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Abstract

A comprehensive versioning file system creates and retains a new file version for every WRITE or other modification
request. The resulting history of file modifications provides a detailed view to tools and administrators seeking to
investigate a suspect system state. Conventional versioning systems do not efficiently record the many prior versions
that result. In particular, the versioned metadata they keep consumes almost as much space as the versioned data.
This paper examines two space-efficient metadata structures for versioning file systems and describes their integration
into the Comprehensive Versioning File System (CVFS). Journal-based metadata encodes each metadata version into
a single journal entry; CVFS uses this structure for inodes and indirect blocks, reducing the associated space require-
ments by 80%. Multiversion b-trees extend the per-entry key with a timestamp and keep current and historical entries
in a single tree; CVFS uses this structure for directories, reducing the associated space requirements by 99%. Experi-
ments with CVFS verify that its current-version performance is similar to that of non-versioning file systems. Although
access to historical versions is slower than conventional versioning systems, checkpointing is shown to mitigate this
effect.
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1 Introduction

Self-securing storage [41] is a new use for versioning in which storage servers internally retain file

versions to provide detailed information for post-intrusion diagnosis and recovery of compromised

client systems [40]. We envision self-securing storage servers that retain every version of every file,

where every modification (e.g., a WRITE operation or an attribute change) creates a new version.

Such comprehensive versioning maximizes the information available for post-intrusion diagnosis.

Specifically, it avoids pruning away file versions, since this might obscure intruder actions (or

allow them to be hidden). For self-securing storage, these pruning techniques are particularly

dangerous when they rely on client-provided information, such as CLOSE operations—recall that

the versioning is being done specifically to protect information from malicious clients.

Obviously, finite storage capacities will limit the duration of time over which comprehensive

versioning is possible. To be effective for intrusion diagnosis and recovery, this duration must be

greater than the intrusion detection latency (i.e., the time from an intrusion to when it is detected).

We refer to the desired duration as the detection window. In practice, the duration is limited by the

rate of data change and the space efficiency of the versioning system. The rate of data change is

an inherent aspect of a given environment, and an analysis of several real environments suggests

that detection windows of several weeks or more can be achieved with only a 20% cost in storage

capacity [41].

In the previous paper, we described a prototype self-securing storage system. By using stan-

dard copy-on-write and a log-structured data organization, the prototype provided comprehensive

versioning with minimal performance overhead (<10%) and reasonable space efficiency. We dis-

covered, in that work, that a key design requirement is efficient encoding of metadata versions.

While copy-on-write reduces data versioning costs, conventional versioning implementations still

involve one or more new metadata blocks per version. On average, the metadata versions require

as much space as the new data, halving the achievable detection window.

This paper evaluates mechanisms for encoding metadata versions more efficiently. Specifi-

cally, it describes two methods of storing metadata versions more compactly: journal-based meta-

data and multiversion b-trees. Journal-based metadata encodes each version of a file’s metadata

in a journal entry. Each entry describes the difference between two versions, allowing the system
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to roll-back to the earlier version of the metadata. Multiversion b-trees maintain all versions of a

metadata structure within a single tree. Each entry in the tree is marked with timestamps indicating

the time over which the entry is valid.

The two mechanisms have different strengths and weaknesses. We discuss these and describe

how both techniques are integrated into a comprehensive versioning file system called CVFS.

CVFS uses journal-based metadata for inodes and indirect blocks to encode changes to attributes

and file data pointers; doing so reduces the space used for their histories by 80%. CVFS imple-

ments directories as multiversion b-trees to encode additions and removals of directory entries;

doing so reduces the space used for their histories by 99%. Combined, these mechanisms nearly

double the potential detection window over conventional versioning, without increasing the access

time to current versions of the data.

Journal-based metadata and multiversion b-trees are also valuable for uses of versioning other

than self-securing storage, such as recovery from system corruption and accidental file deletion. In

particular, more space-efficient versioning reduces the pressure to prune version histories. Identi-

fying solid heuristics for such pruning remain an open area of research [37], so less pruning means

fewer opportunities to mistakenly prune important versions.

The rest of this paper is divided as follows. Section 2 discusses traditional versioning and

motivates this work. Section 3 discusses two space efficient metadata versioning mechanisms

and their tradeoffs. Section 4 describes the CVFS versioning file system. Section 5 analyzes the

efficiency of CVFS in terms of space efficiency and performance. Section 6 discusses related work.

Section 7 summarizes the paper’s contributions.

2 Versioning and Space Efficiency

Every modification to a file inherently results in a new version of the file. Instead of replacing

the old version with the new, a versioning file system retains both. Users of such a system can

then access any old versions that the system keeps as well as the most recent version. This section

discusses uses of versioning, techniques for managing the associated capacity costs, and our goal

of maximizing the window of comprehensive versioning.
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2.1 Uses of Versioning

File versioning offers several benefits to both users and system administrators. These benefits can

be grouped into three categories: recovery from user mistakes, recovery from system corruption,

and analysis of historical changes. Each category stresses different features of the versioning

system beneath it.

Recovery from user mistakes: Human users make mistakes, such as deleting or erroneously

modifying files. Versioning can help [16, 28, 37]. Recovery from such mistakes usually starts

with some a-priori knowledge about the nature of the mistake. Often, the exact file that should

be recovered is known. Additionally, there are only certain versions that are of any value to the

user; intermediate versions that contain incomplete data are useless. Therefore, versioning aimed

at recovery from user mistakes should focus on retaining key versions of important files.

Recovery from system corruption: When a system becomes corrupted, administrators gen-

erally have no knowledge about the scope of the damage. Because of this, they recover the entire

state of the file system at some well-known “good” time. To help with this, a common versioning

technique is the online snapshot. Like a backup, a snapshot contains a version of every file in the

system at a particular time. Thus, snapshot systems present a set of known-valid system images at

a set of well-known times.

Analysis of historical changes: A history of versions can help answer questions about how

a file reached a certain state. For example, version control systems (e.g., RCS [43], CVS [15])

keep a complete record of changes to specific files. In addition to selective recovery, this record

allows developers to figure out who made specific changes and when those changes were made.

Similarly, self-securing storage seeks to enable post-intrusion diagnosis by providing a record of

what happened to stored files before, during, and after a digital intrusion. Given that intruders

are able to determine the pruning heuristic of the system, it is likely that they will leverage this

information to prune any file versions that might disclose their presence. Thus we believe that

every version of every file must be stored. For example, intruders may make changes and then

quickly revert them once damage is done in order to hide their tracks. With a complete history,

administrators can determine which files were changed and estimate damage. Further, they can

answer (or at least construct informed hypotheses for) questions such as “When and how did the
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intruder get in?” and “What was their goal?” [40].

2.2 Pruning Heuristics

A comprehensive versioning system keeps all versions of all files for all time. Such a system could

support all three goals described above. Unfortunately, storing this much data is not possible.

As a result, all conventional versioning systems use pruning heuristics. These pruning heuristics

decide when versions should be created and when they should be removed. In other words, pruning

heuristics determine which versions to keep from the total set of versions that would be available

in a comprehensive versioning system.

2.2.1 Common heuristics

A common pruning technique in versioning file systems is to keep only the last version of a file

from each session; that is, each CLOSE of a file creates a distinct version. For example, the VMS

file system [28] retains a fixed number of versions for each file. VMS’s pruning heuristic creates

a version after each CLOSE of a file, and if the file already has the maximum number of versions,

removes the oldest version of the file when this new version is created. The more recent Elephant

file system [37] also creates new versions after each CLOSE; however, it makes additional pruning

decisions based on a set of rules derived from observed user behavior.

Version control systems prune in two ways. First, they retain only those versions explicitly

committed by a user. Second, they retain versions for only an explicitly-chosen subset of the files

on a system.

By design, snapshot systems [20, 32] prune all of the versions of files that are made between

snapshots. Generally, these systems only create and delete snapshots on request, meaning that the

system’s administrator decides most aspects of the pruning heuristic.

2.2.2 Information Loss

Unfortunately, pruning heuristics act as a form of lossy compression. Rather than storing every

version of a file, these heuristics throw some data away to save space. The result is that, just as

a JPEG file loses some of its visual clarity with lossy compression, pruning heuristics reduce the
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clarity of the actions that were performed on the file.

For recovery from user mistakes and system corruption, the loss of some history information is

usually considered acceptable though not desirable. For example, recovery from a previous system

snapshot means loss of all data changes since that snapshot, including those between the snapshot

and the system corruption. Likewise, promising heuristics exist for deciding which file versions to

retain for recovering from user mistakes [37], but it is impossible to be certain about which version

of a file will eventually be important to a user. In both examples, creating versions more frequently

could increase the accuracy of recovery.

The real problem arises when versioning is used to analyze historical changes. When version-

ing for intrusion survival, as in the case of self-securing storage, pruning heuristics create holes

in the administrator’s view of the system. Even creating a version on every CLOSE is not enough,

as malicious users can leverage this heuristic to hide their actions (e.g. storing exploit tools in an

open file and then truncating the file to zero before closing it).

To avoid traditional pruning heuristics, self-securing storage employs comprehensive version-

ing over a fixed window of time, expiring versions once they become older than the given window.

This detection window can be thought of as the amount of time that an administrator has to detect,

diagnose, and recover from an intrusion. As long as an intrusion is detected within the window,

the administrator has access to the entire sequence of modifications since the intrusion.

2.3 Lossless Version Compression

For a system to avoid pruning heuristics, even over a fixed window of time, it needs some form of

lossless version compression. To maximize the window of comprehensive versioning, the system

must attempt to compress both versioned data and versioned metadata.

Data: Data block sharing is a common form of lossless compression in versioning systems.

Unchanged data blocks are shared between versions by having their individual metadata point to

the same physical block. Copy-on-write is used to avoid corrupting old versions if the block is

modified.

An improvement on block sharing is byte-range differencing between versions. Rather than

keeping the data blocks that have changed, the system keeps the bytes that have changed between
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Figure 1: Conventional versioning system. In this example, a single logical block of file “log.txt” is overwritten

several times. With each new version of the data block, new versions of the indirect block and inode that reference it

are created. Notice that although only a single pointer has changed in both the indirect block and the inode, they must

be rewritten entirely, since they require new versions. The system tracks each version with a pointer to that version’s

inode.

the set of blocks [26]. This is especially useful in situations where a small change is made to the

file. For example, if a single byte is inserted at the beginning of a file, a block sharing system

keeps two full copies of the entire file (since the data of every block in the file is shifted forward by

one byte); however, a differencing system only stores the single byte that was added and a small

description of the change.

Metadata: Conventional versioning file systems keep a full copy of the metadata with each

version. While it simplifies version access, this method quickly exhausts capacity, since even small

changes to file data or attributes result in a new, complete copy of the metadata.

Figure 1 shows an example of how the space overhead of versioned metadata can become
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a problem in a conventional versioning system. In this example, a program is writing small log

entries to the end of a large file. Since several log entries fit within a single data block, appending

entries to the end of the file produces several different versions of the same block. Because each

versioned data block has a different location on disk, the system must create a new version of the

indirect block to track its location. In addition, the system must write a new version of the inode to

track the location of the versioned indirect block. Since any data or metadata change will always

result in a new version of the inode, each version is tracked using a pointer to that version’s inode.

Thus, writing a single data block results in a new indirect block, a new inode, and an entry in the

version list, resulting in more metadata being written than data.

Access patterns that create such metadata versioning problems are common. Many applica-

tions create or modify files piece by piece. In addition, distributed file systems such as the Network

File System (NFS) create this behavior by breaking large updates of a file into separate, block-sized

updates. Since there is no way for the server to determine if these block-sized writes are one large

update or several small ones, each must be treated as a separate update, resulting in several new

versions of the file.

Again, the solution to this problem is some form of differencing between the versions. Mech-

anisms for creating and storing differences of metadata versions are the main focus of this work.

2.4 Objective

In a perfect world we could keep all versions of all files for an infinite amount of time with no

impact on performance. This is obviously not possible.

The objective of this work is to minimize the space overhead of versioned metadata. For

self-securing storage, doing so will increase the detection window. For other versioning purposes,

doing so will reduce the pressure to prune. Because this space reduction will require compressing

metadata versions, it is also important that the performance overhead of both version creation and

version access be minimized.
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3 Efficient Metadata Versioning

One aspect of versioned metadata is that the actual changes to the metadata between versions are

generally quite small. In Figure 1, although an inode and an indirect block are written with each

new version of the file, the only change to the metadata is an update to a single block pointer. The

system can leverage these small changes to provide much more space efficient metadata versioning.

This section describes two solutions that leverage small metadata modifications. Journal-

based metadata records metadata changes in a journal. Via journal “roll-back,” the system can

recreate old versions of the file. Multiversion b-trees encode changes within a single tree structure.

This allows access to all of the versions without recreation, but at the price of potentially reduced

current version access performance.

3.1 Journal-based Metadata

Journal-based metadata maintains a full copy of the current version’s metadata and a journal of

each previous metadata change. To recreate old versions of the metadata, each change is undone

backward through the journal until the desired version is recreated. This process of undoing meta-

data changes is referred to as journal roll-back.

Figure 2 illustrates how journal-based metadata works in the example of writing log entries.

Just as in Figure 1, the system writes a new data block for each version; however, in journal-based

metadata, these blocks are tracked using small journal entries that note the locations of the new

and old blocks. By keeping the current version of the metadata up-to-date, the journal entries can

be rolled-back to any previous version of the file.

In addition to storing version information, the journal is used as a write-ahead log for metadata

consistency, just as in a conventional journaling file system. This is why the new block pointer is

recorded in addition to the old. Using this, a journal-based metadata implementation can safely

maintain the current version of the metadata in memory, flushing it to disk only when it is forced

from the cache.
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Figure 2: Journal-based metadata system. Just as in the conventional versioning example, this figure shows a

single logical block of file “log.txt” being overwritten several times. Journal-based metadata also retains all versions

of the data block; however, each block is tracked using journal entries. Each entry points to both the new block and the

block that was overwritten. Only the current version of the inode and indirect block are kept, significantly reducing

the amount of space required for metadata.

3.1.1 Space vs. Performance

While journal-based metadata is more space efficient than conventional versioning, it must pay a

performance penalty for recreating old versions of the metadata. The more changes to a file, the

higher the penalty, since all entries written between the current version and the requested version

must be read and rolled-back.

One way the system can reduce this overhead is to checkpoint a full copy of a file’s metadata to

the disk occasionally. By storing checkpoints and remembering their locations, a system can start

journal roll-back from the closest checkpoint in time rather than always starting with the current
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Figure 3: Multiversion b-tree. This figure shows the layout of a multiversion b-tree. Each entry of the tree is

designated by a <user-key, timestamp> tuple which acts as a key for the entry. A question mark (?) in the timestamp

indicates that the entry is valid through the current time. Different versions of an entry are separate entries using the

same user-key with different timestamps. Entries are packed into entry blocks, which are tracked using index blocks.

Each index pointer holds the key of the last entry along the subtree that it points to.

version.

The frequency with which these checkpoints are written dictates the space/performance trade-

off. If the system keeps a checkpoint with each modification, journal-based metadata performs

like a conventional versioning scheme (using the most space, but offering the best back-in-time

performance). However, if no checkpoints are written, the only copy of the metadata is the current

version, resulting in the lowest space utilization (but reduced back-in-time performance).

3.2 Multiversion B-trees

A multiversion b-tree is a variation on standard b-trees that keeps old versions of entries in the

tree [2]. As in a standard b-tree, an entry in a multiversion b-tree contains a key/data pair; how-

ever, the key consists of both a user-defined key and the time at which the entry was written. With

the addition of this time-stamp, each key becomes unique. Having unique keys means that entries

within the tree are never overwritten; therefore, multiversion b-trees can have the same basic struc-

ture and operations as a standard b-tree. To facilitate current version lookups, entries are sorted

first by the user-defined key and then by the timestamp.

Figure 3a shows an example of a multiversion b-tree. Each entry contains both the user-defined
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key and the time over which the entry is valid. The entries are packed into entry blocks, which act

as the leaf nodes of the tree. The entry blocks are tracked using index blocks, just as in standard

b+trees. In this example, each pointer in the index block references the last entry of the subtree

beneath it. So in the case of the root block, the G subtree holds all entries with values less than or

equal to G, with <G; 6�?> as its last entry. The Q subtree holds all entries with values between

G and Q, with <Q; 4�?> as its last entry.

Figure 3b shows the tree after a remove of entry E and an update to entry G. When entry E

is removed at time 8, the only change is an update to the entry’s timestamp. This indicates that

E is only valid from time 6 through time 8. When entry G is updated, a new entry is created and

associated with the new data. Also, the old entry for G must be updated to indicate its bounded

window of validity. In this case, the index blocks must also be updated to reflect the new state of

the subtree (since the last entry of the subtree has changed).

Since both current and history entries are stored in the same tree, accesses to old and current

versions have the same performance. For this reason, large numbers of history entries can decrease

the performance of accessing current entries.

3.3 Solution Comparison

Both journal-based metadata and multiversion b-trees reduce the space utilization of versioning

but incur some performance penalty. Journal-based metadata pays with reduced back-in-time per-

formance. Multiversion b-trees pay with reduced current version performance.

Because the two mechanisms have different drawbacks, they each perform certain operations

more efficiently. As mentioned above, the number of history entries in a multiversion b-tree can

adversely affect the performance of accessing the current version. This emerges in two situations:

linear scan operations and files with a large number of versions. Although the penalty on lookup

operations is minimal (due to the logarithmic nature of the tree structure), linearly scanning all

current entries requires accessing every entry in the tree, which becomes expensive if the number

of history entries is high. In situations where the ratio of history entries to current entries is high

(e.g., there are many more history entries than current entries), even the lookup operation of a

multiversion b-tree can be affected, since tree depth is affected. In both of these cases, it is better
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to use journal-based metadata.

When lookup of a single entry is common or history access time is important, it is preferable

to use multiversion b-trees. Using a multiversion b-tree, all versions of the entry are located to-

gether in the tree and have logarithmic lookup time (for both current and history entires), giving a

performance benefit over the linear roll-back operation required by journal-based metadata.

4 Implementation

We have integrated journal-based metadata and multiversion b-trees into a comprehensive version-

ing file system (CVFS). CVFS provides comprehensive versioning within our self-securing storage

prototype. Because of this, some of the design decisions (such as the implementation of a strict

detection window) are specific to self-securing storage. Regardless, we believe that this design

would be effective in any versioning system.

4.1 Overview

Since current versions of file data cannot be overwritten in a comprehensive versioning system,

CVFS uses a log-structured data layout similar to LFS [36]. Not only does this eliminate over-

writing of old versions on disk, but it also improves update performance by combining data and

metadata updates into a single write. This is important because creating a new file version with

each modification results in more file updates that must be written to disk than in a traditional file

system.

CVFS uses both mechanisms described in Section 3. It uses journal-based metadata to version

file data and file attributes, and multiversion b-trees to version directory entries. We chose this

division of methods based on the expected usage patterns of each. Assuming many versions of file

attributes and a need to access them in their entirety most of the time, we decided that journal-based

metadata would be much more efficient. On the other hand, directories are updated less frequently

than file metadata and a large fraction of operations are entry lookup rather than full listing. Thus

the cost of having expired entries within the tree is expected to be lower.

Since the only pruning heuristic in CVFS is expiration, it requires a cleaner to find and re-

move expired versions. Although CVFS’s background cleaner is not discussed in this work, its
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Entry Type Description Cause
Attribute Holds new inode attribute information Inode change
Delete Holds inode number and delete time Inode change
Truncate Holds the new size of the file File data change
Write Points to the new file data File data change
Checkpoint Points to checkpointed metadata Metadata checkpoint / Inode change

Table 1: Journal entry types. This table lists the five different types of journal entry. Journal entries are written
when inodes are modified, file data is modified, or file metadata is flushed from the cache. CVFS writes a checkpoint
entry when an inode is created, since the inode cannot be read through the inode pointer until a checkpoint occurs.

implementation closely resembles the background cleaner in LFS. The only added complication is

that, when moving a data block in a versioning system, the cleaner must update all of the historical

metadata that points to the block. Locating and modifying all of this metadata can be very expen-

sive. To address this problem, each data block on the disk is assigned a virtual block number. This

allows us to move the physical location of the data and only have to update a single pointer within

a virtual indirection table, rather than all of the associated metadata.

4.2 Layout and Allocation

Because of CVFS’s log-structured format, disk space is managed in contiguous sets of disk blocks

called segments. At any particular time, there is a single segment marked as the write segment. All

data block allocations are done within this segment. Once the segment is completely allocated, a

new write segment is chosen. Free segments on the disk are tracked using a bitmap.

As CVFS performs allocations from the write segment, the allocated blocks are marked as

either journal blocks or data blocks. Journal blocks hold the journal entries, and they contain

pointers that string all of the journal blocks together into a single contiguous journal. Data blocks

contain file data and metadata checkpoints.

CVFS uses inodes to store a file’s metadata, including file size, access permissions, creation

time, modification time, and the time of the oldest version still stored on the disk. The inode also

holds direct and indirect data pointers for the associated file or directory.

The in-memory copy of an inode is always kept up-to-date with the current version, allowing

quick access for standard operations. To ensure that the current version can always be accessed

directly off the disk, CVFS checkpoints the inode to disk on a cache flush.
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CVFS tracks inodes with a unique inode number. This inode number indexes into an array of

inode pointers that are kept at a fixed location on the disk. Each pointer holds the block number

of the most current metadata checkpoint for that file, which is guaranteed to hold the most current

version of the file’s inode.

4.3 The Journal

The string of journal blocks that runs through the segments of the disk is called the journal. Each

journal block holds several time-ordered, variably-sized journal entries. CVFS uses the journal to

implement both conventional file system journaling (a.k.a. write-ahead logging) and journal-based

metadata.

Each journal entry contains information specific to a single change to a particular file. This

information must be enough to do both roll-forward and roll-back of the metadata. Roll-forward is

needed for update consistency in the face of failures. Roll-back is for reconstructing old versions.

Each entry also contains the time at which the entry was written and a pointer to the location of

the previous entry that applies to this particular file. This pointer allows us to trace the changes of

a single file through time.

Table 1 lists the five different types of journal entries. CVFS writes entries in three different

cases: inode modifications (creation, deletion, and attribute updates), data modifications (writing

or truncating file data), and metadata checkpoints (due to a cache flush or history optimization).

4.4 Metadata

There are three types of file metadata that can be altered individually: inode attributes, file data

pointers, and directory entries. Each has characteristics that match it to a particular method of

metadata versioning.

4.4.1 Attributes

There are four operations that act upon inode attributes: creation, deletion, attribute updates, and

attribute lookups.
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CVFS creates inodes by building an initial copy of the new inode and checkpointing it to the

disk. Once this checkpoint completes and the inode pointer is updated, the file is accessible.

To delete an inode, CVFS writes a “delete” journal entry, which notes the inode number of the

file being deleted. It then sets a flag in the current version of the inode specifying that the file was

deleted, since it cannot actually be removed from the disk until it expires.

CVFS stores attribute modifications entirely within a journal entry. This journal entry contains

all the attributes of the inode before and after the modification. Therefore, an attribute update

involves writing a single journal entry, and updating the current version of the inode in memory.

CVFS accesses the current version of the attributes by reading in the current inode, since all

of the attributes are stored within it. To access old versions of the attributes, CVFS traverses the

journal entries searching for modifications that affect the attributes of that particular inode. Once

all of these have been applied, it then has a copy of the attributes at the requested point in time.

4.4.2 File Data Pointers

CVFS tracks file data locations using direct and indirect pointers [29]. Each file’s inode contains

thirty direct pointers, as well as one single, one double and one triple indirect pointer.

When CVFS writes to a file, it allocates space for the new data within the current write segment

and creates a “write” journal entry. The journal entry contains pointers to the data blocks within

the segment, the range of logical block numbers that the data covers, the old size of the file, and

pointers to the old data blocks that were overwritten (if there were any). Once the journal entry is

allocated, CVFS updates the current version of the file to point at the new data.

If a write is larger than the amount of data that will fit within the current write segment, CVFS

breaks the write into several data/journal entry pairs across different segments. This compartmen-

talization simplifies cleaning.

To truncate a file, CVFS first checkpoints the file to the log. This is necessary because CVFS

must be able to locate truncated indirect blocks when reading back-in-time. If they are not check-

pointed, then the information in them will be lost during the truncate (while earlier journal entries

could be used to recreate this information, these entries could leave the detection window and be

expired, resulting in lost information). Once the checkpoint is complete, a “truncate” journal entry

is created containing both a pointer to the checkpointed metadata and the new size of the file.
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Figure 4: Back-in-time access. This diagram shows a series of checkpoints of inode 4 (highlighted with a dark

border) and updates of logical block 3 of inode 4. Each checkpoint and update is marked with a time t at which the

event occured. Each checkpoint holds a pointer to the block that is valid at the time of the checkpoint. Each update is

accompanied by a journal entry (marked by thin, grey boxes) which holds a pointer to the new block and the old block

that it overwrote (if one exists).

To access current file data, CVFS finds the most current inode and reads the data pointers

directly, since they are guaranteed to be up-to-date. To access historical data versions, CVFS uses

a combination of checkpoint tracking and journal roll-back to recreate the original version of the

requested data pointers.

CVFS’s checkpoint tracking and journal roll-back work together in the following way. As-

sume a user wishes to read data from a file at time T . First, CVFS locates the oldest checkpoint

it is tracking with time Tc such that Tc � T . Next, it searches backward from that checkpoint

through the journal looking for changes to the logical block numbers it is reading. If it finds an

older version of a logical block that applies, it will use that. Otherwise it reads the logical block

from the checkpointed metadata.

To illustrate this interaction, Figure 4 shows a sequence of updates to logical block 3 of inode

4 interspersed with checkpoints of inode 4. Each block update and inode checkpoint is labeled

with the time t that it was written. To read block 3 at time T1 = 12, CVFS first reads in the

checkpoint at time t = 18, then reads the journal entries to see if a different data block should be

used. In this case, it finds that the block was overwritten at time t = 15, and so returns the older

block written at time t = 10. In the case of time T2 = 6, CVFS starts with the checkpoint at time

t = 7, and then reads the journal entry, and realizes that no such block existed at time t = 6.
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Versioned Versioned Metadata
Data Metadata Savings

Files: Conventional versioning 10.1 GB 8.2 GB
Journal-based metadata 10.1 GB 1.6 GB 80.5%

Directories: Conventional versioning — 1.5 GB
Multiversion b-trees — 0.011 GB 99.3%

Total: Conventional versioning 10.1 GB 9.7 GB
CVFS 10.1 GB 1.611 GB 83.3%

Table 2: Space utilization. This table compares the space utilization of conventional versioning with CVFS, which
uses journal-based metadata and multiversion b-trees. The space utilization for versioned data is identical for conven-
tional versioning and journal-based metadata because neither address data beyond block sharing. Directories contain
no versioned data because they are entirely a metadata construct.

4.4.3 Directory Entries

Directories in CVFS are implemented as multiversion b-trees. Each entry in the tree represents a

directory entry; therefore, each b-tree entry must contain the entry’s name, the inode number of

the associated file, and the time over which the entry is valid. Each entry also contains a fixed-size

hash of the name. Although the actual name must be used as the key while searching through the

entry blocks, this fixed-size hash allows the index blocks to use fixed-size keys.

CVFS uses a full data block for each entry block of the tree, and sorts the entries within them

first by hash and then by time. If needed, index nodes of the tree are also full data blocks consisting

of a set of index pointers. Each index pointer consists of a <subtree, hash, time-range> tuple. The

subtree is a pointer to the appropriate child block, the hash is the name hash of the last entry along

the subtree, and the time-range is the time over which that same entry is valid. These pointers are

also sorted first by hash and then by time-range. This gives a total ordering of the entries within

the tree, which simplifies searching for an entry.

With this structure, lookup and listing operations on the directory are the same as with a

standard b-tree, except that the requested time of the operation becomes part of the key. For

example, in Figure 3a, a lookup of <C; 6> would search through the tree for entries with name

C, and then check the time-ranges of each to determine the correct entry to return (in this case

<C; 4� 7>). Similarly, a listing of the directory at time 5 would do an in-order tree traversal (just

as in a standard b-tree), but would exclude any entries that are not valid at time 5.

Insert, remove, and update are also very similar. Insert is identical, with the time-range of the
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new entry starting at the current time. Remove is an update of the time-range for the requested

name. For example, in Figure 3b, entry E is removed at time 8. Update is a remove and an insert

of the same entry name, at the same time. For example, in Figure 3b, entry G is updated at time 9.

This involves removing the old entry G at time 9 (updating the time-range), and inserting entry G

at time 9 (the new entry <G; 9�?>).

5 Evaluation

Since the objective of this work is to reduce the space overheads of versioning without reducing

the performance of current version access, our evaluation of CVFS is broken into two parts. The

first is an analysis of the space utilization of CVFS. We find that using journal-based metadata

and multiversion b-trees gives versioned metadata savings greater than 80%. The second is an

analysis of the performance characteristics of CVFS, finding that it performs similarly to non-

versioning systems for current version access, and that back-in-time performance can be bounded

to acceptable levels.

5.1 Setup

For the evaluation, we used CVFS as the underlying file system for S4, our self-securing NFS

server. S4 exports an NFSv2 interface and treats it as a security perimeter between the storage sys-

tem and the client operating systems. Although the NFSv2 specification requires that all changes

be synchronous, S4 also has a mode of operation that is asynchronous, allows us to analyze the

performance overheads of comprehensive versioning.

In all experiments, the client system has a 550 MHz Pentium III, 128 MB RAM, and a 3Com

3C905B 100 Mb network adapter. The servers have two 700 MHz Pentium IIIs, 512 MB RAM, a

9 GB 10,000 RPM Quantum Atlas 10K II drive, an Adaptec AIC-7896/7 Ultra2 SCSI controller,

and an Intel EtherExpress Pro100 100 Mb network adapter. The client and server are on the same

100 Mb network switch.
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5.2 Space Utilization

To evaluate the space utilization of our system, we measured a month long trace of an NFS server

holding the home directories and CVS repository that support the activities of approximately 50

graduate students and faculty. The trace started with a 33GB snapshot, and tracked 24GB of traffic

to the NFS server over the one month period.

We replayed the trace onto both a standard configuration of CVFS and a modified version

of CVFS. The modified version simulated a conventional versioning system by checkpointing the

metadata with each modification. It also performed copy-on-write of directory blocks, overwriting

the entries in the new blocks (that is, it used normal b-trees). By observing the amount of allocated

data for each request, we calculated the exact overheads of our two metadata versioning schemes

as compared to a conventional system.

5.2.1 Journal-based Metadata

Table 2 compares the space utilization of versioned files using conventional versioning and journal-

based metadata. There are two space overheads for file versioning: versioned data and versioned

metadata. The overhead of versioned data is the overwritten or deleted data blocks that are retained.

In both cases, the versioned data consumes 10.1 GB, since both use block sharing for versioned

data. The overhead of versioned metadata is the information needed to track the versioned data.

In a conventional system, this consumes 8.2 GB, meaning that there is nearly as much metadata as

data. With journal-based metadata, only 1.6 GB of metadata is needed to track the same history

information, which is an 80% savings over conventional versioning.

5.2.2 Multiversion B-trees

Using multiversion b-trees for directories provides even larger space utilization gains. Table 2 com-

pares the space utilization of versioned directories using conventional versioning and multiversion

b-trees. Because directories are a metadata construct, there is no versioned data. The overhead

of versioned metadata in directories is the space used to store the overwritten and deleted direc-

tory entries. In a conventional versioning system, each entry creation, modification, or removal

results in a new block being written that contains the change. Since the entire block must be kept
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over the detection window, it results in approximately 1.5 GB of space for versioned entries. With

multiversion b-trees, the only overhead is keeping the extra entries in the tree, which results in

approximately 11 MB of space for versioned entries.

5.3 Performance Overheads

The performance evaluation is broken into three parts. First, we compare our system to non-

versioning systems using several macro benchmarks. Second, we measure the back-in-time per-

formance characteristics of journal-based metadata. Third, we measure the general performance

characteristics of multiversion b-trees.

5.3.1 General Comparison

The purpose of the general comparison is to verify that the S4 prototype performs comparably

to non-versioning systems. Since part of our objective is to avoid undue performance overheads

for versioning, it is important that we confirm that the prototype performs reasonably relative to

similar systems. To evaluate the performance relationship between S4 and non-versioning systems,

we ran two macro benchmarks designed to simulate realistic workloads.

For both, we compare S4 in both synchronous and asynchronous modes against three other

systems: a NetBSD NFS server running FFS, a NetBSD NFS server running LFS, and a Linux

NFS server running EXT2. Each of these systems was measured using an NFS client running on

Linux. Our S4 measurements use the S4 server and a Linux client. For “Linux,” we run RedHat

6.1 with a 2.2.17 kernel. For “NetBSD,” we run a stock NetBSD 1.5 installation.

SSH-build was constructed as a replacement for the Andrew file system benchmark [19, 39].

It consists of 3 phases: The unpack phase, which unpacks the compressed tar archive of SSH

v1.2.27 (approximately 1 MB in size before decompression), stresses metadata operations on files

of varying sizes. The configure phase consists of the automatic generation of header files and

Makefiles, which involves building various small programs that check the existing system config-

uration. The build phase compiles, links, and removes temporary files. This last phase is the most

CPU intensive, but it also generates a large number of object files and a few executables. Both the

server and client caches are flushed between phases.
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Figure 5: SSH comparison. This figure shows the performance of five systems on the unpack, configure, and build

phases of the SSH-build benchmark. Performance is measured in the elapsed time of the phase.

Figure 5 shows the SSH-build results for each of the five different systems. As we hoped, our

S4 prototype performs similarly to the other systems measured.

LFS does significantly worse on unpack and configure because it has poor small write per-

formance. This is due to the fact that NetBSD’s LFS implementation uses a 1 MB segment size,

and NetBSD’s NFS server requires a full sync of this segment with each modification (S4 uses

a 64kB segment size, and supports partial segments). FFS performs worse than S4 because FFS

must update both the bitmap and inode with each file modification, which are in separate locations

on the disk. EXT2 performs more closely to S4 in asynchronous mode because it fails to satisfy

NFS’s requirement of synchronous modifications. It does slightly better in the unpack and config-

ure stages because it maintains no consistency guarantees, however it loses in the build phase due

to S4’s segment-sized reads.

Postmark was designed to measure the performance of a file system used for electronic mail,
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netnews, and web based services [21]. It creates a large number of small randomly-sized files

(between 512 B and 9 KB) and performs a specified number of transactions on them. Each trans-

action consists of two sub-transactions, with one being a create or delete and the other being a read

or append. The default configuration used for the experiments consists of 20,000 transactions on

5,000 files, and the biases for transaction types are equal.

Figure 6 shows the Postmark results for the five server configurations. These show similar

results to the SSH-build benchmark. Again, S4 performs comparably. In particular, LFS continues

to perform poorly due to its small write performance penalty caused by its interaction with NFS.

FFS maintains its slight performance loss due to multiple updates per file create or delete. EXT2

performs even better in this benchmark because the random, small file accesses done in Postmark

are not assisted by aggressive prefetching, unlike the sequential, larger accesses done during a

compilation; however, S4 continues to pay the cost of doing larger accesses, while EXT2 does not.

5.3.2 Journal-based Metadata

Because the metadata structure of a file’s current version is the same in both journal-based metadata

and conventional versioning systems, their current version access times are identical. Given this,

our performance measurements focus on the performance of back-in-time operations with journal-

based metadata.

There are two main factors that affect the performance of back-in-time operations: check-

pointing and clustering. Checkpointing refers to the frequency of metadata checkpoints. Since

journal roll-back can begin with any checkpoint, CVFS keeps a list of metadata checkpoints for

each file, allowing it to start roll-back from the closest checkpoint. The more frequently CVFS

creates checkpoints, the better the back-in-time performance.

Clustering refers to the physical distance between the journal entries. With CVFS’s log-

structured layout, if several changes are made to a file in a short span of time, then the journal

entries for these changes are likely to be clustered together in a single segment. If several jour-

nal entries are clustered in a single segment together, then they are all read together, speeding up

journal roll-back. The “higher” the clustering, the better the performance is expected to be.

Figure 7 shows the back-in-time performance characteristics of journal-based metadata. This

graph shows the access time in milliseconds for a particular version number of a file back-in-time.
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Figure 6: Postmark comparison. This figure shows the the elapsed time for both the entire run of postmark and the

transactions phase of postmark for the five test systems.

For example, in the worst-case, accessing the 60th version back-in-time would take 350ms. The

graph examines four different scenarios: best-case behavior, worst-case behavior, and two potential

cases (one involving low clustering and one involving high clustering).

The best-case performance is the situation where a checkpoint is kept for each version of

the file, and so any version can be immediately accessed with no journal roll-back. This is the

performance of a conventional versioning system. The worst-case performance is the situation

where no checkpoints are kept, and every version must be created through journal roll-back. In

addition there is no clustering, each journal entry is in a separate segment on the disk. This results

in a separate disk access to read each entry. In the high clustering case, changes are made in

bursts, causing journal entries to be clustered together into segments. This reduces the slope of the

back-in-time performance curve. In the low clustering case, journal entries are spread more evenly

across the segments, giving a higher slope. In both the low and high clustering cases, the points
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where the performance drops back to the best-case are the locations of checkpoints.

Using this knowledge of back-in-time performance, the system could perform a few optimiza-

tions. By tracking the frequency of checkpoints and clustering of journal entries we can predict

the back-in-time performance of a file while it is being written. Also, with this information, CVFS

could bound the performance of the back-in-time operations for a particular file by forcing a check-

point whenever back-in-time performance is expected to be poor. For example, in Figure 7, the

low-clustering case keeps checkpoints in such a way as to bound back-in-time performance to

around 100ms at worst. Another possibility is to keep checkpoints at the point at which we be-

lieve the user would wish to access the file. Using a heuristic such as in the Elephant FS [37]

to decide when to create file checkpoints might closely simulate the back-in-time performance of

conventional versioning.

5.3.3 Multiversion B-trees

Figure 8 shows the average access time of a single entry from a directory given some fixed number

of entries currently stored within the directory (notice the log scale of the x-axis). To see how

a multiversion b-tree performs as compared to a standard b-tree, we must compare two different

points on the graph. The point on the graph corresponding to the number of current entries in the

directory represents the access time of a standard b-tree. The point on the graph corresponding to

the combined number of current and history entries represents the access time of a multiversion

b-tree. The difference between these values is the lookup performance lost by keeping the extra

versions.

Using the traces gathered from our NFS server, we found that the average number of current

entries in a directory is approximately 16. Given a detection window of one month, the number

of history entries is less than 100 over 99% of the time, and between zero and five over 95% of

the time. Since approximately 200 entries can fit into a block, there is generally no performance

lost by keeping the history. This block-based performance is the reason for the stepped behavior

of Figure 8.
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5.4 Summary

Our results show that CVFS reduces the space utilization of versioned metadata by more than

80% without causing noticeable performance degradation to current version access. In addition,

through intelligent checkpointing, it is possible to achieve back-in-time performance similar to that

of conventional versioning systems.

6 Related Work

Much work has been done in the areas of versioning and versioned data structures, log-structured

file systems, and journaling.

Several file systems have used versioning to provide recovery from both user errors and system

failure. Both Cedar [16] and VMS [28] use file systems that offer simple versioning heuristics to

help users recover from their mistakes. The more recent Elephant file system provides a more

complete range of versioning options for recovery from user error [37]. Its heuristics attempt to

keep only those versions of a file that are most important to users.

Many modern systems support snapshots to assist recovery from system failure [11, 18, 19,

24]. Most closely related to CVFS is Spiralog, which uses a log-structured file system to do online

backup by recording the entire log to tertiary storage [14, 20]. Chervenak, et. al, performed an

evaluation of several snapshot systems [10].

Version control systems are user programs that implement a versioning system on top of a

traditional file system [15, 26, 43]. These systems store the current version of the file, along with

differences that can be applied to retrieve old versions. These systems usually have no concept of

checkpointing, and so recreating old versions is expensive.

Write-once storage media keeps a copy of any data written to it. The Plan 9 system [33]

utilized this media using a log-structured technique similar to CVFS. A recent improvement to

this method is the Venti archival storage system. Venti creates a hash of each block written and

uses that as a unique identifier to map identical data blocks onto the same physical location [34].

This removes the need to rewrite identical blocks, reducing the space required by individual data

versions and files that contain similar data. While this could be used as the underlying storage of

a versioning system, it would still require the metadata versioning techniques in CVFS to provide
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efficient comprehensive versioning.

In addition to the significant file system work in versioning, there has been quite a bit of work

done in the database community for keeping versions of data through time. Most of this work has

been done in the form of “temporal” data structures [2, 22, 23, 44, 45]. Our directory structure

borrows from these techniques.

The log-structured data layout was developed for write-once media [33], and later extended to

provide write performance benefits for read-write disk technology [36]. Since its inception, LFS

has been evaluated [3, 27, 35, 38] and used [1, 7, 12, 17] by many different groups. Much of the

work done to improve both LFS and LFS cleaners is directly applicable to CVFS.

While journal-based metadata is a new concept, journaling has been used in several different

file systems to provide metadata consistency guarantees efficiently [8, 9, 11, 39, 42]. Database

systems also use the roll-back and roll-forward concepts to ensure consistency during transac-

tions [13].

Several systems have used copy-on-write and differencing techniques that are common to

versioning systems to decrease the bandwidth required during system backup or distributed version

updates [4, 6, 25, 30, 31]. Specifically, some of these data differencing techniques [5, 25, 30] could

be applied to CVFS to reduce the space utilization of versioned data.

7 Conclusion

This paper shows that journal-based metadata and multiversion b-trees address the space-inefficiency

of comprehensive versioning. Integrating them into the CVFS file system has nearly doubled the

detection window that it can provide with a given storage capacity. Further, current version per-

formance is affected minimally, and back-in-time performance can be kept reasonable with check-

pointing. Thus, these space-efficient metadata versioning structures should be part of self-securing

storage implementations.
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Figure 7: Journal-based metadata back-in-time performance. This figure shows several potential curves for

back-in-time performance. The worst-case is when journal roll-back is used exclusively, and each journal entry is in

a separate segment on the disk. The best-case is if a checkpoint is available for each version, as in a conventional

versioning system. The high and low clustering cases are examples of how checkpointing and access patterns can

affect back-in-time performance. The cliffs in these curves indicate the locations of checkpoints, since the access time

for a checkpointed version drops to the best-case performance. As the level of clustering increases, the slope of the

curve decreases, since multiple journal entries are read together in a single segment.
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Figure 8: Directory entry performance. This figure shows the average time to access a single entry out of the

directory given the total number of entries within the directory. History entries affect performance by increasing the

effective number of entries within the directory. The larger the ratio of history entries to current entries, the more

current version performance will suffer.
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