
A Symbiotic Relationship Between Formal Methods

and Security

Jeannette M. Wing

December 1998

CMU-CS-98-188

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This paper will appear in an edited volume resulting from the series of two workshops held in 1998, spon-

sored by the ONR and NSF, entitled Workshops on Computer Security, Fault Tolerance, and Software

Assurance: From Needs to Solution.

Abstract

Security played a signi�cant role in the development of formal methods in the 70s and early 80s. Have
the tables turned? Are formal methods now ready to play a signi�cant role in the development of more
secure systems? While not a panacea, the answer is yes, formal methods can and should play such a
role. In this paper I �rst review the limits of formal methods. Then after a brief historical excursion, I
summarize some recent results on how model checking and theorem proving tools revealed new and known
aws in authentication protocols. Looking to the future I discuss the challenges and opportunities for formal
methods in analyzing the security of systems, above and beyond the protocol level.

This research is sponsored in part by the Defense Advanced Research Projects Agency and the Wright Laboratory,

Aeronautical Systems Center, Air Force Materiel Command, USAF, F33615-93-1-1330, and Rome Laboratory, Air

Force Materiel Command, USAF, under agreement number F30602-97-2-0031 and in part by the National Science

Foundation under Grant No. CCR-9523972. The U.S. Government is authorized to reproduce and distribute reprints

for Governmental purposes notwithstanding any copyright annotation thereon. The views and conclusions contained

herein are those of the author and should not be interpreted as necessarily representing the o�cial policies or

endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency Rome Laboratory or

the U.S. Government.



Keywords: formal methods, speci�cation, veri�cation, model checking, theorem proving, security, au-
thentication, electronic commerce.



1 Introduction

Formal methods owes much to the security community. In the United States, the National Security Agency
was a major source of funding in the 70s and early 80s for formalmethods research and development. Results
included the development of formal security models, tools for reasoning about security, and applications of
these tools to proving systems secure. Security provided a challenging research application for the formal
methods community.

The burgeoning use of the Internet brings security now to the attention of the masses. The success of
Amazon.com Inc. and the like suggests that people trust sending their credit card numbers over the wire.
People are, however, justi�ably hesitant to send their mother's maiden name to an electronic banking system
when asked for it on-line. Simultaneous with the increasing desire to perform transactions over the Internet
is the maturation of key (pun intended) technology. For example, public-key encryption is no longer an
academic exercise. We have fortuitously come to a balancing point between a need and a solution: People
are more willing today to pay the price for increased security.

Are formal methods part of this maturing technology? With respect to security, what problems can
formal methods help to solve? What problems will formal methods never help to solve?

In an attempt to answer these questions, the remainder of this paper �rst delimits the bounds of formal
methods, and then reviews briey the historical role of the security community in the early development of
formal methods1; summarizes recent results in the use of formal methods tools for reasoning about security
protocols; and discusses directions for the future role of formal methods applied to security.

2 The Limits of Formal Methods

2.1 What Formal Methods Cannot Do

It is axiomatic that systems will never be made 100% secure. Formal methods will not break that axiom.
Moreover, substitute the word \proven" for \made" in the previous sentence, and we have a corollary. It
would be foolish for anyone in formalmethods to stand up and say \I can prove your system is 100% secure."
Why?

Systems do not run in isolation; they operate in some environment. The formal speci�cation of a system
must always include the assumptions one makes about the system's environment. A proof of correctness is
valid only when these assumptions hold. So, if any assumption is violated, all bets are o�. Indeed, to break
into a system, clever intruders �nd out how to violate these assumptions.

Moreover, even if one were careful to state these assumptions explicitly, which is often impractical, there
would inevitably be conditions missed. And, even if one were comprehensive about stating these assumptions,
which is always impracticable, a system could very well be deployed in an environment for which it was not
originally designed, perhaps for convenience or lack of an alternative.

These remarks are not particular to security; they apply in general to the process of verifying a system
meets its speci�cation.

It is also axiomatic that the more secure one wants a system to be the more one must be willing to pay.
This truth implies that security itself is not an either/or property. If you add more locks to your door, you
make it harder for someone to break into your house. More locks means more secure.

Requiring passwords, using biometrics, encrypting data, signing messages, setting �le access control bits,
using �rewalls, sandboxing, managing a private network, running secure coprocessors, or hiring a guard are
just examples of the collection of \locks" one can use to make a system more secure. In practice, security is
a combination of many properties, including data integrity, privacy, entity identi�cation, message authenti-
cation, and accountability. Some of these properties are also not either/or, but measured in terms of degree.
Also, depending on the application or the user's end goal, some properties will be more important than
others. One property may even conict with another, or achieving one may make it harder to achieve an-
other. For example, both anonymity and accountability are desired properties of electronic payment systems.

1This paper does not do justice to either the history of security research or the history of formal methods; rather it focuses

on the intersection of the two and even so, only sketchily.

1



Achieving some security properties may conict with achieving other system goals. Requiring passwords for
access conicts with convenience; using a public-key encryption scheme conicts with performance.

2.2 What Formal Methods Can Do

Formal methods can help us

� Delimit the system's boundary: the interface between the system and its environment.

� Characterize a system's behavior more precisely. Most current methods focus on functional behavior
only (What is the correct answer?) but some can handle real-time behavior too (Is the correct answer
delivered on time?).

� De�ne the system's desired properties precisely.

� Prove a system meets its speci�cation. Some methods, by providing counterexamples like intruder
scenarios, can also tell us under what circumstances a system does not meet its speci�cation.

These capabilities of formal methods help the practitioner in two ways:

� Through speci�cation, focusing the system designer's attention. What is the interface? What are one's
assumptions about the system's environment? What is the system supposed to do under this condition
or that condition? What happens if that condition is not met? What are the system's invariant
properties?

� Through veri�cation, providing additional assurance. Relying on a proof that a system meets its
security goals is better than relying on a gut feeling.

It should be emphasized that any proof of correctness is relative to both the formal speci�cation of the
system and the formal speci�cation of the desired properties. A system \proven correct" with respect to an
\incorrect" speci�cation leaves us with no assurance about the system at all. Finally, there will always be
a gap between what is in a person's head and the �rst codi�cation of the system or desired property. No
amount of formalization will eliminate this gap.

3 Past

The early formal methods research funded directly by the National Security Agency, or indirectly through
the National Computer Security Center (NCSC), centered on proving systems secure.

Addressing the question of what securemeans, researchers de�ned models and policies to express Lampson-
style [26] access rights of subjects to objects. This work led to the Bell-LaPadula No-Read-Up and No-Write-
Down secrecy model [3], the Biba No-Read-Down and No-Write-Up integrity model [5], and the less formal
Clark-Wilson integrity model based on a set of nine rules of practice [11]. The Bell-LaPadula model in
particular gained notoriety when McLean introduced System Z, which satis�es Bell-LaPadula properties but
is clearly insecure [29].

The systems of interest to prove secure were operating systems. More speci�cally, kernels. Given that
one cannot prove an entire system secure, better to try to prove a small piece of it. Trust the kernel and
nothing else. This approach emphasized the importance of the reference monitor concept: the functionality
of the operating system that mediates access by subjects to objects. For example, a user-level process should
not have access to the kernel-level stack.

The formal methods community played a fundamental role in eshing out what proving means. The
process of proving entails three parts (not necessarily done in this order): First, one must state the property of
the system to prove, as expressed explicitly in a formal speci�cation. In the security context, this speci�cation
might simply be a list of properties such as the so-called *-property (No-Write-Down) of the Bell-LaPadula
model. Second, one must model the system so that one can formally prove the property. This mathematical
model might be a semantic structure like a state machine or a syntactic structure like a logical expression.
Third, the proof. Typically, the proof might rely on induction over traces of the state machine model or it

2



might rely on deduction to show that an implication holds (SystemModel ) SystemProperty). The proof
might be discovered automatically by the machine or require interactive guidance from the human user.
Formal veri�cation is the process of proving, by hand or machine, that the model of the system satis�es the
formal speci�cation. In practice, most theorem proving tools are more like proof checkers; they di�er in the
amount of human intervention needed to check the proof.

One of the most inuential documents of the time, produced by the NCSC, is the U.S. Trusted Computer
System Evaluation Criteria, better known as \The Orange Book" [10]. Amoroso [2] summarizes its goals:

� To provide a standard metric for the NCSC to compare the security of di�erent computer systems.

� To guide computer system vendors in the design and development of secure systems.

� To provide a means for specifying security requirements in Government contracts.

In particular for a system to be certi�ed A.1 according to the Orange Book means that one formally
specify the system's security requirements, formally model the system, and formally prove that the model
meets its speci�cation.

In this context, the major results of the early 80s by the formal methods community in the United States,
in particular those funded heavily by the security community, were in the development of theorem proving
tools. To get one's system certi�ed A.1, one would use one of these tools to produce the proof.

In fact, these tools were general-purpose theorem provers; they were applied to examples from the security
arena, but were applicable in general to all kinds of systems. By 1986, in Kemmerer's landmark Veri�cation
Assessment Study [23], four tools were the most mature, known, or used:

� A�rm, developed at the University of Southern California's Information Sciences Institute, best known
for its support for reasoning about equational speci�cations, in particular through its implementation
of the Knuth-Bendix completion procedure.

� The Formal Development Methodology (FDM) System, developed at System Development Corpora-
tion's Santa Monica Research Center, best known for its support for a non-deterministic state machine
model and the Ina Jo speci�cation language.

� Gypsy, developed at the Institute for Computing Science at the University of Texas at Austin, best
known for its support for program veri�cation of a subset of Pascal, including a veri�cation condition
generator.

� (Enhanced) Hierarchical Development Methodology (HDM), developed at Stanford Research Inter-
national's Computer Science Laboratory, best known for its SPECIAL speci�cation language and its
collection of decision procedures for propositional logic as the heart of its theorem prover.

The general-purpose Boyer-Moore theorem prover [8], also developed during the same time period, was
representative of the state of the art in automated theorem proving tools and was applied to many examples,
notably the \CLInc Stack" [4].

A few researchers developed tools speci�c to reasoning about security. The two best known examples are
the Interrogator [33] and the NRL Protocol Analyzer [31]. With both of these tools, one speci�es an insecure
state and the tool searches backwards to determine whether that state is reachable. The Interrogator is based
on Prolog, does an exhaustive search (and hence is fully automatic), and has a built-in notion of encryption.
The NRL Protocol Analyzer's search is less automatic. It is based on Dolev and Yao's pioneering work
on an algebraic term rewriting model for two-party cryptographic protocols [14]. Meadows used the NRL
Protocol Analyzer to discover previously unknown aws in the Simmons Selective Broadcast Protocol and
the Burns-Mitchell Resource Sharing Protocol. Kemmerer, Meadows, and Millen's [22] paper summarizes the
strengths and weaknesses of FDM, the NRL Protocol Analyzer, and the Interrogator, using the Tatebayeshi-
Matsuzaki-Newman (TMN) protocol as the common running example.

In 1990, Burrows, Abadi, and Needham published their work on a Logic of Authentication (aka the BAN
Logic) [9], a formal logic designed speci�cally to reason about authentication protocols. The logic's main
construct allows one to reason in terms of belief, and in particular the beliefs a principal accumulates during

3



the run of a protocol. One kind of belief a principal might acquire is about the freshness of messages, e.g.,
through the freshness of message components such as nonces. The lack of proof that a message is fresh
suggests a possible replay attack|a well-known vulnerability of the original Needham-Schroeder symmetric-
key protocol. The BAN work attracted both praise and criticism. It inspired some to de�ne their own belief
logics, e.g., the GNY (Gong, Needham, and Yahalom) logic [16], the SVO (Syverson and van Oorschot)
logic [39], and AUTLOG [24]. Unlike the aforementioned general-purpose tools, BAN and its derivatives
focused on only authentication protocols, and except for AUTLOG [24], lack tool support. Despite these
limitations, the BAN Logic's inuence was positive overall: it demonstrates that formal logics have a role in
revealing aws in an important class of security protocols.

One of the criticisms against the original BAN paper was the absence of a semantic model. Solving
this problem led to the de�nition of various state-machine semantic models for authentication protocols,
including Abadi and Tuttle's [1], Woo and Lam's [40], and Heintze and Tygar's [18]. Woo and Lam also
introduced the need to check not just for secrecy, but also correspondence, a property that assures that the
authenticating principal is indeed \talking" to the intended authenticated principal.

In their comprehensive 1993 survey report, Rubin and Honeyman [38] use Meadows's four-type classi�-
cation scheme [30] to categorize twenty-seven di�erent formal approaches to the analysis of authentication
protocols. The four types are (1) using general-purpose speci�cation languages and tools, e.g., Ina Jo; (2)
using special-purpose rule-based tools, e.g., the Interrogator, to help the protocol designer; (3) using belief
logics, e.g., BAN; and (4) using special-purpose algebraic-based tools, e.g., the NRL Protocol Analyzer.

Two international meetings caused the formal methods and security communities to cross paths: the
FM'89 [13] and FM'91 workshops, sponsored by the governments of the United States, Canada, and the
United Kingdom (in particular by the National Security Agency and its Canadian and UK counterparts).
The focus in FM'89 was on the role of formal methods for trustworthy computer systems. Here, trustworthy
meant not just security but also safety-critical. The main outcome was the recognition of two di�erent styles
of formal methods:

� The UK and European style: The focus was on speci�cation, on the system's high-level design, and on
paper-and-pencil analysis.

� The US and Canadian style: The focus was on veri�cation, from the system's high-level design through
its code-level implementation down to its bit-level representation in hardware (the \CLInc Stack"
approach), and on machine-assisted analysis.

Debate over which style was better subsided by FM'91 where instead there was consensus to embrace
all methods, to acknowledge that tools are necessary, and to direct the community's e�ort to producing
more convincing case studies. Another outcome of FM'91 (for the US at least) was the move of mainstream
formal methods research out from under the shadow of the security agencies, witnessed by the absence of
subsequent workshops sponsored by those three agencies.

4 Present

Since the early 90s the formal methods community has experienced an explosion of new developments: new
methods, new tools, and countless large-scaled projects and non-trivial case studies.2 Clarke and Wing
capture the state of the art in their 1996 ACM Computing Surveys paper detailing the progress of three
threads in the development of formal methods: model checking, theorem proving, and software speci�cation.
Model checking, in particular, is a proven success for hardware veri�cation; companies such as Intel are
establishing their own hardware veri�cation groups, building their own veri�cation systems, and hiring
people trained in formal methods.

In 1996 another convergence of the two communities occurred. Lowe [27] used Roscoe's model checker,
FDR, to exhibit a aw in the Needham-Schroeder public-key authentication protocol, �rst published eighteen
years earlier. Lowe actually discovered the aw on his own, but used the tool to check both the awed and

2As of 22 December 1998, the Oxford Formal Methods Web page http://www.comlab.ox.ac.uk/archive/formal-methods/

lists 76 di�erent formal methods notations and tools, and 648 \formal methodists".

4



the amended protocols. This paper started a urry of activity in (1) the use of other model checkers to show
the same thing, (2) the use of other tools and techniques to show the same thing, and (3) the application of
all these tools to other authentication protocols and to simpli�ed electronic commerce protocols. Here is a
sampling:

� Model checking approaches

{ Mitchell, Mitchell and Stern [34] use Dill's Mur� model checker (originally designed for hardware
veri�cation) on the Needham-Schroeder public-key, TMN, and Kerberos protocols. Current e�orts
at Stanford are aimed at specifying and verifying SSL 3.0.

{ Marrero, Clarke, and Jha [28] describe a special-purpose model checker, Brutus, which has a built-
in model of an intruder. It has direct support for checking correspondence properties. Marrero
used it to verify �fteen classic authentication protocols and is currently applying it to examine
electronic commerce protocols, including 1KP, 2KP, and Netbill.

{ Heintze, Tygar, Wing, and Wong [19] used FDR to check atomicity properties of Netbill and a
simple digital cash protocol.

� Theorem proving approaches

{ Paulson used a general-purpose theorem prover, Isabelle, to show how to use induction to reason
about �ve classic authentication protocols and their variations [37].

{ Dutertre and Schneider embed CSP in the general-purpose theorem prover PVS and used the
embedding to verify authentication protocols [15].

{ Bolignano used the general-purpose theorem prover, Coq, to analyze the Needham-Schroeder
public-key protocol [6] and is investigating its use for analyzing electronic commerce standards
like the Secure Electronic Transaction (SET) protocol [7].

� Hybrid approaches

{ Meadows has recently made improvements to the NRL Protocol Analyzer so that it should best be
viewed as special-purpose tool that embodies both model checking (e.g., brute force search) and
theorem proving (e.g., lemma generation) functionality. She is currently applying it to analyze
the Internet Key Exchange protocol [32] and the SET protocol.

{ Kindred and Wing [25] invented a new technique, called theory generation, which automatically
generates a �nite representation of a protocol's theory, as represented in terms of BAN-like formu-
lae. Kindred has applied this approach to the classic set of authentication protocols and variants
of the NetBill electronic payment protocol.

The common theme in almost all of the above recent work is the demonstration of how formal methods
can be applied to authentication protocols, particularly Needham-Schroeder's public-key protocol. Indeed
at the September 1997 DIMACS Workshop of Cryptographic Protocol Design and Veri�cation many of the
speakers presented how their method reveals the aw discovered by Lowe.

In June 1998, Heintze and Wing [20] ran the well-attended Workshop on Formal Methods and Security
Protocols and there are numerous similar workshops scheduled for 1999 worldwide. The interest in the
intersection of these two communities remains unabated.

The motivation from the formal methods community is clear: security still remains a challenge. The
motivation from the security community is strong too. More and more people place their trust in computing
systems today for doing everything from casual shopping to medical recordkeeping; and more and more
systems are built out of commercial-o�-the-shelf components. It is no longer just the government, the
military, or the universities who are the purchasers, users, or conveyors of large, complex computing systems.
Thus, system designers and implementers are more willing to pay the price for increasing the assurance that
their systems are secure. Formal methods can provide such increased assurance.

5



crypto

applications

systems and languages

protocols

Figure 1: System Layers

crypto

applications

systems and languages

protocols

Figure 2: Security Guarantees

5 Future

5.1 The Practice of Building Secure Systems

Figure 1 depicts how we build secure systems. We �rst and foremost rely on a solid cryptographic base.
Out of these primitives for encryption, decryption, signatures, hashing, etc., we de�ne protocols such as for
authentication and key-exchange, and we rely on standard reliable network protocols like TCP/IP. We rely
on these protocols to build security services, some of which we use on a daily basis; for example, I invoke
Kerberos's kinit every morning to access my �les stored remotely. All of these protocols and system services
are implemented in general-purpose programming languages such as C or Java. Finally, above the systems
and languages level, we have applications which are what the public sees and uses. These applications
include on-line shopping, banking, bill payment, and tax forms submission, all of which should provide some
guarantees of privacy and protection to the user.

Ironically, the \strength" of what we can guarantee is inversely proportional to the \size" of the layer
(Figure 2). There are fundamental and deep results in cryptography that tell us precisely what we can
guarantee, what we cannot, and what is still an open question (e.g., the equivalence of the RSA problem
and factoring). At the protocol level we have a handful of formal methods, even mechanized ones, that let
us provide some guarantees about authentication protocols. At the system/protocol layer, we have protocols
like SSL and SHTTP, which provide minimal encryption and authentication functionality for setting up
secure channels. At the systems and languages layer, commercial technology such as Authenticode, Active
X, Java, and JavaScript provide varying degrees of security, but are subject to widely publicized attacks
such as denial of service and spoo�ng. At the application layer, in terms of security guarantees, we don't
have very much at all. What then are the challenges for the future?

5.2 Challenges and Opportunities for Formal Methods Researchers

Below I use N to indicate near-term research; L, long-term.
First, I focus on the protocol level (N). If a protocol has a design aw, it does not matter if the imple-

mentation is correct. The protocol is vulnerable to attack. We know that protocols are notoriously di�cult

6



to get right and the more complex a protocol, the harder it is to understand. Good progress has been made
in proving or disproving that individual protocols meet certain properties. Progress has also been made in
using di�erent mechanized methods like model checking and theorem proving to help with the proof process.
This work should continue, as should the more general work of building and integrating formal methods
tools and applying them to larger and larger systems.

With respect to security, however, I would like to move the formal methods community to look beyond
the protocol level.

� Multiple protocols

{ Protocol composition (L). We expect in practice that more and more people will be designing and
deploying their own protocols by using existing protocols as building blocks. We should design
new and integrated protocols with compositionality in mind. By composition, I mean running
protocols interleaved (concurrently), sequentially (back-to-back), and layered (as subprotocols of
each other).

In general we need all composition mechanisms to work together. For example, authentication
requires using encryption as a subprotocol; digital cash requires a blind signature scheme; and
the SET standard relies on a public-key infrastructure.

Some newly discovered attacks arise because of multiple, interleaved runs of the same or di�erent
protocols. For example, the correctness of the separate runs of two protocols does not imply the
correctness of a system where an intruder can participate in both runs at the same time. We
need to look at multiple, simultaneous, and possibly interleaved runs of the same and di�erent

protocols.

� Systems and language level

{ Program analysis tools (N). Even if the protocol design is correct, the implementation could be
awed. Many of the Computer Emergency Response Team (CERT) advisories can be traced to
a bu�er overow problem, e.g., resulting from using the unsafe strcpy C library string routine.
From the CERT report the following are given as examples of \weaknesses in how protocols and
software are implemented" [12]:

� race conditions in �le access

� non-existent checking of data content and size

� non-existent checking for success or failure

� inability to adapt to resource exhaustion

� incomplete checking of operating environment

� inappropriate use of system calls

� re-use of software modules for purposes other than their intended ones

We should develop program analysis tools that will help us detect these kinds of weaknesses in
the software implementations of protocols and systems. Work such as applying program slicing
to do a vulnerability analysis of TCP/IP [17] is a step in this direction.

{ Certi�ed library components (N). As more and more systems are built out of o�-the-shelf com-
ponents, it pays to have additional assurance that the components have been certi�ed to meet
some degree of security. Since these building blocks will be used multiple times and in di�erent
contexts, the cost of certifying them could be amortized over the overall cost of developing the
systems in which they are embedded.

These library components might be in hardware too. A milestone was recently achieved when
the IBM 4758 PCI Cryptographic Coprocessor, which provides a tamper-sensing and tamper-
responding environment to enable secure electronic business transactions, earned the highest cer-
ti�cation for commercial security awarded by the US Government. It is the �rst product to ever
meet the Federal Information Processing Standard 140-1 Level 4 [21].

7



{ Benchmark suite (N). It would be a great service to the community to have a benchmark suite of
intruder scenarios that can be used as a testbed for designing, analyzing, and debugging existing
and future protocols and systems. These benchmarks can be used as test cases against source
code as well as test cases for formal methods analysis tools.

{ Programming language design (L). Language designers should investigate incorporating into the
programming language more \type" information that would permit some security guarantees to
be statically enforced or dynamically checked. Myers's work on JFlow for statically analyzing
ow control [35] is one approach based on additional annotations to Java programs. Another
approach by Necula and Lee is to use proof-carrying code, allowing clients to execute untrusted
remote code safely [36].

� Applications level

{ Case studies (N). We should do large-scale examples to show the applicability and scalability of
our formal methods. Current studies of the SSL, IKE, and SET standards are good examples.
Moreover, formalizing a standard has a higher payo� than formalizing a single system. This work
takes time, e�ort, and people power; it also can be extremely tedious. Thus, the case studies need
to be chosen wisely; when completed, the targets of these studies must still be relevant.

� Horizontal and vertical slices (N, L)

{ Global properties. At each level and above all levels, we need to reconsider global security prop-
erties of systems. We need to understand which properties can be decomposed such that local
proofs imply they hold globally, and which do not. We may need new proof techniques to handle
global properties that cannot be decomposed.

{ Intruder models. We need to build a suite of intruder models, each class representing di�erent
intruder capabilities (passive, active, etc.). Some intruder models may be protocol-speci�c; others,
more generic. As the taxonomy of protocols of interest expands, e.g., to include electronic payment
protocols and secure auction protocols, so must our models of intruders.

{ Crossing abstraction boundaries. We need to look at slices that cut across the four levels depicted
in Figure 1, tracing a property or function from an application at the top all the way down to
how it is implemented at the cryptographic level. We should pay particular attention to when we
are crossing boundaries between the levels since interfaces often do not match at the boundaries.

Even beyond these layers and slices, we need to take a more holistic view of a system. Again, from the
CERT report:

Vulnerabilities in the category of system and network con�gurations are not caused by prob-
lems inherent in protocols or software programs. Rather, the vulnerabilities are a result of the
way these components are set up and used. Products may be delivered with default settings
that intruders can exploit. System administrators and users may neglect to change the default
settings, or they may simply set up their system to operate in a way that leaves the network
vulnerable.

An example of a faulty con�guration that has been exploited is anonymous File Transfer
Protocol (FTP) service. Secure con�guration guidelines for this service stress the need to ensure
that the password �le, archive tree, and ancillary software are separate from the rest of the
operating system, and that the operating system cannot be reached from this staging area. When
sites miscon�gure their anonymous FTP archives, unauthorized users can get authentication
information and use it to compromise the system.

Thus, we see that it is not enough to look at just the system or even the system and its intended operating
environment. Formal methods need to be integrated with other methods that can address issues|some of
which are beyond the scope of formalization|raised by examples like the one above. These analyses include
risk analysis, hazard analysis, fault analysis, and intrusion detection analysis. Formal methods also need

8



to be better integrated into the entire software development lifecycle such as during requirements analysis,
testing, and simulation.

Finally, we must introduce the human factor, which in principle is part of the system's environment.
Human factors cannot be neglected. Research in modeling human behavior, human-computer interaction,
and management of processes and organizations can all complement the more formal nature of research of
formal methdos.

Acknowledgments

Opinions expressed in this paper are my own, not of any of my sponsors or even necessarily of any of my
formal methods or security colleagues.

References

[1] M. Abadi and M. Tuttle. A semantics for a logic of authentication. In Proceedings of the 10th ACM

Symposium on Principles of Distributed Computing, pages 201{216, August 1991.

[2] E. Amoroso. Fundamentals of Computer Security Technology. AT&T Bell Laboratories, 1994.

[3] D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations. Technical Report
ESD-TR-73-278, The MITRE Corporation, Bedford, MA, 1973.

[4] W.R. Bevier, W.A. Hunt, Jr., J S. Moore, and W.D. Young. An approach to systems veri�cation.
Journal of Automated Reasoning, 5:411{428, 1989. See also three other articles in the same issue by
Young, Moore, and Hunt.

[5] K. Biba. Integrity considerations for secure computer systems. Technical Report MTR-3153, The
MITRE Corporation, Bedford, MA, 1975.

[6] D. Bolignano. An approach to the formal veri�cation of cryptographic protocols. In Proceedings of the

Third ACM Conference on Computer and Communications Security, pages 106{118. ACM Press, 1996.

[7] D. Bolignano. Towards the formal veri�cation of electronic commerce protocols. In Proceedings of the

Tenth IEEE Computer Security Foundations Workshop, June 1997.

[8] R. Boyer and J. Moore. A Computational Logic. ACM monograph series. Academic Press, New York,
1979.

[9] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Transactions on Computer

Systems, 8(1):18{36, February 1990.

[10] National Computer Security Center. Department of Defense Trusted Computer Security Evaluation
Criteria. Technical Report DoD 5200.28-STD, NCSC, 1985.

[11] D. Clark and D. Wilson. A comparison of commercial and military computer security policies. In IEEE

Symposium on Security and Privacy, 1987.

[12] Computer Emergency Response Team Coordination Center Sta�. Security of the internet. In Encyclo-

pedia of Telecommunications, 1997.

[13] D. Craigen and K. Summerskill. Formal Methods for Trustworthy Computer Systems (FM89). Springer-
Verlag, 1990. Workshops in Computing Series.

[14] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information

Theory, 29(2):198{208, March 1989.

[15] B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authentication protocols. In
Theorem Proving in Higher Order Logics, pages 121{136, August 1997. LNCS 1275.

9



[16] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic protocols. In Pro-

ceedings of the 1990 IEEE Computer Society Symposium on Research in Security and Privacy, pages
234{248, May 1990.

[17] B. Guha and B. Mukherjee. Network security via reverse engineering of TCP code: Vulnerability
analysis and proposed solutions. In Proc. IEEE Infocom'96, pages 603{610, San Francisco, CA, March
1996.

[18] N. Heintze and J. Tygar. A model for secure protocols and their compositions. IEEE Transactions on

Software Engineering, 22(1):16{30, January 1996.

[19] N. Heintze, J. Tygar, J. Wing, and H. Wong. Model checking electronic commerce protocols. In
Proceedings of the Second USENIX Workshop in Electronic Commerce, pages 147{164, November 1996.

[20] N. Heintze and J.M. Wing. Proceedings of the workshop on formal methods and security protocols.
URL: http://cm.bell-labs.com/cm/cs/who/nch/fmsp/index.html, June 1998.

[21] IBM. IBM Coprocessor First to Earn Highest Security Validation.
http://www.ibm.com/security/cryptocards/html/pr �ps.html.

[22] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol analysis. Journal
of Cryptology, 7(2):79{130, 1994.

[23] R.A. Kemmerer. Veri�cation assessment study �nal report. Technical Report C3-CR01-86, National
Computer Security Center, Ft. George G. Meade, MD, March 1986. Five volumes.

[24] V. Kessler and G. Wedel. AUTLOG|an advanced logic of authentication. In Proceedings of the

Computer Security Foundations Workshop VII, pages 90{99. IEEE Comput. Soc., June 1994.

[25] D. Kindred and J. Wing. Fast, automatic checking of security protocols. In USENIX 2nd Workshop on

Electronic Commerce, 1996.

[26] B. Lampson. Protection. In Proceedings of the Fifth Princeton Symposium on Information Sciences and

Systems, 1971. Reprinted in ACMU Operating Systems Review, Vol. 8, 1974.

[27] G. Lowe. Breaking and �xing the Needham-Schroeder public-key protocol using FDR. In Tools and

Algorithms for the Construction and Analysis of Systems, volume 1055 of Lecture Notes in Computer

Science, pages 147{166. Springer-Verlag, 1996.

[28] Will Marrero, Edmund Clarke, and Somesh Jha. A model checker for authentication protocols. In Proc.

of the DIMACS Workshop on Design and Formal Veri�cation of Security Protocols. DIMACS Rutgers
University, September 1997.

[29] J. McLean. A Comment on the Basic Security Theorem of Bell and LaPadula. Information Processing

Letters, 20, 1985.

[30] C. Meadows. Applying formal methods to the analysis of a key management protocol. Journal of

Computer Security, 1:5{53, 1992.

[31] C. Meadows. The NRL Protocol Analyzer: An Overview. Journal of Logic Programming, pages 113{131,
1996.

[32] C. Meadows. Analysis of the Internet Key Exchange Protocol Using the NRL Protocol Analyzer.
submitted to 1999 Securitye and Privacy, 1998.

[33] J.K. Millen, S.C. Clark, and S.B. Freedman. The Interrogator: Protocol Security Analysis. IEEE Trans.

on Soft. Eng., 13(2), February 1987.

[34] J. Mitchell, M. Mitchell, and U. Stern. Automated Analysis of Cryptographic Protocols Using Murphi.
In Proceedings of the IEEE Conference on Secuirty and Privacy, pages 141{151, 1997.

10



[35] A. Myers. JFlow: Practical Static InformationFlow Control. In Proceedings of the 26th ACM Symposium

on Principles of Programming Languages, January 1999.

[36] G. Necula and P. Lee. Safe Kernel Extensions Without Run-Time Checking. In Proc. of Second Symp.

on Operations Systems Design and Implementation, October 1996.

[37] Lawrence C. Paulson. Proving properties of security protocols by induction. Technical report, University
of Cambridge, December 1996.

[38] A Rubin and P Honeyman. Formal methods for the analysis of authentication protocols. Technical
Report 93{97, CITI, November 1993.

[39] P. Syverson and P. van Oorschot. On unifying some cryptographic protocol logics. In Proceedings of

the 1994 IEEE Computer Society Symposium on Research in Security and Privacy. IEEE Computer
Society Press, May 1994.

[40] T. Woo and S. Lam. A semantic model for authentication protocols. In Proceedings of the IEEE

Symposium on Research in Security and Privacy, 1993.

11


