
Automated Formula Generation and

Performance Learning for the FFT

Bryan Singer Manuela Veloso

January, 2000

CMU-CS-00-123

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

A single signal processing algorithm can be represented by many di�erent but
mathematically equivalent formulas. When these formulas are implemented in
actual code, they often have very di�erent running times. Thus, an important
problem is �nding a formula that implements the signal processing algorithm as
e�ciently as possible. In this paper we present three major results toward this
goal: (1) Di�erent but mathematically equivalent formulas can be generated
automatically in a principled way, (2) Simple features describing formulas can
be used to distinguish formulas with signi�cantly di�erent running times, and
(3) A function approximator can learn to accurately predict the running time
of a formula given a limited set of training data.

This research was sponsored by the DARPA Grant No. DABT63-98-1-0004.

The �rst author, Bryan Singer, is partly supported by a National Science Foundation

Graduate Fellowship.
The content of the information in this publication does not necessarily reect the

position or the policy of the Defense Advanced Research Projects Agency (DARPA),
the National Science Foundation (NSF), or the US Government, and no o�cial en-

dorsement should be inferred.

Keywords: machine learning, signal processing, FFT, performance prediction,
mathematical algorithms, application of neural networks, OPAL

1 Introduction

Most signal processing algorithms can be represented by a matrix which when
multiplied by an input vector produces the desired output vector [4, 5]. A
straightforward implementation of the algorithm would be to simply implement
the multiplication of the speci�ed matrix and the input vector. However, these
matrices often have a particular form that allows them to be factored into a
product of sparse, structured matrices. These factorizations allow for faster
implementations of signal processing algorithms. Further, these factorizations
can be represented by mathematical formulas [1].

A single signal processing algorithm can be represented by many di�erent
but mathematically equivalent formulas. When these formulas are implemented
in actual code, they often have very di�erent running times. Thus, an important
problem is �nding a formula that implements the signal processing algorithm
as e�ciently as possible [3].

This paper presents our preliminary work towards this goal. In particular,
this paper contains three major results:

� Di�erent but mathematically equivalent formulas can be generated auto-
matically in a principled way.

� Simple features describing formulas can be used to distinguish formulas
with signi�cantly di�erent running times.

� A function approximator can learn to accurately predict the running time
of a formula given a limited set of training data.

2 Formula Generator

Given that there are many di�erent formulas that represent a single signal pro-
cessing algorithm, an important problem is determining all the di�erent formulas
that represent this algorithm. That is, if we want to �nd the fastest formula
that implements a particular algorithm, then we need to know what the set of
formulas that represent the algorithm is.

We have written a formula generator that takes a formula and a set of
rewrite rules and produces all mathematically equivalent formulas according
to the rewrite rules. This formula generator provides a principled method for
generating all mathematically equivalent formulas of some speci�ed formula.

2.1 Rewrite Rules

A rewrite rule states how one formula can be \rewritten" as a di�erent but
mathematically equivalent formula. Each rewrite rule consists of: (1) a tem-
plate formula, (2) a result formula, and (3) a set of variables. The template
consists of a formula that is to be matched with the current formula or a subex-
pression of the current formula. The result formula consists of a formula that

1

is mathematically equivalent to the template, and so the result formula can
replace the template formula.

Variables may be used in both the template and the result formulas. Two
kinds of variables are possible | input and computable variables. Input vari-
ables simply match appropriate portions of the input formula and can be used
to copy such into the result formula. Thus, input variables allow templates to
match many di�erent formulas. For example, an input variable could represent
the size of a particular object, as in the following example:

(RULE TRANSPOSE-IDENTITY

(vars n)

(template (transpose (i n)))

(result (i n)))

which says that whenever we �nd a transpose of the identity matrix (of any size
n), we can replace it simply by the identity matrix (of the same size n).

Computable variables allow values to be computed from input variables that
can be used in the result formula. For example, two computable variables could
be used to capture a factorization of an integer. In particular, several sets of
computable variables can be de�ned, and for each set of computable variables a
function must be given. This function may take as arguments any of the input
variables or constants. The function then produces a list of sets of values for
the computable variables. Each set of values on this list is used to produce a
di�erent result formula, and thus a single rule matching a single formula can
actually produce many result formulas.

As an example, consider the rewrite rule:

(RULE COOLEY-TUKEY

(vars n)

(template (f n))

(c-vars ((r s) (factors n)))

(result

(compose (compose (compose (tensor (f r) (i s))

(t n s))

(tensor (i r)(f s)))

(l n r))))

which says that Fn can be replaced by (Fr
 Is)Tn

s
(Ir
Fs)Lnr for any integer

factorization rs of n (assuming the function \factors" is appropriately de�ned).

2.2 Formula Search Space

The number of formulas that can be produced by our formula generator can
be very large. When given a formula and a set of rewrite rules, the formula
generator tries to apply each of the rewrite rules to the given formula and all
subexpressions of the formula. Plus if any of these produce a resulting formula,
then all of the rewrite rules can be recursively tested on the resulting formula
and all of its subexpressions.

2

Currently our formula generator uses breadth �rst search. An open research
question is how to avoid producing an in�nite set of formulas, most of which
are useless (e.g., (transpose (transpose (transpose (f 32))))).

3 Cooley-Tukey

A very important signal processing algorithm is the Fast Fourier Transform
(FFT) [5]. One particularly useful factorization of the FFT is the Cooley-Tukey
which has the form: Frs = (Fr
 Is)T rs

s
(Ir
 Fs)Lrsr . The key aspect of this

factorization is that it splits a large FFT, Frs, into two smaller FFT's, Fr and Fs.
This can be visualized as a tree, as in Figure 1(a). Likewise, a more complicated
factorization such as

([(F2
 I4)T
8

4
(I2
 F4)L

8

2
]
 I4)T

32

4
(I8
 [(F2
 I2)T

4

2
(I2
 F2)L

4

2
])L32

8

can be more compactly represented in the split tree shown in Figure 1(b).

F

F F

rs

r s

F
32

F
8

F
4

F
4

F
2

F
2

F
2

(a) (b)

Figure 1: Split Trees: (a) A split tree for Frs and (b) A split tree for F32

Much of the data that we used in the experiments that follow involved using
the formula generator to produce all possible Cooley-Tukey expansions of a
particular sized Fn. As an example, F128 has 731 di�erent formulas that are
produced through applications of Cooley-Tukey. These formulas were then fed
to a rather good FFT package [2] to generate running times for each of the
formulas.

4 Relevant Features for Predicting Running Time

Given that many mathematically equivalent formulas have very di�erent run-
ning times when implemented, an important question to ask is what about
these formulas determine their running times? Or, equivalently, what are good
features for predicting a formula's running time?

To answer these questions, we will begin by introducing several di�erent
feature sets that can be used to describe Cooley-Tukey expansions of an FFT.
After each of these di�erent feature sets have been described, we will then
compare them along two di�erent measures to see how well the features can
di�erentiate formulas with di�erent running times.

3

4.1 Feature Sets

We begin by introducing a simple set of features to describe formulas. In par-
ticular, we take advantage of the fact that all of these formulas are produced by
repeated applications of Cooley-Tukey to a FFT. Then we successively re�ne
these features in di�erent ways to produce a class of feature sets.

4.1.1 Counting Leaf F's

One simple and yet important feature of a Cooley-Tukey expansion of an FFT
formula is the number and sizes of the actual FFT's that appear in the formula.
These are the Fn's that appear as leaves in the split tree. Speci�cally, we count
the number of F2's, the number of F4's, the number of F8's, and so on that
appear in the formula.

For example, the split tree shown in Figure 1(b) would have the features:

� 3 F2's

� 1 F4's

� 0 F8's

� 0 F16's

4.1.2 Counting All I's

Considering the previous features and the split tree, one modi�cation of the
above features would be to count all of the F's that appear in all of the nodes
of the split tree instead of just those in the leaves. If we ignore the root
node, this is equivalent to counting the number of I's of di�erent sizes in
the actual formula. Recall that the form of the Cooley-Tukey expansion is
Frs = (Fr
 Is) T rs

s
(Ir
 Fs) Lrs

r
. While the Fr and Fs maybe recursively

expanded with the Cooley-Tukey, the Ir and Is are maintained and thus leave
a trace of how the split tree was built.

For example, the split tree shown in Figure 1(b) would have the features:

� 3 I2's

� 2 I4's

� 1 I8's

� 0 I16's

4.1.3 Counting Leaf F's and All I's

For su�ciently large split trees, it is possible for two di�erent formulas to have
the exact same I counts, but to have di�erent leaf F counts. For example, see
Figure 2. So, a simple re�nement of the previous two feature sets would be to
include both. That is, we would count the number of F2's, the number of I2's,
the number of F4's, etc. in the formula.

For example, the split tree shown in Figure 1(b) would have the features:

4

F
2

F
2

F F
4

FF

F
512

32 16

8

F
32

F
16

F
512

F
8

F
2

F
2

F
4

Figure 2: Two split trees with the same I counts but di�erent Leaf F counts

� 3 F2's and 3 I2's

� 1 F4's and 2 I4's

� 0 F8's and 1 I8's

� 0 F16's and 0 I16's

4.1.4 Counting Left and Right Leaf F's

Consider again the �rst set of features that we introduced which simply counted
all of the leaf F's. A di�erent re�nement of this would be to separate F's that
are right children of their parents in the tree and those that are left children.
In particular, we would count the number of left F2's, the number of right F2',
the number of left F4's, and so on in the formula.

For example, the split tree shown in Figure 1(b) would have the features:

� 1 Right F2's and 2 Left F2's

� 1 Right F4's and 0 Left F4's

� 0 Right F8's and 0 Left F8's

� 0 Right F16's and 0 Left F16's

4.1.5 Counting Left and Right I's

Combining the idea in the previous subsection along with the idea of counting
all the nodes in the split tree, produces yet another set of features. In particular
we count the number of di�erent sized left and right F's appearing in the tree,
excluding the root node. This is equivalent to counting the number of di�erent
sized I's on the right or left side of the tensor product within the formula itself.

For example, the split tree shown in Figure 1(b) would have the features:

� 1 Right I2's and 2 Left I2's

� 2 Right I4's and 0 Left I4's

� 0 Right I8's and 1 Left I8's

� 0 Right I16's and 0 Left I16's

5

4.1.6 Counting Left and Right Leaf F's and All I's

Once again, counting left and right I's can't always distinguish two trees that
counting left and right F's can distinguish. Thus, we again combine the two for
a large set of features the include all those in the previous two sets.

For example, the split tree shown in Figure 1(b) would have the features:

� 1 Right F2's and 2 Left F2's and 1 Right I2's and 2 Left I2's

� 1 Right F4's and 0 Left F4's and 2 Right I4's and 0 Left I4's

� 0 Right F8's and 0 Left F8's and 0 Right I8's and 1 Left I8's

� 0 Right F16's and 0 Left F16's and 0 Right I16's and 0 Left I16's

4.2 Evaluating Features

4.2.1 Number of Partitions

Because several di�erent formulas can have the same set of feature values, the
features can be thought of as generating a set of equivalence classes or partitions.
Under a set of features, formulas are indistinguishable if they have the same set
of feature values, while formulas are distinguishable if they have di�erent feature
values.

Thus, a very simple measure of the e�ectiveness of a set of features is the
number of partitions it creates for a set of formulas. Some results are shown in
Table 1. As was discussed in Section 3, we used the automatic formula generator
to produce all Cooley-Tukey expansions of F16, F32, F64, F128, F256, and F512.
The bottom line of the table show the number of di�erent formulas produced.
The remaining lines show how many di�erent partitions or equivalence classes
are generated by the di�erent features for each set of formulas.

F16 F32 F64 F128 F256 F512

Leaf F 5 7 11 15 22 30
All I 7 13 31 68 168 385

Leaf F and All I 7 13 31 68 168 386
Left/Right Leaf F 11 23 44 81 142 241
Left/Right All I 14 45 149 523 1832 6585

Left/Right Leaf F and All I 15 49 170 617 2262 8473
All Formulas 15 51 188 731 2950 12235

Table 1: Number of Partitions Generated by Di�erent Feature Sets for all of
the Cooley-Tukey expansions of Di�erent Sized Fn's

Note that for all the sizes of Fn, as we move down through successive re-
�nements the number of partitions generally grows. That is, usually the feature
sets towards the bottom of the table split the formulas more than those towards
the top of the table. The one except to this is the Left and Right Leaf F features
which really is a re�nement of the Leaf F features instead of the All I features.

6

Also note that the �nal feature set, the Left and Right Leaf F and All I features,
are able to almost, but not quite, uniquely identify all the formulas. However,
as the size of Fn grows, this feature set is less and less able to uniquely identify
formulas.

4.2.2 Weighted Average Relative Standard Deviation

While being able to partition a set of formulas into a large set of equivalence
classes is important, ultimately we are only concerned that all of the formulas
within a partition have roughly the same running time. A good set of features
then are ones that can separate formulas with signi�cantly di�erent running
times into di�erent partitions so that all formulas within a single partition have
roughly the same running time. As a measure of this, we de�ne \weighted aver-
age relative standard deviation." For each partition we calculate the standard
deviation of the running times of all the formulas that fall into that partition.
We then calculate the relative standard deviation for each partition by dividing
the standard deviation by the mean. We then take a weighted average over all
partitions, weighting each relative standard deviation by the number of formulas
in the partition. See Table 2.

� Let Pk be the set of formulas in partition k.

� Let ti be the running time of formula i.

� Let mk be the mean running time of the formulas in Pk. Then,
mk = 1

jPkj

P
i2Pk

ti.

� Let �k be the standard deviation of the running times of the formulas

in Pk. Then �k =
q

1

jPkj

P
i2Pk

(ti �mk)2.

� Let rk be the relative standard deviation of the running times of the
formulas in Pk. Then rk =

�k

mk
.

� Then, the Weighted Average Relative Standard Deviation is

P
k
jPkjrkP
k
jPkj

.

Table 2: Calculating Weighted Average Relative Standard Deviation

Some results are shown in Table 3. Once again all of the formulas automati-
cally generated from Cooley-Tukey expansions of various sized Fn's where used.
Each formula was timed using the FFT package discussed in Section 3. Not
surprisingly, the feature sets with the least and the most number of partitions
(\Leaf F" and \Left/Right Leaf F and All I") have the worst (largest) and best
(smallest) weighted average relative standard deviations, respectively. However,
even though the Left/Right Leaf F feature set had more partitions in some cases
than the All I feature set, it consistently had a much worse weighted average
relative standard deviation | nearly as bad as that for the Leaf F feature set.

7

This shows that simply having more partitions does not mean a feature set
better distinguishes formulas with di�erent running times.

F16 F32 F64 F128 F256 F512

Leaf F 3.807% 5.152% 6.631% 6.200% 7.015% 7.166%
All I 0.905% 1.303% 1.437% 1.744% 1.772% 1.764%

Leaf F and All I 0.905% 1.303% 1.437% 1.744% 1.772% 1.741%
Left/Right Leaf F 2.739% 4.152% 5.955% 5.705% 6.648% 6.856%
Left/Right All I 0.290% 0.382% 0.484% 0.524% 0.580% 0.629%
Left/Right Leaf

F and All I
0.000% 0.123% 0.181% 0.276% 0.324% 0.380%

Table 3: Weighted Average Relative Standard Deviation of Di�erent Feature
Sets for all of the Cooley-Tukey expansions of Di�erent Sized Fn's

5 Learning to Predict Running Times

Given that there are many di�erent Cooley-Tukey expansions of large FFT's
and that they can have di�erent running times, we would like to �nd the one
with the fastest running time. One simple approach would be to use the formula
generator to produce all of the formulas and to time each one on each di�erent
machine that we might be interested in. Then the formula with the fastest time
can be determined for each machine.

There are two problems with this approach: (1) each formula may take a
non-trivial amount of time to run, and (2) there are a very large number of
formulas that need to be run. These problems make the approach intractable
for FFT's of even fairly modest sizes.

In this section, we present an approach to help solve the �rst problem. In
particular, our approach is as follows:

� Generate a small set of formulas automatically.

� Time each of these formulas.

� Describe the formulas by a set of appropriate features.

� Use this data to learn to quickly and accurately predict the running times
of the remaining formulas.

With the features discussed in the previous section and with some training data
obtained by timing a few formulas, we can use machine learning techniques to
produce a function approximator that can quickly predict the running times of
new formulas. Note that this still does not solve the second problem mentioned
above: we still must search through a large space of potential formulas. However,
we can now obtain a predicted running time much more quickly than we could
have obtained an actual running time.

8

Note that while accurately predicting a formula's running time allows the
fastest formula to be determined through exhaustive search over all formulas,
it is actually more than necessary. In particular, accurately predicting which of
two formulas runs faster would also allow the fastest formula to be determined
through exhaustive search over all formulas. Thus, a learning algorithmneed not
learn the exact running time if it can accurately predict which of two formulas
runs faster.

5.1 Experimental Setup

We decided to learn to predict running times for the formulas generated by
Cooley-Tukey expansions of F128. There are 731 such formulas. Timings were
obtained in two ways: (1) actual timings through the FFT package discussed
in Section 3, and (2) model approximations through the cost model shown in
Table 4.

Cost(Im
A) = Cost(A
 Im) = m�cost(A)
Cost(A �B) = Cost(A) + Cost(B)
cost(Fn) = a � n2 + b � n+ c

Cost(Tn

r
) = d � n+ e

Cost(Ln
r
) = 0

Used a = b = c = d = e = 1

Table 4: Simple Cost Model

We used a neural network as the function approximator. For all of the results
presented, we used 25 hidden units, a learning rate 0.01 and a momentum of
0.001. These parameters obviously are not highly tuned due to the fact that
they were used across several di�erent input feature sets (of varying number of
inputs) and across desired output (running time or faster of two formulas).

5.2 Results

Results for the model data are shown in Table 5 and results for the real data
are shown in Table 6. These tables are broken into several groups of rows,
with each row corresponding to a particular set of features that were used. For
each of these groups, experiments were run with di�erent sized training and test
sets. As a base case, all 731 formulas were used both in training and test in
the �rst row of each group. The 4 following rows in each group correspond to
randomly selecting a certain percentage of the formulas for training with the
remaining formulas used as a test set. In this latter case, results are averaged
over 4 random selections of training sets.

The column marked \Average Percent Error on Predicting Cost" reports
the prediction error on the test set. In particular, it is calculated by dividing
the absolute di�erent between predicted cost and actual cost by the actual cost,
and then averaging over all formulas in the test set:

9

� Let ci be the actual running time of formula i.

� Let pi be the predicted running time of formula i.

� Then the average percent error on predicting cost is

P
i2test�set

jci�pij

pi

jtest�setj .

The column marked \Percent Mistakes on Predicting Faster of Two" reports
the prediction error on a random sampling of pairs of formulas in the test set.
In particular, the number of samplings was 100 times the number of formulas
in the test set. The percentage was calculated by taking the number of pairs of
formulas the network predicted incorrectly which ran faster and dividing it by
the total number of pairs of formulas tested.

The \Leaf F and All I" and \Left and Right Leaf F and All I" models yielded
the best learning results. These results were quite good with less than 12% error
on predicting the faster of two formulas and less than 9% error on predicting
the running times. In fact, the error was much less than these in most cases.

Interestingly, the \Left and Right Leaf F and All I" model tended to predict
better for the larger training sets while the \Leaf F and All I" model tended to
predict better for the smaller training sets. This can be understood from the
fact that the \Left and Right Leaf F and All I" model has a lower weighted
average relative standard deviation and can thus better distinguish formulas
with di�erent running times, but when the training data is small generalization
may not occur as easily with this model.

The \Leaf F" and \Left and Right Leaf F" models both perform signi�cantly
worse than all of the other models at predicting the faster of two formulas. This
is not surprising, given that these two models had much larger weighted average
relative standard deviations.

6 Conclusions and Future Work

Through the use of rewrite rules and a formula generator, it is possible to
automatically generate di�erent but mathematically equivalent formulas in a
principled way. These formulas can then be described with various sets of simple
features which can reasonably partition the space of formulas into groups with
close running times. Finally, a function approximator can learn to accurately
predict the running time of a formula given a limited set of training data.

We are currently pursuing several lines of research that build upon the work
presented in this paper, including:

� Determining how well a function approximator can interpolate and ex-
trapolate to di�erent size Fn's. The results presented here all were for
Cooley-Tukey expansions of F128. If a function approximator was pre-
sented with Cooley-Tukey expansions of F128 and F512, could it predict
well for Cooley-Tukey expansions of F256 or F1024?

� Investigating other feature spaces. The features described in this paper
certainly are not the only ones that could be chosen.

10

� Investigating learning across machines and compilers. Could a function
approximator learn to predict running times for particular machine or
compilers, given some appropriate features of the machine and compiler.

� Investigating other factorizations of the FFT and other signal processing
algorithms.

� Finding a solution to the problem that there are an extremely large number
of possible formulas representing signal processing algorithms. In particu-
lar, it is not feasible to exhaustively generate all possible formulas for large
transforms. Instead, we are developing heuristic methods for searching the
space of formulas.

Acknowledgements

We would especially like to thank Jeremy Johnson, Jos�e Moura, and Markus
P�uschel for their many helpful discussions on this research.

References

[1] L. Auslander, Jeremy R. Johnson, and R. W. Johnson. Automatic im-
plementation of FFT algorithms. Technical Report 96-01, Department of
Mathematics and Computer Science, Drexel University, Philadelphia, PA,
June 1996.

[2] S. Egner. Zur Algorithmischen Zerlegungstheorie Linearer Transformationen

mit Symmetrie. PhD thesis, University of Karlsruhe, Germany, 1997.

[3] J. M. F. Moura, J. Johnson, R. Johnson, D. Padua, V. Prasanna, and M. M.
Veloso. SPIRAL: Portable Library of Optimized Signal Processing Algo-
rithms, 1998. http://www.ece.cmu.edu/�spiral/.

[4] K. R. Rao and P. Yip. Discrete Cosine Transform. Academic Press, 1990.

[5] R. Tolimieri, M. An, and C. Lu. Algorithms for Discrete Fourier Transforms

and Convolution. Springer, 2nd edition, 1997.

11

Features Train Test
Average Percent
Error on
Predicting Cost

Percent Mistakes
on Predicting
Faster of Two

100% 100% 0.6% 18.0%
75% 25% 0.8% 18.3%

Leaf F 50% 50% 0.8% 18.8%
25% 75% 0.9% 19.0%
10% 90% 1.4% 19.4%
100% 100% 0.4% 0.7%
75% 25% 0.7% 1.0%

All I 50% 50% 0.9% 1.3%
25% 75% 1.2% 3.1%
10% 90% 2.0% 8.1%
100% 100% 0.1% 0.0%
75% 25% 0.2% 0.1%

Leaf F and All I 50% 50% 0.3% 0.2%
25% 75% 0.6% 1.4%
10% 90% 1.2% 3.8%
100% 100% 0.5% 15.9%
75% 25% 0.8% 17.3%

Left/Right Leaf F 50% 50% 0.8% 17.3%
25% 75% 0.9% 17.1%
10% 90% 1.5% 19.0%
100% 100% 0.2% 0.6%
75% 25% 0.8% 1.6%

Left/Right All I 50% 50% 1.0% 2.3%
25% 75% 1.8% 6.0%
10% 90% 3.7% 12.8%
100% 100% 0.1% 0.2%

Left/Right 75% 25% 0.5% 0.5%
Leaf F and All I 50% 50% 0.6% 1.2%

25% 75% 1.2% 2.6%
10% 90% 2.9% 8.4%

Table 5: Prediction Accuracy for Model Data

12

Features Train Test
Average Percent
Error on
Predicting Cost

Percent Mistakes
on Predicting
Faster of Two

100% 100% 10.1% 31.3%
75% 25% 10.0% 31.2%

Leaf F 50% 50% 9.2% 32.1%
25% 75% 8.1% 31.2%
10% 90% 9.2% 32.3%
100% 100% 2.1% 8.3%
75% 25% 2.2% 8.0%

All I 50% 50% 2.5% 8.7%
25% 75% 4.7% 13.5%
10% 90% 11.6% 19.7%
100% 100% 1.8% 7.8%
75% 25% 1.9% 7.8%

Leaf F and All I 50% 50% 2.0% 8.2%
25% 75% 2.3% 8.7%
10% 90% 3.9% 9.7%
100% 100% 6.0% 28.7%
75% 25% 6.8% 30.3%

Left/Right Leaf F 50% 50% 6.5% 29.5%
25% 75% 6.9% 29.6%
10% 90% 8.6% 33.2%
100% 100% 1.1% 6.0%
75% 25% 2.7% 8.1%

Left/Right All I 50% 50% 4.1% 9.1%
25% 75% 9.7% 14.1%
10% 90% 16.3% 21.6%
100% 100% 0.7% 4.3%

Left/Right 75% 25% 1.6% 4.7%
Leaf F and All I 50% 50% 1.6% 5.3%

25% 75% 3.2% 6.5%
10% 90% 8.1% 11.7%

Table 6: Prediction Accuracy for Real Data

13

