
Approximation Algorithms for Metric
Embedding Problems

Kedar Dhamdhere

CMU-CS-05-152

June 2005

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
R. Ravi, Chair
Anupam Gupta
Guy Blelloch

Piotr Indyk, MIT

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2005 Kedar Dhamdhere

This research was sponsored by the National Science Foundation (NSF) under grant nos. NSF CCF 04-
30751, ITR grant CCR-0122581 (The ALADDIN Project) and NSF CCR-0105548.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of the NSF, the U.S. Government, or any
other entity.

Keywords: Approximation Algorithms, Metric Embedding, Distortion, Line metric,
Spanning Trees

Abstract

We initiate the study of metric embedding problems from an approxima-
tion point of view. Metric embedding is a map from a guest metric to a host
metric. The quality of the embedding is defined in terms of distortion, the
ratio by which pairwise distances get skewed in the host metric. While metric
embeddings in general have received quite a lot of attention in theory commu-
nity, most of the results about distortion prove uniform bounds that work for
various families of host and guest metric.

In this dissertation, we address the question: how to find the best embed-
ding of the particular input metric into a host metric. We consider the real line
as the host metric in our study. We consider the following measures of quality
of an embedding: distortion, average distortion and additive distortion. The
distortion is the maximum ratio by which a pairwise distance gets stretched in
a non-contracting embedding. We giveO(

√
n)-approximation for the distor-

tion of embedding an unweighted graph metric to a line metric. The average
distortion is the ratio of average distance in the embedded metric to that in
the input metric. We give a 17-approximation for the average distortion when
embedding an arbitrary finite metric to a line metric. The additive distortion
is the total absolute difference between input and output distances. We pro-
vide anO(

√
log n)-approximation for this objective function. We also show

NP-hardness of these problems.
We also consider the problem of linear ordering of a metric, i.e. assigning

numbers from 1 through n to the points in the metric, so as to minimize the
‘stretch’. The stretch is the maximum pairwise distance in the ordering di-
vided by the distance in the input metric. For this problem, we giveO(log3 n)
approximation.

Finally, we consider the problem of constructing a probabilistic embed-
ding of a graph into its spanning trees. We give a simpleO(log2 n)-approximation
algorithm that improves on the algorithm of Elkin et al. Elkin et al. [2005].

iv

Acknowledgements

First of all, I would like to thank my advisor R. Ravi for his invaluable guidance, support
and insights. I would also like to thank my co-advisor Guy Blelloch.

I consider myself fortunate to have Anupam Gupta in the Department. I will be in-
debted to him for helping me grow as a researcher.

I would also like to thank Piotr Indyk for generously offering help with my thesis.

I want to thank all the theory folks at CMU for providing such a wonderful and stim-
ulating research environment. Special thanks to Russell Schwartz, Avrim Blum, Harald
Räcke and Chris Olston. I have learnt a lot from each of you.

Thanks to Nikhil Bansal, Amitabh Sinha, Jochen Könemann, Ke Yang, Shuchi Chawla,
Srinath Sridhar, Amit Manjhi and Sandeep Pandey for being such great friends, colleagues
and collaborators.

Finally, I would like to thank my family for their unconditional love and encourage-
ment and instilling in me the love of learning. A special thanks to Anupriya for all her
love and understanding.

v

vi

Contents

1 Introduction 1

1.1 Average distortion . 2

1.2 Additive distortion . 5

1.3 Classical Distortion . 6

1.4 Weighted Bandwidth . 7

1.5 Embeddings into spanning trees .7

2 Average Distortion 9

2.1 Embedding arbitrary metrics into the line9

2.1.1 Hardness of Embeddings .9

2.1.2 A Constant-factor Approximation Algorithm12

2.2 Approximation Schemes for trees .14

2.3 An exact algorithm for minimizing average tree-edge distortion20

2.3.1 Cost reducing transformations20

2.3.2 Optimal embeddings are Euler tours22

2.3.3 Algorithm . 23

2.4 Discussion .25

3 Additive Distortion 27

3.1 Problem Formulation .27

3.2 Approximation forLp norm . 28

vii

3.2.1 r-restricted mappings .28

3.3 Algorithm . 29

3.4 Approximatingr-restricted mappings30

3.4.1 Two-cost Partition Problem .31

3.5 Improved algorithm .33

3.6 Discussion .34

4 (Classical) Distortion 35

4.1 O(
√
n)-Approximation algorithm for general graphs37

4.2 Better embeddings for unweighted trees39

4.2.1 Prefix Embeddings .39

4.2.2 The Embedding Algorithm .40

4.3 Hardness results .44

4.4 Improved Embedding .46

4.5 Lower bounds: .46

4.6 Algorithm . 47

4.7 Analysis .47

4.8 A different view of the algorithm .48

4.9 Discussion .51

5 Weighted Bandwidth 53

5.1 Algorithm . 55

5.2 Analysis .55

5.3 Discussion .60

6 Spanning Tree Embeddings 61

6.1 The Algorithm .62

6.1.1 Edge-Cutting Probabilities and Recursion Depth64

6.1.2 Bounding Additional Stretch .65

6.2 Stochastic Domination and Tail Bounds66

viii

6.3 Discussion .69

7 Conclusion 71

Bibliography 73

ix

x

List of Figures

2.1 Hardness construction .10

2.2 TypeA transformation .21

2.3 TypeB transformation .21

2.4 Embedding the subtrees .24

2.5 Accounting for the lengths of edges .24

4.1 Partition into small balls .38

4.2 A typical snapshot of AlgorithmTree-Embed 42

4.3 Algorithm Random-Delay .47

5.1 Algorithm Weighted-Bandwidth (WB)56

6.1 AlgorithmRandom-Star-Decomp (G, r) 63

6.2 AlgorithmEmbed-Tree (G, r) . 63

xi

xii

List of Tables

xiii

xiv

Chapter 1

Introduction

Over the past decade, metric embeddings have been objects of much attention in theoret-
ical computer science. This has been largely due to their many algorithmic applications,
which range from simplifying the structure of the input data for approximation and online
problems (Arora [1996, 1998], Bartal [1996], Bartal et al. [1997], Fakcharoenphol et al.
[2003b], Garg et al. [2000], Kleinberg and Tardos [2002]), serving as convenient relax-
ations of important NP-hard problems Aumann and Rabani [1998], Blum et al. [2000],
Bourgain [1985], C̆alinescu et al. [2001], Feige [2000], Linial et al. [1995] or simply by
being the object of study ([Agarwala et al., 1999, Farach et al., 1995]) arising from applica-
tions such as computational biology. Embedding techniques have become an indispensable
addition to the algorithm designer’s toolbox, providing powerful and elegant solutions to
many algorithmic problems (see, e.g., [Matoušek, 2002, Chapter 15] and [Indyk, 2001] for
surveys).

An embedding of a metric(V, d) into hostmetric (H, δ) is a mapf : V → H. The
quality of this map is measured by how closely the distances between points ind closely
resemble those between their images inδ. An embeddingf is callednon-contractingif the
mapf does not decrease any of the distances, i.e.,d(x, y) ≤ δ(f(x), f(y)) for all x, y ∈ V .
(In the sequel, we will abbreviateδ(f(x), f(y)) to δ(x, y).) An important measure of the
quality of a non-contracting embeddingf is thedistortionD = D(f), which is:

distortionD = max
x,y∈V

δ(x, y)

d(x, y)
. (1.1)

(We note that a more general definition of distortion can be given that is scale-free; hence
the restriction of non-contracting embeddings used here is without loss of generality.)

While many embedding techniques and algorithms are known, the analyses for these

1

embeddings usually only offer uniform bounds on the distortion of the embeddings; few
results which address the problem of minimizing the distortion required for embedding a
givenmetric into the host space. In fact, very few results show how to evenapproximate
the distortion to better than these uniform bounds.

This is perhaps best shown by a concrete example: [Matoušek, 1990] proved thatany
metric (V, d) can be embedded into the real line with distortionO(|V |); furthermore, the
result is existentially tight, as then-cycle cannot be embedded into the line with distortion
o(|V |) (see, e.g., Rabinovich and Raz [1998], Gupta [2001]). However, no algorithm is
known for this problem which offersper-instanceguarantees; even if a metric(X, d) may
be embeddable intoR with distortionD = O(1), the known algorithms do not seem to
guarantee that the embedding they output has distortion, say, that is withinO(|V |1−ε) times
D.

This is the case with most problems in embeddings: while uniform upper bounds are
known for embeddings of many different families of metrics (e.g., general metrics, planar
graph metrics, tree metrics) into a variety of host spaces (e.g., the Minkowski`p spaces,
distributions of trees), very little is known about how to approximate the optimal distortion
given afixedmetric(V, d) and a host space. One notable exception is the remark of [Linial
et al., 1995] that the optimal embedding of any finite metric into (unbounded dimensional)
Euclidean spaces to minimize distortion can be computed as a solution to a semi-definite
program. Another one is the result by [Kenyon et al., 2004].

In this work we focus on studying the metric embeddings from an approximation-
algorithm perspective. In other words, we would like to address questions of the form:
given an input metric, how to best embed it into a prescribed host metric? In particular,
we focus on the line metric as the prescribed host m etric. It turns out that many of these
problems are NP-hard. Therefore, we look for approximation algorithms.

While distortion as defined above has been very popular, we also investige other no-
tions of the quality of the embedding. We explain each of these below.

Let (V, d) denote the given finite guest metric. We want to embed(V, d) into the line
metric: (R, δ). Let |V | = n and let∆ be the diameter of the metric.

1.1 Average distortion

In Chapter 2, we focus our attention on the average distortion of the embeddings arbitrary
finite metrics into the line metricR. The average distortion is the factor by which the
average distance in the metric is stretched.

2

In a recent work, [Rabinovich, 2003] introduced the notion of average distortion and
proved bounds on average distortion ofnon-expandingembeddings into a line. Rabinovich
also showed a close connection between this and the max-flow min-cut ratio for concurrent
multicommodity flow with applications to finding quotient cuts in graphs ([Leighton and
Rao, 1999]).

We prove that finding the best embedding of even a tree metric into a line metric so as to
minimize the average distortion is NP-hard, and hence focus onapproximatingthe average
distortion of the best possible embedding for the given input metric. We give a constant-
factor approximation for the problem of embedding general metrics into the line metric.
For the case ofn-point tree metrics, we provide a quasi-polynomial time approximation
scheme (QPTAS) which outputs an embedding with distortion at most(1 + ε) times the
optimum in timenO(log n/ε2). We also consider the average distortion, where the average is
taken only over the endpoints of the edges of an input tree metric, we show how to exploit
the structure of tree metrics to give an exact solution in polynomial time.

The basic idea is to think of an embedding into the line as a tour on the nodes of
the original metric that starts from the leftmost vertex on the line and visit the vertices
in order from left to right. Our results build on this simple observation, and demonstrate
a close relationship between minimizing average distortion and the related problems of
finding short TSP tours [Lawler et al., 1985], minimum latency tours (Blum et al. [1994],
Goemans and Kleinberg [1998], Archer and Williamson [2003]), and optimalk-repairmen
solutions ([Fakcharoenphol et al., 2003a]). In particular, we prove the following results for
the average distortion. These results appeared in [Dhamdhere et al., 2004].

1. Hardness for average distortion: We prove that the problem of finding the min-
imum average distortion non-contracting embedding of finite metrics into the line
is NP-hard, even when the input metric is a tree metric. The proof proceeds via a
reduction from the Minimum Latency Problem on trees [Sitters, 2002].

2. Constant-factor approximations: We give an algorithm that embeds any metric
(V, d) into the line with average distortion that is within a constant of the minimum
possible over all non-contracting embeddings. In fact, we prove a slightly more
general bound on non-contracting embeddings intok-spiders (i.e., homeomorphs
of stars withk leaves). This result uses a lower bound on the minimum average
distortion of a non-contracting embedding into ak-spider in terms of the minimum
k-repairmen tour [Fakcharoenphol et al., 2003a] on the metric.

3. QPTAS on trees: For tree metrics onn nodes, we give an algorithm for finding a
(1 + ε)-approximation to the minimum average distortion non-contracting embed-
ding into a line innO(log n/ε2) time. Our algorithm, which appears in Section 2.2, uses

3

a lower bound on the minimum average distortion related to the TSP tour length and
latencies of appropriately chosen segments of an optimal tour. In this way, it ex-
tends the ideas of [Arora and Karakostas, 2003] for minimizing latency on trees to
the more general time-dependent TSPs [Blum et al., 1994], and provides a QPTAS
for the latter problem as well.

4. Poly-time algorithm for tree-edge distortion For a tree metric as input, if the min-
imum average distortion is measured only over the endpoints of the edges of the
tree (we call this objective the average tree-edge distortion), then we show that an
embedding following a certain Euler tour of the tree is optimal. In Section 2.3, we
show how to find this tour in polynomial time by dynamic programming. This result
extends some ideas of [Shiloach, 1979].

Related Work While our problem appears similar to that of finding theMinimum Linear
Arrangement (MLA), for which Rao and Richa [Rao and Richa, 1998] gave anO(log n)
approximation using the notion of spreading metrics, it is subtly different: the MLA prob-
lem involves minimizing the average stretch of the edges

∑
{u,v}∈E |π(u)−π(v)| under all

mapsπ : V → [n], whereas the mappings in our problem aref : V → R, and must ensure
that|f(u)− f(v)| ≥ d(u, v) ∀{u, v} ∈ V × V .

The problem of findingMinimum Latency tours(a.k.a. the Traveling Repairman prob-
lem) is relevant to our discussion in terms of techniques used. In this problem, one is
given a metric space(V, d) and a root depotr ∈ V ; a repairman starting atr has to visit all
|V | = n customers, one at each node of the metric. The goal is to minimize theaverage
waiting timeof the customers, where the waiting time (orlatency) of a customer is the
sum of the distances of all edges traversed by the repairman before visiting this customer.
There are extensions of this problem to thek-repairman case, wherek repairmen start off
at r, and the latency of a customer is now the time at which any one of the repairman
visits this customer. The version with only one repairman is known to be NP-hard even
on a tree [Sitters, 2002], and is MAX-SNP hard in general [Blum et al., 1994]. The first
constant-factor approximation for this problem was given by Blum et al. [Blum et al.,
1994]; the approximation factor was improved by Goemans and Kleinberg [Goemans and
Kleinberg, 1998] to7.18, and most recently by Chaudhuri et al. [Chaudhuri et al., 2003] to
3.59. For the special cases of the latency problem on trees, Arora and Karakostas [Arora
and Karakostas, 2003] gave a quasi-polynomial time approximation scheme (QPTAS);
similar results were given for the case when the points lie inRd for fixed dimensiond. The
k-repairmen version of the problem was studied by [Fakcharoenphol et al., 2003a] who
show a 16.994-approximation for arbitraryk; this was improved to8.49 by [Chaudhuri
et al., 2003].

4

Finally, a problem whose objective is the linear combination the cost of a tour as well
as its latency is that of findingtime dependent TSP tours; the paper by Blum et al. [Blum
et al., 1994] gives a constant factor approximation algorithm for this problem.

1.2 Additive distortion

In chapter 3, we consider he additive distortion of embeddings into the line metric. The
additive distortion is the sum of differences in all pairwise distances between the embedded
and input distances. TheLp norm of additive distortion is defined as:

(
∑
x,y

|δ(x, y)− d(x, y)|p)1/p.

The problem of finding the embedding into the line metric with minimum additive dis-
tortion was shown to be NP-hard by [Saxe, 1979]. Our main result isO(log1/2p(n))-
approximation algorithm for theLp norm of the additive distortion. This result has ap-
peared in [Dhamdhere, 2004]

It’s important to note here that we do not restrict the embedding to be non-contracting.
Instead we consider the absolute difference between the distances.

Related Work The additive distortion as a measure of the quality of the embedding has
received much attention, especially for the numerical taxonomy problem. The numerical
taxonomy problem is one of finding a tree metric that closely fits the input metric data.
Formulation of this problem as the minimization of additive distortion was first proposed
by [Cavalli-Sforza and Edwards, 1967] in 1967. In 1977, Waterman et al. [Waterman et al.,
1977] showed that if there is a tree metricT coinciding exactly with the input dataD, then
it can be constructed in linear time. In the case when there is no tree that fits the data
perfectly, Agarwala et al. [Agarwala et al., 1999] used the framework of approximation
algorithms to give heuristics with provable guarantees for the problem. They gave a3-
approximation to theL∞ norm of the additive distortion for fitting the data to a tree metric.
They reduced the problem to that of fitting the data toultrametric, where each leaf is at the
same distance from a common root. Forultrametrics, they used an exact polynomial-time
algorithm for theL∞ norm due to Farach et al. [Farach et al., 1995].

In our setting the host metric is the line metric. The special case of the problem for the
L∞ norm (i.e. withp = ∞) was considered by H̊astad et al. [H̊astad et al., 1998]. They
gave a2-approximation for it.

5

For fitting points to a line, a well-known result due to Menger (see e.g. [Deza and
Laurent, 1997]) gives the following four point criterion. The four point criterion says that,
if every subset of size4 can be mapped into the real line exactly, then all the points can
be mapped into the line exactly. An approximate version of Menger’s result was given
by Badoiu et al. [B̆adoiu et al., 2003]. They proved that if every subset of size4 can be
embedded into the line with theL∞ norm of the additive distortion being at mostε then all
the points can be embedded with theL∞ norm of the additive distortion being at most6ε.

1.3 Classical Distortion

In chapter 4, we address the problem of approximating the classical distortion. Given a
graphG = (V,E) inducing a shortest path metricM = M(G) = (V, d), find a mapping
f of V into a line that is non-contracting (i.e.,|f(u) − f(v)| ≥ d(u, v) for all u, v ∈ V)
which minimizes the distortionD(M, f) = maxu,v∈V

|f(u)−f(v)|
d(u,v)

. That is, our goal is to
findD(M) = minf D(M, f). For the case whenG is anunweightedgraph, we show the
following algorithms for this problem (denoten = |V |):

• A polynomialO(D)-approximation algorithm for metricsM for which the optimal
distortion isD. This also implies anO(

√
n)-approximation algorithm for anyM .

• A polynomial-timeÕ(
√
D) approximation algorithm for metrics generated by un-

weighted trees. This also implies añO(n1/3)-approximation algorithm for these
metrics.

Most of these results have appeared as part of [Bădoiu et al., 2005b].

For a special case in unweighted trees we give an improvedO(log n)-approximation.

Related Work Recently, Kenyon, Rabani and Sinclair [Kenyon et al., 2004] gaveexact
algorithms for minimum (multiplicative) distortion embeddings of metricsonto simpler
metrics (e.g., line metrics). Their algorithms work as long as the minimum distortion is
small, e.g., constant. We note that constraining the embeddings to beonto(not into, as in
our case) is crucial for the correctness of their algorithms.

Very recently Badoiu et al. [B̆adoiu et al., 2005a] gave ano(n)-approximation algo-
rithm for embedding weighted graphs into the line metric. They also showed that it is
NP-hard to approximate it withinnδ for some small constantδ > 0.

6

1.4 Weighted Bandwidth

In chapter 5, we consider the problem of finding a linear ordering that minimizes the
stretch. In other words, given a metric(V, d), we want to map the points to{1, 2, . . . , n},
so as to minimizemaxx,y|f(x) − f(y)|/d(x, y). i.e., instead of non-contracting embed-
ding, we look for just a linear ordering. We give anO(log2(n) log ∆)-approximation for
this problem, where∆ is the diameter of the metric. As a generalization of this result,
we also get an approximation algorithm for the weighted bandwidh problem. Weighted
bandwidth is definedmaxx,y|f(x) − f(y)|w(x, y), wherew(x, y) denotes the weight of
the edge(x, y). Our approximation guarantee for the weighted bandwidth problem is
O(log2 n log nW), whereW is the maximum weight of an edge. These results appear
in [Dhamdhere, 2005].

Related Work The (unweighted) bandwidth minimization problem (i.e. when all the
edge weights are1) arises in VLSI layout problems and has received much attention. It
was shown to be NP-hard by Papadimitriou [Papadimitriou, 1976]. Blum et al. [Blum
et al., 2000] gave an SDP relaxation of the bandwidth and obtained anO(

√
n/b∗) approx-

imation, whereb∗ is the optimal bandwidth. The first non-trivial approximation to this
problem was given by Feige [Feige, 2000]. He developed a notion ofvolume-respecting
embedding and used it to giveO(log4.5 n)-approximation for the bandwidth problem. Sub-
sequently, Dunagan and Vempala [Dunagan and Vempala, 2001] showed how to improve
the approximation factor based on the SDP relaxation of Blum et al. [Blum et al., 2000].
Recently, Krauthgamer et al. [Krauthgamer et al., 2004] showed an algorithm to construct
volume respecting embeddings and thus reduced the approximation factor toO(log3 n).

1.5 Embeddings into spanning trees

In chapter 6, we study probabilistic embeddings of graphs into induced spanning trees.
Given a graphG = (V,E), we consider the shortest path metric on it defined by(V, d).
A probabilistic embedding into induced spanning trees is a probability distribution over
the spanning trees of graphG. The quality of the embedding is measured byexpected
distortion, which is the maximum over the edges ofG, of the expected value of the distance
between its endpoints in the spanning tree.

Only in this chapter, we are interested in uniform bounds on the expected distortion.

7

Related Work The problem of embedding a graph into a spanning tree to minimize
the average distortion was first considered by Alon, Karp, Peleg and, West [Alon et al.,
1995]. They gave an algorithm to construct a spanning tree withO(exp(

√
log n log log n))

average distortion and applied to the onlineK-server problem. They also demonstrated
examples whereΩ(log n) average distortion would be incurred for any spanning tree.

Subsequently, Bartal [Bartal, 1996, 1998] considered the problem of probabilistic em-
beddings of arbitrary metrics into tree metrics (not necessarily spanning trees). He ob-
tainedO(log2 n) expected distortion and subsequently improved it toO(log n log log n).
He also proved a lower bound ofΩ(log n) for expander graphs. Later Fakcharoenphol,
Rao and Talwar [Fakcharoenphol et al., 2003b] gave an algorithm withO(log n) expected
distortion, thus matching the lower bound.

The case of embedding intoinducedspanning trees was still open. Recently, Emek and
Peleg [Emek and Peleg, 2004] gave anO(log n)-approximation algorithm for minimizing
the distortion of a single spanning tree.

In 2004, Spielman and Teng [Spielman and Teng, 2004] showed that embedding into a
spanning tree with average stretchφ yields anO(mφ logO(1) n)-time algorithm for solving
diagonally-dominant symmetric linear systems. Subsequently, Elkin, Emek, Spielman and
Teng [Elkin et al., 2005] made a breakthrough for the average distortion problem. Their
algorithm hadO(log2 n log log n) average distortion.

Our results We give a simple algorithm withO(log2 n) expected distortion. This also
implies anO(log2 n) bound on average distortion. Our algorithm using the star-decomposition
schema introduced by Elkin et al. [Elkin et al., 2005]. We combine it with the cutting
scheme of Bartal [Bartal, 1996]. Furthermore, we introduce a new technique, viz. tail-
bounds on the diameter of the resulting sub-trees to bound the distortion. Our techniques
are orthogonal to those used by Elkin et al.. It might be possible to improve upon our
results by combining these ideas. These results also appear as part of [Dhamdhere et al.,
2006].

8

Chapter 2

Average Distortion

It is important to note that while any non-contracting embedding can be converted to a non-
expanding embedding with the same average distortion by scaling down all the distances,
the converse is not true. Indeed, a non-expanding embeddingf might not be one-one,
and may map two points in the guest metric to the same point in the host metric. This is a
crucial difference between the two problems, and hence our result does not give a constant-
factor approximation for the average distortion of non-expanding embeddings into the line
R.

2.1 Embedding arbitrary metrics into the line

In this section, we show that we can approximate the average distortion into a line for a
given metric to within a constant; to this end, we show that the problem is closely related
to that of finding the minimum latency tours and its generalizations in a finite metric space.

2.1.1 Hardness of Embeddings

Theorem 1 It is NP-hard to find a non-contracting embedding of a given metric induced
by a tree into a line that minimizes the average distortion.

Proof.

We show how to reduce the problem of finding minimum latency tour on trees
to our problem. The minimum latency problem on trees (tree-MLP) was shown to
be NP-hard by Sitters [Sitters, 2002] even when the edge lengths are in{0, 1}.

9

s r

2n
2

7n
3 n

4

T

Figure 2.1: Hardness construction

Given an instance of tree-MLP, our reduction will define an instance of the
average distortion problem on a tree where the vertices have integer weights and
the edges have lengths, and we generalize the definition of average distortion to be

ρw(f) =

∑
x,y∈V wxwyδ(x, y)∑
x,y∈V wxwyd(x, y)

. (2.1)

As long as the weights are only polynomially bounded, we can convert such an
instance to one with unit vertex-weights by the simple expedient of replacing any
vertex with weightw by a set ofw vertices at distance zero from one another. Let
us also note that minimizing the average distortion is equivalent to minimizing total
distance in the embedding, and hence we will show the hardness of minimizing the
total distance.

Given a treeT rooted atr as an instance of tree-MLP problem with edge lengths
in {0, 1}, we construct an instance of the average distortion problem (cf. Fig-
ure 2.1). We introduce a new vertexs and connect it to the rootr. We assign
weight7n3 to s andn4 to r. Let the distance betweenr ands bedr,s = 2n2. The
rest of the vertices have weight1.

Claim 2.1 In the optimal embedding,r ands are adjacent to each other.

Proof. Consider any embedding in whichr ands are not adjacent to each
other. Therefore, the distance betweenr and s is at leastd(r, s) + 1 in
such an embedding. The total distance in this embedding is at leastwrws ·
(d(r, s) + 1) = 14n9 + 7n7.

On the other hand, consider any embedding in whichr ands are adja-
cent to each other and the pairwise distance between adjacent pairs is same

10

as that in the guest tree metric. We now compute an upper bound on the
total distance in such an embedding. The contribution due to the pair(r, s)
iswrws ·d(r, s) = 14n9. The contribution due to the pairs of the form(r, vi)
or (s, vi) is at most(wr +ws) · (2d(r, s) + n2) · n ≤ 6n7, since the distance
between any two points in the embedding is at most2d(r, s) + n2. Finally,
the contribution from the pairs(vi, vj) is at mostn2 · (2d(r, s)+n2) ≤ 5n4.
Thus the total contribution is at most12n8 + 6n7 + 5n4.

Therefore, any embedding in whichr ands are adjacent is better than
any embedding in which they are not. Therefore, in any optimal embedding,
r ands have to be adjacent to each other.

Claim 2.2 In any optimal embedding, no vertexvi and the vertexs are on
the same side ofr.

Proof. Suppose that the vertexvi ands are on the same side ofr. From
the previous claim it follows thats must be betweenvi andr. Therefore
the pair(vi, r) contribute at leastwrd(r, s) to the total distance. Now we
construct an alternative embedding the current one. We keep the order of
all the vertices exceptvi the same. We embedvi on the opposite side ofr at
the end. In this process only the contributions from the pairs(vi, vj) for all
j and(vj, s) go up, while the contribution from the pair(vi, r) goes down.
Note that, in the new embedding, the contribution of the pairs(vi, vj) can
be at most(2d(r, s) + n2) · n and the contribution of the pair(vi, s) is at
mostws(2d(r, s) + n2). The contribution due to the pair(vi, vr) goes down
by at leastwr · d(r, s) − wr · n2. Adding up the changes in contributions,
we get that the new embedding has smaller total distance.

Therefore in any optimal embedding, the verticesvi ands cannot be on
the same side ofr.

In order to finish the proof of the theorem, we now show that the ordering of the
vertices in an optimal tree-MLP tour isr, v1, v2, . . . , vn if and only ifs, r, v1, v2, . . . , vn

is the ordering of the vertices in the embedding that minimizes the average distor-
tion. Lets, r, π(1), π(2), . . . , π(n) be the ordering of the vertices in an embedding.
Let L(π) denote the total latency of the ordering given byr, π(1), . . . , π(n). Let
Av(π) denote the sum of the distances in the embedding consisting ofπ(1), . . . , π(n)
in that order.

11

Then, the total distance in the embedding is

ws · wr + ws · n+ (ws + wr) · L(π) + Av(π)

Note thatAv(π) is bounded above byn4 since we sum the distances over
(

n
2

)
pairs and the maximum distance between any pair{vi, vj} in the embedding is at
mostn2. Thus,Av(π) is smaller than(wr + ws).

Note that the difference between optimal value ofL(π) and that in any other
solution is at least 1, while it’s multiplying factor(wr + ws) dominatesAv(π).
Hence, in order to minimize the total distance, we have to minimizeL(π). This
is exactly the tree-MLP problem. Hence, the problem of minimizing the average
distortion is NP-hard.

2.1.2 A Constant-factor Approximation Algorithm

In order to make the exposition of our approximation algorithm simple, we first show
a simple2-approximation for embedding a given metric into trees. Then we consider
embeddings intok-spiders and show how a similar technique works for them (ak-spider is
a tree with all vertices except thecenterhaving degrees1 or 2, and hence is a homeomorph
of the star withk leaves). In particular, we show how to take aρ-approximation algorithm
for thek-repairmen problem [Fakcharoenphol et al., 2003a], and use it to produce a2ρ-
approximation for average distortion of embedding a given metric into ak-spider. Finally,
since a line metric is equivalent to a2-spider, we get the embedding into a line metric as a
corollary.

Embeddings into trees Consider the problem of embedding the given metricd into a
tree metricδ to minimize average distortion. Let∆ =

∑
x,y∈V d(x, y) denote the sum of

all the distances in the metricd, and hence av(d) = ∆/n2 is the average distance ind. The
medianof the metricd is the pointv ∈ V that minimizes∆v =

∑
w∈V d(v, w), and will

be denoted bymed. Note that we can decompose∆ as follows:

∆ =
∑

u,v∈V

d(u, v) =
∑
u∈V

(
∑
v∈V

d(u, v)) =
∑
u∈V

∆u ≥ n∆med (2.2)

since∆med ≤ ∆v for all v ∈ V . Consider a shortest-path treeT (which is a star in a
general metricd) rooted atmed, and letdT denote the metric induced by this shortest path

12

tree. Then the total distance in this treeT is

∆T = n2 · av(dT) =
∑

u,v∈V

dT (u, v) ≤
∑

u,v∈V

dT (med, u) + dT (med, v)

=
∑

u,v∈V

d(med, u) + d(med, v) = 2n∆med

where the inequality in the second step is just the triangle inequality. This implies that
n∆med ≤ ∆ ≤ ∆T ≤ 2n∆med, and thus:

Lemma 1 ((See also [Wong, 1980]))Given any graph, the total distance∆T for the short-
est path tree rooted at the median is at most2 ∆, and is a2-approximation for the problem
of embedding the graph into trees.

The bound of2 is tight. E.g. in a complete graph the total distance isn(n − 1) and
it is n(2n − 3) for the shortest path tree. Also note here that the bound of2 above is an
absolutebound on the worst-case ratio between the average distance in the output tree
and the graph, and is in the same flavor as the more traditional results on bounding the
maximum distortion of embeddings. We next move toward an approximation approach by
restricting the class of trees into which we embed.

Embeddings into spiders We now generalize the previous result to the case of embed-
dings intok-spiders. The vertex of degreek is called thecenterof the spider, and the
components obtained by removing the center are called itslegs[Klein and Ravi, 1995].

Let d∗k denote the optimalk-spider embedding. We decompose the sum of distances in
d∗k as the sum ofk-repairman path rooted at each vertex. Recall that, ink-traveling repair-
man problem, we are givenk repairmen starting at a common depots. Thek repairmen
are to visitn customers sitting one per node of the input metric space. The goal is to find
tours on which to send the repairmen so as to minimize the total time customers have to
wait for a repairman to arrive [Fakcharoenphol et al., 2003a].

Let c be the center of the spider in the optimalk-spider embedding. To construct a
k-repairman paths starting from a vertexr, we do the following. We send one repairman
away from the center along the leg of the spider which containsr. The otherk − 1 re-
pairmen travel toward the centerc of the spider. From the center, they go off, one per
remaining leg of the spider. The cost of thisk-repairman tour is∆∗

r =
∑

j d
∗
k(r, j). Sum-

ming over all choices of the root we see that this is same as the sum of distances in the
embeddingd∗k.

n2 · av(d∗k) =
∑

u,v∈V

d∗k(u, v) =
∑
v∈V

∆∗
v

13

Hence,n times the cost of the cheapestk-repairman tour over all choices of the depots
(denoted by∆opt), is a lower bound on the sum of all the distances. i.e.,∑

u,v∈V

d∗k(u, v) ≥ n ·min
r
{∆opt

r }.

Consider the cheapestk-repairman tour over all choices of centers. Let it be centered
at a vertexc. This tour defines a non-contracting embedding into ak-spider withc at the
center of the spider. Letdc(u) denote the distance of vertexu from the centerc in the tour.
We can bound the sum of distances in this embedding as follows:∑

u,v∈V

dc
k(u, v) ≤

∑
u,v∈V

dc(u) + dc(v) ≤ 2n
∑
u∈V

dc(u) ≤ 2
∑

u,v∈V

d∗k(u, v).

Thus, if we could compute the optimalk-repairman tour centered atc exactly, we would
obtain a2-approximation to the problem of embedding the metric intok-spiders. Although
the problem of finding an optimalk-repairman tour is NP-hard, the argument above proves
the following.

Theorem 2 Given aγ-approximation for the minimumk-repairmen problem on a metric
d, we can obtain a2γ-approximation for embedding the metricd into a k-spider in a
non-contracting fashion to minimize the average distortion.

The current best known approximation factor for thek-repairman problem is8.49 (due to
Chaudhuri et al. [Chaudhuri et al., 2003]), leading to the following corollary.

Corollary 2.3 There is a 16.98-approximation for minimizing the average distor-
tion of a non-contracting embedding of a given finite metric into ak-spider.

2.2 Approximation Schemes for trees

In this section, we restrict our attention to the special case of tree metrics. We give a quasi-
polynomial time approximation scheme (QPTAS) for minimizing the average distortion
for embeddings into the line metric. Our algorithm is based on the QPTAS given by Arora
and Karakostas [Arora and Karakostas, 2003] for the minimum latency problem. They
proved that a near-optimal latency tour can be constructed by concatenatingO(log |V |/ε)
optimal Traveling Salesman paths, and the best such solution can be found by dynamic
programming.

14

For an embeddingf : V → R into the line, let thespanof the embedding be de-
fined asmaxx,y |f(x) − f(y)|, the maximum distance between two points on the line.
We note that an embedding with the shortest span is just the optimal Traveling Salesman
path. While embedding a given metric into the line metric, minimizing the span of the
embedding could result in very high average distortion. However, we show that it suffices
to minimize the span locally to find near optimal embedding. In particular, our solution
within (1 + ε) of optimal minimum average distortion is to find an embedding that is the
union ofO(log |V |/ε2) Traveling Salesman paths with geometrically decreasing number
of vertices.

In the sequel, we usen to denote|V |, the number of vertices. For our algorithm, we
assume that all the edge lengths are in the range[1, n2/ε]. Indeed, ifD is the diameter of
the metric space andu andv are two vertices such thatd(u, v) = D, then

∑
x,y∈V d(x, y) ≥∑

x∈V d(x, u) + d(x, v) ≥ nD. We can then merge all pairs of nodes with inter-node
distance at mostεD/n2, which affects the sum of distance by at mostεnD. Hence the
ratio of maximum to minimum nonzero distance in the metric can be assumed to ben2/ε.

Relation to TDTSPs We first show that the Arora-Karakostas QPTAS works also for
the case of the Time Dependent Traveling Salesman Problem (TDTSP) defined by Blum et
al. [Blum et al., 1994]. In the TDTSP, the objective is to minimize a positive linear combi-
nation of the TSP tour value and the total latency of the tour. The objective function is of
the formαTSP + βLAT whereTSP andLAT denote the span of the tour and total latency
of the tour respectively andα andβ are constants.

We now describe how to break up an optimal tour into locally optimal segments. Let
T denote the optimal tour for the objective functionαTSP + βLAT. We break this tour
into k segments (k isO(log n/ε)). In segmenti we visitni nodes, where

ni = d(1 + ε)k−1−ie for i = 1, . . . , k − 1; nk = d1/εe

Note that theseni’s are chosen in such a way thatni ≤ ε
∑

j>i nj. Denote
∑

j>i nj by ri.
Replace the optimal tour in each segment, except the last one, by the minimum-distance
traveling salesman path on the vertices of that segment that starts and ends at the same pair
of vertices.. The new tour now consists of the concatenation ofO(log n/ε) locally optimal
Traveling Salesman paths. This gives us the following lemma.

Lemma 2 There is a tour that is a concatenation ofO(log n/ε) minimum Tr aveling Sales-
man paths that hasαTSP+βLAT objective value at most(1+ε) times the optimal solution
(OPT).

15

Proof. We first give a lower bound on OPT. LetTi denote the span of the segment
i in OPT. Every node in themth segment has latency bigger than

∑m−1
j=1 Tj. We

sum over all vertices and get the lower bound on OPT: OPT≥
∑k−1

i=1 (α+ βri)Ti.

Now we replace each segment of OPT with the minimum Traveling Salesman
path on the same set of vertices with the same pair of vertices as start and end
points. By replacing a segment with a minimum traveling salesman path, we reduce
the span of that segment. However latency of the vertices inside a segment can go
up. The latency of each vertex inith segment will increase by at mostniTi. Hence
the cost of concatenated tour increases by at most

∑k−1
i=1 βniTi. From the property

thatni ≤ ε · ri, it immediately follows that the cost of the concatenated tour is at
most(1 + ε)OPT.

We now use the Lemma 2 to show the following theorem for average distance.

Theorem 3 Any finite metric has a non-contracting embedding into a line that is com-
posed ofO(log n/ε2) minimum Traveling Salesman path segments with average distortion
no more than(1 + ε) times the minimum possible over all such embeddings.

Proof. Our strategy is same as in Lemma 2. Consider the optimal embedding of
the input tree into a line. We break this embedding up intoO(log n/ε) segments.
Let ni be the size ofith segment defined as before. We now divide the objective
function value according to the segments, so that only the shareCi of segmenti
changes, if we replace the embedding of segmenti with a different embedding.

Let Ti be the span of the embedding of segmenti. If i0 is the left-most node
in the embedding of the segmenti, then letLi =

∑
j∈ni

δ(i0, j) be the sum of the
distances of all nodes in segmenti from nodei0. Note thatLi is the total latency
of vertices in segmenti with i0 as root. And letDi =

∑
u,v∈ni

δ(u, v) be the sum
of all the pairwise distances in segmenti.

Let qi =
∑

j<i nj andri =
∑

j>i nj be the number of total nodes to the left and
right of segmenti respectively.

We now describe a lower bound on the total distance of the optimal solution.
We define the contribution of the segmenti to the lower bound as the sum of the
following distinct terms.

1.If a vertexu is to the left of the segmenti and a vertexv is to the right, then
the segmenti addsTi to the distance between them.

16

2.If a vertexu is to the left andw is in the segmenti, then the contribution is
δ(i0, w) = the distance from the left most vertexi0 of the segmenti tow.

3.If a vertexv is to the right andw is in the segmenti, then the contribution is
Ti − δ(i0, w).

4.If both the verticesw andw′ are in the segmenti, then the contribution is
δ(w,w′).

These contributions, when summed up over all pairs of vertices, give:

Ci = qiriTi + qiLi + ri(niTi − Li) +Di (2.3)

Note that
∑

iCi is a lower bound on the total distance. In the following argu-
ment we rearrange the embedding inside each component while making sure that
the increase in the total distance is at mostε

∑
iCi.

Note thatDi ≤ n2
iTi. For i = 2, . . . , k, we know thatni ≤ qi andni ≤ ε · ri.

Hence, comparingDi with the first term in (2.3), we get

(1 + ε)(qiriTi + qiLi + ri(niTi−Li)) ≥ Ci ≥ qiriTi + qiLi + ri(niTi−Li) (2.4)

To prove the Theorem 3, it suffices to find an embedding of theith segment such
that the increase in the total distance is withinε times the lower bound in the RHS
of the above inequality 2.4. The expression for the lower bound on the RHS of
inequality 2.4 is a linear combination of TSP and Latency values of the tour in seg-
menti. We can apply Lemma 2 to obtain a tour composed ofO(log ni/ε) minimum
traveling salesman paths. Note that replacing the original embedding with the tour
obtained from Lemma 2 can only increase the four distinct terms that make up the
quantityCi. From Lemma 2, the increase in the total distance is at mostεCi.

A technical detail in this argument is that the coefficient ofLi could be negative.
Lemma 2 does not handle this case. But note thatniTi − Li is the total “reverse”
latency in segmenti with the rightmost endpoint being the root. Thus we can
rewrite the lower bound as a linear combination ofTi andniTi − Li with positive
coefficients.

We can thus replace each segmenti, with a concatenation ofO(log ni/ε) Trav-
eling Salesman paths, without increasing the cost by more than a factor of(1 + ε).
Since there areO(log n/ε) segments in all, it follows that there is an embedding
consisting ofO(log2 n/ε2) shortest Traveling Salesman paths.

Finally, we show how to reduce this number down toO(log n/ε2). Let us
rewrite the lower bound in (2.4) as(qi− ri)Li +(qi +ni)riTi. Note thatLi ≤ niTi.

17

This gives us that the term(qi − ri)Li is at mostε · (qi + ni)riTi, wheneverqi − ri

is positive. Hence, if we replace the segmenti with a shortest Traveling salesman
path on those vertices, the cost will be within(1 + ε) of the lower bound in (2.4).
Note that, fori ≥ 1/ε, we haveqi ≥ ri. Hence fori = 1, . . . , 1/ε, using Lemma 2,
we replace each segment by a concatenation ofO(log n/ε) tours each. Then for the
segments1/ε and above, we use only one minimum Traveling Salesman path per
segment. Overall this results in a concatenation ofO(log n/ε2) traveling salesman
paths with the average distortion within(1 + ε) times that of the optimal.

Consider a(1
3
, 2

3
)-partition of the tree, i.e. a recursive partition of the tree into two

subtrees with a common root, such that for each subtree

1

3
· n ≤ (size of subtree) ≤ 2

3
· n.

It is a folklore result that a(1
3
, 2

3
)-partition exists for any tree. We will use the termsep-

arator nodefor the common root of the subtrees. From the recursive partition, we get
separator nodes for each level of recursion.

Note that an optimal traveling salesman path on a tree is obtained by depth-first search.
Therefore, it need to cross any separator node at most twice. In the previous theorem,
we proved that a near-optimal non-contracting embedding is given by a concatenation of
O(log n/ε2) traveling salesman paths. Combining this with the recursive partition, we get
the following theorem.

Theorem 4 There exists a non-contracting embedding of a tree metric into a line with
average distortion at most(1 + ε) times the minimum possible that, when viewed as a
walk, crosses each separator nodeO(log n/ε2) times in a recursive node-separator based
partition defined above.

Using this theorem, we give a dynamic programming algorithm. This is very similar
to the algorithm due to Arora and Karakostas [Arora and Karakostas, 2003].

Theorem 5 For any givenε > 0, there is an algorithm that runs in timenO(log n/ε2) and
computes a non-contracting embedding of a given input tree metric into a line with average
distortion at most(1 + ε)-times the minimum.

Proof. Let us describe the dynamic program at the heart of our quasi-polynomial
time approximation scheme.

ALGORITHM

18

“Guess” the leftmost vertex in the embedding. Find a recursive(1
3
, 2

3
)-partition

of the tree. Do the following steps starting at the bottom level of the partition and
working upwards.

1.Identify a separator node at the current level of the partition.

2.“Guess” the number of times the embedding crosses this node and for each
crossing, the length of the embedding after the crossing and the number of
nodes on that portion.

3.Search the dynamic programming table for subtours consistent with the “guesses”.

4.Combine the subtours found to create a new bigger subtour and store it in the
dynamic programming table and go to step 1.

“Guessing” in step 2 refers to exhaustive enumeration of all possible values for
the triple (# of crossings, length, # of nodes). At the end of the enumeration,
the algorithm will have created a collection of candidate solutions, one for each
possible guess. Its output will be the embedding of minimum average distortion.
One of the embeddings considered by this algorithm must be near-optimal. Hence
the embedding produced by the algorithm is a(1+ε) approximation for the optimal
average distortion.

We now prove that the running time of the algorithm is bounded bynO(log n/ε2).
The running time is dominated by the number of “guesses”. The number of cross-
ings through a node is at mostO(log n/ε2) and the number of nodes visited between
two crossings cannot be greater thann. To bound the number of guesses for the
length of the embedding between two crossings, we round the lengths as follows.
Let L be the length of the longest path in the input tree. We merge all the pairs
of vertices with pairwise distance smaller thanεL/n3. We also round each edge
length to its closest multiple ofεL/n3 and divide all the lengths byεL/n3. In this
rounded instance, the minimum length is1, while the maximum internode distance
is n3/ε. After solving the rounded instance, we reinstate the merged edges to the
output embedding. This does not change the pairwise distance between any pair
by more thanO(εL/n2). Thus the total change due to rounding is bounded by
O(εL) = O(εOPT).

If we run the algorithm on a rounded instance, the total number of guesses for
each crossing isO(n3/ε)·n = O(n4/ε). This gives a total ofO(log n

ε2
·(n4/ε)O(log n/ε2) =

nO(log n/ε2) guesses for a node. We do this for each node. Moreover, there aren
choices for the leftmost vertex of the embedding. Therefore, the overall running
time of the algorithm is bounded byO(n · n · nO(log n/ε2)) = nO(log n/ε2).

19

2.3 An exact algorithm for minimizing average tree-edge
distortion

For the tree metrics, we consider a slightly different objective function in this section. Let
M = (V, d) be the input metric to be embedded in a non-contracting mapping to a line.
Assume that the input metricM arises from a treeT = (V,E). Instead of considering
distances between all pairs of nodes, we take average of the distance over the edge set
E of the tree. Letl denote the host metric (i.e. a line). Then we want to minimize∑

(u,v)∈E δ(u, v). We call this theaverage tree-edge distortion. We give a polynomial
time algorithm for minimizing the average tree-edge distortion.

This problem is quite similar to the Minimum Linear Arrangement [Shiloach, 1979]
problem on trees. Recall that, a linear arrangement of a graph(V,E) is a mappingπ :
V → [n]. The objective is to minimize

∑
{u,v}∈E |π(u) − π(v)|. However, the crucial

difference is that we require the embedding into a line to be non-contracting.

Our algorithm is based on the algorithm for Minimum Linear Arrangement on trees
given by Shiloach [Shiloach, 1979] with some crucial extensions. We first begin by finding
a centroid of the tree. The following lemma is folklore (see, e.g., [Buckley and Harary,
1990]). It is important to note that, we allow subdivision of the edges here, i.e. we allow
to split an edge into two by adding a vertex anywhere along that edge.

Lemma 3 Given a treeT = (V,E) with edge weights, there exists a centroid vertexv∗ in
a subdivision ofT , such that the subtrees ofT rooted atv∗ have edge weight at most half
the total weight of the tree.

We then show that the subtrees of the centroid are not interleaved in an optimal embedding.
This lets us solve the problem recursively on the subtrees. The algorithm constructs an
Eulerian tour of the tree as an optimal embedding.

2.3.1 Cost reducing transformations

We now show that, given a non-contracting embedding of a tree into the line, we can trans-
form it without increasing the average distortion, so that the solutions for subtrees rooted
at the centroid are disjoint contiguous segments of the line. We will denote the embedding
by a permutationπ of the vertices. Note that for the embedding to be non-contracting, it
suffices to have the distance between adjacent pair of vertices in the permutation to be the
same as their distance in the tree metric (i.e.δ(i, i+ 1) = d(π−1(i), π−1(i+ 1)).

20

We now explain the transformations. LetT be the input tree withv∗ as the centroid.
Let T1 be a subtree ofT rooted atv∗. We group all other subtrees asT2 (see Figure 2.2).
The transformations work toward uninterleaving the embeddings ofT1 andT2. There are
two different cases depending on whether end vertices are from same or different subtrees.

v
∗

u

T2T1

c dba

u
v
∗

T2T1

a

c

b
d

Figure 2.2: TypeA transformation

1. Let the two endpoints be in different subtrees, i.e. we haveπ−1(1) ∈ T1 and
π−1(n) ∈ T2. A transformation of typeA converts the orderingπ into πa, such
thatπ restricted to each ofT1 andT2 is preserved, andT1 is embedded entirely to
the left ofT2; i.e.,πa(ui) < πa(vj) for all ui ∈ T1 andvj ∈ T2.

v
∗

T1

T2

a
c

d

u
v
∗

u

T1

T2

db ca
b

Figure 2.3: TypeB transformation

2. Let the two endpoints of the embedding be in the same tree, i.e.π−1(1), π−1(n) ∈
T1. A type B transformation produces an orderingπb which is same asπ when
restricted to each ofT1 andT2. We have two choices:T1 or T2 could be embed-
ded to the left of the other subtree. We pick the one minimizing average tree-edge
distortion.

We denote the embedding produced byπa or πb by (T1 : T2). Note that, there are two
choices for the embedding ofT1 (resp.T2): the same order as inπ or completely opposite
of π. We will always pick the best of these choices.

Observation 2.4 In the embeddingsπa andπb, the length of the edges within the
treesT1 andT2 is never more than their counterparts in the embeddingπ.

21

Lemma 4 The above two transformations do not increase the average tree-edge distortion
of the embedding.

Proof. We will handle the two cases separately. We need the property thatv∗ is a
centroid vertex only in the second case.

Type A The only edge that possibly gets expanded in this transformation is
(v∗, u). We show that the increase for this edge is offset by the savings in the
edges of the treesT1 andT2. In particular, ifπ(ui) > π(v∗) for i = 1, . . . , k, then
in πa, the verticesu1, . . . , uk contribute to the cost of edge(v∗, u). However, in the
initial orderingπ, these vertices contribute at least this amount to the edges on the
pathv∗ → π−1(n). A symmetric argument holds for the change in the sum of edge
lengths in the treeT1.

Type B Let |T | denote the length of an Euler tour of treeT . We first compute
the length of the edge(u, v∗) in πb. Since we have picked the cheaper of the
two available choices, the length is at most(|T1| + |T2|)/2 + d(u, v∗). Thus the
potential increase in the length of the edge(u, v∗) is (|T1|+ |T2|)/2. The decrease
in the sum of edge lengths of the subtreeT1 due to the transformation is at least
|T2| + d(u, v∗). To see this, consider a pathπ−1(1) → π−1(n) in the treeT1. The
embedding includes at least an Euler tour of treeT2 along with the edge(u, v∗).
Now if |T2| + 2d(u, v∗) ≥ (|T1| + |T2|)/2, then the decrease offsets the potential
increase. In other words, if|T1|− |T2| ≤ 2d(u, v∗), then the transformationB does
not increase cost. This is certainly true sincev∗ is a centroid.

2.3.2 Optimal embeddings are Euler tours

Given any embeddingπ we can apply the transformationsA or B to uniterleave the em-
beddings of the subtrees. Letv∗ be the centroid. LetT0, T1, . . . , Tk be the subtrees rooted
atv∗. Let |Ti| denote the length of an Euler tour of the treeTi. Let the subtrees be arranged
in the decreasing order of the lengths of their Euler tours:|T0| ≥ |T1| ≥ . . . ≥ |Tk|. Let
T0 = T − T0.

First we check if the embedding(T0 : T0) has average tree-edge distortion at most that
of π. If so, then we solve the problem recursively onT0 andT0.

The other case is when(T0 : T0) has greater average tree-edge distortion thanπ. From
Lemma 4, we know that neitherπ−1(1) nor π−1(n) belongs toT0. Let π−1(1) ∈ Ti1,

22

then we can apply transformationA or B to π (depending on whetherπ−1(n) ∈ Ti1)
and we get the embedding(Ti1 : Ti1). Let the leftmost endpoint ofTi1 belong to the
subtreeTi2. Once again we apply the appropriate transformation and get the embedding
(Ti1 : (Ti2 : T ′)), whereT ′ = T −Ti1−Ti2. We continue this process until both endpoints
of T ′ = T − Ti1 − . . .− Tij belong toT0. At this step, the candidate transformation isB.
However, it does not decrease cost at this point becausev∗ is no longer a centroid inT ′.
Hence we must adopt a different line of attack in this case. Letp be the greatest integer
such that for alli ≤ p, and lete0 be the edge fromv∗ to the root ofT0. Then we have

2|Ti| ≥ (|T0|) + 2d(e0) + (|T ′|), (2.5)

whereT ′ = T −T0−T1− . . .−Tp. Then we can show that the embedding(T1 : T2 : . . . :
Tp : T), whereT = T − T1 − . . .− Tp has tree-edge distortion smaller thanπ. Moreover,
since neitherπ−1(1) norπ−1(n) belongs toT0, we havep > 0.

Thus we have shown that, we can solve the problem recursively on these trees and
combine their solutions. From this we get the following important observation.

Lemma 5 An optimal non-contracting embedding of a weighted treeT into a line to min-
imize average tree-edge distortion corresponds to an Eulerian tour.

2.3.3 Algorithm

We describe our recursive algorithm here. LetT be the tree from which the input metric
(V, d) arises.

1. Find the centroidv∗ of the treeT . LetT0, . . . , Tk be the subtrees ofT rooted atv∗.

2. Find the greatest integerp such that for alli ≤ p, we have2|Ti| ≥ (|T0|) + 2d(e0) +
(|T ′|), whereT ′ = T − T0 − T1 − . . .− Tp, and|T0| ≥ |T1| ≥ |T2| ≥

3. If p = 0, then recursively find the embeddings ofT0 andT0. Output the embedding
(T0 : T0).

4. If p > 0, then recursively find the embeddings ofT1, . . . , Tp, T
′ (whereT ′ = T −

T1 − . . . − Tp). Output the best embedding of these subtrees using the subroutine
described below.

Subroutine: We now describe the subroutine to combine the embeddings of subtrees
T1, . . . , Ti rooted atr. We want to find the ordering of these subtrees which minimizes

23

· · ·

e1
e2

ei

T1

T2 Ti

r

Figure 2.4: Embedding the subtrees

· · ·

e1

e2

ei

T1

T2 Ti

r

Figure 2.5: Accounting for the lengths of edges

the tree-edge distortion of the embedding. The objective function for this subroutine is the
sum of the lengths of edgese1, . . . , ei in the embedding. See Figure 2.5(a). Note that, we
only include the part of the edge fromr to the closest point of its tree.

Let d(ej) be the length of the edgeej in the input metric. Since the embedding is
an Eulerian tour, we know that if edgee1 crosses the treesT2, T3 andT4, e.g., then it is
expanded by|T2|+ |T3|+ |T4|. Thus the total length ofe1 to account for isd(e1) + |T2|+
|T3|+ |T4|+ d′(e1), whered′(e1) is the part of the length ofe1 inside treeT1. The quantity
d′(e1) can be taken as the distance of the root ofT1 to its closest endpoint. On the other
hand, if there arej edges crossing over the treeTq, then the tree contributes the|Tq| term
in the length of each of those edges. Thus, if the treeTq is (j + 1)st from left or right
endpoint, then its contribution to the total cost isj|Tq|+ d(eq).

This suggests that we can find the optimal ordering of the trees using minimum cost
matching algorithm. Consider a complete bi-partite graphKi,2i wherei is the number
of subtrees hanging off the centroid. Thei vertices on one side correspond to the trees
T1, . . . , Ti. If the treeTq is the(j + 1)st from the left in an embedding, this is represented
by connecting vertexq on the left side ofKi,2i to vertexj + 1 on the other side, by an

24

edge of weight2j|Tq| + d(eq). If Tq is the(j + 1)st from the right, then we connect the
edge between vertexq to the vertexi+ j + 1 on the other side of the same cost. Finding a
minimum-weight matching in this bipartite graph will give us the ordering of trees on left
and right side of the root.

Theorem 6 There is a polynomial-time algorithm for finding a non-contracting embed-
ding of an input tree metric into a line to minimize average tree-edge distortion.

We remark that it is not hard to construct instances where the optimal non-interleaving
embedding in the same spirit as above provide very poor approximations to the minimum
average distortion embeddings even for tree metrics. For example, consider a3-spider
where the vertices are placed at distancesl, l2, l3, . . . on each leg. Any non-interleaving
embedding has average distortionΩ(n), whereas the optimal (interleaving) embedding has
average distortionO(1).

2.4 Discussion

The hardness result for average distortion is not approximation preserving. Therefore, it
does not rule out a PTAS for minimizing the average distortion. It is an interesting open
question to close this gap.

Lee, Mendel and Naor [Lee et al., 2004] propose a different the notion of average
distortion: average taken over the ratios of pairwise distances. It will be interesting to give
approximation algorithm for this average distortion.

25

26

Chapter 3

Additive Distortion

In this chapter, we consider the total additive distortion of the embedding as our objective
function. The total additive distortion is the sum of errors in all pairwise distances in
the input data. This problem has been shown to be NP-hard by [Saxe, 1979]. We give
anO(

√
log n) approximation for this problem by using Agarwal et al.’s [Agarwal et al.,

2005] algorithm for the Min Uncut problem as a subroutine. Our algorithm generalizes to
give anO(log1/2p n) approximation for theLp norm of the additive distortion.

3.1 Problem Formulation

Consider a set ofn points, denoted by[n] = {1, 2, . . . , n}. The input data consists of
ann × n matrixDn×n. The entryDij denotes the distance between pointsi andj. We
assume that all the entries ofD are non-negative and thatD is symmetric.1 Furthermore,
we assume thatDii = 0 for all i.

Let f : [n] → R denote a mapping of the input points to the real line. Distance
between images of pointsi andj in the line is given byfij = |f(i) − f(j)|. The total
additive distortion (in theL1 norm) is given by

L1(D, f) =
∑
i,j

|Dij − fij|.

1Our results hold even if the input distances inDn×n do not satisfy triangle inequality, i.e. even ifD is
not a “metric”.

27

Generalizing this, we can write theLp norm of the additive distortion as

Lp(D, f) =
(∑

i,j

|Dij − fij|p
) 1

p .

The goal is to find a mapf that minimizes theL1(D, f) (or more generallyLp(D, f)).

3.2 Approximation for Lp norm

In this section, we give an approximation algorithm for minimizing theLp norm of the
additive distortion.

In Lemma 6, we will show that it is sufficient to look atr-restricted mapping of the
points into the real line. The problem of finding an optimalr-restricted mapping can be
cast as a kind of partition problem given the characteristics of the real line.

3.2.1 r-restricted mappings

Let r be a point in the input. A mappingf of the input points to the real lineR is anr-
restricted mapping, if distance on the line of all points fromr is same as that in the input.
Formally,Dri = |f(r)− f(i)| for all i.

We will denote anr-restricted mapping byf r. We next show that there is always a
“good” r-restricted mapping. This will enable us to focus only onr-restricted mappings
which are easier to handle. Agarwala et al. [Agarwala et al., 1999] prove a similar lemma
for tree metrics. We adapt their proof for the case of line metrics.

Lemma 6 There exists a pointr among the input points such that there is anr-restricted
mappingf r that is within a factor of3 of the optimal mapping for theLp norm of additive
distortion, for allp ≥ 1.

Proof. Let f ∗ denote an optimal mapping of the input points to the line for the
Lp norm of additive distortion. We will modify the optimal solution to produce a
mappingf i for each pointi in the input. To produce the restricted mappingf i,
perturb the distances inf ∗ so that it becomesi-restricted. In particular, iff ∗(j) ≤
f ∗(i) for somej, then setf i(j) = f ∗(i) − Dij and if f ∗(j) > f∗(i), setf i(j) =
f ∗(i) + Dij. Our mappingf i maps pointi to f ∗(i). It maps rest of the points

28

according to their distance fromi, while maintaining their order to the left or right
of point i in the optimal mappingf ∗.

Let εjk denote|Djk − f ∗jk|. We can write the additive distortion of the optimal
mapping asLp(D, f

∗) = (
∑

j,k ε
p
jk)

1/p. From the construction of the mapf i, it
follows that|f ∗jk − f i

jk| ≤ εij + εik.

Now we bound the additive distortion off i in terms ofεjk’s. For all j, k we
have,

|Djk − f i
jk| ≤ |f ∗jk − f i

jk|+ |Djk − f ∗jk|
≤ (εij + εik) + εjk (3.1)

Note that|x|p is a convex function ofx for p ≥ 1. Therefore, Equation (3.1)
gives us the following:

|Djk − f i
jk|p ≤ (εij + εik + εjk)

p

≤ 3p−1(εpij + εpik + εpjk) (3.2)

By an averaging argument, we can say that

min
i
{Lp(D, f

i)p} ≤
∑n

i=1 Lp(D, f
i)p

n

We use Equation (3.2) to bound the sum
n∑

i=1

Lp(D, f
i)p ≤

n∑
i=1

∑
j,k

3p−1(εpij + εpik + εpjk)

≤ 3pn ·
∑
j,k

εpjk

= 3pn · Lp(D, f
∗)p

Therefore,mini Lp(D, f
i) ≤ 3 · Lp(D, f

∗) which proves the result.

3.3 Algorithm

The result of Lemma 6 proves that it is sufficient to considerr-restricted mappings (with
a loss of3 in the approximation factor). Next we describe the algorithm that implements
this idea.

29

Algorithm A

1. For each pointr = 1, 2, . . . , n, find (approximately) the bestr-restricted mapping
f r.

2. Output a mapping that has the smallest additive distortion among these mappings.

By Lemma 6, the additive distortion of the output of Algorithm A is within a factor of 3
of the optimal additive distortion. As we will show later, finding bestr-restricted mapping
is NP-hard. Therefore, we approximate the optimala-restricted mapping within a factor
of O(log1/p n). From the following observation it follows that the overall approximation
factor of our algorithm will beO(log1/p n).

Lemma 7 If ρ is the approximation factor of the algorithm forr-restricted mapping, then
the solution produced by AlgorithmA will be a 3ρ approximation for the additive distor-
tion.

3.4 Approximating r-restricted mappings

Let f be anr-restricted mapping. Without loss of generality, we can assume thatf(r) = 0.
Let V1 = {i | f(i) < 0} andV2 = {i | f(i) > 0}. Note that[n] = V1 ∪ {r} ∪ V2. Note
that, the mappingf is fully characterized by the partitionV1 ∪ V2 of [n]−{r}. Hence, the
problem of finding the bestr-restricted mapping is equivalent to the problem of finding
the partition ofV = [n]− {r} that has minimum additive distortion. Henceforth, we will
think of the problem as that of partitioning the input set of points to minimize thecostof
the partition, i.e. the additive distortion. Here we give an approximation to theLp

p norm of
additive error for ther-restricted mapping.

Consider a partitionV1 ∪ V2 induced by anr-restricted mappingf . We can write an
expression for itscostas follows. Consider two pointsx andy. If they both belong to
the same side of the partition, then the contribution of the pair{x, y} to the cost of the
partition isc(x, y) = |Dxy − fxy|p = (Dxy − |f(x)− f(y)|)p = |Dxy − |Drx−Dry||p. On
the other hand, ifx andy belong to different sides of the partition, then the contribution is
c′(x, y) = |Dxy−fxy|p = |Dxy−|f(x)−f(y)||p = |Drx +Dry−Dxy|p. Note thatc(x, y)
andc′(x, y) are completely determined from the input matrixDn×n.

Now, we can think of the problem as a graph partitioning problem where each edge
has two costsc(·) andc′(·) associated with it. Thepth power of the cost for ther-restricted

30

solution,Lp(D, f
r)p, is same as the objective function for the partition problem. It is given

by: ∑
x, y on same side

c(x, y) +
∑

x, y on different sides

c′(x, y). (3.3)

3.4.1 Two-cost Partition Problem

We are given a complete graphG = (V,E) with two cost functionsc andc′. We want to
find a partition of the vertex setV = V1 ∪ V2 which minimizes

∑
i=1,2

∑
u,v∈Vi

c(u, v) +∑
u∈V1,v∈V2

c′(u, v).

Note that, ifc(u, v) = 0 for all u, v, then the problem reduces to finding a minimum
cut in the graph. On the other hand, ifc′(u, v) = 0, then the problem is the well known
edge deletion for graph bipartition problem (BIP) [Klein et al., 1990]. Our algorithm
generalizes the algorithm for graph bipartition given by [Klein et al., 1990, Garg et al.,
1996]. The basic idea is to create two copies of each vertex to go on different sides of the
partition. To ensure that they are on different sides, we designate each pair as a source-sink
pair in the multi-cut subroutine.

Algorithm B:

1. Create an auxiliary graphG′ from the graphG as follows.

(a) For each vertexu in the graphG,G′ has two vertices:u andu′.

(b) For each edge(u, v) we create4 edges inG′: (u, v), (u, v′), (u′, v) and(u′, v′).

(c) The edges inG′ have weights, denoted byl(·, ·). Set l(u, v) = l(u′, v′) =
c(u, v) andl(u, v′) = l(u′, v) = c′(u, v).

2. Use an approximation algorithm for the multi-cut problem (E.g., [Garg et al., 1996])
as a subroutine to find a multi-cut in graphG′ with (u, u′), for all u, as the source-
sink pairs. LetS be the set of edges in the multi-cut returned by the subroutine.

3. Construct a set of edgesT as follows. If {u, v} or {u′, v′} is chosen inS, then
include both inT . Similarly, if {u, v′} or {u′, v} is chosen, then include both inT .

4. Find a bipartitionV ′
1 ∪ V ′

2 of vertices ofG′ so thatT contains all the edges going
across the partition.2

2We will show how to do this in the proof of Proposition 3.1.

31

5. Output the partitionV1 ∪ V2, whereVi = V ′
i ∩ V .

The intuition behind this algorithm is as follows. For the cut represented byT , we
will show that we can get a partition of vertices in graphG′ such that only one ofu and
u′ is in one partition. From the partition ofG′, we get a bipartition ofG. The cost of the
bipartition ofG is related to the cost of multi-cut obtained by above algorithm in the graph
G′. We prove this in the next lemma.

Lemma 8 Algorithm B returns a partitionV ′ = V ′
1 ∪ V ′

2 of graphG′, such that ifu ∈ V ′
1 ,

thenu′ ∈ V ′
2 and vice versa. Moreover,

∑
x∈V ′

1 ,y∈V ′
2
l(x, y) is at most twice that of the

multi-cut found after step 2 by Algorithm B separating eachu fromu′.

Proof. Consider the setS of edges found by the multi-cut subroutine whose re-
moval separates eachu from u′. For each edge(x, y) ∈ S, we also include its
“mirror” edge in T . i.e. if (x, y) ∈ S, then(x′, y′) ∈ T from the graph. Note
that, the cost of an edge and its “mirror” edge is same (i.e.,l(x, y) = l(x′, y′)).
Therefore, the cost of the edges inT is at most twice the cost of edges inS.

Now we show that removal of the edges inT breaks the graph in two parts
with the desired property. Consider the graphG′\T . Construct a graphH whose
vertices represent the connected components inG′ after removing the edges in
T . Two verticesh1 andh2 in H are connected to each other if the corresponding
connected components inG′ have verticesx andx′.

In Proposition 3.1, we prove that the graphH is bipartite. Now we can use
graphH to construct a partitionV ′ = V ′

1 ∪ V ′
2 in graphG′. Since the vertices in

graphH were connected components in graphG′, there are no edges crossing the
partitionV ′

1 ∪ V ′
2 in graphG′. Moreover, bipartiteness of graphH means that each

pair of verticesx andx′ in graphG is split in the partition. The cost of this partition
is at most2 times the cost of the multi-cut.

Proposition 3.1 The graphH defined in the proof of Lemma 8 is bipartite.

Proof. For the sake of contradiction, assume thatH has a cycle of odd length.
Consider three consecutive verticesu, v andw in this odd cycle. Letv be connected
to u andw.

Let x be a vertex ofG′ that belongs to the connected componentu and defines
the edge{u, v} in graphH. Therefore,x′ is the componentv. Similarly, let y

32

be a vertex in componentw andy′ be the corresponding vertex in componentv.
Sincex′ andy′ are in the same connected componentv, there is a pathx′ → y′ that
lies completely inside the componentv. Since we didn’t remove any of the edges
on the pathx′ → y′, all themirror edges haven’t been removed either. Therefore
the themirror pathx → y connectsx andy. This contradicts the fact thatx andy
were in different connected components. This proves that the graphH is a bipartite
graph.

Lemma 9 The cost of the optimal multi-cut is a lower bound on the cost of partition of
graphG.

Proof. Consider a partitionV = V1 ∪ V2 of graphG. From this, we can construct
a partition of the vertex set ofG′. Let V ′

1 = V1 ∪ {x′ | x ∈ V2} andV ′
2 = V ′\V ′

1 .
Then, removing all the edges inG′ crossing this partition ensures that no vertexx
is connected to its counterpartx′. i.e. The set of edges going across the partition is
a multi-cut. The cost of these edges is exactly the cost of the partition ofG.

Recall that GVY algorithm for multi-cut [Garg et al., 1996] is anO(log k) approxima-
tion for k terminals. Here we haven terminals. Therefore by Lemmas 8 and 9, we get an
O(log n) approximation for the bestr-restricted mapping. Along with Observation 7 give
us anO(log n) approximation for theL1 norm of additive distortion.

3.5 Improved algorithm

We show that the two-cost is equivalent to the bipartition problem (BIP).

Theorem 7 Two-cost bipartition problem is equivalent to single cost bipartition problem.

Proof. Let the graphG = (V,E). There are two cost functionsc, d : E → [0,∞).
The objective is

∑
e + c(e) +

∑
e− d(e). Heree+ means an edgee which has both

endpoints inside a cluster. Similarly,e− means an edge whose endpoints lie in
different clusters.

We construct a graphH = (U,E ′) with a single cost functionx(.) as follows.
For eachv ∈ V , we create two verticesv, v′ ∈ U . Letx(v, v′) =∞. For each edge
(u, v) ∈ E, we create4 edges inE ′ with following costs:

x(u, v) = x(u′, v′) = c(u, v)and

33

x(u′, v) = x(u, v′) = d(u, v)

Now we use a BIP algorithm as black box to solve this problem. Clearly,v and
v′ cannot be on the same side, asx(v, v′) =∞. If u andv are on the same side (and
thereforeu′ andv′ on the other side), then the cost to BIP isx(u, v) + x(u′, v′) =
2c(u, v). If u andv are on different sides in the BIP solution, thenu andv′ are on
one side andu′ andv on the other. Thus, the cost isx(u, v′) + x(u′, v) = 2d(u, v).
Thus from the BIP solution, if we drop all the verticesv′ we get the desired partition
for the two-cost problem. The costs are within constant factor of each other.

Now we can use a recentO(
√

log n)-approximation algorithm due to Agarwal et al. [Agar-
wal et al., 2005] for the two-cost bipartition problem. This improves our approximation
factor toO(log1 2pn).

3.6 Discussion

We can show that the problem of finding the bestr-restricted mapping is NP-hard by
reducing the edge deletion for graph bipartition (BIP) [Garey and Johnson, 1979] to it.
Consider a graphG. Let V (G) = n. We construct a distance matrixD on n + 1 points
V (G) ∪ {a}. Set the diagonal entriesDxx to 0. SetDax = 1/2 for all x ∈ V (G). For all
{x, y} ∈ E(G), setDxy = 1. Set the rest of the entries to1/2. Consider anr-restricted
mapping. LetV (G) = V1 ∪ V2 be the partition induced by ther-restricted mapping. Then
the cost of ther-restricted mapping isB(V1, V2) + (1/2)(

(
n
2

)
− |E(G)|), whereB(V1, V2)

is the number of edges that need to be deleted to obtainV1 andV2 as two sides of a bipartite
graph. Therefore, finding the optimalr-restricted mapping corresponds to minimizing the
number of edges deleted for making the graphG bipartite. This proves that finding the best
r-restricted mapping is NP-hard. However, this reduction is not approximation preserving.
So it does not preclude the possibility of a PTAS for this problem. Getting even a constant
factor approximation would be quite interesting.

In the proof of NP-hardness ofr-restricted mapping problem, we used an input matrix
D that does not satisfy the triangle inequality. For input matrixD that is ametric (i.e. it
satisfies the triangle inequality), it might be possible to get a polynomial time algorithm
for the bestr-restricted mapping.

34

Chapter 4

(Classical) Distortion

In this chapter, we focus on approximating the distortion. The goal is to find an embedding
f : V → R, from the node setV of a graphG into the real lineR that is non-contracting
(i.e. |f(x) − f(y)| ≥ d(x, y)), and has a smalldistortionD(f) = maxx,y∈V |f(x) −
f(y)|/d(x, y). We assume that the graphG is an unweighted graph.

Two Lower Bounds
We start by giving two basic lower bounds on the distortion of an optimal embedding in
terms of structural properties of the input graphG.

We call a graph ak-spider if it can be decomposed intok edge-disjoint simple paths
(calledlegs) that share exactly one common node, which is called thecenterof the spider.

Lemma 10 [3-spider bound] LetG be a3-spider, in which every leg has length at lestl.
Then any map ofG into the line has distortion at lest2l.

Proof. Let c denote the center ofG and letx0, . . . , xl, y0, . . . , yl andz0, . . . , zl

denote the firstl+ 1 vertices on the three legs ofG, where counting starts from the
center node (i.e.c = x0 = y0 = z0). Fix an optimal non-contracting embedding
f ∗, and consider the verticesxl, yl andzl in this embedding.

There must exist verticesul, vl ∈ {xl, yl, zl} such that eitherf ∗(ul) ∈ [f ∗(vl), f
∗(c)]

or f ∗(ul) ∈ [f ∗(c), f∗(vl)], i.e., the image oful lies betweenf ∗(vl) andf ∗(c). As-
sume w.l.o.g.f ∗(ul) ∈ [f ∗(c), f∗(vl)], and letui andvi denote thei-th node on the
path corresponding tovl andul, respectively.

Sincef ∗(ul) ∈ [f ∗(c) = f ∗(v0), f
∗(vl)], there must exist an indexi such that

f ∗(ul) ∈ [f ∗(vi), f
∗(vi+1)]. This gives|f ∗(vi) − f ∗(vi+1)| ≥ 2l, because the map

35

f ∗ is non-contracting. However,d(vi, vi+1) = 1, which shows that the distortion is
at least2l, as desired.

For the second lower bound we define the following structural property of the graph
G. Thelocal densityλ of G is defined as

λ = max
v∈V,r∈R>0

{
|B(v, r)| − 1

2r

}
,

where|B(v, r)| = {u ∈ V | d(u, v) ≤ r} denotes the ball of vertices within distancer
from v. Intuitively, a high local density tells us that there are dense clusters in the graph,
which will cause a large distortion. The following lemma formalizes this intuition.

Lemma 11 [Local Density] LetG denote a graph with local densityλ. Then any map of
G into the line has distortion at leastλ.

Proof. Fix v ∈ V andr ∈ R≥0 such that(|B(v, r)| − 1)/2r is maximum, and let
x, y ∈ B(v, r) denote those two nodes fromB(v, r) that are farthest apart in the
optimum mapf ∗. Assume,f ∗(x) < f ∗(y).

All vertices from the ballB(v, r) are mapped to a point from the interval
[f ∗(x), f∗(y)]. There are|B(v, r)| such vertices, and since the embeddingf ∗ is
non-contracting we get|f ∗(x)− f ∗(y)| ≥ (|B(v, r)| − 1). However, the shortest-
path distance betweenx andy in G is at mostd(x, y) ≤ d(x, v) + d(v, y) ≤ 2r.
Hence, the distortion is at least(|B(v, r)| − 1)/2r.

A simple corollary of this lower bound is the following:

Corollary 4.1 (Size ofr-ball) LetD be the optimal distortion for embedding the
graphG into the line. Then|B(v, r)| = O(r ·D), for every ballB(v, r).

The local density lower bound has been widely studied in the context of theMinimum
Bandwidth Problem, where it is known that the minimum bandwidth is within a polylog-
arithmic factor of the local density. However, for our problem this bound can be rather
weak. For example, in the case of a 3-spider with legs of lengthn/3, the local density is
3/2, whereas the optimum distortion is at leastΩ(2n/3) by Lemma 10. This shows that a
combination of the local density bound and the 3-spider bound is needed in order to obtain
a reasonable approximation ratio for our embedding problem.

The following result will be useful for our algorithms:

36

Theorem 8 (Matoǔsek [Matoušek, 1990])Anyn-point metric can be embedded into the
real line with distortion at mostO(n).

For the case of unweighted graphs (which is all we need), this can be proved by just laying
the vertices out in any depth-first order – the distortion of such a layout is at most(n− 1).
(We will show this in Lemma 13.)

4.1 O(
√
n)-Approximation algorithm for general graphs

Before describing the embedding algorithm, we give the basic idea behind it. If the optimal
distortion to embedG into the line isD, we show thatG has a so-called “diametric path”
such that all the vertices ofG are “close to” (i.e., within distanceD of) this path. This
allows us to cut this diametric path at everyD steps and extend this partitioning to the rest
of the graph, and hence get pieces of diameter at mostD. We show how to embed each of
these components individually, and finally how to stitch these embeddings together to get
an embedding of the graphG.

Lemma 12 [Concentration around diametric path] If s and t are two vertices in the
graphG such thatd(s, t) is maximum, then the distance of all other points from the shortest
s-t path is at mostD.

Proof. Let path(s, t) denote the shortests-t path. Assume for contradiction that
there is a vertexx whose distance frompath(s, t) is larger thanD, and letc denote
the vertex onpath(s, t) that is closest tox.

By the definition ofx, we haved(c, x) > D. Moreover, since(s, t) is the pair
with maximum distanced(s, t), the inequalitiesd(c, s) > D andd(c, t) > D hold.
Hence, the union ofpath(s, t) and the shortestc-x path forms a 3-spiderS in which
every leg has length at leastD + 1.

Lemma 10 implies that the distortion for embedding the 3-spiderS is at least
2(D + 1). Since, for everyx, y ∈ S, the distance betweenx andy in S and the
distance betweenx andy in G differs at most by a factor of 2, the distortion for
embeddingG into the line is at leastD + 1. This gives a contradiction.

Now we partition the node set ofV into small pieces. Assume for simplicity that the
lengthd(s, t) of the diametric path is a multiple ofD. Let s = v0, v1, . . . , vk = t denote
the vertices onpath(s, t) such thatd(vi, vi+1) = D. We assign each node inG to the node
vi that is nearest to it (ties are broken arbitrarily), and form a componentXi ⊂ V from all

37

v1

v2

G

X1

X2 Xk

Xk−1

v0

vk−1

vk

Figure 4.1: Partition into small balls

nodes assigned to vertexvi. The following claim shows that the componentsXi created
by this process have a low diameter.

Claim 4.2 Xi ⊂ B(vi,
3
2
D).

Proof. It follows from Lemma 11 that for any nodeu there is a nodec on the path
path(s, t) with d(u, c) ≤ D. Since, the verticesvi are placed in distanceD on this
path, there must exist an indexi for which d(c, vi) ≤ D/2. This shows that for
each nodeu there is a nodevi with d(u, vi) ≤ 3

2
D, and henceXi ⊂ B(vi,

3
2
D).

Lemma 13 For each componentXi, there is a non-contracting embedding into the inter-
val [0, L], whereL = O(D2).

Proof. A componentXi is contained in the ballB(vi,
3
2
D). A depth-first search

(DFS) on this ball takes at mostO(D2) steps since there are at mostO(D2) nodes
in the ball, due to Corollary 4.1. We map a node inXi that is visited in thekth

step of the DFS tok. This gives a non-contracting mapping into the interval[0, L],
whereL = O(D2) is the maximum number of steps needed by the DFS.

Theorem 9 Let fi : Xi → [0, L] denote the embedding ofXi in Lemma 13, whereL =
O(D2). The embeddingf : V → R that maps a nodev ∈ Xi to i ·L+fi(v) has distortion
at mostO(D2).

Proof. Clearly, the distortion of an edge between two nodes from the same compo-
nent is at mostL = O(D2), because both nodes are mapped to the same interval.

Consider an edge{x, y}, wherex ∈ Xi andy ∈ Xj for i 6= j. First, we note
that |i − j| cannot be bigger than4; otherwise the path fromvi to vj that goes via

38

the{x, y} edge is shorter than the diametric shortest path we started with. Hence,
we have|i − j| < 4. In this casex andy are mapped into an interval of length at
most4L = 4D2, which implies a distortion ofO(D2). This completes the proof of
the theorem.

The following argument turns the above result into aO(
√
n)-approximation algorithm.

Theorem 10 There exists a polynomial timeO(
√
n)-approximation algorithm for embed-

ding an unweighted graph into a line to minimize the distortion.

Proof. Assume that we know the value of the optimal distortionD ∈ [1, n]; if
D ≥

√
n, then we just output a DFS tour of the entire graph. Since the length of

the DFS tour isO(n), the distortion isO(n) ≤ O(
√
n)×D, giving us the claimed

embedding.

On the other hand, ifD <
√
n, then we use the algorithm from Theorem 9 find

an embedding with a distortion ofO(D2) ≤ O(
√
n)×D; this completes the proof.

4.2 Better embeddings for unweighted trees

For the case of trees, we use a similar framework as for graphs: we divide the tree along
the “diametric path” and obtain connected componentsX1, . . . , Xk with eachdiam(Xi) ≤
D and |Xi| = O(D2). Instead of taking the depth-first tour to embed eachXi as in
Lemma 13, we give a more sophisticated embedding.

4.2.1 Prefix Embeddings

We first prove that it suffices to consider embeddings where each prefix of the associated
tour forms a connected component of the tree; this will allow us to considerably simplify
all our later arguments.

Lemma 14 [Prefix Embeddings] Given any graphG, there exists an embedding ofG
into the real line with the following two properties:

1. Walk from left to right on the line, the set of points encountered up to a certain point
forms a connected component ofG.

39

2. The distortion of this map is at most twice the optimal distortion.

Proof. Consider the optimal embeddingf ∗, and letv1, v2, . . . , vn be the order of
the points in this embedding. (We will blur the distinction between a vertexv and
its imagef ∗(v) on the line.) Without loss of generality, we can assume that the
distance between any two adjacent pointsvi andvi+1 in this embedding is their
shortest path distanced(vi, vi+1).

Let i be the smallest index such that{v1, v2, . . . , vi} does not form a connected
subgraph; hence there exists some vertex on every shortestvi−1-vi path that has
not yet been output. We pick one of these shortest pathsP , take the vertexw in
P − {v1, v2, . . . , vi−1} closest tovi−1, and place it at distanced(vi−1, w) to the
right of vi−1 in the embedding. We repeat this process until Property1 is satisfied;
it remains to bound the distortion we have introduced.

Note that the above process moves each vertex at most once, and then it is
moved to the left. We claim that each vertex is moved by at most a distanceD,
whereD is the optimal distortion. Indeed, consider a vertexw that was moved
when addressing thevi−1-vi path, and letvk be a neighbor ofw amongv1, . . . , vi−1.
Note the distance|f ∗(vk)− f ∗(w)| between these two vertices is at mostD in the
optimal embedding. Sincew stays to the right ofvk, the distance by whichw was
moved is at mostD.

In short, though the above alterations moved vertices to the left, whilst keeping
others at their original locations inf ∗, the distance between the endpoints of an
edge increased by at mostD. Since the distance|f ∗(v)− f ∗(u)| was at mostD to
begin with, we end up with an embedding with distortion at most2D, proving the
lemma.

Henceforth, we will only consider embeddings that satisfy the properties stated in
Lemma 14. The bound on the increase in distortion is asymptotically the best possible:
for the case of then-vertex starK1,n−1, the optimal distortion is≈ n/2, but any prefix
embedding gets a distortion of at leastn− 2.

4.2.2 The Embedding Algorithm

In this section, we give an algorithm which embeds trees with distortiong(D) = O(λ
√
D logD+

D), whereλ is the local density andD the optimal distortion. The algorithm proceeds in
rounds: in roundi, we lay down a setZi with aboutg(D) vertices. To ensure that the
neighbors of vertices are not placed too far away from them, we enforce the condition that

40

the vertices inZi include all the neighbors of vertices in∪j<iZj that have not already been
laid out.

It is this very tension between needing to lay out a lot of vertices and needing to ensure
their neighbors do not hurt us later, that leads to the following algorithm. In fact, we will
mentally separate the action of laying out the neighbors of previously embedded vertices
(which we call theBFS partof the round) from that of laying out of new vertices (which
we call theDFS part).

We assume that we know the left-most vertexr in the prefix embedding; we can just
run over all the possible values ofr to handle this assumption. LetN(X) denote the set of
neighbors of vertices in the setX ⊆ V .

We define alight path orderingon the vertices of the treeT . The light path ordering
is a DFS ordering which starts at rootr and at each point enters the subtree with smallest
number of points in it.

Algorithm Tree-Embed:

1. letC ← {r} denote the set of vertices already visited. Seti← 1.
2. whileC 6= V (T) do

(Round i BFS)
3. Visit all vertices inN(C) \ C; letC ← C ∪N(C)

(Round i DFS)
5. setB to be a set ofg(D) vertices ofV (T) \ C in the light path ordering.

Visit all vertices inB; letC ← C ∪B.
6. endwhile

Lemma 15 [Number of rounds] The algorithmTree-Embed requiresO(
√
D log−1D)

iterations to complete.

Proof. By the very definition of the algorithm, the setC grows by at leastg(D)
in every iteration. Note that the diameter of the tree is bounded byO(D) and its
local density isλ. Therefore, the number of points in the tree isO(λD). Hence,
within O(λD/g(D)) = O(

√
D log−1D) rounds, all the vertices of the tree will be

visited.

The heart of the proof is showing that visiting the vertices in Steps 3 and 5 does not
incur too much distortion; it may be the case that the size ofN(C) \ C may be too large,
or even that these vertices may be separated very far from each other.

41

r

active branching

points

visited part

inactive

branching

point

Figure 4.2: A typical snapshot of AlgorithmTree-Embed

Lemma 16 [Span of boundary] The size of the induced spanning tree on the boundary
N(C) \ C is bounded byg(D).

Proof. Consider the setCi of vertices that have been visited by roundi. Consider
a vertexx visited in roundj of the DFS for somej ≤ i. Note that the children
of the vertexx will be visited after x. We say thatx is a branching pointif not
all the children ofx were visited in the same round asx. The branching pointx
is activeafter roundi if at least one of the vertices below it has not been visited
by roundi; otherwise it isinactive. We claim that all the active branching points
in Ci lie on some root-leaf path. This follows because the light path ordering is a
DFS ordering. Therefore, if some vertices below a branching pointx have not been
visited, then the DFS part of the algorithm will not visit a different subtree.

Note that each active branching point (except possibly the lowest one) has at
least two children and the algorithm visits the child which has a smaller number of
vertices in its subtree. Therefore, the number of active branching points on a root
to leaf path is at mostO(logD).

We claim that every point inN(Ci) \ Ci is within a distance ofi + 1 of some
active branching point. We prove this by induction oni. Before the first round, this
property is true, sinceC0 = {r}. Now assume the property fori−1 and consider a
vertexv ∈ N(Ci)\Ci. Letu be the neighbor ofv such thatu ∈ Ci. If uwas visited
in the roundi of the DFS, thenu is an active branching point, since its childv has
not been visited in the same round. Otherwise, ifu was visited in roundi of the
BFS, thenu is within distancei of some branching pointx. Sincev is belowx and
has not been visited after roundi, the branching pointx must be active. Therefore,

42

v is within distancei+ 1 from some active branching point.

Letx be an active branching point and letNx contain the points fromN(Ci)\Ci

that are within distancei+ 1 from x. Then, we can bound the span of the induced
tree onNx using the local density bound. The number of vertices in the induced
tree onNx is bounded by(i + 1)λ. Therefore, the sum of spans over all the active
branching points is at mostO(λ

√
D logD). Note that, all the active branching

points are on a single root-leaf path. Therefore, connecting all the branching points
inN(Ci)\Ci requires only a path of lengthO(D). Hence, the total span of vertices
in N(Ci) \ Ci is bounded byg(D).

Lemma 17 The span of the tree induced on the vertices visited in any iteration is bounded
byg(D).

Proof. From Lemma 16, the span of the vertices visited in Step 3 of the algorithm
is bounded byO(λ

√
D logD+D). The number of new vertices visited in Step 5 of

the algorithm is bounded byg(D). Since, we visit a set of connected components,
their span is bounded byg(D) + span(N(C) \ C). Therefore, the span of the
vertices visited in each iteration is bounded byO(λ

√
D logD +D).

Lemma 18 The distortion of the embedding produced by AlgorithmTree-Embed isg(D) =
O(λ
√
D logD +D).

Proof. For a pair of vertices that are visited during the same iteration, the distance
in the embedding is bounded byg(D) (from Lemma 17). Therefore, the distortion
of such a pair is bounded byX. So, consider an edge(x, y) such thatx andy were
visited in different iterations. Note that, step 1 of the algorithm ensures that ifxwas
visited in iterationi, theny was visited in iterationi + 1. Therefore, the distance
betweenx andy in the embedding is bounded byg(D). Hence, the distortion is
bounded byg(D) = O(λ

√
D logD +D).

Concatenating the embeddings In order to concatenate the embeddings ofX1, X2, . . .,
it is enough to observe that since the input graph is a tree, there is only one edge connecting
componentsXi andXi+1 for all i. Let ri denote the root ofXi andsi denote the vertex in
Xi connecting tori+1, the root ofXi+1. It follows from our decomposition thatd(ri, si) ≤
O(D). To produce an embedding of the componentXi using AlgorithmTree-Embed, we
use a light path ordering ofXi assuming that the subtree containingsi is heaviest subtree.

43

Hencesi is last in the light path ordering ofXi and is visited last by AlgorithmTree-
Embed. This makes sure that the distortion of the edge(si, ri+1) is also within the bound.
Changing the light path ordering in this way, does not affect the bound on distortion proved
in Lemma 18. Thus we get the following result.

Theorem 11 There is a polynomial time algorithm that finds an embedding of an un-
weighted tree with distortionO(λ

√
D logD +D).

Corollary 4.3 There is a polynomial time algorithm that finds an embedding of
an unweighted tree with distortion within a factorO((n log n)1/3) of the optimal
distortion.

4.3 Hardness results

Theorem 12 The problem of minimizing the distortion of embedding an unweighted graph
into line is NP-hard.

Proof. The reduction is from the Hamilton Path problem. Suppose we are given a
graphH = (V ′, E ′) with |V ′| = h, we create a graphG thus: we take two copies of
H and a new vertexr, and add edges fromr to all the vertices in both copies ofH.
We also set the weight of all edges to be 1. We now ask whetherG is embeddable
with distortionh into the real line.

Clearly, we can assume that the embedding is an expansion, since scaling does
not change the distortion. IfH had a Hamilton path(v1, . . . , vh), we can mapr to
the origin, and the two copies ofvi to the points+i and−i respectively. This can
be easily checked be an expansion, and to have distortion exactlyh. Thus accepting
instances get mapped to accepting instances.

On the other hand, ifH has no Hamilton path, then let us look at any embedding
φ. By the Pigeon-Hole principle,r will have at leasth vertices to one side, and
at least one consecutive pair of these vertices will have distance 2 between them
(since they will not be connected: either they belong to different copies ofH, or
they don’t have an edge between them) while all the others have distance at least 1.
Thus the distortion of the edge connectingr to the furthest vertex on this side will
be at leasth+ 1, thus completing the proof.

MAX-SNP hardness of the problem follows similarly, by an easy reduction from
metric-TSP with edge weights 1 and 2.

44

We now show that embedding a (weighted) tree into a line is NP-hard.

Theorem 13 The problem of minimizing the distortion of embedding a (weighted) tree
into a line metric is NP-hard.

Proof. We will reduce from the set partitioning problem (PARTITION), which is
NP-complete [Garey and Johnson, 1979] (but only weakly so). In PARTITION, the
input hasn positive integersa1, a2, · · · , an with

∑
i ai = 2L and we want to decide

whether there is some subset of these numbers which add up to exactlyL.

Given an instance of this problem, let us construct a star with edge lengths as
described below. Letn of the edges correspond to the input for PARTITION and
hence have lengthsai. We call these theshort edges. We also add2(n + 1) long
edges, each with length3L. We now ask whetherT can be embedded onto the
real line with distortion at mostD = (2n + 5/3). In the following discussion, we
always assume that the root is embedded at the origin.

If we have a positive instance of PARTITION, without loss of generality assume
that the firstk numbers add up toL and thata1 ≤ a2 ≤ . . . ≤ ak, andak+1 ≤
ak+2 ≤ . . . ≤ an. We embed the vertices corresponding to the firstk short edges
on the positive half of the axis with

φ(vi) = ai +
∑

0<j<i−1

2aj,

and the remaining vertices at the positions

φ(vk+i) = − ak+i −
∑

0<j<i−1

2ak+j.

Now the vertices corresponding to the long edges can be placed at positions±(2L+
(2i + 1)3L), for 0 ≤ i ≤ n. It can be easily checked that this embedding is an
expansion and furthermore, the distortion is at most(6n+ 5)/3 = 2n+ 5/3 = D.

On the other hand, take a negative instance of PARTITION. Consider the optimal
embedding of this graph which is an expansion, and look at the vertices correspond-
ing to the long edges. Clearly, no more than(n+ 1) of these can be placed on one
side, else the distortion for the last vertex would be at least[2(n+1)+1] ≥ 2n+3.
Hence we have exactly half these vertices on either side in an optimal embedding
of such an instance. Since this is a negative instance of PARTITION, any partition
of the vertices of the short edges will cause the final vertex to be at distance at least
2(L+1)+(2n+1)3L, and hence we have distortion at least2n+5/3+2/3L > D.

45

4.4 Improved Embedding

In this section, we consider a special case of the problem where the input treeT has sub-
trees with size and depth≤ D. In this case, we are able to giveO(logD)-approximation
to the distortion.

4.5 Lower bounds:

We prove the following two lower bounds on the distortion based on the structure of the
tree. These arguments are based on the work done per round and the span of the boundary.

Lemma 19 [Small Trees Bound]Let all the subtrees of the treeT have size smaller than
s. LetV denote the total number of vertices in those subtrees. Then the distortion of any
embedding ofT is at leastV/

√
s.

Proof. If there are at leastV/2 vertices within a distance of
√
s from the root, then

the local density of the tree∆ ≥ V/(2
√
s). Therefore, the distortion isΩ(V/

√
s).

So now assume that more thanV/2 vertices are at a distance of
√
s or more

from the root. Consider the situation after round
√
s/2 of the optimum embedding.

In
√
s/2 rounds the optimum embedding can visit at mostD ·

√
s/2 vertices out

of theV/2 vertices that are ‘far’ from the root. Thus, there are at leastV
2
− D

√
s

2

vertices that are at least
√
s far from root and not yet visited. Since each subtree

has size at mosts, there must be at leastV
2s
− D

2
√

s
subtrees that have vertices yet to

be visited. Each such subtree contributes at least
√
s to the span of the boundary.

Hence the total span of the boundary at this stage isΩ(V
2
√

s
− D

2
). Consequently,

the distortion isΩ(V√
s
).

Lemma 20 [Large Trees Bound] Let the treeT havek subtrees of size at leasts each.
Then the distortion of any embedding ofT is at leastk

√
s.

Proof. The total number of vertices inT is at leastks. Suppose at leastk/2 subtrees
have depth smaller than

√
s. Then at leastks/2 vertices out of the total are within

a distance of
√
s from the root. Hence, the local density of the tree∆ ≥ k

√
s/2

and the distortion isΩ(k
√
s).

Now suppose that more thank/2 trees have depth more than
√
s. Consider the

the optimum embedding after
√
s/2 rounds. Up to this point, the optimum embed-

ding could have visited at mostD
√
s/2 vertices. Thus the optimum embedding

46

could have finished at mostD/(2
√
s) subtrees by this point in time. Therefore, at

leastk/2−D/(2
√
s) trees with depth

√
s. Therefore, the span of the boundary is

at leastk
√
s/2−D/2. Hence the distortion isΩ(k

√
s).

4.6 Algorithm

Next we describe our randomized algorithm and give a rough sketch of its analysis.

1: For each subtree, pick a delayd u.a.r. from[1, 2)

2: In the BFS rounds, we visit each subtree with its delayd, i.e. if the delay isy/x, then
visit the subtreex times iny rounds.

3: In each DFS round, find the smallest subtrees hanging off the boundary that can be
visited inO(D log n) work and visit them.

Figure 4.3: Algorithm Random-Delay

Observation 4.4 The BFS part visits each subtree at least once in every two con-
secutive rounds.

This follows because the delay is at most2. Furthermore, the observation implies that
the work done in the DFS between two BFS visits to a subtree is at mostO(Dlogn).

4.7 Analysis

The main idea is to show that by the end of roundt, the algorithmR manages to finish all
the subtrees hanging off the boundary with size up tot2.

Let r denote the root of the subtree. For each vertexv, defineTv = the set of the
verticesw such that ther → w path contains the vertexv. The setTv is the subtree rooted
atv. Let |Tv| denote the number of vertices inTv. In particular, we have|Tv| = 1 iff v is a
leaf.

We define the set of subtrees of size less thans and rooted at no more thant from the
root as follows.

V t
s = {u ∈ Tv | v ∈ B(r, t) and|Tv| ≤ s},

whereB(r, t) is the ball of radiust aroundr.

47

Lemma 21 Consider the setV t
s . If s ≤ c · t2, then the number of vertices in this set is

bounded by2cD · t.

Proof. Consider the subtrees of size smaller thans that are rooted within distance
t from the root. LetN denote the number of vertices in these subtrees. After
t rounds, the optimum algorithm visits at mostD · t vertices. Moreover, all the
subtrees remaining aftert rounds have size smaller thanct2. The number of ver-
tices remaining is at leastN −Dt. Therefore, it follows from Lemma 19 that the
distortion must be at least(N −Dt)/(t

√
c). HenceN ≤ 2c′D · t.

4.8 A different view of the algorithm

Randomize the tree. Run the greedy algorithm on it. In other words, visit smallest subtrees
in each round with a budget ofO(D logD). We claim that the optimum distortion on
randomized tree is within a constant factor of the optimum distortion on the original tree.

Now consider the randomized tree, i.e. each of the subtrees is stretched by a random
factor between[1, 2]. In the rest of the analysis, we focus solely on the randomized tree.

Lemma 22 Consider the setV t
s in the randomized tree. Ifs ≤ c · t2, then the number of

vertices in this set is bounded by2cD · t.

Proof. This follows directly from Lemma 21. The randomization only stretches
the trees, and hence|V t

s | can only go down.

Lemma 23 The probability that vertexv ∈ T lands at levelt in the randomized tree is
bounded by2/t.

Proof. Let the vertexv be at a distancet′ from the root in the original tree. The
randomization process maps it in the interval[t′, 2t′] uniformly. Therefore, forv
to get mapped at distancet from the root (i.e. levelt), it must be the case that
t′ ≤ t ≤ 2t′. If this condition holds, then the probability thatv will get mapped to
t is 1

t′
≤ 2

t
. This proves the lemma.

Consider a levelt. DefineWt,the “new work created” at a levelt, as

Wt = {u ∈ Tv | v is at levelt and|Tv| ≤ t2}

In the next lemma we bound the quantityWt.

48

Lemma 24 The new work created in roundt is bounded byO(D logD) with high proba-
bility.

Proof. Suppose there arek subtreesT1, T2, . . . , Tk at the root. LetXi be the
number of vertices from the subtreeTi in the new work created at levelt. ThusXi

is a random variable whose maximum value isD. The new work created in round
t is given by

Wt =
∑

i

Xi

We first compute the expected value ofWt. Note that only the vertices fromV t
t2

can be included inWt. Moreover, we will count a subtreeTv as new work created
in roundt iff the subtree from the parent ofv has size bigger thant2.

Thus a vertexw ∈ Tv is inWt if v is at levelt in the randomized tree. Hence,
probability that a subtreeTv fromV t

t2 gets counted inWt is bounded by2/t. There-
fore, we can bound the expected size ofWt as follows.

E[Wt] ≤
∑

v

|Tv| · Pr[v at levelt] ≤ 2

t
2Dt ≤ 4D

In the previous equation, we bounded the size ofTv using Lemma 21.

Now using a Chernoff bound, we get

Pr[Wt ≥ 24D logD] ≤ exp(−2 logD)

This proves the lemma.

Intuitively,Wt is the amount of new work created as our BFS boundary reaches levelt.
SinceWt is bounded byO(D logD), our algorithm is able to finish the new work created.1

We also need to consider (long skinny) subtrees of size roughlyt2 that are rooted at
t′ � t. We haven’t considered such subtrees as part of “new work created” anywhere,
since around levelt′ they were much bigger thant′2 and around levelt, they weren’t new
anymore. To handle this, we prove the following lemma with a stronger invariant.

Lemma 25 By round2i, the algorithm Random-Delay visits all the subtrees of size22i+2

rooted at2i or lower.
1We also need to bound the span of the new work created, since a whole bunch of such subtrees could be

created.

49

Proof. Consider the subtrees of size up to22i+2 that are rooted at2i or lower.
From Lemma 22, it follows that the number of vertices in such trees is bounded by
D · 2i+3. We will refer to this as theold work.

Consider the rounds from2i−1 to 2i. In each of these rounds, onlyO(D logD)
new work is created in subtrees of size up to22i+2 (from Lemma 24). Therefore,
algorithm R is able to finish all the new work in the same round in which it was
created. Moreover, algorithm Random-Delay does at least16D amount ofold work
in each such round.

Therefore, at the end of round2i, the algorithm has visited all subtrees of size
up to22i+2 that are rooted at2i or lower.

Thus we maintain the invariant that aftert rounds, only subtrees of size bigger thant2

are hanging off the boundary. (In fact, we have proven a stronger invariant, but this one
suffices for the rest of the proof.) The following lemma proves that number of such trees
is small.

Lemma 26 Number of subtrees of size≥ t2 rooted at deptht is at mostO(D/t).

Proof. Let k be the number of trees of size bigger thant2. Call a subtree half-
visited, at least half of its vertices have been visited. By roundt, at mostD · t
vertices can be visited by any algorithm. In other words, at most2D/t of these
subtrees can be half-visited by any algorithm. Therefore, at least(k − 2D/t) sub-
trees each with≥ t2/2 vertices would still remain. Using Lemma 20, we see that
the distortion is at least(k − 2D

t
) · t

2
. Therefore,k ≤ 4D

t
which proves the lemma.

Lemma 27 The span of the boundary after roundt is bounded byO(D) for anyt.

Proof. Since the number of subtrees remaining aftert rounds is bounded by
O(D/t), the span of the boundary aftert rounds is bounded byO(D).

Since the work in each round is bounded byO(D logD) and the span is bounded by
O(D) after each round, the distortion of the algorithm R is bounded byO(D logD). Thus
we get the following theorem.

Theorem 14 The Algorithm Random-Delay is a polynomial-time (randomized) algorithm
that computes an embedding of the input tree to the line with distortionO(D logD), where
D is the optimal distortion.

50

4.9 Discussion

The main open question is whether there is aO(log n) approximation for the case of un-
weighted trees. Our algorithm does not extend to the case when subtrees could have size
larger thanD.

As an alternate approach, we can write the following linear programming formulation
for the distortion problem. We use the following properties:

1. There are at mostD rounds. The diameter of the tree isD, therefore any two points
in the tree should be embedded within a distanceD2 of each other, i.e. withinD
rounds.

2. If a vertexv is visited in roundt, then all of its children must be visited by round
t+ 1.

3. A vertex ison the boundaryafter roundt, if its parent has been visited in roundt
but the vertex itself was not. The span of the vertices on the boundary is the size of
the Steiner tree connecting these vertices. The span of the vertices on the boundary
after any roundt plus the number of new vertices visited in roundt is bounded by
D.

To formulate the LP, we have variablesxt(v) for each roundt and each vertexv. It is
zero if the vertexv has not been visited by roundt and is1 from the roundt it is visited.
We usepv to denote the parent node ofv in the tree. We have a variablewt(v) for each
vertex; which is1 if at roundt eitherv was newsly visited or it is in the span of the current
boundary.

min D
s.t.

xt(r) = 1 for root r and∀t ≥ 0
(monotonicity) xt(pv) ≥ xt(v) ∀t ≥ 0, v ∈ V
(progress) xt+1(v) ≥ xt(v) ∀t ≥ 0, v ∈ V

wt(v) ≥ xt(v)− xt−1(u) ∀t ≥ 0,∀u ∈ Tv

(work)
∑

v∈V wt(v) ≤ D ∀t ≥ 0

However, the LP hasΩ(
√
n) gap for the3-spider example. It might be possible to

strengthen the linear program.

51

52

Chapter 5

Weighted Bandwidth

In this section, we consider a slightly different notion of distortion. For the given metric
space(V, d), we ask for a mappingf : V → {1, 2, . . . , n} instead of asking for a non-
contracting embedding. Such a mapf is called alinear ordering. The stretch of the linear
orderingf is defined as

max
(x,y)

|f(x)− f(y)|
d(x, y)

.

We also consider the following generalization of the problem.

Weighted Bandwidth Consider a graphG = (V,E) on n-vertices with edge weights
w : E → R. Letf : V → [1, n] be a1-1 map. Such a mapf is called alinear arrangement.
The weighted bandwidth of the linear arrangementf is defined as the maximum stretch of
any edge, i.e.

bw(f) = max
(i,j)∈E

w(i, j) · |f(i)− f(j)|.

The weighted bandwidth of the graphG is the minimum possible bandwidth achievable
by any linear arrangementf : V → [1, n].

bw(G) = min
f :V→[1,n]

bw(f).

The goal is to find a linear arrangement of the vertices ofG which minimizes the
weighted bandwidth.

The problem of minimizing bandwidth (i.e. when all the weights are1) was shown to
be NP-hard by Papadimitriou [Papadimitriou, 1976]. Blum et al. [Blum et al., 2000] gave

53

an SDP relaxation of the bandwidth and other linear ordering problems. The first non-
trivial approximation to this problem was given by Feige [Feige, 2000]. Subsequently,
Dunagan and Vempala [Dunagan and Vempala, 2001] showed how to improve the ap-
proximation factor based on the SDP relaxation of Blum et al. Recently, Krauthgamer et
al. [Krauthgamer et al., 2004] showed an algorithm to construct volume respecting em-
beddings and thus reduced the approximation factor toO(log3 n).

The main result of this section is summarized in the following theorem.

Theorem 15 There exists a polynomial-time algorithm that producesO(log2 n log n∆)-
approximation the minimum weighted bandwidth problem.

Techniques The main idea in our algorithm is similar to that of Feige [Feige, 2000].
However, instead of using shortest path metric on graphG, we use a different metric
(V, d) that is constructed using weights of the edges. The stretch of a linear ordering of
(V, d) is exactly same as the weighted bandwidth of graphG. We embed the metric(V, d)
into Euclidean space using a volume respecting embedding. Finally, we project the points
on a random line. The ordering of the points on the random line is output as the ordering
of the vertices.

In the metric(V, d), the length of an edge(u, v) is 1/w(u, v). We construct the shortest
path metric onV using these lengths. We also define a new lower bound for the weighted
bandwidth. The construction of the metric(V, d) lets us bound the weighted bandwidth of
the output with respect to the lower bound.

Definitions and Notation We first define a few quantities that we shall use in the analysis
later.

Throughout the discussion, letN(µ, σ2) denote the Gaussian distribution with meanµ
and standard deviationσ. We use the following simple fact about the Gaussian distribution.

Fact 5.1 Letx ∼ N(µ, σ2) be a random variable. LetI be an interval of lengthl.

Pr[x ∈ I] ≤ l

σ

We defineTree VolumeTvol() of a metric as the product of the edge lengths of the
minimum spanning tree on the metric. Let aff(x1, x2, . . . , xk) denote the affine span of
the pointsx1, . . . , xk ∈ Rm. An (η, k)–well-separated embeddingof a metric(V, d) is a
contracting mapφ : V → Rn that satisfies the following condition.

54

For each setS ⊆ V , s.t. |S| = k, there exists a permutation{s0, s1, . . . , sk−1} of S such
that, for alli, if Li = aff(φ(s0), . . . , φ(si−1)), then

dist(φ(si), Li) ≥
1

η
d(si, {s0, . . . , si−1}) (5.1)

The notion of well-separated embeddings is very closely related to the that of volume-
respecting embeddings. We use the following result by Krauthgamer et al. [Krauthgamer
et al., 2004].

Lemma 28 ([Krauthgamer et al., 2004]) There exists an algorithm to construct(log n, k)–
well-separated embedding for everyk: 2 ≤ k ≤ n.

5.1 Algorithm

Our algorithm is based on a metric on the graphG derived from the weights. We construct
this metric as follows. Given the weightsw on edges of the graphG, we define the metric
d on the graph as follows. Letl(e) = 1

w(e)
denote the length of an edgee. The metric

completion results in an instance where the weightsw(e) of some edges haveincreased.
Using these lengths, we define the distance between any pairu, v asd(u, v) = the length
of shortest path (according to lengthsl(·)) from u to v.

5.2 Analysis

We first give a lower bound on the minimum weighted bandwidth based on the metric
(V, d). Throughout this section we assume thatd(u, v) ≥ 1 for all verticesu, v ∈ V . This
can be easily achieved by scaling all the weights equally and hence it doesn’t change the
approximation factor.

Lower Bound LetB(v, r) denote the ball of radiusr centered at vertexv under metric
d, i.e. B(v, r) = {u ∈ V | d(u, v) ≤ r}. Let |B(v, r)| denote the number of vertices in
the setB(v, r). Define the local density of the metric(G, d) as

D = max
v,r

|B(v, r)|
2r

.

55

1: For each edgee, define its length asl(e) := 1
w(e)

. For each pair of vertices(u, v), let
d(u, v) = be the length of shortest path according the lengthsl(e). Scale the distances,
so that the minimum pairwise distance is1.

2: Let φ : V → Rn be an(η, k)–well-separated embedding of the metric(V, d) into `2.

3: Let ~r = (r1, r2, . . . , rn) be a vector inRn, whereri is a random variable with distribu-
tionN(0, 1), for i = 1, . . . , n. Letπ : Rn → R be a map defined by

π(~v) = ~r · ~v

4: Let ψ : V → R be a map defined by

ψ(v) := π (φ(v)) for eachv ∈ V

5: Output a linear arrangement according to the ordering obtained by the mapψ.

Figure 5.1: Algorithm Weighted-Bandwidth (WB)

Claim 5.2 D is a lower bound onbw(G).

Proof. Fix a vertexv and a radiusr and consider the ballB(v, r). In any lin-
ear arrangement, the number of vertices between the leftmost vertexu and the
rightmost vertexw is at least|B(v, r)|. Since, bothu andw belong toB(v, r),
the distance between them is at most2r. Consider a shortest path (under lengths
l(e)) joining u andw in graphG. For all edgese′ of this shortest path, we have
d(e′) = l(e′) = 1

w(e′)
.

At least one of the edges in this path has stretch≥ |B(v,r)|
2r

. Here, stretch of an
edgee′ is

#(vertices between endpoints ofe′)
l(e′)

.

Hence the weighted bandwidth of graphG is at leastD.

The analysis of the algorithm is very similar to that of Feige’s algorithm [Feige, 2000].
We bound the stretch of any edge in the random projection instead of its length.

Lemma 29 Consider a setS ⊆ V with |S| = k. The probability thatS gets mapped

56

inside an interval of lengthλ under the mapψ is bounded as follows.

Pr[S gets mapped in an interval] ≤ O(ηλ)k−1

Tvol(S)

Proof.

Fix a setS = {s0, s1, . . . , sk−1}. Let’s callφ(si) asvi. LetLi = span{v0, . . . , vi−1}.
We use the spherical symmetry of choosing a random line. Using suitable

rotation and translation, we assume thatv0 = ~0 andLi = span{~e1, . . . , ~ei}.
We can now interpret the well-separatedness property of the mapφ. Let vi =

(vi1, . . . , vii, 0, . . . , 0) and letdG(si, {s0, . . . , si−1}) = qi. Then well-separatedness
says that

vii ≥
qi
η

Note that the mapψ can be described as follows.

ψ(x) = 〈φ(x), ~r〉,

where~r = (r1, . . . , rd) and eachri ∼ N(0, 1). Thus we have,ψ(si) = 〈~vi, ~r〉 for
i = 0, 1, . . . , k − 1.

We now bound the probability that all ofS is mapped into the intervalI = [0, l).
We write this probability is the product of conditional probabilities.

Pr[ψ(S) ⊆ I] =
k−1∏
i=0

Pr[ψ(si) ∈ I | ψ({s0, . . . , si−1}) ⊆ I] (5.2)

Now we boundPr[ψ(si) ∈ I | ψ({s0, . . . , si−1}) ⊆ I]. Note thatψ(si) =
∑i

j=1 vijrj.
In order thatψ(si) ∈ I, we need to haveviiri ∈ I ′, for some other intervalI ′ of
lengthl. All of the ψ(s0), . . . , ψ(si−1) are independent ofri. Thus

Pr[ψ(si) ∈ I | ψ(s0) ∈ I, . . . , ψ(si−1) ∈ I] ≤ Pr[viiri ∈ I ′]

≤ λ

vii

≤ ηλ

qi

Here, the second inequality follows from the Fact 5.1 and the final one from well-
separatedness of mapφ.

57

Now we can simplify equation (5.2).

Pr[ψ(S) ⊆ I] ≤
k−1∏
i=1

ηl

qi

≤ (ηl)k−1

Tvol(S)

This proves the lemma.

Lemma 30 Stretch of any edge under the mapψ is bounded byλ with high probability.

Pr[Edgee has stretch≥ λ] ≤ 1

2n2

Proof. Consider an edgee = (u,w). Since the mapφ is a contracting map, it does
not stretch the edge. Therefore, to bound the stretch of the edge under mapψ, we
need to bound its stretch under the projectionπ. Sinceπ is a linear map, we only
need to consider stretch of a vector~v ∈ Rn due to the mapπ.

Recall that each coordinate of~r follows the distributionN(0, 1).

Because of spherical symmetry, it follows that|~r · ~v| behaves likeN(0, ‖~v‖2).
LetX ∼ N(0, 1) be a random variable.

Pr
[
|~r · ~v| > 2

√
log n

]
= Pr

[
‖v‖ · |X| > 2

√
log n

]
≤ Pr

[
|X| > 2

√
log n

]
≤ 2
√

log n×
√

2π
e−

1
2
(2
√

log n)2

≤ 1

2n2

This concludes the proof.

We use the following lemma due to Feige.

Lemma 31 ([Feige, 2000]) For allS ⊆ V , s.t. |S| = k, we have the following inequality.

1

Tvol(S)
≤

∑
π:[k]→[k]

1

d(vπ(1), vπ(2)) · . . . · d(vπ(k−1), vπ(k))

58

Lemma 32 For any metric(V, d) we have the following.∑
S⊆V,|S|=k

1

Tvol(S)
≤ n ·O(D log n∆)k−1,

where∆ is the diameter of the metric.

Proof. Using Lemma 31, we can write the following inequality.∑
S:|S|=k

1

Tvol(S)
≤

∑
S:|S|=k

∑
π:[k]→[k]

1

d(vπ(1), vπ(2)) · . . . · d(vπ(k−1), vπ(k))

≤
∑

(u1,u2,...,uk)∈V k

1

d(u1, u2) · . . . · d(uk−1, uk)

Let ∆ be the diameter of the metric defined in Step 1 of the algorithm. Note that
∆ ≤ nW , whereW is the ratio of maximum weight to minimum weight. To bound
the sum on the right hand side, fix a vertexu1 ∈ V and a tuple(a1, a2, . . . , ak−1),
with eachai ∈ {1, 2, . . . , log ∆}. Now, consider all the sequences ofk vertices
(u1, u2, . . . , uk), where the first vertex isu1 andd(ui, ui+1) ∈ [2ai , 2ai+1) for all i.

We claim that the sum over this subset of sequences isO(D)k−1. Note that any
ball around a vertexv of radiusr has at mostD · (2r) vertices in it. Therefore, once
we choose the vertexui in the sequence, there are at mostO(D · 2ai) choices for
ui+1. Hence the total number of sequences in the above subset is at mostO(D)k−1 ·
2(

P
i ai). The contribution of any such sequence to the sum is at most1/2(

P
i ai).

Therefore, the sum over these subsets is at mostO(D)k−1.

Finally, there aren choices foru1 and (log ∆)k−1 choices for the vector of
ai’s. Hence we get that the sum on RHS is at mostn × O(D log ∆)k−1. Since
∆ = O(nW), this concludes the proof.

Now we are ready to prove the main theorem.

Proof of Theorem 1: Using Lemmata 31 and 32, we get that#(bad sets) ≤ n·O(ηλD log n)k−1.
Furthermore, using Lemma 30, we assume that all edges have stretch≤ λ.

Let B be the weighted bandwidth of the output of our algorithm. In particular, there
is an edgee whose weighted bandwidth isB. Therefore, the endpoints of the edgee have
B/w(e) vertices between them in the linear ordering. Since,l(e) = 1/w(e), there must be

59

B · l(e) vertices between the two endpoints ofe in the optimal linear ordering. However, in
the random projection, stretch of the edgee was bounded byλ, i.e. its length was at most
λ · l(e). With this length, edgee can span onlyl(e) intervals of lengthλ each. Thus, there
is an interval of lengthλ which has at leastB·l(e)

l(e)
= B points. Hence we can conclude that

the number of bad sets of sizek is at least
(

B
k

)
.

Therefore, we get (
B

k

)
≤ n ·O(ηλD log n∆)k−1

Choosingk = log n and plugging inη = log n andλ = log n gives us the bound

B ≤ O(log2 n log n∆) ·D.

This proves the main theorem. �

5.3 Discussion

It should be possible to replace thelog n∆ factor by aO(log n) factor. However, cur-
rently we do not know how to do it. A more difficult open question is to improve the
approximation factor for the bandwidth problem.

60

Chapter 6

Spanning Tree Embeddings

In this chapter, we consider probabilistic embeddings into spanning tree metrics. The
input metric is the shortest path metric on the input graphG = (V,E). A probabilistic
embedding into spanning trees is a probability distributionT over the spanning trees of
the graphG. The quality of a probabilistic embedding is given by theexpecteddistortion.
It is defined as follows:

E[distortion] = max
u,v∈V

ET∈T dT (u, v)/d(u, v)

Our goal is to find a probabilistic embedding with small expected distortion. Note that
we are looking for uniform bounds on the expected distortion.

We give a simple randomized procedure that takes the shortest-path metricd of a graph
G = (V,E), and whose output is a probabilistic embedding ofd into spanning subtrees
of G. Our result is based on the techniques from Bartal [Bartal, 1996] combined with the
recent results by Elkin et al. [Elkin et al., 2005].

For simplicity of exposition, we first consider the case whenG is an unweighted graph,
and hence the diameter ofG is at most(n − 1). The arguments can then be extended to
the case of arbitrary edge-lengths using standard ideas (e.g. see [Bartal, 1996]).

While the guarantees of our algorithm are only marginally better than those of Elkin et
al., we would like to point out that our improvements come from use of a different tech-
nique. It might be possible to combine the two approaches to improve the result further.

61

6.1 The Algorithm

Our randomized algorithm uses the idea of star decompositions proposed by Elkin et al..

Definition 1 (star-decomposition) A star-decomposition of a graphG with a designated
root noder0 is a set of disjoint connect components ofG0 = (V0, E0), . . . , Gk = (Vk, Ek)
together with a collection of root nodesr0, . . . , rk such thatri ∈ Vi for all 0 ≤ i ≤ k and
eachri, 1 ≤ i ≤ k has a neighbor inV0.

The procedure of Figure 6.1 takes a graphGwith a rootr, and outputs a star-decomposition
of G. For the backward cut step in the algorithm, we define a new distance function:
backward-edgedistance. For the definition of the new distance function we replace each
edge inG \ V0 by two directed edges in opposite direction. We define the length`(u, v) of
such a directed edge(u, v) as

`(u, v) =

1 if d(r0, v) = d(r0, u)− 1

1 if d(r0, v) = d(r0, u)

0 if d(r0, v) = d(r0, u) + 1

Using this length function, we get the shortest path distance that we call thebackward-edge
distance. The distance fromx to y counts how often an edge has to be used in backward
or sidewards direction according to distance fromr0 in order to reachy from x. (Note that
we only used directed edges to define the new distance function onX. In the following all
edges are undirected again.)

Given the above procedure to find random star-decompotions ofG, the embedding of
G into random spanning trees is the same as in Elkin et al. [Elkin et al., 2005].

The following is the main theorem of the paper:

Theorem 16 The algorithmEmbed-Tree induces a distribution over spanning trees ofG
such that the expected stretch of each edge ofG isO(log2 n).

Let us give a roadmap for the proof. We first prove two simple lemmas that bound the
probability that an edge(u, v) is cut by the forward and backward cut steps ofRandom-
Star-Decomp; each of these probabilities will turn out to beO(log n/∆). Furthermore, it
is easy to see that the number of levels encountered by any edge isO(log n). In previous
such analyses (e.g., by Bartal [Bartal, 1996]), the argument used is that if(u, v) is cut at
level∆, the distance betweenu andv in the final tree is at mostO(∆), and hence the total
stretch incurred by the edge isO(log2 n). In our case, it is true that the distance betweenu

62

1: Input: GraphG with root r such thatradiusr(G) = ∆.

2: Pick a distanceγ uniformly at random from the interval[∆/4,∆/2].

3: (Forward Cut) Cut all the edges at distanceγ from the rootr; letV0 be the component
containing the rootr.

4: Let x1, x2, . . . , xk be the “portal” vertices inG \ V0 whose neighboring edges have
been cut in Step 2, and letp(xi) be some “parent” ofxi in V0.

5: LetX ← V \ V0 be the “remaining” vertices.

6: (Backward Cut) For i = 1, 2, . . ., consider the portal vertexxi ∈ X, and choose a
random distanceR from the distribution∆ · Exp{6 log n}. Cut all the edges lying at
backward-edge distanceR from vertexxi to get the componentVi.

7: LetX ← X \ Vi; if X 6= ∅, goto Step 6.

8: Add the edges(xi, p(xi)) to get the graphG1.

Figure 6.1: AlgorithmRandom-Star-Decomp (G, r)

1: Input: GraphG with root r such thatradiusr(G) = ∆.

2: ExecuteRandom-Star-Decomp (G, r) to get the componentsV0, V1, . . . , Vk, with
eachVi being rooted atri, and eachVi (for i ≥ 1) connected toV0 by edges(ri, p(ri)).

3: ExecuteEmbed-Tree (Vi, ri) recursively to convert eachVi into a subtree ofG[Vi].

Figure 6.2: AlgorithmEmbed-Tree (G, r)

63

andv when they are separated is indeedO(∆), but it may increase over the course of later
cuts; hence we need Theorem 17 to say that theu-v distance in the tree does remainO(∆)
with high probability.

6.1.1 Edge-Cutting Probabilities and Recursion Depth

Claim 6.1 The probability that an edge is cut by a forward cut at level∆ is at most
O(1

∆
).

Proof. Consider an edgee = (u, v). If v is closer than∆/4 or farther than∆/2
from the rootr, then(u, v) cannot be cut by the forward cut step. Otherwisee will
be cut iff γ ∈ [d(r, u), d(r, v)]. Sinceγ ∈u.a.r [∆/4,∆/2], the probability of this
event is at most4/∆.

Claim 6.2 The probability that an edge is cut by a backward cut is at most6 log n
∆

.

Proof. Recall that in Backward Cut step, we choose a random radius using the
distribution∆ · Exp{6 log n}. Consider the ballV1 centered at the vertexr1 that
has the radiusX1 ∼ ∆ ·Exp{6 log n}. This ball cuts an edgee = (u, v), if exactly
one ofu andv is inside. Without loss of generality, assume thatu is closer tor1
thanv. We consider three separate cases. IfX1 ≥ d(r1, v), then the edge(u, v) is
inside the ballV1 and won’t be cut. Ifd(r1, u) ≤ X1 < d(r1, v), then the ballV1

cuts the edgee. Finally, if X1 < d(r1, u), then the edgee is outside ballV1 and
some other ball can cut it. Letp denote the probability that the edgee is cut. Then
we have

p ≤ Pr[d(r1, u) ≤ X1 < d(r1, v)] + Pr[X1 < d(r1, u)] · p

Since the edges are unweighted:d(r1, v) ≤ d(r1, u) + 1. Let d = d(r1, u).
Then we have

p ≤ Pr[d ≤ X1 ≤ d+ 1]

1− Pr[X1 < d]
≤ Pr[X1 ≤ d+ 1 | X1 ≥ d] ≤ 6 log n

∆

The last step follows from the memoryless property of the exponential distribution.

Since an edge is cut either as a forward edge or as a backward edge, we get the follow-
ing result.

64

Corollary 6.3 The probability that an edge(u, v) is cut at level∆ is at most7 log n
∆

.

Fact 6.4 The depth of the recursion forEmbed-Tree isO(log n) whp.

Proof. To prove this, we claim thatwhp the diameter of each of theV ′
i s is at most

11∆/12. Indeed, since we choose the expected value of the exponential distribution
to be suitably small, the diameter reduces by a constant factor whp. Hence the
recursion depth will beO(log12/11 diam(G)) = O(log n).

6.1.2 Bounding Additional Stretch

Theorem 17 Given anyG rooted atr, and any vertexv ∈ V (G), the distance fromv to r
in the random tree produced byEmbed-Tree (G, v) isO(dG(v, r)) whp.

Proof. We can view the expansion of diameter ofG as follows. In each level
of recursion, we run the procedureRandom-Star-Decomp in each of the com-
ponents. Consider the graph afteri levels of recursive application ofRandom-
Star-Decomp. Let the diameter after leveli be denoted by∆i. Let there bem
components on the root to leaf path at this stage, with diametersD1, D2, . . . , Dm.

Note that one application ofRandom-Star-Decomp increases the diameter of
thejth component fromDj toDj + DjXj, whereXj ∼ Exp{O(log n)}. Hence,

we can bound the diameter∆i+1 of the graph afterith recursive application of
Random-Star-Decomp as

∆i+1 ≤ ∆i(1 +
∑

j

αjXj)

whereαj = Dj/∆i. Note thatαj depends on the history of the algorithm so far.
Nevertheless, as we show later in Lemma 33, we can get the following:

∆i+1 � ∆i · (1 + 2(Yi + 1/ log n))

whereYi ∼ Exp{O(log n)} andYi is independent of the history.

65

Thus the final diameter (afterk steps) of the graph is bounded as follows:

∆k � ∆ ·
∏

i

(1 + 2(Yi + 1/ log n)) (6.1)

≤ ∆ · exp{
k∑

i=1

2(Yi + 1/ log n))} (6.2)

≤ ∆ · exp{O(1)} w.h.p. (From Lemma 34) (6.3)

Proof of Theorem 16: Let us first consider all the bad events (that the diameter of some
Vi is too large, and that the distance betweenu andv gets too large. Since there are only
(at most)n3 such bad events, each one happens with probability at most1/ poly(n), and
the distortion suffered when any of these bad events happen is at mostn, we can ignore all
these events.

From Theorem 17 it follows that an edgee that gets cut at level∆ suffers a distortion
of O(∆). Therefore we can compute the expected distortion of edgee as follows.

Distortion(e) =
∑

level∆

Pr[Edgee cut at level∆] ·O(∆)

≤
∑

level∆

O(
log n

∆
) ·O(∆)

=
∑

level∆

O(log n)

= O(log2 n)

�

6.2 Stochastic Domination and Tail Bounds

In this section, we prove two simple yet crucial lemmas: the first states that a convex com-
bination of exponential i.i.d. random variables is stochastically dominated by (a suitably
shifted version) of one independent copy of the random variable.

Definition 2 A random variableX is stochastically dominated by another random vari-
ableY , if the following holds for allt.

Pr[X ≥ t] ≤ Pr[Y ≥ t].

66

Proposition 6.5 The following facts hold:

•If X � Y andY � Z, thenX � Z.

•LetX,Y , andZ be independent r.v.s, withZ ≥ 0. IfX � Y , thenXZ � Y Z.

Proof. Recall thatX � Y holds iff Pr[X ≥ t] ≤ Pr[Y ≥ t] for all t. The first
property follows from the fact that

Pr[X ≥ t] ≤ Pr[Y ≥ t] ≤ Pr[Z ≥ t]

To prove the second property, assume thatf(z) is the probability density function
for the random variableZ. Then we have

Pr[XZ ≥ t] =

∫
Pr[Xz ≥ t]f(z)dz ≤

∫
Pr[Y z ≥ t]f(z)dz = Pr[Y Z ≥ t].

In the next lemma, we bound a convex combination of exponentially distributed ran-
dom variables.

Lemma 33 LetX0, X1, . . . , Xm ∼ Exp{λ} be i.i.d. random variables. And letα1, α2, . . . , αm

be m non-negative real numbers such that,
∑

i αi = 1. Then we have:
∑

i αiXi �
2(X0 + 1/λ), or equivalently

Pr[
m∑

i=1

αiXi ≥ t+ 2/λ] ≤ Pr[2X0 ≥ t] for all t ≥ 0

Proof. To prove an upper bound on LHS, we use the moment generating function
M(s) of

∑
i αiXi. Recall that the moment generating function of a random variable

X is defined asexp esX . Using this definition, we get

M(s) =
∏

i

1

1− αi(s/λ)

We first bound the maximum possible value ofM(s) subject to the constraint
that

∑
i αi = 1.

67

Fact 6.6 The following is true for allβ, γ ≥ 0 such thatβ + γ ≤ 1 and
0 < t < 1.

1

(1− βt)(1− γt)
≤ 1

1− (β + γ)t
.

Using this simple fact repeatedly forM(s), we getM(s) ≤ 1
1−(s/λ)

. Now using
the Markov inequality,

Pr[
m∑

i=1

αiXi ≥ t+ 2/λ] ≤ e−s(t+2/λ)M(s) for all s ≥ 0

Finally, choosings = λ/2, we get

LHS ≤ 2

e
e−(λt/2) ≤ Pr[2X0 ≥ t],

which proves the lemma.

The second is a standard tail bound on the sum of i.i.d. exponential random varaibles.

Lemma 34 LetX1, X2, . . . , Xk ∼ Exp{log n} be i.i.d. random variables. Letk ≤ log n.
Then

Pr[
∑

i

Xi ≥ 4] ≤ 1

n2

Proof. Without loss of generality assume thatk = log n. Let M(s) denote the
moment generating function of

∑
iXi. Using standard techniques, we get

M(s) =
∏

i

1

1− (s/k)
= (

1

1− (s/k)
)k

Using Chernoff’s inequality,

Pr[
∑

i

Xi ≥ 4] ≤ e−4s(
1

1− (s/k)
)k for all 0 < s < k.

Now choosings = 3k/4 (so as to optimize the upper bound), we get

Pr[
∑

i

Xi ≥ 4] ≤
(

4

e3

)k

≤ 1

n2

68

6.3 Discussion

The big open question is whether it is possible getO(log n) expected distortion. It will
also be interesting to give approximation algorithm for the expected distortion.

69

70

Chapter 7

Conclusion

In this dissertation, we initiated the study of metric embeddings from an approximation
algorithm point-of-view. We focused on the host metric being the real line.

For embedding an arbitrary into the line metric, the existing results give a uniform
bound ofO(n) on the distortion. To cope with this bound, our goal was to give approxi-
mation algorithm for the distortion.

However there are many open problems in this framework. Finding the best embedding
of an arbitrary metric intòp metric is one; Finding the best probabilistic embedding of an
arbitrary metric into (spanning) tree metrics is another.

Another way to cope with high uniform bound is to consider metric embeddings with
ε-slack Kleinberg et al. [2004], Chan et al. [2005], where distortion is small for all but
anε fraction of the pairwise distances. As an example, consider the uniform metric onn
points (i.e. all pairwise distances are1). To embed this metric into the line metric, we need
Ω(n) distortion. However, there is a simple embedding of this metric into the line with1/ε
distortion andε-slack.

While we studied embedding into line metrics (one dimensional Euclidean space),
more progress needs to be done on embedding into the Euclidean space with a small,
fixed number of dimensions. It will be useful as an alternative to heuristics for multi-
dimensional scaling in dimension reduction of data. These results could perhaps be com-
bined with theε-slack results to be more useful in practice.

71

72

Bibliography

Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev.
o(
√

log n) approximation algorithms for min uncut, min 2cnf deletion, and directed cut
problems. InProceedings of the 37th ACM Symposium on the Theory of Computing
(STOC), pages 573–581, 2005. 3, 3.5

Richa Agarwala, Vineet Bafna, Martin Farach, Mike Paterson, and Mikkel Thorup. On
the approximability of numerical taxonomy (fitting distances by tree metrics).SIAM J.
Comput., 28(3):1073–1085 (electronic), 1999. ISSN 1095-7111. 1, 1.2, 3.2.1

Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A graph-theoretic game
and its application to thek-server problem.SIAM J. Comput., 24(1):78–100, 1995.
ISSN 0097-5397. 1.5

Aaron Archer and David P. Williamson. Faster approximation algorithms for the minimum
latency problem. InProceedings of the 14th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 88–96, 2003. 1.1

S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems.J. ACM, 45(5):753–782, 1998. 1

Sanjeev Arora. Polynomial time approximation schemes for Euclidean TSP and other
geometric problems. In37th Annual Symposium on Foundations of Computer Science
(Burlington, VT, 1996), pages 2–11. IEEE Comput. Soc. Press, Los Alamitos, CA, 1996.
1

Sanjeev Arora and George Karakostas. Approximation schemes for minimum latency
problems.SIAM J. Comput., 32(5):1317–1337 (electronic), 2003. ISSN 1095-7111. 3,
1.1, 2.2, 2.2

Yonatan Aumann and Yuval Rabani. AnO(log k) approximate min-cut max-flow theorem
and approximation algorithm.SIAM J. Comput., 27(1):291–301, 1998. ISSN 1095-
7111. 1

73

Mihai Bădoiu, Julia Chuzhoy, Piotr Indyk, and Anastasios Sidiropoulos. Low-distortion
embeddings of general metrics into the line. InProceedings of the 37th ACM Sympo-
sium on the Theory of Computing (STOC), 2005a. 1.3

Mihai Bădoiu, Kedar Dhamdhere, Anupam Gupta, Yuri Rabinovich, Harald Räcke,
R. Ravi, and Anastasios Sidiropoulos. Approximation algorithms for embeddings into
low-dimensional spaces. InProceedings of the 16th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 119–128, 2005b. 1.3

Mihai Bădoiu, Piotr Indyk, and Yuri Rabinovich. Approximate algorithms for embedding
metrics into low-dimensional spaces. InUnpublished manuscript, 2003. 1.2

Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications.
In Proceedings of the 37th Symposium on the Foundations of Computer Science (FOCS),
pages 184–193, 1996. 1, 1.5, 1.5, 6, 6.1

Yair Bartal. On approximating arbitrary metrics by tree metrics. InProceedings of the
30th ACM Symposium on the Theory of Computing (STOC), pages 161–168, 1998. 1.5

Yair Bartal, Avrim Blum, Carl Burch, and Andrew Tomkins. A polylog(n)-competitive
algorithm for metrical task systems. InProceedings of the 29th ACM Symposium on the
Theory of Computing (STOC), pages 711–719, 1997. 1

Avrim Blum, Prasad Chalasani, Don Coppersmith, Bill Pulleyblank, Prabhakar Raghavan,
and Madhu Sudan. The minimum latency problem. InProceedings of the twenty-sixth
annual ACM symposium on Theory of computing, pages 163–171. ACM Press, 1994.
ISBN 0-89791-663-8. 1.1, 3, 1.1, 2.2

Avrim Blum, Goran Konjevod, R. Ravi, and Santosh Vempala. Semi-definite relaxations
for minimum bandwidth and other vertex-ordering problems.Theoret. Comput. Sci.,
235(1):25–42, 2000. ISSN 0304-3975. (Preliminary version in30th STOC, pages 100–
105, 1998). 1, 1.4, 5

Jean Bourgain. On Lipschitz embeddings of finite metric spaces in Hilbert space.Israel
Journal of Mathematics, 52(1-2):46–52, 1985. 1

F. Buckley and F. Harary.Distance in Graphs. Addison Wesley Reading, MA, 1990. 2.3

Gruia C̆alinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms for the
0-extension problem. InProceedings of the twelfth annual ACM-SIAM symposium on
Discrete algorithms, pages 8–16. ACM Press, 2001. ISBN 0-89871-490-7. 1

74

L. Cavalli-Sforza and A. Edwards. Phylogenetic analysis models and estimation proce-
dures.American Journal of Human Genetics, 19:233–257, 1967. 1.2

Hubert T-H. Chan, Kedar Dhamdhere, Anupam Gupta, Jon M. Kleinberg, and Alexandrs
Slivkins. On metric embeddings with slack. in submission, 2005. 7

Kamalika Chaudhuri, Brighten Godfrey, Satish Rao, and Kunal Talwar. Paths, trees and
minimizing latency. InProceedings of the 44th Symposium on the Foundations of
Computer Science (FOCS), pages 36–45, 2003. 1.1, 2.1.2

Michel Marie Deza and Monique Laurent.Geometry of cuts and metrics, volume 15 of
Algorithms and Combinatorics. Springer-Verlag, Berlin, 1997. ISBN 3-540-61611-X.
1.2

Kedar Dhamdhere. Approximating additive distortion of embeddings into line metrics. In
Proceedings of the International Workshop on Approximation Algorithms for Combina-
torial Optimization Problems (APPROX), 2004. 1.2

Kedar Dhamdhere. A note on minimizing weighted bandwidth of a graph. Submitted,
2005. 1.4

Kedar Dhamdhere, Anupam Gupta, and Harald Räcke. Improved embeddings into span-
ning trees. in submission, 2006. 1.5

Kedar Dhamdhere, Anupam Gupta, and R. Ravi. Approximation algorithms for minimiz-
ing average distortion. In21st Annual Symposium on Theoretical Aspects of Computer
Science (STACS), volume 2996 ofLecture Notes in Computer Science, pages 234–245,
2004. ISBN 3-540-21236-1. 1.1

John Dunagan and Santosh Vempala. On Euclidean embeddings and bandwidth minimiza-
tion. In Approximation, randomization, and combinatorial optimization (Berkeley, CA,
2001), volume 2129 ofLecture Notes in Comput. Sci., pages 229–240. Springer, Berlin,
2001. 1.4, 5

Michael Elkin, Yuval Emek, Dan Spielman, and Shang-Hua Teng. Lower-stretch spanning
trees. InProceedings of the thirty-seventh ACM symposium on Theory of computing
(STOC), 2005. (document), 1.5, 1.5, 6, 6.1

Yuval Emek and David Peleg. Approximating minimum max-stretch spanning trees on
unweighted graphs. InSODA ’04: Proceedings of the fifteenth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 261–270, Philadelphia, PA, USA, 2004. Society
for Industrial and Applied Mathematics. ISBN 0-89871-XXX-X. 1.5

75

Jittat Fakcharoenphol, Chris Harrelson, and Satish Rao. The k-traveling repairman prob-
lem. InProceedings of the fourteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 655–664. Society for Industrial and Applied Mathematics, 2003a. ISBN
0-89871-538-5. 1.1, 2, 1.1, 2.1.2, 2.1.2

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. InProceedings of the thirty-fifth ACM symposium on
Theory of computing, pages 448–455. ACM Press, 2003b. ISBN 1-58113-674-9. 1, 1.5

M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary
trees.Algorithmica, 13(1-2):155–179, 1995. ISSN 0178-4617. 1, 1.2

Uriel Feige. Approximating the bandwidth via volume respecting embeddings.J. Comput.
System Sci., 60(3):510–539, 2000. ISSN 0022-0000. 30th Annual ACM Symposium on
Theory of Computing (Dallas, TX, 1998). 1, 1.4, 5, 5, 5.2, 31

Michael R. Garey and David S. Johnson.Computers and Intractability: A guide to the
theory of NP-completeness. W. H. Freeman and Company, San Francisco, 1979. 3.6,
4.3

Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm
for the group Steiner tree problem.Journal of Algorithms, 37(1):66–84, 2000. (Prelim-
inary version in9th SODA, pages 253–259, 1998). 1

Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications.SIAM J. Comput., 25(2):235–251, 1996.
ISSN 0097-5397. 3.4.1, 2, 3.4.1

Michel Goemans and Jon Kleinberg. An improved approximation ratio for the minimum
latency problem.Math. Programming, 82(1-2, Ser. B):111–124, 1998. ISSN 0025-
5610. Networks and matroids; Sequencing and scheduling. 1.1, 1.1

Anupam Gupta. Steiner points in tree metrics don’t (really) help. InProceedings of
the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (Washington, DC,
2001), pages 220–227, Philadelphia, PA, 2001. SIAM. 1

Johan H̊astad, Lars Ivansson, and Jens Lagergren. Fitting points on the real line and its
application to RH mapping. InAlgorithms—ESA ’98 (Venice), volume 1461 ofLecture
Notes in Comput. Sci., pages 465–476. Springer, Berlin, 1998. 1.2

Piotr Indyk. Algorithmic aspects of geometric embeddings. InProceedings of the 42nd
Symposium on the Foundations of Computer Science (FOCS), pages 10–33, 2001. 1

76

Claire Kenyon, Yuval Rabani, and Alistair Sinclair. Low distortion maps between point
sets. InProceedings of the 36th ACM Symposium on the Theory of Computing (STOC),
pages 272–380, 2004. 1, 1.3

Philip Klein, Ajit Agarwal, R. Ravi, and Satish Rao. Approximation through multicom-
modity flow. InIEEE Symposium on Foundations of Computer Science, pages 726–737,
1990. 3.4.1

Philip N. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-
weighted steiner trees.J. Algorithms, 19(1):104–115, 1995. 2.1.2

Jon Kleinberg, Alex Slivkins, and Tom Wexler. Triangulation and embedding using small
sets of beacons. InProceedings of the 45th Symposium on the Foundations of Computer
Science (FOCS), 2004. 7

Jon Kleinberg and́Eva Tardos. Approximation algorithms for classification problems with
pairwise relationships: metric labeling and Markov random fields.Journal of the ACM
(JACM), 49(5):616–639, 2002. ISSN 0004-5411. (Preliminary version in40th FOCS,
1999). 1

Robert Krauthgamer, James Lee, Manor Mendel, and Assaf Naor. Measured descent: A
new embedding method for finite metrics. InProceedings of the 45th Symposium on the
Foundations of Computer Science (FOCS), pages 434–443, 2004. 1.4, 5, 5, 28

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and editors D. B. Shmoys.The
Traveling Salesman Problem. John Wiley & Sons, 1985. 1.1

James Lee, Manor Mendel, and Assaf Naor. Metric structures inl1: Dimension,
snowflakes, and average distortion. InIn Proceedings of LATIN, 2004. 2.4

F. Thomson Leighton and Satish B. Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms.Journal of the ACM, 46(6):787–832,
1999. (Preliminary version in29th FOCS, pages 422–431, 1988). 1.1

Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of
its algorithmic applications.Combinatorica, 15(2):215–245, 1995. ISSN 0209-9683.
(Preliminary version in35th FOCS, 1994). 1, 1

Jǐrı́ Matoǔsek. Lectures on discrete geometry, volume 212 ofGraduate Texts in Mathe-
matics. Springer-Verlag, New York, 2002. ISBN 0-387-95373-6. 1

77

Jǐrı́ Matoǔsek. Bi-Lipschitz embeddings into low dimensional Euclidean spaces.Com-
mentationes Mathematicae Universitatis Carolinae, 31(3):589–600, 1990. 1, 8

Christos H. Papadimitriou. The NP-completeness of the bandwidth minimization problem.
Computing, 16(3):263–270, 1976. 1.4, 5

Yuri Rabinovich. On average distortion of embedding metrics into the line and into`1. In
Proceedings of the thirty-fifth ACM symposium on Theory of computing, pages 456–462.
ACM Press, 2003. ISBN 1-58113-674-9. 1.1

Yuri Rabinovich and Ran Raz. Lower bounds on the distortion of embedding finite metric
spaces in graphs.Discrete Comput. Geom., 19(1):79–94, 1998. ISSN 0179-5376. 1

Satish Rao and Andrea Richa. New approximation techniques for some ordering problems.
In Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 211–218, 1998. 1.1

James B. Saxe. Embeddability of graphs intok-space is strongly np-hard. InAllerton
Conference in Communication, Control and Computing, pages 480–489, 1979. 1.2, 3

Yossi Shiloach. A minimum linear arrangement algorithm for undirected trees.SIAM
Journal on Computing, 8(1), 1979. 4, 2.3

R.A. Sitters. The minimum latency problem is np-hard for weighted trees. InW.J.
Cook, A.S. Schulz (eds.), Integer Programming and Combinatorial Optimization, Lec-
ture Notes in Computer Science 2337, pages 230–239, 2002. 1, 1.1, 2.1.1

Dan Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. InProceedings of the 36th ACM
Symposium on the Theory of Computing (STOC), 2004. 1.5

M. S. Waterman, T. S. Smith, M. Singh, and W. A. Beyer. Additive evolutionary trees.
Journal of Theoretical Biology, 64:199–213, 1977. 1.2

R.T. Wong. Worst-case analysis of network design problem heuristics.SIAM Journal Alg.
Disc. Math, 1(1):51–63, 1980. 1

78

	1 Introduction
	1.1 Average distortion
	1.2 Additive distortion
	1.3 Classical Distortion
	1.4 Weighted Bandwidth
	1.5 Embeddings into spanning trees

	2 Average Distortion
	2.1 Embedding arbitrary metrics into the line
	2.1.1 Hardness of Embeddings
	2.1.2 A Constant-factor Approximation Algorithm

	2.2 Approximation Schemes for trees
	2.3 An exact algorithm for minimizing average tree-edge distortion
	2.3.1 Cost reducing transformations
	2.3.2 Optimal embeddings are Euler tours
	2.3.3 Algorithm

	2.4 Discussion

	3 Additive Distortion
	3.1 Problem Formulation
	3.2 Approximation for Lp norm
	3.2.1 r-restricted mappings

	3.3 Algorithm
	3.4 Approximating r-restricted mappings
	3.4.1 Two-cost Partition Problem

	3.5 Improved algorithm
	3.6 Discussion

	4 (Classical) Distortion
	4.1 O(n)-Approximation algorithm for general graphs
	4.2 Better embeddings for unweighted trees
	4.2.1 Prefix Embeddings
	4.2.2 The Embedding Algorithm

	4.3 Hardness results
	4.4 Improved Embedding
	4.5 Lower bounds:
	4.6 Algorithm
	4.7 Analysis
	4.8 A different view of the algorithm
	4.9 Discussion

	5 Weighted Bandwidth
	5.1 Algorithm
	5.2 Analysis
	5.3 Discussion

	6 Spanning Tree Embeddings
	6.1 The Algorithm
	6.1.1 Edge-Cutting Probabilities and Recursion Depth
	6.1.2 Bounding Additional Stretch

	6.2 Stochastic Domination and Tail Bounds
	6.3 Discussion

	7 Conclusion
	Bibliography

