In (D),
however, a random target state (within distance 2) is selected with probability 0.01. Note
that problems (A) and (C) have fairly sparse noise, while (B) and (D) have dense noise.

Figure 2.2 summarizes the sizes of S for the test problems. The other columns provide
information to enable an evaluation of the DS-MPI. The vπd

(s) column gives the value
of the start state under a policy πd derived from solving the deterministic relaxation (see
Section 2.4.1). The next column, vu(s), gives the value computed via DS-MPI. We let
π′ = greedy(vu), and give vπ′(s). This data shows that DS-MPI can produce high-quality
upper bounds that have high-quality greedy policies, despite running inO(|S| log |S|) time
rather than the O(|S|3) needed to compute vπd

. The final column gives vπd
(s), the value

of the start-state under the value function of the deterministic relaxation.

Anytime Performance

We compare the anytime performance of BRTDP to RTDP on the test domains listed in
Figure 2.2, considering both informed initialization and uninformed initialization for both
algorithms. Informed initialization means RTDP has its value function initially set to vd,
and BRTDP has v` set to vd and vu set by running DS-MPI. For uninformed initialization,
RTDP has vu set uniformly to zero, and BRTDP has v` set to zero and vu set to 106.

Figure 2.16 gives anytime performance curves for the algorithms on each of the test
problems. There are many possible models of online interaction between a planner that
produces policies and an actor that executes them. In general, this interaction can be
quite complex. We adopt the precursor deliberation [Dean et al., 1995] or anytime model,
wherein we interrupt each algorithm at fixed intervals to consider the quality of the policy
available at that time. Rather than simply evaluating the current greedy policy, we assume
the executive agent has some limited computational power and can itself run RTDP on a
given initial value function received from the planner. (This assumption results in a fairer
comparison for RTDP, since that algorithm’s greedy policy may be improper.) To evaluate
a value function v, we place an agent at the start state, initialize its value function to v, run
RTDP until we reach the goal, and record the cost of the resulting trajectory. The curves in
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Figure 2.16: Anytime performance of informed and uninformed RTDP and BRTDP: the
first row is for the informed initialization, and the second for uninformed. The X-axis
gives number of backups (×105), and the Y axis indicates the current value of the policy;
Y -axis labels are negative costs, so higher numbers are better. Note the differences in
scales.

Figure 2.16 are the result of 100 separate runs of each algorithm, with each value function
evaluated using 200 repetitions of the above testing procedure.

BRTDP performs 4 backups for each state on the trajectories it simulates: one each
on vu and v` during forward simulation, and one each while traversing the trajectory in
reverse order. RTDP performs only one backup per sampled state. This gives BRTDP
lower overhead and better cache performance per backup, and on the test problems we
observed it computed 1.5 to 3 times more backups per unit of runtime than RTDP. Thus,
if Figure 2.16 was re-plotted with time as the X-axis, the performance of BRTDP would
appear even stronger. So, in interpreting the results from this section one should realize
we have handicapped BRTDP in two ways: we compare it to RTDP in terms of number
of updates rather than CPU time, and we evaluate RTDP-trajectories rather than stationary
policies, even though stationary policies taken from BRTDP have provable guarantees.

Several conclusions can be drawn the results in Figure 2.16. First, appropriate initial-
ization provides significant help to both RTDP and BRTDP. Second, under both types of
initialization, BRTDP often provides much higher-reward policies than RTDP for a given
number of backups (especially with a small number of backups, and especially with infor-
mative initialization), and we never observed its policies to be much worse than RTDP. In
particular, observe that on problems (C) and (D) BRTDP is nearly optimal from the very
beginning. This, combined with the fact that BRTDP provides performance bounds even

49



A  (0.94s) B  (2.43s) C  (1.81s) D  (43.98s)
0

0.2

0.4

0.6

0.8

1

Informed Initialization

Problem

Fr
ac

to
n 

of
 lo

ng
es

t t
im

e
BRTDP
LRTDP
HDP

A  (2.11s) B  (10.13s) C  (3.41s) D  (45.42s)
0

0.2

0.4

0.6

0.8

1

Uninformed Initialization

Problem

Fr
ac

to
n 

of
 lo

ng
es

t t
im

e

BRTDP
LRTDP
HDP

Figure 2.17: CPU time required for convergence with informed (left) and uninformed
(right) initialization of the algorithms.

for stationary policies, make BRTDP a very attractive option for anytime applications.

Off-line Convergence

We compare off-line convergence times for BRTDP to those of LRTDP and HDP.15 Again,
we consider both informed and uninformed initialization. Informed LRTDP and HDP have
their value functions initialized to vd, while uninformed initialization sets them to zero.
Time spent computing informed initialization values is not charged to the algorithms; this
time will be somewhat longer for BRTDP as it also uses an upper bound heuristic, however,
this time is typically dominated by the algorithm runtime.

We evaluate the algorithms by measuring the time it takes to find an α-optimal partial
policy. For BRTDP, since we maintain upper and lower bounds, we can simply termi-
nate when (vu(s) − v`(s)) ≤ α; we used α = 0.1 in our experiments. As discussed in
Section 2.4.2 we initialized vu to a monotone upper bound, so the greedy policy with re-
spect to the final vu will be within α of optimal. The other tested algorithms measure
convergence by stopping when the max-norm Bellman error drops below some tolerance
ε. Without further information there is no way to translate ε into a bound on policy quality:
we can incur an extra cost of ε at each step of our trajectory, but since our trajectory could
have arbitrarily many steps we could be arbitrarily suboptimal by the end. To provide an
approximately equivalent stopping criterion, we used the following heuristic: pick an opti-
mal policy π∗ and let `?(x) be the expected number of steps to reach g from x by following
π∗. Then take ε = α/`?(s). This heuristic yielded ε = 0.004, 0.005, 0.001, and 0.002 for

15Improved LAO? is very similar to HDP without labeling solved states, and [Bonet and Geffner, 2003a]
shows HDP has generally better performance, so LAO? was not considered in our experiments.
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problems (A) through (D).

As expected, on (B) and (D), the problems with dense noise, BRTDP significantly
outperformed the other algorithms. On (D), uninformed BRTDP is 3.2 times faster than
uninformed HDP, and informed BRTDP is 6.4 times faster than informed HDP. Unin-
formed BRTDP outperforms informed HDP on (D) by a factor of 1.8. More importantly,
on (B) and (D) HDP and LRTDP visit all of S before convergence, while (for example)
on (B), informed BRTDP visits 28% of S and only brings |vu(x) − v`(x)| ≤ α for 10%
of S. If we, for example, add additional states beyond those BRTDP does not visit, the
performance gap will become arbitrarily large.
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Chapter 3

Bilinear-payoff Convex Games

Convex games generalize zero-sum matrix games by allowing arbitrary convex strategy
sets in the place of explicitly enumerated finite strategy sets. This very general framework
can compactly represent large games with sequential decisions. For example, extensive-
form games can be represented compactly in this way; but, so can games with other kinds
of structure, including path-planning games with uncertain outcomes and adversary con-
trolled costs, and routing problems with adversary-controlled demands. In this chapter,
we define the convex game model, introduce notation, and describe previous theoretical
results on convex games. To demonstrate the utility of the framework, we then discuss
three games that can be modeled as convex games, and also show how we can generalize
stochastic games using convex games.

The representational power of convex games makes algorithms for their solution par-
ticularly important. It was shown by Koller et al. [1994] that polyhedral convex games can
be solved via linear programming (that work focuses on the application to extensive-form
games, but the formulation in fact holds for general convex games). Since that seminal re-
sult, the reduction to linear programming has been the state of the art for solving this class
of problems. For example, sophisticated game-abstraction techniques combined with lin-
ear programming only recently allowed for the exact solution of Rhode Island Hold’em
poker, a simplified version of the standard game of heads up, limit Texas Hold’em. Even
after the application of the equilibria-preserving abstraction, solving the corresponding
linear program exactly took over 7 days of CPU time and 25 GB of memory [Gilpin and
Sandholm, 2005].

In fact, convex games often have significant structure that is not exploited by general-
purpose linear programming algorithms. One way such structure can be exploited is
through fast algorithms for calculating a best response strategy to a fixed strategy of
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the opponent. The classic fictitious play algorithm takes advantage of such oracles, and
demonstrates remarkably good performance on Rhode Island Hold’em. In Chapter 5, we
develop a new algorithm for solving convex games that also uses best-response oracles;
it outperforms fictitious play and dramatically outperforms the direct application of linear
programming techniques.

While convex games are a straight-forward generalization of matrix games, the ability
to represent arbitrary convex strategy sets lets us take advantage of structure in many types
of games, often yielding exponentially smaller representations. In the coming sections, we
will consider three examples that illustrate this point:

• As previously mentioned, extensive-form games (EFGs) can be transformed to con-
vex games. While there are typically exponentially many (in the size of the game
tree) pure strategies for an EFG, the set of behavioral strategies can be represented
concisely as a convex set of achievable sequence weight vectors.

• The well-studied problem of computing an optimal oblivious routing can in fact
be expressed as convex game. In this game, one player picks a routing in a network
and the other picks traffic demands on source-sink pairs, subject to some constraints.
There are exponentially many deterministic routings (pure strategies in the matrix
game), but again there is a concise1 representation of the set of strategies as a poly-
hedron. The details of expressing this problem as a convex game follow from work
by Azar et al. [2003], though they did not connect their work to the convex game
model and in fact a polynomial-sized LP formulation did not appear until [Apple-
gate and Cohen, 2003]. The observation that optimal oblivious routing is a convex
game is new, and the algorithms presented in Chapter 5 may be of practical interest
for this problem.

• In cost-paired MDP games, each player selects a stochastic policy in an MDP,
and their choice determines the costs in the opponent’s MDP. The set of strategies
(stochastic policies in the MDPs) for each player has a polynomial-sized represen-
tation as a polyhedron, but there are exponentially many deterministic policies and
so the corresponding matrix game is exponential in both rows and columns.

We also show how convex games can be used to generalize stochastic games. Stochastic
games extend MDPs to multiple players by embedding a matrix game at each state in
an MDP; the next state distribution and cost to each player depends on the joint action

1The size of the representation of the constraints is polynomial in the size of the representation of the
problem.
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selected. In Section 3.5 we show how these matrix games can be replaced by convex
games; this allows the embedding of extensive-form games at the nodes of stochastic
games, creating a tractable class of partially-observable stochastic games (POSGs).

As these examples demonstrate, fast algorithms for convex games have far-reaching
applicability. Before considering these examples in greater depth, we first establish some
technical details about convex games.

3.1 From Matrix Games to Convex Games

A zero-sum matrix (normal-form) game is played by two players, player row with strate-
gies R = {1, . . . ,m} and player column with strategies C = {1, . . . , n}. A m× n matrix
M specifies the payoffs, so that if row plays strategy i ∈ R and column plays j ∈ C,
the payment from row to column is the (i, j)th entry of M , denoted M(i, j). The play-
ers select their strategies simultaneously, without knowledge of the other player’s choice.
We restrict our attention to two-player, zero-sum games as that is the simplest case and
the one most relevant to our solution techniques; however, n-player general-sum matrix
games (and convex games) can be defined analogously.

We use ∆(·) to denote the probability simplex over a finite set, so for example

∆(R) =

{
p ∈ Rm

∣∣∣ m∑
i=1

p(i) = 1 and p(i) ≥ 0

}
.

A mixed strategy is an element p ∈ ∆(R) for the row player or q ∈ ∆(C) for the col-
umn player, corresponding to a distribution over the rows or columns, respectively. If the
players select mixed strategies p and q, the expected payoff V (p, q) from row to column is

V (p, q) = Ei∼p,j∼q[M(i, j)] = pT Mq.

A solution to the game is given by a minimax equilibrium (p∗, q∗), a pair of mixed strate-
gies such that neither player has an incentive to play differently given that the other player
plays their strategy from the pair. The minimax theorem says that if the players are allowed
to select mixed strategies, there is no advantage to playing second. That is,

min
x∈∆(R)

max
y∈∆(C)

xT My = max
y∈∆(C)

min
x∈∆(R)

xT My. (3.1)

Thus, solving either the min max or max min optimization problem from (3.1) finds a
minimax equilibrium for the matrix game. This problem can easily be converted to a
linear program and solved via standard techniques.
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An ε-approximate minimax equilibrium for a matrix game is a pair of strategies (p′, q′)
where neither player can gain more than ε value by switching to some other strategy. That
is,

V (p′, q′) ≤ min
p∈∆(R)

V (p, q′) + ε (3.2)

V (p′, q′) ≥ max
q∈∆(C)

V (p′, q)− ε. (3.3)

Note that if ε = 0 we have an exact minimax equilibrium.

Two-player zero-sum bilinear-payoff convex games are a natural generalization of ma-
trix games; we will simply refer to this class as “convex games” for the sequel. This
formulation was first introduced by Dresher and Karlin [1953], but convex games have
received remarkably little attention in the literature considering the generality and useful-
ness of the framework. One of the goals of this chapter is to highlight several interesting
special cases of convex games, and suggest that the class deserves much greater attention
from an algorithmic perspective.

Convex games allow arbitrary convex sets X and Y in place of the probability sim-
plices ∆(R) and ∆(C) for matrix games. A convex game is specified by a tuple (X, Y, M)
where X ⊆ Rm and Y ⊆ Rn are the strategy sets for the two players, and M is a m × n
payoff matrix. The first player (who we will call x) selects a action x ∈ X , the second
player (called y) simultaneously chooses y ∈ Y , and the payoff from player x to player y
is given by

V (x, y) = xT My.

The concepts of equilibria and ε-approximate equilibria naturally generalize to convex
games. Throughout the thesis, we assume all convex action sets (X and Y in this case)
are nonempty; for simplicity, we generally also assume X and Y are bounded, though
this restriction can often be removed or easily enforced.2 This insures that the games we
consider have finite value (that is, infx,y V (x, y) and supx,y V (x, y) are finite).

A polyhedron is a convex set defined by a finite number of linear equality and in-
equality constraints. Generally, we will represent these constraints in matrix notation, for
example,

X = {x ∈ Rm | Ax = b, x ≥ 0}

2For example, if X is the set of stochastic policies for an MDP represented as state-action visitation fre-
quencies, we can add an additional constraint to prohibit policies that loop indefinitely (making X bounded).
However, often it is sufficient to simply show that these policies are never optimal (e.g., in the case of positive
costs) and so have no impact on the optimization.
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Matrix Games Convex Games
Pure (single row) Pure (an extreme point of X)

Mixed (distribution over rows) Implicit Mixed (any point in X)

Explicit Mixed (distribution over X)

Table 3.1: Strategy classes for matrix and convex games.

for a suitable matrix A and vector v. We say a convex game is polyhedral if X and Y are
polyhedra. Polyhedral convex games can be solved in polynomial time via linear program-
ming: though the term “convex game” was not used, the efficient solution technique for
zero-sum EFGs presented in [Koller et al., 1994] essentially depends on a transformation
from an EFG to an equivalent convex game. Koller et al. then show how to solve the
resulting convex game efficiently. We review their solution method here, as in the next
chapter we present a non-trivial extension of their technique which solves a generalization
of EFGs.

Consider a matrix game defined by payoff matrix M , and the corresponding polyhe-
dral convex game (X, Y, M) where X = ∆(R) and Y = ∆(C). We write Cn(Z) to
denote the extreme points (corners) of an arbitrary polyhedron Z. Note that Cn(Z) is a
finite set, however, in general its size may be exponential in the size of the representation
of Z. However, since X is a probability simplex, we have |Cn(X)| = m, and there is
a natural mapping between Cn(X) and R (and similarly between Cn(Y ) and C): each
corner of X corresponds to the probability distribution that picks a particular row of M
deterministically. Interior points of X correspond to mixed strategies in the matrix game.

Table (3.1) shows the different classes of strategies that we consider for matrix and
convex games. Based on the analogy to matrix games, we call the strategies in Cn(X)
the pure strategies, while we call strategies from the full set X (including interior points)
implicit mixed strategies. This is natural given that if X = ∆(R), the interior points of X
correspond to mixed strategies. An explicit mixed strategy is given by a distribution over
some subset of X (possibly given as a probability density on all of X , or perhaps simply a
distribution on the extreme points of X).

It would be equally reasonable to term an interior point of X a pure strategy, as it is a
single strategy drawn from the set X of possible strategies. In this case, a mixed strategy
(distribution over pure strategies) would be what we call an explicit mixed strategy. We
use the more precise terms pure, implicit mixed, and explicit mixed to avoid these possible
ambiguities.
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The interpretation of these types of strategies depends on the nature of the convex
game. In particular, in some games the interior points of X can be considered primitive
actions (actions that can be implemented in the world directly), but in others the corners
are the only primitive actions, and interior points must be interpreted as probability dis-
tributions over these. We will have more to say about the interpretation of point in X
later in the section; it will turn out these distinctions do not matter from an optimization
viewpoint.

Next, we will show how to solve polyhedral convex games via linear programming, and
simultaneously prove the minimax theorem for polyhedral convex games. This minimax
result is in fact achieved by implicit mixed strategies; we will go on to show that neither
player has any incentive to play explicit mixed strategies.

3.1.1 Solution via Convex Optimization, and the Minimax Theorem

The method for solving convex games described in this section is due to Koller et al.
[1994]; Von Stengel [2002] gives a more detailed presentation with examples. We consider
the case where where X and Y are polyhedra, X = {x | Ax = b, x ≥ 0} and Y = {y |
Cy = d, y ≥ 0}, but the result can be extended to general convex sets. Suppose player
x announces he will play a fixed strategy x ∈ X . Then, we can find a best response for
player y by solving:

max
y

(xT M)y

subject to Cy = d

y ≥ 0

The dual of this LP is

min
q

qT d

subject to qT C ≥ xT M.

Strong duality holds,3 so the values of the two programs are equal for all x. Thus, we
can solve the game where first x picks a strategy x and then y observes this and picks a

3This is ensured because X and Y are bounded, nonempty polyhedra, but a direct proof (perhaps using
Slater’s constraint qualifications [see Boyd and Vandenberghe, 2004, Section 5.2.3]) may be necessary in
the case of general convex X and Y .
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response y via the following program:

min
x∈X

max
y∈Y

xT My = min
x∈X


max

y
(xT M)y

subject to Cy = d

y ≥ 0


and substituting the dual for the primal,

= min
x∈X

[
min

q
qT d

subject to qT C ≥ xT M

]
.

This then simplifies to the LP

min
x,q

qT d

subject to qT C ≥ xT M.

Ax = b

x ≥ 0.

(3.4)

By an analogous argument we can solve the game where y plays first by

max
y∈Y

min
x∈X

xT My = max
y,p

pT b

subject to AT p ≤My

Cy = d

y ≥ 0.

(3.5)

It is straightforward to verify that LP (3.5) is in fact the dual of LP (3.4), and strong duality
then gives the minimax theorem for convex games:

min
x∈X

max
y∈Y

xT My = max
y∈Y

min
x∈X

xT My. (3.6)

Thus, we can solve the convex game by constructing the linear program from either Equa-
tion (3.4) or Equation (3.5) and applying any standard linear programming solver. It is
worth noting that the LP (3.4) can also be expressed as

min
x,λ

λ

subject to x ∈ X

λ ≥ (xT M)y for all y ∈ Y. (3.7)
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For general Y we can solve this problem via the Ellipsoid algorithm by using an opti-
mization over Y with the fixed linear objective function xT M to detect violations of con-
straints (3.7) at the current (x, λ). This is important because the optimization for fixed
xT M may be efficiently solvable using a domain-specific algorithm; we will show in
Chapter 5 that such best-response oracles play a central role in designing fast algorithms
for convex games.

Mixed strategies are equivalent to interior points We have shown that a minimax
equilibria exists when both players choose from the sets X and Y directly, without ran-
domization. But perhaps one of the players could do better by playing an explicit mixed
strategy? In fact, the answer is no. It is sufficient to show that even if a player (say, x)
goes first and announces his strategy, he has no reason to announce a distribution over X
(explicit mixed strategy) rather than a single x ∈ X (implicit mixed strategy). This result
is not an immediate consequence of the minimax theorem (Equation (3.6)), because that
statement assumes both players are limited to playing only implicit mixed strategies.

Suppose x plays first and selects an explicit mixed strategy given by p and X̄ , where
X̄ = {x1, . . . xk} is a finite subset of X and pi is the probability she selects xi ∈ X̄ (the
case where x selects a probability density over all points in X is similar). Let x̄ =

∑
i pixi;

this point is in X by the definition of convexity. Player y is told that player x’s choice is
(p, X̄) and then he selects a best response. Thus, the expected payoff from x to y is:

E[V ] = max
y∈Y

∑
i

Pr(x plays xi)V (xi, y)

= max
y∈Y

∑
i

pi

(
xT

i My
)

= max
y∈Y

(∑
i

pixi

)T

My

= max
y∈Y

x̄T My. (3.8)

Note that (3.8) is exactly the payoff if x had announced x̄ ∈ X instead of the explicit
mixed strategy given by p. This implies neither player can get a better payoff by choosing
an explicit mixed strategy. There may be many different weights p that represent the point
x̄. Thus, x̄ may be viewed as defining an equivalence class of payoff-equivalent explicit
mixed strategies. See Figure (3.1) for an example; this figure is discussed in detail in the
next section.
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Interpretations of the action sets How should we interpret the convex set of actions
X? We consider two possibilities. First, we may view every element x ∈ X as a primitive
(playable) action that can be selected and then directly implemented in the world. For
example, x might correspond to an allocation of money among m different investments,
subject to some constraints.

On the other hand, consider the case of a matrix game represented as a convex game.
We can solve the convex game via the linear program (3.4). Then, the optimal feasible
point x will (in general) correspond to an interior point of the set X . Since X is a proba-
bility simplex, |Cn(X)| = dim(X) = m and we can naturally interpret x as a probability
distribution over Cn(X) and hence R. To “play” the matrix game, we can sample from
this distribution and play that corner (row).

There are other cases where the set X is a polyhedron and only the corners Cn(X)
are primitive actions. For example, the set of stochastic policies for an MDP can be rep-
resented as a convex set, and the corners Cn(X) correspond to the deterministic policies;
we will discuss this example in detail in Section 3.4.3. In this case, |Cn(X)| can be expo-
nentially larger4 than dim(X), and so even explicitly representing an arbitrary distribution
over Cn(X) may be infeasible. But, if the definition of the game requires we select an
extreme point as an action, how do we interpret the interior point x? Fortunately, we have
the following representation theorem (this version is from Bazaraa et al. [1990]):

Theorem 3.1.1. Any bounded polyhedron X ⊆ Rm has a finite set of extreme points
(corners), say Cn(X) = {x1, . . . , xk}. Any x ∈ Rm is a member of X if and only if
there exists p ∈ Rk with pi ≥ 0 and

∑
i pi = 1 (that is, p ∈ ∆(Cn(X))) such that

x =
∑k

i=1 pixi. Further, there always exists a representation such that no more than m+1
of the pi coefficients are non-zero and such a representation can be found in polynomial
time.

Thus, to play a “corners only” convex game we can solve the LP formulation to find an
interior point solution, generate a small-support distribution over the corners by the method
of Theorem (3.1.1), and then sample from this to determine the actual primitive action
to take; each of these steps takes only polynomial time. We are effectively solving an
exponentially-sized matrix game (the game with rows Cn(X) and columns Cn(Y )), albeit
one with a very special structure: the exponential set of actions has a low-dimensional
representation.

As an example, consider Figure (3.1). The convex strategy set X has corners Cn(X) =
{c1, c2, c3, c4, c5}. The labeled interior point x falls inside the convex hull of {c2, c4, c5}

4It is quite common to solve linear programs where enumerating the full set of extreme points would be
impossible
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Figure 3.1: Three different explicit representations of an implicit mixed strategy x.

(left figure), which implies there exists a mixture (p2, p4, p5) ∈ ∆({c2, c4, c5}) such that
x = p2c2 + p4c4 + p5c5. Similarly, the middle figure implies there exist (q1, q3, q4) ∈
∆({c1, c3, c4}) such that x = q1c1 + q3c3 + q4c4 and the right figure shows that such a dis-
tribution r can be found on {c1, c3, c5} as well. Thus p, q, and r are different explicit mixed
strategies corresponding to the single implicit mixed strategy x. Equation (3.8) shows that
these explicit mixed strategies all get payoff equal to the payoff x achieves against any
opponent strategy. In fact, there is an infinite equivalence class of such distributions and
it is a convex set: if we view p and q as distributions over the full Cn(X), then for any
θ ∈ [0, 1] the distribution θp + (1− θ)q will also be an explicit mixed strategy equivalent
to x. Also, observe that m = 2 (that is, X ⊆ R2) and it was possible to represent x ∈ X
with a distribution supported by only m + 1 = 3 points. The representation theorem says
that this holds for all m.

In general, we can apply this approach for any game with a restricted set of primitive
actions, X ′ ⊆ X , as long as every point x ∈ X can be represented as a convex combination
of points in X ′, and we have an efficient algorithm to find such a representation. This
argument will extend to our generalized versions of stochastic and extensive form games
as well, and so we do not worry about these two different interpretations of the action sets,
as from an optimization point of view they make no difference: in both cases, finding an
optimal implicit mixed strategy is sufficient.

3.1.2 Repeated Convex Games

A convex game (X, Y, M) can be played in a repeated-game setting (say by x) even if x
does not know M or Y . On each round, she selects some x ∈ X , and simultaneously her
adversary y selects y ∈ Y (but x does not know Y ). Then x pays y xT My, where M is also
unknown to x. We can play this game using online convex programming techniques and
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achieve strong performance guarantees: player x will achieve at least the minimax value
of the game, and can potentially do much better against a sub-optimal adversary.

If after each round x observes the effective cost vector My, then the online linear
programming algorithm of Kalai and Vempala [2003] can be applied in the case of a
polyhedron X , or the online convex programming algorithms of Gordon [1999] or Zinke-
vich [2003] can be used for general convex X . If player x only observes the amount of
the payoff, xT My, then a bandit-style algorithm must be used: for example the algorithm
of McMahan and Blum [2004] for polyhedra (this algorithm is described in detail in Chap-
ter 6), or the algorithm of Flaxman et al. [2005] for general convex problems. Note that
for the performance guarantees of these algorithms to hold, some bounds on Y and M will
be needed: a bound on the one-round maximum payoff, supx∈X,y∈Y |xT My|, is usually
sufficient.

In fact, these algorithms can be used in the general sum case, as there is no dependence
on player y’s incentives or payoffs. In this case x is not guaranteed to approximately
achieve the value of any particular equilibrium, but will at least achieve her safety value,5

and can potentially do much better (say, if playing against a cooperative player y). No-
regret algorithms can also be used in an offline fashion to approximately solve for the
minimax equilibria of convex games, using techniques from Freund and Schapire [1996].
The idea is to run two no-regret algorithms against each other in the game, which often
yields algorithms similar to fictitious play. We will consider this relationship in more detail
in Section 5.1.

The Importance of Convex Games Before proceeding to our examples of convex
games, it is worthwhile to review the importance of the class. Why is it worthwhile
to show that a game falls into this class? There are both theoretical and computational
advantages. By showing that a game has a convex game representation, we have also
shown:

• A minimax solution exists, and it can be found by convex programming in polyno-
mial time.

• There are a collection of fast algorithms that can be applied to the problem: for
example, fictitious play and the bundle-based oracle algorithms of Chapter 5.

• There exist computationally efficient no-regret algorithms for the game.

5The safety value of the game for x is the value of the game when player y ignores his own payoffs and
instead tries maximize player x’s loss.
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We now proceed to the examples.

3.2 Extensive-form Games

In this section we review extensive-form games with the aim of connecting known results
to our notation and perspective. The formulation of EFGs commonly used today was orig-
inal conceived by Kuhn [1953], who generalized an earlier formulation of von Neumann.

Two-player, zero-sum extensive-form games can model competitive strategic interac-
tions that involve a sequence of decisions and random events. The game is specified via a
game tree, where at each node either one of the players selects an action (corresponding
to a successor of the current node) or nature picks a random successor according to a fixed
probability distribution. Partial observability in the game is modeled via information sets:
an information set is a subset of a player’s nodes that are indistinguishable to the player.
That is, a player’s policy is only allowed to be a function of his observed information set,
not the exact node in the game tree; necessarily, all nodes in an information set must have
an equal number of successors.

We only consider games with perfect recall, which ensures each player’s information
sets form a tree. This implies that all of a player’s past actions and observations can be
inferred given the current information set. With perfect recall, it is sufficient to consider
only behavior policies, that is, policies which specify a probability distribution over actions
at each information set. For the sequel, when we write extensive-form game (or EFG)
we mean a two-player, zero-sum, perfect-recall extensive-form game unless otherwise
specified.

As an example, we consider the simple two-player two-card poker game shown in
Figure (3.2). In this game a dealer (the initial random node) gives each player a single
face-down card, either the ace or the king. Then, the players proceed to bet: first, player
x can either fold (losing her ante of $1), or bet an additional dollar. If she bets, player y
can either fold (losing his ante of $1), call (matching x’s bet), or bet (raise by matching x’s
dollar and adding another). In the case of a call, the game ends, and if y has the best hand
(a deal of (K,A)), then he wins $2 from x, otherwise he loses $2 to x. If he bets, then x
can either fold (losing $2), or call (adding another dollar to the pot to match y’s raise). If
x calls, then the player with the winning hands gets $3 from the other.

Figure (3.2) is a representation of this game as an extensive-form game. This repre-
sentation is not unique, though it is perhaps the most natural. The game tree has nodes
V = {r1, x1, x2, y1, y2, x3, x4} and three information sets. Player x’s set of information
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Figure 3.2: A simple poker game with a two card deck (Ace and King), represented as an
extensive-form game.

sets is Ux = {u1, u3} where u1 = {x1, x2} and u3 = {x3, x4}; player y’s set of infor-
mation sets is Uy = {u2}, where u2 = {y1, y2}. Information sets are shown in the figure
by including the constituent nodes in a rounded rectangle. The set of actions (labels on
outgoing edges, also called choices) available to x at u1 is A(u1) = {b, f}, and similarly
A(u2) = {f ′, c′, b′} and A(u3) = {F, C}. The first node r1 is a random node, with a
fixed probability distribution (0.5, 0.5) over the two possible deals. The leaves indicate
the payoffs from x to y.

We can, in general, model two-player poker games in this way. Each node in the game
tree encodes a fixed setting of all the cards dealt so far as well as the betting history. But,
in general there will be some cards that a player cannot see. At a point in the game where
a player must select an action (usually bet, fold or call), the nodes corresponding to the
different possible settings for the unobserved cards are grouped into an information set.
For example, in our very simple game the players do not observe either of the cards, and
so they cannot tell which of the two possible deals occurred.

The key results for extensive-form games that pertain to our work are the fact that
extensive-form games can be transformed to convex games, and that computing best re-
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Figure 3.3: Sequence trees for the example poker game.

sponses for an extensive-form game is very fast.

First, we consider the representation of an EFG as a convex game. Since a behavior
strategy can be represented as the Cartesian product of probability simplices, the set of
such strategies is convex. Unfortunately, the payoff for a pair of strategies represented
this way is not bilinear (it can not be written as xT My), and so the the EFG cannot be
written as a convex game using these strategy sets. Instead, we turn to the sequence weight
representation of strategies.

For a given EFG, we construct a convex game (X, Y, M) where the strategy set X has
one dimension for each possible sequence of (information set, action) pairs for player x
(and analogously for Y ). For the example in Figure (3.2), the possible sequences σi for
player x and γi for player y are:

σ0 = ∅ γ0 = ∅
σ1 = (f) γ1 = (f ′)

σ2 = (b) γ2 = (b′)

σ3 = (b, F ) γ3 = (c′)

σ4 = (b, C).
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We assume each possible action label is associated with a single information set, so we can
omit the information sets from the sequences: for example (b, C) uniquely corresponds to
(u1, b, u3, C). Perfect recall ensures sequences are in one-to-one correspondence with the
action labels, so in fact each sequence is uniquely identified by its last action. Thus, we
can use action labels and sequences interchangeably. The perfect recall assumption also
means that the information sets of each player (and hence, the sequences) form a tree. That
is, any non-empty sequence has a unique predecessor sequence.

The sequence trees for the example EFG of Figure (3.2) are given in Figure (3.3).
The information sets are shown as large rounded rectangles, and each edge out of an
information set corresponds to a particular action label and sequence. The small round
node indicates a junction where the next information set reached is determined by choices
of the adversary and nature (shown as a dotted line); this node is trivial in the example
tree as it has a single successor. For an arbitrary EFG, junction nodes and information-set
nodes alternate and junction nodes may have many successors.

We now define a strategy representation that admits a bilinear objective function. The
strategy polyhedron X has one dimension for each sequence for x; elements of X are
called sequence weight vectors. The sequence weight xi associated with the sequence
σi can be interpreted as the probability that the sequence σi occurs under the policy x
represents, conditioned on the other player and nature deterministically taking actions
compatible with this sequence.

There is a natural mapping between behavior policies β for player x and sequence-
weight vectors x ∈ X . If β is behavior policy, the corresponding x has weight xi on
sequence σi equal to product of the probabilities that β places on each action in σi. As an
example, suppose β is the policy for x that folds 1/3 of the time at u1, and always calls at
u2. The corresponding sequence-weight vector is

x =

[
1,

1

3
,
2

3
, 0,

2

3

]
.

For any sequence-weight vector x ∈ X , we define an associated behavior policy βx.
For example, given the vector x above, the probability with which βx bets at u1 is

βx(u1, b) =
x2

x1 + x2

=
2/3

1/3 + 2/3
= 2/3

(note the zero indexing of x). Similarly, the probability βx calls at u3 is x4/(x3 + x4), and
so on. In general βx(u, a) is defined by

βx(u, a) =
xa∑

a′∈A(u) xa′
.
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The policy βx will be undefined at information sets it never reaches, but this is fine. For
formal proofs that these properties hold consult Koller and Megiddo [1992].

The set X of all sequence weight vectors that correspond to valid behavior policies is
a polyhedron. For the example game, the constraints are:

σ0 = 1

σ0 = σ1 + σ2

σ2 = σ3 + σ4

σi ≥ 0 ∀i ∈ {0, . . . , 4}.

This technique generalizes to all extensive-form games, and X can always be represented
as a polyhedron with one equality constraint for each information set along with non-
negativity constraints [Koller and Megiddo, 1992].

The payoff matrix M corresponding to the sequence-weight strategy polyhedra X and
Y has one entry for each pair of sequences (σ, γ). Let L be the set of leaves for the
extensive-form game, and let m : L → R give the payoff at each leaf. For ` ∈ L, define
I(`, σ, γ) to be 1 when the set of action labels on the path to ` exactly equals the set of
action labels in σ ∪ γ, and 0 otherwise.6 Let rand(`) be the product of the probabilities on
all random edges on the path to `. Then, the value M(σx, σy) is∑

`∈L

I(`, σ, γ)rand(`)m(`).

Two sequences σ and γ are inconsistent if no path in the game tree has exactly those
actions: for example, σ1 and γ1 are inconsistent because it is impossible for both players to
fold. For such a sequence pair, M(σ, γ) = 0, and so in general M may have considerable
sparsity. In order to show that the convex game (X, Y, M) is equivalent to the EFG, one
must show for all x ∈ X and y ∈ Y that

V (βx, βy) = xT My.

We do not give a formal proof here; however, in the next chapter we give the corresponding
proof for convex extensive-form games.

Fast best-response algorithms for extensive-form games use dynamic programming on
the response player’s sequence tree (Figure (3.3)). If we fix an opponent strategy y, the
vector c = My assigns a cost c(σ) to each player x sequence or equivalently, action.

6The assumption that the action labels from different information sets are distinct is critical to this defi-
nition.
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A value function on information sets can then be computed via dynamic programming,
working from the leaves backward to the root. For player x (the min player), at each leaf
information set a greedy action with respect to the costs c(σ) on the leaf sequences is
selected, and the corresponding value is assigned to the information set. Internal junction
nodes are given value equal to the sum of the values of their predecessor information set
nodes. Internal information-set nodes have value equal to the minimum over action labels
a of the immediate cost c(σa) plus the value of the successor junction node reached after
a. Any behavior policy that is greedy with respect to these values is a best response to y.
Computing these values and reading off a best response takes time O(m), since m equals
the number of edges in the tree. Note that computing c = My is much more expensive, in
general O(mn). For a more detailed treatment of the best-response problem in extensive-
form games, see [Koller and Megiddo, 1992]; for the transformation of extensive-form
games to convex games see [Koller et al., 1994].

3.3 Optimal Oblivious Routing

A significant amount of work has been done on the problem of computing an oblivious
routing for a graph, in both the exact and approximate cases [see Azar et al., 2004, Bi-
enkowski et al., 2003, and references therein]. However, the observation that optimal
oblivious routing can be expressed as a convex game is new to this thesis.

Expressing the problem as a convex game provides access to a large array of theoretical
results and efficient algorithms. For example, this representation immediately shows that
there is a polynomial-sized linear program for optimal oblivious routing. This fact did not
appear in the literature until [Applegate and Cohen, 2003]. Further, as Chapter 5 of this
thesis will demonstrate, efficient algorithms exist for convex games that can be much faster
than standard LP codes. While the algorithm of Azar et al. [2003] is impractical for large
real-world problems, the application of our fast convex game solvers to this problem might
make generating optimal solutions to very large oblivious routing problems possible.

The polyhedral convex game representation opens up new possibilities for the online
(repeated-play) version of the problem as well. For example, the algorithm of Bansal et al.
[2003] requires a call to a projection oracle on each iteration in order to perform gradient
ascent. Finding such a projection requires solving a semi-definite program. However,
the polyhedral convex game representation implies that the online algorithm of Kalai and
Vempala [2002] can be used to get similar bounds, while requiring only the solution of a
linear program7 on each iteration. The convex game representation also shows that many

7In fact, the LP represents a standard multi-commodity flow problem.
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variations on the standard problem can be solved in polynomial time, and automates the
process of producing compact LP representations for these variants.

We state the problem using the terminology of Azar et al. [2003]. The optimal obliv-
ious routing game is specified by a directed graph G = (V, E) with edge capacities
c : E → R+. The routing player selects a routing for traffic in G, represented by a
one-unit flow fij from each vertex i ∈ V to each vertex j 6= i. The term oblivious refers to
the fact that the demands are not known at the time this routing is computed. The variable
fij(e) specifies the volume of flow on edge e associated with routing 1 unit of volume from
i to j using fij . Thus, routing demand dij from i to j using fij results in volume dijfij(e)
on each edge e. The set F of all valid routings is convex and specified by a number of
constraints polynomial in the size of the input graph.

Given a set of demands d = {dij ∈ R | i, j ∈ V, i 6= j, dij ≥ 0}, the congestion on an
edge e under routing f is given by

econg(e, f, d) =

∑
i,j dijfij(e)

c(e)
.

The congestion of the routing is then

cong(f, d) = max
e∈E

econg(e, f, d).

For a fixed set of demands d, there exists a minimal congestion routing, with congestion

opt(d) = min
f∈F

cong(f, d)

which can be found via linear programming.

If |E| = n, then there are n(n− 1) flows that define f , and each one has an associated
demand. Let D = {d ∈ Rn(n−1) | dij ≥ 0} be the set of all possible demands. The
adversary in the optimal oblivious routing game selects a demand d ∈ D, and the overall
game is then

min
f∈F

max
d∈D

cong(f, d)

opt(d)
.

While F and D are convex sets, the objective function is not bilinear. Instead, we re-
formulate the objective as follows. Scaling d by a positive constant does not change the
objective, as it scales both the numerator and denominator equally. Thus, it is equivalent
to optimize over the set D1 = {d ∈ D | opt(d) ≤ 1}. Using this observation and the
definition of cong, we can rewrite the game as

min
f∈F

max
d∈D1

max
e∈E

econg(e, f, d).
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Now we have a game with a multi-linear objective function (because the capacities c(e)
are a constant given by the problem specification). The set D1 is in fact a polyhedron,
as shown by Equations (8) and (9) of [Azar et al., 2003]. The key idea is to think of
the adversary as picking an arbitrary multi-commodity flow with congestion at most 1;
the corresponding demands d are a linear function of the multi-commodity flow. But, the
objective is not bilinear if we think of the same player (the adversary) choosing both d and
e. Since we can imagine the f ∈ F as fixed when the adversary chooses his action, we
can allow the adversary to pick an arbitrary distribution µ ∈ ∆(E), giving the game

min
f∈F

max
µ∈∆(E)

max
d∈D1,

∑
e∈E

µ(e)econg(e, f, d). (3.9)

If µ ∈ ∆(E) was a fixed parameter of the problem, for example, if we wished to minimize
the average edge congestion rather than the maximum, then we would be done. However,
the objective as given above is non-linear for the max player: to form a convex game, we
need the value to be a linear function of a fixed adversary strategy f .

We sketch a way that this can be accomplished; the details of the technique are actu-
ally closely related to the convex extensive-form game formulation introduced in the next
section. Let Dc

1 = {(αd, α) | d ∈ D1, α ≥ 0}. We call this set the cone extension of D1;
since D1 is a polyhedron, so is Dc

1 (see Appendix B). We define the adversary’s strategy
polyhedron D̃c

1 by the variables dc
ij(e) and µ(e) via the following constraints:

µ ∈ ∆(E)

(dc(e), α(e)) ∈ Dc
1 ∀e ∈ E

µ(e) = α(e) ∀e ∈ E

It can then be shown that the optimal oblivious routing game (Equation 3.9) is equivalent
to the convex game:

min
f∈F

max
dc∈D̃c

1

∑
e∈E

1

c(e)

∑
i,j

dc
ij(e)fij(e). (3.10)

The equivalence follows from the fact that for all e, dc
ij(e) = µ(e)dij(e) for some demands

d(e) ∈ D1. We are thus allowing the max player to pick a different set of demands for
each edge, but since the max is achieved at a single edge this does not change the value
of the game. For a fixed f , the best response problem is exactly the problem solved by
the separation oracle of Azar et al. [2003], which solves an independent problem for each
edge e ∈ E. It is worth noting that the linear program due to Applegate and Cohen
[2003] is different than the one obtained by applying Equation (3.4) to the convex game
of Equation (3.10). The relative merits of the two different LP formulations have not been
investigated as of yet.
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The convex game representation of Equation (3.10) implies that many variations on
the basic problem are also solvable in polynomial time. For example, we can introduce
additional constraints on µ, replacing ∆(E) with an arbitrary convex subset of ∆(E).
Similarly, we could further constrain D1 to only allow the adversary to pick demands that
are convex combinations of demands that have been observed in the past. Since these
transformations preserve the convexity of the adversary’s strategy set, the game remains
convex.

3.4 MDPs with Adversary-controlled Costs

We investigate methods for planning in a Markov Decision Process where the cost function
is chosen by an adversary after a policy for the MDP has been chosen by the planning
player. First we consider the case where the opponent is restricted to a finite set of cost
functions, and then we consider the case of an arbitrary convex set of cost vector.8 The
later situation includes games where the cost function in player one’s MDP is a linear
function of the state-action frequency representation of the policy chosen by player two
in another MDP. This work originally appeared in [McMahan et al., 2003, McMahan and
Gordon, 2003]. This section provides all the necessary background to read Section (5.2);
the reader with immediate interest in algorithmic approaches should feel free to consult
that section after completing the present one.

As a running example, we consider a robot path planning problem where costs are
influenced by sensors that an adversary places in the environment. We formulate the prob-
lem as a zero-sum matrix game where rows correspond to deterministic policies for the
planning player and columns correspond to cost vectors the adversary can select. This ex-
ponentially large matrix game has a concise representation as a convex game; we explore
that representation and other details of the problem formulation in this section. For a fixed
cost vector, fast algorithms (such as value iteration) are available for solving MDPs. In
Chapter 5, we develop algorithms that use these fast best response oracles, and show that
for our path planning problem they can be several orders of magnitude faster than direct
solution of the linear programming formulation.

8Since we consider only finite state and action spaces, we use the terms cost function and cost vector
interchangeably.
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3.4.1 Introduction and Motivation

Imagine a robot in a known (previously mapped) environment which must navigate to
a goal location. We wish to choose a path for the robot that will avoid detection by an
adversary. This adversary has some number of fixed sensors (perhaps surveillance cameras
or stationary robots) that he will position in order to detect our robot. These sensors are
undetectable by our robot, so it cannot discover their locations and change its behavior
accordingly. What path should the robot follow to minimize the time it is visible to the
sensors? Or, from the opponent’s point of view, what are the optimal locations for the
sensors?

We assume that we know the sensors’ capabilities. That is, given a sensor position we
can calculate what portion of the world it can observe. So, if we know where the oppo-
nent has placed sensors, we can compute a cost vector for the MDP: each entry assigns a
constant observation cost to each world state observed by a sensor. We also add a small
movement cost, so that the robot prefers shorter paths to the goal. Given this fixed cost
vector, we can apply efficient planning algorithms (value iteration in stochastic environ-
ments, A* search in deterministic environments) to find a path for the robot that minimizes
the total observation time. Of course, in the full game we don’t know the sensor locations;
instead we have a set of possible cost vectors, one for each allowable sensor configura-
tion, and we must minimize the expected cost under the worst-case distribution over cost
vectors. In this section, we discuss different ways to model the general problem we have
described, and discuss the variation we solve. In particular, we show that the problem can
be formulated as a convex game.

Our algorithms are practical for problems of realistic size, and we have used our imple-
mentation to find plans for robots playing laser tag as part of a larger project [Rosencrantz
et al., 2003]. Figure (3.4) shows the optimal solutions for both players for a particular
instance of the problem. The map is of Rangos Hall at Carnegie Mellon University, with
obstacles corresponding to overturned tables and boxes placed to create an interesting en-
vironment for laser tag experiments. The optimal strategy for the planner is a distribution
over paths from the start (s) to one of the goals (g), shown in (3.4)A; this corresponds
to a mixed strategy in the matrix game, that is, a distribution over the rows of the game
matrix. The optimal strategy for the opponent is a distribution over sensor placements, or
equivalently a distribution over the columns of the game matrix. This figure is discussed
in detail in Section (3.4.4).
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3.4.2 Model Formulation

There are a number of ways we could model our planning problem. The model we choose,
which we call the no observation, single play formulation, corresponds to the assumptions
outlined above. Initially, we restrict the opponent to choosing a cost vector from a finite
though possibly large set, but later we relax this to allow arbitrary convex sets of possi-
ble costs. The planning agent knows this set as well as the dynamics of the MDP, and
so constructs a policy that optimizes worst-case expected cost given these allowed cost
vectors. Let ΠD be the set of proper deterministic policies available to the planning agent,
let K = {c1, . . . , ck} be the set of cost vectors available to the adversary, and let V (π, c)
be the value9 of policy π ∈ ΠD under cost vector c ∈ K. The goal is to solve the matrix
game with one row for each π ∈ ΠD and one column for each c ∈ K; the entry in the
payoff matrix for row π and column c is then V (π, c). Equivalently, we wish to solve the
optimization

min
p∈∆(ΠD)

max
q∈∆(K)

Eπ∼p,c∼q[V (π, c)], (3.11)

along with the distributions p and q that achieve this value. We now discuss the assump-
tions behind this formulation of the problem in more detail, and examine several other
possible formulations.

Our most limiting assumption is that our planning agent cannot observe the adver-
sary’s effect on the cost vector. In our example domain, the robot incurs fixed, observable
costs for moving, running into objects, etc.; however, it cannot determine when it is being
watched and so it cannot determine the cost vector selected by the adversary. This is a
reasonable assumption for some domains, but not others. If the assumption does not hold,
our algorithms will produce suboptimal policies: for example, we would not be able to
plan to check whether a path was being watched before following it.

The no-observation assumption, while sometimes unrealistic, is what allows us to de-
velop efficient algorithms. Without this assumption, the planning problem in general be-
comes a partially-observable Markov decision process even when we know the distribution
over cost vectors the opponent has chosen: the unknown cost vector is the hidden state and
the costs incurred are observations. POMDPs are known to be difficult to even approxi-
mately solve [Kaelbling et al., 1996]; on the other hand, the planning problem without ob-
servations admits polynomial-time algorithms, as we will show. Later, we will use a gen-
eralization of extensive-form games (introduced in Chapter 4) to relax the no-observation
assumption somewhat. We will be able to model problems where the planning player can

9That is, the expected value of the start state under policy π. This can be found by solving a set of linear
equations; see Section 2.2
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Figure 3.4: Planning in a robot laser tag environment. Part A: A mixture of optimal
trajectories for a robot traveling from start location (s) to one of three goals (g). The
opponent can put a sensor in one of 4 locations (x), facing one of 8 directions. The widths
of the trajectories correspond to the probability that the robot takes the given path. Parts
B,C,D,E: The optimal opponent strategy randomizes among the sensor placements that
produce these four fields of view.

make some limited observations (perhaps only from a constant number of states, or on
only at a constant number of fixed times) and still maintain computational tractability.

In addition to the POMDP formulation, our problem can also be framed in an online
setting where the MDP must be solved multiple times for different cost vectors. The
planning agent must pick a policy for the nth game based on the cost vectors it has seen in
the first n− 1 games. The goal is to do well in total cost, compared to the best fixed policy
against the opponent’s sequence of selected cost vectors. To obtain tractable algorithms we
still make the no-observation assumption, but it is not necessary to assume the opponent
chooses cost vectors from a finite or convex set. When this formulation is applied to
shortest path problems on graphs, it is the online shortest path problem for which some
efficient algorithms are already known [Takimoto and Warmuth, 2002]. Once we have
shown the transformation to an equivalent convex game, the algorithms for the repeated
setting discussed at the end of Section 3.1 immediately apply.
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It is worth noting the relationship between our problem and stochastic games. Our
setting is more general in some ways and less general in others: we allow hidden state (the
cost function), but stochastic games allow players to make a sequence of interdependent
moves while we require both players to select their policies simultaneously at the outset.
Our work also differs from that of Bagnell et al. [2001], in that they consider uncertainty
about the dynamics model, while we consider uncertainty about the cost function.

In general, the no-observation assumption is applicable in two cases: when observa-
tions are actually impossible, and when observations are possible, but once they have been
made there is nothing to be done. The way we initially phrased our robot path-planning
problem, it falls in the first case: the sensors cannot be detected. On the other hand, if we
can detect a sensor but have already lost the game once we detect it, the problem falls in
the second case.

So far we have imagined an adversary selecting one cost vector from a set of cost
vectors; however, our formulation applies to the case where the actual cost is given by the
highest cost of the chosen policy with respect to any of the cost vectors. For example,
suppose there is a competition to control a robot performing an industrial welding task. In
the first round the robots will be evaluated by three human judges, each of which has the
ability to remove a robot from consideration. It is known that one judge will prefer faster
robots, another will be more concerned with the robots’ power consumption, and another
with the precision with which the task is performed. If the task is formulated as an MDP,
then each judge’s preference can be turned into a cost vector, and our algorithm will find
the policy that maximizes the lowest score given by any of the three judges. The policy
calculated will be optimal if all three judges evaluate the policy and then assign the lowest
of their scores, or if an adversary picks a distribution from which only one judge will be
chosen.

We now proceed with some background on MDPs and linear programming, and then
present the transformation to a convex game.

3.4.3 Solving MDPs with Linear Programming

In this section, we review techniques for solving MDPs via linear programming, as this
background will lead directly to a linear programming formulation of the adversarial MDP
model as well as provide the tools for transforming the problem into an equivalent convex
game.

Consider an MDP M with a state set S and action set A. The dynamics for the MDP
are specified for all s, s′ ∈ S and a ∈ A by P a

ss′ , the probability of moving to state s′
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if action a is taken from state s. In order to express problems regarding MDPs as linear
programs, it is useful to define a matrix E as follows: E has one row for every state-action
pair and one column per state. The entry for row (s, a) and column s′ contains P a

ss′ for
all s 6= s′, and P a

ss − 1 for s = s′. A cost function for the MDP can be represented as
a vector c that contains one entry for each state-action pair (s, a) indicating the cost of
taking action a in state s. A stochastic policy for an MDP is a mapping π : S×A→ [0, 1],
so that π(s, a) gives the probability an agent will take action a in state s. Thus, for all s
we must have

∑
a∈A π(s, a) = 1. A deterministic policy is one that puts all its probability

on a single action for each state, so that it can be represented by π : S → A. The
Markov assumption implies that we do not need to consider history10 dependent policies;
the policies we consider are stationary, in that they depend only on the current state. For
an MDP with a fixed cost function c there is always an optimal deterministic policy, and
so stochastic policies play a lesser role. In our adversarial formulation, however, optimal
policies are typically stochastic.

We are primarily concerned with undiscounted shortest path optimality: that is, all
states have at least one finite-length path to a zero-cost absorbing state, and so undis-
counted costs can be used. Our results can be adapted to discounted infinite horizon prob-
lems by multiplying all the probabilities P a

ss′ by a discount factor γ when the matrix E is
formed. The results can also be extended to an average reward model, but this requires
slightly more complicated changes to the linear programs introduced below.

There are two natural representations of a policy for a MDP, one in terms of frequen-
cies and another in terms of total costs or values. Each arises naturally from a different
linear programming formulation of the MDP problem. For any policy π we can compute
a value function, vπ : S → R, that associates with each state the total cost vπ(s) that an
agent will incur if it follows π from s for the rest of time. If π is optimal then the policy
achieved by acting greedily with respect to vπ is optimal. Thus, value functions can rep-
resent deterministic greedy policies, but not arbitrary stochastic policies; hence, to find an
optimal policy for our adversarial problem we will need a different policy representation.

The optimal value function for an MDP with cost vector c and fixed start state distri-
bution µs ∈ ∆(S) can be found by solving the following linear program:

max
v

µs · v (3.12)

subject to Ev + c ≥ 0.

10We assume the standard definition of the history, where it contains only states and actions. If costs
incurred appear in the history then our formulation does not apply, as we are in the POMDP case.
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The set of constraints Ev + c ≥ 0 is equivalent to the statement that

v(s) ≤ c(s, a) +
∑
s′∈S

P a
ss′v(s′)

for all s ∈ S and a ∈ A, corresponding to the Bellman equations (see Section 2.2).

Fixing an arbitrary stochastic policy π and start state distribution µs uniquely deter-
mines a set of state-action visitation frequencies f ∈ R|S||A|, where f(s, a) gives the ex-
pected number of times action a is taken from state s before the goal is reached, given the
the initial state is drawn from µs and the agent follows π. We write fπ when we wish to
show the dependence on π; the dependence on µs is implicit. The dual of (3.12) is the
linear program whose feasible region is the set of state-action visitation frequency vectors
(that correspond to some stochastic policy), and is given by

min
f

f · c (3.13)

subject to ET f + µs = 0

f ≥ 0.

The constraints ET f + µs = 0 require that the sum of all the frequencies into a state x
equal the sum of all the frequencies out of x. The objective f · c represents the expected
value of the start state drawn from µs under the policy π which corresponds to f . For any
cost vector c we can compute the value of π as

V (π, c) = fπ · c. (3.14)

3.4.4 Representation as a Convex Game

Our game will have the convex strategy set

F = {f ∈ R|S||A| | ET f + µs = 0, f ≥ 0} (3.15)

for the planning player. As mentioned in the previous section, there is a correspondence
between the set F and the set of stochastic policies. In fact, this correspondence is very
similar to the correspondence between behavioral policies and sequence-weight vectors in
extensive-form games. As in that case, a state-action visitation vector f will not specify the
distribution over actions to be taken at states never reached by the corresponding policy.

It can be shown that Cn(F ) = {fπ | π ∈ ΠD}, that is, corners of F are determin-
istic policies. Thus, a mixed strategy p ∈ ∆(ΠD) for the row player in the matrix game
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of Equation (3.11) corresponds exactly to an explicit mixed strategy over F , and hence
is equivalent to the implicit mixed strategy f =

∑
π∈ΠD

fπp(π). In other words, every
stochastic policy (when represented as a state-action visitation frequency vector) can be
represented as a convex combination of deterministic policies, and every convex combi-
nation of deterministic policies corresponds to some stochastic policy. Puterman [1994,
Sec. 6.9] gives a detailed proof of this fact; it can also be proved as a consequence of
Theorem (3.1.1).

We denote the convex hull of a finite set such as K by

H(K) =

{∑
c∈K

q(c) c | q ∈ ∆(K)

}
.

A mixed strategy q ∈ ∆(K) for the column player is equivalent in expectation to the
cost vector

∑
c∈K q(c)c in the convex set H(K). Given a state-action frequency vector

f ∈ F and an implicit mixed cost vector c ∈ H(K), the value of the game is given by
c · f by Equation (3.14). Thus, we can reduce our exponentially large matrix game (given
by Equation (3.11) to the convex game (F, H(K), I) where I is the identity matrix. We
can also define the equivalent convex game (F, ∆(K), MK), where MK is the matrix with
columns c1, . . . , ck. The two representations of the convex game correspond to writing the
objective function as fT I(MKq) versus fT MKq.

While we could conclude this section here, it is instructive to directly construct the
linear programs for the convex game (F, ∆(K), MK). We do so by extending (3.13) with
another variable z which represents the maximum cost of the policy f over all possible
opponent cost vectors:

min
z,f

z (3.16)

subject to ET f + µs = 0

1 · z + MT
Kf ≤ 0

f ≥ 0.

The primal variables f of (3.16) give an optimal implicit mixed strategy for the plan-
ning player. Taking the dual of (3.16), we have

max
v,q

v · µs (3.17)

subject to Ev + MKq ≥ 0

1 · q = 1

q ≥ 0,
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where q gives the optimal mixture of costs for the adversary, and v is the value function
when playing against this distribution. The value function v induces a deterministic policy
that gives a best response if the opponent chooses the distribution q over cost vectors, but
in general this pair of strategies will not be a minimax equilibrium. However, the pair
(f, q) pair will be. It is straightforward to verify that Equation (3.16) is a special case of
Equation (3.4) and that Equation (3.17) is a special case of Equation (3.5).

Figure (3.4) shows a solution to the robot path planning problem formulated in this
way. The left portion, A, shows the minimax optimal strategy for the planner. The sample
problem has deterministic dynamics, so a deterministic policy from ΠD is simply a start to
goal path (note there are 3 goal states in the example domain). The optimal stochastic pol-
icy is shown as a distribution over deterministic paths; the width of the path line indicates
the relative probability with which it is selected. Each of the four right-hand panels (B, C,
D, and E) corresponds to a cost vector from K, shown as the field of view of the sensor
placement. These four are the most likely cost vectors selected by the opponent’s minimax
optimal policy; they are chosen with probability 0.18, 0.42, 0.11, and 0.28 respectively.
The remainder of the probability mass is on other sensor placements.

Unfortunately, many interesting MDPs are too large to allow efficient solution via lin-
ear programming, and so neither of the above linear programs may be practical; however,
for a fixed cost function value iteration or other MDP algorithms can solve such large
problems. In Chapter 5 we develop techniques that allows us to use an arbitrary MDP
solution technique as a best-response oracle in an iterative algorithm for solving (3.16).

3.4.5 Cost-paired MDP Games

In this section we described a generalization to the adversarial-cost MDPs of the previous
section. In cost-paired MDP games, both players select a policy in a separate MDP, but
the costs associated with a policy in one of the MDPs depend (via a linear function) on
the policy selected by the other player. These cost-paired MDPs games represent an inter-
esting and computationally tractable class of adversarial planning problems; they can be
formulated as polynomial-sized convex games.

Revisiting the Sensor-placement Game

In the previous section we considered a fixed, finite set of possible sensor configurations
that determined costs; the techniques introduced in this section let us consider a mobile
sensor platform that must decide on an observation strategy represented as a policy in an
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MDP. The observer’s rewards depend on its own policy as well as on the motion of the
entity which it is trying to observe. Suppose that the output from the sensor cannot be
processed in real time due to latency, insufficient on-board computation, or the need for
human expert analysis; suppose also that the entity being observed is aware that it may be
observed, but cannot detect when observations happen.

One natural instance of this problem is scientific data collection from a satellite or
planetary rover. We want to maximize the amount of time that the sensor spends observing
a particular natural phenomenon. Communication delays prevent the sensor from altering
its actions based on the data collected so far. Nature is oblivious to the sensor’s actions,
but we treat her as an adversary in order to compute a robust plan. We need not model
nature as purely adversarial: to the extent we have good estimates of the probabilities that
govern the behavior of nature, we can embed these into nature’s MDP. In this way the
only degrees of freedom we leave the adversary correspond to uncertainty for which we
have no good statistical model. Note that if we play this game multiple times, then we can
use online learning (see Chapter 6) to capitalize on the fact that nature may not be purely
adversarial even if we lack any probabilistic model.

Problem Model

We have a two-player, zero-sum game, with players x and y as usual. Let Mx =
(Sx, Ax, P x, µx

s) and My = (Sy, Ay, P y, µy
s) be MDPs, one for each player. For each

MDP, S is a finite set of states, A is a finite set of actions, P : (S × A) → ∆(S) is a
transition function, and µs is a distribution over start states. Each MDP would normally
have a vector of state-action costs, but we leave the costs unspecified for now; costs in
Mx will depend on the policy in y chooses for My, and vice versa. Let m = |Sx||Ax|
and n = |Sy||Ay|. Let Πx

D (Πx
ND) be the set of deterministic (stochastic) policies forMx,

and define Πy
D and Πy

ND analogously forMy. We rule out policies with infinite visitation
frequencies; we can do so either by introducing a discount factor (in which case all dis-
counted frequencies will be finite) or by assuming positive edge costs for X , negative costs
for Y , and no “orphan” states (in which case the agents will never choose nonterminating
policies). As we observed in the previous section, the set Πx

ND can be represented via a
convex set X of state-action visitation frequencies using Equation (3.15), and similarly
Πy

ND can be represented by Y . These will be our strategy sets for the convex game; it
remains to define the payoffs.

The cost vector forMx will be a linear function of y’s state-action visitation frequen-
cies y ∈ Y , and vice versa. In particular, we define the value of a pair of policies x ∈ X
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and y ∈ Y as

V (x, y) = cx · x + xT Gy − cy · y.

Here cx and cy are fixed cost vectors for X and Y , while the matrix G governs the inter-
action between the two players; the fixed costs may account for movement costs or other
costs in the game that are independent of the other player’s policy. Since we interpret x
as the min player and y as the max player, y’s fixed cost cy · y gets a negative sign. To
represent V as a bilinear form xT My we can add a new dimension with a fixed value of 1
to X and Y , and then add cx (cy) as a new column (row) of G.

The matrix G has a row for each state-action pair (s, a) inMx and similarly a column
for each state-action pair (t, b) inMy. We can interpret this entry G((s, a), (t, b)) as the
cost associated with the product of the number of times that x took action a from s and y
took action b from state t. In this way we have a convex game equivalent to

min
x∈Πx

ND

max
y∈Πy

ND

V (x, y), (3.18)

the cost-paired MDP game.

Modeling costs in the mobile-sensor game We might model a mobile sensor place-
ment/avoidance problem in the following way: both MDPs Mx and My have the same
state-space S; time is explicitly encoded in the state space, so each s ∈ S corresponds to
being at a particular location loc(s) at a particular time time(s). Player y is the sensing
player; when he is in state t he can observe all of the states in obs(t) ⊆ S. In particular,
s ∈ obs(t) if and only if time(s) = time(t) and loc(s) is visible from loc(t). Then for each
state t, we define

∀s ∈ obs(t), G((s, a), (t, b)) = z (3.19)

for all a ∈ Ax and all b ∈ Ay, where z ∈ R is the cost associated with y observing x for a
single timestep.

Consider state-action visitation frequencies x ∈ X and y ∈ Y . Then let xs =∑
a∈Ax x(s,a) and yt =

∑
b∈Ay y(t,b). Time is explicitly encoded in the state space and

increases after each action, so no state can be reached more than once. Thus, we can in-
terpret xs as the probability that x is in at location loc(s) at time time(s), and similarly for
yt. If s ∈ obs(t), then xsyt is the probability that y observes x at location loc(s) at time
time(s) = time(t) from location loc(t); our definition of G in Equation (3.19) ensures that
xT My (when multiplied out) contains the term xsytz to account for this expected cost.
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3.5 Convex Stochastic Games

Stochastic games (SGs, also called Markov games) generalize MDPs to multiple players
by putting a matrix game, called a stage game, at each state. The game is fully observable,
and on each round the players play the stage game by simultaneously selecting a row or
column. The immediate payoff from one player to the other and the distribution over the
next state in the MDP are both functions of the pair of actions chosen in this way. There
is a large body of literature on stochastic games: Neyman and Sorin [2003] and Owen
[1995] both offer a good general starting point, while Bowling and Veloso [2000] provide
an introduction from a reinforcement learning point of view. Littman [1994] also shows the
usefulness of stochastic games as a model for multi-agent learning. Partially observable
stochastic games (POSGs) are much more expressive but less tractable than stochastic
games. Recent research has shown the usefulness of POSGs, see Emery-Montemerlo et al.
[2004] and Hansen et al. [2004] for a variety of applications.

In this section we introduce Convex Stochastic Games (CSGs), stochastic games with
convex games in place of the usual matrix stage games. This allows us to embed extensive-
form games (transformed to convex games) as the stage games, yielding a tractable class
of partially observable stochastic games.

We consider the zero-sum case played by x and y. The convex stochastic game is
played on a set S of states; each s ∈ S is associated with a convex stage-game. The
convex game at s has actions sets Xs ⊆ Rms and Ys ⊆ Rns for x and y. Next state
transition probabilities are defined via non-negative matrices F ss′ ∈ Rms×ns for every pair
of states s, s′ ∈ S. The probability that the game transitions from s to s′ given that x
played x ∈ Xs and y played y ∈ Ys is then defined to be xT F ss′y, so we require

∀s ∈ S, ∀x ∈ Xs, ∀y ∈ Ys,
∑
s′∈S

xT F ss′y = 1

and
∀s, s′ ∈ S,∀x ∈ Xs, ∀y ∈ Ys, xT F ss′y ≥ 0.

Payoffs are specified via a matrix M s, so when x plays x and y plays y, the payoff from x
to y is xT M sy. It is straightforward to verify that CSGs generalize stochastic games. The
mapping from matrix stage-games to convex game stage-games is given exactly by the
transformation described in the Section 3.1. Suppose Rs and Cs are the row and column
strategies from the original matrix game at s. Then Xs = ∆(Rs) and Ys = ∆(Cs), the
probability simplices explicitly representing the sets of possible mixed strategies for each
stage game. The stochastic game’s transitions are specified by probabilities Pr(s′ | s, i, j)
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for each s, s′ ∈ S and i ∈ Rs, j ∈ Cs. We construct the transition matrix F ss′ by letting
F ss′

i,j = Pr(s′ | s, i, j). Then for mixed strategies x ∈ Xs and y ∈ Ys,

Pr(s′ | s, x, y) = xT F ss′y.

Given a discount factor γ ∈ (0, 1) on future payoffs, the convex stochastic game can be
solved via minimax value iteration (this is a straightforward extension to Littman [1994]).
In minimax value iteration for SGs, game values are calculated by solving a stage-game
modified to take into account estimated future payoffs. The convergence of the algorithm
follows because backups are a contraction given γ < 1 [see Owen, 1995, for a proof].
These same results carry over to CSGs. Let v ∈ R|S| be the current value function estimate.
To backup at s, we solve the convex game at s with the modified objective function

xT M sy + γ
∑
s′∈S

(xT F ss′y) v(s′) (3.20)

This objective includes the immediate payoff xT M sy and the discounted term γE[v(s′)|x, y],
which estimates the expected cost of the rest of the game given that x and y are played.
Note that Equation (3.20) can be rewritten as

xT

(
M s + γ

∑
s′∈S

F ss′v(s′)

)
y

and so it is a bilinear function of x and y. Thus, we can implement the backup operator
for minimax value iteration by solving the modified stage games via convex programming,
and so solve discounted CSGs.

Solving a class of POSGs Using the convex game transformation reviewed in this chap-
ter, we can embed extensive-form games as the stage games in convex stochastic games.
We can view this overall structure as an EFG with loops, and can “unroll” this embedding
with the following interpretation: each EFG stage-game corresponds to a subgame (both
players know which subgame is being played). These subgames have partial observability,
but after a subgame completes a fully-observable transition is made to another subgame.
However, all “back edges” must be to nodes that begin subgames. This game is a fairly
general POSG: it has partial observability and states can repeat. It can be solved in poly-
nomial time using the techniques introduced in this section. The key is that the periods of
partial observability are of bounded duration (equal to the height of one of the embedded
EFGs); the solution time is polynomial in the representation of the game, but possibly
exponential in this horizon time.
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For some interesting applications, assuming that only short periods of partial observ-
ability occur between periods of full observability is reasonable — for example, we could
plan how to handle a temporary failure of a lighting system, GPS localization, or other
sensors. We could also model a two-player poker tournament where each stage game cor-
responds to playing a game of poker with a fixed (fully observable) initial number of chips
for each player. The result of each poker game produces a fully observable transition to
another game (where the number of starting chips for each player depends on the outcome
of the last game), or the end of the tournament (say, if one player runs out of chips).

However, if the partial observability in some domain is due to an adversary that may go
unobserved for long periods of time, this approach will not produce tractable games. After
we introduce CEFGs in the next chapter, we will argue that more realistic problems can
be modeled by embedding CEFGs as stage games in a convex game, because they provide
a powerful method for treating a complex sequence of decisions as a single decision, thus
decreasing the effective horizon of the embedded games.
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Chapter 4

Generalizing Extensive-form Games
with Convex Action Sets

This chapter develops the class of convex extensive form games (CEFGs). These games are
a powerful generalizations of extensive-form games that can still be solved in polynomial
time in the size of the game representation, under reasonable assumptions. Like an EFG,
a CEFG is a game with partial information played on a game tree, however, in CEFGs:

1. An arbitrary subset of players simultaneously select actions at each node, much like
in a normal form game.

2. The sets of actions available to each player at a given information set is a convex
subset of Rn, rather than a discrete set.

3. Payoffs are made at internal nodes as well as at leaves, and are given by a multi-
linear function of the players’ actions.

4. A linear function associates a product distribution over successor nodes with each
possible joint action.

5. Two nodes that are both in the same information set may have different numbers of
successor nodes.

These generalizations allow us to embed arbitrary convex games at the nodes of a
CEFG. This effectively unifies the problems of planning in a MDP and solving for the
minimax solution of an EFG: an MDP is a single-player, single-node CEFG, and an EFG
can be transformed to a CEFG on the same game tree. The problem of solving an MDP
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where one player selects a policy and another player chooses the cost function was ad-
dressed in Section 3.4. This problem can be modeled as a two-player, single-node CEFG.
More general versions of this problem, where the players have some limited opportunities
to observe their opponent’s past actions, can also be solved as CEFGs.

This unification has practical applications to problems typically modeled as EFGs as
well. In particular, our results make it possible to efficiently model games with outcome
uncertainty. Modeling outcome uncertainty (where a single action can result in a distribu-
tion over outcomes rather than a single deterministic outcome) in standard EFGs causes
an exponential blowup in the representation size, but with CEFGs we avoid this blowup.
This has ramifications both to computing sequentially-rational equilibria and opponent
modeling. We discuss these and other applications of CEFGs in Section 4.4.

Efficient computation of equilibria in zero-sum EFGs depends on the property of per-
fect recall; the problem is NP-hard without this assumption [Koller and Megiddo, 1992].
“Perfect recall” CEFGs would not be tractable due to the exponential or infinite number
of possible actions at each node. We develop a generalization of perfect recall for CEFGs,
sufficient recall, that allows some “forgetting” of past actions. A principal contribution of
this work is showing that sufficient-recall zero-sum CEFGs can be transformed to convex
games and hence solved efficiently.

We define sufficient recall as the combination of observation memory and sufficient
action memory (we define all these terms in Section 4.2), and then show that this formu-
lation is equivalent to a notion of sequence recall that is more akin to the definition of
perfect recall in EFGs. Thus, this result serves as a new characterization of perfect recall
for EFGs. Other characterizations of perfect recall have recently appeared in the literature
(see Bonanno [2004] and the references therein). Some of these characterizations may be
related to our characterization when it is applied to EFGs represented as CEFGs, but as of
yet, we have not investigated this relationship.

We are not aware of any similar generalizations of extensive-form games currently
in the literature. Selten [1999] does mention a multistage game model where multiple
agents select actions at each stage. He only considers the perfect information case, but
mentions that “the framework could be made as general as that of an extensive game by
the additional introduction of information partitions.” However, he provides no additional
discussion of the methods for doing this, or of their ramifications; he also does not consider
convex action sets.
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Components of a CEFG
N = {0, 1, 2, . . . , n} the n players of the game; 0 a is a chance player.
T = 〈V, E〉 the extensive form game tree on nodes V and edges E
Vp ⊆ V player p’s decision nodes
Up set of player p’s information sets
Xu ⊆ Rnu convex sets defining the action space at u (u defines player)
f ss′

p linear transition function, f ss′
p : Xu → [0, 1]

M s
p payoff function at node s for player p

Additional Notation
p an arbitrary player, p ∈ N
s, t nodes in V
A(s) ⊆ N set of players active at s ∈ V
u ∈ Up u ⊆ Vp, an information set for player p
φp(s) ∈ Up p’s information set containing s if s ∈ Vp; ♦p otherwise
X̄s set of joint actions possible at node s
xu ∈ Xu an action taken at u
Xc

u cone extension of set Xu

w(s | πp) p’s sequence weight on state s under policy πp

w(u | πp) p’s sequence weight on info set u under policy πp

Table 4.1: Summary of notation for convex extensive-form games.

4.1 CEFGs: Defining the Model

In this section, we introduce Convex Extensive Form Games (CEFGs) with n players and
general payoffs, and then provide brief commentary on the interpretation of the model and
its connection to EFGs.

As one would expect, CEFGs generalize EFGs. The principal differences between the
two representations were outlined in the introduction. In this section, we formally define
the model and associated notation. While we mention some differences to EFGs and
sketch a transformation from a EFG to an equivalent CEFG, our definition of the model
has no direct dependence on EFGs. Table (4.1) summarizes the components that define
a CEFG, as well as some associated notation introduced here and in subsequent sections.
After formally introducing the model, we present several examples and interpretations in
order to make the definition more concrete, show the connection to standard EFGs, and
demonstrate the expressive power of CEFGs.
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The game tree and information sets A CEFG is played on a directed, finite game tree
T = 〈V, E〉 rooted at s∗. For any s ∈ V , there is a unique s∗ → s path, with nodes
denoted by path(s) = (s1, s2, . . . , sk) where s1 = s∗ and sk = s, and edges E(s) =
((s1, s2), (s2, s3), . . . , (sk−1, sk). The game is played by a set N = {0, 1, 2, . . . , n} of
players, where the 0 player is an optional chance (or “nature”) player. We generally state
results for an arbitrary player p; when it is clear to which player we are referring, we omit
the subscript p to simplify notation.

Each player is active (selects an action) on an arbitrary subset of the internal (non-leaf)
nodes,1 Vp ⊆ V ; these are player p’s decision nodes. Let A(s) = {p | s ∈ Vp}, the set
of active players at s. We require |A(s)| ≥ 1 for all internal nodes s and |A(s)| = 0 for
leaves.

As in EFGs, the decision nodes Vp for each player are partitioned into information sets
Up. Formally,

⋃
u∈Up

u = Vp, and for all u, u′ ∈ Up, we have u ∩ u′ = ∅ whenever u 6= u′.
When play reaches a node s with s ∈ u for an information set u of player p, then player p
observes (is told) that the game has reached u, but the specific s ∈ u is not revealed; that
is, all s, s′ ∈ u are indistinguishable to p.

For nodes s where p is not active (s 6∈ Vp), we define (for notational convenience) a
special “non-information set” ♦p. In particular, ♦p 6∈ Up and player p never receives ♦p as
an observation. For any node s ∈ Vp, there exists exactly one information set u ∈ Up such
that s ∈ u; let φp(·) be the function that identifies this u, that is for any s ∈ Vp, φp(s) ∈ Up

and s ∈ φp(s); when s 6∈ Vp, let φp(s) = ♦p, so that the domain of φp is all of V . To
simplify notation, when u is not otherwise specified it can be read as φp(s).

We explicitly exclude the property of absent-mindedness (see Piccione and Rubinstein
[1997]) by requiring that if s, s′ ∈ Vp are on some path to a leaf, then φp(s) 6= φp(s

′)
(note that if s, s′ 6∈ Vp then φp(s) = φp(s

′) = ♦p, but this doesn’t matter). For any state s
and player p, let obsp(s) be the sequence of information sets that occurs on the path to s:
obsp(s) has an entry u for each φp(s

i) 6= ♦p.

A few more notes on notation: to indicate that a particular entity belongs to a particular
player, we subscript with either p or u, for example xu for an action or πp for a policy.2

1One can imagine a matrix game is played at each node by some subset of the players, though as we
will see our model is much more general than this. The fact that we may have strict subsets of players
active at each node will require some notational gymnastics, however, this is necessary to maintain a direct
transformation from EFGs to CEFGs; we will return to this point once we have fully described our model.

2This is not technically precise in the case of xu, as formally u is simply a subset of V , and hence two
different players, say p and p′, could “share” an information set, that is, u ∈ Up and u ∈ Up′ . However,
when we write u it will be clear from context that u is associated with a particular player, almost always
player p.
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We indicate an entity is a tuple over players with a bar: for example, x̄ is a joint action.
Entries in a tuple over players are indexed with a subscript p ∈ N , and shown without the
bar. That is, x̄ = {x0, x1, x2, . . . , xn}. We use a bar over capital symbols to denote sets of
such tuples, for example, X̄s is a set of possible joint actions.

Actions and costs Consider a play of the game that reaches node s, and suppose u =
φp(s) for player p ∈ A(s). At s player p only observes u (that is, p cannot differentiate
between the nodes in u), so we require that all nodes in u share the same set Xu of actions
available to p. However, it is possible for two nodes s, s′ ∈ u to have different numbers of
successors in the game tree, unlike in EFGs.

In an EFG, Xu would typically be a small finite set; a principal difference in CEFGs is
that Xu is a convex subset of Rnu . At s, each player p ∈ A(s) selects an action xp ∈ Xu.
Note that when a player p selects an action at u, she may well not even know how many
players are simultaneously selecting an action, as this is a function of the (unobserved)
state s ∈ V . For notational simplicity, we define the joint action x̄ = (x0, x1, x2, . . . , xn)
as a tuple over all the players, where we have xp ∈ Xu for p ∈ A(s), and arbitrarily fix
xp = 1 for p 6∈ A(s); in fact, we simply define X♦p = {1}, and so the set of all possible
joint actions at s is X̄s =

⊗
p∈N Xφp(s) (we use

⊗
to denote the Cartesian set product).

This allows us to view joint actions as a tuple of actions over all the players, even though
some of the players do not actually make a decision and in fact have no knowledge (other
than what is conveyed later via their information sets) of the fact that s was reached.

Costs are incurred at internal nodes, not just at leaves as for EFGs. The payoff to each
player p (for all p ∈ N , not just those p ∈ A(s)) is given by a function M s

p : X̄s → R. We
require that M s

p be a multi-linear function of x0, x1, . . . , xn, that is, it is a linear function of
xp when the actions of all other players are held constant.3 Note that this definition of the
action sets and payoffs implies that a convex game is being played at each internal node.
However, the players involved may have uncertainty about the game: they know their own
Xu, but may not know the payoff matrix (bilinear payoff function for n > 2), which other
players are playing, and what actions those players have available.

Leaf nodes have A(s) = ∅, and so the payoff to each player is a constant, written as
M s

p (~1) where ~1 is the vector of (n + 1) 1s.

Successors and transitions While we may have an infinite set of possible actions Xu,
we wish to avoid infinite branching in the game tree T . Thus, we assume each internal

3The assumption is necessary for efficient computation on G, and is also necessary to show the equiva-
lence of explicit behavior and implicit behavior policies (introduced later).

91



node s ∈ V has a finite set of successors, denoted succ(s). Given a joint action x̄ at s, we
need to specify how the successor state s′ ∈ succ(s) is chosen. We do this via a product
distribution over succ(s) that is a linear function of each player’s individual action. In
particular, for each p ∈ A(s) and s′ ∈ succ(s), we define a linear function f ss′

p : Xu → R.
The probability that s′ is the next state after s is given by:

Pr(s′ | s, x̄) =
∏

p∈A(s)

f ss′

p (xp). (4.1)

Thus, we require that these functions satisfy the following constraints for all s ∈ V and
x̄ ∈ X̄s: ∏

p∈A(s)

f ss′

p (xp) ≥ 0 and
∑

s′∈succ(s)

∏
p∈A(s)

f ss′

p (xp) = 1. (4.2)

Again, to avoid special cases we define f ss′
p for all p 6∈ A(s) as f ss′

p (xp) = 1, that is,
the identity function, since X♦p = {1}. Thus, we can replace the products over p ∈
A(s) in Equation (4.2) with products over p ∈ N . Note that the f ss′

p functions can, for
example, be constant functions specifying a fixed probability distribution, and so functions
satisfying the constraints (4.2) always exist. For leaf nodes s, we assume |A(s)| = 0, and
no transition functions are defined.

The assumptions in Equation (4.2) are sufficient for the CEFG to be well defined, that
is, they specify a valid probability distribution over successors that is a product distribu-
tion. However, the model will be difficult to interpret if some f ss′

p (x) > 1. Thus, in this
paper we make the following assumption:

Assumption 4.1.1. For all (s, s′) ∈ E, all p ∈ A(s), and all xp ∈ Xu, f ss′
p (xp) ∈ [0, 1].

This assumption allows us to view f ss′
p (x) as the probability of some event depending

only on player p’s action x (we explore this idea in more detail in the next section). This
assumption is in fact made without loss of generality; see Appendix A for the proof.

Let G and G′ be two CEFGs. We say that G and G′ are f -equivalent if they are
identical except for their f functions, and for all (s, s′), for all x̄ ∈ X̄s, PrG(s′ | s, x̄) =
PrG′(s′ | s, x̄).

We model the random player as having a separate information set for each of her
decision nodes, and fix Xu = {1} for all u ∈ U0. Thus, the random player makes no
decisions, and is defined by her (effectively) constant f -functions, f ss′

0 .

Gameplay and payoffs A CEFG is played in a similar fashion to an EFG. We can
imagine a referee who starts the game at s∗ = s1. All players in p ∈ A(s∗) simultaneously
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and independently select an action from Xφp(s∗), and the referee assembles these choices
into a joint action vector x̄1, using 1 as the action for all players not active at s∗. The
referee then computes the payoff M s

p (x̄1) to each player p and selects the successor state
s2 based on x̄1 according to Equation (4.1). Each player p ∈ A(s2) receives φp(s

2) as an
observation and is asked for an action, and the game continues in this fashion until a leaf
is reached.

The partial history h of the gameplay so far can be written as

h = ((s1, x̄1), (s2, x̄2), . . . , (sk, x̄k), sk+1)

where s1 is always the root node of the game. A complete history or play is a partial
history where sk+1 is a leaf node. Such a history can be interpreted as saying for each
tuple i: node si was reached, each player p ∈ A(si) observed their information set φp(s

i),
and then played xp ∈ Xφp(si). The game transitioned to si+1, some successor of si with
Pr(si+1 | si, x̄i) > 0. The value of a history h to player p (that is, the total payoff to p) is
given by

Vp(h) =
∑

(s,x̄)∈hp

M s
p (x̄).

To avoid notational hassles, if the last state in the partial history h is a leaf, we assume
it is associated with a vacuous joint action so it is included in this sum and so the final
(constant) payoff is counted. This value can be thought of as the sum of the payoffs of the
individual convex games played along the path to the leaf. The goal of each player in the
game is to maximize their own total payoff, Vp(h).

It is also useful to define the partial player history, hp, the portion of the history h
observable by player p,

hp = ((u1, x1
p), (u

2, x2
p), . . . (u

k, xk
p), u

k+1)

ending in a player p information set. The partial player history only contains tuples cor-
responding to observations p received, that is, it has no tuples where ui is ♦p. Each tuple
i can be read as: player p observed ui ∈ Up, selected action xi ∈ Xui , and then at some
later point was “woken up” with the observation of ui+1. If h is a history of k, the length
of the partial player history for any particular player p may have length much less than k,
possibly even zero.4 Let H be the set of all possible complete plays of the CEFG, and let
Hp be the set of all partial player histories for player p.

4In an EFG, length(h) =
∑

p length(hp), as each internal node is in exactly one decision set.
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Figure 4.1: A simple poker game with a two card deck (Ace and King), represented as a
convex extensive-form game.

Interpretations and Examples

In this section we present several small examples and demonstrate the connection to stan-
dard EFGs.

A simple poker game, revisited We show how to represent the poker game from Sec-
tion 3.2 as a convex extensive-form game. The CEFG representation is given in Figure 4.1;
this figure is essentially the same as Figure 3.2, but we have renumbered the states (in-
cluding the leaves), and do not show payoffs for clarity (they are identical). We have
V = {1, . . . , 17}, with Vx = {2, 3, 10, 11} and Vy = {5, 6}. The information sets are
again Ux = {u1, u3} and Uy = {u2}, where u1 = {2, 3}, u2 = {5, 6}, and u3 = {10, 11}.
The labels on edges are for reference only, and cannot in general be viewed as actions
in a convex extensive form game. However, in Section 4.2, we will introduce the con-
cept of outcomes which partition the edges out of information sets. The labels shown in
the figure can be interpreted as outcome labels. The action sets are Xu1 = ∆({f, b}),
Xu2 = ∆({f ′, c′, b′}), and Xu3 = ∆({F, C}). The transition functions associated with
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state 2 are

f 2,4
x (x) = x1 f 2,4

y (y) = 1

f 2,5
x (x) = x2 f 2,5

y (y) = 1,

and it is easy to verify that in fact f 2,4
x (x)f 2,4

y (y) ≥ 0, f 2,5
x (x)f 2,5

y (y) ≥ 0, and

f 2,4
x (x)f 2,4

y (y) + f 2,5
x (x)f 2,5

y (y) = 1

for all x ∈ ∆({f, b}) and y ∈ X♦y = {1}, as required by Equation (4.2).

For a general convex extensive-form game the transition functions from states 2 and
3 could be different, and in fact each state could have a different number of outcomes;
but, in this case we are simply transforming an EFG and so the functions will be identical.
More precisely, we have f 2,4

x = f 3,7
x (corresponding to the fold outcome), and f 2,5

x = f 3,6
x

(corresponding to the bet outcome). Equalities of this type will play a central roll in our
definition of sufficient recall.

We have omitted the constant f = 1 functions of the random player at node 2; at
node 1, only the random player is active, with f 1,2

0 = 0.5 and f 1,3
0 = 0.5. The payoff

functions M at internal nodes are the constant zero function, and the payoffs at the leaves
are constant functions corresponding to the payoffs shown in Figure (3.2).

A useful interpretation of the f -functions Imagine that at a node s, player p selects an
action xp ∈ Xu, and that action the action xp determines a probability distribution over
some disjoint events5 Ap = {a1, a2, . . . , akp}. This distribution is independent of the other
player’s action if the other player happens to be active at s. Suppose that this probability
distribution is, in fact, a linear function of x, and, WLOG, x1, . . . xkp are the probabilities6

of a1, . . . , akp , that is xi = Pr(ai | x). The f -functions are linear, so suppose

f ss′

p (x) =

kp∑
i=1

cixi.

5Any resemblance to the notation used for actions in an EFG is purely unintentional.
6This is without loss of generality because if it is not the case we can embed the linear functions that

define Pr(ai | x) into a new dimension of Xu via an equality constraint.
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If we choose coefficients ci ∈ {0, 1} then each f ss′
p function simply adds up the probabili-

ties on some union of events in A. Letting Ap(s
′) = {ai ∈ Ap | ci = 1}, we have

f ss′

p (x) =

kp∑
i=1

cixi =

kp∑
i=1

ci Pr(ai | x) = Pr(Ap(s
′) | x).

Thus, holding other player’s action constant, the probability with which the game transi-
tions to s′ is proportional to the probability of the event Ap(s

′).

We can independently interpret each player’s f -functions in this way. The total set of
f -functions (one for each player/successor pair) determining the transition probabilities
at s must be chosen to ensure that each joint event (some a ∈ Ap for each player p)
is associated with exactly one successor state s′. Since the distribution on each Ap is
independent, the resulting distribution is a product distribution.

As a concrete example, consider two players, x and y, at node s, where player x’s
action determines a distribution on events A = {a1, a2}, and player y′s action determines
a distribution on B = {b1, b2}. Suppose x has action set

X = {(x1, x2) | xi ≥ 0, x1 + x2 = 1} = ∆(A),

that is, she can choose any distribution she wants on her events, and similarly Y = ∆(B).
Suppose from s there are 3 possible successors: s1, s2, and s3. Then, we might have
Pr(s1) = Pr(a1) and Pr(s2) = Pr(a2 ∧ b1) and Pr(s3) = Pr(a2 ∧ b2). The corresponding
f functions would be:

f s,s1

x (x) = x1 f s,s2

x (x) = x2 f s,s3

x (x) = x2

f s,s1

y (y) = y1 + y2 f s,s2

y (y) = y1 f s,s3

x (y) = y2

and so

Pr(s1) = x1(y1 + y2) = Pr(a1) Pr(b1 ∨ b2) = Pr(a1)

Pr(s2) = x2y1 = Pr(a2) Pr(b1) = Pr(a2 ∧ b1)

Pr(s3) = x2y2 = Pr(a2) Pr(b2) = Pr(a2 ∧ b2).

The relationship between the successors {s1, s2, s3} and the joint probability space A
⊗

B
is shown pictorially in the following table:

b1 b2

a1

a2

s1 s3

s2 s3
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The f -functions can always be represented as a partition of the product space of the indi-
vidual event sets Ap. However, arbitrary partitions are not possible: each successor state
must be associated with a “rectangle” of the product event space, that is, each successor s′

corresponds to some Cartesian product of subsets of each Ap, namely
⊗

p∈N Ap(s
′)

In all of our applications, the f -functions can be interpreted in this way. For example,
consider an MDP embedded at node s of a CEFG, so Xu for player p is the set of state-
action visitation frequencies corresponding to valid stochastic policies (this set is defined
in Section 3.4.3). Further, suppose only p is active at s. If the MDP has k terminal states
(absorbing goal states), then we can define events a1, . . . , ak where ai is the event that the
policy selected takes the agent to terminal state i. These probabilities are a linear function
of x ∈ Xu, and so we might have k successors s′, where each f ss′ function computes the
probability that the agent reaches a particular terminal state under the chosen policy.

Interpretations of the action sets As with with convex games, we have two possible
interpretations of the set Xu:

1. We interpret the set Xu as a continuous set of primitive actions.

2. We treat only the extreme points Cn(Xu) as primitive actions, with interior points
defining an equivalence class of mixed strategies.7

In Section (3.1) we showed that all distributions over Cn(X) (and hence, Xu for CE-
FGs) correspond to (immediate) payoff equivalent actions (strategies for the convex game).
However, in CEFGs we must also worry about the rest of the game: two actions that lead
to the same immediate payoff but produce potentially different distributions over successor
nodes in the game tree are clearly not equivalent. However, because the transition func-
tions f are linear, it is easy to modify the arguments for immediate payoff equivalence
to show that any two probability distributions over corners that produce the same interior
point x also produce the same distribution over successor nodes for any (fixed) joint pol-
icy for the other players. Hence, even if we consider the set Cn(Xu) to be the actual set
of primitive actions, we can optimize over the set Xu and sample from a small support
representation of an interior point if needed.

Connection to EFGs In EFGs, no generality is gained by assigning costs at internal
nodes s, as we can always simply add any immediate costs at s to the cost at every leaf

7As with convex games, we could use any subset X ′ ⊆ X instead of Cn(Xu), as long as we have an
efficient algorithm to express any point x ∈ X as a distribution over points in X ′.
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reachable from s. However, in CEFGs the costs we incur may depend on the exact action
xu, not just the successor state, and so deferring costs to the leaf would require “remem-
bering” the action xu in the tree, giving rise to an infinite branching factor. By assigning
some cost based on x̄s immediately at the internal node s, our model can handle costs that
depend on continuous, multi-dimensional actions. The key is that the full action impacts
only the immediate cost incurred, and that once that cost is accounted for, only a finite
number of successor states are possible.

The fact that we have continuous, multi-dimensional actions has significant ramifica-
tions for tractable algorithms. The efficient solution of two-player, zero-sum EFGs re-
lies on the assumption of perfect recall: informally, each information set u for player p
uniquely determines the sequence of actions p has taken up to that point. Clearly, we will
not be able to have this property given continuous actions and a finite tree—some for-
getting must be allowed. Thus, in the next section we introduce the concept of sufficient
recall, which provides enough “memory” in the tree to allow optimal play given only the
current information set without fully encoding all past actions.

Finally, we note that CEFGs generalize EFGs. In particular, for any EFG G there is a
mapping to an equivalent CEFG G′, such that an equilibrium solution in G′ can be mapped
back to an equilibrium solution of G. The mapping from an EFG G to a CEFG G′ is the
natural one. Each node in G corresponds to a node in G′; information sets are also mapped
directly, so that in G′ we will have |A(s)| = 1 for all internal nodes, and |A(s)| = 0 at the
leaves. Each internal node has a payoff function M s

p (x̄) = 0, and each leaf has a constant
payoff M s

p (1̄) ∈ R equal to the payoff at the corresponding leaf in G.

For each internal node s, if the active player p’s choices in G for u = φp(s) were
Cu = {c1, . . . , ck}, we define Xu ⊆ Rk to be the k-dimensional probability simplex
∆(Cu). The corners Cn(Xu) correspond to the choices/outcomes in G, while an interior
point x corresponds to a behavior (a distribution over choices). The successors of s are
(say) s1, . . . , sk, and the f -functions are simply f ssi

p (x) = xi.

It is easy to show that this mapping produces a valid CEFG, and that policies can be
transferred back and forth between G and G′, with payoffs being identical in G or G′.

Compact representations with CEFGs We provide a quick illustration of the power of
the CEFG model by showing there are games with a CEFG representation that is exponen-
tially smaller than the EFG representation. Consider the following zero-sum game played
by x and y in k rounds. On each round, each player chooses a number from {1, . . . , 10}.
At the end of k rounds, player x pays y an amount that depends arbitrarily on the sequence
of k numbers x picked, plus $1 for each time y guessed x’s action. Neither player observes
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the other player’s past actions.

This game can be represented as an EFG, played on a height 2k tree with branching
factor 10: there is one leaf for each possible pair of length k sequences, corresponding
to the numbers picked by x and y. Thus, this tree has 102k leaves. This game has an
exponentially smaller representation as a CEFG: the game tree is now of height k, and
each leaf corresponds to the sequence of x’s choices; the choices of y are “forgotten” by
the tree. Each internal node is a matrix game where x pays $1 if y guesses his actions
(that is, M s is the 10 × 10 identity matrix). Thus, the possible immediate payoff of $1
depends on both actions, but the successor state depends only on x’s action (all f ss′

y = 1).
An additional constant payoff is given at each leaf based on the sequence of x’s choices.
This tree has only 10k leaves, and so the representation is exponentially smaller than the
EFG (encoding the matrix games only increases the size by a constant factor).

This game might model a situation where y is placing bets on player x’s location,
while player x is trying to accomplish some task. More realistic games can certainly be
constructed; the goal here is to illustrate the representative power of CEFGs. Note that we
have not fully exploited the power of this model: our action sets were still only probability
simplexes, and all nodes in an information set had the same number of successors.

4.2 Sufficient Recall and Implicit Behavior
Reactive Policies

In this section, we develop some important theoretical results concerning CEFGs. Our
principal result will be developing a notion of sufficient recall (analogous to perfect recall
in EFGs) and showing that for CEFGs with sufficient recall, a class of behavior strategies
always contains an optimal policy. These results allow us to construct a polynomial-time
algorithm for solving sufficient-recall CEFGs in the next section.

Policies and Probability

In this section, we formally define payoffs for a CEFG, define some policy classes, and
define payoff equivalence.

Policy classes A policy (or strategy) is a complete description of how to play a game; in
the case of CEFGs, it is a means of selecting an action x ∈ Xu at each information set u
that occurs. We can think of policies as functions or programs depending on our point of
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view. Generally speaking, however, any reasonable policy must select its action at u based
only on its past observations and actions, and possibly some source of randomness.

We formalize policies as functions and define terminology by specifying different pos-
sibilities for the domain and range. A policy function is history dependent if it takes as
input the partial player history so far, that is, its domain is Hp. A policy is reactive (or
memoryless) if it only depends on the current information set, but not on its past actions or
observations. For the range: a pure policy chooses a single action from the set of primitive
actions8 Cn(Xu). An implicit behavior policy picks an interior point of Xu, and interprets
this point as a distribution over the primitive actions Cn(Xu) (that is, it samples a corner
from an arbitrary probability distribution from the equivalence class of such distributions
defined by the interior point). Finally, an explicit behavior policy specifies a particular
distribution over Cn(Xu). An explicit behavior policy might put positive probability on an
exponential number of corners of Xu, but an implicit behavior at u can always be repre-
sented concisely.

These choices give us 6 classes of policy functions, for each combination of domain
and range. When naming policies we specify the range first, then the domain, and so
refer to: pure history policies, implicit behavior history policies, implicit behavior reactive
policies, and so on. A mixed policy is defined by a probability distribution over one of
the above classes. Considering the mixed versions of the above classes gives a total of 12
policy classes. Fortunately, we will only need to focus on a few of these classes.

The literature on EFGs generally considers mixed, pure, and behavior strategies. An
EFG pure policy is a pure reactive policy in our terms, an EFG mixed policy is a mixed
pure reactive policy, and an EFG behavior policy is an (implicit or explicit) behavior reac-
tive policy.9 The set of general policies is the union of the policy classes just mentioned:
it can be thought of as the set of all possible strategies a player could use. We will be
particular concerned with the class of implicit behavior reactive policies (IBRPs), which
are policies specified by a function from the current information set u to the set Xu. We
often denote such policies by β, and write β(u) ∈ Xu for the action selected at u.

We use κp to denote a general player p policy. We write κ̄−p for a joint policy for all
players except p, that is,

κ̄−p = (κ1, κ2, . . . , κp−1, κp+1, . . . , κn)

8For simplicity we assume the set of primitive actions is Cn(Xu), as this is the most common case. But
for some games it might be all of Xu or some other subset of Xu.

9In an EFG, the set Xu is the probability simplex over choices, and so there is a one-to-one correspon-
dence between interior points and distributions over corners. Hence, the class of implicit behavior and
explicit behavior policies are identical in EFGs (even if represented as CEFGs)
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and let (κp, κ̄−p) be the joint policy where players other than p play according to κ̄−p and
player p follows κp.

Probability We introduce the basic probability measure used for probability statements
about CEFGs, and also establish our notation for various events. For simplicity, we as-
sume each policy only ever plays actions from a countable subset of Xu. This simplifies
the notation and proofs in the next section by allowing us to always work directly with
probabilities rather than probability densities; it also makes the connection to results for
EFGs more clear. In particular, this assumption allows us to work with the probability that
a policy picks a certain action given that u is reached, Pr(x | u). Based on this assump-
tion, we abuse notation slightly by writing sums like

∑
x∈Xu

Pr(x | u), when we implicitly
mean only summing over only those x ∈ Xu that the policy might actually play.

With suitable attention to technical detail, these results should go through for policies
that select actions from all of Xu by working with the appropriate probability densities. In
fact, for the case of polytopes, the restriction to policies that play from a countable subset
of Xu is without loss of generality: any policy that sometimes plays interior points can be
interpreted as a policy that plays a distribution over extreme points.10

Any joint policy κ̄ = {κ1, . . . , κn} where each player fixes some general policy κp

induces a probability distribution onH. When we want to make it clear which joint policy
is associated with a given probability or expectation, we include the policy as a condition,
for example, Pr(s | κ̄); subscripting Pr would be more precise, but is typographically
cumbersome.

For a fixed κ̄, Vp is a random variable, and the expected payoff Vp to player p under
joint policy κ̄ is

Vp(κ̄) = E[Vp].

When a state s appears where an event (a subset of H) is appropriate, we treat s as the
subset of the complete histories in H in which s occurs (s is reached at some point in the
play). We denote by ¬s the complement of this set, the set of plays in which s does not
occur. Similarly, we view an information set u for player p as the subset of plays in H
where some s ∈ u is reached; in this context u = ∪s∈us. We write (u, xp) for the event
that player p plays xp ∈ Xu from information set u. When u and p are clear from context,
we write simply x for this event.

A policy κp for player p is payoff equivalent to another policy κ′p, if for all κ̄−p for
the other players, for all players q ∈ N , Vq(κp, κ̄−p) = Vq(κ

′
p, κ̄−p). This definition of

10Some care must still be taken when dealing with an unbounded polyhedron X .
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equivalence is standard [see Dalkey, 1953, for example]. Finally, we state one reasonable
additional assumption:

Assumption 4.2.1. For every s ∈ V , there exists at least one joint policy κ̄ such that
Pr(s | κ̄) > 0.

If a CEFG of interest does not satisfy this assumption, unreachable states can be re-
moved in a pre-processing step.

Sequence Weights

In this section, we prove some basic results that apply to all CEFGs, even those without
sufficient recall. In particular, we introduce a generalized notion of sequence weights,11

which we then use to show that the probability that a given state is reached, Pr(s | κ̄), is
given by a product distribution.

First, we prove an important structural lemma that shows that we can calculate the
value of the game by summing the expected payoff at each state weighted by the proba-
bility that the state is reached. This combined with representing the probabilities of each
state as a product distribution identifies the problem structure which we later exploit to
obtain an efficient algorithm.

Define x̄s to be a random vector giving the joint action taken at s when s ∈ h, that is,
x̄s(h) = x̄′ when the tuple (s, x̄′) appears in h. When s 6∈ h, x̄s(h) is undefined. Thus,
when we use x̄s in expectations or probabilities, we will always condition on the fact that
s ∈ h.

Lemma 4.2.2. For any joint policy κ̄ and any player p, let

R = {s | s ∈ V, Pr(s | κ̄) > 0}.

Then,
Vp(κ̄) =

∑
s∈R

Pr(s | κ̄)E[M s
p (x̄s) | s, κ̄].

Proof. Define random variables vs
p : H → R for s ∈ V , p ∈ N , by

vs
p (h) =

{
M s

p (x̄s(h)) if s ∈ h

0 otherwise

11The name is by analogy to sequence weights in EFGs, see Koller and Megiddo [1992] and Koller et al.
[1994] in particular.
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Then,

E[vs
p ] = Pr(s)E[vs

p | s] + Pr(¬s)E[vs
p | ¬s] = Pr(s)E[vs

p | s] = Pr(s)E[M s
p (x̄s) | s]

(4.3)
because E[vs

p (h) | ¬s] = 0. Also, Vp(h) =
∑

s∈T vs
p (h) as each state occurs at most once

in a given history (since T is a tree). Then ,

Vp(κ̄) = E [Vp] = E

[∑
s∈V

vs
p

]
=
∑
s∈V

E
[
vs
p

]
=
∑
s∈V

Pr(s | κ̄) E
[
M s

p (x̄s) | s
]
, (4.4)

where we have used linearity of expectation and Equation (4.3).

Now, we define the sequence weight wp(s | κp) of s ∈ V for an arbitrary arbitrary
policy κp for player p. Intuitively, the sequence weight wp(s | κp) is the probability we
reach s given that all other players (and their randomness) “conspire” to force us to s. We
formalize this notion in the proof of the next lemma, which then allows us to formally
define sequence weights for a CEFG.

Lemma 4.2.3. For any player p using policy κp and any two joint policies for the other
players κ̄−p and κ̄′−p, for any s ∈ Vp where Pr(s | (κp, κ̄−p)) > 0 and Pr(s | (κp, κ̄

′
−p)) >

0, we have
Pr((s, xp) | s, (κp, κ̄−p)) = Pr((s, xp) | s, (κp, κ̄

′
−p)).

Proof. Fix a CEFG G, a particular state s ∈ V , and a player p. We construct a single-
player game G(p, s) as follows: The game includes the states path(s) = s1, . . . sk (where
s1 is the root, and sk = s). Let S = {s1, . . . , sk−1}. The game starts at s1. At each si ∈ S,
if p 6∈ A(si), the game always continues to si+1. Thus, G is really only defined by the
states si ∈ Vp∩S. If p ∈ A(si), the player chooses an action x ∈ Xφp(s); with probability12

f si,si+1

p (x) the game continues to si+1, and otherwise it stops. The game always ends if
play reaches s(= sk).

Observe that we can use any policy κp for G to play G(p, s): at each si where p ∈
A(si), we tell the policy it is in information set u = φp(s

i), and it returns an action
x ∈ Xu. In fact, there is no way for the policy κp to realize it is not being used to play
G. Thus, each κp induces a probability distribution on histories of G(p, s) (a sequence of
actions taken up until the end of the game). In particular, PrG(p,s)(s

i | κp) is the probability
that the game reaches si under κp.

12By Assumption (4.1.1), fsi,si+1

p (x) ∈ [0, 1]
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We can also consider κ’s action selection in G(p, s). In particular, if PrG(p,s)(s
i | κp) >

0, then PrG(p,s)(xp | si, κp) is also well defined. Whenever κp selects an action in G(p, s), it
behaves exactly as if it were selecting an action in G; the lemma follows immediately.

As a consequence of this lemma, we write Pr(xp | s, κp) for this probability; it is
defined for any state where PrG(p,s)(s | κp) > 0. We then define the sequence weight of s
given κp by w(s | κp) = PrG(p,s)(s | κp). Note that if the path to s contains no player p
information sets then w(s | κp) = 1. When w(s | κp) > 0, we can then calculate it as

w(s | κp) = Pr
G(p,s)

(s | κp) =
∏

(t,t′)∈E(s)

∑
x∈Xu

Pr(x | t, κp)f
tt′

p (x), (4.5)

where we have Pr(1 | s) = 1 and f ss′
p (1) = 1 when p 6∈ A(s) (equivalently, we take the

product to only be over edges (s, s′) where s ∈ Vp). It is also useful to define

E[x | s, κp] =
∑
x∈Xu

Pr(x | s, κp) x

(when w(s | κp) > 0) and then using the linearity of f , we have for nonzero w(s | κp),

w(s | κp) =
∏

(t,t′)∈E(s)

f tt′

p (E[x | t, κp]). (4.6)

Define REL(κp) = {s | w(s | κp) > 0}. This is exactly the set of states such that there
exists a κ̄−p such that Pr(s | (κp, κ̄−p)) > 0 (this can be proved based on the definition of
the G(p, s) game and Assumption (4.2.1)). Any state s 6∈ REL(κp) is ruled out by κp: it
is never reached when player p uses κp. We extend the REL notation to joint policies, by
defining REL(κ̄) = ∩pREL(κp) = {s | Pr(s | κ̄) > 0}, and REL(κ̄−p) = ∩p′ 6=pREL(κp′).

Lemma 4.2.4. For any s ∈ V and any joint policy κ̄,

Pr(s | κ̄) =
∏

p

wp(s | κp).

Proof. First, observe that if for any p we have wp(s | κp) = 0 then s 6∈ REL(κp) and
Pr(s | κ̄) = 0, and so the equality holds. Now, suppose Pr(s | κ̄) > 0. If s is ever reached
under κ̄,

Pr((s, x̄) | s, κ̄) =
∏

p

Pr(xp | s, κp)
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as a consequence of Lemma (4.2.3), and so for any reachable s ∈ REL(κ̄) with successor
s′,

Pr(s′ | s, κ̄) =
∑
x̄∈X̄s

Pr(x̄ | s, κ̄) Pr(s′ | s, x̄)

=
∑
x̄∈X̄s

(∏
p

Pr(xp | s, κp)

)(∏
p

f ss′

p (xp)

)
=
∑
x̄∈X̄s

∏
p

Pr(xp | s, κp) f ss′

p (xp).

=
∏

p

∑
xp∈Xu

Pr(xp | s, κp) f ss′

p (xp). (4.7)

Thus,

Pr(s | κ̄) =
∏

t,t′∈E(s)

Pr(t′ | t, κ̄)

=
∏

t,t′∈E(s)

∏
p

∑
xp∈Xφp(t)

Pr(xp | t, κp)f
tt′

p (xp). By Eq. (4.7)

=
∏

p

∏
t,t′∈E(s)

∑
xp∈Xφp(t)

Pr(xp | t, κp)f
tt′

p (xp).

=
∏

p

wp(s | κp) By Eq. (4.5)

For convenience, for any joint policy κ̄, we define w(s | κ̄) =
∏

p wp(s | κp), and sim-
ilarly for a policy κ̄−p for all players other than p, we define w(s | κ̄−p) =

∏
p′ 6=p wp′(s |

κp′). We now prove a lemma that is very useful in proving two policy classes are equiva-
lent:

Lemma 4.2.5. If κp and κ′p are two policies for player p such that

E[xp | s, κp] = E[xp | s, κ′p]

for all s ∈ REL(κp) ∩ REL(κ′p), then REL(κp) = REL(κ′p), and further κp and κ′p are
payoff equivalent.
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Proof. Observe that REL(κp) and REL(κ′p) are trees rooted at s∗: if s ∈ REL(κp), then
all s′ ∈ path(s) are also in REL(κp). Thus, REL(κp) ∩ REL(κ′p) is also a tree, and so for
s ∈ REL(κp) ∩ REL(κ′p) we have wp(s | κ′p) = wp(s | κp) by Equation (4.6). Suppose
REL(κp) 6= REL(κ′p). Then, WLOG, there exists (s, s′) ∈ E such that s ∈ REL(κp) ∩
REL(κ′p), s′ 6∈ REL(κp), and s′ ∈ REL(κ′p). Then, wp(s

′ | κp) = 0 and wp(s
′ | κ′p) > 0.

Equation (4.6) implies

wp(s
′ | κ′p) = wp(s | κ′p) · f ss′

p (E[xp | s, κ′p]).

Further, wp(s | κ′p) = wp(s | κp) because s ∈ REL(κp) ∩ REL(κ′p) and E[xp | s, κ′p] =
E[xp | s, κp], and we must have wp(s

′ | κ′p) = wp(s
′ | κp), a contradiction. Thus, we

conclude REL(κp) = REL(κ′p).

Now, we proceed to show payoff equivalence. Fix any κ̄−p for the other players.
Equation (4.6) shows κp and κ′p have equal sequence weights, and so by Lemma (4.2.4),
Pr(s | (κp, κ̄−p)) = Pr(s | (κ′p, κ̄−p)) for all s.

Using Lemma (4.2.2), it is now sufficient to show that the expected payoff for an
arbitrary player q ∈ N at each state reached with positive probability is equal. This is
clearly true at states where p 6∈ A(s). Consider some s ∈ Vp where s ∈ u. The key is
that the payoff function M s

q is multi-linear. Let x̄−p be a joint action for all players other
than p, so that for any xp ∈ Xu, (xp, x̄−p) ∈ X̄s is a joint action at s. Then, multi-linearity
implies there exists a vector ~ms(x̄−p) ∈ Rnu such that for any xp ∈ Xu,

M s
q ((xp, x̄−p)) = ~ms(x̄−p) · xp.

Now, for κp and any s with Pr(s | (κp, κ̄−p)) > 0,

E
[
M s

q (x̄s) | s, (κp, κ̄−p)
]

=
∑
x̄∈X̄s

Pr(x̄ | s)M s
q (x̄)

=
∑
x̄−p

∑
xp∈Xu

Pr(x̄−p | s, κ̄−p) Pr(xp | s, κp)M
s
q (x̄)

=
∑
x̄−p

Pr(x̄−p | s, κ̄−p)
∑

xp∈Xu

Pr(xp | s, κp)(~ms(x̄−p) · xp)

=
∑
x̄−p

Pr(x̄−p | s, κ̄−p)

~ms(x̄−p) ·
∑

xp∈Xu

Pr(xp | s, κp) xp


=
∑
x̄−p

Pr(x̄−p | s, κ̄−p) (~ms(x̄−p) · E[xp | s, κp]) .
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Since E[xp | s, κp] = E[xp | s, κ′p] at the relevant states, it follows that

E
[
M s

q (x̄s) | s, (κp, κ̄−p)
]

= E
[
M s

q (x̄s) | s, (κ′p, κ̄−p)
]
,

and so by Lemma (4.2.2), we conclude κp and κ′p are payoff equivalent.

Sufficient Recall

We say a CEFG has sufficient recall if for all players p it has both:

• observation memory: For all u ∈ Up, and all s, s′ ∈ u, obsp(s) = obsp(s
′). That is,

the information sets for p form a forest.

• action memory: For any two policies κp and κ′p for p, and any policy κ̄−p for the other
players, and for any u ∈ Up with Pr(u | (κp, κ̄−p)) > 0 and Pr(u | (κ′p, κ̄−p)) > 0,
and any s ∈ u, we have

Pr(s | u, (κp, κ̄−p)) = Pr(s | u, (κ′p, κ̄−p)).

It is worth emphasizing that both observation memory and action memory are properties
of the game itself, not of players or policies.

Observation memory says that the current information set uniquely specifies the se-
quence of information sets (which we can view as the history of observations) that have
previously occurred; hence player p has no incentive to remember the information sets
visited. Action memory implies that if we know the current information set is u, then
remembering the policy we followed up until we reached u provides no information about
the actual s ∈ u. Thus, the player need not remember the policy followed so far. The name
sufficient action memory might be more appropriate, as the exact exact actions taken at
past information sets are not remembered.

Informally, then, if the game has sufficient recall for player p, then player p should be
able to play optimally by selecting an action purely as a function of the current information
set, as from this all relevant past actions and observations can be derived. We use this dual
characterization of sufficient recall because this intuition seems so clear.

However, to formally prove that implicit behavior reactive policies are “strong enough”
to play sufficient-recall CEFGs optimally, we will introduce sequence recall, an alternative
characterization of sufficient recall that makes establishing certain structural lemmas more
natural. Further, sequence recall can be viewed as a generalization of perfect recall as it
is usually defined for EFGs. Before introducing sequence recall, we need to define the
notion of the “outcome” for a player at a state.
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Generalized outcomes In an EFG, all states in an information set u have the same out
degree d, and each outgoing edge from some s ∈ u is labeled with one of d outcome or
choice labels. Thus, the action set in an EFG is the set of outcome labels. We can view the
choice labels in an EFG as partitioning all of the edges out of u into d different equivalence
classes based on the labels.

In a CEFG, nodes in u may have different out-degrees, and the successor of s is chosen
from a product distribution that is a function of each players’ action, using the functions
f ss′

p . Thus, we will need a more complex partition. We define a partition on the edges out
of u ∈ Up via an equivalence relation ∼p on pairs of edges. For any two edges (s, s′) and
(t, t′) out of u (e.g., s, t ∈ u), we have (s, s′) ∼p (t, t′) if and only if there exists a constant
α ≥ 0 such that for all x ∈ Xu

f ss′

p (x) = αf tt′

p (x). (4.8)

Let Ou be the set of such equivalence classes at u defined by ∼p, so o ∈ Ou is a maximal
set of edges such that any pair of edges in o satisfies Equation (4.8), and

⋃
o∈Ou

o is the set
of all edges out of u. In fact, if we “normalize” the CEFG in the manner suggested by the
next lemma, we can assume that α = 1 in Equation (4.8) without loss of generality.

Lemma 4.2.6. For any CEFG G, there exists an f -equivalent CEFG G′ such that if
(s, s′) ∼p (t, t′) in G, then for all x ∈ Xu, in G′

gss′

p (x) = gtt′

p (x),

where we use g to denote the f -functions in G′.

Proof. It is sufficient to show the transformation on pairs of edges. Suppose G has edges
(s, s′) and (t, t′) out of u that fall into the same partition, but the corresponding f -functions
are not equal. Then there must exist some α such that

f ss′

p (x) = αf tt′

p (x).

WLOG, α <= 1 (if not, divide both sides by α and take α′ = 1/α).

Even if G has an “inactive” random player (that is, f ss′
0 = 1 for all states s and s′ in G),

G′ will have an active one. We write gss′
0 for the constant f -functions of the random player

in G′. The f -functions in G′ are the same as in G (in particular, gtt′
p = f tt′

p ), except we set
gss′

p (x) ← f tt′
p (x), and gss′

0 = αf ss′
0 . Now, in G′ the f -functions on (t, t′) and (s, s′) are

identical (satisfy Equation (4.8) with α = 1), as we have “moved” the constant difference
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α into the randomness on the (s, s′) edge. That is,

Pr
G

(s′ | x̄, s) = f ss′

0 f ss′

1 (x1) · · · f ss′

p (xp) · · ·

= f ss′

0 f ss′

1 (x1) · · ·αf tt′

p (xp) · · ·
= (αf ss′

0 )f ss′

1 (x1) · · · f tt′

p (xp) · · ·
= gss′

0 gss′

1 (x1) · · · gss′

p (xp) · · ·
= Pr

G′
(s′ | x̄, s),

and so transition probabilities in the two games are identical.

We call CEFGs that have been maximally transformed using Lemma (4.2.6) f -
normalized ; such CEFGs satisfy

(s, s′) ∼p (t, t′) ⇒ f ss′

p = f tt′

p . (4.9)

For the remainder of this paper, we assume all CEFGs are f -normalized. Under this
assumption, we write fu,o

p for the f function shared by all edges out of u in outcome
partition o ∈ Ou.

Sequence recall Using this notion of outcome, we can now define the player p sequence
σp(s) associated with a state s. The sequence σp(s) is the list of player p’s information
sets and outcomes on the unique path in T to s. Edges from states s where p 6∈ A(s) do
not appear in the sequence σp(s). We write:

σp(s) = ((u1, o1), (u2, o2), . . . , (uk, ok)).

In general, we can view σp(s) as a refinement of obsp(s): two states s, s′ ∈ u might have
the same observation history, but different sequences. We say a CEFG has sequence recall
for player p, if for all u ∈ Vp and all s, s′ ∈ u, σp(s) = σp(s

′). Note that sequence recall
immediately implies observation memory. In fact, sequence recall and sufficient recall are
equivalent. Before proving this result, we establish that action-selection probabilities in
sequence-recall CEFGs satisfy the following structural property:

Lemma 4.2.7. Suppose G is an f -normalized CEFG where σp(s) = σp(s
′) for some

s, s′ ∈ u, u ∈ Up. For any policy κp for player p,

w(s | κp) = w(s′ | κp),

and when w(s | κp) > 0, for anyx ∈ Xu,

Pr(x | s, κp) = Pr(x | s′, κp).
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u1

u3

u2
u4

u5

o1 o2

j1 j2

(a) An information set forest.

s1 t1

s1’ t1’

u1

s2 t2
u2

o1 o1

(b) The part of the game tree corre-
sponding to u1 and u2.

Figure 4.2: An example CEFG.

Proof. The proof follows immediately from the definition of w(s | κp) and Pr(x | s, κp)
solely in terms of the f -functions on E(s) (Lemma (4.2.3) and Equation (4.5)).

In particular, recall that the sequence weights and action probabilities are defined in
terms of the one-player games G(p, s) and G(p, s′). Since σp(s) = σp(s

′), by the definition
of sequence both games pass through the same information sets in the same order, and
(because the of sequence recall and the f -normalized assumption), the f si,si+1 functions
that determine if the game continues are also identical. Hence, the games G(p, s) and
G(p, s′) are equivalent; since we define Pr(x | s′, κp) and w(s | κ) in terms of these
games, the lemma follows.

Corollary 4.2.8. In an f -normalized CEFG with sequence recall, for any policy κp for
player p, any u ∈ Up, and any s, s′ ∈ u and x ∈ Xu, then w(s | κp) = w(s′ | κp), and
when w(s | κp) > 0, Pr(x | s, κp) = Pr(x | s′, κp).

Corollary (4.2.8) reveals the significant structure of sequence weights in CEFGs with
sequence recall. This structure is basically identical to the structure of the sequence
weights in perfect-recall EFGs, hence justifying our adoption of the term “sequence
weights” for the wp(s | κp) values. The principal results and associated notation are
given below; they are stated using the relationships of the states and information sets of
Figure 4.2, but hold in general. For CEFGs with sequence recall we extend our notation
for sequence weights and write w(u | κp) = w(s | κp) for any s ∈ u.

• Each non-root information set u2 for player p has a unique (information set, out-
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come) “parent”: if u1 is the unique predecessor of u2 in the information set forest,
then any path from u1 to u2 must begin with an edge in some fixed outcome, say
o1. Let upredp(u2) = (u1, o1) identify this parent; if u is a root information set,
we write upredp(u) = ∅. This situation is shown in the information set forest of
Figure (4.2)(a).

• Any state s occurring after some player p information set (that is, with a non-empty
σp(s)) has a unique (information set, outcome) predecessor, namely the last tuple in
σp(s). We extend the upred notation to this case, so for example upred(s2) = (u1, o1)
(see Figure (4.2)(b)). It follows that in fact

w(s2 | κp) = w(upred(s2) | κp) = w(u1, o1 | κp).

• Any state s occurring before any player p information set has w(s | κp) = 1, for
example w(s1 | κp) = 1.

• Consider the (partial) game tree shown in Figure 4.2(b). We have u1 = {s1, t1}, and
u2 = {s2, t2}. State s1 has successor s′1, and t1 has successor t′1. These edges are
in the same outcome partition o1, so f

s1,s′1
p = f

t1,t′1
p . Thus Corollary (4.2.8) implies

that w(s′1 | κp) = w(t′1 | κp). In general, any immediate successor state of u reached
via an edge in a fixed outcome partition o must have the same sequence weight; we
write w(u, o | κp) for this value.

In summary, for any node s ∈ u2 where (u1, o1) = upredp(u2), we write any of the
following equivalently:

wp(σp(s) | κp) = wp(s | κp) = wp(u2 | κp) = wp(u1, o1 | κp). (4.10)

Sequence recall equals sufficient recall We now turn to proving that sequence recall
and sufficient recall are equivalent. We will need the following two Lemmas:

Lemma 4.2.9. Suppose that e1 = (s, s′) and e2 = (t, t′) with s, t ∈ u are in different
outcomes for player p, that is, (s, s′) 6∼p (t, t′). Then, there exist x1, x2 ∈ Xu such that

f ss′
p (x1)

f tt′
p (x1)

6=
f ss′

p (x2)

f tt′
p (x2)

.

Proof. If e1 and e2 are in different outcomes, then for any constants α > 0, there exists an
x ∈ Xu such that

f ss′

p (x) 6= αf tt′

p (x).
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Fix α = 1, and let x1 ∈ Xu such that f ss′
p (x1) 6= αf tt′

p (x1). Now, use β = f ss′
p (x1)/f

tt′
p (x1) 6=

1 as the constant, and let x2 such that

f ss′

p (x2) 6= βf tt′

p (x2). (4.11)

Dividing both sides of Equation (4.11) by f tt′
p (x2) and using the definition of β yields the

Lemma.

The next lemma shows that the ratio Pr(s)/ Pr(s′) for s, s′ ∈ u does not depend on
player p’s policy.

Lemma 4.2.10. A CEFG has action memory for player p if and only if for all u ∈ Up,
any two policies κp and κ′p for p, and any joint policy κ̄−p for the other players, for any
s, s′ ∈ u with s′ ∈ REL(κp, κ̄−p),

Pr(s | (κp, κ̄−p))

Pr(s′ | (κp, κ̄−p))
=

Pr(s | (κ′p, κ̄−p))

Pr(s′ | (κ′p, κ̄−p))
. (4.12)

Proof. Let ai = Pr(i | (κp, κ̄−p)) for i ∈ u, and let bi = Pr(i | (κ′p, κ̄−p)) for i ∈ u.
Observe that Pr(u | (κp, κ̄−p)) =

∑
i ai, and similarly for bi.

Fix s, s′ ∈ u with s′ ∈ REL(κp, κ̄−p). If bs′ = Pr(s′ | (κ′p, κ̄−p)) = 0, then Equa-
tion (4.12) fails to hold because s′ ∈ REL(κp, κ̄−p) implies Pr(s′ | (κp, κ̄−p) > 0; it is also
easy to show that action memory does not hold in this case, and so the lemma holds. We
now consider the case where bs′ > 0. Action memory is exactly the condition that

as∑
i ai

=
bs∑
i bi

(4.13)

for all s ∈ u. Inverting both sides of Equation (4.13) for s′ we have (
∑

i ai)/as′ =
(
∑

i bi)/bs′ . Multiplying the left-hand-side of this equality with the left-hand-side Equa-
tion (4.13), and similarly the right with the right, gives

as

as′
=

bs

bs′
,

which is exactly the claimed equality.

Now, we can prove the main theorem:

Theorem 4.2.11. A CEFG has sufficient recall for player p if an only if it has sequence
recall for player p.
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Proof. For the first direction, assume the game has sequence recall. Then, for any s, s′ ∈ u
with s′ ∈ REL(κp, κ̄−p), and any policy κp for player p, and any joint history policy κ̄−p

for the other players, we have

Pr(s | (κp, κ̄−p))

Pr(s′ | (κp, κ̄−p))
=

wp(s | κp)wp(s | κ̄−p)

wp(s′ | κp)wp(s′ | κ̄−p))
=

wp(s | κ̄−p)

wp(s′ | κ̄−p))

since wp(s | κp) = wp(s
′ | κp) by Corollary (4.2.8). Since the right hand side of the equal-

ity does not depend on κp, we conclude Equation (4.12) holds, and so by Lemma (4.2.10),
we have action memory. Observation memory is immediate from sequence recall.

For the other direction, assume the game has sufficient recall for player p. Assume
for contradiction there exists an information set u2 where sequence recall does not hold:
there exist s2, t2 ∈ u2 such that σp(s2) 6= σp(t2). Both s2 and t2 share a predecessor
information set u1 (observation recall holds, and the observation history cannot be empty
or their sequences would agree). Let s1 be the state in u1 on the path to s2, and let s′1 be
s1’s successor on the path (possibly s′1 = s2), so (s1, s

′
1) is an edge. Similarly identify an

edge (t1, t
′
1) out of u1 on the path to t2. Without loss of generality, assume σp(s1) = σp(t1)

(if this doesn’t hold immediately, let s2 ← s1 and t2 ← t1, and continue until this process
as needed). This situation is shown in Figure (4.2b).

Since σp(s1) = σp(t1), but σp(s2) 6= σp(t2), then these two sequences must differ on
the last outcome (the outcome from u1), that is, (s, s′) 6∼p (t, t′). By Lemma (4.2.9) there
exist an x1, x2 ∈ Xu such that

f
s1s′1
p (x1)

f
t1t′1
p (x1)

6= f
s1s′1
p (x2)

f
t1t′1
p (x2)

. (4.14)

Let π1 be any pure reactive policy with wp(s1 | π1) > 0 and π(u1) = x1, and let π2 be
the same as π1, except that π2(u1) = x2. Then, fix any κ̄−p with t2 ∈ REL(κ̄−p), and let
B = w(s2 | κ̄−p)/w(t2 | κ̄−p), so

Pr(s2 | (π1, κ̄−p))

Pr(t2 | (π1, κ̄−p))
=

wp(s2 | π1)w(s2 | κ̄−p)

wp(t2 | π1)w(t2 | κ̄−p)
= B

wp(s1 | π1)f
s1s′1
p (x1)

wp(t1 | π1)f
t1t′1
p (x1)

= B
f

s1s′1
p (x1)

f
t1t′1
p (x1)

since σp(s1) = σp(t1) and so by Lemma (4.2.7) wp(s1 | π) = wp(t1 | π). By an analogous
argument,

Pr(s2 | (π2, κ̄−p))

Pr(t2 | (π2, κ̄−p))
= B

f
s1s′1
p (x2)

f
t1t′1
p (x2)

, (4.15)
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and so Equation (4.14) implies.

Pr(s2 | (π1, κ̄−p))

Pr(t2 | (π1, κ̄−p))
6= Pr(s2 | (π2, κ̄−p))

Pr(t2 | (π2, κ̄−p)).

Thus, by Lemma (4.2.10) action memory does not hold at u2, contradicting the assumption
that the game has sufficient recall for p, and so we conclude sequence recall holds for all
player p information sets.

Based on Theorem (4.2.11), we can apply the notation from Equation (4.10) to suffi-
cient recall games.

A payoff equivalence theorem Now we can give this sections principal result: implicit
behavior reactive policies are payoff equivalent to general policies in sufficient-recall CE-
FGs. This is critical, as our optimization technique will let us find the best implicit behav-
ior reactive policy.

Theorem 4.2.12. For sufficient-recall CEFGs, for any policy κp for player p, there exists
a payoff equivalent implicit behavior reactive policy.

Proof. Let κp be an arbitrary policy for p. A consequence of Lemma (4.2.7) is that for all
s, s′ ∈ u, when s, s′ ∈ REL(κp),

E[xp | s, κp] = E[xp | s′, κp].

Call this value xu for each u where it is defined (e.g., where ∃s ∈ u such that s ∈ REL(κ)),
and pick xu arbitrarily in Xu for the remaining u ∈ Up. Then, we define an implicit
behavior policy βκ by βκ(u) = xu. These two policies must play the same action in
expectation at any state s where w(s | κp) > 0 and w(s | β) > 0. Thus, by Lemma (4.2.5)
they are payoff equivalent.

Theorem (4.2.12) shows that when playing sufficient recall CEFGs, it suffices to con-
sider only implicit behavior reactive policies. In the next section we show that for two-
player zero-sum sufficient recall CEFGs, the set of IBRPs for each player can be repre-
sented as a convex set W in such a way that the value of the game is multi-linear in W .
Thus, we can solve zero-sum sufficient-recall CEFGs using linear programming on the
convex game defined by the setsW and corresponding multi-linear objective function.
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4.3 Solving a CEFG by Transformation to a Convex Game

We consider a zero-sum CEFG with two players, x and y, and possibly a random player
0. To differentiate the two players, we use u and Xu to denote player x’s information
and action sets, and similarly v and Yv for y. In the two-player, zero-sum case the costs
at a node s where both players play is specified via a payoff matrix M s of dimension
nu × nv; the payoff from x to y is then is then xT M sy when x plays x and y plays y.
Since X♦p = {1}, we use this same notation to indicate payoffs where only one player
selects an action; in this case the payoff is the dot product of a cost vector with the action
of the active player. The random player, if present, does not affect payoffs directly, and so
this notation still applies in the presence of a random player. In fact, the random player
only affects the game through her sequence weights, which we write as w0(s), because the
random player has no policy.

An IBRP for player x can be viewed as a vector from the convex set

X̃ =
⊗
u∈Ux

Xu.

The set X̃ is a Cartesian product of convex sets, and so it is also a convex set. Define
Ỹ analogously for y, and let βx ∈ X̃ and βy ∈ Ỹ be two IBRPs. Let u = φx(s) and
v = φy(s), and define

V(s) = Pr(s | (βx, βy)) E[M s(x̄s) | s, (βx, βy)]

= w0(s)w(s | βx) w(s | βy)
[
βx(u)T M s βy(v)

]
(4.16)

using Lemma (4.2.4). The expected payoff from x to y is

V =
∑

s∈REL(βx,βy)

V(s)

by Lemma (4.2.2). Unfortunately, V(s) is not bilinear in βx and βy, as w(s | βx) is a
product of f tt′(βx(φx(s)) terms along the path to s, and each of these terms is a linear
function of βx. Further, each term contains both the w(s | βx) term and the βx(φx(s)), so
even if w(s | βx) wasn’t nonlinear, βx(φx(s))w(s | βx) would be.

We now develop an alternative convex representation for IBRPs in which V(s) is bilin-
ear. Our use of sequence weights as variables is analogous to the technique in Koller et al.
[1994], but our approach must also represent the implicit behavior taken at each Xu, as
this is not defined by the sequence weights alone. More precisely, we construct a setWx

such that there is a (nonlinear) bijection between Wx and X̃ , so each vector in ωx ∈ Wx

has a natural interpretation as an IBRP. Further, the value V of the game is linear in ωx for
a fixed policy for y.
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The sequence form of CEFGs We describe the policy representation setWx for player
x, it is analogous for y. Our construction of the setWx relies on the sets

Xc
u = {(αx, α) | x ∈ Xu, α ≥ 0} ⊆ Rnu+1

for each u ∈ φx. The set Xc
u is the cone extension of Xu, and it is also convex [see Boyd

and Vandenberghe, 2004, Sec. 2.1.5]; in fact, if Xu is a polyhedron (defined by a finite
number of linear equalities and inequalities), then so is Xc

u; see Appendix (B). We will
treat elements of Xc

u as tuples, writing (xc
u, α) ∈ Xc

u where xc
u ∈ Rnu and α ∈ R.

Define
X̃c =

⊗
u∈Ux

Xc
u.

We will haveWx ⊆ X̃c. We work with a vector ωx ∈ X̃c by writing ωx = 〈(xc
u, wu) | u ∈ Ux〉,

where the xc
u ∈ Rnu and wu ∈ R variables are defined for all u ∈ Ux by ωx.

The setWx is defined by the following constraints:

(xc
u, wu) ∈ Xc

u (4.17)
wu = 1 ∀u ∈ Ux with upredp(u) = ∅ (4.18)

wu = fu′,o′

x · xc
u′ ∀u ∈ Ux with upredp(u) = (u′, o′). (4.19)

We write fu′,o′
x (xc

u′) as fu′,o′
x ·xc

u′ to emphasize the linearity of the f functions. The setWx

is convex as X̃c is convex and the constraints are linear.

First, we show Wx is in 1-1 correspondence with a set of IBRP policies (represented
as elements in X̃). We do not consider the full set X̃ for technical reasons: A behavior
policy β ∈ X̃ can be “over-specified,” in that β defines an action β(u) ∈ Xu even when
w(u | β) = 0 (and hence u cannot possibly be reached when playing β). For each u ∈ Ux,
pick an arbitrary action x́u ∈ Xu. We define the function J : X̃ → X̃ which we use to
specify a canonical representation of behavior policies. Define

J́(β)(u) =

{
β(u) when w(u | β) > 0

x́u otherwise

so that J́(X̃) = {J́(β) | β ∈ X̃}. For any β ∈ X̃ , the policies β and J́(β) play the same
action at all information states possibly reached, and so must be payoff equivalent. Hence,
optimizing over J́(X̃) is equivalent to optimizing over X̃ .

We now show a bijection g between Wx and J́(X̃), defined by g(ωx) = βωx where
βωx ∈ X̃ is the IBRP defined by

βωx(u) =

{
(1/wu)x

c
u when wu > 0

x́u otherwise.
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Sense (xc
u, wu) ∈ Xc

u, it follows from the definition of cone extension that (1/wu)x
c
u ∈ Xu,

and so β is a valid IBRP and so g is well-defined. Next, we prove g is a bijection:

Theorem 4.3.1. The function g is a bijection betweenWx and J́(X̃).

Proof. We need to show g is 1-1 and onto.

To show g is onto J́(X̃), consider an arbitrary β ∈ J́(X̃). Define a ωx by wu = w(u |
β) and xc

u = w(u | β)β(u). It follows from the definition of g and J́ that g(ωx) = β. It
remains to ωx ∈ Wx. First, it is straightforward to verify that Constraints (4.17) and (4.18)
are satisfied. For Constraint (4.19), let (u′, o′) = upredp(u), and observe that

wu = w(u | β) = w(u′, o′ | β) = w(u′ | β)fu′,o′(β(u)) = fu′,o′·w(u′ | β)β(u) = fu′,o′·xc
u′ .

For 1-1, suppose ωx = 〈(xc
u, wu)〉 and ω′

x = 〈(yc
u, vu)〉 inWx, such that ωx 6= ω′

x, but
g(ωx) = g(ω′

x). Let β = g(ωx) and β′ = g(ω′
x). WLOG, let u be an information set where

(xc
u, wu) 6= (yc

u, vu), but for all earlier information sets ωx and ω′
x agree. Then, wu and vu

must be equal by Constraint (4.19), and so xc
u and yc

u must differ. However, this implies β
and β′ must play differently at u, a contradiction.

When we refer to elements ofWx as policies, we mean the corresponding IBRP given
by the bijection g. Now, we show that payoffs are bilinear in theWx representation.

Theorem 4.3.2. In a two-player, zero-sum, sufficient recall CEFGs, represent x’s IBRPs
as Wx, and player y’s IBRPs as Wy. Then, for any ωx ∈ Wx and ωy ∈ Wy, the payoff
V(g(ωx), g(ωy)) is a bilinear function of ωx and ωy.

Proof. Equation (4.16) shows the payoff is a sum over states that are reached with positive
probability under ωx and ωy. It is sufficient to show that the payoff term for each state is
bilinear.

Let ωx = 〈xc
u, wu〉 and ωy = 〈yc

u, qu〉, and let βx and βy be the corresponding IBRPs.
The exact representation depends on which players are active. First, consider the case
where both x and y are active at s, say u = φx(s) and v = φy(s). Then, we have

V(s) = w0(s) w(s | βx) w(s | βy) βx(u)T M s
x βy(v)

= w0(s) (w(u | βx) βx(u))T M s
x w(v | βy) βy(v)

= w0(s) xc
uM

s
x yc

v,
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and so the payoff is bi-linear. The case where only one player, say x, is active at s is
similar. Let u = φx(s), and let (v, o) = upredy(s). For this case, it is useful to define
wv,o = f v,o

y · yc
u. Note that hen wv,o = w(v, o | βy). Then, we have,

V(s) = w0(s) w(s | βx) w(s | βy) βx(u)T M s
x βy(♦p)

= w0(s) w(u | βx) w(v, o | βy) βx(u)T M s
x 1

= w0(s) xc
u M s

x wv,o,

and again the payoff is bi-linear. The case where only y is active is analogous, and the case
where neither player is active (e.g., leaf nodes) is a simple extension.

4.4 Applications of CEFGs

In this section, we give high-level descriptions of how a variety of problems can be mod-
eled as CEFGs, and note that modeling these problems as standard stochastic games or
EFGs would require at least an exponential blow-up in representation size.

4.4.1 Stochastic Games and POSGs

We have demonstrated that a CEFG can be represented as a bilinear-payoff convex game,
and so we can use such games as the stage games of a convex stochastic game. In Sec-
tion (3.5) we discussed using EFGs in this manner. This approach is quite powerful, but
the time to compute a minimax equilibria will still in general be exponential in the number
of actions taken between periods of full observability.

In planning applications it is quite common that each player fully observes their own
position, but only has partial observability of the adversary. Further, observations of the
adversary may occur relatively rarely compared with the selection of primitive actions.
In this case, it may be possible to represent the sequence of actions selected between
observations as a single choice from a convex action set, for example the selection of a
(partial) policy in an MDP. To represent such a scenario in a standard EFG, each action
choice in the MDP would be an action in the EFG as well, requiring us to roll out the MDP
until an observation occurs. This EFG would likely be prohibitively large. Using CEFGs,
however, we can use a single node to model the selection of a partial policy that determines
actions up to the next point where an observation might occur by representing the set of
such policies as a convex set. Thus, the depth of the CEFG embedded in the convex game
only depends on the number of potential observations involving the adversary between
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periods of full observability, rather than the number of primitive actions (which could be
much larger), producing an exponentially smaller representation.

If an observation can happen at any time, this approach will not work: the observation
model needs to limit observations to occur only at certain times (say, every 15 seconds) or
at certain designated states. This restricted observation model could be the true observation
model, or it could be an approximate model designed to yield a tractable planning problem.
Using an approximate observation model for planning does not limit what observations are
actually used, it only limits what observations for which we can plan. That is, during the
actual execution of a policy, if we get an observation while in the middle of executing
some partial policy we can always re-plan from that point based on the new observation.
However, this approach can make no guarantees about the quality of solution executed.

4.4.2 Extending Cost-paired MDP Games with Observations

In Section 3.4, we introduced the notion of a game where one player selects a policy
in an MDP, and the other player selects a cost vector for that MDP. This allowed the
modeling of an interesting sensor-placement problem. We also showed how the model
can be generalized to the case where both players select policies in an MDP, and the
total cost of a policy is expressed via a bi-linear function of the two players state-action
visitation frequencies. Representing this interesting convex game as an EFG, however,
requires using the standard transformation to the normal form representation, which entails
an exponential blowup in the size of the representation. This problem can, however, be
modeled as a single-node CEFG by simply embedding the convex game representation.
This is one demonstration of the representational power of CEFGs.

Further, the CEFG representation makes it possible to represent interesting variations
on this problem that cannot be represented as cost-paired MDP games. In particular, we
can model some observations of the other player’s actions using a deeper game tree. The
details of the observation formulation are important: generally, the size of the CEFG will
be exponential in the number of states in the underlying MDP where observations can be
made; however, the CEFG formulation lets us solve approximations where only the most
important observations are considered. We can trade off computation time and approxi-
mation accuracy by considering more or fewer observation points.

For example, suppose the robot can detect the adversary’s sensors in the observation
avoidance game. Modeling the possibility of making these observations at all states gives
rise to the full (intractable) POSG model (see Section 3.4.2). However, suppose we only
designate a few states where observations are considered—perhaps those states that corre-
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spond to the robot peeking around a corner where a sensor is particularly likely. Then we
can use the CEFG representation to construct a game tree that is exponential in the size of
this small set of “observation states,” but with only polynomial dependence on the size of
the full state space.

This approach can also be applied to approximately solving a generalization of the
adversarial Canadian traveler’s problem.

The adversarial Canadian traveler’s problem The Canadian traveler’s problem (CTP)
is the problem of computing a shortest path on a graph that is known, except that certain
edges may be impassable; whether an edge is passable or not is only revealed when the
agent reaches an adjacent node. There has been work on both the stochastic version, where
there is a known probability distribution that determines whether an edge is passable or
not, and the adversarial version, where an adversary picks which edges are impassable
(with some restrictions). We generalize the adversarial version by allowing the adversary
to pick an assignment of costs to the edges; an extremely high cost can be used to model an
impassable edge.13 The stochastic version of the problem can be formulated as a POMDP,
while the adversarial version is a POSG; even the stochastic version is #P-hard [Bar-Noy
and Schieber, 1991, Papadimitriou and Yannakakis, 1991].

This problem arises naturally in mobile robot path planning, where the uncertainty
over edges in the graph might corresponds to uncertainty about whether a door will be
open or closed or a bridge will be up or down. The robot-helicopter coordination prob-
lem of Likhachev et al. [2005] can be formulated as a CTP; the belief space is finite, and
Likhachev et al. solve large instances of this problem by ignoring the POMDP struc-
ture and instead using a clever application of heuristic search to the mostly-deterministic
belief-space MDP. The resulting algorithm is called MCP. Ferguson et al. [2004] give the
PAO∗ algorithm for “deterministic decision problems with hidden state,” which can eas-
ily be transformed to instances of the Canadian traveler’s problem on a particular graph.
Both Likhachev et al. [2005] and Ferguson et al. [2004] construct a compressed repre-
sentation comprised only of the states adjacent to edges which may be impassable (and
hence observations may occur); in PAO∗ this compressed representation is always fully
constructed, while MCP only constructs the portion relevant to the search from a fixed
start state to a fixed goal. Blei and Kaelbling [1999] also consider the CTP and discuss its
representation as an MDP; they call the problem the “bridge problem.” Lita et al. [2001]
consider a multi-agent version of the CTP.

13While this approach works well in the offline case, for the repeated game (online learning) case bounds
typically depend on the maximum edge cost, and so this approach may force online learning algorithms to
have poor bounds.
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Our adversarial-cost generalization of this problem is formulated as follows: player
one needs to get from a fixed start state to a known goal state in a graph. Player two
selects a cost vector (assigning a fixed cost to each edge) from some finite set.14 This is
just an MDP with adversary-controlled costs under the assumption that player one doesn’t
observe the costs she incurs. In some domains this may be reasonable, but in others it
might not be—for example, if the opponent-chosen costs correspond to the placement of
obstacles or active interference. For these domains, we can adopt the CTP observation
model, namely that player one can observe the cost of an edge from an adjacent state. If
we allow plans that take all of these possible observations into account, we have the full
CTP. But, suppose that there are only a few edges that can be made arbitrarily expensive:
in a navigation example these might correspond to doors that can be shut, bridges that
can be destroyed, or narrow passes that can be blocked. We can efficiently approximate
this problem by optimizing over the set of policies that only take into account observed
edge costs from states adjacent to potentially expensive edges. This class of plans still has
great power to reason about the fact that the adversary has some control over the costs of
all edges: we simply restrict ourselves from selecting policies that are contingent upon
observing these costs. As with the application of CEFGs to convex stochastic games, if
we use such a limited observation model we can re-plan upon receiving an observation the
original plan did not take into account.

4.4.3 Perturbed Games and Games with Outcome Uncertainty

Selten [1975] originally introduced perturbed EFGs in his investigation of models of se-
quential rationality. He describes how a perturbed EFG is formed from a standard EFG
by introducing a model of “trembles” at each information set: each time a player selects
an action, there is a small probability that a different action is taken instead. It is assumed
that these probabilities are common knowledge. For a modern introduction to different
equilibria refinements, consult Perea [2002].

We show that the class of perturbed extensive-form games can be compactly repre-
sented as CEFGs, while their EFG representations are exponentially larger. We begin with
the model of Selten, but then extend his model to general outcome uncertainty. This lets us
generalize extensive-form games in much the same way that Markov decision processes
generalize deterministic path planning. The analogy is not perfect, because perturbed
EFGs are still representable as EFGs (but at the cost of an exponential blowup in size),
while a general MDP cannot be modeled by any deterministic planning problem. The ad-
vantage of using CEFGs to represent perturbed EFGs is that we can avoid the exponential

14We can relax this if we further restrict the kinds of observations player one makes.
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Figure 4.3: Representing a perturbed EFG as an EFG and as a CEFG.

blowup in the size of the representation.

Fix a standard EFG, and let A(u) be the set of actions at an information set u for
player one. In the unperturbed EFG, the player chooses some action a ∈ A(u), and the
dynamics of the game ensure that this choice is actually “executed” in the world (whatever
that means for the particular game). A perturbed EFG introduces a level of indirection
between a player’s selection of an action and the execution of that action in the world.
A perturbation function tu : A(u) → ∆(A(u)) maps the choice a made by the player
to a distribution tu(a) over A(u) from which the action that actually occurs is taken. We
write tu(a)(a′) for the probability of action a′ actually being executed given that the player
selected action a. For example, in constructing trembling-hand equilibria, it is common to
consider perturbation functions

tu,ε(a)(a′) =

{
1− ε(|Au| − 1) if a′ = a

ε otherwise

where |Au|ε is some small probability of a getting a uniform random action rather than
the chosen action [Selten, 1975]. It is standard to assume that the player at u observes
which a′ actually occurred; other players in the game only observe this if they observed
the player’s action at u in the unperturbed game.

A perturbed EFG is in fact still an extensive form game. The player selects an action
a ∈ A(u) as in the original game, but after this choice a new random node is inserted. The
game transitions to this random node, which has successors in 1-1 correspondence with
A(u). The action/successor a′ at this node is then chosen according to the distribution
tu(a)(a′), and the game continues as if the player had selected a′ at u in the original game.
While we can represent the perturbed game in this way, we have in general doubled the
number of nodes on any root to leaf path; of course, doubling the depth of the tree in gen-
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eral causes an exponential blowup in its size, and hence the size of the EFG representation.
Since algorithms for EFGs are polynomial in this size, we have likely just taken a tractable
problem and made it intractable.

This transformation is shown in parts (a) and (b) of Figure (4.3). Part (a) shows the
original node s1 in the EFG game tree where we will introduce perturbations; there are two
actions from node s1, a and b. If action a is taken, the game continues to the subgame A,
while if b is taken the game continues to subgame B. Note that A and B can be arbitrarily
large trees. For simplicity we do not consider information sets. Part (b) of the figure
then shows the introduction of random nodes r1 and r2 that implement the ε perturbations.
The game tree of (b) thus remembers both which action the player wanted to happen as
well as which action actually happened: hence there are two copies of the subtrees A and
B, doubling the size of the EFG. Applying this transformation at every information set
leads to an exponential increase in representation size. Part (c) shows the efficient CEFG
representation, which we discuss below.

We now show that a perturbed EFG has a representation as a CEFG of size polynomial
in the size of the original game and the size of the representation of the functions tu.
Before introducing this representation, we first generalize our notion of perturbed EFGs to
include a complete model of outcome uncertainty.

We generalize Selten’s model by decoupling the set of actions available to the player
from the set of “actions” (perhaps better called outcomes) that may actually be executed
in the world. Formally, we no longer assume tu maps from the original set of actions to
distributions on this same set. Instead, let Ou represent the outcomes that may occur in
the world, and define some new set A′(u) = {p1, . . . , pk} of probabilistic (meta-)actions
for the player. Each action pi specifies a distribution over possible outcomes, that is,
pi ∈ ∆(Ou). Hence the analogy to MDPs, where an action at a state is defined by the
distribution over successor states it induces. The perturbed game is played as follows:
when p ∈ A′(u) is selected, the actual outcome that occurs is sampled from Ou according
to the distribution p. That is, in this model we have tu : A′(u) → ∆(Ou). But since we
defined each p ∈ A′(u) as a distribution over Ou, the perturbation function for a game
defined in this way is simply the identity function, tu(p) = p for p ∈ A′(u).

We now show how to transform an EFG with a perturbation model into a compact
CEFG. To represent an unperturbed EFG as a CEFG, we kept the same game tree, and
replace the finite action set A(u) with the convex action set ∆(A(u)) at each information
set u. To represent the perturbed EFG we again keep the same tree structure, but the
set of available actions at u will be the convex set Xu ⊆ ∆(Ou) corresponding to those
distributions that are realizable given the choices in A′(u). We treat each p ∈ A′(u) as a
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vector in ∆(Ou) ⊆ Rnu , and so the set of achievable distributions is

Xu = H(A′(u)),

the convex hull of the set of explicitly allowed distributions. An example of this represen-
tation is shown in part (c) of Figure (4.3). We have A′(u) = {a′, b′}, where a′ gives the
distribution (1 − ε, ε) on the outcomes (A, B), while b′ gives the distribution (ε, 1 − ε).
In the CEFG representation, there is no need to “remember” in the game tree whether
A occurred because the player chose it explicitly, or because randomness picked it. In
fact, this distinction is not even well-defined in the representation: how would the action
c′ = (0.5, 0.5) be interpreted?

Of course, in general there is no need to require that Xu is represented as the convex
hull of some finite set of actions/distributions A′(u). We can have Xu ⊆ ∆(Ou) be any
complex structured convex set, in particular, Xu can have exponentially many corners
while still having a concise representation. Even if the only representation we have for
Xu is the explicit one, Xu = H(A′(u)), the CEFG still gives an exponentially smaller
representation than an EFG. In a CEFG, increasing the size of the set A′(u) does not
change the game tree, and so the corresponding increase in representation size is linear in
the size of the new entries added to A′(u). In an EFG, however, increasing the number of
actions A(u) increases the branching factor of the tree, producing an exponential blowup
in size.15

The fact that CEFGs concisely represent perturbed EFGs immediately gives a simple
polynomial-time algorithm for finding approximate trembling-hand equilibria (also called
perfect equilibria) for extensive-form games: namely, one simply solves the CEFG version
of the original EFG perturbed by tu,ε. Solving for perfect equilibria (or some other form
of sequential equilibria) can be very important in practice, but only very recently have
algorithms for finding such equilibria been investigated [Miltersen and Sorensen, 2006].

We have modeled outcome uncertainty efficiently using CEFGs, but have not fully
tapped the class’s representational power. In particular, we have not used the ability to
model both players simultaneously playing at a single node, and we have not used the
ability to model different numbers of outcomes at different states in the same information
set. Both of these abilities can potentially enable exponentially smaller representations. In
the next section we discuss a multi-stage path planning problem where the ability to have
both agents selecting actions simultaneously is critical.

15The blowup is exponential if we increase |A(u)| at all u; if we increase |A(u)| at only a single u, the
size of the game tree increases multiplicatively.
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Figure 4.4: The CEFG game tree for a two-stage path planning game.

4.4.4 Uncertain Multi-stage Path Planning

We described a two-stage path planning problem on a graph with with adversarial and
stochastic uncertainty about costs and goals. There are two players: the planner, who
starts at some designated node in the graph, and the adversary. In the first stage, the
planner chooses an initial policy to follow (taking her to some intermediate node); the
adversary has some control over costs on the edges in the graph, in the manner of an
MDP with adversary-controlled costs. In the second stage, the actual destination node is
revealed, and the planning player then selects a policy to go from her intermediate state to
the revealed goal; the adversary again has some control over costs.

A portion of a CEFG game tree for this model is given in Figure (4.4). Information
sets are not shown for simplicity. The initial node in the game tree corresponds to policy
selection and cost selection for the first round. There is one node in the 2nd level for each
possible intermediate state. Only the adversary is active at the 2nd level, where he selects
the goal state. The final level of the game tree has one node for each (intermediate state,
goal state) pair; the figure only shows the states corresponding to intermediate state 2. At
this level both players are again active: the planner chooses a policy to follow from the
intermediate state to the goal state, and the adversary chooses a cost vector.
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Using this CEFG representation, we can model the following types of uncertainty:

• Outcome uncertainty: We view the planner as operating in an MDP rather than
a deterministic path planning problem. Thus, the intermediate node is not deter-
ministically chosen, but rather will occur according to some distribution induced
by the policy of the planner. The MDP here is the appropriate path-planning MDP
augmented with a “stop-and-wait” action (always available) that indicates that the
planner wants to stop at the current state and wait for the next stage.16 By intro-
ducing time as a state variable in the MDP we can force the planner to use the stop
action by a certain deadline, or model costs that increase as a function of time so
that an optimal policy will always execute the stop action after some finite amount
of time.

• Stochastic and adversarial control of costs: In each round, some combination of
randomness and adversarial activity determines the cost associated with each edge
(state, action) pair in the MDP). For example, it is possible that first the adversary
selects a probability distribution from some convex set of probability distributions
on costs, and then nature picks the realized costs from that distribution.

• Stochastic and adversarial control of the goal state: After the first round, the
actual destination may be selected by the adversary, or, as with the costs, some
combination of randomness and adversarial choice may select the actual destination.

• Partial observability: Information sets can be used to control what the adversary
knows. For example, the adversary may be given complete knowledge of the plan-
ner’s intermediate position (each 2nd level node in the game tree is in its own in-
formation set), partial knowledge (the 2nd level nodes are partitioned into some
number of information sets), or no knowledge whatsoever (all 2nd level states are
in the same information set). Similarly, we can model the planner having only in-
complete knowledge of the goal state: she would then have to guess the goal state,
and upon arriving at that state execute a “stop-here-because-I-think-it-is-the-goal”
action; the reward received would depend on whether or not the state chosen was
actually the goal.

16We model this by adding a terminal (absorbing) goal state to the MDP that can only be reached by
taking the stop-and-wait action. Any proper policy for this MDP induces a probability distribution on the
state where the stop-and-wait action is taken; since the stop-and-wait action must be taken exactly once, this
distribution can directly be read from the (state,action)-visitation frequency vector for the policy. Thus, we
can use this distribution for the transition probabilities in the overall CEFG.
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Generalizations to multiple rounds where information about the final destination is re-
vealed incrementally (say, by refining some subset in which the destination actually lies)
can easily be constructed. The initial node could also be chosen by the adversary or ran-
domly. The adversary might or might not have full knowledge of the planner’s initial
location. Even if the destination is fixed in advance, a multi-stage version of this problem
could be interesting in that it allows the planner to decide to stop and wait, hoping for
a more favorable cost function on the next round. For example, if the planner reaches a
door that is closed (modeled as a very high cost), she might decide to stop-and-wait until
the next round to see if the door opens, rather than taking a long way around. It is also
possible that the adversary’s choice at the 2nd level of the game tree determines not only
the goal state, but also the dynamics of the MDP for the 3rd level; this can be modeled
as long as the planning player observes which dynamics model is active, as the dynamics
model determines the action set Xu available to her.

There is a rich tradition in operations research of using both stochastic and adversar-
ial models to handle uncertainty. Purely stochastic models of uncertainty in two-stage
and multi-stage problems have received the most attention [Ravi and Sinha, 2004, Gupta
et al., 2004, Immorlica et al., 2004], but purely adversarial models have also been consid-
ered [Dhamdhere et al., 2005, Bailey et al., 2006]. The CEFG framework can bridge the
gap between purely adversarial and purely stochastic formulations, as this example path-
planning domain demonstrates. However, the problems considered in operations research
and stochastic optimization are typically NP-hard, and hence cannot have polynomial rep-
resentations as CEFGs. Extending the CEFG framework to include mixed-integer pro-
gramming models is a exciting avenue for future work. It should also possible to extended
our framework to NP-hard problems by modifying the algorithms of the next chapter to
use approximation algorithms for the best response oracles.

4.5 Conclusions

In this chapter we introduced convex extensive-form games, showed how to transform
CEFGs into convex games, and presented several examples demonstrating the modeling
power offered by the CEFG class. Chapter 3 discussed several other interesting problems
that can be modeled as convex games. While the results of that chapter showed that convex
games can be solved in polynomial time, in the next chapter we turn our attention to
constructing algorithms that are much faster in practice than the direct linear programming
approach.
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Chapter 5

Fast Algorithms for Convex Games

In this chapter we introduce a family of practical algorithms for solving convex games,
with a particular focus on the application of the algorithms to MDPs with adversarial costs
and extensive-form games. For a review of convex games, refer back to Chapter 3. We be-
gin with a discussion of best response algorithms for particular convex games, and present
the well-known fictitious play algorithm that can exploit such oracles. Section 5.2 intro-
duces a special-purpose algorithm for the problem of planning in a MDP where an adver-
sary selects the cost vector from a small finite set of possibilities. Section 5.3 then presents
our general convex game algorithm, beginning with an intuitively straightforward version
and then proceeding to our full algorithm which addresses some deficiencies of the sim-
plified version. Finally, in Section 5.5.2 we present experiments on both adversarial-cost
MDPs and on EFG representations of Rhode Island Hold’em poker. Our results demon-
strate dramatic improvements over commercial linear programming software.

5.1 Best Responses and Fictitious Play

A central feature of the algorithms we present in this chapter is that they leverage fast
best-response oracles. Consider the convex game G = (X, Y, M), and suppose one player
(say, player y) fixes a strategy y ∈ Y . Then, letting c = My (think of c as a cost vector),
the best-response problem is to compute:

min
x∈X

c · x. (5.1)

If X is a polyhedron, then this is just a standard linear program. But, in many cases,
much faster algorithms are available for solving Equation (5.1). In the case of cost-paired
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MDP games, solving Equation (5.1) is exactly the problem of planning in an MDP with
known costs; this problem can be solved efficiently by any number of algorithms, for
example value iteration or even A∗ in the special (but practically very useful) case of
positive costs and deterministic transitions. For optimal oblivious routing, Equation (5.1)
corresponds to solving a multi-commodity flow problem for one of the players. And in the
case of extensive-form games, finding a best-response policy is accomplished efficiently
via a special dynamic program, as discussed in Section 3.2. In all of these cases, the
special-purpose algorithms are likely to perform much better than applying generic linear
programming techniques.

Recall that X ⊆ Rm and Y ⊆ Rn. For the remainder of this chapter, we assume we
have efficient algorithms (best-response oracles) BRx : Rm → X and BRy : Rn → Y
for solving Equation (5.1) We view these oracles as functions from cost vectors (rather
than opponent strategies) to strategies, so x = BRx(My) is a best response for x to the
strategy y, and similarly y = BRy(x

T M) gives a best response for y to x. The matrix-
vector multiplications with M are often a dominating computational cost, and so explicitly
tracking such multiplications is important; however, to avoid clutter in our pseudo-code we
hide the multiplications with M , for example writing x = BRx(y). Further, in the cases
just described, the best-response algorithms are better thought of as functions of some
suitably chosen cost or reward vector and do not depend in any way on the properties of
M .

It is natural to look for algorithms for solving the overall game that can exploit these
special purpose best-response oracles. One simple, well-studied algorithm that accom-
plishes this is fictitious play: the algorithm simulates two players repeatedly playing the
convex game G. Each time G is played, each player chooses to play a best response to
the average of all her opponent’s previous plays.1 While no guarantees can be made about
the performance of each of these players in the simulation, the average over their past
plays eventually converges to a minimax equilibrium. For a recent treatment of fictitious
play, see [Leslie and Collins, 2006]. Pseudo-code for this simple algorithm is given in
Figure (5.1). The average of x’s plays is xcntr, and on each iteration this average is updated
by taking a step towards xsrch = BRx(Mycntr). Each call to a best-response oracles gen-
erates an upper or lower bound for the minimax value v∗ of G: if x (the min player) plays
xcntr, then the max player y can do no better than playing y = BRy((x

cntr)T M), and so
we conclude v∗ ≤ V (xcntr, y). A similar argument holds for calls to BRx. The sequence
of bounds corresponding to (xcntr

t , ycntr
t ) need not improve monotonically, so in line (1)

we use max and min to guarantee a monotonic sequence. An implementation can then

1Because the sets X and Y are convex, this average is also a valid strategy, and hence we can compute a
best response to it.

130



xcntr
0 ← any strategy in X

ycntr
0 ← any strategy in Y

lb← −∞ ub←∞
t← 0

while ((ub− lb) > ε)

t← t + 1

xsrch
t ← BRx(y

cntr
t−1) ysrch

t ← BRy(x
cntr
t−1) (1)

vx = V (xcntr
t−1, y

srch
t ) vy = V (xsrch

t , ycntr
t−1)

lb← max(lb, vy) ub← min(ub, vx)

xcntr
t ←

(
t

t+1

)
xcntr

t−1 +
(

1
t+1

)
xsrch

t ycntr
t ←

(
t

t+1

)
ycntr

t−1 +
(

1
t+1

)
ysrch

t

end
return (xcntr, ycntr) corresponding to ub and lb, respectively

Figure 5.1: The fictitious play algorithm.

track the corresponding argmax and argmin strategies, and return these if the algorithm
is interrupted and asked to produce a solution in an anytime fashion; this pair of strategies
forms a (ub− lb)-approximate minimax equilibrium. This anytime ability to produce a
pair of strategies that form an ε-approximate minimax equilibrium is very attractive, as it
allows us to trade solution quality against computation time.

This anytime performance can be particularly important when considering very large
games where abstractions (approximations) must be introduced to make any solution pos-
sible. For example, there has been much recent work on abstraction for extensive-form
games, and poker in particular [Billings et al., 2003, Gilpin and Sandholm, 2006a]. In
such applications, approximately solving a larger (less abstracted) game may be prefer-
able to exactly solving a more heavily abstracted version.

There is a close connection between fictitious play (especially smooth versions of ficti-
tious play) and running a pair of no-regret algorithms in self-play, one for each player. For
example, the algorithms of Kalai and Vempala [2003] and Gordon [2005] can be used in
self-play in the same general form as Algorithm (5.1); the best-response oracle is replaced
with a special-purpose oracle that, intuitively, introduces additional smoothing such that
the agent randomizes among strategies that have similarly good performance. The regret
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bounds for such algorithms immediately give both convergence-rate guarantees as well as
performance guarantees for the agents in the simulation.

We now investigate another method that utilizes a best-response oracle; however, in
this case the oracle is used to generate separating hyperplanes (cutting planes) in a linear
programming approach. In the next section we concentrate on the particular case of an
MDP with adversarial costs; we introduce more general algorithms for convex games in
the following section.

5.2 The Single-Oracle Algorithm for MDPs with
Adversarial Costs

In this section we develop an efficient algorithm to solve MDP planning problems where
an adversary selects the cost vector from a finite set K of possible costs. This problem was
introduced in Section 3.4. In particular, we use Benders’ decomposition [Benders, 1962]
to capitalize on the existence of best-response oracles like A∗-search and value iteration.
The double oracle algorithms introduced later generalize this technique to the case where
a best-response oracle is also available for the adversary.

Recall the problem formulation from Section 3.4.2: We have an MDPM with known
dynamics and a fixed start-state distribution µs, and a set K = {c1, . . . , ck} of cost vectors.
Simultaneously, player x selects a policy π forM and player y selects a cost vector c ∈ K.
Then, player x pays y the amount V (π, c), the expected cost of following policy π from a
state sampled from µs under cost vector c ∈ K. The dynamics of the MDP are captured
by the matrix E. For a fixed start-state distribution µs, the set of stochastic policies for
player x can be represented as the set of valid state-action visitation frequencies,

F = {f ∈ R|S||A| | ET f + µs = 0, f ≥ 0}.

Thus, the game can be formulated as the convex game (F, ∆(K), M), where M is the
matrix with columns c1, . . . , ck.

Our iterative algorithm is an application of Benders’ decomposition, a general method
for decomposing certain linear programs first studied by Benders [1962]. We focus on the
application of this technique to the problem at hand, and refer the reader to Bazaraa et al.
[1990] for a more general introduction. Benders’ decomposition is dual to the Dantzig-
Wolfe decomposition, and can also be viewed as a specialization of the Kelley cutting
plane method to linear programs [Hiriart-Urruty and Lemaréchal, 1993].
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The set
H(K) = {c | c = Mq, q ∈ ∆(K)}

is the set of all (expected) cost vectors the adversary can potentially achieve by playing
implicit mixed strategies from ∆(K). Our algorithm is applicable when we have an oracle
BRx : H(K) → F that for any cost vector c ∈ H(K) provides a best-response policy π.
Our algorithm requires that π be represented by its state-action frequency vector fπ. If
the oracle algorithm actually used provides a policy represented as a value function (for
example, if we implement the oracle using value iteration) we can calculate fπ with a
matrix inversion or by iterative methods.

We quickly restate the relevant linear programming results from Section 3.4.3. The
value of the MDP for for a fixed cost c (typically, c = Mq for the game) can be found by
solving the linear program

max
v

v · µs (5.2)

subject to Ev + c ≥ 0,

or via the dual,

min
f

f · c (5.3)

subject to ET f + µs = 0

f ≥ 0.

We can solve the adversarial MDP convex game via the linear program

max
v,q

v · µs (5.4)

subject to Ev + Mq ≥ 0

1 · q = 1

q ≥ 0,

or via its dual,

min
z,f

z (5.5)

subject to ET f + µs = 0

1 · z + MT f ≤ 0

f ≥ 0.
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Figure 5.2: The piece-wise linear concave function V (dotted line) and an approximation
VB based on the bundle Bx = {f1, f2, f3} (the minimum of the three thin black lines). The
maximum with respect to the approximation VB is at q1 = 0.7.

Let V (q) be the optimal value of (5.2) for a fixed cost vector c = Mq for q ∈ ∆(K);
we can evaluate V using the best-response oracle BRx. Then, we can rewrite (5.4) as the
program

max
q∈∆(K)

[
max

v
v · µs

subject to Ev + Mq ≥ 0,

]
= max

q∈∆(K)
V (q) (5.6)

We will work with the right-hand-side of this representation. Unfortunately, V (q) is not
linear so we cannot solve the program directly as a linear program over ∆(K). However,
it can be solved via a convergent sequence of approximations that capitalize on the avail-
ability of our oracle BRx. Using strong duality for linear programming and Equation (5.3),
we can rewrite V as

V (q) = min
f∈F

(Mq) · f.

Since V is the minimum over a polyhedral set of linear functions, it is piecewise linear and
concave [see Boyd and Vandenberghe, 2004, for example]. Let Bx ⊆ F be a finite subset
of F . Then,

VB(q) = min
f∈Bx

(Mq) · f,
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is a piecewise linear and concave upper bound on V . If Cn(F ) ⊆ Bx, then it can be shown
that VB = V . Figure (5.2) shows V and VB for an example with |K| = 2, and so ∆(K)
effectively has a single dimension. The dotted line indicates V ; it is defined in the case by
7 linear segments. The approximation VB, based on the set of strategies Bx = {f1, f2, f3},
gives an upper bound; the rest of the figure will be explained shortly.

Our algorithm performs two steps for each iteration. On iteration i, first we solve for
an optimal mixture of costs qi under the assumption that the planner is only allowed to
select a policy2 from a restricted set Bx = {π1, π2, . . . , πi} ⊆ F . Then, we use the oracle
to compute BRx(Mqi) = πi+1, an optimal deterministic policy with respect to the fixed
cost vector c = Mqi. The policy πi+1 is added to Bx, and these steps are iterated until an
iteration where πi+1 is already in Bx.

All that remains is to show how to find the optimal cost mixture qi given that the planner
will select a policy from the set Bx = {f1, f2, . . . , fi} of feasible solutions to (5.3). That
is, we wish to solve Equation (5.6) with V replaced by VB. This problem can be solved
with the linear program

max
q,v

v subject to (5.7)

v ≤ fT
j Mq for 1 ≤ j ≤ i,

which is essentially the same program as (5.5), where f is restricted to be a member of
Bx rather than an arbitrary stochastic policy. The key difference is that fT

j M is a constant
vector for each fj ∈ Bx, and so the size of the linear program is independent of the size of
the MDPM (there is no dependence on |S| or |A|, as there is in Equations (5.5) and (5.4).
We interpret this program as solving the matrix game with one column for each c ∈ K, and
one row for each f ∈ Bx. This program is known as the master program of the Benders’
decomposition. Equation (5.3) is the slave program, which in our case is solved not as a
linear program, but using the fast best-response oracle. In Figure (5.2), solving the master
program (5.7) for the set Bx = {f1, f2, f3} produces the minimax solution q1 = 0.7 for the
cost-selecting player (and so q2 = 0.3). The algorithm then computes the corresponding
cost vector, c = 0.7c1 + 0.3c2, and then calls BRx(c), which returns the best-response
strategy f4. This strategy is then added to Bx and the process continues. Pseudo-code for
the complete algorithm is given in Figure (5.3).

Since VB gives an upper bound on V , the solution to the master program (5.7) gives an
upper bound on the value of the game. Since we only ever tighten the approximation of V ,
the sequence of upper bounds generated by the algorithm is non-decreasing. As mentioned

2We write πi and fi equivalently, depending on which interpretation we wish to emphasize: πi is a
stochastic policy, and fi is the corresponding state-action visitation frequency vector
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B0
x ← {}

q0 ← arbitrary q ∈ ∆(K)

lb← −∞ ub←∞
t← 1

while ((ub− lb) > ε)

ft = BRx(Mqt−1)

lb← max(lb, V (ft, qt−1))

(qt, v)← solution to the LP of Equation (5.7)

ub← v // v improving monotonically

t← t + 1

end
return best (f̄ , q)

Figure 5.3: The single oracle algorithm.

before, each call to BRx generates a lower bound on the value of the game, but these need
not be monotonically increasing, and so we use the max operator.

The ε-approximate minimax cost mixture is given by the q corresponding to the best
lower bound. The approximately optimal policy for the planning player can be expressed
as a distribution over the policies in Bx. These values are given by the dual variables (say,
p) of (5.7), and can thus be found via matrix inversion or may be immediately available
depending on the linear programming technique used to solve the program. Given the dual
variables p, we compute the best f as the stochastic policy

f̄ =
t∑

i=1

pifi.

The convergence and correctness of this algorithm are immediate from the correspond-
ing proofs for Benders’ decomposition; in the worst case all of the strategies in Cn(F ) will
be added to Bx, ensuring finite though possibly exponential runtime. In Section 5.5.1, we
demonstrate experimentally that the sequence of bounds converges quickly in practice.
We refer to this algorithm as the single oracle algorithm because it relies only on a best-
response oracle for the row player. While we have stated the algorithm of this section in

136



terms of the particular convex game (F, ∆(K), M) for MDPs with adversarial costs, this
technique can be applied any time one of the players in the convex game has strategies
given via a relatively small explicitly enumerated set let K. The constraint-generation
approach used here can also be applied to solving the linear programs of Equation (5.5)
or Equation (5.4) via the ellipsoid or analytic centering algorithms [Bazaraa et al., 1990,
Hiriart-Urruty and Lemaréchal, 1993].

Motivation for the Double Oracle Algorithm

The single oracle algorithm is sufficient for problems when the set K is reasonably small;
in these cases solving the master problem, Equation (5.7), is fast. For example, we use this
approach in our path planning problem if the opponent is confined to a small number of
possible sensor locations and we know that he will place only a single sensor. However,
suppose there are a relatively large number of possible sensor locations (say 50 or 100),
and that the adversary will actually place 2 sensors. If the induced cost function assigns
an added cost to all locations visible by one or more of the sensors, then we cannot de-
couple the choice of locations, and so there will be

(
100
2

)
possible cost vectors in K. The

single oracle algorithm is not practical for a problem with this many cost vectors; simply
representing them all in memory would be prohibitive.

We now derive a generalization of the single oracle algorithm that can take advan-
tage of best-response oracles for both players. We present this algorithm as it applies to
arbitrary convex games.

5.3 A Bundle-based Double Oracle Algorithm

In this section, we introduce two algorithms that take advantage of a best-response oracle
for both players. The basic double oracle bundle algorithm (first introduced in [McMahan
et al., 2003]) is described first; we then extend basic DOBA with line search, aggrega-
tion, and a method for interpolating with fictitious play. We call this extended algorithm
DOBA+.

The basic DOBA builds up a collection of strategies (called a bundle) for each player.
On each iteration it solves an approximate game where each player is only allowed to
randomize among the strategies contained in his or her bundle. Given the optimal strate-
gies in this restricted game, it calls the oracles to find best responses for each player in
the full game, and then adds these responses to the bundles to improve the approxima-
tion. The double oracle bundle method is related to the family of cutting plane and bun-
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B0
x ← {x0} B0

y ← {y0}
M̃x0,y0 ← V (x0, y0)

lb← −∞ ub←∞
t← 0

while ((ub− lb) > ε)

(p, q)← solveMatrixGame(M̃ )

xmix
t ←

∑
x∈Bx

pxx ymix
t ←

∑
y∈By

qyy

xt+1 ← BRx(y
mix
t ) yt+1 ← BRy(x

mix
t )

vx = V (xmix
t , yt+1) vy = V (xt+1, y

mix
t )

lb← max(lb, vy) ub← min(ub, vx)

Bt+1
x ← Bt

x ∪ {xt+1} Bt+1
y ← Bt

y ∪ {yt+1}
(∀y′ ∈ By) M̃xt+1,y′ ← V (xt+1, y

′)

(∀x′ ∈ Bx) M̃x′,yt+1 ← V (x′, yt+1)

t← t + 1

end
return best (xmix, ymix)

Figure 5.4: The basic double oracle bundle algorithm.

dle algorithms for non-smooth optimization, and to Benders’ decomposition in the case
of polyhedra [Hiriart-Urruty and Lemaréchal, 1993]. However, the direct application of
those techniques to convex games yields algorithms that only take advantage of the best-
response oracle for one of the players, not both. There is great potential for future work in
adapting the rich set of techniques from that literature to the particular problem of solving
convex games; the work presented here is but a first step in that direction.

5.3.1 The Basic Algorithm

In this section we describe the basic double oracle algorithm. This algorithm can require
an amount of memory exponential in the problem size. While it still manages very good
performance on adversarial cost MDP problems, it is of only theoretical interest for solv-
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ing large extensive-form games like Rhode Island Hold’em; the full DOBA+ algorithm,
introduced next, builds on the basic double oracle algorithm by providing a way to limit
memory consumption. Pseudo-code for the basic algorithm is given in Figure (5.4).

The principal intuition of the double bundle oracle algorithms is to use our best-
response oracles to build up an approximate version of the full convex game. Fix G =
(X, Y, M) as the convex game we wish to solve. Our approximate game G̃ will also be
convex, given by (X̄, Ȳ ,M), where X̄ ⊆ X and Ȳ ⊆ Y . The set X̄ will be constructed
from a set of best responses for x to various player y strategies, and similarly for Ȳ . It
should be clear that, if X̄ approaches X and Ȳ approaches Y , the approximate game be-
comes more and more similar to the exact one. Of course, we hope that the approximation
becomes good before X̄ and Ȳ become intractably large. The key difference between the
basic algorithm and DOBA+ is that the latter explicitly manages the complexity of X̄ and
Ȳ while still guaranteeing convergence to a solution to the overall game G.

In both the basic algorithm and DOBA+, we maintain a finite bundle of strategies for
each player, Bx ⊆ X and By ⊆ Y respectively. The convex hull of Bx, written H(Bx), is a
convex subset of X , and similarly H(By) is a convex subset of Y . Thus, we can define the
convex game G̃ = (H(Bx), H(By), M) which we will use as a model of G.

We can define an equivalent matrix game M̃ which has strategy sets Bx for player x
and By for player y, with payoffs M̃(x, y) = V (x, y). The convex game G̃ is equivalent
to M̃ , in the sense that strategies in G̃ and M̃ can be translated back and forth without
altering expected payoffs. More precisely, the bi-linearity of V means that if (p, q) is a
solution to M̃ , then xmix =

∑
x∈Bx

p(x)x and ymix =
∑

y∈By
q(y)y form a solution to G̃.

We will move back and forth between the two equivalent representations G̃ and M̃ . For
interpretation we will use G̃, since its relationship to G is more clear. But for computation
we will work with M̃ , since its size is independent of m and n (it is |Bx| × |By|). This last
fact is critical for large games: for example, in Rhode Island Hold’em, m and n are both
approximately 1× 106, while we fix |Bx| = |By| = 55.

Both the basic algorithm and DOBA+ build up the model game M̃ in an intuitive way
using our best-response oracles. We initialize the bundles with one or more arbitrarily
chosen strategies for each player. These could be the an arbitrary or randomly chosen
strategy, but there is the opportunity to increase performance by seeding the algorithm
with a collection of expert-generated strategies.

Given the current bundles Bx and By, we solve the corresponding matrix game M̃ ,
producing a mixed strategy (p, q). We then compute the corresponding strategies xmix ∈ X
and ymix ∈ Y ; (xmix, ymix) is a valid strategy pair in either G̃ or G. Because (xmix, ymix) is
a strategy pair for G, we can use our oracles to generate best responses BRx((x

mix)T M)
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and BRy(Mymix). We add these new strategies to the bundle, and also use the fact that
they are best responses to update upper and lower bounds on the value of the game G. The
algorithm continues in this fashion until the gap ε = (ub− lb) reaches an acceptably small
level.

Discussion On each iteration, the size of each bundle increases by one, as does each
dimension of the matrix game M̃ . This is, in fact, the principal weakness of the basic
algorithm: the cost of each iteration and the size of the bundles grow, making it infea-
sible to run an arbitrary number of iterations. In particular, for Rhode Island Hold’em,
storing each strategy in the bundle requires about 7MB of memory, and so physical mem-
ory rapidly limits the size of the bundles and hence the number of iterations we can run.
To address this issue, DOBA+ uses an aggregation and pruning scheme that allows it to
maintain a constant bundle size.

A second deficiency of the basic double oracle algorithm is that inaccuracies in the
model G̃ can lead to solutions (xmix, ymix) that in fact perform poorly in the true game G.
However, the direction from the current best pair of strategies (x∗, y∗) towards (xmix, ymix)
usually provides a good direction of improvement. To exploit this fact, we introduce a
fast line search procedure that efficiently solves this 1-dimensional optimization problem.
Pseudo-code for the complete DOBA+ algorithm is given in Figure (5.5); in the following
sections we discuss the principal improvements over the basic version.

5.3.2 Aggregation

Our aggregation and pruning scheme has two components. First, we insert the minimax
strategies xmix and ymix into the bundles. This has no effect on the convex hulls of the
bundles if we never remove strategies, but since we will be discarding strategies, adding
the mixtures is useful: in this way even if we throw out some strategies that support xmix,
we may still keep xmix ∈ H(Bx) by explicitly placing xmix ∈ Bx.

In order to determine which strategies to discard, each time we solve M̃ we use the
mixed strategies to update a weight w(x) (or w(y)) associated with each strategy in the
bundle: this weight is a discounted average of the probabilities placed on the strategy by
past solutions to M̃ . Each iteration, we choose to remove the strategies with the smallest
weights; we then add to the bundle an aggregate of the removed strategies, with each
removed strategy weighted proportionally to its weight. That is, if we remove x1, . . . , xk
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while ((ub− lb) > ε)

(p, q)← solveMatrixGame(M̃ )

update strategy weights

xmix ←
∑

x∈Bx
p(x)x

ymix ←
∑

y∈By
q(y)y

updateCenter(x)
ub← min

(
ub, V (xcntr, BRy(xcntr))

)
updateCenter(y)
lb← max

(
lb, V (BRx(ycntr), ycntr)

)
if (Bx or By are too big)

do aggregation on Bx or By

update φ

t← t + 1

end

updateCenter(x):
xsrch ← search(BRx(ycntr), xmix, [0, 1− φ])
fpstep← 1/(t + 1)
α← φ · fpstep
β ← fpstep + (1− φ)(1− fpstep)
xcntr ← search(xcntr, xsrch, [α, β])
add {xmix, BRx(ymix)} to Bx (*)
add {xcntr, BRx(ycntr)} to Bx (*)

end

Figure 5.5: DOBA+: the double oracle bundle algorithm with line search, aggregation,
and convergence guarantees. Initialization and updates to M̃ are similar to those in the
basic algorithm.

and let W =
∑k

i=1 w(xi), then the aggregate strategy is given by

xaggr =
k∑

i=1

w(xi)

W
xi.

To keep the bundle size constant, we remove five strategies on each step: one each to
to make room for the four strategies added to the bundle in the lines marked (*) in Fig-
ure (5.5), and one to make room for the aggregated strategy xaggr. Of course, when we
remove strategies from the bundles we must remove the corresponding rows and columns
from M̃ as well.
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5.3.3 Line Search

For extensive-form games, it takes time O(m) to run the oracle BRx(cy) for a fixed cost
vector cy = My, but the cost of the multiplication to compute cy is O(nm). While the
matrix M may be sparse, multiplications with M will still typically be slower than best-
response calls by a considerable constant; for example, this constant is around 20 for
Rhode Island Hold’em, and even higher for approximately abstracted versions of Texas
Hold’em. However, the multiplication Mq for adversarial MDPs with only a few possible
cost vectors (small |K|) will be relatively inexpensive, usually much cheaper than solving
the MDP with the fixed cost vector c = Mq. Thus, the applicability of the techniques of
this section will depend on these tradeoffs for the particular convex game at hand.

In this section we show how we can take advantage of the relative speed of com-
puting best responses for fixed cost vectors. Consider a restricted convex game with
Bx = {x1, x2} and X̄ = H(Bx) but Ȳ = Y . That is, x has exactly two strategies, while y
has full access to his strategy set. We show that we can solve the corresponding restricted
game (H(Bx), Y, M) efficiently via a line search.

The key is that x’s choice of a probability distribution over Bx only has a single degree
of freedom. Using θ to represent this free variable, we can write the problem of solving
this game as:

min
θ∈[0,1]

max
y∈Y

((1− θ)x1 + θx2)
T My (5.8)

For simplicity, we write x(θ) = ((1− θ)x1 + θx2). Then, define the function f : R → R
by

f(θ) = max
y∈Y

x(θ)T My (5.9)

and so solving Equation (5.8) is equivalent to solving minθ∈[0,1] f(θ). In fact, f is just a
piecewise maximum over a set of affine functions, one for each y ∈ Y , and so f is convex.
We can minimize such a function via an exact binary line search if we can evaluate f at
all θ ∈ [0, 1] and also compute a subgradient to f at each θ. The best-response oracle BRy

can be used to accomplish both these tasks.

For a fixed θ, we can find a y that achieves the maximum in Equation (5.9) by com-
puting y = BRy(x(θ)T M), so that f(θ) = V (x(θ), y). Further, y corresponds to the linear
function x(θ)T My which gives a lower bound on f and is tight at θ, so the slope of fy is a
subgradient of f at θ. This can easily be calculated as (x2 − x1)

T My.

This gives us the necessary components to implement a line search, but each evaluation
and subgradient calculation may require a multiplication with M . We avoid these multipli-
cations in the following way. Let c1 = xT

1 M and c2 = xT
2 M , which we can pre-compute
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before the line search3 and define c(θ) = (1 − θ)c1 + θc2. For a fixed θ, we can evaluate
c(θ) in O(m) time. After computing y = BRy(c(θ)), we calculate4 f(θ) as c(θ) · y. Using
the same y, we can then calculate the necessary subgradient as (c2 − c1) · y. This, each
iteration of the binary search can be completed in O(m) time.

The subroutine search(x1, x2, [α, β]) used in DOBA+ solves the problem minθ∈[α,β] f(θ).
We will see that restricting the allowed interval using to [α, β] is useful in interpolating
with fictitious play.

5.3.4 Convergence Guarantees and Fictitious Play

Fictitious play (or a no-regret algorithm in self-play) maintains centers xcntr and ycntr,
estimates of the minimax optimal implicit mixed strategies. On each iteration FP updates
these centers in the search direction, xsrch = BRx(y

cntr) and ysrch = BRy(x
cntr). DOBA+

has a similar structure: it maintains a center for each player, and on each iteration updates
these centers towards a search direction. The algorithm maintains a parameter φ (the
fictitious play fraction), so that when φ = 0 the algorithm runs in an unrestricted fashion,
while if φ = 1, the algorithm behaves identically to fictitious play.

The selection of the search direction and update of the center occurs in th update-
Center(x) method of Figure (5.5); updateCenter(y) is identical, but with the roles of x
and y switched. The best response to the opponent’s current center is one possible search
direction; the solution to the model game M̃ provides another. DOBA+ does a line search
between these two possibilities in order to choose its search direction; however, at least
φ weight is required to be on the best response to the opponent’s center, so that when
φ = 1 DOBA+ uses the same search direction as FP. This is accomplished via the call to
search(BRx(y

cntr), xmix, [0, 1− φ]).

Similarly, we update the center by a line search from xcntr towards xsrch, but we con-
strain the interval of the search to linearly interpolate from [0, 1] when φ = 0, to [1/(t +
1), 1/(t + 1)] when φ = 1. The constants α and β in the call to search(xcntr, xsrch, [α, β])
accomplish this interpolation; when φ = 1, we have the fixed step-size of 1/(t + 1) of
fictitious play.

We can insure convergence of DOBA+ be updating φ based on the rate of change
of (ub − lb) so that if the rate drops lower than that expected of FP, φ eventually goes

3In fact, for the x1 and x2 used in DOBA+, we will need to compute c1 and c2 anyway at some point,
and so this computation can be made effectively free.

4In many cases the oracle also provides the value V (x, BRy(xT M)) directly in which case this multipli-
cation is unnecessary.
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Figure 5.6: An EFG where best responses can be bad.

to 1, and DOBA+ effectively becomes FP. An implementation can be designed so that
once φ > 0.99 (say), it switches fully to FP and avoids the overhead of solving M̃ and
performing the line searches.

Note that DOBA+ is asynchronous: the update for x is done first, and then the update
for y takes into account x’s updated xcntr. This is commonly done in FP implementations as
well. We ran experiments with several simple methods for updating φ; generally these had
little impact of the runtime of the algorithm. To avoid conflating the impact of the φ updat-
ing scheme with the performance of our unconstrained approach, we present experimental
results with φ fixed at 0.

5.4 Good and Bad Best Responses for Extensive-form
Games

To paraphrase George Orwell, “All best responses are equal but some best responses are
more equal than others.” We now investigate this notion.

Bad best responses Consider the EFG of Figure (5.6). Suppose player x is the active
player at state s1; she can either select a constant payoff of 1 by choosing action a0, or
choose one of the other actions ai, each of which leads to a different subgame Gi. If
x fixes the policy x that that picks a0 with probability 1, then any policy for player y
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is a best response to x. Clearly, an arbitrary strategy might do very poorly if player x
happens to play some action other than a0. In general, if a behavior strategy x rules out
any information sets for y, then a best-response behavior policy for y can specify arbitrary
actions at those ruled out information sets.

This could cause problems for the double oracle algorithm. Given xmix on some it-
eration of the algorithm, we will compute y = BRy((x

mix)T M) and add y to By. Future
strategies for y will then be constructed as distributions over strategies in the bundle. Sup-
pose xmix happens to only ever play action a1 from s1 (in Figure (5.6)). Then, the response
y will likely be “good” for the subgame G1, but terrible at all the other subgames . This
means y will be of limited use in constructing a good mixed strategy, assuming x starts
playing actions other than a1 from s1 (for example, xcntr might play many different actions
at s1).

In general, it is possible that xmix, which is produced by solving the matrix game M̃ ,
might be a mixture of relatively few deterministic best responses, and so it might rule out
many information sets for y. We call such problematic policies “sparse,” because they put
zero probability on some actions, hence making large parts of the game tree unreachable.
This, in turn, will produce cost vectors c = xT M that are sparse in the usual since of
having many zero entries. We refer to policies that play all actions with some (possibly
small) positive probability as dense strategies.

We would like y’s best response to “fall back” on some reasonable behavior when
selecting a best-response behavior at an unreachable information set. We can achieve
this in the following manner: suppose xcntr is a dense strategy for x. Then, instead of
computing BRy(x) directly, we compute y = BRy((1 − ε)x + εxcntr) for some small
constant ε. The strategy y will still be an arbitrarily good response to x (as ε goes to zero),
but at any information set that isn’t reached by x, it will play some best-response action to
xcntr, since xcntr doesn’t rule out any information sets.

We address these issues in DOBA+ in the following way:

• Our implementation of the best-response oracle for EFGs picks the uniform distri-
bution over all best-response actions at each information set, rather than just picking
one. This assures that the strategies we add to our bundle are as dense as possi-
ble, and so hopefully our mixed strategies will not rule out too many information
sets. It is also possible to use “soft” best responses that put positive probability on
all behaviors. Investigating such approximate best-response oracles is an important
avenue for future work.

• When we solve the matrix game M̃ , we add an additional constraint that requires the
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mixtures p and q to put some small weight (we use ε = 0.0001) on the current best
strategy for each player (that is, on the xcntr and ycntr corresponding to the current
ub and lb). These centers tend to be dense, as they are mixtures of many strategies,
and so this ensures that when we compute a best response to xmix, the best response
will at worst fall back to playing a best response to ycntr.

We have seen that some best-response strategies are worse than others; we now con-
sider the other side of the spectrum, considering superior best responses. DOBA+ does
not currently use the concepts in the next section, but we hope to exploit these ideas algo-
rithmically in future work.

Optimal best responses The problem of solving the convex game (X, Y, M) can be
written as

min
x∈X

V (x)

where V (x) is the convex function

V (x) = max
y∈Y

xT My.

The best-response problem for a fixed x ∈ X is simply to compute V (x) (and a y that
achieves this value). But, as we saw in the previous section, there may be many possible
best responses. Any convex combination of best responses is also a best response, and so
the set of all best responses to x is convex: call this set Ybr(x), that is,

Ybr(x) = {y ∈ Y | y is a best response to x}.

We define the optimal best response as the solution to the game where y is restricted to
play from the set Ybr(x), but x can play arbitrarily (in particular, she is under no obli-
gation to actually play x). This is exactly the restriction of the original convex game to
(X, Ybr(x), M), which has value

max
y∈Ybr(x)

min
x∈X

xT My.

Let BR∗
x compute an optimal best response. Computing an optimal best response is in

general as hard as solving an arbitrary convex game. For example, consider the game of
Figure (5.6). Computing the optimal best response for player y to the policy for x that
always plays a0 requires finding a minimax optimal policy for G1, G2, and all the other
possible subgames. However, in some cases computing an optimal best response can be
much easier than solving the overall game.

146



The set Ybr(x) for an extensive-form game has a straight-forward interpretation: it
corresponds to the set of behavior strategies that only put positive probability on actions
that are local best responses to x (or, more precisely, actions that are local best responses
to the value function on player y’s information set tree induced by the strategy x). Thus,
we can efficiently optimize any linear function over the set Ybr(x) by using the standard
linear-time dynamic programming algorithm for computing a best response for an EFG;
we simply run the algorithm on the restricted information set tree where we have discarded
all actions that are not local best responses.

Optimal best-response strategies have several nice properties. It is easy to verify that
an optimal best response y∗ = BR∗

y(x
∗) to a minimax strategy x∗ is a minimax optimal

strategy for y. It can also be shown that for an arbitrary x, computing an optimal best
response to x corresponds to finding a direction of steepest feasible decent with respect to
V (x) from x: we can think of y′ = BR∗

y(x) as defining the best (that is, minimal slope)
mixture of subgradients at x.

5.5 Experimental Results

In this section we test the algorithms introduced on both the sensor-placement / observation-
avoidance adversarial MDP problem, and on an extensive-form game representations of
Rhode Island Hold’em poker and approximated Texas Hold’em poker.

5.5.1 Adversarial-cost MDPs

We consider the example sensor placement / avoidance game described in Section 3.4.2.
We model the robot’s path planning problem by discretizing a given map at a resolution
of between 10 and 50 cm per cell, producing grids of size 269 × 226 to 54 × 45. We do
not model the robot’s orientation and rely on lower level navigation software to move the
robot along planned trajectories. Each cell corresponds to a state in the MDP.

The transition model we use gives the robot 16 actions, corresponding to movement in
any of 16 compass directions. Movement in the directions N, S, E, and W corresponds to
moving to an adjacent cell, NE, SE, SW, and NE correspond to moving to an adjacent cell
diagonally, and the other eight directions (NNE, etc), correspond to moving two cells in
one direction, and one cell in an orthogonal direction. Allowing movement in 16 directions
means distances in the discretized world approximate a Euclidean distance metric, rather
than the Manhattan (L1) metric implied by only allowing movement in the 4 cardinal
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grid size k LP basic DOBA iter
A 54 x 45 32 56.8 s 1.9 s 15
B 54 x 45 328 104.2 s 8.4 s 47
C 94 x 79 136 2835.4 s 10.5 s 30
D 135 x 113 32 1266.0 s 10.2 s 14
E 135 x 113 92 8713.0 s 18.3 s 30
F 269 x 226 16 - 39.8 s 17
G 269 x 226 32 - 41.1 s 15

Table 5.1: Sample problem discretizations, number of sensor placements available to
the opponent, solution time solving Equation (5.4) with CPLEX, and solution time and
number of iterations using the basic Double Oracle Algorithm.

directions. Each cell s has a cost weight m(s) for movement through that cell; in our
experiments all of these are set to 1.0 for simplicity. The actual movement costs for each
action are calculated by considering the distance traveled (either 1,

√
2, or

√
5) weighted

by the movement costs assigned to each cell. For example, movement in one of the four
cardinal directions from a state u to a state v incurs cost 0.5m(u) + 0.5m(v).

Cells observed by a sensor have an additional cost given by a linear function of the
distance to the sensor. An additional cost of 20 is incurred if observed by an adjacent
sensor, and cost 10 is incurred if the sensor is at the maximum distance. The ratio of
movement cost to observation cost determines the planner’s relative preference for paths
with low expected observation times versus short paths. We assume a fixed start location
for our robot in all problems, so pure strategies can be represented as paths.

We present experiments using both the single oracle algorithm and the basic double
oracle algorithm on this domain. The basic DOBA was sufficient because at most 30
iterations were needed to solve our test problems. Both algorithms use Dijkstra’s algorithm
for the planning player’s oracle BRx.

The column (cost player) oracle for the double oracle algorithm is the following naive
one: For an arbitrary matrix game M , an oracle may be created (say BRy for the column
player) by finding the minimum entry in the vector pT M when the row player plays mixed
strategy p. Perhaps surprisingly, we show that even using such a naive oracle can yield
performance improvements over the single oracle algorithm. If sensor fields of view have
limited overlap, then a fast best-response oracle for multiple sensor placement can also be
constructed by considering each sensor independently and using the result to bound the
cost vector for a pair of sensors
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Our implementation is in Java, with an external call to CPLEX 7.1 [ILOG, Inc., 2003]
for solving all linear programs. For comparison, we also used CPLEX to solve the linear
program (5.4) directly (without any decompositions).

All results given in this paper correspond to the map in Figure (3.4) (found in Chap-
ter 3). We performed experiments on other maps as well, but we do not report them
because the results were qualitatively very similar. We solved the problem using various
discretizations and different numbers of potential cost vectors to demonstrate the scaling
properties of our algorithms. These problem discretizations are shown in Table (5.5.1),
along with their double oracle and direct LP solution times. The letters in the table corre-
spond to those in Figure (5.7), which compares the double and single oracle algorithms.
All times are wall-clock times on a 1 GHz Pentium III machine with 512M main memory.
Results reported are the average over 5 runs. Standard deviations were insignificant, less
than 1/10th of total solve time in all cases.

Our results indicate that both the double and single oracle algorithms significantly out-
perform directly solving the linear program. This improvement in performance is possible
because our algorithms take advantage of the fact that the linear program (5.4) is “almost”
an MDP, and the planner’s row oracle is implemented with Dijkstra’s algorithm, which
is much faster than general LP solvers. The particularly lopsided times for problems C,
D, and E may have been partially caused by CPLEX running low on physical memory;
we didn’t try solving the LPs for problems F and G because they are even larger. One of
the benefits of our decomposition algorithms is their lower memory usage, but even when
memory was not an issue our algorithms were significantly faster than CPLEX.

As Figure (5.7) shows, the basic double oracle algorithm outperforms the single oracle
version for all problems. The difference is most pronounced on problems with a large
number of cost vectors. The time for solving the master LPs and for the column oracle
are insignificant, so the performance gained by the double oracle algorithm is explained
by its implicit preference for mixed strategies with small support, and the correspondingly
smaller M̃ .

We ran the oracle algorithms with ε = 0.005, which is effectively optimal considering
that a single step of movement has cost 1.0, and the minimum cost for being observed is
10.0. Thus, assuming the model expressed by the linear program is accurate, our algo-
rithms produce the best result possible. In practice, it may be that the costs need to be
adjusted to obtain the desired result; for example, in our path-planning problem there is a
trade-off between shortest paths and being observed. By adjusting the balance between the
opponent-controlled and fixed movement costs of the problem, the algorithm can be made
to weigh this trade-off differently. Finding the proper balance for a particular problem may
require some tweaking of model parameters.
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Figure 5.7: Double and single oracle algorithm performance on problems shown in Ta-
ble (5.5.1).

We also ran some limited experiments in the online setting, using the no-regret algo-
rithm of Kalai and Vempala [2003] to play the repeated game as discussed in Section 3.1.2.
Figure (5.8) shows 100 trajectories against an opponent who plays a minimax optimal sen-
sor placement: that is, for each round the adversary samples a sensor placement c ∈ K
according to a minimax optimal distribution q. The Kalai-Vempala algorithm chooses a
best response to the average cost vector played by the adversary so far, perturbed with
a small amount of randomness. The implementation is straightforward, and the gener-
ated paths are reasonable. The random perturbations to the cost vectors introduced by the
Kalai-Vempala algorithm tend to produce paths that are somewhat choppy, but these paths
can be smoothed by lower-level control routines. As expected, the algorithm converges to
a best response to the minimax optimal q played by the adversary.

For these MDP-based problems, there is the possibility for a very large speedup
through the use of more sophisticated best-response oracles for the planning player: in our
experiments, the planner’s oracle calls typically take 90% or more of the total runtime. We
used Dijkstra’s algorithm to solve our deterministic best-response problem. However, it is
straightforward to construct reasonable heuristics for this problem, for example by using
the L1 distance for the movement costs plus observation costs. Thus, we could apply the
A∗-search algorithm. Further, there is likely to similarity between the optimal solutions
from one round to the next. To take advantage of this, we could use an incremental A∗

implementation, for example that of Koenig and Likhachev [2001].
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Figure 5.8: Convergence to optimal response in the online setting. The thin lines indicate
100 trajectories produced by the Kalai-Vempala algorithm against a fixed minimax solu-
tion of the opponent. The wider lines indicate a minimax solution for the planner. The
erratic nature of the Kalai-Vempala paths is caused by the randomness in the cost vectors
introduced by that algorithm: the small jogs in the path are caused by the robot driving
around small areas where a higher cost has been hallucinated.

5.5.2 Extensive-form Game Experiments

We tested the DOBA+ algorithm and fictitious play on abstracted Rhode Island Hold’em.
We chose this as a representative problem both because Rhode Island Hold’em is a well-
known AI testbed and because the abstracted version is one of the largest extensive-form
games that can be solved in a reasonable amount of time using CPLEX’s barrier method
implementation on a modern workstation; the game was first solved by Gilpin and Sand-
holm [2005]. CPLEX’s performance provides one benchmark against which to evaluate
our results.

Rhode Island Hold’em (RIH) was introduced by Shi and Littman [2001] as a challenge
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Figure 5.9: Algorithm runtime versus approximation error on Rhode Island hold’em. The
Y axis is a log scale plot of ε for the best approximate solution the algorithms can return
at a given time, in units of $0.01.

problem for AI research. The game is similar to two-player limit Texas Hold’em. It is
played with a full deck of 52 cards, but each player receives only a single face-down hole
card, and there are only two community cards. There are three rounds of betting, with
up to three raises per betting round. Unabstracted Rhode Island Hold’em has a game tree
with 3.1 billion nodes, which is still too large to work with conveniently. Instead, Andrew
Gilpin was kind enough to provide us with the convex game representation produced by the
GameShrink algorithm [Gilpin and Sandholm, 2005]. Sparsely represented, this game has
approximately 50 × 106 non-zeros in the payoff and sequence constraint matrices, with
dimensions m = n = 883, 741, taking almost 600MB of memory to store. A solution
to this game can be converted to a payoff-equivalent strategy for the unabstracted game.
The poker game has $5.00 antes and a maximum pot size of $310.00. The uniform random
strategy, from which we started both our algorithm and fictitious play, loses approximately
$290.00 per game. The minimax value of the game is−$0.64; the value is negative because
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Figure 5.10: Algorithm runtime versus approximation error on approximately abstracted
Texas hold’em. Note that with both bundle sizes, DOBA+ significantly outperforms both
versions of fictitious play.

player x (the minimizing player) bets second, and thus gains a small advantage based on
the information revealed by the first player’s initial bet.

The CPLEX commercial linear programming package solved abstracted Rhode Island
Hold’em via the barrier method in about 7.5 days, using 25 GB of memory; achieving an
ε = $0.20 approximate minimax solution took 110.3 hours, or over 4.5 days. The DOBA+
produced a solution of that quality in 130 minutes; see Figure (5.11).

Figure (5.9) compares the anytime performance of DOBA+ and fictitious play (FP).
Both algorithms were initialized using the uniform-random behavior strategy for both
players; that is, at each information set the agent selects an action uniformly at random.
Especially early on, DOBA+ can produce higher quality solutions for a given amount
of time. For example, it takes DOBA+ 11 minutes to bound the value of the game in
[$0.00,−$1.35], thereby proving that player x has an advantage. It takes synchronous FP
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Figure 5.11: Comparison of runtimes for CPLEX and the double oracle Bundle Algorithm
(DOBA+) to produce an ε = $0.20 and ε = $0.73 solution to abstracted RIH. Note that
the runtimes are on a log scale.

(as in Figure (5.1)) about 20 minutes to get comparable bounds, but asynchronous FP5

takes only 10 minutes to get these bounds. Experiments on smaller approximately ab-
stracted versions of Rhode Island Hold’em, however, show DOBA+ can outperform FP by
an order of magnitude; on the smallest problem we tested (with m = n = 104), CPLEX
outperformed both algorithms.

Figure (5.10) shows results for experiments on an approximately abstracted instance
of Texas Hold’em, similar to those discussed in [Gilpin and Sandholm, 2006a]. This
instance only models the first three rounds of betting. This problem has significantly
more non-zeros (130 × 106) than the Rhode Island hold’em instance, and requires about
1.5GB of memory to represent. However, this problem has lower dimensionality, with
m = n = 236,416. The instance we tested has a small blind (similar to an ante) of

5Asynchronous FP does the updates for one player, say x, before the updates for the other player on
each iteration. That is, asynchronous FP is the algorithm of Figure (5.1) where all the statements in the
left column in the while loop are executed before the statements in the right column. Note that DOBA+
with φ fixed at 1.0 effectively executes asynchronous FP. For many problems, solving the small matrix game
takes a negligible amount of time, and so making DOBA+ fully asynchronous by re-solving the matrix game
between each call to updateCenter may be advantageous [Krause, 2006].
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$0.50, and a big blind of $1.00. For this problem, DOBA+ significantly outperformed
asynchronous fictitious play: FP bounded the value of the game in [−0.028,−0.046] in a 2
hour run, while DOBA+ achieved better bounds in less than 6 minutes. We used DOBA+
with φ = 1 as our asynchronous FP implementation, and this incurred extra overhead.
A direct implementation might allow a 2-3x performance increase, but clearly this would
have made little difference for the Texas Hold’em instance.

We conclude that none of these algorithms are a clear winner even when only consid-
ering extensive-form games, and so the general problem of designing fast algorithms for
all types of convex games is still very much open.

Chapter Acknowledgments Special thanks to Andrew Gilpin who graciously provided
us with the sequence-weight representation for the poker problems used in the experi-
ments, and also shared his data from experiments using CPLEX to solve the same in-
stances.
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Chapter 6

Online Geometric Optimization in the
Bandit Setting

In this chapter we describe a new algorithm for solving online linear programming prob-
lems in the bandit setting when facing an adaptive adversary; this work originally appeared
in [McMahan and Blum, 2004]. Though it has many potential applications, the algorithm
we develop is particularly applicable to the case of a convex game (X, Y, M) that is played
repeatedly by player x, in the manner discussed in Section 3.1.2. The approach here is
novel in that it does not require observation of the opponent’s strategy y on each iteration,
or even the cost vector My. Rather, we can run the algorithm of this chapter for player x
as long as the total payoff xT My is observed on each round.

6.1 Introduction and Background

Kalai and Vempala [2003] give an elegant, efficient algorithm for a broad class of online
optimization problems. In their setting, we have an arbitrary (bounded) set S ⊆ Rn of
feasible points. At each time step t, an online algorithm A must select a point xt ∈ S
and simultaneously an adversary selects a cost vector ct ∈ Rn (throughout the chapter
we use superscripts to index iterations). The algorithm then observes ct and incurs cost
ct · xt. Kalai and Vempala show that so long as we have an efficient algorithm for the
offline problem (given c ∈ Rn find x ∈ S to minimize c ·x) and so long as the cost vectors
are bounded, we can efficiently solve the online problem of performing nearly as well as
the best fixed x ∈ S in hindsight. This generalizes the classic “expert advice” problem,
because we do not require the set S to be represented explicitly: we just need an efficient
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oracle for selecting the best x ∈ S in hindsight. Further, it decouples the number of experts
from the underlying dimensionality n of the decision set, under the assumption the cost of
a decision is a linear function of n features of the decision. The standard experts setting
can be recovered by letting S = {e1, . . . , en}, the columns of the n× n identity matrix.

A problem that fits naturally into this framework is an online shortest path problem
where we repeatedly travel between two points a and b in some graph whose edge costs
change each day (say, due to traffic). In this case, we can view the set of paths as a set
S of points in a space of dimension equal to the number of edges in the graph, and ct is
simply the vector of edge costs on day t. Even though the number of paths in a graph
can be exponential in the number of edges (i.e., the set S is of exponential size), since
we can solve the shortest path problem for any given set of edge lengths, we can apply
the Kalai-Vempala algorithm. (Note that a different algorithm for the special case of the
online shortest path problem is given by Takimoto and Warmuth [2002].)

A natural generalization of the above problem, considered by Awerbuch and Kleinberg
[2004], is to imagine that rather than being given the entire cost vector ct, the algorithm
is simply told the cost incurred ct · xt. For example, in the case of shortest paths, rather
than being told the lengths of all edges at time t, this would correspond to just being
told the total time taken to reach the destination. Thus, this is the “bandit version” of the
Kalai-Vempala setting. Awerbuch and Kleinberg present two results: an algorithm for the
general problem in the presence of an oblivious adversary, and an algorithm for the special
case of the shortest path problem that works in the presence of an adaptive adversary. The
difference between the two adversaries is that an oblivious adversary must commit to the
entire sequence of cost vectors in advance, whereas an adaptive adversary may determine
the next cost vector based on the online algorithm’s play (and hence, the information the
algorithm received) in the previous time steps. Thus, an adaptive adversary is in essence
playing a repeated game. They leave open the question of achieving good regret guarantees
for an adaptive adversary in the general setting.

In this chapter, we solve the open question of [Awerbuch and Kleinberg, 2004], giving
an algorithm for the general bandit setting in the presence of an adaptive adversary. More-
over, our method is significantly simpler than the special-purpose algorithm of Awerbuch
and Kleinberg for shortest paths. Our bounds are somewhat worse: we achieve regret
bounds of O(T 3/4

√
ln T ) compared to the O(T 2/3) bounds of [Awerbuch and Kleinberg,

2004].

The basic idea of our approach is as follows. We begin by noticing that the only
history information used by the Kalai-Vempala algorithm in determining its action at time
t is the sum c1:t−1 =

∑t−1
τ=1 cτ of all cost vectors received so far (we use this abbreviated

notation for sums over iteration indexes throughout the chapter). Furthermore, the way
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this is used in the algorithm is by adding random noise µ to this vector, and then calling
the offline oracle to find the xt ∈ S that minimizes (c1:t−1 + µ) · xt. So, if we can
design a bandit algorithm that produces an estimate ĉ1:t−1 of c1:t−1, and show that with
high probability even an adaptive adversary will not cause ĉ1:t−1 to differ too substantially
from c1:t−1, we can then argue that the distribution ĉ1:t−1 +µ is close enough to c1:t−1 +µ
for the Kalai-Vempala analysis to apply. In fact, to make our analysis a bit more general,
so that we could potentially use other algorithms as subroutines, we will argue a little
differently. Let OPT(c) = minx∈S(c · x). We will show that with high probability,
OPT(ĉ1:T ) is close to OPT(c1:T ) and ĉ1:T satisfies conditions needed for the subroutine
to achieve low regret on ĉ1:T . This means that our subroutine, which believes it has seen
ĉ1:T , will achieve performance on ĉ1:T close to OPT(c1:T ). We then finish off by arguing
that our performance on c1:T is close to its performance on ĉ1:T .

The behavior of the bandit algorithm will in fact be fairly simple. We begin by choos-
ing a basis B of (at most) n points in S to use for sampling (we address the issue of how
B is chosen when we describe our algorithm in detail). Then, at each time step t, with
probability γ we explore by playing a random basis element, and otherwise (with proba-
bility 1 − γ) we exploit by playing according to the Kalai-Vempala algorithm. For each
basis element bj , we use our cost incurred while exploring with that basis element, scaled
by n/γ, as an estimate of c1:t−1 ·bj . Using martingale tail inequalities, we argue that even
an adaptive adversary cannot make our estimate differ too wildly from the true value of
c1:t−1 · bj , and use this to show that after matrix inversion, our estimate ĉ1:t−1 is close to
its correct value with high probability.

6.2 Problem Formalization

We can now fully formalize the problem. First, however, we establish a few notational
conventions. As mentioned previously, we use superscripts to index iterations (or rounds)
of our algorithm, and use the abbreviated summation notation c1:t when summing variables
over iterations. Vectors quantities are indicated in bold, and subscripts index into vectors
or sets. Hats (such as ĉt) denote estimates of the corresponding actual quantities. The
variables and constants used in this chapter are summarized in Table (6.1).

As mentioned above, we consider the setting of [Kalai and Vempala, 2003] in which
we have an arbitrary (bounded) set S ⊆ Rn of feasible points. At each time step t, the
online algorithm A must select a point xt ∈ S and simultaneously an adversary selects a
cost vector ct ∈ Rn. The algorithm then incurs cost ct · xt. Unlike [Kalai and Vempala,
2003], however, rather than being told ct, the algorithm simply learns its cost ct · xt.
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For simplicity, throughout this chapter we assume a fixed adaptive adversary V and
time horizon T . Since our choice of algorithm parameters depends on T , we assume1 T is
known to the algorithm. We refer to the sequence of decisions made by the algorithm so
far as a decision history, which can be written ht = [x1, . . . ,xt]. Let H∗ be the set of all
possible decision histories of length 0 through T − 1. Without loss of generality [see Auer
et al., 1995, for example], we assume our adaptive adversary is deterministic, as specified
by a function V : H∗ → Rn, a mapping from decision histories to cost vectors. Thus,
V(ht−1) = ct is the cost vector for timestep t.

We can view our online decision problem as a game, where on each iteration t the
adversary V selects a new cost vector ct based on ht−1, and the online algorithmA selects
a decision x ∈ S based on its past plays and observations, and possibly additional hidden
state or randomness. Then, A pays ct · xt and observes this cost. For our analysis, we
assume a L1 bound on S, namely ‖x‖1 ≤ D/2 for all x ∈ S, so ‖x − y‖1 ≤ D for all
x,y ∈ S. We also assume that |c · x| ≤ M for all x ∈ S and all c played by V . We also
assume S is full rank: if it is not we simply project to a lower-dimensional representation.
Some of these assumptions can be lifted or modified, but this set of assumptions simplifies
the analysis.

For a fixed decision history hT and cost history kT = (c1, . . . , cT ), we define
loss(hT , kT ) =

∑T
t=1(c

t · xt). For a randomized algorithm A and adversary V , we
define the random variable loss(A,V) to be loss(hT , kT ), where hT is drawn from the
distribution over histories defined by A and V , and kT = (V(h0), . . . ,V(hT−1)). When it
is clear from context, we will omit the dependence on V , writing only loss(A).

Our goal is to define an online algorithm with low regret. That is, we want a guarantee
that the total loss incurred will, in expectation, not be much larger than the optimal strategy
in hindsight against the cost sequence we actually faced. To formalize this, first define an
oracleR : Rn → S that solves the offline optimization problem,R(c) = argminx∈S(c·x).
We then define OPT(kT ) = c1:T · R(c1:T ). Similarly, OPT(A,V) is the random variable
OPT(kT ) when kT is generated by playing V against A. We again drop the dependence
on V and A when it is clear from context. Formally, we define expected regret as

E [loss(A,V)−OPT(A,V)] = E[loss(A,V)]− E

[
min
x∈S

T∑
t=1

(ct · x)

]
. (6.1)

Note that the E[OPT(A,V)] term corresponds to applying the min operator separately
to each possible cost history to find the best fixed decision with respect to that particular

1One can remove this requirement by guessing T , and doubling the guess each time we play longer than
expected (see, for example, Theorem 6.4 from Auer et al. [2002]).
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Choose parameters γ and ε, where ε is a parameter of GEX
t = 1
Fix a basis B = {b1, . . . ,bn} ⊆ S
while playing do

Let χt = 1 with probability γ and χt = 0 otherwise
if χt = 0 then

Select xt from the distribution GEX(ĉ1, . . . , ĉt−1)
Incur cost zt = ct · xt

ĉt = 0 ∈ Rn

else
Draw j uniformly at random from {1, . . . , n}
xt = bj

Incur cost and observe zt = ct · xt

Define ˆ̀t
by ˆ̀t

i = 0 for i 6= j and ˆ̀t
j = (n/γ)zt

ĉt = (B†)−1ˆ̀t

end if
ĉ1:t = ĉ1:t−1 + ĉt

t = t + 1
end while

Figure 6.1: The bandit-style geometric decision algorithm against an adaptive adversary
(BGA).

cost history, and then taking the expectation with respect to these histories. Auer et al.
[1995] give an alternative weaker definition of regret. We discuss relationships between
the definitions in Appendix D.

6.3 Algorithm

We introduce an algorithm we call BGA, standing for Bandit-style Geometric decision
algorithm against an Adaptive adversary. The algorithm alternates between playing deci-
sions from a fixed basis to get unbiased estimates of costs, and playing (hopefully) good
decisions based on those estimates. In order to determine the good decisions to play, it uses
some online geometric optimization algorithm for the full-observation problem. We de-
note this algorithm by GEX (Geometric Experts algorithm). The implementation of GEX

161



we analyze is based on the FPL algorithm of Kalai and Vempala [2003]; we detail this
implementation and analysis in Appendix C. However, other algorithms could be used, for
example the algorithm of Zinkevich [2003] when S is convex. We view GEX as a function
from the sequence of previous cost vectors (ĉ1, . . . , ĉt−1) to distributions over decisions.

Pseudocode for our algorithm is given in Algorithm (1). On each timestep, we make
decision xt. With probability (1 − γ), BGA plays a recommendation xt = x̃t ∈ S from
GEX. With probability γ, we ignore x̃t and play a basis decision, xt = bi uniformly
at random from a sampling basis B = {b1, . . . ,bn}. The indicator variable χt is 1 on
exploration iterations and 0 otherwise.

Our sampling basis B is a n × n matrix with columns bi ∈ S, so we can write x =
Bw for any x ∈ Rn and weights w ∈ Rn. For a given cost vector c, let ` = B†c
(the superscript † indicates transpose). This is the vector of decision costs for the basis
decisions, so `t

i = ct · bi. We define ˆ̀t
, an estimate of `t, as follows: Let ˆ̀t

= 0 ∈ Rn

on exploitation iterations. If on an exploration iteration we play bj , then ˆ̀t
is the vector

where ˆ̀t
i = 0 for i 6= j and ˆ̀t

j = n
γ
(ct · bj). Note that ct · bj is the observed quantity,

the cost of basis decision bj . On each iteration, we estimate ct by ĉt = (B†)−1ˆ̀t
. It is

straightforward to show that ˆ̀t
is an unbiased estimate of basis decision costs and that ĉt

is an unbiased estimate of ct on each timestep t.

The choice of the sampling basis plays an important role in the analysis of our algo-
rithm. In particular, we use a barycentric spanner, introduced in [Awerbuch and Kleinberg,
2004]. A barycentric spanner B = {b1, . . . ,bn} is a basis for S such that bi ∈ S and
for all x ∈ S we can write x = Bw with coefficients wi ∈ [−1, 1]. It may not be easy
to find exact barycentric spanners in all cases, but Awerbuch and Kleinberg [2004] prove
they always exist and gives an algorithm for finding 2-approximate barycentric spanners
(where the weights wi ∈ [−2, 2]), which is sufficient for our purposes.

6.4 Analysis

6.4.1 Preliminaries

At each time step, BGA either (with probability 1− γ) plays the recommendation x̃t from
GEX, or else (with probability γ) plays a random basis vector from B. For purposes of
analysis, however, it will be convenient to imagine that we request a recommendation x̃t

from GEX on every iteration, and also that we randomly pick a basis to explore, bt ∈
{b1, . . . ,bn}, on each iteration. We then decide to play either x̃t or bt based on the
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S ⊆ Rn set of decisions, a compact subset of Rn

D ∈ R L1 bound on diameter of S, ∀x,y ∈ S, |x− y|1 ≤ D
n ∈ N dimension of decision space
ht decision history , ht = x1, . . . ,xt

H∗ set of possible decision histories
V : H∗ → Rn adversary, function from decision histories to cost vectors
A an online optimization algorithm
Gt−1 history of BGA randomness for timesteps 1 through t− 1
ct ∈ Rn cost vector on time t
ĉt ∈ Rn BGA’s estimate of the cost vector on time t
M ∈ R+ bound on single-iteration cost, |ct · xt| ≤M
B ⊆ S sampling basis B = {b1, . . . ,bn}
β∞ ∈ R matrix max norm on (B†)−1

`t ∈ [−M,M ]n vector, `t
i = ct · bi for bi ∈ B

ˆ̀t ∈ Rn BGA’s estimate of `t

T ∈ N end of time, index of final iteration
xt ∈ S BGA’s decision on time t
x̃t ∈ S decision recommended by GEX on time t
χt ∈ {0, 1} indicator, χt = 1 if BGA explores on t, 0 otherwise
γ ∈ [0, 1] the probability BGA explores on each timestep
zt ∈ [−M,M ] BGA’s loss on iteration t, zt = ct · xt,
ẑt ∈ [−R,R] loss of GEX, ẑt = ĉt · x̃t

Table 6.1: Summary of notation used in the chapter.

outcome χt of a coin of bias γ. Thus, the complete history of the algorithm is specified by
the algorithm history Gt−1 = [χ1, x̃1,b1, χ2, x̃2,b2, . . . , χt−1, x̃t−1,bt−1], which encodes
all previous random choices. The sample space for all probabilities and expectations is
the set of all possible algorithm histories of length T . Thus, for a given adversary V , the
various random variables and vectors we consider, such as xt, ct, ĉt, x̃t, and others, can all
be viewed as functions on the set of possible algorithm histories. Unless otherwise stated,
our expectations and probabilities are with respect to the distribution over these histories.

A partial history Gt−1 can be viewed a subset of the sample space (an event) consisting
of all complete histories that have Gt−1 as a prefix. We frequently consider conditional
distributions and corresponding expectations with respect to partial algorithm histories.
For instance, if we condition on a history Gt−1, the random variables c1, . . . , ct, `1, . . . , `t,
ˆ̀1

, . . . , ˆ̀
t−1

, ĉ1, . . . ĉt−1, x1, . . . ,xt−1, and χ1, . . . , χt−1 are fully determined.

We now outline the general structure of our argument. Let ẑt = ĉt · x̃t be the loss
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perceived by the GEX on iteration t. In keeping with earlier definitions, loss(BGA) =
z1:T and loss(GEX) = ẑ1:T . We also let OPT = OPT(BGA,V) = c1:T · R(c1:T ), the
performance of the best post-hoc decision, and similarly ÔPT = OPT(ĉ1, . . . , ĉT ) =
ĉ1:t · R(ĉ1:t).

The base of our analysis is a bound on the loss of GEX with respect to the cost vectors
ĉt of the form

E[loss(GEX)] ≤ E[ÔPT] + (terms). (6.2)

Such a result is given in Appendix C, and follows from an adaptation of the analysis of
Kalai and Vempala [2003]. We then prove statements having the general form

E[loss(BGA)] ≤ E[loss(GEX)] + (terms) (6.3)

and
E[ÔPT] ≤ E[OPT] + (terms). (6.4)

These statements connect our real loss to the “imaginary” loss of GEX, and similarly
connect the loss of the best decision in GEX’s imagined world with the loss of the best
decision in the real world. Combining the results corresponding to Equations (6.2), (6.3),
and (6.4) leads to an overall bound on the regret of BGA.

6.4.2 High Probability Bounds on Estimates

We prove a bound on the accuracy of BGA’s estimates ˆ̀t
, and use this to show a relation-

ship between OPT and ÔPT of the form in Equation 6.4.

Define random variables e0 = 0 and et = `t − ˆ̀t
. We are really interested in the

corresponding sums e1:t, where e1:t
i is the total error in our estimate of c1:t · bi. We now

bound |e1:t
i |.

Theorem 6.4.1. For λ > 0,

Pr

[∣∣e1:t
i

∣∣ ≥ λ
nM

γ

√
t

]
≤ 2e−λ2/2.

Proof. It is sufficient to show the sequence e0, e1, e1:2, e1:3, . . . , e1:T of random vari-
ables is a bounded martingale sequence with respect to the filter G0, G1, . . . , GT ; that is,
E[e1:t

i | Gt−1] = e1:t−1
i . The result then follows from Azuma’s Inequality [see Motwani

and Raghavan, 1995, for example]).
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First, observe that e1:t
i = `t

i − ˆ̀t
i + e1:t−1

i . Further, the cost vector ct is determined if
we know Gt−1, and so `t

i is also fixed. Thus, accounting for the γ
n

probability we explore
a particular basis decision bi, we have

E
[
e1:t

i | Gt−1
]

=
γ

n

[
`t
i −

n

γ
`t
i + e1:t−1

i

]
+
(
1− γ

n

)
[`t

i − 0 + e1:t−1
i ] = e1:t−1

i ,

and so we conclude that the e1:t
i forms a martingale sequence. Notice that |e1:t

i − e1:t−1
i | =

|`t
i − ˆ̀t

i|. If we don’t sample, ˆ̀t
i = 0 and so |e1:t

i − e1:t−1
i | ≤M . If we do sample, we have

ˆ̀t
i = n

γ
`t
i, and so |e1:t

i − e1:t−1
i | ≤ nM

γ
. This bound is worse, so it holds in both cases. The

result now follows from Azuma’s inequality.

Let β∞ = ‖(B†)−1‖∞, a matrix L∞-norm on (B†)−1, so that for any w, ‖(B†)−1w‖∞ ≤
β∞ ‖w‖∞.

Corollary 6.4.2. For δ ∈ (0, 1], and all t from 1 to T ,

Pr
[
‖ĉ1:t − c1:t‖∞ ≥ β∞J(δ, γ)

√
t
]
≤ δ.

where J(δ, γ) = 1
γ
nM

√
2 ln(2n/δ).

Proof. Solving δ/n = 2e−λ2/2 yields λ =
√

2 ln(2n/δ), and then using this value in
Theorem (6.4.1) gives

Pr
[
|e1:t

i | ≥ J(δ, γ)
√

t
]
≤ δ/n.

for all i ∈ {1, 2, . . . , n}. Then,

Pr
[
‖e1:t‖∞ ≥ J(δ, γ)

√
t
]
≤

n∑
i=1

Pr
[
|e1:t

i | ≥ J(δ, γ)
√

t
]

≤ δ

by the union bound. Now, notice that we can relate ˆ̀1:t
and ĉ1:t by

(B†)−1ˆ̀1:t
= (B†)−1

t∑
τ=1

`τ =
t∑

τ=1

(B†)−1`τ =
t∑

τ=1

ĉτ = ĉ1:t.
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and similarly for `1:t and c1:t. Then

Pr
[
‖ĉ1:t − c1:t‖∞ ≥ β∞J(δ, γ)

√
t
]

= Pr
[
‖(B†)−1(ˆ̀

1:t
− `1:t)‖∞ ≥ β∞J(δ, γ)

√
t
]

≤ Pr
[
β∞‖e1:t‖∞ ≥ β∞J(δ, γ)

√
t
]

= Pr
[
‖e1:t‖∞ ≥ J(δ, γ)

√
t
]

≤ δ.

We can now prove our main result for the section, a statement of the form of Equa-
tion (6.4) relating OPT and ÔPT:

Theorem 6.4.3. If we play V against BGA for T timesteps,

E[ÔPT] ≤ E[OPT] + (1− δ)

(
3

2
Dβ∞J(δ, γ)

√
T

)
+ δMT.

Proof. Let Φ = ĉ1:T − c1:T . By definition of R, R(ĉ1:T ) · ĉ1:T ≤ R(c1:T ) · ĉ1:T or
equivalently R(c1:T + Φ) · (c1:T + Φ) ≤ R(c1:T ) · (c1:T + Φ), and so by expanding and
rearranging we have

R(c1:T + Φ) · c1:T −R(c1:T ) · c1:T ≤ (R(c1:T )−R(c1:T + Φ)) · Φ
≤ D‖Φ‖∞. (6.5)

Then,

|OPT−ÔPT| = |R(c1:T ) · c1:T −R(c1:T + Φ) · (c1:T + Φ)|
≤ |(R(c1:T )−R(c1:T + Φ)) · c1:T |+ |R(c1:T + Φ) · Φ|
≤ (D + D/2)‖Φ‖∞,

where we have used Equation (6.5). Recall from Section (6.2), we assume ‖x‖1 ≤ D/2 for
all x ∈ S, so ‖x− y‖1 ≤ D for all x,y ∈ S. The theorem follows by applying the bound
on Φ given by Corollary (6.4.2), and then observing that the above relationship holds for
at least a 1 − δ fraction of the possible algorithm histories. For the other δ fraction, the
difference might be as much as δMT . Writing the overall expectation as the sum of two
expectations conditioned on whether or not the bound holds gives the result.
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6.4.3 Relating the Loss of BGA and its GEX Subroutine

Now we prove a statement like Equation (6.3), relating loss(BGA) to loss(GEX).

Theorem 6.4.4. If we run BGA with parameter γ against V for T timesteps,

E[loss(BGA)] ≤ (1− γ)E[loss(GEX)] + γMT.

Proof. For a given adversary V , Gt−1 fully determines the sequence of cost vectors given
to algorithm GEX. So, we can view GEX as a function from Gt−1 to probability distribu-
tions over S. If we present a cost vector ĉ to GEX, then the expected cost to GEX given
history Gt−1 is

∑
x̃∈S Pr(x̃ | Gt−1) (ĉ · x̃). If we define x̄t =

∑
x̃∈S Pr(x̃ | Gt−1) x̃, we

can re-write the expected loss of GEX against ĉ as ĉ · x̄t; that is, we can view GEX as
incurring the cost of some convex combination of the possible decisions in expectation.
Let ˆ̀t,j

be ˆ̀t
given that we explore by playing basis vector bj on time t, and similarly let

ĉt,j = (B†)−1ˆ̀t,j
. Observe that ˆ̀t,j

i = n
γ
`t
i for j = i and 0 otherwise, and so

n∑
j=1

ˆ̀t,j
=

n

γ
`t =

n

γ
B†ct. (6.6)

Now, we can write

E[ẑt | Gt−1] = (1− γ) 0 + γ
n∑

j=1

1

n

∑
x̃t∈S

Pr(x̃t | Gt−1) (ĉt,j · x̃t)

= γ

[
n∑

j=1

1

n
ĉt,j

]
· x̄t

=
γ

n
(B†)−1

[
n∑

j=1

ˆ̀t,j

]
· x̄t, and using Equation (6.6),

= ct · x̄t.

Now, we consider the conditional expectation of zt and see that

E[zt | Gt−1] = (1− γ)(ct · x̄t) + γ
n∑

i=1

1

n
(ct · bi)

≤ (1− γ)E[ẑt | Gt−1] + γM, (6.7)
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Then we have,

E[zt] = E
[
E[zt | Gt−1]

]
≤ E

[
(1− γ)E[ẑt | Gt−1] + γM

]
= (1− γ)E

[
E[ẑt | Gt−1]

]
+ γM

= (1− γ)E[ẑt] + γM, (6.8)

by using the inequality from Equation (6.7). The theorem follows by summing the in-
equality (6.8) over t from 1 to T and applying linearity of expectation.

6.4.4 A Bound on the Expected Regret of BGA

Theorem 6.4.5. If we run BGA with parameter γ using subroutine GEX with parameter ε
(as defined in Appendix C), then for all δ ∈ (0, 1],

E[loss(BGA)]

≤ E[OPT] +O
(

D
1

γ
nM

√
2 ln(2n/δ)

√
T + δMT +

ε

γ2
n3M2T +

n

ε
+ γMT

)

Proof. In Appendix C, we show an algorithm to plug in for GEX, based on the FPL al-
gorithm of Kalai and Vempala [2003] and give bounds on regret against a deterministic
adaptive adversary. We first show how to apply that analysis to GEX running as a subrou-
tine to BGA.

First, we need to bound |ĉt · x|. By definition, for any x ∈ S, we can write x = Bw
for weights w with wi ∈ [−1, 1] (or [−2, 2] if it is an approximate barycentric spanner).
Note that ‖ˆ̀

t
‖1 ≤ (n

γ
)M , and for any x ∈ S, we can write x as Bw where wi ∈ [−2, 2].

Thus,

|ĉt · x| = |(B†)−1ˆ̀t
·Bw| = |(ˆ̀

t
)†B−1Bw| = |ˆ̀

t
·w| ≤ ‖ˆ̀

t
‖1 ‖w‖∞ ≤

2nM

γ
.

Let R = 2nM/γ. Suppose at the beginning of time we fix the random decisions of BGA
that are not made by GEX, that is, we fix a sequence X = [χ1,b1, . . . , χT ,bT ]. Fixing
this randomness together with V determines a new deterministic adaptive adversary V̂
that GEX is effectively playing against. To see this, let h̃t−1 = [x̃1, . . . , x̃t−1]. If we
combine h̃t−1 with the information in X , it fully determines a partial history Gt−1. If we
let ht−1 = [x1, . . . ,xt−1] be the partial decision history that can be recovered from Gt−1,
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then V̂(h̃t−1) = χt d
γ
V(ht−1). Thus, when GEX is run as a subroutine of BGA, we can

apply Lemma (C.0.4) from the Appendix and conclude

E[loss(GEX) | X] ≤ E[ÔPT | X] + ε(4n + 2)R2T +
4n

ε
(6.9)

For the remainder of this proof, we use big-Oh notation to simplify the presentation. Now,
taking the expectation of both sides of Equation (6.9),

E[loss(GEX)] ≤ E[ÔPT] +O
(
εnR2T +

n

ε

)
Applying Theorem (6.4.4),

E[loss(BGA)] ≤ (1− γ)E[ÔPT] +O
(
εnR2T +

n

ε
+ γMT

)
and then using Theorem (6.4.3) we have

E[loss(BGA)]

≤ (1− γ)E[OPT] +O
(
J(δ, γ)D

√
T + δMT + εnR2T +

n

ε
+ γMT

)
≤ E[OPT] +O

(
D

1

γ
nM

√
2 ln(2n/δ)

√
T + δMT +

ε

γ2
n3M2T +

n

ε
+ γMT

)
For the last line, note that while E[OPT ] could be negative, it is still bounded by MT ,
and so this just adds another γMT term, which is captured in the big-Oh term.

Ignoring the dependence on n, M , and D and simplifying, we see BGA’s expected
regret is bounded by

E[regret(BGA)] = O

(√
T
√

ln(1/δ)

γ
+ δT +

εT

γ2
+

1

ε
+ γT

)
.

Setting γ = δ = T−1/4 and ε = T−3/4, we get a bound on our loss of orderO(T 3/4
√

ln T ).

6.5 Conclusions and Later Work

We have presented a general algorithm for online optimization over an arbitrary set of de-
cisions S ⊆ Rn, and proved regret bounds for our algorithm that hold against an adaptive
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adversary. A number of questions are raised by this work. In the “flat” bandits prob-
lem, bounds of the form O(

√
T ) are possible against an adaptive adversary [Auer et al.,

2002]. Against a oblivious adversary in the geometric case, a bound ofO(T 2/3) is achieved
by Awerbuch and Kleinberg [2004]. We achieve a bound of O(T 3/4

√
ln T ) for this prob-

lem against an adaptive adversary. Auer et al. [2002] give lower bounds showing that the
O(
√

T ) result is tight, but no such bounds are known for the geometric decision-space
problem. Can our bounds be improved, and what is the corresponding lower bound for the
problem?

After the publication of the work described here, these questions were answered by
Dani and Hayes [2006]. They show that a tighter analysis of the algorithm presented here
in fact has a bound of O(T 2/3) on regret, and they show a corresponding lower bound.

A related issue is the use of information received by the algorithm; our algorithm and
the algorithm of Awerbuch and Kleinberg [2004] only use a γ fraction of the feedback they
receive, which is intuitively unappealing. Further, the lower bound of Dani and Hayes
[2006] depends on the assumption that the information from the 1 − γ fraction exploit
rounds is discarded. This leaves open the possibility that an algorithm that uses all of the
feedback can possibly achieve lower regret.
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Chapter 7

Conclusions

7.1 Summary of Contributions

This thesis makes the following principal contributions; taken together, they provide a
powerful set of modeling and algorithmic tools for creating robust plans of action for
uncertain environments.

• Fast algorithms for MDP planning: The improved prioritized sweeping (IPS) al-
gorithm generalizes Dijkstra’s algorithm, and is fast on problems that are “almost”
deterministic. The prioritized policy iteration algorithm combines the intuition of
IPS with fast policy evaluation using linear solvers, yielding good all-around perfor-
mance; it is especially effective on problems with a great deal of cycling or on prob-
lems that are “almost” policy evaluation problems. For problems with a fixed start
state, the bounded real-time dynamic programming (BRTDP) algorithm improves
over RTDP by providing stationary policies with provable performance guarantees.
BRTDP also offers better convergence properties than many other algorithms for
this problem such as HDP and LRTDP.

• The MDP with adversarial costs formulation: We introduced a generalization of
standard MDP planning that considers a set of potential cost vectors, from which an
adversary selects one, rather than a fixed known cost vector. This formulation can
be used to model a variety of interesting problems, including a sensor-placement /
observation-avoidance game.

• New uses for the convex game framework: We show that optimal oblivious rout-
ing as well as the above adversarial MDP problem can be modeled as bilinear-payoff

171



zero-sum convex games, and show how convex games can be used to extend the
stochastic game framework to handle periods of partial observability. Combined
with the known result that zero-sum extensive-form games can be represented as
convex games, these results establish convex games as a useful modeling frame-
work, and highlight the importance of finding fast algorithms for problems in this
class.

• Fast algorithms for convex games: We introduced the single oracle algorithm and
two versions of the double oracle algorithm, and experimentally demonstrated their
effectiveness on a variety of convex games. These algorithms dramatically outper-
form approaches based on directly solving the linear programs for the games. Ficti-
tious play, a very simple oracle-based algorithm, had remarkably good performance
on one of the problems, Rhode Island hold’em.

• A limited-observation geometric no-regret algorithm: The bandit-style geomet-
ric decision algorithm (BGA) provides no-regret guarantees given complex struc-
tured action sets and a limited total-cost observation model, even when facing an
adaptive adversary. This algorithm can be used to guarantee good performance when
playing a repeated convex game.

7.2 Summary of Open Questions and Future Work

In the preceding chapters we have highlight a variety of promising extensions to the work
presented here. In this section we summarize some of those possibilities for future work,
and also state several open questions and general themes.

• Convex games: Chapter 3 presented a variety of examples of convex games, and
Chapters 5 and 6 presented practical, efficient algorithms for planning in convex
games in the off-line and on-line settings, respectively. We feel that there are po-
tentially many other interesting problems that can be cast as convex games, yielding
immediate algorithmic and theoretical results.

• Extension to NP-hard response problems: For the convex games we have con-
sidered, fast exact best-response oracles were available. However, the double oracle
algorithm approach holds great potential for solving problems when even the best-
response problem is NP-hard. For example, we might consider delivery problem
games where an approximation algorithm for the traveling salesman problem is used
as a best-response oracle.
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• Improving the DOBA+ algorithm: Significant improvements to the DOBA+
algorithm may be possible, while still using the general double oracle game-
approximation technique. Future work includes developing efficient techniques
for finding “good” best responses (Section 5.4), developing a better understanding
of the connections to bundle algorithms for non-smooth optimization (See [Hiriart-
Urruty and Lemaréchal, 1993] for example), and proving convergence guarantees
(perhaps through better aggregation/discarding strategies) that do not rely on inter-
polation with fictitious play.

• Algorithms specialized for EFGs: In Chapter 5, we focused on developing algo-
rithms applicable to general convex games. However, extensive-form games have
significant structure that is perhaps not fully exploited even by considering them
as a convex game with very fast best response oracles. For example, rather than
a black-box best-response algorithm, the dynamic-programming algorithm for best
responses on an EFG allows efficient linear optimization over the full set of best
responses, as well as methods for sampling from or even enumerating the set. The
tree structure of EFGs also opens up the possibility of decomposition algorithms—
we have already done preliminary work on such an algorithm.

• More efficient EFG representations: The convex extensive-form game model of
Chapter 4 shows that the standard EFG representation can be very inefficient: many
EFGs have exponentially more compact representations as CEFGs.

The GameShrink algorithm of Gilpin and Sandholm [2006b] provides another ap-
proach to creating more compact EFG representations: their algorithm can take a
special type of EFG game and transform it to a potentially much smaller but strate-
gically equivalent EFG.

We have already begun a preliminary line of work that shows that the approach of
Gilpin and Sandholm [2006b] can be greatly extended. How much more is possi-
ble? Clearly arbitrary POSGs cannot be represented as EFGs or CEFGs (barring a
complete collapse of the complexity hierarchy), but pushing on the representative
power of EFG-like game models seems to be an attractive avenue for scaling up
game-theoretic planning approaches.

• Extensive-form games and cost-paired MDP games: There appears to be a a
close connection between extensive-form games and cost-paired MDP games. An
extensive-form game in sequence-weight representation can be specified by two
trees (the information set / sequence tree for each player) together with a matrix
that provides a linear mapping from strategies in one tree to edge-costs in the other,
and vice versa. Each tree has player nodes (corresponding to information sets) and
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non-player nodes where the next state is chosen according to the uniform distribu-
tion.1 Under this interpretation, the sequence weights in the extensive-form game
become exactly the state-action visitation frequencies in a cost-paired MDP game.

This connections raises several interesting questions. First, the MDPs in cost-paired
MDP games can contain cycles, while the information set trees of an EFG are by
definition acyclic. In this way, cost-paired MDP games are actually more general
than EFGs. What does this generality imply when we interpret a cost-paired MDP
game as an EFG?

Second, Even-Dar et al. [2005] present an interesting algorithm for acting in an MDP
where costs can change. This is exactly what happens in a cost-paired MDP game
(or an EFG under this interpretation) when one player changes their policy. Thus, it
should be possible to adapt the theoretical guarantees of Even-Dar et al. [2005] to
EFGs where we imagine placing a no-regret (experts) algorithm at each information
set for each player. With suitable simulation in this game, it should be possible to
prove both players converge to a minimax optimal strategy.

As this summary shows, this thesis raises more questions than it answers. Perhaps the
only certainty is that the problem of planning in uncertain environments remains both
challenging and important.

1This distribution can potentially also directly account for some actions of the random player, making it
non-uniform. In the usual sequence-form best response dynamic program, the “junction” nodes are thought
of as sum nodes instead of average nodes; however, it is simple to transform the problem between these two
interpretations.
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Appendix A

The Transition Functions of a CEFG
Interpreted as Probabilities

Lemma A.0.1. For any CEFG G where some f ss′
p (xp) 6∈ [0, 1], there exists an equivalent

CEFG G′ where f ss′
p (xp) ∈ [0, 1].

Proof. Fix a particular problematic s, s′ in G; as these states are fixed, we drop the s, s′

superscripts from the f -functions. To prove the theorem, we define an f -equivalent G′

with f -functions denote g where gss′
p ∈ [0, 1] for all p. As G has a finite number of edges,

this transformation can be applied repeatedly to prove the lemma. Define

f(x̄) =
∏

p

fp(xp).

Each player chooses xp ∈ Xφp(s) independently. Thus, if for some player p there exist
x, x′ ∈ Xu such that fp(x) > 0 and fp(x

′) < 0, then fixing the other players actions, either
x or x′ would make Pr(s′ | s, x̄) =

∏
p∈A(s) f ss′

p (xp) negative, violating Equation (4.2).

Thus, fp(xp) always has the same sign for all xp ∈ Xu. Since Pr(s′ | s) must be
non-negative, there must be an even number (possibly 0) of players where fp(xp) < 0. We
can simply switch the sign on all of these players’ f -functions, creating an f -equivalent
game where fp(xp) > 0 for all players.

Suppose for some players and action choices, fp(xp) > 1. For each player, define
x∗p = argmaxx∈Xu

fp(x), and let αp = fp(x
∗
p). By assumption, β =

∏
p αp ≤ 1, as this

is the probability of the s to s′ transition when each player selects x∗p. Now, for G′ define
gp = (1/αp)fp. Clearly gp(x) ≤ 1, as we are dividing by the maximum value. However,
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we are off by the constant β, as for any x̄ ∈ X̄s, f(x̄) = βg(x̄). We can resolve this easily
enough, however, as β ≤ 1. We simply set g1 = (β/α1)f1 instead of g1 = (1/α1)f1 and
so g1(x1) ∈ [0, β] instead of g1(x1) ∈ [0, 1]. We now see that for all x̄,∏

p

fp(xp) =
∏

p

gp(xp)

and so G′ is f -equivalent to G and has f -functions for the s→ s′ transition that only take
on values in [0, 1].
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Appendix B

The Cone Extension of a Polyhedron

Let X = {x | Ax = b, x ≥ 0} be a polyhedron. Then, the cone extension of X is

Xc = {(αx, α) | x ∈ X, α ≥ 0} (B.1)
(B.2)

Thus, (xc, α) ∈ Xc if and only if (1/α)xc ∈ X and α ≥ 0. Then, writing (xc, α) for the
(column) vector in Rn+1 formed by appending α to the end of xc, we have

(1/α)xc ∈ X and α ≥ 0 ⇔ A(1/α)xc = b and (xc, α) ≥ 0 (B.3)
⇔ Axc = αb and (xc, α) ≥ 0 (B.4)
⇔ (A, b) (xc, α) = 0 and (xc, α) ≥ 0, (B.5)

where [A, b] is the matrix formed by adding b as a new final column to A. Thus,

Xc = {(xc, α) | (A, b) (xc, α) = 0, (xc, α) ≥ 0}.
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Appendix C

Specification of a Geometric Experts
Algorithm

In this section we point out how the FPL algorithm and analysis of Kalai and Vempala
[2003] can be adapted to our setting to use as the GEX subroutine, and prove the corre-
sponding bound needed for Theorem (6.4.5). In particular, we need a bound for an arbi-
trary S ⊆ Rn and arbitrary cost vectors, requiring only that on each timestep, |c · x| ≤ R.
Further, the bound must hold against an adaptive adversary.

FPL solves the online optimization problem when the entire cost vector ct is observed
at each timestep. It maintains the sum c1:t−1, and on each timestep plays decision xt =
R(c1:t−1 +µ), where µ is chosen uniformly at random from [0, 1/ε]n, given ε, a parameter
of the algorithm. The analysis of FPL in Kalai and Vempala [2003] assumes positive
cost vectors c satisfying ‖c‖1 ≤ A, and positive decision vectors from S ⊆ Rn

+ with
‖x − y‖1 ≤ D for all x,y ∈ S and |c · x − c · y| ≤ R for all cost vectors c and
x,y ∈ S. Further, the bounds proved are with respect to a fixed series of cost vectors, not
an adaptive adversary. We now show how to bridge the gap from these assumptions to our
assumptions.

First, we adapt an argument from Awerbuch and Kleinberg [2004], showing that by
using our barycentric spanner basis, we can transform our problem into one where the
assumptions of FPL are met. We then argue that a corresponding bound holds against an
adaptive adversary.

Lemma C.0.2. Let S ⊆ Rn be a set of (not necessarily positive) decisions, and kt =
[c1, . . . , cT ] a set of cost vectors on those decisions, such that |ct · x| ≤ R for all x ∈ S
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and ct ∈ kt. Then, there is an algorithm A(ε) that achieves

E[loss(A(ε), kt)] ≤ OPT(kt) + ε(4n + 2)R2T +
4n

ε

Proof. This an adaptation of the arguments of Appendix A of Awerbuch and Kleinberg
[2004]. Fix a barycentric spanner B = {b1, . . . ,bn} for S. Then, for each x ∈ S, let
x = Bw and define f(x) = [−

∑n
i=1 wi,w1, . . . ,wn]. Let f(S) = S ′. For each cost

vector ct define g(ct) = [R, R + ct · bs1, . . . , R + ct · bn]. It is straightforward to
verify that ct · x = g(ct) · f(x), and further g(ct) ≥ 0, ‖g(ct)‖1 ≤ (2n + 1)R, and the
difference in cost of any two decisions against a fixed g(ct) is at most 2R. By definition
of a barycentric spanner, wi ∈ [−1, 1] and so the L1 diameter of S ′ is at most 4n. Note the
assumption of positive decision vectors in Theorem 1 of Kalai and Vempala [2003] can
easily be lifted by additively shifting the space of decision vectors until it is positive. This
changes the loss of the algorithm and of the best decision by the same amount, so additive
regret bounds are unchanged. The result of this lemma then follows from the bound of
Theorem 1 from Kalai and Vempala [2003].

We now need to extend the above bound to adaptive adversaries. The key point here
is that the algorithm is self-oblivious. A self-oblivious algorithm always plays a decision
from some distribution that depends only on the cost history so far and not the outcome
of its previous probabilistic choices. Thus, a self-oblivious algorithm can be viewed as a
function from cost histories to distributions over decisions. For such algorithms, for any
(possibly adaptive) adversary V there always exists an oblivious adversary that causes at
least as much regret. The idea for the proof below is due to Adam Kalai.1

Lemma C.0.3. Fix T , let H∗ be the set of decision histories of length 0 to T − 1, and
let K∗ be the set of all cost histories of length 0 to T − 1. Then, fix a decision algorithm
A : K∗ → ∆(S), where ∆(S) is the set of probability distributions on the set S of possible
decisions. Define

R(A,V) = EA,V

[
T∑

t=1

ctxt −min
x∈S

T∑
t=1

ctx

]
Let V be an arbitrary adversary. Then, there exists an oblivious adversary V ′ such that

R(A,V ′) ≥ R(A,V)

1We thank Tom Hayes and Varsha Dani for pointing out a bug in the proof we had in the original version
of this paper.
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Proof. An adversary is t-oblivious if its first t costs are chosen obliviously; note all adver-
saries are 1-oblivious. Let V be an arbitrary adversary, and suppose it is k-oblivious. If
k = T , we are done. Otherwise, let c1

o, . . . , ck
o be the first k (obliviously chosen) costs se-

lected by V . Expectations are over the random variables x1, . . . ,xT and c1, . . . , cT when V
plays againstA, though in this case c1, . . . , ck are fully determined. Let KT = c1, . . . , cT ,
the random vector corresponding to the cost history.

Let g(KT ) = minx∈S

∑T
t=1 ctx. Using linearity of expectation, we can split the ex-

pected regret R(A,V) into 3 terms:

E[
k∑

t=1

ct
ox

t] + E[ck+1xk+1] + E[
T∑

t=k+2

ctxt − g(KT )]

Since A and c1, . . . , ck are fixed, E[xk+1] = E[A(c1
o, . . . , ck

o)] = x̄ is also known.
Since V is only k-oblivious, it gets to pick ck+1 with knowledge of x1, . . . ,xk. We have

Pr(ck+1) =

∫
x1,...,xk

Pr(x1, . . . ,xk)I[V(x1, . . . ,xk) = ck+1],

where I is an indicator function, returning 1 if V(x1, . . . ,xk) = ck+1 and zero otherwise.
The probability Pr(x1, . . . ,xk) is well defined because V and A are fixed. Importantly,
note that the distribution over ck+1 is independent of the distribution over xk+1; this fol-
lows from the assumption that A is self-oblivious, that is, it picks its distributions based
only on the past cost vectors, not on its own actions. Thus, letting Lk = E[

∑k
t=1 ct

ox
t] we

can write

R(A,V) = Lk + x̄E[ck+1] + E[
T∑

t=k+2

ctxt − g(KT )] (C.1)

= Lk +

∫
ck+1

Pr(ck+1)

[
ck+1x̄ + E[

T∑
t=k+2

ctxt − g(KT ) | ck+1]

]
dck+1 (C.2)

≤ Lk + sup
ck+1

[
ck+1x̄ + E[

T∑
t=k+2

ctxt − g(KT ) | ck+1],

]
(C.3)

where the sup is over all ck+1 with Pr(ck+1) > 0. Observe that the quantity inside the
supremum is well defined before any costs or decisions are selected, and so V could do at
least as well by selecting ck+1 obliviously to be some c that achieves the supremum. Thus,
there is a (k + 1)-oblivious adversary that causes at least as much regret as V . Extending
this result inductively, we conclude there is a fully oblivious (T -oblivious) adversary V ′
such that R(A,V ′) ≥ R(A,V).
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Lemma C.0.4. The regret bound from Lemma C.0.2 applies even if the adversary is adap-
tive.

Proof. First, observe that as long as FPL re-randomizes at each timestep, it is self-
oblivious, and so Lemma C.0.3 applies. Suppose some adaptive adversary V causes regret
that exceeds the bound in Lemma C.0.2. We can apply Lemma C.0.3 to V and construct
an oblivious V ′ that also exceeds the bound, a contradiction.

Thus, we can use A(ε) as our GEX subroutine for full-observation online geometric
optimization.
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Appendix D

Notions of Regret

In Auer et al. [1995], an alternative definition of regret is given, namely,

E[lossV,A(hT )]−min
x∈S

E

[
T∑

t=1

ct · x

]
. (D.1)

This definition is equivalent to ours in the case of an oblivious adversary, but against an
adaptive adversary the “best decision” for this definition is not the best decision for a
particular decision history, but the best decision if the decision must be chosen before a
cost history is selected according to the distribution over such histories. In particular,

E

[
min
x∈S

T∑
t=1

ct · x

]
≤ min

x∈S
E

[
T∑

t=1

ct · x

]
and so a bound on Equation (6.1) is at least as strong as a bound on Equation (D.1). In
fact, bounds on Equation (D.1) can be very poor when the adversary is adaptive. There are
natural examples where the stronger definition (6.1) gives regret O(T ) while the weaker
definition (D.1) indicates no regret. Adapting an example from Auer et al. [1995], let S =
{e1, . . . , en} (the “flat” bandit setting) and consider the algorithm A that plays uniformly
at random from S. The adversary V gives c1 = 0, and if A then plays ei on the first
iteration, thereafter the adversary plays the cost vector ct where ct

i = 0 and ct
j = 1 for j 6=

i. The expected loss ofA is n−1
n

T . For regret as defined by Equation (D.1), minx∈S E[c1:T ·
x] = n−1

n
T , indicating no regret, while E[minx∈S(c1:T · x)] = 0, and so the stronger

definition indicates O(T ) regret.

Unfortunately, this implies the proof techniques for bounds on expected weak regret
like those in Auer et al. [2002] and Awerbuch and Kleinberg [2004] cannot be used to get
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bounds on regret as defined by Equation (6.1). The problem is that even if we have unbi-
ased estimates of the costs, these cannot be used to evaluate the term E[minx∈S

∑T
t=1(c

t ·
x)] in (6.1) because min is a non-linear operator. We surmount this problem by proving
high-probability bounds on our estimates of ct, which allows us to use a union bound
to evaluate the expectation over the min operator. Note that the high probability bounds
proved in Auer et al. [2002] and Awerbuch and Kleinberg [2004] can be seen as corre-
sponding to our definition of expected regret.
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