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Abstract

We use techniques from sample-complexity in machine learning to reduce problems of incentive-compatible
mechanism design to standard algorithmic questions, for a broad class of revenue-maximizing pricing prob-
lems. Our reductions imply that for these problems, given an optimal (or β-approximation) algorithm for the
standard algorithmic problem, we can convert it into a (1 + ε)-approximation (or β(1 + ε)-approximation)
for the incentive-compatible mechanism design problem, so long as the number of bidders is sufficiently
large as a function of an appropriate measure of complexity of the comparison class of solutions. We apply
these results to the problem of auctioning a digital good, to the attribute auction problem which includes
a wide variety of discriminatory pricing problems, and to the problem of item-pricing in unlimited-supply
combinatorial auctions. From a machine learning perspective, these settings present several challenges: in
particular, the loss function is discontinuous and asymmetric, and the range of bidders’ valuations may be
large.





1 Introduction

In recent years there has been substantial work on problems of algorithmic mechanism design. These prob-
lems typically take a form similar to classic algorithm design (or approximation-algorithm) questions, except
that the inputs are each given by different agents who have their own interest in the outcome of the com-
putation. Thus, the algorithms produced must be incentive-compatible — meaning that it is in each agent’s
best interest to report its true value — which greatly complicates the algorithm design problem.

We consider the design of revenue-maximizing pricing mechanisms in such a game theoretic setting
where the consumers (a.k.a., agents or bidders) may choose to falsely report their preferences if it might
benefit them. For example, we might be aiming to sell a digital good to consumers using a scheme that
charges different prices depending on public attributes of bidders such as their geographical location, and
wish to do so in a way that makes as much profit as we can. Our goal will be to produce incentive-compatible
mechanisms that achieve revenue close to the optimal revenue possible from pricing functions in a given
class had incentive-compatibility not been an issue. That is, we want to reduce the problem of incentive-
compatible mechanism design in this setting to the standard algorithmic problem of optimizing over a given
class of functions.

Our main contribution in this work is to use sample-complexity techniques in machine learning theory
(see [2, 8, 25, 30]) to perform this type of reduction. When the number of agents is sufficiently large as a
function of the complexity of the pricing functions being compared to, this reduction loses only a (1 + ε)-
factor in solution quality; that is, an algorithm (or β-approximation) for the standard algorithmic problem
can be converted to a (1 + ε)-approximation (or β(1 + ε)-approximation) for the incentive-compatible
mechanism design problem. We do this in a fairly general setting that includes the following as special
cases:

Auction of digital goods to indistinguishable bidders. In this problem, studied in [21, 14], we have a dig-
ital good (a good of unlimited supply with zero marginal cost) and n bidders, where each bidder i has
some valuation vi between 1 and h. Our goal is to sell our good so as to make profit comparable to
the best single price: the price p maximizing p × |{i : vi ≥ p}|.
For this problem, Goldberg et al. [21] give a simple auction based on random sampling and show that
it gives near 6-approximation so long as the optimal revenue is large compared to h.1 We analyze a
slight variant and show (Theorem 6) that it is a (1 + ε)-approximation so long as the optimal revenue
is large compared to h

ε2
log(1/ε).

Attribute Auctions. In many generalizations of the digital-good auction, the bidders are not a priori indis-
tinguishable; instead, publicly known information about bidders may allow differential treatment. For
example, the motion picture industry uses region encodings so that they can charge different prices
for DVDs sold in different markets. In such a setting, we might hope to obtain more profit than is
possible from a single sale price.

This introduces the natural question of how to use the distinguishing features of consumers to price-
discriminate to the maximum benefit of the seller. We consider the following abstraction of these
situations. In an attribute auction, the bidders are not indistinguishable but instead have a set of
publicly-known attributes and the goal is to achieve revenue comparable to the best pricing function
over these attributes from some available class G of pricing functions. For example, [6] considers the

1This problem has also been considered in a framework where the auction’s performance is compared to the profit obtained from
the optimal sale price that results in a sale of at least two items [14]. In this context the best known auction is 13/4-competitive [24].



special case of 1-dimensional attributes and a comparison class G of piece-wise constant functions
that divide the attribute space into contiguous regions (a.k.a., markets) and charge a single price in
each.2 Other natural classes G include linear or piece-wise linear functions over attributes. We give
bounds for this setting more generally, including a generalization of the class of functions considered
in [6] to higher dimensions.

Attribute-auctions are a fairly general setting that can model a number of problems including multicast
pricing [14]. In this problem, each bidder resides at some node of a tree, and in order to sell its service
to some bidder, the service-provider must have purchased all edges on the path from the root to that
vertex. If we view each bidder’s location as its public attribute, then this is a form of attribute-auction
but with the additional complication that each proposed solution has some associated cost as well. [14]
gives a 4-approximation to this problem, under the assumption that the optimal solution has revenue
at least 4 times its cost and that there is sufficient competition at each node. Our reduction implies that
if the optimal solution is even better: has revenue O(1/ε) times its cost and furthermore the average
number of bidders at any node is Õ(h/ε2), then we get a (1 + ε)-approximation. Moreover, using a
natural form of structural risk minimization (SRM), we can achieve performance comparable to the
best “simple” tree even in settings where the results of [14] do not hold.3

Item-pricing in combinatorial auctions. This problem is a different generalization of the first problem
above, and studied in [16, 29]. The setting here is we have m different items, each in unlimited supply
(like a supermarket), and bidders have valuations on subsets of items. Our goal is to achieve revenue
nearly as large as the best sale that uses item prices (assigns a separate price to each item), a natural
comparison class. Our results imply that Õ(hm2/ε2) bidders are sufficient to achieve revenue close
to the optimal item-pricing (assuming the algorithmic problem can be solved for the given bidders),
no matter how complicated those bidders’ valuations are. In the unit-demand case, when each bidder
wants at most one item (such as in pricing different versions of the same software or pricing airline
tickets), our bounds give a (1 + ε)-approximation when the optimal revenue is large compared to
Õ(hm/ε2) which improves by roughly a factor of m over the results of [16].

A special case of this setting is the problem of auctioning the right to traverse paths in a network. In
the case that the network is a tree and each user wants to reach the root (like drivers commuting into
a city), then [29] give an exact algorithm for the algorithmic problem. Our reduction then yields a
(1 + ε)-approximation so long as the number of bidders is sufficiently large.

The basic reduction we apply to solve these auction problems is as follows. Given an algorithm A (exact
or approximate) for the non-incentive-compatible pricing problem (finding the optimal pricing function in
class G for a given set of bidders) and given a set of bidders S, we will split bidders randomly into two
sets S1 and S2, run the algorithm separately on each set (perhaps adding an additional penalty term to
the objective to penalize solutions that are too “complex” according to some measure), and then apply the
solution found on S1 to S2 and the solution found on S2 to S1. Sample-complexity techniques from machine
learning theory can then give a guarantee on the quality of the results if the number of bidders is sufficiently
large compared to (an appropriate measure of) the complexity of the class of possible solutions. From an
economics perspective, this can be viewed as replacing the assumption that bidders come from a known
distribution with the use of learning, over a random subsample Si of an arbitrary set of bidders S, to get

2This is natural when attribute values are correlated with a willingness to pay.
3For example, consider an n-leaf tree of depth 1 where each leaf contains one bidder with value 1 and one with value h. Then

the nodes themselves do not have sufficient competition for the results of [14] to hold, but by applying SRM our method can view
the entire set as one market and achieve revenue nearly nh.



enough information about the set to apply to S2−i. From a learning perspective, however, the mechanism-
design setting presents a number of technical challenges: in particular, the loss function is discontinuous
and asymmetric, and the range of bid values may be large.

In addition to the generic reduction, we also give specific analyses for several of the above problems, us-
ing their structure to yield better bounds on the number of bidders needed to achieve a desired approximation
factor.

The form of the solutions: The reader will notice that in converting an algorithm (or approximation
algorithm) for finding the best pricing function in G into an incentive-compatible mechanism, we produce a
mechanism that does not belong to the class G itself. For example, even in the simplest case of auctioning
a digital good to indistinguishable bidders, we compare performance to the best single sales price, and yet
the auction itself does not in fact offer each bidder the same price (all bidders in S1 get the same price, and
all bidders in S2 get the same price, but those two prices may be different). In fact, Goldberg and Hartline
[17] show that this sort of behavior is necessary: it is not possible for an incentive-compatible auction to
approximately maximize profit and offer all the bidders the same price.

In the context of market analysis, one can interpret our bounds (on the number of bidders needed for the
basic mechanism described above to work well) as bounds on the number of customers one would need to
query in order to get enough information about the market to produce a nearly-optimal pricing function in
class G.

Related work: Several papers [6, 7] have applied machine learning techniques to mechanism design in
the context of online auctions. The online setting is more difficult than the “batch” setting we consider, but
the flip-side is that as a result, that work only applies to quite simple mechanism design settings where the
class G of comparison functions has small size and can be easily listed.

Structure of this paper: We begin by defining our general setting (Section 2) and giving our generic
reductions (Section 3). We then proceed to give a tighter analysis for the basic auction of a digital good
(Section 4) and describe in Section 5 how the complexity measures of Section 3 can be instantiated for the
case of attribute auctions. We consider item-pricing in combinatorial auctions in Section 6 and the multicast
pricing problem in Section 7. We give our conclusions and some open research directions in Section 8.

2 Definitions

We will be considering mechanism design problems of the following general type. We have a set S of
n bidders, and we assume that each bidder i has some private information privi (like how much they are
willing to pay for a digital good), as well as public information pubi (such as their location in a network).
The game itself will be defined by an abstract space of legal offers (like an offer to sell a good at $17)
together with a mapping ρ that defines how much profit a given offer yields from a given bidder. For
example, in the case of auctioning a digital good, ρ(“offer $17”, privi) = 17 if privi ≥ 17 and 0 otherwise.
We can think of ρ as defining the assumption about how bidders behave as a function of their private values.
The standard assumption in incentive compatible mechanism design is that bidders prefer the outcome that
maximizes their utility, defined as the difference between their valuation for the outcome (as specified by
their preferences) and the payment they are required to make. We will assume that ρ is defined to model
this behavior; that is, for any fixed offer, a bidder’s utility is maximized when plugging his true private
information into ρ. We now introduce the notion of a comparison class of pricing functions.



Definition 1 A comparison class, G, of pricing functions is a set of functions g that map the public infor-
mation of a bidder to an offer. The profit of a function g is

∑
i ρ(g(pubi), privi). Note that we are implicitly

considering only unlimited supply mechanism design problems, because the profit from bidder i does not
depend on whether g received profit from other bidders.

Given a comparison class, G, the algorithm design problem is: given both the public and private information
in S, find the g ∈ G of highest total profit OPTG . Some of the problems we consider will also have costs
for various functions g: for instance, in multicast pricing, a comparison function g consists of both a tree
and a proposed price at each node, and its cost is the cost of the tree. In this case, we should think of ρ as
a revenue function, and the algorithm design problem will be to find the g of highest revenue minus cost.
In our reductions, we may also want to perform “structural risk minimization”, which adds additional fake
penalties to different functions g based on some measure of their complexity, in which case we will need to
assume we have an algorithm that optimizes revenue minus penalty.

We now need to define what we mean by an incentive compatible mechanism. An incentive-compatible
mechanism is a function that takes in the public information of all the bidders, plus the private information
of all bidders except the given bidder i and outputs an offer offeri. The profit of this mechanism is then∑

i ρ(offeri, privi). Our goal will be to design such a mechanism whose total profit is nearly as large as
the profit of the best function in comparison class G. Note that typically our mechanisms will not actually
belong to G, such as offering one price to some subset of bidders and another price to another even if our
class G is the set of all single price functions.

One final point at this level of generality: we will assume that we are given an upper bound h on the
value of ρ; that is, no individual bidder can influence profit by more than h. This term will come into our
sample-complexity bounds.

2.1 Examples

Auction of digital goods to indistinguishable bidders. As described in the introduction, in this setting
the bidders have no public information (equivalently, all the bidders have the same public information pub)
and the private information of bidder i is exactly its valuation vi for the digital good, which is a real number
between 1 and h. Here, a natural comparison class G = {gp} is the class of all functions that offer a single
price p, and ρ is a function defined by ρ(p, privi) = p if p ≤ privi and ρ(p, privi) = 0 otherwise.

Attribute Auctions. This is the same as the setting above except now each bidder i is associated a public
attribute pubi ∈ X where X is the attribute space. We view X as an abstract space, but one can envision
it as R

d, for example. G is then a class of pricing functions from X to R+, such as all linear functions
or all functions that partition X into k markets (say based on distance to k cluster centers) and offer a
different price in each. The mapping ρ is a function from R+ × [1, h] to [0, h] defined (as in the case of
indistinguishable bidders) by ρ(p, privi) = p if p ≤ privi and ρ(p, privi) = 0 otherwise. We will give
analysis for several interesting classes of comparison functions in Section 5.

Combinatorial Auctions. Here we have a set J of m distinct items, each in unlimited supply. Each
consumer has a private valuation vi(s) for each bundle s ⊆ J of items, which measures how much receiving
bundle s would be worth to the consumer i. The private information of bidder i can be described by a vector
of all its valuations on subsets of J (for simplicity, we assume bidders are indistinguishable, i.e., no public
information). A natural class of comparison functions G (studied in [29]) is the class of functions that assign



a separate price to each item4, such that the price of a bundle is just the sum of the prices of the items in it
(called item-pricing). The mapping ρ is then defined by assuming bidders will buy the bundle (if any) with
largest positive gap between its value to them and its total cost.5

3 Generic Reductions

We are interested in reducing incentive-compatible mechanism design to the standard algorithm design
problem. Our reductions will be based on random sampling. Let A be an algorithm for the (non incentive-
compatible) problem of optimizing over G. The simplest mechanism that we consider, which we call
RSOPF(G,A) (Random Sampling Optimal Pricing Function), is the following generalization of the random
sampling digital-goods auction from [21]:

1. Randomly split the bidders into two groups S1 and S2, flipping a fair coin for each bidder.

2. Run A to determine the best (or approximately best) function g1 ∈ G over S1, and similarly the best
(or approximately best) g2 ∈ G over S2.

3. Finally, apply g1 to all bidders in S2 and g2 to all bidders in S1.

We will also consider various more refined versions of RSOPF(G,A), that discretize G or perform some type
of structural risk minimization (in which case we will need to assume A can optimize over the modifications
made to G).

3.1 The Basic Analysis

In order to simplify notation, for a given setting (defined by ρ and G), for a pricing function g and bidder
i define g(i) to be the profit made by g on i; i.e., g(i) = ρ(g(pubi), privi). Similarly, for a set of bidders
S′ ⊆ S, let g(S ′) =

∑
i∈S′

g(i). So, OPTG = max
g∈G

g(S). If g1(i) = g2(i) for all i ∈ S then they are

equivalent from the point of view of the auction; we will use |G| to denote the number of different such
functions in G.6

The following lemma is key to our analysis. Note that using Hoeffding bounds would produce an h2

term in the exponent; by applying McDiarmid’s inequality instead we only need a factor of O(h).

Lemma 1 Consider a pricing function g and a profit level p. If we randomly partition S into S1 and S2,
then the probability that |g(S1) − g(S2)| ≥ ε max [g(S), p] is at most 2e−ε2p/(2h).

Proof: Let Y1, . . . , Yn be i.i.d random variables that define the partition of S into S1 and S2: that is, Yi is
1 with probability 1/2 and Yi is 2 with probability 1/2. Let t(y1, ..., yn) =

∑
i:yi=1

g(i). So, as a random

4So, in this setting G is the class of the form {g|g : {pub} → [1, h]m}.
5Formally, for any pricing function p over bundles, ρ(p, vi) = p(s∗) where s∗ = argmaxs⊆S [vi(s) − p(s)], and we require

for purpose of individual rationality that p(∅) = vi(∅) = 0.
6Note that in our mechanism, when choosing a function in G to apply to S2, the auction will only be looking at values g(i) for

i ∈ S1, and vice-versa. Thus the mechanism will not really “know” if g 1 and g2 are equivalent over S when making its selection.
Nonetheless, this definition of |G| is useful for analysis.



variable, g(S1) = t(Y1, ..., Yn) and clearly E[t(Y1, ..., Yn)] = g(S)/2. Assume first that g(S) ≥ p. From
the McDiarmid concentration inequality (see Appendix A), plugging ci = g(i) in Theorem 15, we get:

Pr

{∣∣∣∣g(S1) −
g(S)

2

∣∣∣∣ ≥
ε

2
g(S)

}
≤ 2e

−


 ε2g(S)2

2
n∑

i=1
g(i)2




.

Since
n∑

i=1
g(i)2 ≤ maxi{g(i)}

n∑
i=1

g(i), we obtain:

Pr

{∣∣∣∣g(S1) −
g(S)

2

∣∣∣∣ ≥
ε

2
g(S)

}
≤ 2e

−

[
ε2g(S)

2h

]

.

Moreover, since g(S1) + g(S2) = g(S) and g(S) ≥ p, we get that Pr{|g(S1) − g(S2)| ≥ εg(S)} ≤
2e−ε2p/(2h). Consider now that g(S) < p. Again, using the McDiarmid inequality we have

Pr{|g(S1) − g(S2)| ≥ εp} ≤ 2e

−


 ε2p2

2
n∑

i=1
g(i)2




.

Since
n∑

i=1
g(i)2 ≤ hg(S) ≤ ph we obtain again that Pr{|g(S1)− g(S2)| ≥ εn} ≤ 2e−ε2p/(2h), which gives

us the desired bound.

Notice that Lemma 1 implies that:

Corollary 1 Suppose we randomly partition S into S1 and S2. With probability at least 1 − δ, we obtain
that for all functions g in G such that g(S) ≥ 2h

ε2
[ln (2|G|/δ)] we have |g(S1) − g(S2)| ≤ εg(S).

Proof: Follows from Lemma 1 by plugging in p = g(S) and then using the union bound over all g ∈ G.

We can now give our simplest generic reduction, based on just the number of functions in G. Note that
in many settings (see Sections 3.3.3, 4, and 5.2) we will be able to get stronger guarantees by a more refined
analysis.

Theorem 1 Given comparison class G and a β-approximation algorithm A for optimizing over G, then so
long as OPTG ≥ β 18h

ε2
ln(2|G|/δ), then with probability at least 1 − δ, the profit of RSOPF(G,A) is at least

(1 − ε) OPTG /β.

Proof: Let g1 be the function in G produced by A over S1 and g2 be the function in G produced by A over
S2. Let gOPT be the optimal function in G over S; so gOPT(S) = OPTG . Since the optimal function over
S1 is at least as good as gOPT on S1 (and likewise for S2), the fact that A is a β-approximation implies that
g1(S1) ≥ gOPT(S1)/β and g2(S2) ≥ gOPT(S2)/β.

Let p = 18h
ε2

ln(2|G|/δ). Using Lemma 1 (applying the union bound over all g ∈ G), we have that
with probability 1 − δ, every g ∈ G satisfies |g(S1) − g(S2)| ≤ ε

3 max [g(S), p]. In particular, g1(S2) ≥
g1(S1) − ε

3 max[g1(S), p], and g2(S1) ≥ g2(S2) − ε
3 max[g2(S), p].

Since OPTG ≥ βp, summing the above two inequalities and performing a case-analysis we get that the
profit of RSOPF(G,A), namely the sum g1(S2) + g2(S1), is at least (1 − ε) OPTG /β. More specifically,
assume first that g1(S) ≥ p and g2(S) ≥ p. This implies that g1(S2) ≥ g1(S1) − ε

3g1(S) and g2(S1) ≥



g2(S2)− ε
3g2(S), and therefore (1+ ε

3)g1(S2) ≥ (1− ε
3)g1(S1) and (1+ ε

3)g2(S1) ≥ (1− ε
3)g2(S2). So, the

profit of RSOPF(G,A) in this case is at least 1−ε/3
1+ε/3(g1(S1)+g2(S2)) ≥ 1−ε/3

1+ε/3 OPTG /β ≥ (1−ε) OPTG /β.
If both g1(S) < p and g2(S) < p, then g1(S2) ≥ g1(S1) − ε

3p and g2(S1) ≥ g2(S2) − ε
3p, and so the

profit of RSOPF(G,A) in this case is at least OPTG /β − 2
3εp which is at least (1 − ε) OPTG /β by our

assumption that OPTG ≥ βp. Finally, assume without loss of generality that g1(S) ≥ p and g2(S) < p.
This implies that g1(S2) ≥ g1(S1) − ε

3g1(S) and g2(S1) ≥ g2(S2) − ε
3p. The former inequality implies

that (1 + ε
3)g1(S2) ≥ (1 − ε

3)g1(S1), and so g1(S2) ≥ (1 − 2ε/3)g1(S1), and the latter inequality implies
that g2(S1) ≥ g2(S2) − ε

3 OPTG /β. Together we have that g1(S2) + g2(S1) ≥ (1 − 2ε/3)gOPT(S1)/β +
gOPT(S2)/β − ε

3 OPTG /β ≥ (1 − ε) OPTG /β.

Notice that Theorem 1 implies that:

Corollary 2 Given comparison class G and a β-approximation algorithm A for optimizing over G, then so
long as OPTG ≥ βn and the number of bidders n satisfies

n ≥ 18h

ε2
ln(2|G|/δ),

then with probability at least 1 − δ, the profit of RSOPF(G,A) is at least (1 − ε) OPTG /β.

For example, in the digital-good auction with the comparison-class of prices discretized to powers of
1+ ε we have OPTG ≥ n (since each bidder’s valuation is at least 1), β = 1 (since the algorithmic problem
is easy), and |G| = O(log1+ε h). So, Corollary 2 says that O( h

ε2
log log1+ε h) bidders are sufficient to

perform nearly as well as optimal. In Section 4 we give even better bounds for this case.

3.2 Structural Risk Minimization

In many natural cases, G consists of functions at different “levels of complexity” k, such as partitioning
bidders into k markets for different values of k. One natural approach to such a setting is to perform
structural risk minimization (SRM): that is, to assign a penalty term to functions based on their complexity
and then to run a version of RSOPF(G,A) in which A optimizes profit minus penalty. Specifically, let Ḡ be
a series of pricing function classes G1 ⊆ G2 ⊆ . . ., and let pen be a penalty function defined over these
classes. We then define the procedure RSOPF-SRM(Ḡ,pen)as follows:

1. Randomly partition the bidders into two sets, S1 and S2, flipping fair coin for each bidder.

2. Compute g1 to maximize max
k

max
g∈Gk

[g(S1) − pen(Gk)] and similarly compute g2 from S2.

3. Use price function g1 for bidders in S2 and g2 for bidders in S1.

We can now derive a guarantee for the RSOPF-SRM(Ḡ,pen) mechanism as follows:

Theorem 2 Assuming that we have a β-approximation algorithm for solving the optimization problem re-
quired by RSOPF-SRM(Ḡ,pen) then for any given value of n, ε, and δ, with probability at least 1 − δ, the

revenue of RSOPF-SRM(Ḡ,pen) for pen(Gk) = 8h
ε2

ln(8k2|Gk|/δ) is

max
k

(
1

β
[(1 − ε) OPTk −p̃en(Gk)]

)
,

where p̃en(Gk) = 2pen(Gk).



Proof: Using Corollary 1 and a union bound over the values δk = δ/(4k2), we obtain that with probability at
least 1−δ, simultaneously for all k and for all functions g in Gk such that g(S) ≥ 8h

ε2
ln(8k2|Gk|/δ)pen(Gk),

we have |g(S1) − g(S2)| ≤ ε
2g(S). Let k∗ be the optimal index, namely let k∗ be the index such that

(1 − ε) OPTk∗ −p̃en(Gk∗) = max
k

((1 − ε) OPTk −p̃en(Gk)), and let ki be the index of the best function

(according to our criterion) over Si , for i = 1, 2. By our assumption that g1 and g2 were chosen by a
β-approximation algorithm, we have gi(Si) − pen(Gki

) ≥ 1
β

(
gOPTk∗

(Si) − pen(Gk∗)
)
, for i = 1, 2.

We will argue next that g1(S2) ≥ 1
β

1−ε/2
1+ε/2

(
gOPTk∗

(S1) − pen(Gk∗)
)
. First, if g1(S1) < pen(Gk1), then

the conclusion is clear since we have 0 > g1(S1) − pen(Gk1) ≥ gOPTk∗
(S1) − pen(Gk∗). If g1(S1) ≥

pen(Gk1), then as argued above we have |g1(S1) − g1(S2)| ≤ ε
2g1(S) and so g1(S2) ≥ 1−ε/2

1+ε/2g1(S1) ≥
1
β

1−ε/2
1+ε/2

(
gOPTk∗

(S1) − pen(Gk∗)
)
. Similarly, we can prove that g2(S1) ≥ 1

β
1−ε/2
1+ε/2

(
gOPTk∗

(S2) − pen(Gk∗)
)
.

All these together imply that the profit of RSOPF-SRM(Ḡ,pen), namely g1(S2) + g2(S1), is at least

1

β

1 − ε/2

1 + ε/2

(
gOPTk∗

(S) − 2pen(Gk∗)
)
≥ 1

β
((1 − ε) OPTk∗ −p̃en(Gk∗)) ,

which implies the desired result.

Clearly, when β = 1 (i.e. we have an optimal algorithm for the underlying algorithmic problem), we get
the following result.

Corollary 3 Assuming that we have an exact algorithm for solving the optimization problem required by
RSOPF-SRM(Ḡ,pen) then for any given value of n, ε, and δ, with probability at least 1 − δ, the revenue of

RSOPF-SRM(Ḡ,pen) for pen(Gk) = 8h
ε2

ln(8k2|Gk|/δ) is

max
k

((1 − ε) OPTk −p̃en(Gk)),

where p̃en(Gk) = 2pen(Gk).

3.3 Improving the Bounds

The results above say, in essence, that if we have enough bidders so that the optimal profit is large compared
to h

ε2
log(|G|), then our mechanism will perform nearly as well as the best function in G. In these bounds,

one should think of log(|G|) as a measure of the complexity of class G — for instance, it can be thought
of as the number of bits needed to describe a typical function in that class. However, in many cases one
can achieve a better bound, by adapting techniques developed for analyzing generalization performance in
machine learning theory. In this section, we discuss a number of such methods that can produce better
bounds. These include both analysis techniques (such as using appropriate forms of covering numbers),
where we do not change the mechanism but instead provide a stronger guarantee, and design techniques
(like discretizing), where we modify the mechanism to produce a better bound.

3.3.1 Discretizing

In many cases, we can greatly reduce |G| without much affecting OPTG by performing some type of dis-
cretization. For instance, for auctioning a digital good, there are infinitely many single-price functions but
only log1+ε h ≈ 1

ε ln h prices at powers of (1 + ε). Also, since rounding down the optimal price to the
nearest power of 1 + ε can reduce revenue for this auction by at most a factor of 1 + ε, the optimal function



in the discretized class must be close to the optimal function in the original class. More generally, if we
can find a smaller class G ′ such that OPTG′ is guaranteed to be close to OPTG , then we can instruct our
algorithm A to optimize over G ′ and get better bounds. In Section 6 we discuss an interesting discretization
for the case of combinatorial auctions.

3.3.2 Counting Possible Outputs

Suppose we can argue that our algorithm A, run on a subset of S, will only ever output pricing functions
from a restricted set GA ⊂ G. For example, if A picks the optimal single price over its input for the problem
of auctioning a digital good, then this price must be one of the bids, so |GA| ≤ n. Then, we can simply
replace |G| with |GA| (or |GA|+1 if the optimal function is not in GA) in all the above arguments. Formally,
we can say that:

Theorem 3 Suppose our algorithm A, run on a subset of S, can only output pricing functions from a
restricted set GA ⊂ G. Then all the bounds in sections 3.1 and 3.2 hold with |G| replaced by |GA|.

3.3.3 Using Covering Numbers

The main idea of these arguments is the following. Suppose G has the property that there exists a much
smaller class G ′ that “covers” it, with respect to the given set of bidders S. Then one can show that if all
functions in G ′ perform similarly on S1 as they do on S2, then this will be true for all functions in G as well.
These kind of arguments are quite often used in Machine Learning (see for instance [2, 9, 12, 30]), but the
main challenge is to define the right notion of “covers” for our mechanism design setting to get good and
meaningful bounds.

We present in the following two notions of covers that are especially suited for our setting. We start with
the weaker, but more intuitive notion of an L∞ multiplicative γ-cover, and then discuss the less intuitive,
but stronger notion of L1 multiplicative γ-cover. Specifically, we define these covers as follows:

Definition 2 G ′ is an L∞ multiplicative γ-cover of G with respect to S if, for every g ∈ G, there exists
g′ ∈ G′ such that g′ extracts the same revenue as g does from every bidder, up to a 1 + γ factor; that is,
|g(i) − g′(i)| ≤ γg(i) for all i.

Definition 3 G ′ is an L1 multiplicative γ-cover of G with respect to S if for every g ∈ G there exists g ′ ∈ G′

such that
∑
i∈S

|g(i) − g′(i)| ≤ γ
∑
i∈S

g(i).

Note that any L∞ cover is also a L1 cover. We begin by proving the following structural lemma regarding
the L∞ multiplicative γ-covers.

Lemma 2 Let G ′ be an L∞ multiplicative γ-cover of G with respect to S. If for every g ′ ∈ G′ we have
|g′(S1) − g′(S2)| ≤ ε′ max [g′(S), p], then we also have |g(S1) − g(S2)| ≤ (ε′(1 + γ) + γ) max[g(S), p]
for every g ∈ G.

Proof: Clearly, |g(S1) − g(S2)| ≤ |g(S1) − g′(S1)| + |g′(S1) − g′(S2)| + |g′(S2) − g(S2)|, and using the
definition of an L∞ multiplicative γ-cover we get |g(S1) − g(S2)| ≤ γg(S1)+ |g′(S1) − g′(S2)|+γg(S2).
Finally, using the assumption that |g′(S1) − g′(S2)| ≤ ε′ max [g′(S), p] for every g′ ∈ G′, we get the desired
result, namely, |g(S1) − g(S2)| ≤ (ε′(1 + γ) + γ) max[g(S), p], for every g ∈ G.

Using Lemma 2, we can now get the following bound:



Theorem 4 Given comparison class G and a β-approximation algorithm A for optimizing over G, then so
long as OPTG ≥ β 72h

ε2
ln(2|G′|/δ) for some ε

12 -cover G ′ of G with respect to S, then with probability at
least 1 − δ, the profit of RSOPF(G,A) is at least (1 − ε) OPTG /β.

Proof Sketch: Let p = 72h
ε2

ln(2|G′|/δ). By Lemma 1, applying the union bound, we have that with probabil-
ity 1 − δ, every g′ ∈ G′ satisfies |g′(S1) − g′(S2)| ≤ ε

6 max [g′(S), p]. Using Lemma 2 with ε′ set to ε
6 and

γ set to ε
12 we obtain that with probability 1 − δ, every g ∈ G satisfies |g(S1) − g(S2)| ≤ ε

3 max [g(S), p].
Finally, proceeding as in the proof of Theorem 1 we obtain the desired result.

Notice that Theorem 4 implies that:

Corollary 4 Given comparison class G and a β-approximation algorithm A for optimizing over G, then so
long as OPTG ≥ βn and the number of bidders satisfies

n ≥ 72h

ε2
ln(2|G′|/δ)

for some ε
12 -cover G ′ of G with respect to S, then with probability at least 1− δ, the profit of RSOPF(G,A) is

at least (1 − ε) OPTG /β.

For example, for the digital-good auction, the set of prices at powers of 1 + ε together with the set of
bidders’ valuations {privi|i ∈ S} is an L∞ multiplicative ε-cover of the set of all single-price functions.
This means that even if A chooses the best price without discretizing, then (using β = 1 and the fact that
OPTG ≥ n since all valuations are assumed to be at least 1) we get that O( h

ε2
log ( h

δε)) bidders are sufficient
for the mechanism to be within an ε factor of optimal.

We will now consider the L1 multiplicative γ-covers, and we will start by proving the following struc-
tural lemma characterizing these L1 covers.

Lemma 3 If
∑
i∈S

|g(i) − g′(i)| ≤ γ
∑
i∈S

g(i) and g′(S1) ≥ g′(S2) − ε max[g′(S), p], then g(S1) ≥ g(S2) −
ε max[g′(S), p] − γg(S).

Proof: Let ~∆g1g2(S) =
∑
i∈S

max(g1(i) − g2(i), 0) and consider ∆gg′(S) = ~∆gg′(S) + ~∆g′g(S). Clearly,

for any S ′ ⊆ S we have ~∆gg′(S) ≥ ~∆gg′(S
′) and likewise ∆gg′(S) ≥ ∆gg′(S

′). Also, for any subset
S′ ⊆ S we have g(S ′) − g′(S′) ≤ ~∆gg′(S). Now, from g′(S1) ≥ g′(S2) − ε max[g′(S), p] we obtain that
g(S1) + ~∆g′g(S) ≥ g′(S2) − ε max[g′(S), p] ≥ g(S2) − ~∆gg′(S) − ε max[g′(S), p]. Therefore we have
g(S1) ≥ g(S2)−∆gg′(S)− ε max[g′(S), p], which finally implies that g(S1) ≥ g(S2)− ε max[g′(S), p]−
γg(S).

Using Lemma 3, we can now get the following bound:

Theorem 5 Given comparison class G and a β-approximation algorithm A for optimizing over G, then so
long as OPTG ≥ n and the number of bidders n satisfies

n ≥ 8h

ε2
ln(2

∣∣G′
∣∣ /δ),

for some γ-cover G ′ of G with respect to S such that G ′ ⊆ G, then with probability at least 1 − δ, the profit
of RSOPF(G,A) is at least (1/β − ε − 2γ) OPTG .



Proof: Let g1 be the function in G produced by A over S1 and g2 be the function in G produced by A over
S2. Let gOPT (resp. g′OPT) be the optimal function in G (resp. G ′) over S. Of course, G ′ ⊆ G implies
that g′OPT(S) ≤ gOPT(S) = OPTG . Since the optimal function over S1 is at least as good as gOPT on
S1 (and likewise for S2), the fact that A is a β-approximation implies that g1(S1) ≥ gOPT(S1)/β and
g2(S2) ≥ gOPT(S2)/β.

By Lemma 1 (using p = n) and plugging in our bound on n and applying the union bound, with
probability at least 1− δ, every g′ ∈ G′ satisfies |g′(S1) − g′(S2)| ≤ ε

2 max [g′(S), n]. Since G ′ is a γ-cover
of G, this combined with Lemma 3 implies that all g ∈ G satisfy g(S2) ≥ g(S1) − ( ε

2 + γ) max[OPTG , n].
In particular, g1(S2) ≥ g1(S1) − ( ε

2 + γ) max[OPTG , n], and g2(S1) ≥ g2(S2) − ( ε
2 + γ) max[OPTG , n].

Since OPTG ≥ n, summing the above two inequalities and performing a simple case-analysis we get
that the profit of RSOPF(G,A), namely g1(S2) + g2(S1), is at least (1/β − ε − 2γ) OPTG .

We will demonstrate the utility of L1 multiplicative covers in Section 4 by showing the existence of L1

covers of size o(n) for the digital good auction; note this is not possible for L∞ multiplicative covers. It
is worth noting that a straightforward application of analogous ε-cover results in learning theory [2] (which
would require an additive, rather than multiplicative gap of ε for every bidder) would add an extra factor of
h into our sample-size bounds.

4 Auctioning Digital Goods to Indistinguishable Bidders

We now consider applying the results in Section 3 to the problem of auctioning a digital good to indistin-
guishable bidders. Here a natural class of comparison functions G is the set of all constant-price functions
(see for instance [20]). Clearly in this case, it is trivial to solve the underlying algorithm problem optimally:
given a set of bidders, just output the constant price that maximizes the price times the number of bidders
with bids at least as high as the price. Also, it is easy to see that the optimal price output will be one of
the bid values. Thus, applying Theorem 3 with the bound on |GA| = n, we get an approximately optimal
auction with an additive loss O(h log n).

We can obtain better results using γ-cover arguments and Theorem 5 as follows. Let b1, . . . , bn be the
bids of the n bidders sorted from highest to lowest. Define G ′ as {bi : j ∈ Z ∧ i =

⌊
(1 + γ′)j

⌋
∧ i ∈

{1, . . . , n}} ∪ {(1 + γ ′)i : i ∈ {1, . . . , log1+γ′ h}}. Consider g ∈ G and find the g′ ∈ G′ that offers the
largest price less than the offer price of g. First, all the winners in S on g also win in g ′. Second, the offer
price of g′ is within a factor of 1 + γ ′ of the offer price of g′. Third, g′ has at most a factor of 1 + γ ′

more winners than g. The first two facts above imply that ~∆gg′(S) ≤ γ′g(S). The third fact implies that
~∆g′g(S) ≤ γ′g(S). Thus, ∆gg′ ≤ 2γ′g(S) and therefore, G ′ is a 2γ′-cover of G. Since |G ′| is O(log hn),
the additive loss of RSOPF(G,A) is O(h log log nh).7

We can also apply the discretization technique by defining G ′ to be the set of all constant-price functions
whose price p ∈ [1, h] is a power of (1 + ε/2): if we can get revenue at least (1 − ε/2) times the optimal in
this class, we will be within (1− ε) of the optimal fixed price overall. Applying Corollary 2 (A can trivially
find the best function in G ′ by simply trying all of them), with probability 1 − δ we get at least 1 − ε times
the optimal fixed price so long as the number of bidders n is at least 72h

ε2
ln(4 ln h

εδ ) = O(h log log h). We
now present a more refined analysis, which gives us even better guarantees.

7It is interesting to contrast these results with that of [21] which showed that RSOPF over the set of constant-price functions is
near 6-competitive with the promise that n � h. A much more complicated analysis of RSOPF in a slightly different competitive
framework is given in [20].



Theorem 6 Let G be the class of constant price functions, discretized at powers of (1+ ε
2), and let δ < 1/2.

Then with probability 1 − δ, RSOPF(G,A) obtains profit at least

OPTG −8
√

h OPTG log(2/(εδ)).

So, this implies that for OPTG ≥ (16
ε )2h log(2/(εδ)) we get profit at least (1 − ε/2) OPTG , which is at

least (1−ε) times the optimal non-discretized fixed price. So, even in the worst-case that the optimal single-
price solution is at price 1 (so OPTG = n) we get an O(log log h) improvement over the generic bound,
but if OPTG extracts substantially more profit on average per bidder, we can get an improvement of up to
O(h log log h).

To prove Theorem 6, let us for convenience define α to be the discretization parameter (which was ε/2
above) and assume h is a power of (1 + α). For comparison function gv offering price v, let nv denote the
number of winners (bidders whose value is at least v), and let rv = v · nv denote the profit of gv on S.
Denote by r̂v the observed revenue of gv on S1 (and so r̂v = v · n̂v, where n̂v is the number of winners in
S1 for gv). So, we have E[r̂v] = rv

2 . We now begin with the following lemma.

Lemma 4 Let ε < 1, δ < 1/2. With probability at least 1 − δ we have that, for every gv ∈ G the observed
revenue on S1 satisfies: ∣∣∣r̂v −

rv

2

∣∣∣ ≤ max

(
h log(1/(αδ))

ε
, εrv

)
.

Proof: First for a given price v let an,v be |n̂v − nv

2 |. To prove our lemma we will use the consequence
of Chernoff bound we present in Appendix A (see Theorem 16). For any v and j ≥ 1 we consider n′ =
(1+α)j log(1/(αδ))

ε2
, and so we get Pr

{
an,v ≥ ε max

(
nv,

(1+α)j log(1/(αδ))
ε2

)}
≤ 2e−2(1+α)j log(1/(αδ)). This

further implies that we have an,v ≥ ε max
(
nv,

(1+α)j log(1/(αδ))
ε2

)
with probability at most 2(αδ)2(1+α)j

.

Therefore for v = h/(1 + α)j we have Pr

{∣∣r̂v − rv

2

∣∣ ≥ max
(

h log(1/(αδ))
ε , εrv

)}
≤ 2(αδ)2(1+α)j

, and so

the probability that there exists a gv ∈ G such that
∣∣r̂v − rv

2

∣∣ ≥ max
(

h
ε , εrv

)
is at most 2

∑
j(αδ)2(1+α)j ≤

2
∑

j′
1
α(αδ)2·2

j′ ≤ δ. This implies that with high probability, at least 1 − δ, we have that simultaneously,
for every gv ∈ G the observed revenue on S1 satisfies:

∣∣∣r̂v −
rv

2

∣∣∣ ≤ max

(
h log(1/(αδ))

ε
, εrv

)
,

as desired.

Proof of Theorem 6: Assume now that it is the case that for every gv ∈ G we have
∣∣r̂v − rv

2

∣∣ ≤ max
(

H
ε , εrv

)
,

where H = h log(2/(αδ)). Let v∗ be the optimal price level among prices in G, and let ṽ∗ be the price that
looks best on S1. Obviously, our gain on S2 is rṽ∗ − r̂ṽ∗ . We have r̂v∗ ≥ r∗v

2 − H
ε − εrv∗rv∗(1− 2ε)/2− H

ε ,
r̂ṽ∗ ≥ r̂v∗ and r̂ṽ∗ ≤ rṽ∗

2 + H
ε + εrṽ∗ ≤ rṽ∗

2 + H
ε + εrv∗ , and therefore rṽ∗ − r̂ṽ∗ ≥ r̂ṽ∗ − H

ε − εrv∗ , which
finally implies that rṽ∗ − r̂ṽ∗ ≥ rv∗

(
1
2 − 2ε

)
− 2H

ε . This implies that with probability at least 1 − δ/2

our gain on S2 is at least rv∗

(
1
2 − 2ε

)
− 2H

ε , and similarly our gain on S1 is at least rv∗

(
1
2 − 2ε

)
− 2H

ε .

Therefore, with probability 1 − δ, our revenue is OPTG(1 − 4ε) − 4h log(1/(αδ))
ε . Optimizing the bound we

set ε =
√

h log(1/(αδ))/OPTG and get a revenue of OPTG −8
√

h OPTG log(1/(αδ)), which completes
the proof.



5 Attribute Auctions

We now consider applying the results in Section 3 to Attribute Auctions. We begin by instantiating the results
in Section 3 for market pricing auctions, and show how can we can use standard combinatorial dimensions
in Learning Theory (e.g. the Vapnik-Chervonenkis (VC) dimension: see Appendix B and [2, 12, 25, 30] for
a more complete treatment) in order to bound the induced complexity of a comparison class of functions.
We then give an analysis for general pricing functions over the attribute space that uses the notion of covers
to avoid discretization. In the Appendix C we also show how we can also obtain bounds for the case of
partial information.

5.1 Market Pricing

For attribute auctions, one natural class of comparison functions are those that partition bidders into markets
in some simple way and then offer a single sale price in each market. For example, suppose we define Gk

to be the set of functions that choose k bidders b1, . . . , bk, use these as cluster centers to partition S into
k markets based on distance to the nearest center in attribute space, and then offer a single price in each
market. In that case, if we discretize prices to powers of (1 + ε), then clearly the number of functions in Gk

is at most nk(log1+ε h)k, so Corollary 2 implies that so long as n ≥ 18h
ε2

[
ln

(
2
δ

)
+ k ln n + k ln

(
log1+ε h

)]

and we can solve the algorithmic problem, then with probability at least 1 − δ, we can get profit at least
(1 − ε) OPTGk

.
However, we can also consider other ways of defining markets as follows. Let C be any class of subsets

of X , which we will call feasible markets. For k a positive integer, we consider Fk+1(C) to be the set of all
pricing functions of the following form: pick k disjoint subsets s1,...,sk from C, and k + 1 prices p0,...,pk

discretized to powers of 1+ ε. Assign price pi to bidders in si, and price p0 to bidders not in any of s1,...,sk.
For example, if X = R

d a natural C might be the set of axis-parallel rectangles in R
d. The specific case of

d = 1 was studied in [6].
We can apply the results in Section 3 by using the machinery of VC-dimension (see [2, 8, 25, 30])

to count the number of distinct such functions over any given set of bidders S. In particular, let D =
V Cdim(C) be the VC-dimension of C and assume D < ∞. Define C[S] to be the number of distinct

subsets of S induced by C. Then, from Sauer’s Lemma (see Appendix B) C[S] ≤
(

en
D

)D
, and therefore

the number of different pricing functions in Fk(C) over S is at most
(
log1+ε h

)k (
en
D

)kD
. Thus applying

Corollary 2 here we get:

Corollary 5 Given a β-approximation algorithm A for optimizing over G = Fk(C), then so long as
OPTG ≥ βn and the number of bidders n satisfies

n ≥ 18h

ε2

[
ln

(
2

δ

)
+ k ln

(
1

ε
ln h

)
+ kD ln

(ne

D

)]
,

then with probability at least 1 − δ, the profit of RSOPFG,A is at least (1 − ε) OPTG /β.

The above lemma has “n” on both sides of the inequality. Simple algebra yields:

Corollary 6 Given a β-approximation algorithm A for optimizing over G = Fk(C), then so long as
OPTG ≥ βn and the number of bidders n satisfies

n ≥ 36h

ε2

[
ln

(
2

δ

)
+ k ln

(
1

ε
ln h

)
+ kD ln

(
36kh

ε2

)]
,



then with probability at least 1 − δ, the profit of RSOPFG,A is at least (1 − ε) OPTG /β.

Proof: Since ln a ≤ ab − ln b − 1 for all a, b > 0, we have:

18kDh

ε2
ln n ≤ 18kDh

ε2

[
ε2

36kDh
n + ln

(
36kDh

ε2

)
− 1

]
=

n

2
+

18kDh

ε2
ln

(
36kDh

eε2

)
.

Therefore, it suffices to have:

n ≥ n

2
+

18h

ε2

[
ln

(
2

δ

)
+ k ln L + kD ln

(
36kh

ε2

)]
,

so n ≥ 36h
ε2

[
ln

(
2
δ

)
+ k ln L + kD ln

(
36kh
ε2

)]
suffices.

For certain classes C we can get better bounds. In the following, denote by Ck the concept class of
unions of at most k sets from C, and let L be dlog1+α he. If C is the class of intervals on the line, then
the VC-dimension of Ck is 2k, and so the number of different pricing functions in Fk(C) over S is at most

Lk
(

en
2k

)2k
; also, if C is the class of all axis parallel rectangles in d dimensions, then the VC-dimension of

Ck is O(kd) [15]. In these cases we can remove the log k term in our bounds, which is nice because it
means we can interpret our results (e.g., Corollary 6) as charging OPT a penalty for each market it creates.
However, we do not know how to remove this log k term in general, since in general the VC-dimension of
Ck can be as large as 2Dk log(2Dk) (see [4, 13]).

Corollary 6 gives a guarantee in the revenue of RSOPFFk(C),A so long as we have enough bidders n. In
the following, for k ≥ 0 let OPTk = OPTFk(C). We can also use Theorem 1 and Corollary 2 to show a
bound that holds for all n, but with an additive loss term (we assume for simplicity here that β = 1):

Theorem 7 For any given value of n, k, ε, and δ, with probability at least 1−δ, the revenue of RSOPFFk(C),A

is
(1 − ε) OPTk −h · rF (k, D, h, ε, δ),

where rF (k, D, h, ε, δ) = O
(

kD
ε2

ln
(

kDh
εδ

))
.

Proof Sketch: We will prove the bound with the “(1 − ε)” term replaced by min
(

(1−ε′)2

1+ε′ , 1 − 2ε′
)

, which

then implies our desired result using ε′ = ε/3. If n ≥ 36h
ε′2

[
ln

(
2
δ

)
+ k ln

(
1
ε′ ln h

)
+ kD ln

(
36kh
ε′2

)]
, then

the desired statement follows directly from Corollary 6. Otherwise, consider first the case when we have
OPTk ≥ 4h

ε′2(1−ε′)

[
ln

(
2
δ

)
+ k ln L + kD ln

(
ne
D

)]
. Let gi be the optimal pricing function in Fk(C) over

Si, for i = 1, 2, and let gOPT be the optimal pricing function in Fk(C) over S (therefore we have gi(Si) ≥
gOPT(Si)). From Corollary 1, we have gOPT(Si) ≥ 2h

ε′2

[
ln

(
2
δ

)
+ k ln L + kD ln

(
ne
D

)]
, for i = 1, 2. This

implies that gi(Si) ≥ 2h
ε′2

[
ln

(
2
δ

)
+ k ln L + kD ln

(
ne
D

)]
. Using again Corollary 1, we obtain that gi(Sj) ≥

1−ε′

1+ε′ gi(Si) for j 6= i, which then implies the desired result. To complete the proof just notice that if both

OPTk ≤ 4h
ε′2(1−ε′)

[
ln

(
2
δ

)
+ k ln L + kD ln

(
ne
D

)]
and n ≤ 4h

ε′2

[
ln

(
2
δ

)
+ k ln

(
2
ε′ ln h

)
+ kD ln

(
4kh
ε′2

)]
,

then we easily get the desired statement.

Finally, as in Theorem 2 we can extend our results to use Structural Risk Minimization, where we want
the algorithm to optimize over k, by viewing the additive loss term as a penalty function.



Theorem 8 Let Ḡ be the sequence of pricing function classes F1(C), F2(C), . . . , Fn(C), and let pen(Fk(C))
be the additive-loss term below. Then for any value of n, ε and δ with probability 1 − δ the revenue of
RSOPF-SRMḠ,pen

is
max

k

(
(1 − ε) OPTk −h · r′F (k, D, h, ε, δ)

)
,

where r′F (k, D, h, ε, δ) = O
(

kD
ε2

ln
(

kDh
εδ

))
.

To illustrate the relevance of Theorem 7, notice that even for the special case of pricing using interval
functions (the case of d = 1 studied in [6]), the following lower bound holds.

Theorem 9 For the case that C is the class of intervals on the line, there is no incentive compatible mech-
anism whose expected revenue is at least 3

4 OPTk −o(kh).

Proof: Consider kh/2 bidders with distinct attributes8, h/2 each of whom independently has a 1/h prob-
ability of having valuation h and a 1 − 1/h probability of having valuation 1. Then, any incentive-
compatible mechanism has expected profit at most kh/2 because for any given bidder and any given
proposed price, the expected profit (over randomization in the bidder’s valuation) is at most 1. How-
ever, there is at least a 50% chance we will have at least k/2 bidders of valuation h, and in that case
OPTk can give k/2 − 1 of those bidders a price of h and the rest a price of 1 for an expected profit of
(k/2 − 1)h + (kh/2 − k/2 + 1)1 = kh − h − k/2 + 1. On the other hand even if that does not occur,
we always have OPTk ≥ kh/2. So, the expected profit of OPTk is at least 3kh/4 − h/2 − k/4. Thus no
incentive-compatible mechanism can have profit at least 3

4 OPTk −o(kh).

A similar lower bound holds for most base classes; note also for the case of intervals on the line, an
auction in [6] essentially matches this lower bound.

5.2 General Pricing Functions over the Attribute Space

In this section we generalize the results in Section 5.1 in two ways: to general classes of pricing functions
(not just piecewise-constant functions defined over markets) and by removing the need for discretization by
using covering arguments (that we discussed in Section 3.3.3). For example, we might want to consider
a comparison class of linear functions over the attributes, or quadratic functions, or perhaps functions that
divide the space into markets and are linear (rather than constant) in each market.

Assume in the following that X ⊆ R
d, and let G be a fixed class of pricing functions over the attribute

space X . Let Gd be the class of decision surfaces (in R
d+1) induced by G: that is, to each g ∈ G we associate

the set of all (x, v) ∈ X × [1, h] such that g(x) ≤ v. Also, let us denote by D the VC-dimension of class Gd

(i.e., D = V Cdim(Gd)), and let’s assume that D < ∞. Then using Corollary 4 we can show that:

Theorem 10 Given comparison class G and a β-approximation algorithm A for optimizing over G, then so
long as OPTG ≥ βn and the number of bidders n satisfies

n ≥ 72h

ε2

[
ln

(
2

δ

)
+ D ln

[
ne

D

(
12

ε
ln h + 1

)]]

then with probability at least 1 − δ, the profit of RSOPF(G,A) is at least (1 − ε) OPTG /β.

8Assume for instance that bidder i has attribute pubi = i.



Proof Sketch: Let α = ε
12 . For each bidder (x, v) we conceptually introduce O( 1

α ln h) “phantom bidders”
having the same attribute value x and bid values 1, (1+α), (1+α)2, · · · , h. Let S∗ be the set S together with
the set of all phantom bidders; let n∗ = |S∗|. Let Split be the set of possible splittings of S∗ with surfaces
from Gd. We clearly have |Split| ≤ Gd[n

∗]. For each element s ∈ Split consider a representative function
in G that induces splitting s in terms of its winning bidders, and let SplitG be the set of these representative
functions. Now notice that SplitG is actually an L∞ multiplicative α-cover for G with respect to S, since
for every function in G there is a function in SplitG that extracts nearly the same profit from every bidder in
the L∞ multiplicative sense; i.e. for every function in g ∈ G, there exists g ′ ∈ SplitG such that for every
(x, v) ∈ S, we have both g′((x, v)) ≤ (1 + α)g((x, v)) and g((x, v)) ≤ (1 + α)g′((x, v)).

From Sauer’s lemma we know |SplitG | ≤
(

n∗e
D

)D
, and applying Corollary 4, we finally get the desired

statement.

Finally, using simple algebra (to remove the “n” on the RHS) we obtain:

Theorem 11 Given comparison class G and a β-approximation algorithm A for optimizing over G, then so
long as OPTG ≥ βn and the number of bidders n satisfies

n ≥ 154h

ε2

[
ln

(
2

δ

)
+ D ln

(
154h

ε2

(
12

ε
ln h + 1

))]
,

then with probability at least 1 − δ, the profit of RSOPF(G,A) is at least (1 − ε) OPTG /β.

The above theorem is the analog of Corollary 2. Using it and Theorem 4, we can then derive (in the
same way as we did for Theorem 7) a bound that holds for all n (i.e. the analogue of Theorem 7). We can
further extend the results here to get bounds for the corresponding SRM auction (as we did for Theorem 8).

6 Combinatorial Auctions

Combinatorial auctions have received much attention in recent years because of the difficulty of merging the
complexity issue of computing an optimal outcome with the game-theoretic issue of incentive compatibility.
To date almost exclusively the focus has been on socially optimal combinatorial auctions.9 Deviating from
this literature, we look at the goal of profit maximization of the seller in the case where the items for sale are
available in unlimited supply. We consider the general version of the combinatorial auction problem as well
as the special cases of unit-demand bidders (each who desires only singleton bundles) and single-minded
bidders (each of whom has a single desired bundle).

It is interesting to restrict our attention to the case of item-pricing, where the auctioneer intuitively is
attempting to set a price for each of the distinct items and bidders then choose their favorite bundle given
these prices. Item-pricing is without loss of generality for the unit-demand case, and the general bundle-
pricing can be realized with an auction with m′ = 2m “items”, one for each of possible bundle of the original
m items.10

9A notable exception is the recent work of Likhodedov and Sandholm [27] which gives both a randomized auction that is a
O(log h)-approximation in worst case and a deterministic auction that is an O(log h) average case approximation to the optimal
revenue not only in the unlimited supply case that we consider here, but also in the important limited supply special case where the
bidders have additive valuations. They also present a number of simulations that show the usefulness of their techniques.

10We make the assumption that all desired bundles contain at most one of each item. This assumption can be easily relaxed and
our results applied given any bound on the number of copies of each item that are desired by any one consumer. Of course this
reduction produces an exponential blowup in the number of items.



For combinatorial auctions, the size of the class of all possible item-pricings, |G|, is infinite. Following
the guidelines established in Section 3.3 we look at obtaining bounds for a discretized set of item prices,
G′ (see Section 6.1), and bounds obtained from counting possible outcomes in GA (see Section 6.2). A
summary of our results is given in Table 1.

general unit-demand single-minded
|G′| O(logm

1+ε2
nm
ε ) O(logm

1+ε2
n
ε ) O(logm

1+ε
nm
ε )

|GA| nm22m2
nm(m + 1)2m (n + m)m

Table 1: Size of comparison classes for combinatorial auctions.

We can apply Theorem 1 and Corollary 2 to the sizes of the complexity classes in Table 1 to get good
bounds on the profit of random sampling auctions for combinatorial item pricing. In particular, using Corol-
lary 2 we get that Õ(hm2/ε2) bidders are sufficient to achieve revenue close to the optimum item-pricing in
the general case, and Õ(hm/ε2) bidders are sufficient for the unit-demand case. Also, by using Theorem 1
instead of Corollary 2 we can replace the condition on the number of bidders with a condition on OPTG ,
which is factor of m improvement on the bound given by [16].

6.1 Bounds via Discretization

We can obtain good performance bounds if we are willing to optimize over a small class of discretized
item-pricings (see Section 3.3.1). In particular, if we can find a small class G ′ with the property that OPTG′

is guaranteed to be close to OPTG , we can argue that RSOPF(G′,A) performs well compared to OPTG

using bounds on the size of |G ′|. Prior to this work, [23] shows how to construct discretized classes G ′ of
price vectors with OPTG′ ≥ 1

1+ε OPTG and that are of sizes O(mm logm
1+ε

n
ε ) for the unit-demand case

and O(logm
1+ε

nm
ε ) for the single-minded case. Nisan [28] gives the basic argument necessary to generalize

these results to obtain the result in Theorem 12 which applies to combinatorial auctions in general. We note
in passing that Theorem 12 allows for generalization and improvement of the computational results of [23].
The discretization results we obtain are summarized in the first row of Table 1.

We state and prove now the main result of this section.

Theorem 12 Let k be the size of the maximum desired bundle. Let p′ be the optimal discretized price vector
that uses item prices equal to 0 or powers of (1 + ε) in the range [hε/nk, h] and let p∗ be the optimal price
vector. Then we have:

p′(S) ≥ (1 − 2
√

ε)p∗(S).

Proof: Consider δ =
√

ε. For the optimal price vector p∗ with item j priced at p∗j (i.e. p∗(S) = OPTG),
consider a price vector p with pj in [(1 − δ)p∗j , (1 − δ + δ2)p∗j ] if p∗j ≥ hδ2/nk and 0 otherwise. Note that
such a price vector p lies in the set of price vectors that have item prices equal to 0 or powers of (1 + ε) in
the range [hε/nk, h]. We show now that p(S) ≥ (1 − 2

√
ε)p∗(S) holds, which clearly implies the desired

result.
Let J be a multi-set of items and Profit(J) =

∑
j∈J p∗j be the payment necessary to purchase bundle J

under pricing p∗. Define Rj = p∗j − pj . Thus we have:

(δ − δ2)p∗j ≤ Rj ≤ δp∗j + δ2h/nk.



This implies that for any multiset J with |J | ≤ k, we have the following upper and lower bounds:

∑

j∈J

Rj ≥ (δ − δ2)Profit(J) , (1)

∑

j∈J

Rj ≤ δProfit(J) + hδ2/n. (2)

Let J∗
i and Ji be the bundles that bidder i prefers under pricing p∗ and p, respectively. Consider bidder

i who switches from bundle J∗
i to bundle Ji when the item prices are decreased from p∗ to p. This implies

that:
∑

j∈J∗
i

Rj ≤
∑

j∈Ji

Rj .

Combining this with equations (1) and (2) and canceling a common factor of δ we see that:

(1 − δ)Profit(J∗
i ) ≤ Profit(Ji) + hδ/n.

Summing over all bidders i, we see that the total profit under our new pricing p is at least (1−δ) OPTG −hδ.
Since OPTG ≥ h, we finally obtain that the profit under p is at least (1 − 2δ) OPTG .11

Note that we can now apply Theorem 12 by letting G ′ be the class of item prices equal to 0 or powers
of (1 + ε) in the range [hε/nk, h] (where k bounds the maximum size of a bundle). Using for instance
Corollary 2 we obtain the following guarantee:

Corollary 7 Given a β-approximation algorithm A optimizing over G ′, then so long as OPTG′ ≥ βn and
the number of bidders n satisfies

n ≥ 18h

ε2

(
m ln(log1+ε2 nk) + ln

(
2

δ

))
,

then with probability at least 1 − δ, the profit of RSOPFG′,A is at least (1 − 3ε) OPTG /β.

6.2 Bounds via Counting

We now show how to use the technique of counting possible outcomes (See Section 3.3.2) to get a bound on
the performance of the random sampling auction with an algorithm A for item-pricing. This approach calls
for bounding |GA|, the number of different pricing schemes RSOPF(G,A) can possibly output. Our results
for this approach are summarized in the second row of Table 1.

Recall that bidder i’s utility for a bundle J given pricing p is ui = vi(J) − ∑
j∈J pj (this is specified

by ρ). We now make the following claim about the regions of the space of possible pricings, R
m
+ , in which

bidder i’s most desired bundle is fixed.

Claim 1 A bidder’s valuation function over subset of items, vi(J), partitions the space of item-pricings into
convex regions based on the bundle J allocated to the bidder.

11Notice that we are effectively assuming that h = max
i∈S

max
s⊆S

vi(s).



Proof: Suppose the allocation to a particular bidder for p and p′ are the same, J . Then for any other bundle
J ′ we have:

vi(J) −
∑

j∈J

pj ≥ vi(J
′) −

∑

j∈J ′

pj

and
vi(J) −

∑

j∈J

p′j ≥ vi(J
′) −

∑

j∈J ′

p′j .

If we now consider any price vector αp + (1 − α)p′, for α ∈ [0, 1], these imply:

vi(J) −
∑

j∈J

(αpj + (1 − α)p′j) ≥ vi(J
′) −

∑

j∈J ′

(αpj + (1 − α)p′j).

This clearly implies that this agent prefers allocation J on any convex combination of p and p′. Hence the
region of prices for which the agent prefers bundle J is convex.

The above claim shows that we can divide the space of pricings into convex regions based on an agents
most desirable bundle. Consider fixing an outcome, i.e., the bundles J1, . . . , Jn, obtained by the n agents.
This outcome arises for pricings that are in the intersection over agents i, of set of pricings where agent i
obtains bundle Ji, which is clearly also a convex region. Since different outcomes partition the space of
possible pricings, these convex regions are polytopes joined by hyperplanes.

Definition 4 For agents S, let VertsS denote the set of vertices of the polytopes that partition the space of
prices by the allocation produced.

Claim 2 For S ′ ⊆ S we have VertsS′ ⊆ VertsS .

Proof: We show the claim for S ′ = S \ {i} and without loss of generality fix i = 1. The full claim then
follows by induction.

The space of prices is partitioned into polytopes by the valuations of the n − 1 agents S ′ = {2, . . . , n}.
Consider a particular allocation the the n − 1 agents S ′: J2, . . . , Jn. This polytope is partitioned into
polytopes by the valuation of agent 1 based on the bundle J1 that agent 1 receives (i.e., by intersecting the
polytope for J1 with the polytope for J2, . . . , Jn). The vertices of these polytopes include all vertices of
the original polytope for J2, . . . , Jn and new vertices created when further partitioning this polytope by the
allocation to agent 1. As this holds for all J2, . . . , Jn, it implies that the vertices of the polytopes for all
allocations to the n agents, VertsS , is a superset of the vertices of the polytopes for all allocations to the
n − 1 agents in S ′, VertsS′ . Induction gives the claim.

Now we consider optimal pricings. Note that when fixing an allocation J1, . . . , Jn we are looking for an
optimal price point within the polytope that gives this allocation. Our objective function for this optimization
is linear. Let nj be the number of copies of item j allocated by the allocation. The algorithms payoff for
prices p = (p1, . . . , pm) is

∑
j pjnj . Thus, all optimal pricings of this allocation lie on facets of the polytope

and in particular there is an optimal pricing that is at a vertex of the polytope. Over the space of all possible
allocations, all optimal pricings are on facets of the allocation defining polytopes and there exists an optimal
pricing that is at a vertex of one of the polytopes.

Lemma 5 Given an algorithm A that always outputs a vertex of the polytope then GA ⊆ VertsS .



Proof: This follows from the fact that RSOPF(G,A) runs A on a subset S ′ of S which has VertsS′ ⊂ VertsS .
A must pick a price vector from VertsS′ . By Claim 2 this price vector must also be in VertsS . This gives the
lemma.

We now discuss getting a bound on VertsS for n agents, m distinct items, and various types of prefer-
ences.

Theorem 13 We have the following upper bounds on |VertsS |:

1. (n + m)m for single-minded preferences.

2. nm(m + 1)2m for unit-demand preferences.

3. nm22m2
for arbitrary preferences.

Proof: We consider how many possible bundles, M , an agent might obtain as a function of the pricing. An
agent with single-minded preferences will always obtain one of Ms = 2 bundles: either they obtain their
desired bundle or they receive nothing (the empty bundle). An agent with unit-demand preferences receives
one of the m items or nothing for a total of Mu = m+1 possible bundles. An agent with general preferences
receives one of the Mg = 2m possible bundles.12

We now bound the number of hyperplanes necessary to partition the pricing space into M convex regions
(e.g., that specify which bundle the agent receives). For convex regions, each pair of regions can meet in
at most one hyperplane. Thus, the total number of hyperplanes necessary to partition the pricing space into
regions is at most

(
M
2

)
. Of course we wish to restrict our pricings to be non-negative, so we must add m

additional hyperplanes at pj = 0 for all j.
For all n agents, we simply intersect the regions of all agents. This does not add any new hyperplanes.

Furthermore, we only need to count the m hyperplanes that restrict to non-negative pricings once. Thus,
the total number of hyperplanes necessary for specifying the regions of allocation for n agents with M
convex regions each, is K = n

(
M
2

)
+ m. Thus, Ks = n + m, Ku ≤ n

(
m+1

2

)
+ m ≤ n(m + 1)2, and

Kg ≤ n
(
2m

2

)
+ m ≤ n22m (for m ≥ 2).

Of course, K hyperplanes in m dimensional space intersect in at most
(
K
m

)
≤ Km vertices. Not all of

these intersections are vertices of polytopes defining out allocation, still Km is an upper bound on the size of
VertsS . Plugging this in gives us the desired bounds of (n + m)m, nm(m + 1)2m, and nm22m2

respectively
for single-minded, unit-demand, and general preferences.

We note that are above arguments apply to approximation algorithms that always output a price corre-
sponding to the vertex of a polytope as well. Though we do not consider this direction here, it is entirely
possible that it is not computationally difficult to post-process the solution of an algorithm that is not a vertex
of a polytope to get a solution that is on a vertex of a polytope. This would further motivate the analysis
above. If for some reason, restricting to algorithms that return vertices is undesirable, it is possible to use
cover arguments on the set of vertices we obtain when we add additional hyperplanes corresponding to the
discretization of the preceding section.

12Here we make the assumption that desired bundles are simple sets. If they are actually multi-sets with bounded multiplicity k,
then the agent could receive one of at most Mg = (k + 1)m bundles.



6.3 Combinatorial Auctions: Lower Bounds

We show in the following an interesting lower bound for combinatorial auctions.13 Notice that our upper
bounds and this lower bound are quite close.

Theorem 14 For agents with unit-demand, single-minded, or general preferences, there is no randomized
incentive compatible mechanism whose revenue is Ω (OPT−o(mh)).

Proof: Consider the following probability distribution over valuations of agents preferences. Assume we
have n = mh/2 agents in total, and h/2 agents desire item j only, j ∈ {1, · · ·m}. 14 Each of these agents
has valuation h with probability 1/h and valuation 1 with probability 1 − 1/h.

Notice now any incentive-compatible mechanism has expected profit at most n. To see this, note that
for each bidder, any proposed price has expected profit (over the randomization in the selection of his
valuation) of at most 1. Moreover, the expected profit of OPTG is at least n + mh/8. For each item j,
there is at least a 1/4 chance that some bidder has valuation h. For those items, OPTG gets at least a
profit of h. For the rest, OPTG gets a profit of h/2. So, overall, OPTG gets an expected profit of at least
mh/4 + (3/4)h/2 = n + mh/8. All these together imply the desired result.

6.4 Algorithms for Item-pricing

Given standard complexity assumptions, most item-pricing problems are not polynomial time solvable, even
for simple special cases. We review these results here. We restrict our attention to the unlimited supply spe-
cial case, though some of the work we mention also considers limited supply item-pricing. Algorithmic
pricing problems in this form were first posed by Guruswami et al. [29] though item-pricing for unit-
demand consumers with several alternative payment rules (i.e., non-standard functions ρ mapping offers
to payments) were independently considered by Aggarwal et al. [1].

For consumers with single-minded preferences, [29] gives a simple logarithmic approximation algo-
rithm. Demaine et al. [11] show that this algorithm is essentially the best possible by showing the problem
to be hard to approximate better than a logarithmic factor.15 Both Briest and Krysta [10] and Grigoriev et
al. [22] proved that optimal pricing is NP-hard for the special case known as “the highway problem” where
there is a linear order on the items and all desired bundles are for sets of consecutive items (actually this
hardness result follows for the more specific case where the desired bundles for any two agents, Si and Si′ ,
satisfy one of the following: Si ⊂ Si′ , Si′ ⊂ Si, or Si ∪ Si′ = ∅). In the case when the cardinality of the
desired bundles are bounded by k, independently Briest and Krysta [10] and Balcan and Blum [3] provided
approximation algorithms with good guarantees. Specifically, Briest and Krysta [10] provided an O(k2)-
approximation algorithm, while Balcan and Blum [3] provided an O(k)-approximation algorithm.16 Finally,
when the number of distinct items for sale, m, is constant, Hartline and Koltun [23] show that it is possible
to improve on the trivial O(nm) algorithm by giving a near-linear time approximation scheme. Their ap-
proximation algorithm is actually an exact algorithm for the problem of optimizing over a discretized set of
item prices G ′ which is directly applicable to our auction RSOPF(G′,A), discussed above.

For consumers with unit-demand preferences, [29] (and [1] essentially) give a trivial logarithmic approx-
imation algorithm and show that the optimization problem is APX-hard (meaning that standard complexity

13This proof follows the standard approach for lower bounds for revenue maximizing auctions that was first given by Goldberg
et al. in [19].

14Notice that these preferences are both unit-demand and single-minded.
15Technically, the lower bound is logarithmic in m, whereas the upper bound is O(log m + log n).
16Moreover, Balcan and Blum [3] showed how to adapt their algorithms to the online setting.



assumptions imply that there does not exist a polynomial time approximation scheme (PTAS) for the prob-
lem). Again, Hartline and Koltun show how to improve on the trivial O(nm) algorithm in the case where the
number of distinct items for sale, m, is constant. They give a near-linear time approximation scheme that is
based on considering a discretized set of item prices; however, discretization of Nisan [28] discussed above
gives a significant improvement on their algorithm and also generalizes it to be applicable to the problem of
item-pricing for consumers with general combinatorial preferences.

7 Multicast Pricing

In the multicast pricing problem, each bidder resides at some node of a tree, and in order to sell its service
to some bidder, the service-provider must have purchased all edges on the path from the root to that vertex.
Given a set of edge costs, our goal as service-provider is to determine a subtree together with prices at
nodes of this tree that achieves highest revenue minus cost. A 4-approximation to this problem, under
the assumption that the optimal solution has revenue at least 4 times its cost and that there is sufficient
competition at each node is given in [14].

Using our generic results we can say that so long as the optimal solution has revenue at least 1/ε times its
cost, and we have on average Õ(h/ε2) bidders at each node (using Theorem 1) or at least Õ(h/ε2) revenue
at each node (using Corollary 1) then we get a (1 + O(ε))-approximation.

Briefly, to apply the generic results, we define our algorithm A so that it finds the revenue-maximizing
tree but only over the subset of trees whose revenue on the given subset of bidders is at least (2 + ε)/ε times
its cost. By Corollary 1, with high probability the optimal tree has this property over both S1 and S2, and so
the revenue achieved by A is nearly that of the optimal tree, and by design the cost of the tree produced by
A is only an O(ε) factor of revenue.

We can also apply structural-risk-minimization in the case that the total number of bidders is not suf-
ficient for the entire class of trees. In particular, one interesting case is the comparison-class of functions
that choose some subtree and add fake “markups” between 0 and nh to the edges of that subtree, and then
perform cost-sharing on the result (also add a “super-root” with a single zero-cost edge into the root). If we
define Gk to be the set of such functions whose subtree has k edges, then |Gk| ≤ (n log1+ε(nh))k. We can
then perform SRM using Theorem 2. An interesting special case to consider is a simple depth-1 multicast
tree whose edges have cost 0 and with two bidders at each leaf: one with value 1 and one with value h. In
this case, there is not sufficient competition at the leaves for the results of [14], but we can extract Ω(nh)
using G1.

8 Conclusions and Discussion

In this work we have made the connection between machine learning and mechanism design explicit. In
doing so, we obtain a unified approach to considering a variety of profit maximizing mechanism design
problems including many that have been previously considered in the literature.

Some of our techniques give suggestions for the design of mechanisms and others for their analysis. In
terms of design, these include the use of discretization to produce smaller function classes, and the use of
structural-risk-minimization to choose an appropriate level of complexity of the mechanism for a given set
of bidders. In terms of analysis, these include both the use of basic sample-complexity arguments, and the
notion of multiplicative covers for better bounding the true complexity of a given set of functions.17

17It is worth noting that using covering numbers is a common technique in deriving sample complexity bounds in Machine



Our bounds on random sampling auctions for digital goods [21] not only show how the auction profit
approaches the optimal profit, but also weaken the required assumptions by a constant factor. Similarly for
random sampling auctions for multiple digital goods [16] our unified analysis gives a bound that approaches
the optimal profit with assumptions weakened by a factor of more than m, the number of distinct items. This
multiple digital good auction problem is a special case of the a more general unlimited supply combinatorial
auction problem for which we obtain the first positive worst-case results by showing that it is possible to
approximate the optimal profit with an incentive-compatible mechanism. Furthermore, unlike the case for
combinatorial auctions for social welfare maximization, our incentive-compatible mechanisms can be based
on approximation algorithms instead of exact ones.

We have also explored the attribute auction problem proposed in [6], a special case of general profit
maximizing mechanism design, in a very general setting: the attribute values can be multi-dimensional and
the target pricing functions considered can be arbitrarily complex. We bound the performance of random
sampling auctions as a function of the complexity of the target pricing functions. Our attribute auction
results can be used for more general problems such as multicast pricing, where there is a cost to be paid by
the mechanism that is a function of its outcome.

Our random sampling auctions assume the existence of exact or approximate pricing algorithms. So-
lutions to these pricing problem have been proposed for several of our settings. In particular, optimal
item-pricings for combinatorial auctions in the single-minded and unit-demand special cases have been
considered in [3, 10, 23, 29]. On the other hand for attribute auctions, many of the clustering and market-
segmenting pricing algorithms have yet to be considered at all.

Probably the most important direction for future work is in relaxing the assumption that the items for sale
are available in unlimited supply. In the random sampling framework, we propose the following mechanism:
randomly partition the bidders into two sets, evenly divide the items among the two sets, compute the optimal
envy-free18 pricing function for the two partitions, and applying the pricing function to the opposite partition.
Of course, a pricing function g that is envy-free for S1 may not necessarily be envy-free for S2. There are
several approaches that may work here. First, we could artificially deplete the supply by a constant factor
and ask for an pricing function that is envy-free for the depleted supply. Then it may be possible to argue
that it is envy-free for both S1 and S2 with high probability. Another option would be to take the bidders
of S1 in an arbitrary (or random) order and allow them to take an item if they desire one. When we run
out of items, stop. The remaining bidders get none, whether they want one or not. It is easy to see that the
technique outlined above results in an incentive compatible mechanism. Is it also close to optimal?

It is possible to further generalize the feasibility constraints imposed by limited supply to arrive at
the general single-parameter agent auction problem (See e.g., [18] for a precise definition). This abstract
problem can be viewed as auctioning a service to a number of agents where the service provider must pay a
cost that is a function of the agents served. In its full generality, this cost function could be arbitrary. Note
that the multicast pricing problem is a special case of this problem where the cost function is defined by a
tree. The possibly asymmetric cost function can be viewed as endowing the agents with public attributes, or
the agents could have additional attributes. A very interesting direction for future research is in determining
for what classes of cost functions the general problem of profit maximization in this setting can be solved.

The final direction of investigation we propose is that of generalizing the special purpose bounds we
obtain for digital good auctions (Section 4) to our general unlimited supply setting (Section 3). Recall

Learning and this was our source of inspiration. However, it turned out that the right notion of cover for our mechanism design
setting is a very specific one and quite different from what one would normally consider in Machine Learning.

18To generalize envy-freedom [29] to attribute auctions, declare a price function g ∈ G envy-free for bidders S if there are
enough items such that all bidders that have strictly positive utility for an item under g can simultaneously be sold one.



that in for digital goods and indistinguishable bidders we were able to employ a telescoping argument to
reduce the additive loss term to O(h) which is optimal up to a constant factor. This takes advantage of
the property of single-price pricing functions: that the payoff for any given bidder is upper-bounded by the
offer price. This allows us to use non-uniform bounds on the payoffs of the different pricing functions and
these non-uniform bounds telescope. Can some form of this telescoping be generalized to attribute auctions,
combinatorial auctions, or our general bounds? It would be also interesting to see if one can use some of
the very recent techniques and ideas used in the context of Learning Theory and Empirical Processes (see
e.g. [9, 5, 26]) to get better bounds for our mechanism design setting. In particular, it would be interesting
to investigate data dependent bounding techniques in this setting.
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A Concentration Inequalities

Here is the McDiarmid inequality (see [12]) we use in our proofs:

Theorem 15 Let Y1, ..., Yn be independent random variables taking values in some set A, and assume that
t : A → R satisfies:

sup
y1,...,yn∈A,yi∈A

|t(y1, ..., yn) − t(y1, ..., yi−1, yi, yi+1, yn)| ≤ ci,

for all i, 1 ≤ i ≤ n. Then for all γ > 0 we have:

Pr {|t(Y1, ..., Yn) − E[t(Y1, ..., Yn)]| ≥ γ} ≤ 2e

[
− 2γ2

∑n
i=1

c2
i

]

Here is also a consequence of the Chernoff bound that we used in Lemma 4.

Theorem 16 Let X1, ..., Xn be independent Poisson trials such that, for 1 ≤ i ≤ n, Pr[Xi = 1] = 1/2

and let X =
n∑

i=1
Xi. Then any n′ we have:

Pr

{∣∣∣X − n

2

∣∣∣ ≥ ε max{n, n′}
}
≤ 2e[−2n′ε2]

B VC Dimension and Its Properties

We briefly describe here the notion of VCdimension and some of its properties; for a more complete treat-
ment see [2, 8, 25, 30].

We will first introduce some notation. Let C be a class of binary functions from X to {0, 1}. For any
S ⊆ X , let us denote by C [S] the set of all dichotomies on S realized by C; i.e. if S={x1, · · · , xm},
then C [S] ⊆ {0, 1}m and C [S] = {(c (x1) , · · · , c (xm)) ; c ∈ C}. Also, for any positive integer m,
let C [m] be the maximum number of ways to split m points from X using concepts in C; that means
C [m] = max {|C [S]| ; |S| = m, S ⊆ X}. We say that S = {x1, · · · , xm} is shattered by C if every
dichotomy of S has a representative in C (i.e. |C [S]| = 2m). We can now define the notion of VC
dimension as follows:

Definition 5 The VC dimension of C is defined to be the size of the largest set S which is shattered by C;
i.e. V Cdim(C) = max {|S|; S ⊆ X, S shattered by C}.

Then Sauer’s lemma states that:

Theorem 17 For any class C with finite V Cdim(C) = D, we have C [m] ≤
D∑

i=0

(
m
i

)
, for all positive

integers m.

This further implies that:

Corollary 8 For any class C with finite V Cdim(C) = D, we have C [m] = 2m if m ≤ D and C [m] ≤(
em
D

)D
if m > D.



C Attribute Auctions: Partial Information

We analyze here Attribute Auctions in a Partial Information setting. In the following we assume that the
bidders do not reveal their private value vi, but the only observed signal is whether bidder i buys the item at
a certain offer price or not. 19

At a high level, the strategies we consider are of the following form. The auctioneer will divide the set
of bidders into two groups, S1 and S2. He will use the bidders in S1 to “learn” the distribution of values, by
offering randomly different prices. After this, according to the values observed in S1, he will decide on a
specific pricing function, and use it on the bidders in S2.

C.1 Constant Pricing

For clarity, we start with the simple case of a single market. Namely, the pricing functions are constant and
from the set V , where V is the set of all prices of the form (1 + α)j . Denote by L = |V | = dlog1+α he.

We will consider two algorithms. Both split the set S randomly into S1 and S2. Let nv be the number of
winners at value v in S and let rv = v · nv denote profitgv

(S) for constant function gv(x) = v. Also denote
by nv,i be the number of winners at value v in Si, for i = 1, 2 and let r∗ = rv∗ = max

v∈V
rv.

We describe now the first algorithm, PI-uniform. Let C1(ε) = 6
ε2

and C2(ε) = 3
ε2

(1+ ε). Algorithm
PI-uniform first offers to each bidder in S1 a price chosen at random from V . Specifically, for each
i ∈ S1, PI-uniform selects a random price pi uniformly from V and offers bidder i the price pi. Let mv

be the number of bidders in S1 for which pi = v. Let n̂v be the subset of those mv bidders for which vi ≥ v,
namely the number of bidders i that bought when offered price pi = v. A price p is called considered if
n̂p ≥ C2(ε)A, where A = log

(
2L
δ

)
. Let U be the set of considered prices and let p̄ = arg maxp∈U{n̂pp}.

Finally, PI-uniform offers each bidder in S2 the price p̄ and its revenue on S2 is np̄,2p̄.
From the definition of PI-uniform we have that E[n̂v] = 1

2Lnv, and E[nv,i] = nv

2 , for i = 1, 2.
Using again Chernoff bound we can prove that:

Lemma 6 With probability at least 1 − δ, for any v ∈ V , we have:
(1) if nv ≥ C1(ε)LA then we have Ln̂v

nv
∈

[
1
2(1 − ε), 1

2(1 + ε)
]

and nv,2

nv
∈

[
1
2(1 − ε), 1

2(1 + ε)
]
.

(2) if nv < C1(ε)LA then we have n̂v < C2(ε)A.

Using Lemma 6, we can now derive the performance of PI-uniform.

Theorem 18 For any set of bidders S, with probability at least 1 − δ the revenue of PI-uniform is at
least min{ r∗

2 (1 − ε), r∗ − h · d(ε, δ)}, where d(ε, δ) = O
(

1
ε2

L log
(

2L
δ

))
.

Proof: We will prove a bound of min{ 1
2

(1−ε′)2

1+ε′ r∗, r∗ − 2
1−ε′ C2(ε

′)hL log
(

2L
δ

)
}, which obviously implies

the desired result. Let p∗ be the optimal fixed price. If np∗ < 2
1−ε′ C2(ε

′)LA, then the theorem holds.

Otherwise we have n̂p∗ ≥ C2(ε
′)A, and therefore the price p∗ is considered and n̂p∗ ≥ 1−ε′

2 · 1
2Lnp∗ . For the

selected price p̄ we have that p̄n̂p̄ ≥ p∗n̂p∗ ; also since price p̄ was considered, we have that n̂p̄ ≥ C2(ε
′)A,

and therefore np̄ ≥ C1(ε
′)LA. This implies that n̂p̄ ≤ 1

2L(1 + ε′)np̄ and np̄,2 ≥ np̄
1−ε′

2 . This implies

that gp̄(S2) = p̄np̄,2 ≥ 1−ε′

2 p̄np̄ ≥ 1−ε′

2
2L

1+ε′ p̄n̂p̄ ≥ 1−ε′

2
2L

1−ε′ p
∗n̂p∗ ≥ 1

2
(1−ε′)2

1+ε′ p∗np∗ = 1
2

(1−ε′)2

1+ε′ r∗ which
completes the proof.

19Remember, we consider the function ρ defined as follows: if bidder i is offered the item at price p, then he buys it iff p ≤ vi,
and in the case when he buys the item the auctioneer’s revenue is p.



The main objective of the second algorithm is to lower the penalty in the case the optimal revenue
depends on a few bidders. The main idea is to sample more the higher prices. Let us assume for convenience

that V is a power of 1+α, and let V =
{

h
(1+α)i |0 ≤ i ≤ log1+α h

}
. Let C3(ε) = 3

ε2
1+α

α and let C4(ε) = 3
ε2

.

The second algorithm PI-expo, for each i ∈ S1 selects a random price pi = h
(1+α)i with probability

α
1+α

1
(1+α)i , and offers bidder i the price pi. Let U be the set of prices {pj |n̂pj

≥ C4(ε)A}. Algorithm

PI-expo selects a price p̄ ∈ U that maximizes (1 + α)ipn̂p, where pi = h
(1+α)i .

Clearly, for v = h
(1+α)i , using the price sampling of PI-expo, we have that E[n̂v] = α

1+α
nv

(1+α)i , and

also E[nv,i] = nv/2, for i = 1, 2. Using Chernoff bound we can prove that:

Lemma 7 With probability 1 − δ we have the following:

(1) for any v = h
(1+α)i , if nv ≥ C3(ε)(1 + α)iA, then we have (1 + α)i n̂v

nv
∈

[
α

1+α(1 − ε), α
1+α(1 + ε)

]

and nv,2

nv
∈

[
1
2(1 − ε), 1

2(1 − ε)
]
.

(2) for any v = h
(1+α)i , if nv < C3(ε)(1 + α)iA we have n̂v < C4(ε)A.

Using Lemma 7, we can now derive the performance of the PI-uniform algorithm.

Theorem 19 For any set of bidders S, with probability at least 1 − δ the revenue of PI-expo is at least
min{r∗(1

2 − ε), r∗ − 1+α
α

1
1−εC4(ε)h log 2L

δ }.

Proof: Let p∗ = h
(1+α)j be the optimal fixed price. We analyze two cases depending on np∗ . If np∗ <

1+α
α

1
1−εC4(ε)(1 + α)jA, then clearly the theorem holds. Consider now the case when n̂p∗ ≥ C4(ε)A. In

this case, the price p∗ is considered and also n̂p∗ ≥ α
1+α(1 − ε) 1

(1+α)j np∗ . Let p̄ = h
(1+α)i be the selected

price; then we clealry have (1 + α)ip̄n̂p̄ ≥ (1 + α)jp∗n̂p∗ . Since p̄ = h
(1+α)i was considered we also have

that n̂p̄ ≥ C4(ε)A, and therefore np̄ ≥ C3(ε)(1 + α)iA. This implies that n̂p̄ ≥ α
1+α(1 − ε) 1

(1+α)j np̄ and

np̄,2 ≥ 1−ε
2 np̄. All these imply that we have gp̄(S2) = p̄np̄,2 ≥ 1−ε

2 p̄np̄ ≥ 1−ε
2

1+α
α

1
1−ε(1 + α)ip̄n̂p̄ ≥

1−ε
2

1+α
α

1
1−ε(1 + α)j p̄n̂p̄p

∗n̂p∗ ≥ 1−ε
2 p∗np∗ = r∗ 1−ε

2 , which completes the proof.

Also notice that (in both algorithms PI-uniform and PI-expo), by using an uneven partition of the
bidders (just putting an ε fraction in S1) we can get almost (1 − ε)r∗ (but in this case we will loose an extra
1/ε in our additive term).

C.2 General Pricing Schemes

We now extend the result to a family of pricing function G (we analyze here for simplicity the discretized
version of G to the powers of 1 + α). In the following we denote by xi the attribute of bidder i (that means
xi = pubi). We perform the extension for the uniform price sampling. The algorithm PI-G does the
following. Similar to PI-uniform splits the bidders randomly to S1 and S2 and offers each bidder in S1

the price pi uniform from V (as before, we consider L = |V |). After this initial step, PI-G computes, for
each function g ∈ G, an estimate ĝ(S1) in the following way. Let S1,g be the set of bidders in S1 for which
g(xi) = pi, namely the bidders for which the offered price equals the price suggested by g. The estimate
ĝ(S1) is the revenue of g on S1,g. The algorithm PI-G selects the function g1 that maximizes ĝ(S1) and
uses g1 for pricing in S2. Namely, for each i ∈ S2 algorithm PI-G offers a price g1(xi). It’s easy to see
that for any pricing function g we have that E[ĝ(S1)] = g(S)

2L and E[g(S2)] = g(S)
2 . Considering C5(ε =) 2

ε2
,

then it is possible to show that:



Lemma 8 With probability at least 1 − δ, for any pricing function g ∈ G we have that the following
holds: if g(S) ≥ C5(ε)L

2h log(|G[S]|/δ), then Lĝ(S1)/g(S) ∈
[

1
2(1 − ε), 1

2(1 + ε)
]

and g(S2)/g(S) ∈[
1
2(1 − ε), 1

2(1 + ε)
]
.

Using Lemma 8, we can finally derive the following theorem.

Theorem 20 For any set of bidders S, with probability at least 1 − δ the revenue of PI-G is at least
min{ r∗

2 (1 − ε), r∗ − 2
1−εC5(ε)L

3h log(|G[S]|/δ}, where r∗ = max
g∈G

g(S).

Proof: Let g∗ be the optimal pricing function. If r∗ < 2
1−εC5(ε)L

3h log(|G[S]|/δ), then the theorem holds.
Otherwise g∗(S) ≥ 2

1−εC5(ε)L
3h log(|G[S]|/δ), which implies that ĝ(S1) ≥ C5L

2h log(|G[S]|/δ). For

the selected function g1 we have that ĝ1(S1) ≥ ĝ∗(S1). Since g(S) ≥ ĝ(S1) we have that g1(S) ≥
ĝ1(S1) ≥ C5(ε)|L|2h log(|G[S]|/δ). Therefore ĝ1(S1) ≤ g1(S)1+ε

2L and g1(S2) ≥ 1−ε
2 g(S). This implies

that g1(S2) ≥ 1+ε
2 g1(S) ≥ Lĝ1(S1) ≥ Lĝ∗(S1) ≥ 1−ε

2 g∗(S), which completes the proof.


