
This research is sponsored in part by DARPA/ITO through DARPA Order D306, and issued
by Indian Head Division, NSWC under contract N00174-96-002. Additional support was provided by
the member companies of the Parallel Data Consortium, an NSF Graduate Research Fellowship,
and the United States Postal Service. The views and conclusions in this document are my own and
should not be interpreted as representing the official policies, either expressed or implied, of any
supporting organization or the U.S. Government.

Security for a High Performance
Commodity Storage Subsystem

Howard Gobioff

July 1999
CMU-CS-99-160

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Submitted in partial fulfillment of the requirements
for the degree Doctor of Philosophy

Thesis Committee :
Garth Gibson, co-chair
Doug Tygar, co-chair
M. Satyanarayanan

B. Clifford Neuman, USC Information Sciences Institute
Bennet Yee, University of California at San Diego

Copyright  1999 Howard Gobioff

Keywords: computer security, network attached storage, network attached secure
disks, NASD, capability system

Abstract

How do we incorporate security into a high performance commodity storage sub-
system? Technology trends and the increasing importance of I/O bound workloads are
driving the development of commodity network attached storage devices which deliver
both increased functionality and increased performance to end-users. In the network
attached world, storage devices co-exist on the network with their clients, application file-
managers, and malicious adversaries who seek to bypass system security policies. As
storage devices move from behind the protection of a server and become first-class net-
work entities in their own right, they must become actively involved in protecting them-
selves from network attacks. They must do this while cooperating with higher level
applications, such as distributed file systems or database systems, to enforce the applica-
tion's security policies over storage resources. In this dissertation, I address this problem
by proposing a cryptographic capability system which enables application filemanagers to
asynchronously make policy decisions while the commodity storage devices synchro-
nously enforce these decisions.

This dissertation analyzes a variety of access control schemata that exist in current distrib-
uted storage systems. Motivated by the analysis, I propose a basic cryptographic capability
system that is flexible enough to efficiently meet the requirements of many distributed
storage systems. Next, I explore how a variety of different mechanisms for describing a set
of NASD objects can be used to improve the basic capability system. The result is a new
design based on remote execution techniques. The new design places more access control
processing at the drive in order to deliver increased performance and functional advan-
tages. Based on the performance limitations of software cryptography demonstrated in a
prototype implementation of a network attached storage device, I propose and evaluate an
alternative to standard message authentication codes. This allows storage devices to pre-
compute some security information and reduces the amount of request-time computation
required to protect the integrity of read operations. Finally, I discuss the availability of
cryptographic hardware, how much is required for a network attached storage device, and
the implications of adding tamper-resistant hardware to a storage device.

Dedicated to the memory of John D. Gannon,
a great teacher and mentor to many

i

Acknowledgments

There are several people without whom this work would not have been possible, first
and foremost are my advisors, Garth Gibson and Doug Tygar. They gave me the
opportunity to explore my two primary research interests at the same time: systems and
computer security. Many years of collaboration with both of them have come to fruition in
this dissertation. Despite being neither my advisor nor a member of my thesis committee,
David Nagle gave me large amounts of his time and served as a virtual third advisor for
my final year or two at Carnegie Mellon University.

My doctoral work is also a direct result of collaboration with the marvelous people
of the Parallel Data Lab (PDL). Khalil Amiri, Fay Chang, Joan Digney, Jennifer
Landefeld, Patty Mackiewicz, Paul Mazaitis, Erik Riedel, David Rochberg, and Jim
Zelenka all contributed directly to the success of this work. I am indebted to Khalil and
Erik for their friendship, support, and feedback that helped me get through a graduate
school career that was filled with ample bumps and potholes. I’m the first to venture
beyond CMU but soon they will follow me into the real world. Fay and David helped with
the original NASD work as well as being there for the duration while we all diverged into
our separate research agendas. Jim Zelenka was instrumental in getting the NASD
prototype systems on which I did most of my research up and running . Last but not least,
Joan, Jennifer, Patty, and Paul all contributed to a friendly environment and helped protect
me from the administrivia of the university and the mundane details of keeping the
research group running so that I could do my job — research.

Of course, the atmosphere and people in the School of Computer Science were an
important part of my graduate school experience. The opportunity to learn about a wide
variety of topics through an abundant supply of seminars and hallway discussions has
helped me learn more than simple classroom teaching could ever achieve. For this, I will
forever me thankful. I would also like to thank all my friends in SCS who both helped me
stay sane during six years of graduate school and with whom I have shared the graduate
school journey.

ii

I would also like to thank the Parallel Data Consortium (PDC) members who
provided useful feedback on how to balance the interesting technical challenges versus
real world concerns through engaging discussions during their visits to CMU and the PDC
retreats. They provided me with insight and understanding into the concerns faced in
designing a commodity storage device. Specifcally, I’d like to thank Daniel Stodolsky and
Hugo Patterson at Quantum as well as Dave Anderson and Chris Malakapalli at Seagate
for useful discussions on the inner workings of drive electronics.

Finally, I would like to thank my parents, Sharon and Bruce, who gave me the
freedom to develop my intellectuall curiosity throughout my entire life. Never placing
unwarranted limits on what I chose to do, they simply prevented me from doing too much
damage to myself or the world. I would also like to thank my brother Neil for his constant
support during my years at CMU.

— Howard Gobioff
Pittsburgh, PA

7/30/99

iii

Table of Contents

Chapter 1: Introduction ...1

Chapter 2: Background..5

2.1 Server Attached Disks: the Status Quo..5
2.2 Motivating Technology Trends ...7
2.3 Network Attached Secure Disks ..9

2.3.1 Drive Model ..11
2.4 The Security Problem ..13
2.5 NASD Related Work ...16

Chapter 3: Survey of Access Control Policies..19

3.1 Multics ...20
3.2 Network File System (NFS) ..21
3.3 Windows File Sharing ...23
3.4 AppleShare...27
3.5 Andrew File System...29
3.6 Novell Netware ..32
3.7 Files-11 and OpenVMS ...33

3.7.1 A User’s Security Profile..33
3.7.2 Protecting Files and Directories..34
3.7.3 Inheritance ..36

3.8 Generic Authorization and Access Control API..36
3.9 SQL-92...37
3.10 Discussion ..40

Chapter 4: The NASD Security System..43

4.1 Basic Design ..44
4.1.1 Overview...44
4.1.2 An Example Read Request ...48

4.2 NASD Access Credentials ...50
4.2.1 The Private Credential ..50
4.2.2 The Public Credential ...53

4.3 Keys ...55

iv

4.3.1 Key Hierarchy...55
4.3.1.1 Master Key...56
4.3.1.2 Drive Keys ...57
4.3.1.3 Partition Keys ..57
4.3.1.4 Working Keys ..57

4.3.2 Details of Keys..58
4.3.2.1 Initialization of a NASD..58
4.3.2.2 Key Caching ..59
4.3.2.1 Key Generation ..60
4.3.2.2 Key Length and Use ..62

4.4 Design Details..63
4.4.1 Security Header...63
4.4.2 Protection Options ..64

4.4.2.1 Description of Options...64
4.4.2.2 Sources of Security Options ..65
4.4.2.3 Attacking the Security Options..65
4.4.2.4 Minimal Protection of Drive Management Operations66

4.4.3 Audit Logs ..66
4.4.4 Cryptographic Primitives..68

4.4.4.1 Message Authentication Code ...68
4.4.4.2 Encryption..69
4.4.4.3 Encryption Mode ...70

4.4.5 Privacy and Integrity Together ...71
4.4.6 Freshness...72

4.4.6.1 Random Nonces...73
4.4.6.2 Sequence Numbers ..73
4.4.6.3 Timestamps..74

4.5 Security Analysis ...75
4.5.1 Discussion of Formal Analysis ...75

4.5.1.1 Denial of Service ...76
4.6 Implementation Status ...77
4.7 Related Work ...77

4.7.1 Capability Systems ...77
4.7.2 Other General Related Work ..79

4.8 Summary ..81

Chapter 5: Alternative Access Credentials..85

5.1 Critique of NASD Capabilities ..86
5.1.1 No Support for Dynamic Relationships..86
5.1.2 Client Latency...87
5.1.3 Load Offered to Filemanager..87

5.1.3.1 Sample Workloads...88
5.1.3.2 Simulation..89

5.1.4 Operations Involving Multiple Objects ..94
5.1.5 No Cross-object Locality ..95

v

5.2 Batching Capabilities ...96
5.3 Indirection via On-disk Objects ...97
5.4 Metadata Filter Credentials..100

5.4.1 Size of Metadata Filters ..102
5.4.2 Information Leakage...104
5.4.3 Support for Dynamic Access Control Systems...104
5.4.4 Reduced Load on Filemanager ...105
5.4.5 Improved Drive Key Cache Hit Rate..107
5.4.6 Costs..111

5.5 Policy objects ...112
5.6 Related Work ...113
5.7 Conclusion ...114

Chapter 6: Efficient Drive Protection of Communication Integrity115

6.1 Limitation of Software Cryptography..115
6.2 More Reads than Writes: An Opportunity ...117
6.3 Communication Integrity ...118
6.4 Hash and MAC ..120

6.4.1 Security of Hash and MAC...121
6.4.2 Performance of Hash and MAC..123
6.4.3 Storing the Precomputed Message Digests in NASD.................................125
6.4.4 Hash and MAC for Attributes...127

6.5 Efficient support for small operations with stored digests128
6.5.1 Incremental Hashing ...130
6.5.2 Incremental Digests for NASD...131
6.5.3 Comparison of Cryptographic Cost ..134

6.5.3.1 Integrity Overhead Costs at the Client...135
6.5.3.1 Integrity Cost at the Drive for Reads ...136
6.5.3.1 Integrity Cost for Writes at the Drive ..137
6.5.3.1 Incremental Advantage for Clients ..138

6.6 Improving Receiver Buffering...139
6.7 Related Work ...140
6.8 Discussion & Conclusion...141

Chapter 7: Hardware for Security Performance...143

7.1 The Physical Architecture of a Network Attached Secure Disk?........................144
7.2 Software Cryptography: A Performance Bottleneck ...145
7.3 Cryptographic Hardware: An Overview..146
7.4 Integrating Security Hardware in Storage Devices..146

7.4.1 Security and the Drive Datapath ...146
7.4.2 Latency..147
7.4.3 Throughput..150

7.5 Simulation Study of the Impact of Underprovisioned Digest Throughput on Client
Latency when Protecting Integrity...153

vi

7.5.1 Simulation Environment ...154
7.5.2 Results...157
7.5.3 Sensitivity Analysis ..164

7.6 Hardware Solutions..166
7.6.1 Expanding the Role of the Integrated ASIC ...166
7.6.2 Potential of Reconfigurable Hardware ...167

7.7 Chapter Summary ..168

Chapter 8: Tamper Resistance...171

8.1 Machine Rooms ...172
8.2 Tamper Resistance...172
8.3 Media Cryptography ..177
8.4 Chapter Summary ..178

Chapter 9: Conclusion and Future Work..179

9.1 Future Work...181

Appendix A: GNY Analysis..183

9.2 Notation ...184
9.2.1 GNY Notation...184

9.3 Anonymous Clients..185
9.4 Logical Postulates Used...186

9.4.1 Being Told Rules ..186
9.4.1.1 T1 ...186
9.4.1.2 T2 ...186
9.4.1.3 T3 ...186

9.4.2 Possession Rules ...186
9.4.2.1 P1 ...186
9.4.2.2 P2 ...187
9.4.2.3 P3 ...187

9.4.3 Freshness Rules...187
9.4.3.1 F1 ...187

9.4.4 Message Interpretation Rules..188
9.4.4.1 I1 ..188
9.4.4.2 I3 ..188

9.4.5 Jurisdiction Rules..188
9.4.5.1 J1 ..188
9.4.5.2 J2 ..189

9.5 Analysis ...189

References ..193

vii

List of Figures

Figure 1-1 SAD versus NASD...2
Figure 2-1 Server Attached Disks..6
Figure 2-2 Quantum Trident ASIC ..9
Figure 2-3 An Overview of the NASD Architecture ...10
Figure 2-4 SAD vs. NASD. ...13
Figure 3-1 NT 4.0 Filesharing Architecture ..23
Figure 3-2 Example Directory Structure ...24
Figure 3-3 Example NT ACL ..25
Figure 3-4 Example AFS ACL ..30
Figure 3-5 NASD Based DBMS Architectures ...39
Figure 4-1 Flow of NASD Security ...45
Figure 4-2 Overview of NASD Security..47
Figure 4-3 Example Read Request ..49
Figure 4-4 Message Authentication Code Dependency...51
Figure 4-5 NASD Key Hierarchy...58
Figure 4-6 Private Credential Cache..60
Figure 4-7 Encryption in Counter Mode..70
Figure 5-1 Capability Requests Impact on Latency...88
Figure 5-2 Offered Load Over Entire Trace...91
Figure 5-3 120 Minutes from AFS and NFS Workloads ...92
Figure 5-4 Filemanager Load Percentiles: Capabilities...93
Figure 5-5 Baseline Hit Rate in On Disk Capability Cache Performance...................95
Figure 5-6 Evaluation of a Group Capability ..99
Figure 5-7 Evaluation of a Metadata Filter Credential ..102
Figure 5-8 Comparison of BPF and NASD MF formats ...103
Figure 5-9 Example of Scope of Different Forms of Access Credentials105
Figure 5-10 NFS on NASD Load Percentiles..107
Figure 5-11 AFS on NASD Load Percentiles..108
Figure 5-12 Filemanager Load Percentiles: Alternative Access Credentials109
Figure 5-13 Hit Rate of on Disk Access Credential to Cryptographic Key Cache....110

viii

Figure 6-1 Prototype Read Bandwidth ...116
Figure 6-2 MAC Structures..120
Figure 6-3 HierMAC Performance ..124
Figure 6-4 Fast Client with HierMAC ...125
Figure 6-5 Storage of Digests in Prototype Drive..126
Figure 6-6 Software Cryptography with Small Requests ..129
Figure 6-7 Structure of an Iterated Hash Function ..133
Figure 6-8 Client Overhead for Integrity ...135
Figure 6-9 Drive Cryptographic Cost for Integrity on Reads136
Figure 6-10 Drive Cryptographic Cost for Integrity on Writes138
Figure 6-11 Inline Message Authentication Codes..139
Figure 7-1 Quantum Trident ASIC ..144
Figure 7-2 Model of a NASD’s Internal Functional Pipeline147
Figure 7-3 Dependency Graph for Security Processing ..148
Figure 7-4 Comparison of Latency for Different MAC Approaches.........................151
Figure 7-5 Simulation Queueing Model ..156
Figure 7-6 Average Additional Latency Seen by Clients...157
Figure 7-7 Percentage Outliers ..158
Figure 7-8 Maximum Additional Latency Seen by Clients159
Figure 7-9 Maximum Latency with Time Slicing SHA-1 Unit161
Figure 7-10 Impact of Time Slicing SHA-1 Unit on Percentage of Outliers162
Figure 7-11 Impact of Pull Semantics on Added Latency...163
Figure 7-12 Sensitivity to Drive Service Time ..164
Figure 7-13 Effect of Increased Load on Added Latency..165
Figure 8-1 Minimal Security Boundary...175
Figure 8-2 Security Boundary in a Viking Like Implementation176

1

Chapter 1: Introduction

Network attached storage devices are a reality. As the storage industry tries to
deliver improved performance to the end user from commodity storage subsystems, it has
moved towards adopting technologies that attach low-cost storage devices directly to the
network. But despite the fact that the industry is moving in this direction [NSIC96,
Seagate98, SNIA98], there has been little research done on the security issues of network
attached storage and the optimization of the security system for overall system perfor-
mance. My dissertation describes the design and implementation of a secure system effi-
ciently supporting access control, integrity, and privacy in a network attached storage
system.

When a computer system is used by a single individual and all hardware is
maintained in an environment with controlled access, the user can have a high level of
confidence in the system’s integrity. But in a distributed system environment, new
concerns arise: system components are stored in physically disparate locations and
components communicate over a potentially insecure communications network. As a
result, a distributed system is open to attacks over the network, such as forging messages
on the network, tampering with the messages’ contents, replaying or reordering messages,
spoofing a user’s identity, or denying service to valid requests.

With increasingly abundant resources on the network, security is becoming a greater
concern both in academia and in industry, as witnessed by the widespread coverage of any
security problems in the popular press. In the last fifteen years, the pervasive model of
computing has gone from personal computers, terminals, and mainframes to networked
resources across a department, building, campus, or the world. As the usage of distributed
resources has increased, the security community has developed a variety of techniques and
algorithms to address security concerns [Schneir96, Menezes98] in applications such as
electronic commerce [Cox95, Yee95], authentication [Neuman94], and function
shipping [Gosling96, Necula96].

Distributed filesystems such as the Andrew File System (AFS) [Howard88,
Satyanarayanan89], Network File System (NFS) [Sandberg85, Callaghan95], Secure File
System (SFS) [Mazieres97], Serverless Network File System [Anderson96c], Sprite
[Ousterhout88] and Truffles [Reiher93], separate components of the filesystem for
performance, management, and data sharing. The older of these, such as NFS and Sprite,

2

assume clients are trusted and pay little attention to security while AFS, SFS, and Truffles
are unwilling to make this assumption and, instead, assume that clients may be
compromised or even malicious and therefore place a greater emphasis on system security.

The Network Attached Secure Disk (NASD) architecture pushes the distributing
system components a step further. A traditional distributed filesystem (Figure 1-1a)
aggregates all the data behind one, or a few, servers whose primary tasks are supporting
high-level filesystem semantics and copying data from a storage network, such as SCSI, to
a general-purpose commodity network, such as Gigabit Ethernet. In contrast, the NASD
architecture (Figure 1-1b) allows all communication to occur over a single general purpose
network and removes the fileserver from the datapath, significantly reducing the server’s
workload and increasing its scalability [Gibson97a]. Because the server is no longer
limiting the storage-to-client datapath bandwidth by copying through the server CPU, the
storage system can deliver greater cost-effective bandwidth to clients than is possible with
more conventional approaches [Gibson98].

In network attached storage systems, storage devices themselves must play an active
role in the security of the entire distributed system, rather than having fileservers perform
this function. Because fileservers no longer protect the storage devices, a malicious party
can directly address the devices. In extreme cases, the storage may be physically
accessible and subject to direct attack.

A storage device participates as part of a distributed application (such as a
distributed filesystem, database, or video server) and serves as a repository for data. A
single type of storage device may be used in a wide variety of applications, thus only the
most common set of semantics are fixed in the NASD interface [Gibson97b], a proposed
network attached storage system. The limited interface of storage devices forces most of

Clients

Storage Network

Server

LAN

Client

NASD

NASD

Server

LAN

(a) Server Attached Disk (b) Network Attached Secure Disk

Figure 1-1 SAD versus NASD

On the left, the traditional approach, which I call Server Attached Disks (SAD), forces the
server machine to copy data from a storage network onto a LAN. On the right, the Network
Attached Secure Disk (NASD) architecture removes the server from the datapath and
allows clients to directly transfer data with the storage devices.

3

the application specific complexity, including the security policies, to reside in the
filemanager, essentially a fileserver that does not move data. However, the enforcement of
these policies must occur synchronously at the storage device. This requires that the
NASD interface include a mechanism through which a filemanager can express policy
decisions to the drive. These decisions must be enforced on each request without
decreasing or eliminating the performance advantages of the NASD architecture.

The critical security requirement for network attached storage is that the storage
device must protect the integrity of all data that users entrust to it. Specifically, the drive
should verify that the filemanager has authorized each request and that no adversary has
tampered with any request. Privacy, in contrast, is an optional requirement because it can
be provided, with some limitations, at the application (e.g. filesystem) layer. This is not an
option for integrity; an application cannot protect the integrity of the data unless the
storage devices directly participate in this task. Without integrity support at the drive, an
attack could easily modify message traffic to alter any data that was being read or written
to storage and effectively destroy system integrity.

While many of the same technology trends which improve workstation and server
performance also improve storage devices, storage devices fall far short of servers in terms
of DRAM, computational capacity, and cost. These relative shortages thus make efficient
resource utilization more critical in storage devices than in servers. Hard disk drives — the
largest portion of the storage market— compete in a very cost sensitive market; thus it is
important to add only the required functionality with minimal added resource
requirements. The limited resources motivate a design that is focused on limiting both the
amount of state and computation necessary to provide security.

These issues all coalesce into a need for a security subsystem that addresses, first,
the requirement that a storage subsystem be suitable for different applications, and,
second, storage devices’ resource constraints. My thesis statement can be summarized as
follows.

A cryptographic capability system designed for a range of distributed
storage applications provides fundamental scalability because it enables
reuse of policy decisions and unmoderated, parallel interactions
between application and device. Furthermore, commodity storage
devices can be designed to inexpensively provide security and high
bandwidth.

To validate the thesis, I present a basic capability design that delivers synchronous
enforcement of security policy with asynchronous involvement of the server. This
separation of roles delivers the scalability advantages demonstrated in earlier work
[Gibson97a]. I address the throughput limitations of software cryptography by careful
selection of cryptographic primitives, a novel application of message digests to protect
integrity, and cryptographic hardware. These options are evaluated by a combination of
prototype implementation and simulation results. Finally, I address physical security by
constructing a high-level design for a tamper-resistant network attached storage device.

4

Through the process of validating my thesis claim, this dissertation describes a
design for such a system, then provides both an analysis of the design and an
implementation of the design. It makes the following novel contributions:

• An argument for the separation of policy and mechanism in a commodity network
attached storage system enforced by a cryptographic capability system,

• The basic design and implementation of a security system for network attached storage,
based on cryptographic capabilities,

• An understanding of the scalability advantages of aggregation mechanisms that move
more functionality to the storage device,

• A proposal to use precomputed hash values as the basis for a new message
authentication code structure,

• A demonstration of the performance advantage of the new message authentication code
structure,

• An understanding of the performance requirements for message authentication code
computation,

• An evaluation of available options for hardware support, and

• A high-level sketch of a NASD design based on tamper-resistant hardware.

Chapter 2 presents some background on network attached storage and its motivating
trends, a discussion of the security needs of network attached storage, and describes my
basic model of a network attached storage device. Chapter 3 surveys the access control
policies of a set of filesystems and databases to illustrate the diversity of requirements that
may be placed on the NASD security system. Chapter 4 presents the basic design of the
NASD security system based on capabilities, which I implemented in the CMU NASD
prototype system, and analyzes the security of the system. Chapter 5 explores the
implications of a variety of alternatives to capabilities from the perspective of the
filemanager and the storage device. Chapter 6 describes an alternative message
authentication code structure enabling the drive to precompute message digests and
provide strong levels of security with reduced resource requirements at the drive.
Chapter 7 explores a range of performance points for MAC bandwidth. Chapter 8 surveys
current physical attacks against computing devices and discusses what is necessary to
build a tamper-resistant network attached secure disk. Chapter 9 concludes and presents
some future directions for further research.

5

Chapter 2: Background

In this chapter, I introduce the problem domain for my dissertation. This chapter
introduces the idea of network attached storage and the security challenges that it creates.
I start with a description of current storage systems and their performance constraints.
Second, I describe the technology trends which enable network attached storage to
improve over current storage systems. Third, I describe the network attached secure disk
architecture, as well as my model for its storage devices. After introducing the basic
research area, I discuss the security problem in the context of network attached storage
and how it differs from past storage systems. Finally, I conclude with a discussion of work
related to the basic network attached storage architecture.

2.1 Server Attached Disks: the Status Quo

The server attached disk (SAD) architecture, shown in Figure 2-1, is the storage
architecture most familiar to office and local area networks where storage is privately
connected to a server machine. In a SAD system, the server machine can bottleneck the
entire storage system when the system is under heavy load. A significant portion of the
server’s resources are dedicated to simply moving data from a storage network to a local
area network. In this section, I will explain both the role of the server and accepted
techniques for improving storage system performance.

The server’s purpose is to provide some application to a client using a set of storage
devices. An application consists of a set of well defined behaviors that clients expect to see
when accessing the storage system. Examples of applications that could be built on top of
network attached storage are a web server, a distributed filesystem, or a database system.
A principal measure of an application’s cost is the computational power required from the
server machine to service a group of clients [Howard88, Nelson88].

The server’s primary task is to act as an interface for clients to a storage system.
Clients issue requests over a local area network (LAN) and the application-specific server
processes the request and then forwards the request directly to the storage devices. In turn,
the storage devices generate a reply to the server which the server forwards to the clients.
In this architecture, the server must first copy the request from the LAN to the storage
network and then the reply from the storage network back to the LAN. In filesystems,

6

simply moving the data between these two networks can account more than 50% of the
server’s load [Gibson97a].

Past research has demonstrated several well understood techniques to improve
system performance, such as caching, striping, and closer integration. These form the
basic toolbox for building a distributed storage system.

Client caching can reduce the server’s load by satisfying requests at the client
machine. For example, AFS clients use local disks to cache a portion of the distributed
filesystem’s files. Requests to cached data never leave the client machine. Since local
caches absorb requests, it is possible to reduce server load. While client caching is
essential for high performance, increasing file sizes and increased sharing are inducing
more cache misses per cache block [Ousterhout85, Baker91].

Striping is another mechanism that improves the scalability of servers and I/O
bandwidth. Individual filesystem objects are divided into stripe-units which are
distributed, i.e. striped, across multiple fileservers. This enables parallel transfers of larger
datasets while balancing the load over multiple servers [Cabrera91, Hartman93]. The large
parallel transfers provide greater throughput to a client than a single server could provide
to clients by spreading the request load across multiple underlying storage devices. The
balancing reduces the “hot-spot” phenomena caused by the ad-hoc balancing of a
filesystem’s namespace, which is familiar from multiple-disk mainframe
systems [Kim86]. Other research on striping systems has emphasized redundancy at the
controller level [Cao93] and the management problems that come from incremental
growth in storage systems that span multiple storage servers on the network [Lee96,
Thekkath97].

Server integrated disks (SID), an approach closely related to SAD, exploits the fact
that server machines are frequently dedicated resources which provide only a single
service to clients. In a SID system, the server is built using a combination of highly
optimized software and special-purpose hardware that is dedicated to a specific
application. Thus, the server can service requests more efficiently than a general-purpose
machine and operating system. These highly specialized systems have evolved to fill an
important high-performance market niche [Hitz90, Hitz94]. Architecturally, SID systems

Figure 2-1 Server Attached Disks

Server attached disks are the familiar LAN
distributed filesystem or database system.
The server is responsible for receiving
client requests over the LAN (1) and
transforming the request into a storage
operation (2). The storage devices then
replies to the server (3) which forwards the
replies to clients (4). A significant portion
of the servers task is copying data from the
storage network to the local area network.

Server

LAN

Clients

Storage Network

1

2

3

4

7

are very similar to SAD systems but reflect special-purpose optimizations in their
increased costs.

Server systems are an expensive approach to scaling storage bandwidth. With server
integrated or server attached disks, placing a new disk on the server adds storage capacity
but does not add bandwidth to the clients unless the server already has excess CPU and
networking resources. Adding the CPUs and network interfaces necessary to deliver the
bandwidth of the storage subsystem to the clients adds an overhead of about 80% for
server resources to deliver the raw disk performance to clients [Gibson98].

The difficulty of scaling servers and aggregate bandwidth in a server based storage
systems presents an opportunity to improve over the status quo with a network attached
storage architecture, which is presented in Section 2.3. In the next section, I will describe
some of the technology trends that enable us to adopt a network attached storage
architecture and exploit this opportunity for improvement.

2.2 Motivating Technology Trends

Technology trends are enabling storage devices to directly deliver their performance
to clients rather than requiring the assistance of an intervening server. In [Gibson98], the
CMU NASD group argues that the role of the commodity storage device is changing as a
result of the synergy of several technology trends: I/O bound applications, new drive
attachment technologies, rapidly increasing drive performance, convergence of peripheral
and interprocessor switch networks, and excess of on-drive transistors.

• I/O-bound applications: Traditional distributed filesystems workloads are dominated
by small random access to small files whose sizes are growing with time, though not
dramatically [Baker91, TPC98]. In contrast, new workloads are much more I/O-bound,
including data types such as video and audio [Quantum99], and applications such as
data mining of large data sets such as retail transactions, medical records, multimedia
databases, or telecommunication call records.

• Rapidly increasing drive capabilities: The storage industry has been improving areal
densities at 60% per year to help meet the increased application demands. The same
technology improvements are also driving up disk bandwidth at 40% per year while
driving down the cost per megabyte by 40% per year [Grochowski96].

• New Drive attachment technologies: The storage industry has evolved SCSI
technology through a variety of similar technologies such Wide SCSI, UltraWide SCSI,
and Fast Wide Differential SCSI to deliver rapidly increasing drive performance. The
high transfer rates of modern drives has put pressure on the physical and electrical
design of bus-based technologies such as SCSI to dramatically constrain the bus length
(similar to the problems faced by Ethernet as it has evolved from a 10 Mbps standard to
100 Mbps and Gigabit/sec versions). For this reason, the storage industry is moving
towards transporting SCSI communication over Fibrechannel [Benner96], a serial,
switched, packet-base peripheral network that supports long cable lengths and high

8

bandwidth. For example, Quantum has publicly displayed their JINI demonstration
disks which use an Ethernet interface [Wolfe99]. Attachment technologies that are
more network oriented than a peripheral bus, such as Fibrechannel and Ethernet, also
offer significantly greater addressability through name spaces that are orders of
magnitude larger than a SCSI bus’s 16 device limit.

• Convergence of peripheral and interprocessor networks: The amount of modern
scalable computing research being done and the number of products based on clusters
of commodity workstations are increasing. In contrast to the special-purpose
interconnects of massively parallel computers such as the IBM’s SP2, Intel’s Paragon,
and CalTech’s Cosmic Cube, cluster computing typically uses standard protocols over
commodity LAN routers and switches. To make clusters effective, low latency network
protocols and user-level access to network adapters have been proposed [Wilkes92,
Maeda93, Boden95, Horst95, vonEicken95]. Additionally, a new adapter card interface,
the Virtual Interface (VI) Architecture has been standardized [Intel97]. Preliminary
implementations of the VI Architecture in the Giganet GNN 1000 network adapter
provide almost 100% of the available network bandwidth in a Gigabit/sec network,
with less than 10% host-CPU utilization and extremely low latencies [Giganet98].
These developments continue to narrow the gap between the channel properties of
peripheral interconnects and the network properties of client interconnects [Sachs94]
and make the competing storage connection technologies — Fibrechannel and Gigabit
Ethernet — look more alike than different. Recently proposed interconnect
technologies for workstations such as the Next Generation I/O (NGIO) Forum indicate
an industry move towards a switched technology for device attachment to
workstations [NGIO99].

• Excess of on-drive transistors: The increasing transistor density in ASIC technology
has enabled disk drive designers to lower cost and increase performance by integrating
sophisticated special-purpose functional units into a small number of chips. Figure 2-2
shows the block diagram for the ASIC at the heart of Quantum’s Trident drive. When
drive ASIC technology advances from 0.68 micron CMOS to 0.35 micron CMOS,
drive vendors could integrate a 200 MHz StrongARM microprocessor on to the same
ASIC and still have the equivalent of approximately 100,000 gates of space for on-chip
DRAM, cryptographic support, or network support while maintaining the same die
size. For example, Siemens, Cirrus, and PalmChip all have products integrating RISC
microcontrollers on ASICs with drive-specific functions [Siemens97, Cirrus99,
Palmchip99].

These trends all increase demands on storage subsystems while enabling storage
devices to provide higher level functions, compared to simple block oriented interfaces
like SCSI, and deliver increased performance to clients over storage networks that are very
similar to general-purpose networks. These trends point the way towards network attached
storage systems which will address some of the performance shortcomings of server
attached or sever integrated disks.

9

2.3 Network Attached Secure Disks

Network attached secure disks (NASD), the storage architecture explored by
Carnegie Mellon University’s Parallel Data Lab (PDL) [Gibson97a, Gibson98], addresses
the scalability, throughput, and cost issues of server attached storage by directly attaching
storage to the network and bypassing the server on common operations as shown in Figure
2-3.

The NASD architecture changes the server’s role from being actively involved in
every request to a management role of providing high level application-specific semantics
to clients. The server is no longer on the datapath and its responsibilities have changed so I
refer to the remaining server functionality as the filemanager. The filemanager is
responsible for defining policy with regard to who can access storage as well as for adding
high-level functions such as cache consistency and namespace management. While I will
refer to this vestigial server as the filemanager throughout the dissertation, a filemanager
could be the management portion of any other application built on NASD such as a
database.

(b) Next-generation ASIC (0.35 m icron technology)(a) Current Trident ASIC (74 m m 2 at 0.68 m icron)

.35 micron frees 40 mm 2

Insert StrongArm RISC µP
fits in 27 mm 2 with 8K+8K cache
at 200 MHz, 230 Dhrystone MIPS

frees 100 Kgates
? cryptography
? network support

Figure 2-2 Quantum Trident ASIC

Quantum’s Trident disk drive features the ASIC on the left (a). Integrated onto this chip
are multiple functional units with a total of about 110,000 logic gates and a 3 KB SRAM:
a disk formatter, a SCSI controller, ECC detection, ECC correction, spindle motor control,
a servo signal processor and its SRAM, a servo data formatter (spoke), a DRAM
controller, and a microprocessor port connected to an external RISC processor. By
advancing to the next higher ASIC density (b), this same die area could also accommodate
a 200 MHz StrongARM microcontroller and still have space left over for DRAM or
additional functional units such as cryptographic or network accelerators.

10

The NASD architecture can reduce the load on the server machine as well as
increase the aggregate bandwidth delivered to clients. In previous work, CMU’s NASD
group demonstrated the NASD architecture can reduce the filemanager’s load, during
burst activity, by a factor of five for an AFS on NASD and by a factor of ten for an NFS on
NASD system when compared to a server attached disk architecture [Gibson97a].
Additionally, CMU’s NASD group demonstrated, in experiments using up to 8 client-disk
pairs, that a NASD specialized filesystem can deliver linear scaling of bandwidth to
clients [Gibson98].

The CMU NASD group argues that network attached storage should have the
following properties[Gibson98]:

• Direct transfer: Data is transferred between the drive and the client without indirection
or store-and-forward through a server machine.

• Object-based interface: Drives export variable length “objects” instead of fixed-sized
blocks which gives drives direct knowledge of the relationships between disk blocks
and minimizes security overhead. This feature also improves opportunities for storage
self-management by extending into a disk an understanding of the relationships
between blocks on a disk [Anderson98].

• Asynchronous oversight: This is the ability of the client to perform most operations
without synchronous appeal to the filemanager for authorization. Frequently consulted
but infrequently changed policy decisions, such as authorization decisions, are encoded
into access credentials generated by the filemanager, given to clients, and subsequently
enforced by the drives.

Figure 2-3 An Overview of the NASD Architecture

The major components are annotated with the layering of their logical components.
Clients infrequently consult the filemanager when policy decisions are necessary, thus
minimizing the load on the filemanager. However, for most read/write operations, the
clients directly communicate with the storage devices eliminating the store-and-forward
inherent through a server in more traditional storage architectures.

Filesystem

Access Control
Namespace
Consistency

Net Protocol

Net Hardware

File Manager

Switch

Client

Read/Write

NASD Driver

Net Protocol

Net Hardware

Application

Filesystem

NASD

Net Protocol Controller

Net Hardware HDA

NASD Object System

Security Layout

NASD

NASD

11

• Cryptographic integrity: By attaching storage to the network, the storage is now a
first-class network entity and open to direct attack by adversaries. Thus, it is necessary
to use cryptographic techniques to defend against potential attacks and enable storage
to effectively enforce the policies of the fileservers.

While direct transfer and an object-based interface are simple properties,
asynchronous oversight and cryptographic integrity pose greater challenges.
Asynchronous oversight challenges the architecture to minimize the involvement of the
fileserver in order to increase the filemanager’s scalability. Asynchronous oversight and
cryptographic integrity represent the challenge in how the filemanager enforces its policy
over storage and how to protect network communication with the drive.

The focus of the NASD project has been on redefining the function and role of the
most basic storage device, the hard disk, although much of the research is also relevant to
other definitions of a storage device such as a RAID array or DVD jukebox. In order to
allow arbitrary applications to be implemented on the NASD architecture, the architecture
separates management and application-specific semantics from generic data movement
operations. A sophisticated server machine handles the former while a low-level storage
device focuses on the latter.

Our group has studied and proposed a design for a next generation interface for
commodity storage devices [Gibson97b]. This interface is currently the basis for pre-
standards discussions among storage vendors as a potential follow-on to SCSI as part of
the National Storage Industry Consortium’s Network Attached Storage Working
Group [NSIC96] and formed the starting point for Seagate’s Object Oriented Disk (OOD)
draft specification [Seagate99b].

2.3.1 Drive Model

In this section, I introduce my working model of network attached storage as used in
the remainder of the dissertation. I present a very basic description of the NASD interface,
as well as some basic expectations about a drive’s working environment and hardware. A
more detailed discussion of the interface to the drives can be found in [Gibson97b].

A NASD disk divides its available storage capacity into a group of disjoint portions
of capacity called partitions, which are defined by a set of cryptographic keys that enable
administration by filemanagers (as discussed at length in Section 4.3) and by a portion of
the drive’s overall capacity. Similar to traditional partitions in a Unix or DOS system, the
capacity of a partition is expected to change infrequently, but, unlike a traditional partition,
the actual low-level storage blocks associated with the partition can be changed freely by
the storage device because the block assignments are hidden below the interface that
storage presents to the application.

Within each partition, applications create file-like objects containing a single set of
attributes, the metadata information exported by the drive, and a variable length sequence

12

of bytes. In some applications, a NASD object will correspond to an entire file while other
applications use an object to store a fragment of a file, such as a stripe unit for data
striping, or database table. The access control system and management of the storage takes
place at the object level in order for the drive to make local decisions about efficiently
managing its storage below the interface.

In the previous section, I discussed how disk drive ASICs are rapidly gaining
resources as they ride the same technology curves as workstation microprocessors.
However, they are currently, and will remain for the foreseeable future, two or more
generations of technology behind high performance processors. Because of the cost-
sensitive commodity nature of storage, manufacturers are unable to incorporate leading
edge semiconductor technology into a disk drive. Thus, they will always be resource poor
relative to modern workstations.

Early NASD drives will have a processor comparable to a 200 MHz StrongARM,
Intel’s high performance embedded processor from the ARM processor family [Jaggar96],
to perform most of the NASD control functions beyond low level media management
functions which can be borrowed from existing drives. This class of embedded processor
can readily be integrated onto a commodity drive ASIC when manufacturers move to 0.35
micron fabrication technology as shown in Figure 2-2 [Gibson98]. Past research by the
CMU NASD group has concluded that a 200 MHz StrongARM (or equivalent) processor
can handle the storage device’s control task, but special communications implementations
are necessary because current client-server RPC and networking systems can consume
70+% of CPU cycles when a system is performing high bandwidth data
transfers [Gibson98].

Because of cost constraints, a NASD drive will have relatively small amounts of
memory, perhaps 8 to 16 MB, a factor of 2 to 4 more than current drives. In contrast, a
server-class machine has several hundred megabytes. Security, data caches, metadata
caches, run-time stacks, and, potentially, remotely executing code [Riedel98a] will
compete for memory. Additionally, only a small amount (currently 3KB which may
increase by a factor of 2x-8x) is on the primary ASIC and thus readily available in the
early stages of processing a request. The limited availability and contention from multiple
sources for memory motivates a design that limits the amount of memory consumed for
security functions.

I assume that a NASD drive will serve a large pool of users such as in an enterprise-
wide filesystem application. In contrast, in modern Fibrechannel [Benner96], a storage
networking technology, attached disks are designed to interoperate with a small set of
server machines operating in a small area, using connection-based communication. In
order for a drive to concurrently support a large number of users and to minimize fault
tolerance concerns, the NASD architecture is based on RPC-style semantics where the
drives do not maintain significant amounts of state, with the exception of the stored data,
across requests.

13

2.4 The Security Problem

This thesis addresses the core security problem in any storage system: How does an
application enforce its security policy over its storage devices? In a server attached disk
system, the application server machine is in a position to directly enforce its policies over
storage. Any request that a client, malicious or benevolent, makes to storage must pass
through the server machine. Before the server passes the request along to the storage
device, the server can examine the contents of the request and make a decision whether to
allow or disallow the request as shown in Figure 2-4a. By virtue of its location on the data
path, the server is able to control who can access storage devices.

But the NASD architecture removes the server machine from the datapath thus the
server can no longer synchronously enforce its policies by inspecting each and every
request. A client is able to make requests directly to the storage device and the storage
device, rather than the filemanager, must decide if the request is valid as shown in Figure
2-4b. This change forces drives to become actively involved in providing the application’s
security rather than passively accepting all requests. In NASD, the application has the

Figure 2-4 SAD vs. NASD.

On the left in a Server Attached Disk (SAD) System, the server is responsible for all of the
security properties of the system. A client makes a request to the fileserver via an
application specific protocol (P1) and the fileserver transforms the request into a storage
request in the storage network protocol (P2). If the fileserver does not approve the request,
the request never goes beyond the server. On the right in the NASD case, the client uses a

modified for NASD version of the application specific protocol (P1†) to request access to a
NASD object. Later, the client uses the NASD client protocol (P3) to make direct requests
to the drives. If the request is invalid, the drives are responsible for recognizing that the
client is performing an unauthorized operation. When the filemanager needs to

communicate with the drives, it uses a third protocol (P2†) that uses the NASD interface

but allows the filemanager unrestricted access to the storage device. Together, P2† and P3
form the NASD protocol.

File Manager

Switch

Client

NASD

Malicious Client

Server

Switch

Client

Malicious Client NASD

(b) Network Attached Secure Disks(a) Server Attached Disks

Storage Network

Valid Requests
Invalid Requests

P1

P2

P1†

P2†

P3

14

same security goals as in a server attached system while the application server is not on the
datapath. This requires that the security system address both of the security and
performance goals.

In a server attached disk system, there are two protocols being used: an application
specific client-server protocol (P1) and a generic server-storage protocol (P2). The client-
server protocol includes whatever security properties the application implements. The
server-storage protocol includes no provision for security.

The NASD architecture decouples the making of a policy decision from the
enforcement of those decisions. This decoupling creates the basic structural change which
forces storage to directly handle security. The two protocols in the SAD case, P1 and P2,
expand to include a third generic client-storage protocol, P3, which clients use to directly
access storage. However, the filemanager is ultimately responsible for its storage and its
policy decisions; these must be enforced on any request made using the client-storage
protocol without requiring the synchronous involvement of the filemanager i.e.
asynchronous oversight. As I will discuss in Chapter 3, there are a variety of kinds of
access control policies that an application may want to enforce over its storage devices.
This prohibits fixing a single access control policy in the NASD interface and encourages
a flexible and generic approach to the security mechanism. Instead, filemanagers
essentially package up their access control decisions into an access credential and give it

to the client through the NASD version of the client-filemanager protocol, P1†. The access
credential is later used by the client in P3 to demonstrate its access rights to the drive. This
mechanism which allows the filemanager to preauthorize client requests is presented in
detail in Chapter 4.

Storage device communication protocols, P2† and P3, combine to form the NASD

interface while the P1† protocol between the filemanager and client is part of the
application. This is a critical difference because all applications will be built on top of the
NASD interface — which will be fixed by the storage devices — while the filemanager-
client protocol can be entirely redesigned for each application. The NASD interface must
provide enough functionality and flexibility to allow an application to be efficiently
implemented on the NASD subsystem as well as meeting the application’s security needs.

In addition to authorizing client operations, the filemanager may also require the
drive and client to cooperate to protect the integrity and/or privacy of communication. The
goal of integrity is to ensure that information has not been altered by unauthorized or
unknown means. Protecting the integrity of communication is required to allow the drive
to enforce the filemanager’s policies. Without integrity, the drive is unable to verify that
data has arrived unaltered, consequently the drive can not verify the data’s origin and
without knowing the origin, the drive can not verify that the request was authorized by the
filemanager. The goal of privacy is keep information secret from all but those who are
authorized to see it. In contrast to integrity, privacy is not necessary for the filemanager to
control access to the disk. It is only necessary if the application wants data to be private.

15

More concisely, the security problem in NASD is to:

• Enable applications to implement their application-specific policies over network
attached storage devices.

• Protect the integrity of communication involving network attached storage.

• Deliver the scalability and aggregate bandwidth potential of the NASD architecture.

• Optionally, protect the privacy of communication involving network attached storage.

In addition to needing secure communications in a NASD system, users are
implicitly placing trust both in the workstation they use to access storage and in the
physical security of the storage devices.

A client workstation may be located in hostile environments, such as publicly
accessible clusters, or other physically accessible location where an adversary can take
control of a client workstation. Hence the NASD architecture, as well as any many other
distributed systems, must assume that a client is untrusted until the client proves
otherwise. An adversary can alter the client machine’s operating system to modify data or
release data contrary to both the policies of the system and the will of an innocent user. For
this reason, when a user accesses data using a workstation, she is implicitly placing trust in
the workstation not to misuse any information the user provides to the workstation, such as
file data, cryptographic keys, or access credentials.

In small environments, the network can be physically protected because it may be
entirely contained within a secure facility. However, most systems will have some
connection to the outside world which may occasionally be breached and will allow an
adversary a path to the internal secure network. Additionally, any user community of a
non-trivial size will inevitably have malicious or disruptive users against whom the system
must protect itself. A system that relies entirely on the strength of a firewall and the
goodwill of its user population will eventually be compromised. For example, unhappy
employees may take advantage of their “inside” status to destroy critical data before being
fired, or may modify personnel records for personal gain.

In some environments, the storage devices may not be in a physically secure
environment, and thus require physical as well as communication security. In Chapter 7, I
discuss the hardware functions necessary to address a storage device operating in an
insecure environment.

16

2.5 NASD Related Work

In this section, I present work related to the basic idea of network attached storage
and the NASD architecture. For more detailed discussion of the general related work, the
reader is referred to [Gibson97a, Gibson98]. Specific related work pertinent to the major
points of this dissertation will be included within appropriate chapters.

The scalability problems of a centralized file server are widely recognized.
Companies such as Auspex and Network Appliance have attempted to increase file server
performance through the use of special purpose server hardware and highly optimized
software [Hitz90, Hitz94]. In contrast, NASD attempts to increase server scalability by
simplifying the job of the server rather than optimizing the server for data movement thus
allowing low-cost workstations to act as servers for high performance storage systems.

About a decade ago, the storage industry moved from a physical-geometry storage
interface to the logical block-based interface defined by SCSI [ANSI86]. The indirection
of the SCSI interface has enabled many transparent improvements in storage performance
such as RAID, transparent failure recovery, real-time geometry-sensitive scheduling,
buffer caching, read-ahead and write-behind, compression, dynamic mapping, and
representation migration [Patterson88, Gibson92, Massiglia94, STK94, Wilkes95,
Rummler91, Varma95]. By further raising the interface to an object level, NASD enables
the storage device to locate logically-related disk blocks nearby (which requires
information unavailable to a disk in a block interface) and transparently provide features
such as copy-on-write semantics for a fast copy operation and compression.

High-bandwidth data transfers can be achieved by striping data across storage
devices or servers [Gibson92, Hartman93, Drapeau94]. In order to deliver this
performance to clients in a network environment, NASD requires that a switched network
fabric rather than a single shared-media network be used. With a switched network, many
of the ideas of striping data across servers or local disks can evolve into a network attached
storage environment [Amiri99].

The idea of simple, disk-like, network-based storage servers as the basis for higher-
level storage servers has been under exploration for many years [Birrel80, Katz92]. The
Mass Storage System Reference Model (MSSRM) advocated the separation of control and
data paths almost a decade ago [Miller88] and logically “DMA”s the data from the storage
from to the client. This is an optimized version of a distributed filesystem built on a
storage controller, such as RAID. In contrast, NASD does not move the data through any
storage controller but rather directly moves data from our smarter storage devices to the
client.

ISI’s Netstation project proposes an alternative object-interface called Derived
Virtual Devices (DVD) which is the most similar project to NASD and demands the
greatest explanation [vanMeter96]. When a drive boots up, it first authenticates to
Kerberos authentication system [Neuman94] and then requests its basic configuration
information from a remote controller called a Network Virtual Device Manager (NVDM).

17

The filemanager then authenticates to Kerberos and tells the physical disk which of its
blocks are to be allocated to a specific virtual disk, equivalent to a NASD object. Within
this virtual disk, the clients and storage manager can build either a filesystem or a single
file. By using a simple block-oriented interface, DVD requires that the filemanager
maintain all of an object’s metadata and the filemanager ships it to the disk when the
metadata is necessary for a client access. This prevents a DVD from exploiting the extra
knowledge that an object interface provides to the disk.

Since the filemanager must build filesystem objects out of disk blocks at request
time, DVD adopts a stateful connection-based model so it can avoid repeatedly sending
the object metadata per client operation while the connection is open. The drive also
associates security information with connection state. For a large number of concurrent
clients, this could cause performance concerns as well as being a fault tolerance issue.
Furthermore, the multiple message round trips to define a filesystem object can
significantly reduce client performance when clients are making multiple small requests.

The DVD approach makes the same basic observation as NASD: removing a
fileserver from the datapath will improve performance and helps provide a good start in
addressing security concerns. While the basic premise is the same as NASD, adopting the
object interface in NASD allows the NASD system to avoid some of the message
exchange overhead necessary in DVD, as well as to place more functionality beneath the
interface.

18

19

Chapter 3: Survey of Access Control Policies

One of the goals of the NASD architecture is to provide a mechanism to implement
any network storage system. There are a wide variety of different network storage systems
in use today and these systems all have different access control policies that determine
who can access data. The NASD architecture must allow these diverse network storage
systems to implement their access control policies otherwise the NASD system will fail to
gain wide acceptance.

This chapter explores a variety of access control systems that I expect developers
might build on the NASD architecture and provides some insight into the variety of
policies that application filemanagers may want to impose on a network attached storage
system. While I include some general information about the various applications’ access
control systems for background purpose, the emphasis in this section is on describing the
parts of the security policy that are discernible to the end users, rather than describing the
underlying protocols. This defines the kind of behavior that NASD must support without
dictating how the behavior will be implemented.

I describe a variety of different systems that could reasonably be implemented on
the NASD architecture. I focus on the behavior of network file systems — specifically
CIFS on NT, AppleShare, NFS, AFS, and Novell, because they are widely used and
well-known systems. I also discuss the behavior of the OpenVMS implementation of
Files-11, the local and cluster-based filesystem for VMS systems, because its complexity
offers a stark contrast to the simplicity found in the other systems. Additionally, I discuss
the access control in the SQL-92 database standard in order to both explore some of the
differences between a filesystem’s view and a database’s view of access control and
examine how this impacts NASD. I will begin with a brief discussion of Multics, which
defined many of the desirable security characteristics of a filesystem. As a group, these
systems present a reasonable, and hopefully representative, sampling of the systems that
may be implemented on the NASD architecture.

20

3.1 Multics

Multics (Multiplexed Information and Computing Service) [Organick72], which
started as a research project at MIT in 1964, is one of the most influential computer
systems in history. Being one of the earliest timesharing computer systems, Multics also
led to security research and a version called Secure Multics that eventually received a B2
certification from the U.S. Government. The Multics system addresses many of the
concerns about data storage that are commonplace today. In [Daley65], Daley and
Neuman describe the filesystem in detail and define a set of goals for the filesystem which
are still applicable today:

• Safety from someone masquerading as someone else;

• Safety from accidents or maliciousness by someone specifically permitted controlled
access;

• Safety from accidents or maliciousness by someone specifically denied access;

• Safety from accidents self-inflicted;

• Total privacy, if needed, with access only by one user or a set of users;

• Safety from hardware or system software failures;

• Security of system safeguards themselves from tampering by non-authorized users;

• Safeguard against overzealous application of other safeguards.

All of these goals are relevant to current filesystems and some have gained greater
meaning in the context of distributed systems, where data must be protected from
adversaries on the network as well as local users. These are important goals to keep in
mind when building any storage system and serve as an inspirational set of guidelines.

Multics uses access control lists (ACLs) to define security policies that control
access to filesystem objects (files and directories). A Multics ACL contains a list of users
and a set of rights granted to each user. In the more general case, the access control list can
also contain a name of a group and a set of rights to be granted to members of the group.
In Multics terminology, the set of rights is called the mode and it can include up to five
attributes: TRAP, READ, EXECUTE, WRITE, and APPEND.

The access control list is processed in order of recency and the first entry applicable
to the user in the ACL is used for the request. This is an example of a short-circuit
approach to access permission processing. Multics explicitly gives more recent entries in
the ACL priority over older entries and will automatically delete the older entries when
they are no longer accessible.

The most unusual feature of Multics’ filesystem security is the TRAP attribute. For
each user listed in the ACL, Multics can associate a list of routines called a traplist. When
the TRAP attribute is set to on, if a client attempts to access a file the routines in the
traplist will be called in order and each routine is given information about the file or
directory being accessed, the identity of the requestor, and the calling sequence which

21

ended in the call of the trap function. When the trap function returns, it reports the
effective access mode for the user, which takes precedence over any value explicitly
included in the access control list. The TRAP attribute can be used to provide an arbitrary
function on a per-request basis such as locking, audit trails, or restricting the accessible
portion of a file.

3.2 Network File System (NFS)

NFS is one of the oldest and most widely used network filesystem. Initially designed
by Sun Microsystems in 1983, NFS was opened up to the public through an informational
internet RFC [Sun89] and was implemented in the early Berkeley Unix systems. NFS
provides a peer-to-peer file sharing mechanism where a server exports some or all of its
storage to the world. Now, almost every Unix-based platform ships with NFS support to
import and export storage systems. Sun defined NFSv3, the basis for this description, in
1995 in Internet RFC 1813 [Callaghan95]; future versions are evolving under the auspices
of the IETF.

According to RFC 1813, “The NFS version 3 protocol, strictly speaking, does not
define the permission checking used by servers. However, it is expected that a server will
do normal operating system checking...”. The one exception is that the owner of a file is
always permitted to access a file regardless of the permissions. This exception is motivated
by the common scenario of a user opening a file and then intentionally changing
permissions to prevent other users from accessing the file. Because NFS is a stateless
protocol, it is unable to record the fact that the file was open before the permissions
changed. This exception is necessary to allow the owner to continue accessing the file as if
she had opened it before the permission change occurred.

In practice, most NFS fileservers attempt to provide normal Unix filesystem
semantics; NFS was originally developed in Unix environments, so clients have come to
expect Unix-like behavior. For Unix-based servers, this behavior allows a server to rely
heavily on the access control mechanisms of the local filesystem when servicing an NFS
request. Additionally, users see behavior from NFS-mounted filesystems which are very
similar to a locally mounted filesystem. Most NFS servers allow additional restrictions to
be placed on the exported filesystem, such as exporting it as a read-only file system or
remapping the userids of accessing clients. Frequently, NFS servers will also limit the set
of hosts that can mount the exported filesystems based on the host name or IP address of
requesting clients, although adversaries can easily circumvent this protection.

The NFSv3 specification allows three kinds of authentication mechanisms to be
used with NFS: AUTH_KERB, AUTH_DES, and AUTH_UNIX. AUTH_KERB uses a
special version of NFS that has been modified to interact with a site’s Kerberos
[Neuman94] infrastructure. Most NFS implementations do not support AUTH_KERB, in
part, because the security code relies on cryptography that is export controlled.
AUTH_DES was defined as part of the originally specified RPC package for

22

NFS [Sun88a] and was based on Diffie-Hellman operations over GF(2n), which allows
fast calculations but is also easier to break [Schneir96]. A few months after being released,
this security risk motivated a revision of the RPC package to version 2 [Sun88b].
However, AUTH_DES was not implemented in early publicly available Unix systems and
never achieved wide spread use.

Most NFS systems support only the simplest authentication mechanism,
AUTH_UNIX. In AUTH_UNIX, the requestor sends their user ID and group ID along
with reach request without any cryptographic protection. Because adversaries can forge
user IDs and group IDs, AUTH_UNIX is insecure. To limit access to certain IDs or
reconcile IDs from different administrative domains, the server may map the user ID or
group ID provided in a request to a different value before checking access rights which
limits the set of user IDs that a remote attacker can use when attacking the NFS system.

For each file or directory, NFS associates a user ID, group ID, and permissions.
Permissions are defined in terms of mode bits for all the pairwise combinations of {user,
group, other} X { read, write, execute}. If the requestor is the object’s owner, the requestor
is granted the permissions of the user mode bits. If the requestor is not the owner but is
currently a member of the object’s group, the requestor is granted the permissions of the
group modes. Finally, if the requestor is neither the owner nor in the owner’s group, the
requestor is granted the permissions of other. Even if the mode bits for group or other are
more permissive than the owner’s mode bits, the owner will only be granted the
permissions in the owner’s mode bits.

NFS uses the normal group mechanism of Unix systems, and the group ID is
included in each request. NFS does not do any membership checking at the server since
the client machine is assumed to have verified the requestor’s group membership. As
mentioned in Section 3.2, the fileserver may remap user IDs or group IDs in order to
enforce certain security policies or interoperate between different security domains
(although this depends on the data provided by the client).

Many sites use NIS [Garfinkle96] or a similar product to maintain a consistent set of
user IDs and group IDs across an entire site. With NIS, the client is still providing the user
and group IDs to the server; a corrupted client can provide bogus data but well-behaving
clients will share a consistent set of IDs. In this respect, NIS is between NTFS (which has
a site-wide ID resource) and AppleShare (which does not have very good support for
multi-machine synchronization).

NFS has no specific support to provide a set of clients with a common name space.
A client chooses where to mount an NFS filesystem in the local tree and what name to
associate with the mounted filesystem. Many sites will have a standard naming scheme
and mount location to simplify user’s lives but this is strictly done by convention (or
system administration tools) rather than being intrinsic to NFSv3.

NFSv3 is a stateless protocol so servers maintain no state about active clients and
access permissions must be checked on each operation as opposed to at open-time which

23

is the normal Unix behavior. If a client performs an operation that generates a large
number of NFS requests, such as a 4MB file write, then the operation may fail midway to
completion if the permissions on the file are changed during the operation.

NFS does not dictate a policy for the inheritance of access control information. The
NFS operations to create files and directories both include an attribute field in which a
client specifies the initial mode bits for the new filesystem object. Most NFS clients will
assign the initial mode bits to an NFS filesystem object exactly as if the object had been
created locally.

3.3 Windows File Sharing

Microsoft’s Window NT is important because it has high visibility in the
marketplace. As long as it is not attached to a network, NT 4.0 has received a C2 security
certification under the Department of Defense’s orange book criteria [DoD85].

In this section, I paint a picture of Windows filesharing that is built from information
gathered from experimentation with NT 4.0, third party NT administration and security
books [Rutstein97, Frisch98], the Microsoft Developer’s Network Web Pages
[Microsoft98], and the CIFS 1.0 specification [Leach97b]. I have access to neither the
source code, as I do with NFS and AFS, nor explicit functional specifications, as I do with
AppleShare. This is an important limitation of this section because I only present what
people outside Microsoft believe NT should be doing and how I have observed NT
filesharing to behave. However, it enables me to present a good description of the system
and to discuss relevant NASD issues.

When a user first logs into an NT client machine, she authenticates with a domain
controller as shown in Figure 3-1, using the NT LAN manager protocol (soon to also
support Kerberos [Microsoft96b]). The user receives an access token which contains the

File Server

LAN

Clients

File Server

File Server

Domain Controller

Authentication
Domain-wide groups

Serving Files
Local groups

Figure 3-1 NT 4.0 Filesharing
Architecture

A user authenticates to a domain
controller and obtains an access token
that includes their personal security
identifier (SID) as well as the security
identifiers of any domain wide groups to
which she belongs. The user then uses
another mechanism to locate the
fileserver on which their data is located
and uses the access token to open a
connection with the server before
requesting any data.

24

user’s security identifier (SID) and SIDs for each domain-level group to which the user
belongs, as well as any special rights granted by the domain controller. A domain
controller is a trusted machine, usually with a mirror backup, that manages the user and
group databases for an organization and provides a centralized security and authentication
resource for the organization.

While the domain controller provides authoritative information on domain-wide
groups, individual fileservers may also maintain a local group database. Any fileserver in
the domain may have an ACL that refers to a domain-wide group, while only the local
fileserver can reference groups defined on that server. This allows group management to
be done at both a local level and at a centralized server.

NT implements ACLs on three filesystem resources: a share, a directory, and a file.
The first level of security checks is at the share level. A share is a subdirectory of a disk
being exported over the network, the network-visible name for the subdirectory, and an
access control list protecting the subdirectory. A share can be configured so the name is
not advertised on the network. This serves as an extra barrier to a casual vandal but will
not deter a sophisticated adversary who discovers the name. When a client connects to a
share, the server checks which rights the client has on the share. For every SID in the
user’s access token, for both users and groups, there may be an entry in the share ACL
with one of the following permissions:

• No Access: The requesting entity is denied any form of access.

• Read: The requesting entity can potentially read or execute files stored in the share.

• Change: The requesting entity can potentially read, write, execute, and delete both files
and directories in the share

• Full Control: The requesting entity can potentially have all the rights as in Change plus
the ability to modify access permissions or take ownership of files and directories.

Share permissions act as a ceiling on what operations the client will be able to
perform on all files and directories accessed though the share. Consider the example in
Figure 3-2: if a user only has read access on ShareA, the exported name for /user, then the
user will never be able to modify or create files in /user/khalil even if the ACL on
/user/khalil grants the user unlimited access rights. However, it is possible to export two
directories, one a subdirectory of the other, and have different rights depending on the path

Figure 3-2 Example Directory Structure

users
Erik FileE1

FileE3

FileE2

Khalil

(ShareB)
(ShareA)

FileK2

FileK1

25

through the file system. In the example, if a user has only read privileges on ShareA but
full privileges on ShareB then the user will never be able to create files in /user/Erik if she
accesses the directory via ShareA. If the user access /user/Erik through ShareB then she
potentially has the ability to create files in /user/Erik. This illustrates that a filesystem may
provide security at a variety of levels of the system rather than simply on directories or
files and that the interaction of these layers must be properly captured in an
implementation on the NASD architecture.

The next level of protection in NT, which is also applied to local users, are directory
or file permissions. Directory permissions restrict a user’s ability to gather information
about the contents of directories including the file identifiers and the filesystem’s internal
name for its files. Protecting a directory will make it harder for an adversary to find a file
but will not prevent an adversary from accessing the file if she knows the file identifier.
However, for normal usage with unmodified clients, the directory permissions help
provide security to the files contained within the directory. In NT, as well as NFS and
AFS, the directory permissions hide the underlying filesystem name for a file from an
adversary but do not prevent an adversary from accessing a file if she knows the proper
name to use.

In NT, this default behavior is the result of clients being granted a special right in
their access token called Bypass Traverse Checking. This special right allows the users to
perform an operation on a file or directory based only on the permissions of the file or
directory they are accessing and the share permissions. Without this right, NT will traverse
the path from the root of the share to the accessed object and verify that the client has
permissions at every step along the way. If nobody has the Bypass Traverse Checking
right then an administrator may change an ACL on a directory and have it immediately
protect the directory’s descendents. If users have this right then, as long as the know the
name of the file or directory, they can access the file or directory regardless of the ACLs in
the ancestor directories.

All ACL systems need rules to determine a user’s rights when multiple ACL entries
are applicable. Consider the ACL for /user/Khalil/FileK1 given in Figure 3-3. If a user is
both a member of PDLCoWorkers and PDLUnderGrads, then which rights should the user
be granted? In NT, she will be denied any access to the file. For that matter, all users who
are in PDLUnderGrads will be denied access regardless of any other group memberships.
If a user is a member of PDLCoWorkers and TrustedFriends then she will be granted both
Read and Write access to the file. These decisions are captured by the following two rules:

ACL for directory /user/Khalil/FileK1

PDLCoWorkersRead
PDLUnderGradsNone
TrustedFriendsWrite

Figure 3-3 Example NT ACL

26

1. If a user or group is explicitly denied access, i.e. an ACE set to No Access, then no
access is permitted. Negative rights have precedence over positive rights.

2. If a user is not explicitly denied, she is permitted the sum of all the rights she is granted
by access control list entries.

While the underlying idea of an NT ACL is similar to Multics, NT does not halt
evaluation when the first applicable ACL entry is found. Instead, NT prioritizes explicit
denial of rights over explicit granting of rights but otherwise grants a client the sum of all
their rights in the ACL.

NT filesharing uses a peer-to-peer sharing model, which is similar to NFS, where
individual fileservers choose to export a portion of their local filesystem to remote clients.
A group of shares exported by different NT machines within a domain have no structure
other than ones created by shortcuts, essentially symbolic links, in the local filesystem and
well known locations. Any structure built out of symbolic links is tightly tied to the
underlying names of the servers and it is difficult to move parts of the filesystem to
different servers without involving the clients in the move.

With NT 5.0, Microsoft plans to include the Microsoft Distributed Filesystem (Dfs)
which adds a layer of glue-logic over the peer-to-peer systems to provide a shared logical
namespace [Microsoft96a]. Dfs does not add any new security services but allows
improved management of storage in an enterprise setting. The Dfs design caches
mappings of path prefixes to servers so clients do not need to repeatedly traverse the
namespace. However, this implies that a client who lacks the Bypass Traverse Checking
will still bypass some permissions checking on a requested object’s path when using
cached prefixes. Permissions will only be checked on servers the client must traverse
because their prefix to server mappings hasn’t been cached and at the final server holding
the requested file or directory. Even though NT supports strong security by verifying
permissions along a path, Microsoft is restricting the utility in their design of Dfs.

Unlike many file systems, NT 4.0 has built-in support for audit logs. Any user,
typically security administrators, who has the Security Privilege right is able to view and
clear audit logs as well as set the System ACL (SACL) on any NT object, including files
and directories. The SACL specifies SIDs and the operations to be logged. NT is able to
log the success and/or failure of read, write, execute, delete, change permissions, and take
ownership operations. The SACL is inherited through the normal filesystem inheritance
system but cannot be modified by someone without the Security Privilege, even if that
person is the file’s owner. Since NT is using a peer-to-peer namespace, there is no
overreaching orchestration to synchronize audit logs of requests made to multiple
fileservers. Tools built on top of the filesystem logs must provide this synchronization.

Windows’ file sharing is based on the CIFS 1.0 specification which specifies reliable
connection-based transports. The CIFS protocol specifies a stateful protocol in which the
server is notified when a client connects to, i.e. mounts, a share, along with the opening
and closing of files. NT fileservers appear, from experimentation, to check permissions at
the time a file is opened. Presumably, this is a performance optimization to avoid

27

repeatedly checking the permissions on every request. Another result is that the effect of
ACL changes will become evident to clients only when the client next opens the file rather
than on the next I/O operation.

NT supports groups that are either local to a server or global within a domain and
these types of groups have different behavior when group membership changes. If a user is
given an access token that says she is in the domain group Students412 then she will be
able to use this token until it expires, even after she is removed from the membership list at
the domain controller.

In contrast, local group membership changes take effect whenever the client next
connects to the fileserver. The CIFS specification recommends that connections be closed
after they have been idle for a minute although this is invisible to the user. When a client
machine reconnects to the server, the user will see the effect of any ACL change or
modification to the local group membership database but will not see the effect of a
change in domain group memberships unless she has also re-authenticated to the domain
controller.

The CIFS 1.0 does not specify when access permission checking should be done but
does allow read and write operations to return ErrNoAccess. Strictly speaking, a
CIFS-compliant server, although not emulating NT, could verify permissions on each
operation rather than at open time as NT 4.0 appears to do. If the CIFS-compliant server
verified permission per operation, the server would be a valid CIFS server but clients may
not interoperate well with a server which behaves differently from the standard Microsoft
servers.

When a file or directory is created in NT, it inherits the ACL from its parent
directory. This is called static inheritance. Once an ACL is inherited from the parent, the
parent’s ACL can change without affecting the ACL of the child. This is the easiest type of
inheritance to implement because the server only consults the requested directory or file
ACL rather than evaluating a dependency on its parent directory. This is both easier to
implement and more efficient for accesses since the server processes one, as opposed to
multiple ACLs.

3.4 AppleShare

AppleShare [Poole97], a standard feature of all versions of the Macintosh OS,
enables peer-to-peer file sharing. This section of the dissertation describes the
mechanisms used in both Mac OS 8 and AppleShare IP 6.0. These products share the
same model of security and file sharing; additionally, AppleShare IP includes WWW and
FTP servers, both which could be supported by NASD devices, along with a
higher-performance fileserver. Both Mac OS 8 and AppleShare IP 6.0 implement the
Apple Filing Protocol (AFP) version 2.2. [Sidhu90, Apple98].

28

Appleshare has three categories of access privileges for network users: owner, group
or user, and everyone on a per folder (Macspeak for ‘directory’) basis. Each directory has
an owner, either a specific user or a group, who is the only user or set of users that can
change the permissions on the directory. The group or user category enables a single
group of users to be granted access rights on the directory. If a user is granted rights under
both the owner and group or user categories then she has the union of permissions
associated with both categories of users. The everyone class is a catch-all for all other
users allowed to connect to the file server. The Mac user interface will not allow
administrators or owners to set any of the user categories’ rights lower than the rights of
Everyone because everyone rights logically serve as a floor on the rights granted to any
user.

In a Mac environment, a server views users as either registered, having a user ID and
possibly a password, or unregistered. To prevent unknown users from accessing data, a
Macintosh can be configured to not allow operations by unregistered users. If unregistered
access is disallowed, the rights granted to everyone apply only to registered users who are
not otherwise explicitly granted rights.

The AppleShare Filing Protocol specification [Sidhu90, Apple98] assumes a
connection-based protocol and specifies that permissions are checked at open time. The
actual data moving operations do not check permissions but rather rely, as users expect in
most local filesystem, on the rights granted at open time.

The statefulness of the AppleShare Filing Protocol enables an AppleShare server to
allow in-progress operations to complete even when an access control change would
prevent the operation from beginning. For example, if a user is copying a file from a
AppleShare server to the users’s local machine and the server owner decides to revoke the
users’s access rights, the copy will be allowed to complete unless the entire server is shut
down.

AppleShare servers define groups locally to the server machine since AppleShare
has no notion of an administrative domain. In order to allow coordinate multiple
AppleShare servers, some versions of AppleShare provide support to easily export the
entire groups or passwords database from one server into a file and to incorporate the
database into another. However, there is no centralized or on-line service providing
authoritative service for group memberships as is found in Windows NT, AFS, or NIS,
which is frequently used in NFS sites.

AppleShare does not provide the global shared namespace found in systems such as
Microsoft’s Dfs and AFS. It is designed to provide basic sharing semantics that allow a
user to export, with some measure of security, a portion of a disk to be accessed by remote
users. In this manner, it is more similar to NFS than a modern distributed filesystem.

Unlike most of the filesystems surveyed, AppleShare servers support dynamic
inheritance, which requires that the inheritance of access protection occur at call time. A
directory can be configured to inherit permissions from its parent directory which requires

29

that the directory tree be walked upwards at request time until an ACL, rather than a
reference upwards, is found. Walking the directory tree on each request is, potentially, an
expensive performance issue because of the amount of data that must be consulted. The
advantage of dynamic inheritance is that it allows rapid changes of permissions on a large
group of objects. If the permissions on the top of a directory tree are changed, all future
accesses to lower level filesystem objects are affected.

3.5 Andrew File System

The Andrew File System (AFS) was designed at Carnegie Mellon University in the
1980s as a solution to scalability and performance problems of existing network file
systems [Howard88, Satyanarayanan89] and was transitioned into industry by Transarc
Corporation. This section describes AFS based on a combination of reading early AFS
papers [Howard88, Satyanarayanan89], examining AFS documentation [Transarc92],
inspecting source tree for Transarc’s AFS Version 3.4.p2, and experimenting with CMU’s
departmental AFS servers.

AFS implements a common-namespace model where a client machine interacts with
a set of servers, called an AFS cell, that collectively provide the AFS service to clients.
Together, the servers provide the illusion of a larger common filesystem shared between
clients where the name of the server on which data is located is hidden from the user and
can be changed without affecting a user’s ability to access their data. In addition, multiple
AFS cells from across the world can be mounted with AFS to create a wide area shared
file system.

One of the strengths of AFS is that it to addresses the security shortcomings of its
predecessors like NFS. A good description of AFS’s security system can be found
in [Satyanarayanan89]. Early versions of AFS used the Andrew Secure RPC, which
Burrows et al. raised concerns about [Burrows90], but the core security design has
remained unchanged. An AFS client first authenticates via Kerberos before contacting the
AFS servers and obtaining tokens, also called AFS tickets, that are used for future
communication with fileservers. The user must implicitly trust the client workstation not
to misuse its tokens, but the AFS cell places no trust in the client workstation.

In AFS, access control information is stored in per directory ACLs. Each ACL lists
up to 20 access control entries (ACE) which contain a user ID or group ID and a set of
rights. There are two classes of access control entries: positive or negative. A positive
entry explicitly grants rights to a client while a negative entry explicitly prohibits a client
from obtaining specific rights. Negative entries always take precedence over positive
entries so it is easy to prohibit a user, or group of users, from accessing some data.

30

AFS has the following access rights:

• Write - The user can modify the contents and mode bits of files in the directory.

• Lookup - The user can list the names of files and subdirectories contained within the
directory and view the directory’s access control list.

• Delete - The user is allowed to delete files from the directory.

• Insert - The user is allowed to create new files in the directory.

• Lock - The user can issue the flock() to get advisory locks on files in the directory.

• Administer - The user has the right to modify the directory’s access control list.

When checking a user’s permissions, AFS examines all the access control entries
within an access control list and grants users the union of their normal rights minus the
union of their negative rights. The result is that negative rights take priority over positive
rights. Consider the example is Figure 3-4, if a user is a member of hgobioff:friends then
she will only be able to lookup and read the files in the directory and if she is a member of
hgobioff:users she will be able to lookup, add new files to the directory, and append to
files. If the user is a member of both groups then she will be able to lookup, read, insert,
and append. However, in all cases, if a user is a member of hgobioff:enemies then she will
not be granted any rights because all rights were prohibited by the negative ACL entry.
AFS is very similar to NT with respect to how ACLs are handled because both give
negative ACL entries precedence over positive entries and grant the user the sum of their
rights rather than using short circuit evaluation as Multics does.

The rights granted by the ACL are only the potential rights of users files. AFS uses
the Unix mode bits to further refine the rights given to clients. Read operations require that
the read or execute mode bit be set and write operations require that the write mode bit be
set. Normally, the owner mode bits are used when the file’s owner attempts an access
while the group mode bits are used for all other users. However, AFS servers can be
compiled to use the owner mode bits to check access for all users.

Each AFS cell includes a protection server that maintains a list of groups defined in
the cell. Users create groups with names of the form UserName:GroupName by issuing

Access rights for .
Normal rights:

hgobioff rlidwa
hgobioff:users lia
hgobioff:friends rl

Negative rights:
hgobioff:enemies rlidwka

Figure 3-4 Example AFS ACL

31

appropriate calls to the protection server. Privileged system administrators can create
groups with the form GroupName. Once a group is created, any user can reference the
group in an access control list to grant or prohibit rights to the group’s members. Although
anyone can reference the group, the ability to view group membership is controlled by the
permissions set on the group. Because the group database is cell-wide, all users can take
advantage of well-known groups.

AFS groups can contain either user IDs or IP addresses that have been specifically
defined to AFS. IP address authentication is a very weak form of authentication because
an attacker can easily spoof an IP address. In contrast, a user who is a member of a group
through their user ID has been strongly authenticated to AFS using Kerberos before she is
allowed to exercise her rights.

When a user first authenticates to AFS, she is given tokens which encode her user ID
and groups ID. AFS servers check a client’s group membership by examining the tokens,
rather than consulting with the cell group database server. Because the tokens are given to
a client when she first authenticate to a fileserver, any changes to the groups that a user
belongs to will not take effect until the user next authenticates to the fileserver. In an
average AFS site where tokens are valid for 24 hours, there will be a latency of up to 24
hours before a group change will take effect, unless the user voluntarily re-authenticates to
the server.

AFS performs a local access check to decide to allow an operation. The client’s AFS
token is compared to the ACL of the directory being accessed, which is the parent
directory for a file operation, and against the mode bits of the file or directory being
accessed. AFS has no provision to force clients to have valid permissions along an entire
path, so a client holding the unique file identifier for a directory can access it even if a
higher level directory (or in the case of a file, a directory other than its parent) disallows
accesses. This means that a client can’t walk through the filesystem namespace to find out
the file identifier of a file, but an adversary who observes this on the network can utilize it
to access files below if a user relies on directory permissions at upper levels of the
directory hierarchy to protect the lower levels.

AFS uses static inheritance of the access control lists on directories and a very
simple form of dynamic inheritance for files. When a directory is created in AFS, the
default behavior is for the new directory to inherit the ACL that the parent directory has at
the time of creation. Future changes to the parent directory will only impact a client’s
ability to traverse the name space but not the ability to directly access the new directory.
Because files do not have ACL entries of their own, presumably as a space saving and
simplicity measure, the permissions of a file are dynamically inherited from the parent
directory at request time. If a parent directory’s ACL changes then the change immediately
affects the directory’s child files. The child directories may be more difficult to find if
lookups are prohibited, but actual operations on child directories will not be affected by
the change to the parent directory’s ACL.

32

3.6 Novell Netware

Novell Netware 4.1 includes both the Novell Directory Service (NDS) and file
servers [Sheldon96, Steen96]. In contrast to the other systems I’ve surveyed in this
section, Netware is tightly tied to an enterprise wide directory service which provides
several abstractions: containers — objects that contain other objects, and leafs — groups,
users, and printers, in addition to filesystems.

The directory is a scalable hierarchical namespace/database that users consult to find
critical information about enterprise resources such as fileserver network addresses, group
membership lists, and user phone numbers. This is similar to the AFS namespace but is
object oriented rather than file oriented and it is used to store typed data such as user
descriptions. In order to find a resource, a user must traverse the directory to find out
where it is located in the network. This provides a very basic level of security in hiding the
existence and names of resources through the object protection in the directory. However,
the protection in the directory is primarily focused on protecting data stored in the
directory while data stored in the filesystem is protected through local filesystem
protections which can depend on data stored in the directory.

A user is primarily granted access rights by their position in the directory
(remember, users are objects) and their group memberships. A user is granted permissions
that were either directly given to her or granted to one of her parent containers. For
example, if a user is identified by the location USA.SF.Devel.Amiri in the directory then
this user would be given rights explicitly granted to him as well as rights given to USA,
USA.SF, and USA.SF.Devel. A user’s location within the directory will normally follow
an organizational structure of a company although this is not a requirement.

A user may also have rights associated as a result of being listed as a member of a
group which is an explicit list recorded in the directory and is distinct from a user’s
position in the directory. Groups are not bound by the hierarchical structure of the
directory service and can be used to associate an arbitrary responsibility or role with a user
similar to the group mechanism in AFS.

Novell uses ACLs on both files and directories. An ACL entry lists a trustee, which
is a user, container, or group and the rights granted to the trustee. Unlike filesystems such
as NT file sharing where file rights take precedence, Novell file rights are strictly additive
to directory rights. If a user is granted a right at the directory level then she will receive
this right on all the files in the directory regardless of file ACLs. If a user is granted a right
on a specific file and not on the directory then she will still receive the right for the file.

Novell files and directories inherit rights granted to a trustee in any of their parents.
Unless specifically prohibited, which I will discuss next, a client can access a file if she, or
one of her ancestor containers or groups, is granted read access to any of the directories
along the path to the root. This is a very far-reaching form of dynamic inheritance because
the entire path may need to be examined to determine a clients access rights.

33

Novell rights can be curtailed by either explicitly setting rights for a trustee or using
an Inherited Rights Filter (IRF) on a directory. If a trustee is explicitly assigned rights on a
directory or file, the explicit rights will be used at that level rather than inherited rights —
with the exception that file rights are always additive to directory rights. The IRF is a
bitmap that says which permissions can be inherited by this level and its descendents. If
the IRF for a right, such as read, is not set on a directory then no trustee can inherit that
right through the directory. For example, if the IRF on /usr/apples/jim does not allow for
read permissions to be inherited then a user will have access to files in
/usr/apples/jim/build only if she is explicitly granted permission on /usr/apples/jim,
/usr/apples/jim/build, or the actual file. Any read permissions that the user was granted
on /usr or /usr/apples will be ignored. The only exception is that a user granted supervisor
rights on the volume (e.g., the root of the filesystem) can not be blocked by the IRF.

3.7 Files-11 and OpenVMS

In this section of the dissertation, I present an overview of the access control system
used in Files-11, which runs on OpenVMS AXP Version 1.3 and OpenVMS VAX Version
6.0 [DEC93a, DEC93b]. This access control system has evolved over the last few decades
into a significantly more complex and rich access control scheme than the other systems
that I have described.

Files-11 is used both as a stand alone filesystem and in tightly knit clusters of
workstations. The information sources I have available are primarily user and
administrator documentation [DEC93a, DEC93b] rather than a specification of the
underlying protocol or source code; this limits the amount of detail I can provide. My goal
is to present the reader with some feeling for the complexity of this well-established
commercial access control system, not a complete specification of the behavior of
OpenVMS and its filesystems. Because of this limitation, I will focus on presenting the
view of filesystem access control that OpenVMS and Files-11 present to local users.

3.7.1 A User’s Security Profile

When a users is logged into an OpenVMS system, their processes have security
profiles that contains a user identification code (UIC), rights identifiers, and a set of
privileges that collectively define the operations that the user can perform within the
system. A UIC defines a group membership and user name which is unique for each user
on the system (e.g. [USER, MOLLY]).

The rights identifiers define attributes of the user’s current process. Broadly, there
are three major classes of rights identifiers: environmental identifiers, general identifiers,
and UIC identifiers. Environmental identifiers are defined by OpenVMS and describe
characteristics of the process such as BATCH (a batch processing job), NETWORK (a
user connected over the network), DIALUP (a user connected through a dialup pool), etc.

34

General identifiers are defined by the site security administrator and describe a
characteristic of the user, such as HELP_DESK_STAFF, SVC_ENGINEER,
SALES_REP, or PR_STAFF, who owns the process. The general identifiers have a role
similar to groups in many distributed filesystems but differ in that they are a characteristic
of the user rather than a membership list of the group. Finally, UIC identifiers are
restatements of the user’s group affiliation and name. If a user is entitled to a specific set of
rights, the user can choose to enable or disable these rights, which enables a user to
operate in different roles based on their currently active rights.

Privileges are a special set of identifiers defined by the system that allow access that
would be otherwise prohibited to a user. They play a similar role as the special rights, such
as Bypass Traverse Checking and Security Privilege, in NT. They allow bypassing or
overriding the normal security protection in ways that the OpenVMS designers have found
useful to users and administrators. As with rights, a privilege can be enabled or disabled as
needed by the user, which allows this powerful feature to be used only when absolutely
necessary. An important difference between privileges and rights is that privilege behavior
is hard coded into the operating system with predefined effects, while rights are
determined by how administrators or users configure the protection in the filesystem.

3.7.2 Protecting Files and Directories

The security of a file or directory is defined by its security profile which contains an
owner, a protection code, and an optional access control list. When a user performs an
operation, the users’s security profile is evaluated against the security profile of the file or
directory to determine if the operation should be allowed.

Together, the owner and protection code define a very basic security mechanism
much like the user ID, group ID, and mode bits in Unix filesystems. Protection codes
define the access rights of four types of users: the owner, users who share the same group
UIC as the owner, all users on the system — i.e. the world — and users with system
privileges or rights. System users are users with a userid less than some site-specific
parameter, the owner of the volume on which a file or directory resides, users with the
SYSPRV privilege, or users with the GRPPRV privilege who share UIC groups with the
objects owner.

OpenVMS permits an operation if the requestor qualifies as any of the four types of
users. This means that world access rights serve as a floor on the rights granted to any user.
If the group and owner rights are set lower than world, users who are members of the
owner’s UIC group or are the owner will still receive the rights given to world. This is
different from most Unix systems where short-circuit evaluation is used and the owner or
group user would be denied access.

Access control lists enumerate specific combinations of rights identifiers and the
access rights granted to processes with the rights identifier. Because an ACE can refer to a
combination of rights identifiers, users can specify not only a specific set of clients that are

35

granted rights but also some environmental characteristics of their access. For example, a
user can specify that only another user named MOLLY can access a file only when
connected over the NETWORK by making an ACL entry for MOLLY+NETWORK.

Unlike AFS where a user is granted the sum of their rights in an ACL with negative
rights taking priority, OpenVMS relies on the ordering of an ACL to control access. The
ACL is processed sequentially and a user receives the rights of the first applicable access
control entry. Administrators or users can restrict the rights of another user or group of
users by adding a more specific and restrictive ACE early in the ACL. A user is explicitly
denied access if their identity matches an ACE which specifies NONE as the access rights.

In addition to the basic access rights, an access control list can also grant control
access to a filesystem object which allows the user to change the protection code and the
ACL. Additionally, users have control access if they have the same UIC as the owner or
qualify as system user.

The last mechanism for a user to gain access to a filesystem object is through
specific OpenVMS defined privileges. The following are the privileges that can override
security protection on an object:

• BYPASS - A user has full access to all filesystem objects.

• GRPPRV - A user with this privilege whose UIC group matches the owner of the object
receives the same access given to system users. This includes control access so the user
can freely manipulate any object owned by a user in the group. This allows a user to
have full access to objects created by users in a certain administrative group, defined by
the UIC group identifiers.

• READALL - The user is granted read access to all filesystem objects.

• SYSPRV - The user is granted access given to system users. This includes control
access so the user can freely manipulate all objects in the system.

Access rights are verified in the following order:

1. Check for a matching ACL entry

2. Check the protection code

3. Check for special privileges

If access is not granted at one step, verification of access rights continues to the next
step. If the protection code is more permissive than the ACL, the a user will always be
granted access through the protection code; meaning that the ACL will not be effective.
The special privileges are defined by OpenVMS and the user can not modify the rules that
determine when they apply. In general, a given user probably wants to use either
protection codes or ACLs to control access to filesystem objects rather than a delicate mix
of the two mechanisms.

36

In addition to the protection mechanisms for files and directories, administrators can
also set similar protection on a volume basis. In order to access a file or directory, a user
must have appropriate privileges on both it and the volume in which it resides. This is very
similar to Window’s share level protection.

OpenVMS includes extensive support for auditing either on a system wide basis or
on a per-object basis. An administrator can configure the system to generate an audit log
of all events of a specific class, such as using GRPPRV privileges to access a file or
reading a file, or may include an ACL entry on an object that generates audit records when
the object is accessed. In addition to normal audit records, OpenVMS also can log an
event directly to the operator’s terminal, which is called an alarm. These features allow
administrators to track the use of critical resources and the exercising of specific privileges
within the system.

3.7.3 Inheritance

A security profile for a new object can come from several sources which are, in
order of precedence: an explicitly specified security profile at creation time, the profile of
the previous version of the file, a profile inherited from the parent directory, or a default
protection code from the process creating the file or directory. The default protection code
for a process is similar to the umask feature in a Unix system.

Like many file systems, Files-11 files and directories can inherit permissions at
creation time from their parent directory. Unlike many file systems, these permissions are
explicitly specified as part of the parent directory’s security profile instead of being
implicitly defined as being equal to the parent’s permissions. To specify that an ACL entry
should be inherited by its children, a user creates an ACL entry with the DEFAULT option
set. Similarly, a user creates a DEFAULT_PROTECTION entry in the ACL to specify
the protection code of any new children. An ACL entry that specifies the permissions to be
inherited will have no effect on normal access control decisions. This allows a richer
behavior than in AFS, where permissions are directly inherited from the parent, because in
OpenVMS the protection applied to children can automatically be made different from the
protection applied to the parent.

3.8 Generic Authorization and Access Control API

The Generic Authorization and Access Control API (GAA API) extends the
traditional access control list to provide a flexible distributed authorization that allows a
wide variety of access control policies [Gheorghiu98, Ryutov98]. The focus of the API is
to collect a variety of different policies and express them through a single API.

While a traditional ACL associates rights with a principal, the GAA API extends
this to also include a set of conditions that the principal must meet in order to exercise the

37

rights (called an EACL). Some of these conditions, such as time of day and authentication
mechanism, are generic and interpreted by the GAA API, while others, such as CPU load
or memory usage, are interpreted by the application. These conditions can provide the
same type of information as OpenVMS’s environmental identifiers by describing qualities
of the client other than the client’s identity.

Individual client requests are evaluated against the requested object EACL and the
security context of the client. The client’s security context includes information such as the
client’s identity, connection state, group membership, and group non-membership. This
allows the underlying services beneath the GAA API to make a decision about an access
attempt or, if insufficient information is available, defer the decision to the application
level. Some of the conditions applied to EACL entries may be application-specific, such as
a load metric. Thus, only the application can decide if the condition is or is not met.

The GAA API provides a unifying abstraction for administering security across a
heterogeneous set of resources in policies. For example, the creators suggest that the API
could be used to control access to servers, remote printers, or large scale multicast
applications. By unifying the abstractions, it becomes possible to use the same mechanism
across multiple administrative domains and a variety of applications.

3.9 SQL-92

The SQL-92 specification was released jointly by the American National Standards
Institute and the International Organization for Standardization as a global standard for
database query languages. SQL-92 has two concepts that are critical for understanding its
security model: views and grant [Ramakrishnan98].

A view is a mechanism for abstracting away the structure of the underlying data into
a standard presentation, but it can also control who can access information by granting a
user access to a view of part, but not all, of a table, a data set, or group of tables. A view
provides the appearance of a table that does not actually exist. The rows are not explicitly
stored in a database but rather are computed in response to a request made through the
view. Computing a view can require eliminating data from an existing table or combining
information from a multiple tables.

Initially, the creator has all rights on a table or view and nobody else has rights.
Rights are explicitly propagated to other users using the grant command rather than
inherited through the directory hierarchy which is the filesystem approach. The syntax of
the grant command is:

GRANT rights ON object TO authorization-id [WITH GRANT OPTION]

The rights include the ability to perform basic operations on database objects, either
a table or a view, such as: alter, delete, index, insert, references, select, and update. An

38

authorization-id is an identifier that may represent either a user or a group of users. If a
user is granted a right with the grant operation, then she is able to grant the right to another
user.

These characteristics are sufficient for discussion about the basic relationship
between a DBMS and NASD security. DBMS systems, unlike filesystems, allow
operations to be data dependent. A filesystem simply stores and retrieves data while a
DBMS provides storage, presentation, query, and conditional operations that can all be
hidden behind a view over which clients can be granted rights. The DBMS system has
specific knowledge of the structure of stored data, which enables the DBMS to provide the
functionality that differentiates it from a filesystem.

A DBMS’s awareness of the underlying structure of the stored data directly impacts
the nature of security through views. When a user is granted access through a view, the
user can be given access to parts of tables which she is otherwise prevented from
accessing. For example, a DBMS storing an employee database may grant a manager
access to records of people in their department but not those in other departments. Because
the DBMS understands the structure of the employee database, the DBMS can provide
this content-specific access control.

A NASD storage system is unaware of the underlying structure of stored data and
thus can not provide this type of security behavior to clients. NASD can provide
object-granularity access control and byte-range access control but not the content-specific
access control available in most DBMS systems.

In a database implemented on the NASD interface with clients directly accessing
storage, the DBMS system can only grant or disallow clients on a per NASD object (i.e.
database table) granularity as shown in Figure 3-5b. However, in a three-tier system,
shown in Figure 3-5a, a group of database servers can share NASD storage while the
servers handle requests from clients. This enables the DBMS servers to gain the scalable
aggregate bandwidth of network attached storage, which is shared across DBMS servers,
and still provide the content-specific access control inherent in database management
systems. This architecture relies on the DBMS server CPU and network interfaces to
deliver the performance of the storage system to end users. Riedel et al. [Riedel98a] have
shown that moving database functionality closer to the storage potentially increases
DBMS performance and that this same technique could be used to provide
content-specific access control at the storage level as is depicted in Figure 3-5c.

The basic NASD access credentials, which are described in Section 4.2.2, can grant
access on a byte-range basis which allows a DBMS system a limited amount of flexibility
in granting access to clients in the basic NASD system. For example, a DBMS system
could store a table in a NASD object with each column behind a byte-range in the object.
More concretely, for all rows, column 1 is stored in the first megabyte of the object,
column 2 in the second megabyte of the object, and so on. A DBMS system can grant a
client permission to directly access certain columns of the database by using byte-ranges.
This is a far cry from the content-specific access control that a DBMS normally provides,

39

but it demonstrates that the features of the NASD interface and a properly structured
database system can provide finer access control than at a whole table granularity.

NASD NASD

Network

NASD NASD

Figure 3-5 NASD Based DBMS Architectures

Figure 3-5a shows a client workstation accessing a DBMS system through a database
server while a group of database servers share access to a large set of NASD drives. This
allows the servers to enforce security on every access storage but limits the performance
advantages of the NASD architecture. In Figure 3-5b, the client workstations directly
interact with NASD storage and infrequently consult a database manager. However, the
database server can only grant access to contiguous ranges of a NASD object so this
approach limits the freedom of the DBMS security policy. Figure 3-5c shows a client in
NASD and ActiveDisk [Riedel98a] system where a portion of the DBMS resides on the disk
which could provide some of the DBMS functionality including enforcing security.

DBMS

Clients

DBMS

Clients

DBMS

Clients

NASD

DBMS
Stub

NASD

DBMS
Stub

Network

(a) (b)

(c)

Network

40

3.10 Discussion

In the preceding chapter, I described a variety of different access control systems
that designers may build on NASD. From this survey, I’ve found several issues that need to
be considered when designing NASD’s security system and implementing systems on top
of NASD: arbitrary security critical code on the control path, rich set of relationships
described in access control structures, dynamic inheritance, and promptness of group
membership changes when permissions are checked in the application, Table 3-1
summarizes the issues for the distributed filesystems.

• Arbitrary security-critical code on the control path : Multics’ TRAP function
introduces arbitrary security critical code into the control path for I/O operations.
Similarly, a DBMS inserts content-specific processing which performs filtering on data
presented to the user but is otherwise arbitrary. NASD removes the server, which can
implement arbitrary functionality, from the control path, thereby removing the
mechanism to execute the arbitrary code in response to each request.

The idea of adding a general purpose execution engine on the path between the
requestor and a filesystem for security purposes may have originated with Multics but
other researchers have revisited the idea. Rabin and Tygar explored a similar mecha-
nism in the ITOSS system and demonstrated that it can be used to provide a finer gran-
ularity of control than file level permissions [Rabin89]. Bershad and Pinkerton
investigated a similar idea called Watchdogs where client requests are intercepted and
sent to a user-level filesystem extension program that extends the semantics of the
filesystem [Bershad88].

Because of NASD’s relatively simple, (albeit high-level) interface, the only way to pro-
vide TRAP-like functionality is involve the file manager on every request. This degen-
erates into more of a Net-SCSI [Gibson97a] model in which control goes through the
file manager and reduces overall scalability by increasing file manager load although
data transfers do bypass the filemanager.

Ongoing Active Disk [Ridel98a] research is aimed at adding to each storage device the
ability to execute arbitrary code on a per I/O operation basis. While the goal of Active
Disk research is to deliver increased performance to clients, the same technology can be
used to extend the storage system semantics to provide the kind of behavior required by
Multics’ TRAP function, a DBMS, Watchdogs, or ITOSS.

• Rich set of relationships: Both OpenVMS and GAA API provide a rich set of
attributes that can be used in access control systems and this fact makes it difficult to
efficiently implement these systems on top of simple abstractions such as groups of
objects. In Open VMS, a client’s access rights depend on a complicated interaction of
the user’s identity and the attributes of their current process, as well as the protection
code and ACL for the requested object. The complicated interactions, illustrated by a
multi-page flow-chart in the OpenVMS documentation, depend on exactly which
privileges are granted to a user. However, simple structures such as groups of objects
could handle the common case modes of getting access through an ACL or protection
code while the more exotic mechanisms are handled on a case-by-case basis.

41

The GAA API presents a powerful interface for expressing any policy that can be dis-
tilled down to an ACL and a set of conditions on the ACL. This provides a feature-rich
method of expressing policies that presents a similar challenge to the ones posed by the
OpenVMS security structure. In contrast to OpenVMS, the GAA API is specifically
intended to operate in a distributed, or metacomputing, environment. From the NASD
perspective, the GAA API offers an interface in which complicated policies can be
expressed by an application that may exceed the capacity of a storage device.

• Dynamic inheritance: In Appleshare, Novell, and, to a much lesser degree, AFS,
filesystems use dynamic inheritance to allow small changes in the access control
information to have an impact on a large number of filesystem objects by introducing a
dynamically evaluated dependency between an access control decision for a requested
filesystem object and the access control information of another filesystem object. In
NT, when a user does not have the Bypass Traverse checking right, NT implements a
similar dependency check by verifying a client’s permissions on all directories along
the path to a requested filesystem object. Some of the access control mechanism for
NASD that I will present in Chapter 5 allow or reject requests strictly based on the
contents of the requested object’s metadata and the requesting client’s access
credentials, i.e. a local decision. A local decision simplifies the interface to the access
control system and strictly limits the amount of I/O necessary to verify a request. With
some of these local decision solutions, if access control on a directory becomes more
restrictive, a dynamic inheritance policy in a file manager will force the file manager to
update the metadata of all affected objects for which access credentials are outstanding.

Table 3-1 Summary of Survey of Network Filesystems

Filesystem Group Support
Timeliness of Group

Membership Changes
Time of

Access Check Inheritance

NT Shared/Local Next Login (Domain)

Next Connection (Local)

On Open† Static

AppleShare Local On Open On Open Dynamic

NFS Local* Next Request (if a local
group or NIS is used)

On each
request

Static

AFS Shared On Login On each
request

Static‡

Novell Shared ? ? Dynamic
w/filters

† The CIFS 1.0 specification allows the server to return NoAccess in response to a read or write request so
a CIFS compliant implementation could check access rights per operation and reflect ACL changes
immediately although experiments with NT 4.0 server indicate that it tests at open time.

* An extra layer of sychronization may be used to maintain consistent group membership databases across
multiple servers but it is not integral to the system.

‡ Since AFS files do not have ACLs, they dynamically inherit the permissions of their parent directory
which behaves just as if they all had the same permissions as the directory ACL.

42

• Group membership changes: When a user is removed from a group, she may lose
rights to a large number of objects. In the case of NT and AFS, adding or removing a
user from a shared group will not affect access control decisions until a user
reauthenticates to the entire system. This allows NASD to take a lazy attitude towards
reflecting group membership changes and having them take effect only when new
access credentials, discussed in Chapter 4, are requested. However, in both NT and
Appleshare, a group database is stored locally on the workstation. With AppleShare,
the change is reflected the next time a user opens a file on the server, whereas NT does
not reflect the change until the next time a user connects to the server. In the NASD
world, in order for the change to take immediate effect, the file manager must explicitly,
by modifying the object’s metadata, revoke client’s access to the affected objects.

• Time of permissions check: In AppleShare and NT, the statefulness of the protocol
allows the fileserver to check access control permissions when a file is opened rather
than on each individual operation. As a result, a client operation-in-progress will
continue even if access control changes are made on the file. However, NASD is a
stateless protocol, so the drive is unable to track “open” files. Normally, a filemanager
attempts to provide a client with long-lived access credentials that allow the client to
operate independently of the filemanager. However, in order to allow in-flight
operations to complete, the NASD server needs to be kept informed of file opens and
closes. If the server knows of the opens and closes, it can issue clients the appropriate
access credentials to complete the in-progress operation even when the protection
information on the file changes.

From the perspective of the drive, the most important issues, which ties together
many of the concerns I have presented, are the number of sources of information necessary
to make an access control decision and the complexity of making the decision. If group
changes must have an immediate effect or an ACL change affects a group of objects, the
NASD drive will either have more things to examine to make an access control decision or
need to somehow update all the affected objects (if NASD is making local decisions only).
If the filesystem has a rich access control scheme, it is much more difficult to use a simple
abstraction such as groups to capture the expected behavior. Simpler, more structured
schemes will be easier to implement in a commodity storage device. In Chapter 5, I will
present a variety of types of access credentials which are partially motivated by these
issues.

43

Chapter 4: The NASD Security System

As I described in Chapter 2, the high-level goals of the NASD security system are
to:

• Enable applications to implement their application-specific policies over network
attached storage devices.

• Protect the integrity of communication involving network attached storage.

• Deliver the scalability and aggregate bandwidth through the potential of the NASD
architecture.

• Optionally, protect the privacy of communication involving network attached storage.

This chapter describes a basic security system, which is part of the NASD interface, for
enabling a filemanager to implement its policies over storage. Initially, I present a high
level view of the communications flow and iterate while adding increasing levels of detail.
I describe the system in terms of properties that NASD requires from its cryptographic
primitives. After presenting some detail, I show, based on published research, that my
selections of primitives and their applications in NASD are secure. Finally, I describe the
set of attacks that can be applied to NASD and list the mechanisms within NASD that pre-
vent the attacks. In later chapters, I will refine this basic security system to improve perfor-
mance and provide additional functionality from storage devices.

In order to control who accesses storage, the storage device must be able to conclude
that a request came either from the filemanager or someone duly authorized by the
filemanager. This allows the filemanager to control who can make requests to the storage
and what requests are allowed. The complement must also be true: authorized clients must
be able to recognize that a reply originated from the appropriate storage device.
Optionally, the security system must be able to protect the privacy of data although the
application layer can handle some of the privacy issues as discussed in Section 4.4.2.

Although the filemanager is not on the client-storage datapath, it must be able to
assert its security policies with the same impact as if it were synchronously inspecting
every request. However, in order to allow the filemanager to scale to large numbers of
clients, I want the filemanager to not be involved in each and every request, i.e. to have
asynchronous involvement in system operation. Asynchronous involvement allows the

44

filemanager in a network attached storage architecture to scale by a factor of 2 to 5 more
than a system in which the filemanager is synchronously involved [Gibson97a].

This chapter of my dissertation argues for a design of the security-specific portions
of the NASD interface that enable a filemanager to be involved asynchronously with
clients and still effectively have synchronous control over who accesses storage. This
design has been implemented in the NASD prototype and used to implement both AFS
and NFS filesystems on top of NASD [Gibson97b].

4.1 Basic Design

4.1.1 Overview

In this section, I give an overview of the NASD security system. I describe a
pessimistic model of an adversary and then explain how the basic security structure in a
server attached disk system evolves into a network attached storage system.

The system I will describe is designed to be secure when an adversary has full
knowledge of the NASD interface, communication protocols, as well as the relevant
cryptographic algorithms. The adversary may also pose as a legitimate client and gather
information on the system through valid requests. The security of the system ultimately
relies on the privacy of cryptographic keys, which will be discussed in Section 4.3, and not
the secrecy of any of the protocols. I make no assumption about the underlying network
providing any security guarantees. I make the worst case assumption, which is that an
adversary can read, modify, insert, and delete arbitrary messages on the network. This is
similar to an adversary having control of a critical router in front of the storage devices.

I also assume the client workstations are untrusted because an adversary may be able
to control the operating system or software running on the workstation. A workstation
may be in the office of someone who is attacking the system or the workstation may be in
a low-security public workstation cluster. While the NASD system assumes that clients are
untrusted, a user who choose to access NASD through a workstation is implicitly trusting
the workstation not to abuse information the user provides. If a user accesses the storage
system through a trojan horse client then she has compromised the security of the contents
of any objects she has accessed through the trojan horse client.

In a server attached disk system, such as the distributed filesystems described in
Chapter 2, the application server enforces its access policies directly by examining each
request. A straightforward extension of this approach to NASD is for clients to ask the
filemanager for permission to perform specific operations as shown in Figure 4-1. The
filemanager understands the application-specific access control policies and makes an
access control decision, which it “wraps up” and gives to the client in the form of an
access credential. Any rights that are not explicitly granted in the access credential are

45

forbidden to a client. The client then takes its access credential and shows it to the drive
with each request as proof of the client’s access privileges. If a client wants to perform an
operation that is not permitted by the access credential, the client must request another
access credential from the filemanager. However, the client can make repeated requests to
the NASD with the same access credential as long as the requests only use the limited
rights specified by the access credential.

This high level version of the NASD security system achieves the goal of
asynchronous oversight because the filemanager is only consulted to issue the access
credentials, i.e. render access control policy decisions. However, access credentials are
examined by the drive on each request thereby giving the filemanager synchronous
control. Access credentials are similar to classical capabilities [Dennis66] because they
grant the bearer a specific set of access rights. Since the client sends the access credentials
to the storage device on every request, the storage device does not need to maintain any
long term state across requests which improves both scalability and fault tolerance of the
device. The storage device can handle large numbers of active clients because an active
client does not consume state on the device: only in-progress operations will consume
state. Any storage device will have a limited number of requests per second that it can
serve due to its CPU or media performance, which is a more natural constraint than having
a connection-based approach where an active client in a potentially large site consumes
state on the drive.

Filemanager

NASD

Client

3:Access Credential, Request

4:Reply

1:Request for access

Figure 4-1 Flow of NASD Security

When a client wants to access a file stored on a NASD, the client first sends the
filemanager a request for access rights (1). The filemanager then performs the
application-specific access check to determine what rights should be granted to the client
and sends the result, packaged in an access credential, to the client (2). The client sends
the filemanager’s access decision to the drive along with a request (3) which allows the
drive to perform a simple check to properly enforce the filemanager’s access decision
before sending the client a reply (4).

2: Access Credential
Secret
Key

Secret
Key

46

However, simply wrapping up a client’s access rights and handing them to the client
does not protect applications against a corrupt client that may modify the access
credential. Without preventative measures, a client can take the access credential received
from the filemanager and alter it to allow whatever rights it wants regardless of the
filemanager’s polices.

To address this problem, the filemanager signs the description of the client’s access
rights, which I call the public access credential, to prevent a client from modifying the
access credential. I use HMAC-SHA1 [Bellare96a, NIST95] to generate an unforgeable
signature of the public access credential, which I call the private access credential. Both
are then sent to the storage device. The private access credential must be transmitted over
a secure private channel while the public credential can be sent over a public channel. This
separation of the credential into a public and private portion is similar to AFS’s tokens.
AFS tokens contain a secure token, which must be private because it contains
cryptographic secrets, and a clear token, which does not need to be private because it does
not contain any cryptographic secrets [Satyanarayanan89]. Taken together, the public and
private access credentials are simply the access credential, and the flow remains the same
as shown in Figure 4-1.

Since HMAC-SHA1 is a message authentication code (MAC) [Menezes98] that
requires both issuer and verifier to share the same key, the filemanager and the storage
device must share the cryptographic key used to generate the private access credentials. As
long as the filemanager and storage device keep the key private, nobody else, including the
clients, will be able to produce the private access credential corresponding to an arbitrary
public access credential. This prevents unauthorized users from generating or modifying
an access credential to obtain access to a storage device.

Unfortunately, a signature on the client’s access privileges does not fully protect the
system from an adversary that can modify network traffic. The adversary could change
stored data, by modifying a write command, or give the appearance of different data being
stored, by modifying a read reply, which would compromise system security. Therefore,
the client and the storage device must include some form of signature, which is another
HMAC-SHA1 message authentication code in my system, to prevent an adversary from
modifying a request or reply as shown in Figure 4-2.

Since the client and storage device use a MAC to protect the integrity of
communication, they must also share a secret key to use when generating a MAC. Clients
use the private access credential, which the filemanager gave to the client as a signature
over the public access credential, to bind a specific NASD request to the public portion of
the access credential through a message authentication code, as well as similarly binding
the reply from the storage device. This ties the MAC on the request directly back to the
public credential, which describe a client’s access rights, and allows the drive to readily
verify the relationship between a client’s rights and a request. The client includes the
public access credential with each request, allowing the storage device — which shares a
secret with the filemanager — to regenerate the private access credential which, in turn,

47

enables it to verify the MAC on the request. Additionally, the private credential can be
used to protect the privacy of client-storage communication discussed in Section 4.4.4. An
alternative is to simply encrypt the client-drive key under the filemanager-drive key and
send this to the drive, which would be similar to the behavior of Kerberos. However, this
requires encryption rather than a MAC and encryption is not only more expensive, but
raises export issues.

Since the private credential is used to prove that a client was granted the rights
described in the public credential, the private credential must be privately communicated
to the client via an application-specific protocol to prevent an adversary from copying the
entire access credential. The application defines how the information flows from the
filemanager to the client but it must be kept private and is not part of the NASD interface
because the drive is not directly involved. An application could use a customized private
communication protocol to protect the privacy of the private credential or a standard
protocol such as such as secure versions of Sun’s ONC+ RPC [Sun97] or Transarc and
OSF’s DCE RPC [OSF91], all of which allow the application to hide data from observers.

Filemanager

NASD

Client

3: Public Credential, Request, MACin

4:Reply, MACout

1:Request for access

Figure 4-2 Overview of NASD Security

When a client wants to access a file stored on a NASD, the client first sends the filemanager
a request for access rights (1). The filemanager then performs the application-specific
access check to determine what rights should be granted to the client and sends the
resulting description of access rights, the public credential, along with a signature of the
rights, the private credential, to the client through an application-specific private
communication protocol (2). The client sends public credential and a message
authentication to the drive along with a request (3). The drive checks that the public
credential grants appropriate rights and the MAC was generated using the proper private
credential as a key which proves that the request came from a duly authorized client.
Similarly, the reply includes a MAC which allows the client to verify the reply came from
the NASD (4).

2: Public Credential,
Private Credential

Secret
Key

Secret
Key

NASD Integrity/Privacy

Private Communication

48

This basic flow in the NASD security system delivers synchronous control of
storage with asynchronous involvement of the filemanager, thus allowing the filemanager
to handle a larger number of clients. By generating MACs of the public access credentials,
the description of the client’s access rights, the filemanager prevents a client from granting
itself arbitrary rights. By including a MAC on each request and reply, the client and
storage device guarantee the origin of their message exchanges. By requiring the access
request to be private, an adversary is prevented from stealing a clients access rights.

Now that I have given a high-level description of the NASD security system, I will
present an example and then go into greater detail about facets of the system.

4.1.2 An Example Read Request

In this section, I provide more detail on the NASD security system by explaining the
function of access credentials and then applying them to a NASD read request. I also
discuss the fundamental limitation of any access control system based on cryptographic
tokens.

NASD access credentials are used to convince a drive that a client has been granted
some specified set of access rights. They consist of two parts: a public portion —
describing a clients rights — and a private portion — which is a cryptographic key. The
private portion is a cryptographic key used to protect the integrity or privacy of
communication between the client and storage device.

For each request, the client proves that it was authorized by presenting both the
request specification and the public portion of an access credential to the drive as well as a
message authentication code for the specific request. For now, assume that drive knows the
unique secret key for all access credentials. In Section 4.2.1, I will discuss how this
information is implicitly sent to the drive.

In Figure 4-3, I repeat Figure 4-2 at a greater level of detail to illustrate a client read
request. The client sends a security header, public credential, read request, nonce, and a
message authentication code to the drive which, together with the filemanager-drive key,
provide all the information necessary for the drive to determine if a request is authorized.
The security header, which is explained in detail in Section 4.4.1, and public credential
together with the secret key provide the drive with sufficient information to generate the
corresponding private portion of the access credential. Since only the filemanager and the
drive have the secret key, they are the only ones who could have generated or distributed
the appropriate private access credential thus preventing an adversary from spoofing or
modifying the access credential. Using the private portion as a key, the drive generates a
message authentication code of the received data and the nonce which it then compares to
the MAC value received with the request. If the values match, the drive knows that the
request came from someone who holds the private key corresponding to the public

49

credentials sent with the request. From this, the drive can conclude that the request came
from someone who was granted access by the filemanager.

In reality, this request could have been generated by a third party who was passed
the access credentials by the original recipient. This is a limitation of any system based on
cryptographic tokens, such as NASD’s access credentials, Kerberos tickets [Neuman94],
or AFS tokens [Satyanarayanan89], since there is no way to tie the token back to the
owner in an unforgeable manner. If the owner of a token gives the token to another user,
the system has no way of verifying that the bits in the request came from the owner or
someone to whom the owner gave the ability to impersonate himself. The only way to
address this problem is by applying some secure trusted hardware which binds the
cryptographic token to a specific piece of hardware, which is done both in Amoeba
[Tanenbaum86] and in secure coprocessor applications [Yee95]. Although a third party
could be issuing the operation making it impossible to know the actual request origin, if
the original recipient of the access credential gave out the credentials then she is ultimately
responsible for the operation which can be observed. Analogously, consider a key given to
a manager for a safe containing valuable records. Although we cannot know who actually
opened the safe, we know that only the manager or someone to whom the manager gave

NASD Integrity/Privacy
Private Communication

Figure 4-3 Example Read Request

The client requests access from the filemanager (1) who provides the client with access
credentials (2) using an application-specific private communication mechanism. The
client generates a security header, which specifies how to process the request, and sends
the header, the public credential, the read request, a nonce, as well as a MAC of the
request and nonce to the drive (3). The drive uses the security header and public
credential to generate the proper private credential which is used to verify the
RequestMAC. After verifying the nonce is fresh, the drive generates a similar MAC on the
reply and sends it to the client (4) which the client verifies similarly.

ReplyMAC=MACPrivateCred(Data,Status, NonceOut)

Implicit Communication
Filemanager

NASD

Client

Secret Key

1:Request for access

3:SecurityHdr, Public Credential,
ReadRequest, NonceIn, RequestMAC

4:Data, Status, NonceOut ReplyMAC

RequestMAC=MACPrivateCred(ReadRequest, NonceIn)
Implicitly Send
PrivateCred

Secret Key
2:PublicCred,
PrivateCred

50

the key was able to access the safe unless the key was stolen or someone broke into the
safe.

Nonces are included on every request and reply involving the storage device to

protect freshness1. This allows the drive to verify that the request has arrived in timely
fashion and has not been replayed by an adversary. Since the nonces protected by the
MACs, an adversary is unable to modify a request to allow it to be replayed. NASD’s
nonces will be discussed later in Section 4.4.6.

4.2 NASD Access Credentials

4.2.1 The Private Credential

The private credential is a cryptographic key used by a client to bind a specific
NASD request to the public portion of the credential through a message authentication
code. This creates a strong relationship between the public credential, the request, a
working key shared only by the filemanager and drive, and the message authentication
code that the drive can verify for each request. Figure 4-4 illustrates this dependency
relationship. The basis key is a shared secret between the filemanager and the drive, used
with the public access credential to derive the private access credential. Since only the
filemanager and the drive share this key, nobody else can generate the appropriate private
access credential for a particular public access credential. The filemanager gives the
private access credential only to an authorized client so a client holding the private access
credentials implies that the filemanager has authorized the client with the rights specified
in the public access credential. Since only someone with the private credential can
generate the proper MAC on a request, if a drive receives the proper MAC then the drive
can believe that the sender held the private credentials. Since holding the private credential
implies the sender was authorized by the filemanager with the rights in the public
credential, the proper MAC also implies that the requestor was granted the rights specified
in the public credential.

If the drive generates the same MAC that was included in the request, the drive can
be confident that the MAC, the public credential, and the request were all received without
modification because a change in the request would change the value of the MAC and a
change in the public credential would change the value of the private credential generated
by the drive, which in turn would also change the MAC value.

1. A message is fresh if it was recently said by the apparent sender and has not been sent before.

51

In order for the preceding chain of logic to work, a strong relationship in the
derivation of the private credential from the public credential and basis key is required.
The private credential corresponding to a specific public credential is generated as:

where is the basis key shared between the filemanager and the drive. What are

the properties that are important for the function F? The function must be relatively easy
to compute because the filemanager and the drive will need to evaluate F at least once per
access credential. It must also have a large range, 90+ bits [Blaze96], and the output must
be indistinguishable from random because the output will be used as a cryptographic key.

Figure 4-4 Message Authentication Code Dependency

Solid horizontal lines illustrate messages sent while vertical dashed lines indicate
dependencies of one value on another. The dependencies and communication flow
illustrate the steps required for a drive to be able to verify a request’s MAC. The basis key
is used to generate the private credential which is given to the client and used to generate
the MAC that the client sends to the drive. Tracing the dependencies back from the final
MAC calculation, the MAC depends on the basis key, which implies the filemanager has
authorized the request.

Client Filemanager Drive

Request for Access Rights Public Credential

Request

MAC

Private Credential Private Credential

Basis Key Basis Key

Public Credential

Request

MAC ?=? MAC†

Public Credential

Private Credential

Data Dependency

Transmitted Data

PrivateCredential FKx
PublicCredential()=

Kx

52

An adversary who is behaving like a normal client and collecting valid access credentials
should not be able to use the valid credentials to generate their own credentials. More
formally, given zero or more (x,Fk(x)) pairs, it is computationally infeasible to compute
another pair (x,Fk(x)) for any new input x ≠ xi.

Finally, I would also like every bit of the input to affect every bit of the output i.e. a
strong avalanche property [Webster85]. This property implies that a small change in the
input will have an unpredictable impact on the output and allows Fk(x) to safely generate
keys when its input, the public credential, may change by only a few bits. Without strong
avalanche property, a set of credentials where the public credentials differ in only a few
bits might leak information about the key being used.

Essentially, NASD needs a keyed pseudo-random function [Menzenes97]. Modern
iterated hash functions [Menzenes97] have, in practice, been shown to have considerable
resistance to attacks and supply many of the properties that I require. Bellare et al. have
used iterated hash functions as the basis for pseudo-random function
families [Bellare96b]. Unlike many applications of pseudo-random functions, NASD does
not evaluate F on a previous output of F in order to generate a sequence of random
numbers. Instead, NASD uses a given seed exactly once to generate a single random value
and does not evaluate F on results of previous results of evaluating F. This prevents attacks
based on discovering the value of an intermediate chaining variable in an iterated hash
function, a discovery that can be used to break the function [Kelsey97]. Additionally, an
adversary can exercise only limited control over the contents of its public credentials so it
is difficult for the adversary to mount a significant chosen plaintext on F. The difficulty of
finding the key is the key recovery property commonly applied to message authentication
codes and encryption algorithms, which suggests that a message authentication code based
on an iterated hash may be appropriate for F.

In NASD, I instantiate F in NASD using HMAC-SHA1 [NIST95, Bellare96a], a
message authentication code based on a cryptographic hash function. The SHA-1 hash
function, in practice, provides all the desirable properties with the exception of the key
dependency. Wrapping SHA-1 in the HMAC construction adds this dependency, creating
a strong and efficient keyed pseudo-random function. This construction is similar to the
Digital Signature Standard’s pseudo-random number generator [NIST94] although NASD
uses a MAC rather than a hash function in order to provide the key dependency. The use of
MACs to derive keys has also been proposed by Benjamin Reed et al. in the IBM
SCARED project [Reed99] and by Mittra and Woo [Mittra97].

The cryptographic community has produced many hash functions which are
provably equivalent in complexity to difficult number theory problems (such as the
difficulty of factoring integers [Blum83] or the discrete logarithm
problem [Goldreich86]), so their security can be more concretely described. Because the
performance of the number theoretic hash functions is generally much worse than SHA-1,
I selected SHA-1 over the number theoretic contenders.

53

Now, I will be a little more concrete about how an adversary could attack
HMAC-SHA1 that is being used to generate the private credentials, i.e. generating keys. A
malicious client can pretend to be a well-behaved client and repeatedly request access
credentials from a filemanager. The client may be able to specify the contents of the access
credential, which is a chosen plaintext attack, or may have no control over the contents,
which is a known plaintext attack. Assuming a terabit network and access credential

requests taking a modest 64 bytes, a client would be able to accumulate fewer than 250
valid access credentials in 24-hours. This provides some intuitive sense of the amount of
data an adversary could accumulate to mount an attack on the key generator and falls well

short of the 280 known text-MAC pairs expected to be necessary with a birthday paradox1
attack to generate a forgery if HMAC-SHA1 is an ideal 160-bit MAC [Menezes98].

In the paper defining HMAC, Bellare et al. show that an attacker who can forge a
MAC, i.e. generate a private access credential, can also break the underlying hash
function, which is SHA-1. Currently, there are no known attacks on SHA-1 better than the
brute force birthday attack so HMAC-SHA1 is believed secure. In the context of NASD,
an attacker cannot generate her own private credential with the number of known
text-MAC pairs that she could accumulate in a day.

4.2.2 The Public Credential

The public credential’s primary purpose is to compactly communicate the rights
granted to the client between the filemanager and drive. The public credential is given to
the client who forwards it to the drive on each request. By passing the rights on each
request, NASD pays a small fixed overhead on each request but the drive does not need to
maintain any long-term record of the client’s access rights. Each NASD request contains
all the information required for NASD drives to grant access to an object except for the
keys shared between the filemanager and drive.

The primary requirement for the public credential is to identify an object, or set of
objects, and permissions on the object(s) that the filemanager grants to the bearer. The first
component of this is to specify an object, which the initial NASD design does using the
drive’s unique identifier, the object’s unique object identifier, the partition ID in which the
object is located, and a version number included in the object’s metadata. These fields
together are called the object specification.

The version number in the metadata enables filemanagers to issue credentials tied to
a specific version of the object. If the filemanager changes the version number, any access
credential issued with the previous version number will be rejected by the drive. For
example, a filemanager issues access credentials for version three of an object. At some

1. The birthday paradox is a standard statistical problem and a good explanation can be found in [Menzenes98]. The
paradox is that the probability of two items in a uniformly distributed set drawn from n values having the same hash

values is approximately .
1

n

54

time in the future, someone changes the permissions on the object to become more
restrictive so the filemanager changes the version to four. A user with an access credential
for version three will have her access attempts rejected until she obtains a new access
credential specifying version four. This feature allows revocation on a per object basis in
response to changes of the filesystem’s access control policies.

This approach to naming is very explicit and specific about what object can be
accessed. A client must obtain an access credential for each and every object that it wants
to access, which increases messaging. The limitation of this approach and a more powerful
alternative to naming objects will be discussed in Chapter 5.

The second component of the public credential is to specify a client’s access rights.
The NASD interface defines a set of basic operations such as GetAttribute, SetAttribute,
ReadData, WriteData, Create, CreatePartition, FlushObjectFromCache, RemoveObject,
and ChangeKey, which clients and filemanagers use to access storage. The storage device
must be able to test that the access credential included with a request is valid for the
requested operation. In the NASD interface, I implement rights description as a set of bit
flags which are on for each operation that the public credential enables. As long as the
number of operations is relatively small and well-defined, this implementation enables
quick validity tests as well as access credentials that are valid for multiple different
operations.

The object specification and the access rights description serve as the most basic and
critical means of control that NASD must provide. However, it is not complete. Some
applications, such as AFS on NASD, will want to grant access to only a portion of an
object rather than an entire object. The NASD interface has extend-on-write semantics
where a write beyond the end of an object extends the size of the object rather than
returning an error. As a result, a client who can write to an object can consume arbitrary
amounts of storage by simply writing bytes beyond the end of the file. AFS, which has a
quota system, limits the amount of storage that a user can allocate. In order to enforce this
quota when the filemanager is not involved in individual write requests, I included a
byte-range field on each public access credential which allows a filemanager to specify
what portion of a file a client may access. By specifying an uppermost byte that is within
quota limits and escrowing the quota capacity, the byte range allows the AFS filemanager
to enforce its quota policies [Gibson97b]. Other applications may also use the byteranges
if multiple files or database tables are stored in a single object or if the application wants to
grant access to sub-ranges of an object to enforce consistency guarantees.

The public credential must also contain enough information to allow the drive to
construct the appropriate private credential. Therefore, the public credential must include
an indication of the basis key to be used, as described in Section 4.2.1, to generate the
private credentials which will be used to verify the request. If this key is changed then all
outstanding access credentials issued using the previous key value will suddenly be
invalidated.

55

This gives me a mechanism to revoke access: changing the version number of an
object or changing the basis key. Since all access credentials include a cryptographic key, I
want to limit their lifetimes in order to limit the exposure of the key. However, both of
these revocation mechanisms force a large number of clients to recontact a filemanager to
acquire fresh access credentials. I prefer to stagger the revocations when there is no
security requirement for them to occur immediately. To allow a smoother influx of
requests for reissued access credentials and to limit access credential lifetime, each access
credential has a predefined expiration time after which it is no longer accepted by the
drive. This allows the use of individual access credentials to be time-limited and requests
for fresh access credentials to be spread over time just as the original requests were spread
over time.

In NASD, there are a variety of different kinds of security options that can be used to
protect client requests which allow the application to trade-off its security versus
performance. Increased levels of security require more computation both at the client and
the drive and can have substantial performance impact depending on the resources at the
client and drive. These options describe different types of privacy or integrity protections
that the clients and drives apply to messages and will be discussed in Section 4.4.2. The
filemanager must specify which options are required for clients to use in order to use this
access credential through the minimum protection field. This places a floor on the security
that a client can apply to a request and have it accepted by the drive. A client can use
additional protection options beyond the minimum required. Each partition on the drive
also has a minimal set of protection options that the drive requires for any operation, these
options must be included in the set specified in the public credential in order for the
credential to be accepted by the drive.

In summary, the basic public access credential consists of:

• object specification — indicates which object the access credential is valid for

• rights description — describes what operations the access credential can perform

• bytes-range — constrains the access credential to being used on only part of an object

• basis key — tells the drive how to generate the proper private credential

• expiration — allows time-limited access credentials

• minimum protection — specifies the minimal amount of security a client must use with
this credential

4.3 Keys

4.3.1 Key Hierarchy

In the preceding sections, I have referred to only a single basis key or secret key
being shared between the filemanager and the drive. A single key is insufficient because it

56

is not possible to conveniently balance the usage of a key versus the lifetime of the key nor
can responsibility be delegated with a single long term key. Instead, NASD uses a small
five layer key hierarchy that enables the storage owner to control access to storage. The
bottommost layer of the hierarchy consist of the credential keys, which are used in client
operations, while the upper layers of the hierarchy, collectively called the administrative
keys, are primarily used for key generation and key management.

The number of long term keys in the system has been intentionally kept small in
order to have well-defined roles for each key and reduce requirements for key storage. Key
storage is different from other types of state with NASD because security ultimately rests
upon the keys being kept private. However, greater measures should be taken to protect
keys than normal data. By limiting this state, it becomes easier to store the keys in
non-volatile storage and simplifies the task for filemanagers to control systems of
hundreds or thousands of drives.

4.3.1.1 Master Key

For any storage device, there is ultimately some person or organization that is
responsible for the device. I will call this person the drive’s owner. The drive’s owner has
the master key for the drive and is able to use this to control it, primarily to manipulate the
key hierarchy. The master key enables unrestricted access to the drive and is an immutable
key. Thus, it should be used infrequently and be carefully protected from release. The
master key is immutable because there is no higher level key with which to securely
change it.

An exception to the immutability of the master key occurs when a drive is
transferred to a new owner or administrative domain. When these situations occur, the
master key is changed for the new owner and the entire storage device must be
reinitialized to prevent the release of privileged information. An owner can send a reset
message to the drive authorized by the master key which causes the drive to return all keys
to the default factory settings and destroy all data stored on the drive. I note that some
critics claim that because of magnetic memory effects, magnetic media can be subject to
data recovery by skilled adversaries even when the data is erased and written
over [Gutman96]. If the data is stored in unencrypted form, the data may always be
recoverable until the media is physically destroyed.

An event in which the master key is compromised is treated as a disaster scenario
and I consider the contents of a drive as lost. The drive must be reset, i.e. restored to its
original state, and data recovered via RAID or a backup mechanism which has not had its
integrity violated.

In all other cases, the master key is immutable and the owner must limit the amount
of text encrypted or digested under the master key. This is achieved by only using the
master key to delegate authority to a lesser key, the drive key, which can be changed by the
master key.

57

4.3.1.2 Drive Keys

The owner may delegate authority to administer the space on the drive to an
allocation manager by giving the allocation manager, a person or machine who actively
manages the drive, the drive key. This key allows unrestricted access to the drive but,
unlike the master key, can be changed if circumstances require. Examples of when the
drive key may need to be changed are:

• The drive key is known or suspected to be compromised.

• Failures cause the file manager and drive to have different drive key values.

• A regular (infrequent) key change is scheduled to maintain security.

The drive key primarily allows the allocation manager to divide the drives capacity
into distinct partitions and delegate authority for individual partitions to file managers.
When a partition is created, the allocation manager uses the drive key to set a partition key
that is then used to administer the partition.

4.3.1.3 Partition Keys

The allocation manager gives the filemanager a partition key for a new partition that
the filemanager is granted the right to control. The only way the filemanager can change
the partition key is by appealing to the allocation manager, who has the drive key.
Therefore, the filemanager wants to limit the use of the partition key and extend its useful
life by using it to set lesser keys, the working keys, which are used for regular drive
operations. If a filemanager is compromised, the most important secrets it holds are
partition keys and the adversary would gain access to only a single filemanager’s partitions
but not other partitions owned by other filemanagers on the same drive.

4.3.1.4 Working Keys

 A filemanager uses the working keys to both generate access credentials and
perform direct operations on a drive. For each partition, a NASD drive has both a “black”
and a “gold” working key. By having multiple valid keys, NASD can smoothly transition
from one key to another by issuing access credentials with one key while outstanding
access credentials are allowed to expire rather than being synchronously invalidated. The
working keys are use by the drive and filemanager to generate access credentials. If a
working key changes, all access credentials created with it will immediately become
invalid, which would cause a storm of requests for new access credentials. Using multiple
keys avoids having a regularly scheduled key change operation revoke all outstanding
access rights and avoids the request storm. Instead, a file manager can shift activity to a
different key and allow most access credentials under the older key to gracefully expire
over time before updating the older key.

58

As summarized in Figure 4-5, the master key is held by the owner but used only in
emergencies. The master key can set the drive key which allows the allocation manager to
partition the storage capacity and define partitions. The allocation manager uses the drive
key to define partitions and partition keys which are given to filemanagers. The
filemanagers use the partition key to set more frequently used working keys which the
filemanager uses for both direct access and generating access credentials.

4.3.2 Details of Keys

4.3.2.1 Initialization of a NASD

When a drive is shipped from the factory, the owner needs some way of initializing it
with key information so that only authorized users can subsequently exercise control over
the drive. In this section, I describe a design to allow the owner to take control of a new
storage device.

A drive arrives from the factory in an uninitialized state and it is moved into an
initialized state by the new owner. I propose that the master and drive keys be initially set
to the serial number of the drive, that no partitions exist, and that the drive is in an
uninitialized state. Immediately on receipt of a drive, the owner sends the drive an
initialize message which irreversibly moves the device into an initialized state, thereby
solidifying the owner’s control of the storage. The initialize message will also set the
master and drive keys to prevent others from taking control of the storage device. In
contrast, the partition and working keys are not set because they are tied to specific
partitions which are not yet created.

The initialize message must be sent over a trusted channel, such as an isolated
administrator’s network, to avoid an adversary eavesdropping and learning the new keys.
The trusted channel could be as simple as a single network link from an administrator’s

Figure 4-5 NASD Key Hierarchy

Most levels of the key hierarchy are used
to send messages to a storage device to
update the value of a lesser key. The
working keys are also used to directly
derive, rather than set, the value of the
access credential keys as described in
Section 4.2.1. Access credential keys are
given to clients for direct operations with
storage.

Master Key

Drive Key

Partition Key

Black Key Gold Key

Access Credential Keys

Can update descendent

Used directly in generation

A
dm

in
is

tr
at

iv
e

K
ey

s

Working Keys

of descendent

59

machine to the drive. If an adversary can eavesdrop on the initialize message, she will have
the master key and unrestricted access to the drive, so I recommend that the drive be
initialized while it is under the physical control of the administrator — for example, while
the administrator can physically observe the integrity of the cable going from the drive to
the administrator’s notebook computer. No encryption or message digests are used
because there are no shared secrets on which to base them; access to the drive in the
uninitialized state is proof the owner is permitted to perform the initialization procedure.

Once a drive has been initialized, the master key can not be changed. In order to
securely change a key if it becomes compromised, an owner needs a secure channel to the
device. Over the network, a secure channel is equivalent to sharing a cryptographic key. In
order to change the master key, another higher level key would be necessary. This is a
recursive argument that will generate an infinite key hierarchy, which is clearly
impractical. By defining the master key as the topmost key, I implicitly define a
compromise of the master key as a disaster scenario where the device must be taken out of
service. By design, the master is rarely used so its long lifetime will only produce a small
number of messages for an adversary to use to attack the system.

4.3.2.2 Key Caching

NASD drives can cache access keys, reducing the latency of processing requests, by
reusing the result of generating the private access credential. In order to maintain
correctness, if someone changes a value on which a private access credential depends, the
access credentials cache entry must be invalidated.

When a request arrives, the drive must take the public access credential, which was
provided with the request, and generate the associated private access credential in order to
verify the request. As discussed in Section 4.2.1, the private credential is generated by
evaluating HMAC-SHA1 over the public credential. This requires computationally
expensive evaluations of SHA1; the exact cost will vary depending on hardware or
software support which is further discussed Chapter 7, and adds latency to each request.

Figure 4-6 illustrates the structure of a private credential cache. If the public
credential is found in the cache, the stored private credential can be used rather than
regenerating the private credential. This occurs when a client makes multiple requests with
the same access credential within a small window of time. If the cryptographic operations
are expensive, a cache hit allows the drive to shorten the length of the critical path to
process a request.

Most workloads include some level of locality of access which can be exploited
through caching to reduce the latency caused by key computation. In Section 5.4.5, I
discuss the performance of an access credential cache using different object specifications.
For the simple capability model that I am presenting in this chapter, 16 KB of memory
achieves a hit rate of 40-50% on the two AFS workloads that I studied.

60

An access credential in the cache becomes invalid when either its basis key changes
or the associated object’s access control version number (AV) is altered. Both of these
values are included in the generation of a private credential, so cached private credentials
using old values must be invalidated. If the cache entries were not invalidated, an old
access credential could remain valid despite the filemanager having revoked it by
changing the basis key or AV. The basis key changes through specific drive RPC which
will also invalidate all affected cache entries. Since this is a rare operation, invalidation
can be done with exhaustive search of the cache. In contrast, the AV may change regularly
as permissions change or the filemanager uses it to support quota or consistency
protocols [Gibson97b]. The AV changes when someone performs a set attribute, since the
AV is part of the object attribute, and modifies the AV field. To maintain correctness in the
cache, the old entries dependent on the previous value of the AV must be invalidated.
Revocation due to AV changes can be implemented efficiently if the cache is indexed by
the object identifier for the public credential.

4.3.2.1 Key Generation

In this section, I explain the difference between generation of an administrative key
and generation of an access credential key. An important distinction between the creation
of access credential keys and administrative keys is that access credential keys are defined
by the NASD interface but administrative key generation is defined by the application. The

Figure 4-6 Private Credential Cache

This is a high-level view of how a NASD drive can cache private access credentials and
avoid potentially expensive recalculation of keys. When a request arrives at the drive, the
drive looks up the public credential in cache-memory perhaps using a hash table, to
discover if it holds the appropriate private credential. If a cache entry is found, the drive
can use the retrieved key to process the request. If no cache entry is found, the drive must
recalculate the private credential and insert it in the cache.

PublicCredentialA,
PrivateCredentialA
PublicCredentialC,
PrivateCredentialC
PublicCredentialK,
PrivateCredentialK
PublicCredentialB,
PrivateCredentialB
...

Request:
Security Header, Public Credential, Request

Cache Lookup

Private Credential

Cache Hit

Key Generation Cache
Miss

Private credential cache

Insert Access
Credential

61

generation of access credential keys is part of the NASD interface because the drive must
understand how they are generated and the relationship they have with the access
credential arguments in order for the drive to believe that the filemanager issued the acess
credentials. In contrast, administrative keys are set by the administrators and have no
special relationships to other arguments, so the administrators are free to generate them
however they wish. However, I do offer some guidelines for system implementors.

Key generation and loading into the system is a critical step and the process should
be carefully protected from an adversary. Administrators should generate the keys in the
most secure environment available, preferably a trusted tamper-resistant device. If a
tamper-resistant key-generating device is not available, administrators should minimally
take precautions to ensure that nobody has modified the key generation software or the
sources of randomness.

Since administrative keys are changed infrequently, the system designers have the
luxury of time when generating a new random key. Given the choice between a slow but
strong source of randomness and a much faster but less secure source, system designer
should opt for the more secure option.

A new administrative key must be as random as possible. Ideally, some physical
source of randomness such as radioactive decay or frequency instability in free running
oscillators [Schneir96] will provide the necessary randomness. These approaches
normally require special hardware and may be impractical in some applications. However,
there are many potential sources of randomness in a computer system such as the low bits
on the clock, keyboard latency [Zimmerman95], disk response characteristics
[Jakobson98], behavior of various system timers [Lacy93], the low bits of space used in a
filesystem, and other hard-to-predict phenomena. These sources of randomness can all be
combined using a strong pseudo-random number generator (PRNG). If the
pseudo-random number generator or sources of randomness are weak, attacking the
PRNG could be the easiest attack against a system built on NASD. This proved to be the
case in early versions of the Netscape browser where Berkeley graduate students noticed
that the source of randomness to the pseudo-random number generator only had a few bits
of randomness that could not be easily predicted and they were able to greatly reduce the
size of the keyspace base on this observation [Goldberg96]. Since NASD relies heavily on
a cryptographic hash function, multiple sources of randomness could be combined using
the Digital Signature Standard’s pseudo-random number generator based on
SHA-1 [NIST94], which is also the hash function used in the NASD prototype.

A new management key must not be directly derived from the previous version of
the key. The goal of changing the keys is twofold: I want to limit the amount of encryption
or MACs generated with a key and force an attacker to attack different versions of a key
separately rather than being able to leverage breaking a past key to break a current key. If
an adversary compromises version k of a key, the adversary cannot use this to help break
version k+1 since version k was not used to set version k+1.

62

An adversary who compromises a higher level key can use the compromised key to
set a lower key or eavesdrop valid settings of lower level keys. So, higher level keys are
designed to be used much less frequently than lower level key. This limits the number of
cryptographic operations performed under the longer-lived keys, which makes the task of
breaking the keys more difficult for an adversary.

It is worthwhile to note a drive is never required to generate random values. Since
only the administrative machines use a random number generator, only they need to be
updated in the event that a flaw is found in the random number generation or when a better
source of randomness becomes available.

4.3.2.2 Key Length and Use

In this section, I discuss how NASD uses the output of HMAC-SHA1, which
generates access credential keys as discussed in Section 4.2.1, to generate subkeys for
both MACing and encryption. If either the MAC key or encryption key is compromised,
the other operation must remain secure, and at least be broken independent. Therefore, I
cannot use the same key for both operations. There are three approaches to generating
subkeys from the 160-bit output of HMAC-SHA1: divide the bits, use an alternative to
HMAC-SHA1 with a larger range, and hash the 160 bits with unique constants.

The simplest solution would involve splitting the 160 bits into two 80-bit keys.
Unfortunately, these keys are smaller than the 90 bits recently recommended by a panel of
eminent cryptographers for long-term security [Blaze96]. The split could also be
asymmetric, for example 70 bits for a MAC key and 90 bits for an encryption key, because
a MAC only needs to remain unbroken for the duration of the access credential, since it
will be worthless after the access credential expires, while data should remain private
forever. The shorter MAC key raises concern that the key may be too short and Moore’s
law may advance computing so that the MAC key could be broken before the access
credential becomes invalid.

Some function other than a single evaluation of HMAC-SHA1 could be used to
generate keys. This could be done by either using an F function that produced longer
values, although there are no obvious strong candidates, or using two distinct keys for
HMAC-SHA1 in order to generate two distinct outputs. This requires that the file manager
send longer keys to the client, which may not carry a substantial penalty, but may also
require that more key bits be stored at the drive, which could be expensive.

The 160-bit output of HMAC-SHA1 can be hashed again with two unique constants
to generate the MAC and encryption keys. I can provide the full 160 bits of randomness to
each key by padding out the 160 bit Key0 to a 512 bit block using two different constants
and hashing each of these padded blocks with SHA-1 to produce two new 160-bit keys,
KeyA and KeyB. Both KeyA and KeyB share the same 160-bits of randomness but, since
SHA-1 is a one way function, an adversary cannot use knowledge of one key to derive the
other key unless she can invert SHA-1. An adversary who can break KeyA will not be able

63

to use this achievement to break KeyB or vice versa. Computing these derived keys is a
minor performance hit at the drive but the cost can be amortized across multiple requests
through key caching as I mentioned in Section 4.3.2.2.

Of the three alternatives presented, merely splitting up the bits is the largest security
risk. An alternative to HMAC-SHA1 with a larger range would be appropriate but there is
no obvious function that meets the criteria described in Section 4.2.1 and has a larger
range. Therefore, I hash the 160 bits with unique constants to generate the MAC and
encryption keys.

4.4 Design Details

In this section, I describe the details of how the NASD security system protects the
integrity, privacy, and freshness of NASD requests. I start by explaining how a drive
identifies what cryptographic key to use to process the request and then I describe the
various types of protection that NASD can provide as well as the cryptographic operations
necessary to provide the protection. Finally, I discuss how NASD protects the freshness of
requests.

4.4.1 Security Header

The security header gives the drive enough information to identify both the proper
key to use to process the request and the cryptographic operations to perform on the
request. The security header is always sent in plaintext so this information will always be
available to an adversary. Therefore, only the minimal required information is included in
the security header.

The first function of the security header is to identify which key to use to generate
the private credentials. The public credential may be encrypted, which is discussed in
Section 4.4.2, so the security header must include enough information so that the drive can
decrypt an encrypted public credential. This motivates the security header to have the
following fields:

• type: The type tells the drive which key in the key hierarchy to use to process the
request and also tells the drive if this request uses an access credential or is directly
authorized by an administrative key.

• partition : In order to distinguish between the multiple partition, black, and gold keys in
a drive’s key hierarchy, the security header also includes a partition field. For example,
the type field may indicate that the request uses an access credential created with a
black working key but the partition indicates which of the black working keys are used.

64

Once the drive knows which key to use, the drive needs to know what to do with the key,
i. e. how to process the request. This motivates the final field of the security header:

• actual protection: The actual protection field tells the drive how to undo or verify the
protections that were applied to the request by the filemanager or client. The different
protection options are discussed in the next section.

4.4.2 Protection Options

Applications built on NASD will require different security properties depending on
concerns such as the environment in which an application operates, the cryptographic
performance available from clients and storage devices, and the security requirements for
an application. In this section, I describe the different options that an application and client
can select from in order to balance these concerns and how the security options are
determined for a request.

4.4.2.1 Description of Options

In many cases, applying security guarantees such as privacy or integrity will be
computationally expensive if drives or clients lack the capability for high throughput
cryptographic operations. Ideally, any message exchanges with a drive would have their
integrity and privacy protected from an adversary. Realistically, different clients and drives
will have different capabilities and there will be different application requirements.
Therefore, I allow the filemanager to determine the minimal acceptable levels of
protection and trade off the performance concerns versus security concerns.

NASD requests and replies, ignoring the security-related fields, are divided into two
components: data and arguments. The data is the potentially large sequence of bytes
transferred as a result of read or write operations. All other information falls into the
category of arguments. This includes information such as the object which the operation
access, object offsets, and return codes.

The NASD security has the following security options that can be set on a per access
credential basis:

• IntegrityArgs : The integrity of the arguments and the nonce is protected by a MAC.

• IntegrityData : The integrity of the data is protected by a MAC.

• PrivacyArgs: The privacy of the argument is protected with encryption.

• PrivacyData: The privacy of the data is protected with encryption.

• PrivacyCredential: The privacy of the public access credential is protected with
encryption. Protecting the privacy of credentials makes it more difficult for an
adversary to track a client’s access patterns because only the security header, discussed
in Section 4.4.1, is available in plaintext to the adversary.

65

4.4.2.2 Sources of Security Options

When a request arrives at a drive, there are three sources of protection options that
are involved. For every partition, the filemanager sets a floor on the set of required security
options for any operation on that partition. For meaningful security, the filemanager
should require at least IntegrityArgs on the partition. Without this minimum, an
adversary could generate a request with the security header and access credential
indicating no security and then issue arbitrary requests to the drive. If only PrivacyArgs is
required on a partition, an adversary could send random requests to the drive, which would
be decrypted and subsequently some would be accepted by the drive with unpredictable
results.

In order for the filemanager to control on a per-access credential basis the security
protections used, each access credential includes a minimum set of security options that
must be used with the credential. This enables a filemanager to apply different degrees of
security to different objects within a partition.

A client may want to apply greater security than the minimum required by the
filemanager. A client can set the security options used in the security header, described in
Section 4.4.1, while both the partition and access credential values are set exclusively by
the filemanager. For example, this allows a client to use private communication in a
system that may only require integrity.

When a request arrives, the drive first examines the security header to determine
what options are used on the request. The header informs the drive if PrivacyCredential
was used to hide the contents of the credential. If the credential was encrypted, the
remainder of the security header defines which key to use in decrypting the credential. At
this point, the drive verifies that the security header’s listed security options include all the
options required by both the access credential and the partition minimums.

All three of sources of security options are used by the drive to verify each request.
They are strictly ordered: the access credential options must be superset of the partition
options and the security header options must be a superset of the access credential options.
If this ordering fails, the request will be rejected by the drive because someone’s decision
about the security options failed to comply with a higher-precedence decision.

4.4.2.3 Attacking the Security Options

The security header is neither encrypted nor directly protected with a MAC, so an
adversary can modify the security header’s security options field. In this section, I explore
what the adversary can achieve by adding or removing options from the security header.

The adversary can add security options to the security header. If the adversary adds
integrity protection, the drive will attempt to verify a non-existent MAC. This attack is
essentially the same as an adversary randomly modifying a bit in the request causing the

66

request to fail. Because the network is unsecure, an adversary can always modify bits in a
valid request and cause the request to be rejected by the drive. If an adversary adds a
privacy option, the drive will decrypt data that is unencrypted, which will fail the integrity
check if an integrity option is also used. If no integrity option is used, the adversary can
already modify the data so the essentially random manipulation of decrypting unencrypted
data is not a very useful attack.

The adversary can also remove security options from the security header. If the
adversary strips off an integrity option then the adversary can freely modify the request. If
the access credential or partition specify that the integrity protection must be used then the
request will be rejected because it lacks the protection. If the filemanager wants to protect
integrity, the filemanager must set that minimum on the partition or in the access
credential. If the adversary strips off an encryption option then the drive will attempt to
store encrypted data directly without decryption. However, if the corresponding integrity
option is used, IntegrityArgs for arguments and IntegrityData for data, and required by
the partition minimum, then an integrity check will prevent this attack.

4.4.2.4 Minimal Protection of Drive Management Operations

There are some special operations on the drive that have operation-specific minimal
security requirements. In order to manipulate drive configuration information, a request
must be protected with at least IntegrityArgs and IntegrityData to guarantee that critical
configuration parameters are never changed to a corrupted value. Key management
operations require PrivacyData to prevent an adversary from observing the new key
values. Without these minimal requirements, an adversary could easily change
configuration options or snoop keys, which would allow the adversary to hijack the drive
and have unrestricted access to the data.

4.4.3 Audit Logs

Some applications require the ability to audit client operations on storage. The
purpose of the auditing mechanism is [NCSC87]:

• The audit mechanism must allow review of patterns of access.

• The audit mechanism must allow discovery of internal and external attempts to bypass
the protection mechanism.

• The audit mechanism must deter attempts to bypass system security.

• The audit mechanism must provide additional assurance that attempts to bypass
security are recorded and discovered.

If auditing is desired in a NASD implementation, the drive needs to bind requests
back to the source of the request. However, NASD’s capabilities are not tied to a specific
identity so additional information must be included in each access credential to facilitate

67

audit trails. The drive can simply store the access credential for each request with the audit
record for the request and require the application to reconcile the access credential’s
contents and the recipient of the access credential. This requires that the filemanager
maintain a log of all access credentials to enable this reconciliation. If a filemanager is
servicing high numbers of clients and drives, such a log will grow larger, so I want to
eliminate this bookkeeping overhead.

Instead of logging the entire access credential, each access credential includes an
uninterpreted identifier, called the audit ID, which is recorded in any log entries. The drive
does not understand the contents of the audit ID beyond the fact that it is recorded in any
log entries. The filemanager defines the semantics of the audit ID and can use it to encode
information such as a user identity, process group, or role identity which will be stored on
each request. By encoding the relevant information in the audit ID field, the filemanager
avoids recording all access credentials and simply records the mapping of audit ID to an
application-specific security concept.

When an application runs in a server attached system, the fileserver is able to
serialize all requests and form a single audit log for multiple storage devices. In a network
attached storage system, the application needs a mechanism to combine multiple audit
logs from the storage devices.

Each storage device has a unique time value that advances at a constant rate, which
will be explained in Section 4.4.6.3, that can be used to label individual audit log entries.
The filemanager must maintain roughly current values of each drive’s clock in order to
generate valid requests and set expiration times on access credentials. The relationship
between the clocks of multiple drives can be recorded by the filemanager so, at a later
time, the filemanager can reconcile the logs of multiple storage devices into a single log.
Since the accuracy of the clocks can vary, log entries on different drives may be reordered
but will be within the error bounds of clock protocol.

Auditing can have a significant impact on system performance regardless of whether
the logs are stored locally or remotely. If audit trails are stored locally, logging all
operations reduces the I/O bandwidth available to clients and consumes valuable storage.
Seagate’s experience with logging summary environmental data using their S.M.A.R.T.
feature has shown that logs can have significant performance impact [Seagate98]. Seagate
is also concerned that an audit system generating an extra message per I/O could be a
significant performance problem in a transaction system [Seagate98]. However, filesystem
tracing research has shown that distributed logging, which batches together log records at
log-clients, i.e. the drive, and periodically sends the results to a centralized server, can
have less than a 7% performance degradation on filesystem benchmarks [Mummert94]. If
each individual client request generates a unique audit message to a remote server, system
performance will be worse than if the messages are batched together. Unfortunately,
batching together audit records before committing them to the remote audit log server
opens a window during which audit records will not be processed. This illustrates that the
choice of auditing mechanisms needs to trade off the performance of the system against
the auditing requirements of the application.

68

4.4.4 Cryptographic Primitives

In designing the NASD security system, I’ve favored the use of message
authentication codes (MAC) as the basic primitive of security in NASD over encryption
whenever possible. This bias has produced a system where most of the security guarantees
and key distribution can be provided without using encryption. This is desirable because
encryption algorithms are generally slower than MACs and encryption algorithms are
subject to U. S. export restrictions, while MACs have no export restrictions.

For any implementation of the basic NASD security system, a designer could use
any of a wide variety of available MACs or encryption functions [Menzenes98] but both
algorithms should allow efficient implementation in both software and hardware. Some
drives and clients may have hardware support for cryptography, which I will discuss in
Chapter 7, while others will rely on a general purpose or embedded processor.

Licensing restrictions of the cryptographic algorithms must also be factored into the
decision of which algorithm to use. U. S. government standards are generally free of any
restrictions and are endorsed by the U.S. government so they are appealing options. It is
my hope that endorsement by the U.S. government implies that the algorithms have
undergone a reasonably rigorous evaluation by the experts at the National Security Agency
and other federal agencies in addition to the public review of the algorithms.

Next, I present arguments for the use of HMAC-SHA1 and Triple-DES in NASD,
followed by a discussion of using Triple-DES in counter mode to enhance parallelism in
the encryption/decryption.

4.4.4.1 Message Authentication Code

Message authentication codes are used to both generate the private access
credentials, as I discussed in Section 4.2.1, and for protecting the integrity of
communications. When used to protect communications, the MAC provides data origin
authentication which is defined as: “... a party is corroborated as the (original) source of
the specified data at some (typically unspecified) time in the past” [Menezes98]. This
provides two basic assurances: identification of the source of the data and data integrity. If
a message recipient generates the same MAC as she received with a message, she can
conclude that the source of the data was the holder of the appropriate key, the private
credential, and that the data was not modified in transit. In this section, I present the
requirements that my design places on the MAC and argue that HMAC-SHA1 is a good
MAC for NASD.

For key generation and integrity protection, the key of the MAC must be large
enough prevent brute force attacks on the keyspace. A panel of cryptographers determined
that 90+ bits is the current minimal key length for long-term security of encrypted
data [Blaze96]. This is a good lower bound for a MAC key length because encrypted data
must remain encrypted for longer periods of time than a MAC must remain unforgeable.

69

The range of the output of the MAC must be large enough to make it computationally
infeasible to find a collision based on the birthday paradox. Finally, the MAC must not
leak useful information about the key through its output, i.e. it must prevent key recovery
from other information. These are standard requirements for a message authentication
code [Menezes98].

For my research, I adopted HMAC-SHA1 as the basic message authentication code
algorithm [Bellare96a] based on the SHA-1 hash function [NIST95]. SHA-1 is used as
part of the U.S. Digital Signature standard [NIST94] and has, to date, passed the scrutiny
of review both internal and external to the government. Unfortunately, SHA-1 was
developed in secrecy by the National Security Agency so the exact design criteria is not
public. As a result, some people still harbor concerns that the government has deliberately
introduced a flaw into SHA-1, although no evidence has been found to support this belief.
Bellare et al. have shown how to relate the security of HMAC-SHA1 back to the security
of SHA-1 which provides a strong grounding of the strength of the HMAC construction
[Bellare96a]. HMAC-SHA1 has also been proposed as an IETF standard and it is used as
one of the defaults in early IPsec implementations [Madson98]. HMAC-SHA11 processes
a key of up to 160 bits and an arbitrary length input in 64 byte blocks and produces a 160
bit result which is large enough for both key generation and use as a normal MAC. Finally,
HMAC-SHA1 is free of licensing restrictions which make it easy to redistribute. Together,
these issues were a compelling argument to use HMAC-SHA1 in my prototype design.

To be a little more concrete about the difficulty of breaking HMAC-SHA1, consider
how much information an adversary can collect to attack if HMAC-SHA1 is being used to
protect the integrity of communication. An adversary can watch valid requests that pass
over the network and collect message-MAC pairs and then attempt to forge a MAC. If I
assume a terabit network and 64 byte operations, an adversary can accumulate fewer than

250 valid known text-MAC examples in a 24 hour period which is well short of the 280
known text-MAC pairs required to generate a forgery using a birthday attack under the
assumption HMAC-SHA1 is an ideal 160-bit MAC [Menezes98].

An earlier version of the NASD prototype used HMAC-MD5 to provide integrity.
However, work by Dobbertin on the MD5 compression function created doubt in the
cryptographic community about the strength of MD5 and it was recommended that MD5
not be used if collision resistance is required [Dobbertin96]. HMAC-MD5 is still a safe
application of MD5 but one of the optimizations I investigate in Chapter 6 relies on the
underlying hash function used with HMAC being collision resistant so I moved from an
MD5-based system to an SHA-1-based system.

4.4.4.2 Encryption

Encryption is the basic tool used to provide private communication, i.e. prevent an
unauthorized adversary from learning the contents of some communication. The NASD
security system uses symmetric key cryptography because operations with the alternative,

70

public key encryption, are several orders of magnitude slower than private key
operations [Menezes97].

The NASD prototype uses 2-key (112 bit) EDE Triple-DES to provide privacy
protection. This mode of Triple-DES is an ANSI standard [ANSI85] and was recently
proposed as an official interim government standard to replace single DES [NIST99].
Triple-DES is considered perhaps twice as secure as single DES, which is unfortunately

rather insecure, 1 due to its key length which is twice that of single DES. Substantial
public review of Triple-DES has not produced any significant attacks. As an additional
advantage, Triple-DES can be easily implemented using off-the-shelf DES logic cores or
chips which have been developed over DES’s long lifetime. I intend on migrating NASD
to the Advanced Encryption Standard (AES) when it is finalized [NIST98], although this
may not be for several years.

4.4.4.3 Encryption Mode

NASD uses the cipher in counter mode, shown in Figure 4-7, which is similar to the
better known output feedback mode [Diffie79], because counter mode enables block-level
parallelism in the encryption/decryption processing. Counter mode operates by encrypting
a counter, which identifies the block’s location in the message and the output of a hash
function in NASD, then XORing the counter with the plaintext. Since the encrypted value
of a plaintext block depends only on the counter and key value and not the preceding data
blocks (which is true in the more commonly used cipher-block-chaining mode
[Menezes98]), each encrypted block can be computed independently and in parallel.
Decryption behaves in a similar manner.

1. A message encrypted with a 56-bit key with single DES was recently decrypted in 23 hours by an ad-hoc group of
people on the Internet along with EFF’s Deep Crack machine in response to RSA’s DES-III challenge [EFF99].

Figure 4-7 Encryption in Counter
Mode

The IV and a request/reply constant are
hashed together to generate a random IV
which is then added to the counter and
encrypted under K. The output is XOR’d
with the plaintext to generate the
ciphertext. The encryption and
decryption can be parallelized which is
advantageous when done in hardware.

IV (timestamp)

Counter(i)

Key K Encryption Function

Plaintext Pi XOR Ciphertext Ci

Request/Reply

HASH

Constant

+

71

The security of encrypting in counter mode relies on the strength of the underlying
encryption algorithm and the uniqueness of the initial vectors used to seed the counter. If
two messages are generated with the same key and initial vector, an adversary can XOR
the two requests together and discover the messages. Conveniently in NASD, the client
provides the system with a unique value for each request -- the timestamp. However, the
timestamp cannot be used on both the request and reply without revealing the messages.

I transform the NASD timestamps into a pair of unique IVs by concatenating the
timestamp with a reply or request constant and then hashing the result. For each direction,
request or reply, I define a constant which is concatenated to the timestamp. Since I am
using Triple-DES which uses 64 bit blocks, I need a 64 bit IV. However, NASD
timestamps are 64 bits so the concatenation of timestamp and constant is too large. To
reduce the size, I hash the timestamp and constant with SHA-1 and take the lower 64-bits.
I am using the timestamp and constant to seed a public random function, approximated by
SHA-1, which generates the initial vectors. Since SHA-1 behaves like a random function,
an adversary will be unable to find a combination of a reply and a request that will have
the same IV even if the adversary has full knowledge of SHA-1, the timestamps, and the
constants.

The drive can also precompute the encrypted counters as soon as the drive identifies
the proper key to be used. For example, if a drive receives the first half of a request and
then experiences a network delay. The drive can use the delay time to generate the
encrypted counters to speed decryption on the second half of the request. When the second
half of the data is received, the drive will be able to process it with less effort.

Recent work by Bellare et al. has shown that an adversary has no advantage over
random guessing when using an ideal cipher in counter mode [Bellare97a]. This provides
a strong basis to believe that, despite being an uncommon mode, counter mode is secure.

To put the security of Triple-DES into perspective, consider how much
chosen-plaintext an adversary can accumulate in 24 hours to attack a single key. Assuming

a terabit per second network, the client can generate 250 chosen-plaintexts. There is no
known attack to break Triple-DES with this amount of chosen-plaintext. Exhaustive key

search is still the most efficient attack which requires approximately 2112 Triple-DES
calculations.

4.4.5 Privacy and Integrity Together

A client and drive may protect both the privacy and integrity of an operation.
Providing both privacy and integrity requires that a message be encrypted and have a MAC
generated. This raises the question of how to order the cryptographic operations. I can
MAC the encrypted data or MAC the plaintext data.

72

Generating a MAC of the encrypted data is appealing because it optimizes for the
receiver’s role. Message are sent as:

Since both decryption and MAC occur on encrypted data, the receiver verifies the MAC in
parallel to decrypting the data. In most communication protocols, the role of the receiver is
more difficult than the sender because the receiver has less control and is reacting to the
sender rather than driving the communication. Even though the protocol stack at either end
may be essentially identical, the receiver must handle demultiplexing, memory
management, and generating interrupts (or otherwise signalling packet arrival). Thus, I
would like to simplify the role of the drive when it receives requests.

Unfortunately, MACing encrypted data introduces a flaw because an adversary can
tamper with the protection option field of the security header and reduce the security from
privacy and integrity to simply integrity. The MAC generated over the encrypted data, now
being treated as plaintext, would still be valid but the data would be treated as if it were
unencrypted. In a write operation, an adversary could remove the privacy protection from
an in-flight operation and force the drive to write encrypted data rather than plaintext thus
compromising the integrity protection.

In order to protect the integrity of data stored on a NASD, clients and drives must
generate the MAC of plaintext data and then encrypt the results. In this case, message are
sent as

The sender can encrypt the data and generate the MAC in parallel but the receiver must
decrypt the data and then verify the MAC. This places more of a burden on the receiver but
it does not have the flaw I described of MACing encrypted data. Additionally, MACing the
plaintext rather than encrypted data permits an optimization of the MAC which I will
describe in Chapter 6.

4.4.6 Freshness

Regardless of the privacy and integrity features provided by the NASD security
system, NASD drives and clients must be able to detect replayed or delayed messages, i.e.
they must be able to verify the freshness of a request. An adversary must not be able to
record or intercept requests made to a NASD drive and replay the requests at another time.
If an adversary can replay requests that the drive will accept then an adversary can modify
stored data and force the drive to perform unauthorized operations.

The replay attack is not as powerful as forging arbitrary requests but can still cause
serious damage to the integrity of a file system or database. For example, an accounting
system storing prepaid account data could be modified by an adversary replaying a write
operation that increased their account balance and consequently decreased revenues for
the system operators.

E data() MAC E data()(),

E data() MAC data(),

73

To prevent a replay attack, the drive must be able to verify that it has not already
seen the request. To prevent a delay attack, the drive must be able to verify that the request
was recently sent to the drive. These two problems are normally addressed using a field
called the nonce which allows the drive to verify the freshness of the operation. There are
three alternatives to use for a nonce: random nonces, sequence numbers, or timestamps.

4.4.6.1 Random Nonces

The ideal protection against a replay attack would be for each request to include a
random unique identifier generated by the sender, called a random nonce, as part of the
operation. By comparing the nonce in an operation against all past nonces, the drive could
verify that the operation is not being replayed. Unfortunately, maintaining a record of all
past requests is not a feasible approach because of the limited storage available on a
NASD drive.

4.4.6.2 Sequence Numbers

Sequence numbers can also be used to protect the freshness of requests and require
less space than random nonces. In a connection-based environment, it is trivial to add a
few more bits with connection state to provide a sequence numbers. Indeed, most
connection-based protocols already incorporate some form of sequence number. However,
denial of service attacks similar to SYN flooding are often possible in the connection
set-up phase [Schuba97]. This type of denial of service attack is caused when an adversary
takes advantage of a bootstrap phase, such as allocating sequence numbers or connection
state, to force the receiver to allocate resources on behalf of the adversary. Swamping the
receiver, e.g. the storage device, with messages that allocate state can force the receiver to
run out of space for the state and reduce performance or crash the receiver. In a
connectionless application like NASD, a sequence number requires an extra message
exchange with the drive to initialize the sequence number, which adds latency to initial
client requests and requires the drive to maintain the current sequence number, i.e.
connection state.

For each client, the drive needs to maintain at least the next sequence number and
perhaps a list of other expected sequence numbers. If requests can be reordered on the
network, the drive will need to maintain a list of unreceived yet still expected sequence
numbers. Deciding how much memory to allocate to these sequence records requires a
designer to balance the number of active clients with the amount of reordering of requests
that the drive is willing to tolerate.

74

4.4.6.3 Timestamps

Timestamps are also a good mechanism for preventing replay or delay attacks.
Timestamps have been criticized for such potential issues as when clocks become
desynchronized and because the clock synchronization protocol opens another feature to
attack [Gong92, Gong93]. However, Lam and Beth observed the timestamps were
advantageous in a connectionless environment [Lam92], while Neuman and Stubbledine
point out that timestamps avoid per connection state [Neuman93a].

Timestamps work by having a shared clock value between the clients and the drive.
First, the drive checks that a request is within ε of the current time. If the request passes
the initial check, the drive then checks that the request hasn’t been seen within the window
allowed by the first check. Passing both checks implies that the request has never been
seen before and was recently sent to the drive.

NASD uses timestamp nonce based on clocks that are only synchronized in a very
weak manner, thus avoiding many of the risks of systems with a clock synchronization
protocol. All timestamps, and also access credential expiration times, are generated with
respect to the drive’s clock. The drive clock is never reset which would introduce security
risks. Rather, the clock is a monotonically increasing counter that advances at a constant
rate through time and the drive discards requests that were sent more than ε seconds from
the current time.

For timestamps to be effective, the drive needs to keep track of the timestamps it has
seen within a small window of the current time. The memory requirements correspond to
the maximum number of requests the drive expects to see within the window. Deciding
how much memory to allocate is essentially decides the maximum number of requests per
second that a drive can service.

A filemanager or client can query the drive with any valid access credential to find
out what the current time is at the drive. Since the time request has no side effects and
releases no private information, the drive can respond to these requests even when the time
request has a bad timestamp, which allows clients to bootstrap their relationship with a
drive. This provides the filemanager and client with an idea of what the current time value
is at the drive which they can then use in their requests. In the traditional sense, this is not
a clock synchronization protocol because the protocol does not have consensus or
agreement phase. The filemanager and clients are simply using the drive’s clock as a
counter; which advances at a roughly constant rate and can be readily reconciled with their
own clock.

For each drive they are interacting with, the clients and filemanager must maintain a
small amount of state: an offset and perhaps a scaling factor. However, the drive, the most
resource-poor of the communicating parties, keeps no state other than its clock.

Before a client can communicate with a drive, the client must obtain an estimation
of the drive’s current time. As I already mentioned, the client can directly query the drive

75

to get the drive’s current time. Alternately, when the filemanager sends the client its access
credentials, the filemanager can also include the current estimated drive time, which
reduces the number of message exchanges. Either way, the time value obtained must be
trusted to be an accurate time value, in the sense that it is not forged rather, than in the
sense that it is perfectly synchronized.

When a drive generates a reply, it increments the timestamp by one in order to allow
the client to securely verify the relationship between the request and the reply. NASD
timestamps are 64-bit values with theoretical nano-second resolution so it is extremely
unlikely that a client will generate two requests with sequential timestamps and allow an
adversary to replay the second as a reply to the first.

I selected timestamps in my design because they both fit more cleanly into the
connectionless model of NASD and lend themselves to a simple way of reasoning about
how much state to allocate to freshness. If NASD were to use a connection-based protocol
rather than a connectionless, the fact that the sequence numbers likely already exist would
make them more appealing.

4.5 Security Analysis

In this section of the dissertation, I discuss the result of applying a GNY analysis,
described in Appendix A, and discuss denial of service in the NASD security system.
While no security analysis is infallible, the combination of formal analysis with
well-reasoned ad-hoc arguments presented throughout this chapter provides confidence
that the basic NASD design is secure.

4.5.1 Discussion of Formal Analysis

Because of NASD’s unusual use of MACs, the relationship between public
credentials and the keys, and the separation of the client-drive protocol from the
filemanager-client protocol, it is hard to make any claim to having “proven” anything
about the protocol. Nonetheless, the formal methods fulfill a very important role — they
help to make explicit the assumptions that communicating parties are making and that I, as
the designer, am making to allow them to reach their desired conclusions.

In Appendix A, I examine the client-drive protocol as well as a very simple
filemanager drive-protocol to show how the drive is caused to believe a request came from
an authorized client and how the client is made to believe the reply came from the drive.

The protocol must start with a few assumptions: the client and filemanager each
believe they share a key, the filemanager and drive each believe they share a key, and the
drive and clients believe that the filemanager can define shared keys between the clients
and drives, and everyone can recognize a valid timestamp. Recognizing a valid timestamp

76

is the freshness mechanism, which is described in Section 4.4.6. However, the details of
how a client or drive verifies a timestamp are outside the scope of the GNY formalism so I
must assume that the mechanism is correctly implemented by all parties.

In order for the formal analysis to complete, the drive needs to make a further
assumption about how I generate private access credentials from the public access
credentials, as described in Section 4.2.1. The drive must assume that the filemanager
believes a MAC of a public credential is a valid key between the client with the rights
described by the public credential and the drive. This new assumption is a formalization of
the drive’s belief in the validity of the MAC as a key generator. This assumption steps
outside of anything that could be normally reasoned about in GNY, but is necessary to
capture the core idea of private access credential generation.

With these assumptions, I show that the drive believes a request came from an
authorized client and that the client believes the reply came from the drive.

4.5.1.1 Denial of Service

NASD is designed to resist state-allocation-based denial of service attacks similar to
the TCP SYN attack [Schuba97]. A state-allocation denial of service attacks works by
forcing the receiver to allocate some finite resource that is required for requests to be
processed which prevents the resources from being used by valid requests. In the TCP
case, a receiver is flooded with SYN packets, which forces the receiver to allocate
resources on behalf of the sender. Since NASD is a connectionless system, our protocol
doesn’t require the drive to allocate any state in response to a request beyond the time
required to reject or process the request. A NASD drive contains various caches which an
attacker can potentially overflow. In order for an attacker to make requests that effect the
data cache, key cache, etc., the request must first be validated before it is allowed to affect
a cache. So, in order for an attacker to affect a cache, the attacker must be making a stream
of unique valid requests which is much harder than merely generating a stream of simple
packets.

NASD is subject to a denial of service attack against the drive’s CPU or the drive’s
cryptographic resources. An attacker can flood a drive with bogus requests which forces
the drive to expend computation to determine that the requests should be discarded. The
drive can only discard a request after an attempt to verify the message authentication code
has failed. If the drive can perform the necessary cryptographic verification at full line
rate, then this is no more significant than simply consuming bandwidth. However, if the
drive is cryptographically limited, the drive will spend time verifying the request.
Unfortunately, there is no way to avoid the work of verifying the request without
performing some verification so an adversary will always be able to execute some form of
denial of service attack.

77

4.6 Implementation Status

The CMU NASD prototype has been up and running since 1997. The core drive
prototype was written by Jim Zelenka, while I wrote all of the security-related code,
although I integrated off-the-net 3DES and SHA-1 code from Bell Lab’s CryptoLib
library [Lacy93] and the Eric Young’s SSleay libraries version 0.9.0b respectively. The
prototype drive currently runs on both Digital Unix 3.2g and Linux as well as in the
Digital Unix kernel.

Over the history of the prototype, I have adapted both NFS and AFS to run on top of
NASD drives [Gibson97b]. Both prototypes use NASD security to enable the filemanagers
to allow client access to storage devices. Additionally, AFS uses short-lived write access
credentials to help enforce its quota management and to support its cache consistency
model.

The prototype code was released in February 1999 to the Parallel Data Consortium
and it was released to the general public in July 1999.

4.7 Related Work

4.7.1 Capability Systems

The NASD system passes around access credentials which behave very much like
classical capabilities, first described by Dennis and Van Horn [Dennis66]. Capabilities are
defined as “a token, ticket, or key that gives the possessor permission to access an entity or
object in a computer system” and are implemented as a datastructure that contains “a
unique object identifier and access rights” [Levy84]. Historically, single processor or
tightly-coupled multiprocessor capability systems have either used hardware support to
prevent client modifications of capabilities or depended on trusted operating system
kernels [Wilkes79, Wulf81, Levy84, Karger88]. In these systems, the capabilities were
used as an access control resource because capabilities can be quickly tested for
applicability to a given request.

In a distributed system, the untrusted network is introduced between communicating
parties, so the problem becomes more complex. Some distributed systems such as Mach
used capabilities to share resources and the capabilities were managed by mutually trusted
operating system kernels [Sansom96]. The kernels managed the cryptographic keys
necessary to send a capability to a remote machine. However, this security model fails
when an adversary is able to modify the kernel on a workstation.

Amoeba proposed two solutions: trusted hardware and network enforced
addressing [Tannenbaum86]. Using a mechanism that was based on one-way functions,
Amoeba proposed special hardware called “F boxes” to manage capabilities over a sparse

78

address space. The second alternative assumes that a client can never impersonate another
client’s address on the network. Thus, the network address is sufficient information to
identify the origin. This assumption fails in many local networks such as Ethernet and in
wide area IP networks.

Both Amoeba and Hydra [Wulf81] emphasized that capabilities provide a
mechanism for implementing security and protection but give other parts of the system the
latitude to choose the policy which is built on the capabilities. The goal of having NASD
drives run under an arbitrary application made this quality of capabilities very appealing.

The ICAP system provides a capability model for distributed systems that is based
on one-way functions [Gong89]. NASD is distinct from ICAP because of two critical
differences: the use of MACs to generate keys and separation of issuer and verifier. In
NASD, the access credentials include a private access credential, e.g. a cryptographic key,
that is tied to the public access credential through a message authentication code rather
than a one-way function. NASD access credentials provide a key to enable them to be used
as a basis for encrypting or MACing an operations, rather than being a unique bit string as
ICAP does. The second difference is who issues and verifies capabilities. In ICAP, the
verifier of a capability must have access to an internal representation of the capability
which includes a per capability secret created when the capability was issued. This implies
that the issuer and verifier of capabilities are either the same entity or closely bound
together. In NASD, the binding between the issuer and verifier is much looser and requires
only a small set of keys to be shared between them. NASD achieves this by using a keyed
function rather than an unkeyed function as the basis of access credential generation.

The scalability goal of NASD, which requires the server should not be involved in
every request, motivated the high level communications flow which is very similar to
Kerberos [Neuman94]. In Kerberos, the KDC grants clients kerberos tickets which enable
a client to authenticate to an application server. In NASD, the filemanager grants clients a
capability which enables a client to prove its rights to the NASD. Both Kerberos tickets
and NASD tokens include a cryptographic key that the client uses in addition to some
information that is securely communicated from the KDC or filemanager, via the client to
the application server or drive. Another key difference is that Kerberos is transmitting
encrypted keys to the application server while NASD is transmitting the information
necessary for the drive to derive the cryptographic keys.

Neuman’s proxy model is a similar model to the access credential mode of
NASD [Neuman93b]. The emphasis of the proxy model has been on the power of the
abstraction and integration with Kerberos, rather than an explicit emphasis on
performance for a very narrowly defined application. Neuman also advocates that the
mechanism be built on the authentication mechanism. Since NASD filesystems may use a
variety of authentication systems based on a single drive interface, NASD requires the
authentication mechanism to be separate from the base protocol to provide system builders
the flexibility to choose their own authentication mechanism.

79

4.7.2 Other General Related Work

NASD provides the mechanism necessary to build a secure system which extends
security all the way down to the I/O device level. However, higher levels of the system can
choose to provide similar protection, in addition to or in place of NASD’s security, by
encrypting their data at the application level. A system built on the ideas of Matt Blaze’s
CFS [Blaze93] (such as the one proposed by StorageTek [Hughes98]) will protect privacy
of data but will not protect privacy of communications. The distinction means that privacy
integral to NASD will prevent different clients who can all access an object from having
their requests read by their peers. Application-level privacy allows peers to read each
other’s requests because they all must access the data using the same cryptographic key.
Another difficulty with filesystem-level privacy is the revocation of access rights. If the
filesystem encrypts data before storing it on a drive and eventually needs to change the
encryption key, such as when someone’s access rights are revoked, then the filemanager
must rewrite the entire file encrypted under a new key. For these reasons, NASD must
provide privacy of communication for file systems that are not willing to sacrifice security,
yet still want request privacy and efficient revocation semantics.

ISI’s Netstation project proposes an alternative object-interface called Derived
Virtual Devices (DVD) which attempts to solve the same problem as NASD (also
discussed in Chapter 2) [vanMeter96]. When a drive boots up, it first authenticates to
Kerberos [Neuman94] and then requests its basic configuration information from a remote
controller called a Network Virtual Device Manager (NVDM). Similarly, the filemanager
and client also authenticate themselves to Kerberos.

When a client wants to access data stored on a drive, the client makes a request to
the filemanager, called STORM in the DVD system, for permission to access an object.
STORM determines the best way to derive a virtual device for the client’s operation.
STORM then sends a message to the disk telling the disk to derive a new virtual device,
i.e. defining the requested object as some aggregation of sub-ranges of an existing object
— potentially the entire disk, and describing the rights being granted to the user. The drive
then send an acknowledgment to STORM which, in turn, sends an acknowledgment to the
client. This process has essentially shipped a filesystem object’s metadata to the network
disk. The client then uses its Kerberos tickets, which were probably obtained at the start of
the session, and can make authenticated RPCs to the drive which matches the client’s
identity against the information provided with the virtual device was defined.

This exchange has two critical differences with NASD: added start-up latency and
statefulness. The client can not begin requests to the drive for a minimum of two
round-trip times plus queuing delays and service times on two machines. In contrast, the
second message exchange is eliminated in the NASD architecture reducing the latency of
the client’s first operation. Secondly, when the filemanager defines a virtual device at the
drive, the filemanager is consuming memory on the drive which limits the system’s
scalability as resources become scarce. While NASD requires the same overall system
state, NASD maintains object metadata, equivalent to the definition of a derived device, on

80

the storage media and does not associate it with active communications so the metadata
can be discarded from memory.

Both NASD and DVD share a critical observation: security needs can differ from
operation to operation and application to application. Both systems separate the data and
the control portions of a request and allow them to be protected independently. This allows
applications to trade-off the performance penalties of security in exchange for weaker
protection in order to meet the its needs.

IBM’s SCARED system is another project addressing the same problem as NASD
along with the security problems [Reed99]. Reed et al. are extending the NASD
abstraction but subtly differ on many details. SCARED rejects placing privacy in the
storage interface but rather, believes that the application level can provide all privacy
services. Earlier in this section, I argued why this approach can be inappropriate for some
applications.

While NASD uses a message authentication code to derive keys, SCARED uses a
cryptographic hash function of the key append to the public rights description. Both are
strong ways of establishing the relationship between a client’s rights and their
cryptographic keys. A strong MAC, such as HMAC-SHA1 which is used in NASD, will
prevent an adversary from prepending information to the rights description. In theory, an
adversary can prepend data to the public rights description in the SCARED solution. Since
the initial vector of the hash is publicly known, the adversary may find a data block such
that the hashing the data block results in the hash function having the same internal state as
its publicly known IV. This data block could be safely prepended to any public rights
description without detection.

SCARED also places more functionality at the drive than the NASD system. In
addition to using capability keys like NASD, it also includes identity keys which requires
the drive to make an access control decision. This places policy decisions at the storage
device rather than in the filemanager. When a client makes a request to the storage device,
the client can use either an identity key or a capability key to make a request from storage.
However, the storage device always generates a reply using an identity key, derived in a
similar manner to client identity and capability keys, so that the client can verify the origin
of the reply.

Because the drive uses a client-specific identity key on a reply, a SCARED system
can publish the access keys for a group of objects, eliminating the need for a client to
obtain them from the filemanager, without allowing clients to impersonate the drive.
However, each client must obtain a unique identity key to verify replies from the drive.
This features enables SCARED to grant a group of users access to a group of objects while
each user only requests a single key from the filemanager. In Chapter 5, I present several
aggregation mechanisms that can achieve the same result within NASD.

Additionally, SCARED places the directory management function into the storage
device rather than in a filemanager machine. At a high level, these illustrate the difference

81

in the amount of complexity that SCARED puts in the storage device in comparison to the
NASD architecture.

NASD assumes that clients and drives all have clocks that advance at a predictable
rate, which are minimally necessary to limit the lifetime of access credentials, and can also
be used to check the freshness of operations. SCARED allows the same mechanism, called
timers in the SCARED design, and also includes a stateful sequence number approach.
SCARED is defined to handle both stateless RPC style semantics as well as
connection-based semantics which NASD does not address. The NASD security system
could also use a sequence number system at the cost of latency to initialize sequence
number state. If the drive were also free to discard connection state, then the client would
suffer additional latency to resynchronize sequence numbers when resynchronization was
necessary. NASD adopted a timestamp based design because it emphasizes both low
latency and low state overhead.

The Echo filesystem developed at Digital’s System Research Center implements a
model very similar to NASD and uses the same mechanism to manage cache
coherency [Mann94]. A client’s permissions are stored in an ACL that is checked by the
server on an initial access. The client’s rights are then wrapped up into a token which the
client can use for future accesses that bypass permissions checking and maintain cache
coherency through the same mechanism. Echo’s designers adopt this policy, in part,
because ACL checking is more time consuming than simply checking that a token is valid
for an operation. Unlike a NASD system, the servers must maintain a list of all
outstanding tokens in order to properly enforce their coherency protocol. Within NASD, a
similar effect can be achieved with short-lived access credentials and temporarily revoking
access credentials by modifying the access control version number and restoring the
access control version number when the synchronized operation completes. While the
access control mechanism is a tool that an application can use to help enforce cache
coherency, the application is ultimately responsible for managing consistency using
NASD’s mechanisms to control access to storage.

4.8 Summary

In this chapter, I have presented a basic design for a security system for network
attached storage which has been implemented in CMU’s NASD prototype system. The
design defines how a filemanager grants access to a network storage device but does not
specify the policy with respect to rights are granted. By leaving the policy decision in the
filemanager, the design allows a variety of access control policies to be implemented on
top of the basic security system.

The design minimizes the impact of security on the overall system by maintaining
RPC semantics, as opposed to a connection-based system, and asynchronously involving
the filemanager. Since drives will continue to have very limited amounts of RAM, the
stateless RPC protocol is most appropriate. The design requires the filemanager to be

82

involved on an initial access to a NASD object but further accesses bypass the filemanager
while still synchronously enforcing the filemanager’s policy decisions.

A filemanager enables clients to access storage by securely giving a client a token,
called an access credential, which includes a description of access rights (the public
credential) and a cryptographic key (the private credential). The client uses the access
credential to prove to the storage device that the client is entitled to perform a specified
operation. The cryptographic key is used to both cryptographically bind a request to the
description of the client’s access rights (using a message authentication code), as well as to
protect the integrity of a request and reply (using a message authentication code). The key
can also be used to protect the privacy of requests and replies.

The security of the system is based on a few basic assumptions:

• A small number of cryptographic keys are privately shared between the filemanager
and drive.

• It is infeasible to forge a message authentication code (HMAC-SHA1).

• The message authentication code is a good keyed pseudo-random number generator
that can be used to generate cryptographic keys.

• The cryptographic hash function (SHA1) is one-way.

• The encryption algorithm (3DES) is resistant to attack.

My design and implementation specify certain cryptographic functions. The same basic
design could be implemented with different encryption functions, message authentication
codes, or cryptographic hash functions, although the security and performance would be
different.

While constructively describing the design of NASD, I have argued various points of secu-
rity which are summarized in Table 4-1. A secure system can never be proven to be
entirely secure, but the table summarizes why the NASD security system is resistant to
attacks.

83

Table 4-1 Attack-Countermeasure Summary

Attack Countermeasure
master, drive, or partition
key recovery

•use limited to key change operations and infrequent allocation changes

working key recovery •difficulty of key recovery attacks against HMAC-SHA1
•key lifetime contains available text-MAC pairs
•key length

forged private credential •difficult of key recovery attack against HMAC-SHA1
•difficulty of forgery of HMAC-SHA1
•working key limits available text-MAC pairs
•key length (160 bits)
•working keys only known by filemanager and drive

forged request •forgery resistance of HMAC-SHA1
•access credential lifetime limits available text-MAC pairs
•partition must require integrity protection
•credential lifetime constrains available text-MAC pairs
•privacy protection can further reduce available data to attacker

data release •randomness of SHA-1 to generate the IV
•strength of Triple-DES
•strength of counter mode
•partition must use privacy protection options

delayed request •timestamp present in a request
•drive-centric timestamp; drive’s clock is monotonic
•partition must use integrity protection

replayed request •timestamp in a request
•drive-centric timestamp; drive’s clock is monotonic
•ε window of acceptance
•partition must use integrity protection

replayed reply •function of request timestamp included in the reply

force encrypted data to be
written as plaintext

•partition must use integrity protection
•ordering of encryption and MACing

state-based denial of service•stateless semantics make it hard for a adversary to consume state

cpu-based denial of service •none unless cryptographic hardware can perform at line rates

84

85

Chapter 5: Alternative Access Credentials

A capability, the basic type of NASD access credential described in Chapter 4, is a
natural mechanism for the filemanager to package up its access control decisions and
communicate them asynchronously to a drive. The filemanager is responsible for all the
application-specific complexity, such as processing ACLs in NT or accessing NIS group
databases in NFS, while the drive performs a lightweight access check, simply verifying
that the capability is applicable for the requested operation and that the capability has not
been revoked. In the common case of access control policies which seldom change, the
complex portion of an access control decision is performed once by the filemanager and
the drive performs a much simpler verification task on a per request basis. The designers
of DEC SRC’s Echo filesystem performed a similar optimization to avoid the complexity
of a full access check on a per request basis by combining their access control and cache
consistency into a token-based system [Mann94].

Unfortunately, capabilities have several disadvantages. They are tied to a single
NASD object which requires the client to obtain at least one capability per object
accessed. Requesting capabilities can add both latency to the client and account for a
substantial portion of the filemanager’s load. All the burden of the access control decision
is placed on the filemanager, so when a change in access control potentially affects a large
number of objects, the filemanager must explicitly revoke all outstanding capabilities,
either by touching each object’s metadata or changing a high level key, in order to enforce
the change. Additionally, capabilities are a poor fit for operations on multiple objects
because the number of keys and size of the access control information included in each
request will increase linearly with the number of objects operated on.

In this chapter, I first explain the shortcomings of the NASD capabilities, presented
in Chapter 4, and then explore several alternatives, each an improvement over its
predecessor. One of the motivations for the alternatives is the load that a capability system
places on the filemanager system. I quantify this load through a trace-driven simulation
study. The first alternative is to modify capabilities to explicitly name multiple objects
rather than a single object in the public portion of the capability. The second alternative
introduces a layer of indirection in naming of objects through group objects that store their
membership lists on-disk. Finally, I present a solution using small executable access
credentials which can read a requested object’s metadata and return an approval or failure
code which I have implemented in a prototype NASD.

86

5.1 Critique of NASD Capabilities

The original NASD capability mechanism was closely tied to the NASD interface,
which allowed me to optimize for drive complexity and size of the capabilities. As a result,
the drive’s role in checking access permission is minimized to a few simple equality
checks. Capabilities were also small — a 48 byte public portion plus the 20 byte private
portion — because they explicitly name only a single object. The small size minimizes the
amount of calculation necessary to generate the private credential of the capability from
the public credential, as well as limits the overhead of moving the capabilities on each
request, storing the capabilities, and the amount of space consumed in on-drive access
credential caches.

The capability model requires no potentially expensive I/O operations beyond the
operations required to service the same operation when the drive provides no security. In a
modern Seagate ST31903 series drive, average seeks are 5 msecs [Seagate99a], which is a
significant portion of a request’s service time in modern systems where media transfer
rates and network interface rates are both in the 100 Mb to 1 Gb range. To enable low
latency servicing of requests, it is important to minimize the number of different I/O
operations necessary to service a request. Capabilities achieve this goal by using only a
small amount of information to decide if a capability is valid: the client’s request, the
capability included with the request, and the access control version number which is
stored in the requested object’s metadata. The requested object’s metadata must be
retrieved, since the CMU prototype uses a Berkeley FFS-like inode
structure [McKusick84] to locate the object’s data blocks. Thus, decisions are local: that
is, they do not require any data beyond the access credential, the request, and the requested
object.

Next, I will discuss the following problems with the basic capability model: no
support for dynamic relationships, client latency for credential requests, the load offered to
the filemanager, lack of support for operations involving multiple objects, and no
cross-object locality for keys. These problems will be used in later sections to motivate
improvements on capabilities.

5.1.1 No Support for Dynamic Relationships

A capability system can not efficiently implement revocation in an application that
uses dynamic inheritance of access control permissions. In some filesystems, including
Novell [Sheldon96], Appleshare [Apple98], and Windows NT [Frisch98] (with bypass
traverse checking disabled), files and directories dynamically inherit permissions from
their ancestors at request time rather than at create time, as discussed in Chapter 3. In
dynamic inheritance systems, if permissions are changed on a high-level directory, then
the change will immediately affect the files and directories beneath it. With capabilities,
the only way to enforce this change is to revoke all capabilities potentially outstanding on
the changed object’s descendents, which involves either changing both working keys to

87

render all outstanding capabilities invalid, or changing the access control version on each
of its descendents. Both are expensive operations.

Introducing a dynamic relationship between objects could also allow more timely
revocation when group memberships change. Most of network file systems I investigated
failed to enforce changes in group membership on the next request after the change
occurred. Instead, the filesystems take a lazy approach and enforce group membership
changes when the user next authenticates to the system or when a client starts a new
connection to a server. The likely reason for this is to avoid an expensive query to a group
database server such as the PTS server in AFS or the domain controller in NT. Other
filesystems may take a more aggressive stance and attempt to enforce group changes when
they occur rather than deferring them until later like the systems I surveyed. Efficiently
implementing quick group changes poses a problem similar to dynamic inheritance
because quick group changes introduce a dependency between access control decisions for
all objects that reference a group and the current membership list of the group.

These two examples suggest that some mechanism for capturing a simple but
dynamically evaluated relationship between NASD objects would be useful to some
applications.

5.1.2 Client Latency

When a client accesses a series of objects, it may make numerous requests to the
filemanager each which have a latency penalty. These requests occur because a capability
explicitly names a single object for which it is valid so a client must issue an RPC to the
filemanager every time the client touches a new object. Figure 5-1 shows an example of
the messaging behavior that the client would generate when she is examining the attributes
of all files in a directory or recursively searching through a directory tree. If the drive is
able to successfully prefetch a future access, based on the nearby object attribute in the
NASD interface [Gibson97b] (which is similar to deJonge’s logical disks [deJonge93]),
then the expected service time for a request, in the absence of security, will be small and
the message traffic to request capabilities will be a significant portion of the overall
request time.

5.1.3 Load Offered to Filemanager

Clients requesting capabilities from the filemanager create a significant portion of
the workload offered to a filemanager, affecting scalability. Every time a client requests a
capability, the filemanager performs its application-specific procedure to determine what
rights to grant the client. This is exactly the part of access control that the Echo filesystem
attempted to avoid because it was expensive. Independent of the application-specific costs,
the filemanager must service an RPC from the client and generate the private portion of
the access credential (i.e. generate a MAC of the public access credential).

88

Earlier PDL research [Gibson97a] showed that the NASD architecture can reduce
fileserver, or filemanager load (during burst activity) by a factor of up to five for AFS and
up to ten for NFS. Capability traffic is a substantial portion of the remaining load. By
moving all the data movement tasks off of the filemanager, the filemanager’s primary task
becomes maintaining the integrity of the application’s structures, such as the namespace,
and enforcing security policies. Analytical modeling showed that during the busiest 2% of
minutes in the NFS workload, capability traffic would account for 73% of the filemanager
requests. Similarly, during the busiest 5% of the minutes in the AFS workload, the
capability could account of 79% of the requests. Thus, the load generated by capability
requests is a significant portion of the filemanager’s load.

In the remainder of the section, I address two key question via simulation. First, how
much of the request traffic to the filemanager is a direct result of capability requests? A
higher offered load implies filemanager is performing more work and thus requires more
resources to service clients. Secondly, how much does the maximum load with capability
requests differ from the maximum without capability requests? If the maximum load for a
given percentage of the active minutes with capability traffic is higher than maximum load
for the same percentage without capability traffic, then the server will need more resources
to promptly service that percentage of the client minutes if the managers wish to minimize
customer dissatisfaction [Riedel96].

5.1.3.1 Sample Workloads

I studied two workloads: a Berkeley NFS trace and CMU AFS 1999 traces. The
Berkeley NFS trace records activity on an Auspex fileserver supporting 231 client

Filemanager NASDClient

Figure 5-1 Capability Requests
Impact on Latency

For a sequence of small requests, such
as a recursive find on a directory tree,
the additional round trip RPC to the
filemanager to obtain an access
credential can add substantial latency
to the client’s operations. For each
object the client touches, the client
must obtain a unique capability from
the filemanager. This graph illustrates
a request pattern where this request
can double the request latency if a
drive successfully prefetches the
requested object’s attributes, thereby
eliminating media time.

Request Access Object A

Capability A
GetAttr on A

Reply

Request Access Object B

Capability B
GetAttr on B

Reply

Request Access Object C

Capability C
GetAttr on C

Reply

89

machines at the University of California at Berkeley for a one week period [Dahlin94].
Berkeley researchers post-processed their trace using heuristics to eliminate attribute reads
that were involved in cache consistency, so the trace is an approximation of the actual
workload. Because this change increased the load on the filemanager and reduces the
impact of capability traffic on the load, I chose to continue to use these traces which are
already familiar to the research community. The NFS trace is dominated by overnight
backup activity. Since users are mostly insensitive to backup performance, I exclude these
periods of the trace and only studied requests timestamped Monday through Friday
between 9am and 5pm. This is the same portion of the Auspex trace that was used in
earlier NASD research [Gibson97a].

For comparable AFS traces, I used traces of traffic to the Parallel Data Lab’s AFS
server over two Monday to Friday time periods: January 25th-January 29th (AFS Week 1)
and February 8th through February 12th (AFS Week 2). The server primarily holds
archival and working directories for a research group of 30 people involved in research
and software development in an academic environment. The server was accessible to
anyone connected to AFS but the primary consumers of the server’s resources were
members of the research group. Unlike NFS, AFS backup traffic bypasses the server so I
was able to use data for all 120 hours of each 5 day trace.

Both workloads mark each log record with a timestamp, unique client-host ID, and
an indication of the request type.The NFS trace only records the general class of issued
request which leaves some ambiguity in determining exactly which primitive NFS
requests were issued (e.g. a request recorded as a directory read may have been either a
lookup or a readdir request). The AFS trace records precisely specify the request type,
including a unique client userid, and identity of the parent directory in which the requested
object resides. This allows a more accurate modeling of filemanager load because multiple
requests from different users on a single client host are not aggregated behind the client
host ID. The presence of the parent directory allows me to recognize when multiple
filesystem objects are in the same directory, which will be used in simulations presented
later in this chapter.

5.1.3.2 Simulation

For both workloads, I simulated a NASD version of the filesystem’s behavior where
clients generated their own capabilities versus one where the filemanager was responsible
for generating capabilities. When clients generate capabilities, there is very little security
in the system because a large number of clients is more likely to be compromised than a
few well-maintained servers. In both case, the filemanagers are still responsible for
maintaining the integrity of the filesystem structures, so filemanagers handle operations
that create or destroy files/directories or modify metadata. In the AFS simulator, the
filemanager is also responsible for callback management to provide advisory cache
consistency. The difference between client- and filemanager-generated capabilities is in
how a client goes about getting a capability to read or write file data. Clients generating
capabilities can read arbitrary files or metadata and write files but are unable to destroy the

90

structure of the filesystem because the integrity critical operations still go through the
filemanager. Client-generated capabilities are useful as a strawman to understand the
filemanager’s cost of handling requests for capabilities.

Optimistically, I assume that clients will hold onto capabilities and reuse them until
they expire. This is similar to how users manage AFS tickets when they are logged onto a
workstation for a long period of time [Satyanarayanan89] and generates the fewest
capability requests for a workload. An alternative mode of operation would be for clients
to discard capabilities when a file is closed, or shortly thereafter if they are not reused,
much like operating systems cache the mapping from a file name to a filesystem-specific
file handle. This approach requires clients to requesting capabilities more often thus
increasing the filemanager’s load.

For each trace, I simulated clients to find when they would request a new capability
from the filemanager. Simply understanding the offered load to the filemanager captures
the first order effects of how capability request traffic will impact the filemanager and can
serve as useful barometer to compare design options. A client requested a new capability
when it needed to perform an operation (such as a read) that would go directly to storage,
rather than being handled by the filemanager (such as file creation), and the client did not
currently hold an appropriate capability. For both AFS and NFS, clients were issued
capabilities valid for twenty-four hours which is equivalent to the default lifetime of
CMU’s Kerberos tickets. The NASD on AFS filesystem also utilizes short-lived, (20
seconds in my simulation) capabilities to enforce a write-lock as well as quota
enforcement despite the filemanager not being on the datapath for the write
operation [Gibson97b]. With both client- and filemanager-generated capabilities, the
client informs the filemanager when it is writing a file so the filemanager knows to break
outstanding callbacks. In contrast, NFS clients are given single capabilities with their
complete access rights for the specified object.

For the NFS simulation, I simulated a system where the clients directly parse
directories, which is already done by clients in AFS. Without this optimization, which was
discussed in [Gibson97a], much of the scalability advantage of NASD is lost and the
offered load increases by a factor of 23 without accounting for capability requests, due to
client requests to the filemanager to parse file names (i.e. the Unix lookup() call).

In the AFS simulation, I assume that clients batch together requests to the
filemanager when doing a BulkStatus operation. In a BulkStatus operation, the client
requests the attributes of up to 20 different files. When communicating with a NASD
drive, the client will break this into up to 20 different GetAttribute RPCs because of the
limitations of the NASD interface. But the AFS protocol already uses a single RPC for a
BulkStatus so it is natural for AFS on NASD to perform a single request to the
filemanager to request the necessary capabilities.

For all three workloads, the capability traffic substantially increased the number of
requests that clients make to the filemanager. The overall offered load increased by a
factor of 1.8, 1.4, and 2.8 for the AFS Week 1, AFS Week 2, and NFS trace respectively.

91

24 48 72 96

Sample

0

10000

20000

30000

40000

O
ffe

re
d

lo
ad

AFS on NASD Week 1

24 48 72 96
Sample

0

10000

20000

30000

40000

O
ffe

re
d

lo
ad

AFS on NASD Week 2

Client Capabilities

Filemanager Capabilities

10 20 30
Sample

0

5000

10000

15000

20000

O
ffe

re
d

lo
ad

NFS on NASD Week

Figure 5-2 Offered Load Over Entire Trace

These graphs show that particularly for NFS, the task of generating access credentials
significantly increases the filemanager’s load. AFS presents more data on the same-sized
graph, so the effect is less obvious. Each graph plots the simulated offered load to the file-
manager sampled over 1-hour intervals in two cases: the filemanager generates all capa-
bilities or clients generate their own capabilities. At some points of the graph, lines
appear to disappear because they are essentially equal to another line which obscures it.

120

40

92

This point is illustrated in Figure 5-2, which shows each trace in 1-hour long samples. The
figure also shows how the capability requests can significantly amplify the size of the
request bursts. At a finer time-scale, Figure 5-3 shows that capability traffic significantly
increases the amount of variation in the server load, which will require a more powerful
server machine in order to minimize the impact of the bursts on clients.

Figure 5-4 shows how provisioning filemanager resources for some level of
performance when not generating capabilities will correspond to the filemanager’s ability
to handle the same workload when filemanagers are generating capabilities. For both AFS
traces, a server designed to service requests up to the load of 80% of the minutes would
only be able to handle the load in 70% of the minutes if the server needed to generate
capabilities. In NFS, the difference is more pronounced: a filemanager designed for 80%
of the minutes without generating capabilities would only be sufficient for 31% of the

Figure 5-3 120 Minutes from AFS and NFS Workloads

Both graphs show that a large amount of burstiness, which can cause noticeable delays
when the bursts go above the saturation threshold of a filemanager, can be attributed to a
filemanager generating capabilities. The y-axis illustrates load offered to the filemanager
over 120 minutes measured in 1-minute intervals. for both types of workloads. Each of
these graphs corresponds to 2 samples in the Figure 5-2.

120 240
Sample

0

100

200

300

400

500

O
ffe

re
d

Lo
ad

 to
 fi

le
m

an
ag

er

 NFS on NASD

120 240
Sample

0

500

1000

1500

O
ffe

re
d

lo
ad

 to
 fi

le
m

an
ag

er

AFS on NASD

Client Capabilities

Filemanager Capabilities

93

Figure 5-4 Filemanager Load Percentiles: Capabilities

This graph shows the relationship between the percentage of minutes below a threshold for
both client and filemanager generated capabilities. The y-values are the percentage of
active client minutes with filemanager generated capabilities that are less than or equal to
the maximum of the x-value’s percentage of client generated capability minutes. For
example, the NFS on NASD line shows that 90% of the client generated capability minutes
have a load less than or equal to the load of the 51% filemanager generated capability
minutes. In the lower graph (a small version of the NFS portion of Figure 5-2), the
horizontal line shows the 90% mark for client generated capabilities which is a load of 77
requests. Only 51% of the filemanager generated capability minutes lie below this same
line. The curve will always be at least slightly convex because the offered load to the
filemanager when it generates capabilities is always greater or equal to the offered load
when clients generate their own capabilities. A linear relationship would indicate that the
offered loads are with filemanager generated capabilities and client generated capabilities
were equivalent.

20 40 60 80 100
Client Capability Percentile

0

20

40

60

80

100

F
ile

m
an

ag
er

 C
ap

ab
ili

ty
 P

er
ce

nt
ile

Relationship Between Percentiles

AFS on NASD Week 1

AFS on NASD Week 2

NFS on NASD Week

120 240
Sample

0

100

200

300

400

500

O
ffe

re
d

Lo
ad

 to
 fi

le
m

an
ag

er NFS on NASD

Client Capabilities

Filemanager Capabilities

77.6

Figure 5-2

94

minutes when called upon to generate capabilities. This difference is a result of NFS
providing less functionality (specifically relatively weak consistency guarantees), thus the
filemanager performs less work overall in the NASD architecutre. As a result, the task of
an NFS on NASD filemanager is much smaller, primarily to protect filesystem integrity,
than AFS on NASD which implies that both the scalability gains from NASD are greater
for NFS [Gibson97a] and the impact of capability traffic is larger.

The simulations have shown that capability request traffic can increase the load
offered to the filemanager by a factor of 1.3 to 2.8, as well as amplifying the burstiness of
the workload. A filemanager that needs to handle capability requests in addition to its
other tasks requires greater resources than a filemanager whose clients can independently
generate capabilities. However, a system where clients can generate capabilities is very
insecure because there are so many weakly protected points of failure and the filemanager
must generate capabilities in order to construct a secure system. In order to reduce the
impact of capability requests on the filemanager load, I will present alternatives to
capabilities that both reduce the offered load to the filemanager and smooth out the peaks
created by access credential traffic, the general class of tokens of which capabilities are the
simplest example.

5.1.4 Operations Involving Multiple Objects

Many filesystems could take advantage of a mechanism to perform operations on
multiple objects with a single request. For example, both AFS’s BulkStatus [Transarc91]
and NFSv3’s ReadDirPlus [Callaghan95] allow clients to retrieve status information of
multiple objects with a single request to the server. NT has directory scanning RPCs, the
FIND_* calls, and an operation chaining mechanism, the ANDX mechanism, that can
provide equivalent functionality as well as enable sequences of operations on a single
object with a single RPC [Leach97b]. In the initial NASD interface [Gibson97b], there are
no operations that operate on multiple objects and the capability model has discouraged
efforts to add any such operations. These types of operations are desirable because they
reduce client latency and offer more work to a drive in a single operation, which allows the
drive to make more efficient scheduling decisions about its resources.

A set of capabilities could be used for a multi-object operation but this requires the
client to send all the capabilities to the drive. Additionally, some well-defined combination
of their private credentials must be combined to generate an access key to authorize the
request. And finally, the drive needs to individually verify that each capability is currently
valid. A more elegant solution would involve a single access credential that enabled the
entire operation which avoids some of the overhead of processing and handling multiple
capabilities.

With multiple capabilities being used for an operation, all the access keys are
combined into a single key and if one of the capabilities is invalidated, by updating its
access control version number (discussed in Chapter 4), then the entire operation will fail
because the combined access key will become invalid. If a single more general access

95

credential is used, I can separate out the key generation from the metadata of the object
and the access key can be generated regardless of any given object’s access credentials.

5.1.5 No Cross-object Locality

Capabilities in an on-disk access credential cache, described in Section 4.3.2.2,
capture locality only among references to a single object. Other common abstractions such
as a directory, ACL, or user ID can capture more locality. By more locality, I mean that a
drive that associates an access credential with a user accessing a specific directory will see
greater reuse of the access credential than a drive that associates an access credential with
a single object. Capturing this additional locality will improve performance in drives that
are sensitive to the cost of computing an access credential’s cryptographic keys.

Some NASD drives will lack hardware support for cryptography which makes the
recomputation of keys necessary, giving a sizeable performance penalty, when an access
credential is not found in the on-disk credential cache. Performing the cryptography to
generate the key for MACing requests requires about 6000 instructions in CMU’s
prototype running on an Alpha 21064 processor. For a small request from a client, such as
an 8K cold cache read which normally requires 67K instructions in the

Figure 5-5 Baseline Hit Rate in On Disk Capability Cache Performance

Caching access credentials only hits 70% of the time in an on drive credential cache. This
figure shows the hit rate using two AFS workloads to simulate a cache on a NASD drive
that maps the public portion of an access credential to the MAC and encryption keys.
Clients are given unique short-lived capabilities for write operations in addition to their
read access credentials. Clients are given capabilities that enable read and getattr access
to a single object. Each cache entry contains two 20-byte keys per cache entry and 48 bytes
of public capability data.

32 KB 64 KB 96 KB 128 KB

Bytes of Cache Memory for Credentials and Keys

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
it

R
at

e

AFS Week 1

AFS Week 2

96

prototype [Gibson98], computing the proper MAC key increases the number of
instructions executed by 9%. This is an optimistic measure of the cost of generating the
MAC key because the prototype uses DEC’s implementation of DCE, a heavyweight RPC
mechanism, which accounts for 79% of the cycles. When the drive uses a lighter-weight
and more optimized RPC layer, the base instruction count for an operation should become
smaller and the penalty of extra cryptographic work will increase. For example, if I
assume that a lighter-weight RPC uses a factor of 4 fewer instructions, reducing the
percentage of instructions spent in communications from 79% to 49%, and an SHA-1
implementation optimized for a factor of 2 reduction in instruction, then the penalty for
the additional cryptography increases to 11%.

If the drive designers choose to implement a capability cache, a simple LRU based
caching scheme will deliver the hit rates shown in Figure 5-5. Since capabilities are only
valid for access to a single object, the cached entries capture a limited amount of the
locality in the workload and the knee of the hit rate curve is quickly hit with only 32K of
memory with a 60% hit rate. As a result, the drive will need to compute the cryptographic
keys for a request for 40% of the requests which, as discussed above, may result in a
significant performance cost.

5.2 Batching Capabilities

Clients can reduce their latency by consulting the filemanager less frequently to
obtain capabilities. In order to achieve this goal, clients must obtain more capabilities
every time they contact the filemanager. A client could batch a group of capability
requests together to the filemanager in a single request to the filemanager. The AFS
simulation in Section 5.1.3 batched together client capability requests necessary for a
single BulkStatus() operation. Alternately, the filemanager could predict future client
accesses based on past behavior and prefetch capabilities using techniques similar to
predictive data prefetching [Griffioen94]. However, clients generally have more
information about their access patterns than the filemanager so they are better prepared to
prefetch capabilities via a batch capability request mechanism than a filemanager
speculating about client patterns. Simply batching or prefetching groups of N capabilities
requires the client to contact the filemanager less often but still requires the filemanager to
generate N distinct capabilities to return to the client. Filemanager load will be reduced
because communications overheads of the client-filemanager RPC will be amortized
across multiple capabilities, but the per-object access costs associated with N access
checks and computing N access keys remains. Perhaps more importantly, the client
machine must have enough information from the user to request the capabilities in
advance. If the application interface does not pass sufficient information from the user to
lower levels of the system, the filemanager and the application’s client-stub will be unable
to usefully predict the user’s future accesses. Transparent informed
prefetching [Patterson95] could be used to augment any application to transfer
information about future object accesses from the user-level to the application level and

97

allow capabilities needed in the future to be prefetched in batched in requests to the
filemanager.

By combining the replies together in a single result, which I call a list capability, a
filemanager can reduce the cryptographic costs of generating the capabilities. The fixed
cryptographic costs of generating a capability are amortized across multiple objects rather
than being multiplied by the number of objects a client is enabled to access. Extending the
definition of a capability given in Section 4.2.2, I replace both the Object ID and AV in the
capability with a list of (NASD ID, AV) pairs and generate private credential as follows:

Clients now receive a single large capability that enables access to a number of
different NASD objects. Because objects are explicitly named in the list capability, its size
is directly proportional to the number of objects for which it is valid. The disadvantage of
size are both that the list capabilities have a bigger footprint in drive access credential
caches and a large list capability requires more work to generate an access key. Also,
access credentials are sent on every request, because of the statelessness of the NASD
protocol, so larger access credentials will have a larger communications overhead. Finally,
the list capabilities do not address the need for capturing dependencies between objects
using the access credentials.

5.3 Indirection via On-disk Objects

A further enhancement is the introduction of a level of indirection into the naming of
objects accessible with an access credential by allowing the access credentials to not
explicitly name all the applicable objects. Concretely, a filemanager gives clients either a
normal capability or a group capability which names another object, called the indirection
object, which in turn contains an ordered list of object identifiers for objects in the same
partition. The client can use the group capability to perform operations on any object listed
within the indirection object. The access key for a group capability is generated from the
public credential, describing the bearer’s rights, and the group object’s ID and AV:

A filemanager can revoke access to an entire group or a single object through the
group. Every indirection group has its own AV which the filemanager can use for
wholesale revocation of all access rights enabled through the indirection group. Access to
a specific object through the group can be enabled or disabled by adding or deleting the
object from the indirection group without affecting access to any other object referenced
in the indirection object.

PrivateCred MACKx
PublicCred ListLength ListOf ObjectID AV,(), ,()=

PrivateCred MACKx
PublicCredential GroupID GroupAV, ,()·

=

98

Groups are a common abstraction, frequently used to improve efficiency or
manageability, that are found in many places in distributed systems. For example, a
directory in a conventional filesystem is a group of filesystem objects which may, in turn,
contain other directories. In systems like AFS or Novell where security permissions on a
directory affect all files in the directory, the grouping simplifies the administration of
security by providing a single object that can be modified to change a group of objects. In
any hierarchichal filesystem, the hierarchichal grouping in the directory tree provides a
mechanism to move large groups of files around within the filesystem by moving
directories. Another common example of groups is the user-group found in most
filesystems. The user-group abstraction simplifies management by allowing a single
access control operation to affect everyone in the user-group. Modifying a single group
data structure is both more efficient and less error prone than individually modifying a
large number of users.

Group capabilities complement basic capabilities rather than replace them because
group capabilities are an inefficient mechanism for fine-grained control. Consider a
filemanager enabling a write request in AFS: a filemanager needs to grant access to a
single object for a short period of time while it prevents other clients from reading the
object and monitors the object length to enforce its quota and cache consistency
policies [Gibson97b]. In contrast, consider a filemanager enabling a read access: the
filemanager could enable read access to all the objects within a directory using a single
group capability. If both cases used the group capabilities, the filemanager would need to
create an indirection object simply to enable access to a single object. A more efficient
solution is to add a flag to capabilities that indicate whether the capability should be
interpreted as a group capability rather than as a basic capability since their structures are
otherwise identical.

When a drive receives a request, the drive must retrieve the indirect object and verify
that the requested object is member of the group as shown in Figure 5-6. The drive
retrieves the indirection object referred to in the group capability and verifies that the AV
in the capability is current by comparing it with the current AV of the indirection object. If
the AV is current, the drive checks that the object being requested is a member of the
indirection object with binary search in log(N) time, as long as the group membership list
is maintained in sorted order.

A filemanager can build indirect objects either statically or on the fly. The static
approach is well suited for a filemanager with access control policies tightly bound to the
underlying structure of the filesystem. For example, in both AFS and AppleShare, access
control is administered on a per-directory basis so it is natural for a filemanager to
construct indirect objects that mirror this structure. If these indirect objects exist on the
drive when a client requests an access credential, then the filemanager does not need to
send the drive a sequence of requests to build the indirect object. However, when a client
builds the indirect object in direct response to a client operation, the filemanager can
exercise a finer degree of control over what operations it allows. The filemanager can
maximize the rights granted to a client by building a large indirect group or enable access

99

to the minimal set of objects required for the task at hand rather than granting the client
unnecessary privileges [DoD85].

With static groups following the directory structure, group capabilities can reduce
the number of times a client must obtain a capability to the number of directories that the
client touches. The drawback of the static approach is its reliance on an underlying
structure in the application’s layout of objects to essentially hang the groups off and the
fact that static groups consume space on the drive to mirror these structures. Neither of
these drawbacks are show-stoppers because most applications have some underlying
structure to efficiently manage both the data and its security policy. Additionally, I expect
the space consumed to represent these structures, which mirror indirect objects, will at
most double, and relatively small compared to the amount of data stored. Otherwise the
system is already making poor use of its resources.

Group capabilities are unable to capture dynamic relationships among objects.
Dynamic inheritance can be implemented more efficiently with group capabilities because
revocation involves revoking access through all the indirect objects rather than through all
the objects themselves, which I expect to be significantly larger if the groups follow an
underlying structure of the filesystem. However, this still requires touching all of the
groups, rather than objects in the normal capability case, that are affected by an access
control change. Of course, an application could be pathologically bad and use indirect
objects to capture all sets of objects with size k which would result in more indirect objects
than actual data objects, although they would all be small.

Figure 5-6 Evaluation of a Group Capability

This graphs shows the basic tests and flow necessary for an indirect group capability
system. A request specifies the object, Object1 in this example, that the client is attempting
to access while the group capability contains a description of the bearer’s access rights as
well as the name of an indirection object, GroupA. The drive retrieves the GroupA,
potentially accessing the media, and verifies that its AV is the same as the one specified in
the capability while also checking that Object1 is listed in GroupA. If all checks are
successful, the client is granted all the privileges described by the capability with respect
to the GroupA.

GroupA,
AV
Object1,
Object7,
..,
Object3212

Are the AVs
equal?

Is Object1 listed?

Group Capability: Drive Identifier, Partition Identifier, rights, AV, GroupA

Request: (Object1, Drive Identifier, Partition Identifier, Offset, Read)

Load GroupA

100

To provide the group abstraction to the filemanagers and clients, the drive must
introduce a layer of indirection through another object which may require an additional
I/O operation per request. Of course, this I/O operation may frequently hit in the drive’s
data cache after an initial access, but there will always be cases where the workload has
flushed an indirect object from the data cache. As I explained in Section 5.1, an additional
I/O can have a significant performance penalty. In order to get the dynamic dependency
behavior, the additional I/O is necessary penalty to evaluate the dependency. However, a
better solution would be a mechanism where indirection through another object was an
explicitly invoked option rather than a requirement of the group abstraction. This would
avoid the potential problem of additional I/O operations unless the filemanager explicitly
uses the dependency feature.

One advantage of the indirection layer in groups is efficient revocation of rights to
the entire group, although this advantage would seldom be used. By changing the AV on
the group, the filemanager can revoke all rights granted through the group which could
affect a large number of clients and NASD objects. However, the PDL AFS ‘99 workloads
show that StoreACL operations, which may also be granting access rather than revoking
it, make up only 0.0034% of the requests so access revocation on a directory wide basis is
rare. The StoreAttributes RPC potentially changes the mode bits or owner information
on a single object so it may also revoke client access rights to a single object.
StoreAttributes make up 2.2% of the requests. Using the worst case assumption that both
StoreAttributes and StoreACLs are revoking access permissions, revocation is still very
rare and usually only affects a single file (most of the revocations would be from
StoreAttributes). In NFS, only 0.3% of the operations are AttributeWrites which are
potential mode changes to a file. There, in all the workloads studied, revocation is a rare
operation and should not be used to motivate optimizations that may penalize more
common operations.

5.4 Metadata Filter Credentials

In this section, I describe an approach which exploits and encourages an
application’s ability to embed application-specific security information within a NASD
object’s metadata. The NASD interface includes an un-typed array of bytes, 256 bytes in
the prototype, called fs-specific in which application writers are able to store arbitrary
object metadata. For example, the NFS on NASD prototype uses the fs-specific field to
store a file’s owner’s UID and group ID as well as the Unix mode bits. An AFS
implementation could store a unique identifier for a file’s directory or an ACL in the
fs-specific field.

At a high level, the filemanager provides clients with access credentials that test a
requested object’s metadata for the presence or absence of some feature which determines
whether the access credentials are appropriate for a requested object. What is an
appropriate mechanism to describe the required features of an object’s metadata? The two

101

strongest options I found were regular expressions or executable filters. An executable
approach is more appropriate for following reasons:

• Regular expressions are not space-efficient at capturing some if-then-else relationships.
For example, with a regular expression, it is awkward to express the normal Unix
behavior of disallowing access to the owner based on the user mode bit even if all other
users are allowed to read the object.

• With sufficient space, a regular expression could capture any property of the object
metadata but an executable model is frequently more intuitive.

I have implemented a derivative of the Berkeley Packet Filter (BPF) [McCanne93]
— which I call metadata filters — which allows filemanagers to define tests on object
metadata. I used the BPF as a starting point because the tasks of a packet filter and the
metadata filter are in some respects very similar. A packet filter is responsible for
differentiating between a packet that meets some criterion and should be forwarded to an
end-point and a packet that should not be forwarded. Analogously, the filter in a metadata
filter access credential must distinguish between objects that the access credentials is
applicable to and those that it is not.

I replace the object ID and AV in a capability, which explicitly name an object, with
a metadata filter, which implicitly defines a set of objects. These improved access
credentials are called MF credentials. The simple applicability test for capabilities, an
equality check between the capabilities object ID and AV against the requested object’s ID
and AV, is generalized into the execution of the metadata filter against the requested
object’s metadata. Since the access credential mechanism no longer relies on a separate
AV as part of the object metadata, the AV can be removed from the NASD interface. An
application can readily implement its own AV-like behavior by storing an application level
AV within its object’s fs-specific field. However, MF credentials still include the partition
ID in order to identify the proper key in the key hierarchy to use when generating the
private credential.

Initially, as shown in Figure 5-7, when a drive receives a request from a client, the
drive first performs some simple static checks on the filter to verify that it is safe to
execute. Specifically, the drive verifies that no code or data references go outside of valid
ranges for static references. Dynamically generated references through registers or
memory must be checked at execution time. Potentially, the static checks could be avoided
and done dynamically but a static analysis is more efficient because the filter may be
reused if it is successfully cached and the static checks can be bypassed on cache hits.
Similarly, statically checking a reference in a loop body will be less expensive than
repeatedly checking it every iteration.

102

5.4.1 Size of Metadata Filters

A straightforward application of Berkeley Packet Filter technology to NASD results
in filters that are only a few hundred bytes in size but waste space through unused
instruction arguments. While exploring the size issue, I focused on three examples:

• Capability-like meta filters which check the object ID and AV. This filter was 80 bytes
long.

• Filters that enable NFS clients to read any file with the appropriate mode bits for their
user and group ID. This filter was 112 bytes long.

• Filters that enable AFS clients, who are members of four PTS groups, to read or
retrieve the attributes of any file to which they are granted access, as long as no negative
ACLs are listed. This filter was 248 bytes long.

The size of the filters is significant because every 64 bytes of access credential requires
another iteration of the MAC function to generate the private credential, as well as the fil-
ter consuming space at both the client and the drive. If the filemanager or the drive is deal-
ing with a burst of requests, the additional cost of generating the more complicated access
credentials may be significant. None of these examples are extremely large, but I observed
that the BPF instruction format, shown in Figure 5-8a, allocated half its space to a k oper-
and that was frequently unused or used with the same value. This was an obvious opportu-
nity to optimize away wasted space and reduce the overall filter size.

Figure 5-7 Evaluation of a Metadata Filter Credential

This figure shows the steps necessary to determine if a metadata filter credential is valid
for a specific request. Each request includes a filter in the public access credential which
the drive statically checks to verify that the filter can be safely executed. If the filter is safe
to execute, the requested object’s metadata is loaded and the filter is executed. When
execution completes, the filter returns a pass or fail result that determines if the metadata
filter credential is valid for the requested object. The processing time of the filter is limited
by a time-out, set on a per partition basis, which prevents accidental infinite loop.

Public Access Credential: Drive Identifier, Partition Identifier, rights, Filter

Request: (Object1, Drive Identifier, Partition Identifier, Offset, Read)

ObjectID
Size
Create Time
Modify Time
File System Specific [256 bytes] Filter Execution

Selects the Object
Static Verification

Verified

Fail

Pass/Fail

103

By cutting the instruction size in half and separating the filter into a data and code
segment, I was able to reduce the length between 25% (for the capability-like filters) and
38% (for the AFS read filters). As shown in Figure 5-8, an MF now contains a data
segment that is used to initialize the filter’s memory segment at execution time and holds
constant data values. I replaced the 64-bit k operand in the BPF, which is frequently
unused or partially used, with an 8-bit idx operand that references the data segment rather
than including an immediate value. I was also able to cut the opcode size in half because it
only used half of its allocated space, presumably because it was used to pad the overall
instruction length to a 32-bit boundary. The instruction format changes save space on the
control portions of the filter but not the parts that involve constants because they reference
data in the data segment.

The smaller filters have the following size:

• Capability-like filters - 60 bytes

• An NFS filter that allows a user access to any file she is permitted to read - 84 bytes

• An AFS filter that allows a user who is a member of four protection groups to read an
object she is permitted to read as long as it has no negative ACL set - 156 bytes

These sizes show that filters can capture a large amount of the access control structure pro-
cess in a very small amount of space.

Figure 5-8 Comparison of BPF and NASD MF formats

In order to reduce the size of the metadata filters, I modified the Berkeley Packet Filter (a)
to produce the NASD metadata filter (b). The BPF format is a sequence of fixed length
instructions each containing a 16 bit op-code, two 8-bit offsets for conditional expressions,
and a 32-bit multi-purpose field. A filter consists of a sequence of instructions. A NASD
metadata filter replaces the multi-purpose field with an index into a separate data segment
and compresses the op-code space to make individual instructions smaller. The
abandonment of the larger multi-purpose field requires an additional data segment to be
added to each filter to hold large constant values. The NASD metadata filter includes size
information, a data segment, and a code segment which contains the shortened NASD
format instructions.

Op:16 jt:8 jf:8
k: 32

Op:8 jt: 8

Instruction1Pt1
Instruction1Pt2
Instruction2Pt1
...

DataSize, CodeSize
DataSegment
...
CodeSegment

Instruction
Format

Filter Format

(a) BPF (b) NASD

jf:8 idx: 8

104

5.4.2 Information Leakage

If the evaluation of the metadata filter takes place before, or simultaneously with, the
verification of a request’s MAC, as discussed in Section 4.4.4.1, a bad MAC error must
take precedence over a filter execution that returns a failure result. If the result of
executing the filter is revealed when the MAC is invalid, then the drive is releasing
information that was not approved by the filemanager. An adversary could generate a filter
that asks a question about an object’s metadata such as “Is this a top-secret object?” which
the drive would blindly answer before checking if the adversary was entitled to this
information. If the adversary constructed filters to test for the presence of specific bytes in
specific locations, an adversary could use this feature to read all of an object’s metadata.

However, if a filemanager gives a client a metadata filter credential, and the drive
verifies the filter before checking the MAC on the request, then the filemanager has given
the client the right to have the filter evaluated over any object’s metadata. If the
filemanager is concerned with clients learning the contents of object’s metadata, a
filemanager should hand out only very limited access credentials that will not reveal secret
information when a false result is returned.

5.4.3 Support for Dynamic Access Control Systems

By extending the BPF language with the LOAD_OBJ_META instruction that loads
a specified object’s metadata to the filter language, I have enabled filemanagers to
implement dynamic dependencies between different NASD objects for access control
decisions. The default behavior, when the LOAD_OBJ_META instruction is not used, is
for the filter to access only the requested object’s metadata to make access control
decisions, which do not require any additional I/O operations beyond those required when
no security is used. By adding the LOAD_OBJ_META , the drive may require additional
I/Os to service a request but only when the instruction is used rather than on every request
as required when using indirect groups.

This feature allows applications to implement an access control scheme that
logically walks up a directory hierarchy and evaluates access control at each step along the
way such as in AppleShare, Novell, or Windows NT (with bypass traversal checking
disabled). When a directory’s permissions change, the filemanager needs to modify only
the actual directory rather than all the effected filesystem objects, which is necessary in
approaches without support for dynamic relationships.

Introducing dependencies on other objects complicates the caching of access
credential. In all the other types of access credentials I have presented, the current validity
of an access credential depends only on a single object. It is simple to invalidate cached
access credentials when that object is modified. With metadata filter credentials, the
validity of a key for a specific object depends on a set of different objects. These
dependencies need to be tracked, probably by a hash table, so that out-of-date decisions
will not be reused.

105

5.4.4 Reduced Load on Filemanager

Metadata filter access credentials can capture a bigger chunk of the application
access control semantics within the access credentials, rather then leaving all of the
decision processing to the filemanager. For example, in some filesystems, application
designers can implement the access control system by labeling each object with its home
directory and simply checking this label with the access credential. Alternately, metadata
filters can perform a portion of the access control check at the drive and a filemanager can
issue a smaller set of metadata filter credentials to clients allowing clients to access all or
some of the objects for which they have access permission. Both of these approaches
capture larger chunks of a client’s access space, as illustrated in Figure 5-9, and have a
potential for greater reuse than capabilities.

Both AFS and NFS can be implemented using metadata filters that allow a user to
access all the objects which she is permitted to read or getattributes. For NFS, the
metadata filters implements the entire Unix access check for a fixed user ID and group ID.
For AFS, a metadata filter for a read operation performs four checks:

1. Test for the presence of a negative ACL entry which will require the filemanager to
become involved.

2. Decide if this is a directory or file object because different ACL entries are needed in
each case.

3. Iterate through the ACL entries looking for one that grants permission to the clients
PTS ID or one of the group PTS IDs listed in the access credential.

Capability

projects

index

danube nile

DataA DataB
Directory Filter

UserID Filter

or Group Capability

Figure 5-9 Example of Scope of Different Forms of Access Credentials

A capability enables access to exactly one object. A directory filter or group capabilities
based on directories can enable access to all objects within a directory. UserID filters
parse some of the ACL and/or mode bits and allow a user access to all the objects to which
she is entitled.

106

4. Check the mode bits on the object. As described in Section 3.5, this can be either the
group or the owner bits depending on how the AFS server is configured.

Alternately, AFS on NASD could label each file object with an identifier indicating which
directory it is stored in. Clients are given metadata filters that test for this label and only
perform the mode bit check, the fourth step listed above, before granting a client access to
the object. This makes sense for AFS because ACLs are shared across all objects in a
directory. For NFS, access control information is on a per-file basis rather than shared
across an entire directory.

I extended the simulations presented in Section 5.4.4 to study how metadata filter
credentials can be used to reduce the offered load to the filemanager. For NFS, the
filemanager issues a client two access credentials, one for reading/getattr and one for
writing. For AFS, the filemanager issues a clients read/gettattr credential per directory,
directory access credentials, or for all objects, user access credentials, as well as
short-lived per-object write credentials in both cases.

For all the workloads examined, issuing access credentials based on directories or
the user significantly reduced the offered load to the filemanager as shown in Table 5-1.
For the AFS workloads, the impact was smaller because the AFS filemanager does more
work than an NFS filemanager. The largest improvement comes from simply generating
access credentials on a per-directory basis rather than per-object, although a small
additional gain can be had by doing user-based access credentials. Initially, I expected the
user based access credentials to get large gains in the AFS workloads just as Table 5-1
shows in the NFS workload. However, in all cases, the AFS filemanager is issuing short
lived object write access credentials so that it can enforce its quota management and assist
in cache consistency. This accounts for most of the access credential request traffic when
user credentials are employed.

Table 5-1 Ratio of Load with Access Control Traffic at Filemanager
Versus Without

For the three workloads, the table shows how close the different types of access
credentials approach the load when the filemanager does not issue any access credentials.
The metric used is the ratio of the offered load with the access credential requests being
serviced by the filemanager to the load without the access control requests (i.e. the clients
generate their own as described in Section 5.1.3). A ratio of 1.0 would indicate that the
filemanager sees no additional requests to issue access credentials.

Type of Access Credential NFS AFS 1 AFS 2

Capabilities 2.75 1.79 1.35

Directory Access Credentials N/A 1.19 1.09

User Access Credentials 1.01 1.13 1.07

107

Figure 5-10 and Figure 5-11 show the percentiles of the load on minute samples for
client-generated capabilities versus the filemanager-generated capabilities, directory
access credentials, and user ID access credentials. The graphs show that for both the AFS
and NFS workloads, moving to an access control mechanism with greater expressiveness
reduces the load on the filemanager so that the load with access control approximates the
load with client-generated capabilities. This allows a comparable filemanager machine to
be used regardless of whether the filemanager is administering the security policy of the
system or trusting all clients.

Figure 5-12 shows the same 120 minute samples as Figure 5-3 and illustrates how
more expressive access credentials can minimize the degree to which access control
requests amplifies the burstiness of the workload. For both workloads, user ID based
access credentials reduce the access control traffic to an extremely small delta over the
best case of client generated capabilities.

5.4.5 Improved Drive Key Cache Hit Rate

Using metadata filters credentials, the access credentials capture more of the locality
inherent in a workload which is evident in a higher hit rate if the access credential to key
mapping is cached at the drive. In Section 5.1, I explained how computing the
cryptographic keys for an access credential can account for a large portion of the cycles on
a drive without hardware support. Based on the traces, I simulated the on-disk caches of

Figure 5-10 NFS on NASD Load Percentiles

User identity based access credentials eliminate most of the bowing of the curve, bringing
the curve closer to linear which indicates that the offered load to the filemanager is
similar to the load offered when clients generate capabilities. The y-values are the
percentage of active client minutes with filemanager generated capabilities that are less
than or equal to the maximum of the x-value’s percentage most idle of the client-generated
capability minutes.

20 40 60 80 100

Client Capability Percentile

0

20

40

60

80

100

A
lte

rn
at

iv
e

P
er

ce
nt

ile

Capability

User Access Credentials

108

Figure 5-11 AFS on NASD Load Percentiles

Directory access credentials and user identity based access credentials provide a
noticeable improvement over capabilities, although capabilities were already quite good
for AFS since write capabilities and synchronization operations limited the impact of
requests for read capabilities. The y-values are the percentage of active client minutes
with filemanager generated capabilities that less than or equal to the maximum of the
x-value’s percentage most idle of the client generated capability minutes. There is a small
but noticeable difference between the percentiles for client generated versus filemanager
generated capabilities as shown by the distance of the curve from linear. With directory
access credentials or client identity access credentials, the difference is much smaller.

20 40 60 80 100
Client Capability Percentile

0

20

40

60

80

100

A
lte

rn
at

iv
e

P
er

ce
nt

ile

AFS on NASD Week 1

Capability

Directory Credentials

User Credentials

20 40 60 80 100

Client Capability Percentile

0

20

40

60

80

100

A
lte

rn
at

iv
e

P
er

ce
nt

ile

AFS on NASD Week 2

109

Figure 5-12 Filemanager Load Percentiles: Alternative Access
Credentials

Both identity- and directory-based access credentials reduce the burstiness of the
workloads and bring the load closer to the best possible case of clients generating
capabilities. These graphs show the same 120 minute segments shown in Figure 5-3 with
all the options for access credentials that were studied in Section 5.4.4.

60 120

Sample

0

100

200

300

400

500

O
ffe

re
d

Lo
ad

 to
 fi

le
m

an
ag

er
 (

re
qu

es
ts

 p
er

 m
in

ut
e)

 NFS on NASD

Client Capabilities

Filemanager Capabilities

User Access Credentials

30 60 90 120

Sample

0

500

1000

1500

O
ffe

re
d

lo
ad

 to
 fi

le
m

an
ag

er
 (

re
qu

es
ts

 p
er

 m
in

ut
e)

AFS on NASD

Client Capabilities

Filemanager Capabilities

Directory Access Credentia

User Access Credentials

110

the cryptographic keys to understand how the metadata filter credentials, which are larger
than capabilities, impact the amount of memory necessary for the key cache.

Figure 5-13 shows that, as most computer scientists would expect, directories
capture locality more efficiently than object identifiers, and user IDs are more effective
than directories. This shows that the expressiveness of metadata filters enables a
filesystem to implement its access control system in such a manner that it increases the hit
rate in the on-drive key cache which reduces client latency. If the cache is more efficient,
less valuable on-chip SRAM needs to be dedicated to caching keys, which can either
reduce the drive’s cost or make the resources available for other functions. However, if a
drive has an abundance of MAC bandwidth, then the savings of caching keys over
recomputing keys will have a minimal impact on the performance seen by the client.

AFS Week 1: Capabilities

Figure 5-13 Hit Rate of on Disk Access Credential to Cryptographic Key
Cache

Metadata filter access credentials can be cached more efficiently than capabilities. This
figure shows the hit rate using two AFS workloads for a cache on a NASD drive that maps
the public portion of an access credential to the MAC and encryption keys. All three
approaches, capabilities, directory MF, and ACL parsing MF, were simulated with an LRU
cache. In all cases, clients are given unique short-lived capabilities for write operations in
addition to their read access credentials. In the capability case, clients are given
capabilities that enable read and getattr access to a single object. In the directory MF
case, clients are given MF access credentials that enable read and getattr access to all
objects within the directory. In the ACL parsing approach, users are given access
credentials that parse the ACL of the object and allow them to read and getattr all files or
directories which they are allowed to access. All three approaches store 40 bytes of key per
cache entry and the capability, directory based MF, and ACL parsing MF use 48, 112, and
200 bytes respectively for their public credentials. The MF approaches replace the AV and
the object ID in the capability with an appropriate metadata filter. The size reported on the
graph ignores overhead of maintaining the various data structures necessary for quick
lookup and revocation.

0 32 KB 64 KB 96 KB 128 KB

Bytes of Cache Memory for Credentials and Keys

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
it

R
at

e

AFS Week 1: Directory MF

AFS Week 1: ACL Parsing MF

AFS Week 2: Capabilities

AFS Week 2: Directory MF

AFS Week 2: ACL Parsing MF

111

5.4.6 Costs

When using metadata filters, there are some additional costs that must be
considered. Access credentials become larger, as discussed in Section 5.4.1, although they
were only a couple of hundred bytes in the examples explored. Executing a metadata filter
is more complicated than checking a few arguments in a capability so there is a higher
computational cost to determine whether an access credential is valid for a particular
object. Metadata filters also require space in an object’s metadata to store information that
the filter will check, so there is additionally a minimal metadata space requirement.

An executable approach such as a metadata filters requires more work by the drive
to determine whether an access credential is valid for a specific object. With a capability,
the check was simply a few instructions to check several fields in the requested object’s
metadata. With metadata filters, the drive performs a static verification of the filter to
ensure that it is safe to execute, in addition to executing the filter. In the three examples I
studied on a DEC Alpha 21064-based prototype, the static verification required between
310 instructions (capability-like filters) and 578 instructions (AFS identity based filters).
Executing the filter required between 312 instructions (capability-like filters) and 760
instructions (AFS identity based filters). The verification and execution costs are
significantly higher than the few comparisons necessary to check a true capability but are
small relative to the 6000 cycles necessary to generate the MAC key for a request. This
implies that the caching of metadata filters is an advantage when MAC computation is
expensive. Additionally, the verification and execution costs of metadata filters would
increase the total instructions executed for a request by 4% for a 1 B warm cache read, the
data moving operation with the fewest executed instructions, and less than 1% for a 64 KB
read or write [Gibson98].

Other techniques such as Software Fault Isolation [Wahbe93] and PCC [Necula96]
may provide even better performance. SFI can improve execution time of a packet filter by
a factor of four and PCC can improve execution by a factor of 10 [Necula96]. Both of
these approaches incur a much larger (by a factor of 100 or more) fixed overhead to verify
that a filter is safe to execute, but have a much lower per-instruction runtime cost. These
higher verification costs can be amortized across multiple requests if the access credentials
are successfully cached and reused. However, the high cost of verification will be on the
critical path of the initial request using the access credential.

All three metadata filter examples require space in the metadata of the objects to
store information that the filters examine but none require more than 180 bytes. The
metadata filter works most efficiently operating on 4-byte values so every distinct value
used in the test filters consumed 4 bytes of metadata. The capabilities used only the AV
consuming 4 bytes of metadata. The NFS identity-based metadata filters need the owner’s
userid, owner’s groupid, and file’s mode bits to be stored in each object, which consumes
12 bytes of metadata. The AFS identity-based metadata filters stored an entire ACL in the
metadata as well as the normal Unix security information that was used in NFS. An ACL
was represented as the number of positive entries, the number of negative entries, and up

112

to twenty ID-rights pairs. In total, AFS required 180 bytes in the metadata to represent all
the necessary security information.

5.5 Policy objects

Experience with metadata filters shows that shipping functionality to the drive for
security processes can provide performance wins as well as functional advantages.
Observe that the policy in a given application seldom changes, although some parameters,
such as a user’s identity, an ACL, a user’s group membership list, or an object’s metadata
may change from request to request and from day to day. Instead of shipping the same
metadata filter with slight variations to the drive with every request, I propose that a
filemanager ship its policy to the drive in the form of an executable program and store this
in an on-drive object, which I will refer to as a policy object. Essentially, the code segment
of the metadata filter is being stored on the drive while the data segment is included in
each client’s public credentials and sent with every request.

Policy objects have the advantage of not shipping data on each request that normally
remains unchanged across requests from multiple clients. Only the data segment is
included in the request which allows the public access credentials to be much smaller
while preserving all the advantages of metadata filters. For capability-like functionality,
the data segment includes an AV, partition, and object ID which total 16 bytes. For NFS
identity based credentials, the data segment only requires 8 bytes to represent the user’s ID
and group ID. For AFS, the data segment only requires 4 bytes to represent the user’s ID
plus 4 bytes per protection group the user belongs to. This is a factor of 10-20 less space
than required by the metadata filters reducing the communication overhead of shipping
access credentials and decreasing the memory requirements for access credential caches.
While the examples I gave for metadata filters are all relatively small, placing more
complex behavior in the filters such as a full implementation of Files-11 semantics would
require larger metadata filters and benefit more from policy objects.

The critical new concern created by policy objects is preventing malicious clients
from convincing the drive to execute unauthorized code as a policy object. The drive must
verify that the MAC on a request is valid for the given request and access credential, as
well as making sure the access credential grants the rights necessary for the operation.
When the drive verifies the MAC on a request is valid, the drive can conclude that the
filemanager gave the client the access credential. Therefore, the drive can also conclude
that the filemanager authorizes the drive to use the object referenced in the access
credential as a policy object, i.e. the object is “safe”, as far as being in accordance with
filemanager policy, to execute as a policy object. If execution preceded the MAC
verification, then a malicious client could create a public credential referring to an
arbitrary object and the drive would execute the object’s contents as a policy object, which
could violate an application’s security policies. If the execution environment allows only
read access, which is true in the filter model I presented earlier, then MAC errors must
take precedence over filter execution errors to prevent information from being leaked by a

113

client executing an arbitrary object. If the execution environment allows policy objects to
have write access, the MAC verification must occur before the policy object is executed to
prevent malicious modification of other objects. Alternately, NASD could prevent a client
from executing an arbitrary object by including a PolicyObject flag in the NASD object
metadata structure and only allow the filemanager to update this flag. This would allow
the drive to verify whether the object reference in the public credential was intended by the
filemanager as a policy object. However, this solution would also allow malicious clients
to access different policy objects from the ones a filemanager authorizes, effectively
making all policy objects into public oracles that clients can apply to arbitrary objects.
Therefore, the precedence of the error codes is the proper solution to preventing malicious
clients from convincing the drive to execute unauthorized code as a policy object.

With policy objects, the high cost of verifying the safety of an SFI or PCC filter is
less of a concern. If the NASD interface includes the PolicyObject flag, the drive can
perform the expensive static checks of an SFI or PCC filter when the filter is written rather
than at execution time. This allows the drive to take advantage of the lower per-instruction
cost of SFI and PCC relative to Berkeley Packet Filter derived approaches. Using the
PolicyObject flag complements, rather than replaces, the precedence of MAC
computation over filter evaluation.

5.6 Related Work

Many filesystems provide the kinds of dynamic behavior that many of my
alternative solutions attempt to capture. For example, Novell [Sheldon96], AppleShare
[Apple98], and Windows NT [Frisch98] all have mechanisms to check permissions
involving an object and its ancestors rather than simply checking at the node being
accessed. However, all these are filesystem specific ideas with different interfaces while
NASD needs to have a more general mechanism that can emulate the mechanisms in these
types of filesystems.

Some existing filesystems support some mechanism for aggregation which are
similar to the grouping mechanisms discussed in this chapter. The explicit naming of
NFSv3’s ReadDirPlus [Callaghan95] or AFS’s BulkStatus [Transarc91] operation are
examples of this behavior. In this chapter, I explored some similar mechanism based on
explicit naming but they fail to capture the dynamic behavior that would also be beneficial
for NASD because they are explicitly naming objects rather than implicitly describing a
group of objects. This is one of the reasons why the flexibility of the programmable
solutions is appealing for NASD.

The idea of policy objects builds on a long history of similar ideas that allow an
application to define functions that are evaluated on every request to enforce security
policies. The earliest example of this type of function was the Multics’ TRAP
function [Daley65] which associated a function with an ACL entry. More modern systems,
such as Bershad’s Watchdogs [Bershad88] and Rabin and Tygar’s ITOSS

114

system [Rabin89], allow functions to be inserted on the I/O path for a filesystem object,
which are invoked on every operation to the filesystem object. In Chapter 3, I discussed
how this type of function and the fine grained security used in DBMS systems posed a
challenge to NASD. When an application designer can install an arbitrary function on the
data path, the application designer can provide the behavior of the TRAP-like systems as
well as the fine grained access control that DBMS systems normally provide.

5.7 Conclusion

Capabilities are a simple security mechanism that is efficient at capturing simple
static access control decisions. Its simplicity makes it easy to implement with no extra I/O
operations. However, capabilities are less than ideal. Limited by their simple explicit
naming of objects, a capability cannot capture any dynamic relationships between storage
objects. Requests for capabilities may substantially increase latency seen by clients.
Additionally, a significant portion of the filemanager’s load and the burstiness of the load
may be directly attributable to clients requesting capabilities. Finally, the explicit naming
of objects in a capability makes it impossible to use a single capability for an operation
involving multiple objects and limits the efficiency of a cache of the private portion of the
capability.

Moving from a simple capability model to a richer metadata filter model enables
multi-object operations, better cachability, reduced client latency, and reduced offered
load to the filemanager. All of these benefits arise from metadata filter’s ability to ship
portions of the applications access control policy to the drive. When the scope of
individual access credentials is increased, the clients need to obtain them less frequently,
which avoids latency penalties and load on the filemanager. Since the increase in size of
the access credentials is significantly smaller than the increase in their scope, they become
much more cachable which is beneficial in systems where the cost of generating the
cryptographic keys is high.

Going further, policy objects allow a filemanager to install portions of its access
control policy directly into the drive. This delivers all the advantages of metadata filter
credentials as well as enables a finer degree of control by the filemanager. When security
policies are installed at the drive rather than shipped with each request, the drive can use
more aggressive technologies such as PCC or SFI to provide faster execution
environments without suffering from the higher costs of these technologies’ initial static
verification.

115

Chapter 6: Efficient Drive Protection of Communication Integrity

Protecting the integrity of data transferred between clients and drives is one of the
primary security concerns for network attached storage, as discussed in Chapter 2, and it is
also computationally expensive. Although the network is untrusted, clients and storage
devices must communicate safely without a malicious adversary being able to tamper with
the messages. As I will show, protecting against these concerns normally requires more
computational capacity than I expect in early NASD drives. This chapter explores
alternative secure methods for protecting the communication integrity of read and write
operations — the operations that move bulk data — to a storage device which can be
implemented in the available resources of a NASD.

First, I describe the limitations of a conventional software solution implemented in a
prototype drive [Gibson98] to motivate alternative solutions and establish baseline
performance. Next, I describe an alternative approach, called “Hash and MAC”, that
significantly reduces the cost of protecting the integrity of read traffic in storage devices
that are unable to generate a message authentication code at full data transfers rates. The
key idea in “Hash and MAC” is to perform a little extra work on write operations to
precompute security information. After presenting “Hash and MAC”, I discuss the
security of this approach and evaluate its performance within our prototype drive and
compare its performance to the baseline prototype, which implements the design
presented in Chapter 4. Finally, I refine the “Hash and MAC” approach by using
incremental hash functions which improve the performance of small read and write
operations as well as non-block-aligned operations. The advantages of the incremental
hash approach are evaluated through a Mathematica model because the networking
performance in the prototype would hide the gains of an incremental hash in the prototype.

6.1 Limitation of Software Cryptography

Software cryptography can limit the performance of a network attached storage
device if insufficient CPU cycles are available. In order to explore the performance
implications of security on the network attached storage architecture, I have implemented
the basic NASD security system described Chapter 4 within the CMU NASD prototype. I
approximate the expected computational capacity of early network attached storage
devices by running the prototype on DEC Alpha workstations (using 133 MHz 21064

116

processors that were introduced in 1992) which are 3 generations behind current
systems [Gibson98]. Drives communicate over an OC-3 ATM DEC Gigaswitch to clients,
which are 233 MHz Alpha workstations. As described in Section 4.4.4, I use
HMAC-SHA1 for integrity, and 3DES for privacy, as the low-level cryptographic
primitives to implement security. Using this prototype of future network attached storage
systems, I studied the impact of software cryptography.

Figure 6-1 shows the NASD prototype’s performance across a range of
software-implemented security options. For most security options, performance increases
as we increase transfer sizes. With no security, which is an indicator of the raw
performance available from the prototype, the performance curve flattens at around
6 MB/second as the drive CPU saturates and becomes the bottleneck. Most of the drive’s
cycles are not spent in the high-level NASD functionality but rather are spent in the RPC
layer of the prototype which illustrates the importance of light-weight RPC
implementations for network attached storage [Gibson98].

The highest-performance security option is IntegrityArgs , which protects the
integrity of the nonces, request arguments, such as the object identifier, byte-range, and
other operation-specific fields, and return codes, but does not protect data. This level of

Figure 6-1 Prototype Read Bandwidth

Protecting the integrity of the arguments and return code imposes a small fixed
performance penalty, while protecting the data exacts a much higher cost and saturates the
drive CPU. This graph shows the results of a read microbenchmark of a prototype drive.
The x-axis shows the size of requests made by the client and the y-axis marks the average
read bandwidth. Each point represents read throughput for a minimum of 3 seconds of
continuous requests and a minimum of 100 requests by a single client reading data from an
in-memory object at the drive.The large irregularities in the shown on the graph are an
artifact of using DCE for the RPC layer.

32 64 96 128
R equest S ize (K B)

0

1000

2000

3000

4000

5000

6000

B
an

d
w

id
th

 (
K

B
/s

ec
)

N A SD Pro totype Perfo rm ance
SH A -1 , H M A C -S H A 1, 3D ES

N o Security

H M A C A ll

H M A C A r gs & R etu rn C ode

H M A C D ata

3D ES

117

security permits control over what operations are performed but does not prevent an
adversary from tampering with the data payloads. With this level of protection, the amount
of cryptographic work is a function of the request arguments and return code size and is
independent of the size of data transferred. Thus we have a fixed cryptographic overhead
that is amortized over the size of the data. As shown in Figure 6-1, for 1 KB reads, the
fixed penalty reduces performance by 30% while for 128 KB reads performance is
reduced by only 7%. However, IntegrityArgs provides a weak notion of security because
data is not protected from an adversary.

More protection can be achieved by using both IntegrityArgs and IntegrityData
which together protects the data, return the integrity of data, arguments, and return codes
at the price of a fixed cost per-byte. For non-trivial request sizes, the per byte cost of
cryptography dominates the fixed cost of protecting the arguments and return codes.
Figure 6-1 shows that the prototype maximum throughput is reduced by 46% for 1 KB
reads and over 65% for 8 KB reads. At an 8 KB request size, the CPU saturates due to
cryptography; larger transfer sizes do not provide any performance improvements.

Another important security option, PrivacyData, reduces performance by an even
larger margin. Privacy of all the data, which has a high fixed per-byte cost, reduces
performance to 126 KB/sec regardless of whether or not any integrity protection is used.
Other algorithms may be faster in software but not by the factor of 240 necessary to meet
modern 30 MB/sec disk drive media rates, so the problem can be expected to remain.
Current efforts to define a new encryption standard, the Advanced Encryption
Standard [NIST98], are focusing both on security and performance criteria to define a new
encryption solution. The selection process may produce a freely-available and
well-studied encryption algorithm that is designed for both high-performance hardware
and software implementations. AES is unlikely, however, to provide the factor of 240
performance improvement essential to high-throughput encrypted communication on
low-cost devices.

The cost of cryptography in software limits NASD performance except when using
the weakest of security protections. For non-trivial data transfers, any security protection
of data bytes reduces available bandwidth by 65% or more. Therefore, other approaches
are necessary to provide high-performance and security from a low-cost storage device or
the storage device will require significantly more computation than a 133 MHz
Alpha 21064.

6.2 More Reads than Writes: An Opportunity

In many networked storage systems, applications read more data than they
write [Baker91]. Many data sets change infrequently but will be read repeatedly, possibly
by multiple users, before the data is changed. Good examples of this behavior are
executable files, data mining databases, mail files, directories, and news files. The
Berkeley NFS and PDL AFS traces studied in Chapter 5 both support this observation.

118

The Berkeley NFS trace shows a read-to-write request ratio of 4.8 to 1. Aggressive client
caching employed by filesystems like AFS reduces the read traffic. The caching can also
absorb write traffic to short-lived files because the files are deleted before they ever leave
the client’s cache. In the PDL 1999 AFS workload, I saw a read-to-write request ratio of
1.7 to 1. This creates the opportunity to reuse work across the multiple read operations.

When data in a file changes infrequently, then so does the value of functions of the
data such as checksums. One optimization that exploits this unevenness between read and
write frequency is to precompute network checksums across a set of data blocks and store
each block’s checksum information with the original data. When a read command is
processed, the data and checksums are read from disk (or cache RAM), thus avoiding the
cost of on-the-fly computation. Previous webserver research has shown that OS support
for specialization of the web server, including avoiding checksum calculations through
precomputation, can improve web server throughput by a factor of 2.3 over the Harvest
httpd accelerator acting as front end to an NCSA server [Kaashoek96]. This suggests that
a similar optimization may be useful for storage systems. However, there is a problem
applying this optimization to a storage system. In web applications, documents are
requested in their entirety while storage requests are frequently for portions of a file. It is
impractical to store checksums for all possible client requests.

Additionally, a checksum does not provide any security guarantees. A checksum is
designed to detect, and sometimes correct, a random error. An adversary can easily change
a message without changing the value of the checksum. However, a checksum is very
similar to two security tools that are used to provide integrity: message digests and
message authentications codes, which I will discuss in the next section.

6.3 Communication Integrity

Communications integrity is the ability of the receiver to know that the data received
was not modified by an adversary on the network during transmission. Two cryptographic
mechanisms are generally used to provide communications integrity:

1. Message digests1 with public key signature2 (a.k.a. “Hash and Sign”), and

2. Message authentication codes (or MACs which were used in the baseline prototype
described in Chapter 4).

1. A message digest (MD) is a strong checksum that processes a variable-length input string to produce a fixed-length
output(e.g., MD5 [Rivest92], SHA-1 [FIPS180-1], and Tiger [Anderson96a]). While normal checksums are designed
to detect random errors, a message digest detects deliberate malicious modifications by an adversary [Schneir96].

2. Public key cryptographic systems use one key for encryption and a different key for decryption. When the message is
encrypted with the private key and decrypted with the public key, this usage is called a signature. Anyone who has the
appropriate public key will be able to verify the signature of a message [Schneir96].

119

Message digests, also called cryptographic hash functions, alone are insufficient to
provide communications integrity. A message digest is essentially a cryptographic
fingerprint of a message. If an adversary changes a message, the modified message will
generate a different message digest. However, since no secrets are used to generate the
message digest, anyone can generate a valid message digest which permits an adversary to
modify a message and replace its message digest with an updated version to avoid
discovery. On their own, message digests are insufficient to provide communications
integrity.

The “Hash and Sign” provides integrity by signing a message digest (i.e.,
encrypting) with a user’s private key. The process of signing, encrypting with the private
key, binds the key to the signed digest so only the holder of the private key can generate
the appropriate signed digest. However, anyone with access to the public key can decrypt
and verify the message digest. Since the public key will only properly decrypt messages
encrypted with the matching key, if the correct message digest is decrypted then the
message must have originated from the holder of the private key. This approach also
provides non-repudiation; the sender is the only one who has and has ever had the private
key, unless the key is compromised, so nobody else could have sent the message.
Unfortunately, public key encryption operations are generally 10x-100x more expensive
than message digest operations, because of their reliance on number theoretic properties
rather iterating a simple operation, making them ill-suited for performance-sensitive
applications.

The second approach, using message authentication codes1, is similar to a message
digest except it uses a secret key in addition to the variable length input to produce a fixed
length output. Using a secret key ensures that only holders of the secret key can generate
or verify the MAC. In a hash-and-sign approach, the hashing phase does not involve a
cryptographic key and the signing phase does. A MAC normally involves the secret key in
the entire computation, so unlike the hash and sign approach, the computation cannot
occur until the cryptographic key is known (thus we can not preform the precomputation
optimization which I will discuss in the next section). These MAC approaches do not
provide non-repudiation because both the sender and receiver share the same key. Thus an
objective third party cannot differentiate between which of the parties sent the message.
However, in many applications, such as NASD, we are already trusting the parties that
distribute the keys so this is not a necessary feature.

A NASD drive will be a commodity device and sensitive to any increase in cost.
Even a small incremental cost to a drive amounts to an impressive figure when you
consider the number of drives shipped annually. For this reason, drive manufacturers are
hesitant to add potentially costly security hardware to a drive. As a result, some drives will
have a significant difference in their basic throughput, media rates and network interface
rates, and cryptography throughput. In the remainder of this chapter, I explore some

1. Good examples of modern MAC algorithms are HMAC-SHA1 [Bellare96a], XOR-MAC [Bellare95], or
MDx-MAC [Preneel95].

120

optimizations to provide high bandwidth integrity protection from a drive while using
fewer resources than the software prototype performance in Section 6.1 would imply.

6.4 Hash and MAC

To provide strong integrity guarantees and exploit precomputed information as
suggested by webserver research, I propose a different structure for protecting integrity of
data that explicitly delays the binding of the key to the computation. Based on existing
message authentication code and message digest algorithms, my approach, which I call
“Hash and MAC”, does the following:

• When a drive object is written for the first time, the drive precomputes a sequence of
unkeyed message digests over each of the object’s data blocks.

• For each read request to the drive, the drive generates a MAC of the concatenation of
the unkeyed message digests corresponding to the requested data blocks.

Normal MAC algorithms (Figure 6-2a) involve the key throughout the entire
computation of the message authentication code. In contrast, I remove the key from the

Figure 6-2 MAC Structures

The Hash and MAC approach reduces the amount of computation that involves the secret
key. Each message consists of a sequence of full disk blocks which may be preceded and/or
followed by a partial disk block. On the left, most MAC algorithms involve the key in the
computation over all the bytes of data and process the data linearly. On the right, Hash
and MAC does not involve the key until late in the computation. This enables
parallelization and precomputation for increased performance. The labeled dotted lines
indicate the amount of data that passes in and out of the message digest or MAC
algorithms at the different stages of computation. In the Hash and MAC approach, a
calculation over only 20 bytes per disk block involves the key while the rest of the
computation can potentially be precomputed without knowledge of the key.

Data

MAC

Secret Key

Data
PB DB DB DB DB PB

MD
Alg

MD
Alg

MD
Alg

MD
Alg

MD
Alg

MD
Alg

MDMDMD MDMDMD
MAC Algorithm

MAC Output

DB - disk block of n bytes
PB - partial disk block of less than n bytes
MD - message digest

Secret Key

MAC Output

20 bytes

N bytes

N bytes

20 bytes

20 *(N/M) bytes
M = size of disk

block

PB DB DB DB DB PB

Normal MAC Hash and MAC

121

per-byte calculation and use it only in the final step of the calculation (Figure 6-2b).
Because the key is not involved in the per-byte calculations, the results of the per-byte
calculation, a set of message digests, can be stored and used for multiple read requests to
the same disk block from different clients. Additionally, since no key needs to be
identified before a message digest can begin, message digest processing may be simpler
for high-speed hardware than MAC processing, which must delay until the proper key is
identified.

The “Hash and MAC” approach is very similar to encrypting or signing a message
digest. However, it does not provide the non-repudiation that a public key system provides.
In this sense, it is more like a normal MAC or like encrypting a message digest with a
symmetric key system.

6.4.1 Security of Hash and MAC

How does the “Hash and MAC” approach effect the security of the system? MACing
the concatenation of hash values is very similar to signing them with a public key except it
is much faster and does not provide the non-repudiabilty property associated with public
key signatures.

 If we assume the basic MAC function is secure, is the MAC of hash values secure?
When something is considered “secure”, it is normally secure for an arbitrary input. If
there were a class of inputs for which it was insecure, then the MAC function as a whole
would not be secure. An adversary breaks a MAC if she can recover the key or generate a
MAC value for a message which she has not seen before. Concretely, if “Hash and MAC”
is broken by attacking the MAC function, then a set of inputs, the concatenation of hash
values, has been defined that can be used as an input to the MAC to break the original
MAC. By our initial assumption, the MAC is secure so this can not be true.

An adversary could attack “Hash and MAC” through the message digest. “Hash and
MAC” trades off some security in exchange for increased performance. An adversary can
mount an off-line attack against the message digest function, essentially computing with
no information about the message being attacked. With a normal MAC, an adversary
could not start an attack until she was given a message to attack because the result of the
key-dependent computation was essential to the attack. An adversary can apply arbitrary
computational power to precompute two data blocks that generate the same digest (i.e., a
collision). Alternately, an adversary who observes a series of requests and their associated
message digests can attempt to find a second data block that generates the same digest as a
given message block (i.e., a second pre-image). The difference is between the adversary
being allowed to select both blocks in the collision as opposed to being given one of the
blocks, which can be viewed as a challenge, and trying to find a second block which
generates the same MAC. As long as NASD uses a strong message digest with a large
output, such as SHA-1 or RIPEMD-160 which produce 160 bit outputs, the off-line attack
is a small risk to NASD security. The best current attacks against these message digests
requires a brute force search of the input space. In order to find a second pre-image of a

122

given message digest, an adversary expects to compute digests of on average 2160 data
blocks. A far simpler task, given large amounts of memory, is to find a pair of data blocks
which generate the same hash by exploiting the birthday paradox, but this attack is still

expected to require 280 digest calculations.

Assuming an adversary is able to find a collision, she can exploit the collision if one
of the colliding blocks is already within the storage system and the adversary can replace
the in-system block with the out-of-system colliding block in a message exchange. An
adversary can potentially tabulate a large number of digests and watch message traffic to
the drive for an opportunity but the odds of such an opportunity presenting itself is:

An adversary will have an easier task if she can insert one half of a collision into the
storage system and then replace it with the other half. In this case, she could have already
written the second of the two blocks to the storage rather than swapping the blocks while
they were being read. Thus, an adversary can primarily exploit a collision in a multi-tier
system, such as a database system, where write operations are filtered through another
host which decides if a write should be forwarded to the storage. If a collision is found, the
adversary can swap a bad data block for the forwarded data block. Because the filtering
host is making a decision based on the contents of the initial write request, it is implicitly
enforcing some structure on the writes it forwards on to storage. Since one half of the
collision must fit the required structure for the filtering host to forward it, this structure
improves security by constraining the set of useful collisions an adversary can
theoretically generate.

Because “Hash and MAC” generates multiple independent digests which are used to
create the final MAC, an adversary can parallelize an attempt to find a second pre-image
of the digests. If the request is divided into r different data blocks, an adversary can attack
r different values when trying to find the second per-image of a digest. In contrast, a
normal MAC algorithm has a single MAC value that can be attacked because all partially
computed values are key dependent and hidden in the MAC algorithm’s internal state.
Even for extremely large requests and heavily used storage devices, r will not be large

enough to substantially reduce the 2160 computations required to find a second pre-image.
For example, if a client transferred a terabyte of data and the digests were generated on 8K

disk blocks, then an adversary could attack 222 unique messages digests. This only

reduces the work factor from 2160 down to 2138. In order for parallelism to reduce the
work of finding a second pre-image down to the work of finding a simple collision, the

adversary would need to observe 280 disk blocks and attack them in parallel.

To place these numbers in perspective, in 1999, a distributed computing effort over

the internet was able to break a DES key which was expected to require 256 calculations to
search the keyspace in under 1 day [EFF99]. If computing power doubles every year,

2
NumOfCollisions NumOfBlocksSeen×

2
160

--×

123

finding a collision (280 calculations) will take 1 year in 2014 if enough capacity was

available to store and search 280 message-digest pairs. Under the same assumption,

finding a second pre-image (2160 calculations) will take 1 year in 2094. An important
caveat is that these numbers assume no technique better than brute force will be
discovered to attack the hash function.

6.4.2 Performance of Hash and MAC

NASD’s implementation of “Hash and MAC” uses SHA-1 to compute each disk
block’s message digest and HMAC-SHA1 for the overall message authentication code. I
will refer to this specific instantiation of Hash and MAC as HierMAC. When data is read,
the precomputed message digests are read from the drive and used as input to the
HMAC-SHA1. If only a partial disk block is read, which can only occur in the first and
last disk blocks of a request, a message digest of the partial disk block is computed
on-the-fly.

With a normal MAC, the cryptographic costs were directly proportional to the
number of bytes being transmitted. HierMAC reduces the cost to

where (PrefixBytes + SuffixBytes) are the number of bytes in the partial data blocks. In our
implementation, a disk block is 8KBytes while a message digest is 20 bytes. Thus,
HierMAC performs a MAC operations on 20 bytes per full disk block (8KBytes)
transferred. This reduces (in the asymptotic case) the request time integrity processing to
0.2% of the number of bytes that a normal MAC would process. We are not changing the
total number of bytes processed by the MAC algorithm. Instead, we are reordering the
work in time and sharing work across multiple commands to reduce the on-the-fly
cryptographic load.

Figure 6-3 shows that reducing the on-the-fly cryptography significantly increases
read throughput of the NASD prototype but not as much as expected. For large requests in
multiples of 8KBytes, protecting the integrity of all the data decreases performance by
45% percent of our maximal performance. In fact, with stored digests, the drive can
transmit integrity-protected data faster than the client is able to verify the data’s MAC,
shifting the bottleneck from the NASD drive to the receiving workstation.

NASD drives must be inexpensive because they are high-volume products in a
commodity market and there may be hundreds or thousands in an organization’s
infrastructure. In contrast, client machines are likely to have high-performance processors
or dedicated hardware for special tasks, such as security, that are critical to their regular
function.

RequestHdr PrefixBytes SuffixBytes+() NumOfFullDiskBlocks DigestSize×+ +

124

With a faster client, the drive will become the bottleneck. To understand the
performance potential of HierMAC, I emulated a faster client by disabling the verification
of the MAC at the client end. Figure 6-4 shows that HierMAC’s low per-byte security
overhead allows performance to closely follow the no-security performance curve. Total
cryptographic costs are now small enough that cost of protecting the arguments plus the
data causes a noticeable performance difference rather than being masked by the
overlapping of computation at both ends of the communication.

Figure 6-4 shows that precomputing message digests on 8KByte blocks creates a
pronounced saw-tooth behavior. Between 8Kbyte block boundaries, performance declines
because the drive spends more time processing the prefix and suffix bytes from the partial
disk blocks. On 8KByte boundaries, the drive uses only the stored digest (prefix + suffix
length returns to zero) and the cost of protecting integrity is minimized. For a uniform
distribution of starting and ending bytes within a file, the average number of prefix + suffix
bytes will be the size of one data block. Thus, the performance at the lowest points of the
saw-tooth, 1 byte before hitting a disk block boundary, will represent the expected average
performance for a randomly selected read request. Many filesystems attempt to make
requests that are aligned on disk block or VM page boundaries, which will result in
significantly better performance.

Figure 6-3 HierMAC Performance

HierMAC, based on SHA-1 and HMAC-SHA1, doubles performance when protecting the
integrity of data for large requests when compared to HMAC-SHA1, also shown in
Figure 6-1. Reuse of stored message digests has substantially improved the read
bandwidth for large requests but fails to deliver the bandwidth we would expect given the
reduction in cryptography at the drive because the client has now become the bottleneck.
The x-axis shows the size of requests, which start at the beginning of an object, made by
the client and the y-axis marks the average read bandwidth. Each point represents read
throughput for a minimum of 3 seconds of continuous requests and a minimum of 100
requests by a single client reading data from an in-memory object at the drive. HierMAC
stores an SHA-1 digest on each 8 KB disk block.

0 32 64 96 128
Request Size (KB)

1000

2000

3000

4000

5000

6000

B
a
n
dw

id
th

 (
K

B
/s

)
HierMAC All

HMAC-SHA1 Args & Return Code

HierMAC Data

HMAC-SHA1 All

No Security

HMAC-SHA1 Data

125

Figure 6-4 shows that by closely integrating security with storage we have achieved
a significant improvement in our read bandwidth. However, we gain no performance
benefit on either writes or small read operations. For many workloads, the majority of
bytes are moved in large requests, making HierMAC a powerful optimization.

6.4.3 Storing the Precomputed Message Digests in NASD

NASD uses an inode structure similar to the Berkeley FFS [McKusick84] which
contains indirect and direct data block pointers as well as the stored digests. Figure 6-5
depicts how the stored digests are integrated with the direct pointers in the inodes. A
significant advantage of storing the digests with the direct pointers is that whenever the

data is accessed,1 the digests will always be available without additional I/O operations.
However, the addition of a stored digest to each direct pointer entry reduces the total
number of pointers that fit in a single inode, thus reducing the addressable storage at any
given level of indirection and the overall addressable storage of a single NASD object.

1. For drives, the most expensive operation is to physically move the arm to another location on the media. In a modern
Seagate ST31903 drive, average seeks are 5 msecs [Seagate99a]. In order to avoid this penalty, we want to minimize
the number of I/O operations necessary to service a client’s request. If retrieving stored digests introduces additional
I/O operations, we would lose some, if not all, of the performance advantage of stored message digests.

Figure 6-4 Fast Client with HierMAC

When the client is no longer the bottleneck, the drive delivers integrity-protected
bandwidth close to the maximum bandwidth of the prototype. The saw-tooth behavior
occurs as the drive generates an on-the-fly message digest of the partial final data block.
The x-axis shows the size of requests, which start at the beginning of an object, made by the
client. The y-axis marks the average read bandwidth. Each point represents read
throughput for a minimum of 3 seconds of continuous requests and a minimum of 100
requests by a single client reading data from an in-memory object at the drive. HierMAC
stores an SHA-1 digest on each 8 KB disk block.

HierMAC All

HierMAC Data
HMAC Args & Return Code

0

1000

2000

3000

4000

5000

6000

B
a
nd

w
id

th
 (

K
B

/s
)

32 64 96 128
Request Size (KB)

HMAC All

No Security

HMAC Data

126

Within the prototype, the addition of the stored SHA-1 digests reduced the number
of bytes addressable via direct pointers in an inode from approximately 4MB to 1.8 MB.
Similarly, using our 8K inodes, the total addressable storage in a single NASD object is
reduced from over 4.0 EB down to approximately 8 PB. Because the inode structure
allows multiple levels of indirection, a different implementation may select a different
balance of direct and indirect pointers to trade off direct addressability in an inode for the
total addressable storage for an object.

Whenever a client writes new data, both the stored data and the stored digest must be
updated. If they become mismatched, the drive will send clients erroneous MAC values
and the clients will reject the data because it will believe that an adversary tampered with
the data. This problem of keeping the stored digests consistent is very similar to the
problem of avoiding errors with pointers to inodes and disk blocks in a filesystem, but
there are some significant differences. Data block pointers are only modified when disk
blocks are allocated (i.e., the file is extended) or deallocated (i.e., the file is shortened). In
contrast, stored digests will be updated on every write operation, opening a bigger window
for errors due to system crashes. Some filesystems also update a last access time on every
request, but it is not critical to system integrity. Thus the filesystem does not apply
aggressive techniques to keep it accurate when the system fails. Additionally, the last
access time does not exist in indirect inode blocks.

A NASD drive can keep stored digests and disk blocks consistent in the presence of
drive failures through one of the following mechanisms:

• A log of dirty inodes is stored in a small NVRAM. Before a disk block is written to the
media, the appropriate inode is marked as dirty in NVRAM and the stored digest is
updated. If the drive fails between receiving the write and having both the inode and
data updated, the drive can recover by recomputing the stored digests for all dirty
inodes.

Indirect Pointers

Create Time, Modify Time,
Length, fs-specific, etc.

Direct PointersSHA-1 Digests

0x1234...

0xBEEF...
0xDEAD...

Data Block

Data Block

Data Block

Figure 6-5 Storage of Digests
in Prototype Drive

HierMAC’s SHA-1 digests consume
20 bytes per director pointer in each
inode. In order for the drive to service
an operation on an object, the drive
must read the object’s metadata into
memory in order to find the data
blocks. I store the SHA-1 digests in the
inode structure along with the direct
pointers to the data so they are always
available when we are accessing the
data.

Inode

127

• The stored digest can be flagged as dirty and its inode flushed to the media before any
data is written out to the media. After the data is successfully written, the inode can be
flagged as clean and lazily written to disk. If the drive fails and a dirty digest is read, the
drive will know that the digest may be inconsistent with the data and that it should
recalculate the digest. This does not require any additional hardware support but it does
require synchronous updates to metadata which could cause poor scheduling of the disk
head.

• Optimistically, the drive assumes that the system will not fail and all the updates will
eventually be flushed to the media. If a failure does occur, the client will detect that the
MAC was incorrect when an out-of-date digest is used to generate a MAC of a request.
The client will notify the drive to resend the data which, in this approach, will force
recalculation of the digests and a resend if the digest was mismatched. If the
recalculated digest is the same as the stored digest, then the original reply to the client
had been tampered with and a security violation should be logged. Alternately, the drive
either explicitly updates/verifies all the digests when crash-recovery occurs or flags all
stored digests as invalid during crash recovery.

Of the three, NVRAM is the most powerful because it allows quick recovery
without significantly hampering drive performance by requiring synchronous metadata
updates sequences. However, the NVRAM approach requires additional hardware support.
The optimistic approach must either pay to recompute all the digests or involve the client
in noticing a mismatched digest. If the client is involved, the client and the drive will pay
the performance penalty for a mismatched digest at request time rather than the drive
paying at restart time.

6.4.4 Hash and MAC for Attributes

Filesystem attributes can benefit from a similar precompute optimization. In the
prototype, each object has exported metadata, called the attributes, which contain
file-system information as well as a set of common fields that are likely to be used in any
filesystem (e.g., size, create time, and modification times). The filesystem-specific data
fields are fairly large (256 bytes) in order to provide flexibility to the applications; and so
are expensive to MAC on every request. As with object data, the attributes change less
frequently than they are accessed. The CMU AFS ‘99 workload shows a ratio of 22:1
between attribute retrieving operations and attribute modifying operations. The Auspex
NFS workload shows a similar ratio of 6:1.

The relatively large size of NASD attributes coupled with their static nature makes
them suitable for the same “Hash and MAC” optimization that I presented earlier. By
storing a precomputed message digest along with each NASD attribute, we reduce the cost
of protecting the integrity of the 336 byte NASD attribute to calculating a MAC on its
representative 20-byte digest.

I can apply this optimization to NASD attributes because, unlike traditional UNIX
attributes, NASD does not maintain a last access time. If NASD maintained a last access

128

time then the attribute would change on every operation and storing a precomputed digest
with each attribute would not be advantageous because the digests would need to be
updated on every request.

6.5 Efficient support for small operations with stored digests

Small requests are an important class of operations in a storage system. NASD
needs to support a wide range of workloads from filesystems to databases, with a wide
range of access patterns. If we examine current systems, we see a diverse set of access
patterns. For example, in an academic research / software development group, typical file
system accesses are small while most data is moved in large requests [Baker91,
Riedel96]. In addition to file systems, databases and persistent object systems operate on
small objects [Stamos84]. These results tell us that both small access and large transfers
are important to consider for NASD. Section 6.4 discussed support for large read accesses
using stored message digest, but small accesses pose a different set of issues. Optimizing
small accesses is the focus of this section.

In the NASD prototype results presented in Section 6.1, the networking stacks
introduce substantial per-request overhead, making it difficult to achieve high performance
when using small requests and thus minimizing the impact of cryptography on
performance as shown in Figure 6-6. Both UNET [vonEicken95] and the VIA [Intel97]
are harbingers of commodity networks that provide high throughput and low latency with
relatively small transfer sizes. Part of their approach is to provide greater functionality in
the network interface thus simplifying the application protocol stack and avoiding
operating system intervention. GigaNet has demonstrated a native VIA implementation in
their GNN 1000 adapter card, which provides 1.25 Gbps with 8 microseconds latency and
under 10% CPU utilization [Giganet98]. Their demonstration system achieve about 80%
of its peak bandwidth with 1KB transfers. This is significantly better than the 64KB
transfers necessary for the prototype to achieve 80% of its peak bandwidth, which is still
smaller than the underlying network bandwidth.

With VIA delivering high bandwidth for small requests, cryptography’s impact on
performance for small requests will become more pronounced as long as the
cryptographic performance and peak drive performance are less than network
performance. When maintaining accurate stored digests, maintenance of the stored digests
for small updates may result in a substantial loss of throughput which will be more evident
with VIA-like technologies.

One approach to handling small writes is to defer the updates of the stored digest
and perhaps amortize the update cost across multiple small writes. If only a single write to
the disk block occurs, the stored digest update is simply postponed from the write
operation to a subsequent read operation. Deferring the update of the stored digest does
not improve performance for small read operations and will not help when sequential
small writes to the same object are unlikely. Finally, deferring the update of the stored

129

digest to the next read request will create unpredictable performance from the clients
perspective. As long as the stored digest is up to date, the client can make reasonable
assumptions about expected request service time based on the request size, request
alignment, and overall application state. If the digest may need to be recomputed, this
introduces another variable that the client cannot predict because it depends on the history
of a given disk block.

Even with up-to-date digests, the drive may not always need to recalculate a stored
digest for a small write. If the small write starts on a disk block boundary and extends or
overwrite the final partial disk block, then the drive will calculate the digest for the final
partial disk block when it verifies the data received from the client. This allows the drive to
simply overwrite the stored digest rather than recalculate the stored digest for the entire
partially-used disk block. In our PDL AFS ‘99 traces, AFS shows this extending or
overwriting behavior because AFS operates on 64 KB blocks when updating the middle of
a file. In contrast, the Berkeley NFS traces shows a substantial number of operations that
are not aligned on 8K boundaries as shown in Table 6-1 which would require a stored
digest to be updated. This demonstrates that some systems that have already been
“adapted” to NASD would benefit from efficient support for integrity on small requests
and non-disk-block aligned requests while still providing the benefits of stored digests to
the larger aligned requests. Other systems, yet to be adapted to NASD, may also be able to
take advantage of efficient support for integrity on small requests.

Figure 6-6 Software Cryptography with Small Requests

With small requests, the underlying prototype with and without security is unable to
approach its peak bandwidth. The x-axis shows the size of requests, which start at the
beginning of an object, made by the client. The y-axis marks the average read bandwidth.
Each point represents read throughput for a minimum of 3 seconds of continuous requests
and a minimum of 100 requests by a single client reading data from an in-memory object at
the drive.

4096 8192 12284 16382
0.0

2000

4000

6000

No Security
HMAC-SHA1 Args
HMAC-SHA1 Data
3DES

Maximum available bandwidth

R equest S ize (K B)

B
an

dw
id

th
 (

In
 K

B
/s

ec
)

130

6.5.1 Incremental Hashing

The incremental hashing paradigm developed by Bellare et al. [Bellare94,
Bellare97b] describes a class of hash functions for which the work to update a previously
computed digest is proportional to the size of the change. For network attached storage,
this enables small writes and offset writes to be implemented more efficiently.

I will briefly describe the incremental hashing paradigm and specific examples of
incremental hash functions described in [Bellare97b] and then describe the specific
instantiation of the function that I propose for network attached storage.

Incremental hashing takes a message and divides it into a sequence of

fixed sized blocks of size b, called incremental blocks. This is the basic granularity of
change for a hash function. If a two- byte change spans two incremental blocks, it is twice
as expensive as a two byte change that falls within a single incremental block. Each
incremental block is concatenated with its block number to generate an augmented block,

. For each augmented block xi', apply a compression function h to xi' to get the

hash value . Combine using a combining operator () to get a

final hash value.

More clearly we can express this as follows:

To replace an incremental block xi with a new incremental block xi
† in a stored

digest, we must compute h(i.xi) and take an inverse of the stored hash and then combine in

h(i.xi
†) into the stored hash. This requires less work than recalculating the entire stored

digest.

Table 6-1 Berkeley NFS Request Alignment

In this workload, there is a significant amount of variety in the alignment of client requests. While
most requests are aligned on 8K boundaries, almost 1/3 of the write requests are not aligned and a
small percentage of read requests are not aligned.

Operation/Alignment 8K 7K 6K 5K 4K 3K 2K 1K Other

Read 97.3 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.1

Write 67.8 1.2 1.2 1.2 25.2 1.1 1.1 1.1 0.1

x1 x2 … xm, , ,

xi ' i .xi=

yi h xi '()= y1 y2 … ym, , , ∇

HASH x1 …,xn,() ∇i 0 n,= h i.xi()=

131

Another property of the incremental digest is the ability to compute the digest of
part of a disk block without computing over all the data being read. Observe that

In English, if we need the hash of only part of the data covered by a stored digest,
the desired hash can be computed by taking the inverse of the combination of the stored
hash and the hash of the complement of the portion being requested or computed directly
from the data being requested. Thus, by using this complementary property, we will need
to compute over, at most, half the data to calculate a correct hash for any portion of the
data.

Bellare presents two classes of incremental hash functions: MuHash and AdHash
where the combining operators are modular multiplication and modular addition,
respectively. The security of MuHash is reduced to the difficulty of the discrete logarithm
problem while the security of AdHash is reduced to the difficulty of the subset sum
problem.

For use in NASD, AdHash is more appealing than MuHash for two reasons: the size
of digests and computational cost. Observe that the size of the modulos is equivalent to the
size of the digest we must store with each disk block. For MuHASH, the modulos must be
at least 512 to 1024 bits in order for discrete logarithm problem to be difficulty. For
AdHASH, current approaches can usually solve random subset sum problems of 100 bits,
but 200 bits is well beyond their reach; however, Daniele Micciancio, one of the
researchers working on incremental cryptography, recommends at least 256 bits for longer
term security [Micciancio99]. This provides a factor of 2 to 4 difference in space required
to store the digests with each disk block in NASD. Secondly, addition is faster than
multiplication so AdHash will have better performance in both software and hardware
implementations.

6.5.2 Incremental Digests for NASD

A NASD system could use AdHASH built on the SHA-1 compression function and

addition a modulo 2256. Ideally, I would like to simply use the SHA-1 compression
function to produce 160-bit hash values that would be combined through addition modulo

2160. Unfortunately, 160-bit hash values would produce subset sum problems that are
almost solvable with current techniques. Instead, I generate a 256-bit hash by applying the
SHA-1 compression function to two sequential message blocks. Applying the
compression function twice, and ,

HASH xi …,xj,() ∇i 0 n,= h i.xi() 〈 〉∇ 1–
 ∇i 0… i 1,j…n–= h i.xi()〈 〉 = =

∇i i j,= h i.xi()

ci compress xi()= ci 1+ compress xi 1+()=

132

produces two 160-bit digests which are combined by shifting the first one left 96 bytes and
XORing the values together to produce a 256-bit hash:

This approach provides all the collision resistance of the original compression
function because an adversary must find a collision on all the output bits in order for a
collision to be useful and the hash function produces a 256-bit result which makes the
subset sum problem difficult. An obvious alternative is to simply concatenate the results of
the two calls to the compression function and generate a 320-bit output. However, a
320-bit digest requires the drive store 320 bits per disk block, which is a larger overhead
than storing only 256 bits. If subset sum attacks improve significantly, this approach can
easily be adapted to produce 320-bit subset sum problems.

Storing 256-bit digests rather than 160-bit digests used in HierMAC further
decreases the addressability of NASD inodes. A single inode can only address 1.3 MB of
data compared to 1.8 MB with HierMAC. However, a different allocation of inode space
between direct and indirect pointers can yield significantly different capacity and
indirection levels in the drive filesystem.

The incremental hash functions described by Bellare et al. concatenate the block
number i onto data block xi before hashing in order to prevent reordering of data blocks.
This can double the number of invocations of the compression function. If the incremental
blocks are the same size as the basic block of the compression function, which allows fine
grain changes to be done most efficiently, then we need to invoke the compression
function twice, once for the data and once for the block ID, which doubles the amount of
hashing. The obvious solution is to increase the incremental block size to amortize the cost
of appending the block number. However, increasing the incremental block size reduces
our potential gains from using incremental cryptography because all updates of a stored
digest occur on the granularity of an incremental block.

I propose two potential solutions to this problem for NASD:

1. Incorporating the block number into the initial vector of the compression function or

2. Multiplication of the hash of the incremental block by 3i (or any value relatively prime
to the modulos).

In an iterated hash function, shown in Figure 6-7 and of which SHA-1 is an
example, the initial vector (IV) is used as an initial seed value for the first iteration and a
chaining variable between iterations. By placing a value in the IV, the final result of the
hash function is dependent on the value. If this were not true, the final output of an iterated
hash function would not be dependent on the results of previous iterations.

h xixi 1+() compress xi() 96«() compress xi 1+()⊕=

133

Does changing the IV make it easier to find a collision? Although SHA-1’s design
criteria are not public, I believe it unlikely that changing the IV will make collisions more
likely. SHA-1’s IV is a simple sequence of bytes with a very regular pattern and thus
provides little evidence of being a particularly special value. Additionally, SHA-1 is
directly derived from MD4 [Rivest91], which was developed openly and has no publicly
stated special design criterion for the IV. In the initial MD4 paper, Rivest suggests
changing the IV, along with the other constants, and running two-MD4 functions in
parallel to generate longer digest values which indicates some flexibility in the IV value.
Preneel and Oorschot also modify the IV of arbitrary hash functions in their MDx-MAC
construction to build a message authentication code [Preneel95]. Together, these facts
make it unlikely that there is something special about the values employed in SHA-1’s IV
and it should be safe to effectively incorporate the block ID into the message digest using
the IV. Furthermore, this technique is applicable to any hash function that does not use
special values in the IV.

A second potential solution would be to multiply the digests of incremental blocks

by 3i to provide the ordering property. For each incremental block, this solution adds the
cost of an exponentiation, which we could tabulate a priori, and a modular multiplication
of very long integers to the cost of the compression function. For a compression function
where changing the IV is a concern, this solution is more appropriate.

State/IV

Compression
Function

Data: xi

Figure 6-7 Structure of an Iterated
Hash Function

An iterated hash function, such as SHA-1
or MD-5, is built around a compression
function that takes a state variable and a
fixed size data block and produces a new
state variable. The message is first padded
out to an integral number of data blocks
and then fed into the compression function.
Initially, the state variable is set to a
predefined valued called the IV. The
compression function updates the state
variable after each message block is
processed. The final digest is normally a
simple function of the state variable.

134

6.5.3 Comparison of Cryptographic Cost

In this section, I analyze the amount of message digest or MAC computation
required to provide integrity for clients accessing network attached storage devices. This
analysis is a first-order approximation of the impact of providing integrity on drive
throughput.

I compare three approaches:

Basic MAC: The basic MAC scheme where all bytes are MAC’d using
HMAC-SHA1.

Stored Digest: The “Hash and MAC” approach using precomputed SHA-1 digests
stored with disk blocks as described in Section 6.4.

Incremental Stored Digest: The “Hash and MAC” approach using precomputed

digests that are generated using AdHash built on SHA-1 and addition modulo 2256 with
the block number placed in the IV. The precomputed digests are bound to a key using
HMAC-SHA1.

The comparison is in terms of the number of invocations of the SHA-1 compression
function which is the “common currency” of cost in the three approaches. The cost of
padding out the messages to message digests or message authentication code block sizes is
assumed to be zero. This is the cost of filling a buffer with up to 64 bytes of zeros and
perhaps the message length which is a cheap operation relative to the compression
function calls and will only occur once or twice per request. In contrast, the modular
addition and subtraction used in the incremental stored digest approach will be used many
times in a single request so must be modeled more accurately. The cost of modular
addition and subtraction are modeled as 0.10 and 0.07 the cost of an invocation of the
SHA-1 compression function. These values are the relative execution cycle counts,
measured using DEC’s ATOM profiling tools on a 233 MHz Alpha 21064, of simple
C-language compiler-optimized implementations of 256 bit addition and subtraction using
only 32 bit variables compared to our SHA-1 compression function implementation. The
costs are likely higher than a hand-optimized assembly implementation but provide a
conservative estimate of the cost of the combine and uncombine operations. These costs,
as well as equations describing the costs of all three approaches, were modeled in
Mathematica to generate the data presented in Section 6.5.

135

6.5.3.1 Integrity Overhead Costs at the Client

As shown in Figure 6-8, both of the stored digest solutions add a small amount of
overhead to clients. This overhead is paid when both sending and receiving data so the
curves are independent of a request being a read or a write. While the drive reduces its
work by using the precomputed optimizations, the client performs a small amount of extra
work to MAC the message digests. In following sections, I will explore the advantage to
the drive of using incremental stored digests but, in this section, I examine the cost borne
by the client. The basic SHA-1 has the minimal amount of cryptography necessary to
provide integrity. Using the Hash and MAC structures adds a very small overhead to
perform the MAC of the concatenated message digest.

The incremental approach adds computational overhead because the combine
operator, modular addition, is applied to generate a single digest for an entire disk block
from the results of the compression function on each incremental block. If we use the
smallest possible block size as the basis for generating incremental digests (e.g. 128 bytes,
the basic size for the 256 bit digests described in Section 6.5.2) then the addition of 64
256-bit values per 8K disk block provides a small but noticeable overhead. With hardware
support, this overhead could be hidden by pipelining the computation of the digests and

Figure 6-8 Client Overhead for Integrity

Using the precomputed digest optimizations requires clients to do a small amount of extra
work for each disk block transferred. Based on a model of what computation the clients
must perform, each line shows how many times a client must call the compression
function, or equivalent work in the combine and uncombine operators, for a given amount
of data being transferred. The x-axis is the size of the request and the y-axis is the number
of invocations of the SHA-1 compression function, the core of SHA-1. The first two lines
are approximations of the cost when using incremental cryptography on 256 byte and 128
byte incremental blocks respectively. HMAC-SHA1 is both the baseline for comparison
and the minimal achievable amount of computation. Stored digest is the cost for the “Hash
and MAC” approach with SHA-1 as described in Section 6.4.

8KB 16KB 24KB 32KB

Request Size

100

200

300

400

500

600

700

C
om

pu
ta

tio
n

C
os

t (
M

D
co

m
pr

es
s

C
al

ls
)

128 byte i-block

Stored Digest
HMAC-SHA1

256 byte i-block

0

136

the additions. However, simple drives without hardware support and clients will not be
able to hide this overhead cost. With larger data transfers, overlapping computation and
data transfers should hide much of this overhead. To be conservative, I show 256-byte
incremental blocks which requires half the overhead and still allows the drive to reap
much of the benefits of incremental digests. I will use 256-byte incremental blocks for the
remainder of the evaluation.

6.5.3.1 Integrity Cost at the Drive for Reads

Figure 6-9a shows that both the stored digest and incremental stored digests
approaches perform significantly less cryptographic work for large block aligned reads.
The basic SHA-1 approach has a constant per-byte cost. The stored digest approach can
use the stored value whenever an entire disk is read; thus, performance can improve
dramatically, as discussed in Section 6.4.2, for large reads. Stored incremental digests gain
similar benefits for large disk block reads and also reduce the cost for some smaller reads
because the complementary property of incremental digests allows the drive to reduce its

Figure 6-9 Drive Cryptographic Cost for Integrity on Reads

Both incremental-stored and simple-stored approaches significantly reduce the amount of
cryptographic work the drive must perform on a large read request compared to
HMAC-SHA1. For misaligned reads, the complementary property of incremental digests
allows the digests to be calculated more easily than normal digests. Based on a model of
what computation the clients must perform, each line shows how many times a client must
call the compression function, or equivalent work in the combine and uncombine
operators, for a given amount of data being read from a given offsets. The x-axis is the size
of the request and the y-axis is the number of invocations of the SHA-1 compression
function, the core of SHA-1. Incremental stored is the incremental scheme described in
Section 6.5.2 using 256 byte incremental blocks. Stored digest is the cost for the “Hash
and MAC” approach with SHA-1 as described in Section 6.4. HMAC-SHA1 is the most
standard way of providing communication integrity and is used as a basis for comparison.

(b)(a)

0 8KB 16KB 24KB 32KB

Request Size

100

200

300

400

500

600

700

C
om

pu
ta

tio
n

C
os

t (
M

D
co

m
pr

es
s

C
al

ls
)

Disk Block Aligned

0
8KB 16KB 24KB 32KB

Request Size

100

200

300

400

500

600

700

Single Byte Offset

Incremental Stored
Stored Digest
HMAC-SHA1

Incremental Stored
Stored Digest
HMAC-SHA1

137

computation to hashing only half a disk block. In a system where small requests were
efficient, I expect this reduction to translate into a smoothing out of the sawtooth behavior
that was shown in both Figure 6-3 and Figure 6-4.

For non-aligned reads, as shown in Figure 6-9a, the precomputed digests do not
provide any benefit until the drive reads almost 2 full disk blocks. The drive must always
compute a digest on all the data read in the first partial disk-block because the drive only
stores a digest of the entire disk-block. The incremental stored digest has a much smaller
penalty because the complementary property of incremental digests is largely independent
of the offsets and provides benefit from the precomputed digests even for arbitrarily
aligned reads.

Both Figure 6-9a and Figure 6-9b show a small saw-tooth behavior for the
incremental-stored digests because of the 256-byte incremental block size. The sawtooth
is the result of the extra work required to generate digests for partial incremental blocks.
Just as the stored digest approach must calculate on-the-fly a hash of all bytes in a partially
read disk block, the incremental stored approach must calculate on-the-fly a hash of all
bytes in a partially read incremental block. For smaller incremental block sizes, the tooth
size will shrink while larger incremental block sizes will increase the size of the teeth.
However, reducing the incremental block size increases the overhead because of more
combine operations as was shown in Figure 6-8.

6.5.3.1 Integrity Cost for Writes at the Drive

For writes, incremental digests and stored digests add up to one disks block’s worth
of work to small or misaligned operations. The drive must verify the received MAC and
then update the stored message digest in both the stored and incremental stored
approaches. For the stored digest approach, the drive must generate an entire new stored
digest for a disk block even if only a single byte is written. This is a substantial penalty for
small writes. If a write starts on a disk block boundary then computing the new stored
digest can simply continue from the calculation necessary to verify the digest on the data
received from the client, since recomputing the hash of the common prefix would be
redundant. In this case, the cost is a function of the number of disk blocks touched by the
write operation which creates the step-function effect shown in Figure 6-9a.

If a write begins offset into the disk block, shown in Figure 6-10b, the stored digest
approach pays a larger penalty than the incremental stored approach. With the basic stored
digest scheme, the drive can no longer continue the calculation used to verify the data
received from the client because the received data is no longer a prefix of the disk block.
Instead, the drive must first verify the received MAC and then start from scratch to
generate the stored digest for the updated disk block. This makes small, miss-aligned
writes extremely expensive. The incremental approach is largely independent of offset and
does not pay these penalties on small writes.

138

6.5.3.1 Incremental Advantage for Clients

Incremental cryptography can sometimes reduce the cryptographic task of the
clients. When a client requests a large amount data, such as 64KB chunk in AFS, and
modifies only a few bytes, incremental cryptography allows clients to generate updated
digests for the entire 64KB chunk without recomputing over 64KB. This avoids the client
computing digests of all the data when it is written back to storage. In theory, the
application could simply write the changed bytes back to storage rather than the entire
64KB chunk. Frequently, it is more efficient simply to flag the entire chunk as dirty rather
than individual byte ranges thus the entire chunk must eventually be flushed to the storage
system. The amount of cryptographic work to protect the integrity for the client on a write
is a function of the number of bytes changed and their frequency of change rather than the
size of the chunk.

Figure 6-10 Drive Cryptographic Cost for Integrity on Writes

For write operations, both stored digest approaches pay a penalty for updating partially
modified disk blocks. For misaligned operations, this penalty is reduced when incremental
digests are used. Based on a model of what computation the clients must perform, each
line shows how many times a client must call the compression function, or equivalent work
in the combine and uncombine operators, for a given amount of data being written to a
given offset.The x-axis is the size of the request and the y-axis is the number of invocations
of the SHA-1 compression function, the core of SHA-1. Incremental stored is the
incremental scheme described in Section 6.5.2 using 256 byte incremental blocks. Stored
digest is the cost for the “Hash and MAC” approach with SHA-1 as described in
Section 6.4. HMAC-SHA1 is the most standard way of providing communication integrity
and is used as a basis for comparison.

(b)(a)

8KB 16KB 24KB 32KB

Request Size

0

100

200

300

400

500

600

700

Single Byte Offset

0 8KB 16KB 24KB 32KB

Request Size

100

200

300

400

500

600

700

C
om

pu
ta

tio
n

C
os

t (
M

D
co

m
pr

es
s

C
al

ls
)

Disk Block Aligned

Incremental Stored
Stored Digest
HMAC-SHA1

Incremental Stored
Stored Digest
HMAC-SHA1

139

6.6 Improving Receiver Buffering

For receivers (e.g. storage on writes, clients on reads), performing on-the-fly
cryptographic work is unavoidable. Faster CPUs can improve the situation but networking
already consumes up to 80% of the host’s cycles in protocol processing overhead, leaving
few excess CPU cycles for cryptography [Gibson98]. Worse, to increase network transfer
efficiency, applications often optimize for large transfers. With security added to the
transfer, it is possible that a receiver would have to buffer an entire message before it could
verify the data’s integrity. This can be a problem for storage servers or NASDs, where
limited (and shared) resources make it difficult to dedicate large amounts of buffers.
Further, delaying verification until all the data is received prohibits pipelining of data
processing (e.g., writing to storage) upon the reception of the data.

In order to reduce the buffering requirement at the receiver and permit pipelining of
data as it is received, we insert digests of prefixes of the requests into the data steam as
illustrated in Figure 6-11. At some regular interval, the sender inserts a MAC of all the
data sent so far. When the receiver receives a MAC, the receiver can verify that all data up
to the MAC is valid and then begin processing the data. This slightly changes the
semantics of the MAC, from all-or-nothing to having prefixes be independently valid.
Effectively, we are treating a large data transfer as a stream of data rather than a block of
data. The primary advantage is to reduce the buffering requirement at the receiver from the
full request down to the amount of data sent between MACs. This is necessary for
providing security over any large data transfers and is applicable regardless of what type
of message authentication code you are using. For NASDs, with their
resource-constrained environment, it is very important to process data as it arrives rather
than buffering an entire write request because a single write may overflow all of the drive’s
available memory.

Figure 6-11 Inline Message Authentication Codes

A normal MAC protects “all” of the data. By injecting MACs of all data up to the current
point, the receiver only needs to buffer N bytes before it can begin process. All MACs are
cumulative of all data up to the current point to preserve the relationship between chunks
of data.

Up to N bytes MAC Up to N bytes MAC Up to N bytes MAC

All Data MAC
Normal MAC

Inline Partial MAC

140

6.7 Related Work

The “Hash and MAC” approach borrows its basic idea from the web server
community. Kaashoek et al. demonstrated that precomputation of TCP/IP checksums on
web pages can help increase web server throughput but a factor of 2.3 [Kaashoek96]. The
stored hash values in NASD exploit workload similarities between web servers and
fileservers. However, the “Hash and MAC” construction also handles the following
concerns: any stored work must be usable for multiple clients, a MAC must be bound to a
key, and clients can make requests on arbitrary block boundaries.

“Hash and MAC” is constructed out of two cryptographic building blocks: a MAC
and a hash function. For a good list of modern MACs and hash functions, the reader
should consult [Menezes98]. For the NASD experiments, I have specifically instantiated
the hash function with SHA-1 [FIPS180-1] and the MAC with HMAC-SHA1 [Bellare96a]
which are both widely used cryptographic functions.

The basic structure of “Hash and MAC” is similar to the more traditional “Hash and
Sign” approach used with public key cryptography. Both approaches admit a set of offline
attacks that are not possible with a normal MAC. “Hash and MAC” will be faster because
it uses a MAC rather than public key cryptography to sign the hash. Additionally, “Hash
and MAC” does not rely on any special number-theoretic properties of the key so it can be
used with any key distribution mechanism while “Hash and Sign” relies on certain number
theoretic properties of the public and private keys.

In order to deliver the advantages of “Hash and MAC” on small or misaligned
requests, I extended it with an incremental hash function, specifically AdHash
[Bellare97b]. Since the motivation for using incremental hash functions is to avoid excess
cryptographic work and make small operations more efficient, NASD can’t use the
concatenation of block identifiers to the data blocks to prevent reordering which is the
original design of AdHash. Instead, NASD binds the block IDs into the hash by using the

IV of the hash function or multiplication by 3i, presented in Section 6.5.2. Additionally,
because the security of AdHash depends on the difficulty of the subset sum problem, the
160 bit hash values generated by SHA-1 are on the edge of breakable. As a result, NASD
combines two SHA-1 digests by a combination of shift and XOR to produce a 256 bit
hash.

The UMAC construction takes another approach to building a fast and secure
message authentication code [Black99]. UMAC builds a new universal hash-function
family which can exploit the SIMD parallelism of modern processor architectures, such as
the Intel Pentium with MMX. Black et al. have shown how to embed a universal
hash-function into a MAC in a formal manner. In contrast, NASD’s HierMAC builds on
existing widely used hash functions which use heuristic, rather than provable security, to
justify its strength. However, HierMAC is based on well established primitives that have
withstood years of attack by the security community.

141

In some systems, the added performance of UMAC may be sufficient to meet the
drive’s throughput requirements. Even when UMAC is too slow to meet NASD’s
requirements, UMAC is faster than SHA-1 and can be used to replace HMAC-SHA1 in
the HierMAC design. While it is possible to find MACs that are faster than HMAC-SHA1,
and weaker, UMAC has the advantage of being both faster and having a strong theoretical
basis for security. Using HierMAC with UMAC in NASD will further reduce the
request-time computational requirements from HierMAC with HMAC-SHA1.

6.8 Discussion & Conclusion

This chapter has presented two techniques to reduce the amount of computation
required when storage provides communication integrity. This enables low-cost drives, or
drives under provisioned with security resources, to provide high bandwidth
integrity-protected communication. By taking advantage of the fact that data is read more
frequently than it is updated, I have shown that storage can use stored security information
to protect integrity and increase the integrity-protected bandwidth available from a
prototype drive. While this does not improve the task for providing privacy, it is critical for
storage to provide integrity guarantees because nobody else in the system can provide this
property, while privacy can potentially be handled at the application layer. Furthermore, I
have shown that by applying techniques of incremental hashing we can improve the
performance for misaligned and small read and write operations.

Using stored information is not without a price. I have opened the door to a more
convenient attack by off-line computation which does not require an oracle. With a good
message digest function, this risk is small but it is an additional avenue of attack. In an
ideal resource-rich environment, a drive would have ample resources for all its tasks and
the trade-off would be unnecessary. Unfortunately, real-world constraints motivate drives
to be very cost conscious devices, so some trade-off decisions will be made in any design.

For misaligned and small writes, the stored digest will also add, on average, a disks
block worth of hash processing to the operation to keep the stored digests current. If the
frequency of retrieving data significantly exceeds the frequency of updates, we are
reducing the total amount of cryptographic computation necessary and the expected
cryptography per operation. When the strength of the message digest is a concern, the
difficulty of the additional attacks should raised by adopting a longer and stronger
message digest. While a stronger digest may be more expensive to calculate, if the
disparity between retrievals and updates of data is great enough then we will still have a
performance win.

By incorporating incremental cryptography, I have reduced the penalties for small or
misaligned operations that are associated with a stored digest at the price of a small
increase in per-byte overhead. From the security perspective, NASD using incremental
cryptography can be broken if an adversary can solve a random subset sum problem, with
the specific structure that NASD produces. Using current state-of-the-art approaches,

142

solving a random subset sum problem is computationally difficult. However, if a new
algorithm were found to solve arbitrary subset sum problems, such an algorithm could be
used to attack a NASD system built on incremental cryptography.

143

Chapter 7: Hardware for Security Performance

Cryptography capable of sustaining network data rates is the ideal solution for any
storage workload that requires security. However, cost considerations can make this
difficult to achieve. Alternatives, such as the HierMAC or HierMAC with incremental
digests (Chapter 6), reduce the amount of cryptography required per byte for read traffic,
but do not significantly improve small transfers or write-traffic bandwidth — both
essential to achieving acceptable storage performance. Fortunately, acceptable storage
performance at sub-network cryptographic speeds is possible because: 1) media data rates
are significantly lower than high-speed network data rates; and 2) storage workloads have
periods of idleness. These characteristics provide a range of performance, between
network and media data rates, that enables an unique set of trade-offs involving cost,
throughput, and latency.

The decision to protect integrity, privacy, or both affects how security creates
latency. Integrity and privacy are built on different cryptographic primitives, message
authentication codes and encryption respectively, which process data in differently sized
blocks. More importantly, privacy is more like a transformation of a continuous stream of
data while integrity requires the receiver to decide, at discrete intervals, if the data has
been modified on the network. This fundamentally introduces latency as the receiver
awaits enough data to determine if a request was modified.

This chapter explores how this performance range can be exploited to achieve good
system performance without implementing full network-speed cryptography. To ground
the discussion, I begin with an overview of drive electronics and examine the performance
of current software and hardware solutions. Next, I show how integrating security into a
NASD impacts the system’s latency and discuss the performance issues involved in
providing integrity, privacy, or both. The analysis is quantified using real file system traces
and reveals that a drive, using HierMAC and providing only 33% of a network’s
full-duplex bandwidth, can successfully services file system requests with less than a 10%
increase in latency (over a system with no security). Finally, I discuss available hardware
solutions to integrate cryptography into a drive’s central ASIC as well as the potential
advantages of reconfigurable computing.

144

7.1 The Physical Architecture of a Network Attached Secure Disk?

The electronics on a modern SCSI disk drive are very similar to a modern computer,
and include a microprocessor (~60 MIPS), a SCSI interface, and several megabytes of
RAM. In addition, there are numerous very small functional units that manage the drive,
including a motor controller, R/W channel, preamp and write driver, error correcting code
engine, sequencer, buffer controller, servo controller. While previous generations spread
these functional units across multiple chips, increasing VLSI integration levels are
reducing the number of physical chips — thus reducing failure rates, decreasing cost, and
increasing performance. For example, a modern Quantum Viking disk drive integrates the
SCSI controller, sequencer, error correcting code engine, motor controller, and servo
controller onto a single ASIC, the Trident (Figure 7-1), while the memory,
microprocessor, DRAM, R/W channel, preamp & write driver, and motor controller are in
separate chips. Further, recent announcements from the drive industry suggest that
single-chip solutions are on the horizon [Lammers99].

A network attached disk would require the same core function as a SCSI drive,
replacing the physical SCSI interface with a high-performance network (e.g., Gigabit
Ethernet, FibreChannel) while increasing the microprocessor’s performance to support
NASD’s in-drive file system. Adding hardware-based security requires four new
functional blocks: key memory, encryption/decryption, message authentication
code (which uses SHA-1 in the prototype), and key management logic. Software-based
security would require fewer functional blocks, with the encryption/decryption and key
management blocks handled by the microprocessor and keys stored on the disk media.
However, software-based security demands a significantly more powerful processor.
Further, because the microprocessor must touch all bytes that are either sent or received,
the ASIC’s internal datapath, which is currently optimized for minimal data movement
through the microprocessor, would also require a fundamental change.

Figure 7-1 Quantum Trident ASIC

Modern drive ASICs integrate a large
amount of functionality onto a single chip.
The SCSI controller, servo controller,
sequencer, motor controller, error
correcting code, and a small amount of
SRAM provide the core device functionality
while a CPU and DRAM are on other chips.
The primary ASIC in the Trident consumes
approximately 110 thousand gates and
22 Kb of SRAM in a 74 sq. mm package
using 0.68 micron chip technology.

145

7.2 Software Cryptography: A Performance Bottleneck

Most cryptographic algorithms are not designed with efficient software
implementation as a primary design criterion. However, security’s increasing importance
has fostered much greater interest in cryptographic algorithms that can be efficiently
implemented in software. For example, the Fast Software Encryption International
Workshop is a testament to the importance of high-performance software cryptography.
Software performance is now one of the main criterion in designing future standard
encryption algorithms [Schneier99, NIST98] and the characteristics that make an
encryption algorithm fast on an Intel Pentium family of processors are seriously being
explored [Schneier97].

Current workhorse encryption algorithms require significant computational power.

For example, Triple-DES1 (also called 3DES), which predates the popular interest in
security, requires 108 clock cycles per byte on a Pentium processor [Schneier97]. This
places 3DES’s maximum throughput for a GHz Pentium processor at only
~9MBytes/second.

The likely successors to Triple-DES, the Advanced Encryption Standard (AES)
candidates [NIST98], all improve on the performance of Triple-DES but still require
20-69 clock cycles per byte for 8 KB requests with an average penalty of an additional
three cycles per byte on smaller, 1 KB requests [Schneier99]. Assuming the drive
processor is a 200 MHz Pentium processor, the most promising of the AES candidates will
only deliver 10 MB/sec, well below the media rates of current disk drives and completely
insufficient for future disk drives.

Hash functions have significantly better software performance than encryption. For
example, SHA-1 on a Pentium requires 13 clock cycles per byte (15 MB/second) while
RIPE-MD160, another strong hash function, hashes at 16 clock cycles per byte
(12.5MB/second) [Preneel98]. While better than the fastest AES algorithms, they will still
consume most of a 200 MHz Pentium’s cycles supporting the media rates of current disk
drives.

These performance numbers show that a 200 MIP processor (e.g. 200 MHz
StrongARM), the class of processors expected on early Network Attached Secure
Disks [Gibson98], will be unable to support software-based cryptography. On a 200 MHz
StrongARM system, I measured 25 cycles per byte for SHA-1 and 250 cycles per byte for
Triple-DES using only compiler optimized C-language code. Assuming a factor of two or
three improvement for hand-coded assembly-language optimizations, the cycles per byte
for a StrongARM are comparable to the published cycles per bytes for Pentium
implementations and are reasonably indicative of what we can expect from an optimized
software implementation on a StrongARM. Of course, the details of the processor can

1. Triple-DES was recently proposed as a revised U.S. government Data Encryption Standard (FIPS 46-3), replacing
single DES, so we can expect it to be relevant for many years [NIST99].

146

have a significant impact on the overall performance due to the presence or lack of specific
instructions that the cryptographic algorithms heavily utilize, but the literature and my
experiments show that it is unlikely that a 200 MIP processor will be able to provide the
necessary performance of a drive using only software cryptography.

7.3 Cryptographic Hardware: An Overview

For many years, researchers and industry have built application specific integrated
chips (ASIC) that implement many of the basic cryptographic functions used in modern
protocols. Eberle at Digital’s System Research Center demonstrated an experimental DES
chip in 1992 that delivered 1 Gb/s performance [Eberle92]. Currently, you can purchase
chips such as the Hi/Fn 7751 [HiFn99] or VLSI’s VMS115 [VLSI99] running at 80 MHz
which deliver approximately 100 Mb/s and 200 Mb/s performance for both SHA-1 and
Triple-DES. These chips, primarily designed to enable IPsec-based virtual private
networks in 100Mb/second routers, may not be priced aggressively for commodity
devices. Pijinburg Custom Chips’ next generation ASIC (500k gates, 0.18 micron) will
implement SHA-1, Triple-DES, Safer SK64, and RIPEMD-160 [vanPelt99] and is
expected to deliver up to 500 Mb/s performance from each functional unit. Cognitive
Designs next generation ASIC, the CDI 3000, will perform Triple-DES at 172 Mb/s and
concurrent SHA-1 at 204 Mb/s, priced at $20 in lots of 1,000 [Finley99]. While these cost
and performance numbers are difficult to map directly NASD, they do provide an intuition
of the performance and cost of readily available hardware support.

7.4 Integrating Security Hardware in Storage Devices

7.4.1 Security and the Drive Datapath

The purpose of adding cryptographic hardware to a storage device is to reduce the
latency and increase throughput over software-only solutions. Latency is important
because additional latency will translate into increased request service times seen by the
client, which clients are sensitive to on small requests, and increased internal buffering
requirements within the drive as larger queues are required. Similarly, throughput is
important because if the drive has insufficient cryptographic throughput, it will be unable
to deliver some of its raw bandwidth to clients. This implies an inefficient utilization of
drive resources and that more NASDs to deliver the same aggregate bandwidth to a set of
clients are needed.

At a functional level, security adds another stage to the processing of a request that
can throttle system throughput and increase latency seen by clients (Figure 7-2). Without
security, requests arrive on the drive’s network interface. Then they are processed by
various levels of communication protocols. Next, they are placed on a work queue where

147

they are either serviced from the cache or sit until they are scheduled for the media access.
If the cryptography is slower than the network data rates, data will slowly queue up
between the network and crypto on incoming traffic and between the crypto and the drive
electronics on the outgoing traffic. However, the outgoing path will be more limited by
media data rates (except for cache hits). Even the incoming path is ultimately limited by
the media rates since the drive can only buffer a limited amount of data before clients must
slow down as data is written out to the media.

7.4.2 Latency

Cryptographic operations impose several ordering dependencies that impact latency.
This section examines how these various dependencies and different encryption
algorithms influence overall latency. The analysis is based on a simple model that extracts
the maximum amount of parallelism available, both in terms of key management and data
processing. In reality, real performance will differ, but this model is designed to provide a
basic understanding to how various security components benefit from hardware support.

Figure 7-3 shows the chain of dependencies that must be satisfied for the drive to
service a request (Figure 7-3a) or send a reply (Figure 7-3b). In both directions, the first
step is to determine what key should be used to process the request. On an incoming
request, the request header provides enough information for the drive to find the necessary
keys in a local cache or, for a key-cache miss, generate the necessary keys. If we miss, we
need to generate the access credential key, the MAC of the public portion of the access
credential, and then digest the credential key and a pair of constants to generate the actual
request-MAC and request-encryption keys (see Section 4.3.2.2 for a more detailed

Network
Interface

Media
Queue/
CacheCryptography

Figure 7-2 Model of a NASD’s Internal Functional Pipeline

When security is introduced into a disk drive, the drive may need to buffer requests both
before or after the cryptography in order to maintain correctness or perform
speed-matching. The Queue/Cache holds requests queued up at the media and the drive’s
data cache. The buffers and the media queue/cache may allocated from a single memory
pool and illustrate a logical distinction rather than a physical one. If the network runs
faster than the security but security is faster than the media, buffer1 will fill on a write and
buffer 2 on a cache read but both buffers will empty faster than media can drain the queue.
If the security is slower than the media rates, buffer1 will fill on every write and buffer2 on
every read.

DCE, VIA,
TCP/IP, etc.TCP/IP, etc.

B
u
f
f
e
r
1

B
u
f
f
e
r
2

Input Link

Output Link

148

explanation of the generation of the request-MAC and request-encryption keys). The key
generation can take a significant amount of time, making the alternative access credentials
presented in Chapter 5 an attractive alternative when a drive lacks the hardware necessary
to speed key generation. For outgoing replies, the latency will be small because the
necessary keys were cached during the incoming request.

On the incoming data-path, the drive cannot begin decryption until it knows which
key to use and the message authentication code cannot begin until at least a digest block
worth of data is decrypted. When only protecting the integrity, a standard MAC algorithm
will wait for the key lookup/generation latency. However, using the “Hash and MAC”

Recorded Keys/IVs Data

Encrypt
8B/8B

Digest
64b/DiskBlock

MAC
64B/ChunkSize

Output

if not encrypted

if encrypted

if MAC

(a) Incoming Path (b) Outgoing Path

Key Dependency

Data Dependency

Figure 7-3 Dependency Graph for Security Processing

This graph illustrates the dependencies that add latency to the processing of incoming and
outgoing portions of a request for the different phases of the processing involving
cryptography. The cryptographic functional blocks are labeled with two values: the
number of bytes necessary to start computing and the number of bytes before a result is
generated. When HMAC-SHA1 is used, the digest phase will be a null operation and
simply pass values directly onto the MAC. When HierMAC is used, digests of disk blocks
will be generated in parallel and the results fed into the MAC.

Request Header Data

Credential Key

Encryption Key MAC Key

HMAC IVsDecrypt
8B/8B

Digest
64B/DiskBlock

MAC
64B/ChunkSize

Output

if not

if both

if MAC

if encrypted

if encrypted

if encrypted
encrypted only

149

approach described in Section 6.4, the drive doesn’t need the key until the end of the MAC
calculation so the lookup/calculation can be done in parallel with the hash value
calculations, hiding the latency for most requests. For privacy, the drive must always wait
for the proper key before decryption can start. These restrictions define when the
cryptographic operations can begin.

Cryptographic primitives are the next component of latency. Encryption algorithms
normally process 64 bit blocks, for 3DES, or 128 bit blocks for more modern ciphers. This
small chunk (i.e., block) size allows encryption algorithms to form a fine-grained pipeline,
producing results every 64 or 128 bits. An OceanLogic DES core processing one 64-bit
block every 16 clock cycles [OceanLogic99], would implement 3-DES with a 48 cycle
latency. This means one encryption block moves between buffer1 and buffer2 (Figure 7-2)
in just 48 cycles. With no integrity, once a 64-bit block has been encrypted/decrypted, it
continues onto the next pipeline stage for network transmission or storing to media.

If the drive is only protecting privacy, the latency of the cryptographic processing is
the time to identify the proper keys and the time to encrypt/decrypt a single 64 bit block.
For example, the OceanLogic DES core can process one input block, 64 bits, every 16
clock cycles [OceanLogic99], so 3DES could be implemented with about a 48 cycle
latency. In functional pipeline shown in Figure 7-2, this 48 cycles is the time for the drive
to move one encryption block between buffer1 to buffer2 on a write or buffer2 to buffer1
on a read. Since no integrity is being provided, once a 64 bit block has been
encrypted/decrypted it is able to move on through the pipeline. Both buffer1 and buffer2
will only hold a single 64-bit block of data unless the encryption performance is limiting
system throughput and queueing results.

When protecting integrity, MACing all the data substantially increases the latency of
the cryptographic pipeline. Because MACs are only generated on discrete chunks of data,
64 KB in the prototype, even if MAC performance is not limiting system performance, the
data will be buffered in the MAC computation until a result is generated. On outgoing
traffic, a chunk of data can immediately be sent to the receiver but the receiver will be
unable to process it until the corresponding MAC arrives which will not occur until the
drive has finished MACing the entire chunk. Since the drive may be able to send data to
clients faster than it can generate MAC’s, the drive could stream data directly to clients
and follow the data with the MACs. However, the drive could buffer data rather than
sending it in order to preserve an ordering/interleaving relationship between data blocks
and MACs as they are sent over the wire.

Adding integrity increases the latency of request processing more than encryption
because the granularity of the functional pipeline stage is much larger. When privacy is
used, the latency was simply the time to get the first bytes of output. When integrity is
used, the message bytes may be available but they are not “acceptable” because there is no
MAC value to either send or verify. In this case, latency corresponds to the time before the
drive can generate a digest on a digest-chunk, the number of bytes between digests in the
message stream, of bytes. In contrast to encryption where latency is the time to process the

150

first encryption block in a message, the latency of a message authentication code is the
time for it to process the last bytes in the digest-chunk.

Integrity processing latency varies by a factor of 20 or more depending on which
MAC method is employed (i.e., HMAC-SHA1, HierMAC, HierMAC w/incremental
digests), the size of the request, and the type of requests. Both HierMAC and HierMAC
w/incremental digests (Figure 7-4), improve latency over HMAC-SHA1 by enabling data
processing before the MAC key is identified. Both also use precomputed digests for some
requests, reducing latency to a few iterations of the message digest calculation.

On writes, both HMAC-SHA1 and HierMAC have longer latencies than HierMAC
w/incremental digests. HMAC-SHA1 latency is a function of chunk size while HierMAC
depends on digest block size (Figure 7-4’s example placed both sizes at 8 KB). HierMAC
with incremental digests optimization reduces latency by enabling parallel computation
over 256 B blocks, followed by the modular arithmetic (combining operators), and a final
MAC. This parallelism does, however, require more hardware to process 256 B blocks in
parallel.

For small requests, HMAC-SHA1’s key generation dependency can create a long
critical path. HierMAC avoids this critical path, allowing data computation to proceed
without the key, but at the cost of an additional step, one extra iteration of the message
digest calculation,

Finally, in addition to the cryptographic operations, the drive must also verify the
nonce on a request check that the access credential is appropriate for the request. Checking
the nonce requires searching for the nonce, probably in a hash table, to confirm that it has
not already been received. The time for access credential checks depends on which of the
choices described in Chapter 5 is implemented. For capabilities, the check requires only a
few cycles to perform some simple comparisons. For metadata filters, the drive needs to
execute the filter, which can take hundreds of cycles, and may need to perform additional
expensive I/O operations. These checks can be performed in parallel with the
cryptographic processing as long as the request is not irreversibly committed until all
checks are completed and errors are properly prioritized so the drive does not leak
information.

7.4.3 Throughput

Within a storage device, there are a variety of components that have different
amounts of throughput. Where does security fit into this range? On one end of the drive,
we have a high-performance full duplex network interface such as Gigabit Ethernet or
Fibrechannel, which provides 1Gb/sec each direction. On the other end of the drive, the
media transfer rates are currently at 28 MB/sec and they are increasing at 40% per
year [Grochowski96]. Somewhere in between is the proper performance goal for
cryptographic support. Clearly, if security doesn’t even match the lesser of the two then
the drive will fail to deliver some of its raw performance.

151

Figure 7-4 Comparison of Latency for Different MAC Approaches

HierMAC uses precomputation and it has lower latency than HMAC-SHA1 on a read
request. On a write request, incremental stored digests also reduce latency because it
introduces more parallelism. This figure illustrates the critical path length, i.e. latency, for
the three MAC approaches. All three approaches are parameterized by S, the size of the
disk block, and R, the maximum number of disk blocks sent before a MAC is inserted.
HMAC-SHA1 simply computes over R*S bytes, then produces a result. HierMAC can use
precomputed digests on the read and it can compute the digests in parallel on a write
(which is the same as HMAC-SHA1 when R=1). HierMAC with incremental digests has
more parallelism which benefits small requests and writes, as well having the benefits of
stored digests.

On the right side of the figure, I list the latency to process a read and write of disk block,
ignoring header and key costs. I assume S = 8192 bytes an R=1, which makes HierMAC
and HMAC-SHA1 comparable on the write path. For per message digest latency, I
estimate 123 cycles, which is the amount of time required per message digest block in an
FPGA implementation of the SHA-1 core by Steve Schlosser and Ben Schmidt at
CMU [Schlosser98].

256 B

S bytes S S bytes S bytes

S bytes

S bytes MAC

MD

S bytes MD

S bytes MD

 20B 20B ... 20B

+256

MD

256 B MD

256 B MD

+256

+256

 32B 32B ... 32B

R blocks of S bytes

R
 b

lo
ck

s
o

f S
 b

yt
e

s

MAC

(S
/ 2

5
6

) i
nc

re
m

en
ta

l b
lk

s

Repeat R time

R
 b

lo
ck

s
o

f S
 b

yt
e
s

MAC

Depth of Log(S/256)

(a) HMAC-SHA1

(b) HierMAC

(c) HierMAC w/ incremental digests

S = 8192
R = 1
MD cost = 123

Read Write

8192 byte disk block

Latency in Cycles

15.9k 15.9k

400 16k

400 700+
adder
tree

aligned op

152

If the cryptographic throughput matches the networking interface data rate, the drive
will be able to read and write to its cache at the full network rates. From the security
perspective, this minimizes the impact of an adversary swamping the cryptographic
capacity of the drive with forged requests that are only recognized as forgeries after the
MAC has been generated. Forging requests to the drive becomes a denial of service
against network bandwidth rather than the drive’s computational capacity since the drive
has cryptographic resources are matched to the network.

A drive will only be able to accept a limited amount of writes, bounded by available
on-disk RAM, at network rates because writes will need to be buffered to account for the
much slower media data rates. With network rate cryptography, in the functional pipeline
shown in Figure 7-2, these requests would be processed by the cryptography and wait in
the work queue until they could be flushed to the media. With less than network rate
cryptography, the requests would will queue in Buffer1 until the cryptography could
process them. However, once a drive verifies that a requests MAC is valid and decrypts the
request, the drive can coalesce writes within on-drive buffers, which may reduce memory
pressure if writes are small and sequential. For writes, as long as cryptography meets the
media data rates, the impact of not having network data rate cryptography is which side of
the cryptography a request will be queued. Before the cryptography, it is queued and
unverified so the drive can’t perform any media scheduling optimizations. After the
cryptography, it has been verified so the drive can perform media scheduling optimizations
but performance is still limited by media data rates.

Theoretically, a drive can service read requests at full network interface rates if the
reads all hit in the data cache. Since drive memory is limited and small relative to media
sizes, it is unlikely that a request will hit in the cache except for sequential accesses to the
same object which benefit from disk block read-a-head and are still limited by the media
rates. Normally, a sequence of reads will queue up as the drive waits to retrieve data
blocks. If cryptography performance exactly matches media rates, the maximum
throughput that a client will ever see from the drive will be media data rates.
Cryptographic throughput should exceed the media rate to reduce the latency for servicing
cache hits and to provide greater peak performance when cache hits do occur even though
the sustained rate may be substantially lower. Additionally, exceeding the media rate
allows requests to queue after cryptography, providing the drive with an opportunity to
reorder requests and maximize its use of the media (although it can not exceed media data
rates). The exact amount by which cryptographic data rates should exceed media rates will
depend on the costs of increasing the data rates, the emphasis on peak bandwidth, and the
probability of a cache hit. If a drive were to have a much larger data cache, optimizing for
cache hits would be more compelling than the case for a drive with a few megabytes of
cache. Other network attached storage devices like a RAID array may have large data
caches and large amounts of aggregate media bandwidth so they would benefit from
moving cryptographic performance nearer to network performance.

I have designed the security of NASD to maximize the parallelism available to the
drive in order to improve its throughput. Encryption is highly parallelized because it uses
counter-mode rather than more standard modes which have dependencies between

153

encryption blocks. The message authentication code can also be parallelized at the
granularity of disk blocks when using HierMAC and at the granularity of incremental
blocks when using incremental hashing. The same features that make the computations
parallelizable also enable the system to tolerate out-of-order reception while still
performing the security processing in stream like manner.

There is nothing fundamentally preventing a drive from performing its
cryptographic operations at full line rate. However, engineering a drive’s cryptographic
support to meet the peak data rates of the system implies that the drive is over-engineered
for most of its workload.

7.5 Simulation Study of the Impact of Underprovisioned Digest
Throughput on Client Latency when Protecting Integrity

I have argued that it is reasonable to have the cryptographic support run at less than
network rates. In this section of the dissertation, through simulation, I explore the impact
of reduced message digest throughput on the latency of filesystem operations as perceived
by the end client. I will show that in filesystem workloads a drive can use a message digest
functional unit that delivers as little as 1/3, 700 Mb/sec for Gigabit Ether, of its duplex
network bandwidth while providing less than a 10% average increase in latency over no
security.

In this analysis, I focus on the case of full integrity and no privacy being provided by
the drive. Since integrity support in the drives is necessary for an application to run
correctly on NASD while privacy can be provided at the application layer, I explore how
little hardware support can be used to deliver good performance to clients. Furthermore,
the finer pipeline stage of encryption/decryption implies it will have a smaller impact on
latency than integrity processing.

Filesystem workloads are largely idle with occasional bursts. During periods of
heavy load, client requests will be queued on some resources, which may be something
other than the cryptographic support because the drive electronics can only handle a
limited number of requests per seconds and, ultimately, the media is the final bottleneck.
The digest throughput becomes a significant bottleneck but only when the drive
electronics and media can support a large number of requests per second or in
pathologically bad request mixes. Additionally, workloads rarely exploit the parallelism of
a full duplex network interface which allows us to easily reduce our message digest
capacity to the simplex rather than duplex bandwidth. In the remainder of this section, I
will describe my simulation study and illustrate this argument holds true.

154

7.5.1 Simulation Environment

For this simulation, I used a trace from a University of California, Berkeley Auspex
NFS fileserver [Dahlin94] and a trace of the Carnegie Mellon University Parallel Data
Lab’s AFS server collected in early 1999. Both of these traces are described in
Section 5.1.3.1.

Each filesystem level request is mapped to one or more NASD level requests as
shown in Table 7-1. For AFS BulkStatus, AFS RemoveFile, and NFS DeleteWrite, these
requests were issued to the drive at line rates because there are no data dependencies
between the operations. However, for an AFS StoreData, AFS CreateDir, AFS MakeDir,
and NFS DirRW, the later NASD operations could not be issued until the first NASD
operation has completed because of dependencies on either the data being written or a new
NASD ID. I modeled operations that would read or write a stored directory object as 8K
read or write operations because 8K is large enough to hold most directories and allows
the system to exploit the stored digest optimization presented in Section 6.4. For some of
AFS FetchData and StoreData operations, no size information was recorded in the trace so
I use the average FetchData and StoreData sizes reported by the server through the x-stats
interface during the tracing time period.

Table 7-1 AFS and NFS to NASD Request Mappings

Each filesystem level operation is converted into one or more NASD operations. The
following table describes this mapping:.

AFS Operation NFS Operation NASD Operation(s)

FetchData Read Block,
DirRead

Read

StoreData N/A Write + SetAttr

N/A Write Block Write

FetchStatus Read Attr GetAttr

BulkStatus N/A N * GetAttr

N/A DirRead 8K Read

StoreStatus Write Attr SetAttr

CreateFile,
MakeDir

DirRW Create + 8KWrite +
SetAttr

Rename N/A 8K Write

FetchACL N/A 8K Read

Link/SymLink N/A 8K Write

RemoveFile DeleteWrite Remove + 8K Write

155

Both the AFS and NFS workloads are an approximation of the workloads I expect to
be offered to a NASD drive. A real NASD drive may not handle the equivalent of an entire
fileserver’s namespace stored on a single device. However, if an AFS or NFS system is run
on top of NASDs, I expect the distributions of requests to remain roughly the same so the
workloads are a good first approximation of the workload that would be presented to a
drive.

Each NASD operation has a fixed NASD header as well as arguments and a result
structure, which are shown in Table 7-2, in addition to any data being read or written. The
simulator accurately models their cost as well as the networking cost of a 32 byte header
(approximating a small UDP and RPC header per request).

The simulator models the message digest cost of using HMAC-SHA1 and applying
integrity protection to both the arguments and the data using the simple capability model
of access credentials, so access credentials are small fixed sized fields. Pessimistically, I
assume that there is no cache of capability keys and they must be generated on each
request.

The simulator uses queuing models of three classes of drive resources:
network (input and output links), message digest unit (SHA-1), and the drive electronics
as shown in Figure 7-5. Each network interface has a gigabit of available bandwidth. The
SHA-1 unit is characterized as having n bits/second throughput. Unless otherwise noted, a
single message digest unit is modeled on a drive which handles all the digesting required
for requests, replies, and key generation.

Table 7-2 NASD Argument and Result Sizes

This table describes the sizes of the arguments and results for the major NASD operations.
In addition to the values in the table, every request argument includes an 8 byte security
header (Section 4.4.1), a 48 byte public access credential, implementing a capability
model, a 20 byte MAC, and an 8 byte timestamp. Each result will also include a 20 byte
MAC and an 8 byte timestamp. NASD attributes are 336 bytes long.

NASD Operation
Argument Size

in bytes
Result Size

in bytes

Create 64 4

Remove 16 4

SetAttr 352 344

GetAttr 16 344

Write 104 8

Read 104 8

156

I use a simple model of the raw drive functionality in which all requests have a fixed
service time and media time is ignored. The base service time is 0.12 milliseconds which
is the time for a relatively modern Seagate Ultra Wide ST34371W drive takes to process a
prefetch hit minus the time spent on the SCSI bus, i.e. the request “think time”
[Riedel98b]. This limits the drive to a maximum of 8333 requests per second. By
eliminating seek time and internal data transfer times, I bias heavily against reducing
message digest capacity because the delay due to slower cryptography is more significant
when the slowest portion of the drive is ignored. In some sense, I am modeling a
solid-state disk while, for the foreseeable future, most NASDs will use magnetic media as
the backing store.

From the perspective of clients, the primary impact of reducing the message digest
bandwidth, assuming the SHA-1 unit can sustain media rates, will be seen as added
latency, compared to a system with no security, on each request. In this study, I compare
various points in the design space based on the added percentage latency per request. I
selected this metric because it accounts for the fact that a delay of 0.03 milliseconds will
have a substantial impact on a GetAttr, or other small requests, but will have a much less
noticeable impact on a long-running request such as a 64 KB write.

When request is serviced

Drive
Electronics

Input Link

Output Link

SHA-1
Unit

After 512 bits arrive
When MAC is verified

When MAC is generated

Start time is time an operation is inserted on input link queue

Completion time is when the MAC is done
being sent over the output link

Figure 7-5 Simulation Queueing Model

These are the four resources modeled in the simulation and the transitions of requests
between the queues.When a client sends a request to the drive, the request is first placed
on the drive’s input link queue. After 512 bits of data have been transferred over the link,
the drive has enough data to begin SHA-1 and the request is placed on the SHA-1 queue.
When all the required SHA-1 work is complete, the request’s MAC has been verified and
the request is queued on the drive electronics. After the request is serviced, the result is
queued on both the SHA-1 unit and output link to concurrent send and generate the reply
MAC. If the data is completely sent to the client before the reply MAC is generated, the
MAC will be enqueued separately on the output link when it is complete.

157

7.5.2 Results

Figure 7-6 shows that a drive with only 200 Mb/sec of message digest bandwidth
adds an average of more than 100% latency to filesystem requests compared to their
latency without security. In contrast, a drive with 700 Mb/sec of message digest bandwidth
adds an average of less than 10% additional latency. Figure 7-6 shows the impact of
underprovisioned SHA-1 capacity and the impact of precomputing hashing over nothing,
disk blocks, and disk block + attributes. Without any optimizations (P0), reducing SHA-1
bandwidth to 600 Mb/sec adds an average of 20% more latency to each request.
Precomputing stored digests and using HierMAC (P1) reduces the added latency by about
5% for the 500-600 Mb/sec range while precomputation for attributes (P2) reduces it by
another 1%. These improvements hold for all three of the workloads. Overall, the
cryptography had a much larger impact on the AFS workloads compared to the NFS
workloads because the AFS workloads include 64 KB writes while NFS performs only
8 KB or smaller transfers. Reducing SHA-1 bandwidth to 550 Mb/sec and using all the

Figure 7-6 Average Additional Latency Seen by Clients

For all workloads, a drive with only 700 Mb/sec of message digest bandwidth adds an
average of less than 10% additional latency to filesystem requests compared to their
latency without security. These simulation results show the impact of having less message
digest bandwidth than the full duplex network bandwidth(2Gb/s) for the three sample
workloads. The x-axis shows the throughput of the SHA-1 unit and the y-axis marks the
average percentage increase in latency of a filesystem request in comparison to the same
request running without security. The additional impact of applying the precompute
optimizations is also shown. P0 is using no precompute, i.e. all bytes are MAC’d using
HMAC-SHA1. P1 is using stored message for each 8K disk block to reduce the
computation on a read operation. P2 adds a stored message digest for attributes to reduce
computation on GetAttr operations.

200 400 600 800 1000
Megabits of MD Bandwidth

0

20

40

60

80

100

A
vg

 A
dd

e
d

P
er

ce
n
ta

ge
 L

a
te

nc
y

AFS Week 1 - P0
AFS Week 2 - P0
NFS -P0
AFS Week 1 -P1
AFS Week 2 -P1
NFS -P1
AFS Week 1 -P2
AFS Week 2 -P2
NFS -P2

158

precomputation optimizations results in an average of less than 15% latency being added
to every request. Since I am exploring how far I can reduce the requirement for SHA-1
bandwidth, all subsequent simulations in this chapter were run with precomputation used
on both data and attributes.

Reducing the SHA-1 throughput introduces a bottleneck with queuing into the
system which translates into variability in service times seen by clients. I measure this
variability as the percentage of requests, which I call outliers, that take more than twice as
long as the same request would have taken with no security. These are the requests for
which clients are most likely to notice that service time has increased. I did not to use
variance because variance can be highly skewed by a few extreme points and, when
constrained by SHA-1 bandwidth, there will always be times when queuing on the SHA-1
unit substantially impacts overall request service time. For example, when small requests
are queued behind a write request (i.e. the head of line problem), the small request will
suffer a much larger percentage change in service time than the write suffers even though

Figure 7-7 Percentage Outliers

If message digest bandwidth is less than 500 Mb/s, a large number of requests take twice
as long, i.e. outliers. However, this quickly converges to almost no requests being outliers.
The x-axis is the throughput of the SHA-1 unit and the y-axis the percentage of filesystem
level requests where the request service time was twice as long as the time with
no-security i.e. requests where the added latency was at least 100%. These are the periods
when clients are most likely to noticed the added latency. These simulations are for the full
integrity case using HierMAC and precomputed SHA-1 digests on disk blocks and
attributes.

0.0 200.0 400.0 600.0 800.0 1000.0
Megabits of MD Bandwidth

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

P
er

ce
nt

ag
e

of
 o

ut
lie

rs

AFS Week 1
AFS Week 2
NFS

159

most of the delay is spent servicing the write. For this analysis, it is useful to talk about
how often the client is likely to notice that performance has substantially degraded which
the counting the percentage of outliers captures.

When SHA-1 throughput is badly mismatched for its workload, a large percentage
of the requests take more than twice as long but this quickly converges to less than 1% as
capacity is increased to meet demand (Figure 7-7). For 500 Mb/sec or less, 2.5% or more
of the requests are outliers but, for 600 Mb/sec or more, less than 0.03% of the requests are
outliers.

For each workload, there are times when performance degrades substantially as a
result of the SHA-1 bandwidth becoming the bottleneck (Figure 7-8). While the average
added latency and, to a lesser degree, the percentage of outliers is relatively similar over
the two AFS traces, the worst cases can differ by a factor of 10. The outliers and the worst
cases are partially caused when a large request prevents small requests from making
progress through the functional pipeline. Since AFS uses larger data transfers, this effects

Figure 7-8 Maximum Additional Latency Seen by Clients

Since SHA-1 bandwidth introduces another potential bottleneck, there will always be
cases where it introduces queuing and some request takes much longer than normal. The
x-axis shows the throughput of the SHA-1 unit and the y-axis marks the worst case added
percentage latencies for each trace in comparison to the non-security version of each
request. The worst-case is significantly better in NFS because transfers are smaller. The
AFS maximums illustrate that the worst scale can vary substantially from trace to trace
even in a single filesystem and single user environment.These simulations are for the full
integrity case using HierMAC and precomputed SHA-1 digests on disk blocks and
attributes.

0 200 400 600 800 1000
Megabits of MD Bandwidth

100

101

102

103

104

105

106

107

M
ax

 A
dd

ed
 P

er
ce

nt
ag

e
 L

at
en

cy

AFS Week 1
AFS Week 2
NFS

160

has a larger impact in AFS workloads than NFS workloads. Even as capacity is increased,
the worst case does not change as quickly as the average within the limits I explored
because there are always some brief periods where the entire system wants to run near
saturation and substantial queueing can quickly occur. I explore two ways that a drive
could reduce this effect: time-slicing the message digest unit or pulling data.

In the initial simulations, requests queued up for SHA-1 work are processed in order
and each request is processed to completion. An alternative is to time slice the SHA-1
resources and prioritize small requests. The next series of simulation results explores this
approach. The SHA-1 resource has two queues: a high priority queue for all operations
requiring SHA-1 processing on N bytes or less and a low priority queue for the rest of the
requests. An SHA-1 operation is the amount of SHA-1 work necessary for a request on the
incoming or outgoing path. So, the processing of a read request and the processing of all
the data in the result are separate SHA-1 operations. When the SHA-1 resource is free,
high priority operations are processed first. If no high priority operations are available, a
low priority operation is processed and allowed make N bytes of forward progress before it
is put back on the head of the low priority queue and both queues are re-examined.

Allowing this simple prioritization and preemption significantly curtails the
maximum wait a request may have due to being backed up behind a larger request
(Figure 7-9) and also reduces the outliers (Figure 7-10). For AFS workloads, with their
larger operations, the time-slicing approach significantly improves the worst case since a
small request will spend less time stalled behind a large request. However, if the
time-slicing interval is too small, large requests become starved during periods of heavy
activity and the worst case degrades. Time-slicing of the SHA-1 resource does not
improve the number of outliers significantly. In the slow cases, some write operations are
now being starved into becoming outliers. In the fast cases, there are already very few
outliers so the improvement is not very significant.

Another solution is to place the drive in control of its data movement. The
networking communities’ solution to preventing a sender from swamping a drive with data
is to allow the drive to control the write request and pull the data from the client rather
than allowing the client to push the data at its convenience. Logically, pull semantics place
the most resource poor of the two parties in control of bandwidth allocation decisions. In
addition to allowing the drive to schedule data arrivals to meet its buffering needs and
more carefully match media rates, the drive can also schedule based on the availability of
the SHA-1 resource.

To approximate pull semantics, I simulate the drive synchronously handling only the
control portion of the write by mapping all writes to 0-byte writes. Figure 7-11 shows that
this approach significantly reduces worst case behavior as well as the number of outliers
thus should improve the variability perceived by clients. For all workloads, applying pull
semantics to the drive reduced the number of outliers by at least a factor of 4 for all
systems with 400 Mb/s of SHA-1 bandwidth or more and reduced it to zero for 600 Mb/s
or faster systems. This reinforces the idea that writes are a major issue for a drive. For the
both AFS workloads, the percentage of outliers was constant from 400 Mb/s to 550 Mb/s,

161

Figure 7-9 Maximum Latency with Time Slicing SHA-1 Unit

The simple time slicing approach significantly improves the worst case for AFS workloads.
For each of the workloads, I compared the non-slicing case against preempting every 16K,
8K, and 2K bytes to allow smaller jobs to be processed and using the same cutoffs to
distinguish between low and high priority operations.The x-axis shows the throughput of
the SHA-1 unit and the y-axis marks the worst case added percentage latencies for each
trace in comparison to the non-security version of each request.These simulations are for
the full integrity case using HierMAC and precomputed SHA-1 digests on disk blocks and
attributes.

0 200 400 600 800 1000
Megabits of MD Bandwidth

10

100

1000

10000

100000

1000000

M
ax

im
um

 a
dd

iti
on

al
 p

er
ce

nt
ag

e
la

te
nc

y

AFS Week 2

0 200 400 600 800 1000
Megabits of MD Bandwidth

10

100

1000

10000

100000
M

ax
im

um
 a

dd
iti

on
al

 p
er

ce
nt

ag
e

la
te

nc
y

AFS Week 1

0 200 400 600 800 1000
Megabits of MD Bandwidth

10

100

1000

10000

M
ax

im
um

 a
dd

iti
on

al
 p

er
ce

nt
ag

e
la

te
nc

y

NFS - 512B

NFS Week

AFS - No Slicing

AFS - 16KB

AFS - 8KB

AFS - 2KB

AFS - 1KB

AFS - 512B

AFS - 256B

NFS - No Slicing

NFS - 4KB

NFS - 2KB

NFS - 1KB

162

Figure 7-10 Impact of Time Slicing SHA-1 Unit on Percentage of Outliers

Time slicing has a negligible impact on the percentage of outliers. Note, in contrast to
earlier graphs, the Y-axis is in log scale. The x-axis shows the throughput of the SHA-1
unit and the y-axis marks the percentage of filesystem level requests where the request
service time was twice as long as the time with no-security. For each of the workloads, I
compared the non-slicing case against preempting at fixed intervals to allow smaller jobs
to be processed and used the same cutoffs to distinguish between low and high priority
operations. For each of the workloads, I compared the non-slicing case against time
slicing at fixed byte intervals to allow smaller jobs to be processed. These simulations are
for the full integrity case using HierMAC and precomputed SHA-1 digests on disk blocks
and attributes.

0 200 400 600 800 1000

10-4

10-3

10-2

10-1

1

10

100

P
er

ce
nt

ag
e

ou
tli

er
s

AFS Week 1

0 200 400 600 800 1000

10-4

10-3

10-2

10-1

1

10

100

P
er

ce
nt

ag
e

ou
tli

er
s

AFS Week 2

0 200 400 600 800 1000
Megabits of MD Bandwidth

10-4

10-3

10-2

10-1

1

10

100

P
er

ce
nt

ag
e

ou
tli

er
s

NFS Week NFS - No Slicing

NFS - 4KB

NFS - 2KB

NFS - 1KB

AFS - No Slicing

AFS - 16KB

AFS - 8KB

AFS - 2KB

AFS - 1KB

AFS - 512B

AFS - 256B

Megabits of MD Bandwidth

Megabits of MD Bandwidth

163

Figure 7-11 Impact of Pull Semantics on Added Latency

Pull semantics reduce the percentage of outliers and improve the worst case for all three
workloads. All write operations are mapped to 0-byte writes to approximate the drive
synchronously handling the control portion of a write but being able to schedule the data
processing to minimize the impact on other requests and efficiently utilize its buffers and
limited media bandwidth. On the left, the x-axis shows the throughput of the SHA-1 unit
and the y-axis, percentage of filesystem level requests where the request service time was
twice as long as the time with no-security, that is, requests where the added latency was at
least 100%. On the right, the x-axis shows the throughput of the SHA-1 unit and the y-axis
marks the worst-case added percentage latencies for each trace in comparison to the
non-security version of each request.These simulations are for the full integrity case using
HierMAC and precomputed SHA-1 digests on disk blocks and attributes.

AFS Week 1

AFS Week 2

NFS

AFS Week 1 - Pull

NFS -Pull

AFS Week 2 - Pull

0 200 400 600 800 1000

Megabits of MD Bandwidth

100

101

102

103

104

105

106

107

M
ax

 A
dd

ed
 P

er
ce

nt
ag

e
 L

at
en

cy

Maximum additional latency

200 400 600 800 1000
Megabits of MD Bandwidth

0.

5

10

P
er

ce
nt

ag
e

ou
tli

er
s

Percentage of Outliers

164

which indicates there are still some cases where substantial queuing can occur because of
a large number of quickly issued requests — most likely, bulkstatus requests. Figure 7-11
shows that reducing writes to control operations has had a dramatic impact on the worst
case scenario for the AFS workloads, with their larger requests, compared to the effect on
NFS.

7.5.3 Sensitivity Analysis

The simulation is sensitive to the drive’s basic response time, the time spent in the
drive electronics, particularly for the smaller requests. If a drive can only handle 1000
requests per second, the amount of time spent in a slow message digest unit or on the wire
is small relative the total service time of the request. However, if a drive can handle 32,000
requests per second, the digest time and wire time are a more substantial portion of the
service time. For all the previous simulations, I assumed a drive could service 8333
requests per second. In Figure 7-12, I show how the service time of the drive affects the
average added latency seen by clients. This simple model illustrates that queuing on the
drive internals (which, in a real drive, includes media time) has a significant impact on
how little SHA-1 throughput is acceptable. For a drive servicing only 2000 requests per
second, the average additional latency with 500 Mb/s of SHA-1 bandwidth is less than
10%. Since my simulations assumed an aggressive number of requests per second, this
less aggressive value indicates that the drive actually services fewer requests per second

Figure 7-12 Sensitivity to Drive Service Time

A small request service time, the time spent in the drive electronics in the queuing model
shown in Figure 7-5, increases the impact of decreased SHA-1 throughput. This figure
shows the first week of the AFS workload at three levels of SHA-1 performance. The x-axis
shows the request service time in seconds and the y-axis marks the average additional
latency of a filesystem request in comparison to the no security case.These simulations are
for the full integrity case using HierMAC and precomputed SHA-1 digests on disk blocks
and attributes.

0.0002 0.0004 0.0006 0.0008 0.0010
Request Service Time

0.0

10.0

20.0

30.0

A
vg

 A
dd

ed
 P

er
ce

nt
ag

e
 L

at
en

cy

Impact of Drive Service Time

300 Mb/sec

500 Mb/sec

800 Mb/sec

165

Figure 7-13 Effect of Increased Load on Added Latency

These graphs show how decreasing the inter-arrival time between requests by a constant
factor impacts the added latency. The added latency is measured with respect to the
service time the same request, with the reduced inter-arrival time, would incur. For all
workloads, somewhere between 8x and 10x the non-security case starts incurring large
queuing delays.

200 400 600 800 1000
Megabits of MD Bandwidth

0

20

40

60

80

100

A
vg

 A
dd

ed
 P

er
ce

nt
ag

e
 L

at
en

cy

AFS Week 1

1x

2x

4x

8x

10x

200 400 600 800 1000
Megabits of MD Bandwidth

0

20

40

60

80

100

A
vg

 A
dd

ed
 P

er
ce

nt
ag

e
 L

at
en

cy

AFS Week 2

200 400 600 800 1000
Megabits of MD Bandwidth

0

20

40

60

80

100
A

vg
 A

dd
ed

 P
er

ce
nt

ag
e

 L
at

en
cy

NFS

166

because it is touching the media and will have a smaller latency penalty for reducing
SHA-1 digest.

Increasing the load on the drive exacerbates the impact of reducing SHA-1
bandwidth (Figure 7-13). I reduced the inter-arrival delay between subsequent requests in
the traces by a factor of two, four, eight, and ten to understand how increased load affected
the system. The NFS trace shows an interesting effect, as the load increases beyond a
certain point, the impact of underprovisioned SHA-1 bandwidth starts to decrease. In the
figures, I am comparing a request’s service time with security versus without security at
the same level of load. During periods of sustained heavy load, requests are being queued
for long periods of time in the non-security case so a small additional penalty due to
queuing for the SHA-1 unit is a decreasingly small portion of the overall service time. For
slower drive speeds (6250 requests per second), the same effect shows up in AFS
workloads but doesn’t appear in the baseline drive (8333 requests per second). The effect
appears to be highly dependent on a balance between the request distribution, inter-arrival
time, and request service time. When this queueing effect does not occur, the additional
load decreases the dead time between requests which gives the SHA-1 units less time to
use to compensate for differences between SHA-1 and network bandwidth. As a result, the
slower SHA-1 cases suffer more from the increased load than the faster cases.

7.6 Hardware Solutions

Hardware support for cryptography can take different forms: an additional
cryptographic ASIC, expanding the role of an existing ASIC, or adding an FPGA. The
cryptographic ASICs that I discussed in Section 7.3 provide a baseline estimate of
performance and an upper bound on the cost. Adding a another ASIC to a drive adds more
cost than necessary as well as another point of failure on the drive. A more likely path for
drive manufacturers is to expand the role of the central drive ASIC, which I will discuss in
the Section 7.6.1. However, both of these solutions suffer from fixing the cryptographic
algorithms in silicon and they can not adapt and deliver high performance if a
cryptographic algorithm needs to be changed. While software does not suffer from this
mutability problem, software only solutions cannot deliver the necessary performance
without a powerful CPU. In Section 7.6.2, I will discuss reconfigurable hardware
technology, though while still in its infancy, offers an appealing technology that can
deliver most of the performance of hardware coupled with much of the flexibility of
software.

7.6.1 Expanding the Role of the Integrated ASIC

With the spreading use of cryptography, many vendors have produced cryptographic
logic cores for common algorithms which could be used to add cryptographic functions to
a drive ASIC. SICAN Microelectronics Corporation sells an SHA-1 logic core requiring
approximate 20,000 gates [SICAN99] and Asic International sells an SHA-1 logic core

167

which can deliver 200 Mb/s throughput with a 80 MHz clock [Asic99]. Similarly, Xentec
licenses the Ocean Logic Pty Ltd.’s DES core which can deliver 400 Mb/s with a 100 MHz
clock using 3,500 gates in a LSI 500K technology [OceanLogic99] for a $30K unlimited
license fee [Wania99]. Triple-DES versions are also available. It is certainly feasible to
purchase off-the-shelf logic cores for the computationally expensive cryptographic
operations and integrate them into the drive using under 35,000 gates.

Integrating the cryptography onto the central ASIC is cost-effective because it does
not require additional chips, although it may reduce the yield of the primary ASIC. More
importantly, cryptographic functions can access the data as it passes through the central

ASIC while the data is stored in on-chip SRAM1 rather than contending for the slower
DRAM which is already a bottleneck in the drive. However, if the cryptography runs
significantly slower than the network interface, the drive will need to buffer requests in
DRAM, thus increasing memory bandwidth pressure when the drive is under a heavy load.

On read requests, the data passes through the primary ASIC on its way out to the
network so the primary ASIC could do the cryptography as the data moves from local
SRAM to the network interface. On the write requests, data passes through the primary
ASIC as it goes from the queue in DRAM out to the R/W channel. So, the ASIC is also an
appropriate location for cryptography.

When the cryptographic functions are implemented in the ASIC, they can never be
updated. In the unlikely event that the encryption or message authentication code is
broken, the only option is to use software cryptography through a firmware update, or use
the broken algorithms. If the drive was designed with a fast processor and software
cryptography rather than implementing the cryptography in silicon, the processor
performance will transfer to any new algorithm that is used. Between the flexibility of
software and speed of an ASIC is reconfigurable hardware, which is an alternative
solution.

7.6.2 Potential of Reconfigurable Hardware

Field Programmable Gate Array technology (FPGA) is a young technology that
provides some of the performance of a custom ASIC and some of the flexibility of
software. An FPGA is a programmable interconnected mesh of logic blocks which can
each be programmed to perform one of a set of simple functions. Together, the hundreds or
thousands of logical blocks on the FPGA can be connected to implement complex
functions.

In recent years, reconfigurable hardware has been used to implement many
cryptographic algorithms such as DES [Kean98, Luk97], REDOC III [Guerro95],
IDEA [Budiu99], and MD5 [Arnold98]. The same logic cores used to implement

1. In addition to being closer to the logic, SRAM is generally faster and more available than DRAM. Thus, it is advan-
tageous to process the data while it is in the on-chip SRAM [IBM97].

168

cryptography on an ASIC can be used in an FPGA. For example, the Ocean Logic DES
core can deliver 308 Mb/sec on a Xilinx Virtex running at 77 MHz [OceanLogic99] and
IBM has implemented SHA-1 in an FPGA running at 200 Mb/sec. While FPGAs lag
behind an ASIC in performance, they deliver much greater performance than software and
much of software’s flexibility.

Key-specific optimizations further reduce the performance difference between
FPGA and ASIC technologies by configuring an FPGA to compute with exactly one
key [Budiu99, Luk97]. This can deliver a 30% speedup and reduce the size of the circuit
by half [Luk97]. While key-specific optimizations are appealing, current FPGAs can not
be reconfigured quickly enough to change keys on a per-request basis, which is necessary
for NASD. Current research into incremental FPGAs offers an alternative that reduces
reconfiguration penalties by only changing the portions of the logic that are key
specific [Schmit97] and reducing FPGA compilation times [Budiu99]. If rapid
reconfiguration and quick compilation become a reality, reconfigurable computing will be
a promising way of delivering both performance and flexibility for security components.

Programmable hardware introduces the risk of an adversary modifying the
cryptographic algorithms. If an adversary can transform the encryption into a null
operation or have the message authentication code generate a predictable value, then the
adversary has broken the security. When the algorithm is implemented in an ASIC, an
adversary can not easily change the algorithm. However, normal access control
mechanisms can prevent an adversary from convincing the drive to reprogram the FPGA if
the implementation is done carefully.

FPGAs are not yet high-volume commodity devices. Any manufacturer who used a
high-performance FPGA for a performance-critical function on a drive will pay a cost
premium for the flexibility. However, the FPGA market has been growing steadily over
recent years and as demand grows and the technology matures, the cost will fall and FPGA
solutions may become more appealing in the future.

7.7 Chapter Summary

Security processing introduces an additional functional step in a drive’s internal
pipeline. Within security processing, the decision to protect integrity, privacy, or both
affects how security creates latency. Encryption operates on a fine-grained pipeline and it
has a small impact on latency. Message authentication codes introduce results at discrete
intervals, which increases latency. The different message authentication code approaches
have different impacts on latency. HMAC-SHA1 has a long critical path, while HierMAC
requires less work and less latency on large disk-block aligned reads. HierMAC with
incremental digests can operate on 256 byte blocks in parallel which reduces the critical
path and corresponding latency.

169

A network attached storage device has two core data rates: the network interface
data rate and the media data rate. In the best case, the storage device can service reads out
of cache and absorb writes, up to the limitations of its buffers, at full network data rates.
Eventually, write operations will be flushed to the media and some reads will not hit in the
cache. These data rates define the bounds of a range of security performance that are
interesting.

Clearly, faster is better but faster is also more expensive. I’ve shown that some
cryptographic support is not unreasonable in cost although the exact cost and performance
is dependent on the levels of integration and fabrication technologies. In simulation, I’ve
shown that, when providing full integrity to requests, filesystem workloads require
message digest support which achieves only 1/3 of the drive’s full duplex network
performance to service all requests with an average of less than 10% additional latency.

170

171

Chapter 8: Tamper Resistance

So far, I have emphasized a drive’s ability to both provide data, as part of a secure
application, and protect network communication. Using the basic design presented in
Chapter 4, a filemanager can enforce its policies over a drive while both the drive and cli-
ent cooperate to protect the integrity and/or privacy of communication. In this chapter, I
discuss how to defeat attacks by an adversary with physical access to the drive.

One approach is to use a secure facility and assume that an adversary will not gain
physical access to server machines or drives. Tamper-resistance technology offers an
alternative that allows devices to be secure without being behind locked doors. Past
research has demonstrated that tamper-resistant technologies can be used to provide a
trusted and secure processing environment within a normal workstation or
server [Weingart87, White87, Yee93, Yee95, Smith98]. Similar technology could be
applied to storage devices. However, tamper-resistance technology has not been examined
in the context of storage devices which require both high security and low cost as well as
having their own particular internal architectures.

If a storage device is tamper resistant, it can keep long term secrets. This allows it to
safely manage multiple keys, including keys used exclusively to encrypt data on the
media, while preventing an adversary from extracting the keys. Without tamper resistance,
an adversary with physical access to a device could extract its cryptographic keys and thus
the storage device encrypting data on the media would not add any security.

First, I describe the standard machine room approach to physical security. Next, I
present background information on tamper resistance and modern attack techniques. I also
show, at a high level, how the tamper-resistance technologies must be applied to a disk
drive to make it secure. Finally, I describe the advantages of having a storage device
encrypt data as it is written to the media.

172

8.1 Machine Rooms

The simplest way to prevent an adversary from gaining physical access to storage
devices is to keep them in a secure facility. In a secure server attached disk system, the
server machines are normally stored in a locked room which is continuously monitored by
either security personnel or system administrators. If an adversary attempts to tamper with
or steal a disk, she will hopefully be detected. If the machine room is small, the cost of
continuous monitoring and maintaining physical security will add a significant premium
to the storage system. But, if the machine room is large, it becomes easier for someone,
perhaps an employee authorized to be in the machine room, to slip in and steal or modify a
small storage device, e.g. a rack mounted disk drive, and escape before the loss is detected.
However, careful planning and a well defined access control policy for a machine room
can minimize this risk.

The small size of the drives makes them particularly susceptible to theft. Unlike a
workstation which, due to its size, is difficult to steal from a machine room, a drive that is
plugged into a network port can be easily hidden in a briefcase or backpack. A drive’s
portability implies the necessity for more careful monitoring than a site needs for server
machines in order to obtain comparable levels of security.

8.2 Tamper Resistance

The protection of a storage device’s cryptographic keys and all key-dependent
calculations is necessary to make strong assertions about the security of a NASD storage
system. If an adversary can physically access a storage device, she can probe the device
and extract the keys necessary to impersonate it as well as read all data stored on the
media. If the drive’s location has acceptable levels of physical security then the storage
system only needs secure protocols. But, if the location is not secure, such as in an office
or widely accessible machine room, then the device must provide some of the physical
protection.

For some environments, a physically secure device is more appealing because it
reduces the security assumptions to characteristics of the device and its management
rather than requiring a secure operating environment. By making security an attribute of
the storage device rather than of the environment, the drive can have high levels of security
despite being in an insecure environment. For example, a user may purchase a new storage
device and install it directly on the network in their office but still have it centrally
managed by a remote filemanager as part of a secure application. Because a user has a
sense of ownership for the device, she wants to have physical control of it rather than
contributing it to a machine room resource pool. Unfortunately, the office may accessible
by many people from facilities management staff to anyone who picks the office lock. A
tamper-resistant device would be safer in an environment than a device without any
physical protection. A second example is security of a device in transit between locations.

173

If the device does not provide for its own physical security, an adversary could tamper
with the device while it is being shipped between locations.

Over the last decade, there have been a variety of projects that investigated the issue
of physically secure processing. The �Abyss [Weingart87, White87] and
Citadel [White91] projects built physically secure boards for PCs that provided an
environment for secure computation. These boards allow some portion of an application to
run in an environment that could authenticate to a distributed application, because the
boards had an identity and cryptographic keys, and perform processing unobserved by an
adversary. In his thesis, Bennet Yee explores how to use secure coprocessors to build
secure distributed systems in a variety of different applications [Yee94]. All of this earlier
work has demonstrated that small tamper-resistant processing cores can serve as the basis
for complex and secure distributed applications. Later in this chapter, I will build on the
basic idea of tamper-resistant processing and show it can be used to build a secure NASD
without requiring the entire device be secure.

In recent years, several companies have introduced secure computing devices. IBM
built a product, the IBM 4758, which is directly descended from the Citadel and �Abyss
projects and costs $2,000 in single quantities [IBM99]. At the other end of the spectrum
are low-cost low-computational power smart cards such as the Schlumberger Cyberflex

which costs $16 [Schlumberger99]1. Compared to smart cards, secure coprocessors
normally have much higher degrees of tamper resistance and they are significantly more
expensive. In a NASD environment, a filemanager could be kept in an insecure facility if a
secure coprocessor was used to protect its cryptographic keys and generate access
credentials.

When discussing tamper resistance, the standard rubric for physical security is the

Federal Information Processing Standard 140-12 (FIPS-140-1), which defines four levels
of protection for cryptographic devices [FIPS140-1]. The FIPS criteria also characterizes
other attributes of the system, but the physical security is the aspect that I address in this
section. Levels one and two provide very little protection of a secure device thus are not
relevant to NASD. For physical security, a NASD drive could achieve level three by
simply packaging the processor, central ASIC, key memory, encryption, a message
authentication code, and key management logic in a hard opaque tamper-evident coating.
Level three only requires that the device be tamper-evident, i.e. an inspection of the device
will reveal it was tampered with, and makes it more difficult for an attacker to extract
secrets. This level of protection would probably stop a casual attacker but not a determined
technically adept attacker who didn’t care about after-the-fact detection.

FIPS level four requires the device to play an active role in protecting its secrets.
Level four requires tamper-response circuitry which zeroize, irretrievably erase, security

1. This is a high-end smart card that can implement a wide variety of algorithms. There are cheaper smart cards avail-
able which are little more than portable memory devices intended to replace magnetic stripe cards.

2. FIPS 140-1 is currently in a state of review and public comments are being accepted. Reports are that the criteria will
be updated and strengthened to include more recent security attacks such as timing and power [Tygar99]

174

critical state when tampering is detected. A battery backed RAM is normally used to store
security critical information because it is the easiest technology to quickly zeroize. When
tampering is detected, swift action must be taken to prevent RAM from being imprinted on
memory [Gutman96]. The “ crow-bar” technique, which shorts the power to ground, is an
effective method of high-speed erasing of RAM [Smith98].

Level four also requires the device to zeroize if environmental values, specifically
temperature and voltage levels, move outside of an acceptable range because extreme
conditions can be used to attack a secure device. The temperature floor prevents an
adversary from quickly cooling the device to stabilize RAM [Gutman96]. Voltage spikes
can also have a similar effect and imprint RAM with a value. Once imprinted, the attacker
can break through the physical barriers and recover the secrets from the RAM even if the
tamper-detection circuitry attempts to erase the data. Under normal conditions, the RAM
will be imprinted with a value stored for any length of time so the software should
repeatedly invert the values to prevent the keys from becoming imprinted in RAM. The
environmental requirements are also intended to prevent an adversary from using extreme
environments to induce faults in a secure device that may cause the device to release secret
information.

The downside of tamper resistance is its additional cost. The sensors required for the
environmental protection (thermoresistors, op-amps, resistors) in a level four device are
inexpensive standard components. However, a special-purpose physical barrier that can
prevent or detect a wide variety of physical attacks is very expensive to manufacture and it
uses proprietary technology. Steve Weingart, a leading tamper-resistance expert at IBM,
suggests that the cost of the physical barrier is one of the biggest components of current
tamper-resistant devices and, with proper interest from material science and chemical
engineering communities, more cost-effective and efficient solutions could be developed
within five years [Weingart99].

Recent work by Anderson and Kuhn has demonstrated a variety of low-cost attacks
against supposedly secure smart card devices that must be accounted for in any
implementation [Anderson96b, Anderson97]. They have successfully applied low-cost
attacks to tamper-resistant devices such as smart cards and set top boxes. Additionally,
they have employed microprobe technology, from cellular biology’s tool chest, and dry
etching techniques to extract information from tamper-resistant devices. They have shown
that transient glitches in power or clock signals are frequently missed by tamper detection
circuitry. These glitches can be used in a variety of differential fault analyses [Biham97].
In differential fault analysis, the adversary causes some loosely controlled faulty behavior
in a device, which enables the adversary to extract secrets from the device. These recent
advances in low-cost attack technology demonstrate that NASD require careful design and
active defense to counter even a low-budget educated adversary.

Paul Kocher et al. at Cryptography Research have shown that both
timing [Kocher96] and power consumption [Kocher98] leak enough information for an
attacker to recover the key given a few thousand samples. When the amount of time for
operations changes as a result of key values, an attacker can extract key information from

175

the amount of time encryption operations take. Kocher suggests that this risk can be
reduced by either making all operations constant time, thus sacrificing performance, or
introducing enough random noise to mask the signal being leaked. For the information
leaked by power consumption, Kocher et al. suggest that introducing noise into the power
signal or temporally decorrelating cryptographic operations can help control the rate of
information leaked. They also suggest that careful applications of existing cryptographic
algorithms or the design of new algorithms may also reduce information leaked through
power consumption.

For a tamper-resistant NASD drive, the minimal security boundary, shown in
Figure 8-1, includes microprocessor, key memory, encryption, message authentication
code, key management logic, buffer controller, tamper-detection circuity, and memory.
These functions are where all of the “thought” goes into requests. All key-dependent
calculations and defensive mechanisms are contained within this group of functions. A
minimum amount of memory must be included within the boundary to provide a
workspace for the drive’s security processing function to store data. However, the
workspace can be extended by crypto-paging data, using cryptography to protect data
stored in insecure memory, to a larger external memory [Yee94].

The functions outside of the minimal boundary are primarily communication
channels of the drive rather than logical processing elements. This includes the media,
motor controller, R/W channel, preamp and write driver, error-correcting control,
sequencer, servo controller, and SCSI interface. The media can be viewed as a
communication channel between the secure portion of the system and itself with a very

�Processor Key Memory

Message Authentication Code

Key Management Logic

Buffer ControllerMemory

Motor Controller

R/W Channel

Preamp & write driver

ECCSequencer

Servo

Network Interface

MediaMinimal Security Boundary

Figure 8-1 Minimal Security Boundary

The elements of the figure within the dotted frame are the security-critical components of
a modern disk drive. They are the processing and defensive portion of the NASD, and they
are also the minimum set of components that must be protected from tampering in order
for keys and key-dependent computation to be kept private. Components outside of the dot-
ted frame are not security critical and can be viewed more as communication mechanisms
rather than processing elements.

Spindle Driver

Encryption Tamper Detection

Battery

176

large latency. If the end points of a message exchange are secure, then they can construct a
secure channel despite an insecure communications channel.

To adapt the core drive ASIC of a Quantum Viking, called the Trident (shown earlier
in Figure 7-1 on page 144), to a secure version, the DRAM, microprocessor, tamper-
detection circuitry, cryptographically-enhanced Trident ASIC must be moved within the
security boundary as shown in Figure 8-2. Gibson et al. have suggested that next-
generation drive ASICs can integrate the microprocessor and cryptographic support onto a
Trident-like ASIC without increasing the die size [Gibson98]. In addition to this
functionality, only the tamper-detection circuitry must be integrated into the primary
ASIC.

Tamper resistance is not a cure-all for security. Availability, a critical concern for
storage devices, remains the same because an adversary can still destroy a storage device
or its connections to the network. Availability may even be slightly worse because the
tamper-detection circuitry and sensor’s failure mode is to zeroize critical secrets which
renders the device unusable. An application built on NASD devices with both high
availability constraints and security constrains would need to use RAID [Patterson88] or
equivalent technologies to build availability above the storage device layer.

�Processor

Key Memory

Encryption

Message Authentication Code

Key Management Logic

Buffer Controller

SRAMMotor Controller
R/W Channel

Preamp & write driverECC
SequencerServo

Network Interface

Media

Minimal Security Boundary

Figure 8-2 Security Boundary in a Viking Like Implementation

The components in the dashed box are a cryptographically-enhanced Trident ASIC, while
the components in the dotted box are those that must be physically protected in order for
the drive to provide a high degree of assurance to clients. Other combinations of drive
functions could be included in the security boundary as long as the minimal set depicted in
Figure 8-1 is included. This combination expands on a current disk drive’s level of inte-
gration but there is a wide range of alternatives.

DRAM

�Processor Interface
Spindle Driver

Enhanced Trident Like ASIC Tamper Detection

Battery

177

Past research has provided a good understanding of how tamper-resistant devices
can be built and applied in distributed systems. As a result, in part, of the work in the
research community, vendors have developed a variety of tamper-resistant devices. These
same technologies can be applied to a NASD device to reduce the physical security
assumption down to the tamper resistance of the drive’s core processing. This enables the
drive to participate as part of a secure distributed application independent of its physical
location.

8.3 Media Cryptography

Once we have some degree of physical security, we can provide increased data
security. The drive can encrypt data in the tamper-resistant core before it is stored on the
media. Applications are free to store encrypted data at the drive but encrypting the data at
the storage device enables better control of information. Additionally, placing encryption
support at the device level enables more efficient encryption through parallelism;
otherwise while the network may be safe, backups are unsafe.

Regardless of the physical security of a drive, an application can always store data
on a NASD in encrypted form, although this provides weaker security than if the device
handled encryption. The disadvantage of application-level encryption is that all the data
must be read and rewritten if someone’s access is revoked. The revokee may have read and
cached data; rewriting it at this point will not change what the revokee knows. However,
rewriting data will prevent future accesses to data which the revokee was entitled to access
but did not cache. Similarly, two clients with the appropriate read keys for a file can
observe exactly what the other is reading. By encrypting data as it goes over the network
as described in Section 4.4.4.2, the drive and client prevent adversaries from learning what
data is being read despite the fact that the adversary may be allowed to read the same data.
By encrypting at the media level and securely protecting the keys, the drive prevents an
adversary who gains physical access to the drive from also gaining access to all the data.
Good examples of application layer encryption and a discussion of many of the relevant
issues are Matt Blaze’s Cryptographic File System [Blaze93] and the Transparent
Cryptographic Filesystem Project at Universita di Saleron [Cattaneo99]. Jim Hughes at
StorageTek corporation is also working on a similar system called SFS which is intended
for distributed systems [Hughes98].

If data is stored and encrypted by the drive then an adversary with physical access to
the data will be unable to recover the data unless she can somehow acquire the necessary
cryptographic keys. If a drive uses active tamper resistance to protect keys, then an
adversary who attempts to breach the physical security will trip a sensor which will
zeroize the keys and effectively “erase” all the data. Since all the data is stored on the
media encrypted under a key which no longer exists, an adversary will need to break the
encryption system to retrieve any data.

178

A drive should use a value derived from one of the long-term keys, such as the
master or drive key, to protect stored data. A long-term key should be used because all data
must be read, decrypted, re-encrypted, and rewritten whenever the media data encryption
key changes so this should be an infrequent event. In order to limit the amount of data
encrypted with a single key available to an attacker and complicate an attack even when
the adversary can read the media, the long-term key should be combined with other
information, such as the disk block ID or object ID, in a one-way function, similar to the
technique employed in Section 4.3.2.2, to produce a unique media encryption key for each
disk block or object rather than using a single key for all stored data.

Without tamper resistance, the drive can’t keep a secret. However, the drive provides
an opportunity to increase the performance for an application-level security function,
which is similar to the more generic performance improvements from moving application
functions to the storage device [Riedel98a]. The NASD API could be extended to include
a client-specified MAC or encryption key on each operation that the drive uses to process
the request separately from the cryptography used for communications. For a client
operating in a secure environment, this allows the client to not perform cryptographic
operations, since communications are assumed secure, and still have data stored with an
application-layer MAC or encrypted. By slightly extending the NASD API, I have allowed
clients to use the parallelism of a large number of storage devices for function which
logically occur at the application level. Once the request is completed, the drive discards
the keys so the data can only be retrieved or verified with application level keys. The data
can safely be backed up and an adversary will neither be able to read the data, if it is
encrypted, nor modify the data, if it is MAC’d.

A tamper-resistant drive can prevent an adversary with access to the drive from
modifying stored data and remaining undetected. The drive uses the secrets protected in
the tamper-resistant core to generate a MAC of each disk block stored on the media. Just
as a MAC protects message from being modified by an attacker, a MAC can also protect
data on the media since the data is essentially a message from the drive and to the drive.

8.4 Chapter Summary

Tamper resistance offers an appealing alternative to continuously staffed and tightly
watched machine rooms. By reducing the security assumption to the tamper-resistance of
a device from the security of a machine room, it is easier to make assertions about the
security of the device.

Low levels, FIPS level 3 or less, of tamper resistance can be easily added to a NASD
to prevent the release of cryptographic keys and protect computations. FIPS level 4 is
possible although extremely expensive. Once a drive can be trusted to keep a secret, it can
encrypt data stored on the media which prevents an adversary from reading the data
without compromising the tamper resistance.

179

Chapter 9: Conclusion and Future Work

Network attached storage is already moving from a research vision and into
production. The synergy of several technology trends such as I/O bound applications, new
drive attachment technologies, rapidly increasing drive performance, convergence of
peripheral and interprocessor switch networks, and an excess of on-drive transistors is
making network attached storage a compelling architecture for high performance
commodity storage subsystems. When storage is promoted to a first-class network entity,
it is exposed to direct attacks over the network. At a high level, this dissertation describes
and analyzes a solution to network attached storage’s security problem.

Network attached storage’s security system must enable an application to control
access to remote storage in addition to protecting the integrity and/or privacy of data.
These security goals must be achieved without significantly diminishing the performance
advantages of network attached storage.While we would prefer all users to be benevolent
and computing environments to be safe, most environments have malicious adversaries,
both internal and external to an organization, who attempt to violate the application’s
security policy by reading, modifying, reordering, deleting or replaying network packets.
These are the types of attacks that NASD’s security system addresses.

I present a cryptographic capability security system which is general enough for
application specific filemanagers to efficiently enforce most security policies over their
storage. The security of the entire distributed system depends on assumptions about the
strength of the underlying cryptographic tools: cryptographic message digests, message
authentication codes, and encryption (only necessary to provide privacy), in addition to the
proper protection of cryptographic keys. This system enables filemanagers to
asynchronously make policy decisions that are synchronously enforced by the storage
devices on every operation. Further, the drive and client cooperate in protecting the
integrity and/or privacy of operations to meet filemanager requirements. The security
analysis of this design and the asynchronous involvement of the filemanager justify the
first part of my thesis statement:

A cryptographic capability system designed for a range of distributed
storage applications provides fundamental scalability because it enables
reuse of policy decisions and unmoderated, parallel interactions
between application and device.

180

Throughout the dissertation, I refined the basic security system design to increase
both performance (by evolving the basic design and adding hardware support) and security
(by adding tamper resistance). By moving from a capability system to a system based on
remote execution techniques, I reduced the number of client requests to the filemanager
which increases the filemanager’s scalability. Additionally, moving more function into the
drive enabled dynamic dependency checking and multiple object operations; features that
capabilities do not provide. The precomputation optimization reduces the amount of
computation necessary to protect integrity on read operations so a given set of hardware
can deliver more integrity protected bandwidth. In the CMU prototype, which is limited by
cryptographic bandwidth, these optimizations improve integrity protected read bandwidth
by a factor of 5 on large reads. Additionally, there is a wide variety of cryptographic
ASICs and logic cores which can be used to improve system performance at a small cost.
If the drive hardware can perform message digests at less than full duplex network data
rates but still deliver more than 1/3 of the network duplex data rate, then the clients will
see a less than 10% increase in latency on an average filesystem request. The
precomputation optimization experiments along with simulation of hardware requirements
support the second of my thesis claims:

Commodity storage devices can be designed to inexpensively provide
security and high bandwidth.

Furthermore, tamper-resistant hardware can provide stronger security guarantees
without requiring a secure facility for the storage devices.

Together, the preceding research makes the following contributions:

• An argument for the separation of policy and mechanism in a commodity network
attached storage system enforced by a cryptographic capability system,

• The basic design and implementation of a security system for network attached storage,
based on cryptographic capabilities,

• An understanding of the scalability advantages of aggregation mechanisms that move
more functionality to the storage device,

• A proposal to use precomputed hash values as the basis for a new message
authentication code structure,

• A demonstration of the performance advantage of the new message authentication code
structure,

• An understanding of the performance requirements for message authentication code
computation,

• An evaluation of available options for hardware support, and

• A high-level sketch of a NASD design based on tamper-resistant hardware.

This work describes the challenges that high-performance network attached storage
poses for security. I have presented a solution targeted at the commodity end of the
potential solutions emphasizing the low cost and limited capabilities of the storage device.

181

If these ideas are adopted and standardized across storage devices, secure commodity
network attached storage devices will be available for high-performance storage systems
that deliver greater throughput and scalability than current technology.

9.1 Future Work

As part of this research, I have surveyed the current commercially available
cryptographic chips and logic cores and argued that these components could be
successfully integrated into a storage device’s internal architecture. An obvious piece of
future work is to implement such a device. By integrating the security into the drive ASIC,
I could better understand the cost and performance implication of integrating
cryptography into a commodity embedded processing device.

Further, the simple basic capability system is designed to minimize the amount of
work that the storage device must perform. However, I have not evaluated the difficulty or
cost of implementing this functionality in a special purpose ASIC on the drive rather than
its processor. Storage devices have many fast-path optimizations for common case
operations or operations that can be serviced quickly, such as cache reads. Pushing the
capability system a step further and integrating it into the primary ASIC, perhaps in
conjunction with integrating the microprocessor, is the next step in validating the
assumption that a relatively simple security system is well suited for a high-performance
low-cost storage device.

Similarly, it would be useful to understand how the NASD ideas and NASD security
system can be implemented in a RAID controller. For example, early NASD devices may
be network attached RAID controllers sitting in front of an array of SCSI disks. At a high
level, ignoring fault tolerance issues, this is no different from a very large and very fast
disk. However, the internal architecture and the cost concerns are quite different between a
disk drive and a RAID controller. While both are high-performance, highly-optimized
devices, the RAID controller already has more functionality implemented than a simple
storage device and is less sensitive to cost. The most thorough way to investigate this
difference is to implement the NASD interface on an existing RAID controller.

While this thesis focuses on filesystems, it also explores some of the challenges of
implementing a database system on a network attached storage architecture. The
dissertation is limited by a lack of good database workloads and descriptions of their
behavior with respect to security policies. With better information on databases, both the
basic capability design and the remote execution based alternative could be analyzed for
these workloads and refined, along with the basic NASD interface, to better meet the
needs of database systems.

182

In Chapter 3, I discussed some of the implications of database security on NASD
systems. The simplicity of the capability system limits NASDs ability to handle to
complex data dependent access control decisions that a DBMS can make. However, the
remote execution solutions presented in Chapter 3 may be also make NASD into a better
target for a DBMS system with a rich security policy. By allowing the application to place
more of its functionality at the storage device, the application is empowered to make the
more complicated and potentially expensive access control needed for some databases.

My research has been based partially on traces collected from AFS and NFS
filesystems running in academic environments. Further studies including traces from non-
academic research environments as well as non-Unix based filesystems, such as CIFS,
would help strengthen the conclusions or identity the biases introduced by the workloads.

Similarly, it is important to understand how NASD systems will differ from SAD
systems. My results are based on a study of existing SAD systems and ports of SAD
systems to the NASD architecture. While I expect these are a good indicator of future
NASD systems, it is not clear that a system specifically developed to run on NASD, i.e. a
native NASD application, might behave somewhat differently or pose additional
requirements. Currently, there is an effort to develop a native NASD high-performance
filesystem within the Parallel Data Lab but it is still an open question of how its access
patterns and behavior will differ from the systems studied. Additionally, the workloads I
have studied are server workloads which I use to approximate a storage device’s workload.
A native application running on prototype NASDs will generate a true NASD workload
which can be contrasted to the server workload approximations.

Over the years of research culminating in this dissertation, I’ve seen the rapid
growth of both the internet and networked devices. You can now purchase a variety of
devices, such as cameras, disks, and displays, that plug into a network. I see a need for a
general purpose solution to security and access control for arbitrary commodity devices
that are simply plugged into the network with little or no configuration. Because these are
commodity devices, they share some qualities with NASDs. They all have relatively
simple interfaces and are designed with cost as an important factor. Using an
asynchronous control system, such as the one I have proposed for NASD, for other types
of devices would be useful for controlling the large array of network devices that will exist
in future homes and offices without requiring that each device be directly connected to a
server. However, the server must be able to define a policy that meets its specific needs and
the storage devices must enforce this policy over every operation which the NASD
architecture will enable.

183

Appendix A: GNY Analysis

Formal analysis techniques are tools to understand both the strengths and the
limitations of cryptographic protocols. Over the years, a wide variety of techniques have
been developed (a good survey of these techniques can be found in [Meadows95]). The
Burrows-Abadi-Needham (BAN) [Burrows90] logic is one of the most well known and
widely used analysis techniques due to its simplicity and utility. It is an example of a class
of techniques called logics of belief. A logic of belief allows you to reason about what
beliefs the principals, the parties involved in the protocol, should hold at different points in
the protocol.

A BAN analysis produces a list of logical steps that allow principals to rationally
hold a set of goal beliefs at the conclusion of the protocol and a set of initial beliefs that
the principals must hold in order for the steps to be applicable. The first step is to idealize
the protocol into a formal description which abstracts or eliminates some details in order
that the rules of the logic can be applied. The difference between the idealized version and
implemented version of a protocol is one of the most often cited criticisms of BAN-like
analysis techniques because the subtle nuances in the difference can allow a protocol to be
proved correct despite having serious flaws. However, when carefully done, the BAN logic
is a useful tool for understanding a cryptographic protocol.

All principals have an initial set of beliefs, in the case of NASD the principals are
drives, clients, and filemanagers. When a principal receives a message, the principal can
derive an additional set of beliefs based on the logic’s postulates. At the completion of the
protocol run, the principals should be able to arrive at a pre-determined conclusion. A
failure to reach the desired conclusion indicates a flaw in the protocol or that additional
assumptions are necessary.

As part of the idealization step, the BAN technique disregards all unencrypted
messages as “hints” that have no impact on the outcome of the protocol. A consequence of
this is that BAN is difficult to apply to NASD because NASD makes extensive use of
plaintext messages. These plaintext messages are significant to the protocol because they
are used as inputs to a message authentication code algorithm which both protects
integrity and generates cryptographic keys. Since BAN does not include message
authentication codes, BAN can discard plaintext messages but this makes it an
inappropriate tool for analyzing NASD.

184

It is not necessary to look far beyond BAN to find a logic of belief that includes
message authentication codes. The Gong-Needham-Yahalom (GNY) [Gong90] logic, a
close relative of BAN, includes support for a keying hash function, essentially message
authentication codes. GNY normally denotes the use of hash functions with a secret key S
as H(<S>,X) which I will replace with MACS(X) in order to be clearer and more consistent
with how I have described the NASD protocol. GNY also separates the notion of believing
a formula to be true and possessing a formula. This feature helps capture the implicit
communication of the private portion of the access credential without requiring that the
idealization make the communication explicit.

In this appendix, I use GNY to analyze the NASD protocol being used to protect the
integrity of an entire request. In order to analyze the NASD protocol, I also include a very
simple client-filemanager protocol to illustrate one way to achieve the necessary beliefs
for the client and drive to interact. The analysis illuminates the specific assumptions that
must be true for the protocol to be successful and correct. This includes assumptions about
timestamps and NASD’s implicit communication of keys. The analysis clearly
demonstrates the points where NASD reaches beyond scope of the analysis technique and
where assumptions should be examined in greater detail.

In the analysis, I will frequently refer to the logical postulates of GNY which are
fully documented in [Gong90]. In Section 9.2, I briefly introduce notation of GNY and
explain how I handle the anonymous clients, since clients are identified only by their
access rights, in the NASD analysis. In Section 9.4, I define the logical GNY postulates
that I use the analysis.

9.2 Notation

9.2.1 GNY Notation

Briefly, I introduce the notation used in GNY and a more detailed description with
examples is included in [Gong90]. GNY reasons about formulas, bit-strings with a
particular value in a protocol run, and principals, the communicating parties. Let X and Y
range over formulas and P and Q range over principals. GNY uses the following
statements:

• : P is told X. P either explicitly receives X or can directly compute X from a
message.

• : P possesses X. P knows the value of X and also the value of anything computable
from X.

• : P once conveyed X. At some point in the past, P said X.

• : P believes X is fresh. P believes, or is entitled to believe, that X has not been
used for the same purpose at any time before the current protocol run.

P X�

P X∋

P X|~

P # X()|K

185

• : P believes that X is recognizable. P would recognize a valid value of X
because of expected characteristics such as the structure of a public credential, the
structure of a timestamp, or redundancy in X. Primarily, this asserts that an adversary
can’t replace X with random garbage and have it go unnoticed.

• : P believes K is a suitable secret for P and Q. P believes that K is a
secret shared between P and Q. This means that K can be used as a secret for encrypting
or generating MAC’s of messages.

• : This specifies that the statement was not generated by the receiver in this run of the
protocol.

• : P believes Q has jurisdiction over C. P believes Q is an authority on C and
should be trusted on this matter.

• : X encrypted under key K. A principal who has key K will be able to both see and
possess X.

• : Y is an extension of X. In this message, Y is a precondition on the sender having
sent X. This is an expression of the belief of the sender and captures the protocol
requirements that a sender only send a message X if she holds a belief Y.

9.3 Anonymous Clients

GNY and other BAN-like formalisms handle named principals. In NASD, the
clients are anonymous from the perspective of the drive, a drive only knows that a request
came from someone holding a specific set of access rights, described by their public
access credential which was discussed in Section 4.2.2, and the drive is not aware of the
user’s true identity. I model the public credential, the description of access rights, as a
public function R of an object identifier I which captures the fact that anyone can generate
a public access credentials. Anyone can generate a public access credential describing a
specific set of rights, system security is a result of the ability of only authorized entities to
generate the associated private access credential. A client operating with a specific set of
rights is denoted as ClR(I) which acts as a name within the analysis. By overloading the
naming of clients, a drive can reason that a request came from a client with a specific set of
rights without reasoning about client identities. If a client accesses a drive with different
access credentials, the drive will perceive this as multiple unique clients.

P X()&|K

P P QK↔|K

*

P Q C⇒|K

X{ }K

X Y_

186

9.4 Logical Postulates Used

These are the exact postulates taken from [Gong90] and are included as a reference
for the reader.

9.4.1 Being Told Rules

9.4.1.1 T1

Being told a “not-originated-here” formula is a special case of being told a formula.

9.4.1.2 T2

Being told a formula implies being told each of its concatenated components.

9.4.1.3 T3

If a principal is told a formula encrypted with a key he possesses then he is
considered to have also been told the decrypted contents of that formula.

9.4.2 Possession Rules

9.4.2.1 P1

A principal is capable of possessing anything he is told.

P X�*
P X�

P X Y,()�

P X�

P X{ }K� P K∋,

P X�

--

P X�

P X∋

187

9.4.2.2 P2

If a principal possesses two formulae then he is capable of possessing the formula
constructed by concatenating the two formulate, as well as a computationally feasible
function F of them.

9.4.2.3 P3

If a principal possess a formula then he is capable of possessing a one-way
computationally feasible function of that formula.

9.4.3 Freshness Rules

9.4.3.1 F1

If P believes a formula X is fresh, then he is entitled to believe that any formula of
which X is a component is fresh, and that a computationally feasible one-to-one function F
of X is fresh.

P X∋ P Y∋,
P X Y(,)∋ P F X Y,()∋,

P X∋
P H X()∋

P # X()|K

P # X Y(,)|K P # F X()()|K,

188

9.4.4 Message Interpretation Rules

9.4.4.1 I1

Suppose that for a principal P all of the following conditions hold: (1) P receives a
formula consisting of X encrypted with a key K and marked with a not-originated-here
mark; (2) P possesses K; (3) P believes K is a suitable secret for himself and Q; (4) P
believes formula X is recognizable; (5) P believes that K is fresh or that X is fresh.

Then P is entitled to believe that (1) Q once conveyed X; (2) Q once conveyed the
formula X encrypted with K; (3) Q possesses K.

9.4.4.2 I3

Suppose that for a principal P all of the following conditions hold: (1) P receives a
formula consisting of a one-way function of X and S marked with a not-originated-here
mark; (2) P possesses S and X; (3) P believes S is a suitable secret for himself and Q; (4) P
believes that either S or X is fresh.

Then P is entitled to believe that (1) Q once conveyed the formula X concatenated
with S; (2) Q once conveyed the one-way function of X concatenated with S.

Note: In the NASD analysis H(X,S) is presented as MACS(X).

9.4.5 Jurisdiction Rules

9.4.5.1 J1

If P believes that Q is an authority on some statement C and that Q believes C, then
P ought to believe in C as well.

P X{ }K�* P K∋ P P Q
K↔|K P X()&|K P # X K,()|K, , , ,

P Q X|~()|K P Q X{ }K|~()|K P Q K∋|K, ,
--

P H X S(,)�* P X S(,)∋ P P Q
S↔|K P # X S(,)|K, , ,

P Q X S(,)|~()|K P Q H X S,()|~()|K,

P Q C⇒|K P Q C|K |K,
P C|K

--

189

9.4.5.2 J2

If P believes that Q is honest and competent, and P believes that Q believes that Q
believes in C, then P ought to believe that Q believes in C.

9.5 Analysis

The principals involved in the protocol:

• Fm filemanager

• Dr drive

• Cl a client interacting with the filemanager

• ClR(I) a client with the set of rights described by R(I)

The following well known functions are used in the protocol:

• F(T) A function of a timestamp that is used to generate a different value in a reply.
This allows the requestor to match requests and replies without the risk of an adversary
sending back the request in place of a reply.

• R(I) A function of an object identifier that produces a description of a set of access
rights. This function is used distinguish between clients based on access rights.

The following terms are also used in the protocol:

• I object identifier

• N nonce

• T timestamp

• KA,B a key shared between A and B

The protocol is:

1.

2.

3.

4.

P Q Q *|K⇒|K P Q Q C|K |K |K,
P Q C|K |K

Cl Fm→ Cl I N, ,:

Fm Cl→ R I() MACK R I()() N,{ , } KFmCl
:

Cl Dr→ R I() Request T MACMACK R I()〈 〉 Request T,〈 〉, , ,:

Dr Cl→ Reply F T〈 〉 MACMA CK R I()〈 〉 Reply F T〈 〉,〈 〉, ,:

190

The first pair of messages are a client obtaining an access credential from the
filemanager using an application specific, rather than NASD defined, protocol. This
exchange illustrates the minimal requirements for the filemanager and client to run a
NASD application. In a real system, this message may include application specific
mechanisms to authenticate the request from the client. The second pair of messages are
the client using the access credential to perform an operation on the drive using the NASD
interface.

When analyzing any protocol, the first question is: What is the goal of the protocol?
The ideal goal for NASD is for the drive to believe that the filemanager has authorized the
specific operation and the client to believe that the drive provided the appropriate reply.
However, the concept of “authorization” does not exist in GNY. Staying within the
confines of the logic, the goal is for the drive to believe that a client with an appropriate set
of rights, ClR(I), made the request and the client believes that the drive provided the reply.
This overloading of the names was described in Section 9.3. Secondly, I want to show that
the drive and client believe the messages they received are not replays.

Idealized into GNY-logic, the protocol is:

1.

2.

3.

4.

The analysis begins with the following assumptions:

Both the client and filemanager possess KClFm. Both the client and filemanager believe
they share a valid secret key shared with the other.

Both the drive and filemanager possess KDrFm. Both the drive and filemanager believe
they share a valid secret key shared with the other.

The client believes both the nonce and timestamp are fresh while the drive only believes

Fm * Cl * I * N, ,�

Cl * R I() Fm ClRI

MACK RI〈 〉
Dr MACK R I()(),↔|K_ N,

 
 
 

KClFm

�

Dr * R I() * Request* T * MACMACK RI〈 〉 Request T,(), , ,�

Cl * Reply * F T〈 〉 * MACMA CK R I()〈 〉 Reply F T〈 〉,〈 〉, ,�

Cl KClFm∋ Cl Cl Fm
KClFm↔|K

Fm KClF m∋ Fm Cl Fm
KClFm↔|K

Dr K DrFm∋ Dr Dr Fm
KDrFm↔|K

Fm KDrFm∋ Fm Dr Fm
KDrFm↔|K

Cl # N()|K Cl # T()|K Dr # T()|K

191

the timestamp is fresh. The drive believes that it can identify a valid timestamp generated
by the client. In a run of the protocol, the client and drive will use a protocol specific
mechanism, outside of the scope of GNY, to verify these assumptions. If the assumptions
fail, the client or drive should abort the protocol run.

The client is able to recognize a valid set of rights. A client can distinguish random
garbage from a reasonable set of access rights. This is reasonable since the client
specifically requests the rights and the rights have a very specific structure.

The client and the drive both believe the filemanager has jurisdiction over quality secrets
shared between the drive and any client with a specific set of access rights. These
assumptions capture the idea of a filemanager being authorized to issue access credentials.

The client and the drive both believe the filemanager is honest and competent.

Message 1: By T1 and P, I obtain . The filemanager now has the proper
nonce, N, to return in the reply and the proper object identifier, I, to generate a description
of the access rights that the client will accept.

Message 2: By T1 & T3, the client is able to decrypt the message and obtain it; it is
effectively told the message’s contents, i.e. .

Applying T2 and P1, the client possesses the contents of the message which include
the entire access credential, i.e. .

Applying F1, I obtain . The client believes the message is not
a replay. The client knows that this is not an attempt by an adversary to get the client to use
an old access credential and generate more MAC’d or encrypted text under an out-of-date
access credential key.

Applying I1, I obtain . And applying I7, I obtain
. The client believes the filemanager once conveyed this set of rights.

Applying J2, I obtain . Since a precondition of sending

message 2 is that the filemanager believe that the MAC is a valid key, when a client
receives a fresh message 2, the client assumes the filemanager believes the MAC is a valid

key. Applying J1, I obtain . The client now has a key that it can use

to act as ClR(I).

Cl RI()&|K

Cl Fm ClRI
DrK↔⇒|K Dr Fm ClRI

DrK↔⇒|K

Cl Fm Fm *|K⇒|K Dr Fm Fm *|K⇒|K

Fm Cl I N, ,()∋

Cl R I() MACK R I()() N, ,�

Cl MACK R I()() R I(),∋

Cl # R I() MACK R I()() N, ,()|KCl # R I() MACK R I()() N, ,()|K

Cl Fm R I() MACK R I()() N, ,|~|K

Cl Fm R I()|~|K

Cl Fm ClRI

MA CK RI〈 〉
Dr↔|K |K

Cl ClRI

MACK RI〈 〉
Dr↔|K

192

Message 3: Applying T1 and P1, I obtain .

The drive possesses the entire request.

By P2 & P4, I obtain . The drive has the appropriate key.

At this point, the analysis steps beyond the postulates in logics of belief like GNY.
GNY does not have a postulate to describe the non-standard belief in the use of a MAC for
access key derivation, which was discussed in Section 4.2.1. In order for the analysis to
continue, I formalize the drive’s belief in key derivation as:

The drive believes that the file manager believes that for any NASD ID the MACK(R(I)) is

a valid key. Now, by J1, I obtain . The drive believes that the MAC
is a valid key for a request from a client with rights R(I).

By I3 & I7, I obtain . The drive believes the client once made the
request.

By F1, I obtain . The request is not a replay.

The drive now concludes that the request is both valid and fresh so should be
processed. By valid, I mean the drive believes the request came from a client with the
rights described by R(I). Outside of the scope of the GNY analysis, the drive must
determine if R(I) enables Request. This check involves checking several NASD-specific
attributes of the request and rights description including the object IDs, byte-ranges,
access control version numbers, and list of allowd operations. If these checks fail, the drive
will halt the protocol run.

Message 4: By F1, I obtain . The reply is not a replay.

By T1 and P1, I obtain . The client possesses the message.

By I3 and I7, I obtain . The client believes the reply came from the
drive.

Based on an initial set of assumptions, I have shown why the drive is able to
conclude that the request came from a client with the specified rights. I have also shown
why the client can conclude the reply came from the drive. Both the client and drive can
conclude that the messages were fresh. As part of the analysis, I have formalized the
drive’s belief in the validity of the MAC as a key generator which is a necessary step
outside of the basic postulates of GNY.

Dr R I() Request T MACMACK R I()〈 〉 Request T,〈 〉, , ,∋

Dr MACK R I()()∋

Dr Fm I∀|K ClR I() Dr
MACK R I()()

↔,|K

Dr ClR I() Dr
MAC

K
R I()()

↔|K

Dr ClR I() Request|~|K

Dr # Request T,()|K

Cl # Reply F, T()()|K

Cl Reply F, T()()∋

Cl Dr Reply|~|K

193

References

[Amiri99] Amiri , K., Petrou, D., Ganger, G., and Gibson, G., Dynamic Function
Placement in Active Storage Clusters, School of Computer Science,
Carnegie Mellon University, Technical Report, CMU-CS-99-140,
June 1999.

[Anderson98] Anderson, D., Network Attached Storage Resarch,
www.nsic.org/nasd/meetings.html , March 1998.

[Anderson96a] Anderson, R. and Biham, E.“Tiger: A Fast New Hash Function,”
Proceedings of the Third International Workshop on Fast Software
Encryption, Lecture Notes in Computer Science Vol. 1039,
Springer-Verlag, 1996.

[Anderson96b] Anderson, R., Kuhn, M., “Tamper Resistance -- a Cautionary Note,”
Proeedings of the Second USENIX Workshop on Electronic Commerce,
November 1996, Oakland, CA, pp. 1-11.

[Anderson96c] Anderson, T., Dahlin M., Neefe, J., Patterson, D., Roselli, D., and
Wang, R., “Serverless Network File Systems,” ACM Transactions on
Computer Systems, Vol.14, No.1, February 1996.

[Anderson97] Anderson, R., and Kuhn, M., “Low Cost Attacks on Tamper Resistant
Devices,” Security Protocol Workshop ‘97, April 1997, Paris, France.

[ANSI85] Amercan National Standards Institute, “Financial institution message
authentication (wholesale),” ANSI X9.17-1985, American Bankers
Association, 1985.

[ANSI86] American National Standards Institute, “Small Computer Systems
Interface (SCSI) Specification,” ANSI X3.131-1986, 1986.

[Apple98] Apple Computer, “AppleTalk Filing Protocol Version 2.1 and 2.2,”
AppleShare IP 6.0 Developers Kit, 1998.

[Arnold98] Arnold, J. M., “Mapping the MD5 Hash Algorithm onto the NAPA
Architecture”, Proceedings of IEEE Symposium on FPGAs for Custom
Computing Machines, Napa Valley, California, April 1998,
pp. 267-268.

194

[Asic99] Asic International, Ai-SHA-1 Hash Function Core,
www.asicint.com/cores/sha-1.htm , January 1999.

[Baker91] Baker, M. G., Hartman, J. H., Kupfer, M. D., Shirriff, K. W.,
Ousterhout, J. K., “Measurements of a Distributed File System,”
Proceedings of the 13th ACM Symposium on Operating Systems
Principles, October 1991, pp. 198-212.

[Bellare94] Bellare, M., Goldreich, O., and Goldwasser, S., “Incremental
cryptography: the case of hashing and signing,” Advances in
Cryptology (CRYPTO 94), Lecture Notes in Computer Science Vol. 839,
Springer-Verlag, 1994.

[Bellare95] Bellare, M., Guerin, R., and Rogaway, P., “XOR MACs: New methods
for message authentication using finite pseudorandom functions”.
Advances in Cryptology (CRYPTO 95), Lecture Notes in Computer
Science Vol. 963, Springer-Verlag, 1995.

[Bellare96a] Bellare, M., Canetti, R., and Krawczyk, H., “Keying Hash Functions for
Message Authentication,” Advances in Cryptology (CRYPTO 96),
Lecture Notes in Computer Science Vol. 1109, 1996.

[Bellare96b] Bellare, M., Canetti, R., and Krawczyk, H.,”Pseudorandom functions
revisited: The cascade construction and its concrete security,” Extended
abstract in Proceedings of the 37th Annual Symposium on the
Foundations of Computer Science, IEEE, 1996.

[Bellare97a] Bellare, M., Desai, A., Jokipii, E. and Rogaway, P., “A Concrete
Security Treatment of Symmetric Encryption: Analysis of the DES
Modes of Operation,” Extended abstract in Proceedings of 38th Annual
Symposium on Foundations of Computer Science, IEEE, 1997.

[Bellare97b] Bellare, M., and Micciancio, D., “A New Paradigm for collision-free
hashing: Incrementality at reduced cost,” Advances in Cryptology
(EUROCRYPT 97), Lecture Notes in Computer Science Vol. 1233,
Springer-Verlag, 1997.

[Benner96] Benner, A. F., Fibre Channel: Gigabit Communications and I/O for
Computer Networks, McGraw Hill, 1996.

[Berendschot95] Berendschot, A., et al., “Integrity Primitivies for Secure Information
Systems. Final Report of RACE Integrity Primitives Evaluation
(RIPE-RACE 1040),” RIPE Integrity Primitives, Lecture Notes in
Computer Science Vol. 1007, Springer-Verlag, 1995.

[Bershad88] Bershad, B., and Pinkerton, C. B., “Watchdogs: Extending the UNIX
File System,” Proceedings of the Winter 1988 USENIX Conference,
Dallas, Texas, 1988, pp. 267-275.

195

[Biham97] Biham, E., and Shamir, A. “Differential Fault Analysis of Secret Key
Cryptosystems,” Advances in Cryptology (CRYPTO 97), Lecture Notes
in Computer Science Vol. 1294, 1997, pp. 513-525.

[Birrel80] Birrel, A. D., and Needham, R. M., “A Universal File Server,” IEEE
Transactions on Software Engineering, September 1980.

[Black99] Black, J., Halevi, S., Krawczyk, H., Krovetz, T., and Rogaway, P.,
“UMAC: Fast and Secure Message Authentication,” Proceedings of
CRYPTO 99, 1999.

[Blaze93] Blaze, M., “A Cryptographic File System for Unix,” Proceedings of the
First ACM Conference on Computer and Communications Security,
Fairfax, VA, ACM Press, November 1993.

[Blaze96] Blaze, M., Diffier, W., Rivest, R., Schneier, B., Shimomura, T.,
Thompson, E., and Wiener, M., Minimal Key Lengths for Symmetric
Ciphers to Provide Adequate Commercial Security,
www.counterpane.com/keylength.html , January 1996.

[Blum83] Blum, L., Blum, M., and Shub, M., “Comparison of two
pseudo-random number genertors,” Advances in Cryptology
(CRYPTO 83), Plenum Press, New York, pp. 61-78, 1984.

[Boden95] Boden, N.J., et al., Myrinet: A Gigabit-per-Second Local Area
Network, IEEE Micro, February 1995.

[Budiu99] Budiu, M., and Goldstein, S.C., Fast Compilation for Pipelined
Reconfigurable Fabrics, Proceedings of FPGA ‘99, 1999.

[Burrows90] Burrows, B., Abadi, M., and Needham, R. M., “A Logic of
Authentication.,” ACM Transactions on Computer Systems, Vol. 8,
No. 1, pp. 18-36, 1990.

[Cabrera91] Cabrera, L., and Long, D., Swift: Using Distributed Disk Striping to
Provide High I/O Data Rates, Computing Systems 4:4, Fall 1991.

[Callaghan95] Callaghan, B., Palowski, B., and Staubach, P., NFS Version 3 Protocol
Specifcation, Internet RFC 1813, June 1995.

[Cattaneo99] Cattaneo, G., Persiano, G., Transparent Cryptographic File System,
tcfs.dia.unisa.it, January 1999.

[Cao93] Cao, P., et al., The TickerTAIP Parallel RAID Architecture, ACM ISCA,
May 1993.

[Cirrus99] Cirrus Logic, Datasheet CL-SH8668: 3Ci Integrated ATA Drive
Electronics, www.cirrus.com/3ci , March 1999.

[Cox95] Cox, B., Tygar, J.D., Sirbu, M., “NetBill Security and Transaction
Protocol,” Proceedings of the First USENIX Workshop on Electronic
Commerce, July 1995, New York, New York.

196

[Dahlin94] Dahlin, M. et al., “Cooperative Caching: Using Remote Client Memory
to Improve File System Performance,” Proceedings of the First
USENIX Symposium on Operating Systems Design and
Implementation, pp. 267-280, November 1994.

[Daley65] Daley, R.C., and Neuman, P.G., “A General Purpose File System for
Secondary Storage,” Proceedings of AFIPS Fall Joint Computer
Conference, Vol. 27, Part 1, Washington, D. C., Spartan Books, 1965,
pp. 213-229.

[DEC93a] Digital Equipment Coroporation, OpenVMS System Manager’s
Manual: Essentials, Maynard, Mass., Digital Equiptment Corporation,
May 1993.

[DEC93b] Digital Equipment Corporation, OpenVMS VAX Guide to System
Security, Maynard, Mass., Digitial Equipment Corporation, May 1993.

[Dennis66] Dennis, J. B., Van Horn, E. C., “Programming Semantics for
Multiprogrammed Computations,” Communications of the ACM,
Vol. 9, No. 3, pp.143-155, March 1966.

[deJonge93] deJonge, W., Kaashoek, M.F., and Hsieh, W.C., “The Logical Disk: A
New Approach to Improving File Systems,” Proceedings of the 14th
ACM Symposium on Operating Systems Principles, December 1993.

[Diffie79] Diffie, W., and Hellman, M.E., “Privacy and Authentication: An
Introduction to Cryptography,” Proceedings of the IEEE, Volume 67,
No. 3, March 1979, pp. 397-427.

[Dobbertin96] Dobbertin, H.., “The Status of MD5 After a Recent Attack,” RSA Labs’
CryptoBytes, Vol. 2 No. 2,
www.rsa.com/rsalabs/pubs/cryptobytes.html,
Summer 1996.

[DoD85] Department of Defense, Department of Defense Trusted Computer
System Evaluation Criteria, DoD 5200.28-STD, December 1985.

[Drapeau94] Drapeau, A. L., et al., “RAID-II: A High-Bandwidth Network File
Server,” ACM ISCA, 1994.

[Eberle92] Eberle, H., “A High-Speed DES Implementation for Network
Applications,” Advances in Cryptology (CRYPTO 92), Lecture Notes in
Computer Science Vol. 740, Springer Verlag, pp. 521-539.

[EFF99] Electronic Frontier Foundation, “RSA Code-Breaking Contest Again
Won by Distributed.NET and Electronic Frontier Foundation (EFF),”
Press Release, January 19, 1999.

[Finley99] Finley, S., Cognitive Designs, Inc., Personal Communication,
January 1999.

197

[FIPS140-1] Federal Information Processing Standard, FIPS 140-1, Security
Requirements for Cryptographic Modules, January 1994.

[FIPS180-1] Federal Information Processing Standards, FIPS180-1, Secure Hash
Standard, April 1995.

[Frisch98] Frisch, A., Essential Windows NT System Administration, O’Reilly &
Associates, 1998.

[Garfinkle96] Garfinkle, S., and Spafford, G., Practical UNIX & Internet Security,
O’Reilly & Associates, Inc., 1996.

[Gibson92] Gibson, G., “Redundant Disk Arrays: Reliable, Parallel Secondary
Storage,” MIT press, 1992.

[Gibson96] Gibson, G., Nagle, D., Amiri, K., Chang, F., Feinberg, E., Gobioff, H.,
Lee, C., Ozceri, B., Riedel, E., and Rochberg, D., A Case for
Network-Attached Secure Disks, School of Computer Science, Carnegie
Mellon University, Technical Report CMU-CS-96-142, 1996.

[Gibson97a] Gibson, G., Nagle, D., Amiri, K., Chang, F., Feinberg, E., Gobioff, H.,
Lee, C., Ozceri, B., Riedel, E., Rochberg, D., and Zelenka, J., “File
Server Scaling with Network-Attached Secure Disks,” Proceedings of
the ACM International Conference on Measurement and Modelling of
Computer Systems, Seattle, WA, June 1997.

[Gibson97b] Gibson, G., Nagle, D., Amiri, K., Chang, F., Gobioff, H., Riedel, E.,
Rochberg, D., and Zelenka, J., Filesystems for Network-Attached
Secure Disks, School of Computer Science, Carnegie Mellon
University, Technical Report CMU-CS-97-118, 1997.

[Gibson98] Gibson, G., Nagle, D., Amiri, K., Butler, J., Chang, F., Gobioff, H.,
Hardin, C., Riedel, E., Rochberg, D., Zelenka, J. “A Cost-Effective,
High-Bandwidth Storage Architecture,” Proceedings of the 8th
Conference on Architectual Sypport for Programming Languages and
Operating Systems, 1998.

[Giganet98] Giganet GNN 1000, GNN 1000 Product Description,
www.giganet.com/products/GNN1000.html , 1998.

[Gheorghiu98] Gheorghiu, G., Ryutov, T., and Neuman, B. C., “Authorization for
Metacomputing applications,” Proceedings of the 7th IEEE
International Symposium on High Performance Distributed Computing,
Chicago, IL, July 1998.

[Goldberg96] Goldberg, I., and Wagner, D., “Randomness and the Netscape
Browser,” Dr. Dobbs Journal, January 1996.

[Goldreich86] Goldreich, O., Goldwasser, S., and Micali, S., “How to construct
random functions,” Journal of the ACM, Vol. 33, No. 4, 1986,
pp. 210-217.

198

[Gong90] Gong, L., Needham, R., and Yahalom, R., “Reasoning about Belief in
Cryptographic Protocols,” Proceedings of the IEEE Symposium on
Resesearch in Security and Privacy, Oakland, CA, May 1990,
pp. 234-248.

[Gong92] Gong, L., “A Security Risk of Depending on Synchronized Clocks,”
ACM Operating Systems Review, Vol. 26, No. 1, pp. 49-53,
January 1992.

[Gong93] Gong, L., “Variations on the Themes of Message Freshness and
Replay,” Proceedings of the IEEE Computer Security Foundations
Workshop VI, Franconia, New Hampshire, June, 1993, pp. 131-136.

[Gosling96] Gosling, J., Joy, B., and Steele, G., The Java Language Specification,
Addison-Weseley, 1996.

[Griffioen94] Griffioen, J., and Appletone, R., “Reducing File System Latency Using
a Predictive Approach,” Proceedings of the Summer 1994 USENIX
Conference, June 1994.

[Grochowski96] Grochowski, E., and Hoyt, R. F., “Future Trends in Hard Disk Drives,”
IEEE Transactions on Magnetics, Vol. 32, No 3., May, 1996.

[Guerro95] Guerrero, F., and Noras, J. M., “Customised Hardware Based on the
REDOC III Algorithm for High-Performance Date Ciphering,”
Proceedings of the International Workshop on Field-programmable
Logic and Applications, Augsust 1995.

[Gutman96] Gutman, P., “Secure Deletion of Data from Magnetic and Solid-State
Memory,” Proceedings of the Sixth USENIX Security Symposium,

July 1996.1

[Hartman93] Hartman, J.H., and Ousterhout, J.K., “The Zebra Striped Network File
System,” Proceedings of the 14th ACM Symposium on Operating
Systems Principles, December 1993.

[HiFn99] Hi/fn, Inc. HiFn, 7751 Encryption Processor Data Sheet, 1999.

[Hitz90] Hitz, D. et al., “Using UNIX as One Component of a Lightweight
Distributed Kernel for Multiprocessor File Servers,” Proceedings of the
Winter 1990 USENIX Conference, 1990.

[Hitz94] Hitz, D. et al., “File Systems Design for an NFS File Server
Appliance,” Proceedings of the Winter 1994 USENIX Conference,
1994.

1. Peter Gutmann is currently updating this paper to reflect newer technology. The reviser version
should be available in mid 1999. Consult his web page for more information:
www.cs.auckland.ac.nz/~pgut001

199

[Horst95] Horst, R.W., “TNet: A Reliable System Area Network,” IEEE Micro,
February 1995.

[Howard88] Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M.,
Sidebotham, R., and West, M., “Scale and Performance in a Distributed
File System,” ACM Transactions on Computer Systems, Vol. 6, No. 1,
Februrary 1988, pp. 51-81.

[Hughes98] Hughes, J., Information Security, Build Secure File Systems in an
Insecure Environment, Presentation at Carnegie Mellon University’s
System Design and Implementation Seminar, November 19, 1998.

[IBM99] IBM Corporation, IBM 4758 PCI Cryptographic Coprocessor,
www.ibm.com/security/cryptocards/ , January 1999.

[IBM97] IBM Corporation, Understanding SRAM Operations,
www.chips.ibm.com/products/memory/
sramoperations/sramop.pdf, March 1997.

[Intel97] Intel Corporation, Virtual Interface (VI) Architecture,
www.viarch.org , December 1997.

[Jaggar96] Jaggar, D., ARM Architecture Reference Manual, Prentice Hall, 1996.

[Jakobson98] Jakobson, M., Shriver, E., Hillyer, B. K., and Juels, A., “A Practical
Secure Phsyical Random Bit Generator,” Proceedings of the 5th ACM
Conference on Computer and Communications Security, November,
1998, San Francisco, pp. 103-111.

[Kaashoek96] Kaashoek, M. F., Engler, D. R., Ganger, G. R., and Wallach, D. A.,
“Server Operating Systems,” 1996 SIGOPS European Workshop.
Connemara, Ireland, 1996.

[Karger88] Karger, P. A., Improving Security and Performance for Capability
Systems, University of Cambridge Computer Laboratory Technical
Report No. 149, October 1988.

[Katz92] Katz, R. H., “High-Performance Network- and Channel-Attached
Storage,” Proceedings of the IEEE 80:8, August 1992.

[Kean98] Kean, T. and Duncan, A., “DES Key Breaking, Encryption, and
Decryption on the XC6216,” Proceedings of IEEE Symposium on
FPGAs for Custom Computing Machines, April 1998, Napa Valley,
California, pp. 310-311.

[Kelsey98] Kelsey, J., Schneier, B, Wagner, D, and Hall, C., “Cryptanalytic Attacks
on Pseudorandom Number Generators,” Proceedings of the Fifth
International Workshop on Fast Software Encryption, March 1998,
Sprinter-Verlag, pp. 168-188.

[Kim86] Kim, M. Y., “Synchronized disk interleaving,” IEEE Transactions on
Computers, C-35, 11 , November 1986.

200

[Kocher96] Kocher, P. “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” Avances in Cryptology (CRYPTO 96),
Lecture Notes in Computer Science Vol. 1109, 1996, pp. 104-113.

[Kocher98] Kocher, P., Jaffe, J., Jun, B., Introduction to Differential Power
Analaysis and Related Attacks,
www.cryptography.com/dpa/technical/index.html ,
1998.

[Lacy93] Lacy, J. B., Mitchell, D., and Schell, W. M., “CryptoLib: Cryptogaphy
in Software,” Proceedings of USENIX Security Symposium IV,
USENIX Association, 1993, pp. 237-246.

[Lam92] Lam, K.Y, and Beth, T., “Timely Authentication in Distributed
Systems,” Proceedings of the European Sympoium on Research in
Computer Science, Lecture Notes in Computer Science Vol. 648,
Springer Verlag, 1992, pp. 293-303.

[Lammers99] Lammers, D., “Cost crunch creates push for single-chip drive,”
EE Times Online, www.eet.com/story/industry/
semiconductor_news/ OEG1990531S0001, May 29, 1999.

[Leach97a] Leach, P., Implementing DFS, Presentation at Second Common Internet
File System Implementor’s Workshop,
www.cifs.com/2ndcifsconf/index.html , April 1997.

[Leach97b] Leach, P. J., and Naik, D. C., A Common Internet File System
(CIFS/1.0) Protocol - Internet-Draft Version 1,
ftp://ietf.org/internet-drafts/
draft-leach-cifs-v1-spec-01.txt , December 1997.

[Lee96] Lee, E. K., and Thekkath, C.A., “Petal: Distributed Virtual Disks,”
Proceedings of ACM Conference on Architectual Sypport for
Programming Languages and Operating Systems, October 1996.

[Luk97] Luk, W., Cheung, P. Y. K., and Glesner, M., “A case study of partially
evaluated hardware circuits: key-specific DES,” Proceedings of the 7th
International Workshop on Field-programmable Logic and
Applications, September 1997, London, U.K., pp.151-160.

[Madson98] Madson, C., and Glenn, R., The Use of HMAC-SHA-1-96 within ESP
and AH, Internet RFC 2404, November 1998.

[Maeda93] Maeda, C., and Bershad, B., “Protocol Service Decomposition for
High-Performance Networking,” Proceedings of the 14th ACM
Symposium on Operating Systems Principles, December 1993.

[Mann94] Mann, T., Birrell, A, Hisgen, A., Jerian, C., and Swart, G., “A Coherent
Distributed File Cache with Directory Write-Behind,” ACM
Transctions on Computer Systems, May 1994, pp. 123-164.

201

[Massigilia94] Massiglia, P., ed., The RAIDbook, RAID Advisory Board, 1994.

[Mazieres97] Mazieres, D. Security and Decentralized Control in the SFS Global File
System, MIT Master’s thesis, August 1997.

[McKusick84] McKusick, M.K. et al., “A Fast File System for UNIX” , ACM
Transactions on Computer Systems, August 1984.

[McCanne93] McCanne, S., and Jacobsen, V., “The BSD Packet Filter: A New
Architecture for User-Level Packet Capture.,” Proceedings of the 1993
Winter USENIX Conference, January 1993.

[Meadows95] Meadows, C., “Formal Verification of Cryptographic Protocols: A
Survey,” Advances in Cryptology (ASIACRYPT 94), Lecture Notes in
Computer Science Vol. 917, Springer-Verlag, 1995, pp. 133-150.

[Micciancio99] Micciancio, D., Personal Communication, January 21, 1999.

[Microsoft96a] Microsoft Corporation, Distributed File System: A Logical View of
Physical Storage, White Paper, 1996.

[Microsoft96b] Microsoft Corporation, Microsoft NT Distributed Security Services:
Secure Networking using Windows NT Server Distributed Services
Technology Preview, White Paper, 1996.

[Microsoft98] Microsoft Corporation, Microsoft Developers Network Web Pages,
msdn.microsoft.com/developer/, 1998.

[Miller88] Miller, S.W., “A Reference Model for Mass Storage Systems,”
Advances in Computers 27, 1988, pp. 157-210.

[Mittra97] Mittra, S., and Woo, T., “A Flow-Based Approach to Datagram
Security,” Proceedings of the ACM SIGCOMM ‘97, 1997.

[Menezes98] Menezes, A., van Oorschot, P., and Vanstone, S., Handbook of Applied
Crptography, CRC Press LLC, New York, 1998.

[Mummert94] Mummert, L., and Satyanarayanan, M., Long Term Distributed File
Reference Tracing: Implementation and Experience, School of
Computer Science, Carnegie Mellon University, Technical Report
CMU-CS-94-213, 1994.

[NCSC87] National Computer Security Center, A Guide to Understanding Audit in
Trusted Systems, NCSC-TG-001 Version 2, Fort Meade, MD,
July 1987.

[Necula96] Necula, G., and Lee, P., “Safe Kernel Extensions Without Run-Time
Checking,” Proceedings of the Second Symposium on Operating
System Design and Implementation, Seattle, Washington,
October 1996.

202

[Nelson88] Nelson, M.N., Welch, B.B., and Outsterhout, J.K., “Caching in the
Sprite Network File System,” ACM Transactions on Computer Systems,
Vol. 6, No. 1, February 1988.

[Neuman93a] Neuman, B. C. and Stubblebine, S. G., “A Note on the Use of
Timestamps as Nonces,” ACM Operating Systems Review, Vol. 27,
No. 2, pp. 10-14, April 1993.

[Neuman93b] Neuman, B. C., “Proxy-Based Authorization and Accouting for
Distributed Systems,” Proceedings of the 13th Intenrational
Conference on Distributed Computing Systems, pp. 283-291,
May 1993.

[Neuman94] Neuman, B. C., and Ts’o, T. “Kerberos: An Authenication Service for
Computer Networks”. IEEE Communications, Vol. 32, No. 9,
pp. 33-38. September 1994.

[NGIO99] Next Generation I/O Forum, “NGIO 1.0 specification,” July 1999.

[NIST94] National Institute of Standards and Technology, FIPS 186, Digital
Signature Standard, May 1994.

[NIST95] National Institute of Standards and Technology, FIPS 180-1, Secure
Hash Standard, April 1995.

[NIST98] National Institute of Standards and Technology, Advance Encryption
Standard Development Effort Webpage,
csrc.nist.gov/encryption/aes/aes_home.htm, 1998.

[NIST99] National Institute of Standards and Technology, FIPS 46-3, Data
Encryption Standard, Draft Standard, January 1999.

[NSIC96] National Storage Industry Consortium, Network Attached Storage
Devices Project, www.nsic.org/nasd , 1996.

[OceanLogic99] Ocean Logic Pty Ltd., DES core,
www.users.bigpond.com/oceanlogic/des.htm,
January 1999.

[Organick72] Organick, E., The Multics System: An Examination of Its Structure,
MIT Press, 1972.

[OSF91] Open Software Foundation, DCE Application Development Guide,
Revision 1.0, Cambridge, MA, 1991.

[Ousterhout85] Ousterhout, J., Da Costa, H., Harrison, D., Kunze, J., Kupfer, M., and
Thompson, J., “A Trace-Driven Analaysis of the UNIX 4.2 BSD File
System,” Proceedings of the 10th ACM Symposium on Operating
Systems Principles, December 1985.

203

[Ousterhout88] Ousterhout, J., Cherenson, A., Douglis, F., Nelson, M., and Welch, B.,
“The Sprite Network Operating System,” IEEE Computer, February
1988, pp. 23-36.

[Pai99] Pai, V. S., Druschel, P., and Zwaenepoel, W., “IO-Lite: A Unified I/O
Buffering and Caching System,” Proceedings of the Third Operating
System Design and Implementation Symposium, February 1999.

[Palmchip99] Palmchip Corporation, GreenLite IIp (HDD-1051-1.2) Data Sheet,
January 25, 1999.

[Patterson88] Patterson, et al., “A Case for Redundant Arrays of Inexpensive Disks
(RAID),” Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data, June 1988, pp. 109-116.

[Patterson95] Patterson, R. H., et al., “Informed Prefetching and Caching,”
Proceedings of the 15th ACM Symposium on Operating Systems
Principles, 1995.

[Poole97] Poole, L. Macworld Mac OS 8 Bible, IDG Books Worldwide Inc.
Foster City, CA, 1997

[Preneel95] Preneel, B. and van Oorschot, P. C., “MDx-MAC and building MACs
from hash functions,” Advances in Cryptology (CRYPTO 95), Lecture
Notes in Computer Science Vol. 963, Springer-Verlag, 1995, pp. 1-14.

[Preneel98] Preneel, B., Rijmen, V., and Boosselaers, A., “Principles and
performance of cryptographic algorithms,” Dr. Dobb’s Journal, Vol. 23,
No., 12, December 1998, pp. 126-131.

[Quantum99] Quantum Corporation, ThinkBIGGER White Paper,
www.quantum.com/src/whitepapers/think_bigger ,
1999.

[Rabin89] Rabin, M., and Tygar, J.D., “ITOSS: An Integrated Toolkit for
Operating System Security,” Proceedings of Third Internatonal
Conference on the Foundations of Data Organization and Algorithms,
Lecture Notes in Computer Science Vol. 367, Springer-Verlag, 1989.

[Ramakrishnan98] Ramakrishnan, R., Database Management Systems, McGraw-Hill,
1998.

[Reed99] Reed, B., Chron, E., Long, D., and Burns, R., “Authenticating Network
Attached Storage,” To appear: Proceedings of Hot Interconnections ‘99,
1999.

[Reiher93] Reiher, P., Page, T., Popek, G., Cook, J., and Croker, S., “Truffles -
Secure Filesharing for Widespread File Sharing,” Proceedings of the
Privacy and Security Research Group Workshop on Network and
Distributed System Security, February 1993.

204

[Riedel96] Riedel, E., and Gibson, G., “Understanding Customer Dissatisfaction
with Underutilized Distributed File Servers,” Proceedings of the Fifth
NASA Goddard Space Flight Center Conference on Mass Storage
Systems and Technologies. College Park, MD. September 1996.

[Riedel98a] Riedel, E., Gibson, G., and Faloutsos, C., “Active Storage for
Large-Scale Data Mining and Multimedia,” Proceedings of the 24th
International Conference on Very Large Databases, New York, NY,
August 1998.

[Riedel98b] Riedel, E., van Ingen, Catharine, and Gray, J., “A Performance Study of
Sequental I/O on Windows NT,” Proceedings of the Second Usenix
Windows NT Symposium. Seattle, WA, August 1998.

[Rivest91] Rivest, R. “The MD4 Message Digest Algorithm,” Advances in
Cryptology (CRYPTO 90), Lecture Notes in Computer Science Vol. 537,
Springer-Verlag, 1991, pp. 303-311.

[Rivest92] Rivest, R., The Message-Digest Algorithm, Internet RFC 1321,
April 1992.

[Rummler91] Rummler, C., and Wilkes, J., Disk Shuffling, Hewlett-Packard
Laboratories Concurrent Systems Project, Technical Report
HPL-CSP-91-30, 1991.

[Rutstein97] Rutstein, C. B., National Computer Security Association Guide to
Windows NT Security: A Practical Guide to Securing Windows NT
Servers and Workstations, McGraw-Hill, New Yrok, 1997.

[Ryutov98] Ryutov, T., and Neuman, B. C., Access Control Framework for
Distributed Applications, Internet Draft, CAT Working Group, 1998.

[Sachs94] Sachs, M.W. et al.,“LAN and I/O Convergence: A Survey of the Issue,”
IEEE Computer, December 1994.

[Sandberg85] Sandberg, R. et al., “Design and Implementation of the Sun Network
Filesystem,” Proceedings of the Summer 1985 USENIX Conference,
June 1985, pp. 119-130.

[Satyanarayanan89] Satyanarayanan, M., “Integrating Security in a Large Distributed
System,” ACM Transaction on Computer Systems, Aug. 1989, Vol. 7,
No. 3, pp. 247-280.

[Schlosser98] Schlosser, S., and Schmidt, B., Personal Communication, December
1998.

[Schlumberger99] Schlumberger Corporation, Cyberflex Product Page,
www.cyberflex.com , January 1999.

[Schneier96] Schneier, B., Applied Cryptography, John Wiley & Sons, Inc., 1996.

205

[Schneier97] Schneier, B., and Whiting, D., “Fast Software Encryption: Designing
Encryption Algorithms for Optimal Software Speed on the Intel
Pentium Processor,” Proceedings of the Fourth International Workshop
on Fast Software Encryption, Springer-Verlag, 1997, pp. 242-259.

[Schneier99] Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., and
Ferguson, N., Performance Comparison of the AES Submissions,
Version 1.4a, www.counterpane.com , January 1999.

[Schmit97] Schmit, H., “Incremental Reconfiguration for Pipelined Applications,”
Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines, 1997, pp. 47-55.

[Schuba97] Schuba, C., Krsul, I., Kuhn, M., Spafford, E., Sundaram, A., and
Zamboni, D., “Analysis of a Denial of Service Attack on TCP,”
Proceedings of the IEEE Symposium on Security and Privacy , 1997,
Oakland, CA

[Seagate98] Seagate Corporation, Storage Networking: The Evolution of
Information Management,
www.seagate.com/corp/vpr/literature/papers/
storage_net.shtml , 1998.

[Seagate99a] Seagate Corporation, Online Product Listing - Disk Drives,
www.seagate.com/cda/disc/guide/ , 1999.

[Seagate99b] Seagate Corporation, Jini: A Pathway for Intelligent Network Storage,
www.seagate.com/corp/vpr/literature/papers/
jini.shtml , 1999.

[Sheldon96] Sheldon, T., Netware 4.1: The Complete Reference, Second Edition,
Osborne McGraw-Hill, Berkeley, California, 1996.

[SICAN99] SICAN Microelectornics Corporation, www.sican.com , January
1999.

[Sidhu90] Sidhu, G. S., Andrews, R. F., and Oppenheimer, A. B., Inside
AppleTalk, Second Edition, Addison-Wesley, New York, 1990.

[Siemens97] Siemens, TriCore News Release: Siemen’s New 32-bit Embedded Chip
Architecture Enables Next Level of Performance in Real-Time
Electronics Design, www.tri-core.com , September 1997.

[Smith98] Smith, S. and Weingart, S., “Building a High-Performance,
Programmable Secure Coprocesor”. IBM Research Report RC 21102,
February 1998.

[SNIA98] Storage Networking Industry Association, www.snia.org , 1998.

[Stamos84] Stamos, J. W., “Static Grouping of Small Objects to Enhance
Performance of a Paged Virtual Memory,” ACM Transactions on
Computer Systems, Vol. 2, No. 2, pp. 155-180, 1984.

206

[Steen96] Steen, W., and Bierer, D., NetWare Security, New Riders Publishing,
Indianapolis, Indiana, 1996.

[STK94] Storage Technology Corporation, “Iceberg 9200 Storage System:
Introduction,” STK Part Number 307406101, Storage Technology
Corporation, 1994.

[Sun88a] Sun Microsystems, Inc. RPC: Remote Procedure Call Protocol
Specification, Internet RFC 1050, April 1988.

[Sun88b] Sun Microsystems, Inc. RPC: Remote Procedure Call Protocol
Specification Version 2, Internet RFC 1057, June 1988.

[Sun89] Sun Microsystems, Inc., NFS: Network File Systems Protocol
Specification, Internet RFC 1094, March 1989.

[Sun97] Sun Microsystems, Inc. ONC+ Developer’s Guide,
docs.sun.com/ab2/coll.45.4/ONCDG/
@Ab2TocView/1363 , 1997.

[TPC98] Transaction Performance Council, TPC-C Executive Summaries,
www.tpc.org , May 1998.

[Tanenbaum86] Tanenbaum, A. S., Mullender, S. J., and van Renesse, R., “Using Sparse
Capabilities in a Distributed System,” Proceedings of the Sixth
International Conference on Distributed Computing, 1986,
pp. 558-563.

[Thekkath97] Thekkath, C., et al., “Frangipani: A Scalable Distributed File System,”
Proceedings of the 16th ACM Symposium on Operating Systems
Principles, October 1997, pp. 224-237.

[Transarc91] Transarc Corporatiom, AFS: Programmer’s Rerference Manual,
October 1991.

[Transarc92] Transarc Corporation, AFS: System Administrator’s Guide, July 1992.

[Tygar99] Tygar, J. D., Personal Communication.

[vanMeter96] van Meter, R., Hotz, S., and Finn, G., “Derived Virtual Devices: A
Secure Distributed File System Mechanism,” Proceedings of the Fifth
NASA Goddard Space Flight Center Conference on Mass Storage
Systems and Technologies, September 1996.

[vanPelt99] van Pelt, P., Marketing Manager, Pijinenburg Custom Chips B.V.,
Personal Communications, January 1999.

[Varma95] Varma, A., and Jacobson, Q., “Destage Algorithms for Disk Arrays
with Non-Volatile Caches,” 22nd ISCA, 1995.

207

[vonEicken95] von Eicken, T., Basu, A., Buch, V. and Vogels, W. “U-Net: A
User-Level Network Interface for Parallel and Distributed Computing,”
Proceedings of the 15th ACM Symposium on Operating Systems
Principles, December 1995.

[VLSI99] VLSI Technology,VLSI 115 Datasheet Version 2.0, January 1999.

[Wahbe93] Wahbe, R., Lucoo, S., Anderson, T.E., and Graham, S.L., “Efficient
software-based fault isolation,” Proceedings of the 14th ACM
Symposium on Operating Systems Principles, December 1993,
pp. 203-216.

[Wania99] Wania, X., President & CEO Xentec Inc., www.xentec-inc.com ,
Personal Communication, January 1999.

[Webster85] Webster, A., and Tavares, S., “On the design of S-boxes,” Advances in
Cryptology (EUROCRYPT ‘95), Lecture Notes in Computer Science
Vol. 750, pp. 575-586, 1995.

[Weingart99] Weingart, S. H., Personal Communication, January 1999.

[Weingart87] Weingart, S. H., “Physical security for the �Abyss system”.
Proceedings of the IEEE Computer Science Conference on Security and
Privacy, pp. 52-58, 1987.

[Whites87] White, S. R., and Comerford, L., “ABYSS: A trusted architecture for
software protection”. Proceedings of the IEEE Computer Society
Conference on Security and Privacy, pp. 38-51, 1987.

[White91] White, S. R, Weingart, S. H., Arnold, W. C., and Palmer, E. R.,
Introduction to the Citadel arcihtecture: Security in physically exposed
environments, Distributed security system group, IBM Thomas J.
Watson Research Center, Technical Report RC16672 March 1991.

[Wilkes92] Wilkes, J. Hamlyn - An Interface for Sender-based Communications,
Hewlett-Packard Laboratories Technical Report HPL-OSR-92-13,
November 1992.

[Wilkes95] Wilkes, J., et al., “The HP AutoRAID Hierarchical Storage System,”
Proceedings of the 15th ACM Symposium on Operating Systems
Principles, December 1995.

[Wolfe99] Wolfe, A., “Sun’s Jini completes for post-PC paydirt,” EE Times
Online, www.eet.com/story/OEG19990122S0011 , January
26, 1999.

[Yee95] Yee, B., and Tygar, J. D., “Secure Coprocessors in Electronic
Commerce Applications,” Proceedings of the First USENIX Workshop
on Electronic Commerce, New York, New York, July 1995.

208

[Yee94] Yee, B., Using Secure Coprocessors, Ph.D. Thesis, School of Computer
Science, Carnegie Mellon University, Technical Report
CMU-CS-94-149, 1994.

[Zimmerman95] Zimmerman, P., The Official PGP User’s Guide, MIT Press, 1995.

