
Bounds on a Fair Policy with Near Optimal Performance

Adam Wierman 1 Mor Harchol-Balter 2

November 2003
CMU-CS-03-198

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Providing fairness and providing good response times are often viewed as conflicting goals in scheduling. Scheduling
policies that provide low response times, such as Shortest Remaining Processing Time (SRPT), are sometimes not fair,
while fair policies like Processor Sharing (PS) provide response times far worse than SRPT. This seemingly inevitable
tension between providing fairness and providing good response times was eliminated at last year’s ACM Sigmetrics
conference with the introduction of a new scheduling policy, Fair Sojourn Protocol (FSP), that appears to provide both
[9]. The FSP policy is provably fair, as seen directly from its definition, and simulations show that FSP has a very
low mean response time, close to that of SRPT in many cases [9]. Unfortunately, analyzing the mean response time
of the FSP policy has proven to be difficult, and thus the queueing performance of FSP has only be assessed via simulation.

In this work, we present the first queueing analysis of FSP. This analysis yields close upper and lower bounds on the mean
response time and mean slowdown of the M/GI/1/FSP queue. Our upper bound shows that the improvement of FSP over
PS is substantial: for all job size distributions, the mean response time and mean slowdown under FSP are a fraction��������	�

of that under PS, where
 is the system load. For distributions with decreasing failure rate the improvement is even
greater. We also prove that the mean response time of SRPT and FSP are quite close. Lastly, our bounds reveal that FSP
has yet another desirable property: similarly to PS, the FSP policy is largely insensitive to the variability of the job size
distribution.

1Carnegie Mellon University, Computer Science Department. Email: acw@cs.cmu.edu.
2Carnegie Mellon University, Computer Science Department. Email: harchol@cs.cmu.edu.
This work was supported by NSF Career Grant CCR-0133077, NSF ITR Grant 02-168, NSF CCR-0311383, and by IBM Corporation

via Pittsburgh Digital Greenhouse Grant A002081, and an NSF Graduate Research Fellowship.

Keywords: Scheduling, queueing, FSP, fair sojourn pro-
tocol, PS, processor sharing, fairness, M/GI/1, slowdown,
response time.

1 Introduction

In the late 1960’s Schrage, Miller, Conway, and many others
wrote a series of papers proving that by giving preference
to short jobs, or more specifically, jobs with short remain-
ing service times, one could greatly improve mean response
time [5, 15, 17, 21, 24]. Here response time is defined as the
time from when a job enters the system until it completes. In
particular the Shortest-Remaining-Processing-Time (SRPT)
scheduling algorithm, which always runs the job with short-
est remaining size, was proven to yield optimal mean re-
sponse time [20].

Despite the above results, there is a hesitancy to use such
policies due to a fear of unfairness. It is commonly sug-
gested that policies that bias towards small job sizes starve
large jobs [3, 23, 25].

Recently, there has been a large amount of work studying
unfairness analytically. Research has sought to quantify the
amount of unfairness seen under common scheduling poli-
cies [1, 9, 10, 11, 19], as well as to understand unfairness
properties across all scheduling policies [12, 27].

The definition of unfairness most commonly used is
stated in terms of slowdown. Given an M/GI/1 system
with a differentiable service distribution having finite mean
and finite variance, let � ��� � denote the steady-state re-
sponse time for a job of size

�
, and
�� �

be the sys-

tem load. That is

���	�
 ���� ��� , where � is the arrival

rate of the system and � is a random variable distributed
according to the service (job size) distribution � ��� � hav-
ing density function � ��� � . The slowdown seen by a job

of size
�

is � ��� �
���	�
 � ��� ����� , and the expected slowdown

for a job of size
�

under scheduling policy � is ��� � ��� � ��� .
The expected overall response time under scheduling pol-

icy � is ��� � ���
���	�
 �"!# ��� � ��� � ��� � ��� �%$&� and the expected

overall slowdown under scheduling policy � is ��� � � �
���	�

� !# ��� � ��� � ��� � ��� �%$&� .
Definition 1.1 A job of size

�
is treated fairly under policy

� iff ��� � ��� � ���(' ��� ��� �
 � . Further, a scheduling policy
is fair iff it treats every job size fairly.

Definition 1.2 A job of size
�

is treated unfairly under pol-
icy � iff ��� � ��� � ���) �*� ��� �
 � . Further, a scheduling
policy is unfair iff there exists a job size

�
that is treated

unfairly.

The above definitions are motivated by the Processor-
Sharing (PS) policy, which is fair in that every job achieves
the same mean slowdown

� �*� � � �
 � � under PS [28].
Many policies have been analyzed with respect to fair-

ness. It has been shown that the SRPT policy is fair for
all job size distributions when
 ',+.-0/ , however for higher
loads SRPT becomes unfair [1, 27]. Further, many policies
similar to SRPT have even worse fairness properties. In fact

all policies that assign priority based on a job’s size (e.g.,
PSJF) or based on a job’s age1 (e.g., FB) are “always un-
fair,” meaning that they are unfair for all loads and all job
size distributions [27]. Thus, even obvious approaches to
curbing unfairness using hybrid algorithms that bias towards
both small and sufficiently large job sizes (such as in [4, 8])
are still “always unfair.”

Despite the growing amount of research, the search for
a fair policy with near optimal performance proved elu-
sive until last year at the 2003 ACM Sigmetrics confer-
ence when Friedman and Henderson presented a new policy
called Fair-Sojourn-Protocol (FSP), which provides the first
example of a fair policy that improves upon the performance
of Processor-Sharing (PS) [9]. Until this time, the only
“always fair” policies known were Processor-Sharing (PS)
and Preemptive Last-Come-First-Served (PLCFS), both of
which have the same mean response time.

The idea behind FSP is that it computes the times at
which jobs would complete if the system were running PS
and then orders the jobs in terms of their PS completion
times. That is, FSP devotes the full processor to the (un-
completed) job with the earliest PS completion time. Thus,
FSP can be thought of as performing SRPT on the remain-
ing times of a virtual PS system. We defer a detailed de-
scription of the FSP algorithm to Section 2.

The FSP policy is provably fair, as seen directly from its
definition – this will be explained below in Section 2. In
addition, simulations show that FSP has very low mean re-
sponse times, close to those of SRPT in many cases [9].
Unfortunately, analyzing the performance of the FSP pol-
icy has proven to be difficult, and thus the queueing perfor-
mance of FSP has only be assessed via simulation.

The goal of this paper is to provide a first step towards
analytically understanding the behavior of an M/GI/1/FSP
queue, and towards beginning to understand the relative per-
formance of FSP compared with the performance of other
common policies. The paper is structured as follows. In
Section 2 we define the FSP policy and describe its imple-
mentation. In Section 3, we derive upper and lower bounds
on the expected response time seen by a job of size

�
under

FSP using a novel analysis technique combining worst case
bounds and stochastic analysis. In Section 4, we use these
bounds to provide upper and lower bounds on the overall
mean response time and overall mean slowdown under FSP.
We find that the improvement of FSP over PS is substantial:
for all job size distributions, the mean response time and
mean slowdown under FSP are a fraction

��� � � �	�
of that

under PS , and for distributions with decreasing failure rate
(see Section 4 for a definition of “decreasing failure rate”),
the improvement is even greater. We also prove an analytic
bound on the difference in mean response times under FSP
and SRPT, which indicates that FSP achieves a near optimal

1A job’s age is the service it has received so far.

1

mean response time. In Section 5, we verify the accuracy of
our bounds using simulations, and illustrate our bounds on
FSP evaluated over a wide range of job size distributions.
We also discover another interesting benefit of the FSP pol-
icy: the mean response time and mean slowdown of FSP is
largely insensitive to the coefficient of variation of the job
size distribution, similarly to the PS policy.

2 Description of FSP

The easiest way to understand the FSP policy is to imagine
that at any point in time you know the full state of a virtual
PS queue, with the same arrival process. (Note, this won’t
actually be needed for the implementation below; however it
makes it easy to understand.) Under the FSP policy, the job
being run is always that job that the virtual PS queue would
have completed first. Observe that the FSP policy, like PS,
is work-conserving – it just avoids time-sharing by choosing
to focus all attention on one job at a time.

To understand the power and efficiency of FSP, consider
the simple scenario of 3 jobs of size

� ���
,
�
,
�����

that
all arrive at time + at the server. Under PS, all jobs would
time-share the server, slowing each other down, and would
all finish at about time � . Under FSP, an ordering would be
assigned to the jobs, and consequently the first arrival would
finish at time

� ���
, the second at time � �	� , and the third at

time � .
The above argument can be generalized to show that the

FSP policy is “always fair” (every job finishes at least as
early under FSP as compared with PS), since by its defini-
tion FSP is only reordering the work that is being done so
as to be more efficient [9].

Observe that the FSP algorithm is related to the
Weighted-Fair-Queueing (WFQ) algorithm. Both algorithms
involve simulating PS, and FSP can be viewed as a preemp-
tive version of WFQwhere each packet forms its own stream.
Note that this is askew from the way WFQ is used in practice,
which is to evenly distribute bandwidth among connections
in a network while adhering to packetized constraints. In
such a setting, non-preemptive implementations are used.
Further, due to the more general parameters of WFQ, analy-
ses do not provide bounds on performance any better than
to state that WFQ is not worse than PS by the length of the
largest packet [6, 16]. The specific settings of WFQ that give
rise to FSP have not been analyzed.

The implementation of FSP is not very complex, in fact
it is quite similar to the implementation of the SRPT algo-
rithm. As in SRPT, preemptions may only occur at moments
when a new job arrives under FSP or when a job departs un-
der FSP. Thus the total number of preemptions is at most
twice the number of arriving jobs, which in practice is far

less than the number of preemptions under implementations
of PS (which involve time quantums). Aside from preemp-
tions, as in SRPT, there are also priority updates needed un-
der FSP. These priority updates occur only at “event times”,
where an event is an arrival or departure under FSP or un-
der the virtual PS system. Again, the number of updates
is clearly not great. It is at most three times the number of
outside arrivals.

We now explain the priority update needed at event
points. Let ��
 denote the most recent prior event and let��
��� denote the current event. Observe that during the time
between any two events there is only one job, call it � , in
service under FSP. During the time between ��
 and ��
���� ,
call this time � , the remaining size of job � under FSP de-
creases by � . Further, at the moment of ��
��� , we need to
decrease the remaining time of every job under the virtual
PS system by � ��� , where

�
is the number of jobs in PS. Ob-

serve that our definition of events ensures that the number
of jobs under PS does not change between two consecutive
events.

We have seen that the implementation of FSP is quite
similar to that of SRPT. The SRPT scheduling policy has
been implemented in many real-world applications, such as
scheduling in Web servers [4, 11, 22]. The implementation
of SRPT in [11] involves updating the priority of sockets in
the Linux kernel, based on the remaining processing time
required, and then draining these sockets into the network in
order of their priority. An implementation of FSP would be
equally simple, the only change would be that the priority
updates would occur at the event points described above.

3 Bounds on the performance for a
job of size �

In this section we will derive upper and lower bounds on��� � ��� � ����� � . As we have seen, the description of FSP re-
lies heavily on decisions based on the current state of PS.
Thus, it is natural to analyze FSP from the perspective of
how it differs from PS.

We begin by noting that, by the definition of FSP, the
following upper bound holds trivially.

Observation 3.1

��� � ��� � � ��� � ' ��� � ��� � � � �

�

� �

In this section we will prove the following improvement

on this bound.

Theorem 3.1 In an M/GI/1 system,

��� � ��� � � ��� � '
�

� �

� � �
 �
�� �� �

� � � �# � � � � �%$ �� �

2

where � �
���	�
 ����� � ��� � � and
 �

���	�
 ���� � � �
� � �# � � � �%$ � , .2

Before proving this theorem we will need to recall one
lemma from [9]. Let �� � � and �� ��� � be vectors indicating
the remaining work of each job under PS and FSP respec-
tively. The vectors are ordered in the same way such that� � �� ' � � �� ' -�-�- ' � � �	 . Thus, � � �
 and � ��� �
 refer to
the remaining work of the same job in PS and FSP respec-
tively. Notice that (i) �� ��� � is not necessarily ordered ac-
cording to increasing remaining sizes and (ii) it is possible
for � ��� �

 + while � � �
) + for several values of
 .
Lemma 3.1 [9] For all � ' � ,�

�� � � � �
 � �

���� � ��� �

where
�

is the number of jobs in the system.

Proof : We prove the result using induction on the sequence
of events in a busy period. An event is either a virtual ser-
vice completion (a completion in PS), an arrival, or a service
completion under FSP. Let �� � ��� �� ��� � indicate that for
all � ' � , � �
���� � � �
 � � �
���� � ��� �
 . We can see that the
claim holds for the first arrival of a busy period; thus the
base case holds trivially.

Now, suppose �� � ��� �� ��� � at the time of event ��� , � ��
. Let �� � � and �� ��� � be the vectors at the time of event ���

and let � be the time between the occurrence of event ��� and
event ��� ��� . Let �� � ��� and �� ��� � � be the updated vectors just
before event � � ��� . Let
 be the index of the first nonzero
value in �� ��� � . Then� ��� � ��
 � ��� ��
 +�� �
 � ��-�-�-��
 � �� ��� � �

 � ��� �
 � �� ��� � ��
 � ��� �� � �

 � � ��-�-�-�� �� � � ��
 � � �� � � ��� ��! �
Notice that, because � is defined as the time between event��� and ��� � � , � ' � ��� �
 and � ��� ' � � �� for all � . We

can now see that �� � ���"� �� ��� � � is maintained immediately
before event � � � � , which completes the proof.

We are now ready to prove Theorem 3.1. Given the de-
pendence of FSP on the details of PS, our analysis of FSP
will be highly dependent on the following well known re-
sults about PS systems. Recall that the number of jobs in
the system as seen by an arrival, # � �$&%'% , and the number of
jobs in system left behind by a departure, # � �(�*) , are both Ge-
ometric with mean
 � � � �
 � [13]. Further, at both of these
moments, the jobs in the system have independent, identi-
cally distributed ages and excesses distributed according to

2One can view +-, as being the load in a queue where, when a job of
greater than size . arrives, its size is immediately truncated to . .

the equilibrium distribution, / , where �10 ��� �
 � ��� ��� ��� ���
[13], independent of the number of jobs in the system at that
time.
Proof :(of Theorem 3.1) We will prove this bound by track-
ing the performance of a tagged job � � of size

�
that arrives

both into the FSP system and the virtual PS system. In our
proof, we will look at work that must be done before � � can
leave under PS , but not under FSP . There are two such
types of work. (i) There is work arriving after � � arrives that
interferes with � � under PS but not under FSP. (ii) There is
work already in the system at the time � � arrives that inter-
feres with � � under PS but not under FSP. We will prove
lower bounds on both types of work above. We can then
subtract these lower bounds from ��� � ��� � ��� � to obtain an
upper bound on ��� � ��� � � ��� � .

We start with case (i). Any job that arrives while ��� is in
the system under PS that does not complete before � � leaves
the system under PSwill not be worked on under FSP while
� � is in the system. Thus, we can subtract all such work from��� � ��� � � � � . This work is lower bounded by the sum of the
ages of jobs remaining in the PS system having age less than�

under PSwhen � � completes under PS. Notice that if a job
has age greater than

�
in PS when � � completes under PS

that job must have arrived before
�

.
To total this work, we can take advantage of the fact that

the number of jobs in the system when � � departs the PS
system is Geometric with mean
 � � � �
 � and each job has
age distributed according to the equilibrium distribution /
independently of both the number of jobs in the system and
the sizes of the other jobs in the system. We, however, are
only interested in the jobs having age less than

�
at the time�

departs. Let 2 � � � denote the indicator random variable that
takes 1 when � is true and 0 otherwise. Then we have

��� � ��� � � ��� � ' ��� � ��� � � � � � �4357698;:<>=@?

���� /A2 � / � � �CBD

�

� �

� !

����
 ��� /E2 � / � � � � � � # � �(�*)

 �

�

� �

� ��� /E2 � / � � � � 6F8G:<>=@?

����
	� � # (�*)

 �

�
� �

� ��� # � �(�*) � ��� /E2 � / � � � �

�
� �

�
� �
IHKJ �
�
� � � �
��� � �
$ �ML

�

� �

� � � �# � � � � �%$ �� �
 (1)

We now move to case (ii), which will complete the proof
of the theorem. We will again track the performance of a
tagged job ��� of size

�
. Let � # be the time that � � arrives

into the FSP system and the virtual PS system. We have

3

3

xj finishes
under FSP

1t 2t

x

0t

x

t

goes idle
system

under PS
j arrives j finishes

Figure 1: A diagram of the time points used for case (ii) in
the proof of Theorem 3.1

already bounded the work in arriving jobs that PS does and
FSP avoids; we are now going to bound the work in the
system at � # that PS does and FSP avoids. In doing this, we
will ignore all arrivals in the system that occur after � � to
simplify our arguments about this work. Since we are only
analyzing the amount of work present when � � arrives this
does not affect the accuracy or our calculations.

Let � � be the time that FSP finishes ��� ; �
�

be the time
that PS finishes ��� ; and ��� be the first time when everyone
who was in the system at � # has completed. Notice that ��� is
the same under FSP and PS since we are not allowing any
new arrivals into either system and both policies are work
conserving. Further notice that � # ' � � ' � � ' ��� . These
time points are summarized in Figure 1.

We are interested in bounding �
� � � � . Let �
 � � � � � � be

the
 -th smallest remaining size at time � � under PS and�
 � � � � ��� � be remaining size of the corresponding job at
time � � under FSP. Notice that

��� � � �
 �
�� %����
	��� 8G: � ��� � ��� �
 � � # �

� �
�� % � �
	 � 8G: � ��� �
 � � # � � �
and, since � � � �

�
is simply the work remaining in the PS

system when � � completes, we have

�
� � � �
 � ��� � � � ��� � ��� � � � �

 � ��� � � � ��� �
�� % � �
	 � 8;: � ��� � �
 � � # � � � � � �� �
�� % � ��	 � 8G: � ��� �
Notice that this is the sum of

�
work for each job in the PS

system having remaining size greater than
�

at � # .
Finally, we can move back to the stochastic realm and

again take advantage of the fact that the number of jobs in
the system when

�
arrives is Geometric with mean
 � � � �
 �

and each job has age distributed according to the equilib-
rium distribution / independently of both the number of jobs
in the system and the sizes of the other jobs in the system.

Thus, subtracting from Equation 1 we have

��� � ��� � � ��� � '
�

� �

� � � �# � � � � �%$ �� �

� �
� 6������

���� � 2 � /) � ���

�

� �

� � � �# � � � � �%$ �� �
� ��� # $&%'% � ��� � 2 � /) � � �

�

� �

� � � �# � � � � �%$ �� �

�
� �
�� � � !� � ��� ���� � � �

�
� �

� � � �# � � � � �%$ �� �

� � �
 �
 � �� �

We will see in Section 5 that Theorem 3.1 is tight enough
to provide useful performance bounds on both the overall
expected time in system and the overall expected slowdown.
Already though, we can see that for small job sizes FSP
significantly outperforms PS. Further, under FSP large jobs
outperform PS, though only slightly. Thus, the performance
improvement given to the small jobs does not sacrifice fair-
ness.

It is also interesting at this point to compare ��� � ��� � � ��� �
to ��� � ��� � � � � �"! . We know that SRPT is sometimes un-
fair, thus for some large job sizes

�
, ��� � ��� � � �#� �$! �

��� � ��� � � � � � ��� � ��� � � ��� � . Further, we know that SRPT
is optimal with respect to overall mean response time.
Thus, there must be some other small job sizes

�
where��� � ��� � � � � �"! ' ��� � ��� � � ��� � .

Let us now make some remarks about the tightness Theo-
rem 3.1.

Remark 3.1 Notice that the slowdown for a job of size
�

under FSP can be expressed as follows:

��� � ��� � � ��� � '
�

� �

�
 �
��� �

� � � �# � � � � �%$ �� � � �
 �

 H � �
 �� �
 L � � � �# � � � � �%$ �� ��� �
 �

We can see that the bound in Theorem 3.1 is tight in the
limiting cases. % �����& # ��� � ��� � � ��� � ' �% ����'& ! ��� � ��� � � ��� � ' �

� �

The fact that the limit as

��(*)
is tight follows from the

fact that every Always Fair policy has limiting slowdown of

4

�*� ��� �
 � as
� ()

[27], and the fact that the limit as� (+ is tight follows from the fact that a slowdown of 1 is
optimal.

Remark 3.2 A second remark is that the bound in Theorem
3.1 is tight in the case of deterministic service distributions.
That is, if all arriving jobs have size

�
, we know that no job

arriving after
�

will be worked on while
�

is in the system,
and all jobs that arrived before

�
will complete before

�
is

worked on. Thus, in an M/D/1 queue FSP is simply per-
forming FCFS.

This can also be seen by manipulating the bound on FSP.
Let ��� ���
 � for an M/D/1 queue.

��� � � � � � ��� �
 ��� � � � � � �������

 � � � � �

� � � �
 �

 � �
 �� �

� � � �
� ��� �
 �

 � � �
��� �

� � � �# � � � � �%$ �� �

To understand why the bound in Theorem 3.1 is not exact
when the service distribution is not deterministic consider
the following. The proof is broken into two cases: (i) the
work from arrivals that are guaranteed to not be worked on
under FSP but are worked on under PS; and (ii) the work in
the system that is worked on under PS but not under FSP.
In both cases the analysis only bounds the work. In the first
case, there can be arrivals into the system after the tagged
job completes under FSP that complete under PS before the
tagged job. These arrivals are not included in our bound.
In case (ii) we are not exact because of the dependence on
Lemma 3.1, which only provides a bound on the desired
quantity of work.

We now turn our attention to deriving a simple lower
bound for ��� � ��� � � ��� � that will be useful when we lower
bound ��� � � ��� � .

Theorem 3.2 Define
 ��� �
���	�
 � � �# � � � � �%$ � 3 and � � ��� �
� �# �

�
� � � �%$ � . Then, in an M/GI/1 system,

��� � ��� � � ��� � � � � � �
 ��� � ���
�
�
� � � � ��� � � � � ��� ���

Proof : This lower bound follows from the fact that at least
the following three pieces of work must be finished while
a job � � of size

�
is in the system: (i)

�
work to com-

plete � � ; (ii) at least � �# ���� �
	 � � � � $ �
 � �#
 � � �%$ �
work from arrivals, since when ��� has remaining size � an

3Note the difference between +���.� and the previously introduced + , .
While +-, is the load in a system where arrivals of greater than size . are
truncated to size . , +���.� is the load in a system where arrivals of greater
than size . are discarded.

arrival with size smaller than � will complete before � � un-
der FSP; (iii) the remaining size (up to size

�
) of the job in

service when ��� arrives. This last quantity is easily seen to
be � � � � �# � � � � � �%$ � � � � � ��� � � , which is the expected excess
of jobs with remaining size at most

�
. We now simplify this

expression as follows:

��� � ��� � � ��� � � � � J �

 � � �%$ � �

�
�
� � � ��� ��� � � � ��� � �

 � � � J �
# J 	
#�� � � � �%$ � $ �

� �
�
� � � ��� ��� � � � ��� � �

 � � � J �
� � � � � J �� $ � $ �

� �
�
� � � ��� ��� � � � ��� � �

 � � � H � J �
� � � � �%$ � � J �

�
�
� � � �%$ � L

� �
�
� � � ��� ��� � � � ��� ���

 � � �
 ��� � � � � � ��� �
� �
�
� � � � ��� ��� � � ��� ���

 ����� �
 ��� � ���
�
�
� � � � ��� � � � � ��� � �

It should be immediately obvious that this bound is quite
loose for large job sizes. What is surprising is that it already
gives a good lower bound on ��� � � ��� � .

4 Bounds on mean performance

We will now quantify the overall performance improve-
ments attained by FSP. We will use the upper bound on��� � ��� � ����� � derived in Theorem 3.1 and the lower bound
in Theorem 3.2 to begin to understand the overall mean per-
formance of FSP.

Theorem 4.1 In an M/GI/1/FSP system with an arbitrary
service distribution:

��� � � ��� � � H � �

 L % ��� ��� �
 � ��� � � � �
��� � � ��� � ' � � �

��� ��� � � � �
Proof : We will first calculate an upper bound on the ratio of��� � � ��� � to ��� � ��� � . The proof follows from manipulation
of the bound proved for FSP in Theorem 3.1. Recall that/ is the equilibrium distribution, �
 �*� ��� ��� , where �
represents the service distribution, and that ��� � ��� � � � �
� � � � �
 � .

5

��� � � ��� �
��� � � � �

� �

��� � � J !� � # ��� � ��� � � ��� � � ��� �%$&�

'
� �

��� � � J !� � # H �� �
 � � �
 �
 � �� �

� � � �	 � # � � � � �%$ �� �
 � � ��� � $ �

 � � � � H J !� � # � J !	 � � � � � � $ � � ��� �%$&�
� J !� � # � ��� � J �	 � # � � � � �%$ � $ � L

 � � � � H J !	 � # � � � � J 	
� � # � � ��� �%$&� $ �

� J !	 � # � � � � � J !� � 	 � ��� �%$&� $ �ML

 � � � � J !	 � # � � � � HKJ 	

� � # � � ��� �%$&� � � � � � � L $ �

 � � � � J !	 � # � � � � J 	

� � # � ��� �%$&� $ �

 � �
 J !	 � # � � � ���� ��� � 	� � # � ��� � $ ���� � �

$ �

 � �
 J !	 � # � 0 � � � � 0 � � � $ �

 � �

�
� � 0 � � � � ����� !	 � #

 � �

�

The lower bound follows from Theorem 5.7 in [26],
where this lower bound was shown to hold for SRPT, which
is the optimal policy for overall mean response time. Since
SRPT is optimal, ��� � � � � �"! ' ��� � � ��� �

Notice that every step in the calculation of the up-
per bound above, other than the initial bounding of��� � ��� � � ��� � , is exact. Thus, this upper bound is tight
for deterministic distributions, since our upper bound on��� � ��� � � ��� � is tight for deterministic distributions. Further,
it is interesting to notice that the bounds on ��� � � ��� � do not
depend on the variability of the service distribution. Thus,
they bound the effect that variability can have on the mean
response time. This observation will be investigated further
in Section 5.

We can illustrate the tightness of these bounds analyti-
cally as follows.

Corollary 4.1 In an M/GI/1 system with an arbitrary ser-

vice distribution

��� � � ��� � ' ��� � � � � �"! � !	 � � H �� � �
� � � L
 	 ��� ���

' ��� � � � � �"! �

�

�
��� � � � �

That is, FSP is within an additive factor of
���� ��� � � � � from

the optimal mean response time.

Proof : We will first show that the upper and lower bounds
in Theorem 4.1 differ additively by � �
 � ��� � ��� � where

� �
 �
���	�
 H

�

��� �
�
 �� � �

� -�-�- L
Thus ��� � � ��� � is within � �
 � ��� � ��� � of ��� � � � � �"! , the op-
timal mean response time.

Recall that
�
% ��� � � �
 �
 � !
���� � �
 . Thus,

� H � �

 L % ��� ��� �
 �
 � �

��� �

�

�

�����
�
 �� � �

� -�-�-

Comparing this to the upper bound on ��� � � ��� � we notice
that the two differ only by lower order terms of
 , specifi-

cally � �
 � . Further,
� � ��	 �� �

% ��� ��� �
 � ��� � � � � is not only a

lower bound for FSP, it is a lower bound on the performance
of SRPT . Thus, we have shown that ��� � � ��� � differs from
the optimal ��� � � only by lower order terms.

We will now complete the proof by analyzing
� �
 � ��� � � � � . Recall that

��
	 �
 � !
�� #

 . Further,	

�� � �

� � � � � �

	

�� � �� � �

� � �

�
�
� �
� � �

Thus,

� �
 � ��� � � � �

!	 � � H �� � �

� � � L
 	 ��� ���
Finally, we can observe that

!	 � � H �� � �
� � � L
 	 ��� � � '

�

�
��� � � � �

This corollary tells us that, despite the fact that FSP
sacrifices some performance to guarantee fairness, it still
achieves near optimal performance. In Section 5, we will
use simulations to further investigate both the accuracy of
our bounds on the performance of FSP and the comparison
of FSP to SRPT.

We now move to bounding the overall mean slowdown.

6

Coxian Bounded Pareto� � � ��� � � � � � ��� ����� � � � � � � � � � � � ��� ����� � � � � � � � �
1/16 - - - - 5.1231 0.8048

� +�� 0.8918
1/8 - - - - 4.0000 0.7500

� +�� 0.8571
1/4 - - - - 3.2361 0.6903

� +�� 0.8171
1/2 - - - - 2.7320 0.6340

� +�� 0.7748
1 0.0000 1.0000 1.0000 0.5000 2.4135 0.5857

� +�� 0.7354
2 0.4142 3.4142 0.5858 0.3091 2.2166 0.5489

� + � 0.7029
3 0.3019 3.5811 0.4189 0.2567 - - - -
4 0.2377 3.6733 0.3267 0.2277 2.0868 0.5208

� +�� 0.6765
5 0.1962 3.7321 0.2679 0.2092 - - - -
6 0.1670 3.7728 0.2272 0.1963 - - - -
7 0.1454 3.8028 0.1972 0.1869 - - - -
8 0.1287 3.8257 0.1743 0.1797 1.9903 0.4767

� +�� 0.6538
9 0.1155 3.8439 0.1561 0.1739 - - - -

10 0.1047 3.8586 0.1414 0.1693 - - - -
16 - - - - 1.9110 0.4767

� +�� 0.6328
32 - - - - 1.8413 0.4569

� +�� 0.6123
64 - - - - 1.7772 0.4373

� +�� 0.5916
128 - - - - 1.7167 0.4175

� +�� 0.5702

Table 1: A summary of the service distributions used for simulations. Note that empty regions of the table indicate only
that these

� � � � � values were not used in our plots, not that there is no distribution with that
� � � ��� value.

Theorem 4.2 In an M/GI/1/FSP system with an arbitrary
service distribution:

��� � � ��� � � H � �
 � � � �
 �
�
�
��� ����� � � � ��� � � � L ��� � � � �

��� � � ��� � ' H � �
 � � � ��� ����� � � � ��� � � � L ��� � � � �
where � � and � � are independent random variables from
identical to the service distribution.

To better understand this result and its proof con-
sider that under an exponential service distribution� ��� ����� � � � � � � � �

 � � ; however under a deterministic
service distribution � ��� ����� � � � � � � � �

 . Thus, under an
exponential service distribution we get bounds of

H � � �
� �

�
� L ��� � � � � ' ��� � � ��� � ' H � � �
� L ��� � � � �

and under the deterministic distribution we obtain looser
bounds of

H � �

�
�

�

� L ��� � � � � ' ��� � � ��� � ' � � �

� � ��� � � � �

It is interesting to note that the
��� �
 � � � factor is tight for

deterministic distributions.
To further understand the distribution of � ��� � � � � � � � we

prove the following theorem.

Theorem 4.3 If � � � � � � � are independent and identically
distributed random variables having a decreasing failure
rate4 then

��� ����� � � � ��� � �
 � ' �
�

��� �
 �

Proof : Let � ��� � and � ��� � be the distribution function and
density function of � respectively. Observe that

� �
 	 ��� �
 � ��� � �
� �
 	 ��� �
 �&� ��� � � ��� �

We can therefore write the failure (hazard) rate of����� � � � � � � � , � �
 	 � � � , in term of the failure rate of � ,� � � � , as

� �
 	 � � �
 � �
 	 � � ��� � �
 	 � � �

 � � ��� � � ��� �

� ��� �
�

 ��� � � �
Further, we can write

� �
 	 ��� �
 � 	��
	���� ��� �
	� (
4The failure rate of a distribution is defined as � ��� ��������� ��� �� � ��� , and

a distribution has decreasing failure rate (DFR) if � ��� is non-increasing.
Examples of distributions with decreasing failure rates are Weibull and
Pareto distributions. In general, DFR distributions tend to be highly vari-
able.

7

Now, we can derive the desired bound:

��� ����� � � � ��� � �
 �

 J !� � # �
 	 � � �
 	 ��� �%$&�

 J !� � # �
 	 � � 	��
	��� ���� ��� �
	� ($&�

 J !� � # �
 	 � � 	�� 	��� � � � �
	� ($&�
'
 J !� � # �
 	 � � 	 � � 	��� � � �
	� ($&�

 J !� � # �
 	 � � � � � �%$&�

�
 J !� � # �
 	 � � � � �%$ �

�
�

��� �
 �

We now return to the proof of Theorem 4.2.
Proof : (of Theorem 4.2) The proof follows from manip-
ulation of the bounds proved for FSP in Theorem 3.1 and
Theorem 3.2. We will first calculate an upper bound on the
ratio of ��� � � ��� � to ��� � ��� � .��� �
	�������� ��	 �� � ��������� ���,! #" ��� � �%$#� 	 ����'& �%$#�)(*$+ ��������� ���,! #"-, ��.�/� � �0��� ,���/��2143 ,"65 7 � 5 �)(5$
���.�/���98 & �%$#�)(*$� �����;: ���,! �" � , & �%$#�)(*$� 1 �<�,! #" & �%$#�$ � ,= #" 5 7 � 5 �)(5 (*$� �����;: 1 � �,! #" & �%$>� � ,= �" 7 � 5 �)(5 (*$� 1 � �,! #" & �%$#�$, � ,? �"�@!A & � @ �)(@ :B$ A 7 �%$#�)CD(*$+ �����;: 1 � �= #" 7 � 5 � � �,! = & �%$#�)(*$E(5� 1 � �,! #" $ & �%$#� 7 �%$#�)(*$� �����;: 1 ���= #" 7 � 5 � 7 � 5 �)(5� 1 F �<�,! #" $6G F & �%$#� 7 �%$#��H�(*$� �����;: 1 F ��� I�JLK �%MONQPRM A � 	

The lower bound on ��� � � ��� � follows in the same manner
by integrating the lower bound on ��� � ��� � � ��� � derived in

Theorem 3.2.

��� � � � � J !� � # H � �
 ��� � �
�
� �

� � � � ��� � � � � ��� � � L � ��� �%$&�
� � � J !� � # H
 ��� � � � � � � ��� � � �

�

��� � L � ��� � $ � (2)

 � � �
� J !� � # � ��� �
 ��� � $ � � � � J !� � # � � ��� � � ��� �%$&�

 � � �
� J !� � # � � � ��� � � ��� � $ �

 � � �
�
��� ����� � � � � � � � �

 H � �
 � ��� �
 �
�
�
��� ����� � � � � � � � � L ��� � � � �

where (2) follows from the observation that

� � � ��� �
 � J �
�

�
� � � �%$ � ' �
 ��� �

In order to illuminate the effect of the service distribution
on our bound for ��� � � ��� � , we now present some corollaries
of Theorems 4.2 and 4.3.

Corollary 4.2 In an M/GI/1/FSP system with an arbi-
trary service distribution the additive difference between
the upper and lower bounds in Theorem 4.2 is less than�

� � � � ��� � ��� � . Further, if the service distribution has a

decreasing failure rate, the additive difference between the
bounds is less than

�

� � � � ��� � ��� � .

Proof : The proof follows from Theorem 4.2 by
noticing that the difference between the bounds is

 � ��� ����� � � � � � � � � � � . Further, for an arbitrary service
distribution ��� ����� � � � ��� � � � ' ��� ��� and for a distribu-
tion with decreasing failure rate Theorem 4.3 tells us that��� ����� � � � ��� � � � ' ��� ��� � � .
Corollary 4.3 In an M/GI/1/FSP system with an arbitrary
service distribution:

��� � � ��� � ' � � �

� � ��� � � � �

Further, in an M/GI/1/FSP system where the service distri-
bution has a decreasing failure rate:

��� � � ��� � ' H � � �
� L ��� � � � �
Proof : The proof follows immediately from Theorem 4.2 by
noticing that for independent � � � � � , ��� ����� � � � � � � � � '
��� ��� under all service distributions. We can guarantee even
better performance if the service distribution has a decreas-
ing failure rate by applying Theorem 4.3.

8

0 2 4 6 8 10
x

0.5

1

1.5

2

2.5

3

E[S(x)]

Upper Bound

Simulation

(a)

 - /
0 2 4 6 8 10

x

2

4

6

8

10

12

14

E[S(x)]

Upper Bound

Simulation

(b)

 - �
Figure 2: These plots compare simulations of FSP with the upper bound on expected slowdown under FSP proven in
Theorem 3.1. The dotted line corresponds to the simulation of FSP, and the solid line corresponds to the upper bound
proven on ��� � ��� � � ��� � . The service distribution is taken as an Exponential with mean 1. The system load is 0.5 in column
(a) and 0.9 in column (b).

5 Accuracy of bounds

In this section, we will evaluate the accuracy of the bounds
presented in Section 4 by comparing the analytical results
derived in this work to simulations of an FSP queue. We
will first describe the setup of our simulations. Next, we
will illustrate the accuracy of the bounds on ��� � ��� � � ��� �
derived in Section 3. Then, we will illustrate the tightness
of the bounds derived for ��� � � ��� � and ��� � � ��� � in Section
4. Here, we will also compare the performance of FSP to the
performance of SRPT, the policy that minimizes the overall
mean response time [20] .

5.1 Simulation Setup

Throughout this section we will be simulating an
M/GI/1/FSP queue. In these simulations we will use either
two-stage Coxian or bounded Pareto service distributions.
Recall that a two-stage Coxian random variable,

�
, is de-

fined as
�
 � � with probability

� � � and
�
 � � � � �

with probability � where ��� � +�� � � and � � ��� � follow ex-
ponential distributions with rates � �) + and � �) + re-
spectively. A bounded Pareto distribution is defined as:

� ����� � � � � � �
 � ���
� � � � � � � � �

	 � 	 �

for
� � � � � � � .

These service distributions allow us to isolate the effects
of the variability of the service distribution and tail behavior.
In order to accomplish this, we fix the mean of the service
distribution to 1, and then vary the second moment of the
service distribution. The square coefficient of variation of
the service distribution (

� � � � �
 ��� �
�
� � ��� ���

� � �
) can

be set almost arbitrarily. This corresponds to changing the
variability of the service distribution. Notice that when the

variability of a Coxian distribution is adjusted, the tail be-
havior of the distribution is unchanged. Under a bounded
Pareto distribution however, a change in variability is the re-
sult of a change in the tail behavior of the distribution. The
parameters used for these distributions in the simulations de-
scribed here are summarized in Table 1. The appropriate pa-
rameters for the bounded Pareto distributions were obtained
by fixing the upper bound of the service distribution, which
leaves two unknown parameters, and then numerically solv-
ing the two equations ��� ���
 �

and
� � � ���
�� for each

� of interest. The procedure for finding the appropriate pa-
rameters of the Coxian distributions is symmetric.

Notice that the weight of the tail of the bounded Pareto
distribution is allowed to vary from far lighter than that of
an exponential to far heavier than that of an exponential.
Thus, since Coxian distributions all have exponential tails,
we have isolated the effect of the variability of the distri-
bution from the effect of the behavior of the tail of the dis-
tribution. Investigating the effect of the weight of the tail
of the service distribution is important in light of many re-
cent measurements that have observed job size distributions
which are well-modeled by bounded Pareto distributions or
other heavy tailed distributions [2, 7, 14, 18].

5.2 Simulation Results

We first investigate the tightness of the bounds on��� � ��� � � ��� � derived in Section 3. Figure 2 compares these
bounds with simulations of FSP . In order to investigate the
performance of FSP for individual job sizes, jobs in the sim-
ulations are grouped into bins corresponding to small ranges
of job sizes, and then the aggregate performance of each bin
is plotted. The bin sizes used were of width +.- � / . Figure 2
shows that the upper bound proven in Theorem 3.1 is quite
accurate for all loads when the service distribution is expo-
nential. This is not surprising since the bound is exact in the

9

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

ρ

E[T
](1

−ρ
)

Improvement Bounds for Mean Response Time: Coxian, C2=1

FSP Upper Bound
FSP Simulation
FSP Lower Bound
SRPT
PS

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

ρ

E[T
](1

−ρ
)

Improvement Bounds for Mean Response Time: Coxian, C2=8

FSP Upper Bound
FSP Simulation
FSP Lower Bound
SRPT
PS

(a) Overall mean response time

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

ρ

E[S
](1

−ρ
)

Improvement Bounds for Mean Slowdown: Coxian, C2=1

FSP Upper Bound
FSP Simulation
FSP Lower Bound
SRPT
PS

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

ρ
E[S

](1
−ρ

)

Improvement Bounds for Mean Slowdown: Coxian, C2=8

FSP Upper Bound
FSP Simulation
FSP Lower Bound
SRPT
PS

(b) Overall mean slowdown

Figure 3: These plots show a comparison between our bounds on FSP and the performance of SRPT. Notice that the
performance of FSP is comparable both in terms of mean response time and mean slowdown. The service distributions in
these plots are Coxian with mean 1 and

� �
 � ��� in the first and second rows respectively.

case of a deterministic service distribution. However, when
the service distribution is highly variable, the upper bound
becomes loose under high load; although the upper bound is
still accurate for low load.

We now move to investigating the bounds on ��� � � ��� �
and��� � � ��� � derived in Section 4. Recall that in order to evalu-
ate these bounds we need to understand ��� ����� � � � ��� � � � for� � and � � independent and identically distributed accord-
ing to the service distribution. These minimums are listed
in Table 1. Note that the different tail behavior of the Cox-
ian and bounded Pareto distributions causes these values to
differ greatly between the two classes of distributions

In order to investigate the overall performance of FSP we
show three sets of plots. Figure 3 illustrates the performance
of FSP when compared with PS and SRPT under varying
loads for distributions with both low and high variability.
Figure 4 investigates the performance of FSP under Coxian
distributions with varying

� �
for low, medium, and highly

loaded systems. Figure 5 shows the same information under
bounded Pareto service distributions covering a wider range
of variability.

Figure 3 shows the mean response time and mean slow-
down of FSP, SRPT, and PS normalized by

��� �
 � in
the cases of both an exponential distribution and a highly
variable distribution. This figure illustrates the huge per-
formance gains FSP achieves over PS under medium and

high loads. Further, we see that FSP nearly matches the
performance of SRPT. This is a very important observation
because FSP is providing near optimal mean response time
without sacrificing unfairness. It is also interesting to no-
tice the tightness of the bounds proven on ��� � � ��� � and��� � � ��� � in Theorems 4.1 and 4.2. In all cases the bounds
on FSP are quite tight up to medium-high loads. However,
the bounds on ��� � � ��� � under highly variable distributions
are tight for quite high loads as well.

Figures 4 and 5 also illustrate the huge performance gains
obtained by FSP. It is interesting to notice that the bounds
on ��� � � ��� � become tighter as the variability of the service
distribution increases. Surprisingly, these plots indicate that
both ��� � � ��� � and ��� � � ��� � are somewhat independent of
both the variability in the service distribution and the weight
of the tail of the service distribution. Specifically, ��� � � ��� �
and ��� � � ��� � do not change much once the square coeffi-
cient of variation is larger than 1 regardless of the weight of
the tail of the service distribution. It is known that PS has
this property; however, due to the bias FSP gives to short job
sizes, it is surprising that the variability of the service distri-
bution has such a small effect on ��� � � ��� � and ��� � � ��� � .
This has some practical ramifications if it can be proven to
hold in general. First, for analysis, this indicates that per-
formance gains seen in M/M/1 systems are good approxi-
mations for those seen in M/G/1 systems, even when G is
highly variable. Second, for simulations, this observation

10

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C2

E[T
]

Overall Mean Response Time: Coxian, Load=0.7

Upper bound on FSP
FSP Simulated
Lower bound on FSP
PS

(a) Overall mean response time

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C2

E[S
]

Overall Mean Slowdown: Coxian, Load=0.7

Upper bound on FSP
FSP Simulated
Lower bound on FSP
PS

(b) Overall mean slowdown

Figure 4: These plots show a comparison between the bounds proven for FSP and simulation results for FSP. The service
distribution in these plots is a Coxian with mean 1, and varying coefficient of variation. The system load is 0.7.

10
−1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C2

E[T
]

Overall Mean Response Time: Bounded Pareto, Load=0.7

PS
FSP Simulated
Lower bound on FSP
Upper bound on FSP

(a) Overall mean response time

10
−1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C2

E[S
]

Overall Mean Slowdown: Bounded Pareto, Load=0.7

PS
FSP Simulated
Lower bound on FSP
Upper bound on FSP

(b) Overall mean slowdown

Figure 5: These plots show a comparison between the bounds proven for FSP and simulation results for FSP. The service
distribution in these plots is a Bounded Pareto with mean 1, and varying coefficient of variation. The system load is 0.7.

indicates that we need not take the time to simulate highly
variable service distributions, which require much longer
simulation times than low variability distributions.

6 Conclusion

The advent of the FSP scheduling policy has sparked con-
siderable interest. FSP is the first policy to exhibit fairness
for all job sizes while improving mean response times over
PS. In addition, FSP is practical to implement.

This paper provides the first analysis of the M/GI/1/FSP
queue by proving upper and lower bounds on its mean re-
sponse time and mean slowdown. The bounds are obtained
using a novel technique that blends worst-case bounds and
stochastic arguments to understand how FSP differs from
PS. Despite the complexity of the argument, the resulting
bounds are very simple, stated in terms of just
 , the load,
and the minimum of two random variables representing job
size. These upper and lower bounds are close in that they
differ additively by only

� �� ��� � ��� � in both the case of mean
response time and mean slowdown. Further, if the service
distribution has a DFR, the bounds on mean slowdown are

only separated by
���

�
��� � � � � . Thus, in all cases, the bounds

differ only by lower order functions of
 .

The simplicity of the resulting bounds is important be-
cause it allows easy comparison of the performance of FSP
to that of other policies. In particular, our bounds show that
the improvement of FSP over PS is substantial: for all job
size distributions the mean response time and mean slow-
down under FSP are a fraction

� � � � � �
of that under PS, and

for distributions with decreasing failure rate, the fraction be-
comes

��� � � �
�

�
in the case of mean slowdown. Furthermore,

we prove that for all job size distributions FSP is only an ad-
ditive factor of

���� ��� � � � � worse than optimal (SRPT) with
respect to mean response time.

The simplicity of the upper and lower bounds also allows
us to observe that, surprisingly, the variability of the service
distribution does not have much effect on the performance
of FSP. In fact, because our analytic bounds on mean re-
sponse time are independent of the variability of the service
distribution, we can see that the maximum effect variabil-
ity can have on mean response time is an additive factor of� �� ��� � � � � . Although, it is well known that PS is insensitive
to the variability of the service distribution, it is surprising,

11

given the bias FSP gives to small job sizes, that FSP ia also
largely unaffected the service distribution’s variability.

References

[1] N. Bansal and M. Harchol-Balter. Analysis of SRPT
scheduling: Investigating unfairness. In Proceedings
of ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems, 2001.

[2] P. Barford and M. Crovella. Generating representative
web workloads for network and server performance
evaluation. In Proceedings of ACM Sigmetrics Con-
ference on Measurement and Modeling of Computer
Systems, 1998.

[3] M. Bender, S. Chakrabarti, and S. Muthukrishnan.
Flow and stretch metrics for scheduling continous job
streams. In Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1998.

[4] L. Cherkasova. Scheduling strategies to improve
response time for web applications. In High-
performance computing and networking: interna-
tional conference and exhibition, pages 305–314,
1998.

[5] R. W. Conway, W. L. Maxwell, and L. W. Miller. The-
ory of Scheduling. Addison-Wesley Publishing Com-
pany, 1967.

[6] A. Demers, S. Keshav, and S. Shenkar. Analysis and
simulation of a fair queueing algorithm. Journal of
Internetworking, 1:3–26, 1990.

[7] A. B. Downey. Evidence for long-tailed distributions
in the internet. In Proceedings of ACM SIGCOMM
Internet Measurment Workshop, 2001.

[8] H. Feng and V. Misra. Mixed scheduling disciplines
for network flows (the optimality of FBPS). In Work-
shop on MAthematical performance Modeling and
Analysis (MAMA 2003), 2003.

[9] E. Friedman and S. Henderson. Fairness and efficiency
in web server protocols. In Proceedings of ACM Sig-
metrics Conference on Measurement and Modeling of
Computer Systems, 2003.

[10] M. Gong and C. Williamson. Quantifying the prop-
erties of SRPT scheduling. In IEEE/ACM Interna-
tional Symposium on Modeling, Analysis, and Simu-
lation of Computer and Telecommunication Systems
(MASCOTS), 2003.

[11] M. Harchol-Balter, B. Schroeder, N. Bansal, and
M. Agrawal. Implementation of SRPT scheduling in
web servers. ACM Transactions on Computer Systems,
21(2), May 2003.

[12] M. Harchol-Balter, K. Sigman, and A. Wierman.
Asymptotic convergence of scheduling policies with
respect to slowdown. Performance Evaluation, 49(1-
4):241–256, 2002.

[13] L. Kleinrock. Queueing Systems, volume II. Computer
Applications. John Wiley & Sons, 1976.

[14] W. Leland, M. Taqqu, W. Willinger, and D. Wilson.
On the self-similar nature of ethernet traffic. In Pro-
ceedings of SIGCOMM ’93, pages 183–193, Septem-
ber 1993.

[15] T. O’Donovan. Direct solutions of M/G/1 priority
queueing models. Revue Francaise d’Automatique
Informatique Recherche Operationnelle, 10:107–111,
1976.

[16] A. Parekh and R. Gallager. A generalized processor
sharing approach to flow control in integrated services
networks: the single node case. IEEE/ACM Transac-
tions on Networking, 1:344–357, 1993.

[17] A. Pechinkin, A. Solovyev, and S. Yashkov. A sys-
tem with servicing discipline whereby the order of re-
maining length is serviced first. Tekhnicheskaya Kiber-
netika, 17:51–59, 1979.

[18] D. L. Peterson. Data center I/O patterns and power
laws. In CMG Proceedings, December 1996.

[19] I. Rai, G. Urvoy-Keller, and E. Biersack. Analysis
of LAS scheduling for job size distributions with high
variance. In Proceedings of ACM Sigmetrics Confer-
ence on Measurement and Modeling of Computer Sys-
tems, 2003.

[20] L. E. Schrage. A proof of the optimality of the short-
est remaining processing time discipline. Operations
Research, 16:678–690, 1968.

[21] L. E. Schrage and L. W. Miller. The queue M/G/1 with
the shortest remaining processing time discipline. Op-
erations Research, 14:670–684, 1966.

[22] B. Schroeder and M. Harchol-Balter. Web servers un-
der overload: How scheduling can help. In Interna-
tional Teletraffic Congress (ITC 2003), 2003.

[23] A. Sliberschatz, P. Galvin, and G. Gagne. Operating
System Concepts, Sixth Edition. John Wiley & Sons,
2002.

[24] D. Smith. A new proof of the optimality of the short-
est remaining processing time discipline. Operations
Research, 26:197–199, 1976.

[25] W. Stallings. Operating Systems, Fourth Edition. Pren-
tice Hall, 2001.

[26] A. Wierman and M. Harchol-Balter. Bounding the per-
formance of SMART scheduling policies. Technical
Report CMU-CS-03-199, Carnegie Mellon University,
November 2003.

[27] A. Wierman and M. Harchol-Balter. Classifying
scheduling policies with respect to unfairness in an
M/GI/1. In Proceedings of ACM Sigmetrics Confer-
ence on Measurement and Modeling of Computer Sys-
tems, 2003.

[28] R. W. Wolff. Stochastic Modeling and the Theory of
Queues. Prentice Hall, 1989.

12

