
The Effect of Profile Choice and Profile
Gathering Methods on Profile-Driven

Optimization Systems
Geoff Langdale

October 2003
CMU-CS-03-195

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee
Thomas Gross, Chair

Peter Lee
Todd Mowry

Robert Cohn, Intel Research

Submitted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy

Copyright c©2003 Geoff Langdale

This research was sponsored by the US Air Force Research Laboratory (AFRL) under grant
F306029610287 and by a series of grants from the Intel Corporation. The views and conclusions
contained in this document are those of the author and should not be interpreted as representing
the official policies, either expressed or implied, of the Intel, the AFRL, the U.S. government or
any other entity.

Keywords: Compilers, Optimization, Performance of systems, Modeling tech-
niques

Abstract

Profile-driven optimization can produce substantial improvements in the quality
of code produced by a compiler or link-time optimizer. In this work, we ana-
lyze several important aspects of profile-driven optimization. We examine the
effectiveness of profile-driven optimization in two commercial-quality optimizers
(Digital’s GEM compiler and the link-time optimizer ‘alto’). We perform analy-
ses to determine how much variability in profile-driven optimization performance
results from choosing different training profiles, and to determine how much op-
timization benefit results from choosing more ‘accurate’ profiles (that is, profiles
that better predict the way that a program is actually run). We examine low-
overhead profiling methods such as static estimation (estimating profiles using
static heuristics) and statistical sampling (gathering profiles by sampling only a
small number of basic block executions). We analyze some profile-driven opti-
mization results in great detail, and show a methodology for accounting for the
profile-driven optimization effects of profile data associated with individual func-
tions.

Our results show that profile-driven optimization is effective on average, but
unreliable when considering any individual benchmark. Using more accurate pro-
files is only weakly connected to improved profile-driven optimization perfor-
mance for most benchmarks. However, low-overhead profiling techniques result
in substantial degradations in the reliability and average performance of profile-
driven optimization, often to the point of rendering the entire profile-driven op-
timization process useless. Our analysis also shows that the effects of profile-
driven optimization are highly concentrated in the profile data associated with a
few functions. Whether profile data improves or worsens the performance of op-
timized code, it is often possible to attribute the vast majority of this effect to the
profile data associated with just a few functions.

i

ii

Acknowledgements

I’d like to thank Professor Thomas Gross for his unfailing support during this long
and arduous process.

I’d like to thank my wife, Dr. Alice Crawford, for her patience and fortitude
over the last few months. Her support was absolutely invaluable and all the more
impressive given that she earned her own doctorate and gave birth to our son,
Marcus Joseph Langdale, all in the last six months.

I’d like to thank my parents, John and Cynthia Langdale, for instilling in me
the intellectual curiosity that led to this degree and all their love and support over
the years.

iii

iv

Contents

1 Introduction 1
1.1 Experimentation Framework . 2

1.1.1 Definitions . 2
1.1.2 Profile-Driven Optimization Platform 4

1.2 Common Difficulties in Analysis of Profile-Driven Optimization . 7
1.2.1 A Heterogenous, Artificial Population of Benchmarks and

Runs . 7
1.2.2 Experimental Error and Non-Determinism 8
1.2.3 Limits on Total Experimental Time 9

1.3 Outline of Thesis . 9

2 Exact Profiles 11
2.1 Introduction . 11
2.2 Usefulness of Profile-Directed Optimization 13
2.3 The Role of Measurement Error 16

2.3.1 One-way ANOVA Results: Are There Usefulness Differ-
ences Between Training Profiles? 16

2.3.2 Post-hoc ANOVA Results: Which Training Profiles Are
Different? . 19

2.4 The Connection of Usefulness and Accuracy 27
2.4.1 The Usefulness of Perfect Information 28
2.4.2 Profile Accuracy Metrics 30
2.4.3 Evaluating the Connection Between Comparison Metrics

and Usefulness . 32
2.4.4 Discussion . 39

2.5 Conclusion . 42

v

vi CONTENTS

3 Static Estimation of Block Profiles 44
3.1 Introduction . 44
3.2 Static Estimation . 44

3.2.1 Combining Real Profile Information with Static Estimation 46
3.2.2 Static Estimation Conclusions 51

4 Sampled Profiles 53
4.1 Introduction . 53
4.2 Sampling and Simulated Sampling 54
4.3 Results . 64

4.3.1 Our Sampling Experiments 64
4.3.2 Aggregate Sampling Results 66
4.3.3 The Connection Of Profile Usefulness and Accuracy with

Sampled Profiles . 73
4.3.4 Explanatory Hypotheses 76

4.4 Conclusion . 79

5 Systematic Variation of Profiles 81
5.1 Introduction . 81

5.1.1 Experimental Design: Factorial Experiments 81
5.1.2 Choosing Interesting Benchmarks And Runs 85

5.2 Selective Inclusion of Profile Data 86
5.2.1 Methodology . 87
5.2.2 Experimental Design . 89
5.2.3 Results . 91
5.2.4 Characteristics of Important Functions 103

5.3 Conclusion . 104

6 Related Work 106
6.1 Profile Accuracy and Static Estimation 106
6.2 Characteristics of Dynamic Profiles 107
6.3 Usefulness of Profile-Driven Optimization 110
6.4 Robustness under Uncertain Profile Data 112

7 Conclusion 113
7.1 Future Directions . 116

List of Figures

1.1 Block Diagram of System for Alto Optimizer 5
1.2 Block Diagram of System for CC Optimizer 6

2.1 Histogram of average cycle counts for each benchmark, training
profile and evaluation run (resubstitution excluded), scaled so that
the resubstitution case for that benchmark and run is1.0 29

2.2 Example 2 (continued):perl2000 evaluation runref/perfect :
Scatter-plot of average cycle count versus relative entropy score . 34

2.3 All perl2000 evaluation runs: Scatter-plot of scaled average
cycle count (scaled by resubstitution case) versus relative entropy
score . 36

4.1 Equivalent Basic Blocks . 59
4.2 Patching Example . 61

5.1 Distribution of Performance in Factorial Experiments (m88ksim
usingcc) - relative to base profile 93

5.2 Distribution of Performance in Factorial Experiments (perl2000
usingalto) - relative to base profile 94

vii

viii LIST OF FIGURES

List of Tables

2.1 Execution time of PDO binaries over all evaluation runs and train-
ing profiles (each set of evaluation run results normalized such
that the non-profile-directed optimization case is equal to 1.0 for
each evaluation run). 14

2.2 Evaluation runs with highest and lowest variability due to profile-
directed optimization profile choice; units are normalized as for
Table 2.1. 15

2.3 ANOVA Results Summary . 18
2.4 Example Games-Howell Results:alto , ammp, Evaluation runref 21
2.5 Games-Howell Results: Proportion of significantly distinct profile

pairs,alto , Part 1 . 22
2.6 Games-Howell Results: Proportion of significantly distinct profile

pairs,alto , Part 2 . 23
2.7 Games-Howell Results: Proportion of significantly distinct profile

pairs,cc , Part 1 . 24
2.8 Games-Howell Results: Proportion of significantly distinct profile

pairs,cc , Part 2 . 25
2.9 Number of training profile / evaluation run pairs (not counting

resubstituion) and number of such pairs that perform better than
perfect information . 31

2.10 Example 1:perl2000 scaled cycle counts and accuracy metrics
for a single evaluation run (ref/perfect) 33

2.11 Example 2: Allperl2000 evaluation runs with the rank-correlation
values of cycle counts and relative entropy calculated over each
training run (‘**’ results significant at 0.01 level, ‘*’ results sig-
nificant at 0.05 level). 35

2.12 The connection of usefulness and accuracy: aggregatedrs scores
over optimizers, benchmarks and different comparison metrics . . 40

ix

x LIST OF TABLES

2.13 Aggregatedrs scores over optimizers, considering only the top
half of evaluation runs by PDO variability 41

3.1 Dynamic versus Static Profile Performance (geometric mean across
all runs for benchmark and scaled to be relative to resubstitution
case). “Common Mean” is a mean over only thealto bench-
marks that were also measured withcc 48

3.2 Static Profile Performance (geometric mean across all runs for
benchmark and scaled to be relative to resubstitution case) Using
Information From A Single SPEC “Reference” Profile) 49

3.3 Static Profile Performance (geometric mean across all runs for
benchmark and scaled to be relative to resubstitution case) Using
Information From A Single SPEC “Training” Profile) 50

4.1 Overall Sampled Profile Performance and Variability (relative to
non-sampled base profile) . 66

4.2 Overall Sampled Profile Performance and Variability By Bench-
mark (relative to base, non-sampled profile) 68

4.3 Sampled Profile Performance and Variability By Sampling inter-
val (relative to base, non-sampled profile) 69

4.4 Profile accuracy differences, showing differences between patched
scores and unpatched scores for two accuracy metrics - key-matching
at the0.1 level and relative entropy. 70

4.5 Profile usefulness differences (scores are normalized relative to
non-sampled profile), showing difference between patched scores
and unpatched scores (positive values indicate that mean value of
unpatched score was lower i.e. better); significance tested at0.05
level . 72

4.6 Ratio between variability introduced by profile choice and vari-
ability introduced from sampling settings 74

4.7 The connection of usefulness and accuracy: aggregatedrs scores
over optimizers, benchmarks and different comparison metrics for
sampled profiles . 75

5.1 23 Full Factorial Experiment Runs (with example interaction term)
83

5.2 23−1 Factorial Experiment Runs (one alternative) 84

LIST OF TABLES xi

5.3 “Interesting” benchmarks and runs chosen for this chapter, along
with scaled performance (relative to non-profile-driven optimiza-
tion case). 86

5.4 Relative Execution Time of Including N Top Functions from Train-
ing Profile in Zero-Based Background Profile (execution time of
binary produced using training profile normalized to 1.0) 88

5.5 Summary of Distribution of Performance in Factorial Experiments
- relative to base profile . 95

5.6 r2 Values for each Factorial Experiment - Proportion of Variability
in Each Experiment Explained By Our Model 98

5.7 Model Description foralto . 101
5.8 Model Description forcc . 102

6.1 Correlation between static coverage of functions and two selected
accuracy metrics, over all training profile and evaluation run pairs
for each benchmark. ‘*’ represents a value significant at the 0.05
level. ‘**’ represents a value significant at the 0.01 level. 109

xii LIST OF TABLES

Chapter 1

Introduction

Profile-driven optimization is a familiar technique in compiler and link-time opti-
mization. A large proportion of new optimization techniques developed make use
of profile-driven optimization; some techniques go so far as to require some form
of execution counts to operate.

This thesis does not propose new profile-driven optimizations or new ways to
gather profiles. Instead, we analyze the effects of profile-driven optimization and
answer (at least for two different optimizers and a handful of benchmarks) some
important questions about how profile-driven optimization works in practice.

The findings of this work are that profile-driven optimization is a far less
straightforward process than most people would have expected. This lack of
straightforwardness manifests itself in several ways:

• Substantial variation in the relative performance of programs that have been
optimized using profile-driven optimization (as opposed to optimizing with-
out profile-driven optimization).

• Not-infrequent worsening of performance as a result of using profile-driven
optimizations.

• For a majority of benchmarks, a weak or non-existent connection between
the accuracy of profiles (where accuracy is defined as ‘a good prediction of
future program behavior’) and the profile-driven optimization improvement
gained by using the profiles.

• Related to the previous point, surprisingly weak relative performance of
profiles that represent ’perfect information’

1

2 CHAPTER 1. INTRODUCTION

• A strong locality effect in profile-directed optimization - the bulk of the im-
provement (or worsening) of performance due to profile-driven optimization
can be localized to the profile-driven optimization effects of a few functions’
profile data.

We develop a methodology that allows us to discover and quantify these com-
plex effects. While one or more of the above phenomenon have been observed
anecdotally and informally in other work, no systematic methodology exists for
the measurement and evaluation of this kind of profile-driven optimization perfor-
mance.

These results are important in a number of ways.
First, these results suggest that profile-driven optimization is not a technique

that can be used carelessly - the extra effort involved in choosing training runs
and gathering profiles does not guarantee speed-ups, and may accomplish quite
the opposite. The use of profile-driven optimization is much like the use of high
levels of optimization flags (‘-O4’ or ‘-O5’): while it may produce a substantial
speed-up, programmer analysis of the outcome of the optimization is necessary.

Second, these results show that the evaluation of new profiling techniques in
terms of accuracy alone (that is, without testing the results of using the profil-
ing techniques to optimize real programs) is flawed. If a profiling technique is
promoted as being useful for profile-driven optimization, it must be tested in this
context.

Third, low-overhead techniques such as sampling and static estimation are
shown, on average, to negate much if not all the benefits of profile-driven op-
timization. Further, statistical sampling adds another source of variability to an
already uncertain process.

Finally, the strong locality effects of profile usefulness suggest that future tech-
niques for profiling and profile-driven optimization may be more easily developed
and analyzed in the context of fairly small amounts of code. Only a few functions
showed significant profile-driven optimization effects in our experiments in Chap-
ter 5.

1.1 Experimentation Framework

1.1.1 Definitions

In the process of profile-driven optimization, a givenrun (deterministic execution
of a benchmark program with a certain input) produces a profile that is associated

1.1. EXPERIMENTATION FRAMEWORK 3

with that run. This profile is then used as input to a profile driven optimizer, and
is thus called atraining profile. The resulting binary can be evaluated with an
evaluationrun. The latter type of run will also have a profile associated with it,
the evaluation profile, which is the basic block profile that would have resulted
from profiling the binary with the evaluation run.

We draw our benchmarks from the SPEC95 and SPEC2000 benchmarks (if
a benchmark exists in both benchmark sets, we use the SPEC2000 version and
append “2000” to the benchmark name). The SPEC benchmarks define three
standard runs, calledref , test and train (each of which can be combina-
tions of multiple program runs). The profile-driven optimizations allowed in the
context of SPEC benchmarks involve usingtrain as the training run andref
as the evaluation run (test may only be used for a relatively short-running test
of the correctness of a given benchmarking setup). In our work, we use all of
the available runs as training and evaluation runs, in all combinations. Where the
SPEC benchmarks call for aggregating multiple runs into a single evaluation or
training run, we consider each run individually. Thus, instead of testing a single
training profile and evaluation run for profile-driven optimization, in our chapter
on exact profiling (Chapter 2) we may gather information on as many as 100 pos-
sible combinations of training profiles and evaluation runs (we use 10 different
evaluation runs and 10 different training profiles for the SPEC2000 benchmark
perl resulting in 100 possible combinations). More commonly, we have only
the three standard SPEC runs available to us and thus gather information on 9
such combinations.

When presenting the names of non-standard SPEC runs (that is, runs that are
not simply the SPEC training, testing or reference runs), we will indicate the
source of the run as needed. There are twoperl2000 benchmark runs that
involve calculation of “perfect” numbers. We refer to the run that is one of the
multiple runs in the SPEC reference benchmark asref/perfect and the run
that was part of the SPEC training benchmark astrain/perfect . Generally
the names of these runs are not significant and are included only for reference.

We defineprofile usefulnessin terms of an evaluation run. That is, it is mean-
ingless to say that profilep1 is more useful thanp2; only thatp1 is more useful
thanp2 with respect to some evaluation run.

Profile accuracy, as measured by one of our profile comparison metrics, mea-
sures how well the behavior associated with a training profile predicts the behavior
associated with an evaluation profile, strictly in terms of the contents of the two
profiles. Once again, accuracy is defined in terms of an evaluation profile. The
accuracy of profilep1 (given a comparison metric) is calculated strictly by com-

4 CHAPTER 1. INTRODUCTION

paring the profile data associated withp1 with the profile data associated with the
evaluation run.

1.1.2 Profile-Driven Optimization Platform

We have implemented a system for evaluating profile usefulness and accuracy.
This system consists of a set of profile gathering tools, a profile manipulation tool,
and two optimization platforms (thealto [10]) system and the standard Digital
Unix C Compiler[4]) that use the profiles that we gather. All of these tools target
the Alpha architecture (the EV5 variant, specifically). The following steps outline
the operation of our system.

First, we produce “base” binaries using the Digital Unix C compiler (DEC C
V5.6, subsequently referred to ascc). The base binaries are unoptimized for the
alto system (as we want to measurealto ’s profile-driven optimizations, not the
optimizations in the base binary). For thecc optimization path, we must compile
the base binaries with the same optimization settings that we use for the profile-
driven optimization step1 Thus, the base binaries are more heavily optimized for
thecc optimization path.

Second, we usealto to gather profile information and build a Control Flow
Graph (CFG). The base binaries are instrumented byalto and used to gather
profile information for the various runs of the benchmark.

Third, these profiles and the benchmark’s control-flow graph are passed to
the profile manipulation tool, which may apply transformations to real profiles
or generate new profiles from scratch. The profile optimization tool can generate
profiles inalto format or in the standardpixie format. At this stage we also
gather data on profile characteristics and comparisons between profiles.

Fourth, these new profiles are used as inputs to the profile-driven optimiza-
tion process. These profiles are used with eitheralto (with full optimizations
switched on) or the Digital C compiler (see [4] for details of the optimizations
performed) to produce an optimized binary. The profile-driven optimizations that
provide the most substantial improvements are similar in both optimzers: code
placement optimizations, procedure inlining, and super-block formation (profile-
driven optimization steps in super-block formation also affect many subsequent
optimizations that are not themselves profile-driven). We also produce binaries

1Specifically, thecc binary is produced with options"-g1 -O3 -inline speed -ifo
-assume whole program -om" . Both base binaries use"-Wl,-r -Wl,-d -Wl,-z
-non shared" to produce base binaries thatalto can process; thealto optimization path
however does not switch on any optimizations.

1.1. EXPERIMENTATION FRAMEWORK 5

Figure 1.1: Block Diagram of System for Alto Optimizer

with the same set of optimization flags but without using profile information, for
purposes of comparison.

Finally, the optimized binary is run2 . We can compute cycle counts (using the
EV5 performance counters) for all our evaluation runs at this time. We are often
measuring only subtly different binaries, with very small variations in run-time.
We run our benchmarks on a 333Mhz EV5 21164 machine with 1GB of mem-
ory (running Digital UNIX V4.0). The machine, while old, has highly accurate
performance counters and mature and well-tuned optimizers.

Figure 1.1 and Figure 1.2 summarize the overall process of profile-driven op-
timization in our two optimizers.

2Currently, we have some missing data points due to bugs in one or the other of the optimizers,
including a large number of the baseline “non-profile-directed optimization case” results. We
are also missing some entire benchmarks in thecc optimization context. Our results are not
significantly altered by restricting the benchmark sets to only those benchmarks that worked across
both optimization environments, so we have opted to present more information (the benchmarks
that worked only under thealto environment) rather than less.

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Block Diagram of System for CC Optimizer

1.2. COMMON DIFFICULTIES IN ANALYSIS OF PROFILE-DRIVEN OPTIMIZATION7

Our work is not focused on producing peak optimization performance. Our
focus is on studying the effects of profile-driven optimization and methods for
evaluating its effectiveness, not implementing the fastest possible optimizations.
In general, the optimization performance of our system (through either thealto
path or thecc path) is good.

We use the technique of using the evaluation profile as a training profile, a
case that we call, after Savari and Young [11],resubstitution. While not valid as a
practical technique (why run the exact same program execution twice?), resubsti-
tution frequently generates interesting results, allowing us insight into how much
benefit results from having “perfect” information. We do not use resubsitution
cases when reporting average benefits from using profile-directed optimization.

Our goal is to investigate the usefulness and accuracy of profiles, not to gen-
erate superior SPEC results. Our use of non-standard SPEC training profiles and
evaluation runs means that our results cannot be considered to be valid SPEC re-
sults. This does not render the results invalid in a research sense. As stated above,
even the (highly questionable in a benchmarking sense) use of resubstitution can
generate interesting data. We carry out analyses to determine whether our ob-
served performance effects from shorter-running evaluation runs than the SPEC
“ref” benchmarks represent real effects or whether the effects are simply due to
experimental error; the former is true for nearly all combinations of optimizer,
benchmark and evaluation run.

1.2 Common Difficulties in Analysis of Profile-Driven
Optimization

1.2.1 A Heterogenous, Artificial Population of Benchmarks and
Runs

Our analyses of profile-driven optimization are comparatively difficult, in a statis-
tical sense. There is a fundamental problem in attempting to discover consistent
rules for the behavior of profile-driven optimization:

There is no ‘natural’ population of benchmarks, nor is there a ‘natural’ pop-
ulation of executions of those benchmarks or profiles for those benchmarks.

That is, it is meaningless to talk about taking a random or representative sam-
ple of benchmarks or benchmark runs. All benchmarks are man-made creations;
these programs have not been built at random or by natural processes. Thus, the

8 CHAPTER 1. INTRODUCTION

task of analyzing the behavior of benchmarks is complicated by the fact that the
results we see is heavily influenced by benchmark choice.

We have chosen to deal with this problem in two ways:

• First, we use a fairly large number of benchmarks (taken from both SPEC95
and SPEC2000)3. While our results will still be determined by our bench-
mark choice, we are less likely to have our results biased by the behavior of
a single benchmark.

• Second, we attempt to remain aware of the ’contingency’ (as opposed to
’necessity’) of our results. We carefully qualify our conclusions based on
the limitations of our experimental framework.

• Finally, while not every SPEC benchmark runs on both optimizers used in
our framework, we used all of the benchmarks which did. The results that
we present are not over a ‘hand-picked’ set of SPEC benchmarks.

1.2.2 Experimental Error and Non-Determinism

Most of our measurements in this work are of program’s running time (measured
with a cycle counter). Unlike measurements of program static characteristics
(such as program size), measurements of deterministic events (number of loads
executed in a program) or measurements of a simulation, our measurements are
subject to experimental error.

Our benchmarks and runs are all deterministic in the sense that they do not
have different behavior at the instruction set architecture level on each execution.
That is, every single instruction in repeated runs of the same benchmark run reads
and writes the same data across all repeated runs.

However, we cannot guarantee that the instruction cache behavior of the ma-
chine is identical, nor can we entirely prevent non-determinism due to other pro-
cesses or operating system behavior on the machine. We make an effort to keep

3We do not use ‘extra’ benchmark runs - that is, benchmark runs that were not in the set of
available SPEC benchmark runs. While it would have been feasible to have created distinct new
runs for a small subset of the benchmarks, many of the SPEC benchmarks simply don’t have that
many distinct ways that they can be run. Worse still, the SPEC benchmarks that would allow
easy creation of new distinct runs tend to fall into a single category - that is, interpreters of one
kind or another (perl , xlisp , m88ksim), so the process of adding multiple inputs for some
benchmarks could systematically bias our results. In addition, the runs we report are standard and
familiar to other systems researchers.

1.3. OUTLINE OF THESIS 9

this interference to a minimum, but it is not practical to reduce this behavior to
zero.

The impact of experimental error on our results is reduced in the usual fashion.
We run multiple experiments and eliminate implausible outliers (which in our case
seem to nearly always be large slowdowns due to other processes on the machine
- we did not observe outliers where the benchmark ran faster). We frequently
employ statistical tests to quantify the level of effect that experimental error has
had on the results that we have seen.

We make much use of the concept of ’statistical significance’. The reader is
reminded that a statistically significant effect is not necessarily a large one; simply
an effect that is very unlikely to have occurred as a result of chance.

1.2.3 Limits on Total Experimental Time

Further complicating this work is that we must deal a limited resource - machine
time for running experiments. Every separate evaluation of some profile results in
another run of one of our optimizers (cc or alto) for the benchmark in question.
For our largest benchmarks, this could take up to 20 minutes.

After a binary has been produced, further experimental time is consumed by
the necessity of running each benchmark enough times to reduce experimental
error to acceptable levels. There is a tradeoff between total experiment time and
minimizing the impact of experimental error. We do not have a single, fixed strat-
egy for making this tradeoff - for some experiments, we are more concerned with
quickly exploring a large number of data points, and for others, we are concerned
with producing results that are as accurate as possible.

1.3 Outline of Thesis

The remainder of this thesis is organized as follows. In Chapter 2 we evaluate the
practice of using ’Exact Profiles’ (that is, profiles obtained by gathering accurate
basic block profiles of actual executions) for profile-driven optimization.

The next chapters are concerned with techniques that reduce or eliminate the
overhead of gathering basic block profiles. In Chapter 3 we discuss generating
synthetic profiles through simple static estimation techniques. Chapter 4 analyzes
the practice of gathering profiles by statistical sampling.

Chapter 5 details the results of experiments involving systematic manipula-
tion of profile data (on a function-by-function basis). In this chapter we discover

10 CHAPTER 1. INTRODUCTION

that much of the effects of profile-driven optimization can be localized to a small
subset of functions.

Chapter 6 summarizes related work, and our conclusions and discussions of
future work are found in Chapter 7.

Chapter 2

Exact Profiles

2.1 Introduction

In this chapter, we attempt to discover:

• the effects of using “exact” profiles

• whether the differences we observe between different training profiles are
significant

• whether the accuracy of these training profiles is connected to better profile-
driven optimization outcomes.

“Exact profiles” are profiles that result from using exact basic block profiling
on some execution of the run and are distinct from profiles that are approxima-
tions to exact profiles (for example, sampled profiles) or profiles that are wholly
synthetic (for example, statically-estimated profile data). Profile-directed opti-
mization (PDO) depends on the assumption that having more accurate predictions
of future behavior will result in better optimization performance. Both the as-
sumption of effectiveness of profile-directed optimization, and the assumption of
a connection between more accurate profiles and better profile-driven optimiza-
tion performance, require quantification. In this chapter, we attempt to evaluate
both assumptions.

We must ensure that the measurement of differences between the “usefulness”
(average cycle counts) of different profiles for the same reference run actually
reflects real differences and not experimental error. We summarize the effects at

11

12 CHAPTER 2. EXACT PROFILES

different levels of generality (over individual benchmark runs, over all results for
a given benchmark or for an entire optimization context).

We evaluate metrics that attempt to measure how accurately a profile predicts
a given future program execution. Suppose we have two training profilesp1 and
p2 and an evaluation run (which when profiled, produces a profilepE - all three
profilesp1, p2 andpE applying to the original ‘base binary’). Suppose also that
the binary produced by usingp1 for profile-driven optimization performs better
on that evaluation run than the binary produced by usingp2. A “good” profile
comparison metric in this case would be one that shows thatp1 is a more accurate
prediction ofpE than isp2; that is, a metric that correlates strongly with profile
usefulness.

We must immediately clarify the scope of this chapter. We cannot derive re-
sults that apply to all profile-gathering techniques, benchmarks and optimizers. In
this chapter we work within the context of profiles that have been directly gath-
ered by basic block profiling (as opposed to approximate methods such as statis-
tical sampling, or profiles that are entirely synthetic, such as those generated by
static estimation - we deal with these results in a subsequent chapter). We use
two optimizers and a wide range of benchmarks but cannot generalize from these
optimizers and benchmark programs to a hypothetical “universe” of benchmarks
and optimizers.

We present results for our two optimizers and our benchmarks as well as a
methodology for evaluating the effectiveness of profile-directed optimization, for
determining the significance of variability in profile-directed optimization per-
formance and for measuring the strength of the connection of profile accuracy
and profile “usefulness”. We derive somewhat cautionary results concerning the
commonly-held assumptions about profile-directed optimization.

Our methodology for analyzing profile-driven optimization performance and
its relationship to accuracy is applicable to other optimizers, architectures, bench-
mark sets, and profiling methods. Applying our methodology to the domain of
exact basic-block profiles is the logical starting point for analysis of the relation-
ship between profile usefulness and profile accuracy. Regardless of which profil-
ing methods are available and which are chosen, a training profile must always be
selected.

2.2. USEFULNESS OF PROFILE-DIRECTED OPTIMIZATION 13

2.2 Usefulness of Profile-Directed Optimization

We gathered cycle counts for each combination of optimizer, benchmark, training
profile and evaluation run. We repeated each evaluation run 11 times, discarding
the first cycle count score due to significant differences in the first run (no doubt
due to virtual memory issues) and calculated average cycle counts from the other
10. We present these average cycle counts normalized by the average cycle counts
of the comparison binaries; that is, the optimized binaries that did not use profile-
directed optimization. Thus, for a given evaluation run, a binary produced by
profile-directed optimization that runs 5% faster than the binary produced by non-
profile directed optimization is assigned a score of 0.95 in Table 2.1.

In Table 2.1, we present results showing the relative performance of profile-
directed optimization for our different benchmarks as compared to the same bench-
marks optimized without profile directed optimization. As each benchmark has
multiple evaluation and training runs, we present the average profile-driven opti-
mization performance for all of the combinations of evaluation and training runs,
excluding the “resubstitution” case. We do not show “resubstitution” in this ta-
ble as it could be claimed to represent an unrealistically good case (later in this
chapter, we will evaluate the extent to which resubstitution is actually effective).

We provide limited information about the spread of these values (maximum
and minimum only), as it is difficult to reasonably compareijpeg (which has
only 6 different non-resubstitution training profiles and evaluation run pairs) with
perl2000 (which has 90). To some extent, there is a connection between the
range between the maximum and minimum values in Table 2.1 and the total
number of non-resubstitution training profiles and evaluation run pairs, as would
be expected - as the number of observations of a variable increase, we expect to
see the range of the observations increase (at least up to a certain point). How-
ever, the issue of causality is not clear: part of the reason that there are in fact more
benchmark runs forperl2000 thanijpeg is because there were more reason-
able and distinct choices for benchmark runs when the designers of the SPEC
benchmarks were selecting benchmark runs.

Overall, profile-directed optimization is an effective technique (an average im-
provement of 3%), but the results are sharply variable: there are several bench-
marks where all training profiles either fail to show any effect or make the program
slower for each evaluation run. A majority of benchmarks for both optimizers
have at least one combination of training profile and evaluation run where profile-
directed optimization performs badly.

These aggregate numbers conceal a great deal of variation - two of the bench-

14 CHAPTER 2. EXACT PROFILES

Optimizer Benchmark Number of runs Normalized execution time
Minimum Maximum Mean

alto ammp 3 0.97 0.98 0.98
bzip2 5 0.87 1.01 0.93
compress 3 0.94 1.06 0.99
crafty 3 0.89 0.93 0.91
gap 3 0.95 0.97 0.95
go 5 0.96 1.06 0.99
gzip 7 1.00 1.14 1.06
ijpeg 3 0.96 0.98 0.97
li 3 0.97 0.99 0.98
m88ksim 3 0.83 1.00 0.89
mcf 3 1.00 1.02 1.01
parser 3 1.00 1.02 1.01
perl2000 10 0.83 1.08 0.96
twolf 3 0.93 1.01 0.97
vortex2000 5 0.86 0.91 0.89
ALL CASES 0.83 1.14 0.97

cc ammp 3 0.99 1.04 1.02
bzip2 5 0.91 1.06 0.96
compress 3 0.92 1.02 0.99
crafty 3 0.94 0.98 0.96
equake 3 0.95 1.01 0.99
gap 3 0.92 0.99 0.95
go 5 0.99 1.14 1.06
ijpeg 3 0.94 0.98 0.96
li 3 0.84 0.92 0.87
m88ksim 3 0.88 1.07 0.96
mcf 3 0.99 1.00 1.00
perl2000 10 0.86 1.13 1.00
twolf 3 0.93 0.98 0.95
vortex2000 5 0.90 0.99 0.94
ALL CASES 0.84 1.14 0.97

Table 2.1: Execution time of PDO binaries over all evaluation runs and training
profiles (each set of evaluation run results normalized such that the non-profile-
directed optimization case is equal to 1.0 for each evaluation run).

2.2. USEFULNESS OF PROFILE-DIRECTED OPTIMIZATION 15

Optimizer Benchmark Evaluation run Fastest Slowest Mean Std. Deviation
alto perl2000 train/diffmail 0.90 1.05 0.96 0.0457
alto perl2000 ref/diffmail 0.90 1.06 0.96 0.0457
alto perl2000 ref/perfect 0.80 0.96 0.89 0.0446
cc perl2000 train/scrabble 0.82 1.00 0.93 0.0433
cc go ref2 1.00 1.12 1.08 0.0427
cc go train 1.01 1.14 1.08 0.0426
cc go test 1.00 1.12 1.08 0.0412
alto perl2000 ref/makerand 0.78 0.93 0.87 0.0408
. .
alto gzip program 1.13 1.14 1.13 0.0021
alto parser ref 1.00 1.00 1.00 0.0020
alto ijpeg train 0.98 0.98 0.98 0.0013
alto ammp train 0.98 0.98 0.98 0.0010
cc mcf ref 1.00 1.00 1.00 0.0009
alto parser train 1.01 1.01 1.01 0.0008
alto ammp ref 0.98 0.98 0.98 0.0006

Table 2.2: Evaluation runs with highest and lowest variability due to profile-
directed optimization profile choice; units are normalized as for Table 2.1.

marks (vortex2000 and m88ksim) receive a 10% or more speedup under
alto and a 4%-6% speedup undercc , while one benchmark (go), on average,
is slowed by 6% by the use of profile information. This result indicates that while
profile-driven optimization is a valuable technique overall, it should not be used
blindly. Also interesting is the fact that the “pessimization” cases (underalto ,
gzip , mcf andparser , undercc , ammpandgo) were generally bad for nearly
all training profile / reference run pairs. Thus, the fact that a benchmark does not
benefit much from PDO is usually apparent from a small sample of runs.

Examining the individual benchmark runs, we observe a wide range of per-
formance variability. Table 2.2 presents the top and bottom benchmark runs by
profile-driven optimization variability. There is a huge range of variability among
evaluation runs.

16 CHAPTER 2. EXACT PROFILES

2.3 The Role of Measurement Error

The cycle counts that we gather for each measurement of profile-driven optimiza-
tion results are not precise. There is some indeterminacy in the process of using
the cycle counters, in addition to variations in machine behavior caused by factors
outside the experimenter’s control. To minimize the impact of experimental error,
we take the mean of several repeated measurements. We must pay rather more
attention to measurement error than is usual in systems research.

First, this is because we are attempting to measure small differences in average
cycle counts, as discussed above. Second, because we are interested in modelling
the behavior of programs over a wide range of profiles and runs, we must often ex-
ecute the benchmarks with comparatively brief benchmark runs. The usual prac-
tice in systems research is to measure the standard SPEC reference runs, which,
depending on hardware, can often take as long as 10 minutes. In such a context, a
error in cycle count that corresponds to a half second is trivial. However, if such
an error were to be introduced into our cycle count measurements for shorter runs,
our ability to distinguish small differences in profile-driven optimization perfor-
mance from different training profiles would be greatly reduced.

We gather multiple cycle counts (for each combination of training profile and
evaluation run) and calculate the average cycle counts. The average cycle counts
that result from using different training profiles on the same evaluation run will
differ. We need to calculate whether those differences are significant or whether
they result from experimental error. This issue is somewhat more pressing for
this work than it is for more conventional profile-driven optimization research, as
some of the runs which we were using as evaluation runs were comparatively brief
(as compared to the standard SPEC “ref ” runs).

2.3.1 One-way ANOVA Results: Are There Usefulness Differ-
ences Between Training Profiles?

The one-way ANOVA procedure (“one-way” because we vary only a single vari-
able; “ANOVA” is short for “ANalysis Of VAriance”) attempts to determine, given
a set of experimental results gathered at different ‘levels’ (in this case, using differ-
ent training profiles), whether there are statistically significant differences among
the results for different levels. That is, we attempt to disprove the null hypothesis
that the average cycle counts for a given evaluation run are the same regardless of
which training profile was used. If the probability that this could be the case is suf-

2.3. THE ROLE OF MEASUREMENT ERROR 17

ficiently low, we can reject this null hypothesis and conclude that in fact there are
statistically significant differences between the profile-driven optimization effects
of different training profiles.

The use of ANOVA depends somewhat on several assumptions:

• Independence of observations

This assumption is met. The results of running a binary produced with one
training profile are not affected by the results of running a binary produced
with another training profile. We attempt to eliminate any paging effects by
discarding the first measurement for each binary and evaluation run; there
is no other way that one binaries’ results could affect another’s.

• Normality of data

This assumption is not met. However, the failure to meet this assumption
is not considered critical for the use of ANOVA as long as the size of the
groups being compared is equal and that the data does not contain any ex-
treme observations. Both of these conditions are met.

• Equality of variance

This assumption is not met either. Again, this assumption is not considered
critical as long as the group sizes are equal and the “no extreme observa-
tions” condition is met.

Table 2.3 shows only the significance value for each context, benchmark and
reference run. This value is the probability, given no relationship between a train-
ing profile and the resulting cycle counts of a binary executing the reference run,
that we could have observed the ratio of variability attributed to experimental er-
ror versus to the variability attributed to using different training profiles. Thus,
a low significance value in this table indicates that there is a low probability that
there are no real differences between the usefulness of the profiles for different
benchmarks. It does not, however, mean that all training profiles have signifi-
cant usefulness differences - merely that significant usefulness differences exist
somewhere among our set of training profiles.

We were able to reject the null hypothesis of “no significant difference ex-
ists between the effect of training profiles” at a significance level of 0.05 (that
is, we found that it is no more than 5% likely that, given no effect at all from
training profiles, we would have seen the pattern of variability that we did) for

18 CHAPTER 2. EXACT PROFILES

Optimizer Benchmark Reference run ANOVA Significance Value
alto ammp ref 0.006

test 0.000
train 0.000

art ref1 0.223
ref2 0.811
test 0.000
train 0.000

bzip ALL 0.000
compress ref 0.000

test 0.056
train 0.000

crafty ALL 0.000
equake ref 0.000

test 0.000
train 0.039

gap ALL 0.000
go ALL 0.000
gzip ALL 0.000
ijpeg ref 0.034

test 0.000
train 0.000

li ALL 0.000
m88ksim ALL 0.000
mcf ALL 0.000
parser ref 0.000

test 0.000
train 0.282

perl2000 ALL 0.000
twolf ALL 0.000
vortex2000 ALL 0.000
vpr ALL 0.000

cc compress ref 0.000
test 0.134
train 0.000

ALL others ALL 0.000

Table 2.3: ANOVA Results Summary

2.3. THE ROLE OF MEASUREMENT ERROR 19

all but 5 evaluation runs (4 underalto - two runs in theart SPEC2000 bench-
mark and one run each forcompress andparser , 1 undercc - one run under
compress). For the vast majority of our benchmark runs, the probability that
we would have observed the variability that we did due to factors other than the
training profile is negligible (under 0.001).

All the values in Table 2.3 reported at 0.000 are no greater than 0.0005 (and
are thus rounded to 0.000); these values mean that the chance that we would
falsely assume that there were differences between training profiles when in fact
the differences we observed were due to experimental error is less than 1 in 2000.

Thus, for nearly all combinations of benchmarks, training profiles and eval-
uation runs, we can show that using different training runs has a real effect that
cannot be explained strictly in terms of experimental error. The only benchmark
which has a large number of evaluation runs where we cannot discern much vari-
ation in performance due to training profile choice isart usingalto as an op-
timizer. Two training runs (both of the differentref profiles provided) have ex-
tremely high significance values; thus the pattern of variation that we observe is
almost certainly due to random chance in this case.

2.3.2 Post-hoc ANOVA Results: Which Training Profiles Are
Different?

The results in the previous subsection are quite limited. All that doing a simple
ANOVA for each evaluation run tells us is that there is some significant difference
in average cycle count due to profile choice. If we have 10 different training
profiles, we do not know whether:

• there are two groups of 5 profiles, any pair of profiles from different groups
being significantly different in optimization usefulness but any same-group
pair of profiles not being significantly different, or

• there is 1 profile that has a significantly different effect to the other 9 (which
all have no significant differences from each other), or

• all profiles in this group have significantly different effects from each other,
or,

• any number of other possibilities.

20 CHAPTER 2. EXACT PROFILES

All we know from ANOVA is that at least one significant difference exists be-
tween a pair of profiles. Obviously, we want to know more than this. Specifically,
we would like some idea of how many of the training profiles have effects indistin-
guishable from other training profiles and what sort of “structure” of differences
exist between the training profiles. To discover this, we use a “post-hoc analysis”.
A post-hoc analysis is a technique that is done after ANOVA, and is used to eval-
uate the significance of differences between the results at different factor levels. It
is called a “post-hoc” analysis to distinguish it from a “planned contrast” (a more
powerful technique where the experimenter carries out a experiment with a given
hypothesis in mind, as opposed to looking for patterns in the data after the exper-
iment has already been carried out). We cannot simply do pair-wise comparisons
of means at each factor level - if we had 10 different training profiles, that would
mean 45 pair-wise comparisons. Done at a significance level of 0.05, we would
be likely to make 2-3 Type I errors in these comparisons (reporting a significant
difference where none existed).

Many different post-hoc techniques exist. Some are relatively simple, and
involve little more than carrying out multiplet-tests between each pair of factor
levels (adjusting the significance level to avoid the above-mentioned problem of
proliferating Type I errors). We use a post-hoc technique called Games-Howell,
which is considered fairly powerful (that is, less likely to make Type II errors,
where a significant difference is overlooked) and more importantly, is robust under
circumstances where the variances at each factor level are not equal and/or the
distributions in question are not normal.

Games-Howell gives us pairwise estimates of differences between two differ-
ent factors (in this case, training profiles); and tells us whether or not the range of
possible differences (at a given significance level) includes zero. As an example,
we will show the output from a single example of Games-Howell, for the bench-
markammp, running its reference evaluation run (usingalto as the optimizer).
The output from a Games-Howell post hoc analysis for this case is shown in Ta-
ble 2.4. Note that the ANOVA significance value for this case was0.006 - so we
are very sure that some significant difference exists between the different profiles.

As can be seen from Table 2.4, a single post-hoc test generates a large quantity
of data. The above table shows the mean differences between the performance of
the binaries produced by using the differing training profiles, as well as a signifi-
cance value1 . This significance value summarizes the probability that, if the true

1Note, that in the results of the Games-Howell analysis, the mean differences between two
training profiles is an anti-symmetric relation and the significance values are symmetric.

2.3. THE ROLE OF MEASUREMENT ERROR 21

Training Profile 1 Training Profile 2 Mean Difference (train1 - train2) Significance
in optimization usefulness
(Gcycles)

ref test 2.13 0.218
train 6.56 0.024

test ref -2.13 0.218
train 4.43 0.155

train ref -6.56 0.024
test -4.43 0.155

Table 2.4: Example Games-Howell Results:alto , ammp, Evaluation runref

mean difference between the factors (training profiles) was zero (that is, no dif-
ference), that we would see the degree of difference between the groups that we
did. Thus a low significance value, once again, indicates that it is very unlikely
that such a difference would arise from sheer experimental error.

In this particular case, interpretation of the results is fairly simple. At the
0.05 level of significance, there is only one significantly different pair of profiles
- theref andtrain profiles. There exist differences between the other pairs of
training profiles, but they are not significant at the0.05 level. Thetest profile
is intermediate in usefulness from the other two but its performance cannot be
distinguished from either at the0.05 level. However there is only a 15% chance
that if in fact were there no difference in the underlying mean usefulness oftest
andtrain , we would see a performance difference of this magnitude.

Rather than repeating Table 2.4 once for every combination of benchmark,
run and optimizer (and remembering that the equivalent table for benchmarks like
perl2000 has 90 lines - one for each ordered pair of training profiles given 10
training profiles), we will merely report the total proportion of distinct training
profile pairs - that is, in the above case, the number reported would be 33% (only
2 pairs out of 6 ordered pairs or 1 out of 3 unordered pairs).

We have already found, through ANOVA, that most benchmarks and evalu-
ation runs have significant performance variation due to profile-driven optimiza-
tion.

The post-hoc analyses summarized in Tables 2.5, 2.6, 2.7 and 2.8 show us
that the vast majority of benchmarks and evaluation runs yield significant profile-
driven optimization differences between a fair proportion of their profiling input
pairs; particularly among those benchmarks and evaluation runs that the original

22 CHAPTER 2. EXACT PROFILES

Optimizer Benchmark Evaluation run Proportion of distinct
(unordered) profile pairs

alto ammp ref 1/3
test 2/3
train 2/3

art ref1 2/6
ref2 0/6
test 4/6
train 5/6

bzip ref1 8/10
ref2 7/10
ref3 8/10
test 9/10
train 8/10

compress ref 3/3
test 1/3
train 2/3

crafty ref 3/3
test 3/3
train 3/3

equake ref 2/3
test 2/3
train 1/3

gap ref 3/3
test 3/3
train 3/3

go ref1 4/10
ref2 8/10
ref3 8/10
test 9/10
train 10/10

gzip graphic 20/21
log 19/21
program 15/21
random 19/21
source 15/21
test 18/21
train 20/21

ijpeg ref 1/3
test 2/3
train 3/3

li ref 3/3
test 2/3
train 3/3

Table 2.5: Games-Howell Results: Proportion of significantly distinct profile
pairs,alto , Part 1

2.3. THE ROLE OF MEASUREMENT ERROR 23

Optimizer Benchmark Evaluation run Proportion of distinct
(unordered) profile pairs

alto m88ksim ref 3/3
test 3/3
train 2/3

mcf ref 2/3
test 2/3
train 2/3

parser ref 2/3
test 3/3
train 0/3

perl2000 ref diffmail 44/45
ref makerand 44/45
ref perfect 44/45
ref splitmail1 43/45
ref splitmail2 44/45
ref splitmail3 45/45
ref splitmail4 43/45
train diffmail 45/45
train scrabble 45/45

twolf ref 2/3
test 3/3
train 3/3

vortex2000 ref1 9/10
ref2 9/10
ref3 7/10
test 9/10
train 9/10

vpr ref place 15/15
ref route 8/15
test place 13/15
test route 14/15
train place 15/15
train route 12/15

Table 2.6: Games-Howell Results: Proportion of significantly distinct profile
pairs,alto , Part 2

24 CHAPTER 2. EXACT PROFILES

Optimizer Benchmark Evaluation run Proportion of distinct
(unordered) profile pairs

cc ammp ref 2/3
test 3/3
train 3/3

bzip ref1 8/10
ref2 10/10
ref3 10/10
test 10/10
train 10/10

compress ref 3/3
test 1/3
train 2/3

crafty ref 2/3
test 3/3
train 3/3

equake ref 2/3
test 3/3
train 2/3

gap ref 3/3
test 3/3
train 3/3

go ref1 7/10
ref2 10/10
ref3 10/10
test 9/10
train 10/10

ijpeg ref 3/3
test 3/3
train 3/3

li ref 3/3
test 3/3
train 3/3

Table 2.7: Games-Howell Results: Proportion of significantly distinct profile
pairs,cc , Part 1

2.3. THE ROLE OF MEASUREMENT ERROR 25

Optimizer Benchmark Evaluation run Proportion of distinct
(unordered) profile pairs

cc m88ksim ref 3/3
test 3/3
train 3/3

mcf ref 2/3
test 3/3
train 3/3

perl2000 ref diffmail 45/45
ref makerand 44/45
ref perfect 44/45
ref splitmail1 45/45
ref splitmail2 43/45
ref splitmail3 38/45
ref splitmail4 32/45
train diffmail 45/45
train perfect 43/45
train scrabble 42/45

twolf ref 3/3
test 3/3
train 2/3

vortex2000 ref1 9/10
ref2 7/10
ref3 10/10
test 10/10
train 10/10

Table 2.8: Games-Howell Results: Proportion of significantly distinct profile
pairs,cc , Part 2

26 CHAPTER 2. EXACT PROFILES

ANOVA analysis found to have some significant profile usefulness difference2.
In general, these results allow us to proceed with analysis of these average cycle
counts without much reason to suspect that the differences between the average
cycle counts are merely experimental error.

Note that this claim is quite independent of any claims as to the causes of
profile-driven optimization usefulness. All that this section has so painstakingly
established is the existence of significant differences due to profile-driven opti-
mization - it does not, for example, make any assertions that profile-driven opti-
mization is a good thing, or connected to how accurate the profiles are (covered
in the next section), etc. To use a ridiculous example: an “profile-driven opti-
mizer” that simply hashed the name of the training profile to an enormous integer
i, and inserted a delay loop that tooki iterations would result in significant profile-
driven optimization performance differences as we define it in this section. More
realistically, significant improvements in optimization performance are not neces-
sarily the result of well-designed optimizations successfully making use of good
information, as we shall establish later in this chapter.

If this seems like a meager conclusion after so much analysis, it is worth re-
membering that in the absence of this analysis, we would have no reason to believe
that the differences in profile usefulness that we will subsequently attempt to con-
nect to profile accuracy are anything more than experimental error. While this is a
banal conclusion if one is only looking at large differences in optimization perfor-
mance for long-running SPEC “reference” evaluation runs, it is quite significant
for subsequent sections.

In theory, this analysis should be repeated for each and every subsequent
experiment on profile-directed optimization performance in future chapters. To
avoid tedium, we have decided to present it only once, to raise the level of faith
that the differences that one observes from profile-directed optimization are usu-
ally the results of actual performance differences, not experimental error.

2Technically, we should probably not proceed with a post-hoc analysis at all if the finding of the
original ANOVA was that there was no significant difference. In this case, nothing that we found
from the post-hoc analysis disagrees with the original ANOVA: the benchmarkart ’s reference
runsref1 andref2 are found to have little significant performance difference among profiling
runs by both ANOVA and the post-hoc analysis, and are probably poorly suited to further analysis
of profile-driven optimization performance

2.4. THE CONNECTION OF USEFULNESS AND ACCURACY 27

2.4 The Connection of Usefulness and Accuracy

Profile-driven optimization implicitly assumes a connection between better pre-
dictions of the future and better optimization. After all, the whole point of profil-
ing is to gain a better idea of what will happen in future executions than could be
predicted by static estimation. In this chapter, we evaluate this connection only
in the context of “exact” profiles - in our experiment, benchmark runs that were
available with the SPEC95 or SPEC2000 benchmark set. We set forth the Useful-
ness/Accuracy Hypothesis as follows: The usefulness of a profile is determined to
a large extent by the degree to which it predicts future behavior. Profiles that are
more accurate predictors of future behavior on a given execution run will result
in better profile-driven optimization performance (for that run) than less accurate
profiles.

This hypothesis needs to be qualified in several ways. Firstly, it applies only
to a single optimizer at a time; it cannot be expected to predict performance across
optimizers (and perhaps not across different benchmarks, either). It can only be
evaluated in terms of a population of profiles and benchmark runs. It also implies
the existence of a single metric for determining profile accuracy; we will evaluate
and present the results for several different profile accuracy metrics.

We must also define the cases for which we are trying to correlate the two vari-
ables of profile accuracy and profile usefulness. Should we make comparisons
between two different benchmarks - for example, suppose the accuracy metric
STATICCOVERAGE (explained in detail later) shows that the “train” benchmark
run for gcc covers only 75% of the “ref” benchmark run’s basic blocks, while
the “train” benchmark for vortex covers 99% of the “ref” benchmark run’s basic
blocks. Are we trying to establish that the “train” benchmark for gcc is somehow
relatively less useful for gcc “ref” benchmark run PDO than the “train” benchmark
for vortex is among potential training runs for vortex? Establishing such a connec-
tion would be helpful, as if it was true, we could immediately assume that, even
for a benchmark that we had never seen before, a run with poor static coverage
scores was going to be a bad choice for profile-driven optimization. At the other
extreme, it is possible that the only legitimate connections between profile-driven
optimization performance and profile-accuracy occur strictly on a per-benchmark
and per-run basis. That is, knowing the static coverage score for a given training
profile and reference run pair is only useful in predicting profile-driven optimiza-
tion performance relative to other training profiles on that run. These two cases
are illustrative but not exhaustive. An intermediate possibility is the case where
per-benchmark scores can be compared across runs, but where scores cannot be

28 CHAPTER 2. EXACT PROFILES

used to predict cross-benchmark performance.
It is important to emphasize that this chapter shows the results of evaluating

profile-driven optimization performance on a relative handful of benchmark runs.
Given that many of the programs that we studied have a small number of potential
runs - and in some cases, that all the potential runs are extremely similar - it is
important not to make sweeping generalizations about the behavior of all potential
profiles for these benchmarks. Especially infrequent in the profiles in this chapters
analysis are profiles that generally score very poorly in terms of accuracy when
compared to other profiles for the benchmark. Overall, most of our benchmark
runs are very similar to each other; we have a dearth of “bad” profiles. This is not
a bad thing for many of our benchmarks; after all, they themselves are not capable
of being run in radically different ways. However, we must be aware that there is a
wider spectrum of potential profiles available, particularly by means such as static
estimation and statistical sampling, which generally produce much less accurate
profiles - even for programs that have almost no variation between the behaviors
of actual runs. Our results in this chapter do not necessarily predict results in these
wider domains.

In this section, we again use the measurements gathered for each benchmark,
exact profile and evaluation run in the previous sections in this chapter, as well as
gathering profile accuracy metrics for each of the training profiles used.

2.4.1 The Usefulness of Perfect Information

The first indication that profile accuracy is not necessarily strongly determinant of
profile-driven optimization performance is immediately apparent from our scaled
average scores. We use the mean cycle counts for resubstitution - that is, the
resulting cycle counts from using the reference runs profile as a PDO training
profile - as our baseline for normalizing the different cycle counts produced for
each benchmark and benchmark run. Thus, for a given run and benchmark, a
profile that produces a binary that performs just as well as the reference runs
profile gets a score of 1.0. Using the data we have already gathered, we can easily
measure each profile’s usefulness relative to perfect information.

Examining Figure 2.9 shows us that the connection between accuracy and
usefulness is at least problematic. These figures show histograms of the distribu-
tion of scaled averages for each of our two optimization contexts (taken over all
possible training and evaluation pairs for all of our benchmarks). A substantial
number of profiles have scores that are under 1.0 - in fact, 35% of alto training
profile/evaluation run pairs score below 1.0 (i.e. better than perfect information)

2.4. THE CONNECTION OF USEFULNESS AND ACCURACY 29

0.90 1.00 1.10 1.20

Scaled Cycle Count

0

25

50

75

C
o

u
n

t

alto cc

0.90 1.00 1.10 1.20

Scaled Cycle Count

Distribution of average cycle counts for all benchmarks (scaled by resubstitution case)

Figure 2.1: Histogram of average cycle counts for each benchmark, training pro-
file and evaluation run (resubstitution excluded), scaled so that the resubstitution
case for that benchmark and run is1.0

30 CHAPTER 2. EXACT PROFILES

and almost half of the cc pairs score below 1.0.
This is an obvious sign that the correlation between profile accuracy and pro-

file usefulness is not strong. If the correlation between profile accuracy and profile
usefulness was perfect, no profile could be more useful than the profile that con-
stitutes perfect information for that run. The fact that so many profiles outperform
perfect information, some by substantial amounts, is a sure indicator that the cor-
relation is not perfect.

Table 2.9 shows the proportion of the non-resubstitution cases that outperform
resubstitution. Note that for some benchmarks (ammp, parser andijpeg un-
der alto , equake andgo undercc), the number of benchmark run / profile
pairs that perform better than resubsitution is in excess of 75%.

This is a quite strong result, as it is independent of our choice of profile accu-
racy metric.

2.4.2 Profile Accuracy Metrics

All of our comparison metrics compare a list of basic block counts in a training
profile with a list of basic block counts in an evaluation profile. They return a
single number, a score that indicates how well the basic block counts in the train-
ing profile predict the basic block counts in the evaluation profile. Thus, a more
accurate training profile better predicts the CFG-level behavior of the evaluation
run. Most of these metrics are asymmetric.

A profile comparison metric consists of a comparison type and a way of ap-
plying it over the program. The comparison types we use in this paper are key-
matching, static coverage and relative entropy.

Key-matching is introduced in [14]. It uses a parameter that determines how
many blocks are selected for key-matching. For example, if a function has 50
blocks, and the matching level is 40% (or 0.4), then we perform key-matching on
the top 20 blocks as follows: the key-match score is the number of blocks in the
top 20 blocks in the training profile that are also in the top 20 of the evaluation
profile. Key-matching metrics are denoted by KM(level) - “level” is always 0.1 in
this paper.

Static coverage (denoted “STCOV”) measures what proportion of the blocks
executed (“covered”) in the evaluation profile are also executed in the training
profile.

Relative entropy (denoted “ENT”) as a method of comparing profiles was in-
troduced by Savari and Young [11] and is fully described there. Relative entropy
treats the profiles being compared as distributions of random variables and uses

2.4. THE CONNECTION OF USEFULNESS AND ACCURACY 31

Optimizer Benchmark Number of non- Number of non-resubstitution
resubstitution runs runs better than resubstitution

alto ammp 6 5
art 12 4
bzip2 20 10
compress 6 0
crafty 6 0
equake 6 2
gap 6 1
go 20 10
gzip 25 17
ijpeg 6 5
li 6 0
m88ksim 6 1
mcf 6 2
parser 6 5
perl2000 81 19
twolf 6 3
vortex2000 20 5
vpr 30 9
ALL CASES 291 98

cc ammp 6 2
bzip2 20 8
compress 6 2
crafty 6 2
equake 6 5
gap 6 3
go 20 15
ijpeg 6 4
li 6 3
m88ksim 6 3
mcf 6 3
perl2000 90 40
twolf 6 3
vortex2000 20 9
ALL CASES 200 102

Table 2.9: Number of training profile / evaluation run pairs (not counting resub-
stituion) and number of such pairs that perform better than perfect information
.

32 CHAPTER 2. EXACT PROFILES

an information-theoretic approach to measure the difference between the two dis-
tributions.

We use two methods for applying these comparisons to our programs. Firstly,
we can apply the comparisions to the whole program’s set of basic block counts
directly. This is the default method. Secondly, we can apply them only to the
entry counts of functions, ignoring all other basic block data (denoted by prefixing
“FE-” to the comparison name in our results).

2.4.3 Evaluating the Connection Between Comparison Met-
rics and Usefulness

To measure the association between profile usefulness and a given profile com-
parison metric, we use the Spearman Rank Correlation Coefficient [15],rs. The
coefficientrs can be calculated by assigning ranks to the values being compared
(scoring ties as the average rank values - so if there is a tie between the top two
values, they both are assigned the rank of 1.5) and calculating the more famil-
iar Pearson correlation coefficient [15] over those ranks. Thus, calculations of
rs discard the magnitude of the differences between data points. This makesrs

weaker (more likely to miss a real effect) than Pearson’s correlation coefficient but
much more robust in the presence of non-linear relationships, outliers and (more
generally) data that does not hold to a bi-variate normal distribution.

When analyzing the correlation between profile accuracy and usefulness, we
must be aware that there is no “natural” population of profiles for a given bench-
mark. For most benchmarks, we have a limited number of runs available to us,
and they have been chosen artificially. If we include other profile types besides
profiles derived directly from real runs, we are introducing further artificial biases
into our population. Admittedly, the choice of benchmark runs from the SPEC
benchmark sets are artificial also, but they are not the artificial choices of the
authors of this paper - that is, they are not hand-picked in order to advance our
favored hypotheses.

Evaluating a single benchmark and single evaluation run, we show an example
of how we summarize the connection between profile usefulness and accuracy
with a single correlation scores. We then show how we combine multiple scores
(one for each individual run) to yield an aggregate score for the benchmark, and
then present scores for all of our benchmarks and optimizers.

2.4. THE CONNECTION OF USEFULNESS AND ACCURACY 33

Training run name Average cycle count (Gcycles)Relative entropy

ref/diffmail 45.819 8.05
ref/makerand 47.581 22.57

ref/perfect 40.774 0
splitmail1 46.495 8.52
splitmail2 45.640 8.20
splitmail3 47.176 8.35
splitmail4 45.281 8.29

train/diffmail 45.615 8.06
train/perfect 42.515 2.45

train/scrabble 48.923 20.44

Table 2.10: Example 1:perl2000 scaled cycle counts and accuracy metrics for
a single evaluation run (ref/perfect)

Gathering Usefulness/Accuracy Correlation Results for a Single Evaluation
Run

Firstly, we present the average cycle count scores and usefulness scores for the
benchmarkperl2000 and theref/perfect benchmark evaluation run. For
each training profile, we have an average cycle count (reflecting how many cycles
the binary that was produced by profile-driven optimization using that profile took
to run the evaluation run) and an accuracy score (reflecting how close the training
profile was to the profile produced by the evaluation run). For this example, we
will use the accuracy scores provided by relative entropy3.

Table 2.10 shows the cycle counts and relative entropy scores for a list of train-
ing runs (the names refer to the different benchmark runs available forperl2000
and are not of any interest aside from the fact that they label cases). Figure 2.3
shows the same information in graphical form. To calculate a score for how
closely relative entropy predicts scaled cycle counts, we take thers value of two
variables (cycle count and relative entropy) over the list of cases (training profiles).
This amounts to calculating thers values of the two value columns in Table 2.10,
which turns out to bers = 0.87. This value is statistically significant at the 0.01
level; that is, if there was no association whatsoever between two variables, we’d
expect to see ars value this high less than 1 in 100 times. The proportion of scaled
cycle count variation explained by relative entropy isr2

s = 0.75 - that is, 75% of

3More accurate profiles produce lower relative entropy scores; zero represents a perfect match.

34 CHAPTER 2. EXACT PROFILES

Figure 2.2: Example 2 (continued):perl2000 evaluation runref/perfect :
Scatter-plot of average cycle count versus relative entropy score

2.4. THE CONNECTION OF USEFULNESS AND ACCURACY 35

Evaluation run name rs score

ref/diffmail 0.382
ref/makerand 0.778**

ref/perfect 0.867**
splitmail1 0.697*
splitmail2 0.612*
splitmail3 0.685*
splitmail4 0.612*

train/diffmail 0.394
train/scrabble 0.285

Table 2.11: Example 2: Allperl2000 evaluation runs with the rank-correlation
values of cycle counts and relative entropy calculated over each training run (‘**’
results significant at 0.01 level, ‘*’ results significant at 0.05 level).

the variation in average profile-driven optimization performance in this particular
case can be explained in terms of relative entropy.

Note that this benchmark has a quite large number of possible training pro-
files (10). Many of our benchmarks have only 3 or 4 runs available, so we are
often in the situation of calculating correlations over a tiny set of cases. In this
circumstance, it is possible to have apparently strong correlations that are in fact
statistically meaninglessconsidered singly. Only when they occur as a pattern
across multiple evaluation runs and/or benchmarks can we attach any weight to
these results.

Gathering Usefulness/Accuracy Correlation Results for Multiple Evaluation
Runs

Table 2.11 shows this analysis repeated for all of our evaluation runs inperl2000 .
We see a larger set of results - now, we have a table withrs numbers for each eval-
uation run. Not all of the correlations are significant at a 0.01 level (those that are
are marked with a “**”) or even at a 0.05 level (marked with a “*”). For example,
the valuers = 0.382, seen for the evaluation runref/diffmail is fairly low:
there is a 14% chance that two unconnected variables might show a rank corre-
lation equal to or greater than this value (3 evaluation runs fall into the category
of not being significant at the 0.05 level). However, even considering only these
three values in isolation, it is unlikely that we would see three such correlations

36 CHAPTER 2. EXACT PROFILES

Figure 2.3: Allperl2000 evaluation runs: Scatter-plot of scaled average cycle
count (scaled by resubstitution case) versus relative entropy score

2.4. THE CONNECTION OF USEFULNESS AND ACCURACY 37

(that is, positive and in the range0.285 < rs < 0.394) between relative entropy
and average cycle count if overall, there was no connection between relative en-
tropy and average cycle count for any of these runs. In fact, the chance that such
three correlations this strong or stronger would have arisen by chance given no
connection between relative entropy and cycle count is about 1%.

Note that it is quite possible to have negativers scores; in this case, more ac-
curate profiles actually result in worse profile-driven optimization performance.
In addition, it is worth noting that profile accuracy metrics that return a constant
value for the set of profiles considered will result in a zerors score regardless
of the usefulness scores. Such a metric is not a very good predictor, of course,
but an accuracy metric that fails to differentiate between profiles at all is still
more closely connected to usefulness than one that is negatively correlated with
usefulness! For example,ijpeg optimized withalto has a strong inverse rela-
tionship between usefulness and accuracy. The ’relative entropy’ metric predicts
about 66% of the variation in usefulness - unfortunately, in this case less accurate
profiles consistently produce better optimization effects than more accurate ones.

Combining Usefulness/Accuracy Correlation Results from Multiple Runs to
Yield a Single Aggregate Score

We can compute a summary value for the overall connection of usefulness and
accuracy over a benchmark by simply averaging thers values for each evaluation
run, yielding an aggregate correlation ofmean(rs) = 0.59 for the example of the
perl2000 benchmark.

This is not generally good practice; an approach that is more statistically rigor-
ous is to transform eachrs value to az-score (normal score), take the average over
thesez-scores and transform back into the range ofrs. However, this procedure
is complex and results in averagers scores in most cases that are little different
from those that we derive from simple averaging. Further, the transformation to a
z-score is problematic for extreme cases (perfect correlationrs = 1 or perfect neg-
ative correlationrs = -1); the formulas to transform correlation scores toz-scores
produce essentially meaningless results in these cases.

To calculate whether aggregaters scores are significant, we must calculate
what the expected value of our aggregaters score would be if the null hypothesis
was true for each correlation being aggregated. So, for example, the distribution
on the null hypothesis of the aggregaters score that sums up the association of
some profile metric and the average cycle counts on all cases ofperl2000 is
equal to the distribution of the average of seven random variables chosen from

38 CHAPTER 2. EXACT PROFILES

seven identicalrs distributions. This highly heterogeneous method of calculating
significance (given that we have results that average 3rs distributions over 3 items
all the way up to results that average 10rs distributions over 10 items) turned out
to yield complicated and difficult to interpret data. Generally, we will assume that
individual benchmark scores for benchmarks with low numbers of runs (e.g. not
vortex , go , perl2000 , textttvpr andgzip) are of questionable significance
when considered single; particularly if the magnitude of the averagers score is
small (under 0.4). Aggregates over entire benchmark sets are nearly all significant
due to the much larger number of data points involved.

Aggregate Usefulness/Accuracy Correlation Results for all Benchmarks

Using such a procedure to gather aggregate numbers for each benchmark, this
time over a range of comparison metrics, we derive Table 2.12. This table
shows the aggregaters scores for each comparison, benchmark and optimizer,
as well as overall mean scores forrs comparison and optimizer. It is clear that the
perl2000 benchmark, presented above, and particularly theperfect evalua-
tion run, represent a quite favorable case - note the large number of benchmarks
in this table for which the aggregaters scores are either very low (i.e. no corre-
lation) or actually negative (i.e. more accurate profiles have worse profile-driven
optimization performance). Particularly, the results for thecc optimizer show no
overall pattern of a connection between profile usefulness and profile accuracy.

In thealto case, all of the profile comparison metrics yielded small but sig-
nificant correlations between profile accuracy scores and profile usefulness scores.
Key-matching performed slightly worse than the other two profile accuracy met-
rics, entropy and static coverage. The “function-entry” versions of these latter
accuracy metrics performed slightly better than the versions that considered all of
the basic blocks in the program, although such a small difference is not likely to
be significant.

On the other hand, the correlation results forcc suggest no significant and
systematic (that is, consistent across different benchmarks and profile accuracy
metrics) connection between profile usefulness and profile accuracy at all.

There was a substantial amount of variability among the aggregaters scores
for each benchmark. Some of this variability is simply random; the aggregaters

scores for the benchmarks with a small number of runs are subject to a great deal
of randomness as they involve comparisons among only 9 or 16 values. However,
some benchmarks clearly have far stronger associations between usefulness and
accuracy than others. Recall that the correlation coefficients in Table 2.12 rank

2.4. THE CONNECTION OF USEFULNESS AND ACCURACY 39

how well profile usefulness correlates with profile accuracy; they have nothing to
say about how well profile-directed optimization works overall.

A major weakness of the above approach to evaluating the connection of
profile-directed optimization performance and profile accuracy is that, due to the
use of non-parametric methods and averaging across different benchmarks, small
variations in one benchmark are weighted as heavily as huge variations in another.
There is no simple way to avoid this problem without recourse to parametric corre-
lation methods. However, we can derive results that are more useful by restricting
our above analyses to only those evaluation runs with greater variability due to
profile-directed optimization. The overall (per-optimizer) results from restricting
our analysis to the top half of evaluation runs with the highest level of profile-
directed optimization variability are shown in Table 2.13.

The failure of our profile accuracy metrics to explaincc profile-directed opti-
mization performance turns out to be unconnected to profile-directed optimization
variability. Even considering only benchmarks and benchmark runs that had large
variations in profile-directed optimization performance did not improve the con-
nection between profile accuracy and profile usefulness when usingcc . However,
our alto results become substantially stronger when we eliminate benchmark
runs with small variations in profile usefulness. Entropy-based methods, in par-
ticular, improve markedly. The “FE-ENT” accuracy metric predicts 34% of the
variation in our profile-directed optimization results underalto - a modest result,
but the strongest one so far.

We found no similar improvements from restricting our analysis to smaller
(e.g. top quarter by PDO variability) subgroups of our evaluation runs. Not
surprisingly, the bottom half of evaluation runs by PDO variability showed no
significant correlation (underalto or cc) between profile accuracy and profile
usefulness.

2.4.4 Discussion

There is no reason to suppose that any reliable connection between accuracy and
usefulness existed in thecc optimization context whatsoever. We conjecture that
the much more extensive and high-level optimizations present incc sufficiently
transform the control-flow-graph to the point where the relatively subtle differ-
ences between training profiles are irrelevant. This does not mean that profile-
driven optimization does not work incc , nor does it mean that arbitrarily inaccu-
rate profiles will produce profile-driven optimization performance indistinguish-
able from good ones. What it does mean is that, within the fairly narrow range

40 CHAPTER 2. EXACT PROFILES

Optimizer Benchmark mean(rs)
ENT STC KM(0.1) FE-ENT FE-STC FE-KM(0.1)

alto ammp -0.67 -0.79 -0.50 -0.50 -0.58 -0.67
art 0.20 0.23 0.35 0.25 0.07 0.23
bzip2 -0.12 -0.06 0.09 0.00 0.14 0.16
compress 1.00 0.91 0.83 1.00 0.29 0.58
crafty 0.83 0.67 0.67 0.67 0.17 0.50
equake 0.17 0.17 0.00 0.17 0.00 0.58
gap 0.83 0.83 0.50 0.83 0.79 0.50
go 0.26 0.13 0.20 0.34 0.30 0.23
gzip -0.16 -0.24 -0.28 -0.26 0.12 -0.24
ijpeg -0.83 -0.67 -0.67 -0.83 0.00 -0.79
li 0.83 0.96 0.50 0.83 0.96 0.50
m88ksim 0.67 0.67 0.67 0.67 0.79 0.67
mcf 0.50 0.62 0.67 0.50 0.58 0.87
parser -0.50 -0.83 -0.83 -0.50 -0.29 -0.67
perl2000 0.59 0.60 0.45 0.52 0.60 0.50
twolf 0.33 0.33 0.17 0.33 0.58 0.29
vortex2000 0.38 0.36 0.38 0.64 0.17 0.48
vpr 0.52 0.59 0.57 0.55 0.51 0.54
alto MEAN 0.27 0.25 0.21 0.29 0.29 0.24

cc ammp 0.00 -0.04 0.33 0.33 -0.58 0.00
bzip2 0.16 0.04 0.15 0.06 -0.07 -0.09
compress 0.33 0.17 0.17 0.33 0.29 0.29
crafty 0.67 0.33 0.00 0.33 -0.46 0.00
equake -0.83 -0.83 -0.50 -0.50 0.00 0.00
gap -0.33 -0.33 -0.33 -0.33 -0.46 -0.17
go -0.72 -0.76 -0.74 -0.72 -0.60 -0.65
ijpeg 0.33 0.00 0.00 -0.33 0.00 -0.33
li -0.17 -0.46 0.33 -0.17 -0.46 0.33
m88ksim -0.17 -0.17 -0.17 -0.33 -0.12 -0.17
mcf 0.33 0.33 0.17 0.33 0.58 0.29
perl2000 -0.18 -0.23 -0.17 -0.19 -0.21 -0.14
twolf 0.33 0.33 0.17 0.33 0.58 0.33
vortex2000 0.04 -0.01 -0.02 0.06 0.02 0.06
cc MEAN -0.06 -0.12 -0.04 -0.06 -0.11 -0.02

Table 2.12: The connection of usefulness and accuracy: aggregatedrs scores over
optimizers, benchmarks and different comparison metrics

2.4. THE CONNECTION OF USEFULNESS AND ACCURACY 41

Optimizer ENT STC KM(0.1) FE-ENT FE-STC FE-KM(0.1)
alto mean 0.57 0.52 0.48 0.58 0.45 0.45
cc mean -0.15 -0.22 -0.14 -0.17 -0.03 -0.03

Table 2.13: Aggregatedrs scores over optimizers, considering only the top half of
evaluation runs by PDO variability

of profiles and benchmarks we tested, accuracy could not be shown to have any
connection to usefulness. We evaluated many other profile comparison metrics
than (carrying out key- and weight- matching at multiple levels, using dynamic
coverage) presented here and found that none of them performed any better than
the comparison metrics presented.

Our results for thealto optimization context were more encouraging, but
still relatively weak. Even when restricting our analysis to benchmarks with large
profile-directed optimization variability, we could explain no more than a third of
the variation in average cycle counts by some accuracy metric.

One of the most startling results was the fact that the accuracy metric “FE-
STC” performed as well as it did despite the fact that it ignores nearly all of the
information in the block profile. This extremely simple metric can be calculated
by determining the number of functions entered in the training profile and the
evaluation run divided by the total number of functions entered in the evaluation
run.

The effectiveness of this metric (and similarly restricted metrics) could result
from there being little variation in within-function behavior from run to run (that
is, when profiles produced from benchmark runs differ, it is because they cover a
different set of functions, not because they have radically different behavior within
those functions). An alternate possibility is that the optimizations inalto really
only effectively worked at a per-function level and thus made little use of the
within-block information. These possibilities are not easily separated, although
the fact that our “function-entry only” comparison metrics are strongly correlated
(rs > 0.9) with their whole-program counterparts for nearly all benchmarks is
suggestive that the former possibility is true (across both optimizers,bzip2 and
gzip were the only exceptions).

42 CHAPTER 2. EXACT PROFILES

2.5 Conclusion

Profile-directed optimization is a worthwhile technique, on average, in both of
the optimizers evaluated. On average, we saw an improvement over non-profile-
directed optimizations of about 3.5% onalto and 5% on cc; these aggregate
numbers concealed substantial variations (the best case for either optimizer was
approximately 17% better than non-profile-directed optimization and the worst
case for either was approximately 14% worse).

Nearly all of the benchmark runs showed significant variation in profile-directed
optimization performance. In only 1% of our evaluation runs were we unable to
detect significant variation among profile-directed optimization performance (that
is, no variation due to profile-directed optimization existed or it was so small that
we were unable to separate this variation from experimental error). Again, large
differences existed between the evaluation runs with the largest amount of profile-
directed optimization variability and those with the smallest - the standard de-
viations in speed-up over the non-profile-directed-optimization case ranged from
effectively zero to nearly 5%.

Profile accuracy is only weakly associated with profile usefulness in one of
our optimizers (alto) and not connected at all with profile usefulness in another
(cc), for our set of benchmarks and benchmark runs. While considering only
benchmarks or runs with higher variability in profile-driven optimization perfor-
mance improved the connection onalto , the connection between usefulness and
accuracy still accounted for only 34% of the observed variation in profile-driven
optimization performance. While the comparatively weak (non-parametric) cor-
relation methods that we had to use may have caused us to be overly conservative,
it seems unlikely that any accuracy metric whatsoever would explain in excess of
50% of the variation. Of the variation in profile usefulness explainable by profile
accuracy metrics, much of it was explainable by fairly simple profile accuracy
metrics, most notably static coverage of function entries (“FE-STC”).

These results (negative forcc and weak foralto) are not entirely surprising.
Much of the variation in our training profiles does not necessarily cause differ-
ent optimization outcomes. That which does cause different outcomes does not
necessarily help. Not every optimization “decision” produces better performance,
regardless of whether it is based on good information - few compiler optimizations
are truly “optimizations”, particularly when interacting with many other optimiza-
tions.

Note that these results (in addition to being in the context of a certain sets of
benchmarks and optimizers) are in the context of profiling with exact basic block

2.5. CONCLUSION 43

profiles. Our range of profiles was intentionally limited to the profiles that result
from the standard benchmark runs that are provided with the SPEC benchmarks;
adding a few inaccurate synthetic profiles to our analysis may have made our
results stronger but would introduce problems with statistical rigor - adding such
heterogeneous items to our data sets would essentially amount to “rigging” our
results.

Given all of these caveats, what have we shown? Aside from the methodologi-
cal contributions, our results show that there exists at least one optimizer for which
usefulness and accuracy are not correlated (in our experimental context) and one
in which this correlation exists but fails to explain the bulk of profile-directed
optimization performance. Thus any claims about profile-directed optimization
techniques or more accurate profiling techniques (or the necessity of obtaining
more accurate precise basic block profiles - dynamically or otherwise) should be
evaluatedexperimentally, not in terms of profile accuracy. We have shown that
there are a range of cases where little or no connection between profile accuracy
exists. Thus, it is incumbent on designers of profile-directed optimization systems
to demonstrate that the profile-directed optimization in their systems is actually
effective over a wide range of benchmarks, rather than merely showing that the
profiles gathered are of high accuracy.

Further chapters will address the issue of the profile “usefulness” of profiles
generated by imprecise profiling techniques such as statistical sampling and static
estimation. Our results in this chapter make no predictions about the performance
of such techniques; generally, the far more profiles generated by such methods are
far more inaccurate than the profiles examined in this chapter.

44 CHAPTER 2. EXACT PROFILES

Chapter 3

Static Estimation of Block Profiles

3.1 Introduction

The instrumentation overhead from gathering exact profiles is high and the task of
instrumenting a arbitrary program in an efficient way is not always straightforward
(particularly in the presence of dynamic linking or dynamic code generation, or
in object files where finding all code is difficult due to object file or instruction
format). One solution to these problems is to simply statically estimate profiles
based on the structure of the program. Another is to employ a non-intrusive (the
program code is not changed) technique called sampling, discussed in Chapter 4.

Static estimation of program execution profiles takes advantage of the fact
that control-flow behavior is fairly predictable from program to program. Simple
heuristics can allow us to discover that branches that exit loops, for example, are
usually taken very infrequently. From these heuristics, we can reconstruct a basic
block profile which we use for profile-driven optimization.

3.2 Static Estimation

In this work, we evaluate only a fairly simple (or naive) static estimator. While
evaluating a more sophisticated static estimator would be interesting, we are nec-
essarily limited in the scope of this work. Further, building a good static estimator
in our optimization context would be of only limited research interest - after all,
the control flow graphs that we process have already been heavily transformed by
the compiler. Thus, when we look at branch behavior, we are looking at the output
of a complex set of algorithms which are already making heuristic guesses about

45

46 CHAPTER 3. STATIC ESTIMATION OF BLOCK PROFILES

the same branch behavior. Thus, any branch model we built for our benchmarks
would have as much to do with thecc compiler’s branch prediction heuristics and
code transformations as it would with the original program’s behavior. We would
need to deal with a control flow graph much earlier in the optimization process if
we wanted to avoid these problems.

Thus, our naive static estimator has only a limited set of heuristics, based on
overall program structure. A branch that exits a loop is assumed to be not-taken
with a branch frequency of0.1. Similarly, a conditional branch that continues a
loop’s execution is assumed to be taken with frequency of0.9. All other branches
are assumed to be evenly balanced with a frequency of0.5.

Like most static estimators, our static estimator makes no attempt to estimate
conditional branches as either “always-taken” or “never-taken”. This is a funda-
mental problem with static estimation: a large number of conditional branches
actually fall into this category. Unfortunately, most static estimators represent
their level of uncertainty about whether a branch is taken within the branch es-
timate. Thus, a conditional branch in a loop that is heuristically estimated to be
very unlikely (for example, it leads to aexit() call) is given a very small -
but non-zero - branch frequency as a way of expressing the uncertainty about the
static estimation process.

The net effect of these kind of estimates is that most static estimators, includ-
ing our own, perform very poorly at estimating which program blocks are never
executed1. Our statically estimated profiles perform very well on coveraged-based
profile accuracy metrics, but not for the right reasons. Even a profile that simply
consists of a constant value for each block will be considered a perfect estimate
of any other profile if our accuracy metrics are static or dynamic coverage.

We use a two-stage process to turn our branch estimates (from our simple
heuristics) into block profiles. In both stages, we represent the block counts (or
function entry counts) as a linear equation and solve the linear equation using
the IML library[1]. First, we estimate “fractional counts” for each block in each
function: the estimated number of executions for each block if the entry block of
the function was executed1.0 times. Then, we calculate the frequency of function
calls within each function to other functions and, setting the entry function of the
program to a count of1.0, we estimate the frequency that every function in the
program is entered. Finally, we use these entry counts in conjunction with the

1The use of a threshold (that is, if the estimated count for a block is below a certain value,
consider it zero) fails to improve matters: if the threshold is made high enough to estimate a large
number of basic blocks as ‘not executed’, then the threshold usually applies to far too many basic
blocks.

3.2. STATIC ESTIMATION 47

“fractional counts” to establish basic block profiles for every function.

3.2.1 Combining Real Profile Information with Static Estima-
tion

As we will see, static estimation of this naive type does not perform very well
for optimization. In an effort to discover what is wrong with static estimation,
we shall artificially insert two different types of dynamically-obtained informa-
tion into our static profiles. If either of these types of information substantially
improves the usefulness of the statically estimated profiles, we will know that the
lack of that type of dynamic information was a significant deficiency in the static
profile.

• Entry Count information: entry count information consists of basic block
profiles for every function entry block in the program. Having entry counts
allows us to use our static estimation process only for individual functions.
Since one of the major problems for static estimation is an accumulation of
errors for deeply nested block counts, having entry count information might
help to bound the total amount of error for basic block count estimates.

• Coverage information: coverage information involves a single bit for each
block, indicating whether the block is executed or not executed. Having
such information allows us to get a picture of how much more useful it is
to know when branches are “never-taken”, although some situations exist
where coverage information does not help. For example, the fact that a sim-
ple ‘if’ construct (with no ‘else’ clause) is always taken will not be detected
by coverage profiling.

There is some overlap between these two sources of information. Entry count
information conveys coverage information for whole functions: if a function has
an entry count of zero, then the function can be treated as “not-covered” as a
whole.

Note that both of these types of information have comparatively simple imple-
mentations as low-overhead profiling techniques. Entry count information can be
gathered in a similar way to basic block profile gathering, but with instrumentation
code added only to functions. The same general class of optimizations that apply
to gathering of basic block profiles apply also to entry count information; for ex-
ample, if function is always called exactly once per execution of some other set of
functions, we can derive its entry count from the entry counts of those functions.

48 CHAPTER 3. STATIC ESTIMATION OF BLOCK PROFILES

Coverage information is even simpler to derive. The Plan 9 debugger,acid
[17] implemented such a coverage profiler by placing a breakpoint at the begin-
ning of each basic block and eliminating the breakpoint after the first execution of
a such a basic block. The overhead of this technique is negligible; it depends only
on the total static number of blocks executed within a program execution, while
most profiling techniques impose costs that are proportional to the number of dy-
namic events that take place in a program execution. This overhead can be further
reduced using control-flow graph based optimizations. For example, if a group of
basic blocks consists of basic blocks such that for any pair of basic blocksbi and
bj, bi dominatesbj andbj post-dominatesbi, or vice versa, then only one block in
that group needs to be monitored during “coverage profiling”.

Results from Static Estimation

In our evaluation, we compare statically-estimated profiles with dynamic profiles.
We use the following profiles in our evaluation:

• Statically-estimated profiles, using naive heuristics only

• A single profile from the “reference” and “train” profiles sets for that bench-
mark

• For each profilep of our “reference” and “train” profiles,

– Statically-estimated profile using entry counts fromp

– Statically-estimated profile using coverage information fromp, and

– Statically-estimated profile using entry counts and coverage informa-
tion fromp.

We first compare the results of using the simple naive static estimator with the
results of using the exact “reference” and ”training profiles” in Table 3.1. The
use of statically estimated profiles (in this table, scaled against the “resubstitu-
tion” case and averaged over each different benchmark run) caused significant
worsening of performance for most benchmarks (ranging up to more than 10%
for crafty andm88ksim usingalto). Our results forcc , by comparison,
showed only a slight worsening of performance as a result of using static estima-
tion instead of exact profiles.

Next, we analyze whether or not adding coverage information and/or entry
counts from real profiles improves the naive static estimation profile usefulness.
First, we look at the impact of adding coverage information.

3.2. STATIC ESTIMATION 49

Optimizer Bench Exact Profile Static Profile
train ref

alto art 1.00 1.00 1.00
bzip2 0.99 1.00 1.03

compress 1.00 1.00 1.00
crafty 0.99 1.00 1.10

gap 1.00 1.00 1.05
go 1.00 1.00 1.07

gzip 1.00 1.00 0.97
ijpeg 1.00 1.00 1.01

li 1.01 1.00 1.05
m88ksim 1.01 1.00 1.11

mcf 1.00 1.00 1.00
twolf 0.99 1.00 1.08

vpr 0.98 1.00 1.01
Alto Mean 1.00 1.00 1.04

Common Mean2 1.00 1.00 1.04
cc bzip2 1.01 1.00 1.00

compress 1.01 1.00 1.01
crafty 1.02 1.00 0.96

go 0.97 1.00 0.97
ijpeg 1.00 1.00 1.04

li 0.96 1.00 1.04
m88ksim 0.94 1.00 1.05

mcf 1.00 1.00 1.01
vpr 1.01 1.00 1.03

CC Mean 0.99 1.00 1.01

Table 3.1: Dynamic versus Static Profile Performance (geometric mean across all
runs for benchmark and scaled to be relative to resubstitution case). “Common
Mean” is a mean over only thealto benchmarks that were also measured with
cc

50 CHAPTER 3. STATIC ESTIMATION OF BLOCK PROFILES

Optimizer Bench Static Profile Coverage Entry Counts Both
alto art 1.00 1.00 1.00 1.00

bzip2 1.03 1.00 1.02 0.97
compress 1.00 1.01 1.01 1.02

crafty 1.10 1.09 1.08 1.10
gap 1.05 1.07 1.06 1.06
go 1.07 1.05 1.07 1.06

gzip 0.97 0.97 1.01 1.00
ijpeg 1.01 0.98 1.00 1.00

li 1.05 1.06 1.04 1.03
m88ksim 1.11 1.13 1.03 1.07

mcf 1.00 1.01 1.01 1.00
twolf 1.08 1.09 1.01 1.03

vpr 1.01 0.99 0.99 0.99
Alto Mean 1.04 1.03 1.02 1.02

Common Mean 1.04 1.04 1.03 1.03
cc bzip2 1.00 1.03 1.00 1.02

compress 1.01 1.02 0.99 0.99
crafty 0.96 1.00 1.00 1.04

go 0.97 0.99 1.02 1.02
ijpeg 1.04 1.05 1.03 1.03

li 1.04 1.03 0.99 0.99
m88ksim 1.05 1.04 0.97 1.09

mcf 1.01 1.01 1.01 1.01
vpr 1.03 1.02 1.02 1.03

CC Mean 1.01 1.02 1.00 1.02

Table 3.2: Static Profile Performance (geometric mean across all runs for bench-
mark and scaled to be relative to resubstitution case) Using Information From A
Single SPEC “Reference” Profile)

3.2. STATIC ESTIMATION 51

Optimizer Bench Static Profile Coverage Entry Counts Both
alto art 1.00 1.00 1.00 1.00

bzip2 1.03 1.06 0.96 0.96
compress 1.00 1.04 1.03 1.05

crafty 1.10 1.09 1.06 1.07
gap 1.05 1.09 1.06 1.07
go 1.07 1.06 1.04 1.04

gzip 0.97 0.97 1.02 1.00
ijpeg 1.01 1.00 1.00 1.02

li 1.05 1.11 1.02 1.05
m88ksim 1.11 1.08 1.03 1.12

mcf 1.00 1.00 1.00 1.00
twolf 1.08 1.08 1.02 1.03

vpr 1.01 0.99 0.98 0.99
Alto Mean 1.04 1.04 1.02 1.03

Common Mean 1.04 1.05 1.01 1.03
cc bzip2 1.00 1.02 0.99 1.02

compress 1.01 1.02 1.00 1.02
crafty 0.96 1.00 1.02 1.03

go 0.97 0.96 1.03 1.01
ijpeg 1.04 1.05 1.02 1.02

li 1.04 1.05 1.03 1.08
m88ksim 1.05 1.04 1.12 0.96

mcf 1.01 1.01 1.01 1.01
vpr 1.03 1.04 1.03 1.02

CC Mean 1.01 1.02 1.03 1.02

Table 3.3: Static Profile Performance (geometric mean across all runs for bench-
mark and scaled to be relative to resubstitution case) Using Information From A
Single SPEC “Training” Profile)

52 CHAPTER 3. STATIC ESTIMATION OF BLOCK PROFILES

As Tables 3.3 and 3.2 show, there is very little consistent improvement of opti-
mization performance as a result of adding coverage information to static profiles.
In fact, in a number of benchmarks (e.g. foralto , gap and twolf)), the ad-
dition of coverage information actually makes the static profiles less useful. We
do not have a good explanation for this and must instead appeal to the principle
already discovered that increased profile accuracy does not necessarily result in
better performance.

Focussing on the addition of entry count information instead shows somewhat
more positive results. Table 3.3 and Table 3.2 show there is a significant improve-
ment in performance underalto as a result of using entry count information.

For thecc optimizer, as we note about, we saw only a comparatively small
worsening of performance as a result of using statically estimated profiles rather
than exact ones. As a consequence, it is not surprising that we did not observe
any real improvement in performance as a result of using some information from
exact profiles in our statically estimated profiles.

We do not include a formal analysis of the 2-way interaction between entry
count information and coverage information; coverage information did not result
in a significant improvement in profile-driven optimization performance whether
or not entry count information was provided.

Nor do we include accuracy metrics for the different statically estimated pro-
files or attempt to correlate accuracy and usefulness in this chapter, as many of our
accuracy metrics break down or yield identical results for all profiles of a given
type. For example, it is obvious that coverage metrics and metrics that only take
into account function entry counts will be overly effected by the profiles generated
in this chapter that explicitly make use of coverage or function entry information.

3.2.2 Static Estimation Conclusions

It is obvious that static estimation does not perform very well, generally worsen-
ing performance by around 4% onalto and over 1% oncc , as compared to the
use of a “good profile” (one from a SPEC reference run). For many of our bench-
marks, we would be better off turning off profile-driven optimization entirely as
opposed to using statically-estimated profiles. This is due to a number of reasons.

First, the statically estimated profiles were not produced through very sophis-
ticated heuristics. It is possible that a more sophisticated static estimator would
produce much better results.

Second, the profile-driven optimizers were not given any information about
the static nature of the profiles that they had been given. In normal usage, many

3.2. STATIC ESTIMATION 53

optimizers will turn off - or make less aggressive - their more risky optimizations if
there is no dynamic information available. For example,alto reverts to only the
safest procedure inlining behavior if no dynamic profile is available - even though,
in normal, non-profile-driven optimization use, it generates a simple statically
estimated profile (for other optimizations). To anthropomorphize, the net effect of
this, is to give the profile-driven optimization routines a sense of over-confidence.
They were designed for to use hopefully more reliable dynamic information and
do not perform well with the estimates that result from static estimation.

We attempted to quantify the impact of adding two types of dynamic profile
information to otherwise static profiles. We found that adding coverage informa-
tion to the static estimator did not improve the performance of statically estimated
profiles, despite the improvement in accuracy that this can provide. Entry count
information reduced the penalty associated with the use of static profiling signifi-
cantly underalto (approximately halving the slowdown due to static estimation),
but showed no significant effect oncc .

Our evidence suggests that the technique of reducing profiling overhead by
using only static estimation in combination with coverage profiling and/or profil-
ing of entry counts (as opposed to gathering profiles for the whole program) is not
particularly effective. The effort required to gather even these limited profiles and
recompile is too large, and the potential benefits are too small.

Given our results from Section 2.4, it is not surprising that steps to improve the
accuracy of static estimation generally had limited success - particularly in thecc
optimization context. While there are many more sophisticated mechanisms for
producing more accurate statically estimated profiles, we feel that their effect may
be limited by the failure of optimizers to deliver improvements in performance as
a result of more accurate profiles.

54 CHAPTER 3. STATIC ESTIMATION OF BLOCK PROFILES

Chapter 4

Sampled Profiles

4.1 Introduction

The principle of sampling is to periodically interrupt the program (either at timed
intervals or when a certain number of events have occurred), and record some as-
pect of the program state (usually the program counter) at the time of the interrupt.
From our observations of the program state, we can reconstruct an estimate of the
original program behavior.

The simplest use of an event-based sampling system is to interrupt the program
after everyN instructions have executed and to record the program counters at
that point. If the distribution of the program counters over the basic blocks in
the program is scaled up to reflect the fact that we have recorded only 1 inN
instruction executions, we will now have a basic block profile that approximates
the actual basic block profile.

Statistical sampling techniques can be used to gather a wide range of profile
data, not just basic block executions. The range of possibilities include gathering a
samples of program path behavior, calculating the distribution of the delays caused
by various architectural events such as instruction cache misses, and calculating
the distribution of real time spent in routines (as opposed to number of instructions
or cycles spent in routines). Again, we concentrate on basic block profiles because
this is the information that a wide variety of optimizations in both our optimizers
make use of.

55

56 CHAPTER 4. SAMPLED PROFILES

4.2 Sampling and Simulated Sampling

Simulated sampling involves a transformation of a exact profile (which we call
the base profile) into a profile that attempts to introduce “sampling error”. This
transformation simulates the performance of a perfect event-count based sampling
system that samples based on successful instruction completion (as opposed to a
cycle-based event counter). A basic block is assigned a probability based on the
sampling interval and the number of instructions in the block, a randomly gener-
ated sample count is generated for the block to simulate the sampling process.

After gathering these simulated sample counts for each block, we then use
the sample counts to estimate the original basic block counts and thus get a new,
less accurate basic block profile derived from the base profile. Optionally, we can
use control-flow graph information to “patch” our sampled profiles to reduce the
amount of error introduced by sampling.

The resulting sampled profile is thus a function of:

• thebase profileused to generate it,

• the sampling interval

• whether or not we employed our various (control-flow-based) methods to
improve sampled profile accuracy, and

• sheer random chance.

The random chance is introduced by the fact that we must generate a randomly
distributed value that approximates the number of times that a given basic block’s
execution would be sampled. To make sure our experiments are repeatable, the
sampling results are deterministic based on the seed passed to the random number
generator at the beginning of the production of a given profile. Thus, our sim-
ulated sampling only simulates random behavior rather than actually performing
randomly.

Justification of Simulated Sampling

An obvious question is raised by our use of simulated sampling: do the results
derived from using simulated sampling have any relevance to the performance of
actual sampled profiles? There are several sources of error using real sampling
systems that simulated sampling does not model:

4.2. SAMPLING AND SIMULATED SAMPLING 57

• Constant or variable skew between when a sample is triggered and when it
is recorded - it may be difficult for the sampling interrupt handler to locate
exactly which instruction triggered the sampling interrupt. Even knowing
precisely how many instructions might occur between the event that trig-
gered the interrupt and the location it was recorded will not always allow
us to pinpoint the exact instruction that triggered the interrupt; the situation
worsens considerably if our knowledge is imprecise. This source of error
is comparatively unimportant, as modern architectures implement mecha-
nisms to avoid such effects (a description of how this is avoided in DCPI
can be found in [5]).

• Additional sampling inaccuracies resulting from samples being aggregated
spatially - that is, a sampling system such as the one used by DCPI aggre-
gates all samples taken over a 16-byte (or four Alpha instruction) “bucket”.
It is possible that such a group of instructions may include instructions from
different basic blocks (although for performance reasons, basic blocks are
usually not so short and critical basic blocks are usually aligned on bound-
aries similar to those used by the sampling code for aggregation).

• Time-based sampling systems can be used to derive block profiles but are
greatly affected by variability in the number of cycles that a given basic
block takes to execute. More modern, event-based sampling systems (that
can count, for example, number of instructions) are not subject to this source
of error.

Our simulated sampling system does not simulate any of these sources of error.
The only error modelled by our system is the fundamental error introduced by
sampling: that is, not recording every event. We feel that all of the other sources of
error are both less important than sampling error and that their behavior is far more
implementation dependent than sampling error. Errors in pinpointing the exact
position of the sampling interval can be minimized by good architectural design,
and the degree to which samples are spatially aggregated across important basic
blocks can also be controlled. However, nothing can eliminate the fundamental
error that looking at only a subset of events introduces.

Our simulated sampling system also allowed us to generate hundreds of dif-
ferent sampled profiles without re-running the benchmark hundreds of time. This
provided a considerable speed-up in our experimental process. This speed-up was
not enormous, however, as for our sampled profiles we still had to run multiple

58 CHAPTER 4. SAMPLED PROFILES

evaluation runs for each sampled profile to accurately evaluate the profile-driven
optimization effect of the profile.

Another advantage to our use of simulated sampling was that there were no
extraneous and unrepeatable perturbations of our sampling process; our sampled
profiles are entirely deterministic given the random number seed used to initialize
the random number generator used in simulated sampling.

Statistical Properties of Simulated Sampling Counts

Our sample counts for each basic block and the resulting estimates we for the
basic block counts are random variables. We need to understand more about the
expected values and distributions of these random values.

A basic block is assigned a probabilityp based on the sampling intervalI
(which corresponds to the number of instructions that execute between sampling
interrupts in a real sampling system) and the number of instructions in the block
binsns (sop = binsns

I
), and a sampled value is chosen for that block as if we made

n trials at probabilityp, wheren is the number of times the block was executed in
the run we were “sampling”. This value is the binomial distributionb(x; n, p).

The binomial distribution is quite computationally expensive to calculate (par-
ticularly for largen) and approaches the normal distribution withµ = np and
σ2 = np(1− p) whenn is is large or whenp is close to 0.5 whethern is large or
not. A typical rule of thumb is that the normal approximation to the binomial is
reasonable whennp > 5; we follow this rule of thumb when randomly generating
binomially distributed values (using the more expensive binomial random number
generator only when necessary).

The binomial distributionb(x; n, p) has meanµ = np andσ2 = np(1 − p)
(exactly like its normal approximation). This means that the expected sample
countsbsample for a blockb are distributed as follows:

µ = bcount
binsns

I

σ2 = bcount
binsns

I
(1− binsns

I
)

or when the probability of any block being sampled is very small (true of the
sampling intervals we use in this chapter whereI ≥ 1000), something which we
will assume from now on,

σ2 ≈ bcount
binsns

I

4.2. SAMPLING AND SIMULATED SAMPLING 59

In order to re-estimate the basic block count from the sample count we scale
up the basic block count by the reciprocal of the probability that is was sampled,
or I/binsns. If a random variableX has meanµX and varianceσ2

X , the random
valueaX (the scaling ofX by a constanta) has meanµaX = aµX and variance
σ2

aX = a2σ2
X . Note that flow properties (that the sum of the counts entering and

leaving a block should be the same as the count for that block) are not preserved
by this process.

Thus, the sampled estimatebestimate has the properties:

µ = bcount
binsns

I

I

binsns

= bcount

and

σ2 ≈ bcount
binsns

I
(

I

binsns

)2 = bcount
I

binsns

The fact that theµbestimate
= bcount is obvious and exactly what we want. The

variance of the estimate values is not necessarily a very useful metric, as it does
not allow us to compare the variability of blocks with different basic block counts.
More useful is thecoefficient of variation, or cv, which is defined as

cv =
σ

µ

and functions a standard deviation metric that allows us to compare the vari-
ability of estimated block counts with different means (a “relative standard devia-
tion”). The coefficient of variability for our estimated basic block counts is:

cv ≈
√

bcount
I

binsns

bcount

(4.1)

≈
√

I√
bcount

√
binsns

(4.2)

Thus, the coefficient of variationof a sample estimate

• increases in proportion to the square root of the sampling interval,

• decreases in proportion to the square root of the original, and block count

• decreases in proportion to the square root of the number of the instructions
in the block.

60 CHAPTER 4. SAMPLED PROFILES

The sample estimates for different basic blocks are independently distributed
random variables, at least in the sense of sampling error. Obviously the original
basic block counts are not statistically independent of each other. However, the
outcome of the sampling process for a given basic block is entirely independent
of the outcome of the sampling process for a different basic block.

A implementation of sampling would have to deal with a awkward detail of
event-based sampling that violates the assumption of independence; that is, the
possibility that the events generated by the program might have a periodic nature
and occur in multiples of the sampling interval. For example, if a loop executes
exactly 128 instructions per iteration and our sampling interval is some multiple
of 128, then the sampling system will sample the same point in the loop on each
iteration, leading to a non-representative profile. This problem is fairly easily dealt
with1 and does not affect simulated sampling in any case.

Re-estimation of Basic Block Counts

We have already discussed how we re-estimate basic block counts from our sam-
ple values (simply individually scaling each block count up by the reciprocal of
the probability that it was sampled). This process does not preserve the expected
properties of basic block counts in a control flow graph. The most obvious im-
provement to this is to consider basic blocks that are “equivalent” in a control flow
graph sense; to look at basic blocks whose basic block counts will necessarily al-
ways be the same by properties of the flow graph. That is, two blocksb1 andb2

are “equivalent” if and only if:

• b1 dominatesb2 andb2 post-dominatesb1 or vice versa, and

• b1 andb2 are immediately contained the same loop OR neitherb1 andb2 are
in any loop.

This relation partitions our set of basic blocks into sets of equivalent basic blocks.
Such a group of basic blocks will always have the same basic block count (except
in unusual circumstances, such as exceptions that do not return or if the program
calls functions such assetjmp and longjmp ; the cases are rare and not espe-
cially amenable to optimization in any case). For example, in Figure 4.1, blocks
A, D andF are all equivalent in a control-flow sense.

1Existing sampling systems generally use intervals that vary by small amounts; instead of an
interval of 65536, they might use a range of sampling intervals from 65516 to 65556.

4.2. SAMPLING AND SIMULATED SAMPLING 61

Figure 4.1: Equivalent Basic Blocks

62 CHAPTER 4. SAMPLED PROFILES

We have already shown that the coefficient of variation of our estimated basic
block counts decreases in proportion to the square of the number of instructions
in a block. Considering all the blocks in a “equivalent” set of basic blocks as
a single basic block and summing both the probability that one of these blocks
was executed and the sample counts that each block actually had will result in a
more accurate estimation of all of the blocks. In Section 4.2 we established that
as the number of instructions in a block increased, the coefficient of variation of
the estimated count for the block diminished in proportion to the square root of
the number of instructions in the block. For example, suppose in Figure 4.1 block
A has 20 instructions,D has 10 instructions andF has 10 instructions. If we
consider blocksA, D andF as a single block with 40 instructions rather than
3 different blocks with 10 or 20 instructions each, the resulting estimate for the
block counts will have a coefficient of variation that is half (sqrt(10/40) = 1/2)
the size of the coefficients of variation for the smaller block counts (forD andF)
and 1√

2
of the coefficient of variation for the estimate of blockA alone.

Another improvement that can be made is to take control-flow properties into
account. At many blocks, we find that the blocks have a set of successors that they
dominate (i.e. there is no other way to execute the successors without executing a
block) or predecessors that they post-dominate, or both. We show a simple flow
graph with these properties in Figure 4.2. In the example in Figure 4.2 we have
one estimate for the basic block count of blockD and can form another estimate
for the basic block count ofD by adding blocksB andC. Such a block’s basic
block count must be equal to the sum of its successors or predecessors (depending
on structure). We can adjust the estimated block counts for the blocks accordingly.

The adjustment for the basic blocks is not an obvious task. Even in the sim-
plest case, where a single basic block count is known to be the sum of two other
basic blocks, there are three different block counts that may be adjusted to sat-
isfy flow properties. Which block count or counts should we adjust, and by how
much?

We proceed by using the insight that the blocks whose re-estimated basic block
counts have the lowest expected variance are the blocks with the most reliable
sampled basic block counts. We will produce a more reliable estimate of the final
basic block counts by using some weighted combination of the different basic
block counts.

If we have two different estimates of basic block countsbi
est and bj

est with
variancesσbi

est
andσbj

est
, a weighted combination of the estimate using weighting

s is:

4.2. SAMPLING AND SIMULATED SAMPLING 63

Figure 4.2: Patching Example

bfinal = sbi
est + (1− s)bj

est (4.3)

We derive a value ofs that minimizes the variance ofbfinal. Presuming the
two estimates of the basic block counts are independent, the variance of a linear
combination of random values can be found by

σbfinal
= s2σbi

est
+ (1− s)2σbj

est
(4.4)

= σbj
est
− 2sσbj

est
+ s2(σbi

est
+ σbj

est
) (4.5)

Differentiating in this equation overs, we find that the first and second deriva-
tives of this equation are:

d(σbfinal
)

ds
= −2σbj

est
+ 2s(σbi

est
+ σbj

est
) (4.6)

d2(σbfinal
)

ds
= 2(σbi

est
+ σbj

est
) (4.7)

Note that variances are always non-negative, and in this application are always
non-zero; this means that the second derivative ofσbfinal

in terms ofs is also

always greater than zero. Thus if we solve
d(σbfinal

)

ds
= 0, we get:

64 CHAPTER 4. SAMPLED PROFILES

s =
σbj

est

σbi
est

+ σbj
est

(4.8)

which we know to be a minimum (and seeing as it is a unique solution, this
value ofs is a global minimum). We can also calculate the variance of the resulting
basic block countσbfinal by substitutings back into Equation 4.3:

σbfinal
= (

σbj
est

σbi
est

+ σbj
est

)2σbi
est

+ (1− (
σbj

est

σbi
est

+ σbj
est

))2σbj
est

(4.9)

=
σbi

est
σbj

est

σbi
est

+ σbj
est

(4.10)

Thus, we can repeat the process of combination as we have a new estimate
of variance for the resulting estimate. This is useful for combining the estimate
of block counts derived from a block and its predecessors with the block count
estimates from its successors.

The procedure described above is carried out simultaneously, in both direc-
tions, for every block in the program that has neighbors that satisfy the pre-
conditions for these analyses. An analogous procedure (not detailed here) is used
to calculate basic block counts that are based on a difference between two dif-
ferent basic block counts (that is, in our running example shown in Figure 4.2,
calculating a good estimate of the counts ofB and C). These procedures are
only used in a local fashion; we re-estimate each block’s basic block count based
on its predecessors and successors (if possible) but do not iteratively carry out
this re-estimation procedure globally. Attempting to propagate better profile in-
formation through the control flow graph is theoretically possible but we found
that the quality of the profile information was rapidly degraded by what is, after
all, an approximate technique. Furthermore, the theoretical justification for using
this re-estimation technique is that the estimates of in the original block counts
are statistically independent2 from block to block; Equation 4.4 depends on this
assumption. Fortunately, the technique of pooling the block counts for control-
flow equivalent blocks does a good job of propagating higher-quality information
through the control-flow graph.

Another improvement of sampled block count estimates can be made under
circumstances where, while we cannot express the basic block count of a block in

2In the sense of the errors introduced by simulated sampling, that is

4.2. SAMPLING AND SIMULATED SAMPLING 65

terms of a precise sum of one of its predecessors or successors, there is nonetheless
a useful inequality relation between the two. Looking back to Figure 4.1, we see
that the count for basic blockE will always be no greater than the count for
basic blockD. We can use this to improve the accuracy of basic block counts if
our current re-estimation of block counts fails to satisfy the necessary inequality
between the blocks.

We refer to sampled profiles that have been improved by using all of these
techniques as “patched” and those that have not been altered as “unpatched”. By
far the biggest contribution to profile accuracy is made by taking profile equiva-
lence into account. All of these techniques improve accuracy but do not guarantee
better results. It is possible to worsen individual estimates as a result of using
these techniques.

An important point to remember is that these patching techniques are nearly
useless in re-estimating profile information for functions where there the total
number of events is too small relative to the sampling interval. Thus, if a function
has an average dynamic instruction count of 100 per invocation and is invoked 25
times in the course of an execution, we will not expect to have good information
on this function if our sampling interval is10000 - in fact, it is unlikely that we
would see even one sample falling within this function. In the presence of so little
information on function execution, no patching technique will provide a reason-
able picture of the function’s behavior. The one piece of information that wecan
obtain is that the function is probably not executed very frequently.

Unfortunately, such infrequently executed functions are often indistinguish-
able (when using sampled profiles) from functions that did not execute at all. We
have chosen to avoid any techniques that cause block sample counts with zero
estimates to be estimated as non-zero unless there is strong evidence otherwise
(for example, a block with a non-zero sample count that dominates the block with
the zero sample count). Otherwise we are put into the position of having to as-
sign some small non-zero profile value to all the “cold” and “dead” blocks in the
program.

66 CHAPTER 4. SAMPLED PROFILES

4.3 Results

4.3.1 Our Sampling Experiments

We carried out our sampling experiments over the same set of benchmarks that
was used in the previous chapter3. We evaluated 80 sampled profiles, using all
combinations of:

• Two base profiles (SPEC “train” and SPEC “ref” profiles for benchmarks
that has single profiles of this kind, or a pair of distinct profiles that appeared
in the “train” and “ref” runs individually). To compare our results with the
results from our work on exact profiles, we continue with our practice of
not aggregating “train” and “ref” profiles and evaluation runs.

• Unpatched and patched re-estimation techniques

• Sampling intervals from once every 100, 1000, 10000 and 100000 instruc-
tions.

• Five different random number seeds (thus producing five entirely distinct
sampled profiles for each combination of the above factors)

There is no special significance to the use of powers of 10 for the sampling
intervals. A sampling interval of 100 instructions is too low to be practically
implemented in a real sampling system, but we were interested in observing what
happened to sampling behavior at very high rates of sampling. At the upper limit
of a sampling interval of one in 100000 instructions, further overhead savings in
terms of sampling are marginal. For example, pessimistically assuming that there
are 500 instructions in the code that records machine state at each interrupt (and
assuming that these 500 instructions are, on average, no more or less expensive
than the instructions in the program being monitored), the overhead of sampling at
the rate of one in 100000 is 0.5%. Reducing overhead beyond this point is nearly
pointless.

We gathered some results for unreasonably small sampling intervals (every 10
dynamic instructions). These sampling intervals might in theory provide some

3Unfortunately, the huge range of profiles tweaked some bugs in thecc optimizer; if a bench-
mark failed to optimize with any of the sampled profiles we were forced to remove it from con-
sideration. Otherwise we run the risk that there is some systematic class of profiles that causes
these compiler failures and that the remaining profiles might be distributed in a far from random
fashion.

4.3. RESULTS 67

information about a continuum of sampling usefulness ranging from exact pro-
files - which can be considered as a sampling interval of 1 - all the way to very
large sampling intervals. However, we are inclined to limit our discussion of such
sampling intervals for a number of reasons. First, such intervals have no practical
implementation - sampling at such a high rate is would impose astonishingly high
overhead (probably higher than simply instrumenting the program). Second, the
analytic work we have done depends on the sample interval being large relative
to individual block sizes. Third, our re-estimation procedures were not designed
with such low sampling intervals in mind and may behave in less than ideal fash-
ion.

For example, if a block has 20 instructions in it, and the sampling interval is
10 dynamic instructions, we will know for a fact that the sample count for the
block is strictly greater than the actual number of times the block executed. If the
sample count is zero, we will know that the block was not executed at all; a situa-
tion that we can only guess at if we use more reasonably sized sampling intervals.
Therefore, there are a number of ways that such highly accurate sampling infor-
mation could be made use of that are useless for higher sampling intervals. By
not implementing these optimizations, our system may understate the theoretical
accuracy possible with sampled profiles produced with extremely low sampling
rates.

Given the huge number of profiles to evaluate we use a smaller number of re-
peats (3) of each evaluation run and scale back the number of evaluation runs for
the extremely long-running SPEC 2000 “ref” runs to a single run. This introduces
a slightly larger experimental error, but the overall effects of the choice of sam-
pled profiles for these runs are much larger than the levels of experimental error
(for these runs) that we established in the chapter on exact profiling. Generally
speaking, it was the shorter evaluation runs for which experimental error tended
to obscure any observed effects.

We evaluate our profile-driven optimizations on all of the evaluation runs
available for each benchmark. For results describing the overall effect of sam-
pling, we will scale the average cycle count on any given run by the average cycle
count that results from using theexactprofile for that run. Thus, an adjusted score
of 1.02 for a given sampled profile and evaluation run indicates that the binary
produced by using that training profile was 2% slower (when executing the evalu-
ation run) than the binary produced by the exact profile.

68 CHAPTER 4. SAMPLED PROFILES

Optimizer Relative execution time
Minimum Maximum Geo. mean Std. Deviation

alto 0.86 1.17 1.016 0.023
cc 0.93 1.29 1.016 0.041

Table 4.1: Overall Sampled Profile Performance and Variability (relative to non-
sampled base profile)

4.3.2 Aggregate Sampling Results

Overall Effect of Sampling

The first issue that we will consider is the overall effect of profile-directed op-
timization using our different sampled profiles. In the work on exact profiles,
we found that certain benchmarks had little to no interesting profile-directed op-
timization performance variation. However, in that context it was impossible to
determine whether this was an inherent property of the benchmark or of the lim-
ited selection of benchmark runs. We can look at our benchmarks again in the
context of sampled profiling to see the magnitude of the variability of profile-
directed optimization and whether the variability of profile-directed optimization
for sampled profiles is connected to the variability of profile-directed optimization
for exact profiles.

Our metric of profile-driven optimization variability is somewhat easier to cal-
culate in this context, as we have the same number of profiles per benchmark and
a quite large number at that. We present the mean, maximum, minimum and stan-
dard deviation of the adjusted scores (ratio of the sampled profile’s performance
and the base profile’s performance) across our combinations of optimizers, bench-
marks, sampled profiles - considering all our combinations of sampled profiles for
now - and evaluation runs in Table 4.1 and Table 4.2.

Table 4.1 shows a fairly similar penalty for the use of sampling overall. There
is an average slowdown of 1.6% over all of our different sampling types, which
is identical in both optimization contexts. The variability of the populations is
significantly different, with the standard deviation of the slowdowns overalto
almost half that ofcc .

While the mean loss of profile usefulness associated with sampling is not large
(a mere 1.6%), is it worth remembering that the mean speed-up associated with
use of profile-driven optimization over the non-profile-driven equivalent is quite
small (around 3%, as shown in Section 2.2), so that the mean effect of using sam-

4.3. RESULTS 69

pling is quite substantial relative to the total expected benefits of profile-driven
optimization. Of course, we cannot make the simplistic claim that sampling re-
duces our mean profile-driven optimization improvement by half (this constitutes
a ”fallacy of composition”); further, there is a great deal of per-benchmark vari-
ability in a) how useful exact profiles are relative to sampled profiles and b) how
useful exact profiles are relative to not using profiles at all.

Table 4.2 shows that benchmarks can have high profile-driven optimization
variability using sampled profiles. On the whole, sampling will worsen aver-
age performance - only a handful of benchmarks (alto/bzip , cc/crafty ,
cc/parser) show a benefit from the use of sampled profiles, and in these cases
the speed-up is trivial (relative performance is only 1% better than exact profiles).
On the other hand, a relative slowdown of 3-4% (again, as opposed to exact pro-
filing) is quite common among our benchmarks.

Some benchmarks which showed very little profile-driven optimization vari-
ability in the exact profiling case show substantial variability when optimized with
sampled profiles. Profile-driven optimization variability is quite dependent on the
class of profiles under consideration; it is not an inherent quality of the benchmark.
Of course, some benchmarks show little PDO variability whether we use sampled
profiles or exact profiles. It is reasonable to suspect that some benchmarks simply
do not spend much execution time in functions that can be improved further by
our profile-driven optimizers.

Usefulness Behavior at Different Profiling Intervals

The next task is to discover how our different sampling intervals affect optimiza-
tion performance. Intuitively, one would expect performance to become steadily
worse as the sampling interval increases and the accuracy of the sample profiles
decreases. However, we have already shown that the connection of usefulness
and accuracy is a problematic one in at least one other context (that of exact pro-
files). We will examine the profile-driven optimization performance of patched
profiles (we will examine the usefulness contribution of patching profiles in the
next section).

Table 4.3 summarizes the average profile-directed optimization performance
for the different sampling levels over all our benchmarks and evaluation runs. For
alto , higher sampling intervals cause both worse overall performance and larger
variability. No such systematic effects forcc can be observed at all, despite the
slight decline in standard deviation of profile-directed optimization perfomance as

70 CHAPTER 4. SAMPLED PROFILES

Optimizer Benchmark Relative (to non-sampled profile) execution time
Minimum Maximum Geo. Mean Std. Deviation

alto art 0.99 1.01 1.00 0.003
bzip2 0.93 1.17 0.99 0.028
compress 0.96 1.04 1.00 0.012
crafty 0.99 1.08 1.02 0.012
gap 1.00 1.09 1.03 0.010
go 0.86 1.13 1.04 0.033
gzip 0.99 1.04 1.01 0.010
ijpeg 0.98 1.07 1.01 0.009
li 1.00 1.09 1.02 0.014
m88ksim 0.99 1.16 1.04 0.028
mcf 0.99 1.04 1.00 0.005
twolf 0.98 1.05 1.02 0.011
vortex2000 1.00 1.08 1.04 0.018
vpr 0.94 1.08 1.00 0.021

cc ammp 0.94 1.07 0.99 0.016
bzip2 0.98 1.18 1.02 0.019
compress 0.97 1.06 1.02 0.016
crafty 0.94 1.04 0.99 0.025
equake 0.99 1.03 1.00 0.009
ijpeg 1.01 1.08 1.03 0.011
li 0.96 1.16 1.04 0.047
m88ksim 0.95 1.29 1.08 0.080
mcf 1.00 1.04 1.01 0.007
parser 0.93 1.05 0.99 0.019
vortex2000 0.94 1.13 1.02 0.031

Table 4.2: Overall Sampled Profile Performance and Variability By Benchmark
(relative to base, non-sampled profile)

4.3. RESULTS 71

Optimizer Interval Relative (to non-sampled profile) execution time
Minimum Maximum Geo. Mean Std. Deviation

alto 1000 0.86 1.08 1.012 0.022
10000 0.89 1.13 1.015 0.024
100000 0.91 1.17 1.020 0.030

cc 1000 0.94 1.24 1.016 0.041
10000 0.95 1.27 1.018 0.040
100000 0.94 1.23 1.018 0.036

Table 4.3: Sampled Profile Performance and Variability By Sampling interval
(relative to base, non-sampled profile)

the sampling interval increases.4

Effects of Sampled Profile Patching

To evaluate the effects of patching sampled profiles, we will carry out what is
known as a paired comparison. That is, given a single optimizer, benchmark,
evaluation run and set of sampling settings (random number seed, sampling inter-
val, base profile) we have two different sampled profiles - patched and unpatched.
We will proceed by using a statistical technique (the “Paired-Sample T-Test”) that
evaluates the mean differences of pairs of values. We will examine both useful-
ness and accuracy values with this technique. Once again, the usefulness values
that we evaluate will be scaled so that the average profile-driven optimization per-
formance of the binary produced by an non-sampled version of the profile is equal
to 1.0 on each evaluation run.

The “Paired-Sample T-Test” allows us to estimate the average difference of
two paired variables and the likelihood that this difference is statistically signifi-
cant.

First, we will evaluate whether or not our patching technique contributes to
improved profile accuracy.

As Table 4.4 shows, patching almost always results in an improvement of
profile accuracy scores. Only for a few combinations of metrics and benchmarks
does it lead to a degradation of profile accuracy. This is not surprising in the
case of the coverage metrics, as the patching process never causes us to set the
estimated count of a block to zero if it was previously non-zero.

4Using anF -test to compare these variances, we did not see that differences between these

72 CHAPTER 4. SAMPLED PROFILES

Optimizer Benchmark K(01) ENT
improvement improvement

alto art 0.01 -1.18
bzip2 0.02 1.92
compress 0.00 5.70
crafty 0.02 0.94
gap 0.03 0.71
go 0.03 2.54
gzip 0.03 0.93
ijpeg 0.02 1.17
li 0.03 1.85
m88ksim 0.02 1.24
mcf 0.02 4.92
twolf 0.03 0.33
vortex2000 -0.04 -0.28
vpr 0.03 1.78

cc bzip2 0.01 1.95
compress 0.00 2.64
crafty 0.02 0.96
ijpeg 0.03 1.39
li 0.03 1.91
m88ksim 0.02 1.41
mcf 0.01 1.26
vortex2000 -0.03 -0.22
ammp 0.04 0.16
equake 0.02 0.07
parser 0.01 1.68

Table 4.4: Profile accuracy differences, showing differences between patched
scores and unpatched scores for two accuracy metrics - key-matching at the0.1
level and relative entropy.
All differences were significant at the0.01 level except the relative entropy score

for equake undercc . Positive scores represent improvement. For a rough
comparison, the majority of relative entropy scores in the exact profile work were

under5.0, so a difference of 1-2 is substantial.

4.3. RESULTS 73

Of course, our experiences with exact profiling lead us to be skeptical about
whether these accuracy improvements will lead to better profile-driven optimiza-
tion performance. What is the overall effect on average performance? We evaluate
the improvement due to patching across our range of benchmarks in Table 4.5.

Table 4.5 shows that the overall usefulness improvement due to patching is
not impressive. On most benchmarks the effect is either trivial and/or statistically
insignificant. Worse still, for several benchmarks the average effect is negative
(that is, patching produces worse performance). Only a few benchmarks do we see
a definite improvement on profile-directed optimization performance as a result of
patching; these cases generally show larger magnitude of change than the negative
improvement cases.

We found that patching produced a slightly larger positive effect when only
higher sampling levels were considered, but the overall picture remained the same
even at our highest sampling intervals. It is impossible to conclude that patching
is worth doing from these equivocal results.

Effect of Different Base Training Profiles

Another important issue in the use of sampled profiles is the choice of the base
from which the sampled profiles are derived and how well they match the run-
time behavior of the evaluation run. We attempt to evaluate whether, if we know
the behavior resulting from sampling for a given benchmark, base profile and
evaluation run, we can predict the effects of using different base profiles.

The results that we gathered in this section up to this point intentionally avoid
these questions. By scaling our usefulness scores to be relative to the usefulness
scores of the base profile we have ignored the first-order effects of the base profile
choice. An example will clarify this.

Suppose, for a single evaluation run and benchmarkB1, the average cycle
count of a binary optimized with theref base profile is 1.0 Gcycles and that the
average cycle count of a binary optimized with thetrain base profile is 1.1 Gcy-
cles. Suppose further that sampling has a consistent effect and generally produces
a normally-distributed set of usefulness scores clustered around 1.02 times the ex-
act profile with a standard deviation of 0.01. If the effects of sampling are similar
when using eitherref or train as base profiles, then we will see a set of scores
around 1.02 Gcycles corresponding to sampled profiles based onref and a set of
scores around 1.12 Gcycles for sampled profiles based ontrain . If we are mea-

variances were statistically significant at the 0.05 level

74 CHAPTER 4. SAMPLED PROFILES

Optimizer Benchmark Mean diff. t-value Sig. value. Summary of difference

alto art 0.0002 0.506 0.615 Not significant
bzip2 0.0201 8.119 0.000 Patched performs worse
compress -0.0104 -9.322 0.000
crafty -0.0100 -7.376 0.000
gap -0.0031 -2.045 0.045
go -0.0017 -0.786 0.435 Not significant
gzip 0.0009 1.413 0.163 Not significant
ijpeg -0.0016 -0.993 0.325 Not significant
li 0.0055 3.751 0.000 Patched performs worse
m88ksim 0.0016 1.003 0.320 Not significant
mcf 0.0007 0.690 0.493 Not significant
twolf 0.0008 0.613 0.542 Not significant
vortex2000 -0.0075 -3.794 0.000
vpr -0.0045 -1.637 0.107 Not significant

cc bzip2 -0.0092 -4.623 0.000
compress 0.0012 0.727 0.470 Not significant
crafty 0.0064 2.769 0.008
ijpeg -0.0060 -7.585 0.000
li -0.0186 -4.439 0.000
m88ksim 0.0156 2.391 0.020 Patched performs worse
mcf -0.0048 -9.468 0.000
vortex2000 -0.0139 -5.598 0.000
ammp 0.0013 0.624 0.535 Not significant
equake -0.0001 -0.132 0.896 Not significant
parser 0.0028 2.016 0.048 Patched performs worse

Table 4.5: Profile usefulness differences (scores are normalized relative to non-
sampled profile), showing difference between patched scores and unpatched
scores (positive values indicate that mean value of unpatched score was lower
i.e. better); significance tested at0.05 level

4.3. RESULTS 75

suring the effects of sampling alone, we obviously do not want to pool these two
sets of scores together and conclude that the range of outcomes produced from
sampling runs from around 1.0 Gcycles all the way to 1.12 Gcycles. Thus, we
want to scale by the exact profile’s usefulness score before evaluating sampling.

However, this throws away any distinction between the above case, and one
for (say) benchmarkB2, where the cycle count of a binary optimized with the
ref base profile is 1.0 Gcycles and that the average cycle count of a binary opti-
mized with thetrain base profile is 1.01 Gcycles, while the relative behavior of
sampling is the same as for benchmarkB1. For such a benchmark, the variability
due to choice of base profile will actually be dominated by the effects of sampling.

Which case is more typical - benchmarkB1 or benchmarkB2? Table 4.6
shows the relative size of contributions to overall variability in our sampling ex-
periments due to profile choice as opposed to the contributions due to sampling
settings (whether sampling interval size, the use of patching, or the randomness
associated with sampling).

From Table 4.6, it is clear that both types of behavior exist in our benchmark
sets. For example, profile choice is much less important in thecc context for the
mcf benchmark; its contribution to the variability in our experiment is compara-
tively small, whether we consider only patched profiles or the entire population of
profiles. On the other hand, profile choice in thecrafty benchmark dwarfs the
effects of the other sampling factors.

4.3.3 The Connection Of Profile Usefulness and Accuracy with
Sampled Profiles

We show the correlation between profile usefulness and profile accuracy for our
sampled profiles in Table 4.7, using patched profiles only (the results are very
similar for unpatched profiles, or when considering both types of profiles pooled
together). As in our work on exact profiles, we find substantial variation from
benchmark to benchmark. Entropy-based profile accuracy metrics perform fairly
well, although even the best profile accuracy metrics work well on only a handful
of profiles.

Overall, the connection between usefulness and accuracy in the context of
sampled profiles is more easily discovered to be significant5 (given the much

5Nearly all of the Spearman rank-correlation coefficients presented are statistically significant;
the use of sampled profiles gave us far more data points to work with thus greatly increasing
our chance of discovering significant correlations. However, a statistically significant correlation

76 CHAPTER 4. SAMPLED PROFILES

Optimizer Benchmark Variability due to Same ratio,
profile choice / patched

variability due to profiles
sampling setting choice) only

alto art 0.90 0.39
bzip2 0.28 0.71
compress 7.24 3.10
crafty 19.71 12.70
gap 25.35 17.33
go 11.02 4.37
gzip 0.53 0.17
ijpeg 0.00 1.15
li 0.06 0.49
m88ksim 7.95 2.21
mcf 0.00 2.84
twolf 0.69 3.70
vortex2000 3.48 1.19
vpr 19.72 8.82

cc bzip2 6.03 8.18
compress 45.23 29.33
crafty 23.56 27.56
ijpeg 31.48 17.20
li 120.94 57.37
m88ksim 27.30 23.18
mcf 0.24 0.12
vortex2000 9.86 5.70
ammp 0.44 0.15
equake 15.56 45.26
parser 0.51 0.03

Table 4.6: Ratio between variability introduced by profile choice and variability
introduced from sampling settings

4.3. RESULTS 77

CONTEXT BENCH ENT STC K01 FEENT FESTC FEK01
alto art 0.18 -0.14 -0.11 -0.05 -0.12 -0.12

bzip2 -0.11 -0.03 -0.13 0.06 0.01 -0.07
compress 0.64 0.00 -0.06 -0.19 -0.07 -0.09
crafty 0.43 -0.10 0.64 0.48 -0.15 0.07
gap 0.63 0.03 0.51 0.40 0.01 0.54
go 0.55 0.64 0.54 0.59 0.67 0.51
gzip 0.71 0.07 -0.01 0.18 0.10 0.10
ijpeg -0.25 -0.15 -0.22 -0.08 -0.17 -0.17
li 0.05 0.14 0.26 0.38 0.14 0.38
m88ksim -0.36 0.25 0.13 -0.12 0.24 0.13
mcf -0.20 0.16 0.09 0.19 0.18 0.12
twolf 0.20 -0.04 -0.10 0.14 -0.04 -0.08
vortex2000 -0.31 0.27 0.08 -0.23 0.26 0.01
vpr -0.11 -0.02 0.37 -0.09 -0.13 0.20
Mean 0.19 0.09 0.16 0.14 0.08 0.12

cc bzip2 0.56 0.38 0.17 0.27 0.32 0.39
compress 0.56 0.32 0.19 0.04 0.33 0.26
crafty -0.25 -0.05 -0.12 -0.09 -0.06 -0.10
ijpeg 0.48 0.62 0.60 0.57 0.60 0.54
li 0.54 0.44 0.51 0.29 0.42 0.24
m88ksim 0.19 -0.06 0.00 0.36 -0.09 0.04
mcf 0.91 0.15 0.24 -0.68 0.11 0.10
vortex2000 -0.35 0.16 0.09 -0.27 0.12 -0.06
ammp -0.08 -0.34 -0.42 0.01 -0.34 -0.23
equake -0.18 -0.08 -0.10 0.08 -0.08 0.15
parser 0.04 0.07 0.07 0.09 0.06 0.05
Mean 0.22 0.14 0.11 0.06 0.13 0.13

Table 4.7: The connection of usefulness and accuracy: aggregatedrs scores over
optimizers, benchmarks and different comparison metrics for sampled profiles

78 CHAPTER 4. SAMPLED PROFILES

larger number of training profiles involved) but its magnitude is not, as a rule,
substantially greater than the connection of usefulness and accuracy for exact pro-
files. In both cases, only a minority of combinations of benchmark and optimizer
yielded strong and significant connections between usefulness and accuracy while
most did not.

Once again, the results presented are only a subset of the profile accuracy
metrics that we evaluated. Overall, we evaluated 48 accuracy metrics, using 16
different accuracy primitives (6 levels each of key- and weight-matching, static
and dynamic coverage, rank correlation of profile scores and relative entropy) and
3 different ways of using these primitives (over every block in the program, over
only function entry count data and a weighted combination of the results of these
metrics when applied to every function in the program individually). The results
presented in this section perform substantially better than the alternatives, and yet
their predictive power as regards profile-driven optimization usefulness is very
low.

The discovery that profile-driven optimization performance is very weakly
linked to profile accuracy in a second domain (the first being the domain of ex-
act profiles) raises serious doubts that such metrics have any strong connection to
accuracy in either of our optimizers.

4.3.4 Explanatory Hypotheses

We have established that the connection between usefulness and accuracy is weak
on non-existent for many of our benchmarks. This raises a disturbing problem
- if there is little connection between usefulness and accuracy, why is sampling
generally worse than exact profiling? We suggest two hypotheses that might ex-
plain these results in this section. Both rely on the idea that profile usefulness is
strongly localized and affected by statistical sampling in a way that is not captured
by our accuracy metrics.

“Fragile Function” Hypothesis

The hypothesis that we call the “Fragile Function” hypothesis is as follows:
Per-function behavior is quite similar from benchmark run to benchmark run,

but the weight of function execution differs. Thus a function that is executed heav-

does not guarantee a strong connection (e.g.alto/li ’s relative entropy correlation of0.05) or a
connection that runs in the appropriate direction (e.g.cc/crafty , for which no accuracy metric
positively correlated with improved performance).

4.3. RESULTS 79

ily in a reference run may be only executed fairly lightly in a training run. If we
use sampling to gather a profile of the training run, the profile of that critical
training run that we gather may be too inaccurate to be very useful to improve
profile-driven optimization performance on the evaluation run.

The implications of the “Fragile Function” hypothesis are interesting.
Firstly, if the “Fragile Function” hypothesis is true, evaluating sampling sys-

tems using the “resubstitution” profile is a dangerous waste of time. For a given
evaluation run, the functions for which it is important to have a high degree of
accuracy are usually heavily executed. If we use the “resubstitution” case as the
basis for our sampled training profiles, these heavily executed functions will have
quite accurate profiles in the sampling case.

Secondly, the “Fragile Function” hypothesis implies that the increasing the
sampling interval will not cause a gradual decrease in sample usefulness, and that
even quite small sampling intervals may cause a sharp drop-off in profile useful-
ness as compared to the exact profile. If an acyclic region with 20 instructions
that is important in the reference run is only executed 1000 times in the training
run that we sample, and our sampling interval is on the order of or greater than
20000, we will expect that the sampled profile for that region will be extremely
inaccurate.

In Chapter 5 we in fact show that profile usefulness is localized in a compara-
tively small number of functions, which lends some support to this hypothesis.

“Fragile Branch” Hypothesis

A similar hypothesis to the “Fragile Function” hypothesis is the “Fragile Branch”
hypothesis. The distribution of branch taken frequency is not a uniform distribu-
tion from 0.0 to 1.0; in fact, it is a comparatively idiosyncratic (in statistical terms)
distribution with two large bulges at 0.0 and 1.0 and a substantial bulge around 0.5.
That is, most conditional branches are either always-taken, never-taken, or taken
exactly 50% of the time (often plus or minus a very small number of iterations).

An implication of this is that many of our branches are very close to perfectly
even. The sampling process, however, is almost certain to upset this balance. If
optimizations attempt to favor the more-executed path, even a small perturbation
from sampling can result in poor optimization performance. Such a small per-
turbation can occur even when the sampling interval is very low and the sampled
profile is, overall, relatively accurate.

A reason that perturbations of these branches might have disproportionate ef-
fects on profile-driven optimization performance is that it is exactly these branches

80 CHAPTER 4. SAMPLED PROFILES

that require profile feedback. Often, branches that are nearly always taken or never
taken are very easy to statically estimate - error exits from loops and loop clos-
ing branches are two examples. Even in systems that do not explicitly generate a
static profile, many optimizations are written in such a fashion as to have implicit
models of the behavior of such branches.

Most loop optimizations rest on the assumption that loop-closing branches are
frequently taken whether they use profiling information or not. Even if sampling
causes substantial perturbations in the estimated loop count, it is unlikely to cause
different behavior in loop optimizations (an optimizer will usually optimize a loop
with estimated iteration count of 800 the same way that it will optimize a loop with
estimated iteration count of 1000). Thus, perturbations in the estimated counts
of blocks around loop branches are comparatively unlikely to cause bad profile-
directed optimization behavior.

Thus, a sampled profile seems quite accurate because it “gets loop behavior
right” may not actually perform very well for profile-driven optimization because
it has gotten some amount of conditional branch behavior wrong.

For example, if the blocksB andC in Figure 4.1 are both executed 50 times in
the base profile, and each block has a 10% chance of each of its executions being
recorded by the sampling process (an artificially low sampling interval), then we
will expect that the estimated counts ofB andC will differ in the final profile
(the chance of an unpatched estimation process assigning the same estimate to
both blocks is equal to the probability that two values taken from the binomial
distributionb(50, 0.1) are equal - below 15%).

More generally, the difference between blocksB andC after sampling ap-
proximates the difference between two normally distributed values. If the original
block count was1000000 and the sampling interval was10000, the probability that
the two estimates will be within 5% of each other is a mere 25%, and the proba-
bility that they will be within 10% is about 50%. The variation of this difference
increases in direct proportion to the sampling interval and in direct proportion to
the reciprocal of the block count.

To summarize, while sampling can yield fairly accurate profiles, it is unlikely
to preserve accurate branch predictions between branches that are balanced nearly
50/50. If optimizers are very dependent on getting accurate predictions at this
level, the usefulness of such profiles will be greatly reduced even if the overall
accuracy of the profiles remain high.

4.4. CONCLUSION 81

4.4 Conclusion

Our results suggest that gathering profiles via sampling can cause substantial
degradations in profile-driven optimization performance, often degrading profile-
driven optimization performance to the point of rendering PDO worthless.

We hypothesize that this is due to inherent characteristics of the sampling pro-
cess - the fragile branch and fragile function hypotheses suggest reasons why even
statistically minor disruptions of profile data can cause substantial degradations in
profile-driven optimization performance.

It may be possible to reduce the effect of these inaccuracies by modification
of our optimization systems. Both of our optimizers were given no information
that the sampled profiles were in any way less accurate that the exact profiles we
have used in other work. It is possible that optimizations could be made more
“robust” in the presence of unreliable information. If an optimization pass was
given information that a given conditional branch was not actually observed to be
taken 60% of the time, but rather that this branch frequency was an estimate and
that the true branch frequency has a substantial possibility of being under 50%,
the optimization might be able to behave more conservatively - not carrying out
optimizations that would cause a disproportionate penalty if indeed the branch
frequency was 49% and not 60%.

Profile-driven optimization using basic-block profiles is not the only applica-
tion for profiling systems. There are a number of situations when exact profiling
is simply not possible and/or not desirable, and in these situations using sampling
techniques may become necessary:

• when no instrumentation system is implemented,

• when events of interest in question are not measurable by instrumentation
code,

• when instrumentation is too disruptive of program behavior,

• when the overhead of instrumentation too high, or

• when only a approximate knowledge of an event is required (for example,
when we are gathering feedback for a human rather than a profile-directed
optimizer).

However, if carrying out automatic profile-driven optimization using basic block
counts, our results suggest that sampling-based systems may provide poor perfor-
mance and that the tradeoff of profiling overhead versus improved performance

82 CHAPTER 4. SAMPLED PROFILES

will turn out to be not worth making. This point is especially telling when we
consider that, if the overhead of an exact profiling method is 25% and that of a
sampling method is 0.25%, the relative difference between these overheads over-
head is not25/0.25 - a factor of 100, but instead125/100.25 or around a factor of
1.25. The fact that the underlying program task of the training profile must be run
regardless of the profiling method reduces the significance of differences among
profiling methods. This is particularly true for the normal usage of profile-directed
optimization (where the requirement is that the gathering of training profiles does
not take an unreasonable length of time - a factor of 10 might be prohibitive),
as opposed to more specialized circumstances (such as a “continuous profiling”
system where profiling is always occurring and thus the overhead should be imper-
ceptible and certainly on average smaller than the likely benefits of optimization).

The position on the connection of usefulness and accuracy that we developed
from our observation of exact profiles remains unchanged from our observation
of sampled profiles. As before, the connection of profile accuracy with profile
usefulness is:

• Inconsistent across benchmarks - some benchmarks show a stronger con-
nection between usefulness and accuracy but most show a comparatively
weak connection

• Statistically significant for some benchmarks

• Of moderate strength for the benchmarks where there is a connection; again,
it is rare that ourr2 values (corresponding to percentage of the variation
explained by accuracy) are greater than 0.5.

We found certain large-scale effects - that generally, sampling both degraded
accuracy and profile usefulness, and that patching reliably improved accuracy but
only sometimes improved usefulness, but these sort of results were not sufficient
to generate assertions about the connection of usefulness and accuracy. When we
evaluated usefulness and accuracy within the population of an entirely patched or
entirely unpatched set of profiles, using the same base profile and different sam-
pling intervals and random number seeds, we found little to no reliable association
with any whole-program metric of usefulness and accuracy.

Chapter 5

Systematic Variation of Profiles

5.1 Introduction

In this chapter we present a method to localize the effects of profile-driven opti-
mization at a per-function level. We use statistical methods to efficiently deter-
mine whether profile data associated with individual functions has any effect on
overall profile-driven optimization outcomes and if so, how much.

This material is of key importance in explaining the results that have come be-
fore. We have conjectured that individual functions might have a disproportionate
effect on profile-driven optimization outcomes, thus rendering our whole-program
accuracy metrics ineffective.

We present results on localization of usefulness “after the fact” (that is, local-
izing usefulness effects for a given profile and evaluation run pair after we ran this
pair as an experiment), which we were able to do with a high level of success. We
also present results that show our attempt to predict these ‘more useful’ functions
“before the fact” - an attempt that was completely unsuccessful.

5.1.1 Experimental Design: Factorial Experiments

In this chapter, we are interested in looking at experimental results may be in-
fluenced by many different factors. It is computationally expensive to attempt
to evaluate each factor on its own, while holding all the other factors constant.
Worse, it is ineffective some of these factors may interact with other factors.

For example, optimizations may overlap in such a way that they either reduce
the possibilities for the other optimization to work, or they may actually create

83

84 CHAPTER 5. SYSTEMATIC VARIATION OF PROFILES

more possibilities for the other optimization to work. An example of the former
case is the interaction between some cases of procedure inlining and instruction
cache optimizations. Inlining small functions may reduce i-cache misses. How-
ever, the same benefits might be achieved by instruction cache placement opti-
mizations. Suppose optimizationoinline is procedure inlining andoicache is whole-
program cacheplacement. While, on their own, these optimizations might each
yield a speedup of 10%, the combined effect of using these optimizations together
may yield a speedup of only 17%. Thus we might write that the interaction term
oinline×oicache is actually -3% to account for the “dysergy” between optimizations
(dysergy being the reverse of synergy).

In other cases, optimizations may actually be more effective in combination.
There is usually a positive interaction between register allocation and other opti-
mizations that increase register pressure, such as global code motion.

Thus, the simple-minded ”One Factor At-A-Time” methodology, where a sin-
gle factor is experimented on while all other are held constant, is not only compu-
tationally inefficient, it misses potentially important interactions. We use a com-
paratively simple methodology known as factorial designs in this chapter to con-
duct and analyze our experiments1.

As a rule, the design and analysis of experiments using only 2-level factors
is far simpler than that of experiments involving 3 or more levels per factor, so
we confine ourselves to using 2-level factors in this chapter. This is a very com-
mon statistical practice, and 2-level factors fit very well with most of our uses of
factorial analysis in this chapter.

Table 5.1 shows the23 factorial design over 3 factors,A, B, andC (con-
ventionallyI is used to represent the overall mean). There are 8 parameters to
estimate for a full factorial model of the experimental results:

• 1 main effect (I, or the overall mean for the whole experiment),

• 3 single-factor effects (A, B, C),

• 3 two-factor interactions (A×B, A× C, B × C), and

• 1 three-factor interaction (A×B × C)

1“Design of Experiments” is a thriving research area, and factorial designs are a very basic
method from this area. They are comparatively easy to implement and analyze, but in many ways
inflexible and inefficient. An introduction to experimental design is contained in [15], though there
are dozens of works in this area

5.1. INTRODUCTION 85

Experiment A setting B setting C setting AB interaction term
e1 0 0 0 1
e2 0 0 1 1
e3 0 1 0 0
e4 0 1 1 0
e5 1 0 0 0
e6 1 0 1 0
e7 1 1 0 1
e8 1 1 1 1

Table 5.1:23 Full Factorial Experiment Runs (with example interaction term)

In this work, we use factor levels ’0’ and ’1’ and the ’logical equivalence’
operation to represent interactions; this is equivalent to using factor levels ’-1’
and ’1’ and using straight multiplication to represent interactions (a somewhat
more common representation). The difference is purely notational. However, it
should be noted that given this notation, the interaction term forA × B will be 1
if A andB are different and 0 otherwise.

The 23 factorial design requires 8 experiments. To estimate the effect of a
factor or interaction, we calculate the difference between the experiments where
the factor is high and the experiments where the factor is low. Thus, the factor and
interactions can be calculated as follows:

I = 1/8(e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8) (5.1)

A = 1/4((e5 + e6 + e7 + e8)− (e1 + e2 + e3 + e4)) (5.2)

B = 1/4((e3 + e4 + e7 + e8)− (e1 + e2 + e5 + e6)) (5.3)

C = 1/4((e2 + e4 + e6 + e8)− (e1 + e3 + e5 + e7)) (5.4)

AB = 1/4((e1 + e2 + e7 + e8)− (e3 + e4 + e5 + e6)) (5.5)

AC = 1/4((e1 + e3 + e6 + e8)− (e2 + e4 + e5 + e7)) (5.6)

BC = 1/4((e1 + e4 + e5 + e8)− (e2 + e3 + e6 + e7)) (5.7)

ABC = 1/4((e2 + e3 + e5 + e8)− (e1 + e4 + e6 + e7)) (5.8)

Obviously, the approach of testing every factor level against every other will
be very expensive as the number of factors and/or factor levels grows. Later in
this chapter, we evaluate a model that has 11 2-level (on or off) factors. Such
a model would require 2048 (211) experiments to perform a full factorial exper-

86 CHAPTER 5. SYSTEMATIC VARIATION OF PROFILES

Experiment A setting B setting C setting
e1 0 0 1
e2 0 1 0
e3 1 0 0
e4 1 1 1

Table 5.2:23−1 Factorial Experiment Runs (one alternative)

iment; at about 20 minutes of computer time per experiment per benchmark, it
would take almost a month to evaluate a single benchmark. If we are willing to
make some simplifying assumptions about our model, we can make these types
of experiments more tractable.

The23−1 experiment requires only 4 experiments (as opposed to 8 for the full
factorial23 experiment. Table 5.2 gives one such design.

This raises a question - how can we estimate 8 parameters using only 4 experi-
ments? The simple answer is, we cannot. We must “sacrifice” certain parameters.
In this case, we design our experiment so that certain factors are “confounded”
with each other. That is, we will organize our experiment so that the factorA is
grouped withBC, B with AC, C with AB andI with ABC (note that in Ta-
ble 5.2C is in fact equal toAB). This means that we will not be able to tell
whether an effect we observed is due toA acting along or the interaction ofBC
- these effects will be pooled together into a single term. The three-factor effect
ABC in this case is completely ‘sacrificed’, as it’s effect is indistinguishable from
the group mean.

I = 1/4(e1 + e2 + e3 + e4) (5.9)

A = BC = 1/2((e3 + e4)− (e1 + e2) (5.10)

B = AC = 1/2((e2 + e4)− (e1 + e3)) (5.11)

C = AB = 1/2((e1 + e4)− (e2 + e3) (5.12)

This is a reasonable way to structure our model if we think that the likelihood
of a 2-factor interaction is very small. It is important to note that none of the main
effects are confounded with each other.

The 23−1 experiment is only one of an endless variety of possible fractional
factorial experiments, generally expressed as2n−k experiments (wheren is the
number of factors andk is the ‘fraction’, thus a2n−2 is referred to as a ’quarter
fraction of a2n experiment. These experiments are usually designed so as not

5.1. INTRODUCTION 87

to confound main effects with two factor interactions at the very least, or to pro-
vide even higher levels of resolution. The trade-off is between resolution and the
number of experiments that must be conducted in the model.

5.1.2 Choosing Interesting Benchmarks And Runs

We choose to carry out the experiments in this chapter for only a small subset of
the benchmarks and evaluation runs used in previous chapters. Our basic reason
for this reduction in scope was simple: one cannot derive a detailed accounting
of effects that are small or non-existent. Attempting to establish multiple sources
for the 1% difference between a good profile forammpand a bad one is not only
preposterously difficult statistically, it is pointless in the engineering sense.

For each evaluation run and benchmark that we included, we used the follow-
ing criteria:

• Tractability: some of the SPEC2000 reference runs were simply too large to
run them hundreds of times, as required by some of the experiments in this
section. Thus, we eliminated from consideration runs that were too large.

• Stability: some of the benchmark runs were too short. Measurement error
was too large a source of variation, concealing the effects that we sought
to measure. While it is interesting, and in many cases valid, to use these
shorter runs to evaluate gross differences between training profiles, it was
not desirable to use such small runs to attempt to do a fine-grained account-
ing of optimization behavior.

• Interesting behavior: this is divided into one or more of:

– Substantial change in profile-directed optimization performance over
a non-profile-directed optimization baseline. Note that the criteria is
“change”, not improvement - we are as interested in the failures of
profile-directed optimization as we are in its successes.

– Substantial variability in profile-directed optimization performance be-
tween different profiles, particularly exact profiles. This criteria is not
the same as the previous one - some programs that respond very well
(or very poorly) to profile-directed optimization perform very simi-
larly for all training profiles, while programs with a relatively large
range of performance differences due to PDO are not necessarily the

88 CHAPTER 5. SYSTEMATIC VARIATION OF PROFILES

Optimizer Benchmark Reference Run Training Profile Scaled Performance
alto bzip2 test ref1 0.87

go test test 0.97
m88ksim test ref 0.83
perl2000 ref makerand ref splitmail 0.87

ref perfect ref perfect 0.80
train diffmail ref splitmail 0.93

vortex2000 test ref1 0.86
train ref1 0.86

cc bzip2 test r ref1 0.98
go test test 1.08
m88ksim test ref 0.94
perl2000 ref makerand ref splitmail 0.91

ref perfect ref perfect 0.94
train diffmail ref splitmail 1.05

vortex2000 test ref1 0.90
train ref1 0.92

Table 5.3: “Interesting” benchmarks and runs chosen for this chapter, along with
scaled performance (relative to non-profile-driven optimization case).

ones that have the best or worst performance relative to the non-PDO
case.

Our choice was further limited by the fact that each of these analyses presented
in this chapter requires a large degree of individual attention and a certain amount
of space for presenting the results.

We summarize the benchmarks and runs chosen for this chapter in Table 5.4.

5.2 Selective Inclusion of Profile Data

Intuitively, it seems obvious that not all the information in a basic block profile
is equally important. Some parts of the program are not executed heavily in the
evaluation runs of interest; some are not executed at all. Further, some parts of
the program that are heavily executed are not necessarily particularly affected by
profile-driven optimization - they are either not amenable to optimization at all,
or non-profile-driven optimization already does a perfectly adequate job with the
parts of the program.

5.2. SELECTIVE INCLUSION OF PROFILE DATA 89

In this section, we attempt to determine whether there is locality of profile
“usefulness” in profile-directed optimization, and if so, we attempt to measure the
distribution of this locality through several programs and profiles.

5.2.1 Methodology

We choose to work at the spatial level of functions (as opposed to smaller-sized
regions or even individual conditional branches). Functions are an intuitively un-
derstandable way of breaking up a program and it is relatively straightforward to
combine profile data at the per-function level from two different profiles. By con-
trast, how to combine profile data from different profiles over arbitrary regions is
far less straightforward.

Our methods involve establishing a “background”; that is, a profile that is
used as a baseline for performance. We then substitute per-function data from an
experimental profile into that background profile to establish whether or not the
the profile data for that function had an effect. We order our functions in order of
total dynamic instruction count in the evaluation run and consider only the top 16
functions as possibilities.

The three choices of “background” and experimental profile that we made are:

• Zero profile (all block counts are artificially set to zero) as background with
an exact profile serving as an experimental profile

• Statically-estimated profile as background with an exact profile serving as
an experimental profile

• Exact profile as background with a statically-estimated profile as the exper-
imental profile.

We would expect that program performance would improve from the addition
of profile optimization performance (as far as profile information can be expected
to improve optimization performance, that is) in the first two cases, as a “zero
profile” or a statically-estimated profile provides very little information and in-
clusion of any profile data from an exact profile should be expected to improve
matters. The reverse is true for the third setup, where including functions from
the statically-estimated profile makes the profile less accurate.

Obviously, we are limited in how many functions can be included in our ex-
periments. The more functions that we consider as possibly interesting, the more
different combinations of function inclusion and exclusion we have to measure.

90 CHAPTER 5. SYSTEMATIC VARIATION OF PROFILES

Optimizer Benchmark Reference Run N = 4 N = 8 N = 16 N = 24 N = 32
alto bzip2 test 1.01 1.00 1.00 1.00 1.00

go test 1.06 1.03 1.00 1.01 1.01
m88ksim test 1.11 1.09 1.03 1.03 1.01
perl2000 ref makerand 1.15 1.10 1.10 0.95 0.98

ref perfrect 1.22 1.21 1.17 1.18 1.14
train diffmail 1.04 1.05 1.05 1.02 1.03

vortex2000 test 1.12 1.12 1.12 1.09 1.07
train 1.15 1.14 1.11 1.09 1.07

cc bzip2 test 1.01 1.01 1.01 1.00 1.01
go test 0.95 0.97 1.00 1.00 1.01
m88ksim test 0.98 1.11 0.93 0.97 0.93
perl2000 ref makerand 0.93 0.99 1.04 0.95 0.97

ref perfrect 0.98 1.02 1.02 0.99 0.98
train diffmail 1.01 1.02 1.02 1.03 1.01

vortex2000 test 0.93 0.93 0.92 0.98 0.97
train 0.91 0.92 0.93 0.93 0.97

Table 5.4: Relative Execution Time of Including N Top Functions from Train-
ing Profile in Zero-Based Background Profile (execution time of binary produced
using training profile normalized to 1.0)

We chose the methods where individual function’s profiles are included in a
background “zero profile”, for the sake of simplicity. All three methods produced
plausible effects, but the advantage of the zero-based method is that we are not
seeing interactions with the behavior of our static estimator, which itself can result
in interesting optimization behavior.

Therefore, we will conduct some preliminary experiments designed to estab-
lish how much of the profile usefulness is localized in all of the topN functions
(whereN = 4, 8, 16, 24 and32 functions). This may allow us to raise our level of
confidence that subsequent measurements designed to localize usefulness in pro-
files are in fact working with a set of functions that are reasonable - for example,
if the usefulness of a profile with only the top 8 profiles by dynamic instruction
count included was the same as the usefulness of the full profile from which it was
derived, we would conclude that most of the profile usefulness was localized in
these top 8 functions.

For most of our benchmarks, the preliminary experiments showed that much
of the profile-driven optimization behavior of the training profile was captured by

5.2. SELECTIVE INCLUSION OF PROFILE DATA 91

profiles that included only the top 8 or top 16 functions by dynamic instruction
count. Generally, if this was not the case, then adding more functions (even up to
the top 32 functions) failed to improve matters substantially. Table 5.4 shows the
results of these preliminary experiments for the “zero profile” background case.
Note that even using the top 32 profiles fails to give similar results to the base pro-
file on some benchmarks. On a number of the cases (cc/vortex , particularly),
the profile behavior remains very different from the base profilebehavior until we
use 24 or 32 functions.

The casesalto/m88ksim is the best example of the profile-driven optimiza-
tion behavior clearly being modelled somewhere in the top 8-16 functions. Note
how in thealto/m88ksim case the profile behavior converges on the base pro-
file behavior (improving, in this case) at somewhere between 8 and 16 functions.
Not all benchmarks are so well-behaved. Some appear to converge quickly on
the behavior of the base profile even with only 4 functions included (e.g.bzip
with both optimizers), while others show suprisingly non-monotonic behavior
(e.g. cc/m88ksim for the test run, with a single odd behavior atN = 8).
In one case (alto/perl2000 for the ref perfect run), even including the
top 32 functions does not produce similar effects to the base profile - there is still
a 14% gap in performance. Overall, however, it is clear that the profile-driven op-
timization behavior of most profiles converges on the base profile as we increase
the value ofN .

5.2.2 Experimental Design

From our above results, we have discovered that profile usefulness seems to extend
well beyond the top 4 or top 8 functions (by dynamic instruction count). Carrying
out factorial experiments with huge numbers of interacting factors is extremely
expensive, even using fractional factorial designs. Further, we are not entirely
sure that second-order interactions are unimportant, so we are inclined to avoid
potential aliasing between main effects and second-order interactions. This means
that we must use what is called a “Resolution IV Design”; that is, a fractional
factorial experiment that is designed so that no main effect is aliased with any
two-factor interaction term2

2The “IV” (4) in “Resolution IV Design” refers to the shortest possible aliasing identity ;
i.e. a aliasing between 2 two-factor interaction terms. A “Resolution III Design” requires far
fewer experiments to be run but, as the name suggests, aliases two-factor interaction terms with
main effects - the use of such designs is considered extremely risky and they are generally used
only when domain experts conclude that it is unlikely that there are any significant two-factor

92 CHAPTER 5. SYSTEMATIC VARIATION OF PROFILES

To balance the competing concerns of experimental tractability, the need to
include as many functions as possible, and the need to avoid introducing danger-
ous aliases, we have chosen a Resolution IV design over 11 functions that calls
for 32 experiments. Our preliminary results showed that a range of 8-16 functions
captured a substantial proportion of the profile-driven optimization effect of our
training profiles. The choice of 11 functions is the maximum that we could reason-
ably evaluate within a Resolution IV design. While a model with more functions
(for example, 24 or 32 functions) would capture more profile-driven optimization
behaviors, it would be extremely difficult to evaluate models with so many factors.
Thus we expect (of necessity) to not be able to capture all the behaviors modelled
in Table 5.4.

A Resolution IV design does not allow us to accurately estimate two-factor in-
teractions - many of our two-factor interactions are aliased with other two-factor
interactions. Thus, using this design, we will only attempt to estimate main effects
over our top 11 functions. We are somewhat interested in discovering whether
significant two-factor interactions exist among at least some of our functions; un-
fortunately, a design that allows accurate discovery of all two-factor interactions
among such a large set of functions could involve hundreds of experiments.

Nonetheless, we are interested in finding whether there are at least some two-
factor interactions among the function profile data that we deem more likely (prior
to the experiment) to influence the outcome of the experiments. Using similar
logic as we used to select the top 11 functions, we have decided (somewhat ar-
bitrarily) that the top 4 functions (again, by dynamic instruction count in the ref-
erence run) are the most likely to be important and have significant interaction
effects.

Thus, we carry out a supplementary full factorial experiment over the top 4
functions (with all other function data absent from the profile). This yields another
16 experiments or “design points” in the nomenclature of experimental design.
Thus, given the amount of detail that this supplementary experiment yields, we
can estimate 2-factor (and higher level) interactions among the “hottest” functions
in the evaluation run.

A full factorial experiment allows estimation of all higher-order effects, in-
cluding 3-factor and 4-factor effects in this case. However, our tests of 3-factor
and 4-factor interactions found almost no significant interactions at this level that
could not be explained by simpler interactions. We decided to eliminate these
high order interactions from consideration for a simpler model. Choosing a sim-

interactions, a statement to which we cannot easily commit.

5.2. SELECTIVE INCLUSION OF PROFILE DATA 93

pler models also needs more degrees of freedom for estimation of experimental
error.

Admittedly, the model we have built does not account for all of the profile-
driven optimization variability observed in our benchmarks. We will estimate
how much variability observed in the benchmarks is captured within this analysis.

An interesting quirk of our design is that we perform fractional factorial exper-
iment with repeated observations; that is, while we do not carry out experiments
at all211 possible factor levels, we do repeat our experiments (3 times in this case,
as well as an initial run to avoid paging effects). This is an unusual practice in
most experimental designs - after all, if we are running(32 + 16) × 3 = 144
experiments per benchmark, why not evaluate 144 design points, instead?

The justification for the use of repetition lies in the costs (in terms of machine
time) in carrying out our experiments. First, we need to run our optimizer (cc
or alto) onceper design point. Further, for any given run of the optimizer, we
must execute the resulting binary at least once on the evaluation run and discard
the results. Thus, there is a certain amount of overhead per design point; as long
as we have reached this point, it is cost-effective for us to run some repeats of the
evaluation run to help characterize how much of the variability we observe is due
to experimental error rather than profile-driven optimization error.

5.2.3 Results

Summary of Our Model

So, as previously discussed, the model of the system that we designed is capable
of discovering the following effects:

• The effect of including each individual function out of our top 11, which we
will denote byf1...f11.

• The two-way interaction terms between each of the top 4 functions, denoted
by f1 × f2, f1 × f3, ...f3 × f4.

Our model will only account for the proportion of the variance of profile-
driven optimization performance due to the inclusion or exclusion of individual
function data. Variation due to the inclusion of other functions, or interactions
that we cannot measure, will not be accounted for in our model. Further, some of
the variation exhibited by our benchmarks will be due to experimental error. We
will use our exploratory results to give a somewhat informal guess at how much

94 CHAPTER 5. SYSTEMATIC VARIATION OF PROFILES

of the profile-driven optimization variability that our model could capture, and
use the extra degrees of freedom provided by our repetitions and our avoidance of
high-level interactions to estimate experimental error.

Proportion of Variation Explained By Model

First, we found that, for many benchmarks, a great deal of the performance effects
produced by the “interesting” training profile selected as a base could be explained
in terms of a relatively small number of profiles. In fact, the range of effects
produced in our 11-factor experiment generally encompassed the effect of using
the base “training” profile with all functions intact.

That is, our model would seem more successful if the range of profile-driven
optimization outcomes in our factorial experiment included - or came close to - the
profile-driven results of using the base profile on its own, and showed a substantial
variation as well.

If the “base profile” PDO results are not included in the range of results pro-
duced by the factorial experiment, and the range of profile-driven optimization
performance variation due to our 11 factors is small, it suggests whatever effect
that the profile had has not been adequately captured by the model.

Of course, just because the experiments that we carry out to build our model
show a substantial variation does not automatically mean that the model actually
explains this variation. But this question is something that analysis of the model
itself can answer. In this subsection, we merely concern ourselves with the ques-
tion of determining whether or not our model appears to be producing an adequate
range of effects.

We will examine a number of histograms plotting the distribution of the profile-
driven optimization performance of the binaries produced within the factorial
experiments, relative to the optimization performance of the base profiles used.
These histograms provide a rough idea of how much variation takes place in the
experiments3.

At one extreme, depicted in Figure 5.1, the benchmarkm88ksim using the
cc optimizer, thetest evaluation run and theref base training profile, shows
huge variability in our factorial experiment, ranging between0.9 and1.4 times the
profile-driven optimization performance of the binary produced withref on the
same run, depending on which functions’ profiles are included.

3There are different values ofN for the two histograms shown, as the individual benchmark
runs are run for different numbers of repeats between the two different benchmarks. This does not
affect the models developed for each benchmark.

5.2. SELECTIVE INCLUSION OF PROFILE DATA 95

SCALEDAV

1.375
1.350

1.325
1.300

1.275
1.250

1.225
1.200

1.175
1.150

1.125
1.100

1.075
1.050

1.025
1.000

.975
.950

.925
.900

CONTEXT: cc BENCH: m88ksim REFNAME: r_test
16

14

12

10

8

6

4

2

0

Std. Dev = .13

Mean = 1.113

N = 138.00

Figure 5.1: Distribution of Performance in Factorial Experiments (m88ksim us-
ing cc) - relative to base profile

96 CHAPTER 5. SYSTEMATIC VARIATION OF PROFILES

SCALEDAV

1.2450

1.2400

1.2350

1.2300

1.2250

1.2200

1.2150

1.2100

1.2050

1.2000

1.1950

1.1900

1.1850

CONTEXT: alto BENCH: perl2000 REFNAME: r_ref_perfect
30

20

10

0

Std. Dev = .01

Mean = 1.2201

N = 240.00

Figure 5.2: Distribution of Performance in Factorial Experiments (perl2000
usingalto) - relative to base profile

At the other extreme, depicted in Figure 5.2, the benchmarkperl2000 using
the alto optimizer, theref perfect evaluation run and theref perfect
base training profile, shows a variability in the equivalent situation ranging from
1.18 to 1.25.

Informally, it seems like the model in them88ksim case has captured more
interesting information about what makes theref training profile useful or not
useful, as compared to the model in theperl2000 case. Which case is more typ-
ical of our benchmarks? Table 5.5 summarizes the cases across our “interesting”
benchmark set.

Table 5.5 gives an idea of the range of results across for each factorial ex-
periment (over the range of benchmarks and runs used in this chapter). We do
not present a formal accounting of the variance here, as it is due to a synthetic
set of profiles. However, we present the range, minimum and maximum perfor-

5.2. SELECTIVE INCLUSION OF PROFILE DATA 97

Optimizer Benchmark Reference Run Range Minimum Maximum
alto bzip2 test 0.26 0.90 1.16

go test 0.06 1.01 1.08
m88ksim test 0.24 1.05 1.28
perl2000 ref makerand 0.14 1.06 1.20

ref perfect 0.06 1.19 1.25
train diffmail 0.11 0.99 1.10

vortex2000 test 0.11 1.07 1.18
train 0.12 1.11 1.23

cc bzip2 test 0.07 1.00 1.07
go test 0.09 0.91 1.00
m88ksim test 0.48 0.90 1.38
perl2000 ref makerand 0.12 0.92 1.04

ref perfect 0.08 0.95 1.03
train diffmail 0.12 0.93 1.05

vortex2000 test 0.09 0.92 1.01
train 0.09 0.91 0.99

Table 5.5: Summary of Distribution of Performance in Factorial Experiments -
relative to base profile

98 CHAPTER 5. SYSTEMATIC VARIATION OF PROFILES

mance (relative to the base profile from which the synthetic profiles have been
constructed) so as to give an idea of how much variability is captured by our ex-
periments, and in what direction.

It is clear that the range of performance that results from our factorial experi-
ments is quite large, and that the bulk of our experiments come fairly close to the
performance of the “base” profile from which the profile experiments were made
(in the table, a scaled value of 1.00). The two most glaring departures from this
come withalto on two different benchmark and reference run / training profile
combinations:perl2000 with ref perfect andvortex with train .

For these benchmarks, it is clear that whatever makes the base profiles effec-
tive, it is not fully captured by our factorial experiment. Perhaps it is the 12th
function by dynamic instruction count - or the 20th - or an interaction that we did
not explore. We did, however, capture substantial variability even in these cases -
we continue to construct our model, while remembering that the model does not
fully describe the performance effects observed from the use of the base profile.

We note that many of the results using thecc optimizer generally show better
results using a factorial subset of the important functions than they do with the full
“base” profile. One reason for this is that more of the selected benchmarks and
benchmark runs actually turned out to be bad profiles undercc (the benchmark
and run choice was generally driven by the intent to use benchmarks, profiles and
runs that showed substantial effects withalto).

To cite the most extreme case, the use of the profile generated by thetest run
for go undercc actually worsened performance by 7% as compared to the non-
profile driven optimization case. Thus, it is not surprising that a procedure that
involves including only some functions from a ‘bad’ base profile produces better
performance than that base profile. We still consider these cases interesting and
the building of a performance model for them to be useful; optimization failure
might well be as localized as optimization success.

Overall, it looks like nearly all of the benchmarks show substantial profile-
driven optimization variation during our factorial experiments, and it seems likely
that the effects observed have something to do with the performance effects of the
base profiles.

Model Results: Main Effects and Interactions

Our model is an additive one and consists of a mean value and 17 coefficients -
11 coefficients representing the effects of including an individual function, and
6 coefficients representing the 2-way interactions between our top 4 functions.

5.2. SELECTIVE INCLUSION OF PROFILE DATA 99

Fortunately for our presentation, not all of these 17 effects are significant (in a
statistical sense or in an engineering sense). We remove from consideration any
factor that is not significant at the 0.01 level4. Further, we will remove from our
presentation factors that, while statistically significant, caused less than a 0.5%
change in performance.

Not all our factors operate in the same direction. Some of our factors will
worsenperformance when “switched on” (that is, when the function correspond-
ing to the factor is included). In a profile-directed optimization system where
usefulness perfectly correlated to accuracy, inclusion of accurate function data
should always improve performance. However, we must consider several reasons
why our functions do not improve performance.

• First, many of the combinations of profile and evaluation run are not “re-
substitution” cases, and thus any given function may not be an accurate
reflection of program behavior on our evaluation run.

• Second, and probably more significant, we have extensively demonstrated
that the use of accurate profile data does not always improve performance

• Finally, some of the profiles that we have evaluated are interesting because
they worsen performance - thus we would expect to see the selective inclu-
sion of some of their parts would also worsen performance.

Our interaction terms show the effect of having both factors “switched on”
that is independentof the individual effects of the factors. This may indicate a
synergy between two profiles (added benefits from having both functions in the
profile) if positive or a dysergy (where including both profiles in the function
causes worse performance than you would expect from their individual effects).
In some situations this may represent a situation of diminishing returns; while the
inclusion of functionsfoo and functionsbar might both yield a 5% performance
improvement, the sum of their effects might be smaller than a 10% performance
improvement.

Initially we will show the overall success of the model described above in
accounting for the experimental results that we observed in our factorial experi-
ments. Table 5.6 shows ther2 values for our model for each experiment; as in the
case of correlation, this value indicates the proportion of variability explained by

4Why so strict? We hold that, given the large number of factors involved (17 for each bench-
mark), using a 0.05 significance level would result in around a 60% chance (1 − 0.9517 = 0.58)
chance of claiming that a factor was significant when in fact it was not.

100 CHAPTER 5. SYSTEMATIC VARIATION OF PROFILES

Optimizer Benchmark Reference Run Model r2

alto bzip2 test 0.82
go test 0.44
m88ksim test 0.62
perl2000 ref makerand 0.65

ref perfect 0.42
train diffmail 0.65

vortex2000 test 0.66
train 0.68

cc bzip2 test 0.93
go test 0.89
m88ksim test 0.97
perl2000 ref makerand 0.93

ref perfect 0.91
train diffmail 0.85

vortex2000 test 0.73
train 0.78

Table 5.6:r2 Values for each Factorial Experiment - Proportion of Variability in
Each Experiment Explained By Our Model

our model as opposed to the variability that results from either systematic effects
that our model does not capture or the variability that results from experimental
error.

Ther2 values are generally quite good; onlygo and one case inperl2000
show poor (less that 50% of variance explained) results. Note that even a perfect
model will not explain 100% of the variability in these experiments, as there is a
certain amount of experimental error in the measurement of the performance of
the optimized binaries. Unfortunately, we cannot separate this error from errors
due to the inadequacies of our model.

We now present the models themselves, in Table 5.7 and Table 5.8. We will
not give a full account of all 17 factors for every benchmark and profiling run, but
instead present the model factors that meet our criteria for statistical and engineer-
ing significance (that is, factors that meet the criteria of at least a 0.5% effect on
final performance).

Each table is grouped by optimizer, benchmark and run (we use only a single
training profile for each reference run, as described in Table 5.4). Each grouping

5.2. SELECTIVE INCLUSION OF PROFILE DATA 101

contains the description of a single model that is designed to predict the profile-
driven optimization usefulness of a training profile that includes one or more func-
tions from the training profile that we are using as a baseline. The model perfor-
mance is scaled so that1.0 is the profile-driven optimization performance of the
unmodified training profile.

The functions are numbered fromf1 to f11 based on their dynamic instruction
count in the reference run. This means that for different reference runs of the same
benchmark ,f1 may refer to a different function.

The entries for each combination of benchmark, optimizer and run contain the
following information:

• The “Base” term indicates the model’s predicted relative performance with-
out any of the functions included. For example, if a “Base” term was
1.054, this would mean that an all-zero “background” profile would run
5.4% slower than the original training profile.

• An entry for each function or two-function interaction term. We use the
first per-function entry in Table 5.7 (optimizeralto , benchmarkbzip ,
run train and functionf2 as an example. Each entry comprises:

– The function or interaction identified by its dynamic instruction count
rank (for example,f2 refers to the function with the 2nd highest dy-
namic instruction count)5.

– The coefficient of the term associated with that factor in our model
- that is, if the coefficient associated withf2 is -0.114, that means
that average execution time (relative to the performance of the original
binary optimized with the unmodified training profile) drops by 11.4%
if the data from functionf2 is included.

– The significance (“Sig.”) of the factor. This is the probability that
if there was no real difference between the profile-directed optimiza-
tion usefulness of the profile whether the function was included or
not, we would have seen as much variation associated with that par-
ticular function. In the example we chose, this value is so low that
it is rounded to0.000. In this case, there is a negligible chance that
we would have seen such a large difference in the effect of function

5We were fortunate enough not to have to consider ties within the top 11 functions considered
for these benchmarks and runs

102 CHAPTER 5. SYSTEMATIC VARIATION OF PROFILES

profiles that includedf2 and those that did not. We filter significance
levels at0.01.

– A metric of how much variation the factor accounted for, called “Par-
tial Eta Squared”. This metric gives a value between 0 and 1.0 that
approximates the ratio between the amount of variability explained
with and without that individual factor (or interaction term). Each fac-
tor is considered in isolation in the calculation of partial eta squared,
so the values do not add up to 1.0.

– The actual name of the function or functions. In a few cases, we are
unable to find the function names, as this information has been re-
moved from functions that came from certain object files, particularly
libraries.

Table 5.7 and Table 5.8 show that the number of factors that are a significant
effect of profile-driven optimization performance can be quite small, and that the
magnitude of the effects of some of the top factors can be quite large, often much
larger than the effects of the other factors put together . Profile information for the
functionf2 in thealto /bzip example produces a 11.4% average speedup!

These factors are not strictly uni-directional. It should be obvious by now
that not every application of profile-driven optimization results in speedups. This
pattern continues on the per-function level; note the group of effects in thecc
/perl2000 /train diffmail case (associated withf1, f4 andf6) that each
produce over 4% slowdown each! Thus, our factorial model does a reasonably
good job of localizing profile-direction pessimization as well as optimization -
note that the use of the chosen training profile for this particular benchmark and
run causes a 5% slowdown, not a speedup.

Whether the effects of individual function’s profile data are harmful or benefi-
cial, it remains true that the usefulness of the profile data is quite heavily localized
to individual functions, and that not every function that accounts for a large share
of dynamic instruction count is heavily represented in the model.

We evaluated an alternate model, where we included 3-factor and 4-factor
interactions among our various benchmarks. This model showed almost no im-
provement in the proportion of variability explained over the simpler model. This
raises the question - how important, overall, were our 2-factor interactions?

The effects of 2-factor interactions were generally smaller than the single-
factor effects. There were occasional 2-factor interactions of reasonably large
magnitude (for example, thef3 × f4 term inalto/m88ksim result). However,

5.2. SELECTIVE INCLUSION OF PROFILE DATA 103

Optimizer Bench Run Factor Coefficient Sig. Partial Eta Squared Function Name
alto bzip2 test Base 1.085

f2 -0.114 0.000 0.75 generateMTFValues
f6 -0.035 0.000 0.20 specputc
f8 0.017 0.000 0.05 getRLEpair
f10 -0.034 0.000 0.18 specungetc
f11 0.035 0.000 0.19 bsR
f1 * f4 0.040 0.000 0.10 getAndMoveToFrontDecode * specgetc
f5 0.016 0.001 0.05 sortIt
f1 * f3 0.027 0.001 0.05 getAndMoveToFrontDecode * sendMTFValues
f2 * f3 0.021 0.010 0.03 generateMTFValues * sendMTFValues

go test Base 1.047
f2 -0.010 0.000 0.23 getefflibs
f6 0.010 0.000 0.16 ldndate
f1 * f3 -0.008 0.002 0.04 mrglist * addlist

m88ksim test Base 1.250
f1 -0.050 0.000 0.27 killtime
f2 -0.059 0.000 0.22 ckbrkpts
f6 -0.022 0.000 0.06 Pc
f9 -0.058 0.000 0.30 rdwr
f3 * f4 -0.034 0.001 0.05 Datapath * execute
f1 * f3 -0.027 0.007 0.03 killtime * Data path

perl2000 ref makerand Base 1.197
f2 -0.037 0.000 0.28 Perl pp nextstate
f3 -0.044 0.000 0.28 Perl pp rand
f9 -0.027 0.000 0.22 Perl pp next
f2 * f3 0.036 0.000 0.15 Perl pp nextstate * Perlpp rand
f1 * f2 -0.017 0.004 0.04 Perl pp padsv * Perlpp nextstate
f3 * f4 -0.017 0.004 0.04 Perl pp rand * Perlpp modulo
f1 * f3 0.016 0.005 0.03 Perl pp padsv * Perlpp rand
f6 0.009 0.010 0.03 Perl pp const

ref perfect Base 1.228
f5 -0.011 0.000 0.19 Perl pp modulo
f7 0.008 0.000 0.12 Perl sv setnv
f10 0.007 0.000 0.10 Perl pp divide
f1 * f4 0.016 0.000 0.15 Perl pp gvsv * Perl pp nextstate

train diffmail Base 1.042
f1 -0.023 0.000 0.48 ++undef++
f2 0.019 0.000 0.21 Perl my bcopy
f4 -0.020 0.000 0.07 ++undef++
f10 0.007 0.000 0.05 Perl leavescope
f2 * f3 -0.021 0.000 0.15 Perl my bcopy * undef
f2 * f4 0.016 0.000 0.09 Perl my bcopy * undef
f3 * f4 0.014 0.000 0.08 undef * undef
f5 -0.006 0.002 0.04 Perl pp padsv

vortex2000 test Base 1.163
f1 -0.019 0.000 0.12 ChunkChkGetChunk
f3 -0.027 0.000 0.24 TmFetchCoreDb
f4 -0.020 0.000 0.28 Mem GetAddr
f5 0.011 0.000 0.11 OaGet
f6 -0.008 0.000 0.06 Mem GetBit
f7 -0.013 0.000 0.15 OaGetObject
f9 -0.010 0.000 0.09 Hm FetchDbObject
f2 * f3 0.025 0.000 0.16 Mem GetWord * TmFetchCoreDb
f8 -0.007 0.001 0.05 TmGetObject
f1 * f4 0.010 0.007 0.03 ChunkChkGetChunk * MemGetAddr
f1 * f2 0.010 0.008 0.03 ChunkChkGetChunk * MemGetWord

train Base 1.171
f3 -0.032 0.000 0.57 TmFetchCoreDb
f4 -0.026 0.000 0.22 Mem GetAddr
f5 0.008 0.000 0.06 OaGet
f7 -0.011 0.000 0.11 OaGetObject
f10 -0.010 0.000 0.09 Hm FetchDbObject
f2 * f4 0.018 0.000 0.09 Mem GetWord * MemGetAddr
f3 * f4 0.010 0.007 0.03 TmFetchCoreDb * MemGetAddr

Table 5.7: Model Description foralto

104 CHAPTER 5. SYSTEMATIC VARIATION OF PROFILES

Optimizer Bench Run Factor Coefficient Sig. Partial Eta Squared Function Name
cc bzip2 test Base 1.054

f1 -0.036 0.000 0.91 getAndMoveToFrontDecode
f5 0.005 0.000 0.12 sortIt
f10 0.006 0.000 0.17 bsR
f1 * f3 -0.006 0.006 0.06 getAndMoveToFrontDecode * sendMTFValues

go test Base 0.932
f2 -0.010 0.001 0.09 getefflibs
f3 0.024 0.000 0.77 addlist
f5 0.013 0.000 0.43 dellist
f6 0.007 0.000 0.15 ldndate
f8 0.006 0.000 0.13 killist
f9 0.013 0.000 0.41 iscaptured
f10 0.005 0.001 0.08 radiatepiece
f11 0.005 0.002 0.08 livesordies
f2 * f4 0.007 0.009 0.06 getefflibs * lupdate

m88ksim test Base 1.160
f1 -0.209 0.000 0.96 killtime
f2 -0.060 0.000 0.60 ckbrkpts
f3 0.057 0.000 0.43 Datapath
f4 0.081 0.000 0.70 execute
f5 0.037 0.000 0.34 test issue
f9 0.032 0.000 0.27 checklmt
f8 0.015 0.002 0.08 checkscoreboard
f10 -0.013 0.007 0.06 getmemptr
f11 0.012 0.009 0.05 Statistics

perl2000 ref makerand Base 0.949
f1 -0.015 0.000 0.72 Perl pp padsv
f3 0.022 0.000 0.31 Perl pp rand
f7 0.046 0.000 0.85 Perl sv setsv
f9 0.010 0.000 0.21 Perl pp next
f11 0.007 0.000 0.13 Perl pp gt
f1 * f2 -0.012 0.000 0.12 Perl pp padsv * Perlpp nextstate
f1 * f4 -0.014 0.000 0.14 Perl pp padsv * Perlpp modulo
f2 * f3 -0.013 0.000 0.12 Perl pp nextstate * Perlpp rand
f6 -0.006 0.001 0.09 Perl pp const
f3 * f4 -0.008 0.009 0.06 Perl pp rand * Perlpp modulo

ref perfect Base 0.972
f5 -0.006 0.000 0.17 Perl pp modulo
f7 0.008 0.000 0.26 Perl sv setsv
f8 0.040 0.000 0.89 Perl pp add
f10 -0.005 0.001 0.09 Perl sv upgrade

train diffmail Base 0.954
f1 0.043 0.000 0.30 regmatch
f4 0.046 0.000 0.54 regtry
f6 0.041 0.000 0.72 Perl sv setsv
f7 0.010 0.000 0.14 Perl regexecflags
f1 * f4 -0.048 0.000 0.53 regmatch * regtry
f2 * f3 -0.018 0.000 0.13 Perl my bcopy * regrepeat

vortex2000 test Base 0.974
f1 -0.025 0.000 0.56 ChunkChkGetChunk
f8 -0.008 0.000 0.10 TmGetObject
f9 0.009 0.000 0.11 Hm FetchDbObject
f11 0.013 0.000 0.21 PartDelete
f7 0.007 0.002 0.07 OaGetObject

train Base 0.956
f1 -0.013 0.000 0.67 ChunkChkGetChunk
f6 0.010 0.000 0.21 OaGet
f7 -0.013 0.000 0.30 Mem GetBit
f3 -0.012 0.000 0.36 TmFetchCoreDb
f1 * f4 -0.011 0.001 0.09 ChunkChkGetChunk * MemGetAddr

Table 5.8: Model Description forcc

5.2. SELECTIVE INCLUSION OF PROFILE DATA 105

these 2-factor interactions usually involved at least one factor that was identified
as important in itself (thealto/m88ksim term mentioned above is one of the
few exceptions).

This suggests that a more effective way to proceed in future work of this kind
is to conduct a two-stage experiment. First, a low-resolution screening experiment
should be carried out to determine which single factors are important.

Second, these factors can be analyzed exhaustively for interactions. It may be
possible to use our knowledge of the static or dynamic behavior of the program to
estimate which factors are likely to have substantial interactions. For example, if
we have two pairs of functionsA, B andC, D such that:

• A callsB extensively

• C andD are distant from each other in the call graph and are almost certain
never to be active at the same time

then we would expect that the potential for 2-factor interaction terms correspond-
ing to the pair of functionsC andD is comparatively small as compared to those
corresponding toA andB. A carefully constructed experimental design might
confound the interaction termsC × D andA × B, and we would analyze the
design with the assumption that the effect ofC ×D was negligible.

We should not entirely dismiss the importance of 2-factor interactions - par-
ticularly two-factor interactions that occur between factors that are not significant
in themselves. The above two-stage design runs the risk of entirely missing a
pair of factors that are only effective in combination. It is an open question as
to whether a more detailed accounting of factor interactions (for example, all 2-
factor interactions among our top 11 functions) is more important than including
more functions (for example, extending our calculation of main effects from the
11th to the 22nd function).

5.2.4 Characteristics of Important Functions

Our models showed that only a handful of functions had any significant effect
on performance. Given that our models generally (but not always) explained a
large proportion of the effects of profile-driven optimization for our chosen bench-
marks, training profiles, and reference runs, it is interesting to look at the charac-
teristics of the functions deemed particularly “influential” by our model. Does
inspection of these functions reveal common characteristics that would allow us

106 CHAPTER 5. SYSTEMATIC VARIATION OF PROFILES

to predictin advancewhich functions might be particularly important for profile-
driven optimization? It is worth remembering that all the analysis in this chapter
is “after the fact”: our models explain what happened with an set of optimized
binaries already executed on a given reference run, but offer no predictions as to
what would happen with a different profiles and/or a different benchmark.

We examined various static and dynamic characteristics of two sets of func-
tions out of our set of the top 11 functions in each combination of optimizer,
benchmark and reference run that we measured. We formed the sets of functions
by separating the functions whose profiles had a large effect on profile-driven opti-
mization from those that had little effect on profile-driven optimization. We found
very little difference between these two sets of functions. Unsurprisingly, there
was an association between the property of a function being “influential” and a
function having a large dynamic instruction count.

We did not find any significant difference between various metrics of static
and/or dynamic function complexity and the influence of the function’s profile on
profile driven optimization outcomes. Among the metrics that we examined were:

• Function call graph behavior (number or dynamic count of in edges, number
or dynamic count of out edges)

• Number or nesting depth of loop nests in the function

• Number or dynamic count of conditional branches

• Number or dynamic count of conditional branches in only one direction

• Static instruction count

The only metrics that seemed to suggest a function’s potential influence were
either dynamic instruction count itself or various other metrics that tracked dy-
namic instruction count fairly closely. This negative result (no association) was
stable regardless of whether we attempted to predict whether functions were in-
fluential or whether functions were both influential and the results of using the
function’s profile were good.

5.3 Conclusion

Our results show that usefulness, for a large proportion of our “interesting” bench-
marks and runs, can definitely be localized in a small proportion of functions.

5.3. CONCLUSION 107

Usually, a few functions - not necessarily the functions with the highest dynamic
instruction count in the program - account for a very large proportion of the vari-
ance due to profile-directed optimization. We built models using the top 11 func-
tions by dynamic instruction count that accounted (informally, at least) for a large
proportion of the profile-driven optimization effects of our training profiles, at
least for most of our benchmarks. Within these models, we were able (this time
more formally) to show that most of the performance effect was due to a relatively
small number of factors within the model. At most half of the 17 single factor and
2-factor interactions that we modelled had a substantial effect, and generally the
bulk of the variation was accounted for by far fewer factors.

While 2-factor interactions between functions were never among the most im-
portant parts of our model, we did find significant 2-factor interactions. This
validated our used of methods from the “Design of Experiments” methodology;
a experimental procedure that considered function profile data only in isolation
would not have identified these 2-factor interactions - or worse, would have mis-
takenly attributed them to individual functions.

We have identified a procedure by which a large proportion of the variance
due to profile-directed optimization can be assigned to the effects of a compara-
tively small number of functions and the interactions between them. More work
is needed to make this procedure more robust, complete and efficient.

Ultimately, the methodology developed in this chapter could help with a num-
ber of problems in the area of profile-directed optimization. We must be cautious
about any claims that these techniques could be used to improve overall profile-
directed optimization effectiveness per se. While, theoretically, our models could
be used to generate a profile that is better than the training profile used as a base
(by excluding functions’ profiles whose effect was to worsen optimization perfor-
mance), the overhead of building our model is very high and our model is specific
to a known reference run. There is no guarantee that our model will help with
doing a better job of optimizing a program for a unknown future execution.

However, the ability to identify small parts of the profile as particularly im-
portant and effective may prove useful when we have a very good idea of future
program executions. First, as outlined above, it may be possible to generate more
useful profiles as a result of our model. Second, being able to reduce a profile to a
few functions may make the task of maintaining profiles for a program that is con-
stantly being modified easier. For example, we might flag the functions that have
the most influence on profile-driven optimization and only re-profile the program
if these functions are modified.

108 CHAPTER 5. SYSTEMATIC VARIATION OF PROFILES

Chapter 6

Related Work

6.1 Profile Accuracy and Static Estimation

Wall [14] makes the first systematic attempt to evaluate profile accuracy. Wall
compares real profiles and static estimates for accuracy, introducing the key- and
weight-matching comparison metrics. His comparisons use key- and weight-
matching at both fixed levels (topk) and, similar to our work, at levels propor-
tional to the total number of blocks (topN%). He shows strong improvements in
accuracy from using real profiles over static estimates.

The static estimation methods evaluated in the Wall paper are fairly primitive,
using only loop nesting levels and counts of static call sites.

Wall analyzes two purely theoretical profile-driven optimization algorithms;
global register allocation and a hypothetical “intensive” optimization (that cuts
the execution time of a procedure in half but is so expensive that it can only be
applied to 5% of the procedures). The results from this analysis are of necessity
limited; the global register allocation optimization did not provide much speed-up
and the “intensive” optimization example is extremely unrealistic. However, his
call for caution about the promised benefits of profile driven optimization proved
prescient given our results.

Larus and Ball introduce a series of heuristics for compile-time branch predic-
tion in [3], applying the heuristics in a fixed order. Wu and Larus extend this work
in [18], by using Dempster-Shafer theory to combine branch prediction heuris-
tics (rather than a fixed ordering) and introducing an algorithm to construct basic
block profiles from branch predictions. Their approach is similar to, but more
efficient than, the linear algebra-based approach in our work (although our lin-

109

110 CHAPTER 6. RELATED WORK

ear algebra approach proved to be acceptable in performance in almost all cases
- its inefficiencies are a bigger problem in theory than in practice). The earlier
work uses a simple metric (”instructions per mispredicted branch”), while key-
and weight-matching (at 10%, 20%, 30%, 40% and 50% - they thus present 10
different accuracy metrics) are used to evaluate the accuracy of the static estima-
tion methods.

Wagner et. al do a similar analysis in [13], using Markov models to model
control flow on an abstract syntax tree-based representation of programs. They
compare estimated profiles to exact profiles using weight-matching.

None of the above works attempts to establish any connection between profile
accuracy and real profile-driven optimization performance. Our work diverges
from all of these works by connecting accuracy metrics to actual profile-driven
optimization performance in two mature optimizers. The work contained in this
thesis suggests that claims of greater or lesser accuracy from one static estimation
method or another may have very little actual consequence for profile-driven opti-
mization; of these papers, the only paper to deal with this issue in any way is Wall
[14].

This issue is particularly important in the context of static estimation. In a pro-
filing system that is designed for both profile-driven optimization and the gather-
ing of profiles for the enlightenment of the user, such as DCPI [2, 5], a more accu-
rate profile may be helpful even if it does not improve profile-driven optimization
performance. Such a claim cannot be made for static estimators; few program-
mers would look to a static estimator for insight about the execution frequencies
of their programs.

An extensive treatment of information-theoretic methods for comparing and
combining profiles, including the relative entropy comparison used in this work,
appears in Savari and Young [11]. Our work validates the use of relative entropy
as a profile comparison metric in many domains. However, the comparative effec-
tiveness of simple, more intuitively understandable metrics such as static coverage
of profiles does raise some doubts about the wisdom of using relative entropy in
some circumstances.

6.2 Characteristics of Dynamic Profiles

In a paper that also deals with static branch prediction, Fisher and Freudenberger
report that profile data gathered from previous runs yields good branch predictions
[8]. Like Ball and Larus [3], this work uses the “instructions per mispredicted

6.2. CHARACTERISTICS OF DYNAMIC PROFILES 111

branch” metric. Unlike most of the works on profile accuracy, this work deals
with the accuracy of “exact profiles”, rather than static estimation.

Fisher and Freudenberger mention the possibility that the differences in real
benchmark runs might be related to the benchmark’s coverage of the program as
opposed to differences in behavior in code that is covered by both runs. To quote
from the “Informal Observations” section of their paper: “We felt that when a
dataset predictor did poorly, it was usually because it emphasized a different part
of the program than the target dataset, rather than that the branches changed direc-
tion”. This is an interesting observation, which unfortunately they were not able
to quantify. Our results suggest that this intuition was correct (at least in terms
of what informationalto was able to use effectively); the comparatively strong
predictive value of the accuracy metric “FE-STC” (function entry static coverage)
supports this. Further, for our exact profiles, we measured the correlation between
the “FE-STC” metric and two whole-program accuracy metrics (relative entropy
and key-matching at the 10% level). We show thealto results in 6.11; thecc re-
sults are almost identical, as profile accuracy metrics alone behave very similarly
across both optimizers.

Calculating these correlations across all benchmarks for a given optimization
context also yields a strong (rs close to 0.7 for both metrics and both optimization
contexts) connection between static coverage and other metrics. All these rela-
tively strong correlations indicate that static coverage of functions is very strongly
connected with program behavior in general. The correlations do not help deter-
mine why this connection exists, but they lend some support to the Fisher and
Freudenberger hypothesis.

Eeckhout et al. [7] use statistical data analysis techniques to cluster similar
“program-input pairs” (in our terms, pairs consisting of a benchmark and an eval-
uation run). They concentrate on overall benchmark characteristics as opposed to
profile accuracy and/or profile usefulness.For our analyses in this paper, we have
little need to reduce the number of “program-input pairs” to cover a hopefully
representative set of benchmarks, training profiles, and evaluation runs, as our
analyses benefit from more data points rather than fewer. This is true even if some
of the training profiles and evaluation runs produce very similar effects.

1Some benchmarks are missing from this table, as the FE-STC accuracy metric may be identi-
cal for all profile pairs, rendering correlation impossible

112 CHAPTER 6. RELATED WORK

CONTEXT BENCH ENT K01
alto ammp 0.737* 0.32

art 0.534* 0.49
bzip2 0.562** 0.15

compress 0.42 0.53
crafty 0.50 0.37

gap 0.744* 0.50
go 0.520** 0.402*

gzip 0.388** 0.313*
li 0.850** 0.52

m88ksim 0.691* 0.767*
mcf 0.737* 0.53

parser 0.54 0.44
perl2000 0.860** 0.669**

twolf 0.737* 0.53
vortex2000 0.38 0.37

vpr 0.956** .838**

Table 6.1: Correlation between static coverage of functions and two selected accu-
racy metrics, over all training profile and evaluation run pairs for each benchmark.
‘*’ represents a value significant at the 0.05 level. ‘**’ represents a value signifi-
cant at the 0.01 level.

6.3. USEFULNESS OF PROFILE-DRIVEN OPTIMIZATION 113

6.3 Usefulness of Profile-Driven Optimization

Profile-directed optimization in our two optimizers is discussed in [10] foralto
and [4] forcc .

Cohn and Lowney compare the differences in usefulness between profile-
driven optimization and static estimation on the Compaq Alpha in [4]. They report
a substantial speedup (17%) on the SPEC 95 integer benchmarks from using feed-
back directed optimization.

Cohn and Lowney report a larger effect from profile-driven optimization than
this paper. There are a number of reasons why their results are much stronger than
ours forcc profile-driven optimization:

• They use more aggressive optimizations on a more recent iteration of the
Alpha architecture.

• Another difference between their work and ours is that we use a wider va-
riety of benchmarks (including SPEC2000 and floating point benchmarks)
and benchmark runs than they do. This may also contribute to the perfor-
mance gap between this paper and their work, particularly given that the
optimizers we use pre-date SPEC2000 and have not been tuned for these
applications at all.

• Our results include many short runs (as opposed to long-running SPEC “ref-
erence” runs) that generally show less optimization effect as they spend a
much larger proportion of their time running hard-to-optimize start-up code
and spend less time in intensive inner loops.

The Morph System is discussed in [19, 9]. Morph allows automatic collection
of profile information by sampling and automatic profile-directed optimization.
They claim a sampling overhead of 1%. They use theχ2 goodness-of-fit test as a
profile comparison metric2, as well as key-matching, and report good results.

In a analysis of the Morph system in [9], the authors show accuracy and use-
fulness results for multiple sampling runs (up to 32 ”sampled runs of our test
workloads”), combined into a single profile, as well as each of the 32 individ-
ual sampling runs and exact profiles. The overall results show that the combined
sampling runs do almost as well (sometimes better) in usefulness terms on the

2We avoided implementing this profile comparison metric, as theχ2 goodness-of-fit test pro-
duces questionable results when values in the distributions being compared are smaller than 5.
This is the case for a large number of basic block counts in nearly all programs.

114 CHAPTER 6. RELATED WORK

benchmarks as exact profiles. However, the average performance of the 32 dif-
ferent ”sample runs”, taken singly, was substantially worse, with extremely high
variability.

The use of these combined profiles is extremely suspect. If a profiling tech-
nique with an alleged overhead of 1% must be run 32 times to produce good pro-
file usefulness numbers, surely the actual profile-directed optimization overhead
is 1% plus31 × 101% or 3132%? It is clear that the authors discovered the sub-
stantial unreliability of sampled profiles but chose to focus instead on the rather
questionable numbers produced by aggregating many sampled profiles together.

Wang and Rubin discuss the gathering of “user-specific” profiles in [16]. They
carry out statistical analysis of the differences between different user profiles
across a range of real-world application benchmarks. Their equivalent to an accu-
racy metric was the extent to which different procedures appeared in common in
user-specific profiles. Note this is not quite the same thing as our “function-entry
static coverage” metric - our metric considers the number of functions common to
training profile and evaluation run as a percentage of those functions appearing in
the evaluation run, and unlike their metric, is not symmetric. They found that (for
different benchmarks) while 61% to 83.1% of procedures appeared in all users’
profiles if they appeared in any, 1% to 9% of functions appeared only in the profile
gathered by a single user.

Wang and Rubin go on to analyze the differing effects of these profiles on
profile-driven optimization and translation using Digital’s FX!32 profiling sys-
tem, on the Microsoft Office applications “Microsoft PowerPoint” and “Microsoft
Word”. While the different user-specific profiles they used caused little perfor-
mance variation for PowerPoint, the variation was pronounced (9% difference
between best and worst profiles) for Microsoft Word3. To use our terms, they ob-
serve that profile accuracy and profile usefulness have a “rough” association with
each other but that the relationship is “not monotonic” (an observation that is sup-
ported in great detail by the results described in Section 2.4). They conclude that
differences in program behavior from user to user is a important factor to consider
for profile-directed optimization.

3It should be noted that the much of this variation is caused by a single profile (under the user
pseudonym “Dopey”) that is described as a “small individual profile” included to “examine the
issue of under-training”

6.4. ROBUSTNESS UNDER UNCERTAIN PROFILE DATA 115

6.4 Robustness under Uncertain Profile Data

Very little formal work on designing profile-driven optimization algorithms that
are robust to variations in profile data exists. A paper by Deitrich and Hwu [6]
introduces a heuristic (in the area of path-based global instruction scheduling) that
reduces the profile driven optimization variability due to profile variation substan-
tially. By using this heuristic as opposed to more conventional heuristics (specu-
lative yield and dependence height), they report anywhere from a two- to five-fold
reduction in profile-driven optimization variability due to this optimization.

116 CHAPTER 6. RELATED WORK

Chapter 7

Conclusion

The results established in this thesis are, to some extent, artifacts of the bench-
marks and optimizers analyzed. However, we feel that our methodology allows
similar analyses of other benchmarks and optimizers to be carried out fairly easily.

Our major conclusions strongly suggest that profile-driven optimization re-
mains an art, and not a science. The extremely local nature of profile usefulness
in many benchmarks, combined with the inherently unreliable performance of
even accurate profiles, makes profile-driven optimization a procedure that requires
careful testing as opposed to something that can be used routinely.

The major contributions of the thesis are as follows:

• Quantification of the effects of profile-driven optimization under circum-
stances of exact profiling, sampling and static estimation

• A methodology for estimating the extent to which profile-driven optimiza-
tion is significant, even with relatively small evaluation runs

• A methodology for estimating the connection between profile-driven opti-
mization performance and profile accuracy

• The discovery that the connection between profile-driven optimization per-
formance and accuracy is extremely limited; a property that is likely to be
stable over a large range of profile accuracy metrics

• A methodology for localizing the effects of smaller units of profile informa-
tion

• The discovery that profile-driven optimization performance is localized to a
comparatively small set of functions in many benchmarks

117

118 CHAPTER 7. CONCLUSION

The limited association between profile usefulness and profile accuracy sug-
gests that more accurate profile information is not always used especially effec-
tively, and that a major influence on the profile-directed optimization outcomes is
a nearly-random perturbation of optimization outcome as opposed to a systematic
improvement resulting from better optimization information. More positively, it is
possible that a weak connection between usefulness and accuracy might exist in a
profile-driven optimization system that was especially robust in dealing with ‘bad
profiles’; however, the wide range of results that we observed (including many
cases where profile-driven optimization caused slowdowns) does not support this
optimistic view.

Our work strongly suggests that any innovations in profiling (at least those that
are primarily directed at profiling for automatic program optimization as opposed
to those that are intended for providing source-level information to the program-
mer) be evaluated for actual impact of optimization performance as opposed to
their profile accuracy as compared to the corresponding exact profiles.

As might be expected given the limited connection between usefulness and
accuracy, sampled profiles are slightly but not severely worse than exact profiles.
However, the small performance loss associated with sampled profiling - as well
as the added indeterminacy associated with this kind of imperfect information
gathering system, may make sampling a poor choice for traditional applications
of profile-directed optimization. We feel that in such contexts - where a program’s
profiling execution is run strictly for the purpose of profiling - many of the argu-
ments for sampled profiling are not applicable. While exact profiling may impose
an order of magnitude more profiling overhead over sampling, the overall impact
of this overhead is small.

We can only speculate about the context of run-time optimizations, not having
studied any such optimizations in this work. The reduced overhead of sampling is
highly significant in this context. However, if the connection between profile ac-
curacy and profile-driven optimization performance was as slender in this context
as it has been in our optimizers, then, at least for many benchmarks, there would
be comparatively little point waiting until run-time to gather this kind of highly
accurate profile. Again, applicability of such systems may turn out to be highly
localized and again, much more of an art than a science.

It seems premature to declare, as Smith does in [12], that run-time profile-
directed optimization methods enjoy a clear superiority over allegedly “ineffec-
tive” traditional methods. Smith conflates the issue of whole-program optimiza-
tions versus single unit optimizations with the issue of when to perform profile-
directed optimization. Certainly, until a study similar to this thesis is conducted

119

in the context of dynamic optimizations, it will be unclear whether the additional
information that can be gained at any given run-time is that much more useful
than that derived from earlier executions of a program.

If run-time optimizations behaved in a similar fashion to the compile-time
profile-driven optimizations we evaluated, we might encounter a major problem:
much of the benefit of profile-driven optimization in practice seems to come from
manual enabling and evaluation of profile-driven optimization success. After all,
the average improvement due to profile-driven optimization on our various bench-
marks was quite small and included a number of cases of profile-driven pessimiza-
tion. At run-time, no such selectivity is possible. This problem may not occur in
practice, as it may be the case that dynamic optimizations have better connections
between the gathering of accurate information and actual profile-driven optimiza-
tion success.

Static estimation seems like a promising way of deriving profiles with low
overhead. However, in keeping with current optimization practice, we have estab-
lished that statically estimated profiles cannot be used interchangeably with exact
profiles and typically result in performance that is no better, and often worse, than
not using profile-directed optimization at all. If static estimation is to be used in
profiling systems, following the example ofalto and making profile-directed op-
timizations very conservative when using statically-estimated profiles seems like
the ideal approach.

The addition of other forms of profile information to static estimation resulted
in some improvement. However, coverage information was generally unhelp-
ful. Statically-estimated profiles augmented with function entry count informa-
tion outperformed regular static profiles. Unfortunately, the overhead involved in
gathering even the limited amount of data required for entry counts might render
this improvement academic; as long as we require the programmer to instrument
their program and execute training runs, it seems as if gathering an exact profile is
worthwhile. A similar argument applies to the use of sampled profiles (although
sampled profiles are still useful in contexts where exact profiles cannot be gath-
ered).

Our methodology for localization of profile-driven optimization effects will
be valuable mainly as an analytic tool. When developing future profile-driven
optimizations and evaluating their effects, this methodology will allow the spe-
cific functions (or interactions between functions) that have major profile-driven
optimization effects to be noted and examined. Unfortunately, the profiling impli-
cations of our localization discoveries are few - we found ourselves unable to find
any indicatorsbefore the factthat profile information for a given function might

120 CHAPTER 7. CONCLUSION

have a disproportionately large effect on profile-driven optimization performance.

7.1 Future Directions

Our results should be repeated using a more modern architecture and a more recent
optimization system. Profile-directed optimization is often cited as an increas-
ingly important factor in compiler performance for more modern architectures, as
both potential instruction-level parallelism and the depth of the memory hierarchy
increase.

The work can and should be generalized for other forms of profile data, es-
pecially the use of trace- and path-based profile directed approaches. A detailed
analysis of the potential improvements due to path profiling - as well as the sensi-
tivity of path-based approaches to imprecise information would help establish the
value of path profiling in practice. Similarly, there are many optimizations in the
realm of object-oriented programming that need to be analyzed in detail.

A wider choice of benchmarks is called for. Of particular importance is the
the inclusion of larger applications that are more typical of user applications.

In addition, our factorial experiments to determine which functions were most
important in the profile-driven optimization process need to be expanded in a
number of directions. First, more powerful statistical methods from the area of
screening experiments should be used to reduce the experiments down to a more
manageable size. Second, the results that use whole functions are less illuminat-
ing than breaking up the profile data into smaller units: into regions, loops or even
individual branches. Of course, the finer-grain the factors are, the more factors
that must be screened for significant effects.

Our results suggest that optimization design should be made more robust in re-
sponse to profile data. It is clear that in a number of benchmarks, profile-directed
optimization causes substantial performance degradation. This indicates one of
two things. First, the optimization could be inherently unreliable and prone to pro-
ducing bad performance with any profile - including “perfect” information about
future program behavior. Second, the optimization could produce startlingly bad
performance only with poor profile data.

The first case can be fixed by comparatively simple methods. The second
case, however, creates more of a dilemma. Attempting to make an optimization
more robust in the presence of unreliable profile data may reduce profile-directed
improvements that come from taking a more aggressive response. However, we
contend that the current unreliability of profile-directed optimization is a major

7.1. FUTURE DIRECTIONS 121

factor in its neglect by most programmers.

122 CHAPTER 7. CONCLUSION

Bibliography

[1] Iml++ (iterative methods library). http://math.nist.gov/iml++/.

[2] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S. Leung,
D. Sites, M. Vandevoorde, C. Waldspurger, and W. Weihl. Continuous pro-
filing: Where have all the cycles gone? Technical Report 1997-016, Digital
Equipment Corporation Systems Research Center, 1997.

[3] T. Ball and J. R. Larus. Branch prediction for free. InSIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 300–
313, 1993.

[4] R. Cohn and P. Lowney. Feedback directed optimization in Compaq’s com-
pilation tools for Alpha. InIn Proc. 2nd Workshop on Feedback Directed
Optimization, pages 1–10, 1999.

[5] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Z. Chrysos.
Profileme : Hardware support for instruction-level profiling on out-of-order
processors. InInternational Symposium on Microarchitecture, pages 292–
302, 1997.

[6] B. L. Deitrich and W. Hwu. Speculative hedge: Regulating compile-time
speculation against profile variations. InInternational Symposium on Mi-
croarchitecture, pages 70–79, 1996.

[7] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. Workload design:
Selecting representative program-input pairs. InThe Eleventh International
Conference on Parallel Architectures and Compilation Techniques (PACT-
2002), pages 83–94, 2002.

123

124 BIBLIOGRAPHY

[8] J. Fisher and S. Freudenberger. Predicting conditional branches from previ-
ous runs of a program.Proceedings Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 85–95, 1992.

[9] N. Gloy, Z. Wang, C. Zhang, B. Chen, and M. Smith. Profile -based opti-
mization with statistical profiles. Technical Report 02-97, Havard, 1997.

[10] R. Muth, S. Debray, S. Watterson, and K. de Bosschere. alto: A link-time
optimizer for the DEC Alpha. Technical Report TR98-14, Department of
Computer Science, The University of Arizona, 1998.

[11] S. Savari and C. Young. Comparing and combining profiles. InProc. Second
Workshop on Feedback-Directed Optimization (FDO), pages 50–62, 1999.

[12] M. Smith. Overcoming the challenges to feedback-directed optimization. In
Proc. ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and
Optimization (Dynamo’00), 2000.

[13] T. A. Wagner, V. Maverick, S. L. Graham, and M. A. Harrison. Accurate
static estimators for program optimization. InSIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 85–96, 1994.

[14] D. W. Wall. Predicting program behavior using real or estimated profiles. In
Proceedings of the ACM SIGPLAN ’91 Conference on Programming Lan-
guage Design and Implementation, volume 26, pages 59–70, Toronto, On-
tario, Canada, June 1991.

[15] R. Walpole, R. Myers, and S. Myers.Probability and Statistics for Engineers
and Scientists. Prentice Hall, 1998.

[16] Z. Wang. A statistical analysis of user-specific profiles. Technical Report
09-98, Havard, September 1998.

[17] P. Winterbottom. Acid: A debugger built from a language. Technical report,
Murray Hill, NJ, USA, 2000.

[18] Y. Wu and J. Larus. Static branch frequency and program profile analysis. In
In 27th International Symposium on Microarchitecture, pages 1–11, 1994.

[19] C. X. Zhang, Z. Wang, N. C. Gloy, J. B. Chen, and M. D. Smith. System sup-
port for automated profiling and optimization. InSymposium on Operating
Systems Principles, pages 15–26, 1997.

