
Automatic Program Specialization for
Interactive Media

Scott Draves

July 22, 1997
CMU-CS-97-159

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:

Peter Lee, Chair
William Scherlis

Andy Witkin
Olivier Danvy

c1997 Scott Draves

This research was sponsored in part by the Defense Advanced Research Projects Agency
CSTO under the title “The Fox Project: Advanced Languages for Systems Software,” ARPA Or-
der No. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050. The views and
conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

Keywords: Compiler generation, Partial evaluation, Bit-addressing, Signal
processing

Abstract

This dissertation introduces and analyzes techniques for writing programs that
manipulate interactive media. By “media” I mean audio, images, and video flow-
ing through a personal computer. By “interactive” I mean that there is an impatient
and unpredictable user who produces and consumes this media. Historically, such
systems that provide low latency and remain highly flexible have been rare and
difficult to build. I propose treating media systems as programming languages
and bringing the techniques of semantics-based program transformation to bear.
One part of this solution is the use of compiler generation as an interface to run-
time code generation.

The idea is to useautomatic specializationto convert flexible programs into
fast programs. This idea has already been developed by the partial evaluation com-
munity. In order to make it work better with media, I extend the known techniques
for specialization with partially static integers and equality constraints. I demon-
strate the effectiveness of these techniques by using a prototype implementation
to benchmark kernels such as wave-table audio synthesis and color-to-grayscale
conversion.

ii

Contents

1 Introduction 1
1.1 Trade-offs . 5
1.2 Specialization . 7
1.3 History . 10
1.4 Contributions . 11
1.5 Applications and the Future . 13

2 Specialization 17
2.1 Products and Sums . 21
2.2 Lifting . 22
2.3 Recursion and Memoization . 25
2.4 Compiler Generation . 29
2.5 Summary . 30

3 Bit-addressing 31
3.1 Cyclic Integers . 34

3.1.1 Multiple Signals . 38
3.1.2 Irregular Data Layout . 39

3.2 Sharing and Caching . 40
3.3 Normalization . 42
3.4 Store Caching . 44
3.5 Correctness . 47
3.6 Limitations . 48
3.7 Summary . 50

4 Nitrous 51
4.1 The Intermediate Language . 53
4.2 The Compiler Generator . 57

iii

iv CONTENTS

4.2.1 Binding Times . 59
4.2.2 Shapes and Sharing . 62
4.2.3 Lifting . 63
4.2.4 Details and Complications 67
4.2.5 Static Extensions . 68

4.3 Sal . 72

5 Benchmarks 75
5.1 Manual . 75
5.2 Nitrous . 77
5.3 Simple . 78

5.3.1 Example . 79

6 Conclusion 85
6.1 Pitfalls and Prospects . 86

A Code Listings 99
A.1 Cache Source . 99
A.2 Signal Interface Source . 100
A.3 Signal Examples . 102
A.4 Manual Code . 103

A.4.1 Specialized . 103
A.4.2 Buffered . 106
A.4.3 Interpreted . 109

A.5 SAL interpreter . 111
A.6 SAL residuals . 122

A.6.1 Factorial . 122
A.6.2 Even . 124
A.6.3 Lambda . 125

A.7 Cyclic Integers in Similix . 128
A.8 Delimited Control: shift/reset . 134

Acknowledgements

Many people helped me write this dissertation. I want to thank the Department
of Defense and the Fox Project for funding me. I picked Peter Lee as my advisor
because he works on programming languages without losing touch with reality. I
made the right choice for the wrong reason: more than anything else, Peter’s ded-
ication to teaching and his faith in The System pulled me through. The quality of
my writing reflects his high standards and willingness to read many, many drafts.
The rest of my committee consisted of Andy Witkin, Bill Scherlis, and Olivier
Danvy. Andy advised me when I first arrived at CMU, and continued to support
me with access to the animation lab and all its fine equipment. I remember my
first meeting with Bill because he was the first faculty I met who also believed
the promise of program transformation. Later, we concentrated on writing strat-
egy and he helped me find my voice. Olivier proved to be an excellent outside
member. First, he invited me to Denmark where I wrote my first paper. Second,
he actually read my work and gave me detailed feedback while tolerating my lack
of formality. Besides my committee, I received plenty of technical assistance and
education from the CMU-SCS community at large. I am especially grateful to the
Zephyr community for their humor and helping me typeset this document. Finally,
I want to thank my friends, loves, and family.

There is another, much larger community that also deserves acknowledge-
ment: the free software community. This document and the research it describes
were produced with software that is freely available with source code to every-
one. In particular, I used linux, emacs, scheme48, gcc, sml/nj, scsh, tex/latex, dot,
gnuplot, jgraph, xfig, ghostscript, and xdvi. I used a custom markup language to
generate the printed and online versions of the thesis from the same source. The
artifacts of my dissertation (including the markup language) are on my web home
page, where anyone can download them, verify my results, and (I hope) improve
them.

v

vi CONTENTS

Chapter 1

Introduction

The world of pixel manipulation is a world of special cases. The need for rapid ex-
ecution forces programmers to abandon the usual goals of modularity and reusabil-
ity. The results are code bloat, inflexible systems, and missed deadlines. This
thesis addresses the problem by looking at various graphics and media interfaces
as programming languages, and using semantics-based techniques to transform
flexible graphics operations into high-performance routines. More generally, we
demonstrate a portable, easy-to-use interface to run-time code generation.

Programmers designing interfaces and implementing libraries with the C pro-
gramming language expose alternate entry points or use fast-path optimization
techniques1 to support media with different numbers of bits per pixel, different
alignments in memory, or optional channels such as transparency and depth. Un-
less a particular combination is directly implemented in one routine, its operation
will require either conditional branches inside a loop over the pixels, or buffers
to hold partial results. But conditional branches reduce bandwidth, and buffers
increase latency and memory traffic. We can bypass these problems by generating
special cases and fused, one-pass loopsas needed. With this technique, known
as run-time code generation (RTCG), code may depend on (and therefore must
temporally follow) some program execution and input.

We face three questions. Can we produce good enough code? Is the time
spent generating this code worth its speed-up? And is the programmer-time spent
learning and using RTCG worth its speed-up? My dissertation examines the first
question by building three prototype systems and measuring a collection of exam-

1With the fast-path technique, two implementations for a single operation are provided, one
that is always correct, and one correct only on some condition, but that runs faster. The condition
is checked every time the routine is invoked.

1

2 CHAPTER 1. INTRODUCTION

fun rgb_to_mono_1 rgb_start rgb_end m_start m_end =
if (rgb_start = rgb_end) then ()
else let val w = load_word rgb_start

in (store_word m_start (76*(w&0xff) +
154*((w>>8)&0xff) +
25*((w>>16)&0xff));

rgb_to_mono_1 (rgb_start+1) rgb_end
(m_start+1) m_end)

end

r g b m

Figure 1.1: Color to monochrome conversion assuming RGBX interleaved input
rgb start , and 32-bit outputmstart . The diagram below the code illustrates
the memory layout of the source and destination buffers. Heavy lines indicate 32-
bit word boundaries.

ples. The second question is addressed elsewhere. The third question remains for
the future.

My thesis is that run-time code generation a programmer to write pixel-level
graphics in a flexible high-level language without losing the performance of hand-
specialized C. Furthermore, the notions of specialization,binding times(temporal
types), andcompiler generationfrom research in partial evaluation (PE) provide
portable and accessible means to automate the creation of the special cases. The
thesis is tested by building systems and benchmarking common kernels.

I claim that a programmer can write image-processing programs in an inter-
pretive style where a program may include an image’s layout in memory as well as
operations on it. Such a program can be conceived, type-checked, and debugged
as a normal one-stage program, then specialization can be used to compile these
programs into efficient kernels.

Here is a concrete example. Say we need to convert a 24-bit RGB color image
to grayscale. Two possible implementations appear in Figures 1.1 and 1.2. These
and other examples use ML syntax extended with infix bit operations as found
in the C programming language (<< >> & |). The load word primitive
accesses the contents of a memory location.

Rgb to mono 1 assumes (1) that the pixels are stored one per 32-bit word

3

fun rgb_to_mono_2 r0 r1 b0 b1 g0 g1 m0 m1 =
if (r0 = r1) then ()
else let val rw = load_word r0

val gw = load_word g0
val bw = load_word b0

in
(store_word m0

(((9*(rw&0xff) + 20*(gw&0xff) + 3*(bw&0xff))>>5) |
((9*(rw>>8)&0xff + 20*(gw>>8)&0xff + 3*(bw>>8)&0xff)>>5)<<16);

store_word (m0+1)
(((9*(rw>>16)&0xff + 20*(gw>>16)&0xff + 3*(bw>>16)&0xff)>>5) |

((9*(rw>>24)&0xff + 20*(gw>>24)&0xff + 3*(bw>>24)&0xff)>>5)<<16);
rgb_to_mono_2 (r0+1) r1 (b0+1) b1 (g0+1) g1 (m0+2) m1)

end

r0

r1

r2

r3

b0

b1

b2

b3

g0

g1

g2

g3

m0

m1

m2

m3

Figure 1.2: Color to monochrome assuming sequential input, 16-bit output, and a
different combination function. Each row corresponds to an input pixel; this loop
processes four pixels per iteration.

4 CHAPTER 1. INTRODUCTION

0r 0g 0b

1r 1g 1b

2r 2g 2b

3r 3g 3b

0

1

3

2

Figure 1.3: Another possible implementation packs four pixels into three words,
saving 25% read-bandwidth over Figure 1.1. The code is similar to the code in
Figure 1.2.

fun rgb_to_mono f r g b m =
if (r s_end) then () else

((m s_put) (f (r s_get) (g s_get) (b s_get));
rgb_to_mono f (r s_next) (g s_next)

(b s_next) (m s_next))

Figure 1.4: A signal-level implementation of color to monochrome conversion.
The signals are represented with procedures that take a message (s put etc).

(interleaved and ignoring 8 bits), (2) a particular linear weighting, and (3) 32-bit
output. Rgb to mono 2 assumes (1) that each channel is stored separately in
memory (sequential) and word-aligned, (2) a different combination function, and
(3) 16-bit word-aligned output. Other possibilites such as packing four pixels into
three words (Figure 1.3), 12-bit resolution, or run-length coding would result in
further variations. Codes like these make good use of instruction-level parallelism
and run fast, but are of limited utility due to their assumptions.

A concrete result of this thesis is a system that can produce residual programs
like Figures 1.1 and 1.2 from a general program that can handle any channel or-
ganization, bits per pixel, combination procedure, etc. Such a program appears in
Figure 1.4.

In order to produce the fast special cases, I supply the assumptions (the pro-
gram) to a code-generator (the compiler). Figure 1.5 shows how to do this. The
quote syntax creates names for the equality assumptions rather than to name type
variables (as in ML). Though slightly hypothetical, this language is essentially the
Simple system from Section 5.3. Note that it has no ordinary (if any) type disci-
pline. Section 1.2 summarizes how we build a procedure likeco rgb to mono

1.1. TRADE-OFFS 5

val rgbm1 =
let fun S x = vector_signal (’start+x) (’stop+x) 32 8

fun C x y z = 76*x + 154*y + 25*z
in co_rgb_to_mono C (S 0) (S 8) (S 16)

(vector_signal ’start1 ’stop1 32 32)
end

val rgbm2 =
let fun S x y = vector_signal x y 8 8

fun C x y z = (9*x+20*y+3*z)/32
in co_rgb_to_mono C

(S ’x0 ’y0) (S ’x1 ’y1) (S ’x2 ’y2)
(vector_signal ’start1 ’stop1 16 16)

end

rgbm1 start stop start1 stop1;
rgbm2 x0 y0 x1 y1 x2 y2 start1 stop1;

Figure 1.5: Syntax to create specialized versions from assumptions.

from the text ofrgb to mono.
The rest of this chapter is organized as follows: the next section takes an

abstract look at the software engineering problems of media processing and mo-
tivates my approach. Section 1.2 introduces the structures and techniques of spe-
cialization and partial evaluation. Section 1.3 connects this story to the published
literature on the subject, and Section 1.4 identifies this work’s novel contribu-
tions. The final section returns to the big picture and sketches some applications,
and concludes by peering into the future.

1.1 Trade-offs

Programmers sometimes struggle with the contradictory goals of latency, band-
width, and program size. This section explores three solution-paths to a series
of increasingly general software design problems. Consider an audio-processing
program that loops over many sound samples. Figure 1.6 gives pseudo-code for
the natural implementation strategy. I start with a loop over a per-sample opera-
tion, then parameterize it by adding conditionals inside the loop.

6 CHAPTER 1. INTRODUCTION

foreach
 S

foreach
 if p S T

foreach
 (if p S T);
 (if q A U)

foreach
 eval e
 S
 T
 A
 U

Figure 1.6: The interpretived alternative.Foreach loops over a statement;eval
recursively switches over several statements. The leftmost box represents the un-
parameterized loop. Subsequent boxes represent parameterizations by booleans.
The final box, connected with a dotted line, represents parameterization by an
inductively defined type.

datatype Exp = e_val of int
| e_var of string
| e_plus of Exp * Exp
| e_times of Exp * Exp

Figure 1.7: An inductively defined type that one might call a little language.

Eventually, the per-sample operation is parameterized with an inductively de-
fined type. Such a parameter is sometimes called alittle language, especially if
the grammar is not regular and the language is Turing complete. Figure 1.7 con-
tains an example. The per-sample operation has become a call to an interpreter
for expressions in this language. Of course, the problem with this interpretive al-
ternative is that these conditionals are tested repeatedly while their values remain
constant. Although this kind of program runs very slowly, it is easy to write.

Another implementation appears in Figure 1.8. This technique is known as
bufferingor batching. The conditionals are independently hoisted out of the loops
to eliminate the redundant tests. This requires multiple passes and temporary
storage between passes. In the limit, this results in an interpreter with vector
primitives. There are three problems with this alternative: accessing the buffers
consumes memory bandwidth; the latency is increased because the first result
is not ready until an entire buffer has been processed; and handling dynamic,
sample-dependent control-flow becomes problematic.

We can think of these two alternatives as giving the inner control-flow to either
the expression reduction or the samples. The third alternative appears in Figure
1.9; here we hoist the conditionals together, resulting in one loop for each combi-

1.2. SPECIALIZATION 7

foreach
 S

if p (foreach S)
 (foreach T)

if p (foreach S)
 (foreach T);
if q (foreach A)
 (foreach U)

eval e
 foreach S
 foreach T
 foreach A
 foreach U

Figure 1.8: Buffered.

foreach
 S

if p (foreach S)
 (foreach T)

if p
 (if q (foreach SA)
 (foreach SU))
 (if q (foreach TA)
 (foreach TU))

if p
 (if q (if r (foreach SAF)
 (foreach SAG))
 (if r (foreach SUF)
 (foreach SUG)))
 (if q (if r (foreach TAF)
 (foreach TAG))
 (if r (foreach TUF)
 (foreach TUG)))

?

Figure 1.9: Specialized. The rightmost box has infinite size, so it is not depicted.

nation. Although this gives us optimal bandwidth and latency, because the number
of combinations grows exponentially with the amount of parameterization, sim-
ple application of this alternative does not scale. In particular, when the type is
inductive, the program would have infinite size.

The idea of run-time code generation is to avoid the exponential blow-up by
generating the special cases lazily. By sacrificing a spike in latency we optimize
asymptotic bandwidth and latency. The situation is depicted in the graphs of Fig-
ure 1.10.

When a problem is best solved with multiple passes, then the above arguments
applie to the implementation of each pass. This happens in situations such as the
compostion of wide convolutions.

Even if in theory my RTCG system can produce good enough code and can
generate it fast enough, in reality it may be too difficult to use. After all, writing
programs that write programs is a notoriously bug-prone process. The next section
suggests an interface to RTCG designed to alleviate this problem.

1.2 Specialization

Specialization is a program transformation that takes a procedure andsomeof its
arguments, and returns a procedure that is the special case obtained by fixing those
arguments.

Formally, a specializer[[spec]] satisfies the following equation wheref and
spec denote program texts,x andy denote ordinary values, and semantic brackets

8 CHAPTER 1. INTRODUCTION

0

20000

40000

60000

80000

100000

0 0.2 0.4 0.6 0.8 1

interpreted
buffered

specialized

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

interpreted
buffered

specialized

Figure 1.10: Throughput and latency of an idealized audio processor. The hor-
izontal axes corresponds to time in seconds; on the left the verticle axis corre-
sponds to total samples processed; on the right to the latency (how long until the
currently received sample is processed) in seconds shown in logarithmic scale.
We assume that all samples take the same amount of time to process.

[[�]] denote ordinary evaluation:

[[f]] x y = [[[[spec]] f x]] y

There are many ways to implement[[spec]] ; a simple curry function suffices2.
The intention is that[[spec]] will do as much work off as is possible knowing
only its first argument and return aresidualprogram that finishes the computation.
This gives us a way of factoring or staging computations [JoSche86] and is most
useful if we use this residual program many times. In practice, specializers do less
work than is possible in order to avoid code-space explosion. The annotations and
heuristics used to decide when to stop working are the subject of Section 2.2.

Partial evaluation (PE) as described in [JoGoSe93, Consel88, WCRS91] is a
syntax-directed, semantics-based, source-to-source program transformation that
performs specialization. Although we say automatic, in fact some human input in
the form of hints or annotations has proven necessary.

One of the primary applications of PE is compiler generation, frequently ab-
breviatedcogen. If the functionf above happens to be an interpreter, then[[spec]]
f x is the compiled version ofx, a program in the subject language. And so (at

2The ordinary curry function�fxy:f(x; y) maps functions to functions, but[[spec]] maps
texts to texts. This distinction is obviated in a reflective system where the texts of functions can be
recovered.

1.2. SPECIALIZATION 9

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

interpreted
specialized

hybrid

Figure 1.11: Latency of hybrid specialization and evaluation.

least theoretically)[[spec]] spec f is a compiler for the language defined by the
interpreterf . Another level of self-application yields[[spec]] spec spec, a com-
piler generator. These are known as the Futamura projections [Futamura71].

Research on practical compiler generation is widespread [Mosses78, JoSeSo85,
Lee89]. This thesis concerns systems implemented directly with a static analy-
sis known as binding-time analysis (BTA). Binding-time analysis classifies each
variable and operation in the interpreter source text as eitherstatic (program) or
dynamic(data). Basically, values that depend on dynamic values are dynamic.
Recent research [DaPfe96] indicates that binding times can be modeled with tem-
poral logic, and thus incorporated into type systems.

Let us now feel how compiler generation fits into the situation from the pre-
vious section. Initially the programmer type-checks and debugs a one-stage inter-
preter. Because specialization preserves the semantics of the code, producing an
efficient two-stage procedure (a compiler that performs RTCG) is then just a mat-
ter of annotation and tweeking. Binding-time analysis performs the bookkeeping
of program division and the specializer handles the mechanics of code construc-
tion. As an added bonus, since after annotation the source program can still run
in one stage, it can be run in parallel with the compiler to soften the latency spike
(Figure 1.11).

Cogen is not magic. It does not write any new code, it merely reorganizes the
text of the procedures given to it and inserts calls to its own libraries. However,
easing the creation of compilers from interpreters makes languages lightweight.
Such a cogen promises to (and in fact may be specifically designed to) alleviate
the implementation difficulties of interactive media.

10 CHAPTER 1. INTRODUCTION

(defvar g 2)

(defmacro f (x) ‘(+ g ,x))

(let ((g 17)) (f 419))

Figure 1.12: A Common LISP program that exhibits variable capture: the refer-
ence tog in the body of appears to refer to the global variable, but when expanded
in the body of thelet , the local definition ofg takes precedence.

1.3 History

This section surveys the literature on metaprogramming and run-time code gen-
eration and places this work in perspective. This section uses a lot of jargon;
explanations appear in the relevant references.

Run-time code generationper sehas long history including exile, reconsid-
eration [KeEgHe91], and a growing body of research demonstrating substantial
performance gains in operating systems [PuMaIo88, EngKaOT95, MuVoMa97].
I define� of an RTCG system as the average number of cycles spent by the com-
piler per instruction generation. For reference, a typical value of� for a C or ML
compiler is 175,0003

In the C and C++ programming world the lack of portable interfaces and the
difficult nature of RTCG prevent more wide-spread use. However in the Common
LISP world [Steele90], use of RTCG (viaeval , compile , anddefmacro) is
considered an essential advanced technique [Graham94].

While macro-expansion happens at compile time rather than run time, it is the
form of metaprogramming that people today are most familiar with. Experience
with second-generation lexical macro systems such as ANSI C’s [ANSI90] and
the omission of macros from typed languages such as Java [GoJoSte96] and SML
[MiToHa90] has given macro systems something of a bad reputation.

Despite this, s-expression systems continue to succeed with macros. Lisp’s
quasi-quote/unquote syntax was a good start, but syntactic systems suffer from the

3� of GCC -O on x86 is about 200,000 (45 * 133M / (77k/2.5)), IRIX CC -O is about 120,000
(25 * 150M / (120k/4)), and SML/NJ v109.28 on a DEC Alpha is 176,000 (1320 * 150M /
(4.5M/4)). The formula is the product of measured user time and clock speed divided by the
number of instructions. The latter is estimated with the size of the compiler’s output divided by
the average number of bytes per instruction. Thanks to Perry Cheng for helping collect the SML
data.

1.4. CONTRIBUTIONS 11

variable capture pitfall [KFFD86] (see Figure 1.12). Scheme’ssyntax-rules
[R4RS] fixed this hygiene problem for a limited class of rewriting macros. Further
improvements are the subject of active research [Carl96, HiDyBru92]. Macros for
typed languages are also certainly possible [Haynes93]. One way to think about
BTA is as a static analysis that places the backquotes and commas automatically.

The ‘C language (pronounced “tick-C”) [EnHsKa95] extends ANSI C with an
interface for RTCG inspired by Lisp’s backquote mechanism, though significantly
more difficult to use due to limitations in the orthogonality, generality, and type
regularity of the extensions. The recent implementation shows good performance
in realistic situations with either of two backends [PoEnKa97].Tcc ’s ICODE

backend performs basic optimizations such as instruction scheduling, peephole,
and register allocation, resulting in� between 1000 and 2500. TheVCODE back-
end uses macros to emit code in one pass;� is between 100 and 500.

Familiar compile-time systems for C include C++ templates [SteLe95] and
parser generators such as yacc [Johnson75]4. However, as corroborated by the
work in compiler generation for C [CHNNV96, Andersen94], we believe C’s lack
of static semantics makes these systems inherently more difficult to build, use,
and understand.

Fabius [LeLe96] uses fast automatic specialization for run-time code genera-
tion of a first-order subset of ML. Essentially, it is a compiler generator where the
syntax of currying indicates staged computation, including memoization. Because
the binding times are implicit in every function call, no inter-procedural analysis
is required. Its extensions run very fast (� is six).

Tempo [CHNNV96] attempts to automate RTCG for use by operating systems.
It applies binding-time analysis combined with various other analyses to ANSI C.
It emits GCC code that includes template-based code-generating functions, using
a great hack to remain, at least in theory, as portable as GCC.

1.4 Contributions

This thesis makes the following contributions.
Nitrous is a directly-implemented memoizing compiler generator for a higher-

order language. It accepts and produces (and its compilers produce) programs
written in an intermediate language similar to three-address code. This design
allows low-overhead run-time code generation as well as multi-stage compiler

4In fact, LR(k) parser generation is a special case of polyvariant compiler generation
[Mossin93, SpeThi95].

12 CHAPTER 1. INTRODUCTION

generation (where one generates a compiler from an interpreter written in a lan-
guage defined by another interpreter). This system is the subject of Chapter 4 and
a previous paper [Draves96]. Its relevant features are:

Cyclic integers Standard PE systems have the ability to determine that#1(s,d)
is static5 wheres is static andd is dynamic. The value(s, d) is called
a partially-static structure. Nitrous supports a kind of partially static integer
I call cyclic integers. With these, the BTA determines that(d*32+5)%32
is static (five in this case).

Sharing/shapesNitrous’ compilers keep track of the names of the dynamic val-
ues. When one of these compilers generates code that moves a collection of
values (such as procedure call/return), the compiler avoids generating code
that moves multiple copies of the same value.

Conservative early equality Nitrous provides an operator that compares two dy-
namic values and returns a static result. The result is true if the compiler can
prove that the values will be equal; false if they may not be equal.

A specializer with these features is powerful enough to implement (among
other things) the subject of Chapter 3 and [Draves97]:

Bit-addressing This technique (one interface, one language) allows one to play
with signal processing at the dataflow-level yet remain independent of the
number of bits per sample. It uses a software implementation of a small
fully associative cache. Because of the sharing analysis, the cache is classi-
fied as static and eliminated.

More generally, this was the first research to explicitly apply partial evaluation
to run-time code generation [Draves95].

The rest of the dissertation consists of five chapters and an appendix. Chapter 2
defines a specializerS and briefly discusses its implementation, Chapter 3 extends
it to cover bit-addressing, and Chapter 4 describes the Nitrous implementation.
Chapter 5 presents benchmark data from Nitrous and from a small and simple
implementation appear. Chapter 6 concludes by critically assessing the systems
and considering how to improve them.

5In Lisp syntax that would read(car (cons s d)) .

1.5. APPLICATIONS AND THE FUTURE 13

-1z -1z -1z-1z

*2 *5 *7 *5 *2

++++

Figure 1.13: A linear finite filter built with tinker-toy DSP. A Box labeled z�1 is
a delay; its value is the sample from the previous time slice.

val kernel = [2, 5, 7, 5, 2]
val prefix = [’a, ’b, ’c, ’d, ’e]
val filter5 = (filter sig16 kernel prefix)

Figure 1.14: A higher-level way to create the filter, using the same language as
Figure 1.5

1.5 Applications and the Future

This section looks at what specializers can do for interactive media. We begin
with some already implemented and benchmarked examples, then move on to
speculation.

We can use bit-addressing to implement an object-oriented signal-processing
interface. This is the language used in Figure 1.4 to writergb to mono. It
allows the programmer to work at the dataflow level, by connecting signals as
if they weretinker toys. Figure 1.13 shows a linear filter built with a graphical
transliteration of this interface. Figure 1.14 shows a higher-level way to build a
filter. Section 5.3.1 discusses these systems.

As another example, consider an interactive sound designer. A particular voice
is defined by a small program; Figure 1.15 is a typical example of a depiction

14 CHAPTER 1. INTRODUCTION

~a ~b

~c

Figure 1.15: Two voices. On the left is a simple 2-in-1 synthesizer where oscil-
latorsa andb sum to modulatec as well as feeding back intoa. On the right is
another possibility.

of a wavetable synthesizer6. Most systems allow the user to pick from several
predefined voices and adjust their scalar and wavetable parameters. With RTCG,
the user may define voices with their own wiring diagrams.

Next example: consider a typical window system with graphics state consist-
ing of the screen position of a window, the current video mode and resolution,
the typeface, etc. Common graphics operations such as EraseRect, BitBlit, Draw-
String, and BrushStroke may be specialized to this graphics state. I expect that
RTCG will increase perceived usability of systems when the number of graphics
states in use at any one time is small relative to the number of potentially useful
states, and the time spent doing graphics operations is large.

Operations such as decoding an image and blitting it to the screen are ordinar-
ily implemented in two-passes. With RTCG, when a file or network connection
to a compressed video source is opened, a DecodeAndBlit routine may be gener-
ated that avoids an intermediary buffer, and thus reduces communication latency.
The same idea applies to the parts of an operating system that implement network
protocols.

My final example: artificial evolution of two-dimensional cellular automata.
The standard technique is to apply the genetic algorithm to lookup-tables indexed
by all possible neighborhoods [MiHraCru94]. But if the cells have just three
bits of state and a 3-by-3 neighborhood then the lookup-table would require 192
Mbytes (3�23�9 bits). With RTCG one can mutate data-structures describing pro-
grams (i.e. substitute genetic programming for the genetic algorithm), and then

6Wavetable synthesis is just like FM (Frequency Modulation) synthesis, but sinusoids are re-
placed with lookup-tables.

1.5. APPLICATIONS AND THE FUTURE 15

synthesize loops that apply these area-operations in efficient (tiled or striped) or-
der.

In summary I believe that metaprogramming in the form of run-time code
generation can have significant impact on signal-processing and graphics appli-
cations. Specialization promises to give us a practical interface to RTCG. With
this we can build systems with high bandwidth and low latency without giving
up flexibility. I believe such systems will be very important in a future where our
personal communications are mediated by computer networks.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Specialization

Section 1.2 defined the behavior of a specializer[[spec]] with

[[f]] x y = [[[[spec]] f x]] y

A specializer produces special cases from general procedures. This chapter
exhibits one such system (S), and uses it to understand the practice of polyvariant
specialization. First I introduce my notation and give a simple online specializer
for a typed�-language. I then extend the calculus with products, booleans, and
sums. The remaining sections discuss lifting, memoization, recursion, and com-
piler generation. The correctness ofS is considered in Section 3.5.

This chapter is generally a review of Partial Evaluation (PE) practice; [CoDa98]
and [JoGoSe93] are the standard texts of the field and may be considered refer-
ences of first resort. [Jones91] is a theoretical introduction to operational behavior
of specializers, and [Jones88] provides a practical description of first-order PE.
[WCRS91, Consel88, Thiemann96, BoDa91, BiWe93] are system descriptions.

Figure 2.1 gives the grammar of the object language and its type structure.
It also defines some domains [Reynolds97] and their associated metavariables.
The language is a call-by-value�-calculus extended with integer constants, prim-
itives, conditionals, a lift annotation, and explicit types on abstractions. I use
the typewriter face for the terms of the object language. I use� to denote a
generic, “black box” binary primitive operation.Framesmark manipulation of
the terms of the�-language’s syntax and types. Frames appear in patterns and
expressions. The slots of the term in the frame are either metavariables or paren-
thesized expressions in the metalanguage.

Figure 2.2 gives a specializerS. Roman typeface is used for metalanguage
constructs such as “letpat=e in e” and “if e thene elsee”. “Match e pat ! e

17

18 CHAPTER 2. SPECIALIZATION

...” denotes pattern matching where the metavariables only match members of the
appropriate domain. I use [v 7!m]� to denote the extension of the environment
� with a binding from the variablev to the valuem, and [] to denote the empty
environment.

Note that several operators have two notations, one in the metalanguage and
one in the object language. For examplelambda is the syntax for a procedure
and� is a mathematical function;* denotes the product type and� denotes the
product of two domains.

S is apartial-evaluationfunction, it assigns a meaning fromM to a source text
with environment. The difference from the ordinary semantics is thatM contains
Exp, whose members represent computations dependent on unknown values, that
is, residual code. I say the specializeremitsresidual code.

The lift primitive forces its argument to become residual code; I call it an
annotation because it has no meaning in the ordinary, one-stage semantics.

Figure 2.3 defines the reflection and reification functionsU andD (up from
the subject language and down from the metalanguage). They operate as coercions
between code and data; understanding them is not essential to this chapter.D is
invoked in the term for the meaning oflift .

An important property that this specializer lacks is safety.S may lose effects
or duplicate computations. For example, the rule for static function application
works by substitution, so if the computation of an argument has a side-effect,
but is then passed to a function that never refers to the value, the effect is lost.
Similarly, if the value is used more than once, the effect may be duplicated.

Most systems use let-insertion [BoDa91] to guarantee safety. The implemen-
tation of let-insertion is closely related to that of booleans, explained below [Bon-
dorf92, Danvy96].

Note that theif0 clause requires that when a conditional has dynamic predi-
cate, then both arms are also dynamic. Section 2.1 below shows how to implement
a conditional without this restriction.

S is similar to the�-mix of [GoJo91], but�-mix uses uses a two-level input
language where source�s have been labeled either for execution or immediate
residualization.S reserves judgment until the function is applied;S depends on a
lift annotations to emit alambda .

Note that many cases are missing fromS. I assume that all input programs
are type-correct and lift annotations appear as necessary, so these situations never
occur. Placement of the lifts is crucial to successful staging: too many lifts and
S degenerates into the curry function; too few andS fails to terminate. Typically

19

t 2 Type ::= int j Type - > Type

d, e 2 Exp ::= Atom j Var j lambda Var: Type. Exp
j Exp Exp j if0 Exp Exp Exp

j lift Exp j Exp � Exp j ...

s, k 2 Atom = ZZ

ft 2 F = (M!M) � Type

m 2M = Exp + Atom? + F

� 2 Env = Var! M

Figure 2.1: The�-language, types, domains, and metavariables.

S : Exp! Env !M

S e0�e1 � = match (S e0 �, S e1 �)
(s0, s1) ! s0 � s1

(d0, d1) ! d0 � d1

S v � = � v

S k � = k

S lambda v: t. e � = (�v0.S e ([v 7!v0]�))t
S e0 e1 � = match (S e0 �, S e1 �)

(f , m) ! f m

(d0, d1) ! d0 d1

S lift e � = D (S e �)
S if0 e0 e1 e2 � = match (S e0 �)

s0 ! if 0 = s0 then (S e1 �) else (S e2 �)
d0 ! let d1 = S e1 �

d2 = S e2 �

in if0 d0 d1 d2

Figure 2.2: A direct-style specializer. The apparently missing cases are not needed
because input programs are assumed to be correctly annotated.

20 CHAPTER 2. SPECIALIZATION

D : M! Exp

D d = d

D s = s

D ft = let v0 = gensym
e0 = D(f(Utv0))

in lambda v0: t. e0

U : Type! Exp!M

U t- >t0 e0 = (� v . let e1 = D v in U t e0 e1)t
U int e = e

Figure 2.3: Reification functionD and reflection functionU . Gensym makes a
fresh variable.

fun tail_loop b e r =
if e = 0 then r
else tail_loop b (e-1) (b*r)

val power b e = tail_loop b e 1

Figure 2.4: Specialization of a tail-recursive function may not terminate without
annotation.

binding time analysis(BTA) is combined with programmer annotations to insert
the lifts. For example, if�=[a 7!6b 7! c] thenS requires((lift a) �b) rather
than (a �b) . This kind of lift is obvious, and is easily handled by BTA. As an
example of the kind of lift that cannot be easily automated, consider the tail-
recursive function in Figure 2.4, wheree is dynamic andb is static. Unless we
manually lift r to dynamic,S will diverge.

If each variable and procedure always has the same binding time, then a partial
evaluator is said to bemonovariantin binding times. The prototypical monovari-
ant system is�-mix. Monovariant BTA is well-understood and can be efficiently
implemented with type-inference [Henglein91]. The problem with this kind of
system is that frequently a procedure is applied to values with different binding
times. For example, in one context I might applypower to static base and expo-
nent, but in another, to dynamic base and static exponent.

2.1. PRODUCTS AND SUMS 21

Type ::= ... j Type * Type

M = ... + (M �M)
Exp ::= ... j Exp, Exp j L Exp j RExp

S e0, e1 � = (S e0 �), (S e1 �)
S L e � = match (S e �) (m0,m1) !m0

S R e � = match (S e �) (m0,m1) !m1

D (m0, m1) = (D m0), (D m1)

U t * t0 e = (U t L e), (U t0 R e)

Figure 2.5: Extensions for product types. A comma denotes a pair construction.

If the binding times are context sensitive, then a partial evaluator is said to
be polyvariant in binding times. A polyvariant BTA is one that effectively places
lifts for this kind of system. Polyvariant BTA usually implemented with abstract
interpretation [Consel93]. Thus a given piece of syntax may be both executed by
S and emitted as residual.

2.1 Products and Sums

This section adds product and sum types to the specializer. Inductively defined
types are similarly easy, but other types such as polymorphism and modules are
the subject of active research.

The specializer above treats primitives uniformly. A primitive application is
either performed at specialization time or emitted as residual code. In particular,
if a primitive has one static and one dynamic argument, then the static one must
be lifted, throwing information out of the compiler. But many primitives have
algebraic properties that allow us to preserve some information.

Figures 2.5, 2.6, and 2.7 extend the formal system to products, booleans, and
sums, respectively. Sums are a generalization of booleans asBool = Unit + Unit.

The product types allow the following:

S (L(0,d)) � = 0

22 CHAPTER 2. SPECIALIZATION

where�=[d 7! d]. In partial evaluation jargon, the value of(0,d) is called
a partially static structure.

This if andif0 from Figure 2.2 are fundamentally different:

S(1 + (if0 d 2 3))� = 1 + (if0 d 2 3)
S(1 + (if d 2 3))� = (if d 3 4)

Normally, we think of specialization as either performing or emitting each
operation of a program. But this specialization ofif requires that the addition be
performed twice. How canS return into the addition twice twice?

There are two standard solutions: continuation-based specialization [Bon-
dorf92], and the shift and reset control operators used here. Shift is similar to
Scheme’scall/cc (call with current continuation), but the extent of� is limited
by reset. See Section A.8 for a explanation of these control operators.

Section 4.2 shows how to get the same result by using a source language in
continuation-passing style.

2.2 Lifting

We originally said that a specializer does “all the work possible given only some
of the input”. The previous section gave rules to find and perform this work. The
problem is that blind application of these rules often finds too much work, and
creates many specialized procedures that do not run fast enough to pay for their
size and number. In particular, since the rule for function application may inline,
use of recursion may result in infinite unfolding, and thus non-termination of the
specializer.

The lift term is the fundamental form of control, but is insufficient. For
example, in the tail-recursivepower function in Figure 2.4 we must liftr to
prevent non-termination. But ife is static, then liftingr prevents the simple static
result we surely want.

Nitrous and Schism use lift languages to give the programmer conditional
lifting. Basically they work by reifying binding times. Other systems such as
[WCRS91] contain analyses that identify and perform this lift, but miss-identify
others. I believe that full automation (i.e. elimination oflift from the input
language) is not yet feasible; binding-time and staging systems need some kind of
manual control.

2.2. LIFTING 23

Type ::= ... j bool
M = ... +Bool
Exp ::= ... j if Exp Exp Exp

S if e0 e1 e2 � = match (S e0 �)
s0 ! if s0 then (S e1 �) else (S e2 �)
d0 ! let d1 = S e1 �

d2 = S e2 �

in if d0 d1 d2

D ft = let v0 = gensym
e0 = resetD(f(Utv0))

in lambda v0: t. e0

U bool e = shift� in
let e0 = reset (� true)

e1 = reset (� false)
in if e e0 e1

Figure 2.6: Extensions for booleans, including replacement function reifier.

24 CHAPTER 2. SPECIALIZATION

Type ::= ... j Type + Type

M = ... + (inLM) + (inRM)
Exp ::= ... j inL Exp j inR Exp

j case Exp Var Exp Var Exp

S inL e � = inL (S e �)
S inR e � = inR (S e �)

S case e v0 e0 v1 e1 � = matchS e �

inL m0 !S e0 ([v0 7! m0] �)
inRm1 !S e1 ([v1 7!m1] �)

D (inL m0) = inL (D m0)

D (inRm0) = inR (D m0)

U t + t0 e = shift� in
let v0 = gensym

v1 = gensym
e0 = reset (� (inL (U t v0)))
e1 = reset (� (inR (U t0 v1)))

in case e v0 e0 v1 e1

Figure 2.7: Extensions for sum types.

2.3. RECURSION AND MEMOIZATION 25

(define (power-abs n)
(lambda (*)

(lambda (a)
(fix1 (lambda (loop)

(lambda (n)
(if (zero? n)

1
(* a (loop (- n 1))))))))))

(define-base-type Int "i")
(define-compound-type Times ((Int Int) => Int) "*" alias)
(define (fix1 F) (lambda (x) ((F (fix1 F)) x)))
(residualize (power-abs 5) ’(Times -> Int -> Int))

!

(lambda (*)
(lambda (i0)

(* i0 (* i0 (* i0 (* i0 (* i0 1)))))))

Figure 2.8: TDPE of power, static exponent. The double arrow denotes a multi-
argument function type.

2.3 Recursion and Memoization

Memoization is a standard technique to avoid repeated computation. It plays an
important role in some specializers, including ours. This section explains the
distinction by looking at dynamic loops. We call specializers that use this kind of
memoizationpolyvariant, and those that do notmonovariant.

Using the rules in Figure 2.2 above, a loop must be built with a fixed-point
operator (this is one of the things that the ML syntax obscures). The type of
the operator depends on how much of the recursion is to be expanded. In other
words, the source program must be adjusted to support different binding times.
Figures 2.8 and 2.9 show two versions of the power function specialized with
Type Directed Partial Evaluation (TDPE) [Danvy96]1. A polyvariant specializer
does not have this limitation, as the example in Figure 2.10 demonstrates.

At a call site, a monovariant specializer like�-mix [GoJo91] either inlines
or residualizes. A polyvariant specializer has the option of emitting a call to a

1Danvy reports that a future version of TDPE does not have this restriction.

26 CHAPTER 2. SPECIALIZATION

(define (dpower-abs fix2 * zero? -)
(fix2 (lambda (loop)

(lambda (x n)
(if (zero? n)

1
(* x (loop x (- n 1))))))))

(define-base-type Bool "b")
(define-compound-type Minus ((Int Int) => Int) "-" alias)
(define-compound-type Zero? (Int -> Bool) "zero?" alias)

(define-compound-type Fix2
((((Int Int) => Int) -> ((Int Int) => Int)) ->

((Int Int) => Int))
"fix2" alias)

(define (fix2 F) (lambda (x y) ((F (fix2 F)) x y)))

(residualize dpower-abs
’((Fix2 Times Zero? Minus) => (Int Int) => Int))

!

(lambda (fix2 * zero? -)
(lambda (i3 i4)

((fix2 (lambda (x0)
(lambda (i1 i2)

(if (zero? i2)
1
(* i1 (x0 i1 (- i2 1)))))))

i3 i4)))

Figure 2.9: TDPE of power, fully dynamic version.

2.3. RECURSION AND MEMOIZATION 27

(similix ’power (list ’*** 5) "source.sim")
!

(define (power5 b)
(* b (* b (* b (* b (* b 1))))))

(similix ’power (list ’*** ’***) "source.sim")
!

(define (power-dd b e)
(if (= e 0)

1
(* b (power-dd b (- e 1)))))

Figure 2.10: Specialization of power with Similix.*** indicates a dynamic value,
the contents ofsource.sim appear in Figure 2.11.

specialized procedure defined elsewhere, and passing just the dynamic arguments.
This specialized procedure may be called from several different places.

A polyvariant specializer uses its memo-table todiscoverdynamic fixed points.
Before creating a specialized version of a procedure, a polyvariant system checks
to see if it already has a version of that procedure specialized to those static values,
and if so, creates a call to the already defined procedure.

This use of memoization is more than just a convenience or a simple perfor-
mance improvement. Polyvariance is fundamentally more powerful because zero,
one, or more fixed points may be created from a single source fixed point. Further-
more, the types of the residual fixed-points may be different from the types of the
input fixed points. The standard example is Ackermann’s function specialized to
its first argument, resulting in two different fixed points, as in Figure 2.12. Figure
2.13 shows an example of a loop that unrolls several times before the static values
match and the dynamic loop is found. A more practical example is the generation
of KMP string-matching by specialization [CoDa89]. None of these results can
be duplicated with a monovariant system. It can be dangerous, however, to rely
on the memo-table to find fixed-points.

The question remains: when should the system inline, and when should it
specialize, that is, test the memo-table and form a call? While it is safe to always
specialize, the resulting code has many trivial calls. Many systems, including
ours, use thedynamic-conditional heuristic[BoDa91]. The heuristic suggests that

28 CHAPTER 2. SPECIALIZATION

(define (power b e)
(if (= e 0)

1
(* b (power b (- e 1)))))

(define (ack m n)
(cond ((zero? m) (+ n 1))

((zero? n) (ack (- m 1) 1))
(else (ack (- m 1) (ack m (- n 1))))))

(define (mize n m d e)
(if (e) n

(let* ((n1 (- n d))
(n2 (if (< n1 0) (+ n1 m) n1)))

(mize n2 m d e))))

Figure 2.11: The contents of the filesource.sim

(similix ’ack (list 2 ’***) "source.sim")
!

(define (ack2 n)
(if (zero? n)

(ack1 1)
(ack1 (ack2 (- n 1)))))

(define (ack1 n)
(if (zero? n)

2
(+ (ack1 (- n 1)) 1)))

Figure 2.12: Ackermann’s function specialized with Similix.

2.4. COMPILER GENERATION 29

(similix ’mize (list 0 5 2 ’***) "source.sim")
!

(define (mize052 e)
(cond ((e) 0) ((e) 3)

((e) 1) ((e) 4)
((e) 2)
(else (mize052 e))))

Figure 2.13: Memoization in action.

calls be inlined unless the body of the procedure contains a control-flow branch
depending on dynamic values. Such a branch is known as a dynamic conditional.
The intuition behind the heuristic is that if there is no dynamic conditional then
inlining is safe because any resulting non-termination would also be present in
ordinary execution of the source program2.

The price is that polyvariant specialization is more difficult to implement, type,
and reason about. Bit-addressing makes essential use of memoization.

2.4 Compiler Generation

If we used a literal implementation ofS to specialize programs, then every time
we generate a residual program, we would also traverse and dispatch on the source
text. The standard way to avoid this repeated work is to introduce another stage
of computation. That is, to use a compiler generatorcogeninstead of a specializer
spec. The compiler generator convertsf into a synthesizer of specialized versions
of f :

[[f]] x y = [[[[[[cogen]] f]] x]] y

These systems are called compiler generators because iff is an interpreter, then
[[cogen]] f is a compiler.

2This heuristic is very simple and aggressive. This kind of manual control of inlining some-
times produces unexpectedly large results. Compilers for functional languages such as SML
[ApMa91] and Haskell [JHHPW93] make much more sophisticated inlining decisions. One could
use the safe, always-specialize heuristic, and use sophisticated inlining as a post-pass to remove
the trivial calls. In the run-time environment we are interested in, feedback from execution or a
inexpensive approximation may substitute for sophisticated inlining decisions.

30 CHAPTER 2. SPECIALIZATION

The standard way of implementing a compiler generator begins with a static
analysis of the program text, then produces the synthesizer by syntax-directed
traversal of the text annotated with the results of the analysis. Cogen knows what
will be constant but not the constants themselves. We refer to this information
binding times, it corresponds to the injection tags on members ofM. We say
members ofAtom arestaticand members ofExp aredynamic. The binding times
form a lattice because they represent partial information. It is always safe for the
compiler to throw away information; this is calledlifting and is the source of the
lift annotation in the�-language. Thus the bottom of the lattice is dynamic.

[BoDu93] shows how to derive a cogen from�-mix in two steps. The first
step converts a specializer into a compiler generator by adding an extra level of
quoting toS so static statements are copied into the compiler and dynamic ones
are emitted. The second step involves adding a continuation argument toS to
allow propagation of a static context into the arms of a conditional with a dynamic
test. One of the interesting results of [Danvy96] is how this property (the handling
of sum-types and let-insertion) can be achieved while remaining in direct style by
using shift/reset.

A remarkably pleasing though seemingly less practical way of implementing
[[cogen]] is by self-application of a specializer[[[[mix]] mix mix]] , as sug-
gested in [Futamura71] and first implemented in [JoSeSo85].

Specializers are classified as eitherofflineor online. An online system works
in one pass. Roughly, offline systems are suitable for compiler generation via self-
application, and online systems are not. An offline system works in two phases.
First it performs a whole-program analysis phase (the BTA) independent of the
static values, and then it performs a specialization phase. Ideally, in an offline sys-
tem all perform-vs-emit decisions are made in the BTA, but in reality most offline
systems include polyvariance, which involves value-dependent decisions. Further
hybridization is explored in [Sperber96]. The system from chapter 4 memoizes
on binding times and static values, so it is also a hybrid. As a result, procedure
contents are treated offline, but procedure calls are treated online. The system in
Section 5.3 is online. Similix (see Section A.7) is offline.

2.5 Summary

This chapter covers the theory and practice of specialization. In order to under-
stand the next chapter, it is important to understand that the specializer performs
constant propagation, function inlining, and memoization.

Chapter 3

Bit-addressing

Media such as audio, images, and video are increasingly common in computer
systems. Such data are represented by large arrays of small integers known as
samples. Rather than wasting bits, samples are packed into memory. Figure 3.1
illustrates three examples: monaural sound stored as an array of 16-bit values, a
grayscale image stored as an array of 8-bit values, and 8-bit values compressed
with run-length encoding. Figure 1.3 shows a color image stored as interleaved
8-bit arrays of red, green, and blue samples. Such ordered collections of samples
are calledsignals. A constant signal may avoid memory usage completely.

We begin by considering only signals that are regular arrays. Say we specify a
signal’s representation with four integers:from andto are bit addresses;size
andstride are numbers of bits. The signal itself is stored in memory as a array
where the distance (in bits) between elements is the stride, and the number of bits
per element is the size. I use little-endian addressing so the least significant bit of
each word (LSB) has the least address of the bits in that word.

type baddress = int
type signal = baddress * baddress * int * int

(* from to size stride *)

Figure 3.2 gives the code to sum the elements of such a signal. As in Chapter 1,
the examples use ML syntax extended with infix bit operations and aload word
primitive. This chapter assumes 32-bit words, but any other size could just as eas-
ily be substituted, even at run-time. The integer division (/) rounds toward minus
infinity, and the integer remainder (%) has positive base and non-negative result.
To simplify this presentation,load sample does not handle samples that cross
word boundaries. This procedure is the beginning of the bit-level abstraction.

31

32 CHAPTER 3. BIT-ADDRESSING

0

1

1

0

2

3

(a) (c)

(b)

0

7

8

9

10

11

5

3

2

4

1

6

etc

Figure 3.1: Layout of (a) 16-bit monaural sound, (b) an 8-bit grayscale image, and
(c) a run-length encoded array where multiple samples occupy the same location
in memory. The heavy lines indicate 32-bit word boundaries.

fun sum (from, to, size, stride) r =
if from = to then r else
sum ((from + stride), to, size, stride)

(r + (load_sample from size))

fun load_sample p b =
((1 << b) - 1) &
((load_word (p / 32)) >> (p % 32))

Figure 3.2: Summing a signal using bit addressing. Use of equality instead of
greater/less-than for the end-test is essential to support negative strides.

33

fun sum_0088 from to r =
if from = to then r else
let val v = load_word from
in sum_0088 (from + 1) to

(r + (v & 255) + ((v >> 8) & 255) +
((v >> 16) & 255)+ ((v >> 24) & 255))

end

Figure 3.3: Summing a signal assuming packed, aligned 8-bit samples as in Figure
3.1(b).

Figure 3.4: 12-bit signal against 32-bit words shown with abbreviated vertical
axis.

If I fix the layout of the input tosum by assuming that

1. stride = size = 8 and

2. (from % 32) = (to % 32) = 0

then the implementation in Figure 3.3 computes the same value, but runs more
than five times faster (see Figure 5.1). There are many reasons: the loop is un-
rolled four times, resulting in fewer conditionals and more instruction-level par-
allelism. The shift offsets and masks are known statically, allowing immediate-
mode instruction selection. The division and remainder computations are avoided,
and redundant loads are eliminated.

Different assumptions result in different code. For example, sequential 12-
bit samples result in unrolling 8=lcm(12,32)/12 times so that three whole words
are loaded each iteration (see Figure 3.4). Handling samples that cross word
boundaries requires adding a conditional toload sample that loads an addi-
tional word, then does a shift-mask-shift-or sequence of operations. The actual
implementation appears in Appendix A.1.

This chapter shows how to use a specializer to derive code like Figure 3.3 from
the code in Figure 3.2 automatically. First I introducecyclic integers, which pro-
vide intelligent unrolling. Next, I show how to implement a cache in software to
optimize loads and stores. Finally some limitations of this approach are revealed.

34 CHAPTER 3. BIT-ADDRESSING

hb q ri 2 Cyclic = ZZ � Exp � ZZ

m 2 M = ... +Cyclic

D hb q ri = b* q+r

Figure 3.5: Extending domains andD for cyclic values.

3.1 Cyclic Integers

This section shows how adding some rules of modular arithmetic to the specializer
formalized in Chapter 2 can unroll loops, make shift offsets static, and eliminate
the division and remainder operations inside procedures likeload sample .

Figure 3.5 defines theCyclic domain, redefinesM to includeCyclic as a pos-
sible meaning, and extendsD to handle cyclic values. Whereas previously an
integer value was either static or dynamic (either known or unknown), a cyclic
value has known base and remainder but unknown quotient. The base must be
positive. If the remainder is non-negative and less than the base, then I say the
cyclic value is innormal form. For now, assume all cyclic values are in normal
form.

Figure 3.6 gives one way to extendS for cyclic values. Again I assume cases
not given are avoided by lifting, treating the primitives as unknown (allowing�

to match any primitive), or by using the commutivity of the primitives. A case
for adding two cyclic values by taking the GCD of the bases is straightforward,
but has so far proven unnecessary. Such multiplication is also possible, though
more complicated and less useful. The static result of multiplication by zero is a
standard online optimization, but is not important to this work.

Figure 3.7 gives rules forzero? , division, and remainder. In the case of
zero? , if the remainder is non-zero modulo the base, then the specializer can
statically conclude that the original value is non-zero. But if the remainder is zero,
then we need a dynamic test of the quotient. This is a conjunction short-circuiting
across stages.

These rules are interesting because the binding times of the results depend on
static values rather than just the binding times of the arguments. The result is an
example of what in partial evaluation parlance is calledpolyvariance in binding
times.

3.1. CYCLIC INTEGERS 35

S e0+e1 � = match (S e0 �, S e1 �)
(hb q ri, s) ! let r0 = (r + s) % b

q0 = (r + s) / b
in hb q + q0 r0i

S e0* e1 � = match (S e0 �, S e1 �)
(hb q ri, s) ! if s > 0 thenhsb q sri

else ifs < 0 then error
else 0

Figure 3.6: Addition and multiplication rules for cyclic values that maintain nor-
mal form.

S zero? e � = matchS e �

hb q ri ! if (0 = (r % b))
then lett = (r / b)

in zero? q+t
else false

S e0/ e1 � = match (S e0 �, S e1 �)
(hb q ri, s) ! if (0 = (b % s))

thenh(b / s) q (r / s)i

S e0%e1 � = match (S e0 �, S e1 �)
(hb q ri, s) ! if b = s thenr

Figure 3.7: More rules for cyclic values.

36 CHAPTER 3. BIT-ADDRESSING

The rules for division and remainder could also include cases that returned a
dynamic result when the condition on the base is not met. But this would create
larger or slower compilers and has not proven to be useful, so my systems just
raise an error.

The approach of this chapter has been binding-time improvement by extend-
ing the specializer. Instead, one could rewrite the source program to make the
separation apparent to an ordinary specializer. This can be done by defining (in
the source language) a new type which is just a partially static structure with three
members. The rules in Figures 3.6 and 3.7 become procedures operating on this
type. The source program must be written to call these procedures instead of the
invoking the native arithmetic (this is done with Similix in Appendix A.7).

As it turns out, the rules in Figure 3.6 have several defects. Section 3.3 ex-
plains them and a way to overcome them. Note that the solution presented there
cannot also be implemented as a manual binding time improvement.

Now I explain the effect of cyclic values on thesum example from Figure
3.2. The residual code appears in Figure 3.8. Assumption 1 above directly means
that from and to are cyclic. The end-test for the loop compares these values
by callingzero? on the difference. As long as the remainders differ, the end-
test is statically known to be false. Thus three tests are done in the compiler
before it reaches an even word boundary, emits a dynamic test, and forms the loop.
All shifts and masks are known at code generation time, allowing immediate-
mode instruction selection on common RISC architectures. If one were compiling
to VLSI hardware, this might be particularly useful, as these operations become
almost free with good layout1.

These results depend on the style of input. For example the program in Figure
3.9 represents a signal with its start address and length in samples. Since the loop
works by counting the samples instead of comparing addresses, no conditionals
are eliminated.

Note that the dynamic part of the cyclic values is represented by the quotient.
See Section 4.2.5 for more on this.

If the alignments offrom andto had differed, then the odd iterations would
have been handled specially before entering the loop. The generation of this pre-
lude code is a natural and automatic result of using cyclic values; normally it is
generated by hand or by special-purpose code in a compiler.

1VLSI represents data with voltages in wires on a two-dimensional surface. With Field Pro-
rammable Gate Arrays (FPGA), the hardware can be reconfigured in about a millisecond. [Si-
HoMcA96] reports on using partial evaluation to dynamically reconfigure FPGA chips.

3.1. CYCLIC INTEGERS 37

S sum [from 7!h32 fromq 0i to 7!h32 toq 0i
size 7!8 stride 7!8 r 7! r]

!

fun sum_0088 fromq toq r =
if fromq = toq then r else

sum_0088 (fromq + 1) toq
(r + (((load_word fromq) >> 0) & 255) +

(((load_word fromq) >> 8) & 255) +
(((load_word fromq) >> 16) & 255) +
(((load_word fromq) >> 24) & 255))

Figure 3.8: Assumptions and residual code automatically generated by a special-
izer with cyclic values.

fun sum2 (from, length, size, stride) r =
if length = 0 then r else
sum ((from + stride), length-1, size, stride)

(r + (load_sample from size))

Figure 3.9: A slightly different version ofsum fails to specialize as well.

38 CHAPTER 3. BIT-ADDRESSING

fun vector_signal from to stride size =
let val from = set_base from 32

and to = set_base to 32
in

fn s_get => load_sample from size
| s_put => fn v => store_sample from size v
| s_next => vector_signal (from+stride) to stride size
| s_end => from = to

end

Figure 3.10: An example use ofset-base . This code is from the higher-
order implementation of the signal interface (Figure 5.4). It is the only use of
set-base in the implementation.

If we want to apply this optimization to a dynamic value and we can afford
to spend some code-space, then we can use case analysis to convert the dynamic
value to cyclic before the loop. This results in one prelude for each possible
remainder, followed by a single loop, as explained in Section 4.2.3.

Arbitrary arithmetic with pointers can result in values with any base, but once
we are in a loop likesum we want a particular base.Set-base allows the
programmer work around this. Figure 3.10 shows an example of its use. Section
4.2.3 explains its implementation.

(set-base m b) ! hb d ri

While we currently rely on manual placement ofset-base , we believe automa-
tion is possible because the analysis required appears similar to the un/boxing
problem [Leroy92].

3.1.1 Multiple Signals

If a loop reads from multiple signals simultaneously, then in order to apply the
these optimizations, it must be unrolled until all the signals return to their original
alignment. Figure 3.11 illustrates such a situation. The ordinary way of imple-
menting a pair-wise operation on same-length signals uses one conditional in the
loop because when one array ends, so does the other. Since our unrolling de-
pends on the conditional, this would result in ignoring the alignments of one of
the arrays.

3.1. CYCLIC INTEGERS 39

0

1

2

3

0

1

2

3

Figure 3.11: Reading a 16-bit signal and writing a 8-bit signal. The input only
needs to be unrolled twice, but the output needs to be unrolled four times.

fun redbin (from0, to0, size0, stride0)
(from1, to1, size1, stride1) =

if ((from0 = to0) andalso (from1 = to1))
then ()
else (... ; redbin(...))

Figure 3.12: Looping over two signals.

To solve this, we perform such operations with what normally would be a
redundant conjunction of the end-tests. Figure 3.12 illustrates this kind of loop.
In both implementations the residual loop has only one conditional, though after
it exits it makes one redundant test2.

Because 32 has only one prime factor (2), on 32-bit machines this amounts to
taking the maximum of all of the signals. If the word-size were composite then
more complex cases could occur. For example, a 24-bit machine with signals of
stride 8 and 12 results in unrolling 6 times, as illustrated in Figure 3.13.

3.1.2 Irregular Data Layout

Thesumexample shows how signals represented as simple arrays can be handled.
The situation is more complex when the data layout depends on dynamic values.
Examples of this include sparse matrix representations, run-length encoded vec-
tors (Figure 3.1(c)) , and strings with escape sequences. Figure 3.14 shows how
15-bit values might be encoded into an 8-bit stream while keeping the shift offsets

2Simple does this because its compiler to C translateswhile(E&&F)S to
while(E)while(F)S . Nitrous does this because its input language is in continuation
passing style

40 CHAPTER 3. BIT-ADDRESSING

Figure 3.13: Reading a 8-bit signal and writing a 12-bit signal on a machine with
24-bit words.

fun read_esc from to r =
if from = to then r
else let val v = load_sample from 8

in if v < 128 then
read_esc (from + 8) to (v + r)

else dcall read_esc (from + 16) to
((((v & 127) << 8) |

(load_sample (from + 8) 8)) + r)
end

Figure 3.14: Reading (and summing) a string of 8-bit characters with escape se-
quences. Note use ofdcall .

static. It works because both sides of the conditional ofv are specialized.
Read esc is a good example of the failure of the dynamic-conditional heuris-

tic. Unless we mark the recursive call as dynamic (so instead of inlining, the
memo-table is checked), specialization would diverge because some strings are
never aligned, as illustrated in Figure 3.15.

3.2 Sharing and Caching

The remaining inefficiency of the code in Figure 3.8 stems from the repeated
loads. The standard approach to eliminating them is to apply common subexpres-
sion elimination (CSE) and aliasing analysis (see Section 10.8 of [ASeUl86]) to
residual programs. Efficient handling of stores is beyond such traditional tech-
niques, however. We propose fast, optimistic sharing and static caching as an

3.2. SHARING AND CACHING 41

0

2

3

1

4

etc

Figure 3.15: A string with escapes illustrating need fordcall annotation in
read esc .

alternative.
We implement this by replacing theload word primitive with a cached load

procedureload word c . The last several addresses and memory values are
stored in a table; whenload word c is called the table is checked. If a match-
ing address is found, the previously loaded value is returned, otherwise memory is
referenced, a new table entry is created, and the least recently used table entry is
discarded. Part of the implementation appears in Appendix A.1. In fact, any cache
strategy could be used as long as it does not depend on the values themselves.

The cache could be held in a global variable if the specializer supports them.
We chose to transparently thread an additional argument through all calls and
returns by changing its implementation language.

Note that safely eliminating loads in the presence of stores requires negative
may-alias information (knowing that values will not be equal) [Deutsch94]. We
have not yet implemented anything to guarantee this.

A conspicuous variable is the size of the cache. How many previous loads
should be remembered? Though this is currently left to the programmer (with
init-cache in Nitrous), automation appears feasible. In Nitrous, if the cache
is too small then some redundant memory operations will remain; if the cache is
too large then excessive and redundant residual code is emitted. In the Simple
implementation, there are no dynamic conditionals inside of loops, so this is not
an issue.

How does the cache work? Since the addresses are dynamic, the equality test
of the addresses used to determine cache membership will be dynamic. Yet these
tests must be static to eliminate the cache. Our solution is to use a conservative
early equality operator for the cache-hit tests; it appears in Figure 3.16.

This operator takes two dynamic values and returns a static value. The result is

42 CHAPTER 3. BIT-ADDRESSING

S early= e0 e1 � = match (S e0 �, S e1 �)
(d0, d1) ! aliases?(d0, d1)
(hb0 q0 r0i, hb1 q1 r1i) ! b0 = b1 and

aliases?(q0, q1) and
r0 = r1

Figure 3.16: Rule forearly= .

true only if the compiler can prove the values will be equal by using positive alias
(aka sharing) information. The aliasing information becomes part of the static
information given to compilers, stored in the memo tables, etc. For example,
a procedure with three dynamic arguments can have five different versions (all
equal, none equal, and three ways of two being equal).

In the Nitrous implementation the generated compilers keep track of the names
of the dynamic values. Thealiases? primitive merely tests these names
for equality. Thus at compile time a cached load operation requires only a set-
membership operation. These names are also used for inlining without a postpass
(among other things), so no additional work is required to supportearly= . More
explanation appears in Section 4.2.

The cache functions like a CSE routine that examines only loads, so we expect
a cache-based compiler to run faster than a CSE-based one. But since CSE sub-
sumes the use of a cache and is probably essential to good performance anyway,
why do we consider the cache? Because CSE cannot handle stores, but the cache
does, as explained below.

Like the optimizations of the previous section, these load optimizations have
been achieved by making the compiler generator more powerful. Even more so
than the previous section, the source program had to be written to take advantage
of this. Fortunately, with the possible exception of cache size, the modifications
can be hidden behind ordinary abstraction barriers.

3.3 Normalization

Now let us see the implication of sharing to the addition rule we defined in Figure
3.6. This addition rule contains a dynamic addition to the quotient. In many cases
q0 is zero so the addition may be removed by the backend. The Simple system

3.3. NORMALIZATION 43

S e0+e1 � = match (S e0 �, S e1 �)
(hb q ri, s) ! hb q r + s i

S e0* e1 � = match (S e0 �, S e1 �)
(hb q ri, s) ! if s > 0 thenhsb q sri

else ifs < 0 thenh-sb - q sri

else 0

Figure 3.17: Rules for addition and multiplication that depend on late normaliza-
tion.

let val y = (set-base y 4)
val x = y
val yy = y + 4
val xx = x + 4

in (early= xx yy)
end

Figure 3.18: With addition rule from Figure 3.6 this would evaluate to false, but
with the rule from Figure 3.17, it evaluates to true.

works this way. There is a further problem, however: a dynamic addition causes
the allocation of a new location, thus losing equality/sharing information (Figure
3.18). The multiplication rule has its own defect: in order to maintain normal
form we must dissallow negative scales.

The rules used by Nitrous appear in Figure 3.17. They are simpler and more
general because they do not maintain normal form (recall that a cyclic valuehb

q ri is in normal form if 0 � r < b). Without further adjustment, use of the
new addition rule would result in frequent non-termination because there is no
case that emits dynamic additions. To compensate, cyclic values are returned
to normal form at memo points: I call thislate normalizationof cyclic values.
The extra information propagated by this technique (early-equality through fixed
points) is required to handle multiple overlapping streams of data.

Nitrous implements this as follows. When a compiler begins to make a dy-
namic code block, all cyclic values are normalized by adjustingr and emitting

44 CHAPTER 3. BIT-ADDRESSING

counter-acting additions toq. The sharing between these values must be main-
tained across this adjustment. Identifying all cyclic values is difficult because
they may be hidden in the stack or closures, see Section 4.2.5.

3.4 Store Caching

So far we have only considered reading from memory, not writing to it. Stor-
ing samples is more complicated than loading for two reasons: an isolated store
requires a load as well as a store, and optimizing stores most naturally requires
information to move backwards in time. This is because if we read several words
from the same location, then the reads after the first are redundant. But if we store
several words to the same location, all writes before the last write are redundant.

We can implementstore word c the same way a hardware write-back cache
does ([HePa90] page 379 in the second edition): cache lines are extended with a
dirty flag; stores only go to memory when a cache line is discarded. The time
problem above is solved by buffering the writes.

The load is unnecessary if subsequent stores eventually overwrite the entire
word. I achieved this by extending the functionality of the cache to include not
just dirty lines, but partially dirty lines (this is sometimes calledsectoring) Thus
the status of a line may be either clean or a mask indicating which bits are dirty
and which are not present in the cache at all. When a clean line is flushed no action
is required. If the line is dirty and the mask is zero, then the word is simply stored.
Otherwise a word is fetched from memory, bit-anded with the mask, bit-ored with
the line contents, and written to memory. Note that the masks in the cache lines
imply that the implementation substrate support native-sized integers.

Here is an example. Figure 3.19 shows code that stores an increasing series of
integers into every sample of a signal. Figure 3.20 shows the result of specializing
it to a case where loads are unnecessary. Figure 3.21 shows the result when the
stores are non-continuous, resulting in a different expansion of theflush line
procedure (see Appendix A.1). In these figures, the delaying effect of the cache
on writes has been removed to make the code clearer. Actual residual code from
Nitrous for the continuous case appears in Figure 3.22. Note how the dynamic part
of cache appears as arguments to procedures, and the duplication of the procedure
into entry and steady-state (write-pending) versions.

3.4. STORE CACHING 45

fun ramp (from, to, size, stride, i) =
if from = to then () else
(store_sample(from, size, i);

ramp (from+stride, to, size, stride, i+1))

Figure 3.19: Fill a signal with a ramp (sequential integers).

fun ramp_0088 (from, to, i) =
if from = to then () else
let i1 = i+1 i2 = i1+1

i3 = i2+1 i4 = i3+1
(store_word(from, i | i1<<8 | i2<<16 | i3<<24);

ramp_0088 (from+1, to, i4))

Figure 3.20: Specialized to continuous writes avoids loads.

fun ramp_00816 (from, to, i) =
if from = to then () else
let i1 = i+1 i2 = i1+1
(store_word(from, ((load_word from) & 0xff00ff00)

| i | i1<<16);
ramp_00816 (from+1, to, i2))

Figure 3.21: Specialized to signal with gaps, masked loads appear.

46 CHAPTER 3. BIT-ADDRESSING

ramp_0088(k from to i) f

if (from = to) (car k)()
let i1 = i+1 i2 = i1+1

i3 = i2+1 i4 = i3+1
ramp2(k from+1 to i4 from

(i <<0 | i1 <<8 | i2 <<16 | i3 <<24))
g

ramp2(k from to i a v) f

if (from = to) (store word(a, v);
(car k)())

let i1 = i+1 i2 = i1+1
i3 = i2+1 i4 = i3+1

store word(a, v);
ramp2(k from+1 to i4 from

(i <<0 | i1 <<8 | i2 <<16 | i3 <<24))
g

Figure 3.22: Actual residual code from Nitrous inroot showing threading of
dynamic part of cache. The cache is held in the variablesa andv . The notation is
the intermediate language described in Section 4.1.

3.5. CORRECTNESS 47

3.5 Correctness

This section discusses (but does not prove) the correctness ofS and of bit-addressing.
In the introduction, I claimed that specialization “preserves the semantics” of pro-
grams. Thus the standard measure of correctness of specializers is satisfaction of
the first Futamura projection:

[[f]] x y =� [[[[spec]] f x]] y

Note that this is a strong notion of correctness, defined by equivalence of
terms. [GoJo91] contains such a proof for�-mix where the equivalence permits
�-conversion (renaming variables). A similar proof forS would be unremarkable,
except for the handling of the extension for cyclic integers. Here, the proof would
use algebraic properites of the rules in Figures 3.6 and 3.7. BecauseS ’s rules
for division and remainder may report errors, and becauseS may not terminate,
we can only provepartial equivalence, that is, if both sides of the equation are
defined, then they are equivalent (up to�-conversion). Note that the correctness
of polyvariant specialization and memoization has so far remained unaddressed.

Safe handling of side-effects requires maintaining the order of computations.
I believe the standard solution of let-insertion [BoDa91] could be incorporated to
S without problems. Nitrous preserves order of computation because it processes
programs in continuation-passing style.

However, treating memory operations as generic side-effects is too restrictive
(an exception is when the memory is mapped to an I/O device). Showing that
bit-addressing is correct requires proving that the cache preserves the ordinary
semantics of a memory system3. Proofs of this kind are standard and, with one
exception, I see no problem developing one for a software cache.

The problem stems from the conservative early equality. Correctness depends
either on finding some way to guarantee negative may-alias information, or a re-
laxed definition of correctness. One way to make the guarantee is to dynamically
verify pointer inequality (for example, before entering a loop). If the data layout
is irregular then maintaining the guarantee is very difficult. Until an inexpensive
way to make guarantees is found, I choose to live dangerously.

Correctness of sharing is part of the satisfaction of the Futamura projection
given above.

Late normalization is more interesting. Showing that the modified rules of
Figure 3.17 are algebraically correct is not hard. The danger of late normalization

3The ordinary semantics of memory guarantee that reading locationp returns the last value
written to locationp.

48 CHAPTER 3. BIT-ADDRESSING

f : a -> c
g : c -> b
l : a list
map : (a -> b) -> a list -> b list

map f (map g l) ! map (f o g) l

Figure 3.23: Deforestation transforms a two-pass procedure to a one-pass proce-
dure. Infix composition of functions is denoted witho, as usual.

is non-termination, so a proof of partial equality is not revealing. The useful proof
is that late normalization does not introduce non-termination.

3.6 Limitations

Specialization, as described in Chapter 2 and extended in Chapter 3, is unable to
perform many useful optimizations. This section give some examples and sug-
gests how to achieve them.

An important transformation on programs that process streams of data is loop
fusion. In the functional language community, a general form of this optimization
is known asdeforestation[Wadler88]. This transformation eliminates intermedi-
ate data structures, as illustrated in Figure 3.23. Furthermore, optimizing compil-
ers for numerical and data-parallel languages such as High Performance Fortran
and NESL perform extensive analysis to determine how to divide the computa-
tion into passes, layout the data-structures in memory, and coordinate multiple
processors [SSOG93, ChaBleFi91].

Partial evaluation alone does not solve these problems. Specializingmap f
(map g l) has no effect. Instead, my approach is to specify procedures directly
in one pass, and use specialization to efficiently implement(f o g) . Similarly,
I believe specialization could be effective as a middle stage in such a compiler.

Another important kind of code one would like to remove is clipping and
array-bounds checks. For example, frequently one can guarantee that some raster
operations will be unobscured and in-bounds, and thus avoid clipping operations.
The natural way to handle this with a specializer is to propagate additional static
information. For example, one might statically know that10 < i < 100 . As
usual, this can be done by manual binding-time improvement or by improving the

3.6. LIMITATIONS 49

fun bitcopy (start, stop, start0) =
if start=stop then ()
(store_sample(start0, 1, load_sample(start, 1));

bitcopy(start+1, stop, start0+1))

Figure 3.24: Bit-serial copy.

fun bitcopy_000(start, stop, start0) =
if start=stop then ()
let v = load_word(start)
store_word(start0, (v&1) | (((v>>1)&1)<<1)

(((v>>2)&1)<<2) | (((v>>3)&1)<<3) |
(((v>>4)&1)<<4) | (((v>>5)&1)<<5) |
(((v>>6)&1)<<6) | (((v>>7)&1)<<7));

bitcopy_000(start+1, stop, start0+1)

Figure 3.25: Residual code with 8-bit word-size showing redundant un/marshall.

specializer. The latter route leads to the technique ofgeneralized partial compu-
tation [FuNoTa91, SoGluJo96], wherein PE is extended with a theorem prover.

Say we wrote bitcopy in bit-serial fashion, as in Figure 3.24. The rules of this
chapter produce (assuming an 8-bit word for brevity) the obviously inefficient
code in Figure 3.25.

The problem is that the source program uses a single bit of the input stream
as an intermediate value. The bits are then just reassembled into words. There
appear to be two parts to the problem: tracking where individual bits of data go,
and then when a word is finally really needed, determining how to assemble that
bit-pattern with available hardware (in the above case, it would determine that no
work at all is needed).

We now speculate on how to provide this optimization with a specializer. In-
troduce a new binding time, that is another kind of partially static integer: masked.
The static part includes a mask indicating which bits are known, what those bits
are, and source information for each dynamic bit. Operations such as shifting and
masking can then be performed statically, simply by rearranging the dynamic bits.
When one of these values is passed to an unknown primitive, it is lifted to a simple
value, and the assembly routine is invoked.

50 CHAPTER 3. BIT-ADDRESSING

3.7 Summary

This chapter added cyclic integers to the specializer from the last chapter. Use
of these partially static integers combined with the memoization results in smart
loop unrolling. In order to optimize memory operations with stores, we imple-
ment a cache in software. The cache is controlled by aliasing information in the
compiler. Together, these allow us to write signal processors independent of the
signal’s representation (at least, relativly independent when compared to other lan-
guages). The results of building some software with this kind of interface appears
in Chapter 5. The next chapter (Chapter 4) explains how the Nitrous implementa-
tion works in detail.

Chapter 4

Nitrous

Nitrous1 is a compiler generation system. It accepts a program in a full-featured
source language and transforms the program into a compiler. Because it runs very
slowly and the constant propagation is aggressive, excessively large compilers
and residual code is a problem. The objective of the design was to demonstrate
that enough static information is available to make transformations like those of
Section 1.5 and Chapter 3 work. For example, one might wonder if higher-order
functions or safety conflicts with late normalization of partially static integers or
early equality.

Root is the intermediate language at the center of the system, it is described
below. Figure 4.1 identifies the three kinds of program transformations within
Nitrous:

� Front-ends which produceroot programs from programs in user-defined
languages. Though the front-ends discussed here are all automatically gen-
erated by the system, the design is meant to support hand-written front-ends,
such as an ordinary ML compiler.

� A specializer for an untyped intermediate languageroot .

� A back-end provides machine-code assembly, optimization, and the rest of
the run-time system.

1It is named for nitrous oxideN2O, a gas used to make cars go really fast. It is also a common
medical anaesthetic. William James found that its subjective effect was to reveal the Hegelian
synthesis [James1882].

51

52 CHAPTER 4. NITROUS

ML

root

front-ends

Sal

rgb_to_mono

copy

specialization

machine
back-end

Figure 4.1: Diagram showing components of the Nitrous system. Boxes denote
languages, and arrows denote program transformations. The ML front-end is hy-
pothetical, and so is drawn with dotted lines.

The specializer is a compiler generatorcogen . This chapter explains the
mechanics of howcogen works, including the intermediate language and some
important front-ends.

Root is a simple abstract machine code, like higher-order three-address-code
([ASeUl86], p. 466) with an unlimited number of registers and in continuation-
passing closure-passing style (CPS-CPS) [Appel92]. Thus the stack in aroot
program is explicitly represented as a data structure. The model includes data
structures, arithmetic, an open set of primitive functions, and represents higher-
order values with closures.

A language supportsreflectionif it can convert a data structure representing
an arbitrary program text into a value (possibly a function). Lisp supports re-
flection witheval andcompile . Reificationis the opposite of reflection, that
is, converting a value (possibly a function) into a corresponding text. Although
reification is commonly available in debuggers and interpreters, not even Com-
mon LISP standardizes it. [FriWa84] defines and discusses these ideas in detail.
Reification is sometimes called introspection [Thiemann96] Section 4.

Root supports both reflection and reification. By supporting reflection we
make code-producing functions first class. Nitrous takes this a step further by
using reification to make the compiler-producing function first class: rather than
working with files, cogen just maps procedures to procedures.

Sal is a recursive-equations language augmented withlambda and various
convenience features. Thecogen -created compiler produces straight-forward
code. It performs CPS-CPS conversion and compiles tail-recursive calls without
building stack frames, but is otherwise non-optimizing. Sal is covered in Section

4.1. THE INTERMEDIATE LANGUAGE 53

4.3.
Rgb to mono (from Figure 1.4) andcopy (from Figure 5.4) are two exam-

ple media processing languages. The interpreters for these languages were written
in Sal.

Nitrous implements specialization in two stages:cogen transforms aroot
program andbinding times(BTs) for its arguments into agenerating extension.
The extension is executed with the static values to produce the specialized resid-
ual program. The BTs categorize each argument as static program or dynamic
data. The extension consists of a memo table, followed by the static parts of
the computation interleaved with instructions that generate residual code (i.e. do
RTCG).

Because the compilers produce the same language thatcogen accepts, and
the root text of the residual programs is easily accessible, multiple layers of
interpretation can be removed by multiply applyingcogen . For example the
output of the Sal compiler is valid input tocogen . This is howrgb to mono
andcopy were built. The lift compiler (see Section 4.2.3) also uses two layers.
Another possibility is to include a compiler generator as a primitive in Sal.

Multi-stage application requires that the generated compilers create correctly
annotated programs, which can be difficult. In [GluJo94, GluJo95] Gl¨uck and
Jørgensen present more rigourous and automatic treatments of layered systems
using specializer projections and multi-stage binding-time analysis.

This chapter is organized as follows. First, the intermediate language is pre-
sented, followed by the compiler generator, the Sal front end, and the conclusion.
The bulk of the material consists of technical details of the compiler generator.

4.1 The Intermediate Language

The core of the system is the intermediate language. Its formal syntax appears in
Figure 4.2. A program is called a code pointer, or just acode . When acode
is invoked, its formal parameter list is bound to the actual arguments. The list of
prim andconst instructions execute sequentially, each binding a new variable.
If tests a variable and follows one of two instruction lists. These lists terminate
with a jump or exit instruction. Ajump invokes thecode bound to the first
argument. The remaining arguments form the parameter list, and the cycle repeats
itself. Exit stops the machine and returns an answer. Formal semantics appear in
Figure 4.3. The semantics are given in Scheme [R4RS], extended with a pattern-
matching macro.

54 CHAPTER 4. NITROUS

code::= (code name args instrs)
instr ::=(prim v prim . args)

j (const v constant)
j (if v true-branch)
j (jump v . args)
j (exit v)

v ::= variable
instrs ::= instr+

args ::= variable�

true-branch::= instrs
prim ::= primitive operation

Figure 4.2:Root syntax. As usual, * and + superscripts denote lists of length
zero-or-more and one-or-more, respectively.

(define (eval-root code args)
(match code

((’code name formal-args source-code)
(let loop ((instrs source-code)

(env (zip formal-args args)))
(let ((lu (lookup env)))

(match instrs ; not just the car
(((’exit arg)) (lu arg))
(((’jump fn . args))

(eval-root (lu fn) (map lu args)))
(((’if pred t-branch) . f-branch)

(if (lu pred)
(loop t-branch env)
(loop f-branch env)))

(((’const var c) . rest)
(loop rest (cons (cons var c) env)))

(((’prim var prim . args) . rest)
(let ((v (apply prim (map lu args))))

(loop rest (cons (cons var v) env))))))))))

Figure 4.3: Semantics ofroot in Scheme.

4.1. THE INTERMEDIATE LANGUAGE 55

(code append (k l m)
((prim t0 null? l)

(if t0 ((prim t1 car k)
(jump t1 k m))) ; a

(prim frame list k l m)
(const cont cont) ; b
(prim cl close cont frame) ; c
(prim t2 cdr l)
(const append append) ; b
(jump append cl t2 m)))

(code cont (self r)
((prim t0 cdr self)

(prim k car self)
(prim t1 cdr t0)
(prim l car t1)
(prim t2 cdr t1)
(prim m car t2)
(prim t3 car l)
(prim nr cons t3 r)
(prim t4 car k)
(jump k nr)))

Figure 4.4:Root code forappend , in literal syntax. See text for notes.

Structured higher-order control flow is managed with closure-passing [Ap-
pel92]. A closure is a pair consisting of a code pointer with its bound variables,
and is invoked by jumping to its left member and passing itself as the first argu-
ment. A normal procedure call passes the stack as the next argument. The stack
is just the continuation, which is represented with a closure.

See Figure 4.4 for an example program inroot that uses a stack. Notes:a
return by jumping to the car ofk , passingk andmas arguments.b These constants
are codes not symbols (append is a circular reference).c close is like cons ,
but identifies a closure. Figure 4.5 shows the same program in the abbreviated
syntax used in the remaining examples.d destructuring assignment expands into
car/cdr chain. Figure 4.7 shows how to evaluate this program. Figure 4.6 shows a
higher-order program.

56 CHAPTER 4. NITROUS

append(k l m) f

if (null? l) (car k)(k m) ; a
frame = (list k l m)
cl = (close cont frame) ; b c
append(cl (cdr l) m) ; b

g

cont(self r) f

(k l m) = (cdr self) ; d
nr = (cons (car l) r)
(car k)(k nr)

g

Figure 4.5:Root code forappend , in sugary syntax. See text for notes.

compose(k f g) f

lam = (close apply g (list f g))
(car k)(k lam)

g

apply_g(k self x) f

(f g) = (cdr self)
cl = (close cont (list k f g))
(car g)(g cl x)

g

cont(self r) f

(k f g) = (cdr self)
(car f)(f k r)

g

Figure 4.6: Root code forcompose , showing how closures and higher-order
calls work.

4.2. THE COMPILER GENERATOR 57

(define top-cont ’((code top-cont (self r) ((exit r)))))

(eval-root append-root (list top-cont ’(1 2 3) ’(4 5)))

!

(1 2 3 4 5)

Figure 4.7: Session with Nitrous showing execution of the programappend
(which is bound to the Scheme variableappend-root to avoid conflict with
the native version).Top-cont is a stub continuation that returns a value to the
Scheme metalevel.

Factors that weigh in favor of an intermediate language likeroot instead of
a user-level language like Scheme or SML: it makescogen smaller and easier to
write; it provides a target for a range of source languages; it provides an interface
for portability; it exposes language mechanism (such as complex optional argu-
ments, pattern matching, method lookup, or multi-dimensional arrays) to partial
evaluation; it reduces assembly overhead because it is essentially an abstract RISC
code.

Two factors that weigh againstroot : explicit types would simplify the im-
plementation and formalization, and on some architectures good loops (e.g. PC-
relative addressing or other special instructions) are difficult to produce. Using
a language like the JVM [GoJoSte96], or one of the intermediate languages of
[TMCSHL96] would leverage existing research.

4.2 The Compiler Generator

Cogen is directly implemented (rather than produced by self-application), poly-
variant in binding times (it allows multiple binding time patterns per source proce-
dure), performs polyvariant specialization with memo-tables, and handles higher-
order control flow. This section summarizes howcogen and its extensions work.
The subsections cover the implementation of binding times, cyclic integers, lift-
ing, static extensions, special primitive functions, shape un/lifting, and dynamic
control stacks.

While Nitrous does very well with small examples, several flaws make scaling
difficult. Nitrous is apt to classify too much computation as static and produce

58 CHAPTER 4. NITROUS

(define append-DSD (cogen append-root
’(dynamic static dynamic)))

(eval-root append-DSD
‘(,top-cont

(1 2 3)
,(var->shape ’k)
,(var->shape ’m)))

!

append-123(k m) f

(car k)(k (cons 1 (cons 2 (cons 3 m))))
g

Figure 4.8: Session with Nitrous showing generation and execution of an exten-
sion.

large amounts of residual code, thus requiring the programmer to make careful
use of lifting. Several expediencies made its developement easier, but increased
the code output. Section 5.3 describes an implementation that scales better by
using a restricted language.

One interesting feature of Nitrous is that the input language is in continuation-
passing style. This has three results: let-insertion for safety is avoided, dynamic
choice of static values is supported, and the generated compilers do CPS transfor-
mation.

Although the input language is not explicitly typed, it turns out that annota-
tions marking particular values as stacks and closures are essential. This indicates
that an explicitly typed input language would work better.

Cogen converts acode and a binding-time pattern to ametastatic extension.
A metastatic extension is denoted with the name of the code pointer and the BT
pattern, for exampleappend(D S D) . The extension takes the static values and
the names of the dynamic values and returns a procedure—the specialized code.
Figure 4.8 shows an example session.

Inlining is controlled by the dynamic conditional heuristic (see Section 2.2),
but setting the special$inline variable overrides the heuristic at the next jump
(see Figures 4.18 and 4.22 for examples).

In CPS-CPS continuations appear as arguments, so static contexts are natu-

4.2. THE COMPILER GENERATOR 59

dyn-if(k s d) f

frame = (list k s d)
cl = (close cont frame)
if (d) (car cl)(cl 2)
(car cl)(cl 3)

g

cont(self r) f

(k s d) = (cdr self)
rr = r + s
(car k)(rr)

g

dyn-if2(k d) f

if (d) cont1(k)
cont2(k)

g

cont1(k) f

(car k)(k 2)
g

cont2(k) f

(car k)(k 3)
g

Figure 4.9: Propagating a static context past a dynamic conditional. The source
code is on the left, and the residual code on the right.

rally propagated. Figure 4.9 shows the translation of(+ s (if d 2 3)) into
root and the result of specialization. This is the effect refered to in Section 2.1.

4.2.1 Binding Times

Binding times are properties derived from the interpreter text while a compiler
generator runs. In the formal system of Chapter 2, they were the injection tags
on values inM. Primarily they indicate if a value will be known at compile time
or at run-time, but they are often combined with the results of type inference,
control flow analysis, or other static analyses. Binding times are sometimes called
metastaticvalues because in self-application of a specializer, they are static at the
meta-level (the outer application).

Cogen’s binding times are described by the grammar in Figure 4.10. The
binding times form a lattice whereD@C@S@(]const c) andD@(gcons bt bt) @S.
ThusD is the bottom of the lattice, though this contradicts the metaphore sug-
gested by “lifting”. Circular binding-times are allowed, so binding-times may
have infinite size as long as they are recognized by a context-free grammar. The
join operation of the lattice is not used by Nitrous, but the following equations
define it for finite binding-times:

xt D= D
(gcons x0 y0)t(gcons x1 y1) = (gcons (x0tx1) (y0ty1))
(]const c0) t (]const c1) = S unlessc0 = c1

60 CHAPTER 4. NITROUS

bt ::= D j S j C

j (]const c)
j (gcons bt bt)

cons(bt bt)

D

const

S

C

Figure 4.10: The binding time lattice. In the grammar on the leftD denotes dy-
namic,S denotes static,C denotes cyclic, andc denotes a constant. The lattice
order is illustrated on the right.

Ct (gcons x0 y0) = D

Cons cells are handled by representing binding times with graph-grammars as
Mogensen did. Pairs in binding times are labeled with acons pointthat identifies
which instruction the pair came from. If the same label appears on a pair and a
descendant of that pair then the graph-grammar is collapsed, perhaps forming a
circularity [Mogensen89]. Figures 4.11 and 4.12 show two possibilities.

The function of the cons-points would be better provided by explicit inductive
types.

We denote such a pair(gcons bt bt) (the label is invisible here).(glist x y
...) abbreviates(gcons x (gcons y ... (]const nil))) . We use famil-
iar type constructors to denote circular binding times. Figure 4.13 depicts several
useful examples.

As in Schism [Consel90], control-flow information appears in the binding
times. Cogen supports arbitrary values in the binding times, includingcode
pointers, the empty list, and other type tags. Such a binding time is denoted
(]const c) , or justc.

Closures are differentiated from ordinary pairs in theroot text, and this dis-
tinction is maintained with a bit ingcons binding times. Such a binding time is
denoted(]close bt bt) .

An additional bit on pair binding times supports a sum-type with atoms. In
terms of a grammar, agcons with this bit set may be either a pair or an atom (a
terminal). The bit is set during collapse if a cons is summed with an atom; in
Figure 4.11 the bit is set onalpha . In Figure 4.12, the bit is not set. The bit is

4.2. THE COMPILER GENERATOR 61

alpha

alphabeta

beta SS D

S D

!

alpha

beta

S D

Figure 4.11: The Cons-pointalpha appears twice and the graph is collapsed,
forming a circularity.

alpha

alphaD

D D

!

D D

alpha

Figure 4.12: The Cons-pointalpha appears twice and the graph is collapsed, not
forming a circularity.

62 CHAPTER 4. NITROUS

alist

bind

S D

spine

D

stack

S link

D

Figure 4.13: Three binding times:(S * D) list is typically used as an as-
sociation list from static keys to dynamic values,D list is a list only whose
length is static,stack-btis the binding time of a control stack.

not denoted.
Nitrous can break an integer into static base, dynamic quotient, and static re-

mainder, as described in Section 3.1. In the lattice,S@C@D. We have to make
special cases of all the primitives that handle cyclic values; these were introduced
in Section 3.1. See Section 4.2.4 for a description of the other special primitives.

4.2.2 Shapes and Sharing

Extensions rename the variables in the residual code and keep track of theshapes
(names and cons structure) of the dynamic values. The shape of a simple dynamic
value is the name of the variable that will hold the value. If the shape of a value is
a pair of names, then the dynamic value is held in two variables. Shapes always
mirror the binding times. In partial evaluation jargon, the effect of using shapes is
called variable splitting or arity raising.

In Figure 4.8, the binding time of the third argument isD, so its shape must be
just a name. In Figure 4.14, the binding time isD list , so the shape is a list of
names. In Figure 4.15 the binding time is the same, but because Nitrous uses the
sharing information from the identical names in the shape, only two values are
passed instead of four.

Shapes are part of the key in the static memo-table. Two shapes match only if
they have the same aliasing pattern, that is, not only do the structures have to be
the same, but the sharing between parts of the structures must be the same. This
can be computed in nearly-linear time.

The effect of variable splitting is that the members of a structure can be kept

4.2. THE COMPILER GENERATOR 63

(define append-DSD*
(cogen append-root

‘(dynamic static ,(make-list-bt ’dynamic))))

(eval-root append-DSD*
‘(,top-cont

(2 3)
,(var->shape ’k)
,(map var->shape ’(a b c))))

!

append-23abc(k a b c) f

t = (cons a (cons b (cons c ’())))
(car k)(k (cons 2 (cons 3 t)))

g

Figure 4.14: Session with Nitrous showing the effect of shapes.Make-list-bt
createsD list from D.

in several registers, instead of allocated on the heap (abstracted into one register).
The effect of sharing is that if two of the members are known to be the same, they
only occupy one register. This comes down to adding equational constraints to the
static information. This is why the residual code fromrgb to mono in Figure
1.1 has fewer arguments than Figure 1.2.

4.2.3 Lifting

Lifting is generalization, or abstracting away information. If we abstract away the
right information the compiler will find a match in its memo table, thus proving
an inductive theorem and forming a dynamic loop. The simplest lift converts a
known value to an unknown value in a known location (virtual machine register).
Lifting occurs when

� a metastaticcode is converted to a static value.

� a prim has arguments of mixed binding time, causing all the arguments to
be lifted.

� a jump has dynamic target, causing all the arguments to be lifted.

64 CHAPTER 4. NITROUS

(eval-root append-DSD*
‘(,top-cont

(2 3)
,(var->shape ’k)
,(map var->shape ’(a b b a))))

!

append-23abba(k a b) f

t = (cons a (cons b (cons b (cons a ’()))))
(car k)(k (cons 2 (cons 3 t)))

g

Figure 4.15: Session with Nitrous showing the effect of sharing.

� a Cons-point repeats in a binding-time grammar, causing its collapse (Fig-
ures 4.11 and 4.12).

� a lift directive appears, as a result of manual annotation, or produced by a
delayed lift.

Lifting is inductively defined on the binding times. The base cases are:

1. S! D allocates a dynamic location and initializes it to the static value.

2. C! D emits a multiplication by the base (unless it is one) and addition
with the remainder (unless it is zero).

3. S ! C results from an annotation used to introduce a cyclic value. The
conversion is underconstrained; currently a base of one is assumed. This
has been obviated byset-base .

4. (gcons D D) ! D emits a dynamiccons instruction.

5. (]close (]const p) frame) !D generates and inserts a call top((]close
D x) D D ...) (all but the first argument areD), then emits the cons
pairing the specialized code with the dynamic values.

6. (]close S frame) ! D This is lifting a static extension to dynamic, so it
is like the previous case, but the binding times are passed to the extension.

4.2. THE COMPILER GENERATOR 65

Cases 5 and 6 are particularly interesting. Any static information inframe is
saved byreassociatingit into the code pointer before it is lifted. This introduces
a complication, as explained in Section 4.2.5 below.

Manual lifting is supported inroot with an instruction understood bycogen
but ignored by theroot semantics:

instruction::= ...
j (lift v)
j (lift v bt)
j (lift v (args) proc)

The variablev is lifted toD, unless the targetbt is given. Any legal lift is supported,
including lifting to/from partially static structures with loops and closures. Instead
of giving a binding timebt, one can give a procedureproc which is executed on
the binding times ofargs. This provides a gateway to Scheme for the lift language.

A delayed lift, denotedlift t, produces a residual lift at timet � 1. If t is
zero, then it functions as an ordinary lift defined above.

Lifting Structures

If a lift is not one of the base cases outlined above, then thelift compiler is invoked
to create a procedure that takes the value apart, applies simple lifts at the leaves,
and reassembles the structure.Cogen inserts a call to this procedure into the
source program, and recurses into it.

For example, consider the lift(S * D) list !D. The compiler has a list
of values and a list of variable names. It recurses down the lists, and emits a const
and a cons instruction (making a binding) for each list member. At the base it
recovers the terminator, then it returns up and emits cons instructions that build
the spine. The copy function appears in Figure 4.16, and its specialization in
Figure 4.17.

It turns out that this lift compiler can be created bycogen itself. The meta-
interpreter is just a structure-copy procedure that traverses the value and the bind-
ing times in parallel. Adelayed liftannotation is used where the BTs indicate a
simple lift. Specializing this to the binding times results in a copy function with
lifts at the leaves. The value passed to the copy functionhasthe binding time that
was just a static value. When the continuation is finally called the remaining static
information is propagated. The copy function may contain calls to itself (where
the BT was circular) or to other extensions (to handle higher-order values).

66 CHAPTER 4. NITROUS

(define (copy_sdl2d l)
(if (null? l)

’()
(let ((hd (car l))

(tl (cdr l)))
(cons (cons (lift (car hd))

(cdr hd))
(copy_sdl2d tl)))))

Figure 4.16: Copy-function with lifts at the leaves. It is generated by the lift
compiler to perform a lift from(S * D) list to D.

sdl2d1(k a b) f

(car k)(k (cons (cons a 1) (cons (cons b 2) ’())))
g

Figure 4.17: Result of specializing copy function.

This is an example of multi-stage compiler generation because the output of
a generated compiler is being fed intocogen . The implementation requires care
ascogen is being used to implement itself, but the possibility of the technique is
encouraging.

Controlling Cyclic Values

Set-base is an special annotation that takes an integer with any binding time
and converts it to cyclic with a particular base. This can be a lift, for example
when going from static to cyclic base four, or when going from cyclic base four to
base two. Note that cyclic base one is functionally the same as dynamic. Convert-
ing from dynamic to cyclic requires case-analysis (known as The Trick in partial
evaluation jargon). Changing the base of a cyclic value may require both of these,
for example to go from base two to base three.

Lifting out a factor is easy because static information is just discarded from
the compiler. Case-analysis creates static information by emitting dynamic con-
ditionals and duplicating code. Nitrous implements this by inserting a call to the
procedure in Figure 4.18. The argumentd is the dynamic value to be converted;n
is its maximum possible value plus one;n is static. Note that the test for the error

4.2. THE COMPILER GENERATOR 67

finite-dynamic-to-static(k d n) f

if (zero? n) error
n1 = n - 1
if (n1 = d) $inline = #t

(car k)(k n1)
$inline = #t
finite-dynamic-to-static(k d n1)

g

Figure 4.18: Convert a dynamic value to static by case analysis.

is essential even though it may never be true, as without it the compiler will not
terminate.

4.2.4 Details and Complications

Special Primitive Functions

Cogen treats some primitive functions specially, generally in order to preserve
partially static information. Figure 4.19 gives the improved binding times possi-
ble, and in what situations they occur. Notes:

a implement copy propagation by just copying the shape.

b becauseroot is untyped.

c for variable splitting.

d the result is metastatic if the pair has never been joined with an atom (see Sec-
tion 4.2.1).Null? andatom? are also supported.

e apply takes two arguments: a primitive (in one back-end a C function, in
the other a Scheme procedure) and a list of arguments. If the primitive
and the number of arguments are static, then the compiler can just gen-
erate the primitive instead of building an argument list and generating an
apply . This supports interpreters with an open set of primitives or a for-
eign function interface. Notice this does not improve the binding times, it
just generates better code.

68 CHAPTER 4. NITROUS

(identity x) x a
(cons S S) S b
(cons S D) (gcons S D)
(cons D D) (gcons D D) c
(car (gcons x y)) x
(pair? (gcons)) S d
(apply S (D list)) D e
(+ C S) C
(* C S) C
(+ D S) C
(* D S) C
(zero? C) S D f
(imod C S) S
(idiv C S) C
(early= D D) S g

Figure 4.19: See the text for notes.

f extensions for bothS andDare created, the compiler chooses one statically (see
Section 3.1).

g early= conservative static equality of dynamic values, see Section 3.2.

4.2.5 Static Extensions

Previously [Draves96], the code pointer in a static closure (from a function or a
continuation) was represented with a metastatic extension. The binding times in
such an extension are fixed, which restricted the use of polyvariance and required
additional annotation. Specifically, when you made a static stack frame you had
to give the binding time of the return value. This conflicts with the polyvariance
in the binding times needed to support bit-addressing.

Furthermore, the implementation of late normalization of cyclic values (Sec-
tion 3.3) requires being able to identify all cyclic values in the static state of the
compiler.

I solved these together by changing the representation of extension to include
the original code pointer and the binding time of the first argument (i.e. the frame

4.2. THE COMPILER GENERATOR 69

inside the closure). So when the compiler is running and the static extension is
called, the rest of the binding times are available. At this point we call cogen to get
the metastatic extension, and then jump to that. Because we memoize on binding
times, this results in lazy compiler generation; cogen is called at compile time. In
this way, Nitrous is a hybrid between offline and online systems like [Sperber96].

This was a big change conceptually, but a small change in terms of the code
and what actually happens.

There are two places where static extensions are created: static recursions and
higher-order values.

Because the stack is an explicit argument, whencogen encounters a static
recursion the same label will eventually appear on two stack frames. In theory, be-
cause(]const x) t (]const y) = S , when this loop is collapsed the metastatic
continuations would be lifted to static, thereby converted to extensions and form-
ing a control stack in the compiler2. However, to simplify the implementation
cogen uses a special lift that makes a static extension:

instruction::= ... j (lift v stack)

This savesv and its binding time in a static extension, and sets its binding time to
stack-bt.

For example, consider specialization ofappend 3. The source with annota-
tions appears in Figure 4.20. Whencogen is called to createappend(D S D) ,
it calls itself recursively to createappend(stack-bt S D), causing a recur-
sive call to createappend(stack-bt S D) again. Since this binding-time
pattern is now in the memo-table, the recursion terminates. There are two exten-
sions made fromappend . The difference is the jump to the continuation in the
base case. In the first the jump target is dynamic, in the second it is static (but not
constant). If the list is not zero length then when we callappend(stack-bt S
D) with the static values, then each time the compiler returns it is a call to a static
extension. The first return createscont((]close cont (glist stack-bt S
D)) D) . Subsequent returns except for the last one request the same binding-
time pattern, which is in the memo-table. Figure 4.21 illustrates this series of
events. Note that there are two versions of each extension.Cogen could avoid
producing the (probably over-) specialized entry/exit code by checking for the

2If instead of forgettingx andy completely, we approximated them with a set, the result would
be control-flow analysis based on abstract interpretation [Shivers91].

3Only a irregular recursion really requires this, butappend is easier to understand.

70 CHAPTER 4. NITROUS

append(k l m) f

if (null? l) (car k)(k m)
frame = (list k l m)
cl = (close cont frame)
lift cl stack
append(cl (cdr l) m)

g

cont(self r) f

(k l m) = (cdr self)
nr = (cons (car l) r)
lift nr
(car k)(k nr)

g

Figure 4.20: Annotated code for a static recursion.

end of the stack explicitly. Static extensions are also created for source lambda
abstractions, see the caselambda? in Appendix A.5.

Late normalization of cyclic values requires that all cyclic values be identified
and simultaneously normalized at the beginning of the construction of a dynamic
code block (after checking the memotable). These values are identified by their
binding times. So we need the binding times of the values inside of closures and
the stack. This is the other reason.

Shape un/lifting and Sharing

Here we consider lift case 5 from Section 4.2.3 in greater detail. Sayf has one
argument besides itself. Then lifting(]close f frame) ! D creates a call to
the extensionf((]close D frame) D) . The extension is used to fold the static
part of frame into f . The problem is, according to its binding-time pattern, the
extension expects the dynamic part of the frame to be passed in separate registers
(because of variable splitting), but at the call site the value is pure dynamic, so
they are all stored in one register.

Nitrous uses special code at the call site to save (lift) the shape, and in the
extension wrapper to restore (unlift) the shape. This code optimizes the transfer
by only saving each register once, even if it appears several times in the shape
(typically a lexical environment appears many times, but we only need to save

4.2. THE COMPILER GENERATOR 71

append(D S D)
append(stack-bt S D)

*append(stack-bt S D)

cont((]close cont (glist stack-bt S D)) D)
*cont((]close cont (glist stack-bt S D)) D)
*cont((]close cont (glist stack-bt S D)) D)

...
cont((]close cont (glist D S D)) D)

Figure 4.21: Sequence of events when building a static recursion. A* indicates a
hit on the memo-table.

the subject-values once). The same optimization prevents a normal jump from
passing the same register more than once.

Dynamic Control Stacks

How do we extract the dynamic stack of a Sal program from the stack in the
Sal interpreter? Saycogen encountersdo-call(stack-bt S S alist-bt) (see
Figure 4.22). Whencl is lifted we computecont((]close S (glist stack-bt
S)) D) . We want to generate a procedure call wherecont jumps toapply , so
inlining is disabled and we lift the stack (k) to D, invoking lift base case 4. The
problem is the extension was made assuming the code pointer would be static,
but now it will be dynamic. The unlift code inserts an additional cdr to skip the
dynamic value, thus allowing an irregular stack pattern to be handled.

Representations of Cyclic Values

If cyclic values as described in Sections 3.1 are applied to the filter example from
Chapter 5, a limitation is revealed. The problem is the addresses are cyclic values
so before you can load a word the address must be lifted, resulting in a dynamic
multiplication and addition. One way to solve this is to use a different representa-
tion: rather than useq as the dynamic value, one can usebq. This ispremultipli-
cation. On most RISC architectures the remaining addition can be folded into the
load instruction.

The disadvantage of premultiplication is that multiplication and division can
no longer maintain sharing information. Which representation is best depends

72 CHAPTER 4. NITROUS

do-call(k fn exp env) f

frame = (list k fn)
cl = (close cont frame)
lift cl stack
eval(cl exp env) a

g

cont(self arg) f

(k fn) = (cdr self)
lift k
$inline = #f
apply(k fn arg)

g

Figure 4.22: annotated code to produce a dynamic stack frame. Notes:a the call
to evaluate the argument is inlined.

on how the value is used. A constraint system should suffice to pick the correct
representation.

4.3 Sal

The name “Sal” is derived from “sample language”. There are two versions of
Sal, one in Nitrous, and is the input to the Simple system. This section concerns
the former. After giving the syntax of the language, this section describes its im-
plementation with Nitrous. Sal is basically a recursive equations language with
threaded store,let , lambda , syntactic sugar, and annotations (that is, informa-
tion ignored by the ordinary semantics of the language, but essential tocogen).
Figure 4.23 gives a grammar for the syntax. The semantics are obvious except as
noted:

a first-order call or primitive application, the name refers to a definition.

b higher-order call, the first expression must evaluate to a lambda.

c access the threaded store.

d generates an assignment to the special$inline variable.

4.3. SAL 73

See Appendix A.5 for the source code for the interpreter. That this isroot
code makes it difficult to read; if written in direct-style with high-level syntax, it
would be ordinary. It could easily be bootstrapped and implemented in Sal itself.

The compiler generated bycogen compiles Sal programs toroot programs.
It works in one-pass, performing CPS conversion, closure conversion using a
linked representation, and executes tail-recursion without the stack. It gener-
ates some duplicate code unnecessarily, and is non-optimizing. Conversion to
continuation-passing style is a standard result in PE [Danvy96], but the others are
new.

It is possible to feed this generated code back intocogen . This is how the
benchmarks of Section 5.2 were done.

Examples of residualroot code generated by this compiler appears in Ap-
pendex A.6. They show the duplication problems, as well as the residual annota-
tions required for two-level specialization.

74 CHAPTER 4. NITROUS

prog ::= (defn+)
defn::=(name (v�) exp)

j (name prim)

prim ::= Scheme procedure
v ::= variable
name::= variable
bt ::= binding time

exp::=variable
j constant
j (name exp�) ; a
j (lambda (v�) exp)
j (exp+) ; b
j (if exp exp exp)
j (let ((v exp) +) exp)
j (and exp exp)
j (or exp exp)
j (begin exp+)
j (lift exp)
j (lift exp bt)
j (set-base exp exp)
j (case exp (constant exp) +)
j (destruct (v+) exp exp)
j (get-memory) ; c
j (set-memory! exp) ; c
j (no-inline) ; d

Figure 4.23: The grammar for the syntax of Sal. See text for notes.

Chapter 5

Benchmarks

This chapter reports on the building and measurement of several media process-
ing kernels. First I ignore automatic specialization and compare the manual im-
plementation of the alternative strategies (interpreted, buffered, and specialized)
from Section 1.1. Then I present the benchmark data of the residual code from
Nitrous and Simple, the two implementations of bit-addressing. A partial imple-
mentation (cyclic values only) is described briefly in Appendix A.7.

Except as noted below, the methodology is as follows: I use GCC v2.7.2 with
the -O1 option. Although I collected some data with the-O2 option, it was not
significantly different, so I discarded it.

Each of the examples was run for 1000 iterations, while real elapsed time was
measured with thegettimeofday system call. The whole suite was run five
times, and the best times were taken.

The legend of each bar-chart indicates which data-sets come from which ma-
chines. Four machines were used to collect the data:

R4k SGI Indigo 2 with 150Mhz R4400 running IRIX 5.3.

P5 IBM Thinkpad 560 with 133Mhz Pentium running Linux 2.0.27.

The height of a bar indicates the ratio of the two execution times specified in
the caption.

5.1 Manual

The graphs in Figure 5.1 compare specialization to interpretation and buffering.
The general, unspecialized versions here are built onload sample directly (like

75

76 CHAPTER 5. BENCHMARKS

cs68 sum
0

5

10

15

20

25

R4k
P5

cs68 rgb2m1
0

1

2

3

R4k
P5

Figure 5.1: The graph on the left shows the execution time of general code normal-
ized to specialized code. The right shows buffered code normalized to specialized
code.

sum in Figure 3.2) rather than with the interface in Figure 5.4. As expected, the
unspecialized programs run many times slower than their specialized counterparts.

The buffered code uses typical operations on vectors of whole-word integers
such as multiply every member by a scalar, or add one vector into another. It also
uses encode and decode routines that copy a signal from its packed representation
into a whole-word vector. These routines have a special case for bytes, otherwise
they call load/store sample . The vectors are 200 words long. Cs68 uses
three passes, and rgb2m1 uses ten. The code appears in Appendix A.4.

[ThoDa95] analizes buffered audio synthesis when all the data fit into an on-
chip cache. They find (and this is corroborated by anecdotal evidence) that buffer-
ing reduces bandwidth by about 30%, and the cost is fairly independent of the
number of passes over the buffers. This data set indicates that the cost can be
more than 200% and may grow with the number of passes. The lower overheads
may result from using application-specific vector primitives. In other words, some
amount of manual specialization has already taken place.

Next, I compare usingchar* pointers and reading individual bytes to reading
whole words and using shift and masks (as bit-addressing does). Figure 5.2 shows
that reading words runs slightly faster despite using more instructions. I expect

5.2. NITROUS 77

sum8x4 sum8x8 rgb2m3
0.0

0.5

1.0

R4k
P5

Figure 5.2: Execution time of byte-loads normalized to word-loads with shifts and
masks.

that these results are rather dependent on the microarchitecture. The sum8x4 and
sum8x8 benchmarks add up the members of a contiguous vector of bytes. The
byte-loop is unrolled four and eight times, respectively (the word version is always
unrolled four times). The rgb2m3 benchmark is explained below.

5.2 Nitrous

This section presents the a small data-set from the Nitrous system. It compares
bit-addressing and automatic specialization to hand-written code. The programs
of Figure 5.3 were implemented inroot , including the cache and signal library.
All the residualroot code is translated to one large C procedure by using GCC’s
indirect-goto extension for jumps. These examples were run on 2500 bytes of data
instead of 4000.

nybble4 sum vector of 4-bit samples

nybble12 sum vector of 12-bit samples

filter3 filter word-vector with kernel of size three.

78 CHAPTER 5. BENCHMARKS

nybble4 nybble12 filter7 filter3
0.0

0.5

1.0

1.5

P6
R10k

Figure 5.3: Execution time ofroot code automatically specialized by Nitrous
normalized to time of hand-specialized code.

filter7 filter word-vector with kernel of size seven.

5.3 Simple

In order to scale-up the examples I builtSimple, an online specializer that does
not use shift/reset or continuations and restricts dynamic control flow to loops
(i.e. sum and arrow types are not fully handled). All procedure calls in the source
programs are expanded, but the input language is extended with a while-loop con-
struct that may be residualized:

Exp ::= ... j loop Var Exp Exp Exp Exp

which is equivalent to the definition and application of the recursive procedure:

let fun G Var = if Exp then Exp else G Exp

in G Exp end

The loop construct is specialized according to the dynamic conditional heuris-
tic and memoization: it is inlined until the predicate is dynamic, then the loop is

5.3. SIMPLE 79

entered and unrolled until the predicate is dynamic again. At this point, the static
part must match the static part at the previous dynamic conditional.

As described in Chapter 2, because Simple does not perform let-insertion, it
may duplicate or forget side-effects. Since GCC performs common subexpression
elimination, most but not all of the duplication is eliminated.

The input to Simple is also the Sal language, but with an ML-like syntax and
the above restrictions. Examples of its use appear in Figures 1.5 and 1.14, and
Appendix A.3. The information is specified with unique names (constants re-
ally) created with a quote syntax. The names are ordinary first-class values. The
clone primitive copies a data-structure including sharing information and cre-
ates a new value with the same pattern of sharing internally, but that doesn’t share
with anything else.

Simple differs from Nitrous in several places. In Nitrous, a generated compiler
knows the shapes of the dynamic values, which are the names of their location in
the residual code. Early equality works by comparing these locations. In Simple,
a dynamic value is associated with an expression. Early equality works by textual
equality of these expressions.

Simple does not provide premultiplied cyclic values (see Section 4.2.5). Nor
does it use late normalization (see Section 3.3).

Simple is implemented in SML/NJ without concern for execution speed. The
specializer requires fractions of a second to produce the examples presented here.

5.3.1 Example

The main example built with Simple is an audio/vector library. It provides the
signal type, constructors that create signals from scalars or sections of memory,
combinators such as creating a signal that is the sum of two other signals, and
destructors such ascopy and reduce . The vector operations are suspended
in constructed data until a destructor is called. Figure 1.13 contains a graphical
representation of this kind of program.

Figure 5.4 gives the signature for part of the library. The semantics and im-
plementation are mostly trivial, most of the code appears in Appendix A.2. One
exception is that operations on multiple signals use a conjunction of the end-tests,
as described in Section 3.1.1. Consider the end-test of an infinite signal such as
a constant or noise (a signal of pseudo-random numbers). It should return true
because these signals can end anywhere, rather than returning false because they
never end.

80 CHAPTER 5. BENCHMARKS

sig
type samp
type signal
type baddress
type binop = samp * samp -> samp

fun vector_signal: baddress * baddress
* int * int -> signal

fun constant: samp -> signal

fun map: (samp -> samp) * signal -> signal
fun map2: binop * signal * signal -> signal
fun delay1: signal * samp -> signal
fun scan: signal * samp * binop -> signal
fun lut: baddress * signal -> signal
fun sum_tile: samp * signal * int -> signal

fun copy: signal * signal -> unit
fun reduce: signal * binop * samp -> samp

fun filter: signal * (samp list) * (samp list)
-> signal

fun fm_osc: signal * int * baddress * int *
signal * int -> signal

end

Figure 5.4: Signature for signal library.

5.3. SIMPLE 81

This delay operator returns a signal of the same length as its input, thus it loses
the last sample of the input signal. The other possibility (that it returns a signal
one longer) requires sum-types because there would be a dynamic conditional in
thenext method.

The filter combinator is built out of a recursive series of delays, maps, and
binops. Similarly, the wavetable combinator is built from simpler components.
Lut transforms a signal by looking up the samples in an array in memory where
the translations are stored one per word. A general version that used another
signal as the look-up-table would require atranslate method, not shown here.
Translate is also required for the 2D graphics interface, but I have not yet
finished with it so I cannot present it here.

A feedback combinator can be made in a higher-order language. Show the
code.

With this system, interleaved vectors are stored in the same range of memory,
Figure 3.1(c) is an example of three interleaved vectors. With an ordinary vector
package, if one passes interleaved vectors to a binary operation, then each input
word is read twice. An on-chip hardware cache makes this second read inexpen-
sive, but with the software cache the situation is detectedonceat code-generation
time. Specialization with sharing can replace a cache hit with a register reference.

Collapsible protocol languages such as [HaRe96, ProWa96] can handle more
advanced control flow (our signals are push or pull, not both), but these systems do
not address bits. The same is true of synchronous real-time languages like Signal
[GuBoGaMa91] and Lustre [CPHP87]. Their compilers are mostly concerned
with deriving global timing from local behavior.

Past work in bit-level processing has not emphasized implementation on word
machines. Although C allows one to specify the number of bits used to store a
field in a structure, it does not provide for arrays of bits. The hardware design
language VHDL [IEEE91]) allows specification of signals of particular numbers
of bits, but lacks a compiler that produces fast code.

There are two groups of examples, the audio group (Figure 5.6) and the video
group (Figure 5.5). The audio group uses 2000-byte buffers and 16-bit signals;
the video group uses 4000-byte buffers and mostly 8-bit signals.

The graphs show the ratio of the execution time of the code generated by Sim-
ple to manually written C code. The data indicate that, with some exceptions, the
runtimes are comparable. I suspect the exceptions result from aliasing preventing
GCC’s CSE.

In the audio group, this code was written usingshort* pointers and pro-

82 CHAPTER 5. BENCHMARKS

cessing one sample per iteration. In the video group, the code was written using
whole-word memory operations and immediate-mode shifts/masks. Some of the
code appears in Appendix A.4.

Some of the static information used to create the specialized loops appears
in Appendix A.3. These are generally arguments to the interpretercopy , which
is used for all the audio examples. The video examples also usecopy , except
iota , sum, andsum12.

The audio examples operate on sequential aligned 16-bit data unless noted
otherwise:

inc add 10 to each sample.

add two signals to form a third.

filter2 filter with kernel width 2.

filter5 filter with kernel width 5. The manual code doesn’t unroll the inner loop
over the kernel.

fm1 a one oscillator wave-table synthesizer.

fm2 a one-in-one oscillator wave-table synthesizer.

lut a look-up table of size 256. The input signal is 8-bits per pixel.

sum all the samples in the input

wavrec an wave-table synthesizer with feedback.

The video examples operate on sequential aligned 8-bit data unless noted oth-
erwise:

copy no operation.

gaps destination signal has stride 16 and size 8.

cs68 converts binary to ASCII by reading a six-bit signal and writing eight.

cs86 ASCII to binary by reading eight and writing six.

iota fills bytes with 0, 1, 2, ...

sum as in Figure 3.2, specialized as in Figure 3.3

5.3. SIMPLE 83

copy gaps cs68 cs86 iota sum sum12 rgb2m1 rgb2m2
0.0

0.5

1.0

1.5

R4k
P5

Figure 5.5: Video group. Execution time of automatically specialized by Simple
normalized to time of hand-specialized code.

sum12 a twelve-bit signal, as in Figure 3.4.

rgb2m1, rgb2m2, rgb2m3 convert color to monochrome. The input pixels are
layed out as in Figures 1.1, 1.2, and 1.3, respectively. The output data are
sequential bytes in each case.

84 CHAPTER 5. BENCHMARKS

inc add filter2 filter5 fm1 fm2 lut1 scan sum wavrec
0.0

0.5

1.0

1.5

2.0

R4k
P5

Figure 5.6: Audio group. Execution time of code automatically specialized by
Simple normalized to time of hand-specialized code.

Chapter 6

Conclusion

I have shown how to apply specialization to problems in media-processing. The
idea has been implemented and the benchmarks show it has the potential to al-
low programmers to write and type-check very general programs, and then create
specialized versions that are comparable to hand-crafted C programs.

The fundamental idea is that semantics-based compiler generation is a portable,
easy-to-use interface to run-time code generation. This improves on performing
traditional macro-expansion at run-time in three ways: first a program can be
written and debugged with specialization disabled, that is, without RTCG. Sec-
ond, variable capture and quoting errors are impossible to make. Third, the code
generators can be specialized themselves, resulting in low-overhead RTCG.

Furthermore, I proposed introducing knowledge of the linear-algebraic prop-
erties of integers into the specializer instead of treating them as atoms. The pro-
grammer can write high-level specifications of loops, and generate efficient im-
plementations with the confidence that the system will preserve the semantics of
their code. By making aliasing and alignment static, many of the operations nor-
mally performed by a hardware cache at runtime can be done at code generation
time.

Of course, problems remain. The next section describes the difficulties I en-
countered as a programmer while building the benchmark examples. I then take
a step back, and assess the current usability of the systems, and the prospects for
improvement.

85

86 CHAPTER 6. CONCLUSION

6.1 Pitfalls and Prospects

Sometimes specializing programs with cyclic values produces excessive special
cases. Say I want to make a routineF that manipulates an arbitrary byte-vector in
memory. As a bit-address, a byte-pointer is a cyclic value zero mod eight. So I
write

fun sumb (p, q) =
let val s = vector_signal(set_base(p,32),

set_base(q,32), 8, 8)
in reduce(s, plus, 0)
end

F = S sumb [p 7!h8 pb 0i q 7!h8 qb 0i]

and indeedF does exactly what I want, and is as fast as I expect. But it unnec-
essarily contains four copies of the inner loop, one for each possible alignment of
the terminating pointer (q). A set base of just the initial pointer results in one
copy of the inner loop. I should be able to get the smaller code by writing

fun sumb (p, q) =
let val evend = q - (q%32)

val s0 = vector_signal(set_base(p,32), evend, 8, 8)
val s1 = vector_signal(evend, set_base(q,32), 8, 8)

in reduce(s0, op_plus, reduce(s1, op_plus, 0))
end

Nitrous frequently fails to terminate because it tries to generate either infinite
or exponential quantities of code. This is not surprising considering that it was
designed to err on the side of propagating too much information. For example,
because of the code duplication in dynamic loops (see Section 4.2.5), nesting
loops results in code whose size is exponential in the levels of nesting.

A more interesting source of code explosion is the cache. The inclusion of
the partially-dirty cache lines in particular may produce a large number of static
states. Irregular patterns of writes can create this (consider Figure 6.1). Even if
the size and stride of the signal are simple (say both are eight), then the masks in
the cache still suffer from exponential explosion because each byte could be either
clean or dirty. One way to reduce the expansion is to flush the cache to return it to
a known state. This is like defining a procedure-calling convention for the cache.

Section 3.1.2 presents an example of infinite specialization resulting from too
much inlining. The need for thedcall annotation was not anticipated.

6.1. PITFALLS AND PROSPECTS 87

fun make_write_head p stride size =
(fn s_put => (fn v => store_sample p size v)

| s_shift => (make_write_head (p+d*stride) stride size))

Figure 6.1: Irregular writes.

fun make_counter from by =
fn s_end => true

| s_next => make_counter (from+by) by
| s_get => from

val count_by by = make_counter (lift 0) by

val two_counters = map2 op_plus (count_by 2) (count_by 3)

Figure 6.2: With Simple, any loop overevens will fail.

An unexpected problem results from the combination of Simple’s restriction of
dynamic control flow to loops and sharing. The code in Figure 6.2 (in the style of
Appendix A.2) exhibits the problem. The two dynamic values intwo counters
(two instances of(lift 0)) are equal and shared. Iftwo counters is passed
to reduce then after the first iteration the dynamic values diverge, so the sharing
is lost. But in Simple, the static state at the top and bottom of a loop must match.

In summary, none of the implementations of bit-addressing is currently practi-
cal. Nitrous is too slow, and Simple is too restricted. The Similix implementation
is promising because, like the Simple system, its specializers run in fractions of a
second, but without the restrictions of Simple. None of these systems has a fast
enough backend to generate code at runtime. But I believe that application of stan-
dard engineering practice to the ideas of this thesis would result in systems useful
to expert programmers. I now outline such systems, and the difficulties they will
face.

Modifying an existing second-generation polyvariant specializer like PGG (or
its ML equivalent, if available) is a natural choice. Cyclic integers are easy to add,
though more cases than are shown here may be useful. Sharing and conservative
equality appear to pose no difficulty, though the global state traversal in late nor-
malization might be a problem. The function of late normalization is to make the

88 CHAPTER 6. CONCLUSION

early equality smarter at very little expense at code generation time, and so may
be pointless if code generation is slow. The output would be compiled with an
ordinary Scheme (or ML) compiler. The advantage of this approach is leveraging
existing backends and frontends. The disadvantage would be relatively slow code
generation (high�), and slow residual code (not as fast as GCC).

Alternatively, a new specializer (frontend) may be developed. The system
could work with an existing backend with a strongly typed intermediate langauge
and fast code generation (e.g. the JVM), or a new backend could be derived for
an existing system (e.g. TIL2 modified to reduce�).

Both of these approaches would probably solve the basic problems of Ni-
trous (slow execution and excessive code duplication) and Simple (restricted lan-
guages). But any system based on partial evaluation has a basic problem: debug-
ging the binding times. A mechanism that might help is assertions (such as “this
variable should be static”), where the error message in case of violation includes
the cascade of guilty variables. Manual placement of some lifts and other tweeks
to adjust binding times and inlining seem inevitable. However, I suspect that using
profile data from execution to guide specialization could significantly outperform
the dynamic conditional heuristic.

This leaves us with the intrinsic problems of implementing bit-addressing as
described here:

� When should the cache be initialized (flushed)? This is a special case of
when to lift. How many entries should allocated? The current strategy of
flushing after a loop sometimes preserves too much information (Figure 6.1
above). Perhaps some signals should be uncached. Perhaps a heuristic can
be developed.

� How can we handle sharing information in a modular way? How can we
access a specializer from a strongly typed language (recall the different ar-
ities of rgbm1 andrgbm2 in Figure 1.5). Perhaps the top-level procedure
returned by specializer should not have redundant arguments removed, thus
permitting a typable external interface.

� How much can we do without negative may-alias info? I expect this invari-
ant becomes difficult to maintain in a large system.

� How can array-bounds checks be eliminated? All the examples in this chap-
ter used unsafe arrays, though this does not scale to large systems. Good

6.1. PITFALLS AND PROSPECTS 89

compilers can eliminate many of these checks, and I think that RTCG ex-
poses many more. As noted in Section 3.6, the natural way to address this
is with generalized partial computation. But GPC is dependent on a theo-
rem prover. We assume that some form of annotations (or interactivity) to
guide the prover will be necessary. The Extended Static Checking (ESC)
framework [Detlefs96] may prove suitable.

Until more experience with better implementations of bit-addressing is col-
lected, these plans and analyses will remain rather speculative.

90 CHAPTER 6. CONCLUSION

Bibliography

[Andersen94] Lars Ole Andersen.Program Analysis and Specialization for the C
Programming Language. DIKU 1994.

[ANSI90] ANSI. ANSI/ISO 9899-1990: Programming Languages - C. American
National Standards Institute 1990.

[ApMa91] Andrew W Appel, David B MacQueen. Standard ML of New Jersey.
3rd Symposium on Programming Language Implementation and Logic Pro-
gramming, 1991.

[Appel92] Andrew Appel.Compiling with Continuations. Cambridge University
Press 1992.

[ASeUl86] A V Aho, R Sethi, J D Ullman.Compilers: Principles, Techniques,
and Tools. Addison-Wesley 1986.

[BiWe93] Lars Birkedal, Morten Welinder. Partial Ealuation of Standard ML.
DIKU-TR-93-22.

[BoDa91] A Bondorf, O Danvy. Automatic Autoprojection of Recursive Equa-
tions with Global Variables and Abstract Data Types.Science of Computer
Programming, 16:151-195.

[BoDu93] Anders Bondorf, Dirk Dussart. Handwriting Cogen for a CPS-Based
Partial Evaluator.Partial Evaluation and Semantics-Based Program Manip-
ulation, 1994.

[Bondorf92] Anders Bondorf. Improving binding times without explicit CPS-
conversion.ACM Conference on Lisp and Functional Programming, 1992.

[Carl96] Stephen Carl.Syntactic Exposures - A Lexically-Scoped Macro Facility
for Extensible Compilers. University of Texas at Austin 1996.

91

92 BIBLIOGRAPHY

[ChaBleFi91] Siddhartha Chatterjee, Guy E Blelloch, Allan L Fisher. Size and
Access Inference for Data-Parallel Programs.Conference on Programming
Language Design and Implementation, 1991.

[CHNNV96] Charles Consel, Luke Hornof, Francois No¨el, Jacque Noy´e, Nicolae
Volanschi. A Uniform Approach for Compile-Time and Run-Time Special-
ization.Dagstuhl Workshop on Partial Evaluation, 1996.

[CoDa89] Charles Consel, Olivier Danvy. Partial Evaluation of Pattern Matching
in Strings.Information Processing Letters, 30:79-86.

[CoDa98] Charles Consel, Olivier Danvy.Partial Evaluation in Procedural Lan-
guages. MIT Press 1998.

[Consel88] Charles Consel. New Insights into Partial Evaluation: The Schism
Experiment.European Symposium on Programming, 1988.

[Consel90] Charles Consel. Binding Time Analysis for Higher Order Untyped
Functional Languages.ACM Conference on Lisp and Functional Program-
ming, 1990.

[Consel93] Charles Consel. Polyvariant Binding-Time Analysis For Applicative
Languages.Partial Evaluation and Semantics-Based Program Manipula-
tion, 1993.

[CPHP87] P Caspi, D Pilaud, N Halbwachs, J A Plaice. Lustre: A Declarative
Language for Programming Synchronous Systems.Principles of Program-
ming Languages, 1987.

[Danvy96] Olivier Danvy. Type-Directed Partial Evaluation.Principles of Pro-
gramming Languages, 1996.

[DaPfe96] Rowan Davies, Frank Pfenning. A Modal Analysis of Staged Compu-
tation.Principles of Programming Languages, 1996.

[Detlefs96] David Detlefs. An Overview of the Extended Static Checking Sys-
tem.Workshop on Formal Methods in Software Practice, 1996.

[Deutsch94] Alain Deutsch. Interprocedural May-Alias analysis for pointers: Be-
yondk-limiting. Conference on Programming Language Design and Imple-
mentation, 1994.

BIBLIOGRAPHY 93

[Draves95] Scott Draves. Lightweight Languages for Interactive Graphics. CMU-
CS-95-148.

[Draves96] Scott Draves. Compiler Generation for Interactive Graphics using In-
termediate Code.Dagstuhl Workshop on Partial Evaluation, 1996.

[Draves97] Scott Draves. Implementing Bit-addressing with Specialization.In-
ternational Conference on Functional Programming, 1997.

[EngKaOT95] Dawson Engler, M Frans Kaashoek, James O’Toole. Exokernel:
An Operating System Architecture for Application-Level Resource Manage-
ment.Symposium on Operating Systems Principles, 1995.

[EnHsKa95] Dawson Engler, Wilson Hsieh, M Frans Kaashoek. ‘C: A Language
for High-Level, Efficient, and Machine-independent Dynamic Code Gener-
ation.Conference on Programming Language Design and Implementation,
1995.

[FriWa84] Daniel P Friedman, Mitchell Wand. Reification: Reflection without
Metaphysics.ACM Conference on Lisp and Functional Programming, 1984.

[FuNoTa91] Yoshihiko Futamura, Kenroku Nogi, Aki Takano. The essence of
generalized partial computation.Theoretical Computer Science, 90(1):61-
79.

[Futamura71] Y Futamura. Partial evalutaion of computation process - an ap-
proach to a compiler-compiler.Systems, Computers, Controls, 2:45-50.

[GluJo94] Robert Gl¨uck, Jesper Jørgensen. Generating Optimizing Specializers.
IEEE Computer Society International Conference on Computer Languages,
1994.

[GluJo95] Robert Gl¨uck, Jesper Jørgensen. Efficient Multi-Level Generating Ex-
tensions for Program Specialization.Programming Language Implementa-
tion and Logic Programming, 1995.

[GoJo91] Carsten K Gomard, Neil D Jones. A partial evaluator for the untyped
lambda-calculus.Journal of Functional Programming, 1:21-69.

[GoJoSte96] James Gosling, Bill Joy, Guy Steele.The Java Language Specifica-
tion. Addison-Wesley 1996.

94 BIBLIOGRAPHY

[Graham94] Paul Graham.On Lisp: Advanced Techniques for Common LISP.
Prentice-Hall 1994.

[GuBoGaMa91] P le Guernic, M le Borgne, T Gauthier, C le Maire. Programing
Real-Time applications with Signal.Proceedings of the IEEE, 79(9):1305-
1320.

[HaRe96] Mark Hayden, Robbert van Renesse. Optimizing Layered Communi-
cation Protocols. Cornell-TR96-1613.

[Haynes93] Christopher Haynes. Infer: A Statically-typed Dialect of Scheme.
Indiana-CS-TR-93-367.

[Henglein91] Fritz Henglein. Efficient Type Inference for Higher-Order Binding-
Time Analysis.International Conference on Functional Programming Lan-
guages and Computer Architecture, 1991.

[HePa90] John L Hennessy, David A Patterson.Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann 1990.

[HiDyBru92] Robert Hieb, Kent Dybvig, Carl Bruggeman. Syntactic abstraction
in scheme. Indiana University TR #355, 1992.

[IEEE91] IEEE. IEEE Standard 1076: VHDL Language Reference Manual.
IEEE 1991.

[James1882] William James. Subjective Effects of Nitrous Oxide.Mind, Volume
7.

[JHHPW93] Simon L Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain,
Philip Wadler. The Glasgow Haskell compiler: a technical overview.UK
Joint Framework for Information Technology (JFIT), 1993.

[JoGoSe93] Neil D Jones, Carsten K Gomard, Peter Sestoft.Partial Evaluation
and Automatic Program Generation. Prentice-Hall 1993.

[Johnson75] Stephen C Johnson. YACC - Yet Another Compiler-Compiler. Bell
Labs 1975.

[Jones88] Neil D Jones. Automatic Program Specialization: a Re-examination
from Basic Principles.Partial Evaluation and Mixed Computation, 1988.

BIBLIOGRAPHY 95

[Jones91] Neil D Jones. Efficient Algebraic Operations on Programs.Algebraic
Methodology and Software Technology, 1991.

[JoSche86] Ulrik Jørring, William Scherlis. Compilers and Staging Transforma-
tions.Principles of Programming Languages, 1986.

[JoSeSo85] Neil D Jones, P Sestoft, H Søndergaard. An experiment in partial
evaluation: The generation of a compiler generator.Rewriting Techniques
and Applications, Dijon, France, 1985.

[KeEgHe91] D Keppel, S J Eggers, R R Henry. A Case for Runtime Code Gen-
eration. UW-CSE-91-11-04.

[KFFD86] Eugene Kohlbecker, Daniel Friedman, Matthias Felleisen, Bruce
Duba. Hygienic Macro Expansion.ACM Conference on Lisp and Functional
Programming, 1986.

[Lee89] Peter Lee.Realistic Compiler Generation. MIT Press 1989.

[LeLe96] Peter Lee, Mark Leone. Optimizing ML with Run-Time Code Gener-
ation.Conference on Programming Language Design and Implementation,
1996.

[Leroy92] Xavier Leroy. Unboxed objects and polymorphic typing.Principles of
Programming Languages, 1992.

[MiHraCru94] Melanie Mitchell, James Crutchfield, Peter Hraber. Evolving Cel-
lular Automata to Perform Computations: Mechanisms and Impediments.
Physica D, 75:361-391.

[MiToHa90] Robin Milner, Mads Tofte, Robert Harper.The Definition of Stan-
dard ML. MIT 1990.

[Mogensen89] Torben Mogensen.Binding Time Aspects of Partial Evaluation.
DIKU 1989.

[Mosses78] Peter Mosses. SIS, a Compiler-Generator System using Denotational
Semantics. Aarhus-TR-1978.

[Mossin93] Christian Mossin. Partial evaluation of General Parsers.Partial Eval-
uation and Semantics-Based Program Manipulation, 1993.

96 BIBLIOGRAPHY

[MuVoMa97] Gilles Muller, Eugen-Nicolae Volanschi, Renaud Marlet. Scaling
up Partial Evaluation for Optimizing the Sun Commercial RPC Protocol.
Partial Evaluation and Semantics-Based Program Manipulation, 1997.

[PoEnKa97] Massimiliano Polleto, Dawson Engler, M Frans Kasshoek. tcc: A
System for Fast, Flexible, and High-level Dynamic Code Generation.Con-
ference on Programming Language Design and Implementation, 1997.

[ProWa96] Todd Proebsting, Scott Watterson. Filter Fusion.Principles of Pro-
gramming Languages, 1996.

[PuMaIo88] Calton Pu, Henry Massalin, John Ioannidis. The Synthesis Kernel.
Computing Systems, 1988.

[R4RS] William Clinger, Jonathan Rees. Revised4 Report on the Algorithmic
Language Scheme.LISP Pointers, IV:1-55.

[Reynolds97] John Reynolds.Programming Languages Core Course Notes. un-
published 1997.

[Shivers91] Olin Shivers.Control-Flow Analysis of Higher-Order Languages.
Carnegie Mellon University, School of Computer Science 1991.

[SiHoMcA96] Satnam Singh, Jonathan Hogg, Derek McAuley. Expressing
Dynamic Reconfiguaration by Partial Evaluation.Symposium on Field-
Programmable Custom Computing Machines, 1996.

[SoGluJo96] Morten Sørensen, Robert Gl¨uck, Neil Jones. A Positive Supercom-
piler. Journal of Functional Programming, 6(6):811-838.

[Sperber96] Michael Sperber. Self-Applicable Online Partial Evaluation.
Dagstuhl Workshop on Partial Evaluation, 1996.

[SpeThi95] Michael Sperber, Peter Thiemann. The Essence of LR Parsing.Par-
tial Evaluation and Semantics-Based Program Manipulation, 1995.

[SSOG93] J Subhlok, J Stichnoth, D O’Hallaron, T Gross. Exploiting Task and
Data Parallelism on a Multicomputer.Principles and Practice of Parallel
Programming, 1993.

[Steele90] Guy Steele.Common Lisp the Language. Digital Press 1990.

BIBLIOGRAPHY 97

[SteLe95] A Stepanov, M Lee. The Standard Template Library. Hewlett Packard
Labs HPL-95-11.

[Thiemann96] Peter Thiemann. Cogen in six lines.International Conference on
Functional Programming, 1996.

[ThoDa95] Nicholas Thompson, Roger Dannenberg. Optimizing Software Syn-
thesis Performance.International Computer Music Conference, 1995.

[TMCSHL96] D Tarditi, G Morrisett, P Cheng, C Stone, R Harper, P Lee. TIL: A
Type-Directed Optimizing Compiler for ML.Conference on Programming
Language Design and Implementation, 1996.

[Wadler88] Philip Wadler. Deforestation: Transforming Programs to Eliminate
Trees.European Symposium on Programming, 1988.

[WCRS91] Daniel Weise, Roland Conybeare, Erik Ruf, Scott Seligman. Au-
tomatic online program specialization.International Conference on Func-
tional Programming Languages and Computer Architecture, 1991.

98 BIBLIOGRAPHY

Appendix A

Code Listings

A.1 Cache Source

A fragment of the cache implementation for the simple system:

val W = 32

fun mask b = (1 << b) - 1

fun load_sample (p, b) =
let wa = p / W
let ba = p % W
let w0 = (load_word_cached wa)
let s0 = (mask b) & (w0 >> ba)
if ((ba + b) > W)

(let ub = W - ba
let w1 = load_word_cached ((p+ub) / W)
let s1 = (w1 & (mask (b - ub)))
s0 | (s1 << ub))

s0

fun flush_line line =
let (addr, clean, mask, v) = line
if clean line
let v2 = (if (0 = mask) v

(v | (mask & (load_word addr))))
let line2 = (addr, true, 0, v2)
store_word(addr, v2)

99

100 APPENDIX A. CODE LISTINGS

fun load_word_cached(addr) =
let (effects,cache) = get_store
if (is_pair(cache))

(lw_loop(cache, (), addr))
(load_word(addr))

fun lw_loop(cache, prev_cache, addr) =
if (is_pair cache)

(let (line, rest) = cache
let (addr2, clean, mask, v) = line

if (aliases(addr2,addr))
(if (clean or (mask = 0))

(cache_done(prev_cache, rest, addr,
true, 0, v))

(error cannot_cross_streams2))
(lw_loop (rest, (line, prev_cache), addr)))

((flush_line(left prev_cache));
(let w = (load_word(addr))
(cache_done ((right prev_cache), (), addr,

true, 0, w))))

A.2 Signal Interface Source

A fragment of the implementation of the signal interface:

fun memory_empty (start, stop, size, stride) =
(start = stop)

fun memory_next (start, stop, size, stride) =
(v_memory, ((start+stride), stop, size, stride))

fun memory_get (start, stop, size, stride) =
load_sample(start, size)

fun memory_put ((start, stop, size, stride), v) =
store_sample(start, size, v)

fun constant_empty k = true
fun constant_next k = (v_constant, k)
fun constant_get k = k
fun constant_put (k, v) = (error)

A.2. SIGNAL INTERFACE SOURCE 101

fun noise_empty (state, ia, ic, im) = true
fun noise_next (state, ia, ic, im) =

(v_noise, (((lift (ia*state + ic)) % im), ia, ic, im))
fun noise_get (state, ia, ic, im) = state
fun noise_put (state, ia, ic, im) = (error)

fun bin_empty (op, v, w) =
((vec_empty v) and (vec_empty w))

fun bin_next (op, v, w) =
(v_bin, (op, (vec_next v), (vec_next w)))

fun bin_get (op, v, w) =
(do_op (op, (vec_get v), (vec_get w)))

fun bin_put ((op, v, w), q) = (error)

fun delay1_empty (h, v) = (vec_empty v)
fun delay1_next (h, v) =

(v_delay1, ((vec_get v), (vec_next v)))
fun delay1_get (h, v) = h
fun delay1_put ((h, v), q) = (error)

fun scan_empty (op, h, v) = (vec_empty v)
fun scan_next (op, h, v) = (v_scan, (op, (do_op (h, (vec_get v))),

(vec_next v)))
fun scan_get (op, h, v) = h
fun scan_put ((op, h, v), q) = (error)

fun reduce (op, init, vec) =
loop (v, vec) ((lift init), vec)

(vec_empty vec)
((do_op(op, v, (vec_get vec))),

(vec_next vec))
v

fun copy (a, b) =
loop (a, b) (a, b)

((vec_empty a) and (vec_empty b))
((vec_put (b, (vec_get a)));

((vec_next a), (vec_next b)))
()

102 APPENDIX A. CODE LISTINGS

fun filter (i, k, pre) =
if (is_pair k)

(v_binop, (op_plus,
(v_map, (op_times, (left k), i)),
(filter ((v_delay1, ((debug (left pre)), i)),

(right k), (right pre)))))
i

val sig16 = (v_memory, ((32*(’start)+0), (32*(’stop)+0), 16, 16))
val sig16_1 = clone sig16
val sig16_2 = clone sig16

val aligned_bytes = ((32*(’start)+0), (32*(’stop)+0), 8, 8)
val aligned_6s = ((32*’start1+0), (32*’stop1+0), 6, 6)

A.3 Signal Examples

Programs implemented with the signal library.

val add = (op_plus, sig16, sig16_1, sig16_2)

val inc = (op_plus, sig16, (v_constant, 10),
sig16_1)

val filter2 = ((v_bin,
(op_plus,

(v_delay1,
((’first), sig16)),

sig16)),
sig16_2)

val kernel = (1, 2, 4, 2, 1, ())
val prefix = ((’a), (’b), (’c), (’d), (’e), ())
val filter5 = ((filter (sig16, kernel, prefix)),

sig16_1)

val lut1 = ((v_lut, ((’buf), sig8)), sig16)

val wavtab1 = ((v_lut_feedback,
((’buf), 1024, 1, 32,

(’prev), sig16)),
sig16_1)

A.4. MANUAL CODE 103

val fm1 = ((fm_osc ((v_constant, 0), 0,
(’buf), 1024,
(v_constant, 256),
(’init_phase))),

sig16)

val fm2 = ((fm_osc ((osc ((’buf), 1024,
(v_constant, 256),
(’phase0))), 1,

(’buf), 1024,
(v_constant, 256), (’phase1))),

sig16)

val rgb2m_1 = rgb2m (rgba_r, rgba_g, rgba_b, mono8)
val rgb2m_2 = rgb2m (rgb_r, rgb_g, rgb_b, mono8)

val base64_encode = (aligned_6s, aligned_bytes)
val base64_decode = (aligned_bytes, aligned_6s)

A.4 Manual Code

A.4.1 Specialized

Baseline hand-specialized C code.

int
sum16(short *start, short *stop,

int sum) f

while (start != stop) f

sum += *start++;
g

return sum;
g

104 APPENDIX A. CODE LISTINGS

void
filter2(short *start, short *stop,

short *start1, short *stop1) f

while (start != stop) f

*start1 = start[0] + start[1];
start++;
start1++;

g

g

void
filter5(short *start, short *stop,

short *start1, short *stop1) f

int i, t;
while (start != stop) f

t = 0;
for (i = 0; i < 5; i++)

t += start[i];
*start1 = t;
start++;
start1++;

g

g

int
sum8(int *start, int *stop,

int sum) f

int v;
while(start != stop) f

v = *start;
sum += (((v >>0)&255) +

((v >>8)&255) +
((v >>16)&255) +
((v >>24)&255));

start += 1;
g

return sum;
g

A.4. MANUAL CODE 105

void
iota(int *start, int *stop) f

int i = 0;
while(start != stop) f

*start++ = i | ((i+1) <<8) |
((i+2) <<16) | ((i+3) <<24);

i+=4;
g

g

void
copy(int *start0, int* stop0,

int *start1, int* stop1) f

while (start0 != stop0)
*start0++ = *start1++;

g

void
gaps(int *start0, int* stop0,

int *start1, int* stop1) f

while (start0 != stop0) f

int v = *start0;
int b0 = (v >>0)&255;
int b1 = (v >>8)&255;
int b2 = (v >>16)&255;
int b3 = (v >>24)&255;
int mask = 0xff00ff00;
start1[0] = (start1[0] & mask)

| b0 | (b1 << 16);
start1[1] = (start1[1] & mask)

| b2 | (b3 << 16);
start0++;
start1+=2;

g

g

106 APPENDIX A. CODE LISTINGS

int
sum12(int *start, int *stop) f

int sum = 0;
while (start != stop) f

int w0 = start[0];
int w1 = start[1];
int w2 = start[2];
sum += ((w0 & 0xfff) +

((w0 >> 12) & 0xfff) +
(((w0 >> 24) & 0xff)

| ((w1 & 0xf) << 8)) +
((w1 >> 4) & 0xfff) +
((w1 >> 16) & 0xfff) +
(((w1 >> 28) & 0xf)

| ((w2 & 0xff) << 4)) +
((w2 >> 8) & 0xfff) +
((w2 >> 20) & 0xfff));

start += 3;
g

return sum;
g

void
fm1(int *lut, int phase,

short *start, short *stop) f

while (start != stop) f

*start++ = lut[phase >>8];
phase += 256;
phase = phase & ((1024*256)-1);

g

g

A.4.2 Buffered

Buffered versions.

typedef unsigned int bitp;

A.4. MANUAL CODE 107

typedef struct f

bitp start;
bitp stop;
int stride;
int size;

g signal_t;

void decode_signal(signal_t *s, int *v) f

bitp s0=s- >start, s1=s- >stop;
int stride = s- >stride;
int size = s- >size;
if ((stride&7) == 0 &&

size == 8 &&
(s0&7) == 0) f

char *p = ((char *)fixaddr(s0 >>5)) + ((s0 >>3)&3);
char *q = ((char *)fixaddr(s1 >>5)) + ((s0 >>3)&3);
stride = stride >>3;
while (p != q) f

*v++ = *p;
p += stride;

g

g else
while (s0 != s1) f

*v++ = load sample(s0, size);
s0 += stride;

g

g

108 APPENDIX A. CODE LISTINGS

void encode_signal(signal_t *s, int *v) f

bitp s0=s- >start, s1=s- >stop;
int stride = s- >stride;
int size = s- >size;

if ((stride&7) == 0 &&
size == 8 &&
(s0&7) == 0) f

char *p = ((char *)fixaddr(s0 >>5)) + ((s0 >>3)&3);
char *q = ((char *)fixaddr(s1 >>5)) + ((s0 >>3)&3);
stride = stride >>3;
while (p != q) f

*p = *v++;
p += stride;

g

g else while (s0 != s1) f

store sample(s0, size, *v++);
s0 += stride;

g

g

void scale_vector(int *v, int s, int n) f

int i;
for (i = 0; i < n; i++)

v[i] *= s;
g

void translate_vector(int *v, int s, int n) f

int i;
for (i = 0; i < n; i++)

v[i] += s;
g

void add_vectors(int *v, int *w, int n) f

int i;
for (i = 0; i < n; i++)

w[i] += v[i];
g

A.4. MANUAL CODE 109

void divide_vector(int *v, int s, int n) f

int i;
for (i = 0; i < n; i++)

v[i] /= s;
g

rgb2m_buff(signal_t *r, signal_t *g, signal_t *b,
signal_t *m, int cr, int cg, int cb, int cs) f

int t0[4000];
int t1[4000];
int n = (r- >stop - r- >stop)/r- >stride;
decode signal(r, t0);
scale vector(t0, cr, n);
decode signal(g, t1);
scale vector(t1, cg, n);
add vectors(t0, t1, n);
decode signal(b, t0);
scale vector(t0, cb, n);
add vectors(t0, t1, n);
divide vector(t1, cs, n);
encode signal(m, t1);

g

cs68_buff(signal_t *i, signal_t *o) f

int t0[4000];
int n = (i- >stop - i- >stop)/i- >stride;
decode signal(i, t0);
translate vector(t0, 32, n);
encode signal(o, t0);

g

A.4.3 Interpreted

Interpreted versions.

typedef unsigned int uint;

110 APPENDIX A. CODE LISTINGS

uint
load_sample(uint addr, int len) f

int mask = (1 << len) - 1;
uint *p = fixaddr(addr >> 5);
int o = addr & 31;
int r = (*p >> o) & mask;
if (len + o >= 32) f

int e = (len + o - 32);
return r | ((p[1] & ((1 << e) -1)) << e);

g

return r;
g

void
store_sample(uint addr, int len, int v) f

int mask = (1 << len) - 1;
uint *p = fixaddr(addr >> 5);
int o = addr & 31;
int prev = (*p & ˜(mask <<o));
*p = prev | (v <<o);
if (len + o >= 32) f

int e = (len + o - 32);
store sample(addr+(32-o), e, (v >>(32-o)));

g

g

int
sum_reduce(uint from, uint to, int bits, int stride) f

int sum = 0;
while (from != to) f

sum += load sample(from, bits);
from += stride;

g

return sum;
g

A.5. SAL INTERPRETER 111

int
cs68(uint from, uint to, uint start0) f

while (from != to) f

store sample(start0, 8, 32+(load sample(from, 6)));
start0 += 8;
from += 6;

g

g

A.5 SAL interpreter

Most of the implementation of SAL.

(code lookup
(k M var env)
((prim more? ,pair? env)

(if more? ((prim hd ,car env)
(prim tl ,cdr env)
,@(make ’lookup-found ’(k M var tl) ’cl1)
,@(make ’lookup-lost ’(k M var tl) ’cl2)
; this unquote is linking/module level
(const assq ,assq-root)
(jump assq cl1 cl2 var hd)))

; raise exception on meta-level, since we don’t have them
; here. like a trap.
(const msg "variable ˜S not bound")
(prim xx ,error msg var)
,@(call ’k ’(M var))))

(code lookup-found
(self val)
(,@(unmake ’(k M var tl) ’self)

,@(call ’k ’(M val))))

(code lookup-lost
(self val)
(,@(unmake ’(k M var tl) ’self)

; search the next frame
(const lookup lookup)
(jump lookup k M var tl)))

112 APPENDIX A. CODE LISTINGS

(define break-let-clauses
(code-rec1

‘((code break-let-clauses
(k M l rv rc)
((prim n ,null? l)

(if n (,@(call ’k ’(M rv rc))))
(prim hd ,car l)
(prim tl ,cdr l)
(prim v0 ,car hd)
(prim t0 ,cdr hd)
(prim c0 ,car t0)
(prim rvˆ ,cons v0 rv)
(prim rcˆ ,cons c0 rc)
(const break-let-clauses break-let-clauses)
(jump break-let-clauses k M tl rvˆ rcˆ))))))

(code apply
(k M prog name args)
((const apply-loop apply-loop)

(jump apply-loop k M prog prog name args)))

A.5. SAL INTERPRETER 113

(code apply-loop
(k M prog prog2 name args)
((prim more? ,pair? prog)

(prim no-more? ,not more?)
(if no-more? ((const msg "procedure ˜S not bound")

(prim xx ,error msg name)
,@(call ’k ’(M name))))

(prim d ,car prog)
(prim nm ,car d)
(prim found-defn? ,eq? nm name)
(if found-defn? ((prim d1 ,cdr d)

(prim d2 ,cdr d1)
(prim extern? ,null? d2)
(if extern?

((prim code ,car d1)
(const apply-extern apply-extern)
(jump apply-extern k M code args)))

(prim formals ,car d1)
(prim exp ,car d2)
(const nil ())
(lift nil

(run ,(lambda (self)
(make-multi-env-bt

(make-env-bt
(find-code ’zip root-zip))

(find-code ’subst-cont
self)))))

(const subst subst)
(jump subst k M formals args exp nil prog2)))

(prim rest ,cdr prog)
(const apply-loop apply-loop)
(jump apply-loop k M rest prog2 name args)))

(code expr
(k M exp env prog)
((const expr expr)

(prim is-var? ,symbol? exp)
(if is-var? ((const lookup ,lookup-recur)

(jump lookup k M exp env)))

114 APPENDIX A. CODE LISTINGS

(prim is-const? ,atom? exp)
(if is-const? ((lift exp)

,@(call ’k ’(M exp))))

(prim hd ,car exp)
(prim tl ,cdr exp)
(const get-memory get-memory)
(prim is-get-mem? ,eq? hd get-memory)
(if is-get-mem? (,@(call ’k ’(M M))))

(const if-name if)
(prim is-if ,eq? if-name hd)
(if is-if ((prim e0 ,car tl)

(prim rest ,cdr tl)
,@(make ’if-cont ’(k rest env prog) ’cl)
(lift cl stack)
(jump expr cl M e0 env prog)))

(const quote quote)
(prim quote? ,eq? quote hd)
(if quote? ((prim e0 ,car tl)

(lift e0)
,@(call ’k ’(M e0))))

(const and and)
(prim and? ,eq? and hd)
(if and? ((prim e0 ,car tl)

(prim rest ,cdr tl)
,@(make ’and-cont ’(k rest env prog) ’cl)
(lift cl stack)
(jump expr cl M e0 env prog)))

(const or or)
(prim or? ,eq? or hd)
(if or? ((prim e0 ,car tl)

(prim rest ,cdr tl)
,@(make ’or-cont ’(k rest env prog) ’cl)
(lift cl stack)
(jump expr cl M e0 env prog)))

A.5. SAL INTERPRETER 115

(const case case)
(prim case? ,eq? case hd)
(if case? ((prim e0 ,car tl)

(prim rest ,cdr tl)
,@(make ’case-cont ’(k rest env prog) ’cl)
(lift cl stack)
(jump expr cl M e0 env prog)))

(const begin begin)
(prim begin? ,eq? begin hd)
(if begin? ((prim e0 ,car tl)

(prim rest ,cdr tl)
(prim one-more ,null? rest)
(if one-more ((jump expr k M e0 env prog)))
,@(make ’begin-cont ’(k rest env prog) ’cl)
(lift cl stack)
(jump expr cl M e0 env prog)))

(const lambda lambda)
(prim lambda? ,eq? lambda hd)
(if lambda? ((prim e0 ,car tl)

(prim rest ,cdr tl)
(prim body ,car rest)
,@(make ’lambda-proc ’(e0 body env prog) ’lam)
(lift lam)
(lift lam 1 stack)
,@(call ’k ’(M lam))))

(const destruct-name destruct)
(prim is-destruct ,eq? destruct-name hd)
(if is-destruct ((prim e0 ,car tl)

(prim rest ,cdr tl)
(prim e1 ,car rest)
(prim r2 ,cdr rest)
(prim body ,car r2)
,@(make ’ds-cont ’(k e0 body env prog) ’cl)
(jump expr cl M e1 env prog)))

116 APPENDIX A. CODE LISTINGS

(const let-name let)
(prim is-let ,eq? let-name hd)
(if is-let ((prim e0 ,car tl)

(prim rest ,cdr tl)
(prim body ,car rest)
,@(make ’blcont ’(k body env prog) ’cl)
(const break-let-clauses ,break-let-clauses)
(const nil ())
(jump break-let-clauses cl M e0 nil nil)))

,@(make ’apply-cont ’(k hd env prog) ’cl)
(lift cl stack)
(const expr-list expr-list)
(jump expr-list cl M tl env prog)))

(code expr-list
(k M exprs env prog)
((prim is-null ,null? exprs)

(if is-null ((const nil ())
(lift nil (run ,(lambda (self)

(make-spine-static-bt
(find-code ’expr-list-cont2

self) ’r))))
,@(call ’k ’(M nil))))

(prim e ,car exprs)
(prim rest ,cdr exprs)
(const expr expr)
,@(make ’expr-list-cont ’(k rest env prog) ’cl1)
(lift cl1 stack)
(jump expr cl1 M e env prog)))

(code expr-list-cont
(self M r)
(,@(unmake ’(k rest env prog) ’self)

,@(make ’expr-list-cont2 ’(k r) ’cl2)
(lift cl2 stack)
(const expr-list expr-list)
(jump expr-list cl2 M rest env prog)))

A.5. SAL INTERPRETER 117

(code expr-list-cont2
(self M r-tl)
(,@(unmake ’(k r-hd) ’self)

(prim r ,cons r-hd r-tl)
,@(call ’k ’(M r))))

(code apply-cont
(self M args)
(,@(unmake ’(k hd env prog) ’self)

(prim is-prim? ,procedure? hd)
(if is-prim? ((prim r ,apply hd args)

,@(call ’k ’(M r))))

(const debug debug)
(prim is-debug? ,eq? hd debug)
(if is-debug? ((prim v ,car args)

(debug v)
,@(call ’k ’(M v))))

(const lift lift)
(prim is-lift? ,eq? hd lift)
(if is-lift? ((prim v ,car args)

(prim args1 ,cdr args)
(prim more? ,pair? args1)
(if more? ((prim bt ,car args1)

(lift v 1 bt)
; (lift v 1)
,@(call ’k ’(M v))))

(lift v 1)
,@(call ’k ’(M v))))

(const set-base set-base)
(prim is-set-base? ,eq? hd set-base)
(if is-set-base? ((prim v ,car args)

(prim args1 ,cdr args)
(prim b ,car args1)
(lift v base 1 b)
,@(call ’k ’(M v))))

118 APPENDIX A. CODE LISTINGS

(const set-memory set-memory!)
(prim is-set-mem? ,eq? hd set-memory)
(if is-set-mem? ((prim new-M ,car args)

(const ok ok)
(lift ok)
,@(call ’k ’(new-M ok))))

(prim named-prim
,(lambda (prog name)

(cond ((assq name prog)
=> (lambda (p)

(if (and (null? (cddr p))
(procedure? (cadr p)))

(cadr p)
#f)))

(else #f)))
prog hd)

(if named-prim ((prim r ,apply named-prim args)
,@(call ’k ’(M r))))

(prim proc-call? ,assq hd prog)
(if proc-call? ((lift k)

(lift k 1 stack)
(const $inline #f)
(const apply apply)
(jump apply k M prog hd args)))

,@(make ’lambda-call-cont ’(k args prog) ’cl)
(lift cl stack)
(const expr expr)
(jump expr cl M hd env prog)))

(code lambda-call-cont
(self M fn)
(,@(unmake ’(k args prog) ’self)

(lift k)
(lift k 1 stack)
,@(call ’fn ’(k M args))))

A.5. SAL INTERPRETER 119

(code if-cont
(self M p)
(,@(unmake ’(k e12 env prog) ’self)

(if p ((prim e ,car e12)
(const expr expr)
(const $inline #t)
(jump expr k M e env prog)))

(prim e2 ,cdr e12)
(prim e ,car e2)
(const $inline #t)
(const expr expr)
(jump exp r k M e env prog)))

(code and-cont
(self M p)
(,@(unmake ’(k e12 env prog) ’self)

(if p ((prim e ,car e12)
(const expr expr)
(const $inline #t)
(jump expr k M e env prog)))

(const false #f)
(const $inline #t)
(lift false)
,@(call ’k ’(M false))))

(code or-cont
(self M p)
(,@(unmake ’(k e12 env prog) ’self)

(if p ((const $inline #t)
,@(call ’k ’(M p))))

(const $inline #t)
(prim e ,car e12)
(const expr expr)
(jump exp r k M e env prog)))

(code case-cont
(self M key)
(,@(unmake ’(k rest env prog) ’self)

(const case-loop case-loop)
(jump case-loop k M key rest env prog)))

120 APPENDIX A. CODE LISTINGS

(code case-loop
(k M key clauses env prog)
((prim e? ,null? clauses)

(if e? ((const error error)
(lift error)
,@(call ’k ’(M error))))

(prim case-e ,car clauses)
(prim pat-e ,car case-e)
(prim tl0 ,cdr case-e)
(prim consq-e ,car tl0)
(prim tl ,cdr clauses)
(prim d? ,eq? pat-e key)
(if d? ((const expr expr)

(const $inline #t)
(jump exp r k M consq-e env prog)))

(const $inline #t)
(const case-loop case-loop)
(jump case-loop k M key tl env prog)))

; make this a tail call for the last one!!! XXX
(code begin-cont

(self M r)
(,@(unmake ’(k rest env prog) ’self)

(prim done ,null? rest)
(if done (,@(call ’k ’(M r))))
(prim e ,car rest)
(prim r2 ,cdr rest)
(prim one-more ,null? r2)
(const expr expr)
(if one-more ((jump expr k M e env prog)))
,@(make ’begin-cont ’(k r2 env prog) ’cl)
(jump expr cl M e env prog)))

(code blcont
(self M vars exprs)
(,@(unmake ’(k body env prog) ’self)

,@(make ’let-cont ’(k vars body env prog) ’cl)
(const expr-list expr-list)
(jump expr-list cl M exprs env prog)))

A.5. SAL INTERPRETER 121

(code let-cont
(self M vals)
(,@(unmake ’(k vars body env prog) ’self)

(const subst subst)
(jump subst k M vars vals body env prog)))

(code ds-cont
(self M vals)
(,@(unmake ’(k pat body env prog) ’self)

(const subst subst)
(jump subst k M pat vals body env prog)))

(code subst
(k M vars vals body env prog)
(,@(make ’subst-cont ’(k M body env prog) ’cl)

(const zip ,root-zip)
(const nil ())
(lift nil (run ,(lambda (self)

(make-env-bt
(find-code ’zip root-zip)))))

(jump zip cl vars vals nil)))

(code subst-cont
(self frame)
(,@(unmake ’(k M body env prog) ’self)

(prim over-spine ,cons frame env)
(const expr expr)
(jump exp r k M body over-spine prog)))

(code lambda-proc
(self k M args)
(,@(unmake ’(formals body env prog) ’self)

(const subst subst)
(jump subst k M formals args body env prog)))

(define debug-sal
(code-rec1

‘((code debug
(self k M v)
((debug v)

,@(call ’k ’(M v)))))))

122 APPENDIX A. CODE LISTINGS

(define debug-cl (cons debug-sal ’coccyx))

(define sal-lib
(append ‘((set-cache! (cache)

(set-memory! (cons (car (get-memory))
cache)))

(set-space! (space)
(set-memory! (cons space

(cdr (get-memory)))))

(trick (d max) (trick-loop 0 d max))
(trick-loop (s d max)

(if (= s d) s
(trick-loop (+ s 1) d max)))

(even? (i) (zero? (bit-and i 1)))

(length (l)
(if (pair? l)

(+ 1 (length (cdr l)))
0))

(compose (f g) (lambda (x) (f (g x)))))

(map (lambda (op) (list op (eval-at-top op)))
‘(+ = * - imod idiv > >= < <= early= error

cons cons3 car cdr null? pair?
zero? eq? lax-zero?
bit-shift-left bit-shift-right
bit-and bit-or bit-not
load-word store-word))))

A.6 SAL residuals

A.6.1 Factorial

Code generated demonstrating ordinary recursion. Note the duplication, see Sec-
tion 4.2.5.

(fact (x) (if (= 0 x) 1 (* x (fact (+ x -1)))))
!

A.6. SAL RESIDUALS 123

((code fact
(k M x)
((const k0 0)

(prim p1 = k0 x)
(if p1

((const k1 1)
(prim p car k)
(jump p k M k1)))

(const k1 1)
(prim x- 1 - x k1)
(const pq (code fin ...))
(const c0 ())
(prim c1 cons x c0)
(prim c2 cons k c1)
(prim k2 closure-cons pq c2)
(lift k2 0 stack)
(const p (code fact2 ...))
(jump p k2 M x-1))

...)

(code fact2
(k M x)
((const k0 0)

(prim p1 = k0 x)
(if p1

((const k1 1)
(prim p car k)
(jump p k M k1)))

(const k1 1)
(prim x- 1 - x k1)
(const pq (code fin ...))
(const c0 ())
(prim c1 cons x c0)
(prim c2 cons k c1)
(prim k2 closure-cons pq c2)
(lift k2 0 stack)
(const p (code fact2 ...))
(jump p k2 M x-1))

...)

124 APPENDIX A. CODE LISTINGS

(code fin
(self M r)
((prim d0 cdr self)

(prim k car d0)
(prim d1 cdr d0)
(prim x car d1)
(prim d2 cdr d1)
(prim xr * x r)
(prim p car k)
(jump p k M xr))

...))

A.6.2 Even

Code generated demonstrating tail-recursion:

(even (x) (if (= 0 x) #t (odd (- x 1))))
(odd (x) (if (= 0 x) #f (even (- x 1))))
!

((code even
(k M x)
((const k0 0)

(prim p1 = k0 x)
(if p1

((const true #t)
(prim p car k)
(jump p k M true)))

(const k1 1)
(prim x-1 - x k1)
(lift k 0 stack)
(const p (code odd ...))
(jump p k M x-1))

...)

A.6. SAL RESIDUALS 125

(code odd
(k M x)
((const k0 0)

(prim p1 = k0 x)
(if p1

((const false #f)
(prim p car k)
(jump p k M false)))

(const k1 1)
(prim x- 1 - x k1)
(lift k 0 stack)
(const p (code even2 ...))
(jump p k M x-1))

...)

(code even2
(k M x)
((const k0 0)

(prim p1 = k0 x)
(if p1

((const true #t)
(prim p car k)
(jump p k M true)))

(const k1 1)
(prim x- 1 - x k1)
(lift k 0 stack)
(const p (code odd ...))
(jump p k M x-1))

...))

A.6.3 Lambda

Code generated for

(object-message (x) ((make-obj x 5) ’vie))

126 APPENDIX A. CODE LISTINGS

(make-obj (a b)
(lambda (msg)

(case msg
(urk (* a 2))
(vie (+ b 3)))))

!

((code object-message
(k M x)
((const vie vie)

(const k5 5)
(const pq (code fin ...))
(const c0 ())
(prim c1 cons vie c0)
(prim c2 cons k c1)
(prim k2 closure-cons pq c2)
(lift k2 0 stack)
(const p (code make-obj ...))
(jump p k2 M x k5))

...)

(code make-obj
(k M a b)
((const pq (code unnamed-lambda ...))

(const c0 ())
(prim c1 cons a c0)
(prim c2 cons b c1)
(prim obj closure-cons pq c2)
(lift obj 0 stack)
(prim p car k)
(jump p k M obj))

...)

A.6. SAL RESIDUALS 127

(code fin
(self M r)
((prim d0 cdr self)

(prim k car d0)
(prim d1 cdr d0)
(prim msg car d1)
(prim d2 cdr d1)
(lift k 0 stack)
(prim p car r)
(const c0 ())
(prim c1 cons msg c0)
(jump p r k M c1))

...)

128 APPENDIX A. CODE LISTINGS

(code unnamed-lambda
(self k M args)
((prim d0 identity self)

(prim lam car d0)
(prim d1 cdr d0)
(prim b car d1)
(prim d2 cdr d1)
(prim a car d2)
(prim d3 cdr d2)
(prim msg car args)
(prim a2 cdr args)
(const urk urk)
(prim p1 eq? urk msg)
(if p1

((const k2 2)
(prim r * a k2)
(prim p car k)
(jump p k M r)))

(const vie vie)
(prim p2 eq? vie msg)
(if p2

((const k3 3)
(prim r + b k3)
(prim p car k)
(jump p k M r)))

(const error error)
(prim p car k)
(jump p k M error))

...))

A.7 Cyclic Integers in Similix

Similix 5.0 is a freely available and widely used specializer and compiler genera-
tor. It performs monovariant binding-time analysis, so we must use continuation-
passing style for zero and equality testing. Cyclic integers are modeled with
partially-static data-structures. Sharing information (and thus a cache) is not sup-
ported. Until I find a way to preventsim-memoize from lifting its argument,
dynamic conditionals inside of loops are impossible (note commented out defini-
tion of next for append-signal below.

A.7. CYCLIC INTEGERS IN SIMILIX 129

Theba.adt file (this uses SCM’s bit operations):

(defconstr (cyclic * * *))

(defconstr
(memory-signal * * * *)
(constant-signal *)
(delay-signal * *)
(map-signal * *)
(prefix-signal * *)
(append-signal * * *)
(prefix-list-signal * * *)
(binop-signal * * *))

(defprim (divide x y) (inexact->exact (floor (/ x y))))
(defprim 2 << ash)
(defprim (>> x y) (ash x (- y)))
(defprim 2 & logand)
(defprim 2 | logior)
(defprim-dynamic (load-word x) x)
(defprim-dynamic (lift x) x)
(defprim (debug x) (format #t "debug ˜S˜%" x) x)

Theba.sim file:

(define (push d n)
(if (zero? n)

(_sim-error ’push "push out of range")
(let ((next (- n 1)))

(if (= d next)
next
(push d next)))))

(define (D->C d b)
(let ((r (modulo d b))

(q (divide d b)))
(cyclic b q (push r b))))

130 APPENDIX A. CODE LISTINGS

(define (set-base c bˆ)
(caseconstr c

((cyclic b q r)
(if (= b bˆ) c

(let ((j (lcm b bˆ)))
(if (= bˆ j)

(let ((e (divide bˆ b)))
(cyclic bˆ

(divide q e)
(+ (* b (push (modulo q e) e))

r)))
(let* ((e (divide j bˆ))

(bˆˆ (divide b e)))
(set-base (cyclic bˆˆ

(+ (divide r bˆˆ)
(lift (* q e)))

(modulo r bˆˆ))
bˆ))))))))

(define (+c c s)
(caseconstr c

((cyclic b q r)
(let ((r1 (modulo (+ r s) b))

(q1 (divide (+ r s) b)))
(cyclic b (+ q q1) r1)))))

(define (zero?c c t f)
(caseconstr c

((cyclic b q r)
(if (zero? (modulo r b))

(_sim-memoize (if (zero? q) (t) (f)))
(f)))))

(define (count c r)
(zero?c c

(lambda () r)
(lambda () (count (+c c -1)

(+ r 7)))))

A.7. CYCLIC INTEGERS IN SIMILIX 131

(define (nested-count c r)
(zero?c c

(lambda () r)
(lambda () (nested-count (+c c -1)

(+ r (count c (lift 0)))))))

(define (=c c0 c1 t f)
(caseconstr c0

((cyclic b0 q0 r0)
(caseconstr c1

((cyclic b1 q1 r1)
(if (= b0 b1)

(if (= r0 r1)
(_sim-memoize (if (= q0 q1) (t) (f)))
(f))

(_sim-error ’=c "bases differ: ˜S ˜S" b0 b1)))))))

(define (/c c s)
(caseconstr c

((cyclic b q r)
(if (zero? (modulo b s))

(cyclic (quotient b s) q (quotient r s))
(_sim-error ’/c "uneven ˜S ˜S" b s)))))

(define (%c c s)
(caseconstr c

((cyclic b q r)
(if (= b s) r

(_sim-error ’%c "uneven ˜S ˜S" b s)))))

(define (mask b) (- (<< 1 b) 1))

132 APPENDIX A. CODE LISTINGS

(define (load-sample p b)
(let* ((W 32)

(wa (/c p W))
(ba (%c p W))
(w0 (load-word wa)))

(if (<= (+ b ba) W)
(& (mask b) (>> w0 ba))
(let* ((under-by (- W ba))

(s0 (& (mask under-by) (>> w0 ba)))
(w1 (load-word (/c (+c p under-by) W)))
(s1 (& w1 (mask (- b under-by)))))

(| s0 (<< s1 under-by))))))

(define (sum start stop size stride rez)
(=c start stop

(lambda () rez)
(lambda () (sum (+c start stride) stop size stride

(+ rez (load-sample start size))))))

(define (get s)
(caseconstr s

((memory-signal start stop size stride)
(load-sample start size))

((constant-signal c) c)
((delay-signal v s) v)
((prefix-signal v s) v)
((prefix-list-signal hd tl s) hd)
((append-signal hd tl s1) hd)
((map-signal f s) (f (get s)))
((binop-signal f s0 s1)

(f (get s0) (get s1)))))

A.7. CYCLIC INTEGERS IN SIMILIX 133

(define (end? s t f)
(caseconstr s

((memory-signal start stop size stride)
(=c start stop t f))

((constant-signal c) (t))
((delay-signal v s) (end ? s t f))
((prefix-signal v s) (f))
((prefix-list-signal hd tl s) (f))
((append-signal hd tl s1) (f))
((map-signal op s) (end? s t f))
((binop-signal op s0 s1)

(end? s0 (lambda () (end? s1 t f)) f)))) ; duplication

(define (next s)
(caseconstr s

((memory-signal start stop size stride)
(memory-signal (+c start stride) stop size stride))

((constant-signal c) s)
((delay-signal v s) (delay-signal (get s) (next s)))
((prefix-signal v s) s)
((prefix-list-signal hd tl s)

(if (null? tl) s (prefix-list-signal (car tl) (cdr tl) s)))
((map-signal f s) (map-signal f (next s)))

#| ((append-signal hd tl s1)
(end? tl

(lambda () s1)
(lambda ()

(append-signal (get tl) (next tl) s1)))) |#
((binop-signal f s0 s1)

(binop-signal f (next s0) (next s1)))))

(define (plus x y) (+ x y))
(define (times x y) (* x y))

(define (reduce s r f)
(end? s

(lambda () r)
(lambda () (reduce (next s) (f r (get s)) f))))

134 APPENDIX A. CODE LISTINGS

(define (filter prefix kernel in)
(if (null? prefix)

(constant-signal 0)
(binop-signal plus

(map-signal (lambda (v)
(* (car kernel) v))

in)
(filter (cdr prefix)

(cdr kernel)
(delay-signal (car prefix)

in)))))

A.8 Delimited Control: shift/reset

The material in this section is extracted from Sections 2 and 5.2 of [DaFi92].
Shift is similar to Scheme’scall/cc (call with current continuation), but the
extent of the escape procedure is limited by reset. Figure A.1 gives the formal
semantics of shift and reset. Conceptually, they serve as composition and identity
of continuations. [LaDa94] provides an explanation their application to partial
evaluation.

Here is a simple example:

1 + reset (2 * shiftc in 3 * ((c 4) + (c 5)))!
1 + (letc = � v . 2 * v in 3 * ((c 4) + (c 5)))!
55

In the following example,� is a boolean-valued term with free variablesbi.
Sat is true if and only if� is satisfiable. Each call to theflip function tries
returning twice, so every possible assignement of truth values is tried until� is
satisfied.

fun flip () = shift c in ((c true) orelse (c false))

val sat = reset letb0 = flip ()
b1 = flip ()
...

in �

A.8. DELIMITED CONTROL: SHIFT/RESET 135

[[x]] = ��:�x

[[�x:M]] = ��:� (�x:[[M]])
[[MN]] = ��: [[M]] (�m:[[N]] (�n:mn�))

[[shift c in M]] = ��: let c = �a:��0:�0(�a) in [[M]] (�m:m)
[[resetM]] = ��:� ([[M]] (�m:m))

Figure A.1: The first three lines are the standard equational specification of trans-
lation of�v terms into continuation-passing style (CPS). The last two lines define
shift and reset.

