
Scalable Certi�cation for Typed Assembly Language

Dan Grossman Greg Morrisett �

Department of Computer Science
Cornell University

Abstract

A type-based certifying compiler maps source code to ma-
chine code and target-level type annotations. The target-
level annotations make it possible to prove easily that
the machine code is type-safe, independent of the source
code or compiler. To be useful across a range of source
languages and compilers, the target-language type system
should provide powerful type constructors for encoding
source-language and compiler invariants. Unfortunately, it
is diÆcult to engineer such type systems so that annotation
sizes are small and veri�cation times are fast.

In this paper, we describe our experience writing a cer-
tifying compiler that targets Typed Assembly Language
(TALx86) and discuss some general techniques we have used
to keep annotation sizes small and veri�cation times fast.
We quantify the e�ectiveness of these techniques by mea-
suring their e�ects on a sizeable application | the certify-
ing compiler itself. The selective use of these techniques,
which include common-subexpression elimination of types,
higher-order type abbreviations, and selective reveri�cation,
can change certi�cate size and veri�cation time by well over
an order of magnitude.

1 Background

A certifying compiler takes high-level source code and pro-
duces target code with a certi�cate that ensures that the tar-
get code respects a desired safety or security policy. To date,
certifying compilers have primarily concentrated on produc-
ing certi�cates of type safety. For example, Sun's javac

compiler maps Java source code to statically typed Java
Virtual Machine Language (JVML) code. The JVML code
includes type annotations that a veri�er based on dataow
analysis can use to ensure that the code is type-safe.

However, both the instructions and the type system of
JVML are at a relatively high level and are speci�cally tai-
lored to Java. Consequently, JVML is ill-suited for com-
piling a variety of source-level programming languages to
high-performance code. For example, JVML provides only
high-level method-call and method-return operations. Also,
it provides no provision for performing general tail-calls on
methods. Therefore, JVML cannot be used as a target for

�This material is based on work supported in part by the AFOSR
grant F49620-97-1-0013, ARPA/RADC grant F30602-1-0317, and a
National Science Foundation Graduate Fellowship. Any opinions,
�ndings, and conclusions or recommendations expressed in this pub-
lication are those of the authors and do not reect the views of these
agencies.

certifying compilers of functional programming languages
such as Scheme that require tail-call elimination.

In addition, current platforms for JVML either interpret
programs or compile them further to native code. Achieving
acceptable performance seems to demand compilation with a
good deal of optimization. To avoid security or safety holes,
the translation from JVML to native code should also be
done by a certifying compiler. That way we can verify the
safety of the resulting code instead of trusting the \just-in-
time" compiler.

Another example of a certifying compiler is Necula and
Lee's Touchstone compiler [22]. Touchstone compiles a
small, type-safe subset of C to high-performance DEC Alpha
assembly language. The key novelty of Touchstone is that
the certi�cate it produces is a formal \proof" that the code
is type-correct. Checking the proof for type-correctness is
relatively easy, especially compared to the ad hoc veri�ca-
tion process for JVML. As such, the Touchstone certi�cates
provide a higher degree of trustworthiness.

The proofs of the Touchstone system are represented us-
ing the general-purpose logical framework LF [10]. The ad-
vantage of using LF to encode the proofs is that, from an im-
plementation perspective, it is easy to change the type sys-
tem of the target language. In particular, the proof checker
is parameterized by a set of primitive axioms and inference
rules that e�ectively de�ne the type system. The checker
itself does not need to change if these rules are changed.
Consequently, the use of LF makes it easy to change type
systems to adapt to di�erent source languages or di�erent
compilation strategies. Indeed, more recent work involves a
very di�erent type system for a Java compiler [5].

Although changing the type system is easy for the imple-
mentor, doing so obligates one to an enormous proof burden:
Every change requires a proof of the soundness of the type
system with respect to the underlying machine's semantics.
Constructing such proofs is an extremely diÆcult task. In
the absence of a proof, it is not clear what assurances a
veri�er is actually providing.

1.1 An Alternative Approach

Our goal is to make it easy for certifying compilers to pro-
duce provably type-correct code without having to change
the type system of the target language. That way, it suÆces
to write and trust one veri�er for one type system. Toward
this end, we have been studying the design and implementa-
tion of general-purpose type systems suitable for assembly
language [19, 20, 18]. Ultimately, we hope to discover typ-



ing constructs that support certifying compilation of many
orthogonal programming language features.

Our current work focuses on the design of an extremely
expressive type system for the Intel IA32 assembly language
and a veri�er that we call TALx86 [17]. Where possible, we
have avoided including high-level language abstractions like
procedures, exception handlers, or objects. In fact, the only
high-level operation that is a TALx86 primitive is memory
allocation. We also have not \baked in" compiler-speci�c
abstractions such as activation records or calling conven-
tions. Rather, the type system of TALx86 provides a num-
ber of primitive type constructors, such as parametric poly-
morphism, label types, existential types, products, recursive
types, etc., that we can use to encode language features and
compiler invariants. These type constructors have either
been well studied in other contexts or modeled and proven
sound by our group.

In addition, we and others have shown how to encode a
number of important language and compiler features using
our type constructors. For example, our encoding of pro-
cedures easily supports tail-call optimizations because the
control-ow transfers are achieved through simple machine-
level jumps. In other words, we did not have to change the
type system of TALx86 to support these optimizations. By
proving an appropriate type soundness theorem for TALx86,
we ensure that compilers targeting TALx86 produce only
code with safe run-time behavior. Some speci�c assurances
are that the program counter will always point to executable
code, unallocated memory will never be dereferenced, and
system routines (such as input/output routines) will never
be called with inappropriate arguments. In these respects,
TALx86 provides an attractive target for certifying compil-
ers.

1.2 The Problem

Unfortunately, there is a particularly diÆcult engineering
tradeo� that arises when a certifying compiler targets a
general-purpose type system like TALx86: Encoding high-
level language features, compiler invariants, and optimiza-
tions into primitive type constructors results in extremely
large types and type annotations | often orders of magni-
tude larger than the code itself. Thus, there is a very real
danger that our noble goal of using one general-purpose type
system will be defeated by practical considerations of space
and time.

The work presented here is a case study in writing a
certifying compiler that targets the general-purpose typed
assembly language TALx86. The source language for our
compiler, called Popcorn, shares much of its syntax with C,
but it has a number of advanced language features including
�rst-class parametric polymorphism, non-regular algebraic
datatypes with limited pattern matching, function pointers,
exceptions, �rst-class abstract data types, modules, etc. In-
deed, the language is suitably high-level that we have easily
ported various ML libraries to Popcorn and constructed the
certifying compiler for Popcorn in Popcorn itself.

Although the TALx86 type system is very expressive, it
is far from a universal typed assembly language. However,
we have found that it is expressive enough to allow a rea-
sonable translation of Popcorn's linguistic features. Because
the compiler's invariants are encoded in the primitive typ-
ing constructs of TALx86, the most diÆcult aspect of eÆ-
cient, scalable veri�cation is handling the potentially enor-
mous size of the target-level types. We use our experience

to suggest general techniques for controlling this overhead
that we believe transcend the speci�cs of our system. The
eÆcacy of these techniques is demonstrated quantitatively
for the libraries and compiler itself. In particular, the size
of the type annotations and the time needed to verify the
code are essentially linear in the size of the object code. The
constant factors are small enough to permit veri�cation of
our entire application in much less than one minute.

In the next section, we give a taxonomy for general ap-
proaches to reducing type-annotation overhead and further
discuss other projects related to certifying compilation. Al-
though it is an informal description of existing techniques,
we have found this classi�cation useful and we know of no
other attempts at classifying the approaches.

Then in Section 3 we summarize relevant aspects of the
TALx86 type system, annotations, and veri�cation process.
We then show how these features are used to encode the
provably safe compilation of the control-ow aspects of Pop-
corn, including procedures and exceptions. This extended
example demonstrates that an expressive type system can
permit reasonable compilation of a language for which it is
not speci�cally designed. It also shows qualitatively that if
handled naively, type-annotation size becomes unwieldy.

In Section 4, we use the example to analyze sev-
eral approaches that we have examined for reducing type-
annotation overhead. Section 5 presents the quantitative
results of our investigation; we conclude that the TALx86

approach scales to verify our Popcorn compiler, the largest
Popcorn application we have written. Moreover, all of the
techniques contribute signi�cantly to reducing the overhead
of certifying compilation. Finally, we summarize our conclu-
sions as a collection of guidelines for designers of low-level
safety policies.

2 Approaches to EÆcient Certi�cation

Keeping annotation size small and veri�cation time fast in
the presence of optimizations and advanced source languages
is an important requirement for a practical system that re-
lies on certi�ed code. In this section, we classify some ap-
proaches to managing the overhead of certifying compilation
and discuss their relative merits. None of the approaches are
mutually exclusive; any system will probably have elements
of all of them.

The \Bake it in" Approach If the type system supports
only one way of compiling something, then compilers do not
need to write down that they are using that way. For exam-
ple, the type system could �x a calling convention and re-
quire compilers to group code blocks into procedures. Both
JVML and Touchstone use this approach.

Baking in assumptions about procedures eliminates the
need for any annotations describing the interactions between
procedures. However, it inhibits some inter-procedural opti-
mizations, such as inter-procedural register allocation, and
makes it diÆcult to compile languages with other control
features, such as exception handlers. In general, the \bake
it in" approach reects particular source features into the
target language rather than providing low-level constructors
suitable for encoding a variety of source constructs.

Even general frameworks inevitably bake in more than
the underlying machine requires. For example, TALx86

currently treats labels abstractly | well-formed code can-
not examine the actual address used to implement a label.

2



This abstraction prevents some clever implementation tech-
niques. Any veri�able safety policy must impose some con-
servative restrictions; choosing the restrictions is a crucial
design decision that is a fundamental part of a policy.

The \Don't optimize" Approach If a complicated analysis
is necessary to prove an optimization safe, then the rea-
soning involved must be encoded in the annotations. For
example, when compiling dynamically typed languages such
as Scheme, dynamic type tests are in general necessary to
ensure type safety. A simple strategy is to perform the ap-
propriate type test before every operation. With this ap-
proach, a veri�er can easily ensure safety with a minimum
of annotations. This strategy is the essence of the veri�ca-
tion approach suggested by Kozen [13]. Indeed, it results in
relatively small annotations and fast veri�cation, but at the
price of performance and exibility.

In contrast, an optimizing compiler may attempt to elim-
inate the dynamic checks by performing a \soft-typing"
analysis [28]. However, the optimized code requires a more
sophisticated type system to convince the veri�er that type
tests are unnecessary. To make veri�cation tractable, such
type systems require additional annotations. For example,
the Touchstone type system supports static elimination of
array bounds checks, but it requires additional invariants
and proof terms to support the optimization.

Another example is record initialization: An easy way
to prove that memory is properly initialized is to write to
the memory in the same basic block in which the memory is
allocated. Proving that other instruction schedules are safe
may require dataow annotations that describe the location
of uninitialized memory.

Unoptimized code also tends to be more uniform which
in turn makes the annotations more uniform. For example,
if a callee-save register is always pushed onto the stack by
the callee (even when the register is not used), then the
annotations that describe the stack throughout the program
will have more in common. Such techniques can improve the
results of the \Compression" approach (discussed below) at
the expense of eÆciency.

The \Reconstruction" Approach If it is easy for the veri-
�er to infer a correct annotation, then such annotations can
be elided. For example, Necula shows how simple techniques
may be used for automatically reconstructing large portions
of the proofs produced by the Touchstone compiler [23].

It is important that veri�cation time not unduly suf-
fer, however. For this reason, code producers should know
the e�ects that annotation elision can have. Unfortunately,
in expressive systems such as TALx86, many forms of type
reconstruction are intractable or undecidable. The veri�er
could provide some simple heuristics or default guesses, but
such maneuvers are weaker forms of the \bake it in" ap-
proach.

A more extreme approach to reconstruction would be to
include a general-purpose theorem prover in the veri�cation
system. Unless the prover generates proofs that are indepen-
dently checked, the trusted computing base would become
much larger and more complex. Any generated proofs would
need to be concise as well. The TALx86 project has main-
tained the design goal that type-checking should be essen-
tially syntax-directed; search and backtracking seem beyond
the realm of eÆcient veri�cation.

Certi�cation systems invariably use reconstruction when
the type of a construct is straightforward to compute from
the types of its parts. For example, explicitly typed source
languages never require explicit types for every term; these
types are reconstructed from the explicit types of variables.
Similarly, low-level systems do not explicitly describe how
every single instruction changes the abstract state of the
program. For most instructions, it is just as eÆcient to
examine the instruction and recompute this information.

The \Compression" Approach Given a collection of anno-
tations, we could create a more concise representation that
contains the same information. One technique for producing
a compact wire format is to run a standard program such as
gzip on a serialized version. If the repetition in the annota-
tions manifests itself as repetition in the byte stream, this
technique can be amazingly e�ective (see Section 5). How-
ever, it does not help improve the time or space required
for veri�cation if the byte stream is uncompressed prior to
processing.

A slightly more domain-speci�c technique is to cre-
ate a binary encoding that shares common subterms be-
tween annotations. This approach is e�ectively common-
subexpression elimination on types. Because the veri�er is
aware of this sharing, it can exploit it to consume less space.
There is an interesting tradeo� with respect to in-place mod-
i�cation, however. If a simpli�cation (such as converting an
annotation to a canonical form for internal use) is sound in
all contexts, then it can be performed once on the shared
term. However, if a transformation is context-dependent,
the veri�er must make a copy in the presence of sharing.

Work on reducing the size of JVML annotations has
largely followed the compression approach [24, 2]. For exam-
ple, projects have found ways to exploit similarities across
an entire archive of class �les. Also, they carefully design
the wire format so that downloading and veri�cation may
be pipelined. The TALx86 encoding does not currently have
this property, but there is nothing essential to the language
that prevents it.

Shao and associates [25] have investigated the engineer-
ing tradeo�s of sharing in the context of typed intermediate
languages. They suggest a consistent use of hash-consing
(essentially on-line common-subexpression elimination) and
suspension-based lambda encoding [21] as a solution. Their
hash-consing scheme also memoizes the results of type re-
ductions so that identical reductions in the future require
only retrieving the answer from a table. The problem of
managing low-level types during compilation is quite simi-
lar to the problem of managing them during veri�cation, but
in the case of type-directed compilation, it is appropriate to
specialize the task to the compiler.

Finally, we should note that comparing the size of com-
pressed low-level types to the size of uncompressed ob-
ject code is somewhat misleading because object code com-
presses quite well [16, 6]. Domain-speci�c techniques include
taking the instruction format into account (instead of the
generic compression technique of processing entire bytes);
detecting common sequences of instructions; and detecting
similarity modulo a rarely repeated �eld, such as a branch
target address. These techniques may prove useful for an-
notations as well, but we do not know of any work that has
tried them.

3



The \Abbreviation" Approach The next step beyond sim-
ple sharing is to use higher-order annotations to factor out
common portions. Such annotations are essentially func-
tions at the level of types. Tarditi and others used this
approach in their TIL compiler [27]. As we show in Sec-
tion 4, this approach can exploit similarities that sharing
cannot. Furthermore, higher-order annotations make it rel-
atively easy for a compiler writer to express high-level ab-
stractions within the type system of the target language.
In our experience, using abbreviations places no additional
burden on the compiler writer because she is already reason-
ing in terms of these abstractions. However, if the veri�er
must expand the abbreviations in order to verify the code,
no gain in veri�cation space is achieved and veri�cation time
may su�er.

Abbreviations become more important as the level of ab-
straction becomes lower. Some researchers, such as Appel
and Felty [1], suggest that the underlying model for veri�ca-
tion should be at a level even lower than TALx86. In particu-
lar, they have recently proposed formally specifying the type
system in terms that relate directly to the underlying ma-
chine semantics. By embedding the policy in a higher-order
logical framework, they hope that compilers may de�ne their
own type systems and formally prove them sound with re-
spect to the underlying semantics. This work is a promising
direction for developing an infrastructure that is truly inde-
pendent of the source language and compiler. However, it
has not yet been demonstrated that veri�cation with such a
system can be practical. On the one hand, a compiler's type
system can use lemmas within the logical framework as an
\abbreviation" approach that is more semantic than pure
abbreviations. On the other hand, starting with a primitive
machine may require formal proofs for large areas of math-
ematics, an imposing requirement for a certifying compiler.

In our system, we use all of these approaches to reduce
annotation size and veri�cation time. However, we have at-
tempted to minimize the \bake it in" and \don't optimize"
approaches in favor of the other techniques. Unlike javac,
Kozen's ECC, or Touchstone, TALx86 makes no commit-
ment to calling convention or data representation. In fact,
it has no built-in notion of functions; all control ow is just
between blocks of code. The design challenge for TALx86,
then, is to provide generally useful constructors that com-
pilers can use in novel ways to encode the safety of their
compilation strategies.

As a type system, TALx86 does \bake in" more than a
primitive logical description of the machine. For example, it
builds in a distinction between integers and pointers. Also,
memory locations are statically divided into code and data
(although extensions support run-time code generation[11]).
In order to investigate the practicality of expressive low-level
safety policies, we have relied on a rigorous, hand-written
proof of type soundness and a procedural implementation
of the veri�er. A more formal approach would be to encode
the proof in a logical framework and use a veri�er produced
mechanically from the proof.

Our approach has allowed us to examine the feasibility
of compiler-independent safety policies on a far larger scale
than has been previously possible. At the time of this writ-
ing, no compiler has targeted the independent safety policies
of Appel and Felty. The published results of the Touch-
stone project, which does not have a compiler-independent
safety policy, do not include object �les larger than four
kilobytes [22]. More recent work on a Java-speci�c safety

policy has so far compiled only very small programs [14]. In
contrast, the data we present in Section 5 is the result of
compiling all 39 modules of a real program. The result of
compilation is hundreds of kilobytes of object code that link
together to form an executable program.

3 Compiling to TALx86: An Extended Example

In this section, we briey review the structure of the TALx86
type system, its annotations, and the process of veri�cation.
In what follows, we present relevant TALx86 constructs as
necessary, but for the purposes of this paper, it is suÆcient
to treat the types as low-level syntax for describing pre-
conditions. Our purpose is not to dwell on the artifacts of
TALx86 or its relative expressiveness. Rather, we want to
give some intuition for the following claims, which we believe
transcend TALx86:

� If the safety policy does not bake in data and control
abstractions, then the annotations that the compiler
uses to encode them can become large.

� In fact, the annotations describing compiler conven-
tions consume much more space than the annotations
that are speci�c to a particular source program.

� Although the annotations for compiler conventions
are large, they are also very uniform and repetitious,
though they become much less so in the presence of
optimizations.

Because of this focus, we purposely do not explain some of
the aspects of the annotations other than to mention the
general things they are encoding. The reader interested in
such details should consult the literature[20, 18, 9, 17, 8, 26].

A TALx86 object �le consists of IA32 assembly language
instructions and data. As in a conventional assembly lan-
guage, the instructions and data are organized into labeled
sequences. Unlike conventional assembly language, some la-
bels are equipped with a type annotation. The type annota-
tions on the labels of instruction sequences, called code types,
specify a pre-condition that must be satis�ed before control
may be transferred to the label. The pre-condition spec-
i�es, among other things, the types of registers and stack
slots. For example, if the code type annotating a label L is
feax:int4, ebx:S(3), ecx: ^*[int4,int4]g, then con-
trol may be transferred to the address L only when the reg-
ister eax contains a 4-byte integer, the register ebx contains
the integer value 3, and the register ecx contains a pointer
(^) to a record (*[...]) of two 4-byte integers.

Veri�cation of code proceeds by taking each labeled in-
struction sequence and building a typing context that as-
sumes registers have values with types as speci�ed by the
pre-condition. Each instruction is then type-checked, in se-
quence, under the current set of context assumptions, pos-
sibly producing a new context. For most instructions, the
veri�er automatically infers a suitable typing post-condition
in a style similar to dataow analysis or strongest post-
conditions. Some instructions require additional annota-
tions to help the veri�er. For example, it is sometimes
necessary to explicitly coerce values to a super type, or to
explicitly instantiate polymorphic type variables.

Not all labels require type annotations. However, code
blocks without annotations may be checked multiple times
under di�erent contexts, depending on the control-ow

4



paths of the program. To ensure termination of veri�ca-
tion, the type-checker requires annotations on labels that
are moved into a register, the stack,1 or a data structure
(such as a closure); on labels that are the targets of back-
wards branches (such as loop headers); and on labels that
are exported from the object �le module (such as function
entry points). These restrictions are suÆcient for veri�ca-
tion to terminate. We discuss labels without explicit types
in more detail in Section 4.3.

As in a conventional compiler, our certifying compiler
translates the high-level control-ow constructs of Popcorn
into suitable collections of labeled instruction sequences and
control transfers. For present purposes, control ow in Pop-
corn takes one of three forms:

� an intra-procedural jump

� a function call or return

� an invocation of the current exception handler

Currently, our compiler performs only intra-procedural
optimizations, so the code types for function-entry labels
are quite uniform and can be derived systematically from
the source-level function's type. For simplicity, we discuss
these code types �rst. We then discuss the code types for
labels internal to functions, focusing on why they are more
complicated than function entries. We emphasize that the
distinction between the di�erent avors of code labels (func-
tion entries, internal labels, exception handlers) is a Popcorn
convention encoded in the pre-conditions and is in no way
speci�c to TALx86. Indeed, we have constructed other toy
compilers that use radically di�erent conventions.

3.1 Function Entry Labels

As a running example, we consider a Popcorn function foo

that takes one parameter, an int, and returns an int. The
Popcorn type int is compiled to the TALx86 type int4.
Arithmetic operations are allowed on values of this type,
but treating them as pointers is not. Our compiler uses
the standard C calling convention for the IA32 architecture.
Under this convention, the parameters are passed on the
stack, the caller pops the parameters, the return address is
shallowest on the stack, and the return value is passed in
register eax. All of these speci�cs are encoded in TALx86 by
giving foo this pre-condition:

foo: 8s:Ts. fesp: f eax: int4

esp: int4::sg
::int4

::sg

The pre-condition for foo concerns only esp (the stack
pointer) and requires that this register point to a stack that
contains a return address (which itself has a pre-condition),
then an int4 (i.e. the parameter), and then some stack, s.
The return address expects an int4 in register eax and the
stack to have shape int4::s. (The int4 is there because the
caller pops the parameters.) The pre-condition is polymor-
phic over the \rest" of the stack as indicated by the universal
quanti�cation over the stack-type variable s. This technique
allows a caller to abstract the current type of the stack upon
entry, and it ensures that the type is preserved upon return.

1Return addresses are an important exception; they do not need
explicit types.

Types in TALx86 are classi�ed into kinds (types of types), so
that we do not confuse \standard" types such as int4 with
\non-standard" types such as stack types. To maintain the
distinction, we must label the bound type variable s with
its kind (Ts).

Notice that our annotation already includes much more
information than it would need to if the safety policy dic-
tated a calling convention. In that case, we would presum-
ably just give the parameter types and return type of the
function. Some systems, including the PCC-based certify-
ing compiler for Java [5] go even further | they encode the
types in the string for the label, so it appears that no anno-
tation is necessary. Of course, in actuality the safety policy
now attaches speci�c meaning to the characters in a label;
the annotations are encoded in the assembly listing.

Our annotation does not quite describe the standard C
calling convention. In particular, the standard requires reg-
isters ebx, esi, and edi to be callee-save. (It also requires
ebp, traditionally the frame pointer, to be callee-save. Our
compiler uses ebp for the exception handler.) We encode
callee-save registers using polymorphism:2

foo: 8s:Ts a1:T4 a2:T4 a3:T4.

fesp: feax:int4 esp: int4::s ebx:a1 esi:a2 edi:a3g
::int4::s

ebx:a1 esi:a2 edi:a3g

This pre-condition indicates that for any standard types
a1, a2, a3,3 the appropriate registers must have those types
before foo is called and again when the return address is
invoked. This annotation restricts the behavior of foo to
preserve these registers because it does not know of any
other values with these types. Notice that if we wish to use
di�erent conventions about which registers should be callee-
save, then we need to change only the pre-condition on foo.
In particular, we do not need to change the underlying type
system of TALx86.

Much more detail is required to encode our compiler's
translation of exception handling [18], so we just sketch the
main ideas. We reserve register ebp to point into the middle
of the stack where a pointer to the current exception handler
resides. This handler expects an exception packet in register
eax. Because foo might need to raise an exception, its pre-
condition must encode this strategy. Also, it must encode
that if foo returns normally, the exception handler is still in
ebp. We express all these details below, where @ is an in�x
operator for appending two stack types.

foo: 8s1:Ts s2:Ts a1:T4 a2:T4 a3:T4.

fesp: feax:int4
esp: int4::s1@fesp:s2 eax:exng::s2

ebp: fesp:s2 eax:exng::s2

ebx:a1 esi:a2 edi:a3g
::int4::s1@fesp:s2 eax:exng::s2g

ebp: fesp:s2 eax:exng::s2

ebx:a1 esi:a2 edi:a3g

We urge the reader not to focus on the details other than
to notice that none of the additions are particular to foo,
nor would it be appropriate for a safety policy to bake in
this speci�c treatment of exception handlers. Also, we have
assumed there is a type exn for exception packets. TALx86

2Here and below, underlining is only for emphasis.
3The kind T4 includes all types whose values �t in a register.

5



does not provide this type directly, so our compiler must
encode its own representation using an extensible sum[8].
Each of the four occurrences of exn above should in fact be
replaced by the type

9c:Tm ^*[(^T^rw(c)*[int4^rw])^rw,c]

but in the interest of type-setting, we spare the reader the
result.

For the sake of completeness, we o�er a �nal amendment
to make this pre-condition correct. Our compiler schedules
function calls while some heap records may be partially ini-
tialized. This strategy is arguably better than the \don't op-
timize" approach of always initializing records within a basic
block, but it requires that we convince the veri�er that no
aliases to partially initialized records escape. In particular,
the pre-condition for foo uses two capability variables[26], as
shown below,4 to indicate that it does not create any aliases
to partially initialized records reachable from the caller or
exception handler.

foo:8s1:Ts s2:Ts e1:Tcap e2:Tcap a1:T4 a2:T4 a3:T4.

fesp: feax:int4
esp: int4::s1@fesp:s2 eax:exn cap:e2g::s2

ebp: fesp:s2 eax:exn cap:e2g::s2
ebx:a1 esi:a2 edi:a3

cap: &[e1,e2]g
::int4::s1@fesp:s2 eax:exn cap:e2g::s2g

ebp: fesp:s2 eax:exn cap:e2g::s2
ebx:a1 esi:a2 edi:a3

cap: &[e1,e2]g

In short, because our compiler has complicated inter-
procedural invariants, the naive encoding into TALx86 is
anything but concise. (The unconvinced reader is invited
to encode a function which takes a function pointer as a pa-
rameter.) However, the only parts particular to our example
function foo are the return type, which is written once, and
the parameter types, which are written twice. Even these
parts are the same for all functions that take and return
integer values.

3.2 Internal Labels

In this section, we present the pre-conditions for labels that
are targets of intra-procedural jumps. For simplicity, we
consider only functions that do not declare any local excep-
tion handlers. This special case is by far the most com-
mon, so it is worth considering explicitly. Because our com-
piler does perform intra-procedural optimizations, most rel-
evantly register allocation, the pre-conditions for internal
labels are less uniform than those for function-entry labels.
Speci�cally, they must encode several properties about the
program point that the label designates:

� A local variable may reside in a register or on the stack.

� Some stack slots may not hold live values, so along
di�erent control-ow paths to the label, a stack slot
may have values of di�erent types.

� Some callee-save values may reside on the stack while
others remain in registers.

4The constructor &[...] joins two capabilities to produce a harder-
to-satisfy capability; we omit its de�nition.

� Some heap records may be partially initialized.

First we describe the relevant aspects of our term trans-
lation. Any callee-save values that cannot remain in reg-
isters are stored on the stack in the function prologue and
restored into registers in the function epilogue. The space
for this storage is just shallower than the return address. Lo-
cal variables that do not �t in registers are stored in \spill
slots" that are shallowest on the stack. The number of spill
slots remains constant in the body of a function. This strat-
egy is fairly normal, but it is far too speci�c to be dictated
by TALx86. Indeed, our original Popcorn compiler did not
perform register allocation; it simply pushed and popped
variables on the stack as needed.

The pre-condition for internal labels gives the type and
location (register or spill slot) for each live local variable. If a
stack slot is not live, we must still give it some \place-holder"
type so that the stack type describes a stack of the correct
size. Di�erent control-ow paths may use the same stack slot
for temporary variables of di�erent types. In these cases, no
previously seen type can serve as this place-holder. TALx86
provides a primitive type top4 which is a super-type of all
types ranging over word-sized values. We give this type to
the dead stack slots at the control-ow join; the appropriate
subtyping on control transfers is handled implicitly by the
veri�er.5

In addition to live variables, all of the invariants involving
the stack, the exception handler, etc. must be preserved as
control ows through labels, so this information looks much
as it does for function-entry labels.

For example, suppose our function foo uses all of the
callee-save registers and needs three spill slots. Further-
more, suppose that at an internal label, l, there are two live
variables, both of type int4, one in register esi and one in
the middle spill slot. Then a correct pre-condition for l is:

l: 8s1:Ts s2:Ts e1:Tcap e2:Tcap a1:T4 a2:T4 a3:T4.

fesp:
top4::int4::top4::a3::a2::a1

::feax:int4
esp: int4::s1@fesp:s2 eax:exn cap:e2g::s2
ebp: fesp:s2 eax:exn cap:e2g::s2
ebx:a1 esi:a2 edi:a3

cap: &[e1,e2]g
::int4::s1@fesp:s2 eax:exn cap:e2g::s2g

ebp: fesp:s2 eax:exn cap:e2g::s2
cap: &[e1,e2]

esi: int4g

Our register allocator tries not to use callee-save registers
so that functions do not have to save and restore them. For
example, suppose registers esi and edi are not used in a
function. Then internal labels will encode that a value of
type a1 is on the stack in the appropriate place, esi contains
a value of type a2, and edi contains a value of type a3.

If one or more records were partially initialized on entry
to l, then the pre-condition would have a more complicated
capability; we omit the details. What should be clear at
this point is that the type annotations for internal labels are
considerably less uniform than function-entry annotations.

5It is theoretically possible to use polymorphism instead of a super-
type, but in practice we found doing so very unwieldy.

6



4 Recovering Conciseness and EÆciency

Continuing the examples from the previous section, we de-
scribe three techniques for reducing the size of annotations.
We then discuss techniques, most notably hash-consing, that
can reduce the space and time required during veri�cation.
The next section quanti�es the e�ectiveness of these and
other techniques.

4.1 Sharing Common Subterms

Because the annotations repeat information, we can greatly
reduce their total size by replacing identical terms with a
pointer to a shared term. As an example, consider again the
pre-condition for the function foo, which takes and returns
an int:

type exn = 9c:Tm ^*[(^T^rw(c)*[int4^rw])^rw,c]

foo:8s1:Ts s2:Ts e1:Tcap e2:Tcap a1:T4 a2:T4 a3:T4.

fesp: feax:int4
esp: int4::s1@fesp:s2 eax:exn cap:e2g::s2
ebp: fesp:s2 eax:exn cap:e2g::s2
ebx:a1 esi:a2 edi:a3

cap: &[e1,e2]g
::int4::s1@fesp:s2 eax:exn cap:e2g::s2g

ebp: fesp:s2 eax:exn cap:e2g::s2
ebx:a1 esi:a2 edi:a3

cap: &[e1,e2]g

Removing some common subterms by hand, we can
represent the same information with the following pseudo-
annotation:

1 = 9c:Tm ^*[(^T^rw(c)*[int4^rw])^rw,c]

2 = &[e1,e2]

3 = fesp:s2 eax: 1 cap:e2g::s2

4 = int4::s1@ 3

5 = feax:int4 esp: 4 ebp: 3

ebx:a1 esi:a2 edi:a3 cap: 2 g:: 4

foo:8s1:Ts s2:Ts e1:Tcap e2:Tcap a1:T4 a2:T4 a3:T4.

fesp: 5 ebp: 3 ebx:a1 esi:a2 edi:a3 cap: 2 g

Other pre-conditions can share subterms with this one.
For example, the pre-condition for l from the previous sec-
tion can be rewritten as:

l: 8s1:Ts s2:Ts e1:Tcap e2:Tcap a1:T4 a2:T4 a3:T4.

fesp: top4::int4::top4::a3::a2::a1:: 5

ebp: 3 cap: 2 esi:int4g

Despite exploiting signi�cant sharing, this example illus-
trates some limitations of sharing common subterms. First,
we would like to share all the occurrences of \s1:Ts s2:Ts

... a3:T4", but whether or not we can do so depends on
the abstract syntax of the language. Second, pre-conditions
for functions with di�erent parameter types or return types
cannot exploit subterms 4 or 5. Another possible shortcom-
ing not demonstrated is that alpha-equivalent terms may
not appear to be the same. In practice, compilers can re-use
variable names for compiler-introduced variables, so detect-
ing alpha-equivalence for the purpose of sharing is not so
important.

4.2 Parameterized Abbreviations

TALx86 provides user-de�ned (i.e. compiler-de�ned) higher-
order type constructors. These functions from types to types
have several uses. For example, they are necessary to en-
code source-level type constructors, such as array, list, or
object types. Here we show how to use higher-order type
constructors to de�ne parameterized abbreviations. These
abbreviations can exploit sharing among di�erent types that
sharing common subterms cannot. However, our veri�er is
unable to exploit such abbreviations during veri�cation for
reasons we explain below.

Because every function-entry pre-condition that our
compiler creates is the same except for its parameter types
and return type, we can create a parameterized abbreviation
that describes the generic situation. Then at each function-
entry label, we apply the abbreviation to the appropriate
types.

type F = fn params:Ts ret:T4.

8s1:Ts s2:Ts e1:Tcap e2:Tcap a1:T4 a2:T4 a3:T4.

fesp: feax: ret

esp: params@s1@fesp:s2 eax:exn cap:e2g::s2

ebp: fesp:s2 eax:exn cap:e2g::s2
ebx:a1 esi:a2 edi:a3

cap: &[e1,e2]g
::params@s1@fesp:s eax:exn cap:e2g::s2g

ebp: fesp:s2 eax:exn cap:e2g::s2
ebx:a1 esi:a2 edi:a3

cap: &[e1,e2]g

foo: F int4::se int4

The only new feature other than the abbreviation is the
type se which describes empty stacks. We use it here to
terminate a list of parameter types. The use of abbreviations
greatly simpli�es the structure of the compiler because it
centralizes invariants such as calling conventions.

It is not clear how a compiler-independent veri�er could
exploit an abbreviation like F during veri�cation. Sup-
pose the �rst instruction in block foo increments the in-
put parameter. The veri�er must check that given the pre-
condition F int4::se int4, it is safe to perform an incre-
ment of the value on top of the stack. This veri�cation re-
quires inspecting the result of the abbreviation application
| the veri�er does not know that the argument int4::se
describes the top of the stack. As we show in Section 5, us-
ing abbreviations sometimes slows down veri�cation because
of this phenomenon.

The abbreviation F is widely useful because all function-
entry pre-conditions are similar. To use abbreviations for
internal labels, we must capture the additional properties
that distinguish these pre-conditions. In addition to F's pa-
rameters, we also need parameters for the spill slots, the
live registers, and something to do with partial initializa-
tion issues. We also use a primitive type constructor (&)
for combining two pre-conditions. That way we can pass in
the live registers as one pre-condition and merge it with a
pre-condition that describes the reserved registers.

type L =

fn params:Ts ret:T4 spills:Ts part:Tcap regs:Tpre.

8s1:Ts s2:Ts e1:Tcap e2:Tcap a1:T4 a2:T4 a3:T4.

fesp:
spills@a3::a2::a1

7



::feax: ret

esp: params@s1@fesp:s2 eax:exn cap:e2g::s2
ebp: fesp:s2 eax:exn cap:e2g::s2
ebx:a1 esi:a2 edi:a3

cap: &[e1,e2]g
::params@s1@fesp:s2 eax:exn cap:e2g::s2g

ebp: fesp:s2 eax:exn cap:e2g::s2
cap: &[part,e1,e2]g
& regs

l: L int4::se int4

top4::int4::top4::se ce fesi:int4g

L is correct, but it is useful only for labels in functions
where all three callee-save values are stored on the stack.
With a \don't optimize" approach, we could make all func-
tions meet this description, but we lose most of the advan-
tages of callee-save registers as a result. A better approach
is to provide 23 = 8 di�erent abbreviations, one for each
combination of callee-save values being stored on the stack.
In fact, we need only 4 such abbreviations because our reg-
ister allocator uses the callee-save registers in a �xed order.
Because the compiler provides the abbreviations, this spe-
cialization is possible and appropriate.

4.3 Eliding Pre-conditions

Recall that the veri�er checks a code block by assuming its
pre-condition is true and then processing each instruction in
turn, checking it for safety and computing a pre-condition
for the remainder of the block. At a control transfer to
another block, it suÆces to ensure that the current pre-
condition implies the pre-condition on the destination label.

TALx86 takes a \reconstruction" approach by allowing
many label pre-conditions to be elided. Clearly, the result
of eliding a pre-condition is a direct decrease in annota-
tion size. To check a control transfer to a block with an
elided pre-condition, the veri�er simply uses the current pre-
condition at the source of the transfer to check the target
block. Hence, if a block with elided pre-condition has mul-
tiple control-ow predecessors, it is veri�ed multiple times
under (possibly) di�erent pre-conditions.

To ensure that the veri�er terminates, we prohibit
annotation-free loops in the control-ow graph. For this
reason, TALx86 allows a pre-condition to be elided only if
the block is only the target of forward jumps. Even with
this restriction, the number of times a block is checked is
the number of paths through the control-ow graph to the
block such that no block on the path has an explicit pre-
condition. This number can be exponential in the number
of code blocks, so it is unwise to elide explicit pre-conditions
indiscriminantly. As the next section demonstrates, an ex-
ponential number of paths is rare, but it does occur and it
can have disastrous e�ects on veri�cation time.

The approach our compiler takes is to set an elision
threshold, T , and insist that no code block is veri�ed more
than T times. Notice T = 1 means all merge points have
explicit pre-conditions. We interpret T = 0 to mean that
all code labels, even those with a single predecessor, have
explicit pre-conditions. For higher values of T , we expect
space requirements to decrease, but veri�cation time to in-
crease. Given a value for T , we might like to minimize the
number of labels that have explicit pre-conditions. Unfor-
tunately, we have proven that this problem is NP-Complete
for T � 3. (We do not know the tractability when T = 2.)

Currently, the compiler does a greedy depth-�rst traversal of
the control-ow graph, leaving o� pre-conditions until the
threshold demands otherwise. In pathological cases, this
heuristic can do arbitrarily poorly, but it seems to do well
in practice.

Using an elision threshold is actually over-constraining
the problem | it is more important to minimize the total
number of times that we verify blocks. That is, we would
prefer to verify some block more than T times in order to
verify several other blocks many fewer times. For struc-
tured programs (all intra-procedural jumps are for loops and
conditionals), it appears that this relaxed problem can be
solved in polynomial time (O(n9) where n is the number of
blocks [12]), but the algorithm does not seem practical.

4.4 Hash-Consing and Fast Type Operations

So far, we have discussed techniques for reducing the size
of the annotations that the code producer writes. For the
veri�er, these explicit types provide guidance to check that
each assembly instruction is safe. To do this checking, the
veri�er determines the type of the context (i.e., the regis-
ters and the stack) before the instruction, the types of the
operands, and the type of the context after the instruction.
The operands must be subtypes of the types that the in-
struction requires. In short, the veri�er itself creates many
type expressions and often checks that one is a subtype of
another. Therefore, it is important that these operations
consume as little time and space as possible.

The primary technique for reducing space is hash-
consing, which is essentially just the on-line form of shar-
ing. As types are created, we �rst check a table to see if
they have been created before. If so, we return a pointer
to the table entry; if not, we put the type in the table. As
a result, types consume less space, but we incur the over-
head of managing a table. It would be correct to return any
alpha-equivalent type from the table, but in the interest of
fast lookup operations, we only �nd a syntactically identical
type.

In the most general case, to decide if � is a subtype of
�

0, we should convert both types to normal form and then
do a structural subtyping comparison. One common case
for which it is easy to optimize is when � and �

0 are the
same object, that is, they are pointer-equal. With hash-
consing, syntactically equal types should always be pointer-
equal. Even when the two types are not the same object (for
example, one is a strict subtype of the other), many parts of
the two types may be pointer-equal, so we can usually avoid
a full structural comparison.

There are complications with pointer equality, however:
We must compare types up to alpha-equivalence. To do
so, we maintain a separate variable-substitution map rather
than actually performing costly type substitutions. In the
presence of a non-empty map, it is not necessarily correct
that pointer-equal types are equal because the substitution
has not been applied. Fortunately, our compiler uses the
same type variables consistently, so the variable-substitution
map is almost always empty.

Hash-consing has another positive e�ect on veri�cation
time: When we reduce � to �

0 (for example, by applying
an abbreviation), we do an in-place update of � . Hence,
all pointers to a shared � will use the result of the single
reduction. However, the original � will no longer appear to
be in the hash-cons table. We could add a level of indirection
to alleviate this shortcoming (keep � in the table for the

8



purpose of future sharing and have it point to its reduced
form �

0), but our implementation does not currently do so.
Another common operation on types is substitution, that

is, substituting � 0 for a variable � in � . Operations that need
substitution include applying abbreviations and instantiat-
ing polymorphic types. We need to recursively substitute
for � in all of the constituent types within � , but we expect
many of them not to contain �. To optimize for this com-
mon case and therefore avoid crawling over much of � , we
memoize the free variables of each type and store this set
with the type.

5 Experimental Results

In this section, we present our quantitative study of certify-
ing a real program in TALx86. We conclude that targeting
compiler-independent safety policies is practical and scalable
when appropriate techniques are used.

Our example is the Popcorn compiler itself. The com-
piler consists of 39 Popcorn source �les compiled separately.
The more interesting optimizations performed are Chaitin-
style intra-procedural register allocation[4] (using optimistic
spilling[3] and conservative coalescing[7]) and the elimina-
tion of fully redundant null-checks for object dereferences.
The entire compiler is roughly 18,000 lines of source code
and compiles to 816 kilobytes of object code (335 kilobytes
after running strip).

The sizes we report include the sum across �les of all
annotations, not just those for code labels. They do not
include the separate module-interface �les that the TALx86
link-checker uses to ensure type-safe linking. All execution
times were measured on a 266MHz Pentium II with 64MB of
RAM running Windows NT 4.0. The veri�er and assembler
are written in Objective Caml[15] and compiled to native
code.

We �rst show that naive choices in the annotation lan-
guage and compiler can produce a system with unacceptable
space and/or time overhead. Then we show that our actual
implementation avoids these pitfalls. Next we adjust var-
ious parameters and disable various techniques to discover
the usefulness of individual approaches and how they inter-
act. Finally, we discuss how we could extend our techniques
to further lower the TALx86 overhead.

5.1 Two Bad Approaches

A simple encoding of the TALx86 annotations is insuÆcient.
First, consider a system where we do not use the abbrevi-
ations developed in Section 4, our type annotations repeat
types rather than share them, and we put types on all code
labels. Then the total annotation size for our program is
over 4.5 megabytes, several times the size of the object code.
As for veri�cation time, if we make no attempt to share com-
mon subterms created during veri�cation, then it takes 59
seconds to verify all of the �les.

A second possibility is to remove as many pre-conditions
as possible. That is, we put an explicit pre-condition on a
code label only if the label is used as a call destination, a
backwards branch destination, or a �rst-class value. Indeed,
the total size of our annotations drops to 1.85 megabytes.
However, the veri�er now checks some code blocks a very
large number of times. Total veri�cation time rises to 18
minutes and 30 seconds.

0.01

0.1

1

10

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Total File Size (bytes)

V
er

if
ic

at
io

n
 T

im
e 

(s
ec

)

Figure 1: Veri�cation Time vs. File Size

These two coarse experiments yield some immediate con-
clusions. First, the actual amount of safety information de-
scribing a compiled program is large. Second, the number
of loop-free paths through our application code is, in places,
much larger than the size of the code. Therefore, it is un-
wise to make veri�cation time proportional to the number
of loop-free paths as the second approach does.

The latter conclusion is important for certi�ed code
frameworks (such as PCC [14]) that construct veri�cation
conditions at veri�cation time via a form of weakest pre-
condition computation. Essentially, such systems construct
pre-conditions for loop-free code segments using a backward
ow analysis. In an expressive system, the pre-condition at
a backward merge-point could be the logical disjunction of
two conditions. Hence, if done naively, the constructed con-
dition can have exponential size by having a di�erent clause
for every loop-free path.

When the number of loop-free paths is large, it is clear
that constructing an enormous pre-condition is wasteful.
For a compiler to exploit the weakness of such a pre-
condition, it would need to have optimized based on an
exponential amount of path-sensitive information. We con-
clude that constructing weakest pre-conditions in this way
is impractical. Instead, annotations should guide the con-
struction of the veri�cation condition; the optional code pre-
conditions of TALx86 �ll this role.

5.2 A Usable System

Having shown how bad matters can get, we now present the
actual overhead that our system achieves. First, we iden-
tify the main techniques used and the overhead that results.
Then we show that veri�cation time is roughly proportional
to �le size; this fact suggests that our approach should scale
to larger applications. Finally, we partition the source code
into several styles, show that the overhead is reasonable for
all of them, and discuss salient di�erences.

Unlike the \straw man" systems constructed above, the
real encoding of TALx86 annotations uses several tables to
share common occurrences. Speci�cally, uses of identi�ers,
types, kinds, and coercions are actually indices into tables
that contain the annotations. The code producer can avoid
duplicates when constructing the tables. The bene�t of this
approach is proportional to the amount of repetition; there is

9



Style Object Code (kB) Annotations (kB) Veri�cation Time (sec) Size Ratio Time Ratio
Polymorphic Libraries 36.4 19.6 1.19 .54 46.9
Monomorphic Libraries 34.8 15.1 .94 .43 53.1
Mostly Type De�nitions 45.7 30.6 1.29 .67 58.9

Machine generated 148.4 82.0 6.30 .55 36.6
Compilation 550.0 271.4 22.3 .49 36.8

Figure 2: E�ect of Di�erent Code Styles

a small penalty for annotations that occur only once. We call
this technique \sharing"; more speci�cally it is full common-
subexpression elimination on types at the �le level. Sharing
is just o�-line hash-consing; we use the latter term to re-
fer to sharing within the veri�er for types created during
veri�cation.

Sharing does not create parameterized abbreviations, so
we also use the abbreviations developed in Section 3. The
compiler provides the abbreviations and uses them in a text
version of TALx86. An independent tool converts the text
version into a binary version that has sharing. In this sense,
we use abbreviations \before" sharing.

We set the elision threshold to four. At this value,
many forward control-ow points will not need explicit pre-
conditions, but no block is veri�ed more than four times.

Finally, the veri�er uses hash-consing to share types that
are created during veri�cation. That is, when creating a new
type, the veri�er consults a table to see if it has encountered
the type previously. If so, it uses the type in the table. Be-
cause the entire sharing table is parsed prior to veri�cation,
any types in the table will be used rather than repeated. Re-
ductions on higher-order type constructors are performed in
a lazy manner. In particular, we use a weak-head normaliza-
tion strategy with memoization to avoid both unnecessary
reductions and duplicated reductions. As such, other uses
of the type will not have to recompute the reduction. Shao
and associates use a similar strategy [25]. Because of com-
plications with the scope of abbreviations, the hash-consing
table is emptied before verifying each �le. If memory be-
comes scarce, we could empty the table at any point, but
this measure has not been necessary in practice. Note that
the use of hash-consing cannot a�ect the size of explicit an-
notations.

With this system, total annotation size drops from 4.5
megabytes to 419 kilobytes and veri�cation time drops from
59 to 34.5 seconds. As for compilation time, our compiler
takes 40 seconds to compile the Popcorn source �les into
ASCII TALx86 �les, which are essentially Microsoft Assem-
bler (MASM) �les augmented with annotations. A separate
tool takes 23 seconds to assemble all of these �les; this time
includes the creation of the binary encoding of the annota-
tions with sharing. As we add more optimizations to our
compiler, we expect compilation time to increase more than
veri�cation time. The latter may actually decrease as object
code size decreases.

Performing gzip compression on the 419 kilobytes of an-
notations reduces their size to 163 kilobytes. The ratio of
compression is similar to that for our object �les; the un-
stripped �les compress from 816 to 252 kilobytes and the
stripped �les compress from 335 to 102 kilobytes.

A desirable property is that veri�cation time is generally
proportional to �le size. In theory, TALx86 veri�cation is
intractable in the worst case, so we are pleased to see that
such ineÆciency has not occurred in practice. Figure 1 plots

veri�cation time against total size (object code plus anno-
tations) for all of the �les in the compiler. The time stays
roughly proportional as �le size grows by over an order of
magnitude. Small �les take proportionally longer to verify
because of start-up costs and the overhead of using hash-
consing. Such �les take just a fraction of a second to verify,
so we consider these costs insigni�cant.

So far we have presented results for the entire compiler
as a whole. By analyzing the results for di�erent styles of
code, we can gain additional insight. Of course, all of the
code is in the same source language, compiled by the same
compiler, and written by the authors. Nonetheless, we can
partition the �les into several broad categories:

� Polymorphic libraries: These �les provide generally
useful utilities such as iterators over generic container
types. Examples include �les for lists, dictionaries, sets,
and resizing arrays.

� Monomorphic libraries: Examples include �les for bit
vectors and for command-line arguments.

� Mostly Type De�nitions: These �les primarily de�ne
types used by the compiler and provide only simple
code to create or destruct instances of the type. Ex-
amples include �les for the abstract syntax of Popcorn,
the compiler's intermediate language, an abstract syn-
tax for TALx86, and an environment maintained while
translating from the intermediate language to TALx86.

� Machine generated: These �les include the scanner and
the parser. Compared to other styles of code, they
are characterized by a small number of large func-
tions which contain switch statements with many cases.
They also have large constant arrays.

� Compilation: These �les actually do the compilation.
Examples include �les for type checking, register allo-
cation, and printing the output.

Figure 2 summarizes the annotation size and veri�cation
time relative to the categorization.6 The \Size Ratio" is
annotation size divided by the object code size. The \Time
Ratio" is the sum of the two sizes divided by the veri�cation
time.

Most importantly, all of the size ratios are well within
a factor of two and the time ratios are even closer to each
other. We conclude that no particular style of code we have
written dominates the overhead of producing provably safe
object code. Even so, the results di�er enough to make some
interesting distinctions.

The �les with mostly type de�nitions have the largest
(worst) size ratio and largest (best) time ratio. The former

6The sum of the veri�cation times is slightly less than the time to
verify all the �les together due to secondary e�ects.

10



Annotation Size (kB) Veri�cation Time (sec)
Sharing Abbreviations Uncompressed Compressed No hash-consing Hash-consing

no no 2041 155 50 38
no yes 793 132 42 36
yes no 503 205 37.5 34.5
yes yes 419 163 40.5 34.5

Figure 3: E�ect of Abbreviations, Sharing Subterms, and Hash-Consing

is because type de�nitions are compiled into annotations
that describe the corresponding TALx86 types, but there is
no associated object code. The size ratio can actually be
arbitrarily high as the amount of code in a source �le goes
to zero. The time ratio is also not surprising; the time-
consuming part of veri�cation is checking that each instruc-
tion is safe given its context.

The relatively high size ratio for machine-generated code
is an artifact of how parsers are generated. Essentially, all of
the di�erent token types are put into a large union. The code
that processes tokens is therefore �lled with annotations that
coerce values into and out of this union.

The size ratio for polymorphic libraries is slightly larger
than we expected. A source-level function that is polymor-
phic over some types needs to explicitly name those types
only once. Because TALx86 has no notion of function, all of
the labels for such a function must enumerate their type vari-
ables.7 Furthermore, control transfers between these labels
must explicitly instantiate the additional type variables.

Finally, the time ratio is noticeably smaller (worse) for
the compilation code. This style of code contains a much
higher proportion of function calls than libraries, which
mostly contain leaf procedures. Because of the complicated
type instantiations that occur at a call site, call instructions
take the most time to verify.

5.3 E�ectiveness of Individual Techniques

We have shown that our system achieves reasonable per-
formance and uses a number of techniques for controlling
annotation overhead, but we have not yet discussed which
of the techniques are e�ective. In this section, we examine
what happens if we selectively disable some of these tech-
niques.

Figure 3 summarizes the total annotation size when the
elision threshold is four and the other techniques are used
selectively. When \Sharing" is no, we do not use tables for
sharing types and coercions. Instead, we repeat the types
directly in the annotations. We still share identi�ers so that
the lengths of strings is insigni�cant. If \Abbreviations"
is no, then all abbreviations are fully expanded before the
annotations are written. \Uncompressed" is the total size of
all the annotations. \Compressed" is the sum of the result of
running gzip on each �le's annotations separately. The �nal
two columns give total veri�cation time with and without
hash-consing enabled.

We �rst discuss the e�ect of sharing and abbreviations
on the explicit annotation size. Both techniques appear very
e�ective if we ignore the e�ect of gzip. Abbreviations alone
reduce size by a factor of 2.57 whereas sharing alone reduces
size by a factor of 4.06. Using abbreviations and sharing re-
duces size by about another seventeen percent as compared

7Pre-conditions can still be elided, fortunately.

to a system with just sharing. Hence neither technique sub-
sumes the other, but they do recover much of the same rep-
etition.

However, if what we really care about is the size of anno-
tations that must be sent to a code consumer, then we should
consider running gzip. It is clear that gzip is extremely
e�ective; our worst result for compressed annotations is a
factor of two better than our best result for uncompressed
annotations. More subtle is the fact that gzip achieves a
smaller result when sharing is not used in our binary encod-
ing. This result, which surprised us, is a product of how our
tables are implemented and how gzip performs compression.
In short, gzip constructs its own tables and uses a much
more compact format than our encoding. Worse, our tables
hide repetition from gzip, which looks for common strings.
We conclude that if annotation size is the primary concern,
then the binary encoding should remain \gzip-friendly".

Abbreviations are actually much more e�ective than the
data in the �gure suggests. The compiler's abbreviations are
used only for code pre-conditions, so optimization on this
one aspect of annotation size must eventually demonstrate
Amdahl's Law.8 We considered what the total annotation
size would be if we removed all explicit code pre-conditions.
Of course, the result of this drastic measure is unveri�able,
but it provides a rough lower bound for the e�ectiveness
of the abbreviations. The total size is still 377 kilobytes,
so abbreviations reduced the size of code pre-conditions by
about a factor of four.

We now discuss the e�ect of the techniques on veri�ca-
tion time. Here gzip is useless because our veri�er works on
uncompressed annotations. Without hash-consing, sharing
signi�cantly reduces veri�cation time. While the veri�er un-
der these conditions does not share types that it creates dur-
ing veri�cation, it does share types that originally occur in
the annotations. The result suggests that these types cover
many of those used during veri�cation.9 Without sharing,
abbreviations are a great help because they recover the most
common occurrences. However, with sharing, abbreviations
actually hurt veri�cation time. The time to expand the ab-
breviations during veri�cation outweighs the time that the
additional sharing gains.

With hash-consing, the di�erent veri�cation times are
much closer to each other. Using a hash-consing table redis-
covers any sharing, so without sharing initially we have to
pay only the cost to achieve this rediscovery. More interest-
ingly, the penalty for abbreviations disappears. We believe
this result is due to the fact that with hash-consing, any
abbreviation applied to the same argument needs to be ex-
panded only once and then the result can be used in multiple

8Actually, there are a few other places where the abbreviations
are used, such as when a polymorphic function is instantiated at a
function type, but such situations are rare in our code.

9Parsing time is a small but noticeable fraction of the di�erence.

11



0

100

200

300

400

500

600

0 1 2 4 8 16 10
0

10
00

10
00

0

inf
ini

ty

Elision Threshold

A
n

n
o

ta
ti

o
n

 S
iz

e 
(k

B
)

Uncompressed
Compressed

0

5

10

15

20

25

30

35

40

45

0 1 2 4 8 16

Elision Threshold

V
er

if
ic

at
io

n
 T

im
e 

(s
ec

)

0

100

200

300

400

500

600

700

800

100 1000 10000 infinity

Elision Threshold

V
er

if
ic

at
io

n
 T

im
e 

(s
ec

)

Figure 4: E�ect of Elision Threshold

places.
Hash-consing reduces veri�cation time signi�cantly, but

only with a careful implementation of the hashing. For ex-
ample, if we give our hash-cons table a size near a power
of two (as number theory warns against), veri�cation time
takes longer than without hash-consing. The good news is
that optimizing the veri�er can sometimes be reduced to
fundamental properties of data structures. The bad news
is the di�erence between veri�cation times under di�erent
parameters is more brittle than we would like.

One reason hash-consing improves veri�cation time is
that types occupy less space, so we expect better cache per-
formance and fewer garbage collections. Another reason is
that the veri�er's function for determining if one type is a
subtype of another returns immediately when two types are
pointer-equal. This function is called about 170,000 times
when verifying our compiler. Without hash-consing (but
with sharing and abbreviations), 45,000 of the calls are with
pointer-equal arguments. With hash-consing, the �gure rises
to 82,000. Even when the entire types are not pointer-
equal, we can avoid much of the structural comparison when
parts of them are pointer-equal. Without hash-consing, we
make about 1,400,000 recursive calls. With hash-consing,
the number of recursive calls drops to 730,000.

As explained in the previous section, TALx86 code blocks
that are targets of only forward branches do not need an-
notations, but they will be reveri�ed along every unanno-
tated control-ow path. Given an elision threshold T , our
compiler ensures that no block will be veri�ed more than
T times. Subject to this constraint, it uses a simple greedy
algorithm to leave annotations o� labels. Figure 4 shows
the e�ect of changing the value of T . We use sharing and
abbreviations.

The left chart in Figure 4 shows that total annotation
size drops by over �fteen percent as T is 1 instead of 0.
We conclude that low-level systems should not require pre-
conditions on all blocks. However, the additional space sav-
ings as T is given values larger than 8 are quite small. This
fact justi�es the use of T = 4 for the other experiments.

The other charts in Figure 4 show the veri�cation time
for di�erent values of T . Veri�cation time initially drops as
T gets the value 1 instead of 0. This phenomenon indicates
that it takes a lot of time to process an explicit annotation
and compare it to a pre-condition. As T takes values 2, 4,
8, and 16, veri�cation time rises noticeably but only by a

few seconds. We conclude that this range of values allow
for di�erent reasonable time-space tradeo�s. As T takes
larger values, veri�cation time rises sharply. Although very
few additional blocks have their pre-conditions elided, these
blocks are then checked a very large number of times. In
fact, for large T , the time spent verifying di�erent �les varies
drastically because most �les do not have any such blocks.
(A value of in�nity for T means we put explicit annotations
only where the veri�er requires them.)

5.4 Useful Extensions

We have presented a system where uncompressed safety an-
notations consume roughly half the space of the object code
they describe, and we have given techniques (sharing, ab-
breviations, and elision) that help in this regard. Now we
investigate whether the current system is the best we can
hope to achieve or if the techniques could contribute more
to reducing the TALx86 overhead. By moving beyond what
the current system supports, we demonstrate the latter.

First, we notice that sharing common subterms is so ef-
fective because we share annotations across an entire �le.
The �le level is currently the best we can do because we
compile each �le separately. In a scenario where all of the
object �les are packaged together, it may be reasonable to
share annotations in a single table for the entire package.
Although our current tools cannot process such a package,
we are able to generate it and measure its size. The total size
drops from 419 kilobytes to 338 kilobytes. We conclude that
di�erent �les in our project have many similar annotations;
we should be able to exploit this property to further reduce
overhead. This improvement does not rely on understanding
the compiler's conventions, so a generic TALx86 tool could
put separately compiled object �les into a package.

Second, the annotations that describe what coercions ap-
ply at each instruction are not currently shared. Although
there are many common occurrences, some of them take only
one byte to represent, so sharing these annotations must
carefully avoid increasing space requirements.

Third, veri�cation time su�ers signi�cantly from memory
allocation and garbage collection. Although we have imple-
mented hash-consing to address this bottleneck, Shao and
associates [25] use their experience building type-directed
compilers to suggest that suspension-based lambda encod-
ing [21] can further improve performance. Unfortunately,
modifying our veri�er to use these techniques is non-trivial,

12



so we relegate such an investigation to future work.
Fourth, some well-chosen uses of type reconstruction

could eliminate many of the explicit annotations. For exam-
ple, if the veri�er performed uni�cation of (�rst-order) type
variables, then the compiler could eliminate all of the type
applications at control transfer points. This elision would
improve our annotation size to 330 kilobytes. (We com-
puted this �gure by eliding the instantiations even though
the veri�er cannot process the result.) More importantly, re-
construction approaches improve the size even in the pres-
ence of gzip; the compressed annotations drop from 163
kilobytes to 141 kilobytes in this case.

In summary, the TALx86 system shows that techniques
such as sharing and elision make certi�ed code scalable and
practical, but even TALx86 could use these techniques more
aggressively to achieve lower overhead.

6 Conclusions

Our Popcorn compiler encodes the safety of its output in
TALx86. As a Popcorn application itself, it also serves as the
largest application we know of that has been compiled to a
safe machine language. Because we believe safety policies
should not be tailored to a particular compiler, we encode
the aspects of Popcorn compilation relevant to safety in the
more primitive constructs of TALx86. We have found that
the most important factor in the scalability of certifying
compilation is the size of code pre-conditions.

Based on our experience, we present the following con-
clusions for compiler-independent certi�cation systems.

� Common-subexpression elimination of explicit annota-
tions is a practical necessity. Sharing terms created
during veri�cation is also helpful, but it is important
to carefully manage the overhead inherent in doing so.

� Compilers can e�ectively exploit parameterized abbre-
viations to encode their invariants. Although abbrevia-
tions improve the size of explicit annotations, it is more
diÆcult to exploit abbreviations during veri�cation.

� Serial compression utilities, such as gzip, are very help-
ful, but they are not a complete substitute for other
techniques. Moreover, if good compression is a system
requirement, one should understand the compression
algorithm when designing the uncompressed format.

� Overhead should never be proportional to the number
of loop-free control-ow paths in a program.

We believe these suggestions should help other projects
to avoid common pitfalls and to focus on the important fac-
tors for achieving expressiveness and scalability.

Acknowledgments

The TALx86 infrastructure is a product of the TAL re-
search group. Fred Smith contributed greatly to the proto-
type Popcorn compiler used for bootstrapping. We proved
that optimal annotation elision is NP-complete for an eli-
sion threshold greater than �ve; David Kempe proved the
other complexity results. The anonymous reviewers pro-
vided many detailed and helpful comments. David Walker
generously encouraged us to write this report.

References

[1] Andrew W. Appel and Amy P. Felty. A semantic model
of types and machine instructions for proof-carrying code.
In Twenty-Seventh ACM Symposium on Principles of Pro-

gramming Languages, pages 243{253, Boston, MA, January
2000.

[2] Quetzalcoatl Bradley, R. Nigel Horspool, and Jan Vitek.
Jazz: An eÆcient compressed format for Java archive �les.
In CASCON'98, November 1998.

[3] Preston Briggs, Keith Cooper, and Linda Torczon. Improve-
ments to graph coloring register allocation. ACM Transac-

tions on Progamming Languages and Systems, 16(3):428{
455, May 1994.

[4] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hop-
kins, and P. Markstein. Register allocation via coloring.
Computer Languages, 6:47{57, 1981.

[5] Christopher Colby, Peter Lee, George Necula, and Fred Blau.
A certifying compiler for Java. In ACM Conference on Pro-

gramming Language Design and Implementation, pages 95{
107, Vancouver, Canada, 2000.

[6] Jens Ernst, William Evans, Christopher W. Fraser, Todd A.
Proebsting, and Steven Lucco. Code compression. In ACM

Conference on Programming Language Design and Imple-

mentation, pages 358{365, Las Vegas, NV, June 1997.

[7] Lal George and Andrew W. Appel. Iterated register coa-
lescing. ACM Transactions on Progamming Languages and

Systems, 18(3):300{324, May 1996.

[8] Neal Glew. Type dispatch for named hierarchical types. In
Fourth ACM International Conference on Functional Pro-

gramming, pages 172{182, Paris, France, September 1999.

[9] Neal Glew and Greg Morrisett. Type safe linking and mod-
ular assembly language. In Twenty-Sixth ACM Symposium

on Principles of Programming Languages, pages 250{261,
San Antonio, TX, January 1999.

[10] R. Harper, F. Honsell, and G. Plotkin. A framework for
de�ning logics. Journal of the ACM, 40(1):143{184, 1993.

[11] Luke Hornof and Trevor Jim. Certifying compilation and
run-time code generation. In ACM Workshop on Par-

tial Evaluation and Semantics-Based Program Manipula-

tion, pages 60{74, San Antonio, TX, January 1999.

[12] David Kempe. Personal communication.

[13] Dexter Kozen. EÆcient code certi�cation. Technical Report
98-1661, Department of Computer Science, Cornell Univer-
sity, Ithaca, NY, January 1998.

[14] Peter Lee. Personal communication.

[15] Xavier Leroy. The Objective Caml system, documentation,

and user's guide, 1998.

[16] Steven Lucco. Split-stream dictionary program compres-
sion. In ACM Conference on Programming Language Design

and Implementation, pages 27{34, Vancouver, Canada, June
2000.

[17] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman,
Richard Samuels, Frederick Smith, David Walker, Stephanie
Weirich, and Steve Zdancewic. TALx86: A realistic typed
assembly language. In Second ACM SIGPLAN Workshop

on Compiler Support for System Software, pages 25{35, At-
lanta, GA, 1999. Published as INRIA Technical Report 0288,
March, 1999.

[18] Greg Morrisett, Karl Crary, Neal Glew, and David Walker.
Stack-based typed assembly language. In Workshop on

Types in Compilation, volume 1473 of Lecture Notes in

Computer Science, pages 28{52, Kyoto, Japan, March 1998.
Springer-Verlag.

13



[19] Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From System F to typed assembly language. In Twenty-Fifth
ACM Symposium on Principles of Programming Languages,
pages 85{97, San Diego, CA, January 1998.

[20] Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From System F to typed assembly language. ACM Trans-

actions on Progamming Languages and Systems, 21(3):528{
569, May 1999.

[21] Gapolan Nadathur. A notation for lambda terms II: Re�ne-
ments and applications. Technical Report CS-1994-01, Duke
University, Durham, NC, January 1994.

[22] George Necula and Peter Lee. The design and implemen-
tation of a certifying compiler. In ACM Conference on

Programming Language Design and Implementation, pages
333{344, Montreal, Canada, June 1998.

[23] George Necula and Peter Lee. EÆcient representation and
validation of proofs. In Thirteenth Symposium on Logic in

Computer Science, Indianapolis, IN, June 1998.

[24] William Pugh. Compressing Java class �les. In ACM Con-

ference on Programming Language Design and Implementa-

tion, pages 247{258, Atlanta, GA, May 1999.

[25] Zhong Shao, Christopher League, and Stefan Monnier. Im-
plementing typed intermediate languages. In Third ACM In-

ternational Conference on Functional Programming, pages
313{323, Baltimore, MD, September 1998.

[26] Fred Smith, David Walker, and Greg Morrisett. Alias types.
In Ninth European Symposium on Programming, volume
1782 of Lecture Notes in Computer Science, pages 366{381,
Berlin, Germany, March 2000. Springer-Verlag.

[27] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper,
and P. Lee. TIL: a type-directed optimizing compiler for
ML. In ACM Conference on Programming Language Design

and Implementation, pages 181{192, Philadelphia, PA, May
1996.

[28] Andrew K. Wright and Robert Cartwright. A practical soft
type system for Scheme. ACM Transactions on Progamming

Languages and Systems, 19(1):87{152, January 1997.

14


