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Abstract

Inferring the depth and shape of remote objects and the complete camera modon
from a stream of images is possible in principle, but is an ill-conditioned problem
when the objects are distant with respect to their size.
To overcome this difficulty, we have developed a factorization method to de-
compose an image stream directly into object shape and camera motion, without
computing depth as an intermediate step.
The factorization method is explored in a series of technical reports, going from
basic principles through implementation. This is the first report in the series, and
presents the basic concepts in the case of planar motion, in which images are single
scanlines.

In this situation, an image stream can be represented by theF x P matrix of the
image coordinates of P points tracked through F frames. We show that under
orthographic projection this measurement matrix is of rank 3.
Using this observation, we develop an algorithm to recover shape and camera
motion, based on the singular value decomposition of the measurement matrix.
Noise is defeated by applying a well-conditioned computadon to the highly re-
dundant input represented by an image stream. No assumptions are made about
smoothness or regularity of the camera motion, and even sudden jumps in the
camera velocity are faithfully reproduced in the computed output.
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reface

In principle, the stream of images produced by a moving camera allows the
recovery of both the shape of the objects in the field of view, and the motion of the
camera. Traditional algorithms recover depth by triangulation, and compute shape
by taking differences between depth values. This process, however, becomes very
sensitive to noise as soon as the scene is more than a few focal lengths away
from the camera. Furthermore, if the camera displacements are small, it is hard to
distinguish the effects of rotation from those of translation: motion estimates are
unreliable, and the quality of the shape results deteriorates even further.

To overcome these problems, we have developed a factorizadon method to
decompose an image stream directly into object shape and camera motion, without
computing depth as an intermediate step. The method uses a large number of
frames and feature points to reduce sensitivity to noise. It is based on the fact that
the incidence relations among projection rays can be expressed as the degeneracy
of a matrix that gathers all the image measurements.

To explore this new method, we designed a series of eleven technical reports,
as shown in figure 1, going from basic theory to implementation.

This first report illustrates the idea in the case of planar motion, in which
images are single scanlines. We introduce the factorization method, and test a
complete algorithm on a real image stream.

Report number 2 extends the idea to three-dimensional camera motion and full
image streams. It assumes that point features can be tracked over several image
frames. Report number 3 describes how to extract and track point features.

If point features are too sparse to give sufficient shape information, line features
can be used either instead or in addition, as discussed in report number 4. Report
number 5 shows how to extract and track line features.

The performance of our shape-and-motion algorithm is rather atypical. Be-
cause it does away with depth and capitalizes on the diversity of viewpoints made



possible by long image streams, it performs best when the scene is distant and the
motion of the camera is complex. Report number 6 examines what happens when
objects are close to the camera, and perspective foreshortening occurs. Report
number 7 shows how to deal with degenerate types of modon.

Occlusion can be handled by our method, and is treated in report number 8.
A basic assumption of our shape-and-motion algorithm is that only the camera

moves. In some cases, however, a few points move in space with respect to the
others, for instance, due to reflections from a shiny surface. Report number 9
examines how to detect these cases of spurious motion.

Our factorization algorithm deals with the whole stream of images at once.
For some applications this is undesirable. Report number 10 proposes an imple-
mentation that can work with an indefinitely long stream of images.

Report number 11 considers a more radical departure from the assumption of
a static scene than spurious motion. If several bodies are movmg independenriy
in the field of view of the camera, our factorization method can be used to count
the. number of moving bodies.

1. planar modon.

2. point features
in 3D modon

4. line features
in 3D motion 11. multiple modon

3. detection and tracking
of point features

5. detecdon and tracking
of line features

6. perspective 7. degenerate
motion

8. occlusion 9. spurious
motion

10. implementation issues

Figure 1: The technical report in the series. Arcs suggest reading paths.
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ntroduction

In principle, the shape of an object can be computed from a stream of images by
first estimadng camera motion and depth, and then inferring shape from the depth
values.

In pracdce, however, when objects are distant from the camera, relative to
their size, this computation is ill-condidoned. First, the translation component
along the optical axis is difficult to determine, because the image changes that it
produces are small. Second, shape values are very sensitive to noise if they are
computed as the small differences between large depth values.

These difficulties can be circumvented by inferring shape direcdy from vari-
ations in the relative position of image features, without computing depth as an
intermediate step.

In this report, we show that shape and camera rotation can be inferred precisely
from many features and frames, without assuming any model for the modon, and
reduce the computation to decomposing a matrix of image measurements.

The resulting algorithm, tested in simple situations, gives remarkably precise
motion and shape estimates, without introducing smoothing effects into the result.

For simplicity, we will limit our consideration to one epipolar plane at a time,
and assume that motion occurs in that plane. In other words, our images are single
scanlines.

Our theory is based on the observation that the incidence relations among
projection rays can be expressed as the degeneracy of a matnx that gathers all
the image measurements. To our knowledge, this observation has not previously
appeared in the literature.

Since we use many, closely spaced frames, the results are insensitive to noise,
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and the correspondence problem is simplified. Previous multi-frame approaches
usually assume a motion model to combine estimates of the camera position over
many frames. Typically, this model is some form of motion smoothness. In our
method, on the other hand, we assume only the invariant of shape constancy over
time.

As an illustration of our theory, we used our algorithm to recover the shape of
a one-dollar silver coin (about 4 cm in diameter) placed at 3.5 meters from a real
moving camera with a long lens. The total rotation of the camera was 30 degrees
around the coin (and in the midplane of the coin). The error in the computed
angle of camera rotation was always less than a tenth of one degree, and usually
substandally smaller. The error in the shape of the coin was always less than 1.5
percent of its diameter, and typically considerably smaller. The small errors due
to the effect of perspective are also analyzed.

In the following, we introduce our scenario, summarize the results, and sketch
the relations of our work with previous literature on the subject. Chapter2 in-
traduces the degeneracy principle mentioned above. Chapters shows how to use
it to decompose the measurement matrix into shape and camera rotadon. The
experimental results in Chapter4 show the ability of the algorithm to deal with
jerky rotations without smoothing its output. The conclusion (Chapter5) compares
direct shape algorithms with algorithms that base the computation of shape on that
of depth, and shows the former ones to be superior for remote scenes.

The Scenario

The world is still, and the camera moves in a plane, where it can freely rotate
and/or translate. P feature points, far away from the camera, are visible in a given
scanline, parallel to the plane of motion. Since the frames are taken frequently,
it is easy to track the features from frame to frame. As the camera moves, it is
panned so as to keep the features in the field of view.

After F frames, an F x /' matrix U of image measurements is available. This
matrix is the input to the algorithm.

This scenario approximates what happens with a camera on an airplane, with
suitable control mechanisms to align the camera scanlines with the direction of
flight, and to keep the same object within the field of view. Because objects are
distant from the camera, we can assume orthographic projection.



The Results

This report first shows that if the measurements are noise-free, the image coordinate
matrix U is highly degenerate: its rank is 3. As a result, U can be decomposed into
the product of two smaller matrices: an P x 3 matrix that encodes the F camera
positions, and a P x 3 matrix that encodes the positions of the P world points.

When noise corrupts the measurements, the rank of U can be defined in an
approximate sense, and is still 3.

The noisy matrix U is factored by Singular Value Decomposition [Golub and
Reinsch, 1971], which is known to be efficient and numerically well behaved. If
more points and frames are used than prescribed by equation-counting arguments
(which require a minimum of three points and three frames), the effects of noise
can be reduced.

The resulting shape and motion algorithm is simple and efficient, and has been
implemented and tested on objects as distant as one hundred times their size (see
Chapter4). The rotation errors are always smaller than one tenth of a degree. The
relative precision in the computed shape is of the order of the relative depth range,
defined as the ratio between the size of the object and its distance from the camera.

The good performance of our algorithm derives from the fact that shape is
obtained directly, without using depth as an intermediate result. In traditional
approaches, depth is first computed by triangulation. For remote objects, the
quality of depth estimates by triangulation is very sensitive to noise, and degrades
as the realtive range decreases. Consequently, the shape estimates degrade even
faster, since the computation of shape from depth is itself ill-conditioned.

In our approach, instead, no triangulation is done. Depth becomes irrelevant,
and the results are highly accurate.

Relations with Previous Work

Our goal is to compute world point coordinates, relative to each other, and camera
motion from multiple image frames.

Our algorithm does what photogrammetrists for more than thirty years have
done by hand and with two frames at a time [Thompson, 1959]. Ullman proposed
an automated solution to this problem eleven years ago [Ullman, 1979], and called
it structurc-from-motion. He also considered only two frames at once, and as few
points as theoretically possible.



Most of the initial efforts in this area have been devoted to finding closed-form
solutions with a minimal or nearly-minimal number of points and/or frames (see,
for instance, [Longuet-Higgins, 1981]).

In general, structure-from-motion is hard to solve. The major difficulty is the
inherent sensitivity of shape and motion to noise in the image, especially when
objects are distant. If depth is explicitly represented as an intermediate stage
in the computation, performance degrades with reductions in the relative depth
range. For instance, the algorithm presented in [Tsai and Huang, 1984] works
very well for close objects (which is the intended goal of that algorithm), but
the performance is likely to degrade when objects become more remote, and the
relative depth range becomes smaller.

The remedy is to by-pass the computation of depth, as we do in this report, to
remove the main cause of ill-conditioning.

Even with a well-conditioned algorithm, however, noise degrades perfor-
mance. Few points and/or few frames give bad results, regardless of how good the
math is. Our algorithm allows using many frames and many points, thus exploiting
redundancy to counteract noise. If frames are closely spaced, the correspondence
problem is also made easier to solve.

Many, tightly spaced frames have been used in [Bolles et al., 1987] and
[Matthies et al., 19 89], but only for the inference of depth when the morion of
the camera is known. Determining shape and motion simultaneously, on the other
hand, has been often suspected of being practically infeasible.

In [Spetsakis and Aloimonos, 1989], an interesting algorithm is presented for
the case of unknown motion, using several frames and points and a perspecdve
projection model. In spirit, our approach is akin to theu-s: the projection lines of
the same world point are a bundle (or pencil) of lines, and the resulting incidence
relations between them allow casting the computation of shape and motion as a
minimization problem. When applied to remote objects, however, their solution
suffers from the same ill-conditioning problem discussed above, since depth is
explicitly represented in their model.
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r he ecomposition :>rinciple

This chapterintroduces the fundamental principle on which our shape-and-motion
algorithm is based: the F x P matrix of the image coordinates of P points tracked
through F frames is higly rank-deficient.

As we stated in the introduction, we consider only one scanline per frame, and
assume that the camera moves in a plane parallel to the scanline. In this plane, we
define an arbitrary orthogonal system of coordinates (X, Z).

The images are orthographic projections of/? points, tracked through F frames.
The measurements u/p can then be collected in anF x P matrix

u=
Un

un

Ulp

UFP

From figure 3. 1 we see that the projection Ufp of point/? onto frame/ is given
by the equation

itfp = CfXp + ^Zp + tf , (2. 1)

where Cf and s/ are the cosine and sine of the angle ay that frame/ forms with
the X axis. The scalar tf is the projection onto the/-th image of the vector that
joins the world origin with the origin of the/-th frame.

We can now collect all of the F x P equations (2. 1) in matrix form:

U=MS (2. 2)



where

is the motion matrix, and

M=
Cl

CF

Xi
Zi

1

Sl

Sp

h

tp

Xp
Zp

1

(2. 3)

(2. 4)

is the shape matrix.
Since Mis F x 3 and 5 is 3 x P, we have just proven the following fact.

The Rank Principle

Without noise, the rank of the measurement matrix U is at most three.!

Appendix A discusses the degenerate cases in which the rank of U is even
smaller than three. These degeneracies correspond to all-aligned points or to
special types of motion. They can always be detected, and treated as special cases.
Consequently, we can simplify our treatment and assume that the rank principle is
satisfied in a strong sense: the rank of U is exactly three.

Intuitively, the rank principle expresses the simple fact that the F x P image
measurements are redundant. Indeed, they could all be described more concisely
by giving F frame angles and P points, if only these were known.

Geometrically, the rank principle expresses an incidence property. In fact, if
we replace Xp and Zp in the projection equation (2. 1) by the generic coordinates X
and Z, we obtain the equation of the projection line of pointp onto frame/:

Ufp = CfX+SfZ+tf .

Equation (2. 1) and, equivalently, the rank principle, say that there is a point that
belongs to these lines for all values of/. In other words, the projection lines of a
given point form a pencil.

In the next chapter, we show how to use the rank principle to determine the
motion and shape matrices M and S.

lln [Tomasi and Kanade, 1990], all image coordinates were measured with respect to those of
a reference feature. In that case, tf was always zero, so the rank of the measurement matrix was
two.
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he Algorithm

When noise corrupts the images, the measurement matrix U will not be exacdy
of rank 3. However, the rank principle can be extended to the case of noisy
measurements in a well-defined manner. Sections. 1 introduces this extension,
using the concept of Singular Value Decomposition (SVD) [Golub and Reinsch,
1971] to introduce the notion of approximate rank.

However, although the rank principle is the key to our algorithm, it is not
the whole story. In Sections .2, we show that, based on the rank principle, the
matrices M and S are determined only up to an arbitrary affine warping of the
plane. Therefore, in Section3. 2 we also point out the additional constraints needed
to complete the solution.

Secdon3. 3 outlines the complete shape-and-motion algorithm.

3.1 Approximate Rank

Assuming 1 that F > P, the matrix U can be decomposed [Golub and Reinsch,
1971] into an F x P matrix L, a diagonal ̂  x P matrix ^7, and &P x P matrix R,

U=LZR, (3. 1)

such that

LTL=RTR=RRT = I
CTI > .. . > <7p .

: This assumption is not crucial: if 77 < P, everything can be repeated for the transpose of U.



Here, /is theP x P identity matrix, and the singular values o-i,... , <7p are the
diagonal entries of S. This is called the Singular Value Decomposition (SVD) of
the matrix U.

We can now restate our key point.

The Rank Principle for Noisy Measurements

The first three singular values of the noisy measurement matrix U are
much greater than the others:

cri ., cr-i, 03 ̂ > a-4,... , 0-p . (3. 2)

It can be shown [Forsythe et al., 1977] that the rank-3 matrix U* that is closest
to Uin. theL2-norm sense can be obtained by setting to zero all the singular values
after the third in the decomposition:

y=L*^R\ (3. 3)

where L* collects the first three columns of L, S* is the first third-order principal
minor of S, and Rv gathers the first three rows of R.

3.2 The Metric Constraints

Golub and Reinsch [Golub and Reinsch, 1971] give an efficient and well-behaved
algorithm to compute the singular value decomposition of a matrix. We use that
algorithm to obtain a decomposition of the measurement matnx U.

The singular value decomposition of a matrix is unique because the left and
right factors L and R are required to be orthonormal. However, this does not mean
that there is only one way to decompose the measurement matrix U into M and S.
Since the rank principle expresses an incidence relation, it only detennines the two
matrices M and S up to an affine transformation of the plane. In fact, if A is any
invertible 3x3 matrix, the matrices MA and A~}S are also a valid decomposition
of U, since

(MA)(A-15) = M(AA~1)S =MS=U .

Therefore, if we want to find M and S from the measurement matrix U, we
need additional constraints. We approach the problem by first decomposing U into
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two matrices M and S of the appropriate sizes via the SVD algorithm. Based on
equation (3.3), we can define, for instance, the two matrices

M = L*(I!*)^2
S = (^*)1/2^* . (3. 4)

Then, we can complete the solution by finding the matrix A that transforms M
and S into the actual motion and shape matrices M and S:

M = MA-1

S = AS .

The matrix A can be found by looking at the structure of the motion and shape
matrices. The first and second column of M gather cosines and sines of the frame
angles (see equation (2. 3)), and must therefore be nonnalized. Furthermore, the
third row of S contains all ones (equation (2.4)). These are metric constraints, as
opposed to the incidence constraints expressed by the rank principle.

Formally, let us partition A andA-l into rows and columns, respectively:

A =
ai
82
as (3. 5)

A-1 = [ bi b2 bs ] = [^ bs ] ,
where BT gathers the first two columns bi and bz ofA-l. Then, the metric

constraints above can be written as follows:

mfBTBmf = 1

&3Sp = 1 ,
(3. 6)

where m/ and Sp are the/ -th row andp-th column of At and S, respectively. These
two equations say that the points m/ are on a cylinder in a three-dimensional
space, and that the points Sp are on a plane in a three-dimensional space. The
two equations are not independent, since as and 57' are submatrices of A andA-l,
respectively. If we write out the product of A andA-l as partitioned above, we
see that the coupling can be expressed by the following equation:

^BT = [0 0 ] (3. 7)



Enforcing the pair of equations (3.6) leads to an overconstrained problem, and
we can find the cylinder and the plane by data fitting.

In doing this, we encounter two difficulties. Fu-st, fitting a cylinder is a non-
linear problem. Second, the two fitting problems are coupled through equation
(3. 7).

However, a well-behaved algorithm for our problem can be found by first
determining a good approximation to the solution, and then refining the latter with
a numerical function-minimization routine. This two-stage solution of the metric
equations has proven to be accurate and robust in our experiments and simulations.

3.3 Outline of the Algorithm

The incidence and metric constraints expressed by the rank principle and by the
cylinder and plane equations (3.6) are all we need for our algorithm. In conclusion,
given an image measurement matrix U, the algorithm for computing the motion
matrix M and the shape matrix S defined in equations (2.3) and (2.4) can be
summarized as follows.

1. Compute the singular value decomposition of U\

U=LSR.

2. Define the initial decomposition of U into two matrices as follows:

M = L*(^)l/2
S = (F*)1/2^* ,

where L* collects the first three columns of L, S* is the first third-order
principal minor of S, and 7?* gathers the first three rows otR.

3. Simultaneously fit a cylinder to the rows of M and a plane to the columns
of S by minimizing the error criterion

F P

^(a3, 5) = ^(m;57'5m/ - I)2 + ^(ass/, - I)2
/=1 p=l

subject to the constraint

a35r=[o 0] .
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4. Complete the matrix A and its inverse from their submatrices as and B by
solving the system

AA-1 =/.

5. Compute the motion matrix M. and the shape matrix S as

M = MA-1

S = AS.

The details of the fitting algorithm in step 3 and of the matnx completion of
step 4 are described in appendices B and C, respectively.
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An Experiment

We implemented the algorithm described in the previous chapter, and applied it
on several image streams.

The experiment described in this chapterillustrates the rank principle, demon-
strates the good quality of the results, and uandfies the influence of ers ecdve
effects on the accuracy of the motion estimates.

The key parameter for the evaluation of performance is the relative depth
range, which we defined as the ratio of the object size along the optical axis and
the distance between camera and object. In a nutshell, the conclusion drawn from
our experiments is that the relative errors in the computed shape are of the same
order as the relative depth range. Consequently, modeling inaccuracies that are
small with respect to the latter can be ignored.

We put a one-dollar coin (about 4 cm in diameter) approximately 3.5 meters
away from a Sony CCD camera with a 300 mm Tokina lens. Thus, the relative
depth range was 4/350 w 0. 011. Figure 3. 2 shows the setup.

The camera was moved in the plane of the coin, so that only the edge of the
coin was visible in every frame. The motion was roughly circular around a point
in the vicinity of the coin. Only the rotation component was controlled with an
accurate positioning mechanism, so that precise ground truth was available for
performance evaluation. Translation was such as to keep the coin in the field of
view, but was otherwise uncontrolled.

The edge of the coin was approximately aligned with the image scanlines,
thus yielding easy-to-track image features (the thin vertical notches on the coin's
edge). The first 101 frames were taken in steps of 0. 1 degrees between consecutive
frames. After that, the velocity was doubled to 0. 2 degrees per frame, and 100
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more frames were taken. Thus, the overall rotation was 30 degrees. The resulting
201 scanlines are stacked together in figure 3.3, top to bottom. This figure is what
is called an epipolar plane in [Bolles et al., 1987].

The image was filtered with a thineen-tap finite-impulse-response approxima-
tion to the Laplacian of a Gaussian, and the 104 zero crossings of the result, shown
in figure 3.4, were used as features in the experiment.

The measurement matrix was thus 201 x 104 in size. All of the processing,
including feature extraction and linking, matrix decomposition, and motion and
shape computation, took about three minutes on a VAX 8800.

The rank principle is illustrated graphically by the similarity of figures 3.4 and
3. 5. To obtain figure 3. 5, we decomposed the matrix £/representing the crossings,
set to zero all the singular values except the first three, and reconstructed the
measurement matrix. Thus, figure 3. 5 represents the rank-3 matrix U* of equation
(3. 3). The rank principle says that the only differences between figure 3.4 and
figure 3.5, under orthography, are due to noise.

The singular values are plotted in figure 3.6; without noise, and if the projection
were exactly orthographic, only the first three values would be different from zero.

Figure 3.7 shows the computed and the true rotation. The error is always
smaller than one tenth of one degree, and almost everywhere substantially smaller
than that. The algorithm assumes no motion models, and does no smoothing.
As a result, the sharp change in rotational velocity after frame 100 is faithfully
preserved in the motion output.

Figure 3. 8 shows the shape results, and the best circular fit to them. The
accuracy of shape is of the order of the relative depth range (1 percent), even if
variations in depth during the motion of the camera were of the order of the coin
size.

In spite of image noise, perspective effects and unmodeled small variations in
depth, the quality of both shape and motion results is remarkably good.

To get an idea of how perspective effects influence the accuracy of the results,
we tested our algorithm on a stream of simulated, noise-free images similar to those
of our coin experiment. A circular object with 10 features is placed at various
depths from the camera. For each depth, a pinhole camera moves and rotates by 30
degrees in 30 steps. Figure 3.9 plots the relative error in the total computed rotation
as a function of the relative depth range. While algorithms based on depth give
worse motion estimates as objects are moved farther away, our algoriAm improves
(for a constant total rotation angle), because it approximates orthography better
and better.

13
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onclusion: epth versus Shape
Algorithms

The algorithm presented in this report infers the shape of remote objects and the
rotation of the camera. It is a shape algorithm. It does not compute the depth of
the scene.

Algorithms such as the ones described in [Tsai and Huang, 1984], [Heel, 1989],
[Spetsakis and Aloimonos, 1989], on the other hand, represent depth explicitly,
and compute it from the image stream. They are depth algorithms.

Depth algorithms give a more complete answer. They compute all components
of motion, up to a scale factor, and the depth information they supply allows, in
principle, computing shape as well.

However, depth algorithms do not work if objects are very distant from the
camera with respect to their size. When the relative depth range is very small, as
for instance in aerial cartography and reconnaissance, the completeness of depth
algorithms is not only useless, but harmful. A shape algorithm gives a more stable
and accurate answer, because it computes shape and camera rotation du-ectly from
image deformations, without using depth as an intermediate step.

Our factorization method is conceptually simple and leads to an accurate
algorithm. The remaining technical reports in this series, outlined in the preface,
will address the technical problems which are to be solved to make the algorithm
into a practical module of a vision system.
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Appendix A

egeneracies of the IV easurement
atrix

If both the scene and the camera motion are sufficiently complex, the measurement
matrix U is exactly of rank 3. On the other hand, special object shapes and/or
particular types of camera modon can further reduce the rank of U.

In this chapterwe show that the object shape is degenerate if and only if all
feature points are aligned, and that camera motion is degenerate if and only if it is
such that all optical axes pass through the same point.

Shape degeneracies

We now interpret the determinants

^;)=det Ufp Ufq
Ugp Ugq

in terms of intrinsic geometric parameters which describe the relative position of
the three world points, and of the angles between frames.

It follows immediately from this interpretation that a necessary and sufficient
condition for the existence of at least one non-zero determinant of the type above
is that there be at least three non-aligned points, and at least two disdnct frames.

Since we consider only shape degeneracies, we can set ty = 0 for all/. This
is equivalent to saying that the camera moves by pure rotation, as shown in figure
3. 10.
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Let dp and 7^ be the magnitude and phase of the vector which joins the center
of rotation, chosen as the world origin, with object point number?-

d, ^^
7p = arctan2(Zp, Xp)

(see figure 3. 10).
Here arctan2 is the two-argument inverse tangent function, which differs from

the one-argument function in that it returns the angle in the appropriate quadrant,
and has no singularities:

arctan2(y, x) =

arctan(y/^)
sign(y)(7T - arctan \y/x\)
0

signCy)7T/2

ifx>0
if.c<0
ifx=y=0
ifx=0, y^0

Furthermore, let ifJfg be the angle between frame / and frame g, measured

counterclockwise from/ to g (figure 3. 10), and let 7^ =^p- ̂ q.
Then, if Ufp is the projection of point^p onto frame/ , we have

Aw = det | ^ u^
.^fs USP US1 J

= dpdq sin ̂pq sin </y^

Proof

We introduce the angles ijJfp between frame/ and the line from the origin to
point p; the determinant A^f is easily expressed in terms of these angles:

Aff det dp COS UJfp dq COS U)fq
dp cos ugp dq COS U}gq

dpdq(CO& Wfp COS UJgq - COS Wfq COS W^p)

-p-l[COS(Ufp + IjLlgq) + COS^y-p - Wgq)
- COS(Wfq + UJgp) - COS(Wfq - Wgp)]

^"i

If we now observe that

u}fq = Ltyp+7p<7

<^fP = 'tl)f8 + ^ = ^/S + ^? - ^pq
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we can write

so that

IJJfp+WS1 = ^fq+^SP=2ufP-^f8+7pq
wfP-wgq = ^fg-^pq
IJ}fl-u8P = ^+7w,

^) ^ ^cos(^ - 7,, ) - cos(^ + 7,, )]
= dpdq sin 7^ sin i^fg ,

as promised.

Motion degeneracies

The motion matrix M defined in equation (2.3) is of rank smaller than three if
and only if one column is a linear combinadon of the other two. We consider
separately two cases, depending on whether the two vectors c = (ci ... cp)7 and
s= (si ... Sp)T are mutually dependent.

The vectors c and s are dependent only when all inter-frame rotations are
integer multiples of 7r/4. The only interesting case of this type occurs when the
camera moves by pure translation. In this case, all optical axes pass through the
same point at infinity.

If, on the other hand, c and s are mutually independent, the modon matrix M
(and therefore the measurement matrix U)is of rank two if and only if there are
two numbers a and /3 such that

tf=acf+f3sf. (A. l)

For a generic point (J, Z), the projection equation (2. 1) can be rewritten in the
following form:

tf = Ufp - Xcf - Zsf .

By comparing this equation with equation (A. l), we see that for the latter
to hold there must be a (possibly invisible) point with coordinates X = -a and
Z = -/? that is always projected to the origin, that is, such that Ufp = 0.

Since the projection ray of a point that projects to the origin is the optical axis,
this proves that motion is degenerate if and only if all optical axes pass through
the same point.
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Appendix

Simultaneous Cylinder and; lane
^ itting

This Appendix elaborates on step 3 of our algorithm: the minimization of the error
cntenon

e(a3,5)=^(5)+e,(a3)

where

and

subject to the constraint

e^B) = ^(,mjBTBmf - I)2
/=1

e. (a3) = E(a3^ - I)2
p=l

(B. l)a35T=[o 0] .
We compute the solution in the following steps:

. find the cylinder 5T5 that minimizes fim(5)

. find the plane as that minimizes e, (as)

. minimize e(as, 5) numerically, using 83 and 5 as a starting point, and en-
forcing the constraint of equation (B. l).

We now examine the first and the third step in some detail. The second step,
fitting a plane, is trivial.
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Fitting the Cylinder

Fitting a cylinder mTBTBm = 1 to a set of three-dimensional data riii,... , 11177 is a
non-linear problem in the entries of the matrix B.

Consequently, we use the same strategy as above: we first find a good approx-
imation to the solution, and then we refine it numerically.

The approximation can be found by first fi.tdng a quadratic form mTQm = 1
to the data. Thus, rather than finding a cylinder, we find an ellipsoid. This is a
linear problem in the entries of the symmetric matrix Q, and can be solved easily.
We then decompose the result, Q, and set its smallest eigenvalue to zero. The
decomposition yields a first approximation to B. In this way, instead of finding
the optimal cylinder, we obtain the cylinder that is closest to the optimal ellipsoid.
From there, we can reach the optimal cylinder by numerical minimization of
em{B). -Our experiments indicate that this last step is hardly necessary: the cylinder
obatained by suppressing the smallest eigenvalue of Q. is almost the same as the
optimal cylinder.

Refining the IMinimum of e(si3, B)

We now have a cylinder BTB and a plane 83 which separately minimize the two
error functions em{B) and ̂ (as). However, B and as may not satisfy the constraint
(B. l) exactly.

In order to enforce equation (B. l), and at the same time minimize the global
error function e(a3, 5), we use the constraint to write as as a funcdon of 5. Equadon
(B. l) says that as is orthogonal to both rows, bi and b2, of 5, so we can write

»3 = asCbi x b2)

where x denotes the cross product, and 03 is a scalar.
As a result, we obtain a function e'(a3, B) of only seven variables, rather than

nine. The minimization of e. ' is now unconstrained.

To complete the task we need the derivatives of the cylinder residue function
7 = mTBTBm - 1 and the plane residue function TT = <33(bi x bz)s - 1 with respect
to the unknown parameters 03 and 5, for use in a standard minimization routine.

Simple algebraic manipulation shows the derivatives to be

^-ummT
21



(a 2 x 3 matrix of derivatives), and

07T

9bi
.97T
9b2
Q-K

Qa^

= as(b2 x s)

det

-fl3(bl X S)

s

B
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Appendix

ompletion of the atrix A and its
nverse

This Appendix shows how to complete the matrix

A=
ai
a2
as

and its inverse

A-1 = [ bi hz bs ] = [5r b3 ]
given their submatrices 83 and 5. This is step 4 of our algorithm.

The 3x3 matrix equation
A4-l=/

can be expanded into nine scalar equations:

aibi = 1 aib2=0 aib3=0

a2bi = 0 a2b2 = 1 a2b3 = 0

asbi = 0 asb2 = 0 asbs = 1 .

The two equations

asbi =0 and asb2 = 0

contain only known quantities. They coincide with the constraint equation (B. l),
and can be ignored here. Since the unknown scalars are still nine (the entries of
ai, 82, and bs), we need two more equations.
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These two degrees of freedom derive from the fact that the origin of the world
coordinate system was left unspecified. Rather than constraining the origin to be
at (0, 0), we use these degrees of freedom to improve the noise perfonnance of the
shape result as follows.

The shape matrix is computed &s S = AS in the last step of our algorithm. Of
the three rows of S, the third is the most sensitive to noise, because it corresponds
to the smallest singular value of the decomposition (3. 1). Consequendy, it is
advantageous to avoid using that row in the final result. This can be accomplished
by requiring the third entries of ai and 82 to be zero:

aiv = 0

a2V = 0,

where v=<0, 0, l)r.
We now have the nine equations we need. The six homogeneous equadons

express orthogonality, and we can use them to find the directions (unit vectors)
wi, W2, and Wa of the unknown vectors ai, 82, and bs. From aibz = 0 and aiv = 0
we deduce that aiis orthogonal to both b2 and v, so that its unit vector is

Wi =
b2 X V

|b2 X V[

Similarly, for the unit vector of 82, the two equations a2bi = 0 and a2V = 0 yield

bi x v
W2 =

|bi x v|

From these two results, and equations aibs = 0 and a2bs = 0, we obtain the
unit vector of bs:

Wi X W2
W3 = !".' .. _.."! .

x

The signed magnitudes cri, crz, and ̂ 3 of ai, a2, and bs can now be found from
the non-homogeneous equations

aibi = 1
a2b2 = 1

33b3 = 1 ,
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which yield

ai = 1/(A cos 0i)
0'2 = 1/(^2COS^2)
^3 = l/(aicos^),

where /?i, ̂ 2, as are the magnitudes of the known vectors bi, b2, as, and 0i, O-z, 63
are the angles between ai and bi, 02 and b2, as and bs, that is,

COS 01 = Wi

COS Oz = W2

COS 03 = W3

bi
|bi|
b2
N
as

w\'
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Figure 3. 1: The basic geometry.

350

Figure 3.2: The setup in our experiment. Measures are in centimeters.
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Figure 3.3: The input to the algorithm; each scanline is anew frame, and represents
the edge of a one-dollar coin seen from a new angle. In [Bolles et al., 1987], a
figure like this is called an epipolar plane. We use it to recover shape and rotadon,
instead of depth given known motion.

Figure 3.4: The zero crossings from figure 3.3.
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Figure 3.5: Zero crossings reconstructed after suppressing all but the first three
singular values of the measurement matrix.
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Figure 3.6: Singular values of the measurement matrix. Notice the logarithmic
scale along the ordinate axis.
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Figure 3.8: Shape. The top figure shows the computed shape (dots) ofaone-dollar
coin, with the best fit circle. The bottom figure magnifies the difference between
true and computed shape values along the radius of the coin.
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Figure 3.9: The modon error due to perspective distordon decreases when the
relative depth range becomes smaller. These results were obtained by simulating
noise-free images of a circular object with 10 features, and a pin-hole camera
rotating by 30 degrees in 30 frames.
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Figure 3. 10: The angles defined in appendix A.
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