
Timing-accurate Storage Emulation

John Linwood GriÆn, Jiri Schindler,

Steven W. Schlosser, Gregory R. Ganger

July 2001

CMU-CS-01-146

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Timing-accurate storage emulation �lls an important hole in the set of common performance evaluation
techniques for proposed storage designs: it allows a researcher to experiment with not-yet-existing storage
components in the context of real systems executing real applications. As its name suggests, a timing-
accurate storage emulator appears to the system to be a real storage component with service times matching
a simulation model of that component. This paper promotes timing-accurate storage emulation by describing
its unique features, demonstrating its feasibility, and illustrating its value. A prototype, called the Memulator,
is described and shown to produce service times within 2% of those computed by its component simulator for
over 99% of requests. Two sets of measurements enabled by the Memulator illustrate its power: (1) application
performance on a modern Linux system equipped with a MEMS-based storage device (no such device exists at
this time), and (2) application performance on a modern Linux system equipped with a disk whose �rmware
has been modi�ed (we have no access to �rmware source code).

We thank the members and companies of the Parallel Data Consortium (including EMC, Hewlett-Packard, Hitachi, Intel,

LSI Logic, Lucent, Network Appliance, PANASAS, Platys Communications, Seagate, Snap Appliances, Sun Microsystems, and

Veritas) for their interest, insights, and support. We also thank IBM for supporting our research e�orts.



Keywords: Disk scheduling, storage systems



1 Introduction

Despite decades of practice, performance evaluation of proposed storage subsystems is almost

always incomplete and disconnected from reality. In particular, future storage technologies

and potential �rmware extensions usually cannot be prototyped by researchers, and so any

evaluation must rely upon simulation or analytic models of the prospective subsystem. Un-

fortunately, this reliance commonly limits consideration of real application workloads and

complex \real system" e�ects, both of which can hide or undo bene�ts predicted by simulat-

ing storage components in isolation. For this reason, such localized evaluation has long been

considered unacceptable in other disciplines, such as networking, architecture, and even �le

systems.

Timing-accurate storage emulation o�ers a solution to this dilemma, allowing simulated

storage components to be plugged into real systems, which can then be used for complete,

application-based experiments. As illustrated in Figure 1, a storage emulator transparently

�lls the role of a real storage component (e.g., a SCSI disk), correctly mimicking the interface

and retaining stored data to respond to future reads. A timing-accurate storage emulator

responds to each request after its simulator-computed service time passes; the performance

observed by the system should match the simulation model. To accomplish this, the emulator

must synchronize the simulator's internal time with the real-world clock, inserting requests

into the simulator when they arrive and reporting completions when the simulator says

they are done. If the simulator's model represents a real component, the system-observed

performance will be of that component. Thus, the results from application benchmarking

will represent the end-to-end performance e�ect of using that component in the real system.

This paper makes a case for timing-accurate storage emulation and demonstrates that

it works in practice. It describes general design issues and details the implementation of

our prototype emulator in Linux. Our original goal was thorough evaluation of operating

system algorithms for not-yet-existing MEMS-based storage devices [10, 11]|this led to

the prototype's name: Memulator. The Memulator integrates the DiskSim simulator [9], a

real-time timing loop, and a large RAM cache to achieve 
exible, timing-accurate storage

emulation. It can emulate any storage component that DiskSim can simulate, including



OS

Application

OS

Application

(a) Conventional system (b) Disk replaced by emulator

Normal computer Storage emulatorNormal computer

Simulator
real RAM

cachetimeDisk

Figure 1: A system with (a) real storage or (b) emulated storage. The emulator
transparently replaces storage devices in a real system. By reporting request completions at
the correct times, the performance of di�erent devices can be mimicked, enabling full system-
level evaluations of proposed storage subsystem modi�cations.

���
���
���

���
���
���

Able to explore hypothetical components

���
���
���

���
���
���

Able to measure with real applications, OSes, and OS modifications

Ba
ck

-o
f-t

he
-e

nv
el

op
e

ca
lc

ul
at

io
ns

An
al

yt
ic

 m
od

el
s

St
or

ag
e 

em
ul

at
io

n

ex
pe

rim
en

ts
Pr

ot
ot

yp
e

ex
pe

rim
en

ts
R

ea
l s

ys
te

m
ex

pe
rim

en
ts

���
���
���

���
���
���

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

��������������
��������������
��������������

��������������
��������������
������������������
����
����

����
����
����

Less:

effort required,
reality required.

time required,

Key:

St
or

ag
e 

su
bs

ys
te

m

si
m

ul
at

io
ns

Overlap: able to explore hypothetical components with real system measurements

More:

representative.

accurate,
complete,

Figure 2: Storage performance evaluation techniques. This illustration lin-
earizes techniques in a spectrum from the hquickest,easiest,most 
exiblei to the most
haccurate,complete,representativei. In this spectrum, storage emulation provides the unique
ability to explore nonexistent storage components in the context of full systems executing real
applications.

2



MEMS-based storage, disk arrays, and many modern disk drives. Calibration measurements

indicate that the Memulator's response times are within 2% of the DiskSim times for over 99%

of requests. Using DiskSim's validated disk models, we also verify that system performance

is the same with the Memulator or a real storage device.

We illustrate the power of timing-accurate storage emulation with two experiments that

the Memulator makes possible. First, we measure how MEMS-based storage would a�ect

application performance on a current Linux system; since fully-functioning MEMS-based

storage devices are still years away, this experiment is only possible with emulation. Second,

we measure how an extension (zero-latency reads) to disk �rmware would a�ect application

performance on a Linux system; since we have no access to �rmware source code, we can

only do this with emulation. We also discuss a third type of experiment, interface extensions,

that requires changes to both the host OS and the storage subsystem; without emulation (or

complete implementation), thorough evaluation of interface extensions is not possible.

The remainder of this paper is organized as follows. Section 2 makes a case for timing-

accurate storage emulation. Section 3 discusses the design of timing-accurate storage emula-

tors in general. Section 4 describes the Memulator in detail. Section 5 validates the response

times of the Memulator relative to simulated device performance. Section 6 describes exper-

iments enabled by the Memulator. Section 7 summarizes this paper's contributions.

2 A case for emulation

Storage emulation is rarely used for performance evaluation of prospective storage system

designs. This section makes a case for more frequent use, arguing that timing-accurate

storage emulation o�ers a unique performance evaluation capability: experimentation with

as-yet-unavailable storage components in the context of real systems. Such experimentation

is important because complex system characteristics can hide or reduce predicted bene�ts

of new storage components [7]. Further, some new storage architectures and interfaces

require both OS modi�cations and new (or modi�ed) storage components|until the new

components are available, only emulation allows such collaborative advances to be tested

and their performance evaluated.

3



2.1 Storage performance evaluation

Figure 2 illustrates a spectrum of techniques for evaluating storage designs, ranging from

quick-and-dirty estimates to real application measurements on a complete system. Tech-

niques to the left generally demand less of the evaluator: less e�ort to set up and employ,

less time to produce a result, and less need for the evaluated storage system to be fea-

sible. Techniques to the right generally produce more believable results: more accurate,

more inclusive of complex system e�ects, and more representative of the e�ects under real

workloads.

The six techniques shown are each appropriate in some circumstances, as each o�ers

a di�erent mixture of these features. For example, storage simulation allows hypothetical

storage systems to be evaluated quickly and eÆciently. Even futuristic technologies and

modi�cations to proprietary �rmware can be explored. Simulation results, however, must be

taken with a grain of salt, since the simulation may abstract away important characteristics of

the storage components, overall system, or workload. In particular, representative workloads

are rarely used, since synthetic generation is still an open problem [6], I/O traces ignore

system feedback e�ects [7], and available traces are often out-of-date|in fact, many storage

researchers still rely on the well-known \HP traces" from 1992 [20]. As a di�erent example,

experimenting with prototypes allows one to evaluate designs in the context of full systems

and real workloads. Doing so, of course, requires considerable investment in prototype

development and experiment con�guration.

As indicated in Figure 2, storage emulation o�ers an interesting mix of features: the


exibility of simulation and the reality of experimental measurements. That is, storage

emulation allows futuristic storage designs to be evaluated in the context of real OSes and

applications. This enables two types of experiments. First, end-to-end measurements can be

made of the e�ects of non-existent storage components in existing systems. Such components

are usually simulated in isolation and evaluated under non-representative workloads. Second,

end-to-end measurements can be made of the e�ects of non-existent storage components

in modi�ed systems. For example, storage interface changes often require that both the

storage components and the OS be modi�ed to utilize the new interface. Experimentation

4



is impossible without the ability to modify both components, which is a very real problem

with the proprietary �rmware of most disks and disk array controllers. Section 6 explores

concrete examples of both types of experiments.

We are aware of only one other technique o�ering a similar mix of features: complete

machine simulation [18]. In this technique, the hardware of a computer system is simulated in

enough detail to boot a real OS and run applications. If the simulation progresses according

to timing-accurate models of the key system components (e.g., CPUs, caches, buses, memory

system, I/O interconnects, I/O components), it can be used for performance evaluation.

Because it boots a real OS and runs real applications, a complete machine simulator enables

the same types of experiments as storage emulation. Further, by manipulating simulator

parameters, the e�ects of new storage devices on hypothetical machines (e.g., with 10GHz

CPUs) can be evaluated [19, 21]. Unfortunately, substantial e�ort is required to build and

maintain a complete machine simulator, both in terms of correctly executing programs and

correctly accounting for time. For example, the SimOS machine simulator required extensive

e�ort to create and validate; just a few years later, its hardware models are out of date, the

CPU instruction set it emulates is being phased out, and source code for the OS that it

boots is diÆcult to acquire. In addition, these simulators usually run more slowly than real

systems, increasing evaluation time. Storage emulation does not share these diÆculties.

2.2 Related emulation

In a sense, storage emulation is commonplace. For example, the standard SCSI interface

allowed disk arrays to rapidly enter the storage market by supporting a disk-like interface

to systems. Similarly, the NFS remote procedure call (RPC) interface allowed dedicated

�ler appliances [12] to look like traditional NFS �le servers. In addition, we have been told

anecdotal stories of emulation's use in industry for development and correctness testing of

new product designs. However, these examples represent only the \storage emulation" half

of timing-accurate storage emulation.

The \timing-accurate" half has been much utilized by networking researchers [1, 5, 17].

Timing-accurate network emulation parallels our description of timing-accurate storage emu-

lation: real hosts interconnected by the emulated network observe normal packet send/receive

5



semantics and performance that accurately re
ects a simulation model. The observable per-

formance e�ects include propagation delays, bandwidths, and packet losses. Like timing-

accurate storage evaluation, timing-accurate network emulation enables real system bench-

marking that would not otherwise be possible|in particular, deploying a substantial network

just for experiments is simply not feasible.

We are aware of only a few previous cases of timing-accurate storage emulation being used

for performance evaluation. The most relevant example is Wang et al.'s evaluation of eager

writing [23]. Under eager writing, data is written to a disk location that is close to the disk

head's current location. To evaluate the bene�ts of having disk �rmware support for eager

writing, Wang et al. embedded a disk simulator in Solaris 2.6, augmented it with a RAMdisk,

and arranged (by using sleep) to have completions reported after delays computed by the

simulator. Although some details di�er, this is similar to the Memulator's design. A less

direct example is the common practice of emulating non-volatile RAM by simply pretending

that normal RAM is non-volatile [4, 8]. Although this would be unacceptable in a production

system, such pretending is �ne for performance experiments.

A central purpose of this paper is to promote timing-accurate storage emulation as a

�rst-class tool in the storage research toolbox. Towards this end, we describe its unique

capabilities, demonstrate its relatively straightforward realization, and illustrate its power

with several experiments that we could not otherwise perform.

3 Emulator Design

A timing-accurate storage emulator must appear to its host system to be the storage subsys-

tem that it emulates. Doing so involves three main tasks. First, the emulator must correctly

support the protocols of the interface behind which it is implemented. Second, the emulator

must complete requests in the amount of time computed by a model of the storage subsys-

tem. Third, the emulator must retain copies of written data to satisfy read requests. This

section describes how these three tasks are handled and the steps an emulator goes through

to service storage requests.

6



Storage interface

RAM cache Timing loop

Simulation engineOverflow storage

Host

Emulation software

Figure 3: Emulation software internals. The �ve components inside the \storage emula-
tion software" box comprise the three primary emulator tasks: communications management
(the storage interface), timing management (the simulation engine and timing loop), and
data management (the RAM cache and over
ow storage).

3.1 Emulator components

Figure 3 shows the internals of a timing-accurate storage emulator. This section describes

how the components of the emulator work to satisfy the three tasks: communications man-

agement (the storage interface), timing management (the simulation engine and timing loop),

and data management (the RAM cache and over
ow storage).

3.1.1 Communications management

The storage interface component connects the emulator to the host system. As such, it must

export the proper interface. The storage interface ensures that requests are transferred to

and from the host according to the emulated protocol. Incoming requests are parsed and

passed to the other emulator components, and outgoing messages are properly formatted

for return to the host. In addition to servicing requests, the storage interface must respond

appropriately to exceptional cases such as malformed requests or device errors.

In response to a read or write request, the storage interface parses the request, checks its

validity, and then passes it to the timing and data management components of the emulator.

7



In some cases, it may have to interact further with the host (e.g., for bus arbitration or if the

emulated device supports disconnection). In addition to reads and writes, the emulator must

also support control requests that return information about the emulated drive such as its

capacity, status, error condition, etc. In practice, a subset of often-used control commands

usually suÆces. When a request is completed, the response is formatted appropriately for

the emulated protocol and forwarded to the host through the storage interface.

3.1.2 Timing management

The simulation engine and timing loop work together to provide the timing-accurate nature

of the emulation. Speci�cally, the simulator determines how long each request should take

to complete, and the timing loop ensures that completion is reported after the determined

amount of time.

There are two ways that the simulation engine and timing loop can interact. One ap-

proach keeps the two separate: when a request arrives, the timing loop calls the simulator

code once to get the service time. In this approach, the simulator code takes the real-world

arrival time and the request details, and it returns the computed service time. After the

appropriate real-time delay, the timing loop tells the storage interface component to re-

port completion. Wang et al.'s emulator-based evaluation of eager writing used Kotz's disk

simulator [15] in this way.

Although it is straightforward, this �rst approach often does not properly handle concur-

rent requests. For example, a new request arrival may a�ect the service time of outstanding

requests due to bus contention, request overlapping, or request scheduling. A more gen-

eral approach is to synchronize the advancement of the simulator's internal clock with the

real-world clock. This synchronization can most easily be done with event-based simulation.

An event-based simulator breaks each request into a series of abstract and physical events:

request arrival, controller think time complete, disk seek complete, read of sector N complete,

and so on. Each event is associated with a time, and an event \occurs" when the simulator's

clock reaches the corresponding time. Event occurrences are processed by simulation code

that updates state and schedules subsequent events. For example, the \controller think time

complete" event may be scheduled to occur a constant time after the \request arrival" event.

8



To synchronize an event-based simulation with the real world, the emulator lets the timing

loop control the simulator clock advancement. When each event completes, the simulator

engine noti�es the timing loop of the next scheduled event time. The timing loop waits

until that time arrives, then calls back into the simulator to begin processing the next event.

If a new request arrives, a \request arrival" event is prepended to the simulator's event

list with the current real-time, and the timing loop calls into the simulator immediately.

When a \request complete" event ultimately occurs, the simulator engine noti�es the storage

interface.

In practice, the request arrival and completion times must be skewed slightly to account

for processing and communication delays. The arrival time of a request is adjusted backwards

slightly to account for the delay in receiving the request. Likewise, the simulator runs slightly

ahead of the real-world clock so that the storage interface will start sending completion

messages early enough for them to arrive on time. Clearly, an additional requirement is that

the simulation computations themselves be fast enough that they do not delay completion

messages; the computation time for any given request must be lower than the computed

service time.

3.1.3 Data management

In addition to providing accurate timing of requests, emulation software must provide a

consistent view of stored data. This is satis�ed by the combination of a RAM-based block

(sector) cache and over
ow storage for paging blocks from the cache. These components act

as a conventional memory manager: groups of blocks can be grouped into \pages" that are

evicted from or promoted into the cache. The over
ow storage is only necessary for workloads

requiring active storage in excess of the memory allocated to the emulation software. Possible

implementations of the over
ow storage include paging to one or more locally-attached disk

drives, or paging to shared network-based RAM [2].

Data transfers from over
ow storage may not complete quickly enough when emulating a

high-performance device. When this is the case, cache preloading schemes may be necessary

to ensure high RAM cache hit rates. These schemes can take advantage of the repeatability

of experiments. For example, a workload could be initially run solely to generate a trace of

9



Unmodified operating system

SCSI
reply3

2

Unmodified bus

1

xfer
data2

SCSI
reply3

(b) Remote emulation(a) Local (same−system) emulation

SCSI
command1

SCSI
command1 3Storage emulation software

Modified device driver

Emulation software

System under test System under test

Unmodified application

data
xfer2

Unmodified application

Unmodified OS

Unmodified driver

Driver

OS

Adapter

I/Os Replies

RepliesI/Os

Unmodified bus adapter

Figure 4: Communication paths when emulation is run (a) locally or (b) remotely.
When run locally, emulation software communicates directly with a modi�ed device driver in
the kernel. Under remote emulation, all modi�cations take place outside the system under
test, eliminating the impact of the emulation overheads.

accessed blocks, then run a second time using that trace to intelligently preload the cache

throughout execution.

Since a timing-accurate storage emulator is used only as a performance evaluation tool

and not as a production data store, some persistence characteristics can be relaxed to increase

performance. For example, write-back caching can be used to avoid costly over
ow storage

delays. If the system crashes and data is lost, the experiment can be re-run.

3.2 Host system interactions

Figure 4 shows the two most natural points at which to integrate a storage emulator into

a host system. In the �rst, the device driver is modi�ed to communicate directly with

emulation software rather than with real storage components. Although this does involve

some modi�cations to the host system, they are restricted to the device driver. In the second,

the host system is left unmodi�ed, and the emulation software runs on a second computer

attached to the host via a storage interconnect. The second computer responds just like

a real storage device would. Both integration points leave intact the application and OS

software which is doing the real work and generating storage requests. Both also share a

simple 3-step interface between the storage emulator and the rest of the system.

10



Step 1: Send request to the emulator. When a read or write request arrives at the

device driver, it is directed to the emulated device. In the case of local emulation, the device

driver is modi�ed to be aware of the emulation software and explicitly delivers the request to

it. A device that is emulated remotely does not need a modi�ed device driver; requests are

sent unmodi�ed across the bus to the emulation machine which in turn delivers the request

to the emulation software located there. Once the emulation software (either local or remote)

has the request, it issues it to the simulator engine to determine how long the request should

take to complete.

Step 2: Transfer data between the host and emulator. The emulation software

begins transferring data. In the case of a read request, data is transferred from the RAM

cache to the host. In the case of a write request, data goes from the host into the RAM

cache and is saved to service future reads. Data transfer should usually begin soon after the

request arrives, since all data must be transferred before the completion time computed by

the simulator in Step 1. A local emulator can pass pointers to data in its RAM cache directly

to the modi�ed device driver. The driver then copies data to or from the appropriate kernel

bu�ers. A remote emulator sends data over the bus to the host.

Step 3: Send reply to the device driver. The emulation software waits until the request

service time as determined in Step 1 elapses. At this point, all data should be transfered

either from or to the host and a completion interrupt must be delivered to the OS. In the

remote case, the completion message is sent over the bus, just as with a normal storage

device, and the unmodi�ed device driver deals with it appropriately. In the local case, the

emulation software directly noti�es the device driver that the request is complete at the

device level. The driver then calls back into the operating system to complete the request

at the system level.

The local design works well in practice and allows for extra communication paths between

the operating system and emulator. For example, the device driver can measure perceived

request service times and communicate these to the emulator, enabling the emulator to re�ne

its model of communications overheads. In addition, this architecture enables evaluation

of nonstandard device interfaces (such as freeblock requests or exposed eager writes) as

discussed in Section 6.3.

11



However, a local emulator will have a direct impact on the system under test. Device

driver modi�cations are necessary for communications with the emulator, and extra CPU

time and memory are used to run the emulation software, which could perturb the host's

workload. Using a dual-processor machine, with one CPU dedicated to emulation and with

added memory dedicated to the RAM cache, will mitigate the overhead, but some interference

is inevitable. A remote emulator avoids these perturbations completely by performing the

emulation on separate, dedicated hardware. In this case, host overheads are eliminated and

no modi�cations are required in the host's device driver.

In addition to device-speci�c delays, a local emulator must account for bus delays, since

there is no physical bus between the host and the emulator. A remote emulator that is

physically attached to the host via a bus need not calculate such delays, unless it is emulating

a di�erent storage interconnect.

4 The Memulator

This section describes the implementation of the Memulator, our timing-accurate local stor-

age emulator for the Linux 2.4 operating system. The emulation software runs as a user-level

application on the system under test and communicates with a modi�ed SCSI device driver,

as illustrated in Figure 4(a).

The modi�ed device driver is a low-level component in the Linux SCSI subsystem, dynam-

ically loaded as a kernel module when the Memulator is initialized. The driver accepts SCSI

requests (Scsi Cmnd structures) from the Linux kernel via the standard SCSI mid-to-low-level

queuecommand() interface and passes these on to the storage interface as described below.

When a request is complete, the driver noti�es the kernel using the standard scsi done()

mid-level callback.

The Memulator's storage interface communicates with the driver via modi�ed system

calls on the special device �le /dev/memulator. The poll() system call is used to notify

the storage interface that a new request has arrived in the driver. read() is then used

to transfer the 12-byte SCSI command, target, logical unit number, and a unique request

identi�er for that request to the storage interface. Upon receipt, the timing loop immediately

12



Command Function

read (6 and 10) Read data from device

write (6 and 10) Write data to device

test unit ready Check if device online

inquiry Get device parameters

read capacity Get device size in sectors

request sense Get details of last error

Table 1: Required SCSI command support. This command set must be implemented
for an emulator to interact with the Linux 2.4 kernel.

prepends an \arrival" event for the new request to the DiskSim event queue (with an o�set

arrival time, described below), and the device driver immediately copies the requested data

between the user and kernel memory bu�ers. write() is used to notify the device driver

when the request is complete.

When invalid opcodes, out-of-range requests, or invalid target/LUN pairs are received

during the read() phase, the Memulator's storage interface generates the appropriate sense

code and immediately returns an error condition to the device driver via write(). The SCSI

commands supported by our prototype are shown in Table 1. These commands are suÆcient

to allow Linux to mount and use Memulator devices like SCSI disks.

As discussed in Section 3.1.2, the request arrival times are skewed slightly by the timing

loop to account for processing and communications overheads. Without this adjustment,

request times at the storage interface will often be in error by a variable amount of time

(Figure 5(a), (c), and (e)). This error is a function of both request type (read or write) and

request size1. To compensate for the error, we determine the \arrival time o�set" empirically

by calculating the average di�erence in simulated and measured Memulator request times

for di�erent request types and sizes, and feed this information back into the Memulator

(Figure 5(b), (d), and (f)).

1It is possible that the error's dependence on request size is an artifact of extra data copies inside the
Linux SCSI generic (SG) interface we use to measure the error.

13



-200

0

200

400

600

800

1000

1200

0 50 100 150 200 250

M
ea

su
re

d 
tim

e 
- 

si
m

ul
at

ed
 ti

m
e 

(u
s)

Request size (512-byte blocks)

Emulation error (without offset): 10ms Constant Time model

-200

0

200

400

600

800

1000

1200

0 50 100 150 200 250

M
ea

su
re

d 
tim

e 
- 

si
m

ul
at

ed
 ti

m
e 

(u
s)

Request size (512-byte blocks)

Emulation error (with offset): 10ms Constant Time model

(a) (b)

-200

0

200

400

600

800

1000

1200

0 50 100 150 200 250

M
ea

su
re

d 
tim

e 
- 

si
m

ul
at

ed
 ti

m
e 

(u
s)

Request size (512-byte blocks)

Emulation error (without offset): IBM Ultrastar 18ES model

-200

0

200

400

600

800

1000

1200

0 50 100 150 200 250

M
ea

su
re

d 
tim

e 
- 

si
m

ul
at

ed
 ti

m
e 

(u
s)

Request size (512-byte blocks)

Emulation error (with offset): IBM Ultrastar 18ES model

(c) (d)

-200

0

200

400

600

800

1000

1200

0 50 100 150 200 250

M
ea

su
re

d 
tim

e 
- 

si
m

ul
at

ed
 ti

m
e 

(u
s)

Request size (512-byte blocks)

Emulation error (without offset): Seagate Cheetah X15 model

-200

0

200

400

600

800

1000

1200

0 50 100 150 200 250

M
ea

su
re

d 
tim

e 
- 

si
m

ul
at

ed
 ti

m
e 

(u
s)

Request size (512-byte blocks)

Emulation error (with offset): Seagate Cheetah X15 model

(e) (f)

Figure 5: O�setting system overheads to reduce emulation error. Each graph shows

4,000 requests: 2,000 from the \random uniform" workload and 2,000 from the \mixed uniform"

workload. The graphs on the left show the e�ect of OS data copies and scheduling delays. The two

distinct curves are caused by di�erent OS-level delays for read requests vs. write requests (the read

curve is the upper curve), not because of the di�erent workloads. The graphs on the right show the

same workloads after compensating with the arrival time o�set function. Negative values mean the
request �nished earlier in real time than the time speci�ed by the simulator. The noise in graphs

(e) and (f) is caused by cases where the simulation model of the Cheetah X15 takes too long to run;

these can be addressed by tuning the simulator.

14



5 Memulator Accuracy

This section presents two evaluations of Memulator accuracy. First, it shows that the Mem-

ulator accurately re
ects the timings of a simulated storage device. Second, it shows that

this timing-accuracy can translate into accurate emulation of a real storage device.

5.1 Experimental setup

Our experimental platform is a dual-processor 700 MHz Intel Pentium III-based workstation

with 512 MB RAM, running Linux 2.4.2. Two SCSI disks connected to the workstation

are used for real disk measurements: The IBM Ultrastar 18ES (1998) is a 7,200 RPM disk

with 7.6 ms average seek time and 9 GB capacity. The Ultrastar resides on an 80 MB/s

SCSI bus hosted by an Adaptec AIC-7896. The Seagate Cheetah X15 (2000) is a 15,000

RPM disk with 3.9 ms average seek time and 18 GB capacity. It is connected to a 1 Gb/s

Fibre Channel network (FC-AL) hosted by a QLogic ISP2100. These disks were chosen as

reasonable examples of modern high-end disks. Also, validated DiskSim speci�cations are

available for these disks, allowing us to compare the Memulator to real disks. In addition to

the models of these disks, we created a simple \10ms Constant Time" model, which always

completes requests with 10 ms service time.

For all experiments, 350MB of main memory is pinned for the Memulator's RAM cache,

leaving 162MB for the \real" system activity. This memory is pinned even when not using

the Memulator in order to equalize the system behavior when comparing the Memulator to

real storage devices. The second CPU allows the Memulator application to execute on the

local system without taking CPU cycles from our benchmark programs.

To focus on storage performance, we use six arti�cial workloads: \random or mixed"

crossed with \small, uniform, or large." A random workload has zero probability of local

access or sequential access; request starting locations are uniformly distributed across the

storage capacity. A mixed workload has 30% probability of \local" access (within 500 LBNs

of the previous request) and 20% probability of sequential access. A small workload is

composed of 8-sector (4 KB) requests, a large workload uses 256-sector (128 KB) requests,

and a uniform workload has uniformly distributed request sizes in intervals of 2 KB over the

15



range [2 KB, 130 KB]. Therefore a \mixed large" workload has some sequential and local

accesses, and is composed of 128 KB requests. All workloads are made up of 2,000 requests,

of which 67% are reads. This size was chosen to prevent the RAM cache from paging to

over
ow storage.

We also present results for three application-level benchmarks: the Andrew bench-

mark [13], the PostMark benchmark [14], and the SSH-build benchmark [25].

The Andrew �le system benchmark has been popular in �le system studies since its

introduction. Its �ve phases operate on a source tree of about 70 �les (200 KB), with each

phase designed to exercise a unique component of the �lesystem. Given its age and small

size, the Andrew benchmark is not I/O intensive.

PostMark was designed to measure the performance of a �le system used for electronic

mail, news, and web-based services. It creates a large number of small �les, on which

a speci�ed number of transactions are performed. Each transaction consists of two sub-

transactions, with one being a create or delete and the other being a read or append. The

transaction types are chosen randomly with consideration given to user de�nable weights.

Our con�guration consists of 20,000 transactions on 10,000 �les, with a �le size of between

10 KB and 20 KB.

The SSH-build benchmark was constructed as a replacement for the Andrew benchmark.

It consists of 3 phases: The unpack phase, which unpacks the compressed tar archive of

SSH v3.0.0 (SSH is approximately 2.1MB in size before decompression). This phase stresses

metadata operations on �les of varying sizes. The con�gure phase consists of the automatic

generation of header �les and Make�les, which involves building various small programs

that check the existing system con�guration. The build phase compiles, links, and removes

temporary �les. This last phase is the most CPU intensive, but it also generates a large

number of object �les and a few executables.

5.2 Results

We executed the six arti�cial workloads against the Memulator to evaluate how closely it

comes to perfect timing-accurate emulation. To achieve this, we dynamically generated a

series of SCSI requests based on each workload's characteristics and issued them to the

16



0

50

100

150

200

250

300

350

-250 -200 -150 -100 -50 0 50 100 150 200 250

N
um

be
r 

of
 r

eq
ue

st
s

Measured time - simulated time (microseconds)

Distribution of service time error (10ms Constant Time model)

0

200

400

600

800

1000

1200

-4 -2 0 2 4

N
um

be
r 

of
 r

eq
ue

st
s

Percent error (%)

Distribution of service time percent error (10ms Constant Time model)

(a) (b)

0

50

100

150

200

250

300

350

-250 -200 -150 -100 -50 0 50 100 150 200 250

N
um

be
r 

of
 r

eq
ue

st
s

Measured time - simulated time (microseconds)

Distribution of service time error (IBM Ultrastar 18ES model)

0

200

400

600

800

1000

1200

-4 -2 0 2 4

N
um

be
r 

of
 r

eq
ue

st
s

Percent error (%)

Distribution of service time percent error (IBM Ultrastar 18ES model)

(c) (d)

0

50

100

150

200

250

300

350

-250 -200 -150 -100 -50 0 50 100 150 200 250

N
um

be
r 

of
 r

eq
ue

st
s

Measured time - simulated time (microseconds)

Distribution of service time error (Seagate Cheetah X15 model)

0

200

400

600

800

1000

1200

-4 -2 0 2 4

N
um

be
r 

of
 r

eq
ue

st
s

Percent error (%)

Distribution of service time percent error (Seagate Cheetah X15 model)

(e) (f)

Figure 6: Densities of emulation error and percent error. Each graph shows the
combined results of the \random uniform" and \mixed uniform" workloads, for a total of
4,000 requests. The step in the error densities is 5 �s; in the percent error densities, the
step is 0.1%. Percent error is calculated with respect to the simulated request time.

17



small requests (4 KB) uniform (2{130 KB) large requests (128 KB)
random mixed random mixed random mixed

10ms Constant Time model

mean service time 10,000 �s 10,000 �s 10,000 �s 10,000 �s 10,000 �s 10,000 �s
mean emulation error -26.6 �s -27.1 �s 7.2 �s 12.8 �s 83.3 �s 58.1 �s
mean jemulation % errorj 0.28% 0.28% 0.49% 0.46% 0.87% 0.84%
requests under 2% error 100% 100% 99.1% 99.3% 99.3% 99.5%

IBM Ultrastar 18ES model

mean service time 11,626 �s 9,696 �s 22,949 �s 21,139 �s 35,089 �s 33,174 �s
mean emulation error -10.4 �s -4.6 �s 9.0 �s -1.2 �s 18.4 �s 48.9 �s
mean jemulation % errorj 0.36% 0.50% 0.21% 0.20% 0.16% 0.17%
requests under 2% error 99.9% 96.2% 99.4% 99.6% 100% 100%

Seagate Cheetah X15 model

mean service time 6,623 �s 5,599 �s 9,403 �s 8,531 �s 11,705 �s 10.781 �s
mean emulation error -13.6 �s 5.8 �s 41.5 �s 17.8 �s 58.2 �s 60.9 �s
mean jemulation % errorj 0.59% 1.33% 0.95% 1.15% 0.99% 0.80%
requests under 2% error 99.6% 99.4% 97.7% 98.5% 99.6% 99.8%

Table 2: Memulator accuracy. Each workload represents 2,000 requests as measured at the
Linux SCSI generic interface. Mean service time is the average request service time reported
by the simulation engine. Mean emulation error reports the average di�erence between the
measured (emulated) time and the simulated service time of each request. Negative values rep-
resent requests that �nished more quickly than the simulated time. Mean jemulation % errorj
is the average of the absolute values of percent error of the emulated time for each request
with respect to the simulated service time. Requests under 2% error shows the percentage of
requests completing within 2% of their simulated time.

IBM Ultrastar 18ES Seagate Cheetah X15
Real disk Memulator % error Real disk Memulator % error

Andrew 3.545 s 3.543 s -0.06% 3.538 s 3.537 s -0.03%
PostMark 372.7 s 389.0 s 4.37% 14.36 s 14.31 s -0.33%
SSH unpack 0.631 s 0.628 s -0.48% 0.627 s 0.628 s 0.16%
SSH con�gure 39.95 s 40.06 s 0.28% 39.10 s 38.93 s -0.44%
SSH build 119.3 s 119.2 s -0.09% 119.8 s 119.0 s -0.73%

Table 3: Application run times using the Memulator vs. real disks. Each column
shows the average of 10 benchmark runs, except the Postmark numbers for the IBM Ultrastar
18ES (only 3 runs each). CoeÆcients of variation are below 3%. The Seagate Cheetah X15
Postmark runs are for only 1000 �les instead of 10,000 �les.

18



Memulator through the Linux SCSI generic (SG) interface. The SG interface allows an

application to create SCSI requests at the user level, to pass these commands directly to the

device driver, to intercept SCSI replies from the driver, and to handle them directly at user

level. Timing each request at the SG interface and comparing these to the simulator output

enables a detailed request-by-request comparison.

Table 5.1 displays the results, and Figure 6 provides a supplementary view of the uniform

workloads. The average j% emulation errorj is less than 1.4% in all cases, and over 99% of

requests have less than 2% of error. Most errors larger than 2% are only slightly larger.

Exceptions fall into two categories: (1) the simulator can take too long to compute a result

(see Figure 5(f)), and (2) the emulation program can be context-switched o� of the CPU,

which occurs for fewer than one request in 1000 in our experiments. Fundamentally, the extra

delays from both categories are unbounded, but we have observed only 5-10% inaccuracy

from the �rst and up to 3{4 ms errors from the second.

Having established that Memulator matches its internal simulation timings, we compare

application run times over the Memulator vs. over real disks, using the validated DiskSim

models of those disks. Our results are shown in Table 5.1. Run times with the Memulator

are very close to those with the corresponding real disk. Although these very close matches

are comforting, it is important to remember that the Memulator's main responsibility is

ensuring �delity to the model's timing. It is the responsibility of the model's creator to

ensure �delity to the modeled device.

6 Memulator-enabled Experiments

This section illustrates the power of timing-accurate storage emulation by describing ex-

periments made possible by the Memulator. These experiments fall into three categories:

experiments with �rmware modi�cations, experiments with futuristic devices, and experi-

ments with new storage interfaces.

6.1 Changes to existing devices

A long-standing obstacle for most experimental storage researchers is that disk �rmware

source code is unavailable. This prevents direct experimentation with modi�cations to

19



IBM Ultrastar 18ES
Zero- Decrease

Default latency in time

PostMark 389.0 s 399.0 s -1.0%
SSH unpack 0.63 s 0.63 s 0.0%
SSH con�gure 40.1 s 40.0 s 0.3%
SSH make 119.2 s 119.7 s -0.4%

Table 4: Exploring a change to disk �rmware. Here we use timing-accurate storage
emulation to add zero-latency access capability to a disk that in reality does not support
it. Each data point is the average of three runs of the benchmark, with each coeÆcient of
variation below 3%.

�rmware algorithms, including LBN-to-physical mapping, on-board cache management, prefetch-

ing, and scheduling. With the Memulator, this obstacle is partially removed.

To illustrate the new capability, we compare application performance when a disk has

zero-latency read support and when it does not. Zero-latency read (a.k.a. read-on-arrival

and immediate read) allows the disk �rmware to fetch sectors from the media in any order,

rather than requiring strictly ascending LBN order. When exactly one track is fetched, zero-

latency read support allows the media transfer to begin as soon as the seek is complete; since

every sector on the track is desired, the media transfer requires one rotation and there is

no rotational latency. Without zero-latency read, the same request would su�er the normal

rotational latency before the one rotation of media transfer.

Table 4 shows the performance impact of zero-latency reads on the Postmark and SSH-

build benchmarks described in the previous section. Although some disks support zero-

latency reads, the IBM Ultrastar 18ES and the Seagate Cheetah X15 do not. For these

workloads, this design choice is correct, since there is no signi�cant performance bene�t.

These workloads all involve mostly small �les and background disk writes, and so there is

little opportunity to bene�t from zero-latency reads. A workload with larger transfers could

be expected to bene�t.

Although these results may not be interesting, the ability to conduct the experiment is.

Enabling full system experimentation may increase the believability of results pertaining to

future �rmware enhancement proposals.

20



IBM MEMS-based Decrease
Ultrastar 18ES storage in time

PostMark 389.0 s 113.7 s 70.8%
SSH unpack 0.63 s 0.64 s -1.6%
SSH con�gure 40.1 s 38.9 s 3.0%
SSH make 119.2 s 119.0 s 0.2%

Table 5: MEMS-based storage vs. IBM Ultrastar 18ES. Each data point is the average
of three runs of the benchmark, with each coeÆcient of variation below 3%.

6.2 New storage technologies

Microelectromechanical systems (MEMS)-based storage is an exciting new technology that

could soon be available in systems. MEMS are very small scale mechanical structures|on

the order of 10{1000 �m|fabricated on the surface of silicon wafers [24]. Using thousands of

minute MEMS read/write heads, data bits can be stored in and retrieved from media coated

on a small movable media sled [3, 10, 22]. With higher storage densities (260{720 Gbit/in2)

and lower random access times (<1 ms), MEMS-based storage devices could play a signi�cant

role in future systems.

Fully-functioning MEMS-based storage devices should be available in the next few years,

but we would like to explore their role in systems now. The Memulator allows us to do so.

Speci�cally, DiskSim includes the MEMS-based storage device model described by GriÆn et

al. [10]. Therefore, the Memulator can be con�gured to emulate these devices, allowing full

system experiments with real applications.

Table 5 shows application performance when replacing a disk with MEMS-based storage.

For Postmark, MEMS-based storage provides over 3.4� the transaction throughput (70%

reduction in runtime for 20,000 transactions). For SSH-build, minimal performance di�erence

is observed, because the benchmark data stays resident in the �le cache and most of the I/Os

are background writes. These writes complete faster, but there is no e�ect on application

performance.

6.3 Storage interface extensions

A third set of storage designs that would bene�t from emulation-based evaluation includes

storage interface extensions. Such extensions require that both the host OS and the storage

21



device be modi�ed to utilize a new interface. Not only must the interface be supported,

but often the implementations of both sides must change to truly exploit a new interface's

potential. Two examples of this arise from recently-promoted mechanisms: freeblock schedul-

ing [16] and eager writing [26].

Freeblock scheduling consists of replacing the rotational latency delays of high-priority

disk requests with background media transfers. Since the high-priority data will rotate

around to the disk head at the same time, regardless of what is done during the rotational

latency, these background media transfers can occur without slowing the high priority re-

quests. It is believed that freeblock scheduling can be accomplished most e�ectively from

within disk �rmware. Before they will consider new functionality, however, disk manufactur-

ers want to know exactly what the interface should be and what real application environments

will bene�t. Since researchers have no access to disk �rmware, this creates a chicken-and-egg

problem. The Memulator, combined with OS source code (e.g., Linux), enables the interface

and application questions to be explored.

Eager writing consists of writing new data to an unused location near the disk head's cur-

rent location. Such dynamic data placement can signi�cantly reduce service times. As with

freeblock scheduling, the best decisions would probably be made from within disk �rmware.

However, this approach would require the �rmware to maintain a mapping table, and it would

not bene�t from the OS's knowledge of high-level intra-�le and inter-�le data relationships.

A more cooperative interface might allow the host system to direct the disk to write a block

to any of several locations (whichever is most eÆcient); the device would then return the

resulting location, which could be recorded in the host's metadata structures. DiÆculties

would undoubtedly arise with this design, and the Memulator enables OS prototyping and

experimentation to 
esh them out.

7 Summary

This paper describes and promotes timing-accurate storage emulation as a foundation for

more thorough evaluation of proposed storage designs. Measurements of our prototype, the

Memulator, demonstrate that 99% of its response times are within 2% of their simulator-

computed targets. More importantly, the Memulator allows us to run real application bench-

22



marks on real systems equipped with storage components that we cannot yet build, such as

disks with �rmware extensions and MEMS-based storage.

References

[1] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan. Evaluation of TCP Vegas: emulation and experiment.
ACM SIGCOMM Conference (Cambridge, MA, 28 August{1 September, 1995). Published as Computer
Communication Review, 25(4):185{195. ACM, 1995.

[2] T. E. Anderson, D. E. Culler, and D. A. Patterson. A case for NOW (networks of workstations). IEEE
Micro, 15(1):54{64, February 1995.

[3] L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T. Mukherjee,
S. Santhanam, L. Abelmann, and S. Min. Single-chip computers with microelectromechanical systems-
based magnetic memory. Journal of Applied Physics, 87(9):6680{6685, 1 May 2000.

[4] P. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Lowell. The Rio �le cache: surviving
operating system crashes. Architectural Support for Programming Languages and Operating Systems
(Cambridge, MA, 1{5 October 1996). Published as SIGPLAN Notices, 31(9):74{83, 1996.

[5] K. Fall. Network emulation in the Vint/NS simulator. IEEE Symposium on Computers and Commu-
nications (Red Sea, Egypt, 6{8 July 1999), pages 244{250, 1999.

[6] G. R. Ganger. Generating representative synthetic workloads: an unsolved problem. International
Conference on Management and Performance Evaluation of Computer Systems (Nashville, TN), pages
1263{1269, 1995.

[7] G. R. Ganger and Y. N. Patt. Using system-level models to evaluate I/O subsystem designs. IEEE
Transactions on Computers, 47(6):667{678, June 1998.

[8] G. R. Ganger, B. L. Worthington, R. Y. Hou, and Y. N. Patt. Disk arrays: high-performance, high-
reliability storage systems. IEEE Computer, 27(3):30{36, March 1994.

[9] G. R. Ganger, B. L. Worthington, and Y. N. Patt. The DiskSim simulation environment version 1.0
reference manual, Technical report CSE{TR{358{98. Department of Computer Science and Engineering,
University of Michigan, February 1998.

[10] J. L. GriÆn, S. W. Schlosser, G. R. Ganger, and D. F. Nagle. Modeling and performance of MEMS-based
storage devices. ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems
(Santa Clara, CA, 17{21 June 2000). Published as Performance Evaluation Review, 28(1):56{65, 2000.

[11] J. L. GriÆn, S. W. Schlosser, G. R. Ganger, and D. F. Nagle. Operating system management of MEMS-
based storage devices. Symposium on Operating Systems Design and Implementation (San Diego, CA,
23{25 October 2000), pages 227{242. USENIX, 2000.

[12] D. Hitz. An NFS �le server appliance. Technical report. Network Appliance, August 1993.

[13] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N. Sidebotham, and
M. J. West. Scale and performance in a distributed �le system. ACM Transactions on Computer
Systems, 6(1):51{81, February 1988.

[14] J. Katcher. PostMark: a new �le system benchmark. Technical report TR3022. Network Appliance,
October 1997.

23



[15] D. Kotz, S. B. Toh, and S. Radhakrishnan. A detailed simulation model of the HP 97560 disk drive.
Technical report PCS{TR94{220. Department of Computer Science, Dartmouth College, July 1994.

[16] C. R. Lumb, J. Schindler, G. R. Ganger, D. F. Nagle, and E. Riedel. Towards higher disk head
utilization: extracting free bandwidth from busy disk drives. Symposium on Operating Systems Design
and Implementation (San Diego, CA, 23{25 October 2000), pages 87{102. USENIX Association, 2000.

[17] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H. Katz. Trace-based mobile network emulation.
ACM SIGCOMM Conference (Cannes, France, 14{18 September 1997), pages 51{61, 1997.

[18] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod. Using the SimOS machine simulator to study
complex computer systems. ACM. Transactions on Modeling and Computer Simulation, 7(1):78{103.
ACM, January 1997.

[19] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta. The impact of architectural
trends on operating system performance. ACM Symposium on Operating System Principles (Copper
Mountain Resort, CO, 3{6 December 1995). Published as Operating Systems Review, 29(5), 1995.

[20] C. Ruemmler and J. Wilkes. UNIX disk access patterns. Winter USENIX Technical Conference (San
Diego, CA, 25{29 January 1993), pages 405{420, 1993.

[21] S. W. Schlosser, J. L. GriÆn, D. F. Nagle, and G. R. Ganger. Designing computer systems with MEMS-
based storage. Architectural Support for Programming Languages and Operating Systems (Cambridge,
MA, 12{15 November 2000). Published as Operating Systems Review, 34(5):1{12, 2000.

[22] P. Vettiger, M. Despont, U. Drechsler, U. D�urig, W. H�aberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz,
R. Widmer, and G. K. Binnig. The \Millipede"|more than one thousand tips for future AFM data
storage. IBM Journal of Research and Development, 44(3):323{340, 2000.

[23] R. Y. Wang, D. A. Patterson, and T. E. Anderson. Virtual log based �le systems for a programmable
disk. Symposium on Operating Systems Design and Implementation (New Orleans, LA, 22{25 February
1999), pages 29{43. ACM, 1999.

[24] K. D. Wise. Special issue on integrated sensors, microactuators, and microsystems (MEMS). Proceedings
of the IEEE, 86(8):1531{1787, August 1998.

[25] T. Ylonen. SSH | secure login connections over the Internet. USENIX Security Symposium (San Jose,
CA, 22{25 July 1996). USENIX Association, 1996.

[26] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishnamurthy, and T. E. Anderson. Trading capacity
for performance in a disk array. Symposium on Operating Systems Design and Implementation (San
Diego, CA, 23{25 October 2000), pages 243{258. USENIX Association, 2000.

24


