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Abstract

We present a generalized PAC bound for averaging classi�ers which applies to

base hypotheses with a bounded real valued output. In addition, we discuss sev-

eral methods for quantitatively tightening the bound. In the process, a tightened

version of the PAC-Bayes bound [5] is proved.
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1 Introduction

This paper is the technical companion for an accompanying ICML submission.

As such, we are concerned here with the details of what can and can not be

proved rather then the implications of this work to the �eld of machine learning.

The bounds presented in this paper are a qualitative improvement on the

margin bound of Schapire, Freund, Bartlett, and Lee [6]. The qualititative

improvement essentially suggests a new optimization criterion: optimize for a

large margin and for a uniform average over as many hypotheses as possible.

The layout of this paper is as follows:

1. Discussion of the relationship with prior relevant results.

2. Statement and proof of the generalized averaging bound.

3. Discussion of various techniques for improving on the bound.

4. Statement and proof of a tightened version of the PAC-Bayes bound nec-

essary for improving the generalized averaging bound.

2 The setting and Important earlier results

2.1 The setting

We �rst explain the setting, which is the same as the one used in [6].

An input space X is given, where the members of X are also referred to

as examples. The set X � f�1; 1g is the space of labeled examples. A base

hypothesis h is a mapping from the input space X into f�1; 1g. A (possibly

in�nite) space H (the hypothesis space) is given and the goal is to construct an

averaging classi�er c : X ! f�1; 1g as a weighted average of base hypotheses:

c(x) = sign

kX
j=1

qjhj(x) (x 2 X ) ;

where qj � 0, j = 1; : : : ; k, and
Pk

j=1 qi = 1. The fundamental assumption here

is that labeled training examples are drawn independently, with replacement,

from some probability distribution D over X � f�1; 1g. In all the theorems we

discuss, D is assumed to be unknown to the procedure which constructs the

classi�er, and the results hold for all D. Probabilities and expectations over D

will be denoted by the subscript D; for example, the true error of an averaging

classi�er is denoted by:

eD(c) = ED [Ifc(x)6=yg] = E(x;y)�D[Ifc(x)6=yg]: (1)

Here, If�g is the indicator function, which is 1 if its argument evaluates to true

and 0 otherwise. Probabilities with respect to D are written as PrD .
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With S, we denote a sample f(xi; yi) j i = 1; : : : ;mg drawn independently

and identically distributed (i.i.d.) from D(x; y). The i.i.d assumption is the

one fundamental assumption we make in this work. The subscript S denotes

empirical expectation or probability over S, for example the empirical error of

an averaging classi�er is given by:

eS(c) = ES [Ifc(x)6=yg] =
1

m

mX
i=1

Ifc(xi)6=yg (2)

Probabilities with respect to S are written as PrS .

2.2 Quantities used in the bound

The basic learning model needs to be augmented with a few de�nitions for the

analysis.

Given a subset fh1; : : : ; hkg � H, the set fq1; : : : ; qkg can be interpreted as

a probability distribution over the set H.1 This distribution will be denoted by

Q. We will also often use the unsigned version of the classi�er:

f(x) = Eh�Q[h(x)] =

kX
j=1

qjhj(x) :

It is important to note that we make no assumption about how the weights

q1; : : : ; qk are obtained, so our results are applicable to many algorithms.

The derived bounds depend on the powerful concept of the margin, t(x; y),

of a labeled example with respect to a classi�er, namely,

t(x; y) = y

kX
j=1

qjhj(x) = yf(x) :

The margin is a quantitative measure of how decided the average is. Obviously,

�1 � t(x; y) � 1. If t(x; y) = 1 (resp. t(x; y) = �1), then all the base hypotheses

classify correctly (resp. incorrectly). When t(x; y) is close to zero, the classi�er

is, in some sense, undecided. Note that c(x) = y i� t(x; y) > 0.

2.3 Earlier results

The improved averaging bound arises from improving one critical step in the

proof of the original margin bound, which we state here for reference. We denote

by PrD the probability measure of the distribution D de�ned above. For any

set S of examples, we denote by PrS the uniform probability distribution over

the set S.

1In the case of �nite or countably in�nite H, this is achieved by assigning all hypotheses

outside the subset the weight zero. If H is �nite, we will usually work with H = fh1; : : : ; hkg
for simplicity. For uncountable spaces, we de�ne Q as

P
j qjÆ(h; hj), where Æ(h; hj) is the

delta distribution centered on hj .
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Theorem 1 (Margin Bound [6]) Let Æ 2 (0; 1). With probability at least

1 � Æ over random samples S from D we have that for all distributions Q =

(q1; : : : ; qk) over the �nite hypothesis space H and all � 2 (0; 1]:

PrD[yf(x) � 0] � PrS [yf(x) � �] +O

 r
��2 ln jHj logm+ ln Æ�1

m

!
; (3)

where f(x) = Eh�Q[h(x)] =
P

j qjhj(x).

Here, the notation b(m) = O(a(m)) means there exists a constant C such that

b(m) � C � a(m) for all m. This margin bound implies that if most training

examples have a large margin � (i.e. t(x; y) > � for most (x; y) 2 S) and the

hypothesis space is not too large, then the generalization error cannot be large.

To improve on this bound, we employ a PAC-Bayes bound from McAllester

[5]. In the PAC-Bayes setting, a classi�er is also de�ned by a distribution Q over

the hypothesis space. However, each classi�cation2, is carried out according to

a hypothesis sampled from Q rather than by the averaging classi�er c de�ned by

Q. We are interested in the gap between the expected generalization error and

the expected empirical error, where both expectations are taken with respect to

Q. We need to introduce the relative entropy (or Kullback-Leibler divergence;

e.g. [2]):

D(QkP ) = Eh�Q

�
ln
q(h)

p(h)

�
; (4)

where q; p denote the probability densities of the distributions Q;P . If H is

�nite, we have

D(QkP ) =

kX
j=1

qj ln
qj

pj
; (5)

where Q = (q1; : : : ; qk); P = (p1; : : : ; pk). The relative entropy is an asymmetric

distance measure between probability distributions, with D(QkP ) = 0 i� Q = P

almost everywhere.

Theorem 2 (PAC-Bayes [5]) Let l(h; (x; y)) be a binary loss function, P any

prior distribution over H and Æ 2 (0; 1). With probability at least 1�Æ over ran-

dom samples S from D we have that for all distributions Q over the hypothesis

space H:

PrD;Q[l(h; (x; y)) = 1] � PrS;Q[l(h; (x; y)) = 1] +

r
D(QkP ) + ln Æ�1 + lnm+ 2

2m� 1
(6)

2Such classi�ers, also called \discriminants", are called Gibbs classi�ers(e.g. [4]).
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An example of a loss function is the well-known zero-one loss l(h; (x; y)) =

Ifh(x)6=yg.

We can tighten this bound by employing a more accurate tail bound on the

Binomial distribution, which leads us to the following theorem.

Theorem 3 (PAC-Bayes Relative Entropy bound) Let P be any prior distribu-

tion over H and Æ 2 (0; 1). With probability at least 1� Æ over random samples

S from D we have that for all distributions Q over the hypothesis space H:

D(BerS;QkBerD;Q) �
D(QkP ) + ln 2m

Æ

m� 1

where BerS;Q = 1 with probability PrS;Q(l(h; (x; y)) = 1) and 0 otherwise, and

BerD;Q = 1 with probability PrD;Q(l(h; (x; y)) = 1) and 0 otherwise.

This theorem gives a constraint on the KL divergence between the average

empirical and average true errors rather then the standard l1 distance. This

bound is always at least as tight as the original PAC-Bayes bound [5] and

sometimes much tighter, such as when the average empirical error is near 0. A

proof is given in section 5.

This theorem holds for �nite and in�nite hypothesis spaces. The PAC-Bayes

theorem guarantees a tighter bound (except at low order) than earlier results

such as the following Occam's razor theorem.

Theorem 4 (Occam's Razor [1]) Let P be a distribution over a hypothesis

space H and Æ 2 (0; 1). With probability at least 1� Æ over random samples S

from D, for all hypotheses h 2 H:

PrD[h(x) 6= y] � PrS [h(x) 6= y] +

r
ln(1=p(h)) + ln Æ�1

2m
: (7)

Note that, for �nite H and up to low order terms, theorem 4 is a special

case of theorem 3, where we choose delta distributions Q = (0; : : : ; 0; 1; 0; : : : ; 0)

in theorem 3 and upper bound the KL divergence with the hoe�ding bound.

The essence of our improvement of the standard margin bound comes from the

application of the PAC-Bayes bound instead of the Occam's razor bound within

the standard proof of the margin bound.

3 A generalized averaging bound

In this section, we state and prove our main result, a PAC-Bayes generalization

error bound for averaging bounded real-valued hypotheses. Averaging binary

hypotheses, with which we have been concerned with so far, is a special case for

which we do not have to sacri�ce any accuracy for the generalization.

Within this section, let A > 0, and let ~H be a set of real-valued hypotheses

h : X ! [�A;A]. If Q denotes a distribution over ~H, we focus on the average

classi�er c(x) = signf(x) where f(x) = Eh�Q[h(x)].
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Theorem 5 (Relative Cherno� Main theorem) Let P be any probability

distribution over ~H and let Æ 2 (0; 1). With probability at least 1 � Æ over

random samples S of D we have that for all � 2 (0; 1] and for every distribution

Q over ~H:

D(PrS [yf(x) � �A] jjPrD [yf(x) � 0])

� O

�
��2D(QkP ) lnm+ lnm+ ln Æ�1

m

� (8)

where f(x) = Eh�Q[h(x)].

The main theorem uses a KL-divergence based pseudodistance which is a

bit hard to understand intuitively. In order to gain intuition, we can relax the

tightness of the proof with an inequality.

D(pjjq) � 2(p� q)2

This relaxation gives us an immediate corollary.

Corollary 1 Let P be any probability distribution over ~H and let Æ 2 (0; 1).

With probability at least 1� Æ over random samples S of D we have that for all

� 2 (0; 1] and for every distribution Q over ~H:

PrD [yf(x) � 0] � PrS [yf(x) � �A]

+O

 r
��2D(QkP ) lnm+ lnm+ ln Æ�1

m

!
(9)

where f(x) = Eh�Q[h(x)].

The proof of the theorem is given in 3.1. Note that the theorems are stated

in an asymptotic fashion which may not be very useful in practical applications.

Section 4 gives some ideas of how to tighten the result, and the nonasymptotic

form, given by the inequalities (26) can be used directly in practice.

The continuous form of the improved averaging bound applies to averages

over continuous hypothesis spaces. Note that in this setting, the average needs

to be an integral over an uncountably-in�nite set of hypotheses or the KL-

divergence does not converge. In practice, this is not a signi�cant problem

because machine learning algorithms over large hypothesis spaces typically have

some parameter stability. In other words, a small shift in the parameters of the

learned model produces a small change in the prediction of the hypothesis. With

hypothesis stability, we can convert any average over a �nite set of hypotheses

into an average over an in�nite set of hypotheses without signi�cantly altering

the predictions of the average.
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3.1 Proof of main theorem

The proof has the same structure as the original margin bound proof 1 with one

step replaced by the application of the Relative Cherno� PAC-Bayes theorem

3.

First of all, it is clear that we only have to prove the theorem for the case

A = 1. Let N be any natural number; later, the choice of N will be optimized.

In the �rst part of the proof, we regard � and N as �xed. Later we generalize

this so that they may depend on the sample S.

We construct the distribution QN as follows. Draw N hypotheses hi � Q

and N variables ui � U([�1; 1]) (here, U(I) denotes the uniform distribution

over the interval I) such that h1; u1; : : : ; hN ; uN are mutually independent. QN

might therefore be viewed as the product distribution

(Q� U([�1; 1]))
N
: (10)

De�ne the binary valued functions �i : X ! f�1;+1g by

�i(x; hi; ui) = 2Ifui�hi(x)g � 1: (11)

Given the hi and ui we de�ne

g(x) =
1

N

NX
i=1

�i(x; hi; ui): (12)

The set of all such functions g is

~HN =

(
1

N

NX
i=1

�i(x; hi; ui)

�����hi 2 ~H; ui 2 [�1; 1]

)
: (13)

QN therefore induces a distribution over ~HN , this will be denoted by g � QN .

Note that for �xed x; y, the y�i(x; hi; ui) are i.i.d. Bernoulli variables with

mean

Ehi;ui [y�i(x; hi; ui)] = yEhi

h
(+1)Pui

h
ui � hi(x)

��� hii
+ (�1)Pui

h
ui > hi(x)

��� hiii
= yEhi

�
1

2
(1 + hi(x)) �

1

2
(1� hi(x))

�
= yEhi [hi(x)] = yf(x);

(14)

therefore Eg�QN
[yg(x)] = yf(x). Since yg(x) is the average over N i.i.d.

Bernoulli variables, Hoe�ding's bound (see [3], p.122) applies. Thus, for ev-

ery x 2 X ; y 2 f�1;+1g, the probability with respect to the sampling of

g � QN satis�es

Prg�QN
[y(g(x)� f(x)) > �] � e�

1

2
N�2 (15)
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For every � 2 (0; 1] and for every (�xed) g 2 ~HN , the following simple inequality

holds:

PrD[yf(x) � 0]

= PrD[yg(x) �
1
2
�; yf(x) � 0]

+ PrD[yg(x) >
1
2
�; yf(x) � 0]

j yf(x) � 0] � PrD[yg(x) �
1
2
�] + PrD[yg(x) >

1
2
� j yf(x) � 0]:

(16)

Note that the left-hand side does not depend on g. By taking the expectation

over g � QN (and exchanging the order of expectations in the second term on

the right-hand side), we arrive at

PrD [yf(x) � 0] � Eg�QN

�
PrD[yg(x) �

1
2
�]
�

+ED

�
Pg�QN

[yg(x) > 1
2
� j yf(x) � 0]

�
:

(17)

As discussed above, we are now ready to apply Hoe�ding's inequality (15) with

� = �=2. For any �xed (x; y) we have

Pg�QN
[yg(x) > 1

2
� j yf(x) � 0] � e�

1

8
N�2 ; (18)

so

PrD[yf(x) � 0] � Eg�QN

�
PrD[yg(x) �

1
2
�]
�
+ e�

1

8
N�2 : (19)

We would like to apply the PAC-Bayes theorem 3 to the right-hand side. For

simplicity we stated theorem 3 for the common zero-one loss Ifh(x)6=yg, but it

holds more generally for arbitrary binary loss functions. Here we use the loss

function Ifyg(x)��=2g. Recall that theorem 3 applies for any �xed hypothesis

space and \prior" distribution. The hypothesis space here will be ~HN . We use

as the \prior" the distribution PN over ~HN , which is constructed from the prior

P over ~H exactly as QN is constructed from Q (see (12)). It is easy to see that

D(QNkPN ) = ND(QkP ).3

It follows from Theorem 3 that with probability at least 1� Æ over random

choices of S, for every Q,

D(BerS;QN
kBerD;QN

) �
D(QNkPN ) + ln 2m

Æ

m� 1
(20)

where BerS;QN
= 1 with probability Eg�QN

�
PrD[yg(x) �

1
2
�]
�
and 0 otherwise,

and BerD;QN
= 1 with probability Eg�QN

�
PrS [yg(x) �

1
2
�]
�
and 0 otherwise.

3Note that this reveals a tradeo� between N and D(QkP ). Namely, for large N , g � QN

will be a close approximation to the averaging classi�er f , which keeps (18) small, but if

D(QkP ) is not very small, QN will be rather far from PN in terms of relative entropy, as a

consequence of the strict factorized forms of the two distributions (they are constructed using

i.i.d. samples of size N).
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By the same argument as in (16), for every g 2 ~HN :

PrS [yg(x) �
1
2
�]

� PrS [yg(x) �
1
2
�; yf(x) > �] + PrS [yf(x) � �]

� PrS [yg(x) �
1
2
� j yf(x) > �] + PrS [yf(x) � �]:

(21)

Again, we take expectations over g � QN on both sides, interchange the order

of the expectations and apply Hoe�ding's inequality (15) with � = �=2:

ES

�
Pg�QN

�
yg(x) � 1

2
� j yf(x) > �

��
� e�

1

8
N�2 ; (22)

to arrive at

ES

�
Pg�QN

[yg(x) � 1
2
�]
�
� e�

1

8
N�2 +PrS [yf(x) � �] : (23)

Combining (19), (20) and (23), we conclude that with probability at least 1� Æ,

for every Q

D(qSkpD) �
ND(QkP ) + ln 2m

Æ

m� 1
(24)

where qS = 1 with probability e�
1

8
N�2 + PrS [yf(x) � �] and 0 otherwise, and

pD = 1 with probability PrD [yf(x) � 0]� e�
1

8
N�2 and 0 otherwise.

This bound holds for any �xed N and �, which is not yet what we need

here, since we want to allow these to depend on the data S. We apply a

standard technique to resolve this problem. In essence, the bound we proved

so far is a statement about certain events, parameterized by N and �, namely

the probability of each event is smaller than Æ. However, we need to prove that

the probability of the union of all these events is smaller than Æ. To this end,

we �rst observe that this union is contained in the union over only a countable

number of events. Note that if g 2 ~HN (see (12)), then g(x) 2 f(2k�N)=N jk =

0; 1; : : : ; Ng. Thus, even with all the possible (positive) values of �, there are

no more than N + 1 events of the form fyg(x) � �=2g. Denote by k(�;N) the

largest integer k such that k=N � �=2. We observe that for every � > 0, every

g 2 ~HN and every distribution over (x; y):

Pr [yg(x) � �=2] = Pr [yg(x) � k(�;N)=N ] : (25)

This means that the middle step in the proof above, i.e. the application of

theorem 3, depends on (N; �) only through (N; k). Since the other steps, i.e.

the applications of Hoe�ding's inequality, are true with probability one, we see

that we can restrict ourselves to the union of countably many events, indexed

by (N; k). Now, we \allocate" parts of the con�dence quantity Æ to each of

these events, namely (N; k) receives ÆN;k = Æ=(N(N + 1)2); N = 1; 2; : : : ; k =

0; : : : ; N . It follows easily that the union of all these events has probability at

most
P

N;k ÆN;k = Æ. Therefore we have proved that with probability at least

8



1� Æ over random choices of S it holds true that for all N and all � 2 (0; 1],

D(qSkpD) �
ND(QkP ) + ln 2m

ÆN;k

m� 1

�
ND(QkP ) + ln 2m

Æ
+ 3 lnN + 1

m� 1

(26)

where k = k(�;N). We can now choose N such as to minimize this bound. N

may depend on �; Q and the sample S.

The asymptotic bound stated in the theorem can be derived by choosing N

(with respect to � and Q) so as to approximately minimize the bound we have

derived above. If c � 1 is such that D(QkP ) = O(mc), we can choose

N =

�
8��2 ln

mc

D(QkP )

�
:

This choice gives us:

e�
N�

2

8 =
D(QkP )

mc

Which implies we have an equation of the form:

D(qkp) +D(q +
D(QjjP )

mc
kp�

D(QkP )

mc
)�D(qjjp)

� O

�
��2D(QkP ) lnm+ ln 1

Æ
+ lnm

m

� (27)

In order to prove the theorem, we must show that the second and third terms

together are of a similar size to the last term. The second and third terms have

the form:

(q + k) ln q+k
p�k

+ (1� q � k) ln 1�q�k
1�p+k

� q ln q
p
� (1� q) ln 1�q

1�p

If p� q > 2k and k < 1
2
then we have:

= �[(q + k) ln
q+k+ k

p

p
+ (1� q � k) ln

1�q�k� k

1�p

1�p
� q ln q

p
� (1� q) ln 1�q

1�p
]

= �[(q+k)[ln q
p
+

k+ k

p

q

p

+(1� q�k) ln 1�q
1�p

� [
k+ k

1�p

1�q

1�p

]� q ln q
p
� (1� q) ln 1�q

1�p
]

= �[(q+k)[ln q
p
+k(p+1

q
)]+(1�q�k)[ln 1�q

1�p
�k( 2�p

1�q
)]�q ln q

p
�(1�q) ln 1�q

1�p
]

= �[k(1 + p)� k(2� p)]

= �[k]

This completes the proof of the main theorem.

4 Methods for tightening

The previous section showed a bound in asymptotic form which is good for

understanding the tradeo�s between the number of examples (m), the size of the
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hypothesis space (jH j), the margin (�) and the entropy of the average (H(Q)).

However, it is not a good form for those interested in quantitative application

of the bound to speci�c problems. We state improvements which aid in the

development of a quantitatively applicable bound. We can tighten the bound

above through several techniques:

1. Making direct use of the tail distribution for the Binomial.

2. Parameterizing and then optimizing the parameterization of arbitrary

choices within the proof.

3. Tighter argument within the proof.

4.1 Binomial Tail Bounds

The direct use of the tail distribution of the Binomial will rely upon the cumu-

lative distribution of the Binomial. Let

Bin(m; p; p̂) =

i

m
<p̂X

i=0

�
m

i

�
pi(1� p)i

be the cumulative distribution of a Binomial distribution with true error p up

to empirical error p̂. We then have the following equality:

PrBin(m;p)(p� � > p̂) = Bin(m; p; p� �)

This inequality can be much tighter then the corresponding Hoe�ding bound:

PrBin(m;p)(p� � > p̂) � e�2�
2m

In using the tail probabilities, it will often be the case that we want a con-

stant probability of failure (Æ) and want to solve for the smallest � which has a

probability of failure of Æ or less. This bound can't be stated concisely in closed

form but can be found moderately quickly by doing a binary search over � to

solve for the � with our desired Æ. The binary search solves for the value of p

s.t. Bin(m; p; p̂) = Æ. We have the equality:

PrBin(m;p)(p̂jp � max �p : Bin(m; �p; p̂) � Æ) � Æ

This equality implies that with probability 1 � Æ, we have: p � max �p :

Bin(m; �p; p̂) � Æ.

The computational cost of calculating the Binomial tail distribution is often

too large so it is possible to use an intermediate approximation known as the

relative entropy cherno� bound:

PrBin(m;p)(p� � > p̂) � e�mD(p��kp) (28)

PrBin(m;p)(p+ � > p̂) � e�mD(p+�kp) (29)

where D(qkp) is the KL divergence between a coin with a bias of q and a coin

with a bias of p.
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4.2 Extra parameterizations

In the (improved) margin bound proof, we arbitrarily decided to work with the

margin of the randomly produced function g(x) at �
2
. This is a good heuristic,

but not the optimal choice when we use the improved tail bounds. Since the

decision of the margin for the random function g(x) is a parameter of the proof,

we are free to optimize it.

4.3 PAC-Bayes bound vs. the standard Occam's razor

bound

In the �nite case, there are some low order terms in the PAC-Bayes bound

which can make it worse then the Occam's razor bound when the posterior is

over a small set of hypotheses. Ideally, we would improve the low order terms

in the PAC-Bayes bound to remove this discrepancy, but this appears diÆcult.

Instead, we can apply another simple technique: When there are two PAC

bounds either of which may be tighter, we can assign Æ ! Æ
2
(slightly worsening

the bound) to each bound and use the minimum of the two bounds. Since the

probability of failure for each bound is Æ
2
, the total probability of failure of the

minimum is Æ.

4.4 Optimizing N

The optimal value of N is a function of �;m;D(QkP ); and Æ. All of these are

known in advance except for D(QkP ). If we can estimate in advance the value

of D(QkP ), then it becomes possible to optimize the value of N in a data-

independent manner. Consequently, it becomes unnecessary to stratify over the

possible values of N and we need only stratify over the values of � in proving

the bound. The e�ect of this improvement is reducing 1=ÆN;k = 1=(N(N +1)2)

to 1=ÆN;k = 1=(N(N+1)) giving us a small improvement in the low order terms

of the improved averaging bound.

5 Improving the PAC-Bayes bound

In order to fully bene�t from the improved Cherno� bound we need to prove

3 using the Cherno� relative entropy bound. The retro�t of the PAC-Bayes

bound is not a simple substitution of the Hoe�ding inequality with the Cherno�

relative entropy bound so a proof is given.

The proof of the improved PAC-bayes theorem (3) relies upon two lemmas.

The �rst is Lemma 22 from [5] which is given by:

Lemma 1 For � > 0;K > 0 and Q;P; y 2 Rn satisfying Pi > 0; Qi > 0; andP
iQi = 1, if

nX
i=1

Pie
�yi � K
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then

nX
i=1

Qiyi �
D(QkP ) + lnK

�

The second lemma we will need to prove ourselves. It is basically an improved

version of Lemma 17 from [5].

Lemma 2

8Æ > 0 8ÆS Eh�P e
(m�1)D(ê(h)ke(h)) �

2m

Æ

First, for any given hypothesis h we prove the following.

ES [e
(m�1)D(ê(h)ke(h))] � 2m (30)

Lemma 2 follows from (30) by taking an expectation over selecting h accord-

ing to any distribution P over h, reversing the two expectations, and applying

Markov's inequality. We now show that (30) follows from (28) and (29). More

speci�cally, we maximize
R 1
0
e(m�1)D(xkp)f(x)dx over all functions f(x) satisfy-

ing the following for all q1 � e(h) and q2 � e(h).Z 1

q1

f(x)dx � e�mD(q1ke(h))

Z q2

0

f(x)dx � e�mD(q2ke(h))

The value of ES [e
(m�1)D(ê(h)ke(h))] must be less than this maximum. The in-

tegral
R 1
0
e(m�1)D(xke(h))f(x)dx is maximized when f(x) is as \spread out" as

possible, i.e., when the above inequalities are replaced by equalities. This gives

the following.

f(x) =

8<
:

m
@D(xkp)

@x
e�mD(xkp) for x � p

�m
@D(xkp)

@x
e�mD(xkp) for x � p

Which, in turn, gives the following.

ES [e
(m�1)D(ê(h)ke(h))] �

Z 1

0

e(m�1)D(xke(h))f(x)dx

=

Z e(h)

0

�m
@D(xke(h))

@x
e�D(xke(h))dx

+

Z 1

e(h)

m
@D(xke(h))

@x
e�D(xke(h))dx

� 2m

12



Now we have the necessary lemmas to �nish the proof of 3.

By Jensen's inequality, we have:

D(Eh�Qê(h)kEh�Qe(h)) � Eh�QD(ê(h)ke(h))

Furthermore, according to Lemma 2 we can apply Lemma 1 with K = 2m
Æ

and

� = m� 1 and yi = D(ê(h)kê(h) + �) to get:

Eh�QD(ê(h)ke(h)) =

nX
i=1

QiD(ê(h)kê(h) + �) �
D(QkP ) + ln 2m

Æ

m� 1

and we are done.

6 Conclusion and Future Work

The improved averaging bound is not yet as tight as it could be and it appears

there are several possible theoretical improvements.

1. Remove the low order terms from the bound to make it more quantitatively

applicable.

2. Improve the argument to take into account the distribution of the margin

rather then the margin at some point.

3. Prove a lower bound which corresponds to the upper bound given here.

Since no good lower bound yet exists, we do not know that large improve-

ments in the upper bound are not possible.
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